Sample records for main belt comets

  1. A population of comets in the main asteroid belt.

    PubMed

    Hsieh, Henry H; Jewitt, David

    2006-04-28

    Comets are icy bodies that sublimate and become active when close to the Sun. They are believed to originate in two cold reservoirs beyond the orbit of Neptune: the Kuiper Belt (equilibrium temperatures of approximately 40 kelvin) and the Oort Cloud (approximately 10 kelvin). We present optical data showing the existence of a population of comets originating in a third reservoir: the main asteroid belt. The main-belt comets are unlike the Kuiper Belt and Oort Cloud comets in that they likely formed where they currently reside and may be collisionally activated. The existence of the main-belt comets lends new support to the idea that main-belt objects could be a major source of terrestrial water.

  2. A binary main-belt comet.

    PubMed

    Agarwal, Jessica; Jewitt, David; Mutchler, Max; Weaver, Harold; Larson, Stephen

    2017-09-20

    Asteroids are primitive Solar System bodies that evolve both collisionally and through disruptions arising from rapid rotation. These processes can lead to the formation of binary asteroids and to the release of dust, both directly and, in some cases, through uncovering frozen volatiles. In a subset of the asteroids called main-belt comets, the sublimation of excavated volatiles causes transient comet-like activity. Torques exerted by sublimation measurably influence the spin rates of active comets and might lead to the splitting of bilobate comet nuclei. The kilometre-sized main-belt asteroid 288P (300163) showed activity for several months around its perihelion 2011 (ref. 11), suspected to be sustained by the sublimation of water ice and supported by rapid rotation, while at least one component rotates slowly with a period of 16 hours (ref. 14). The object 288P is part of a young family of at least 11 asteroids that formed from a precursor about 10 kilometres in diameter during a shattering collision 7.5 million years ago. Here we report that 288P is a binary main-belt comet. It is different from the known asteroid binaries in its combination of wide separation, near-equal component size, high eccentricity and comet-like activity. The observations also provide strong support for sublimation as the driver of activity in 288P and show that sublimation torques may play an important part in binary orbit evolution.

  3. Asteroid Family Associations of Main-Belt Comets

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.; Novakovic, Bojan; Kim, Yoonyoung; Brasser, Ramon

    2016-10-01

    We present a population-level analysis of the asteroid family associations of known main-belt comets or main-belt comet candidates (which, to date, have largely just been analyzed on individual bases as they have been discovered). In addition to family associations that have already been reported in the literature, we have identified dynamical relationships between 324P/La Sagra and the Alauda family, P/2015 X6 (PANSTARRS) and the Aeolia family, and P/2016 G1 (PANSTARRS) and the Adeona family. We will discuss the overall implications of these family associations, particularly as they pertain to the hypothesis that members of primitive asteroid family members may be more susceptible to producing observable sublimation-driven dust emission activity, and thus becoming main-belt comets. We will also discuss the significance of other dynamical and physical properties of a family or sub-family as they relate to the likelihood of that family containing one or more currently active main-belt comets.

  4. Potential Jupiter-Family comet contamination of the main asteroid belt

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.; Haghighipour, Nader

    2016-10-01

    We present the results of "snapshot" numerical integrations of test particles representing comet-like and asteroid-like objects in the inner Solar System aimed at investigating the short-term dynamical evolution of objects close to the dynamical boundary between asteroids and comets as defined by the Tisserand parameter with respect to Jupiter, TJ (i.e., TJ = 3). As expected, we find that TJ for individual test particles is not always a reliable indicator of initial orbit types. Furthermore, we find that a few percent of test particles with comet-like starting elements (i.e., similar to those of Jupiter-family comets) reach main-belt-like orbits (at least temporarily) during our 2 Myr integrations, even without the inclusion of non-gravitational forces, apparently via a combination of gravitational interactions with the terrestrial planets and temporary trapping by mean-motion resonances with Jupiter. We estimate that the fraction of real Jupiter-family comets occasionally reaching main-belt-like orbits on Myr timescales could be on the order of ∼ 0.1-1%, although the fraction that remain on such orbits for appreciable lengths of time is certainly far lower. For this reason, the number of JFC-like interlopers in the main-belt population at any given time is likely to be small, but still non-zero, a finding with significant implications for efforts to use apparently icy yet dynamically asteroidal main-belt comets as tracers of the primordial distribution of volatile material in the inner Solar System. The test particles with comet-like starting orbital elements that transition onto main-belt-like orbits in our integrations appear to be largely prevented from reaching low eccentricity, low inclination orbits, suggesting that the real-world population of main-belt objects with both low eccentricities and inclinations may be largely free of this potential occasional Jupiter-family comet contamination. We therefore find that low-eccentricity, low-inclination main-belt

  5. Linking main-belt comets to asteroid families

    NASA Astrophysics Data System (ADS)

    Novakovic, B.; Hsieh, H. H.; Cellino, A.

    2012-09-01

    Here we present our results obtained by applying different methods in order to establish a firm link between the main-belt comets (MBCs) and colisionally-formed asteroid families (AFs), i.e, to possibly find additional line of evidence supporting the hypothesis that MBCs may be preferentially found among the members of young AFs.

  6. Orbital Alignment of Main-belt Comets

    NASA Astrophysics Data System (ADS)

    Kim, Yoonyoung; JeongAhn, Youngmin; Hsieh, Henry H.

    2018-03-01

    We examine the orbital element distribution of main-belt comets (MBCs), which are objects that exhibit cometary activity yet orbit in the main asteroid belt and may be potentially useful as tracers of ice in the inner solar system. We find that the currently known and currently active MBCs have remarkably similar longitudes of perihelion, which are also aligned with that of Jupiter. The clustered objects have significantly higher current osculating eccentricities relative to their proper eccentricities, consistent with their orbits being currently, though only temporarily, secularly excited in osculating eccentricity due to Jupiter’s influence. At the moment, most MBCs seem to have current osculating elements that may be particularly favorable for the object becoming active (e.g., maybe because of higher perihelion temperatures or higher impact velocities causing an effective increase in the size of the potential triggering impactor population). At other times, other icy asteroids will have those favorable conditions and might become MBCs at those times as well.

  7. Assessing the Main-Belt Comet Population with Comet Hunters

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.; Hsieh, Henry H.; Zhang, Zhi-Wei; Chen, Ying-Tung; Lintott, Chris; Wang, Shiang-Yu; Mishra, Ishan

    2017-01-01

    Cometary activity in the asteroid belt is a recent discovery. Evidence suggests recent collisions play a role excavating subsurface water ice in these Main Belt Comets (MBCs). MBCs may be an alternative source of Earth’s water. The properties and origins of the MBCs remain elusive. To date ~15 MBCs are known, but only with many tens to 100s of MBCs can we fully explore this new reservoir and its implications for the early Earth.Automated routines identify cometary objects by comparing the point spread functions (PSFs) of moving objects to background stars. This approach may miss cometary activity with low-level dust comae or trails that are too weak or extended to affect an object's near-nucleus PSF profile. Direct visual inspection of moving objects by survey team members can often catch such unusual objects, but such an approach is impractical for the largest surveys to date, and will only become more intractable with the next generation wide-field surveys.With the Internet, tens of thousands of people can be engaged in the scientific process. With this citizen science approach, the combined assessment of many non-experts often equals or rivals that of a trained expert and in many cases outperforms automated algorithms. The Comet Hunters (http://www.comethunters.org) project enlists the public to search for MBCs in data from the Hyper Suprime-Cam (HSC) wide survey. HSC is to date the largest field-of-view camera (covering a 1.5 degree diameter circle on sky) on a 8-10-m class telescope. The HSC wide survey provides the sensitivity to detect cometary activity at lower levels than have been possible for previous surveys.We will give an overview of the Comet Hunters project. We will present the results from the first ~10,000 HSC asteroids searched and provide an estimate on the frequency of cometary activity in the Main Asteroid beltAcknowledgements: This work uses data generated via the Zooniverse.org platform, development of which was supported by a Global

  8. Hst Measurements Of Main Belt Comet 300163

    NASA Astrophysics Data System (ADS)

    Jewitt, David; Weaver, H.; Agarwal, J.; Mutchler, M.; Larson, S.

    2012-10-01

    Asteroid 300163 (semimajor axis 3.05 AU, eccentricity 0.20, inclination 3 deg., Tisserand parameter 3.20) is a source of dust, giving it the dual cometary designation P/2006 VW139. It satisfies the definition of a main-belt comet (MBC) by having the orbital character of a main-belt asteroid but the diffuse appearance of a comet. We obtained Hubble Space Telescope observations of this object in December 2011 in order to study the morphology of the ejected dust at the highest angular resolution and to determine the cause of the mass loss from the nucleus. One of the two HST observing epochs was carefully timed to coincide with the Earth's crossing of the orbital plane (out of plane angle 0.01 deg.) to obtain a measure of the vertical velocity dispersion free from the effects of projection. We find an extraordinarily thin dust sheet and infer a sub-meter per second dust ejection velocity. Observations at the second epoch show a change in the near-nucleus dust morphology that indicates continuing ejection (i.e. the dust emission is not impulsive). We use the low velocity ejection, coupled with the absence of an observable coma, to help constrain the possible source mechanisms for the dust.

  9. Discovery of Main-Belt Comet P/2006 VW139 by Pan-STARRS1

    NASA Astrophysics Data System (ADS)

    Hsieh, H. H.; Yang, B.; Haghighipour, N.; Kaluna, H. M.; Fitzsimmons, A.; Denneau, L.; Novakovic, B.; Jedicke, R.; Wainscoat, R. J.; Armstrong, J. D.; Duddy, S. R.; Lowry, S. C.; Trujillo, C. A.; Micheli, M.; Keane, J. V.; Urban, L.; Riesen, T.; Meech, K. J.; Abe, S.; Cheng, Y. C.; Chen, W. P.; Granvik, M.; Grav, T.; Ip, W. H.; Kinoshita, D.; Kleyna, J.; Lacerda, P.; Lister, T.; Milani, A.; Tholen, D. J.; Veres, P.; Lisse, C. M.; Kelley, M. S.; Fernandez, Y. R.; Bhatt, B. C.; Sahu, D. K.; Kaiser, N.; Chambers, K. C.; Hodapp, K. W.; Magnier, E. A.; Price, P. A.; Tonry, J. L.

    2012-05-01

    We describe the discovery of comet-like activity in main-belt asteroid (300163) 2006 VW139 (later re-designated as Comet P/2006 VW139) by Pan-STARRS1. We also detail follow-up photometric, spectroscopic, and dynamical analyses of the object.

  10. The Main Belt Comets and ice in the Solar System

    NASA Astrophysics Data System (ADS)

    Snodgrass, Colin; Agarwal, Jessica; Combi, Michael; Fitzsimmons, Alan; Guilbert-Lepoutre, Aurelie; Hsieh, Henry H.; Hui, Man-To; Jehin, Emmanuel; Kelley, Michael S. P.; Knight, Matthew M.; Opitom, Cyrielle; Orosei, Roberto; de Val-Borro, Miguel; Yang, Bin

    2017-11-01

    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies.

  11. The Hawaii trails project: comet-hunting in the main asteroid belt

    NASA Astrophysics Data System (ADS)

    Hsieh, H. H.

    2009-10-01

    Context: The mysterious solar system object 133P/(7968) Elst-Pizarro is dynamically asteroidal, yet displays recurrent comet-like dust emission. Two scenarios were hypothesized to explain this unusual behavior: 1) 133P is a classical comet from the outer solar system that has evolved onto a main-belt orbit or 2) 133P is a dynamically ordinary main-belt asteroid on which subsurface ice has recently been exposed. If 1) is correct, the expected rarity of a dynamical transition onto an asteroidal orbit implies that 133P could be alone in the main belt. In contrast, if 2) is correct, other icy main-belt objects should exist and could also exhibit cometary activity. Aims: Believing 133P to be a dynamically ordinary, yet icy main-belt asteroid, I set out to test the primary prediction of the hypothesis: that 133P-like objects should be common and could be found by an appropriately designed observational survey. Methods: I conducted just such a survey - the Hawaii Trails Project - of selected main-belt asteroids in a search for objects displaying cometary activity. Optical observations were made of targets selected from among the Themis, Koronis, and Veritas asteroid families, the Karin asteroid cluster, and low-inclination, kilometer-scale outer-belt asteroids, using the Lulin 1.0 m, small and moderate aperture research telescope system (SMARTS) 1.0 m, University of Hawaii 2.2 m, southern astrophysical research (SOAR) 4.1 m, Gemini North 8.1 m, Subaru 8.2 m, and Keck I 10 m telescopes. Results: I made 657 observations of 599 asteroids, discovering one active object now known as 176P/LINEAR, leading to the identification of the new cometary class of main-belt comets (MBCs). These results suggest that there could be ~100 currently active MBCs among low-inclination, kilometer-scale outer-belt asteroids. Physically and statistically, MBC activity is consistent with initiation by meter-sized impactors. The estimated rate of impacts and sizes of resulting active sites, however

  12. TRIGGERING SUBLIMATION-DRIVEN ACTIVITY OF MAIN BELT COMETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haghighipour, N.; Maindl, T. I.; Dvorak, R.

    2016-10-10

    It has been suggested that the comet-like activity of main belt comets (MBCs) is due to the sublimation of sub-surface water–ice that has been exposed as a result of their surfaces being impacted by meter-sized bodies. We have examined the viability of this scenario by simulating impacts between meter-sized and kilometer-sized objects using a smooth particle hydrodynamics approach. Simulations have been carried out for different values of the impact velocity and impact angle, as well as different target material and water-mass fractions. Results indicate that for the range of impact velocities corresponding to those in the asteroid belt, the depthmore » of an impact crater is slightly larger than 10 m, suggesting that if the activation of MBCs is due to the sublimation of sub-surface water–ice, this ice has to exist no deeper than a few meters from the surface. Results also show that ice exposure occurs in the bottom and on the interior surface of impact craters, as well as on the surface of the target where some of the ejected icy inclusions are re-accreted. While our results demonstrate that the impact scenario is indeed a viable mechanism to expose ice and trigger the activity of MBCs, they also indicate that the activity of the current MBCs is likely due to ice sublimation from multiple impact sites and/or the water contents of these objects (and other asteroids in the outer asteroid belt) is larger than the 5% that is traditionally considered in models of terrestrial planet formation, providing more ice for sublimation. We present the details of our simulations and discuss their results and implications.« less

  13. Main-belt comets in the Palomar Transient Factory survey - I. The search for extendedness

    NASA Astrophysics Data System (ADS)

    Waszczak, A.; Ofek, E. O.; Aharonson, O.; Kulkarni, S. R.; Polishook, D.; Bauer, J. M.; Levitan, D.; Sesar, B.; Laher, R.; Surace, J.; PTF Team

    2013-08-01

    Cometary activity in main-belt asteroids probes the ice content of these objects and provides clues to the history of volatiles in the inner Solar system. We search the Palomar Transient Factory survey to derive upper limits on the population size of active main-belt comets (MBCs). From data collected from 2009 March through 2012 July, we extracted ˜2 million observations of ˜220 thousand known main-belt objects (40 per cent of the known population, down to ˜1-km diameter) and discovered 626 new objects in multinight linked detections. We formally quantify the `extendedness' of a small-body observation, account for systematic variation in this metric (e.g. due to on-sky motion) and evaluate this method's robustness in identifying cometary activity using observations of 115 comets, including two known candidate MBCs and six newly discovered non-MBCs (two of which were originally designated as asteroids by other surveys). We demonstrate a 66 per cent detection efficiency with respect to the extendedness distribution of the 115 sampled comets, and a 100 per cent detection efficiency with respect to extendedness levels greater than or equal to those we observed in the known candidate MBCs P/2010 R2 (La Sagra) and P/2006 VW139. Using a log-constant prior, we infer 95 per cent confidence upper limits of 33 and 22 active MBCs (per million main-belt asteroids down to ˜1-km diameter), for detection efficiencies of 66 and 100 per cent, respectively. In a follow-up to this morphological search, we will perform a photometric (disc-integrated brightening) search for MBCs.

  14. Nucleus Characterization of Main-Belt Comet P/Garradd

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.; Kaluna, Heather; Meech, Karen J.

    2012-02-01

    We seek SOAR time to physically characterize the nucleus of main- belt comet (MBC) P/2008 R1 (Garradd). Our primary objectives include determination of P/Garradd's rotation period, shape, and colors. MBCs are mysterious objects that exhibit cometary activity yet are dynamically indistinguishable from main-belt asteroids. Studying these apparently icy objects so close to the Sun is important for understanding the distribution of volatile material in our solar system as well as the origin of Earth's water. Five MBCs are currently known: only two have well-characterized nuclei, while the others have only been partially characterized. With so little known about this population, it is crucial to obtain the best possible physical characterizations for as many of the few currently known MBCs as possible. This information will aid us in developing a global understanding of the population's characteristics, such as the level of diversity as well as any commonalities. This will then help answer larger scientific questions such as how abundant MBCs may be and what they can tell us about the past and present distribution of ice in the inner solar system.

  15. Main Belt Comet P/2006 VW139: A Fragment from a Recent Collision?

    NASA Astrophysics Data System (ADS)

    Novakovic, B.; Hsieh, H. H.; Cellino, A.

    2012-05-01

    We applied different methods to examine a possibility that main belt comet P/2006VW139, recently discovered by the Pan-STARRS 1, belongs to a small group of 24 asteroids. Results show strong evidence that P/2006VW139 really belongs to this group.

  16. Sublimation-Driven Activity in Main-Belt Comet 313p/Gibbs

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.; Hainaut, Olivier; Novaković, Bojan; Bolin, Bryce; Denneau, Larry; Fitzsimmons, Alan; Haghighipour, Nader; Kleyna, Jan; Kokotanekova, Rosita; Lacerda, Pedro; Meech, Karen J.; Micheli, Marco; Moskovitz, Nick; Schunova, Eva; Snodgrass, Colin; Wainscoat, Richard J.; Wasserman, Lawrence; Waszczak, Adam

    2015-02-01

    We present an observational and dynamical study of newly discovered main-belt comet 313P/Gibbs. We find that the object is clearly active both in observations obtained in 2014 and in precovery observations obtained in 2003 by the Sloan Digital Sky Survey, strongly suggesting that its activity is sublimation-driven. This conclusion is supported by a photometric analysis showing an increase in the total brightness of the comet over the 2014 observing period, and dust modeling results showing that the dust emission persists over at least three months during both active periods, where we find start dates for emission no later than 2003 July 24 ± 10 for the 2003 active period and 2014 July 28 ± 10 for the 2014 active period. From serendipitous observations by the Subaru Telescope in 2004 when the object was apparently inactive, we estimate that the nucleus has an absolute R-band magnitude of HR = 17.1 ± 0.3, corresponding to an effective nucleus radius of re ∼ 1.00 ± 0.15 km. The object’s faintness at that time means we cannot rule out the presence of activity, and so this computed radius should be considered an upper limit. We find that 313P’s orbit is intrinsically chaotic, having a Lyapunov time of Tl = 12,000 yr and being located near two three-body mean-motion resonances with Jupiter and Saturn, 11J-1S-5A and 10J+12S-7A, yet appears stable over >50 Myr in an apparent example of stable chaos. We furthermore find that 313P is the second main-belt comet, after P/2012 T1 (PANSTARRS), to belong to the ∼155 Myr old Lixiaohua asteroid family.

  17. SUBLIMATION-DRIVEN ACTIVITY IN MAIN-BELT COMET 313P/GIBBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Henry H.; Hainaut, Olivier; Novaković, Bojan

    2015-02-10

    We present an observational and dynamical study of newly discovered main-belt comet 313P/Gibbs. We find that the object is clearly active both in observations obtained in 2014 and in precovery observations obtained in 2003 by the Sloan Digital Sky Survey, strongly suggesting that its activity is sublimation-driven. This conclusion is supported by a photometric analysis showing an increase in the total brightness of the comet over the 2014 observing period, and dust modeling results showing that the dust emission persists over at least three months during both active periods, where we find start dates for emission no later than 2003more » July 24 ± 10 for the 2003 active period and 2014 July 28 ± 10 for the 2014 active period. From serendipitous observations by the Subaru Telescope in 2004 when the object was apparently inactive, we estimate that the nucleus has an absolute R-band magnitude of H{sub R} = 17.1 ± 0.3, corresponding to an effective nucleus radius of r{sub e} ∼ 1.00 ± 0.15 km. The object’s faintness at that time means we cannot rule out the presence of activity, and so this computed radius should be considered an upper limit. We find that 313P’s orbit is intrinsically chaotic, having a Lyapunov time of T{sub l} = 12,000 yr and being located near two three-body mean-motion resonances with Jupiter and Saturn, 11J-1S-5A and 10J+12S-7A, yet appears stable over >50 Myr in an apparent example of stable chaos. We furthermore find that 313P is the second main-belt comet, after P/2012 T1 (PANSTARRS), to belong to the ∼155 Myr old Lixiaohua asteroid family.« less

  18. Castalia: A European Mission to a Main Belt Comet

    NASA Astrophysics Data System (ADS)

    Snodgrass, Colin; Castalia mission science Team

    2013-10-01

    Main Belt Comets (MBCs) are a newly identified population, with stable asteroid-like orbits in the outer main belt and a comet-like appearance. It is believed that they survived the age of the solar system in a dormant state and that their activity occurred only recently. Water ice is the only volatile expected to survive, and only when buried under an insulating surface. Excavation by impact could bring the water ice (closer) to the surface and trigger the start of MBC activity. The specific science goals of the Castalia mission are: 1. Characterize a new Solar System family, the MBCs, by in-situ investigation 2. Understand the physics of activity on MBCs 3. Directly detect water in the asteroid belt 4. Test if MBCs are a viable source for Earth’s water 5. Use MBCs as tracers of planetary system formation and evolution These goals can be achieved by a spacecraft designed to rendezvous with and orbit an MBC for some months, arriving before the active period begins for mapping before directly sampling the gas and dust released during the active phase. Given the low level of activity of MBCs, and the expectation that their activity comes from only a localized patch on the surface, the orbiting spacecraft will have to be able to maintain a very close orbit over extended periods - the Castalia plan envisages an orbiter capable of ‘hovering’ autonomously at distances of only a few km from the surface of the MBC. The straw-man instrument payload is made up of: - Visible and near-infrared spectral imager - Thermal infrared imager - Radio science - Dust impact detector - Dust composition analyzer - Neutral/ion mass spectrometer - Magnetometer - Plasma package In addition to this, the option of a surface science package is being considered. At the moment MBC 133P/Elst-Pizarro is the best-known target for such a mission. A design study for the Castalia mission has been carried out in partnership between the science team, DLR and OHB Systems. This study looked at

  19. Main-belt Comet P/2012 T1 (PANSTARRS)

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.; Kaluna, Heather M.; Novaković, Bojan; Yang, Bin; Haghighipour, Nader; Micheli, Marco; Denneau, Larry; Fitzsimmons, Alan; Jedicke, Robert; Kleyna, Jan; Vereš, Peter; Wainscoat, Richard J.; Ansdell, Megan; Elliott, Garrett T.; Keane, Jacqueline V.; Meech, Karen J.; Moskovitz, Nicholas A.; Riesen, Timm E.; Sheppard, Scott S.; Sonnett, Sarah; Tholen, David J.; Urban, Laurie; Kaiser, Nick; Chambers, K. C.; Burgett, William S.; Magnier, Eugene A.; Morgan, Jeffrey S.; Price, Paul A.

    2013-07-01

    We present initial results from observations and numerical analyses aimed at characterizing the main-belt comet P/2012 T1 (PANSTARRS). Optical monitoring observations were made between 2012 October and 2013 February using the University of Hawaii 2.2 m telescope, the Keck I telescope, the Baade and Clay Magellan telescopes, Faulkes Telescope South, the Perkins Telescope at Lowell Observatory, and the Southern Astrophysical Research Telescope. The object's intrinsic brightness approximately doubles from the time of its discovery in early October until mid-November and then decreases by ~60% between late December and early February, similar to photometric behavior exhibited by several other main-belt comets and unlike that exhibited by disrupted asteroid (596) Scheila. We also used Keck to conduct spectroscopic searches for CN emission as well as absorption at 0.7 μm that could indicate the presence of hydrated minerals, finding an upper limit CN production rate of Q CN < 1.5 × 1023 mol s-1, from which we infer a water production rate of Q_H_2O<5\\times 10^{25} mol s-1, and no evidence of the presence of hydrated minerals. Numerical simulations indicate that P/2012 T1 is largely dynamically stable for >100 Myr and is unlikely to be a recently implanted interloper from the outer solar system, while a search for potential asteroid family associations reveals that it is dynamically linked to the ~155 Myr old Lixiaohua asteroid family. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and made possible by the generous financial support of the W. M. Keck Foundation, the Magellan Telescopes located at Las Campanas Observatory, Chile, and the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inova

  20. THE EXTRAORDINARY MULTI-TAILED MAIN-BELT COMET P/2013 P5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jewitt, David; Agarwal, Jessica; Weaver, Harold

    2013-11-20

    Hubble Space Telescope observations of main-belt comet P/2013 P5 reveal an extraordinary system of six dust tails that distinguish this object from any other. Observations two weeks apart show dramatic morphological change in the tails while providing no evidence for secular fading of the object as a whole. Each tail is associated with a unique ejection date, revealing continued, episodic mass loss from the 0.24 ± 0.04 km radius nucleus over the last five months. As an inner-belt asteroid and probable Flora family member, the object is likely to be highly metamorphosed and unlikely to contain ice. The protracted periodmore » of dust release appears inconsistent with an impact origin, but may be compatible with a body that is losing mass through a rotational instability. We suggest that P/2013 P5 has been accelerated to breakup speed by radiation torques.« less

  1. Observational and Dynamical Characterization of Main-belt Comet P/2010 R2 (La Sagra)

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.; Yang, Bin; Haghighipour, Nader; Novaković, Bojan; Jedicke, Robert; Wainscoat, Richard J.; Denneau, Larry; Abe, Shinsuke; Chen, Wen-Ping; Fitzsimmons, Alan; Granvik, Mikael; Grav, Tommy; Ip, Wing; Kaluna, Heather M.; Kinoshita, Daisuke; Kleyna, Jan; Knight, Matthew M.; Lacerda, Pedro; Lisse, Carey M.; Maclennan, Eric; Meech, Karen J.; Micheli, Marco; Milani, Andrea; Pittichová, Jana; Schunova, Eva; Tholen, David J.; Wasserman, Lawrence H.; Burgett, William S.; Chambers, K. C.; Heasley, Jim N.; Kaiser, Nick; Magnier, Eugene A.; Morgan, Jeffrey S.; Price, Paul A.; Jørgensen, Uffe G.; Dominik, Martin; Hinse, Tobias; Sahu, Kailash; Snodgrass, Colin

    2012-05-01

    We present observations of the recently discovered comet-like main-belt object P/2010 R2 (La Sagra) obtained by Pan-STARRS1 and the Faulkes Telescope-North on Haleakala in Hawaii, the University of Hawaii 2.2 m, Gemini-North, and Keck I telescopes on Mauna Kea, the Danish 1.54 m telescope (operated by the MiNDSTEp consortium) at La Silla, and the Isaac Newton Telescope on La Palma. An antisolar dust tail is observed to be present from 2010 August through 2011 February, while a dust trail aligned with the object's orbit plane is also observed from 2010 December through 2011 August. Assuming typical phase darkening behavior, P/La Sagra is seen to increase in brightness by >1 mag between 2010 August and December, suggesting that dust production is ongoing over this period. These results strongly suggest that the observed activity is cometary in nature (i.e., driven by the sublimation of volatile material), and that P/La Sagra is therefore the most recent main-belt comet to be discovered. We find an approximate absolute magnitude for the nucleus of HR = 17.9 ± 0.2 mag, corresponding to a nucleus radius of ~0.7 km, assuming an albedo of p = 0.05. Comparing the observed scattering surface areas of the dust coma to that of the nucleus when P/La Sagra was active, we find dust-to-nucleus area ratios of Ad /AN = 30-60, comparable to those computed for fellow main-belt comets 238P/Read and P/2008 R1 (Garradd), and one to two orders of magnitude larger than for two other main-belt comets (133P/Elst-Pizarro and 176P/LINEAR). Using optical spectroscopy to search for CN emission, we do not detect any conclusive evidence of sublimation products (i.e., gas emission), finding an upper limit CN production rate of Q CN < 6 × 1023 mol s-1, from which we infer an H2O production rate of Q_H_2O\\,{<}\\,10^{26} mol s-1. Numerical simulations indicate that P/La Sagra is dynamically stable for >100 Myr, suggesting that it is likely native to its current location and that its composition is

  2. Discovery of Main-belt Comet P/2006 VW139 by Pan-STARRS1

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.; Yang, Bin; Haghighipour, Nader; Kaluna, Heather M.; Fitzsimmons, Alan; Denneau, Larry; Novaković, Bojan; Jedicke, Robert; Wainscoat, Richard J.; Armstrong, James D.; Duddy, Samuel R.; Lowry, Stephen C.; Trujillo, Chadwick A.; Micheli, Marco; Keane, Jacqueline V.; Urban, Laurie; Riesen, Timm; Meech, Karen J.; Abe, Shinsuke; Cheng, Yu-Chi; Chen, Wen-Ping; Granvik, Mikael; Grav, Tommy; Ip, Wing-Huen; Kinoshita, Daisuke; Kleyna, Jan; Lacerda, Pedro; Lister, Tim; Milani, Andrea; Tholen, David J.; Vereš, Peter; Lisse, Carey M.; Kelley, Michael S.; Fernández, Yanga R.; Bhatt, Bhuwan C.; Sahu, Devendra K.; Kaiser, Nick; Chambers, K. C.; Hodapp, Klaus W.; Magnier, Eugene A.; Price, Paul A.; Tonry, John L.

    2012-03-01

    The main-belt asteroid (300163) 2006 VW139 (later designated P/2006 VW139) was discovered to exhibit comet-like activity by the Pan-STARRS1 (PS1) survey telescope using automated point-spread-function analyses performed by PS1's Moving Object Processing System. Deep follow-up observations show both a short (~10'') antisolar dust tail and a longer (~60'') dust trail aligned with the object's orbit plane, similar to the morphology observed for another main-belt comet (MBC), P/2010 R2 (La Sagra), and other well-established comets, implying the action of a long-lived, sublimation-driven emission event. Photometry showing the brightness of the near-nucleus coma remaining constant over ~30 days provides further evidence for this object's cometary nature, suggesting it is in fact an MBC, and not a disrupted asteroid. A spectroscopic search for CN emission was unsuccessful, though we find an upper limit CN production rate of Q CN < 1.3 × 1024 mol s-1, from which we infer a water production rate of Q_H_2O<10^{26} mol s-1. We also find an approximately linear optical spectral slope of 7.2%/1000 Å, similar to other cometary dust comae. Numerical simulations indicate that P/2006 VW139 is dynamically stable for >100 Myr, while a search for a potential asteroid family around the object reveals a cluster of 24 asteroids within a cutoff distance of 68 m s-1. At 70 m s-1, this cluster merges with the Themis family, suggesting that it could be similar to the Beagle family to which another MBC, 133P/Elst-Pizarro, belongs.

  3. OORT-Cloud and Kuiper-Belt Comets

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1998-01-01

    This paper follows the broadly accepted theory that Oort-Cloud Comets originated in the Solar Nebula in the general region where the major planets, Jupiter and Saturn, were formed while the Kuiper-Belt Comets originated farther out where the temperatures were lower. The Oort-Cloud Comets are identified orbitally by long periods and random inclinations and, including the Halley-type comets, comets with a Tisserand Criterion less than 2.0. Kuiper-Belt comets are identified by short periods, usually much less than 200 years, and small inclinations to the ecliptic. Here two criteria for comet activity are found to separate the two classes of comets. These quantities NG1 and NG2, were intended to measure theoretical nongravitaional effects on comet orbits. They are only, mildly successful in correlations with observed cases of measured non-gravitational forces. But, in fact, their variations with perihelion distance separate the two classes of comets. The results are consistent with the theory that the activity or intrinsic brightness of Oort-Cloud Comets fall off faster with increasing perihelion distance that does the intrinsic brightness of short-period Kuiper-Belt Comets.

  4. Castalia - European Mission to a Main Belt Comet

    NASA Astrophysics Data System (ADS)

    Hilchenbach, M.

    2013-12-01

    Main Belt Comets (MBCs) are a recently identified new solar system population with stable asteroid-like orbits and a comet-like appearance. It is believed that they survived the age of the solar system in a dormant state and that their activity occurred only recently. Buried water ice is the only volatile expected to survive under an insulating surface. Excavation by an impact might expose the ice and trigger the start of MBC activity. The specific science goals of the Castalia mission are: 1. Characterize a new Solar System family, the MBCs, by in-situ investigation 2. Understand the physics of activity on MBCs 3. Directly detect water in the asteroid belt 4. Test if MBCs are a viable source for Earth's water 5. Use MBCs as tracers of planetary system formation and evolution These goals can be achieved by a spacecraft designed to rendezvous with and orbit an MBC for a time interval of some months, arriving before the active period for mapping and then directly sampling the gas and dust released during the active phase. Given the low level of activity of MBCs, and the expectation that their activity comes from only a localized patch on the surface, the orbiting spacecraft will have to be able to maintain a very close orbit over extended periods - the Castalia plan envisages an orbiter capable of ';hovering' autonomously at distances of only a few km from the surface of the MBC. The straw-man instrument payload is made up of: - Visible and near-infrared spectral imager - Thermal infrared imager - Radio science - Dust impact detector - Dust composition analyzer - Neutral/ion mass spectrometer - Magnetometer - Plasma package In addition to this, the option of a surface science package is being considered. At the moment MBC 133P/Elst-Pizarro is the best-known target for such a mission. A design study for the Castalia mission has been carried out in partnership between the science team, DLR and OHB Systems. This study looked at possible missions to 133P with launch

  5. Castalia - A Mission to a Main Belt Comet

    NASA Astrophysics Data System (ADS)

    Jones, G. H.; Snodgrass, C.

    2015-10-01

    Main Belt Comets (MBCs), or Active Asteroids, constitute a newly identified class of solar system objects. They have stable, asteroid-like orbits and some exhibit a recurrent comet-like appearance. It is believed that they survived the age of the solarsystem in a dormant state and that their current ice sublimation driven activity only began recently. Buried water ice is the only volatile expected to survive under an insulating surface. Excavation by an impact can expose the ice and trigger the start of MBC activity. We present the case for a mission to one of these objects. The specific science goals of the Castalia mission are: 1. Characterize a new Solar System family, the MBCs, by in-situ investigation 2. Understand the physics of activity on MBCs 3. Directly sample water in the asteroid belt and test if MBCs are a viable source for Earth's water 4. Use the observed structure of an MBC as a tracer of planetary system formation and evolution. These goals can be achieved by a spacecraft designed to rendezvous with and orbit an MBC for a time interval of some months, arriving before the active period for mapping and then sampling the gas and dust released during the active phase. Given the low level of activity of MBCs, and the expectation that their activity comes from only a localized patch on the surface, the orbiting spacecraft will have to be able to maintain a very close orbit over extended periods - the Castalia plan envisages an orbiter capable of 'hovering' autonomously at distances of only a few km from the surface of the MBC. The strawman payload comprises a Visible and near-infrared spectral imager, Thermal infrared imager, Radio science,Subsurface radar, Dust impact detector, Dust composition analyser, Neutral/ion mass spectrometer, Magnetometer, and Plasma package. In addition to this, a surface science package is being considered. At the moment, MBC 133P/Elst Pizarro is the bestknown target for such a mission. A design study for the Castalia mission

  6. P/2006 VW139: a main-belt comet born in an asteroid collision?

    NASA Astrophysics Data System (ADS)

    Novaković, Bojan; Hsieh, Henry H.; Cellino, Alberto

    2012-08-01

    In this paper, we apply different methods to examine the possibility that a small group of 24 asteroids dynamically linked to a main-belt comet P/2006 VW139, recently discovered by the Pan-STARRS1 survey telescope, shares a common physical origin. By applying the hierarchical clustering and backward integration methods, we find strong evidence that 11 of these asteroids form a sub-group which likely originated in a recent collision event, and that this group includes P/2006 VW139. The objects not found to be part of the 11-member sub-group, which we designate as the P/2006 VW139 family, were either found to be dynamically unstable or are likely interlopers which should be expected due to the close proximity of the Themis family. As we demonstrated, statistical significance of the P/2006 VW139 family is >99 per cent. We determine the age of the family to be 7.5 ± 0.3 Myr, and estimate the diameter of the parent body to be ˜11 km. Results show that the family is produced by an impact which can be best characterized as a transition from the catastrophic to the cratering regime. The dynamical environment of this family is studied as well, including the identification of the most influential mean motion and secular resonances in the region. Our findings now make P/2006 VW139 the second main-belt comet to be dynamically associated with a young asteroid family, a fact with important implications for the origin and activation mechanism of such objects.

  7. DISCOVERY OF MAIN-BELT COMET P/2006 VW{sub 139} BY Pan-STARRS1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Henry H.; Yang Bin; Haghighipour, Nader

    2012-03-20

    The main-belt asteroid (300163) 2006 VW{sub 139} (later designated P/2006 VW{sub 139}) was discovered to exhibit comet-like activity by the Pan-STARRS1 (PS1) survey telescope using automated point-spread-function analyses performed by PS1's Moving Object Processing System. Deep follow-up observations show both a short ({approx}10'') antisolar dust tail and a longer ({approx}60'') dust trail aligned with the object's orbit plane, similar to the morphology observed for another main-belt comet (MBC), P/2010 R2 (La Sagra), and other well-established comets, implying the action of a long-lived, sublimation-driven emission event. Photometry showing the brightness of the near-nucleus coma remaining constant over {approx}30 days provides furthermore » evidence for this object's cometary nature, suggesting it is in fact an MBC, and not a disrupted asteroid. A spectroscopic search for CN emission was unsuccessful, though we find an upper limit CN production rate of Q{sub CN} < 1.3 Multiplication-Sign 10{sup 24} mol s{sup -1}, from which we infer a water production rate of Q{sub H{sub 2O}}<10{sup 26} mol s{sup -1}. We also find an approximately linear optical spectral slope of 7.2%/1000 A, similar to other cometary dust comae. Numerical simulations indicate that P/2006 VW{sub 139} is dynamically stable for >100 Myr, while a search for a potential asteroid family around the object reveals a cluster of 24 asteroids within a cutoff distance of 68 m s{sup -1}. At 70 m s{sup -1}, this cluster merges with the Themis family, suggesting that it could be similar to the Beagle family to which another MBC, 133P/Elst-Pizarro, belongs.« less

  8. Secular light curves of comets, II: 133P/Elst Pizarro, an asteroidal belt comet

    NASA Astrophysics Data System (ADS)

    Ferrín, Ignacio

    2006-12-01

    is possible, or (b) the existence of a sharp polar active region pointing to the Sun at time = LAG, that may take the form of a polar ice cap, a polar fissure or even a polar crater. The diameter of this zone is calculated at ˜1.8 km. (7) A new time-age is defined and it its found that T-AGE = 80 cy for 133P, a moderately old comet. (8) We propose that the object has its origin in the main belt of asteroids, thus being an asteroid-comet hybrid transition object, an asteroidal belt comet (ABC), proven by its large density. (9) Concerning the final evolutionary state of this object, to be a truly extinct comet the radius must be less than the thermal wave depth, which at 1 AU is ˜250 m (at the perihelion distance of 133P the thermal wave penetrates only ˜130 m). Comets with radius larger than this value cannot become extinct but dormant. Thus we conclude that 133P cannot evolve into a truly extinct comet because it has too large a diameter. Instead it is shown to be entering a dormant phase. (10) We predict the existence of truly extinct comets in the main belt of asteroids (MBA) beginning at absolute magnitude ˜21.5 (diameter smaller than ˜190 m). (11) The object demonstrates that a comet may have an outburst of ˜2.3 mag, and not show any detectable coma. (12) Departure from a photometric R law is a more sensitive method (by a factor of 10) to detect activity than star profile fitting or spectroscopy. (13) Sufficient evidence is presented to conclude that 133P is the first member of a new class of objects, an old asteroidal belt comet, ABC, entering a dormant phase.

  9. Triggering the Activation of Main-belt Comets: The Effect of Porosity

    NASA Astrophysics Data System (ADS)

    Haghighipour, N.; Maindl, T. I.; Schäfer, C. M.; Wandel, O. J.

    2018-03-01

    It has been suggested that the comet-like activity of Main-belt comets (MBCs) is due to the sublimation of sub-surface water-ice that is exposed when these objects are impacted by meter-sized bodies. We recently examined this scenario and showed that such impacts can, in fact, excavate ice and present a plausible mechanism for triggering the activation of MBCs. However, because the purpose of that study was to prove the concept and identify the most viable ice-longevity model, the porosity of the object and the loss of ice due to the heat of impact were ignored. In this paper, we extend our impact simulations to porous materials and account for the loss of ice due to an impact. We show that for a porous MBC, impact craters are deeper, reaching to ∼15 m, implying that if the activation of MBCs is due to the sublimation of sub-surface ice, this ice has to be within the top 15 m of the object. Results also indicate that the loss of ice due to the heat of impact is negligible, and the re-accretion of ejected ice is small. The latter suggests that the activities of current MBCs are most probably from multiple impact sites. Our study also indicates that for sublimation from multiple sites to account for the observed activity of the currently known MBCs, the water content of MBCs (and their parent asteroids) needs to be larger than the values traditionally considered in models of terrestrial planet formation.

  10. ON THE DUST ENVIRONMENT OF MAIN-BELT COMET 313 P/Gibbs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozuelos, F. J.; Moreno, F.; Cabrera-Lavers, A.

    2015-06-10

    We present observations carried out using the 10.4 m Gran Telescopio Canarias and an interpretative model of the dust environment of activated asteroid 313 P/Gibbs. We discuss three different models relating to different values of the dust parameters, i.e., dust loss rate, maximum and minimum sizes of particles, power index of the size distribution, and emission pattern. The best model corresponds to an isotropic emission of particles which started on August 1. The sizes of grains were in the range of 0.1−2000 μm, with velocities for 100 μm particles between 0.4−1.9 m s{sup −1}, with a dust production rate inmore » the range of 0.2−0.8 kg s{sup −1}. The dust tails’ brightnesses and morphologies are best interpreted in terms of a model of sustained and low dust emission driven by water-ice sublimation, spanning since 2014 August 1, and triggered by a short impulsive event. This event produced an emission of small particles of about 0.1 μm with velocities of ∼4 m s{sup −1}. From our model we deduce that the activity of this main-belt comet continued for at least four months since activation.« less

  11. THE DUST ENVIRONMENT OF MAIN-BELT COMET P/2012 T1 (PANSTARRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, F.; Pozuelos, F.; Cabrera-Lavers, A.

    2013-06-20

    The Main-Belt Comet P/2012 T1 (PANSTARRS) has been imaged using the 10.4 m Gran Telescopio Canarias and the 4.2 m William Herschel Telescope at six epochs in the period from 2012 November to 2013 February, with the aim of monitoring its dust environment. The dust tails' brightness and morphology are best interpreted in terms of a model of sustained dust emission spanning four to six months. The total dust mass ejected is estimated at {approx}6-25 Multiplication-Sign 10{sup 6} kg. We assume a time-independent power-law size distribution function, with particles in the micrometer to centimeter size range. Based on the qualitymore » of the fits to the isophote fields, an anisotropic emission pattern is favored against an isotropic one, in which the particle ejection is concentrated toward high latitudes ({+-}45 Degree-Sign to {+-}90 Degree-Sign ) in a high-obliquity object (I = 80 Degree-Sign ). This seasonally driven ejection behavior, along with the modeled particle ejection velocities, are in remarkable agreement to those we found for P/2010 R2 (La Sagra).« less

  12. Search for Water in Outer Main Belt Based on AKARI Asteroid Catalog

    NASA Astrophysics Data System (ADS)

    Usui, Fumihiko

    2012-06-01

    We propose a program to search water ice on the surface of asteroids in the outer main belt regions, which have high albedo measured with AKARI. The distribution of water in the main belt provides important information to understanding of the formation and evolution of the solar system, because water is a good indicator of temperature in the early solar nebula. The existence of water ice is a hot topic in the solar system studies today. Water ice is recently found in the outer region of the main asteroid belt and some of them are linked to the main belt comets. Brand-new albedo data brought by AKARI opens the possibility of detection of water ice on the C-type asteroids. Here we propose to make the spectroscopic observations with the Subaru telescope in the near-infrared wavelengths to detect water ice on these high-albedo C-type asteroids. Thanks to a large aperture of Subaru telescope and a high altitude of Mauna Kea, it can be only possible to observe a weak signal of the existence of water on the surface of asteroids with a certain S/N. In addition, using the imaging data taken prior to IRCS spectroscopic mode, we intend to seek any comet-like activities by investigating diffuseness of the asteroids, which can be detected by comparing the observed point-spread functions with those of field stars.

  13. The contribution of comets in Near-Earth Object and Main Belt populations and the role of collisions in the physical properties of members of these populations.

    NASA Astrophysics Data System (ADS)

    Michel, P.

    2008-09-01

    The population of Near-Earth Objects (NEOs) is composed of small bodies of various origins. Groundbased observational programs have been developed to perform their inventory and to determine their physical properties. However, these observations contain many biases and the total population of NEOs with diameters down to a few hundreds of meters has not been identified yet. In recent years, the main sources of NEOs have been characterized [1]. Most of these bodies come from the asteroid main belt and the Jupiter-family comets and their source regions are linked to transport mechanisms (mean motion and secular resonances, slow diffusion mechanisms) to the NEO-space. It has then been possible to construct a complete model of the steady-state orbital, size and albedo distribution of NEOs and to determine the level of contribution of each of their sources, including the contribution of Jupiter-family comets. However, nothing is known regarding the contribution of longperiod comets. Physical observations have been conducted in order to identify potential dormant or extinct comets among small bodies in the NEO population and to determine the fraction of "comet candidates within the total NEO population. Combining the results of these observations with our model of NEO population to evaluate source region probabilities [1], it was found that 8 +/- 5% of the total asteroid-like NEO population may have originated as comets from the outer Solar System [2]. In the population of Main Belt (MB) asteroids, three members are known to display transient comet-like physical characteristics, including prolonged periods of dust emission leading to the formation of radiation pressure-swept tails [3]. These physical properties are most naturally explained as the result of sub-limation of near-surface ice from what are, dynamically, mainbelt asteroids (hence the name "main-belt comets" (MBCs) or, equivalently "icy asteroids"). No pausible dynamical path to the asteroid belt from the

  14. Physical Properties of Main-belt Comet 176P/LINEAR

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.; Ishiguro, Masateru; Lacerda, Pedro; Jewitt, David

    2011-07-01

    We present a physical characterization of comet 176P/LINEAR, the third discovered member of the new class of main-belt comets, which exhibit cometary activity but are dynamically indistinguishable from main-belt asteroids. Observations show the object exhibiting a fan-shaped tail for at least one month in late 2005, but then becoming inactive in early 2006. During this active period, we measure broadband colors of B - V = 0.63 ± 0.02, V - R = 0.35 ± 0.02, and R - I = 0.31 ± 0.04. Using data from when the object was observed to be inactive, we derive best-fit IAU phase function parameters of H = 15.10 ± 0.05 mag and G = 0.15 ± 0.10, and best-fit linear phase function parameters of m(1, 1, 0) = 15.35 ± 0.05 mag and β = 0.038 ± 0.005 mag deg-1. From this baseline phase function, we find that 176P exhibits a mean photometric excess of ~30% during its active period, implying an approximate total coma dust mass of Md ~ (7.2 ± 3.6) × 104 kg. From inactive data obtained in early 2007, we find a rotation period of P rot = 22.23 ± 0.01 hr and a peak-to-trough photometric range of Δm ~ 0.7 mag. Phasing our photometric data from 176P's 2005 active period to this rotation period, we find that the nucleus exhibits a significantly smaller photometric range than in 2007 that cannot be accounted for by coma damping effects, and as such, are attributed by us to viewing geometry effects. A detailed analysis of these geometric effects showed that 176P is likely to be a highly elongated object with an axis ratio of 1.8 < b/a < 2.1, an orbital obliquity of ɛ ~ 60°, and a solstice position at a true anomaly of ν o = 20° ± 20°. Numerical modeling of 176P's dust emission found that its activity can only be reproduced by asymmetric dust emission, such as a cometary jet. We find plausible fits to our observations using models assuming ~10 μm dust particles continuously emitted over the period during which 176P was observed to be active, and a jet direction of 180° <~

  15. From Kuiper Belt to Comet: The Shapes of the Nuclei

    NASA Astrophysics Data System (ADS)

    Jewitt, D.; Sheppard, S.; Fernandez, Y.

    2003-05-01

    It is widely believed that escaped objects from the Kuiper Belt are the source of both the Centaurs and the nuclei of the Jupiter Family Comets (JFCs). If the JFC nuclei are produced by collisional breakup of parent objects in the Kuiper Belt, then it is reasonable to expect that their shape distribution should be consistent with those of fragments produced in disintegrative laboratory experiments, or with the small main-belt asteroids (which are produced collisionally). We test this idea using a sample of eleven well-observed cometary nuclei. Our main result is that the nuclei are, on average, much more elongated than either the collisionally produced small main-belt asteroids or the fragments created in laboratory impact experiments. Several interpretations of this systematic shape difference are possible (including the obvious one that the JFC nuclei are not, after all, produced collisionally in the Kuiper Belt). Our preferred explanation, however, is that the asphericities of the nuclei have been modified by one or more processes of mass loss. An implication of this interpretation is that the JFC nuclei in our sample are highly evolved, having lost a major part of their original mass. In turn, this implies that the angular momenta of the nuclei are also non-primordial: the JFC nuclei are highly physically evolved objects. We will discuss the evidence supporting these conclusions. This work has been recently published in Astronomical Journal, 125, 3366-3377 (2003).

  16. Migration of Matter from the Edgeworth-Kuiper and Main Asteroid Belts to the Earth

    NASA Technical Reports Server (NTRS)

    Ipatov. S. I.; Oegerle, William (Technical Monitor)

    2002-01-01

    The main asteroid belt (MAB), the Edgeworth-Kuiper belt (EKB), and comets belong to the main sources of dust in the Solar System. Most of Jupiter-family comets came from the EKB. Comets can be distracted due to close encounters with planets and the Sun, collisions with small bodies, a nd internal forces. We support the Eneev's idea that the largest objects in the ELB and MAB could be formed directly by the compression of rarefied dust condensations of the protoplanetary cloud but not by the accretion of small (for example, 1-km) planetesimals. The total mass of planetesimals that entered the EKB from the feeding zone of the giant planets during their accumulation could exceed tens of Earth's masses. These planetesimals increased eccentricities of 'local' trans-Neptunian objects (TNOs) and swept most of these TNOs. A small portion of such planetesimals could left beyond Neptune's orbit in highly eccentric orbits. The results of previous investigations of migration and collisional evolution of minor bodies were summarized. Mainly our recent results are presented.

  17. The “Main-Belt Comets” are not comets, nor active asteroids; they are temporary shaken asteroids

    NASA Astrophysics Data System (ADS)

    Tancredi, Gonzalo

    2015-08-01

    Several objects in asteroidal orbits have presented comaes and tails similar to the ones presented by comets for short period of times. There are at present 16 objects in this group. Several hypotheses have been proposed to explain the activity of this object [Jewitt 2012]. Among them, the most accepted scenario for many objects is the ice sublimation and the ejection of dust, in a similar way as the cometary activity. Therefore several authors have coined these objects “Main Belt Comets” [Hsieh & Jewitt 2006]. Nevertheless, in some cases, some authors have concluded that the ejection of dust must be due to an impact.We propose an alternative model for the formation of the dusty comaes and tails.The impact of a small body against a larger one initially produces a crater and the ejection of dust at high velocity (>100 m/s). The dust is rapidly dispersed and it should be only observable just after the impact. In addition the impact generates a shock wave, which propagates to the body interior. The asteroid is globally shaken. Material is ejected at low velocities from the entire surface, similar to the low escape velocities at the surface. The particles move away from the asteroid due to the solar radiation pressure, forming the thin tails aligned with the orbital plane. These tails could persist for various months, as they have been seen in these objects.In addition, chunks of rock could be ejected in suborbital flights lasting for days; which, at return they would induce a new low-velocity ejection of particles. This process can explain some of the long-lasting events.The recurrence of the activity for some objects could be explained due to the collision with a dense meteor shower present in the main-belt.The so-called “Main Belt Comets” could be explained with a hypothesis that does not require the presence of ice on the surface of these objects. We also do not favor the term “Activated asteroids”, because it implies some kind of endogenous process

  18. Super-Comet or Big Asteroid Belt?

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Spectrograph of HD 69830

    This graph of data from NASA's Spitzer Space Telescope demonstrates that the dust around a nearby star called HD 69830 (upper line) has a very similar composition to that of Comet Hale-Bopp. Spitzer spotted large amounts of this dust in the inner portion of the HD 69830 system.

    The bumps and dips seen in these data, or spectra, represent the 'fingerprints' of various minerals. Spectra are created when an instrument called a spectrograph spreads light out into its basic parts, like a prism turning sunlight into a rainbow. These particular spectra reveal the presence of the silicate mineral called olivine, and more specifically, a type of olivine called forsterite, which is pictured in the inset box. Forsterite is a bright-green gem found on Earth, on the 'Green Sand Beach' of Hawaii among other places; and in space, in comets and asteroids.

    Because the dust around HD 69830 has a very similar make-up to that of Comet Hale-Bopp, astronomers speculate that it might be coming from a giant comet nearly the size of Pluto. Such a comet may have been knocked into the inner solar system of HD 69830, where it is now leaving in its wake a trail of evaporated dust.

    Nonetheless, astronomers say the odds that Spitzer has caught a 'super-comet' spiraling in toward its star - an unusual and relatively short-lived event - are slim. Instead, they favor the theory that the observed dust is actually the result of asteroids banging together in a massive asteroid belt.

    The data of HD 69830's dust were taken by Spitzer's infrared spectrograph. The data of Comet Hale-Bopp were taken by the European Space Agency's Infrared Observatory Satellite. The picture of forsterite comes courtesy of Dr. George Rossman, California Institute of Technology, Pasadena.

  19. Can Ecliptic Comets Be Created En Route from the Kuiper Belt?

    NASA Astrophysics Data System (ADS)

    Dones, Henry C. Luke; Womack, Maria; Nesvorny, David; Bierhaus, Edward B.; Zahnle, Kevin; Robbins, Stuart J.; Bottke, William; Alvarellos, Jose; Hamill, Patrick

    2017-10-01

    The Kuiper Belt is thought to be the reservoir of ecliptic comets (ECs), which include the Jupiter-family comets (JFCs) and Centaurs. ECs are also the main source of Sun-orbiting impactors on the regular moons of the giant planets (Zahnle et al. 2003). Ironically, we still do not know whether the belt, specifically its Scattered Disk, provides enough ECs (Volk and Malhotra 2008). We are investigating whether cometary breakup in the planetary region (Fernández 2009) can substantially increase the number of ECs. In support of this idea, the Kreutz sungrazers may derive from a hierarchical series of fragmentation events of a progenitor long-period comet (e.g., Sekanina and Chodas 2007), and the JFCs 42P and 53P appear to be fragments of a comet that split in 1845 (Kresák et al. 1984). On the other hand, although 16P was tidally disrupted by Jupiter in 1886, only one fragment survives.Models of the cometary orbital distribution ignore activity or apply a physical lifetime based on the number of passages within 2 or 3 AU of the Sun, where sublimation of water ice occurs (Nesvorný et al. 2017). In reality, some comets (e.g., 29P, Hale-Bopp) are active beyond Jupiter due to volatiles such as CO and CO2 (Womack et al. 2017). 174P/Echeclus underwent a 7-magnitude outburst at 13 AU (Rousselot et al. 2016), and CO emission was detected from Echeclus at 6 AU (Wierzchos et al. 2017). We will estimate how the number and size distribution of comet nuclei change with distance from the Sun due to cometary activity and spontaneous disruption, tidal disruption by a giant planet, and tidal disruption of binaries (Fraser et al. 2017).We thank the Cassini Data Analysis Program for support.Fernández Y (2009). Planet. Space. Sci. 57, 1218.Fraser WC, et al. (2017). Nat. Astron. 1, 0088.Kresák L, et al. (1984). IAU Circular 3940.Nesvorný D, et al. (2017). arXiv:1706.07447.Rousselot P, et al. (2016). MNRAS 462, S432.Sekanina, Z, Chodas, PW (2007). Astrophys. J. 663, 657.Volk K

  20. Comet Hunters: A Citizen Science Project to Search for Comets in the Main Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.; Schwamb, Megan Elizabeth; Zhang, Zhi-Wei; Chen, Ying-Tung; Wang, Shiang-Yu; Lintott, Chris

    2016-10-01

    Fully automated detection of comets in wide-field surveys remains a challenge, as even highly successful comet-finding surveys like Pan-STARRS rely on a combination of both automated flagging algorithms and vetting by human eyes. To take advantage of the long-noted superiority of the human eye over computer algorithms in certain types of pattern recognition, particularly when dealing with a range of target morphologies of interest, we have created a citizen science website with the aim of allowing the general public to aid in the search for active asteroids, which are objects that occupy dynamically asteroidal orbits yet exhibit comet-like dust emission due to sublimation, impact disruption, rotational destabilization, or other effects. Located at comethunters.org, the Comet Hunters website was built using the Zooniverse Project Builder (https://www.zooniverse.org/lab), and displays images of known asteroids obtained either from archival data obtained between 1999 and 2014 by the Suprime-Cam wide-field imager mounted on the 8-m Subaru telescope on Mauna Kea in Hawaii, or more contemporary data obtained by the Hyper Suprime-Cam (HSC) wide-field imager also on the Subaru Telescope as part of the ongoing HSC Subaru Strategic Program (SSP) survey. By using observations from such a large-aperture telescope, most of which have never been searched for solar system objects, much less cometary ones, we expect that volunteers should be able to make genuinely scientifically significant discoveries, and also provide valuable insights into the potential and challenges of searching for comets in the LSST era. To date, over 13,000 registered volunteers have contributed 350,000 classifications. We will discuss the design and construction of the Comet Hunters website, and also discuss early results from the project.This work uses data generated via the Zooniverse.org platform, development of which was supported by a Global Impact Award from Google, and by the Alfred P. Sloan

  1. Lunar and Planetary Science XXXV: Asteroids, Meteors, Comets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Asteroids, Meteors, Comets includes the following topics: 1) Where Some Asteroid Parent Bodies; 2) The Collisional Evolution of the Main Belt Population; 3) On Origin of Ecliptic Families of Periodic Comets; 4) Mineralogy and Petrology of Laser Irradiated Carbonaceous Chondrite Mighei; and 5) Interaction of the Gould Belt and the Earth.

  2. CONSTRAINTS ON THE PHYSICAL PROPERTIES OF MAIN BELT COMET P/2013 R3 FROM ITS BREAKUP EVENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirabayashi, Masatoshi; Sánchez, Diego Paul; Gabriel, Travis

    2014-07-01

    Jewitt et al. recently reported that main belt comet P/2013 R3 experienced a breakup, probably due to rotational disruption, with its components separating on mutually hyperbolic orbits. We propose a technique for constraining physical properties of the proto-body, especially the initial spin period and cohesive strength, as a function of the body's estimated size and density. The breakup conditions are developed by combining mutual orbit dynamics of the smaller components and the failure condition of the proto-body. Given a proto-body with a bulk density ranging from 1000 kg m{sup –3} to 1500 kg m{sup –3} (a typical range of the bulk density of C-type asteroids),more » we obtain possible values of the cohesive strength (40-210 Pa) and the initial spin state (0.48-1.9 hr). From this result, we conclude that although the proto-body could have been a rubble pile, it was likely spinning beyond its gravitational binding limit and would have needed cohesive strength to hold itself together. Additional observations of P/2013 R3 will enable stronger constraints on this event, and the present technique will be able to give more precise estimates of its internal structure.« less

  3. Small Main-Belt Asteroid Lightcurve Survey

    NASA Technical Reports Server (NTRS)

    Binzel, Richard P.; Xu, Shui; Bus, Schelte J.; Bowell, Edward

    1992-01-01

    The Small Main-Belt Asteroid Lightcurve Survey is the first to measure main-belt asteroid lightcurve properties for bodies with diameters smaller than 5 km. Attention is given to CCD lightcurves for 32 small main-belt asteroids. The objects of this sample have a mean rotational frequency which is faster than that of larger main-belt asteroids. All lightcurves were investigated for nonperiodic variations ascribable to free precession; no conclusive detection of this phenomenon has been made, however.

  4. A late Miocene dust shower from the break-up of an asteroid in the main belt.

    PubMed

    Farley, Kenneth A; Vokrouhlický, David; Bottke, William F; Nesvorný, David

    2006-01-19

    Throughout the history of the Solar System, Earth has been bombarded by interplanetary dust particles (IDPs), which are asteroid and comet fragments of diameter approximately 1-1,000 microm. The IDP flux is believed to be in quasi-steady state: particles created by episodic main belt collisions or cometary fragmentation replace those removed by comminution, dynamical ejection, and planetary or solar impact. Because IDPs are rich in 3He, seafloor sediment 3He concentrations provide a unique means of probing the major events that have affected the IDP flux and its source bodies over geological timescales. Here we report that collisional disruption of the >150-km-diameter asteroid that created the Veritas family 8.3 +/- 0.5 Myr ago also produced a transient increase in the flux of interplanetary dust-derived 3He. The increase began at 8.2 +/- 0.1 Myr ago, reached a maximum of approximately 4 times pre-event levels, and dissipated over approximately 1.5 Myr. The terrestrial IDP accretion rate was overwhelmingly dominated by Veritas family fragments during the late Miocene. No other event of this magnitude over the past approximately 10(8) yr has been deduced from main belt asteroid orbits. One remarkably similar event is present in the 3He record 35 Myr ago, but its origin by comet shower or asteroid collision remains uncertain.

  5. A recent disruption of the main-belt asteroid P/2010 A2.

    PubMed

    Jewitt, David; Weaver, Harold; Agarwal, Jessica; Mutchler, Max; Drahus, Michal

    2010-10-14

    Most inner main-belt asteroids are primitive rock and metal bodies in orbit about the Sun between Mars and Jupiter. Disruption, through high-velocity collisions or rotational spin-up, is believed to be the primary mechanism for the production and destruction of small asteroids and a contributor to dust in the Sun's zodiacal cloud, while analogous collisions around other stars feed dust to their debris disks. Unfortunately, direct evidence about the mechanism or rate of disruption is lacking, owing to the rarity of the events. Here we report observations of P/2010 A2, a previously unknown inner-belt asteroid with a peculiar, comet-like morphology. The data reveal a nucleus of diameter approximately 120 metres with an associated tail of millimetre-sized dust particles. We conclude that it is most probably the remnant of a recent asteroidal disruption in February/March 2009, evolving slowly under the action of solar radiation pressure, in agreement with independent work.

  6. Comet nuclei and Trojan asteroids - A new link and a possible mechanism for comet splittings

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.; Tholen, David J.

    1990-01-01

    Relatively elongated shapes, implied by recent evidence of a greater incidence of high amplitude lightcurves for comet nuclei and Trojan asteroids than for similarly scaled main belt asteroids, are suggested to have evolved among comet nuclei and Trojans due to volatile loss. It is further suggested that such an evolutionary course may account for observed comet splitting; rotational splitting may specifically occur as a result of evolution in the direction of an elongated shape through sublimation. Supporting these hypotheses, the few m/sec separation velocities projected for rotationally splitting elongated nuclei are precisely in the observed range.

  7. The Collisional Evolution of the Main Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Brož, M.; O'Brien, D. P.; Campo Bagatin, A.; Morbidelli, A.; Marchi, S.

    Collisional and dynamical models of the main asteroid belt allow us to glean insights into planetesimal- and planet-formation scenarios as well as how the main belt reached its current state. Here we discuss many of the processes affecting asteroidal evolution and the constraints that can be used to test collisional model results. We argue the main belt's wavy size-frequency distribution for diameter D < 100-km asteroids is increasingly a byproduct of comminution as one goes to smaller sizes, with its shape a fossil-like remnant of a violent early epoch. Most D > 100-km asteroids, however, are primordial, with their physical properties set by planetesimal formation and accretion processes. The main-belt size distribution as a whole has evolved into a collisional steady state, and it has possibly been in that state for billions of years. Asteroid families provide a critical historical record of main-belt collisions. The heavily depleted and largely dispersed "ghost families," however, may hold the key to understanding what happened in the primordial days of the main belt. New asteroidal fragments are steadily created by both collisions and mass shedding events via YORP spinup processes. A fraction of this population, in the form of D < 30 km fragments, go on to escape the main belt via the Yarkovsky/YORP effects and gravitational resonances, thereby creating a quasi-steady-state population of planet-crossing and near-Earth asteroids. These populations go on to bombard all inner solar system worlds. By carefully interpreting the cratering records they produce, it is possible to constrain how portions of the main-belt population have evolved with time.

  8. CCD scanning for asteroids and comets

    NASA Technical Reports Server (NTRS)

    Gehrels, T.; Mcmillan, R. S.

    1986-01-01

    A change coupled device (CCD) is used in a scanning mode to find new asteroids and recover known asteroids and comet nuclei. Current scientific programs include recovery of asteroids and comet nuclei requested by the Minor Planet Center (MPC), discovery of new asteroids in the main belt and of unusual orbital types, and follow-up astrometry of selected new asteroids discovered. The routine six sigma limiting visual magnitude is 19.6 and slightly more than a square degree is scanned three times every 90 minutes of observing time during the fortnight centered on New Moon. Semiautomatic software for detection of moving objects is in routine use; angular speeds as low as 11.0 arcseconds per hour were distinguished from the effects of the Earth's atmosphere on the field of view. A typical set of three 29-minute scans near the opposition point along the ecliptic typically nets at least 5 new main-belt asteroids down to magnitude 19.6. In 18 observing runs (months) 43 asteroids were recovered, astrometric and photometric data on 59 new asteroids were reported, 10 new asteroids with orbital elements were consolidated, and photometry and positions of 22 comets were reported.

  9. The Reactivations of Main-Belt Comets 238P/READ, 259P/Garradd, and 288P/(300163) 2006 VW139

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.; Ishiguro, Masateru; Kim, Yoonyoung; Knight, Matthew M.; Lin, Zhong-Yi; Micheli, Marco; Moskovitz, Nicholas; Sheppard, Scott S.; Thirouin, Audrey; Trujillo, Chadwick

    2017-10-01

    We report on the confirmation and monitoring of recurrent activity for main-belt comets (MBCs) 238P/Read and 288P/(300163) 2006 VW139 in 2016 (cf. Agarwal et al. 2016, CBET 4306; Hsieh et al. 2016, CBET 4307), as well as the identification of activity for 288P in Sloan Digital Sky Survey images from November 2000. We will also report on the confirmation of recurrent activity in 2017 (Hsieh et al. 2017, CBET 4388) and the progress of the ongoing monitoring campaign (April 2017 through December 2017) that we are conducting for MBC 259P/Garradd. With these observations, 238P and 288P have now each been observed to be active on three separate orbit passages with intervening periods of inactivity and 259P has been observed to be active on two separate orbit passages, firmly establishing the cometary (i.e., sublimation-driven) nature of their activity. We are currently conducting a multi-facility observing campaign to monitor the photometric and morphological evolution of these objects, using the Canada-France-Hawaii Telescope, the Gemini North and South telescopes (under a Gemini Large and Long Program), the Magellan telescopes, the Discovery Channel Telescope, and the Lulin One-meter Telescope. During their most recent perihelion encounters, 238P was observed to be active as early as 2016 July 8 at a true anomaly of 329 degrees, 288P was observed to be active as early as 2016 June 8 at a true anomaly of 318 degrees, and 259P was observed to be active as early at 2017 April 26 at a true anomaly of 315 degrees. We also report on the results of numerical modeling analyses of the morphological evolution of all three objects aimed at assessing both the properties of their current active episodes and changes in activity strength from one epoch to the next to help constrain the active lifetimes of MBCs, a key parameter for inferring the total number of MBCs in the asteroid belt from survey results. This work was supported by the NASA Solar System Observations program under

  10. The Fossilized Size Distribution of the Main Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Durda, D.; Nesvorny, D.; Jedicke, R.; Morbidelli, A.

    2003-05-01

    At present, we do not understand how the main asteroid belt evolved into its current state. During the planet formation epoch, the primordial main belt (PMB) contained several Earth masses of material, enough to allow the asteroids to accrete on relatively short timescales (e.g., Weidenschilling 1977). The present-day main belt, however, only contains 5e-4 Earth masses of material (Petit et al. 2002). Constraints on this evolution come from (i) the observed fragments of differentiated asteroids, (ii) meteorites collected from numerous differentiated parent bodies, (iii) the presence of ˜ 10 prominent asteroid families, (iv) the "wavy" size-frequency distribution of the main belt, which has been shown to be a by-product of substantial collisional evolution (e.g., Durda et al. 1997), and (v) the still-intact crust of (4) Vesta. To explain the contradictions in the above constraints, we suggest the PMB evolved in this fashion: Planetesimals and planetary embryos accreted (and differentiated) in the PMB during the first few Myr of the solar system. Gravitational perturbations from these embryos dynamically stirred the main belt, enough to initiate fragmentation. When Jupiter reached its full size, some 10 Myr after the solar system's birth, its perturbations, together with those of the embryos, dynamically depleted the main belt region of ˜ 99% of its bodies. Much of this material was sent to high (e,i) orbits, where it continued to pummel the surviving main belt bodies at high impact velocities for more than 100 Myr. While some differentiated bodies in the PMB were disrupted, most were instead scattered; only small fragments from this population remain. This period of comminution and dynamical evolution in the PMB created, among other things, the main belt's wavy size distribution, such that it can be considered a "fossil" from this violent early epoch. From this time forward, however, relatively little collisional evolution has taken place in the main belt

  11. The Fossilized Size Distribution of the Main Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Durda, D.; Nesvorny, D.; Jedicke, R.; Morbidelli, A.

    2004-05-01

    The main asteroid belt evolved into its current state via two processes: dynamical depletion and collisional evolution. During the planet formation epoch, the primordial main belt (PMB) contained several Earth masses of material, enough to allow the asteroids to accrete on relatively short timescales (e.g., Weidenschilling 1977). The present-day main belt, however, only contains 5e-4 Earth masses of material (Petit et al. 2002). To explain this mass loss, we suggest the PMB evolved in the following manner: Planetesimals and planetary embryos accreted (and differentiated) in the PMB during the first few Myr of the solar system. Gravitational perturbations from these embryos dynamically stirred the main belt, enough to initiate fragmentation. When Jupiter reached its full size, some 10 Myr after the solar system's birth, its perturbations, together with those of the embryos, dynamically depleted the main belt region of > 99% of its bodies. Much of this material was sent to high (e,i) orbits, where it continued to pummel the surviving main belt bodies at high impact velocities for more than 100 Myr. While some differentiated bodies in the PMB were disrupted, most were instead scattered; only small fragments from this population remain. This period of comminution and dynamical evolution in the PMB created, among other things, the main belt's wavy size-frequency distribution, such that it can be considered a "fossil" from this violent early epoch. From this time forward, however, relatively little collisional evolution has taken place in the main belt, consistent with the surprising paucity of prominent asteroid families. We will show that the constraints provided by asteroid families and the shape of the main belt size distribution are essential to obtaining a unique solution from our model's initial conditions. We also use our model results to solve for the asteroid disruption scaling law Q*D, a critical function needed in all planet formation codes that include

  12. The fossilized size distribution of the main asteroid belt

    NASA Astrophysics Data System (ADS)

    Bottke, William F.; Durda, Daniel D.; Nesvorný, David; Jedicke, Robert; Morbidelli, Alessandro; Vokrouhlický, David; Levison, Hal

    2005-05-01

    Planet formation models suggest the primordial main belt experienced a short but intense period of collisional evolution shortly after the formation of planetary embryos. This period is believed to have lasted until Jupiter reached its full size, when dynamical processes (e.g., sweeping resonances, excitation via planetary embryos) ejected most planetesimals from the main belt zone. The few planetesimals left behind continued to undergo comminution at a reduced rate until the present day. We investigated how this scenario affects the main belt size distribution over Solar System history using a collisional evolution model (CoEM) that accounts for these events. CoEM does not explicitly include results from dynamical models, but instead treats the unknown size of the primordial main belt and the nature/timing of its dynamical depletion using innovative but approximate methods. Model constraints were provided by the observed size frequency distribution of the asteroid belt, the observed population of asteroid families, the cratered surface of differentiated Asteroid (4) Vesta, and the relatively constant crater production rate of the Earth and Moon over the last 3 Gyr. Using CoEM, we solved for both the shape of the initial main belt size distribution after accretion and the asteroid disruption scaling law QD∗. In contrast to previous efforts, we find our derived QD∗ function is very similar to results produced by numerical hydrocode simulations of asteroid impacts. Our best fit results suggest the asteroid belt experienced as much comminution over its early history as it has since it reached its low-mass state approximately 3.9-4.5 Ga. These results suggest the main belt's wavy-shaped size-frequency distribution is a "fossil" from this violent early epoch. We find that most diameter D≳120 km asteroids are primordial, with their physical properties likely determined during the accretion epoch. Conversely, most smaller asteroids are byproducts of fragmentation

  13. Discovery and characteristics of the rapidly rotating active asteroid (62412) 2000 SY178 in the main belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppard, Scott S.; Trujillo, Chadwick, E-mail: ssheppard@carnegiescience.edu

    We report a new active asteroid in the main belt of asteroids between Mars and Jupiter. Object (62412) 2000 SY178 exhibited a tail in images collected during our survey for objects beyond the Kuiper Belt using the Dark Energy Camera on the CTIO 4 m telescope. We obtained broadband colors of 62412 at the Magellan Telescope, which, along with 62412's low albedo, suggests it is a C-type asteroid. 62412's orbital dynamics and color strongly correlate with the Hygiea family in the outer main belt, making it the first active asteroid known in this heavily populated family. We also find 62412more » to have a very short rotation period of 3.33 ± 0.01 hours from a double-peaked light curve with a maximum peak-to-peak amplitude of 0.45 ± 0.01 mag. We identify 62412 as the fastest known rotator of the Hygiea family and the nearby Themis family of similar composition, which contains several known main belt comets. The activity on 62412 was seen over one year after perihelion passage in its 5.6 year orbit. 62412 has the highest perihelion and one of the most circular orbits known for any active asteroid. The observed activity is probably linked to 62412's rapid rotation, which is near the critical period for break-up. The fast spin rate may also change the shape and shift material around 62412's surface, possibly exposing buried ice. Assuming 62412 is a strengthless rubble pile, we find the density of 62412 to be around 1500 kg m{sup −3}.« less

  14. Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra.

    PubMed

    Vilas, F; Gaffey, M J

    1989-11-10

    Absorption features having depths up to 5% are identified in high-quality, high-resolution reflectance spectra of 16 dark asteroids in the main belt and in the Cybele and Hilda groups. Analogs among the CM2 carbonaceous chondrite meteorites exist for some of these asteroids, suggesting that these absorptions are due to iron oxides in phyllosilicates formed on the asteroidal surfaces by aqueous alteration processes. Spectra of ten additional asteroids, located beyond the outer edge of the main belt, show no discernible absorption features, suggesting that aqueous alteration did not always operate at these heliocentric distances.

  15. Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Gaffey, Michael J.

    1989-01-01

    Absorption features having depths up to 5 percent are identified in high-quality, high-resolution reflectance spectra of 16 dark asteroids in the main belt and in the Cybele and Hilda groups. Analogs among the CM2 carbonaceous chondrite meteorites exist for some of these asteroids, suggesting that these absorptions are due to iron oxides in phyllosilicates formed on the asteroidal surfaces by aqueous alteration processes. Spectra of ten additional asteroids, located beyond the outer edge of the main belt, show no discernible absorption features, suggesting that aqueous alteration did not always operate at these heliocentric distances.

  16. Ways of Changing the Number and Size Distribution of Ecliptic Comets

    NASA Astrophysics Data System (ADS)

    Dones, Henry C. Luke; Womack, Maria; Alvarellos, Jose; Bierhaus, Edward B.; Bottke, William; Hamill, Patrick; Nesvorny, David; Robbins, Stuart J.; Zahnle, Kevin

    2017-06-01

    The existence of the Kuiper Belt was proposed because of the need for a low-inclination source for the Jupiter-family comets (JFCs). Indeed, the Kuiper Belt is thought to be the main reservoir of ecliptic comets (ECs), which include the JFCs and Centaurs. Ironically, we still do not know whether the belt, specifically its Scattered Disk, provides an adequate source for the ECs (Volk and Malhotra 2008). ECs are also thought to be the main source of Sun-orbiting impactors on the regular moons of the giant planets (Zahnle et al. 2003 [Z03]). Some models of the cometary orbital distribution used by Z03 and others to estimate impact rates assume comets are indestructible; in fact, many cometssplit, sometimes far from the Sun (Fernández 2009). Assuming shatterproof comets may lead to incorrect results for cometary orbital distributions. Other models impose a physical lifetime for bodies that approach within ~3 AU of the Sun, where sublimation of water ice begins, after which a comet is assumed to be dormant or disrupted (Nesvorný et al. 2017). In reality, some comets (e.g., 29P, Hale-Bopp) are active due to volatiles such as CO and CO2 beyond the orbit of Jupiter (Womack et al. 2017). 174P/Echeclus underwent a 7-magnitude outburst 13 AU from the Sun (Rousselot et al. 2016), and CO emission was recently detected from Echeclus at 6 AU (Wierzchos et al. 2017). We will estimate the effects of several mechanisms on the number and size distribution of comet nuclei as a function of distance from the Sun, including cometary activity and spontaneous disruption; tidal disruption by a giant planet, as happened for Shoemaker-Levy 9; and tidal disruption of binaries, which are numerous among "cold classical" Kuiper Belt Objects (Fraser et al. 2017). We thank the Cassini Data Analysis Program for support.Fernández Y (2009). Planet. Space. Sci. 57, 1218.Fraser WC, et al. (2017). Nat. Astron. 1, 0088.Nesvorný D, et al. (2017). In preparation.Rousselot P, et al. (2016). MNRAS 462, S

  17. Secular orbital evolution of Jupiter family comets

    NASA Astrophysics Data System (ADS)

    Rickman, H.; Gabryszewski, R.; Wajer, P.; Wiśniowski, T.; Wójcikowski, K.; Szutowicz, S.; Valsecchi, G. B.; Morbidelli, A.

    2017-02-01

    Context. The issue of the long term dynamics of Jupiter family comets (JFCs) involves uncertain assumptions about the physical evolution and lifetimes of these comets. Contrary to what is often assumed, real effects of secular dynamics cannot be excluded and therefore merit investigation. Aims: We use a random sample of late heavy bombardment cometary projectiles to study the long-term dynamics of JFCs by a Monte Carlo approach. In a steady-state picture of the Jupiter family, we investigate the orbital distribution of JFCs, including rarely visited domains like retrograde orbits or orbits within the outer parts of the asteroid main belt. Methods: We integrate 100 000 objects over a maximum of 100 000 orbital revolutions including the Sun, a comet, and four giant planets. Considering the steady-state number of JFCs to be proportional to the total time spent in the respective orbital domain, we derive the capture rate based on observed JFCs with small perihelia and large nuclei. We consider a purely dynamical model and one where the nuclei are eroded by ice sublimation. Results: The JFC inclination distribution is incompatible with our erosional model. This may imply that a new type of comet evolution model is necessary. Considering that comets may live for a long time, we show that JFCs can evolve into retrograde orbits as well as asteroidal orbits in the outer main belt or Cybele regions. The steady-state capture rate into the Jupiter family is consistent with 1 × 109 scattered disk objects with diameters D > 2 km. Conclusions: Our excited scattered disk makes it difficult to explain the JFC inclination distribution, unless the physical evolution of JFCs is more intricate than assumed in standard, erosional models. Independent of this, the population size of the Jupiter family is consistent with a relatively low-mass scattered disk.

  18. An anomalous basaltic meteorite from the innermost main belt.

    PubMed

    Bland, Philip A; Spurny, Pavel; Towner, Martin C; Bevan, Alex W R; Singleton, Andrew T; Bottke, William F; Greenwood, Richard C; Chesley, Steven R; Shrbeny, Lukas; Borovicka, Jiri; Ceplecha, Zdenek; McClafferty, Terence P; Vaughan, David; Benedix, Gretchen K; Deacon, Geoff; Howard, Kieren T; Franchi, Ian A; Hough, Robert M

    2009-09-18

    Triangulated observations of fireballs allow us to determine orbits and fall positions for meteorites. The great majority of basaltic meteorites are derived from the asteroid 4 Vesta. We report on a recent fall that has orbital properties and an oxygen isotope composition that suggest a distinct parent body. Although its orbit was almost entirely contained within Earth's orbit, modeling indicates that it originated from the innermost main belt. Because the meteorite parent body would likely be classified as a V-type asteroid, V-type precursors for basaltic meteorites unrelated to Vesta may reside in the inner main belt. This starting location is in agreement with predictions of a planetesimal evolution model that postulates the formation of differentiated asteroids in the terrestrial planet region, with surviving fragments concentrated in the innermost main belt.

  19. Discovery of a main-belt asteroid resembling ordinary chondrite meteorites.

    PubMed

    Binzel, R P; Xu, S; Bus, S J; Skrutskie, M F; Meyer, M R; Knezek, P; Barker, E S

    1993-12-03

    Although ordinary chondrite material dominates meteorite falls, the identification of a main-belt asteroid source has remained elusive. From a new survey of more than 80 small main-belt asteroids comes the discovery of one having a visible and near-infrared reflectance spectrum similar to L6 and LL6 ordinary chondrite meteorites. Asteroid 3628 BoZnemcová has an estimated diameter of 7 kilometers and is located in the vicinity of the 3:1 Jovian resonance, a predicted meteorite source region. Although the discovery of a spectral match may indicate the existence of ordinary chondrite material within the main asteroid belt, the paucity of such detections remains an unresolved problem.

  20. Where Do Comets Come From?

    ERIC Educational Resources Information Center

    Van Flandern, Tom

    1982-01-01

    Proposes a new origin for comets in the solar system, namely, that comets originated in the breakup of a body orbiting the sun in or near the present location of the asteroid belt in the relatively recent past. Predictions related to the theory are discussed. (Author/JN)

  1. The Size Frequency Distribution of Small Main-Belt Asteroids

    NASA Technical Reports Server (NTRS)

    Burt, Brian J.; Trilling, David E.; Hines, Dean C.; Stapelfeldt, Karl R.; Rebull, Luisa M.; Fuentes, Cesar I.; Hulsebus, Alan

    2012-01-01

    The asteroid size distribution informs us about the formation and composition of the Solar System. We build on our previous work in which we harvest serendipitously observed data of the Taurus region and measure the brightness and size distributions of Main-belt asteroids. This is accomplished with the highly sensitive MIPS 24 micron channel. We expect to catalog 104 asteroids, giving us a statistically significant data set. Results from this investigation will allow us to characterize the total population of small, Main-belt asteroids. Here we will present new results on the completeness of our study; on the presence of size distribution variations with inclination and radial distance in the belt; and early result on other archival fields.

  2. Small main-belt asteroid spectroscopic survey: Initial results

    NASA Technical Reports Server (NTRS)

    Xu, Shui; Binzel, Richard P.; Burbine, Thomas H.; Bus, Schelte J.

    1995-01-01

    The spectral characterization of small asteroids is important for understanding the evolution of their compositional and mineralogical properties. We report the results of a CCD spectroscopic survey of small main-belt asteroids which we call the Small Main-belt Asteroid Spectroscopic Survey (SMASS). Spectra of 316 asteroids were obtained, with wavelength coverage ranging from 4000 to 10000 A (0.4 to 1 micrometers). More than half of the objects in our survey have diameters less than 20 km. Survey results include the identification of the first object resembling ordinary chondrite meteorites among the main-belt asteroids (Binzel, R. P., et al, 1993) and observations of more than 20 asteroids showing basaltic achondrite spectral absorption features that strongly link Vesta as the parent body for the basaltic achondrite meteorites (Binzel, R. P., and S. Xu 1993). A potential Mars-crossing asteroid analog to ordinary chondrite meteorites (H chondrites), 2078 Nanking, is reported here. Through a principal component analysis, we have assigned classifications to the members of our sample. The majority of the small main-belt asteroids belong to S and C classes, similar to large asteroids. Our analysis shows that two new classes are justified which we label as J and O. Small asteroids display more diversity in spectral absorption features than the larger ones, which may indicate a greater variation of compositions in the small asteroid population. We found a few candidates for olivine-rich asteroids within the S class. Although the total number of olivine-rich candidates is relatively small, we present evidence suggesting that such objects are more prevalent at smaller sizes.

  3. HUBBLE DETECTION OF COMET NUCLEUS AT FRINGE OF SOLAR SYSTEM

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is sample data from NASA's Hubble Space Telescope that illustrates the detection of comets in the Kuiper Belt, a region of space beyond the orbit of the planet Neptune. This pair of images, taken with the Wide Field Planetary Camera 2 (WFPC2), shows one of the candidate Kuiper Belt objects found with Hubble. Believed to be an icy comet nucleus several miles across, the object is so distant and faint that Hubble's search is the equivalent of finding the proverbial needle-in-haystack. Each photo is a 5-hour exposure of a piece of sky carefully selected such that it is nearly devoid of background stars and galaxies that could mask the elusive comet. The left image, taken on August 22, 1994, shows the candidate comet object (inside circle) embedded in the background. The right picture, take of the same region one hour forty-five minutes later shows the object has apparently moved in the predicted direction and rate of motion for a kuiper belt member. The dotted line on the images is a possible orbit that this Kuiper belt comet is following. A star (lower right corner) and a galaxy (upper right corner) provide a static background reference. In addition, other objects in the picture have not moved during this time, indicating they are outside our solar system. Through this search technique astronomers have identified 29 candidate comet nuclei belonging to an estimated population of 200 million particles orbiting the edge of our solar system. The Kupier Belt was theorized 40 years ago, and its larger members detected several years ago. However, Hubble has found the underlying population of normal comet-sized bodies. Credit: A. Cochran (University of Texas) and NASA

  4. Stable Slivan states in the inner main belt?

    NASA Astrophysics Data System (ADS)

    Vraštil, J.; Vokrouhlický, D.

    2014-07-01

    Slivan~(2002) derived spin states for ten asteroids in the Koronis family residing in the outer main belt. Surprisingly, all four asteroids with prograde sense of rotation were shown to have spin axes nearly parallel in the inertial space. All asteroids with retrograde sense of rotation had large obliquities and rotation periods either short or long. Vokrouhlický et al.~(2003) developed a model capable to explain this peculiar setup. Its key element was a capture in spin- orbital resonance (Cassini state 2) with planetary frequency s_6 assisted by evolution due to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. These resonant configurations were dubbed ''Slivan states''. In this work, we analyze whether Slivan states can exist elsewhere in the main belt, focusing on its inner part (heliocentric distance < 2.5 au). We find that long-term stable Slivan states can indeed exist in this part of the main belt provided that the orbital inclination is low enough. This is because the low inclination allows for the separation of the Cassini zones associated with the proper frequency s and the planetary frequency s_6. As an example, the spin state of (20)~Massalia may be located inside, or very close, to a Slivan state. On the other hand, the orbital inclination of the members in the Flora family, or the region nearby, exceeds a critical value to maintain long-term stability of the Slivan states. For that reason, the spin states recently determined by Kryszczyńska~(2013) for a couple of asteroids in this innermost part of the main belt are not similar to the Slivan states in the Koronis family. Still, their proximity to the Cassini state of the s_6 frequency may require an explanation.

  5. Inner main belt asteroids in Slivan states?

    NASA Astrophysics Data System (ADS)

    Vraštil, J.; Vokrouhlický, D.

    2015-07-01

    Context. The spin state of ten asteroids in the Koronis family has previously been determined. Surprisingly, all four asteroids with prograde rotation were shown to have spin axes nearly parallel in the inertial space. All asteroids with retrograde rotation had large obliquities and rotation periods that were either short or long. The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect has been demonstrated to be able to explain all these peculiar facts. In particular, the effect causes the spin axes of the prograde rotators to be captured in a secular spin-orbit resonance known as Cassini state 2, a configuration dubbed "Slivan state". Aims: It has been proposed based on an analysis of a sample of asteroids in the Flora family that Slivan states might also exist in this region of the main belt. This is surprising because convergence of the proper frequency s and the planetary frequency s6 was assumed to prevent Slivan states in this zone. We therefore investigated the possibility of a long-term stable capture in the Slivan state in the inner part of the main belt and among the asteroids previously observed. Methods: We used the swift integrator to determine the orbital evolution of selected asteroids in the inner part of the main belt. We also implemented our own secular spin propagator into the swift code to efficiently analyze their spin evolution. Results: Our experiments show that the previously suggested Slivan states of the Flora-region asteroids are marginally stable for only a small range of the flattening parameter Δ. Either the observed spins are close to the Slivan state by chance, or additional dynamical effects that were so far not taken into account change their evolution. We find that only the asteroids with very low-inclination orbits (lower than ≃4°, for instance) could follow a similar evolution path as the Koronis members and be captured in their spin state into the Slivan state. A greater number of asteroids in the inner main-belt Massalia

  6. Perspectives on Comets, Comet-like Asteroids, and Their Predisposition to Provide an Environment That Is Friendly to Life

    NASA Astrophysics Data System (ADS)

    Bosiek, Katharina; Hausmann, Michael; Hildenbrand, Georg

    2016-04-01

    In recent years, studies have shown that there are many similarities between comets and asteroids. In some cases, it cannot even be determined to which of these groups an object belongs. This is especially true for objects found beyond the main asteroid belt. Because of the lack of comet fragments, more progress has been made concerning the chemical composition of asteroids. In particular, the SMASSII classification establishes a link between the reflecting spectra and chemical composition of asteroids and meteorites. To find clues for the chemical structure of comets, the parameters of all known asteroids of the SMASSII classification were compared to those of comet groups like the Encke-type comets, the Jupiter-family comets, and the Halley-type comets, as well as comet-like objects like the damocloids and the centaurs. Fifty-six SMASSII objects similar to comets were found and are categorized as comet-like asteroids in this work. Aside from the chemistry, it is assumed that the available energy on these celestial bodies plays an important role concerning habitability. For the determination of the available energy, the effective temperature was calculated. Additionally, the size of these objects was considered in order to evaluate the possibility of a liquid water core, which provides an environment that is more likely to support processes necessary to create the building blocks of life. Further study of such objects could be notable for the period of the Late Heavy Bombardment and could therefore provide important implications for our understanding of the inner workings of the prebiotic evolution within the Solar System since the beginning.

  7. Perspectives on Comets, Comet-like Asteroids, and Their Predisposition to Provide an Environment That Is Friendly to Life.

    PubMed

    Bosiek, Katharina; Hausmann, Michael; Hildenbrand, Georg

    2016-04-01

    In recent years, studies have shown that there are many similarities between comets and asteroids. In some cases, it cannot even be determined to which of these groups an object belongs. This is especially true for objects found beyond the main asteroid belt. Because of the lack of comet fragments, more progress has been made concerning the chemical composition of asteroids. In particular, the SMASSII classification establishes a link between the reflecting spectra and chemical composition of asteroids and meteorites. To find clues for the chemical structure of comets, the parameters of all known asteroids of the SMASSII classification were compared to those of comet groups like the Encke-type comets, the Jupiter-family comets, and the Halley-type comets, as well as comet-like objects like the damocloids and the centaurs. Fifty-six SMASSII objects similar to comets were found and are categorized as comet-like asteroids in this work. Aside from the chemistry, it is assumed that the available energy on these celestial bodies plays an important role concerning habitability. For the determination of the available energy, the effective temperature was calculated. Additionally, the size of these objects was considered in order to evaluate the possibility of a liquid water core, which provides an environment that is more likely to support processes necessary to create the building blocks of life. Further study of such objects could be notable for the period of the Late Heavy Bombardment and could therefore provide important implications for our understanding of the inner workings of the prebiotic evolution within the Solar System since the beginning.

  8. Evaluation of Maine's seat belt law change from secondary to primary enforcement.

    DOT National Transportation Integrated Search

    2010-04-01

    Maine upgraded its seat belt law to primary enforcement on September 20, 2007. Both daytime and nighttime observed belt use increased in the months following implementation of the law (daytime 77% to 84%; night 69% to 81%). Although daytime belt use ...

  9. Distant Comets in the Early Solar System

    NASA Technical Reports Server (NTRS)

    Meech, Karen J.

    2000-01-01

    The main goal of this project is to physically characterize the small outer solar system bodies. An understanding of the dynamics and physical properties of the outer solar system small bodies is currently one of planetary science's highest priorities. The measurement of the size distributions of these bodies will help constrain the early mass of the outer solar system as well as lead to an understanding of the collisional and accretional processes. A study of the physical properties of the small outer solar system bodies in comparison with comets in the inner solar system and in the Kuiper Belt will give us information about the nebular volatile distribution and small body surface processing. We will increase the database of comet nucleus sizes making it statistically meaningful (for both Short-Period and Centaur comets) to compare with those of the Trans-Neptunian Objects. In addition, we are proposing to do active ground-based observations in preparation for several upcoming space missions.

  10. Escape of asteroids from the main belt

    NASA Astrophysics Data System (ADS)

    Granvik, Mikael; Morbidelli, Alessandro; Vokrouhlický, David; Bottke, William F.; Nesvorný, David; Jedicke, Robert

    2017-02-01

    Aims: We locate escape routes from the main asteroid belt, particularly into the near-Earth-object (NEO) region, and estimate the relative fluxes for different escape routes as a function of object size under the influence of the Yarkovsky semimajor-axis drift. Methods: We integrated the orbits of 78 355 known and 14 094 cloned main-belt objects and Cybele and Hilda asteroids (hereafter collectively called MBOs) for 100 Myr and recorded the characteristics of the escaping objects. The selected sample of MBOs with perihelion distance q > 1.3 au and semimajor axis a < 4.1 au is essentially complete, with an absolute magnitude limit ranging from HV < 15.9 in the inner belt (a < 2.5 au) to HV < 14.4 in the outer belt (2.5 au < a < 4.1 au). We modeled the semimajor-axis drift caused by the Yarkovsky force and assigned four different sizes (diameters of 0.1, 0.3, 1.0, and 3.0 km) and random spin obliquities (either 0 deg or 180 deg) for each test asteroid. Results: We find more than ten obvious escape routes from the asteroid belt to the NEO region, and they typically coincide with low-order mean-motion resonances with Jupiter and secular resonances. The locations of the escape routes are independent of the semimajor-axis drift rate and thus are also independent of the asteroid diameter. The locations of the escape routes are likewise unaffected when we added a model for Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) cycles coupled with secular evolution of the rotation pole as a result of the solar gravitational torque. A Yarkovsky-only model predicts a flux of asteroids entering the NEO region that is too high compared to the observationally constrained flux, and the discrepancy grows larger for smaller asteroids. A combined Yarkovsky and YORP model predicts a flux of small NEOs that is approximately a factor of 5 too low compared to an observationally constrained estimate. This suggests that the characteristic timescale of the YORP cycle is longer than our canonical

  11. Physical observations of comets: Their composition, origin and evolution

    NASA Technical Reports Server (NTRS)

    Cochran, Anita L.; Barker, Edwin S.; Cochran, William D.

    1991-01-01

    The composition, origins, and evolution of comets were studied. The composition was studied using spectroscopic observations of primarily brighter comets at moderate and high resolution for the distribution of certain gases in the coma. The origins was addressed through an imaging search for the Kuiper belt of comets. The evolution was addressed by searching for a link between comets and asteroids using an imaging approach to search for an OH coma.

  12. A photoelectric lightcurve survey of small main belt asteroids

    NASA Technical Reports Server (NTRS)

    Binzel, R. P.; Mulholland, J. D.

    1983-01-01

    A survey to obtain photoelectric lightcurves of small main-belt asteroids was conducted from November 1981 to April 1982 using the 0.91- and 2.1-m telescopes at the University of Texas McDonald Observatory. A total of 18 main-belt asteroids having estimated dimaters under 30 km were observed with over half of these being smaller than 15 km. Rotational periods were determined or estimated from multiple nights of observation for nearly all of these yielding a sample of 17 small main-belt asteroids which is believed to be free of observational selection effects. All but two of these objects were investigated for very short periods in the range of 1 min to 2 hr using power spectrum analysis of a continuous set of integrations. No evidence for such short periods was seen in this sample. Rotationally averaged B(1,0) magnitudes were determined for most of the surveyed asteroids, allowing diameter estimates to be made. Imposing the suspected selection effects of photogaphic photometry on the results of this survey gives excellent agreement with the results from that technique. This shows that the inability of photographic photometry to obtain results for many asteroids is indeed due to the rotational parameter of those asteroids.

  13. Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion

    NASA Astrophysics Data System (ADS)

    Bottke, William F.; Durda, Daniel D.; Nesvorný, David; Jedicke, Robert; Morbidelli, Alessandro; Vokrouhlický, David; Levison, Harold F.

    2005-12-01

    The main belt is believed to have originally contained an Earth mass or more of material, enough to allow the asteroids to accrete on relatively short timescales. The present-day main belt, however, only contains ˜5×10 Earth masses. Numerical simulations suggest that this mass loss can be explained by the dynamical depletion of main belt material via gravitational perturbations from planetary embryos and a newly-formed Jupiter. To explore this scenario, we combined dynamical results from Petit et al. [Petit, J. Morbidelli, A., Chambers, J., 2001. The primordial excitation and clearing of the asteroid belt. Icarus 153, 338-347] with a collisional evolution code capable of tracking how the main belt undergoes comminution and dynamical depletion over 4.6 Gyr [Bottke, W.F., Durda, D., Nesvorny, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H., 2005. The fossilized size distribution of the main asteroid belt. Icarus 175, 111-140]. Our results were constrained by the main belt's size-frequency distribution, the number of asteroid families produced by disruption events from diameter D>100 km parent bodies over the last 3-4 Gyr, the presence of a single large impact crater on Vesta's intact basaltic crust, and the relatively constant lunar and terrestrial impactor flux over the last 3 Gyr. We used our model to set limits on the initial size of the main belt as well as Jupiter's formation time. We find the most likely formation time for Jupiter was 3.3±2.6 Myr after the onset of fragmentation in the main belt. These results are consistent with the estimated mean disk lifetime of 3 Myr predicted by Haisch et al. [Haisch, K.E., Lada, E.A., Lada, C.J., 2001. Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153-L156]. The post-accretion main belt population, in the form of diameter D≲1000 km planetesimals, was likely to have been 160±40 times the current main belt's mass. This corresponds to 0.06-0.1 Earth masses, only a small fraction

  14. Dynamical evolution of V-type photometric candidates in the central and outer main belt asteroids

    NASA Astrophysics Data System (ADS)

    Carruba, V.; Huaman, M.

    2014-07-01

    V-type asteroids are associated with basaltic composition, and are supposed to be fragments of crust of differentiated objects. Most V-type asteroids in the main belt are found in the inner main belt, and are either current members of the Vesta dynamical family (Vestoids), or past members that drifted away. However, several V-type photometric candidates have been recently identified in the central and outer main belt. The origin of this large population of V-type objects is not well understood, since it seems unlikely that Vestoids crossing the 3:1 and 5:2 mean-motion resonance with Jupiter could account for the whole observed population. In this work, we investigated a possible origin of the bodies from local sources, such as the parent bodies of the Eunomia, Merxia, and Agnia asteroid families in the central main belt, and Dembowska, Eos and Magnya asteroid families in the outer main belt. Our results show that dynamical evolution from the parent bodies of the Eunomia and Merxia/Agnia families on timescales of 2 Gyr or more could be responsible for the current orbital location of most of the V-type photometric candidates in the central main belt. Studies for the outer main belt are currently in progress. by the FAPESP (grant 2011/19863-3) and CAPES (grant 15029-12-3) funding agencies.

  15. The Mid-plane of the Main Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Cambioni, Saverio; Malhotra, Renu

    2018-03-01

    We measure the mid-plane of the main asteroid belt by using the observational data of a nearly complete and unbiased sample of asteroids and find that it has inclination \\bar{I}=0\\buildrel{\\circ}\\over{.} 93+/- 0\\buildrel{\\circ}\\over{.} 04 and longitude of ascending node \\bar{{{Ω }}}=87\\buildrel{\\circ}\\over{.} 6+/- 2\\buildrel{\\circ}\\over{.} 6 (in J2000 ecliptic-equinox coordinate system). This plane differs significantly from previously published measurements, and it is also distinctly different than the solar system’s invariable plane as well as Jupiter’s orbit plane. The mid-plane of the asteroid belt is theoretically expected to be a slightly warped sheet whose local normal is controlled by the gravity of the major planets. Specifically, its inclination and longitude of ascending node varies with semimajor axis and time (on secular timescales) and is defined by the forced solution of secular perturbation theory; the ν 16 nodal secular resonance is predicted to cause a significant warp of the mid-plane in the inner asteroid belt. We test the secular theory by measuring the current location of the asteroids’ mid-plane in finer semimajor axis bins. We find that the measured mid-plane in the middle and outer asteroid belt is consistent, within the 3σ confidence level, with the prediction of secular perturbation theory, but a notable discrepancy is present in the inner asteroid belt near ∼2 au.

  16. Near-infrared Spectroscopy Of Outer Main Belt Asteroids

    NASA Astrophysics Data System (ADS)

    Takir, Driss; Emery, J.

    2009-09-01

    We have recently begun a spectral survey of the outer Main Belt population (3.2 AU < a < 4.6 AU), using near-infrared spectroscopy (0.8-2.5 μm). The objective of this survey is to search for signatures of H2O, organics, hydrated silicates, and/or anhydrous silicates on this group of asteroids. Studying the outer Main Belt asteroids will allow us to better understand the dynamical evolution of the Solar System and provide crucial constrains on nebular composition. Our first observing run, using the SpeX spectrograph/imager at the NASA IRTF, took place remotely form the University of Tennessee Knoxville on the nights of April 15, 16, and 17, 2009 (UT). More observing runs will be conducted this year and the beginning of next year. The initial data reduction process reveals that some of these asteroids exhibit weak and strong absorption features. We will present some of these initial spectra and results.

  17. Epsilon Eridani Inner Asteroid Belt

    NASA Image and Video Library

    2017-09-14

    SCI2017_0004: Artist's illustration of the Epsilon Eridani system showing Epsilon Eridani b, right foreground, a Jupiter-mass planet orbiting its parent star at the outside edge of an asteroid belt. In the background can be seen another narrow asteroid or comet belt plus an outermost belt similar in size to our solar system's Kuiper Belt. The similarity of the structure of the Epsilon Eridani system to our solar system is remarkable, although Epsilon Eridani is much younger than our sun. SOFIA observations confirmed the existence of the asteroid belt adjacent to the orbit of the Jovian planet. Credit: NASA/SOFIA/Lynette Cook

  18. Comet nucleus and asteroid sample return missions

    NASA Technical Reports Server (NTRS)

    Melton, Robert G.; Thompson, Roger C.; Starchville, Thomas F., Jr.; Adams, C.; Aldo, A.; Dobson, K.; Flotta, C.; Gagliardino, J.; Lear, M.; Mcmillan, C.

    1992-01-01

    During the 1991-92 academic year, the Pennsylvania State University has developed three sample return missions: one to the nucleus of comet Wild 2, one to the asteroid Eros, and one to three asteroids located in the Main Belt. The primary objective of the comet nucleus sample return mission is to rendezvous with a short period comet and acquire a 10 kg sample for return to Earth. Upon rendezvous with the comet, a tethered coring and sampler drill will contact the surface and extract a two-meter core sample from the target site. Before the spacecraft returns to Earth, a monitoring penetrator containing scientific instruments will be deployed for gathering long-term data about the comet. A single asteroid sample return mission to the asteroid 433 Eros (chosen for proximity and launch opportunities) will extract a sample from the asteroid surface for return to Earth. To limit overall mission cost, most of the mission design uses current technologies, except the sampler drill design. The multiple asteroid sample return mission could best be characterized through its use of future technology including an optical communications system, a nuclear power reactor, and a low-thrust propulsion system. A low-thrust trajectory optimization code (QuickTop 2) obtained from the NASA LeRC helped in planning the size of major subsystem components, as well as the trajectory between targets.

  19. Hubble Witnesses Massive Comet-Like Object Pollute Atmosphere of a White Dwarf

    NASA Image and Video Library

    2017-12-08

    For the first time, scientists using NASA’s Hubble Space Telescope have witnessed a massive object with the makeup of a comet being ripped apart and scattered in the atmosphere of a white dwarf, the burned-out remains of a compact star. The object has a chemical composition similar to Halley’s Comet, but it is 100,000 times more massive and has a much higher amount of water. It is also rich in the elements essential for life, including nitrogen, carbon, oxygen, and sulfur. These findings are evidence for a belt of comet-like bodies orbiting the white dwarf, similar to our solar system’s Kuiper Belt. These icy bodies apparently survived the star’s evolution as it became a bloated red giant and then collapsed to a small, dense white dwarf. Caption: This artist's concept shows a massive, comet-like object falling toward a white dwarf. New Hubble Space Telescope findings are evidence for a belt of comet-like bodies orbiting the white dwarf, similar to our solar system's Kuiper Belt. The findings also suggest the presence of one or more unseen surviving planets around the white dwarf, which may have perturbed the belt to hurl icy objects into the burned-out star. Credits: NASA, ESA, and Z. Levay (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Mosaic of CCDs to Survey for Asteroids and Comets

    NASA Technical Reports Server (NTRS)

    McMillan, Robert S.

    2002-01-01

    Spacewatch searches for asteroids and comets ranging in location from near-Earth space to regions beyond the orbit of Neptune. We are studying Earth-approaching asteroids, main belt asteroids, comets, Centaurs, and TNOs, as well as the interrelationships of these classes and their bearing on the origin and evolution of the solar system. Spacewatch is described at http://www. lpl. arizona. edu/spacewatch/index.html. The Spacewatch Project has been discovering Earth-approaching asteroids (EAs) steadily and has used the results aggressively to estimate the statistical properties of the EA population. This grant funded Spacewatch to develop and implement a mosaic of CCD imaging detectors for the 0.9-m telescope, to increase that telescope's rate of coverage of sky area while preserving its limiting magnitude.

  1. Cometary Volatiles and the Origin of Comets

    NASA Technical Reports Server (NTRS)

    A'Hearn, Michael F.; Feaga, Lori M.; Keller, H. Uwe; Kawakita, Hideyo; Hampton, Donald L.; Kissel, Jochen; Klaasen, Kenneth P.; McFadden, Lucy A.; Meech, Karen J.; Schultz, Peter H.; hide

    2012-01-01

    We describe recent results on the CO/C02/H2O composition of comets and compare these with models of the protoplanetary disk. We argue that the cometary observations require reactions on grain surfaces to convert CO to CO2 and also require formation between the CO and CO2 snow lines. This then requires very early mixing of cometesimals in the protoplanetary disk analogous to the mixing described for the asteroid belt by Walsh and Morbidelli. We suggest that most comets formed in the region of the giant planets. the traditional source of the Oort-cloud comets but not of the Jupiter-family comets

  2. Hundred lightcurves of sub-km main-belt asteroids

    NASA Astrophysics Data System (ADS)

    Yoshida, F.; Souami, D.; Bouquillon, S.; Nakamura, T.; Dermawan, B.; Yagi, M.; Souchay, J.

    2014-07-01

    We observed a single sky field near opposition and near the ecliptic plane using the Subaru telescope equipped with the Suprime-Cam. Taking advantage of the wide field of view (FOV) for the Suprime-Cam, the plan was to obtain 100 lightcurves of asteroids at the same time. The total observing time interval was about 8 hours on September 2, 2002, with 2-min exposures. We detected 147 moving objects in the single FOV (34'×27') on the Suprime-Cam (see Figure). Of those, 112 detections corresponded to different objects. We used the R filter during almost the entire observing run, but we took a few images with the B filter at the beginning, the middle, and the end of the run. We classified main-belt asteroids into S- and C-complexes with the B-R color of the object (Yoshida & Nakamura 2007). Although we carefully avoided regions of bright stars, the sky in the images taken by Suprime-Cam were actually crowded with faint objects. Therefore, the asteroids overlapped with background stars very often. Thus, it was very difficult to get lightcurves with high accuracy. We modified the GAIA-GBOT (Ground Based Optical Tracking) PIPELINE to measure the position and brightness of each object (Bouquillon et al. 2012). Once the objects were identified and their positions measured in pixel coordinates, the pipeline proceeded to the astrometric calibration and then to the photometric calibrations with the Guide Star Catalog II (Lasker et al. 2008). The pipeline produced time series of photometry for each object. The average brightness of each lightcurve ranged between 19--24 mag. We then estimated the rotational period from the lightcurve of each object. In our presentation, we will show the spin-period distribution of sub- km main-belt asteroids and compare it with that of large main-belt asteroids obtained from the lightcurve catalogue.

  3. Vega: Two Belts and the Possibility of Planets

    NASA Image and Video Library

    2013-01-08

    In this diagram, the Vega system, which was already known to have a cooler outer belt of comets orange, is compared to our solar system with its asteroid and Kuiper belts. The ring of warm, rocky debris was detected using NASA Spitzer Space Telescope,

  4. On the oldest asteroid families in the main belt

    NASA Astrophysics Data System (ADS)

    Carruba, V.; Nesvorný, D.; Aljbaae, S.; Domingos, R. C.; Huaman, M.

    2016-06-01

    Asteroid families are groups of minor bodies produced by high-velocity collisions. After the initial dispersions of the parent bodies fragments, their orbits evolve because of several gravitational and non-gravitational effects, such as diffusion in mean-motion resonances, Yarkovsky and Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effects, close encounters of collisions, etc. The subsequent dynamical evolution of asteroid family members may cause some of the original fragments to travel beyond the conventional limits of the asteroid family. Eventually, the whole family will dynamically disperse and no longer be recognizable. A natural question that may arise concerns the time-scales for dispersion of large families. In particular, what is the oldest still recognizable family in the main belt? Are there any families that may date from the late stages of the late heavy bombardment and that could provide clues on our understanding of the primitive Solar system? In this work, we investigate the dynamical stability of seven of the allegedly oldest families in the asteroid main belt. Our results show that none of the seven studied families has a nominally mean estimated age older than 2.7 Gyr, assuming standard values for the parameters describing the strength of the Yarkovsky force. Most `paleo-families' that formed between 2.7 and 3.8 Gyr would be characterized by a very shallow size-frequency distribution, and could be recognizable only if located in a dynamically less active region (such as that of the Koronis family). V-type asteroids in the central main belt could be compatible with a formation from a paleo-Eunomia family.

  5. Lightcurve Analysis for Seven Main-belt Asteroids

    NASA Astrophysics Data System (ADS)

    Polakis, Tom

    2018-04-01

    Synodic rotation periods were determined for seven main-belt asteroids: 763 Cupido, 151.1 ± 0.1 h; 882 Swetlana, 29.867 ± 0.009 h; 916 America, 37.294 ± 0.013 h; 920 Rogeria, 12.244 ± 0.003 h; 1182 Ilona, 29.8553 ± 0.0023 h; 1283 Komsomolia, 32.175 ± 0.005 h; and 1639 Bower, 22.181 ± 0.003 h. All the data have submitted to the ALCDEF database.

  6. 27. CORNER OF MAIN SHOP SHOWING BELT DRIVE AND BLOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. CORNER OF MAIN SHOP SHOWING BELT DRIVE AND BLOWER FOR CUPOLA-LOOKING SOUTHWEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  7. Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets.

    PubMed

    Ishii, Hope A; Bradley, John P; Dai, Zu Rong; Chi, Miaofang; Kearsley, Anton T; Burchell, Mark J; Browning, Nigel D; Molster, Frank

    2008-01-25

    The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.

  8. Reconstructing the size distribution of the primordial Main Belt

    NASA Astrophysics Data System (ADS)

    Tsirvoulis, G.; Morbidelli, A.; Delbo, M.; Tsiganis, K.

    2018-04-01

    In this work we aim to constrain the slope of the size distribution of main-belt asteroids, at their primordial state. To do so we turn out attention to the part of the main asteroid belt between 2.82 and 2.96 AU, the so-called "pristine zone", which has a low number density of asteroids and few, well separated asteroid families. Exploiting these unique characteristics, and using a modified version of the hierarchical clustering method we are able to remove the majority of asteroid family members from the region. The remaining, background asteroids should be of primordial origin, as the strong 5/2 and 7/3 mean-motion resonances with Jupiter inhibit transfer of asteroids to and from the neighboring regions. The size-frequency distribution of asteroids in the size range 17 < D(km) < 70 has a slope q ≃ - 1 . Using Monte-Carlo methods, we are able to simulate, and compensate for the collisional and dynamical evolution of the asteroid population, and get an upper bound for its size distribution slope q = - 1.43 . In addition, applying the same 'family extraction' method to the neighboring regions, i.e. the middle and outer belts, and comparing the size distributions of the respective background populations, we find statistical evidence that no large asteroid families of primordial origin had formed in the middle or pristine zones.

  9. A GREAT search for Deuterium in Comets

    NASA Astrophysics Data System (ADS)

    Mumma, Michael

    2012-10-01

    Comets are understood to be the most pristine bodies in the Solar System. Their compositions reflect the chemical state of materials at the very earliest evolutionary stages of the protosolar nebula and, as such, they provide detailed insight into the physical and chemical processes operating in planet-forming disks. Isotopic fractionation ratios of the molecular ices in the nucleus are regarded as signatures of formation processes. These ratios provide unique information on the natal heritage of those ices, and can also test the proposal that Earth's water and other volatiles were delivered by cometary bombardment. Measurement of deuterium fractionation ratios is thus a major goal in contemporary cometary science and the D/H ratio of water - the dominant volatile in comets - holds great promise for testing the formation history of cometary matter. The D/H ratio in cometary water has been measured in only seven comets. Six were from the Oort Cloud reservoir and the D/H ratio was about twice that of the Earth's oceans. However, the recent Herschel measurement of HDO/H2O in 103P/Hartley-2 (the first from the Kuiper Belt) was consistent with exogenous delivery of Earth's water by comets. Outstanding questions remain: are cometary HDO/H2O ratios consistent with current theories of nebular chemical evolution or with an interstellar origin? Does the HDO/H2O ratio vary substantially among comet populations? Hartley-2 is the only Kuiper Belt comet with measured HDO/H2O, are there comets with similar ratios in the Oort cloud? These questions can only be addressed by measuring HDO/H2O ratios in many more suitable bright comets. We therefore propose to measure the D/H ratio in water in a suitable target-of-opportunity comet by performing observations of HDO and OH with the GREAT spectrometer on SOFIA. A multi-wavelength, ground-based observing campaign will also be conducted in support of the airborne observations.

  10. A GREAT search for Deuterium in Comets

    NASA Astrophysics Data System (ADS)

    Mumma, Michael

    2013-10-01

    Comets are understood to be the most pristine bodies in the Solar System. Their compositions reflect the chemical state of materials at the very earliest evolutionary stages of the protosolar nebula and, as such, they provide detailed insight into the physical and chemical processes operating in planet-forming disks. Isotopic fractionation ratios of the molecular ices in the nucleus are regarded as signatures of formation processes. These ratios provide unique information on the natal heritage of those ices, and can also test the proposal that Earth's water and other volatiles were delivered by cometary bombardment. Measurement of deuterium fractionation ratios is thus a major goal in contemporary cometary science and the D/H ratio of water - the dominant volatile in comets - holds great promise for testing the formation history of cometary matter. The D/H ratio in cometary water has been measured in only eight comets. Seven were from the Oort Cloud reservoir and the D/H ratio was about twice that of the Earth's oceans. However, the recent Herschel measurement of HDO/H2O in 103P/Hartley-2 (the first from the Kuiper Belt) was consistent with exogenous delivery of Earth's water by comets. Outstanding questions remain: are cometary HDO/H2O ratios consistent with current theories of nebular chemical evolution or with an interstellar origin? Does the HDO/H2O ratio vary substantially among comet populations? Hartley-2 is the only Kuiper Belt comet with measured HDO/H2O, are there comets with similar ratios in the Oort cloud? These questions can only be addressed by measuring HDO/H2O ratios in many more suitable bright comets. We therefore propose to measure the D/H ratio in water in a suitable target-of-opportunity comet by performing observations of HDO and OH with the GREAT spectrometer on SOFIA. A multi-wavelength, ground-based observing campaign will also be conducted in support of the airborne observations.

  11. The binary Kuiper-belt object 1998 WW31.

    PubMed

    Veillet, Christian; Parker, Joel Wm; Griffin, Ian; Marsden, Brian; Doressoundiram, Alain; Buie, Marc; Tholen, David J; Connelley, Michael; Holman, Matthew J

    2002-04-18

    The recent discovery of a binary asteroid during a spacecraft fly-by generated keen interest, because the orbital parameters of binaries can provide measures of the masses, and mutual eclipses could allow us to determine individual sizes and bulk densities. Several binary near-Earth, main-belt and Trojan asteroids have subsequently been discovered. The Kuiper belt-the region of space extending from Neptune (at 30 astronomical units) to well over 100 AU and believed to be the source of new short-period comets-has become a fascinating new window onto the formation of our Solar System since the first member object, not counting Pluto, was discovered in 1992 (ref. 13). Here we report that the Kuiper-belt object 1998 WW31 is binary with a highly eccentric orbit (eccentricity e approximately 0.8) and a long period (about 570 days), very different from the Pluto/Charon system, which was hitherto the only previously known binary in the Kuiper belt. Assuming a density in the range of 1 to 2 g cm-3, the albedo of the binary components is between 0.05 and 0.08, close to the value of 0.04 generally assumed for Kuiper-belt objects.

  12. On enigmatic properties of the main belt asteroids

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    Two properties of the main belt asteroids still bother planetologists: why they are mainly of an oblong shape and why the larger bodies rotate faster than the smaller ones. According to the excepted impact theory constantly produced fragments should be rather more or less of equal dimensions. Larger bodies are more difficult to make rotating by hits than the smaller ones. The comparative wave planetology states that "orbits make structures". It means that as all celestial bodies move in non-round keplerian elliptic (and parabolic) orbits with periodically changing accelerations they are subjected to an action of inertia-gravity waves causing body warpings. These warpings in rotating bodies (but all celestial bodies rotate!) acquire stationary character and 4 ortho- and diagonal directions. An interference of these waves produces uprising (+), subsiding (-) and neutral (0) tectonic blocks size of which depends on the warping wavelengths. The fundamental wave 1 long 2πR makes one hemisphere to rise (bulge) and the opposite one to fall (press in) - this two-segment construction is the ubiquitous tectonic dichotomy. The first overtone wave 2 long πR is responsible for tectonic sectoring complicating the dichotomic segments. This already rather complicated structural picture is further complicated by a warping action of individual waves lengths of which are inversely proportional to orbital frequencies : higher frequency - smaller wave and , vice versa, lower frequency - larger waves. These waves produce tectonic granulation, granule size being a half of a wavelength. All terrestrial planets and the belt asteroids according to their orb. fr. are strictly arranged in the following row of granule sizes: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. The waves lengths and amplitudes increase with the solar distance, their warping action accordingly increases. If Mercury, Venus and Earth are more or less globular, Mars is already elliptical because

  13. Asteroid family dynamics in the inner main belt

    NASA Astrophysics Data System (ADS)

    Dykhuis, Melissa Joy

    The inner main asteroid belt is an important source of near-Earth objects and terrestrial planet impactors; however, the dynamics and history of this region are challenging to understand, due to its high population density and the presence of multiple orbital resonances. This dissertation explores the properties of two of the most populous inner main belt family groups --- the Flora family and the Nysa-Polana complex --- investigating their memberships, ages, spin properties, collision dynamics, and range in orbital and reflectance parameters. Though diffuse, the family associated with asteroid (8) Flora dominates the inner main belt in terms of the extent of its members in orbital parameter space, resulting in its significant overlap with multiple neighboring families. This dissertation introduces a new method for membership determination (the core sample method) which enables the distinction of the Flora family from the background, permitting its further analysis. The Flora family is shown to have a signature in plots of semimajor axis vs. size consistent with that expected for a collisional family dispersed as a result of the Yarkovsky radiation effect. The family's age is determined from the Yarkovsky dispersion to be 950 My. Furthermore, a survey of the spin sense of 21 Flora-region asteroids, accomplished via a time-efficient modification of the epoch method for spin sense determination, confirms the single-collision Yarkovsky-dispersed model for the family's origin. The neighboring Nysa-Polana complex is the likely source region for many of the carbonaceous near-Earth asteroids, several of which are important targets for spacecraft reconnaissance and sample return missions. Family identification in the Nysa-Polana complex via the core sample method reveals two families associated with asteroid (135) Hertha, both with distinct age and reflectance properties. The larger of these two families demonstrates a correlation in semimajor axis and eccentricity

  14. Origins and Asteroid Main-Belt Stratigraphy for H-, L-, LL-Chondrite Meteorites

    NASA Astrophysics Data System (ADS)

    Binzel, Richard; DeMeo, Francesca; Burbine, Thomas; Polishook, David; Birlan, Mirel

    2016-10-01

    We trace the origins of ordinary chondrite meteorites to their main-belt sources using their (presumably) larger counterparts observable as near-Earth asteroids (NEAs). We find the ordinary chondrite stratigraphy in the main belt to be LL, H, L (increasing distance from the Sun). We derive this result using spectral information from more than 1000 near-Earth asteroids [1]. Our methodology is to correlate each NEA's main-belt source region [2] with its modeled mineralogy [3]. We find LL chondrites predominantly originate from the inner edge of the asteroid belt (nu6 region at 2.1 AU), H chondrites from the 3:1 resonance region (2.5 AU), and the L chondrites from the outer belt 5:2 resonance region (2.8 AU). Each of these source regions has been cited by previous researchers [e.g. 4, 5, 6], but this work uses an independent methodology that simultaneously solves for the LL, H, L stratigraphy. We seek feedback from the planetary origins and meteoritical communities on the viability or implications of this stratrigraphy.Methodology: Spectroscopic and taxonomic data are from the NASA IRTF MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS) [1]. For each near-Earth asteroid, we use the Bottke source model [2] to assign a probability that the object is derived from five different main-belt source regions. For each spectrum, we apply the Shkuratov model [3] for radiative transfer within compositional mixing to derive estimates for the ol / (ol+px) ratio (and its uncertainty). The Bottke source region model [2] and the Shkuratov mineralogic model [3] each deliver a probability distribution. For each NEA, we convolve its source region probability distribution with its meteorite class distribution to yield a likelihood for where that class originates. Acknowledgements: This work supported by the National Science Foundation Grant 0907766 and NASA Grant NNX10AG27G.References: [1] Binzel et al. (2005), LPSC XXXVI, 36.1817. [2] Bottke et al. (2002). Icarus 156, 399. [3

  15. Low-energy multiple rendezvous of main belt asteroids

    NASA Technical Reports Server (NTRS)

    Penzo, Paul A.; Bender, David F.

    1992-01-01

    An approach to multiple asteroid rendezvous missions to the main belt region is proposed. In this approach key information which consists of a launch date and delta V can be generated for all possible pairs of asteroids satisfying specific constraints. This information is made available on a computer file for 1000 numbered asteroids with reasonable assumptions, limitations, and approximations to limit the computer requirements and the size of the data file.

  16. Search for Dormant Comets in Near-Earth Space

    NASA Astrophysics Data System (ADS)

    Kim, Yoonyoung

    2013-06-01

    It is considered that comets have been injected into near-Earth space from outer region (e.g. Kuiper-belt region), providing rich volatile and organic compounds to the earth. Some comets are still active while most of them are dormant with no detectable tails and comae. Here we propose to make a multi-band photometric observation of near-Earth objects (NEOs) with comet-like orbits. We select our targets out of infrared asteroidal catalogs based on AKARI and WISE observations. With a combination of taxonomic types by Subaru observation and albedos by AKARI or WISE, we aim to dig out dormant comet candidates among NEOs. Our results will provide valuable information to figure out the dynamical evolution and fate of comets. We would like to emphasize that this is the first taxonomic survey of dormant comets to utilize the infrared data archive with AKARI and WISE.

  17. A six-part collisional model of the main asteroid belt

    NASA Astrophysics Data System (ADS)

    Cibulková, H.; Brož, M.; Benavidez, P. G.

    2014-10-01

    In this work, we construct a new model for the collisional evolution of the main asteroid belt. Our goals are to test the scaling law of Benz and Asphaug (Benz, W., Asphaug, E. [1999]. Icarus, 142, 5-20) and ascertain if it can be used for the whole belt. We want to find initial size-frequency distributions (SFDs) for the considered six parts of the belt (inner, middle, “pristine”, outer, Cybele zone, high-inclination region) and to verify if the number of synthetic asteroid families created during the simulation matches the number of observed families as well. We used new observational data from the WISE satellite (Masiero et al., 2011) to construct the observed SFDs. We simulate mutual collisions of asteroids with a modified version of the Boulder code (Morbidelli, A., et al. [2009]. Icarus, 204, 558-573), where the results of hydrodynamic (SPH) simulations of Durda et al. (Durda, D.D., et al. [2007]. Icarus, 498-516) and Benavidez et al. (Benavidez, P.G., et al. [2012]. 219, 57-76) are included. Because material characteristics can significantly affect breakups, we created two models - for monolithic asteroids and for rubble-piles. To explain the observed SFDs in the size range D=1 to 10 km we have to also account for dynamical depletion due to the Yarkovsky effect. The assumption of (purely) rubble-pile asteroids leads to a significantly worse fit to the observed data, so that we can conclude that majority of main-belt asteroids are rather monolithic. Our work may also serve as a motivation for further SPH simulations of disruptions of smaller targets (with a parent body size of the order of 1 km).

  18. Basaltic material in the main belt: a tale of two (or more) parent bodies?

    NASA Astrophysics Data System (ADS)

    Ieva, S.; Dotto, E.; Lazzaro, D.; Fulvio, D.; Perna, D.; Epifani, E. Mazzotta; Medeiros, H.; Fulchignoni, M.

    2018-06-01

    The majority of basaltic objects in the main belt are dynamically connected to Vesta, the largest differentiated asteroid known. Others, due to their current orbital parameters, cannot be easily dynamically linked to Vesta. This is particularly true for all the basaltic asteroids located beyond 2.5 au, where lies the 3:1 mean motion resonance with Jupiter. In order to investigate the presence of other V-type asteroids in the middle and outer main belt (MOVs) we started an observational campaign to spectroscopically characterize in the visible range MOV candidates. We observed 18 basaltic candidates from TNG and ESO - NTT between 2015 and 2016. We derived spectral parameters using the same approach adopted in our recent statistical analysis and we compared our data with orbital parameters to look for possible clusters of MOVs in the main belt, symptomatic for a new basaltic family. Our analysis seemed to point out that MOVs show different spectral parameters respect to other basaltic bodies in the main belt, which could account for a diverse mineralogy than Vesta; moreover, some of them belong to the Eos family, suggesting the possibility of another basaltic progenitor. This could have strong repercussions on the temperature gradient present in the early Solar System, and on our current understanding of differentiation processes.

  19. Can the Yarkovsky effect significantly influence the main-belt size distribution?

    NASA Astrophysics Data System (ADS)

    O'Brien, D. P.; Greenberg, R.

    2001-11-01

    It has been proposed that the size distribution of main-belt asteroids may be significantly modified by the Yarkovsky effect---a size-dependent radiation force which can sweep asteroids into resonances and out of the main belt. Bell [1] suggested that this effect could deplete the population of asteroids smaller than ~10 m by at least an order of magnitude, resulting in the lack of small craters observed on Eros. Others have hypothesized that the same effect could explain the steepness of the crater distribution on Gaspra [2]. We have explicitly included Yarkovsky removal in a numerical collisional evolution model. The algorithm uses recent calculations of the expected removal rates of different sized bodies from the main belt (David Vokrouhlicky, personal communication). We find that the rate of removal of bodies from the main belt by the Yarkovsky effect may be within an order of magnitude of the rate of collisional destruction for asteroids ~10 m in diameter, and negligible for larger or smaller asteroids. When Yarkovsky removal is incorporated into our numerical collisional evolution model, the numbers of bodies ~10 m in diameter is reduced by ~10-20%, and a wave propagates up the size distribution increasing the number of bodies ~300 m by ~10%. This `waviness' could conceivably be detected in the cratering records on asteroids. However, the uncertainties in crater counts on Ida, Gaspra, Malthide, and Eros are >10% for diameters >100 m (i. e. the craters made by impactors >10 m in diameter). Contrary to the earlier hypothesis, Yarkovsky removal of small asteroids cannot have substantially affected the overall slopes of the crater populations on these asteroids. Moreover, Yarkovsky removal cannot explain the lack of small (<10 m) craters on Eros, because the corresponding impactors (<1 m) are unaffected by the Yarkovsky effect. [1] Bell, J. F. (2001). LPSC XXXII abstract no. 1964. [2] Hartmann, W. K. and E. V. Ryan (1996). DPS 28, abstract no. 10.35.

  20. A record of planet migration in the main asteroid belt.

    PubMed

    Minton, David A; Malhotra, Renu

    2009-02-26

    The main asteroid belt lies between the orbits of Mars and Jupiter, but the region is not uniformly filled with asteroids. There are gaps, known as the Kirkwood gaps, in distinct locations that are associated with orbital resonances with the giant planets; asteroids placed in these locations will follow chaotic orbits and be removed. Here we show that the observed distribution of main belt asteroids does not fill uniformly even those regions that are dynamically stable over the age of the Solar System. We find a pattern of excess depletion of asteroids, particularly just outward of the Kirkwood gaps associated with the 5:2, the 7:3 and the 2:1 Jovian resonances. These features are not accounted for by planetary perturbations in the current structure of the Solar System, but are consistent with dynamical ejection of asteroids by the sweeping of gravitational resonances during the migration of Jupiter and Saturn approximately 4 Gyr ago.

  1. Ground-Based Centimeter, Millimeter, and Submillimeter Observations of Recent Comets

    NASA Technical Reports Server (NTRS)

    Milam, S. N.; Chuang, Y.-L.; Charnley, S. B.; Kuan, Y. -J.; Villanueva, G. L.; Coulson, I. M.; Remijan. A. R.

    2012-01-01

    Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth [I]. Comets are comprised of molecular ices, that may be pristine interstellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula [2]. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection [3]. In the classical picture, the long-period comets probably formed in the nebular disk across the giant planet formation region (5-40 AU) with the majority of them originating from the Uranus-Neptune region. They were subsequently scattered out to the Oort Cloud (OC) by Jupiter. The short-period comets (also known as ecliptic or Jupiter Family Comets - JFC) reside mainly in the Edgeworth-Kuiper belt where they were formed. Given the gradient in physical conditions expected across this region of the nebula, chemical diversity in this comet population is to be expected [4,5]. We have conducted observations of comets I 03P/Hartley 2 (JFC) and C/2009 PI (Garradd) (OC), at primarily millimeter and submillimeter wavelengths, to determine important cosmogonic quantities, such as the ortho:para ratio and isotope ratios, as well as probe the origin of cometary organics and if they vary between the two dynamic reservoirs.

  2. Recent Arecibo Radar Observations of Main-Belt Asteroids.

    NASA Astrophysics Data System (ADS)

    Shepard, Michael K.; Howell, Ellen; Nolan, Michael; Taylor, Patrick; Springmann, Alessondra; Giorgini, Jon; Benner, Lance; Magri, Christopher

    2014-11-01

    We recently observed main-belt asteroids 12 Victoria (Tholen S-class, Bus L-class), 246 Asporina (A-class), and 2035 Stearns with the S-band (12 cm) Arecibo radar. Signal-to-noise ratios for Asporina and Stearns were only strong enough for continuous-wave (CW) analysis. Signal-to-noise ratios for Victoria were high enough for delay-Doppler imaging. Stearns exhibited a high radar polarization ratio of unity, higher than any other main-belt E-class, but similar to near-Earth E-class asteroids [Benner et al. Icarus 198, 294-304, 2008; Shepard et al. Icarus 215, 547-551, 2011]. The A-class asteroids show spectral absorption features consistent with olivine and have been suggested as the source of pallasite meteorites or the rare brachinites [Cruikshank and Hartmann, Science 223, 281-283, 1984]. The radar cross-section measured for Asporina leads to a radar albedo estimate of 0.11, suggesting a low near-surface bulk density, and by inference, a low metal content. This suggests that the brachinites are a better analog for Asporina than the iron-rich pallasites. Victoria has been observed by radar in the past and the continuous-wave echoes suggest it has a large concavity or is a contact binary [Mitchell et al. Icarus 118, 105-131, 1995]. Our new imaging observations should determine which is more likely.

  3. The Chemical Composition of an Extrasolar Kuiper-Belt-Object

    NASA Astrophysics Data System (ADS)

    Xu, S.; Zuckerman, B.; Dufour, P.; Young, E. D.; Klein, B.; Jura, M.

    2017-02-01

    The Kuiper Belt of our solar system is a source of short-period comets that may have delivered water and other volatiles to Earth and the other terrestrial planets. However, the distribution of water and other volatiles in extrasolar planetary systems is largely unknown. We report the discovery of an accretion of a Kuiper-Belt-Object analog onto the atmosphere of the white dwarf WD 1425+540. The heavy elements C, N, O, Mg, Si, S, Ca, Fe, and Ni are detected, with nitrogen observed for the first time in extrasolar planetary debris. The nitrogen mass fraction is ∼2%, comparable to that in comet Halley and higher than in any other known solar system object. The lower limit to the accreted mass is ∼1022 g, which is about one hundred thousand times the typical mass of a short-period comet. In addition, WD 1425+540 has a wide binary companion, which could facilitate perturbing a Kuiper-Belt-Object analog into the white dwarf’s tidal radius. This finding shows that analogs to objects in our Kuiper Belt exist around other stars and could be responsible for the delivery of volatiles to terrestrial planets beyond the solar system. Part of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among Caltech, the University of California and NASA. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  4. Lightcurve Analysis for Eleven Main-belt Asteroids

    NASA Astrophysics Data System (ADS)

    Polakis, Tom

    2018-04-01

    Synodic rotation periods were determined for eleven main-belt asteroids: 300 Geraldina, 6.847 ± 0.012 h; 597 Bandusia, 7.6636 ± 0.0008 h; 868 Lova, 41.118 ± 0.011 h; 904 Rockefellia, 6.826 ± 0.004 h; 964 Subamara, 6.8695 ± 0.0012 h; 965 Angelica, 26.752 ± 0.035 h; 1105 Fragaria, 5.4312 ± 0.0008 h; 1181 Lilith, 15.033 ± 0.003 h; 1197 Rhodesia, 16.060 ± 0.006 h; 1255 Schilowa, 76.275 ± 0.041 h; and 1883 Rimito, 6.475 ± 0.008 h. All the data have submitted to the ALCDEF database.

  5. The Influence of the Orbital Evolution of Main Belt Asteroids on Their Spin Vectors

    NASA Astrophysics Data System (ADS)

    Skoglöv, E.; Erikson, A.

    2002-11-01

    It was found that certain features in the observed spin vector distribution of main belt asteroids can be explained by the differences in the dynamical spin vector evolution between objects with high and low orbital inclinations. In particular, the deficiency of high-inclination objects whose spin vectors are close to the ecliptic plane can be accounted for. The present spin vector distribution of main belt asteroids is due to several factors connected with their collisional and dynamical evolution. In this paper, the influence of the orbital evolution on the spin axis of asteroids is examined in the case of 25 objects with typical main belt orbital evolution and 125 synthetic objects, during an integration over a time period of 1 Myr. This investigation produced the following general results: • The difference between maximum and minimum obliquity increases in an approximately linear fashion with increasing orbital inclination of the studied objects. • The inclination is the major factor influencing the magnitude of the obliquity variation. This variation is generally larger for asteroids with their initial spin vectors located close to the orbital plane. • In general, the regular obliquity differences are relatively insensitive to differences in the shape, composition, and spin rate of the asteroids. The result is compared with the properties of the observed spin vectors for 73 main belt asteroids and good agreement is found between the above results and the existing spin vector distribution.

  6. Asteroid and comet flux in the neighborhood of the earth

    NASA Technical Reports Server (NTRS)

    Shoemaker, Eugene M.; Shoemaker, Carolyn S.; Wolfe, Ruth F.

    1988-01-01

    Significant advances in the knowledge and understanding of the flux of large solid objects in the neighborhood of Earth have occurred. The best estimates of the collision rates with Earth of asteroids and comets and the corresponding production of impact craters are presented. Approximately 80 Earth-crossing asteroids were discovered through May 1988. Among 42 new Earth-crossing asteroids found in the last decade, two-thirds were discovered from observations at Palomar Observatory and 15 were discovered or independently detected in dedicated surveys with the Palomar Observatory and 15 were discovered or independently detected in dedicated surveys with the Palomar 46 cm Schmidt. Probabilities of collision with Earth have been calculated for about two-thirds of the known Earth-crossing asteroids. When multiplied by the estimated population of Earth-crossers, this yields an estimated present rate of collision about 65 pct higher than that previously reported. Spectrophotometric data obtained chiefly in the last decade show that the large majority of obvserved Earth-crossers are similar to asteroids found in the inner part of the main belt. The number of discovered Earth-crossing comets is more than 4 times greater than the number of known Earth-crossing asteroids, but reliable data on the sizes of comet nuclei are sparse. The flux of comets almost certainly was highly variable over late geologic time, owing to the random perturbation of the Oort comet cloud by stars in the solar neighborhood.

  7. Anatomy of a Busted Comet

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Poster Version (Figure 1)

    NASA's Spitzer Space Telescope captured the picture on the left of comet Holmes in March 2008, five months after the comet suddenly erupted and brightened a millionfold overnight. The contrast of the picture has been enhanced on the right to show the anatomy of the comet.

    Every six years, comet 17P/Holmes speeds away from Jupiter and heads inward toward the sun, traveling the same route typically without incident. However, twice in the last 116 years, in November 1892 and October 2007, comet Holmes mysteriously exploded as it approached the asteroid belt. Astronomers still do not know the cause of these eruptions.

    Spitzer's infrared picture at left hand side of figure 1, reveals fine dust particles that make up the outer shell, or coma, of the comet. The nucleus of the comet is within the bright whitish spot in the center, while the yellow area shows solid particles that were blown from the comet in the explosion. The comet is headed away from the sun, which lies beyond the right-hand side of figure 1.

    The contrast-enhanced picture on the right shows the comet's outer shell, and strange filaments, or streamers, of dust. The streamers and shell are a yet another mystery surrounding comet Holmes. Scientists had initially suspected that the streamers were small dust particles ejected from fragments of the nucleus, or from hyerpactive jets on the nucleus, during the October 2007 explosion. If so, both the streamers and the shell should have shifted their orientation as the comet followed its orbit around the sun. Radiation pressure from the sun should have swept the material back and away from it. But pictures of comet Holmes taken by Spitzer over time show the streamers and shell in the same configuration, and not pointing away from the sun. The observations have left astronomers stumped.

    The horizontal line seen in the contrast-enhanced picture is a trail of debris

  8. An age-colour relationship for main-belt S-complex asteroids.

    PubMed

    Jedicke, Robert; Nesvorný, David; Whiteley, Robert; Ivezić Z, Zeljko; Jurić, Mario

    2004-05-20

    Asteroid collisions in the main belt eject fragments that may eventually land on Earth as meteorites. It has therefore been a long-standing puzzle in planetary science that laboratory spectra of the most populous class of meteorite (ordinary chondrites, OC) do not match the remotely observed surface spectra of their presumed (S-complex) asteroidal parent bodies. One of the proposed solutions to this perplexing observation is that 'space weathering' modifies the exposed planetary surfaces over time through a variety of processes (such as solar and cosmic ray bombardment, micro-meteorite bombardment, and so on). Space weathering has been observed on lunar samples, in Earth-based laboratory experiments, and there is good evidence from spacecraft data that the process is active on asteroid surfaces. Here, we present a measurement of the rate of space weathering on S-complex main-belt asteroids using a relationship between the ages of asteroid families and their colours. Extrapolating this age-colour relationship to very young ages yields a good match to the colour of freshly cut OC meteorite samples, lending strong support to a genetic relationship between them and the S-complex asteroids.

  9. A Delta-V map of the known Main Belt Asteroids

    NASA Astrophysics Data System (ADS)

    Taylor, Anthony; McDowell, Jonathan C.; Elvis, Martin

    2018-05-01

    With the lowered costs of rocket technology and the commercialization of the space industry, asteroid mining is becoming both feasible and potentially profitable. Although the first targets for mining will be the most accessible near Earth objects (NEOs), the Main Belt contains 106 times more material by mass. The large scale expansion of this new asteroid mining industry is contingent on being able to rendezvous with Main Belt asteroids (MBAs), and so on the velocity change required of mining spacecraft (delta-v). This paper develops two different flight burn schemes, both starting from Low Earth Orbit (LEO) and ending with a successful MBA rendezvous. These methods are then applied to the ∼700,000 asteroids in the Minor Planet Center (MPC) database with well-determined orbits to find low delta-v mining targets among the MBAs. There are 3986 potential MBA targets with a delta-v < 8 km s-1 , but the distribution is steep and reduces to just 4 with delta-v < 7 km s-1. The two burn methods are compared and the orbital parameters of low delta-v MBAs are explored.

  10. Contact binaries in the Trans-neptunian Belt

    NASA Astrophysics Data System (ADS)

    Thirouin, Audrey; Sheppard, Scott S.

    2017-10-01

    A contact binary is made up of two objects that are almost touching or in contact with each other. These systems have been found in the Near-Earth Object population, the main belt of asteroids, the Jupiter Trojans, the comet population and even in the Trans-neptunian belt.Several studies suggest that up to 30% of the Trans-Neptunian Objects (TNOs) could be contact binaries (Sheppard & Jewitt 2004, Lacerda 2011). Contact binaries are not resolvable with the Hubble Space Telescope because of the small separation between the system's components (Noll et al. 2008). Only lightcurves with a characteristic V-/U-shape at the minimum/maximum of brightness and a large amplitude can identify these contact binaries. Despite an expected high fraction of contact binaries, 2001 QG298 is the only confirmed contact binary in the Trans-Neptunian belt, and 2003 SQ317 is a candidate to this class of systems (Sheppard & Jewitt 2004, Lacerda et al. 2014).Recently, using the Lowell’s 4.3m Discovery Channel Telescope and the 6.5m Magellan Telescope, we started a search for contact binaries at the edge of our Solar System. So far, our survey focused on about 40 objects in different dynamical groups of the Trans-Neptunian belt for sparse or complete lightcurves. We report the discovery of 5 new potential contact binaries converting the current estimate of potential/confirmed contact binaries to 7 objects. With one epoch of observations per object, we are not able to model in detail the systems, but we derive estimate for basic information such as shape, size, density of both objects as well as the separation between the system’s components. In this work, we will present these new systems, their basic characteristics, and we will discuss the potential main reservoir of contact binaries in the Trans-neptunian belt.

  11. Comets

    NASA Astrophysics Data System (ADS)

    Brownlee, D. E.

    2003-12-01

    Comets are surviving members of a formerly vast distribution of solid bodies that formed in the cold regions of the solar nebula. Cometary bodies escaped incorporation into planets and ejection from the solar system and they have been stored in two distant reservoirs, the Oort cloud and the Kuiper Belt, for most of the age of the solar system. Observed comets appear to have formed between 5 AU and 55 AU. From a cosmochemical viewpoint, comets are particularly interesting bodies because they are preserved samples of the solar nebula's cold ice-bearing regions that occupied 99% of the areal extent of the solar nebula disk. All comets formed beyond the "snow line" of the nebula, where the conditions were cold enough for water ice to condense, but they formed from environments that significantly differed in temperature. Some formed in the comparatively "warm" regions near Jupiter where the nebular temperature may have been greater than 120 K and others clearly formed beyond Neptune where temperatures may have been less than 30 K (Bell et al., 1997). Although comets are the best-preserved materials from the early solar system, they should be a mix of nebular and presolar materials that accreted over a vast range of distances from the Sun in environments that differed in temperature, pressure, and accretional conditions such as impact speed.Comets, by conventional definition, are unstable near the Sun; they contain highly volatile ices that vigorously sublime within 2-3 AU of the Sun. When heated, they release gas and solids due to "cometary activity," a series of processes usually detected from afar by the presence of a coma of gas and dust surrounding the cometary nucleus and or elongated tails composed of dust and gas. Active comets clearly have not been severely modified by the moderate to extreme heating that has affected all other solar system materials, including planets, moons, and even the asteroids that produced the most primitive meteorites. Comets have been

  12. Mining The Sdss-moc Database For Main-belt Asteroid Solar Phase Behavior.

    NASA Astrophysics Data System (ADS)

    Truong, Thien-Tin; Hicks, M. D.

    2010-10-01

    The 4th Release of the Sloan Digital Sky Survey Moving Object Catalog (SDSS-MOC) contains 471569 moving object detections from 519 observing runs obtained up to March 2007. Of these, 220101 observations were linked with 104449 known small bodies, with 2150 asteroids sampled at least 10 times. It is our goal to mine this database in order to extract solar phase curve information for a large number of main-belt asteroids of different dynamical and taxonomic classes. We found that a simple linear phase curve fit allowed us to reject data contaminated by intrinsic rotational lightcurves and other effects. As expected, a running mean of solar phase coefficient is strongly correlated with orbital elements, with the inner main-belt dominated by bright S-type asteroids and transitioning to darker C and D-type asteroids with steeper solar phase slopes. We shall fit the empirical H-G model to our 2150 multi-sampled asteroids and correlate these parameters with spectral type derived from the SDSS colors and position within the asteroid belt. Our data should also allow us to constrain solar phase reddening for a variety of taxonomic classes. We shall discuss errors induced by the standard "g=0.15" assumption made in absolute magnitude determination, which may slightly affect number-size distribution models.

  13. The end states of long-period comets and the origin of Halley-type comets

    NASA Astrophysics Data System (ADS)

    Fernández, Julio A.; Gallardo, Tabaré; Young, Juan D.

    2016-09-01

    We analyse a sample of 73 old long-period comets (LPCs) (orbital periods 200 < P < 1000 yr) with perihelion distances q < 2.5 au, discovered in the period 1850-2014. We cloned the observed comets and also added fictitious LPCs with perihelia in the Jupiter's zone. We consider both a purely dynamical evolution and a physico-dynamical one with different physical lifetimes. We can fit the computed energy distribution of comets with q < 1.3 au to the observed one only within the energy range 0.01 < x < 0.04 au-1 (or periods 125 < P < 1000 yr), where the `energy' is taken as the inverse of the semimajor axis a, namely x ≡ 1/a. The best results are obtained for physical lifetimes of about 200-300 revolutions (for a comet with a standard q = 1 au). We find that neither a purely dynamical evolution, nor a physico-dynamical one can reproduce the long tail of larger binding energies (x ≳ 0.04 au-1) that correspond to most Halley-type comets (HTCs) and Jupiter-family comets. We conclude that most HTCs are not the end states of the evolution of LPCs, but come from a different source, a flattened one that we identify with the Centaurs that are scattered to the inner planetary region from the trans-Neptunian belt. These results also show that the boundary between LPCs and HTCs should be located at an energy x ˜ 0.04 au-1 (P ˜ 125 yr), rather than the conventional classical boundary at P = 200 yr.

  14. STIS CORONAGRAPHIC IMAGING OF FOMALHAUT: MAIN BELT STRUCTURE AND THE ORBIT OF FOMALHAUT b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalas, Paul; Graham, James R.; Fitzgerald, Michael P.

    2013-09-20

    We present new optical coronagraphic data of Fomalhaut obtained with HST/STIS in 2010 and 2012. Fomalhaut b is recovered at both epochs to high significance. The observations include the discoveries of tenuous nebulosity beyond the main dust belt detected to at least 209 AU projected radius, and a ∼50 AU wide azimuthal gap in the belt northward of Fomalhaut b. The two epochs of Space Telescope Imaging Spectrograph (STIS) photometry exclude optical variability greater than 35%. A Markov chain Monte Carlo analysis demonstrates that the orbit of Fomalhaut b is highly eccentric, with e = 0.8 ± 0.1, a =more » 177 ± 68 AU, and q = 32 ± 24 AU. Fomalhaut b is apsidally aligned with the belt and 90% of allowed orbits have mutual inclination ≤36°. Fomalhaut b's orbit is belt crossing in the sky plane projection, but only 12% of possible orbits have ascending or descending nodes within a 25 AU wide belt annulus. The high eccentricity invokes a dynamical history where Fomalhaut b may have experienced a significant dynamical interaction with a hypothetical planet Fomalhaut c, and the current orbital configuration may be relatively short-lived. The Tisserand parameter with respect to a hypothetical Fomalhaut planet at 30 AU or 120 AU lies in the range 2-3, similar to highly eccentric dwarf planets in our solar system. We argue that Fomalhaut b's minimum mass is that of a dwarf planet in order for a circumplanetary satellite system to remain bound to a sufficient radius from the planet to be consistent with the dust scattered light hypothesis. In the coplanar case, Fomalhaut b will collide with the main belt around 2032, and the subsequent emergent phenomena may help determine its physical nature.« less

  15. STIS Coronagraphic Imaging of Fomalhaut: Main Belt Structure and the Orbit of Fomalhaut b

    NASA Technical Reports Server (NTRS)

    Kalas, Paul; Graham, James R.; Fitzgerald, Michael P.; Clampin, Mark

    2013-01-01

    We present new optical coronagraphic data of Fomalhaut obtained with HST/STIS in 2010 and 2012. Fomalhaut b is recovered at both epochs to high significance. The observations include the discoveries of tenuous nebulosity beyond the main dust belt detected to at least 209AU projected radius, and a approx. 50AU wide azimuthal gap in the belt northward of Fomalhaut b. The two epochs of Space Telescope Imaging Spectrograph (STIS) photometry exclude optical variability greater than 35%. A Markov chain Monte Carlo analysis demonstrates that the orbit of Fomalhaut b is highly eccentric, with e = 0.8 +/- 0.1, a = 177 +/- 68AU, and q = 32 +/- 24AU. Fomalhaut b is apsidally aligned with the belt and 90% of allowed orbits have mutual inclination <=36 deg. Fomalhaut b's orbit is belt crossing in the sky plane projection, but only 12% of possible orbits have ascending or descending nodes within a 25AU wide belt annulus. The high eccentricity invokes a dynamical history where Fomalhaut b may have experienced a significant dynamical interaction with a hypothetical planet Fomalhaut c, and the current orbital configuration may be relatively short-lived. The Tisserand parameter with respect to a hypothetical Fomalhaut planet at 30AU or 120AU lies in the range 2-3, similar to highly eccentric dwarf planets in our solar system. We argue that Fomalhaut b's minimum mass is that of a dwarf planet in order for a circumplanetary satellite system to remain bound to a sufficient radius from the planet to be consistent with the dust scattered light hypothesis. In the coplanar case, Fomalhaut b will collide with the main belt around 2032, and the subsequent emergent phenomena may help determine its physical nature.

  16. The population, magnitudes, and sizes of Jupiter family comets

    NASA Astrophysics Data System (ADS)

    Fernández, J. A.; Tancredi, G.; Rickman, H.; Licandro, J.

    1999-12-01

    We analyze the sample of measured nuclear magnitudes of the observed Jupiter family (JF) comets (taken as those with orbital periods P < 20 years and Tisserand parameters T > 2). We find a tendency of the measured nuclear magnitudes to be fainter as JF comets are observed with CCD detectors attached to medium- and large-size telescopes (e.g. Spacewatch Telescope). However, a few JF comets observed very far from the Sun (4-7 AU) show a wide dispersion of their derived absolute nuclear magnitudes which suggests that either these JF comets keep active all along the orbit, so the reported unusually bright distant magnitudes were strongly contaminated by a coma, or some of the measured ``nuclear magnitudes'' were grossly overestimated (i.e. their brightness underestimated). The cumulative mass distribution of JF comets is found to follow a power-law of index s = - 0.88 +/- 0.08, suggesting a distribution significantly steeper than that for both small main-belt asteroids and near-Earth asteroids. The cumulative mass distribution of JF comets with q < 2 AU tends to flatten for absolute (visual) nuclear magnitudes H_N > 16, which is probably due to incompleteness of discovery of fainter comets and/or a real scarcity of small comets due, perhaps, to much shorter physical lifetimes. In particular, no JF comets fainter than H_N ~ 19.5 are found in the sample, suggesting that the critical size for a comet to be still active may be of about 0.4 km radius for an assumed geometric albedo of 0.04. Possibly, smaller comet nuclei disintegrate very quickly into meteor streams. Most absolute nuclear magnitudes are found in the range 15-18, corresponding to nuclear radii in the range 0.8-3.3 km (for the same geometric albedo). We find that a large majority of JF comets with perihelion distances q > 2.5 AU are brighter than absolute nuclear magnitude H_N = 16, suggesting that only a very small fraction (a few percent) of the population of the JF comets with large q has so far been

  17. The Volatile Fraction of Comets as Quantified at Infrared Wavelengths - An Emerging Taxonomy and Implications for Natal Heritage

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; DiSanti, M. A.; Bonev, B. P.; Villanueva, G. L.; Magee-Sauer, K.; Gibb, E. L.; Paganini, L.; Radeva, Y. L.; Charnley, S. B.

    2012-01-01

    It is relatively easy to identify the reservoir from which a given comet was ejected. But dynamical models demonstrate that the main cometary reservoirs (Kuiper Belt, Oort Cloud) each contain icy bodies that formed in a range of environments in the protoplanetary disk, and the Oort Cloud may even contain bodies that formed in disks of sibling stars in the Sun s birth cluster. The cometary nucleus contains clues to the formative region(s) of its individual components. The composition of ices and rocky grains reflect a range of processes experienced by material while on the journey from the natal interstellar cloud core to the cometary nucleus. For that reason, emphasis is placed on classifying comets according to their native ices and dust (rather than orbital dynamics). Mumma & Charnley [1] reviewed the current status of taxonomies for comets and relation to their natal heritage.

  18. Photometry of Main Belt and Trojan asteroids with K2

    NASA Astrophysics Data System (ADS)

    Szabó, Gyula; Kiss, Csaba; Pal, Andras; Szabo, Robert

    2016-10-01

    Due to the failure of the second reaction wheel, a new mission was conceived for the otherwise healthy Kepler space telescope. In the course of the K2 Mission, the telescope is staring at the plane of the Ecliptic, hence thousands of Solar System bodies cross the K2 fields, usually causing extra noise in the highly accurate photometric data.We could measure the first continuous asteroid light curves, covering several days wthout interruption, that has been unprecedented to date. We studied the K2 superstamps covering the M35 and Neptune/Nereid fields observed in the long cadence (29.4-min sampling) mode. Asteroid light curves are generated by applying elongated apertures. We investigated the photometric precision that the K2 Mission can deliver on moving Solar System bodies, and determined the first uninterrupted optical light curves of main-belt and Trojan asteroids. We use thed Lomb-Scargle method to find periodicities due to rotation.We derived K2 light curves of 924 main-belt asteroids in the M35 field, and 96 in the path of Neptune and Nereid. Due to the faintness of the asteroids and the high density of stars in the M35 field, 4.0% of the asteroids with at least 12 data points show clear periodicities or trend signalling a long rotational period, as opposed to 15.9% in the less crowded Neptune field. We found that the duty cycle of the observations had to reach ˜ 60% in order to successfully recover rotational periods.The derived period-amplitude diagram is consistent to the known distribution of Main Belt asteroids. For Trojan asteroids, the contribution of our 56 objects with newly determined precise period and amplitude is in the order of all previously known asteroids. The comparison with earth-based determinations showed a previous bias toward short periods and has also proven that asteroid periods >20 hour can be unreliable in a few cases because of daylight time and diurnal calibrations. These biases are avoided from the space. We present an unbiased

  19. New Research by CCD Scanning for Comets and Asteroids

    NASA Technical Reports Server (NTRS)

    Gehrels, Tom; McMillan, Robert S.

    1997-01-01

    The purpose of Spacewatch is to explore the various populations of small objects within the solar system. Spacewatch provides data for studies of comets and asteroids, finds potential targets for space missions, and provides information on the environmental problem of possible impacts. Moving objects are discovered by scanning the sky with charge-coupled devices (CCDs) on the 0.9-meter Spacewatch Telescope of the University of Arizona on Kitt Peak. Each Spacewatch scan consists of three drift scan passes over an area of sky using a CCD filtered to a bandpass of 0.5-1.0 microns (approximately V+R+I with peak sensitivity at 0.7 micron). The effective exposure time for each pass is 143 seconds multiplied by the secant of the declination. We have been finding some 30,000 new asteroids per year and applying their statistics to the study of the collisional history of the solar system. As of the end of the observing run of Nov. 1997, Spacewatch had found a total of 153 Near-Earth Asteroids (NEAs) and 8 new comets since the project began in the 1980s, and had recovered one lost comet. The total number of NEAs found by Spacewatch big enough to be hazardous if they were to impact the Earth is 36. Spacewatch is also efficient in recovery of known comets and has detected and reported positions for more than 137,000 asteroids, mostly new ones in the main belt, including more than 16,000 asteroids designated by the Minor Planet Center (MPC).

  20. Spectroscopy of five V-type asteroids in the middle and outer main belt

    NASA Astrophysics Data System (ADS)

    Migliorini, Alessandra; De Sanctis, M. C.; Lazzaro, D.; Ammannito, E.

    2018-03-01

    The origin of basaltic asteroids found in the middle and outer main belt is an open question. These asteroids are not dynamically linked to the Vesta collisional family and can be the remnants of other large differentiated asteroids present in the early phases of the main belt but destroyed long ago. Spectroscopic investigation of some V-type asteroids in the middle-outer belt, classified as such by their SLOAN photometric colours (Ivezić et al.) and WISE albedos (Masiero et al.), has revealed that their spectra are more similar to other taxonomic classes, like -Q, R, S, or A (Jasmim et al. and Oszkiewicz et al.). Here, we report about the observation, in the near-infrared spectral range, of five V-type asteroids located beyond 2.5 au. These observations allowed us to infer their taxonomic classification. Two asteroids, (21238) Panarea (observed in a previous campaign but here included for comparison) and (105041) 2000 KO41, confirm their basaltic nature. For asteroids (10800) 1992 OM8 and (15898) Kharasterteam a taxonomic classification is more uncertain, being either Q- or S-type. Asteroid (14390) 1990 QP10 classification is difficult to ascribe to the known taxonomic classes, maybe due to the low-quality spectrum. Further observations are desirable for this asteroid.

  1. Reservoirs for Comets: Compositional Differences Based on Infrared Observations

    NASA Astrophysics Data System (ADS)

    Disanti, Michael A.; Mumma, Michael J.

    Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ˜2-5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets' region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time.

  2. Reservoirs for Comets: Compositional Differences Based on Infrared Observations

    NASA Astrophysics Data System (ADS)

    Disanti, Michael A.; Mumma, Michael J.

    2008-07-01

    Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ˜2 5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets’ region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time.

  3. Long-term evolution of Oort Cloud comets: capture of comets

    NASA Astrophysics Data System (ADS)

    Nurmi, P.; Valtonen, M. J.; Zheng, J. Q.; Rickman, H.

    2002-07-01

    We test different possibilities for the origin of short-period comets captured from the Oort Cloud. We use an efficient Monte Carlo simulation method that takes into account non-gravitational forces, Galactic perturbations, observational selection effects, physical evolution and tidal splittings of comets. We confirm previous results and conclude that the Jupiter family comets cannot originate in the spherically distributed Oort Cloud, since there is no physically possible model of how these comets can be captured from the Oort Cloud flux and produce the observed inclination and Tisserand constant distributions. The extended model of the Oort Cloud predicted by the planetesimal theory consisting of a non-randomly distributed inner core and a classical Oort Cloud also cannot explain the observed distributions of Jupiter family comets. The number of comets captured from the outer region of the Solar system are too high compared with the observations if the inclination distribution of Jupiter family comets is matched with the observed distribution. It is very likely that the Halley-type comets are captured mainly from the classical Oort Cloud, since the distributions in inclination and Tisserand value can be fitted to the observed distributions with very high confidence. Also the expected number of comets is in agreement with the observations when physical evolution of the comets is included. However, the solution is not unique, and other more complicated models can also explain the observed properties of Halley-type comets. The existence of Jupiter family comets can be explained only if they are captured from the extended disc of comets with semimajor axes of the comets a<5000au. The original flattened distribution of comets is conserved as the cometary orbits evolve from the outer Solar system era to the observed region.

  4. Chondrulelike objects in short-period comet 81P/Wild 2.

    PubMed

    Nakamura, Tomoki; Noguchi, Takaaki; Tsuchiyama, Akira; Ushikubo, Takayuki; Kita, Noriko T; Valley, John W; Zolensky, Michael E; Kakazu, Yuki; Sakamoto, Kanako; Mashio, Etsuko; Uesugi, Kentaro; Nakano, Tsukasa

    2008-09-19

    The Stardust spacecraft returned cometary samples that contain crystalline material, but the origin of the material is not yet well understood. We found four crystalline particles from comet 81P/Wild 2 that were apparently formed by flash-melting at a high temperature and are texturally, mineralogically, and compositionally similar to chondrules. Chondrules are submillimeter particles that dominate chondrites and are believed to have formed in the inner solar nebula. The comet particles show oxygen isotope compositions similar to chondrules in carbonaceous chondrites that compose the middle-to-outer asteroid belt. The presence of the chondrulelike objects in the comet suggests that chondrules have been transported out to the cold outer solar nebula and spread widely over the early solar system.

  5. Are There Many Inactive Jupiter-Family Comets among the Near-Earth Asteroid Population?

    NASA Astrophysics Data System (ADS)

    Fernández, Julio A.; Gallardo, Tabaré; Brunini, Adrián

    2002-10-01

    We analyze the dynamical evolution of Jupiter-family (JF) comets and near-Earth asteroids (NEAs) with aphelion distances Q>3.5 AU, paying special attention to the problem of mixing of both populations, such that inactive comets may be disguised as NEAs. From numerical integrations for 2×10 6 years we find that the half lifetime (where the lifetime is defined against hyperbolic ejection or collision with the Sun or the planets) of near-Earth JF comets (perihelion distances q<1.3 AU) is about 1.5×10 5 years but that they spend only a small fraction of this time (˜ a few 10 3 years) with q<1.3 AU. From numerical integrations for 5×10 6 years we find that the half lifetime of NEAs in "cometary" orbits (defined as those with aphelion distances Q>4.5 AU, i.e., that approach or cross Jupiter's orbit) is 4.2×10 5 years, i.e., about three times longer than that for near-Earth JF comets. We also analyze the problem of decoupling JF comets from Jupiter to produce Encke-type comets. To this end we simulate the dynamical evolution of the sample of observed JF comets with the inclusion of nongravitational forces. While decoupling occurs very seldom when a purely gravitational motion is considered, the action of nongravitational forces (as strong as or greater than those acting on Encke) can produce a few Enckes. Furthermore, a few JF comets are transferred to low-eccentricity orbits entirely within the main asteroid belt ( Q<4 AU and q>2 AU). The population of NEAs in cometary orbits is found to be adequately replenished with NEAs of smaller Q's diffusing outward, from which we can set an upper limit of ˜20% for the putative component of deactivated JF comets needed to maintain such a population in steady state. From this analysis, the upper limit for the average time that a JF comet in near-Earth orbit can spend as a dormant, asteroid-looking body can be estimated to be about 40% of the time spent as an active comet. More likely, JF comets in near-Earth orbits will

  6. The kilometer-sized Main Belt asteroid population revealed by Spitzer

    NASA Astrophysics Data System (ADS)

    Ryan, E. L.; Mizuno, D. R.; Shenoy, S. S.; Woodward, C. E.; Carey, S. J.; Noriega-Crespo, A.; Kraemer, K. E.; Price, S. D.

    2015-06-01

    Aims: Multi-epoch Spitzer Space Telescope 24 μm data is utilized from the MIPSGAL and Taurus Legacy surveys to detect asteroids based on their relative motion. Methods: Infrared detections are matched to known asteroids and average diameters and albedos are derived using the near Earth asteroid thermal model (NEATM) for 1865 asteroids ranging in size from 0.2 to 169 km. A small subsample of these objects was also detected by IRAS or MSX and the single wavelength albedo and diameter fits derived from these data are within the uncertainties of the IRAS and/or MSX derived albedos and diameters and available occultation diameters, which demonstrates the robustness of our technique. Results: The mean geometric albedo of the small Main Belt asteroids in this sample is pV = 0.134 with a sample standard deviation of 0.106. The albedo distribution of this sample is far more diverse than the IRAS or MSX samples. The cumulative size-frequency distribution of asteroids in the Main Belt at small diameters is directly derived and a 3σ deviation from the fitted size-frequency distribution slope is found near 8 km. Completeness limits of the optical and infrared surveys are discussed. Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A42

  7. (abstract) Large-Scale Topography on Main-Belt Asteroids: Evidence from Arecibo Radar Spectra

    NASA Technical Reports Server (NTRS)

    Mitchell, D. L.; Ostro, S. J.; Rosma, K. D.; Campbell, D. B.; Chandler, J. F.; Shapiro, I. I.; Hudson, R. S.

    1994-01-01

    Arecibo lambda 13 cm radar spectra of the main belt asteroids 7 Iris, 9 Metis, 12 Victoria, 216 Kleopatra, and 654 Zelinda exhibit evidence for large-scale topography. These asteroids range in diameter from 113 to 200 km and include members of the S,C, and M classes. Radar.

  8. The Scattered Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Trujillo, C. A.; Jewitt, D. C.; Luu, J. X.

    1999-09-01

    We describe a continuing survey of the Kuiper Belt conducted at the 3.6-m Canada France Hawaii Telescope on Mauna Kea, Hawaii. The survey employs a 12288 x 8192 pixel CCD mosaic to image the sky to red magnitude 24. All detected objects are targeted for systematic follow-up observations, allowing us to determine their orbital characteristics. Three new members of the rare Scattered Kuiper Belt Object class have been identified, bringing the known population of such objects to four. The SKBOs are thought to have been scattered outward by Neptune, and are a potential source of the short-period comets. Using a Maximum Likelihood method, we place observational constraints on the total number and mass of the SKBOs.

  9. Secular Resonance Sweeping of the Main Asteroid Belt During Planet Migration

    NASA Astrophysics Data System (ADS)

    Minton, David A.; Malhotra, Renu

    2011-05-01

    We calculate the eccentricity excitation of asteroids produced by the sweeping ν6 secular resonance during the epoch of planetesimal-driven giant planet migration in the early history of the solar system. We derive analytical expressions for the magnitude of the eccentricity change and its dependence on the sweep rate and on planetary parameters; the ν6 sweeping leads to either an increase or a decrease of eccentricity depending on an asteroid's initial orbit. Based on the slowest rate of ν6 sweeping that allows a remnant asteroid belt to survive, we derive a lower limit on Saturn's migration speed of ~0.15 AU Myr-1 during the era that the ν6 resonance swept through the inner asteroid belt (semimajor axis range 2.1-2.8 AU). This rate limit is for Saturn's current eccentricity and scales with the square of its eccentricity; the limit on Saturn's migration rate could be lower if its eccentricity were lower during its migration. Applied to an ensemble of fictitious asteroids, our calculations show that a prior single-peaked distribution of asteroid eccentricities would be transformed into a double-peaked distribution due to the sweeping of the ν6 resonance. Examination of the orbital data of main belt asteroids reveals that the proper eccentricities of the known bright (H <= 10.8) asteroids may be consistent with a double-peaked distribution. If so, our theoretical analysis then yields two possible solutions for the migration rate of Saturn and for the dynamical states of the pre-migration asteroid belt: a dynamically cold state (single-peaked eccentricity distribution with mean of ~0.05) linked with Saturn's migration speed ~4 AU Myr-1 or a dynamically hot state (single-peaked eccentricity distribution with mean of ~0.3) linked with Saturn's migration speed ~0.8 AU Myr-1.

  10. Dynamical and collisional evolution of Halley-type comets

    NASA Astrophysics Data System (ADS)

    van der Helm, E.; Jeffers, S. V.

    2012-03-01

    The number of observed Halley-type comets is hundreds of times less than predicted by models (Levison, H.F., Dones, L., Duncan, M.J. [2001]. Astron. J. 121, 2253-2267). In this paper we investigate the impact of collisions with planetesimals on the evolution of Halley-type comets. First we compute the dynamical evolution of a sub-set of 21 comets using the MERCURY integrator package over 100 Myr. The dynamical lifetime is determined to be of the order of 105-106 years in agreement with previous work. The collisional probability of Halley-type comets colliding with known asteroids, a simulated population of Kuiper-belt objects, and planets, is calculated using a modified, Öpik-based collision code. Our results show that the catastrophic disruption of the cometary nucleus has a very low probability of occurring, and disruption through cumulative minor impacts is concluded to be negligible. The dust mantle formed from ejected material falling back to the comet’s surface is calculated to be less than a few centimeters thick, which is insignificant compared to the mantle formed by volatile depletion, while planetary encounters were found to be a negligible disruption mechanism.

  11. Chemical diversity of organic volatiles among comets: An emerging taxonomy and implications for processes in the proto-planetary disk

    NASA Astrophysics Data System (ADS)

    Mumma, Michael J.

    2008-10-01

    As messengers from the early Solar System, comets contain key information from the time of planet formation and even earlier some may contain material formed in our natal interstellar cloud. Along with water, the cometary nucleus contains ices of natural gases (CH4, C2H6), alcohols (CH3OH), acids (HCOOH), embalming fluid (H2CO), and even anti-freeze (ethylene glycol). Comets today contain some ices that vaporize at temperatures near absolute zero (CO, CH4), demonstrating that their compositions remain largely unchanged after 4.5 billion years. By comparing their chemical diversity, several distinct cometary classes have been identified but their specific relation to chemical gradients in the proto-planetary disk remains murky. How does the compositional diversity of comets relate to nebular processes such as chemical processing, radial migration, and dynamical scattering? No current reservoir holds a unique class, but their fractional abundance can test emerging dynamical models for origins of the scattered Kuiper disk, the Oort cloud, and the (proposed) main-belt comets. I will provide a simplified overview emphasizing what we are learning, current issues, and their relevance to the subject of this Symposium.

  12. The Earth's radiation belts modelling : main issues and key directions for improvement

    NASA Astrophysics Data System (ADS)

    Maget, Vincent; Boscher, Daniel

    The Earth's radiation belts can be considered as an opened system covering a wide part of the inner magnetosphere which closely interacts with the surrounding cold plasma. Although its population constitutes only the highly energetic tail of the global inner magnetosphere plasma (electrons from a few tens of keV to more than 5 MeV and protons up to 500MeV), their modelling is of prime importance for satellite robustness design. They have been modelled at ONERA for more than 15 years now through the Salammbˆ code, which models the dynamic of the Earth's radiation belts at the drift timescale (order of the hour). It takes into accounts the main processes acting on the trapped particles, which depends on the electromagnetic configuration and on the characteristics of the surrounding cold plasma : the ionosphere as losses terms, the plasmasheet as sources ones and the plasmasphere through interactions (waves-particles interactions, coulomb scattering, electric fields shielding, . . . ). Consequently, a fine knowledge of these environments and their interactions with the radiation belts is of prime importance in their modelling. Issues in the modelling currently exist, but key directions for improvements can also be highlighted. This talk aims at presenting both of them according to recent developments performed at ONERA besides the Salammbˆ code. o

  13. How primordial is the structure of comet 67P/C-G (and of comets in general)?

    NASA Astrophysics Data System (ADS)

    Morbidelli, Alessandro; Jutzi, Martin; Benz, Willy; Toliou, Anastasia; Rickman, Hans; Bottke, William; Brasser, Ramon

    2016-10-01

    Several properties of the comet 67P-CG suggest that it is a primordial planetesimal. On the other hand, the size-frequency distribution (SFD) of the craters detected by the New Horizons missions at the surface of Pluto and Charon reveal that the SFD of trans-Neptunian objects smaller than 100km in diameter is very similar to that of the asteroid belt. Because the asteroid belt SFD is at collisional equilibrium, this observation suggests that the SFD of the trans-Neptunian population is at collisional equilibrium as well, implying that comet-size bodies should be the product of collisional fragmentation and not primordial objects. To test whether comet 67P-CG could be a (possibly lucky) survivor of the original population, we conducted a series of numerical impact experiments, where an object with the shape and the density of 67P-CG, and material strength varying from 10 to 1,000 Pa, is hit on the "head" by a 100m projectile at different speeds. From these experiments we derive the impact energy required to disrupt the body catastrophically, or destroy its bi-lobed shape, as a function of impact speed. Next, we consider a dynamical model where the original trans-Neptunian disk is dispersed during a phase of temporary dynamical instability of the giant planets, which successfully reproduces the scattered disk and Oort cloud populations inferred from the current fluxes of Jupiter-family and long period comets. We find that, if the dynamical dispersal of the disk occurs late, as in the Late Heavy Bombardment hypothesis, a 67P-CG-like body has a negligible probability to avoid all catastrophic collisions. During this phase, however, the collisional equilibrium SFD measured by the New Horizons mission can be established. Instead, if the dispersal of the disk occurred as soon as gas was removed, a 67P-CG-like body has about a 20% chance to avoid catastrophic collisions. Nevertheless it would still undergo 10s of reshaping collisions. We estimate that, statistically, the

  14. A new 6-part collisional model of the Main Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Broz, Miroslav; Cibulkova, H.

    2013-10-01

    In this work, we constructed a new model for the collisional evolution of the Main Asteroid Belt. Our goals are to test the scaling law from the work of Benz & Asphaug (1999) and ascertain if it can be used for the whole belt. We want to find initial size-frequency distributions (SFDs) for the considered six parts of the belt, and to verify if the number of asteroid families created during the simulation matches the number of observed families as well. We used new observational data from the WISE satellite (Masiero et al., 2011) to construct the observed SFDs. We simulated mutual collisions of asteroids with a modified Boulder code (Morbidelli et al., 2009), in which the results of hydrodynamic (SPH) simulations from the work of Durda et al. (2007) are included. Because material characteristics can affect breakups, we created two models - for monolithic asteroids and for rubble-piles (Benavidez et al., 2012). To explain the observed SFDs in the size range D = 1 to 10 km we have to also account for dynamical depletion due to the Yarkovsky effect. Our work may also serve as a motivation for further SPH simulations of disruptions of smaller targets (parent body size of the order of 1 km). The work of MB was supported by grant GACR 13-013085 of the Czech Science Foundation and the Research Programme MSM0021620860 of the Czech Ministry of Education.

  15. Aqueous alteration on main belt primitive asteroids: Results from visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Lantz, C.; Barucci, M. A.; Lazzarin, M.

    2014-05-01

    This work focuses on the study of the aqueous alteration process which acted in the main belt and produced hydrated minerals on the altered asteroids. Hydrated minerals have been found mainly on Mars surface, on main belt primitive asteroids and possibly also on few TNOs. These materials have been produced by hydration of pristine anhydrous silicates during the aqueous alteration process, that, to be active, needed the presence of liquid water under low temperature conditions (below 320 K) to chemically alter the minerals. The aqueous alteration is particularly important for unraveling the processes occurring during the earliest times of the Solar System history, as it can give information both on the asteroids thermal evolution and on the localization of water sources in the asteroid belt. To investigate this process, we present reflected light spectral observations in the visible region (0.4-0.94 μm) of 80 asteroids belonging to the primitive classes C (prevalently), G, F, B and P, following the Tholen (Tholen, D.J. [1984]. Ph.D. Dissertation, University of Arizona, Tucson). classification scheme. We find that about 65% of the C-type and all the G-type asteroids investigated reveal features suggesting the presence of hydrous materials, mainly a band centered around 0.7 μm, while we do not find evidence of hydrated materials in the other low albedo asteroids (B, F, and P) investigated. We combine the present observations with the visible spectra of asteroids available in the literature for a total of 600 primitive main belt asteroids. We analyze all these spectra in a similar way to characterize the absorption band parameters (band center, depth and width) and spectral slope, and to look for possible correlations between the aqueous alteration process and the asteroids taxonomic classes, orbital elements, heliocentric distances, albedo and sizes. Our analysis shows that the aqueous alteration sequence starts from the P-type objects, practically unaltered, and

  16. A low-density M-type asteroid in the main belt.

    PubMed

    Margot, J L; Brown, M E

    2003-06-20

    The orbital parameters of a satellite revolving around 22 Kalliope indicate that the bulk density of this main-belt asteroid is 2.37 +/- 0.4 grams per cubic centimeter. M-type asteroids such as Kalliope are thought to be the disrupted metallic cores of differentiated bodies. The low-density indicates that Kalliope cannot be predominantly composed of metal and may be composed of chondritic material with approximately 30% porosity. The satellite orbit is circular, suggesting that Kalliope and its satellite have different internal structures and tidal dissipation rates. The satellite may be an aggregate of impact ejecta from an earlier collision with Kalliope.

  17. MARS Gravity-Assist to Improve Missions towards Main-Belt Asteroids

    NASA Astrophysics Data System (ADS)

    Casalino, Lorenzo; Colasurdo, Guido

    fain-belt asteroids are one of the keys to the investigation of the processes that lead to the solar electric propulsion (SEP) with ion thrusters is a mature technology for the exploration of the bolar system. NASA is currently planning the DAWN mission towards two asteroids of the main s with Vesta in 2010 and Ceres in 2014. A mission to an asteroid of the main belt requires a large velocity increment (V) and the use of high-specific-impulse thrusters, such as ion thrusters, p m ovides a large improvement of the payload and, consequently, of the scientific return of the of this kind of trajectory is a non-trivial task, since many local optima exist and performance can be improved by increasing the trip-time and the number of revolutions around the sun, in order to use t the propellant only in the most favorable positions (namely, perihelia, aphelia and nodes) along the Mars is midway between the Earth and the main belt; even though its gravity is quite small, a gravity assist from Mars can remarkably improve the trajectory performance and is considered in this paper. p he authors use an indirect optimization procedure based on the theory of optimal control. The Mars) spheres of influence is neglected; the equations of motion are therefore integrated only in the heliocentric reference frame, whereas the flyby is treated as a discontinuity of the spacecraft's velocity. The paper analyzes trajectories, which exploit chemical propulsion to escape from the E variable-power, constant-specific-impulse propulsion system is assumed. The optimization procedure provides departure, flyby and arrival dates, the hyperbolic excess velocity on leaving the t arth's sphere of influence, which must be provided by the chemical propulsion system, and the E e ass at rendezvous, when the trip time is assigned. As far as the thrust magnitude is concerned, m either full-thrust arcs or coast arcs are required, and the procedure provides the times to switch the g low and the spacecraft

  18. A Post-Stardust Mission View of Jupiter Family Comets

    NASA Technical Reports Server (NTRS)

    Zolensky, M.

    2011-01-01

    Before the Stardust Mission, many persons (including the mission team) believed that comet nuclei would be geologically boring objects. Most believed that comet nucleus mineralogy would be close or identical to the chondritic interplanetary dust particles (IDPs), or perhaps contain mainly amorphous nebular condensates or that comets might even be composed mainly of preserved presolar material [1]. Amazingly, the results for Comet Wild 2 (a Jupiter class comet) were entirely different. Whether this particular comet will ultimately be shown to be typical or atypical will not be known for a rather long time, so we describe our new view of comets from the rather limited perspective of this single mission.

  19. New Research by CCD Scanning for Comets and Asteroids

    NASA Technical Reports Server (NTRS)

    Gehrels, Tom

    1997-01-01

    Spacewatch was begun in 1980; its purpose is to explore the various populations of small objects within the solar system. Spacewatch provides data for studies of comets and asteroids, finds potential targets for space missions, and provides information on the environmental problem of possible impacts. Moving objects are discovered by scanning the sky with charge-coupled devices (CCDS) on the 0.9-meter Spacewatch Telescope of the University of Arizona on Kitt Peak. Each Spacewatch scan consists of three drift scan passes over an area of sky using a CCD filtered to a bandpass of 0.5-1.0 pm (approximately V+R+I with peak sensitivity at 0.7 pm). The effective exposure time for each pass is 143 seconds multiplied by the secant of the declination. The area covered by each scan is 32 arcminutes in declination by about 28 minutes of time in right ascension. The image scale is 1.05 arcseconds per pixel. Three passes take about 1.5 hours to complete and show motions of individual objects over a one hour time baseline. The limiting magnitude is about 21.5 in single scans. CCD scanning was developed by Spacewatch in the early 1980s, with improvements still being made - particularly by bringing a new 1.8-m Spacewatch Telescope on line. In the meantime, we have been finding some 30,000 new asteroids per year and applying their statistics to the study of the collisional history of the solar system. Spacewatch had found a total of 150 Near-Earth Asteroids (NEAS) and 8 new comets, and had recovered one lost comet (P/Spitaler in 1993). Spacewatch is also efficient in recovery of known comets and has detected and reported positions for more than 137,000 asteroids, mostly new ones in the main belt, including more than 10,882 asteroids designated by the Minor Planet Center (MPC).

  20. 30 CFR 75.1101 - Deluge-type water sprays, foam generators; main and secondary belt-conveyor drives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Deluge-type water sprays, foam generators; main... Fire Protection § 75.1101 Deluge-type water sprays, foam generators; main and secondary belt-conveyor drives. [Statutory Provisions] Deluge-type water sprays or foam generators automatically actuated by rise...

  1. 30 CFR 75.1101 - Deluge-type water sprays, foam generators; main and secondary belt-conveyor drives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Deluge-type water sprays, foam generators; main... Fire Protection § 75.1101 Deluge-type water sprays, foam generators; main and secondary belt-conveyor drives. [Statutory Provisions] Deluge-type water sprays or foam generators automatically actuated by rise...

  2. Abstracts for the International Conference on Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics addressed include: chemical abundances; asteroidal belt evolution; sources of meteors and meteorites; cometary spectroscopy; gas diffusion; mathematical models; cometary nuclei; cratering records; imaging techniques; cometary composition; asteroid classification; radio telescopes and spectroscopy; magnetic fields; cosmogony; IUE observations; orbital distribution of asteroids, comets, and meteors; solar wind effects; computerized simulation; infrared remote sensing; optical properties; and orbital evolution.

  3. Physical and dynamical properties of the anomalous comet 249P/LINEAR

    NASA Astrophysics Data System (ADS)

    Fernández, Julio A.; Licandro, Javier; Moreno, Fernando; Sosa, Andrea; Cabrera-Lavers, Antonio; de León, Julia; Birtwhistle, Peter

    2017-10-01

    class of near-Earth JFC whose source region is not the distant trans-neptunian population, but much closer in the asteroid belt. Therefore, 249P/LINEAR may be a near-Earth counterpart of the so-called main-belt comets or active asteroids.

  4. Outer Main Belt asteroids: Identification and distribution of four 3-μm spectral groups

    NASA Astrophysics Data System (ADS)

    Takir, Driss; Emery, Joshua P.

    2012-06-01

    This paper examines the distribution and the abundance of hydrated minerals (any mineral that contains H2O or OH) on outer Main Belt asteroids spanning the 2.5 < a < 4.0 AU region. The hypothesis we are testing is whether planetesimals that accreted closer to the Sun experienced a higher degree of aqueous alteration. We would expect then to see a gradual decline of the abundance of hydrated minerals among the outer Main Belt asteroids with increasing heliocentric distance (2.5 < a < 4.0 AU). We measured spectra (0.8-2.5 μm and 1.9-4.1 μm) of 28 outer Main Belt asteroids using the SpeX spectrograph/imager at the NASA Infrared Telescope Facility (IRTF). We identified four groups on the basis of the shape and the band center of the 3-μm feature. The first group, which we call "sharp", exhibits a sharp 3-μm feature, attributed to hydrated minerals (phyllosilicates). Most asteroids in this group are located in the 2.5 < a < 3.3 AU region. The second group, which we call "Ceres-like", consists of 10 Hygiea and 324 Bamberga. Like Asteroid Ceres, these asteroids exhibit a 3-μm feature with a band center of 3.05 ± 0.01 μm that is superimposed on a broader absorption feature from ˜2.8 to 3.7 μm. The third group, which we call "Europa-like", includes 52 Europa, 31 Euphrosyne, and 451 Patientia. Objects in this group exhibit a 3-μm feature with a band center of 3.15 ± 0.01 μm. Both the Ceres-like and Europa-like groups are concentrated in the 2.5 < a < 3.3 AU region. The fourth group, which we call "rounded", is concentrated in the 3.4 < a < 4.0 AU region. Asteroids in this group are characterized by a rounded 3-μm feature, attributed to H2O ice. A similar rounded 3-μm feature was also identified in 24 Themis and 65 Cybele. Unlike the sharp group, the rounded group did not experience aqueous alteration. Of the asteroids observed in this study, 140 Siwa, a P-type, is the only one that does not exhibit a 3-μm feature. These results are important to constrain the

  5. COMETS!

    NASA Astrophysics Data System (ADS)

    Eicher, David J.; Levy, David H.

    2013-11-01

    Foreword David H. Levy; Preface; Acknowledgments; 1. Strange lights in the sky; 2. Great comets of the past; 3. What are comets?; 4. Comets of the modern era; 5. Comets in human culture; 6. Where comets live; 7. The expanding science of comets; 8. Observing comets; 9. Imaging comets; Glossary; Bibliography; Index.

  6. THE CANADA-FRANCE ECLIPTIC PLANE SURVEY-L3 DATA RELEASE: THE ORBITAL STRUCTURE OF THE KUIPER BELT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavelaars, J. J.; Jones, R. L.; Murray, I.

    2009-06-15

    We report the orbital distribution of the trans-Neptunian comets discovered during the first discovery year of the Canada-France Ecliptic Plane Survey (CFEPS). CFEPS is a Kuiper Belt object survey based on observations acquired by the Very Wide component of the Canada-France-Hawaii Telescope Legacy Survey (LS-VW). The first year's detections consist of 73 Kuiper Belt objects, 55 of which have now been tracked for three years or more, providing precise orbits. Although this sample size is small compared to the world-wide inventory, because we have an absolutely calibrated and extremely well-characterized survey (with known pointing history) we are able to de-biasmore » our observed population and make unbiased statements about the intrinsic orbital distribution of the Kuiper Belt. By applying the (publically available) CFEPS Survey Simulator to models of the true orbital distribution and comparing the resulting simulated detections to the actual detections made by the survey, we are able to rule out several hypothesized Kuiper Belt object orbit distributions. We find that the main classical belt's so-called 'cold' component is confined in semimajor axis (a) and eccentricity (e) compared to the more extended 'hot' component; the cold component is confined to lower e and does not stretch all the way out to the 2:1 resonance but rather depletes quickly beyond a = 45 AU. For the cold main classical belt population we find a robust population estimate of N(H{sub g} < 10) = 50 {+-} 5 x 10{sup 3} and find that the hot component of the main classical belt represents {approx}60% of the total population. The inner classical belt (sunward of the 3:2 mean-motion resonance) has a population of roughly 2000 trans-Neptunian objects with absolute magnitudes H{sub g} < 10, and may not share the inclination distribution of the main classical belt. We also find that the plutino population lacks a cold low-inclination component, and so, the population is somewhat larger than recent

  7. Meteorites, Bolides and Comets: A Tale of Inconsistency

    NASA Astrophysics Data System (ADS)

    Jakes, P.; Padevet, V.

    1992-07-01

    -Tuttle, and Leo Minorids to 1739 Zanotti. Geminids were related to asteroid 3200 Phaeton, considered to be an "extinct comet." Spurny [9], using ablation coefficient and penetration depth criteria, found that Geminids (frequently) and Taurids (rarely) contain bolides of types I and II. This may indicate that meteoric showers from "comets" on AAA orbits contain some portion of "rocky" material comparable to chondrites. These observations revive Opik's (1963) idea that comets may be captured in the asteroid belt on AAA orbits and may contain (and supply) chondritic meteorites to the Earth [10]. If the relationship among large solid particles "native to the asteroid belt" and those from the outer solar system can be established, they can be scaled and applied to IDPs. We have studied the records of 292 bolides (Prairie and European networks) with measured terminal velocities. We attempt to use the terminal velocity, calculated density, estimated terminal mass, and mechanical strength to correlate features with the meteorite features. We compare the meteorite fall frequency [11] with the bolide features. Two extreme hypotheses (Table 1) are examined: (A) bolides of types IIIa and IIIb do not have equivalents among the meteorites and (B) all four bolide types have meteoritic equivalents, and only IDPs do not produce bolides (fireballs). If the entry parameters of meteoroids are similar, bodies with lower density should reach terminal velocity at higher altitudes than those with higher density. If it is assumed that fragmentation is the same for dense (I and II) and less dense bodies (IIIa and IIIb), the calculated terminal altitudes show that among the bolides exist materials with lower densities than those of recovered meteorites and that model A of the correlation between meteorite falls and bolide observations is likely [12]. If, however, the less dense bodies were more easily fragmented than denser bodies, the correlation is better for hypothesis B. Table 1, which in the hard

  8. CometQ: An automated tool for the detection and quantification of DNA damage using comet assay image analysis.

    PubMed

    Ganapathy, Sreelatha; Muraleedharan, Aparna; Sathidevi, Puthumangalathu Savithri; Chand, Parkash; Rajkumar, Ravi Philip

    2016-09-01

    DNA damage analysis plays an important role in determining the approaches for treatment and prevention of various diseases like cancer, schizophrenia and other heritable diseases. Comet assay is a sensitive and versatile method for DNA damage analysis. The main objective of this work is to implement a fully automated tool for the detection and quantification of DNA damage by analysing comet assay images. The comet assay image analysis consists of four stages: (1) classifier (2) comet segmentation (3) comet partitioning and (4) comet quantification. Main features of the proposed software are the design and development of four comet segmentation methods, and the automatic routing of the input comet assay image to the most suitable one among these methods depending on the type of the image (silver stained or fluorescent stained) as well as the level of DNA damage (heavily damaged or lightly/moderately damaged). A classifier stage, based on support vector machine (SVM) is designed and implemented at the front end, to categorise the input image into one of the above four groups to ensure proper routing. Comet segmentation is followed by comet partitioning which is implemented using a novel technique coined as modified fuzzy clustering. Comet parameters are calculated in the comet quantification stage and are saved in an excel file. Our dataset consists of 600 silver stained images obtained from 40 Schizophrenia patients with different levels of severity, admitted to a tertiary hospital in South India and 56 fluorescent stained images obtained from different internet sources. The performance of "CometQ", the proposed standalone application for automated analysis of comet assay images, is evaluated by a clinical expert and is also compared with that of a most recent and related software-OpenComet. CometQ gave 90.26% positive predictive value (PPV) and 93.34% sensitivity which are much higher than those of OpenComet, especially in the case of silver stained images. The

  9. Tying Extinction Events to Comet Impacts Large Enough to Cause an Extinction in Themselves.

    NASA Astrophysics Data System (ADS)

    Burgener, J. A.

    2017-12-01

    Comets over 35 km in size impacting Earth will create vast fireballs, and will boil large parts of the oceans, causing extinction events in themselves. They will likely provide enough energy to shatter the crust and eject large masses of molten rock from the mantle, forming traps. Traps are clearly associated with extinction events, but are not expected to cause extinctions. While Chicxulub is recognized to have occurred at the time of the K/Pg boundary layer, it is recognized as being too small in itself to cause an extinction. Are large comet impacts likely? The Kuiper belt has more than 100,000 objects over 100 km in diameter and millions over 10 km. Typically their orbits are less stable than asteroid orbits due to large bodies such as Pluto moving through the belt. The asteroid belt has only 10,000 objects over 10 km diameter. Comet impacts should be more common than asteroid impacts, yet none of the recognized craters are expected to be due to comets. There are many features on Earth that are poorly explained by Plate Tectonics that would be well explained if they were considered to be comet impact craters. A consideration of the Black Sea and the Tarim Basin will show that impact interpretations are a better fit than the present Plate Tectonics' explanations. Both basins are in the midst of mountain building from plate collisions, but are themselves not being disturbed by the plate collisions. Both are ellipses angled at 23.4 degrees to the equator, matching the angle expected for a low angle impact from a comet traveling in the ecliptic. Both are too deep at 15 km depths to be standard oceans (typically 5 km deep). Both are filled with horizontal layers of sediments, undisturbed by the mountain building occurring at the edges. Both have thin crusts and high Moho boundaries. Both have thin lithosphere. Yet both show GPS movement of the land around them moving away from them, as though they were much thicker and stronger than the surrounding land. The Tarim

  10. Detection of CO and Ethane in Comet 21P/Giacobini-Zinner: Evidence for Variable Chemistry in the Outer Solar Nebula

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; DiSanti, M. A.; DelloRusso, N.; Magee-Sauer, K.; Rettig, T. W.

    1999-01-01

    Ethane and carbon monoxide were detected in a short-period comet of probable Kuiper belt origin. Ethane is substantially less abundant compared with Hyakutake and Hale-Bopp, two comets from the giant-planets region of the solar nebula, suggesting a heliocentric gradient in ethane in pre-cometary ices. It is argued that processing by X-rays from the young sun may be responsible.

  11. Detection of CO and Ethane in Comet 21P/Giacobini-Zinner: Evidence for Variable Chemistry in the Outer Solar Nebula.

    PubMed

    Mumma; DiSanti; Dello Russo N; Magee-Sauer; Rettig

    2000-03-10

    Ethane and carbon monoxide were detected in a short-period comet of probable Kuiper Belt origin. Ethane is substantially less abundant compared with Hyakutake and Hale-Bopp, two comets from the giant-planet region of the solar nebula, suggesting a heliocentric gradient in ethane in precometary ices. It is argued that processing by X-rays from the young Sun may be responsible.

  12. Infrared Spectroscopy of the Dust in Comets and Relationships to Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S.

    2003-01-01

    Infrared spectroscopy of the dust in comets reveals a complex mix of silicate materials, including both crystalline and non-crystalline components of both olivine (forsterite) and pyroxene composition. These various components do not necessarily share a common origin. Since comets formed in cold regions of the solar nebula, pre-solar grains in the nebula could have been accreted into comets with little alteration. Some of the cometary silicates may be of circumstellar (formed in circumstellar outflows of evolved stars) or interstellar (formed in dense region of the interstellar medium) origin. Spectral similarities to both circumstellar and interstellar silicates are seen in comet spectra. the short-period Kuiper Belt comets) show weak or no spectral features. The lack of features is generally explained as a particle size effect: the small silicate grains are embedded in larger, optically thick particles. However, compositional differences cannot be ruled out. For example, no unambiguous signature of forsterite has yet been seen in the spectrum of a short-period comet. Thus, the Stardust sample from short-period comet P/Wild 2 will be extremely valuable. Not only grain by grain composition and isotopic ratios but also grain morphology, irradiation history, and evidence of organic refractory mantles are important for understanding their origin. The relative abundance and distinguishing characteristics of the various crystalline and non-crystalline silicate components needs to be established. While some comets, such as Hale-Bopp, display a rich infrared spectrum, others (particularly

  13. New candidates for active asteroids: Main-belt (145) Adeona, (704) Interamnia, (779) Nina, (1474) Beira, and near-Earth (162,173) Ryugu

    NASA Astrophysics Data System (ADS)

    Busarev, Vladimir V.; Makalkin, Andrei B.; Vilas, Faith; Barabanov, Sergey I.; Scherbina, Marina P.

    2018-04-01

    For the first time, spectral signs of subtle coma activity were observed for four main-belt primitive asteroids (145) Adeona, (704) Interamnia, (779) Nina, and (1474) Beira around their perihelion distances in September 2012, which were interpreted as manifestations of the sublimation of H2O ice in/under the surface matter (Busarev et al., 2015a, 2015b). We confirm the phenomenon for Nina when it approached perihelion in September 2016. At the same time, based on results of spectral observations of near-Earth asteroid (162,173) Ryugu (Vilas, 2008) being a target of Japan's Hayabusa 2 space mission, we suspected a periodic similar transient activity on the Cg-type asteroid. However, unlike the main-belt primitive asteroids demonstrating sublimation of ices close to their perihelion distances, the effect on Ryugu was apparently registered near aphelion. To explain the difference, we calculated the subsolar temperature depending on heliocentric distance of the asteroids, considered qualitative models of internal structure of main-belt and near-Earth primitive asteroids including ice and performed some analytical estimations. Presumed temporal sublimation/degassing activity of Ryugu is a sign of a residual frozen core in its interior. This could be an indication of a relatively recent transition of the asteroid from the main asteroid belt to the near-Earth area.

  14. Oxygen isotopic composition of chondritic interplanetary dust particles: A genetic link between carbonaceous chondrites and comets

    NASA Astrophysics Data System (ADS)

    Aléon, J.; Engrand, C.; Leshin, L. A.; McKeegan, K. D.

    2009-08-01

    Oxygen isotopes were measured in four chondritic hydrated interplanetary dust particles (IDPs) and five chondritic anhydrous IDPs including two GEMS-rich particles (Glass embedded with metal and sulfides) by a combination of high precision and high lateral resolution ion microprobe techniques. All IDPs have isotopic compositions tightly clustered around that of solar system planetary materials. Hydrated IDPs have mass-fractionated oxygen isotopic compositions similar to those of CI and CM carbonaceous chondrites, consistent with hydration of initially anhydrous protosolar dust. Anhydrous IDPs have small 16O excesses and depletions similar to those of carbonaceous chondrites, the largest 16O variations being hosted by the two GEMS-rich IDPs. Coarse-grained forsteritic olivine and enstatite in anhydrous IDPs are isotopically similar to their counterparts in comet Wild 2 and in chondrules suggesting a high temperature inner solar system origin. The small variations in the 16O content of GEMS-rich IDPs suggest that most GEMS either do not preserve a record of interstellar processes or the initial interstellar dust is not 16O-rich as expected by self-shielding models, although a larger dataset is required to verify these conclusions. Together with other chemical and mineralogical indicators, O isotopes show that the parent-bodies of carbonaceous chondrites, of chondritic IDPs, of most Antarctic micrometeorites, and comet Wild 2 belong to a single family of objects of carbonaceous chondrite chemical affinity as distinct from ordinary, enstatite, K- and R-chondrites. Comparison with astronomical observations thus suggests a chemical continuum of objects including main belt and outer solar system asteroids such as C-type, P-type and D-type asteroids, Trojans and Centaurs as well as short-period comets and other Kuiper Belt Objects.

  15. Craters on comets

    NASA Astrophysics Data System (ADS)

    Vincent, J.; Oklay, N.; Marchi, S.; Höfner, S.; Sierks, H.

    2014-07-01

    This paper reviews the observations of crater-like features on cometary nuclei. ''Pits'' have been observed on almost all cometary nuclei but their origin is not fully understood [1,2,3,4]. It is currently assumed that they are created mainly by the cometary activity with a pocket of volatiles erupting under a dust crust, leaving a hole behind. There are, however, other features which cannot be explained in this way and are interpreted alternatively as remnants of impact craters. This work focusses on the second type of pit features: impact craters. We present an in-depth review of what has been observed previously and conclude that two main types of crater morphologies can be observed: ''pit-halo'' and ''sharp pit''. We extend this review by a series of analysis of impact craters on cometary nuclei through different approaches [5]: (1) Probability of impact: We discuss the chances that a Jupiter Family Comet like 9P/Tempel 1 or the target of Rosetta 67P/Churyumov-Gerasimenko can experience an impact, taking into account the most recent work on the size distribution of small objects in the asteroid Main Belt [6]. (2) Crater morphology from scaling laws: We present the status of scaling laws for impact craters on cometary nuclei [7] and discuss their strengths and limitations when modeling what happens when a rocky projectile hits a very porous material. (3) Numerical experiments: We extend the work on scaling laws by a series of hydrocode impact simulations, using the iSALE shock physics code [8,9,10] for varying surface porosity and impactor velocity (see Figure). (4) Surface processes and evolution: We discuss finally the fate of the projectile and the effects of the impact-induced surface compaction on the activity of the nucleus. To summarize, we find that comets do undergo impacts although the rapid evolution of the surface erases most of the features and make craters difficult to detect. In the case of a collision between a rocky body and a highly porous

  16. The Low Albedo of Comets

    NASA Astrophysics Data System (ADS)

    Buratti, B. J.; Choukroun, M.; Bauer, J. M.

    2016-12-01

    Comets are among the handful of objects with very low albedos, in the 0.02-0.06 range. Dark material is common in the outer Solar System, but analysis of the spectra and albedo of this material by spacecraft including Cassini and New Horizons shows that it is diverse, covering a range of compositions. Some is neutral-colored in the visible, such as that found on Phoebe, while some is very red, such as that on the surfaces of D-type asteroids or the low-albedo side of Iapetus. The different types of low-albedo material may reflect both compositional diversity, including contamination by volatiles or darkening agents, and divergent alteration histories. The key question is whether a particular sub-type of low albedo material is pristine - an unprocessed accumulation of interstellar dust - or an end product of polymerization and photolysis into ever more complex materials. Comets have albedos similar to the leading hemisphere of Iapetus, the surface of Titan, and the lowest-albedo C-type and D-type asteroids. Observations by the WISE and NEOWISE cameras show that comets have consistently low albedos (1). The first quantitative measurement of low-albedo material in the Kuiper Belt, from which comets such as Jupiter Family Comets including 67P/Churyumov-Gerasimenko come, shows that even this material is not as dark as that found on comets (2). Results from both Stardust (3) and more recently Rosetta (4, 5) show that cometary surfaces contain prebiotic molecules, including the amino acid glycine. Other very low albedo objects have also been connected to complex organic molecules: on Iapetus, PAHs have been detected (6), and Titan's surface is believed to be covered with hydrocarbons produced in its haze layer (7). The presence of organic molecules, including complex ones, could be the unique characteristic of the very darkest material. The delivery of pre-biotic material from comets to the young Earth could represent a key link in the origins of terrestrial life. (1

  17. The Rosetta Mission to Comet 67P/ Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie J.

    2017-06-01

    As remnant bodies left over from the formation of the Solar System, comets offer clues to the physical conditions and architecture of the protosolar nebula. The Rosetta spacecraft, which included an orbiter and a lander that were built and managed by the European Space Agency with NASA contributing four instruments and scientific expertise, was the first mission to orbit and study a comet through a perihelion passage. The targeted Jupiter-family comet 67P/ Churyumov-Gerasimenko, is seemingly two distinct planetesimals stuck together. The comet has not melted or been processed substantially, except for its outer layers, which consist of reaccreted dust and a crust of heated, devolatized, and annealed refractory materials and organics. The exceptionally low density (0.53 gm/cc) of 67P/ implies it is a rubble pile. The comet also appears to contain a hierarchy of building blocks: smaller spherically shaped meter-sized bodies can be seen in its interior, and even smaller cm-sized pebbles were imaged by the camera as the spacecraft made a soft crash landing on the comet’s surface on 30 September 2016. The unexpected discovery of molecular oxygen, nitrogen, and hydrogen imply that 67P/ was formed under cold conditions not exceeding 30K. The discovery of many organic compounds, including the amino acid glycine, lends support to the idea that comets, which originate in the Kuiper Belt and the Oort Cloud, brought the building blocks of life to Earth. More laboratory data on organic compounds would help to identify additional organic compounds on the comet. The differences between cometary and terrestrial D/H ratios suggest that comets are not the primary source of terrestrial water, although data on more comets is needed to confirm this result.Besides being primordial objects offering a window into the formation of solar systems, comets are astrophysical laboratories, ejecting dust and charged particles into the plasma comprising the solar wind. Several unusual phenomena

  18. Uninterrupted optical light curves of main-belt asteroids from the K2 mission

    NASA Astrophysics Data System (ADS)

    Szabó, R.; Pál, A.; Sárneczky, K.; Szabó, Gy. M.; Molnár, L.; Kiss, L. L.; Hanyecz, O.; Plachy, E.; Kiss, Cs.

    2016-11-01

    Context. Because the second reaction wheel failed, a new mission was conceived for the otherwise healthy Kepler space telescope. In the course of the K2 mission, the telescope is staring at the plane of the Ecliptic. Thousands of solar system bodies therefore cross the K2 fields and usually cause additional noise in the highly accurate photometric data. Aims: We here follow the principle that some person's noise is another person's signal and investigate the possibility of deriving continuous asteroid light curves. This is the first such endeavor. In general, we are interested in the photometric precision that the K2 mission can deliver on moving solar system bodies. In particular, we investigate space photometric optical light curves of main-belt asteroids. Methods: We studied the K2 superstamps that cover the fields of M35, and Neptune together with Nereid, which were observed in the long-cadence mode (29.4 min sampling). Asteroid light curves were generated by applying elongated apertures. We used the Lomb-Scargle method to determine periodicities that are due to rotation. Results: We derived K2 light curves of 924 main-belt asteroids in the M35 field and 96 in the path of Neptune and Nereid. The light curves are quasi-continuous and several days long. K2 observations are sensitive to longer rotational periods than typical ground-based surveys. Rotational periods are derived for 26 main-belt asteroids for the first time. The asteroid sample is dominated by faint objects (>20 mag). Owing to the faintness of the asteroids and the high density of stars in the M35 field, only 4.0% of the asteroids with at least 12 data points show clear periodicities or trends that signal a long rotational period, as opposed to 15.9% in the less crowded Neptune field. We found that the duty cycle of the observations had to reach 60% to successfully recover rotational periods. Full Tables 1-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130

  19. Parameters of Rotation and Shapes of Main-belt Asteroids from APT Observatory Group: Second Quarter 2016

    NASA Astrophysics Data System (ADS)

    Aznar Macias, Amadeo

    2016-10-01

    Using observations made during the second quarter of 2016, the rotation periods and the semi-axis a/b ratio of the projected shape for six main-belt asteroids were determined: 238 Hypatia, 1603 Neva, 1859 Kovalevskaya, 4170 Semmelweis, 3002 Delasalle, and (31013) 1996 DR.

  20. VizieR Online Data Catalog: Spectroscopy of main-belt Ch/Cgh-type asteroids (Vernazza+, 2016)

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Marsset, M.; Beck, P.; Binzel, R. P.; Birlan, M.; Cloutis, E. A.; DeMeo, F. E.; Dumas, C.; Hiroi, T.

    2016-09-01

    We conducted an extensive spectroscopic survey in the near-infrared range of 70 main-belt Ch/Cgh-type asteroids and 4 Ch/Cgh-type families and combined these measurements with available visible wavelength spectra. New data presented here are near-infrared asteroid spectral measurements for Ch- and Cgh-type asteroids from 0.7-2.5μm obtained using SpeX, the low- to medium-resolution near-IR spectrograph and imager on the 3m NASA InfraRed Telescope Facility (IRTF) located on Mauna Kea, HI. Observing runs were conducted remotely primarily from the Observatory of Paris-Meudon, France between 2010 April and 2012 January. The spectrograph SpeX, combined with a 0.8*15arcsec slit, was used in the low-resolution prism mode for acquisition of the spectra in the 0.7-2.5μm wavelength range. In order to monitor the high luminosity and variability of the sky in the near-IR, the telescope was moved along the slit during the acquisition of the data so as to obtain a sequence of spectra located at two different positions (A and B) on the array. In addition, we complemented our data set with additional near-infrared spectra retrieved from the Small Main-Belt Asteroid Spectroscopic Survey (SMASS) database (http://smass.mit.edu/). Combining these near-infrared measurements with available visible wavelength spectra (Bus, 1999PhDT........50B; Lazzaro et al., 2004Icar..172..179L) allows for the first time an extensive visible and near-infrared (VNIR) spectral database of main-belt Ch and Cgh types with D>45km (78% or 49/63 of all Ch and Cgh types listed in SMASS; see Table1). (1 data file).

  1. Seat belt use increases in Maine following change to primary enforcement : traffic tech.

    DOT National Transportation Integrated Search

    2010-04-01

    Primary seat belt laws are associated with higher selfreported : seat belt use rates and fewer traffic fatalities following : enactment. Primary laws allow police to issue a citation : solely upon observation of a seat belt violation. In contrast, : ...

  2. Transpression as the main deformational event in an Archaean greenstone belt, northeastern Minnesota

    NASA Technical Reports Server (NTRS)

    Hudleston, P. J.; Schultz-Ela, D.; Bauer, R. L.; Southwick, D. L.

    1986-01-01

    Deformed and metamorphosed sedimentary and volcanic rocks of the Vermilion district constitute an Archean greenstone belt trending east-west between higher grade rocks of the Vermilion Granitic Complex to the north and the Giants Range batholith to the south. Metamorphic grade is low throughout, being lowest in the center of the belt (chlorite zone of the greenschist facies). All the measured strain, a cleavage or schistosity, and a mineral lineation in this belt are attributed to the main phase of deformation D sub 2 that followed an earlier nappe-forming event D sub 1, which left little evidence of penetrative fabric. Previous work assumed that the D sub 2 deformation resulted from north-south compression across the district. It is now believed that a significant component of this deformation resulted from dextral shear across the whole region. Thus the Vermilion fault, a late-state largely strike-slip structure that bounds the Vermilion district to the north, may simply be the latest, most brittle expression of a shear regime that was much more widespread in space and time. Features that are indicative of shear include ductile shear zones with sigmoidal foliation patterns, highly schistose zones with the development of shear bands, feldspar clasts or pyrite cubes with asymmetric pressure shadows, and the fact that the asymmetry of the F sub 2 folds is predominantly Z for at least 15 km south of the Vermilion fault.

  3. The Main-belt Asteroid and NEO Tour with Imaging and Spectroscopy (MANTIS)

    NASA Astrophysics Data System (ADS)

    Rivkin, A.; Cohen, B. A.; Barnouin, O. S.; Chabot, N. L.; Ernst, C. M.; Klima, R. L.; Helbert, J.; Sternovsky, Z.

    2015-12-01

    The asteroids preserve information from the earliest times in solar system history, with compositions in the population reflecting the material in the solar nebula and experiencing a wide range of temperatures. Today they experience ongoing processes, some of which are shared with larger bodies but some of which are unique to their size regime. They are critical to humanity's future as potential threats, resource sites, and targets for human visitation. However, over twenty years since the first spacecraft encounters with asteroids, they remain poorly understood. The mission we propose here, the Main-belt Asteroid and NEO Tour with Imaging and Spectroscopy (MANTIS), explores the diversity of asteroids to understand our solar system's past history, its present processes, and future opportunities and hazards. MANTIS addresses many of NASA's highest priorities as laid out in its 2014 Science Plan and provides additional benefit to the Planetary Defense and Human Exploration communities via a low-risk, cost-effective tour of the near-Earth and inner asteroid belt. MANTIS visits the materials that witnessed solar system formation and its earliest history, addressing the NASA goal of exploring and observing the objects in the solar system to understand how they formed and evolve. MANTIS measures OH, water, and organic materials via several complementary techniques, visiting and sampling objects known to have hydrated minerals and addressing the NASA goal of improving our understanding of the origin and evolution of life on Earth. MANTIS studies the geology and geophysics of nine diverse asteroids, with compositions ranging from water-rich to metallic, representatives of both binary and non-binary asteroids, and sizes covering over two orders of magnitude, providing unique information about the chemical and physical processes shaping the asteroids, addressing the NASA goal of advancing the understanding of how the chemical and physical processes in our solar system

  4. Main-belt Asteroids in the K2 Uranus Field

    NASA Astrophysics Data System (ADS)

    Molnár, L.; Pál, A.; Sárneczky, K.; Szabó, R.; Vinkó, J.; Szabó, Gy. M.; Kiss, Cs.; Hanyecz, O.; Marton, G.; Kiss, L. L.

    2018-02-01

    We present the K2 light curves of a large sample of untargeted main-belt asteroids (MBAs) detected with the Kepler Space Telescope. The asteroids were observed within the Uranus superstamp, a relatively large, continuous field with a low stellar background designed to cover the planet Uranus and its moons during Campaign 8 of the K2 mission. The superstamp offered the possibility of obtaining precise, uninterrupted light curves of a large number of MBAs and thus determining unambiguous rotation rates for them. We obtained photometry for 608 MBAs, and were able to determine or estimate rotation rates for 90 targets, of which 86 had no known values before. In an additional 16 targets we detected incomplete cycles and/or eclipse-like events. We found the median rotation rate to be significantly longer than that of the ground-based observations, indicating that the latter are biased toward shorter rotation rates. Our study highlights the need and benefits of further continuous photometry of asteroids.

  5. Observations of faint comets with the IUE

    NASA Astrophysics Data System (ADS)

    Festou, M.

    1982-06-01

    Spectral observations of eight comets, including seven periodic comets, made in the range 1150-3400 A with the IUE satellite are presented. Comet Bradfield, the sole nonperiodic comet observed, is found to exhibit strong OH and atomic hydrogen emissions from the decomposition of water, along with oxygen, carbon, sulfur, carbon disulfide, C2 and CO2(plus) emissions and a faint continuum due to dust at longer wavelengths. Comets Encke, Tuttle and Stefan-Oterma appear to have identical spectra in the UV, showing evidence of much gas, little dust and few ions (only CO2(plus) detected), and differing from comet Bradfield only in the lack of C2 emission. All eight comets observed by IUE, including Seargent, Meier, Borrelly and Panther, had the same chemical composition, consisting mainly of water with a few per mil or per cent CN, C2, C3 and CS. The water production rates of the periodic comets range from levels 6 times less to 11 times more than that of Comet Bradfield, which may be related to nuclear size or cometary age.

  6. COMET-LICSAR: Systematic Deformation Monitoring of Fault Zones and Volcanoes with the Sentinel-1 Constellation

    NASA Astrophysics Data System (ADS)

    Spaans, K.; Wright, T. J.; Hooper, A. J.; Hatton, E. L.; González, P. J.; Bhattarai, S.; Biggs, J.; Crippa, P.; Ebmeier, S. K.; Elliott, J.; Gaddes, M.; Li, Z.; Parsons, B.; Qiu, Q.; McDougall, A.; Walters, R. J.; Weiss, J. R.; Ziebart, M.

    2017-12-01

    The Sentinel-1 constellation represents a major advance in our ability to monitor our planet's hazardous tectonic and volcanic zones. Here we present the latest progress from COMET (*), where we are now providing deformation results to the community for volcanoes and the tectonic belts (**). COMET now responds routinely to most significant continental earthquakes - Sentinel-1 allows us to do this within a few days for most earthquakes. For example, after the M7.8 Kaikoura (New Zealand) earthquake we supplied a processed interferogram to the community just 5 hours and 37 minutes after the Sentinel-1 acquisition. By the end of 2017, we will be producing interferogram products systematically for all earthquakes larger than M 6.0. For deformation data to be useful for preparedness, we need accuracy on the order of 1 mm/yr or better. This requires mass processing of long time series of radar acquisitions. We are currently (July 2017) processing interferograms systematically for the entire Alpine-Himalayan belt ( 9000 x 2000 km) using our LiCSAR chain, making interferograms and coherence products available to the community. By December 2017, we plan to process a wider tectonic area and the majority of subaerial volcanoes. We currently serve displacement and coherence grids, but plan to provide average deformation rates and time series. Results are available through our dedicated portal (**), and are being linked to the ESA G-TEP and EPOS during 2017. We will show the latest results for tectonics and volcanism, and discuss how these can be used to build value-added products, including (i) maps of tectonic strain (ii) maps of seismic hazard (iii) volcano deformation alerts. The accuracy of these products will improve as the number of data products acquired by Sentinel-1 increases, and as the time series lengthen. *http://comet.nerc.ac.uk**http://comet.nerc.ac.uk/COMET-LiCS-portal/

  7. COMET-LICSAR: Systematic Deformation Monitoring of Fault Zones and Volcanoes with the Sentinel-1 Constellation

    NASA Astrophysics Data System (ADS)

    Spaans, K.; Wright, T. J.; Hooper, A. J.; Hatton, E. L.; González, P. J.; Bhattarai, S.; Biggs, J.; Crippa, P.; Ebmeier, S. K.; Elliott, J.; Gaddes, M.; Li, Z.; Parsons, B.; Qiu, Q.; McDougall, A.; Walters, R. J.; Weiss, J. R.; Ziebart, M.

    2016-12-01

    The Sentinel-1 constellation represents a major advance in our ability to monitor our planet's hazardous tectonic and volcanic zones. Here we present the latest progress from COMET (*), where we are now providing deformation results to the community for volcanoes and the tectonic belts (**). COMET now responds routinely to most significant continental earthquakes - Sentinel-1 allows us to do this within a few days for most earthquakes. For example, after the M7.8 Kaikoura (New Zealand) earthquake we supplied a processed interferogram to the community just 5 hours and 37 minutes after the Sentinel-1 acquisition. By the end of 2017, we will be producing interferogram products systematically for all earthquakes larger than M 6.0. For deformation data to be useful for preparedness, we need accuracy on the order of 1 mm/yr or better. This requires mass processing of long time series of radar acquisitions. We are currently (July 2017) processing interferograms systematically for the entire Alpine-Himalayan belt ( 9000 x 2000 km) using our LiCSAR chain, making interferograms and coherence products available to the community. By December 2017, we plan to process a wider tectonic area and the majority of subaerial volcanoes. We currently serve displacement and coherence grids, but plan to provide average deformation rates and time series. Results are available through our dedicated portal (**), and are being linked to the ESA G-TEP and EPOS during 2017. We will show the latest results for tectonics and volcanism, and discuss how these can be used to build value-added products, including (i) maps of tectonic strain (ii) maps of seismic hazard (iii) volcano deformation alerts. The accuracy of these products will improve as the number of data products acquired by Sentinel-1 increases, and as the time series lengthen. *http://comet.nerc.ac.uk**http://comet.nerc.ac.uk/COMET-LiCS-portal/

  8. Aqueous alteration on main-belt asteroids

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Lantz, C.; Barucci, M.; Lazzarin, M.

    2014-07-01

    The study of aqueous alteration is particularly important for unraveling the processes occurring during the earliest times in Solar System history, as it can give information both on the thermal processes and on the localization of water sources in the asteroid belt, and for the associated astrobiological implications. The aqueous alteration process produces the low temperature (< 320 K) chemical alteration of materials by liquid water which acts as a solvent and produces materials like phyllosilicates, sulphates, oxides, carbonates, and hydroxides. This means that liquid water was present in the primordial asteroids, produced by the melting of water ice by heating sources, very probably by ^{26}Al decay. Hydrated minerals have been found mainly on Mars surface, on primitive main-belt asteroids (C, G, B, F, and P-type, following the classification scheme by Tholen, 1984) and possibly also on few transneptunian objects. Reflectance spectroscopy of aqueous altered asteroids shows absorption features in the 0.6-0.9 and 2.5-3.5-micron regions, which are diagnostic of, or associated with, hydrated minerals. In this work, we investigate the aqueous alteration process on a large sample of 600 visible spectra of C-complex asteroids available in the literature. We analyzed all these spectra in a similar way to characterize the absorption-band parameters (band center, depth, and width) and spectral slope, and to look for possible correlations between the aqueous alteration process and the asteroids taxonomic classes, orbital elements, heliocentric distances, albedo, and sizes. We find that 4.6 % of P, 7.7 % of F, 9.8 % of B, 50.5 % of C, and 100 % of the G-type asteroids have absorption bands in the visible region due to hydrated silicates. Our analysis shows that the aqueous alteration sequence starts from the P-type objects, practically unaltered, and increases through the P → F → B → C → G asteroids, these last being widely aqueously altered, strengthening thus

  9. Dynamical evolution of comet pairs

    NASA Astrophysics Data System (ADS)

    Sosa, Andrea; Fernández, Julio A.

    2016-10-01

    Some Jupiter family comets in near-Earth orbits (thereafter NEJFCs) show a remarkable similarity in their present orbits, like for instance 169P/NEAT and P/2003 T12 (SOHO), or 252P/LINEAR and P/2016 BA14 (PANSTARRS). By means of numerical integrations we studied the dynamical evolution of these objects. In particular, for each pair of presumably related objects, we are interested in assessing the stability of the orbital parameters for several thousand years, and to find a minimum of their relative spatial distance, coincident with a low value of their relative velocity. For those cases for which we find a well defined minimum of their relative orbital separation, we are trying to reproduce the actual orbit of the hypothetical fragment by modeling a fragmentation of the parent body. Some model parameters are the relative ejection velocity (a few m/s), the orbital point at which the fragmentation could have happened (e.g. perihelion), and the elapsed time since fragmentation. In addition, some possible fragmentation mechanisms, like thermal stress, rotational instability, or collisions, could be explored. According to Fernández J.A and Sosa A. 2015 (Planetary and Space Science 118,pp.14-24), some NEJFCs might come from the outer asteroid belt, and then they would have a more consolidated structure and a higher mineral content than that of comets coming from the trans-Neptunian belt or the Oort cloud. Therefore, such objects would have a much longer physical lifetime in the near-Earth region, and could become potential candidates to produce visible meteor showers (as for example 169P/NEAT which has been identified as the parent body of the alpha-Capricornid meteoroid stream, according to Jenniskens, P., Vaubaillon, J., 2010 (Astron. J. 139), and Kasuga, T., Balam, D.D., Wiegert, P.A., 2010 (Astron. J. 139).

  10. Dust bands in the asteroid belt

    NASA Technical Reports Server (NTRS)

    Sykes, Mark V.; Greenberg, Richard; Dermott, Stanley F.; Nicholson, Philip D.; Burns, Joseph A.

    1989-01-01

    This paper describes the original IRAS observations leading to the discovery of the three dust bands in the asteroid belt and the analysis of data. Special attention is given to an analytical model of the dust band torus and to theories concerning the origin of the dust bands, with special attention given to the collisional equilibrium (asteroid family), the nonequilibrium (random collision), and the comet hypotheses of dust-band origin. It is noted that neither the equilibrium nor nonequilibrium models, as currently formulated, present a complete picture of the IRAS dust-band observations.

  11. Comet Odyssey: Comet Surface Sample Return

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Bradley, J.; Smythe, W. D.; Brophy, J. R.; Lisano, M. E.; Syvertson, M. L.; Cangahuala, L. A.; Liu, J.; Carlisle, G. L.

    2010-10-01

    Comet Odyssey is a proposed New Frontiers mission that would return the first samples from the surface of a cometary nucleus. Stardust demonstrated the tremendous power of analysis of returned samples in terrestrial laboratories versus what can be accomplished in situ with robotic missions. But Stardust collected only 1 milligram of coma dust, and the 6.1 km/s flyby speed heated samples up to 2000 K. Comet Odyssey would collect two independent 800 cc samples directly from the surface in a far more benign manner, preserving the primitive composition. Given a minimum surface density of 0.2 g/cm3, this would return two 160 g surface samples to Earth. Comet Odyssey employs solar-electric propulsion to rendezvous with the target comet. After 180 days of reconnaissance and site selection, the spacecraft performs a "touch-and-go” maneuver with surface contact lasting 3 seconds. A brush-wheel sampler on a remote arm collects up to 800 cc of sample. A duplicate second arm and sampler collects the second sample. The samples are placed in a return capsule and maintained at colder than -70 C during the return flight and at colder than -30 C during re-entry and for up to six hours after landing. The entire capsule is then refrigerated and transported to the Astromaterials Curatorial Facility at NASA/JSC for initial inspection and sample analysis by the Comet Odyssey team. Comet Odyssey's planned target was comet 9P/Tempel 1, with launch in December 2017 and comet arrival in June 2022. After a stay of 300 days at the comet, the spacecraft departs and arrives at Earth in May 2027. Comet Odyssey is a forerunner to a flagship Cryogenic Comet Sample Return mission that would return samples from deep below the nucleus surface, including volatile ices. This work was supported by internal funds from the Jet Propulsion Laboratory.

  12. The empty primordial asteroid belt.

    PubMed

    Raymond, Sean N; Izidoro, Andre

    2017-09-01

    The asteroid belt contains less than a thousandth of Earth's mass and is radially segregated, with S-types dominating the inner belt and C-types the outer belt. It is generally assumed that the belt formed with far more mass and was later strongly depleted. We show that the present-day asteroid belt is consistent with having formed empty, without any planetesimals between Mars and Jupiter's present-day orbits. This is consistent with models in which drifting dust is concentrated into an isolated annulus of terrestrial planetesimals. Gravitational scattering during terrestrial planet formation causes radial spreading, transporting planetesimals from inside 1 to 1.5 astronomical units out to the belt. Several times the total current mass in S-types is implanted, with a preference for the inner main belt. C-types are implanted from the outside, as the giant planets' gas accretion destabilizes nearby planetesimals and injects a fraction into the asteroid belt, preferentially in the outer main belt. These implantation mechanisms are simple by-products of terrestrial and giant planet formation. The asteroid belt may thus represent a repository for planetary leftovers that accreted across the solar system but not in the belt itself.

  13. The empty primordial asteroid belt

    PubMed Central

    Raymond, Sean N.; Izidoro, Andre

    2017-01-01

    The asteroid belt contains less than a thousandth of Earth’s mass and is radially segregated, with S-types dominating the inner belt and C-types the outer belt. It is generally assumed that the belt formed with far more mass and was later strongly depleted. We show that the present-day asteroid belt is consistent with having formed empty, without any planetesimals between Mars and Jupiter’s present-day orbits. This is consistent with models in which drifting dust is concentrated into an isolated annulus of terrestrial planetesimals. Gravitational scattering during terrestrial planet formation causes radial spreading, transporting planetesimals from inside 1 to 1.5 astronomical units out to the belt. Several times the total current mass in S-types is implanted, with a preference for the inner main belt. C-types are implanted from the outside, as the giant planets’ gas accretion destabilizes nearby planetesimals and injects a fraction into the asteroid belt, preferentially in the outer main belt. These implantation mechanisms are simple by-products of terrestrial and giant planet formation. The asteroid belt may thus represent a repository for planetary leftovers that accreted across the solar system but not in the belt itself. PMID:28924609

  14. Comets, Asteroids, and the Origin of the Biosphere

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2006-01-01

    During the past few decades, the role of comets in the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment has become more widely accepted. However comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are entirely devoid of liquid water and consequently unsuitable for life in any form. Complex organic compounds have been observed comets and on the water rich asteroid 1998 KY26, which has color and radar reflectivity similar to the carbonaceous meteorites. Near infrared observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar with resurfacing that may indicate cryovolcanic outgassing and the Cassini spacecraft has detected water-ice geysers on Saturn s moon Enceladus. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have now firmly established that comets contain a suite of complex organic chemicals; water is the predominant volatile; and that extremely high temperatures (approx.350-400 K) can be reached on the surface of the very black (albedo-0.03) nuclei when the comets are with 1.5 AU from the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust and episodic outbursts and jets observed on the nuclei of several comets are interpreted as indications that localized regimes of liquid water and water vapor can periodically exist beneath the crust of some comets. The Deep Impact observations indicate that the temperature on the nucleus of of comet Tempel 1 at 1.5 AU varied from 330K on the sunlit side to a minimum of 280+/-8 K. It is interesting that even the coldest region of the comet surface was slightly above the ice/liquid water phase transition temperature. These results suggest that pools and films of liquid water can exist in a wide

  15. Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA

    NASA Astrophysics Data System (ADS)

    Le Roy, Léna; Altwegg, Kathrin; Balsiger, Hans; Berthelier, Jean-Jacques; Bieler, Andre; Briois, Christelle; Calmonte, Ursina; Combi, Michael R.; De Keyser, Johan; Dhooghe, Frederik; Fiethe, Björn; Fuselier, Stephen A.; Gasc, Sébastien; Gombosi, Tamas I.; Hässig, Myrtha; Jäckel, Annette; Rubin, Martin; Tzou, Chia-Yu

    2015-11-01

    Context. The ESA Rosetta spacecraft (S/C) is tracking comet 67P/Churyumov-Gerasimenko in close vicinity. This prolonged encounter enables studying the evolution of the volatile coma composition. Aims: Our work aims at comparing the diversity of the coma of 67P/Churyumov-Gerasimenko at large heliocentric distance to study the evolution of the comet during its passage around the Sun and at trying to classify it relative to other comets. Methods: We used the Double Focussing Mass Spectrometer (DFMS) of the ROSINA experiment on ESA's Rosetta mission to determine relative abundances of major and minor volatile species. This study is restricted to species that have previously been detected elsewhere. Results: We detect almost all species currently known to be present in cometary coma with ROSINA DFMS. As DFMS measured the composition locally, we cannot derive a global abundance, but we compare measurements from the summer and the winter hemisphere with known abundances from other comets. Differences between relative abundances between summer and winter hemispheres are large, which points to a possible evolution of the cometary surface. This comet appears to be very rich in CO2 and ethane. Heavy oxygenated compounds such as ethylene glycol are underabundant at 3 AU, probably due to their high sublimation temperatures, but nevertheless, their presence proves that Kuiper belt comets also contain complex organic molecules.

  16. Kenneth Essex Edgeworth—Victorian polymath and founder of the Kuiper belt?

    NASA Astrophysics Data System (ADS)

    McFarland, John

    This article is a biographical note on Kenneth Essex Edgeworth (1880-1972), Army officer, engineer, economist and independent theoretical astronomer. Abibliography of Edgeworth's known papers is incorporated, and his interesting cosmogonic theories are highlighted, in particular his postulation in 1943 of a source of potential comets occupying the region of the solar system beyond Neptune, recently termed the Kuiper belt.

  17. Studies of asteroids, comets, and Jupiter's outer satellites

    NASA Technical Reports Server (NTRS)

    Bowell, Edward

    1988-01-01

    The work comprises observational, theoretical, and computational research on asteroids, together with a smaller effort concerning the astrometry of comets and Jupiter's satellites JVI through JXIII. Two principal areas of research, centering on astrometry and photometry, are interrelated in their aim to study the overall structure of the asteroid belt and the physical and orbital properties of individual asteroids. About 2000 accurate photographic positions of asteroids and comets, including a number from the Lowell, Palomar, and Goethe-Link archival plate collections, the last of which was donated to us last winter by Indiana University were measured and published. Charge coupled device (CCD) astrometry of 36 faint targets was undertaken, including 4 comets; JVI, JVII, JVIII, JLX, JXI, and JXII; and 26 asteroids, most of which are Earth-approachers. A deep, bias-correctable asteroid survey (LUKAS), the aim of which is to determine the true spatial distribution of asteroids down to subkilometer diameters was started. A series of eight plates at the UK Schmidt telescope that contain images of asteroids as faint as V approximately 22 mag was obtained. Analysis of microdensitometric scans of two plates has shown that about 98 percent of the asteroid images could be identified completely automatically.

  18. Orbital Evolution of Jupiter-family Comets

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    2004-05-01

    The orbital evolution of more than 25,000 Jupiter-family comets (JFCs) under the gravitational influence of planets was studied. After 40 Myr one considered object (with initial orbit close to that of Comet 88P) got aphelion distance Q<3.5 AU, and it moved in orbits with semi-major axis a=2.60-2.61 AU, perihelion distance 1.7Comet 94P) moved in orbits with a=1.95-2.1 AU, q>1.4 AU, Q<2.6 AU, e=0.2-0.3, and i=9-33 deg for 8 Myr (and it had Q<3 AU for 100 Myr). So JFCs can rarely get typical asteroid orbits and move in them for Myrs. In our opinion, it can be possible that Comet 133P (Elst--Pizarro) moving in a typical asteroidal orbit was earlier a JFC and it circulated its orbit also due to non-gravitational forces. JFCs got near-Earth object (NEO) orbits more often than typical asteroidal orbits. A few JFCs got Earth-crossing orbits with a<2 AU and Q<4.2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Three considered former JFCs even got inner-Earth orbits (with Q<0.983 AU) or Aten orbits for Myrs. The probability of a collision of one of such objects, which move for millions of years inside Jupiter's orbit, with a terrestrial planet can be greater than analogous total probability for thousands other objects. Results obtained by the Bulirsch-Stoer method and by a symplectic method were mainly similar (except for probabilities of close encounters with the Sun when they were high). Our results show that the trans-Neptunian belt can provide a significant portion of NEOs, or the number of trans-Neptunian objects migrating inside solar system could be smaller than it was earlier considered, or most of 1-km former trans-Neptunian objects that had got NEO orbits disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes if these lifetimes are not small. The

  19. What's Causing the Activity on Comet 67P?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    self-heating between parts of the surface in contact.Plot of the modeled temperature of two typical surfaces on the comet: one from the neck region (solid line) and one from the head region (dashed line). Unlike the head, the neck displays drastic drops in temperature as a result of shadowing. [Al-Lagoa et al. 2015]Using this model, the authors find that the temperatures behaved as they predicted: the shadows falling on the comets neck causes this region to experience very rapid temperature changes relative to the rest of the body. The authors also found a definite correlation between the regions of most rapid temperature variations and the regions of the comet that show signs of activity in Rosetta images. This provides strong evidence that thermal cracking is indeed taking place in the shadowed regions of the neck, gradually eroding away the surface.Should this model prove correct, its a step toward understanding the evolution of comets like 67P. In addition, the results from this study imply that thermal cracking might happen faster than previously estimated in shadowed regions of other atmosphereless bodies, both near Earth and in the asteroid belt.CitationV. Al-Lagoa et al 2015 ApJ 810 L22. doi:10.1088/2041-8205/810/2/L22

  20. Atlas of Great Comets

    NASA Astrophysics Data System (ADS)

    Stoyan, Ronald; Dunlop, Storm

    2015-01-01

    Foreword; Using this book; Part I. Introduction: Cometary beliefs and fears; Comets in art; Comets in literature and poetry; Comets in science; Cometary science today; Great comets in antiquity; Great comets of the Middle Ages; Part II. The 30 Greatest Comets of Modern Times: The Great Comet of 1471; Comet Halley 1531; The Great Comet of 1556; The Great Comet of 1577; Comet Halley, 1607; The Great Comet of 1618; The Great Comet of 1664; Comet Kirch, 1680; Comet Halley, 1682; The Great Comet of 1744; Comet Halley, 1759; Comet Messier, 1769; Comet Flaugergues, 1811; Comet Halley, 1835; The Great March Comet of 1843; Comet Donati, 1858; Comet Tebbutt, 1861; The Great September Comet of 1882; The Great January Comet of 1910; Comet Halley, 1910; Comet Arend-Roland, 1956; Comet Ikeya-Seki, 1965; Comet Bennett, 1970; Comet Kohoutek, 1973-4; Comet West, 1976; Comet Halley, 1986; Comet Shoemaker-Levy 9, 1994; Comet Hyakutake, 1996; Comet Hale-Bopp, 1997; Comet McNaught, 2007; Part III. Appendices; Table of comet data; Glossary; References; Photo credits; Index.

  1. Comets. [IUE

    NASA Technical Reports Server (NTRS)

    Ahearn, Michael F.

    1988-01-01

    The IUE was used to study comets including the first dynamically new comet to approach closer than 3 AU. Differences between old and new comets are studied. Results relevant to the nature of cometary nuclei are discussed. Identification of species in the spectra; relative abundances; variability of comets; and comet mass are considered.

  2. Dawn : a mission in developement for exploration of main belt asteroids Vesta and Ceres

    NASA Technical Reports Server (NTRS)

    Rayman, Marc D.; Fraschetti, Thomas C.; Russell, Christopher T.; Raymond, Carol A.

    2004-01-01

    Dawn is in development for a 2006 launch on a mission to explore main belt asteroids in order to yield insights into important questions about the formation and evolution of the solar system. Its objective is to acquire detailed data from orbit around two complementary bodies, Vesta and Ceres, the two most massive asteroids. The project relies on extensive heritage from other deep-space and Earth-orbiting missions, thus permitting the ambitious objectives to be accomplished with an affordable budget.

  3. Comets, Asteroids, Meteorites, and the Origin of the Biosphere

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2006-01-01

    During the past few decades, the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment by comets and asteroids has become more widely accepted. Comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are devoid of liquid water and therefore unsuitable for life. Complex organic compounds have been observed in comets and on the water-rich asteroid 1998 KY26 and near IR observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar that has resurfacing suggesting cryovolcanic outgassing. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have shown that comets contain complex organic chemicals; that water is the predominant volatile; and that extremely high temperatures (approx. 350-400 K) can be reached on the surfae of the very black (albedo approx. 0.03) nuclei of comets when they approach the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust. Episodic outbursts and jets from the nuclei of several comets indicate that localized regimes of liquid water and water vapor can periodically exist beneath the comet crust. The Deep Impact mission found the temperature of the nucleus of comet Tempel 1 at 1.5 AU varied from a minimum of 280 plus or minus 8 K the 330K (57 C) on the sunlit side. In this paper it is argued that that pools and films of liquid water exist (within a wide range of temperatures) in cavities and voids just beneath the hot, black crust. The possibility of liquid water existing over a wide range of temperatures significantly enhances the possibility that comets might contain niches suitable for the growth of microbial communities and ecosystems. These regimes would be ideal for the growth of psychrophilic, mesophilic, and thermophilic

  4. Toward an understanding of phyllosilicate mineralogy in the outer main asteroid belt

    NASA Astrophysics Data System (ADS)

    Takir, Driss; Emery, Joshua P.; McSween, Harry Y.

    2015-09-01

    Proposed mineralogical linkages between CM/CI carbonaceous chondrites and outer Main Belt asteroids remain uncertain due to a dearth of diagnostic absorptions in visible and near-infrared (∼0.4-2.5 μm) spectra of the two sets of objects. Absorptions near 3 μm in both sets hold promise for illuminating the potential linkages. Spectral comparisons of meteorites and asteroids have been challenging because meteorite spectra have usually been acquired in ambient terrestrial environments, and hence were contaminated by atmospheric water. In this study, we compare near-infrared spectra of chondrites measured in the laboratory under asteroid-like conditions (Takir, D. et al. [2013]. Meteorit. Planet. Sci. 48, 1618-1637) and spectra of asteroids measured with the long-wavelength cross-dispersed (LXD: 1.9-4.2-μm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility (IRTF) (Takir, D., Emery, J.P. [2012]. Icarus 219, 641-654). Using the 3-μm band shape, we find that spectral Group 2 CM and CI (Ivuna) chondrites are possible meteorite analogs for asteroids with the sharp 3-μm features, which are predominately located in the 2.5 < a < 3.3 AU region. Spectral Group 2 CM chondrites contain phyllosilicate phases intermediate between endmembers Fe-serpentine and Mg-serpentine, with a petrological subtype ranging from 2.2 to 2.1 (Takir, D. et al. [2013]. Meteorit. Planet. Sci. 48, 1618-1637). No meteorite match was found for asteroids showing a rounded 3-μm feature, which tend to be located farther from the Sun (3.0 < a < 4.0 AU), or for asteroids with distinctive spectra like 1 Ceres or 52 Europa. The study of the 3-μm band in meteorites and asteroids has implications for the understanding of phyllosilicate mineralogy and its distribution in the outer Main Belt region.

  5. Rosetta following a living comet

    NASA Astrophysics Data System (ADS)

    Accomazzo, Andrea; Ferri, Paolo; Lodiot, Sylvain; Pellon-Bailon, Jose-Luis; Hubault, Armelle; Porta, Roberto; Urbanek, Jakub; Kay, Ritchie; Eiblmaier, Matthias; Francisco, Tiago

    2016-09-01

    The International Rosetta Mission was launched on 2nd March 2004 on its 10 year journey to rendezvous with comet 67P Churyumov-Gerasimenko. Rosetta performed comet orbit insertion on the 6th of August 2014, after which it characterised the nucleus and orbited it at altitudes as low as a few kilometres. In November 2014 Rosetta delivered the lander Philae to perform the first soft landing ever on the surface of a comet. The critical landing operations have been conducted with remarkable accuracy and will constitute one of the most important achievements in the history of spaceflight. After this critical operation, Rosetta began the escort phase of the comet in its journey in the Solar System heading to the perihelion, reached in August 2015. Throughout this period, the comet environment kept changing with increasing gas and dust emissions. A first phase of bound orbits was followed by a sequence of complex flyby segments which allowed the scientific instruments to perform in depth investigation of the comet environment and nucleus. The unpredictable nature of the comet activity forced the mission control team to implement unplanned changes to the flight plan prepared for this mission phase and to plan the whole mission in a more dynamic way than originally conceived. This paper describes the details of the landing operations and of the main comet escort phase. It also includes the mission status as achieved after perihelion and the findings about the evolution of the comet and its environment from a mission operations point of view. The lessons learned from this unique and complex operations phase and the plans for the next mission phases, which include a mission extension into 2016, are also described.

  6. Electron plasma environment at comet Grigg-Skjellerup: General observations and comparison with the environment at comet Halley

    NASA Technical Reports Server (NTRS)

    Reme, H.; Mazelle, C.; Sauvaud, J. A.; D'Uston, C.; Froment, F.; Lin, R. P.; Anderson, K. A.; Carlson, C. W.; Larson, D. E.; Korth, A.

    1993-01-01

    The three-dimensional electron spectrometer of the Reme plasma analyzer-complete positive ion, electron and ram negative ion measurements near comet Halley (RPA-COPERNIC) experiment aboard the Giotto spacecraft, although damaged during the comet Halley encounter in March 1986, has provided very new results during the encounter on July 10, 1992, with the weakly active comet Grigg-Skjellerup (G-S). The main characteristic features of the highly structured interaction region extending from approximately 26,500 km inbound to approximately 37,200 km outbound are presented. These results are compared to the results obtained by the same instrument during the Giotto comet Halley fly-by. Despite the large difference in the size of the interaction regions (approximately 60,000 km for G-S, approximately 2000,000 km for Halley) due to 2 orders of magnitude difference in cometary neutral gas production rate, there are striking similarities in the solar wind interactions with the two comets.

  7. Asteroid size distributions for the main belt and for asteroid families

    NASA Astrophysics Data System (ADS)

    Kazantzev, A.; Kazantzeva, L.

    2017-12-01

    The asteroid-size distribution for he Eos family was constructed. The WISE database containing the albedo p and the size D of over 80,000 asteroids was used. The b parameter of the power-law dependence has a minimum at some average values of the asteroid size of the family. A similar dependence b(D) exists for the whole asteroid belt. An assumption on the possible similarity of the formation mechanisms of the asteroid belt as a whole and separate families is made.

  8. Discovery of the candidate Kuiper belt object 1992 QB1

    NASA Astrophysics Data System (ADS)

    Jewitt, D.; Luu, J.

    1993-04-01

    The discovery of a new faint object in the outer solar system, 1992 QB1, moving beyond the orbit of Neptune is reported. It is suggested that the 1992 QB1 may represent the first detection of a member of the Kuiper belt (Edgworth, 1949; Kuiper, 1951), the hypothesized population of objects beyond Neptune and a possible source of the short-period comets, as suggested by Whipple (1964), Fernandez (1980), and Duncan et al. (1988).

  9. Comet or asteroid shower in the late Eocene?

    PubMed

    Tagle, Roald; Claeys, Philippe

    2004-07-23

    The passage of a comet shower approximately 35 million years ago is generally advocated to explain the coincidence during Earth's late Eocene of an unusually high flux of interplanetary dust particles and the formation of the two largest craters in the Cenozoic, Popigai and the Chesapeake Bay. However, new platinum-group element analyses indicate that Popigai was formed by the impact of an L-chondrite meteorite. Such an asteroidal projectile is difficult to reconcile with a cometary origin. Perhaps instead the higher delivery rate of extraterrestrial matter, dust, and large objects was caused by a major collision in the asteroid belt.

  10. The study of comets, part 1. [conference on photometry and spectrum analysis of Kohoutek comet and comet tails

    NASA Technical Reports Server (NTRS)

    Donn, B. (Editor); Mumma, M. J. (Editor); Jackson, W. M. (Editor); Ahearn, M. (Editor); Harrington, R. (Editor)

    1976-01-01

    Papers are presented dealing with observations of comets. Topic discussed include: photometry, polarimetry, and astrometry of comets; detection of water and molecular transitions in comets; ion motions in comet tails; determination of comet brightness and luminosity; and evolution of cometary orbits. Emphasis is placed on analysis of observations of comet Kohoutek.

  11. A Large Program to derive the shape, cratering history and density of the largest main-belt asteroids

    NASA Astrophysics Data System (ADS)

    Marchis, Franck; Vernazza, Pierre; Marsset, Michael; Hanus, Josef; Carry, Benoit; Birlan, Mirel; Santana-Ros, Toni; Yang, Bin; and the Large Asteroid Survey with SPHERE (LASS)

    2017-10-01

    Asteroids in our solar system are metallic, rocky and/or icy objects, ranging in size from a few meters to a few hundreds of kilometers. Whereas we now possess constraints for the surface composition, albedo and rotation rate for all D≥100 km main-belt asteroids, the 3-D shape, the crater distribution, and the density have only been measured for a very limited number of these bodies (N≤10 for the first two). Characterizing these physical properties would allow us to address entirely new questions regarding the earliest stages of planetesimal formation and their subsequent collisional and dynamical evolution.ESO allocated to our program 152 hours of observations over 4 semesters to carry out disk-resolved observations of 38 large (D≥100 km) main-belt asteroids (sampling the four main compositional classes) at high angular-resolution with VLT/SPHERE throughout their rotation in order to derive their 3-D shape, the size distribution of the largest craters, and their density (PI: P. Vernazza). These measurements will allow investigating for the first time and for a modest amount of observing time the following fundamental questions: (A) Does the asteroid belt effectively hosts a large population of small bodies formed in the outer solar system? (B) Was the collisional environment in the inner solar system (at 2-3 AU) more intense than in the outer solar system (≥5AU)? (C) What was the shape of planetesimals at the end of the accretion process?We will present the goals and objectives of our program in the context of NASA 2014 Strategic Plan and the NSF decadal survey "Vision and Voyages" as well as the first observations and results collected with the SPHERE Extreme AO system. A detailed analysis of the shape modeling will be presented by Hanuš et al. in this session.

  12. P/2006 HR30 (Siding Spring): A Low-activity Comet in Near-Earth Space

    NASA Technical Reports Server (NTRS)

    Hicks, Michael D.; Bauer, James M.

    2007-01-01

    The low cometary activity of P/2006 HR30 (Siding Spring) allowed a unique opportunity to study the nucleus of a periodic comet while near perihelion. P/2006 HR30 was originally targeted as a potential extinct comet, and we measured spectral reflectance and dust production using long-slit CCD spectroscopy and wide-field imaging obtained at the Palomar Mountain 200 inch telescope on 2006 August 3 and 4. The dust production Afp = 19.7 +/- 0.4 cm and mass-loss rate Q(dust) 4.1 +/- 0.1 kg/sec of the comet were approximately 2 orders of magnitude dust less than 1P/Halley at similar heliocentric distance. The VRI colors derived from the spectral reflectance were compared to Kuiper Belt objects, Centaurs, and other cometary nuclei. We found that the spectrum of P/2006 HR30 was consistent with other comets. However, the outer solar system bodies have a color distribution statistically distinct from cometary nuclei. It is our conjecture that cometary activity, most likely the reaccretion of ejected cometary dust, tends to moderate and mute the visible colors of the surface of cometary nuclei.

  13. Detection of CO and HCN in the coma of Jupiter-family comet 41P/Tuttle-Giacobini-Kresak

    NASA Astrophysics Data System (ADS)

    Wierzchos, Kacper; Womack, Maria

    2017-10-01

    Comets are divided into taxonomical groups determined largely by their orbits. Short-period Jupiter Family comets (JFCs) are thought to have formed in a trans-Neptunian disk ˜30 - 100 AU (Kuiper Belt) and then migrated inward (Edgeworth 1949, Kuiper 1951, Duncan et al. 1988). This different classification may be correlated with chemical abundance variations, and super-volatile species like CO can serve as an indicator of the thermal processes to which the precometary ices that led to comets where exposed (DiSainti et al. 2007). The close approach to Earth of comet 41P on the perihelion passage of 2017 was an excellent opportunity to probe the usually well-hidden inner coma of this Jupiter-family comet. We searched for CO (J=2-1) and HCN (J=3-2) emission with the Arizona Radio Observatory (ARO) 10-m Sub-millimeter Telescope (SMT) on 2017 April 1-2, when the comet was 1.1 AU from the Sun and 0.14 AU from Earth. We report the detection of both CO and HCN emission 13 days before perihelion and present column densities and production rates. We also discuss implications for Jupiter-family comets. The SMT is operated by the ARO, the Steward Observatory, and the University of Arizona, with support through the NSF University Radio Observatories program (AST-1140030). M.W. acknowledges support from NSF grant AST-1615917.

  14. Observations of ammonia in comets with Herschel

    NASA Astrophysics Data System (ADS)

    Biver, N.; Bockelée-Morvan, D.; Hartogh, P.; Crovisier, J.; de Val-Borro, M.; Kidger, M.; Küppers, M.; Lis, D.; Moreno, R.; Szutowicz, S.; HssO Team

    2014-07-01

    Ammonia is the most abundant nitrogen bearing species in comets. However, it has been scarcely observed in comets due to the weakness of the lines observable from the ground at infrared and centimetre wavelengths. Nevertheless, its main photodissociation product NH_2 has been observed in several comets in the visible. The fundamental rotational J_{K}=(1_0-0_0) transition of NH_3 at 572.5 GHz has been observed in comets since 2004, with the Odin satellite (Biver et al. 2007). In the frame of the Herschel guaranteed time key program ''HssO'' (Hartogh et al. 2009), ammonia was detected with the HIFI instrument in comets 10P/Tempel 2 (Biver et al. 2012), 45P/Honda- Mrkos-Pajdusakova, 103P/Hartley 2, and C/2009 P1 (Garradd). The hyperfine structure of the line is resolved. We have built a complete excitation model to interpret these observations, including the radial distribution in comet 103P. The derived abundances relative to water are on the order of 0.5 %, similar to the values inferred from visible observations of NH_2.

  15. High Resolution 3D Radar Imaging of Comet Interiors

    NASA Astrophysics Data System (ADS)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  16. Characteristics and large bulk density of the C-type main-belt triple asteroid (93) Minerva

    NASA Astrophysics Data System (ADS)

    Marchis, F.; Vachier, F.; Ďurech, J.; Enriquez, J. E.; Harris, A. W.; Dalba, P. A.; Berthier, J.; Emery, J. P.; Bouy, H.; Melbourne, J.; Stockton, A.; Fassnacht, C. D.; Dupuy, T. J.; Strajnic, J.

    2013-05-01

    From a set of adaptive optics (AO) observations collected with the W.M. Keck telescope between August and September 2009, we derived the orbital parameters of the most recently discovered satellites of the large C-type asteroid (93) Minerva. The satellites of Minerva, which are approximately 3 and 4 km in diameter, orbit very close to the primary (˜5 and ˜8 × Rp and ˜1% and ˜2% × RHill) in a circular manner, sharing common characteristics with most of the triple asteroid systems in the main-belt. Combining these AO observations with lightcurve data collected since 1980 and two stellar occultations in 2010 and 2011, we removed the ambiguity of the pole solution of Minerva's primary and showed that it has an almost regular shape with an equivalent diameter Deq = 154 ± 6 km in agreement with IRAS observations. The surprisingly high bulk density of 1.75 ± 0.30 g/cm3 for this C-type asteroid, suggests that this taxonomic class is composed of asteroids with different compositions, For instance, Minerva could be made of the same material as dry CR, CO, and CV meteorites. We discuss possible scenarios on the origin of the system and conclude that future observations may shine light on the nature and composition of this fifth known triple main-belt asteroid.

  17. Radioisotope Electric Propulsion (REP) for Selected Interplanetary Science Missions

    NASA Technical Reports Server (NTRS)

    Oh, David; Bonfiglio, Eugene; Cupples, Mike; Belcher, Jeremy; Witzberger, Kevin; Fiehler, Douglas; Artis, Gwen

    2005-01-01

    This viewgraph presentation analyzes small body targets (Trojan Asteroids), Medium Outer Planet Class (Jupiter Polar Orbiter with Probes), and Main Belt Asteroids and Comets (Comet Surface Sample Return), for Radioisotope Electric Propulsion (REP).

  18. The Mineralogy of Comet Wild 2

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael

    2007-01-01

    The nature of cometary solids is of fundamental importance to our understanding of the early solar nebula and protoplanetary history. Samples of Comet Wild 2, provided by the Stardust Mission, have now been examined in terrestrial labs for two years, and are very surprising! Here we describe mainly the critical phases olivine, pyroxene and Fe-Ni sulfides in Wild 2 grains, as a guide to the general mineralogy of the returned comet samples.

  19. OpenComet: An automated tool for comet assay image analysis

    PubMed Central

    Gyori, Benjamin M.; Venkatachalam, Gireedhar; Thiagarajan, P.S.; Hsu, David; Clement, Marie-Veronique

    2014-01-01

    Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires laborious manual tagging of cells. This paper presents OpenComet, an open-source software tool providing automated analysis of comet assay images. It uses a novel and robust method for finding comets based on geometric shape attributes and segmenting the comet heads through image intensity profile analysis. Due to automation, OpenComet is more accurate, less prone to human bias, and faster than manual analysis. A live analysis functionality also allows users to analyze images captured directly from a microscope. We have validated OpenComet on both alkaline and neutral comet assay images as well as sample images from existing software packages. Our results show that OpenComet achieves high accuracy with significantly reduced analysis time. PMID:24624335

  20. OpenComet: an automated tool for comet assay image analysis.

    PubMed

    Gyori, Benjamin M; Venkatachalam, Gireedhar; Thiagarajan, P S; Hsu, David; Clement, Marie-Veronique

    2014-01-01

    Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires laborious manual tagging of cells. This paper presents OpenComet, an open-source software tool providing automated analysis of comet assay images. It uses a novel and robust method for finding comets based on geometric shape attributes and segmenting the comet heads through image intensity profile analysis. Due to automation, OpenComet is more accurate, less prone to human bias, and faster than manual analysis. A live analysis functionality also allows users to analyze images captured directly from a microscope. We have validated OpenComet on both alkaline and neutral comet assay images as well as sample images from existing software packages. Our results show that OpenComet achieves high accuracy with significantly reduced analysis time.

  1. Evaporation and accretion of extrasolar comets following white dwarf kicks

    NASA Astrophysics Data System (ADS)

    Stone, Nicholas; Metzger, Brian D.; Loeb, Abraham

    2015-03-01

    Several lines of observational evidence suggest that white dwarfs receive small birth kicks due to anisotropic mass-loss. If other stars possess extrasolar analogues to the Solar Oort cloud, the orbits of comets in such clouds will be scrambled by white dwarf natal kicks. Although most comets will be unbound, some will be placed on low angular momentum orbits vulnerable to sublimation or tidal disruption. The dusty debris from these comets will manifest itself as an IR excess temporarily visible around newborn white dwarfs; examples of such discs may already have been seen in the Helix Nebula, and around several other young white dwarfs. Future observations with the James Webb Space Telescope may distinguish this hypothesis from alternatives such as a dynamically excited Kuiper Belt analogue. Although competing hypotheses exist, the observation that ≳15 per cent of young white dwarfs possess such discs, if interpreted as indeed being cometary in origin, provides indirect evidence that low-mass gas giants (thought necessary to produce an Oort cloud) are common in the outer regions of extrasolar planetary systems. Hydrogen abundances in the atmospheres of older white dwarfs can, if sufficiently low, also be used to place constraints on the joint parameter space of natal kicks and exo-Oort cloud models.

  2. The Main Asteroid Belt: The Crossroads of the Solar System

    NASA Astrophysics Data System (ADS)

    Michel, Patrick

    2015-08-01

    Orbiting the Sun between Mars and Jupiter, main belt asteroids are leftover planetary building blocks that never accreted enough material to become planets. They are therefore keys to understanding how the Solar System formed and evolved. They may also provide clues to the origin of life, as similar bodies may have delivered organics and water to the early Earth.Strong associations between asteroids and meteorites emerged thanks to multi-technique observations, modeling, in situ and sample return analyses. Spacecraft images revolutionized our knowledge of these small worlds. Asteroids are stunning in their diversity in terms of physical properties. Their gravity varies by more orders of magnitude than its variation among the terrestrial planets, including the Moon. Each rendezvous with an asteroid thus turned our geological understanding on its head as each asteroid is affected in different ways by a variety of processes such as landslides, faulting, and impact cratering. Composition also varies, from ice-rich to lunar-like to chondritic.Nearly every asteroid we see today, whether of primitive or evolved compositions, is the product of a complex history involving accretion and one or more episodes of catastrophic disruption that sometimes resulted in families of smaller asteroids that have distinct and indicative petrogenic relationships. These families provide the best data to study the impact disruption process at scales far larger than those accessible in laboratory. Tens, perhaps hundreds, of early asteroids grew large enough to thermally differentiate. Their traces are scattered pieces of their metal-rich cores and, more rarely, their mantles and crusts.Asteroids represent stages on the rocky road to planet formation. They have great stories to tell about the formation and evolution of our Solar System as well as other planetary systems: asteroid belts seem common around Sun-like stars. We will review our current knowledge on their properties, their link to

  3. YORP and collisional shaping of the sub-populations, rotation rate and size-frequency distributions in the main-belt

    NASA Astrophysics Data System (ADS)

    Rossi, A.; Marzari, F.; Scheeres, D.; Jacobson, S.; Davis, D.

    In the last several years a comprehensive asteroid-population-evolution model was developed incorporating both the YORP effect and collisional evolution \\citep{rossi_2009}, \\citep{marz_2011}, \\citep{jac_mnras}. From the results of this model we were able to match the observed main belt rotation rate distribution and to give a first plausible explanation of the observed excess of slow rotators, through a random walk-like evolution of the spin, induced by repeated collisions with small projectiles. Moreover, adding to the model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur; \\citealt{sch_2007}) and binary-asteroid evolution \\citep{jac_sch}, we first showed that the YORP-induced rotational-fission hypothesis has strong repercussions for the small size end of the main-belt asteroid size-frequency distribution. We also concluded that this hypothesis is consistent with observed asteroid-population statistics and with the observed sub-populations of binary asteroids, asteroid pairs and contact binaries. An overview of the results obtained, the modelling uncertainties and the ongoing work will be given.

  4. Does warm debris dust stem from asteroid belts?

    NASA Astrophysics Data System (ADS)

    Geiler, Fabian; Krivov, Alexander V.

    2017-06-01

    Many debris discs reveal a two-component structure, with a cold outer and a warm inner component. While the former are likely massive analogues of the Kuiper belt, the origin of the latter is still a matter of debate. In this work, we investigate whether the warm dust may be a signature of asteroid belt analogues. In the scenario tested here, the current two-belt architecture stems from an originally extended protoplanetary disc, in which planets have opened a gap separating it into the outer and inner discs which, after the gas dispersal, experience a steady-state collisional decay. This idea is explored with an analytic collisional evolution model for a sample of 225 debris discs from a Spitzer/IRS catalogue that are likely to possess a two-component structure. We find that the vast majority of systems (220 out of 225, or 98 per cent) are compatible with this scenario. For their progenitors, original protoplanetary discs, we find an average surface density slope of -0.93 ± 0.06 and an average initial mass of (3.3^{+0.4}_{-0.3})× 10^{-3} solar masses, both of which are in agreement with the values inferred from submillimetre surveys. However, dust production by short-period comets and - more rarely - inward transport from the outer belts may be viable, and not mutually excluding, alternatives to the asteroid belt scenario. The remaining five discs (2 per cent of the sample: HIP 11486, HIP 23497, HIP 57971, HIP 85790, HIP 89770) harbour inner components that appear inconsistent with dust production in an 'asteroid belt.' Warm dust in these systems must either be replenished from cometary sources or represent an aftermath of a recent rare event, such as a major collision or planetary system instability.

  5. The breakup of a main-belt asteroid 450 thousand years ago.

    PubMed

    Nesvorný, David; Vokrouhlický, David; Bottke, William F

    2006-06-09

    Collisions in the asteroid belt frequently lead to catastrophic breakups, where more than half of the target's mass is ejected into space. Several dozen large asteroids have been disrupted by impacts over the past several billion years. These impact events have produced groups of fragments with similar orbits called asteroid families. Here we report the discovery of a very young asteroid family around the object 1270 Datura. Our work takes advantage of a method for identification of recent breakups in the asteroid belt using catalogs of osculating (i.e., instantaneous) asteroid orbits. The very young families show up in these catalogs as clusters in a five-dimensional space of osculating orbital elements.

  6. Theories of comets to the age of Laplace

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, Tofigh

    Although the development of ideas about cometary motion has been investigated in several projects, a comprehensive and detailed survey of physical theories of comets has not been conducted. The available works either illustrate relatively short periods in the history of physical cometology or portray a landscape view without adequate details. The present study is an attempt to depict the details of the major physical theories of comets from Aristotle to the age of Laplace. The basic question from which this project originated was simple: how did natural philosophers and astronomers define the nature and place of a new category of celestial objects--the comets--after Brahe's estimation of cometary distances? However, a study starting merely from Brahe without covering classical and medieval thought about comets would be incomplete. Thus, based on the fundamental physical characteristics attributed to comets, the history of cometology may be divided into three periods: from Aristotle to Brahe, in which comets were assumed to be meteorological phenomena; from Brahe to Newton, when comets were admitted as celestial bodies but with unknown trajectories; and from Newton to Laplace, in which they were treated as members of the solar system having more or less the same properties of the planets. By estimating the mass of comets in the 1800s, Laplace diverted cometology into a different direction wherein they were considered among the smallest bodies in the solar system and deprived of the most important properties that had been used to explain their physical constitution during the previous two millennia. Ideas about the astrological aspects of comets are not considered in this study. Also, topics concerning the motion of comets are explained to the extent that is helpful in illustrating their physical properties. The main objective is to demonstrate the foundations of physical theories of comets, and the interaction between observational and mathematical astronomy, and

  7. Fine-Gained CAIs in Comet Samples: Moderate Refractory Character and Comparison to Small Refractory Inclusions in Chondrites

    NASA Technical Reports Server (NTRS)

    Joswiak, D. J.; Brownlee, D. E.; Nguyen, A. N.; Messenger, S

    2017-01-01

    Examination of >200 comet Wild 2 particles collected by the Stardust (SD) mission shows that the CAI abundance of comet Wild 2's rocky material is near 1% and that nearly 50% of all bulbous tracks will contain at least one recognizable CAI fragment. A similar abundance to Wild 2 is found in a giant cluster IDP thought to be of cometary origin. The properties of these CAIs and their comparison with meteoritic CAIs provide important clues on the role of CAIs in the early Solar System (SS) and how they were transported to the edge of the solar nebula where Kuiper Belt comets formed. Previously, only two CAIs in comet Wild 2 had been identified and studied in detail. Here we present 2 new Wild 2 CAIs and 2 from a giant cluster cometary IDP, describe their mineralogical characteristics and show that they are most analogous to nodules in spinel-rich, fine-grained inclusions (FGIs) observed in CV3 and other chondrites. Additionally, we present new O isotope measurements from one CAI from comet Wild 2 and show that its oxygen isotopic composition is similar to some FGIs. This is only the second CAI from Wild 2 in which O isotopes have been measured.

  8. Quasi-Static and Dynamic Response Characteristics of F-4 Bias-Ply and Radial-Belted Main Gear Tires

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.

    1997-01-01

    An investigation was conducted at Langley Research Center to determine the quasi-static and dynamic response characteristics of F-4 military fighter 30x11.5-14.5/26PR bias-ply and radial-belted main gear tires. Tire properties were measured by the application of vertical, lateral, and fore-and-aft loads. Mass moment-of-inertia data were also obtained. The results of the study include quasi-static load-deflection curves, free-vibration time-history plots, energy loss associated with hysteresis, stiffness and damping characteristics, footprint geometry, and inertia properties of each type of tire. The difference between bias-ply and radial-belted tire construction is given, as well as the advantages and disadvantages of each tire design. Three simple damping models representing viscous, structural, and Coulomb friction are presented and compared with the experimental data. The conclusions discussed contain a summary of test observations.

  9. The number of Jupiter family comets as a constraint on the transneptunian population

    NASA Astrophysics Data System (ADS)

    Tancredi, G.; et al.

    Several duynamical studies point out that the comets of the Jupiter family were originated in a flat belt in the transneptunian region. The Jupiter family is a transient dynamical state between the injection from the outer region and i) the ejection out of the Solar System, ii) the collision against one of its members or iii) the desintegration into a meteor stream. It has been generally assumed that the Jupiter family (JF) is in a steady state; i.e. the injection is balanced by the ejection+collision+ desintegration. Knowing the duration of a typical visit into the Jupiter family and the number of JF comets we could infer the injection rate. The rate of escapes from the transneptunian region and the fraction that reach the Jupiter family can be computed from massive integrations of particles starting in the outer region. An estimate of the required population of transneptunian objects can then be inferred from these numbers. There have been published several estimates of the dynamical parameters mentioned above but the total number of JF comets has been difficult to estimate. Based on a compilation of all the reported nuclear magnitudes of JF comets, we derive the total number of objects in the cometary population. The observed population (~ 200) is a tiny fraction of the total population (several thousands). Compiling all these numbers, we then derive the required trasneptunian population.

  10. Rosetta Comet Spreads its Jets

    NASA Image and Video Library

    2014-10-24

    This image was taken by the Optical, Spectroscopic, and Infrared Remote Imaging System, Rosetta main onboard scientific imaging system, on Sept. 10, 2014. Jets of cometary activity can be seen along almost the entire body of the comet.

  11. HUBBLE SEES MINI-COMET FRAGMENTS FROM COMET LINEAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [lower right] In one stunning Hubble picture the fate of the mysteriously vanished solid nucleus of Comet LINEAR has been settled. The Hubble picture shows that the comet nucleus has been reduced to a shower of glowing 'mini-comets' resembling the fiery fragments from an exploding aerial firework. This is the first time astronomers have ever gotten a close-up look at what may be the smallest building blocks of cometary nuclei, the icy solid pieces called 'cometesimals', which are thought to be less than 100 feet across. The farthest fragment to the left, which is now very faint, may be the remains of the parent nucleus that fragmented into the cluster of smaller pieces to the right. The comet broke apart around July 26, when it made its closest approach to the Sun. The picture was taken with Hubble's Wide Field Planetary Camera 2 on August 5, 2000, when the comet was at a distance of 64 million miles (102 million kilometers) from Earth. Credit: NASA, Harold Weaver (the Johns Hopkins University), and the HST Comet LINEAR Investigation Team [upper left] A ground-based telescopic view (2.2-meter telescope) of Comet LINEAR taken on August 5, at nearly the same time as the Hubble observations. The comet appears as a diffuse elongated cloud of debris without any visible nucleus. Based on these images, some astronomers had concluded that the ices in the nucleus had completely vaporized, leaving behind a loose swarm of dust. Hubble's resolution was needed to pinpoint the remaining nuclei (inset box shows HST field of view as shown in lower right). Credit: University of Hawaii

  12. The Phase Space Structure Near Neptune Resonances in the Kuiper Belt

    NASA Technical Reports Server (NTRS)

    Malhotra, Renu

    1996-01-01

    The Solar system beyond Neptune is believed to house a population of small primordial bodies left over from the planet formation process. The region up to heliocentric distance -50 AU (a.k.a. the Kuiper Belt) may be the source of the observed short-period comets. In this region, the phase space structure near orbital resonances with Neptune is of special interest for the long-term stability of orbits. There is reason to believe that a significant fraction (perhaps most) of the Kuiper Belt objects reside preferentially in these resonance locations. This paper describes the dynamics of small objects near the major orbital resonances with Neptune. Estimates of the widths of stable resonance zones as well as the properties of resonant orbits are obtained from the circular, planar restricted three-body model. Although this model does not contain the full complexity of the long-term orbital dynamics of Kuiper Belt objects subject to the full N-body perturbations of all the planets, it does provide a baseline for the phase space structure and properties of resonant orbits in the trans-Neptunian Solar system.

  13. Oxygen isotope reservoirs in the outer asteroid belt inferred from oxygen isotope systematics of chondrule olivines and isolated forsterite and olivine grains in Tagish Lake-type carbonaceous chondrites, WIS 91600 and MET 00432

    NASA Astrophysics Data System (ADS)

    Yamanobe, Masakuni; Nakamura, Tomoki; Nakashima, Daisuke

    2018-03-01

    To understand oxygen isotope ratios and redox conditions of the chondrule formation environments of the outer rigions of the asteroid belt, we analyzed major element concentrations and oxygen isotope ratios of olivine grains in chondrules, isolated forsterite, and isolated olivine from the WIS 91600 and MET 00432 carbonaceous chondrites, which are thought to have originated from D-type asteroids located in the outer asteroid belt. The oxygen isotope ratios of individual chondrules and isolated grains show a wide variation in δ18O from -9.9‰ to +9.1‰ along the carbonaceous chondrite anhydrous mineral (CCAM) and primitive chondrule mineral (PCM) lines. The Δ17O (= δ17O - 0.52 × δ18O) values of the measured objects increase with decreasing Mg#; i.e., FeO-poor objects (Mg# > 90; type I chondrules and isolated forsterites) mainly have Δ17O values of ca. -6‰, and FeO-rich objects (Mg# < 90; type II chondrules and isolated olivines) have Δ17O values ranging from -3‰ to +2‰. Similar trends are observed for ferromagnesian silicate particles from comet Wild2 and CR chondrite chondrules, particularly in terms of FeO-rich objects with Δ17O values ranging from -3‰ to +2‰. It is suggested that FeO-rich objects formed in the outer regions of the asteroid belt and were transported to the outer solar nebular regions where comet Wild2 formed.

  14. Exploring the collisional evolution of the asteroid belt

    NASA Astrophysics Data System (ADS)

    Bottke, W.; Broz, M.; O'Brien, D.; Campo Bagatin, A.; Morbidelli, A.

    2014-07-01

    The asteroid belt is a remnant of planet-formation processes. By modeling its collisional and dynamical history, and linking the results to constraints, we can probe how the planets and small bodies formed and evolved. Some key model constraints are: (i) The wavy shape of the main-belt size distribution (SFD), with inflection points near 100-km, 10--20-km, 1 to a few km, and ˜0.1-km diameter; (ii) The number of asteroid families created by the catastrophic breakup of large asteroid bodies over the last ˜ 4 Gy, with the number of disrupted D > 100 km bodies as small as ˜20 or as large as 60; (iii) the flux of small asteroids derived from the main belt that have struck the Moon over the last 3.5 Ga --- crater SFDs on lunar terrains with known ages suggest the D < 0.1 km projectile population has not varied appreciably over this interval; (iv) Vesta has an intact basaltic crust with two very large basins, but only two, on its surface. Fits to these parameters allow us to predict the shape of the initial main-belt SFD after accretion and the approximate asteroid disruption scaling law, with the latter consistent with numerical hydrocode simulations. Overall, we find that the asteroid belt probably experienced the equivalent of ˜6--10 Gy of comminution over its history. This value may seem strange, considering the solar system is only 4.56 Gy old. One way to interpret it is that the main belt once had more mass that was eliminated by early dynamical processes between 4--4.56 Ga. This would allow for more early grinding, and it would suggest the main belt's wavy-shaped SFD is a ''fossil'' from a more violent early epoch. Simulations suggest that most D > 100 km bodies have been significantly battered, but only a fraction have been catastrophically disrupted. Conversely, most small asteroids today are byproducts of fragmentation events. These results are consistent with growing evidence that most of the prominent meteorite classes were produced by young asteroid

  15. Where are the mini Kreutz-family comets?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Quan-Zhi; Wiegert, Paul A.; Hui, Man-To

    The Kreutz family of sungrazing comets contains over 2000 known members, many of which are believed to be under ∼100 m sizes (mini comets) and have only been studied at small heliocentric distances (r {sub H}) with space-based SOHO/STEREO spacecraft. To understand the brightening process of mini Kreutz comets, we conducted a survey using CFHT/MegaCam at moderate r {sub H} guided by SOHO/STEREO observations. We identify two comets that should be in our search area but are not detected, indicating that the comets have either followed a steeper brightening rate within the previously reported rapid brightening stage (the brightening burst),more » or the brightening burst starts earlier than expected. We present a composite analysis of the pre-perihelion light curves of five Kreutz comets that cover to ∼1 AU. We observe significant diversity in the light curves that can be used to grossly classify them into two types: C/Ikeya-Seki and C/SWAN follow the canonical r{sub H}{sup −4} while the others follow r{sub H}{sup −7}. In particular, C/SWAN seems to have undergone an outburst (Δm > 5 mag) or a rapid brightening (n ≳ 11) between r {sub H} = 1.06 AU and 0.52 AU, and shows hints of structural/compositional differences compared to other bright Kreutz comets. We also find evidence that the Kreutz comets as a population lose their mass less efficiently than the dynamically new comet, C/ISON, and are relatively devoid of species that drive C/ISON's activity at large r {sub H}. Concurrent observations of C/STEREO in different wavelengths also suggest that a blueward species such as CN may be the main driver for brightening bursts, instead of sodium as previously thought.« less

  16. PHOTO ILLUSTRATION OF COMET P/SHOEMAKER-LEVY 9 and PLANET JUPITER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a composite photo, assembled from separate images of Jupiter and comet P/Shoemaker-Levy 9, as imaged by the Wide Field and Planetary Camera-2 (WFPC-2), aboard NASA's Hubble Space Telescope (HST). Jupiter was imaged on May 18, 1994, when the giant planet was at a distance of 420 million miles (670 million km) from Earth. This 'true-color' picture was assembled from separate HST exposures in red, blue, and green light. Jupiter's rotation between exposures creates the blue and red fringe on either side of the disk. HST can resolve details in Jupiter's magnificent cloud belts and zones as small as 200 miles (320 km) across (wide field mode). This detailed view is only surpassed by images from spacecraft that have traveled to Jupiter. The dark spot on the disk of Jupiter is the shadow of the inner moon Io. This volcanic moon appears as an orange and yellow disk just to the upper right of the shadow. Though Io is approximately the size of Earth's Moon (but 2,000 times farther away), HST can resolve surface details. When the comet was observed on May 17, its train of 21 icy fragments stretched across 710 thousand miles (1.1 million km) of space, or 3 times the distance between Earth and the Moon. This required six WFPC exposures along the comet train to include all the nuclei. The image was taken in red light. The apparent angular size of Jupiter relative to the comet, and its angular separation from the comet when the images were taken, have been modified for illustration purposes. Credit: H.A. Weaver, T.E. Smith (Space Telescope Science Institute) and J.T. Trauger, R.W. Evans (Jet Propulsion Laboratory), and NASA

  17. The Midplane of the Main Asteroid Belt and Its Warps

    NASA Astrophysics Data System (ADS)

    Cambioni, Saverio; Malhotra, Renu

    2017-10-01

    It has been recognized for a long time that the orbital planes of asteroids are surprisingly highly dispersed about the mean plane of the solar system, and likely memorialize dynamical events over the ancient history of the solar system. But how well do we know the mean plane of the asteroid belt? Since the time of the first measurements of their mean plane (Plummer 1916; Shor & Yagudina 1991), the number of known main belt asteroids (MBAs) has dramatically increased; the large size of this population now allows measuring its mean plane at much higher accuracy than in previous studies and also allows to compare it with theoretical expectations. The theoretically expected mean plane is defined by the forced solution of the secular perturbation theory for the inclinations and nodes (e.g., Murray & Dermott 1999); this forced plane varies with semi-major axis. We measure the mean plane by analyzing the observational data and we compare it with the theoretical prediction. Our observationally nearly complete sample consists of 89,216 numbered, non-collisional family asteroids of absolute magnitude below 15.5. For the population as a whole, we find that the mean plane differs significantly from previous measurements: the mean plane’s inclination is I = 0.929 (+0.042, -0.042) degrees and its longitude of ascending node is Ω = 87.60 (+2.58, -2.58) degrees. When measured in small semi-major axis bins between 2.15 and 3.25 AU, the mean plane is found to be largely consistent with secular perturbation theory predictions, deviating not more than (1-2)-σ from the theoretically expected values. A warp near the inner edge, due to the ν16 secular resonance, is visible in the data. Our analysis reveals the way to a novel method for the computation of the free or “proper” inclinations of the MBAs, by computing asteroid inclinations relative to the measured mean plane at that location in semi-major axis.This study used the catalogs of osculating elements for the minor planets

  18. A Million Comet Pieces

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] A Million Comet Pieces (poster version)

    This infrared image from NASA's Spitzer Space Telescope shows the broken Comet 73P/Schwassman-Wachmann 3 skimming along a trail of debris left during its multiple trips around the sun. The flame-like objects are the comet's fragments and their tails, while the dusty comet trail is the line bridging the fragments.

    Comet 73P /Schwassman-Wachmann 3 began to splinter apart in 1995 during one of its voyages around the sweltering sun. Since then, the comet has continued to disintegrate into dozens of fragments, at least 36 of which can be seen here. Astronomers believe the icy comet cracked due the thermal stress from the sun.

    The Spitzer image provides the best look yet at the trail of debris left in the comet's wake after its 1995 breakup. The observatory's infrared eyes were able to see the dusty comet bits and pieces, which are warmed by sunlight and glow at infrared wavelengths. This comet debris ranges in size from pebbles to large boulders. When Earth passes near this rocky trail every year, the comet rubble burns up in our atmosphere, lighting up the sky in meteor showers. In 2022, Earth is expected to cross close to the comet's trail, producing a noticeable meteor shower.

    Astronomers are studying the Spitzer image for clues to the comet's composition and how it fell apart. Like NASA's Deep Impact experiment, in which a probe smashed into comet Tempel 1, the cracked Comet 73P/Schwassman-Wachmann 3 provides a perfect laboratory for studying the pristine interior of a comet.

    This image was taken from May 4 to May 6 by Spitzer's multi-band imaging photometer, using its 24-micron wavelength channel.

  19. CINE: Comet INfrared Excitation

    NASA Astrophysics Data System (ADS)

    de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.

    2017-08-01

    CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

  20. VizieR Online Data Catalog: NIR albedos of main-belt asteroids (Masiero+, 2014)

    NASA Astrophysics Data System (ADS)

    Masiero, J. R.; Grav, T.; Mainzer, A. K.; Nugent, C. R.; Bauer, J. M.; Stevenson, R.; Sonnett, S.

    2017-04-01

    To fit for NIR albedos of main-belt asteroids, we use data from the WISE/NEOWISE all-sky single exposure source table, which are available for download from the Infrared Science Archive (IRSA, http://irsa.ipac.caltech.edu ; Cutri et al. 2012, xplanatory Supplement to the WISE All-Sky Data Release Products, http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/index.html). We extract photometric measurements of all asteroids observed by WISE following the technique described in Masiero et al. (2011, J/ApJ/741/68) and Mainzer et al. (2011ApJ...731...53M). In particular, we use the NEOWISE observations reported to the MPC and included in the MPC's minor planet observation database as the final validated list of reliable NEOWISE detections of solar system objects. (1 data file).

  1. Colors of Inner Disk Classical Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Romanishin, W.; Tegler, S. C.; Consolmagno, G. J.

    2010-07-01

    We present new optical broadband colors, obtained with the Keck 1 and Vatican Advanced Technology telescopes, for six objects in the inner classical Kuiper Belt. Objects in the inner classical Kuiper Belt are of interest as they may represent the surviving members of the primordial Kuiper Belt that formed interior to the current position of the 3:2 resonance with Neptune, the current position of the plutinos, or, alternatively, they may be objects formed at a different heliocentric distance that were then moved to their present locations. The six new colors, combined with four previously published, show that the ten inner belt objects with known colors form a neutral clump and a reddish clump in B-R color. Nonparametric statistical tests show no significant difference between the B-R color distribution of the inner disk objects compared to the color distributions of Centaurs, plutinos, or scattered disk objects. However, the B-R color distribution of the inner classical Kuiper Belt Objects does differ significantly from the distribution of colors in the cold (low inclination) main classical Kuiper Belt. The cold main classical objects are predominately red, while the inner classical belt objects are a mixture of neutral and red. The color difference may reveal the existence of a gradient in the composition and/or surface processing history in the primordial Kuiper Belt, or indicate that the inner disk objects are not dynamically analogous to the cold main classical belt objects.

  2. COLORS OF INNER DISK CLASSICAL KUIPER BELT OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanishin, W.; Tegler, S. C.; Consolmagno, G. J., E-mail: wromanishin@ou.ed, E-mail: Stephen.Tegler@nau.ed, E-mail: gjc@specola.v

    2010-07-15

    We present new optical broadband colors, obtained with the Keck 1 and Vatican Advanced Technology telescopes, for six objects in the inner classical Kuiper Belt. Objects in the inner classical Kuiper Belt are of interest as they may represent the surviving members of the primordial Kuiper Belt that formed interior to the current position of the 3:2 resonance with Neptune, the current position of the plutinos, or, alternatively, they may be objects formed at a different heliocentric distance that were then moved to their present locations. The six new colors, combined with four previously published, show that the ten innermore » belt objects with known colors form a neutral clump and a reddish clump in B-R color. Nonparametric statistical tests show no significant difference between the B-R color distribution of the inner disk objects compared to the color distributions of Centaurs, plutinos, or scattered disk objects. However, the B-R color distribution of the inner classical Kuiper Belt Objects does differ significantly from the distribution of colors in the cold (low inclination) main classical Kuiper Belt. The cold main classical objects are predominately red, while the inner classical belt objects are a mixture of neutral and red. The color difference may reveal the existence of a gradient in the composition and/or surface processing history in the primordial Kuiper Belt, or indicate that the inner disk objects are not dynamically analogous to the cold main classical belt objects.« less

  3. The recent breakup of an asteroid in the main-belt region.

    PubMed

    Nesvorný, David; Bottke, William F; Dones, Luke; Levison, Harold F

    2002-06-13

    The present population of asteroids in the main belt is largely the result of many past collisions. Ideally, the asteroid fragments resulting from each impact event could help us understand the large-scale collisions that shaped the planets during early epochs. Most known asteroid fragment families, however, are very old and have therefore undergone significant collisional and dynamical evolution since their formation. This evolution has masked the properties of the original collisions. Here we report the discovery of a family of asteroids that formed in a disruption event only 5.8 +/- 0.2 million years ago, and which has subsequently undergone little dynamical and collisional evolution. We identified 39 fragments, two of which are large and comparable in size (diameters of approximately 19 and approximately 14 km), with the remainder exhibiting a continuum of sizes in the range 2-7 km. The low measured ejection velocities suggest that gravitational re-accumulation after a collision may be a common feature of asteroid evolution. Moreover, these data can be used to check numerical models of larger-scale collisions.

  4. Detection of silicate emission features in the 8- to 13-micron spectra of main belt asteroids

    NASA Technical Reports Server (NTRS)

    Feierberg, M. A.; Witteborn, F. C.; Lebofsky, L. A.

    1983-01-01

    A presentation is given of 8.0-13.0 micron spectra (Delta lambda/lambda = 0.02-0.03) for six main belt asteroids, which range from 58 to 220 km in diameter and sample the five principal taxonomic classes (C, S, M, R and E). Narrow, well-defined silicate emission features are present on two of the asteroids, the C-type 19 Fortuna and the M-type 21 Lutetia. No comparable emission features are observed on the S-types 11 Parthenope and 14 Irene, the R-type 349 Dembowska or the E-type 64 Angelina.

  5. Chiron and the Centaurs: Escapees from the Kuiper Belt

    NASA Technical Reports Server (NTRS)

    Stern, Alan; Campins, Humberto

    1996-01-01

    The outer Solar System has long appeared to be a largely empty place, inhabited only by the four giant planets, Pluto and a transient population of comets. In 1977 however, a faint and enigmatic object - 2060 Chiron - was discovered moving on a moderately inclined, strongly chaotic 51-year orbit which takes it from just inside Saturn's orbit out almost as far as that of Uranus. It was not initially clear from where Chiron originated. these objects become temporarily trapped on Centaur-like orbits Following Chiron's discovery, almost 15 years elapsed before other similar objects were discovered; five more have now been identified. Based on the detection statistics implied by these discoveries, it has become clear that these objects belong to a significant population of several hundred (or possibly several thousand) large icy bodies moving on relatively short-lived orbits between the giant planets. This new class of objects, known collectively as the Centaurs, are intermediate in diameter between typical comets (1-20 km) and small icy planets such as Pluto (approx. 2,300 km) and Triton (approx. 2,700 km). Although the Centaurs are interesting in their own right, they have taken on added significance following the recognition that they most probably originated in the ancient reservoir of comets and larger objects located beyond the orbit of Neptune known as the Kuiper belt.

  6. Polarization imaging of comets at geocentric distances smaller than 0.5 au: Comet 73P/Schwassmann-Wachmann 3

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Levasseur-Regourd, A.-C.

    2014-07-01

    Remote observations of sunlight scattered by solid particles provide information on the particle properties for a large variety of comets. When comets approach the Sun, solid particles and gases are released from the surface or from the inner layers [1,2]. If the comet is close enough to the Earth, the inner coma may be studied. Different coma regions are observed corresponding to different dust properties, e.g., in jets or fresh ejected dust around the coma. Narrow-band continuum filters or broader-band filters in less contaminated spectral domains (red or near infrared) are currently used to avoid or reduce the contributions from gaseous emission. Comet 73P/Schwassmann-Wachmann 3 is a fascinating fragmenting comet. Different observations in 1995 revealed an increase of activity and at least four fragments of the nucleus. In its 2011 apparition, the fragments were well separated and appeared like small individual comets. In 2006, its apparition was very favorable and allowed high- spatial resolution imaging by different complementary techniques. We observed three fragments of comet 73P/Schwassmann-Wachmann 3 from April 27 to May 3, 2006, by imaging polarimetry with the 80-cm telescope at Observatoire de Haute-Provence. The distance to the Earth was smaller than 0.2 au. Fragment C resembles a classical active comet. Regions of high and lower polarization were observed in the inner coma, appearing to change almost periodically. The variation of polarization in the inner coma was important from one night to the next one, the whole coma polarization being about constant for nucleus distances greater than 2000 km and increasing with the phase angle. Fragment B continued its (sequential) fragmentation, with a region of secondary fragments progressively moving away from the main nucleus in the antisolar direction. The chemical composition has been reported as being similar in all the fragments [3], but differences were observed between them in polarization underlining

  7. The origin of comets

    NASA Astrophysics Data System (ADS)

    Bailey, M. E.; Clube, S. V. M.; Napier, W. M.

    Theories of the nature and origin of comets are discussed in a historical review covering the period from ancient times to the present. Consideration is given to the ancient controversy as to the atmospheric or celestial nature of comets, Renaissance theories of comet orbits, superstitions regarding the effects of comets, Kant's (1755) theory of solar-system origin, the nineteenth-century discovery of the relationship between comets and meteor showers, and the continuing solar-system/interstellar debate. Oort's (1950) model of a comet swarm surrounding the solar system is examined in detail; arguments advanced to explain the formation of comets within this model are summarized; and the question of cometary catastrophism is addressed.

  8. Activity in distant comets

    NASA Technical Reports Server (NTRS)

    Luu, Jane X.

    1992-01-01

    Activity in distant comets remains a mystery in the sense that we still have no complete theory to explain the various types of activity exhibited by different comets at large distances. This paper explores the factors that should play a role in determining activity in a distant comet, especially in the cases of comet P/Tempel 2, comet Schwassmann-Wachmann 1, and 2060 Chiron.

  9. Rosetta Comet Spreads its Jets

    NASA Image and Video Library

    2014-10-24

    This image was taken by the Optical, Spectroscopic, and Infrared Remote Imaging System, Rosetta main onboard scientific imaging system, on Sept. 10, 2014. Jets of cometary activity can be seen along almost the entire body of the comet. http://photojournal.jpl.nasa.gov/catalog/PIA18886

  10. Suicide Comet HD Video

    NASA Image and Video Library

    2010-03-16

    Captured March 12, 2010 The SOHO spacecraft captured a very bright, sungrazing comet as it rocketed towards the Sun (Mar. 12, 2010) and was vaporized. This comet is arguably the brightest comet that SOHO has observed since Comet McNaught in early 2007. The comet is believed to belong to the Kreutz family of comets that broke up from a much larger comet many hundreds of years ago. They are known to orbit close to the Sun. A coronal mass ejection (CME) burst away from the Sun during the bright comet’s approach. Interestingly, a much smaller comet that preceded this one can be seen about half a day earlier on just about the identical route. And another pair of small comets followed the same track into the Sun after the bright one. Such a string of comets has never been witnessed before by SOHO. SOHO's C3 coronagraph instrument blocks out the Sun with an occulting disk; the white circle represents the size of the Sun. The planet Mercury can also be seen moving from left to right just beneath the Sun. To learn more and to download the video and still images go here: sohowww.nascom.nasa.gov/pickoftheweek/old/15mar2010/ Credit: NASA/GSFC/SOHO

  11. New Horizons High-Phase Observations of Distant Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Verbiscer, A.; Porter, S.; Spencer, J. R.; Buie, M. W.; Benecchi, S.; Weaver, H. A., Jr.; Buratti, B. J.; Ennico Smith, K.; Olkin, C.; Stern, S. A.; Young, L. A.; Cheng, A. F.

    2017-12-01

    From its unique vantage point far from the Sun, NASA's New Horizons spacecraft has observed Kuiper Belt Objects at separations ranging from 0.1 to 70 AU, and at solar phase angles far larger than those attainable from Earth. We have constructed the first KBO solar phase curves with substantial phase angle coverage for targets including Haumea, Makemake, Quaoar, Arawn (Porter et al. 2016, Astrophys. J. Lett. 828, L15), and 2002 MS4. We compare the phase functions of these KBOs with those of objects in the Pluto system and other Solar System bodies such as comets, asteroids, and icy satellites. For KBOs with known geometric albedos, these measurements enable calculation of the phase integral, an important photometric property that characterizes the energy balance on a distant KBO surface. During its approach to 2014 MU69, and following its close encounter on 1 January 2019, New Horizons will continue to exploit its capabilities as NASA's only observatory within the Kuiper Belt itself.

  12. Learned modesty and the first lady's comet: a commentary on Caroline Herschel (1787) 'An account of a new comet'.

    PubMed

    Winterburn, Emily

    2015-04-13

    Long before women were allowed to become Fellows of the Royal Society, or obtain university degrees, one woman managed to get her voice heard, her discovery verified and her achievement celebrated. That woman was Caroline Herschel, who, as this paper will discuss, managed to find ways to fit comet discoveries into her domestic life, and present them in ways that were socially acceptable. Caroline lived in a time when strict rules dictated how women (and men) should behave and present themselves and their work. Caroline understood these rules, and used them carefully as she announced each discovery, starting with this comet which she found in 1786. Caroline discovered her comets at a time when astronomers were mainly concerned with position, identifying where things were and how they were moving. Since her discoveries, research has moved on, as astronomers, using techniques from other fields, and most recently sending experiments into space, have learned more about what comets are and what they can tell us about our solar system. Caroline's paper marks one small, early step in this much bigger journey to understand comets. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  13. Bright Comet ISON

    NASA Image and Video Library

    2013-11-22

    Comet ISON shines brightly in this image taken on the morning of 19 Nov. 2013. This is a 10-second exposure taken with the Marshall Space Flight Center 20" telescope in New Mexico. The camera there is black and white, but the smaller field of view allows for a better "zoom in" on the comet's coma, which is essentially the head of the comet. Credit: NASA/MSFC/MEO/Cameron McCarty -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation

  14. ESA Unveils Its New Comet Chaser.

    NASA Astrophysics Data System (ADS)

    1999-07-01

    October 2007 before heading away from the Sun towards Comet Wirtanen. As it bounces around the Solar System, Rosetta will also make two excursions into the main asteroid belt, where it will obtain the first close-up images and information on two contrasting objects, 4979 Otawara and 140 Siwa. Scientists believe Otawara is less than 20 km across, whereas Siwa is probably 110 km in diameter, much larger than any asteroid which has so far been visited by spacecraft. Rosetta will fly to within 1,000 km of Otawara in July 2006, followed by a similar rendezvous with Siwa two years later. However, the most difficult phase of the mission will be the final rendezvous with the fast-moving comet (the foreseen date for the rendezvous manoeuvre is 27 November 2011, close approach is set for 20 May 2012 and orbit insertion around the nucleus is set for 28 May 2012). Thus, after a 5.3 billion km space odyssey, Rosetta will make first contact with Wirtanen about 675 million km from the Sun. At this distance, sunlight is 20 times weaker than on Earth, and the comet's nucleus will still be frozen and inactive. Once the navigation team are able to determine the comet's exact location from images returned by the spacecraft camera, a series of braking manoeuvres will allow Rosetta to match speed and direction with its target. After about seven months of edging closer, Rosetta will eventually close to within 2 km of Wirtanen's frozen nucleus. From its close orbit above the tiny nucleus, Rosetta will be able to send back the most detailed images and information ever obtained of a comet. When a suitable landing site has been chosen, about a month after global mapping starts, the orbiter will release a 100 kg lander onto the comet's solid surface. Touchdown must be quite slow - less than one metre per second - to allow for the almost negligible gravitational pull of the tiny nucleus. In order to ensure that the lander does not bounce and disappear into space, an anchoring harpoon will be fired

  15. Spectrophotometry of 25 comets - Post-Halley updates for 17 comets plus new observations for eight additional comets

    NASA Technical Reports Server (NTRS)

    Newburn, Ray L., Jr.; Spinrad, Hyron

    1989-01-01

    The best possible production figures within the current post-Halley framework and available observations are given for H2O, O(1D), CN, C3, C2 and dust in 25 comets. Of these, the three objects with the smallest mixing ratios of all minor species have moderate to little or no dust and appear 'old'. Comets with large amounts of CN are very dusty, and there is a clear correlation of CN with dust, although comets with little or no dust still have some CN. Thus, CN appears to have at least two sources, dust and one or more parent gases. Also, the C2/CN production ratio changes continuously with heliocentric distance in every comet considered, suggesting that C2 production may be a function of coma density as well as parental abundance. Dust production ranges from essentially zero in Comet Sugano-Saigusa-Fujikawa up to 67,000 kg/s for Halley on March 14, 1986.

  16. Photometric Analysis and Physical Parameters for Six Mars-crossing and Ten Main-belt Asteroids from APT Observatory Group: 2017 April- September

    NASA Astrophysics Data System (ADS)

    Aznar Macias, Amadeo; Cornea, R.; Suciu, O.

    2018-01-01

    Lightcurves of six Mars-crossing and eight main-belt asteroids were obtained at APT-Observatory Group from 2017 April to September. In addition, two more asteroids were captured in 2014 and 2015 during the EURONEAR project. Analysis of rotation period, lightcurve amplitude, and physical parameters (size and axis size relationship) are presented.

  17. 15 years of comet photometry: A comparative analysis of 80 comets

    NASA Technical Reports Server (NTRS)

    Osip, David J.; Schleicher, David G.; Millis, Robert L.; Hearn, M. F. A.; Birch, P. V.

    1992-01-01

    In 1976 we began a program of narrowband photometry of comets that has encompassed well over 400 nights of observations. To date, the program has provided detailed information on 80 comets, 11 of which have been observed on multiple apparitions. In this paper we present the observed range of compositions (molecular production rate ratios) and dustiness (gas production compared with AF-rho) for a well sampled group of comets. Based on these results we present preliminary analysis of taxonomic groupings as well as the abundance ratios we associate with a 'typical' comet.

  18. Electron impact excitation of carbon monoxide in comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Brunger, M. J.

    2009-02-01

    The fourth positive emissions of carbon monoxide in the coma of comet Hale-Bopp have been assumed to be due mainly to fluorescence induced by sunlight. Based on this assumption they were used to deduce the abundance of carbon monoxide in the comet, giving a value higher than in other comets. Emissions produced by electron impact excitation of CO were not considered. Recent measurements and theoretical calculations of integral cross sections for electron impact excitation of CO allow the contribution of electron impact to be calculated, giving about 40% of the total. This implies that the abundance of CO in the outer coma of comet Hale-Bopp was only 60% of that previously deduced. However, as the high proportion of CO in comet Hale-Bopp was also seen in some other measurements, alternative explanations are considered. The method of calculation is tested by successfully predicting the O I emission at 1356 Å, supporting the belief that this line is due to electron impact excitation.

  19. Disruptive collisions as the origin of 67P/C-G and small bilobate comets

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; Schwartz, Stephen R.; Jutzi, Martin; Marchi, Simone; Richardson, Derek C.; Zhang, Yun

    2016-10-01

    Images of comets sent by spacecraft have shown us that bilobate shapes seem to be common in the cometary population. This has been most recently evidenced by the images of comet 67P/C-G obtained by the ESA Rosetta mission, which show a low-density elongated body interpreted as a contact binary. The origin of such bilobate comets has been thought to be primordial because it requires the slow accretion of two bodies that become the two main components of the final object. However, slow accretion does not only occur during the primordial phase of the Solar System, but also later during the reaccumulation processes immediately following collisional disruptions of larger bodies. We perform numerical simulations of disruptions of large bodies. We demonstrate that during the ensuing gravitational phase, in which the generated fragments interact under their mutual gravity, aggregates with bi-lobed or elongated shapes formed form by reaccumulation at speeds that are at or below the range of those assumed in primordial accretion scenarios [1]. The same scenario has been demonstrated to occur in the asteroid belt to explain the origin of asteroid families [2] and has provided insight into the shapes of thus-far observed asteroids such as 25143 Itokawa [3]. Here we show that it is also a more general outcome that applies to disruption events in the outer Solar System. Moreover, we show that high temperature regions are very localized during the impact process, which solves the problem of the survival of organics and volatiles in the collisional process. The advantage of this scenario for the formation of small bilobate shapes, including 67P/C-G, is that it does not necessitate a primordial origin, as such disruptions can occur at later stages of the Solar System. This demonstrates how such comets can be relatively young, consistent with other studies that show that these shapes are unlikely to be formed early on and survive the entire history of the Solar System [4

  20. Position of planet X obtained from motion of near-parabolic comets

    NASA Astrophysics Data System (ADS)

    Medvedev, Yurii; Vavilov, Dmitrii

    2016-10-01

    The authors of paper (Batygin and Brown, 2016) proposed that a planet with 10 earth's mass and an orbit of 700 AU semi major axis and 0.6 eccentricity can explain the observed distribution of Kuiper Belt objects around Sedna. Then Fienga et al.(2016) used the INPOP planetary ephemerides model as a sensor for testing for an additional body in the solar system. They defined the planet position on the orbit using the most sensitive data set, the Cassini radio ranging data.Here we use near-parabolic comets for determination of the planet's position on the orbit. Assuming that some comets approached the planet in the past, we made a search for the comets with low Minimum Orbit Intersection Distance (MOID) with the planet's orbit. From the list of 768 near-parabolic comets five "new" comets with hyperbolic orbits were chosen. We considered two cases of the planet's motion: the direct and the inverse ones. In case of the direct motion the true anomaly of the planet lies in interval [1760, 1840] and, thus, the right ascension, the declination and geocentric distance of the planet are in intervals [830, 900], [80,100], and [1110, 1120] AU, correspondingly. In case of the inverse motion the true anomaly is in [2120, 2230] and the other values are in intervals [480, 580], [-120,-60] and [790, 910] AU. For comparison with the direct motion the true anomaly for the inverse motion, v, should be transformed by 3600-v. That gives us the interval [1370, 1480] that belongs to the intervals of the true anomaly of possible planet's position given by Fienga et al.(2016).ReferencesBatygin, K. & Brown, M. E., 2016, Evidence for a distant giant planet in the Solar system, Astronomical Journal, v. 151, 22Fienga A. A. Fienga1,J. Laskar, H. Manche, and M. Gastineau, 2016, Constraints on the location of a possible 9th planet derived from the Cassini data , Astronomy & Astrophysics, v. 587, L8

  1. Parametric Dielectric Model of Comet Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Heggy, E.; Palmer, E. M.; Kofman, W. W.; Clifford, S. M.; Righter, K.; Herique, A.

    2012-12-01

    In 2014, the European Space Agency's Rosetta mission is scheduled to rendezvous with Comet 67P/Churyumov-Gerasimenko (Comet 67P). Rosetta's CONSERT experiment aims to explore the cometary nucleus' geophysical properties using radar tomography. The expected scientific return and inversion algorithms are mainly dependent on our understanding of the dielectric properties of the comet nucleus and how they vary with the spatial distribution of geophysical parameters. Using observations of comets 9P/Tempel 1 and 81P/Wild 2 in combination with dielectric laboratory measurements of temperature, porosity, and dust-to-ice mass ratio dependencies for cometary analog material, we have constructed two hypothetical three-dimensional parametric dielectric models of Comet 67P's nucleus to assess different dielectric scenarios of the inner structure. Our models suggest that dust-to-ice mass ratios and porosity variations generate the most significant measurable dielectric contrast inside the comet nucleus, making it possible to explore the structural and compositional hypotheses of cometary nuclei. Surface dielectric variations, resulting from temperature changes induced by solar illumination of the comet's faces, have also been modeled and suggest that the real part of the dielectric constant varies from 1.9 to 3.0, hence changing the surface radar reflectivity. For CONSERT, this variation could be significant at low incidence angles, when the signal propagates through a length of dust mantle comparable to the wavelength. The overall modeled dielectric permittivity spatial and temporal variations are therefore consistent with the expected deep penetration of CONSERT's transmitted wave through the nucleus. It is also clear that changes in the physical properties of the nucleus induce sufficient variation in the dielectric properties of cometary material to allow their inversion from radar tomography.

  2. Comet rendezvous mission study

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Wells, W. C.

    1971-01-01

    Four periodic comets with perihelia between 1980 and 1986 (Encke, d'Arrest, Kipff, and Halley) are used as candidates for the comet rendezvous mission study. All these comet apparitions are especially favorable for rendezvous missions, because of early earth-based comet recovery, good opportunities to view their activity from earth, and reasonable launch vehicle and trajectory requirements for nominal payloads.

  3. SPHERE Sheds New Light on the Collisional History of Main-belt Asteroids

    NASA Astrophysics Data System (ADS)

    Marsset, M.; Carry, B.; Pajuelo, M.; Viikinkoski, M.; Hanuš, J.; Vernazza, P.; Dumas, C.; Yang, B.

    2017-09-01

    The Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument has unveiled unprecedented details of the three-dimensional shape, surface topography and cratering record of four medium-sized ( 200 km) asteroids, opening the prospect of a new era of ground-based exploration of the asteroid belt. Although two of the targets, (130) Elektra and (107) Camilla, have been observed extensively for more than fifteen years by the first-generation adaptive optics imagers, two new moonlets were discovered around these targets, illustrating the unique power of SPHERE. In the next two years SPHERE will continue to collect high- angular-resolution and high-contrast measurements of about 40 asteroids. These observations of a large number of asteroids will provide a unique dataset to better understand the collisional history and multiplicity rate of the asteroid belt.

  4. Development and characteristics of Mechanical Porous Ambient Comet Simulants as comet surface analogs

    NASA Astrophysics Data System (ADS)

    Carey, Elizabeth M.; Peters, Gregory H.; Choukroun, Mathieu; Chu, Lauren; Carpenter, Emma; Cohen, Brooklin; Panossian, Lara; Zhou, Yu Meng; Sarkissian, Ani; Moreland, Scott; Shiraishi, Lori R.; Backes, Paul; Zacny, Kris; Green, Jacklyn R.; Raymond, Carol

    2017-11-01

    Comets are icy remnants of the Solar System formation, and as such contain some of the most primitive volatiles and organic materials. Sampling the surface of a comet is a high priority for the New Frontiers program. Planetary simulants are crucial to the development of adequate in situ instruments and sample acquisition systems. A high-fidelity comet surface simulant has been developed to support hardware design and development for one Comet Surface Sample Return tool, the BiBlade Comet Sampler. Mechanical Porous Ambient Comet Simulants (MPACS) can be manufactured to cover a wide range of desired physical properties, such as density and cone penetration resistance, and exhibit a brittle fracture mode. The structure of the MPACS materials is an aggregated composite structure of weakly-bonded grains of very small size (diameter ≤ 40 μm) that are most relevant to the structure of the surface of a comet nucleus.

  5. Size and Perihelion Distribution of S and Q-type Asteroid Spectral Slopes from the Near Earth Region Through the Main Belt

    NASA Astrophysics Data System (ADS)

    Graves, Kevin; Minton, David A.; Hirabayashi, Masatoshi; Carry, Benoit; DeMeo, Francesca E.

    2016-10-01

    High resolution spectral observations of small S-type and Q-type Near Earth Asteroids (NEAs) have shown two important trends. The spectral slope of these asteroids, which is a good indication of the amount of space weathering the surface has received, has been shown to decrease with decreasing perihelion and size. Specifically, these trends show that there are less weathered surfaces at low perihelion and small sizes. With recent results from all-sky surveys such as the Sloan Digital Sky Survey's (SDSS) Moving Object Catalog, we have gained an additional data set to test the presence of these trends in the NEAs as well as the Mars Crossers (MCs) and the Main Belt. We use an analog to the spectral slope in the SDSS data which is the slope through the g', r' and i' filters, known as the gri-slope, to investigate the amount of weathering that is present among small asteroids throughout the inner solar system. We find that the trend of the gri-slope decreases with decreasing size at nearly the same rate in the Main Belt as in the MC and NEA regions. We propose that these results suggest a ubiquitous presence of Q-types and S-types with low spectral slopes at small sizes throughout the inner solar system, from the Main Belt to the NEA region. Additionally, we suggest that the trend of decreasing spectral slope with perihelion may only be valid at perihelia of approximately less than 1 AU. These results suggest a change in the interpretation for the formation of Q-type asteroids. Planetary encounters may help to explain the high fraction of Q-types at low perihelia, but another process which is present everywhere must also be refreshing the surfaces of these asteroids. We suggest the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect as a possible mechanism.

  6. Multi-asteroid comet missions using solar electric propulsion.

    NASA Technical Reports Server (NTRS)

    Bender, D. F.; Bourke, R. D.

    1972-01-01

    Multitarget flyby missions to asteroids and comets are attractive candidates for solar electric propulsion (SEP) application because SEP can efficiently provide the thrust required for carefully chosen sequences of encounters. In this paper, techniques for finding encounter sequences for these missions are described, and examples involving flyby and rendezvous missions to P/Encke, P/Kopff and 20/Massalia are presented. In addition, examples of four asteroid flyby sequences are given. Encounters typically have flyby speeds on the order of 5-10 km/sec and are limited only by navigational capability as regards flyby distance, which is taken as zero in the study. Flights traversing the asteroid belt can be modified by SEP to pass one or more asteroids, and the performance penalty is small if the encounters are properly spaced.

  7. Comet ISON Enhanced

    NASA Image and Video Library

    2013-11-22

    Taken on 19 Nov. 2013, this image shows a composite "stacked" image of comet ISON. These five stacked images of 10 seconds each were taken with the 20" Marshall Space Flight Center telescope in New Mexico. This technique allows the comet's sweeping tail to emerge with more detail. Credit: NASA/MSFC/MEO/Cameron McCarty -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could

  8. Comets: Data, problems, and objectives

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1977-01-01

    A highly abridged review of new relevant results from the observations of Comet Kohoutek is followed by an outline summary of our basic knowledge concerning comets, both subjects being confined to data related to the nature and origin of comets rather than the phenomena (for example, plasma phenomena are omitted). The discussion then centers on two likely places of cometary origin in the developing solar system, the proto-Uranus-Neptune region versus the much more distant fragmented interstellar cloud region, now frequented by comets of the Opik-Oort cloud. The Comet Kohoutek results add new insights, particularly with regard to the parent molecules and the nature of meteoric solids in comets, to restrict the range of the physical circumstances of comet formation. A few fundamental and outstanding questions are asked, and a plea made for unmanned missions to comets and asteroids in order to provide definitive answers as to the nature and origin of comets, asteroids, and the solar system generally.

  9. Rosetta - a comet ride to solve planetary mysteries

    NASA Astrophysics Data System (ADS)

    2003-01-01

    be kept in hibernation during most of its 8-year trek towards Wirtanen. What makes Rosetta's cruise so long? To reach Comet Wirtanen, the spacecraft needs to go out in deep space as far from the Sun as Jupiter is. No launcher could possibly get Rosetta there directly. ESA's spacecraft will gather speed from gravitational ‘kicks’ provided by three planetary fly-bys: one of Mars in 2005 and two of Earth in 2005 and 2007. During the trip, Rosetta will also visit two asteroids, Otawara (in 2006) and Siwa (in 2008). During these encounters, scientists will switch on Rosetta's instruments for calibration and scientific studies. Long trips in deep space include many hazards, such as extreme changes in temperature. Rosetta will leave the benign environment of near-Earth space to the dark, frigid regions beyond the asteroid belt. To manage these thermal loads, experts have done very tough pre-launch tests to study Rosetta's endurance. For example, they have heated its external surfaces to more than 150°C, then quickly cooled it to -180°C in the next test. The spacecraft will be fully reactivated prior to the comet rendezvous manoeuvre in 2011. Then, Rosetta will orbit the comet - an object only 1.2 km wide - while it cruises through the inner Solar System at 135 000 kilometres per hour. At that time of the rendezvous - around 675 million km from the Sun - Wirtanen will hardly show any surface activity. It means that the carachteristic coma (the comet’s ‘atmosphere’) and the tail will not be formed yet, because of the large distance from the Sun. The comet's tail is in fact made of dust grains and frozen gases from the comet's surface that vapourise because of the Sun's heat. During 6-month, Rosetta will extensively map the comet surface, prior to selecting a landing site. In July 2012, the lander will self-eject from the spacecraft from a height of just one kilometre. Touchdown will take place at walking speed - less than 1 metre per second. Immediately after

  10. Comets in Australian Aboriginal Astronomy

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.; Norris, Ray P.

    2011-03-01

    We present 25 accounts of comets from 40 Australian Aboriginal communities, citing both supernatural perceptions of comets and historical accounts of historically bright comets. Historical and ethnographic descriptions include the Great Comets of 1843, 1861, 1901, 1910, and 1927. We describe the perceptions of comets in Aboriginal societies and show that they are typically associated with fear, death, omens, malevolent spirits, and evil magic, consistent with many cultures around the world. We also provide a list of words for comets in 16 different Aboriginal languages.

  11. Electron impact ionization in the vicinity of comets

    NASA Astrophysics Data System (ADS)

    Cravens, T. E.; Kozyra, J. U.; Nagy, A. F.; Gombosi, T. I.; Kurtz, M.

    1987-07-01

    The solar wind interacts very strongly with the extensive cometary coma, and the various interaction processes are initiated by the ionization of cometary neutrals. The main ionization mechanism far outside the cometary bow shock is photoionization by solar extreme ultraviolet radiation.Electron distributions measured in the vicinity of comets Halley and Giacobini-Zinner by instruments on the VEGA and ICE spacecraft, respectively, are used to calculate electron impact ionization frequencies. Ionization by electrons is of comparable importance to photoionization in the magnetosheaths of Comets Halley and Giacobini-Zinner. The ionization frequency in the inner part of the cometary plasma region of comet Halley is several times greater than the photoionization value. Tables of ionization frequencies as functions of electron temperature are presented for H2O, CO2, CO, O, N2, and H.

  12. Submillimeter studies of main-sequence stars

    NASA Technical Reports Server (NTRS)

    Zuckerman, B.; Becklin, E. E.

    1993-01-01

    JCMT maps of the 800-micron emission from Vega, Fomalhaut, and Beta Pictoris are interpreted to indicate that they are not ringed by large reservoirs of distant orbiting dust particles that are too cold to have been detected by IRAS. A search for 800-micron emission from stars in the Pleiades and Ursa Majoris open clusters is reported. In comparison with the mass of dust particles near T Tauri and Herbig Ae stars, the JCMT data indicate a decline in dust mass during the initial 3 x 10 exp 8 yr that a star spends on the main sequence that is at least as rapid as (time) exp -2. It is estimated that in the Kuiper belt the ratio of total mass carried by small particles to that carried by comets is orders of magnitude smaller than this ratio is 1 AU from the sun. If 800-micron opacities calculated by Pollack et al. (1993) are correct, then the particles with radii less than 100 microns that dominate the FIR fluxes measured by IRAS cannot entirely account for the measured 800-micron fluxes at Vega, Beta Pic, and Fomalhaut; larger particles must be present as well.

  13. Comet Dead Ahead

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows comet Tempel 1 as seen through the clear filter of the medium resolution imager camera on Deep Impact. It was taken on June 26, 2005, when the spacecraft was 7,118,499.4 kilometers (4,423,435 miles) away from the comet. Eight images were combined to create this picture, and a logarithmic stretch was applied to enhance the coma of the comet.

  14. Realm of the comets

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.

    1987-01-01

    Studies of Jovian perturbations of the orbits of long-period comets led to the concept of the Oort cloud of 180 billion comets at 50,000-150,000 AU from the sun. Several comets are induced to move toward the sun every million years by the passage of a star at a distance of a few light years. The location of the cloud has since been revised to 20,000-100,000 AU, and comets are now accepted as remnant material fron the proto-solar system epoch. The galactic disk and random, close-passing stars may also cause rare, large perturbations in the orbits of the cloud comets, sending large numbers of comets through the inner solar system. The resulting cometary storm is a candidate cause for the wholesale extinction of dinosaurs in the Cretaceous-Terniary transition due to large number of planetesimals, or one large comet, striking the earth, in a short period of time. The IRAS instruments have detected similar clouds of material around other stars.

  15. Realm of the comets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weissman, P.R.

    1987-03-01

    Studies of Jovian perturbations of the orbits of long-period comets led to the concept of the Oort cloud of 180 billion comets at 50,000-150,000 AU from the sun. Several comets are induced to move toward the sun every million years by the passage of a star at a distance of a few light years. The location of the cloud has since been revised to 20,000-100,000 AU, and comets are now accepted as remnant material fron the proto-solar system epoch. The galactic disk and random, close-passing stars may also cause rare, large perturbations in the orbits of the cloud comets, sendingmore » large numbers of comets through the inner solar system. The resulting cometary storm is a candidate cause for the wholesale extinction of dinosaurs in the Cretaceous-Terniary transition due to large number of planetesimals, or one large comet, striking the earth, in a short period of time. The IRAS instruments have detected similar clouds of material around other stars.« less

  16. Spectral properties of the nucleus of short-period comets

    NASA Astrophysics Data System (ADS)

    Toth, I.; Lamy, P. L.

    2000-10-01

    Comets, Edgeworth-Kuiper-Belt Objects (EKBOs), Centaurs and low albedo asteroids contain a considerable amount of information regarding some of the primordial processes that governed the formation of the early Solar System planetesimals. Opportunities to determine the colors of cometary nuclei are rare and relevant ground-based observations are difficult to perform. Color diversities and similarities between different types of small bodies have already been considered ([1] and references therein). We pursue this analysis further by introducing new BVRI colors obtained from our survey of cometary nuclei with the Hubble Space Telescope [2] as well as recent data obtained on EKBOs. We present preliminary results on the distribution of the BVRI colors (histograms, two-color diagrams) and possible relationships between the colors and orbital elements as well as the determined body sizes. The mean colors of the selected sample of the short-period (s-p) comets are: < (B-V) > = 0.91, < (V-R) > = 0.52, and < (V-I) > = 0.84. Pearson's linear correlation analysis of the (B-V) versus (V-R) and (V-R) versus (V-I) colors show significant correlations for the EKBOs+Centaurs sample while the s-p sample seems to be uncorrelated, with a few outliers. The linear regression lines of the EKBOs+Centaurs sample crosses through the sample of the s-p comets. There are no correlations of the colors versus perihelion distances, effective radii and perihelion distances as well as the (a,sin(i)) diagrams. This work was supported by grants from CNRS and CNES, France and partially by the the Hungarian Research Foundation OTKA T025049. [1] Luu, J., 1993. Icarus 104, 138. [2] Lamy, P.L. et al., this conference

  17. High-Resolution Infrared Spectroscopic Measurements of Comet 2PlEncke: Unusual Organic Composition and Low Rotational Temperatures

    NASA Technical Reports Server (NTRS)

    Radeva, Yana L.; Mumma, Michael J.; Villanueva, Geronimo L.; Bonev, Boncho P.; DiSanti, Michael A.; A'Hearn, Michael F.; Dello Russo, Neil

    2013-01-01

    We present high-resolution infrared spectroscopic measurements of the ecliptic comet 2P/Encke, observed on 4-6 Nov. 2003 during its close approach to the Earth, using the Near Infrared Echelle Spectrograph on the Keck II telescope. We present flux-calibrated spectra, production rates, and mixing ratios for H2O, CH3OH, HCN, H2CO, C2H2, C2H6, CH4 and CO. Comet 2P/Encke is a dynamical end-member among comets because of its short period of 3.3 years. Relative to "organics-normal" comets, we determined that 2PlEncke is depleted in HCN, H2CO, C2H2, C2H6, CH4 and CO, but it is enriched in CH3OH. We compared mixing ratios of these organic species measured on separate dates, and we see no evidence of macroscopic chemical heterogeneity in the nucleus of 2P/Encke, however, this conclusion is limited by sparse temporal sampling. The depleted abundances of most measured species suggest that 2P/Encke may have formed closer to the young Sun, before its insertion to the Kuiper belt, compared with "organics-normal" comets - as was previously suggested for other depleted comets (e.g. C/1999 S4 (LINEAR)). We measured very low rotational temperatures of 20 - 30 K for H2O, CH3OH and HCN in the near nucleus region of 2P/Encke, which correlate with one of the lowest cometary gas production rates (approx. 2.6 x 10(exp 27) molecules/s) measured thus far in the infrared. This suggests that we are seeing the effects of more efficient radiative cooling, insufficient collisional excitation, and/or inefficient heating by fast H-atoms (and icy grains) in the observed region of the coma. Its extremely short orbital period, very low gas production rate, and classification as an ecliptic comet, make 2PlEncke an important addition to our growing database, and contribute significantly to the establishment of a chemical taxonomy of comets.

  18. Comet flyby sample return

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Albee, A.

    1985-01-01

    The results of a joint JPL/CSFC feasability study of a low-cost comet sample return flyby mission are presented. It is shown that the mission could be undertaken using current earth orbiter spacecraft technology in conjunction with pathfinder or beacon spacrcraft. Detailed scenarios of missions to the comets Honda-Mrkos-Pajdusakova (HMP), comet Kopff, and comet Giacobini-Zinner (GZ) are given, and some crossectional diagrams of the spacecraft designs are provided.

  19. A Comet's Missing Light

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    On 28 November 2013, comet C/2012 S1 better known as comet ISON should have passed within two solar radii of the Suns surface as it reached perihelion in its orbit. But instead of shining in extreme ultraviolet (EUV) wavelengths as it grazed the solar surface, the comet was never detected by EUV instruments. What happened to comet ISON?Missing EmissionWhen a sungrazing comet passes through the solar corona, it leaves behind a trail of molecules evaporated from its surface. Some of these molecules emit EUV light, which can be detected by instruments on telescopes like the space-based Solar Dynamics Observatory (SDO).Comet ISON, a comet that arrived from deep space and was predicted to graze the Suns corona in November 2013, was expected to cause EUV emission during its close passage. But analysis of the data from multiple telescopes that tracked ISON in EUV including SDO reveals no sign of it at perihelion.In a recent study, Paul Bryans and DeanPesnell, scientists from NCARs High Altitude Observatory and NASA Goddard Space Flight Center, try to determine why ISON didnt display this expected emission.Comparing ISON and LovejoyIn December 2011, another comet dipped into the Suns corona: comet Lovejoy. This image, showingthe orbit Lovejoy took around the Sun, is a composite of SDO images of the pre- and post-perihelion phases of the orbit. Click for a closer look! The dashed part of the curve represents where Lovejoy passed out of view behind the Sun. [Bryans Pesnell 2016]This is not the first time weve watched a sungrazing comet with EUV-detecting telescopes: Comet Lovejoy passed similarly close to the Sun in December 2011. But when Lovejoy grazed the solar corona, it emitted brightly in EUV. So why didnt ISON? Bryans and Pesnell argue that there are two possibilities:the coronal conditions experienced by the two comets were not similar, orthe two comets themselves were not similar.To establish which factor is the most relevant, the authors first demonstrate that both

  20. Dynamics of Long-period Comets

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.

    1985-01-01

    Dynamical studies of the origin and evolution of long period comets in the Oort cloud during the past year have concentrated on four areas: (1) interpretation of IRAS observations of dust shells around Vega and some 40 other main sequence stars as evidence for cometary clouds around each of these stars; (2) the dynamical plausibility of an unseen solar companion star orbiting in the Oort cloud and causing periodic cometary showers which result in biological extinction events on the earth; (3) a review of the current hypotheses for cometary formation with particular attention to how each mechanism supplies the required mass of comets to the Oort cloud; and (4) development of new dynamics software to simulate the passage of individual stars directly through the Oort cloud. Each of these efforts is described in detail.

  1. Comets

    NASA Astrophysics Data System (ADS)

    Festou, M. C.; Feldman, P. D.

    Observations of comets obtained with the IUE satellite since its launch in 1978 are reviewed. The status of UV observation of comets prior to IUE is discussed, and particular attention is given to low-resolution UV spectroscopy of cometary comae, the detection of new species in the UV emission, high-dispersion spectroscopy, spatial mapping of the emissions, abundance determinations, and short-term variability. Diagrams, graphs, sample spectra, and tables of numerical data are provided.

  2. First known terrestrial impact of a binary asteroid from a main belt breakup event.

    PubMed

    Ormö, Jens; Sturkell, Erik; Alwmark, Carl; Melosh, Jay

    2014-10-23

    Approximately 470 million years ago one of the largest cosmic catastrophes occurred in our solar system since the accretion of the planets. A 200-km large asteroid was disrupted by a collision in the Main Asteroid Belt, which spawned fragments into Earth crossing orbits. This had tremendous consequences for the meteorite production and cratering rate during several millions of years following the event. The 7.5-km wide Lockne crater, central Sweden, is known to be a member of this family. We here provide evidence that Lockne and its nearby companion, the 0.7-km diameter, contemporaneous, Målingen crater, formed by the impact of a binary, presumably 'rubble pile' asteroid. This newly discovered crater doublet provides a unique reference for impacts by combined, and poorly consolidated projectiles, as well as for the development of binary asteroids.

  3. First known Terrestrial Impact of a Binary Asteroid from a Main Belt Breakup Event

    PubMed Central

    Ormö, Jens; Sturkell, Erik; Alwmark, Carl; Melosh, Jay

    2014-01-01

    Approximately 470 million years ago one of the largest cosmic catastrophes occurred in our solar system since the accretion of the planets. A 200-km large asteroid was disrupted by a collision in the Main Asteroid Belt, which spawned fragments into Earth crossing orbits. This had tremendous consequences for the meteorite production and cratering rate during several millions of years following the event. The 7.5-km wide Lockne crater, central Sweden, is known to be a member of this family. We here provide evidence that Lockne and its nearby companion, the 0.7-km diameter, contemporaneous, Målingen crater, formed by the impact of a binary, presumably ‘rubble pile’ asteroid. This newly discovered crater doublet provides a unique reference for impacts by combined, and poorly consolidated projectiles, as well as for the development of binary asteroids. PMID:25340551

  4. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Dr. Michael A'Hearn, Principal Investigator, EPOXI Comet Encounter Mission, speaks during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  5. Comet or Asteroid?

    NASA Astrophysics Data System (ADS)

    1997-11-01

    /1996n2pw.html - Are They Comets or Asteroids? (adapted version of article by Stuart J. Goldman in Sky & Telescope, November 1996) * http://cfa-www.harvard.edu/~graff/pressreleases/1996PW.html - Two Unusual Objects: 1996 PW and C/1996 N2 (Press information from the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, Massachusetts, U.S.A.) * Abstract of research article : Origin and Evolution of the Unusual Object 1996 PW: Asteroids from the Oort Cloud? by Paul R. Weissman and Harold F. Levison * Abstract of research article : The Main Asteroid Belt - Comet Graveyard or Nursery? by Mark Hammergren * Preprint of research article : The Lightcurve and Colours of Unusual Minor Planet 1996 PW by J.K. Davies et al. This Press Release is accompanied by ESO PR Photo 31a/97 [JPG, 120k] , ESO PR Photo 31b/97 [JPG, 45k] and ESO PR Photo 31c/97 [JPG, 52k]. A larger version of ESO PR Photo 31c/97 [JPG, 384k] is also available. They may be reproduced, if credit is given to the European Southern Observatory. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ).

  6. Comets and the Stardust Mission

    ScienceCinema

    LLNL - University of California Television

    2017-12-09

    The occasional appearance of comets has awed humans throughout history. But how much do we really know about comets? Did a comet kill the dinosaurs? And, what can comets tell us about our own ancient history? With comet dust from NASA's Stardust mission, scientists like Hope Ishii, a Research Scientist at Lawrence Livermore National Laboratory, are beginning to answer these questions. She and high school teacher Tom Shefler look at how comets formed, their role in the Earth's history and the clues about what happened over 4 billion years ago. Series: Science on Saturday [5/2008] [Science] [Show ID: 14492

  7. Comets and the Stardust Mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LLNL - University of California Television

    2008-05-16

    The occasional appearance of comets has awed humans throughout history. But how much do we really know about comets? Did a comet kill the dinosaurs? And, what can comets tell us about our own ancient history? With comet dust from NASA's Stardust mission, scientists like Hope Ishii, a Research Scientist at Lawrence Livermore National Laboratory, are beginning to answer these questions. She and high school teacher Tom Shefler look at how comets formed, their role in the Earth's history and the clues about what happened over 4 billion years ago. Series: Science on Saturday [5/2008] [Science] [Show ID: 14492

  8. Physical processes in comets

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.; Huebner, W. F.

    1976-01-01

    The paper discusses physical processes in comets which involve solar and nuclear radial forces that affect the motions of gases and icy grains, gas-phase chemistry very close to the nuclei of large comets near the sun, sublimation of icy grains, dissociation of parent molecules into radicals and of radicals into atoms, and ionization by sunlight and collisions. The composition and dimensions of nuclei are examined along with variations in intrinsic brightness, the nature of volatiles, gas production rates in the coma, characteristics of icy grains in the coma, and the structure of streamers, ion tails, and dust tails. The structure of the coma is described in detail on the basis of spectroscopic observations of several comets. The origin of comets is briefly reviewed together with the relation of comets to earth, the interplanetary complex, and the interstellar medium. Desirable future observations are noted, especially by space missions to comets.

  9. Photometric geodesy of main-belt asteroids. IV - An updated analysis of lightcurves for poles, periods, and shapes

    NASA Technical Reports Server (NTRS)

    Drummond, J. D.; Weidenschilling, S. J.; Chapman, C. R.; Davis, D. R.

    1991-01-01

    The Drummond et al. (1988) analysis of main-belt asteroids is presently extended, using three independent methods to derive poles, periods, phase functions, and triaxial ellipsoid shapes from lightcurve maxima and minima. This group of 26 asteroids is also reinvestigated with a view to the distributions of triaxial shapes and obliquity distributions. Poles weakly tend to avoid asteroid orbital planes; a rough-smooth dichotomization appears to be justified by the persistence of two solar phase angle-amplitude relations. Seven of the objects may be Jacobi ellipsoids if axial ratios are slightly exaggerated by a systematic effect of the analytical method employed.

  10. The McDonald Observatory Faint Comet Survey - Gas production in 17 comets

    NASA Technical Reports Server (NTRS)

    Cochran, Anita L.; Barker, Edwin S.; Ramseyer, Tod F.; Storrs, Alex D.

    1992-01-01

    The complete Intensified Dissector Scanner data set on 17 comets is presented, and production rates are derived and analyzed. It is shown that there is a strong degree of homogenization in the production rate ratios of many comets. It also appears that the ratio of the production rates of the various species has no heliocentric distance dependence, except for the case of NH2. When speaking of the gas in the coma of a comet, it appears that comets must have been formed under remarkably uniform conditions, and that they must have evolved and formed their comae in a similar manner. The data presented here constitute strong evidence that the minor species must be bound up in a lattice and that the interior of a comet must be reasonably uniform.

  11. Disintegration of comet nuclei

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid V.

    2012-02-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.

  12. Disappearance and disintegration of comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1984-01-01

    The present investigation has the objective to provide a summary of the existing evidence on the disappearance of comets and to draw conclusions regarding the physical processes involved in the disappearance. Information concerning the classification of evidence and the causes of apparent disappearance of comets is presented in a table. Attention is given to the dissipating comets, the headless sungrazing comet 1887 I, and the physical behavior of the dissipating comets and the related phenomena. It is found that all comets confined to the planetary region of the solar system decay on astronomically short time scales. However, only some of them appear to perish catastrophically. Some of the observed phenomena could be successfully interpreted. But little insight has been obtained into the character of the processes which the dissipating comets experience.

  13. Halley's Comet.

    ERIC Educational Resources Information Center

    Carey, Tom

    1985-01-01

    Provides tips for viewing Comet Halley in the Northeast including best viewing dates from November 1985-January 1986. Discusses going south to view the comet in March-April 1986 and gives specific information about accommodations for the Halley Rally in Everglades National Park, southernmost site in the contiguous 48 states. (JHZ)

  14. Shape, size and multiplicity of main-belt asteroids I. Keck Adaptive Optics survey.

    PubMed

    Marchis, F; Kaasalainen, M; Hom, E F Y; Berthier, J; Enriquez, J; Hestroffer, D; Le Mignant, D; de Pater, I

    2006-11-01

    This paper presents results from a high spatial resolution survey of 33 main-belt asteroids with diameters >40 km using the Keck II Adaptive Optics (AO) facility. Five of these (45 Eugenia, 87 Sylvia, 107 Camilla, 121 Hermione, 130 Elektra) were confirmed to have satellite. Assuming the same albedo as the primary, these moonlets are relatively small (∼5% of the primary size) suggesting that they are fragments captured after a disruptive collision of a parent body or captured ejecta due to an impact. For each asteroid, we have estimated the minimum size of a moonlet that can positively detected within the Hill sphere of the system by estimating and modeling a 2-σ detection profile: in average on the data set, a moonlet located at 2/100 × R(Hill) (1/4 × R(Hill)) with a diameter larger than 6 km (4 km) would have been unambiguously seen. The apparent size and shape of each asteroid was estimated after deconvolution using a new algorithm called AIDA. The mean diameter for the majority of asteroids is in good agreement with IRAS radiometric measurements, though for asteroids with a D < 200 km, it is underestimated on average by 6-8%. Most asteroids had a size ratio that was very close to those determined by lightcurve measurements. One observation of 104 Klymene suggests it has a bifurcated shape. The bi-lobed shape of 121 Hermione described in Marchis et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005c. Icarus 178, 450-464] was confirmed after deconvolution. The ratio of contact binaries in our survey, which is limited to asteroids larger than 40 km, is surprisingly high (∼6%), suggesting that a non-single configuration is common in the main-belt. Several asteroids have been analyzed with lightcurve inversions. We compared lightcurve inversion models for plane-of-sky predictions with the observed images (9 Metis, 52 Europa, 87 Sylvia, 130 Elektra, 192 Nausikaa, and 423 Diotima, 511 Davida). The AO images allowed us to

  15. Shape, size and multiplicity of main-belt asteroids I. Keck Adaptive Optics survey

    PubMed Central

    Marchis, F.; Kaasalainen, M.; Hom, E.F.Y.; Berthier, J.; Enriquez, J.; Hestroffer, D.; Le Mignant, D.; de Pater, I.

    2008-01-01

    This paper presents results from a high spatial resolution survey of 33 main-belt asteroids with diameters >40 km using the Keck II Adaptive Optics (AO) facility. Five of these (45 Eugenia, 87 Sylvia, 107 Camilla, 121 Hermione, 130 Elektra) were confirmed to have satellite. Assuming the same albedo as the primary, these moonlets are relatively small (∼5% of the primary size) suggesting that they are fragments captured after a disruptive collision of a parent body or captured ejecta due to an impact. For each asteroid, we have estimated the minimum size of a moonlet that can positively detected within the Hill sphere of the system by estimating and modeling a 2-σ detection profile: in average on the data set, a moonlet located at 2/100 × RHill (1/4 × RHill) with a diameter larger than 6 km (4 km) would have been unambiguously seen. The apparent size and shape of each asteroid was estimated after deconvolution using a new algorithm called AIDA. The mean diameter for the majority of asteroids is in good agreement with IRAS radiometric measurements, though for asteroids with a D < 200 km, it is underestimated on average by 6–8%. Most asteroids had a size ratio that was very close to those determined by lightcurve measurements. One observation of 104 Klymene suggests it has a bifurcated shape. The bi-lobed shape of 121 Hermione described in Marchis et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005c. Icarus 178, 450–464] was confirmed after deconvolution. The ratio of contact binaries in our survey, which is limited to asteroids larger than 40 km, is surprisingly high (∼6%), suggesting that a non-single configuration is common in the main-belt. Several asteroids have been analyzed with lightcurve inversions. We compared lightcurve inversion models for plane-of-sky predictions with the observed images (9 Metis, 52 Europa, 87 Sylvia, 130 Elektra, 192 Nausikaa, and 423 Diotima, 511 Davida). The AO images allowed us to

  16. CO2 Orbital Trends in Comets

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Feaga, Lori; Bodewits, Dennis; McKay, Adam; Snodgrass, Colin; Wooden, Diane

    2014-12-01

    Spacecraft missions to comets return a treasure trove of details of their targets, e.g., the Rosetta mission to comet 67P/Churyumov-Gerasimenko, the Deep Impact experiment at comet 9P/Tempel 1, or even the flyby of C/2013 A1 (Siding Spring) at Mars. Yet, missions are rare, the diversity of comets is large, few comets are easily accessible, and comet flybys essentially return snapshots of their target nuclei. Thus, telescopic observations are necessary to place the mission data within the context of each comet's long-term behavior, and to further connect mission results to the comet population as a whole. We propose a large Cycle 11 project to study the long-term activity of past and potential future mission targets, and select bright Oort cloud comets to infer comet nucleus properties, which would otherwise require flyby missions. In the classical comet model, cometary mass loss is driven by the sublimation of water ice. However, recent discoveries suggest that the more volatile CO and CO2 ices are the likely drivers of some comet active regions. Surprisingly, CO2 drove most of the activity of comet Hartley 2 at only 1 AU from the Sun where vigorous water ice sublimation would be expected to dominate. Currently, little is known about the role of CO2 in comet activity because telluric absorptions prohibit monitoring from the ground. In our Cycle 11 project, we will study the CO2 activity of our targets through IRAC photometry. In conjunction with prior observations of CO2 and CO, as well as future data sets (JWST) and ongoing Earth-based projects led by members of our team, we will investigate both long-term activity trends in our target comets, with a particular goal to ascertain the connections between each comet's coma and nucleus.

  17. Photometric Observations of Main-belt Asteroids 1968 Mehltretter 2681 Ostrovskij & 3431 Nakano

    NASA Astrophysics Data System (ADS)

    Brincat, Stephen M.; Galdies, Charles

    2018-07-01

    Lightcurves for three mid-belt asteroids were obtained from Flarestar Observatory (MPC171) and Znith Observatory in 2017 and 2018. These asteroids were selected from the Collaborative Asteroid Lightcurve Link (CALL) website. No reported observations were available to deduce their rotation periods prior to this research.

  18. Polarimetric survey of main-belt asteroids. V. The unusual polarimetric behavior of V-type asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Hutton, R.; López-Sisterna, C.; Calandra, M. F.

    2017-03-01

    Aims: We present the results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained using the CASPROF and CASPOL polarimeters at the 2.15 m telescope. The CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation and CASPOL is a polarimeter based on a CCD detector, which allows us to observe fainter objects with better signal-to-noise ratio. Results: The survey began in 1995 and data on a large sample of asteroids were obtained until 2012. A second period began in 2013 using a polarimeter with a more sensitive detector in order to study small asteroids, families, and special taxonomic groups. We obtained 55 polarimetric measurements for 28 V-type main belt asteroids, all of them polarimetrically observed for the first time. The data obtained in this survey let us find polarimetric parameters for (1459) Magnya and for a group of 11 small V-type objects with similar polarimetric behavior. These polarization curves are unusual since they show a shallow minimum and a small inversion angle in comparison with (4) Vesta, although they have a steeper slope at α0. This polarimetric behavior could be explained by differences in the regoliths of these asteroids. The observations of (2579) Spartacus, and perhaps also (3944) Halliday, indicate a inversion angle larger than 24-25°. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  19. David Levy's Guide to Observing and Discovering Comets

    NASA Astrophysics Data System (ADS)

    Levy, David H.

    2003-05-01

    Preface; Part I. Why Observe Comets?: 1. Of history, superstition, magic, and science; 2. Comet science progresses; Part II. Discovering Comets: 3. Comet searching begins; 4. Tails and trails; 5. Comet searching in the twentieth century; 6. How I search for comets; 7. Searching for comets photographically; 8. Searching for comets with CCDs; 9. Comet hunting by reading; 10. Hunting for sungrazers over the Internet; 11. What to do when you think you've found a comet; Part III. A New Way of Looking at Comets: 12. When comets hit planets; 13. The future of visual comet hunting; Part IV. How to Observe Comets: 14. An introduction to comet hunting; 15. Visual observing of comets; 16. Estimating the magnitude of a comet; 17. Taking a picture of a comet; 18. Measuring where a comet is in the sky; Part V. Closing Notes: 19. My passion for comets.

  20. Comet nucleus sample return mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A comet nucleus sample return mission in terms of its relevant science objectives, candidate mission concepts, key design/technology requirements, and programmatic issues is discussed. The primary objective was to collect a sample of undisturbed comet material from beneath the surface of an active comet and to preserve its chemical and, if possible, its physical integrity and return it to Earth in a minimally altered state. The secondary objectives are to: (1) characterize the comet to a level consistent with a rendezvous mission; (2) monitor the comet dynamics through perihelion and aphelion with a long lived lander; and (3) determine the subsurface properties of the nucleus in an area local to the sampled core. A set of candidate comets is discussed. The hazards which the spacecraft would encounter in the vicinity of the comet are also discussed. The encounter strategy, the sampling hardware, the thermal control of the pristine comet material during the return to Earth, and the flight performance of various spacecraft systems and the cost estimates of such a mission are presented.

  1. Collision rates and impact velocities in the Main Asteroid Belt

    NASA Technical Reports Server (NTRS)

    Farinella, Paolo; Davis, Donald R.

    1992-01-01

    Wetherill's (1967) algorithm is presently used to compute the mutual collision probabilities and impact velocities of a set of 682 asteroids with large-than-50-km radius representative of a bias-free sample of asteroid orbits. While collision probabilities are nearly independent of eccentricities, a significant decrease is associated with larger inclinations. Collisional velocities grow steeply with orbital eccentricity and inclination, but with curiously small variation across the asteroid belt. Family asteroids are noted to undergo collisions with other family members 2-3 times more often than with nonmembers.

  2. In-situ investigations of the ionosphere of comet 67P

    NASA Astrophysics Data System (ADS)

    Eriksson, A. I.; Edberg, N. J. T.; Odelstad, E.; Vigren, E.; Engelhardt, I.; Henri, P.; Lebreton, J.-P.; Galand, M.; Carr, C. M.; Koenders, C.; Nilsson, H.; Broiles, T.; Rubin, M.

    2015-10-01

    Since arrival of Rosetta at its target comet 67P/Churyumov-Gerasimenko in August 2014, the plasma environment has been dominated by ionized gas emanating from the comet nucleus rather than by solar wind plasma. This was evident early on from the strong modulation seen with Rosetta's position in a reference frame fixed to the rotating nucleus, with higher plasma densities observed when the spacecraft is above the neck region and when the comet exposes maximum area to the sun. In this respect, Rosetta is inside the comet ionosphere, providing excellent in situ investigation opportunities for the instruments of the Rosetta Plasma Consortium (RPC). In contrast to the often modelled scenario for a very active comet, the Langmuir probe instrument (RPC-LAP) finds electron temperatures mainly in the range of tens of thousand kelvin around this less active comet. This can be attributed to the lower density of neutral gas, meaning little cooling of recently produced electrons. A side effect of this is that the spacecraft charges negatively when within about 100 km from the nucleus. Interesting in itself, this also may point to similar charging for dust grains in the coma, with implications for the detection of the smallest particles and possibly for processes like electrostatic fragmentation. The inner coma also proves to be very dynamic, with large variations not only with latitude and longitude in a comet frame, but also with the solar wind and various wave phenomena.

  3. The intermediate comets and nongravitational effects

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1986-01-01

    The motions of the intermediate-period comets Pons-Brooks, Olbers, Brorsen-Metcalf, and Westphal are investigated over their observed intervals. The three apparitions of comets Pons-Brooks and Olbers were successfully linked, using the now standard nongravitational-force model. The two apparitions of Comet Brorsen-Metcalf were successfully linked without the need for nongravitational effects. For the 1852 and 1913 apparitions of Comet Westphal, complete success was not achieved in modeling the comet's motion either with or without nongravitational effects. However, by including these effects, the comet's astrometric observations could be represented significantly better than if they were assumed inoperative. Comet Westphal's dynamic and photometric behavior suggests its complete disintegration before reaching perihelion in 1913. If the very large radial nongravitational parameter determined for Comet Westphal is due to the comet's disintegration into dust, then the resultant dust-particle size is of the order of 0.8 mm.

  4. Look--It's a Comet!

    ERIC Educational Resources Information Center

    Berglund, Kay

    1997-01-01

    Describes a classroom lesson on comets that uses modeling and guided imagery to spark students' curiosity. Comet models are built using chunks of rock salt, polystyrene balls, and tinsel. Abstract ideas are made more concrete with a guided imagery story called Comet Ride! Includes an introduction to the use of parallax to measure the distance of…

  5. The natural history of Halley's comet

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. I.

    1981-07-01

    The 1986 apparition of Halley's comet will be the subject of numerous space probes, planned to determine the chemical nature and physical structure of comet nuclei, atmospheres, and ionospheres, as well as comet tails. The problems of cometary origin remain inconclusive, with theories ranging from a purely interstellar origin to their being ejecta from the Galilean satellites of Jupiter. Comets can be grouped into one of two classes, depending on their periodicity, and statistical mechanics of the entire Jovian family of comets can be examined under the equilibrium hypothesis. Comet anatomy estimations have been determined, and there is speculation that comet chemistry may have been a factor in the origin of life on earth. Halley's comet was first noted using Newton's dynamical methods, and Brady (1972) attempted to use the comet as a gravitational probe in search of a trans-Plutonian planet. Halley's orbit is calculated by combination of ancient observations and modern scientific methods.

  6. Precise Distances for Main-belt Asteroids in Only Two Nights

    NASA Astrophysics Data System (ADS)

    Heinze, Aren N.; Metchev, Stanimir

    2015-10-01

    We present a method for calculating precise distances to asteroids using only two nights of data from a single location—far too little for an orbit—by exploiting the angular reflex motion of the asteroids due to Earth’s axial rotation. We refer to this as the rotational reflex velocity method. While the concept is simple and well-known, it has not been previously exploited for surveys of main belt asteroids (MBAs). We offer a mathematical development, estimates of the errors of the approximation, and a demonstration using a sample of 197 asteroids observed for two nights with a small, 0.9-m telescope. This demonstration used digital tracking to enhance detection sensitivity for faint asteroids, but our distance determination works with any detection method. Forty-eight asteroids in our sample had known orbits prior to our observations, and for these we demonstrate a mean fractional error of only 1.6% between the distances we calculate and those given in ephemerides from the Minor Planet Center. In contrast to our two-night results, distance determination by fitting approximate orbits requires observations spanning 7-10 nights. Once an asteroid’s distance is known, its absolute magnitude and size (given a statistically estimated albedo) may immediately be calculated. Our method will therefore greatly enhance the efficiency with which 4m and larger telescopes can probe the size distribution of small (e.g., 100 m) MBAs. This distribution remains poorly known, yet encodes information about the collisional evolution of the asteroid belt—and hence the history of the Solar System.

  7. ISO's analysis of Comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    1997-03-01

    The European Space Agency's Infrared Space Observatory ISO inspected Comet Hall-Bopp during the spring and autumn of 1996. The need to keep ISO's telescope extremely cold restricts the spacecraft's pointing in relation to the Sun and the Earth and it ruled out observations at other times. The analyses of the 1996 observations are not yet complete, but already they give new insight into the nature of comets. Comet Hale-Bopp is believed to be a large comet with a nucleus up to 40 kilometres wide. It was discovered in July 1995 by two American astronomers working independently, Alan Hale and Thomas Bopp. At that time, the comet was a billion kilometres away from the Sun, but 200 times brighter than Halley's Comet was, when at a comparable distance. Comet Hale-Bopp will make its closest approach to the Earth on 22 March, and its closest approach to the Sun (perihelion) on 1 April 1997. Some scientific results from ISO The discovery of Comet Hale-Bopp occurred before ISO's launch in November 1995. When first observed by ISO in March and April 1996, the comet was still 700 million kilometres from the Sun, and almost as far from the Earth and ISO. With its privileged view of infrared wavebands inaccessible from the Earth's surface, ISO's photometer ISOPHOT discovered that carbon dioxide was an important constituent of the comet's emissions of vapour.ISOPHOT measured the temperature of the dust cloud around Comet Hale-Bopp. In March 1996, when the comet was still more than 700 million kilometres from the Sun, the dust cloud was at minus 120 degrees C. When ISOPHOT made similar observations in October 1996, the comet was 420 million kilometres from the Sun, and the dust cloud had warmed to about minus 50 degrees C. Intensive observations of Comet Hale-Bopp were also made by ISO's Short-Wave Spectrometer SWS, the Long-Wave Spectrometer LWS, and the ISOPHOT spectrometer PHOT-S. Results are due for publication at the end of March. They will give details about the composition

  8. Comets in UV

    NASA Astrophysics Data System (ADS)

    Shustov, B.; Sachkov, M.; Gómez de Castro, A. I.; Vallejo, J. C.; Kanev, E.; Dorofeeva, V.

    2018-04-01

    Comets are important "eyewitnesses" of Solar System formation and evolution. Important tests to determine the chemical composition and to study the physical processes in cometary nuclei and coma need data in the UV range of the electromagnetic spectrum. Comprehensive and complete studies require additional ground-based observations and in situ experiments. We briefly review observations of comets in the ultraviolet (UV) and discuss the prospects of UV observations of comets and exocomets with space-borne instruments. A special reference is made to the World Space Observatory-Ultraviolet (WSO-UV) project.

  9. Special Report: Chemistry of Comets.

    ERIC Educational Resources Information Center

    A'Hearn, Michael F.

    1984-01-01

    Discusses the chemistry of comets. How comets provide clues to the birth of the solar system, photolytic reactions on comets involving water, chemical modeling, nuclear chemistry, and research findings are among the areas considered. (JN)

  10. Comets as Messengers from the Early Solar System - Emerging Insights on Delivery of Water, Nitriles, and Organics to Earth

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.; Charnley, Steven B.

    2012-01-01

    The question of exogenous delivery of water and organics to Earth and other young planets is of critical importance for understanding the origin of Earth's volatiles, and for assessing the possible existence of exo-planets similar to Earth. Viewed from a cosmic perspective, Earth is a dry planet, yet its oceans are enriched in deuterium by a large factor relative to nebular hydrogen and analogous isotopic enrichments in atmospheric nitrogen and noble gases are also seen. Why is this so? What are the implications for Mars? For icy Worlds in our Planetary System? For the existence of Earth-like exoplanets? An exogenous (vs. outgassed) origin for Earth's atmosphere is implied, and intense debate on the relative contributions of comets and asteroids continues - renewed by fresh models for dynamical transport in the protoplanetary disk, by revelations on the nature and diversity of volatile and rocky material within comets, and by the discovery of ocean-like water in a comet from the Kuiper Belt (cf., Mumma & Charnley 2011). Assessing the creation of conditions favorable to the emergence and sustenance of life depends critically on knowledge of the nature of the impacting bodies. Active comets have long been grouped according to their orbital properties, and this has proven useful for identifying the reservoir from which a given comet emerged (OC, KB) (Levison 1996). However, it is now clear that icy bodies were scattered into each reservoir from a range of nebular distances, and the comet populations in today's reservoirs thus share origins that are (in part) common. Comets from the Oort Cloud and Kuiper Disk reservoirs should have diverse composition, resulting from strong gradients in temperature and chemistry in the proto-planetary disk, coupled with dynamical models of early radial transport and mixing with later dispersion of the final cometary nuclei into the long-term storage reservoirs. The inclusion of material from the natal interstellar cloud is probable

  11. Fluffy comets

    NASA Astrophysics Data System (ADS)

    Greenberg, J. M.

    The density of typical comet nuclei is estimated on the basis of published empirical and theoretical density data on meteors. The nuclei are assumed to consist of aggregated interstellar dust (silicate cores with complex organic refractory mantles) as proposed by Greenberg (1982 and 1983) and Van de Bult et al. (1985). The theoretical density (0.5 g/cu cm) of a compact nucleus of this type is contrasted with the observed densities of meteors associated with short-period comets (0.2 g/cu cm) and the Draconids associated with comet Giacobini-Zinner (0.01 g/cu cm), and it is inferred that the original comet debris was less than fully packed. A birdsnest structure comprising elongated crystals and about 60 percent empty space is proposed; its albedo is estimated as about 0.05 (in the range predicted by observations); and it is shown to undergo much less internal heating by the sun than a solid ice nucleus. The mean density of reconstituted cometary matter is found to be in the range 0.54-0.03 g/cu cm, consistent with the estimates (0.1 g/cu cm) of Lin (1966) and Donn (1963).

  12. A volatility index for comets

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1992-01-01

    The variations in total brightness of a comet when it is most active, near perihelion, are presently used as the bases of a volatility index (VI) for short-period (SP) and long-period (LP) comets. Volatility does not correlate with period among the LP comets, and thereby shows no 'aging' effect; similarly, the VI measurements are the same for SP and for LP comets and exhibit no correlation with (1) absolute magnitude near perihelion, (2) orbital inclination, or (3) activity index measuring the intrinsic brightness change from great solar distances to the maximum near perihelion. Active comets are shown to be basically alike irrespective of their orbits or 'ages'.

  13. Discovering the Nature of Comets.

    ERIC Educational Resources Information Center

    Whipple, Fred L.

    1986-01-01

    "The Mystery of Comets" by Dr. Fred Whipple provides an introduction to the modern picture of comets and his personal reminiscences of how his model of comets came to be. An adaptation of several sections of the book is presented. (JN)

  14. Comparison of the Mineralogy of Comet Wild 2 Coma Grains to Other Astromaterials

    NASA Technical Reports Server (NTRS)

    Frank, David; Zolensky, Michael

    2010-01-01

    We propose that Kuiper Belt samples (in this case comet coma grains from the Jupiter family comet Wild 2) are recognizably different from the bulk of materials in outer belt asteroids, because of their different formation positions and times in the early solar system. We believe this despite similarities found between some Wild 2 grains and components of carbonaceous chondrites (i.e. some CAI and chondrules). Kuiper Belt samples must preserve measurable mineralogical and compositional evidence of formation at unique positions and times in the early solar nebula, and these formational differences must have imparted recognizable special characteristics. We hypothesize that these characteristics include: (1) Unique major element compositional ranges of common astromaterial minerals, especially olivine and pyroxene; (2) Unique minor element compositions of major silicate phases, especially olivine and low-Ca pyroxene; (3) Degree and effects of radiation processing -- including amorphous rims, metal coatings, and Glass with Embedded Metal and Sulfides (GEMS); (4) Presence of abundant presolar silicate grains as recognized by anomalous oxygen in silicates; (5) Oxidation state of the mineral assemblage. We are working our way through all available Wild 2 samples, selecting 1-2 non-consecutive viable TEM grids from each possible extracted Wild 2 grain. We especially prefer TEM grids from grains for which complete mineralogical details have not been published (which is to say the majority of the extracted grains). We are performing a basic mineralogic survey by E-beam techniques, to establish the essential features of the extracted Wild 2 grains. We are making a particular effort to carefully and accurately measure minor elements of olivine and pyroxene, as these minerals are widespread in astromaterials, and comparisons of their compositions will serve to place the Wild 2 silicates in contact with asteroids, meteorites and chondritic interplanetary dust particles

  15. Thermal evolution of cometary nuclei

    NASA Astrophysics Data System (ADS)

    Prialnik, D.

    2014-07-01

    Thermal modeling of comet nuclei and similar objects involves the solution of conservation equations for energy and masses of the various components over time. For simplicity, the body is generally, but not necessarily, assumed to be of spherical shape. The processes included in such calculations are heat transfer, gas flow, dust drag, phase transitions, internal heating by various sources, internal structure alterations, surface sublimation. Physical properties --- such as the thermal conductivity, permeability, material strength, and porous structure --- are assumed, based on the best available estimates from laboratory experiments and space-mission results. Calculations employ various numerical procedures and require significant computational power, data analysis, and often sophisticated methods of graphical presentation. They start with a body of given size, mass, and composition, as well as a given orbit. The results yield properties and activity patterns that can be confronted with observations. Initial parameters may be adjusted until agreement is achieved. A glimpse into the internal structure of the object, which is inaccessible to direct observation, is thus obtained. The last decade, since the extensive overview of the subject was published (Modeling the structure and activity of comet nuclei, Prialnik, D.; Benkhoff, J.; Podolak, M., in Comets II, M. C. Festou, H. U. Keller, and H. A. Weaver, eds., University of Arizona Press, Tucson, p.359-387), thermal modeling has significantly advanced. This was prompted both by new properties and phenomena gleaned from observations, one example being main-belt comets, and the continual increase in computational power and performance. Progress was made on two fronts. On the computational side, multi-dimensional models have been developed, adaptive-grid and moving-boundaries techniques have been adopted, and long-term evolutionary calculations have become possible, even spanning the lifetime of the Solar System. On

  16. Comet 67P Seen by Kepler

    NASA Image and Video Library

    2016-10-07

    The European Space Agency's Rosetta mission concluded its study of comet 67P/Churyumov-Gerasimenko on Sept. 30, 2016. NASA's planet-hunting Kepler spacecraft observed the comet during the final month of the Rosetta mission, while the comet was not visible from Earth. This animation is composed of images from Kepler of the comet. From Sept. 7 through Sept. 20, the Kepler spacecraft, operating in its K2 mission, fixed its gaze on comet 67P. From the distant vantage point of Kepler, the comet's nucleus and tail could be observed. The long-range view from Kepler complements the closeup view of the Rosetta spacecraft, providing context for the high-resolution investigation Rosetta performed as it descended closer and closer to the comet. During the two-week period of study, Kepler took a picture of the comet every 30 minutes. The animation shows a period of 29.5 hours of observation from Sept. 17 thru Sept. 18. The comet is seen passing through Kepler's field of view from top right to bottom left, as outlined by the diagonal strip. The white dots represent stars and other regions in space studied during K2's tenth observing campaign. As a comet travels through space it sheds a tail of gas and dust. The more material that is shed, the more surface area there is to reflect sunlight. A comet's activity level can be obtained by measuring the reflected sunlight. Analyzing the Kepler data, scientists will be able to determine the amount of mass lost each day as comet 67P travels through the solar system. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA21072

  17. Thermophysical modeling of main-belt asteroids from WISE thermal data

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Delbo', M.; Ďurech, J.; Alí-Lagoa, V.

    2018-07-01

    By means of a varied-shape thermophysical model of Hanuš et al. (2015) that takes into account asteroid shape and pole uncertainties, we analyze the thermal infrared data acquired by the NASA's Wide-field Infrared Survey Explorer of about 300 asteroids with derived convex shape models. We utilize publicly available convex shape models and rotation states as input for the thermophysical modeling. For more than one hundred asteroids, the thermophysical modeling gives us an acceptable fit to the thermal infrared data allowing us to report their thermophysical properties such as size, thermal inertia, surface roughness or visible geometric albedo. This work more than doubles the number of asteroids with determined thermophysical properties, especially the thermal inertia. In the remaining cases, the shape model and pole orientation uncertainties, specific rotation or thermophysical properties, poor thermal infrared data or their coverage prevent the determination of reliable thermophysical properties. Finally, we present the main results of the statistical study of derived thermophysical parameters within the whole population of main-belt asteroids and within few asteroid families. Our sizes based on TPM are, in average, consistent with the radiometric sizes reported by Mainzer et al. (2016). The thermal inertia increases with decreasing size, but a large range of thermal inertia values is observed within the similar size ranges between D ∼ 10-100 km. We derived unexpectedly low thermal inertias ( < 20 J m-2 s- 1 / 2 K-1) for several asteroids with sizes 10 < D < 50 km, indicating a very fine and mature regolith on these small bodies. The thermal inertia values seem to be consistent within several collisional families, however, the statistical sample is in all cases rather small. The fast rotators with rotation period P ≲ 4 h tend to have slightly larger thermal inertia values, so probably do not have a fine regolith on the surface. This could be explained, for

  18. William Herschel and Comets

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff

    2018-01-01

    I examine the observational and theoretical researches of William Herschel on 21 comets that he observed over the period 1781 to 1812. Herschel's focus, unlike most contemporaries, was on their physical structure, not their orbits. He forged a strong connection between comets and his nebulae with a scheme of cometary "maturation" (1812) involved a comet traveling from star to star after its central "planetary body'; was born from gravitational collapse of a nebula. During close passages of a star, the comet brightened and lost mass from its atmosphere; at other times, when between stars, it encountered nebulae and was rejuvenated by picking up more mass. Laplace soon adopted these ideas to improve his nebula hypothesis for solar system formation.

  19. Singing comet changes its song

    NASA Astrophysics Data System (ADS)

    Volwerk, M.; Goetz, C.; Delva, M.; Richter, I.; Tsurutani, B. T.; Eriksson, A.; Odelstad, E.; Meier, P.; Nilsson, H.; Glassmeier, K.-H.

    2017-09-01

    The singing comet was discovered at the beginning of the Rosetta mission around comet 67P/Churyumov-Gerasimenko. Large amplitude compressional waves with frequencies between 10 and 100 mHz were observed. When the comet became more active this signal was no longer measured. During the so-called tail excursion, late in the mission after perihelion, with again a less active comet, the singing was observed again and interestingly, going from 26 March to 27 March 2016 the character of the singing changed.

  20. Analysis of IUE Observations of Hydrogen in Comets

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.; Feldman, Paul D.

    1998-01-01

    The 15-years worth of hydrogen Lyman-alpha observations of cometary comae obtained with the International Ultraviolet Explorer (IUE) satellite had gone generally unanalyzed because of two main modeling complications. First, the inner comae of many bright (gas productive) comets are often optically thick to solar Lyman-alpha radiation. Second, even in the case of a small comet (low gas production) the large IUE aperture is quite small as compared with the immense size of the hydrogen coma, so an accurate model which properly accounts for the spatial distribution of the coma is required to invert the infrared brightnesses to column densities and finally to H atom production rates. Our Monte Carlo particle trajectory model (MCPTM), which for the first time provides the realistic full phase space distribution of H atoms throughout the coma has been used as the basis for the analysis of IUE observations of the inner coma. The MCPTM includes the effects of the vectorial ejection of the H atoms upon dissociation of their parent species (H2O and OH) and of their partial collisional thermalization. Both of these effects are crucial to characterize the velocity distribution of the H atoms. This combination of the MCPTM and spherical radiative transfer code had already been shown to be successful in understanding the moderately optically thick coma of comet P/Giacobini-Zinner and the coma of comet Halley that varied from being slightly to very optically thick. Both of these comets were observed during solar minimum conditions. Solar activity affects both the photochemistry of water and the solar Lyman-alpha radiation flux. The overall plan of this program here was to concentrate on comets observed by IUE at other time during the solar cycle, most importantly during the two solar maxima of 1980 and 1990. Described herein are the work performed and the results obtained.

  1. IUE observations of faint comets

    NASA Technical Reports Server (NTRS)

    Weaver, H. A.; Feldman, P. D.; Festou, M. C.; Ahearn, M. F.; Keller, H. U.

    1981-01-01

    Ultraviolet spectra of seven comets taken with the same instrument are given. The comets P/Encke (1980), P/Tuttle (1980 h), P/Stephan-Oterma (1980 g), and Meier (1980 q) were observed in November and December 1980 with the IUE satellite, and comets P/Borrelly (1980 i) and Panther (1980 u) were observed with the IUE on March 6, 1981. The spectra of these comets are compared with one another, as well as with comet Bradfield (1978 X), which was extensively studied earlier in 1980 with the IUE. To simplify the interpretation of the data and to minimize the dependence upon a specific model, the spectra are compared at approximately the same value of heliocentric distance whenever possible. Effects arising from heliocentric velocity, geocentric distance, and optical depth are also discussed. All of the cometary spectra are found to be remarkably similar, suggesting that these comets may have a common composition and origin.

  2. IUE observations of faint comets

    NASA Astrophysics Data System (ADS)

    Weaver, H. A.; Feldman, P. D.; Festou, M.; A'Hearn, M. F.; Keller, H. U.

    1981-09-01

    Ultraviolet spectra of seven comets taken with the same instrument are given. The comets P/Encke (1980), P/Tuttle (1980 h), P/Stephan-Oterma (1980 g), and Meier (1980 q) were observed in November and December 1980 with the IUE satellite, and comets P/Borrelly (1980 i) and Panther (1980 u) were observed with the IUE on March 6, 1981. The spectra of these comets are compared with one another, as well as with comet Bradfield (1978 X), which was extensively studied earlier in 1980 with the IUE. To simplify the interpretation of the data and to minimize the dependence upon a specific model, the spectra are compared at approximately the same value of heliocentric distance whenever possible. Effects arising from heliocentric velocity, geocentric distance, and optical depth are also discussed. All of the cometary spectra are found to be remarkably similar, suggesting that these comets may have a common composition and origin.

  3. The pristine nature of comets. [primeval composition of solar bodies

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1977-01-01

    Abundance considerations suggest that comets are likely to be the most pristine minor bodies in the solar system. In proportion to solar abundances, the present scanty data suggest that cometary oxygen is not depleted, whereas carbon is by a factor of 4 and hydrogen, by a factor of 2000. This implies that comets are less depleted in H, C, N, O than CI chondrites, namely 10:1 in hydrogen, 4:1 in carbon and 3:1 in oxygen. These results have been obtained by using dust-to-gas ratios in comets to measure the relative abundance of silicon and metals to volatile material, and the spectra of atomic lines, mainly from the vacuum ultraviolet, to determine the H/O and C/O ratios of the mixture of volatile molecules.

  4. The Southeast Asian Tin Belt

    NASA Astrophysics Data System (ADS)

    Schwartz, M. O.; Rajah, S. S.; Askury, A. K.; Putthapiban, P.; Djaswadi, S.

    1995-07-01

    The Southeast Asian Tin Belt is a north-south elongate zone 2800 km long and 400 km wide, extending from Burma (Myanmar) and Thailand to Peninsular Malaysia and the Indonesian Tin Islands. Altogether 9.6 million tonnes of tin, equivalent to 54% of the world's tin production is derived from this region. Most of the granitoids in the region can be grouped geographically into elongate provinces or belts, based on petrographic and geochronological features. - The Main Range Granitoid Province in western Peninsular Malaysia, southern Peninsular Thailand and central Thailand is almost entirely made up of biotite granite (184-230 Ma). Tin deposits associated with these granites contributed 55% of the historic tin production of Southeast Asia. - The Northern Granitoid Province in northern Thailand (0.1% of tin production) also has dominant biotite granite (200-269 Ma) but it is distinguished by abundant post-intrusion deformation. - The Eastern Granitoid Province extends from eastern Peninsular Malaysia to eastern Thailand. The Malaysian part is subdivided into the East Coast Belt (220-263 Ma), Boundary Range Belt (197-257 Ma) and Central Belt (79-219 Ma). The granitoids cover a wide compositional range from biotite granite to hornblende-biotite granite/granodiorite and diorite-gabbro. Tin deposits are associated with biotite granite in the East Coast Belt (3% of tin production). The granitoids in the other areas of the Eastern Granitoid Province are barren. - The Western Granitoid Province (22-149 Ma) in northern Peninsular Thailand, western Thailand and Burma has biotite granite and hornblende-biotite granite/granodiorite. Tin deposits are associated with biotite granite, which probably is the dominant phase (14% of tin production). The granitoids of the Indonesian Tin Islands (193-251 Ma) do not permit grouping into geographically distinct units. Main Range-type and Eastern Province-type plutons occur next to each other. Most of the tin deposits are associated with Main

  5. Term Projects on Interstellar Comets

    ERIC Educational Resources Information Center

    Mack, John E.

    1975-01-01

    Presents two calculations of the probability of detection of an interstellar comet, under the hypothesis that such comets would escape from comet clouds similar to that believed to surround the sun. Proposes three problems, each of which would be a reasonable term project for a motivated undergraduate. (Author/MLH)

  6. A New Orbit for Comet C/1865 B1 (Great Southern Comet of 1865)

    NASA Astrophysics Data System (ADS)

    Branham, Richard L., Jr.

    2018-04-01

    Comet C/1865 B1 (Great southern comet of 1865), observed only in the southern hemisphere, is one of a large number of comets with parabolic orbits. Given that there are 202 observations in right ascension and 165 in declination it proves possible to calculate a better orbit than that Körber published in 1887, the orbit used in various catalogs and data bases. C/1865 B1's orbit is hyperbolic and statistically distinguishable from a parabola. This object, therefore, cannot be considered an NEO. The comet has a small perihelion distance of 0.026 AU.

  7. A collision in 2009 as the origin of the debris trail of asteroid P/2010 A2.

    PubMed

    Snodgrass, Colin; Tubiana, Cecilia; Vincent, Jean-Baptiste; Sierks, Holger; Hviid, Stubbe; Moissl, Richard; Boehnhardt, Hermann; Barbieri, Cesare; Koschny, Detlef; Lamy, Philippe; Rickman, Hans; Rodrigo, Rafael; Carry, Benoît; Lowry, Stephen C; Laird, Ryan J M; Weissman, Paul R; Fitzsimmons, Alan; Marchi, Simone

    2010-10-14

    The peculiar object P/2010 A2 was discovered in January 2010 and given a cometary designation because of the presence of a trail of material, although there was no central condensation or coma. The appearance of this object, in an asteroidal orbit (small eccentricity and inclination) in the inner main asteroid belt attracted attention as a potential new member of the recently recognized class of main-belt comets. If confirmed, this new object would expand the range in heliocentric distance over which main-belt comets are found. Here we report observations of P/2010 A2 by the Rosetta spacecraft. We conclude that the trail arose from a single event, rather than a period of cometary activity, in agreement with independent results. The trail is made up of relatively large particles of millimetre to centimetre size that remain close to the parent asteroid. The shape of the trail can be explained by an initial impact ejecting large clumps of debris that disintegrated and dispersed almost immediately. We determine that this was an asteroid collision that occurred around 10 February 2009.

  8. A Comet Engulfs Mars: MAVEN Observations of Comet Siding Spring's Influence on the Martian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Espley, Jared R.; Dibraccio, Gina A.; Connerney, John E. P.; Brain, David; Gruesbeck, Jacob; Soobiah, Yasir; Halekas, Jasper S.; Combi, Michael; Luhmann, Janet; Ma, Yingjuan

    2015-01-01

    The nucleus of comet C/2013 A1 (Siding Spring) passed within 141,000?km of Mars on 19 October 2014. Thus, the cometary coma and the plasma it produces washed over Mars for several hours producing significant effects in the Martian magnetosphere and upper atmosphere. We present observations from Mars Atmosphere and Volatile EvolutioN's (MAVEN's) particles and field's instruments that show the Martian magnetosphere was severely distorted during the comet's passage. We note four specific major effects: (1) a variable induced magnetospheric boundary, (2) a strong rotation of the magnetic field as the comet approached, (3) severely distorted and disordered ionospheric magnetic fields during the comet's closest approach, and (4) unusually strong magnetosheath turbulence lasting hours after the comet left. We argue that the comet produced effects comparable to that of a large solar storm (in terms of incident energy) and that our results are therefore important for future studies of atmospheric escape, MAVEN's primary science objective.

  9. High-resolution spectra of comet C/2013 R1 (Lovejoy)

    NASA Astrophysics Data System (ADS)

    Rousselot, P.; Decock, A.; Korsun, P. P.; Jehin, E.; Kulyk, I.; Manfroid, J.; Hutsemékers, D.

    2015-08-01

    Context. High-resolution spectra of comets permit deriving the physical properties of the coma. In the optical range, relative production rates can be computed, and information about isotopic ratios and the origin of oxygen atoms can be obtained. Aims: The main objective of the work presented here was to obtain information about the chemical composition of comet C/2013 R1 (Lovejoy), a bright and long-period comet that passed perihelion (0.81 au) on 22 December 2013. Methods: We used the HARPS-North echelle spectrograph at the 3.5 m telescope TNG to obtain high-resolution spectra of comet C/2013 R1 (Lovejoy) in the optical range immediately after its perihelion passage during four consecutive nights in the period December 23 to 26, 2013. Results: Our results demonstrate the ability of HARPS-North to efficiently obtain cometary spectra. Very faint emission lines, such as those of 15NH2, have been detected, leading to a rough estimate of the 14N/15N ratio in NH2. The 12C/13C ratio was measured in the C2 lines and is equal to 80 ± 30. The oxygen lines were studied as well (green to red line intensity ratios and widths), confirming that H2O is the main parent molecule that photodissociates to produce oxygen atoms. This suggests that this comet has a high CO2 abundance. Relative production rates for C2 and NH2 were computed, but we found no significant deviation from a typical NH2/C2 ratio. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  10. A new activity index for comets

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1992-01-01

    An activity index, AI, is derived from observational data to measure the increase of activity in magnitudes for comets when brightest near perihelion as compared to their inactive reflective brightness at great solar distances. Because the observational data are still instrumentally limited in the latter case and because many comets carry particulate clouds about them at great solar distances, the application of the activity index is still limited. A tentative application is made for the comets observed by Max Beyer over a period of nearly 40 years, providing a uniform magnitude system for the near-perihelion observations. In all, 32 determinations are made for long-period (L-P) comets and 15 for short-period (S-P). Although the correlations are scarcely definitive, the data suggest that the faintest comets are just as active as the brightest and that the S-P comets are almost as active as those with periods (P) exceeding 10(exp 4) years or those with orbital inclinations of i less than 120 deg. Comets in the range 10(exp 2) less than P less than 10(exp 4) yr. or with i greater than 120 deg appear to be somewhat more active than the others. There is no evidence to suggest aging among the L-P comets or to suggest other than a common nature for comets generally.

  11. DIRBE Comet Trails

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.

    2015-01-01

    Re-examination of the COBE DIRBE data reveals the thermal emission of several comet dust trails.The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported.The known trails of 2P/Encke, and 73P/Schwassmann-Wachmann 3 are also seen. The dust trails have 12 and 25 microns surface brightnesses of <0.1 and <0.15 MJy/sr, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals one additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  12. Coordinated mineralogical and isotopic analyses of a cosmic symplectite discovered in a comet 81P/Wild 2 sample

    NASA Astrophysics Data System (ADS)

    Nguyen, Ann N.; Berger, Eve L.; Nakamura-Messenger, Keiko; Messenger, Scott; Keller, Lindsay P.

    2017-09-01

    We have discovered in a Stardust mission terminal particle a unique mineralogical assemblage of symplectically intergrown pentlandite ((Fe,Ni)9S8) and nanocrystalline maghemite (γ-Fe2O3). Mineralogically similar cosmic symplectites (COS) have only been found in the primitive carbonaceous chondrite Acfer 094 and are believed to have formed by aqueous alteration. The O and S isotopic compositions of the Wild 2 COS are indistinguishable from terrestrial values. The metal and sulfide precursors were thus oxidized by an isotopically equilibrated aqueous reservoir either inside the snow line, in the Wild 2 comet, or in a larger Kuiper Belt object. Close association of the Stardust COS with a Kool mineral assemblage (kosmochloric Ca-rich pyroxene, FeO-rich olivine, and albite) that likely originated in the solar nebula suggests the COS precursors also had a nebular origin and were transported from the inner solar system to the comet-forming region after they were altered.

  13. Flyby Comet Imaged By Radar

    NASA Image and Video Library

    2016-03-24

    Radar data of comet P/2016 BA14 taken over three days (March 21-23, 2016), when the comet was between 2.5 million miles and 2.2 million miles (4.1 million kilometers and 3.6 million kilometers) from Earth. Radar images from the flyby indicated that the comet is about 3,000 feet (1 kilometer) in diameter.

  14. New features in the structure of the classical Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Gladman, Brett; Bannister, Michele T.; Alexandersen, Mike; Chen, Ying-Tung; Gwyn, Stephen; Kavelaars, J. J.; Petit, Jean-Marc; Volk, Kathryn; OSSOS Collaboration

    2016-10-01

    We report fascinating new dynamical structures emerging from a higher precision view of the classical Kuiper belt (the plentiful non-resonant orbits with semimajor axes in roughly the a=35-60 au range). The classical Kuiper Belt divides into multiple sub-populations: an 'inner' classical belt (a small group of non-resonant objects with a<39.4 au where the 3:2 resonance is located), an abundant 'main' classical belt (between the 3:2 and the 2:1 at a=47.4 au), and a difficult to study outer classical belt beyond the 2:1. We examine the dynamical structure, as precisely revealed in the detections from OSSOS (the Outer Solar System Origin's Survey); the data set is of superb quality in terms of orbital element and numbers of detections (Kavelaars et al, this meeting).The previous CFEPS survey showed that the main classical belt requires a complex dynamical substructure that goes beyond a simple 'hot versus cold' division based primarily on orbital inclination; the 'cold' inclination component requires two sub-components in the semimajor axis and perihelion distance q space (Petit et al 2011). CFEPS modelled this as a 'stirred' component present at all a=40-47 AU semimajor axes, with a dense superposed 'kernel' near a=44 AU at low eccentricity; the first OSSOS data release remained consistent with this (Bannister et al 2016). As with the main asteroid belt, as statistics and orbital quality improve we see additional significant substructure emerging in the classical belt's orbital distribution.OSSOS continues to add evidence that the cold stirred component extends smoothly beyond the 2:1 (Bannister et al 2016). Unexpectedly, the data also reveal the clear existence of a paucity of orbits just beyond the outer edge of the kernel; there are significantly fewer TNOs in the narrow semimajor axis band from a=44.5-45.0 AU. This may be related to the kernel population's creation, or it may be an independent feature created by planet migration as resonances moved in the

  15. Thermophysical characteristics of the large main-belt asteroid (349) Dembowska

    NASA Astrophysics Data System (ADS)

    Yu, Liang Liang; Yang, Bin; Ji, Jianghui; Ip, Wing-Huen

    2017-12-01

    (349) Dembowska is a large, bright main-belt asteroid that has a fast rotation and an oblique spin axis. It might have experienced partial melting and differentiation. We constrain Dembowska's thermophysical properties, such as thermal inertia, roughness fraction, geometric albedo and effective diameter within 3σ uncertainty of Γ =20^{+12}_{-7} Jm-2 s-0.5 K-1, f_r=0.25^{+0.60}_{-0.25}, p_v=0.309^{+0.026}_{-0.038} and D_eff=155.8^{+7.5}_{-6.2} km, by utilizing the advanced thermophysical model to analyse four sets of thermal infrared data obtained by the Infrared Astronomy Satellite (IRAS), AKARI, the Wide-field Infrared Survey Explorer (WISE) and the Subaru/Cooled Mid-Infrared Camera and Spectrometer (COMICS) at different epochs. In addition, by modelling the thermal light curve observed by WISE, we obtain the rotational phases of each data set. These rotationally resolved data do not reveal significant variations of thermal inertia and roughness across the surface, indicating that the surface of Dembowska should be covered by a dusty regolith layer with few rocks or boulders. Besides, the low thermal inertia of Dembowska shows no significant difference with other asteroids larger than 100 km, which indicates that the dynamical lives of these large asteroids are long enough to make their surfaces have sufficiently low thermal inertia. Furthermore, based on the derived surface thermophysical properties, as well as the known orbital and rotational parameters, we can simulate Dembowska's surface and subsurface temperatures throughout its orbital period. The surface temperature varies from ∼40 to ∼220 K, showing significant seasonal variation, whereas the subsurface temperature achieves equilibrium temperature about 120-160 K below a depth of 30-50 cm.

  16. ORBITS, MASSES, AND EVOLUTION OF MAIN BELT TRIPLE (87) SYLVIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Julia; Margot, Jean-Luc; Rojo, Patricio

    Sylvia is a triple asteroid system located in the main belt. We report new adaptive optics observations of this system that extend the baseline of existing astrometric observations to a decade. We present the first fully dynamical three-body model for this system by fitting to all available astrometric measurements. This model simultaneously fits for individual masses, orbits, and primary oblateness. We find that Sylvia is composed of a dominant central mass surrounded by two satellites orbiting at 706.5 {+-} 2.5 km and 1357 {+-} 4.0 km, i.e., about 5 and nearly 10 primary radii. We derive individual masses of 1.484{supmore » +0.016}{sub -0.014} Multiplication-Sign 10{sup 19} kg for the primary (corresponding to a density of 1.29 {+-} 0.39 g cm{sup -3}), 7.33{sup +4.7}{sub -2.3} Multiplication-Sign 10{sup 14} kg for the inner satellite, and 9.32{sup +20.7}{sub -8.3} Multiplication-Sign 10{sup 14} kg for the outer satellite. The oblateness of the primary induces substantial precession and the J{sub 2} value can be constrained to the range of 0.0985-0.1. The orbits of the satellites are relatively circular with eccentricities less than 0.04. The spin axis of the primary body and the orbital poles of both satellites are all aligned within about 2 deg of each other, indicating a nearly coplanar configuration and suggestive of satellite formation in or near the equatorial plane of the primary. We also investigate the past orbital evolution of the system by simulating the effects of a recent passage through 3:1 mean-motion eccentricity-type resonances. In some scenarios this allow us to place constraints on interior structure and past eccentricities.« less

  17. Characteristics of Known Triple Asteroid Systems in the Main Belt

    NASA Astrophysics Data System (ADS)

    Marchis, Franck; Berthier, J.; Burns, K. J.; Descamps, P.; Durech, J.; Emery, J. P.; Enriquez, J. E.; Lainey, V.; Reiss, A. E.; Vachier, F.

    2010-10-01

    Since the discovery of "Sylvia Remus II” [1], around the binary asteroid (87) Sylvia [2] using the VLT/NACO instrument, the number of known triple systems increased significantly. Using the same instrument, a second moonlet was discovered around the binary (45) Eugenia [3] in 2007 [4]. Using an improved W.M. Keck II AO system, [5] announced the discovery of two 3 & 5-km moons orbiting the M-type asteroid (216) Kleopatra and more recently, [6] revealed the presence of two tiny 4-km moons around the C-type (93) Minerva. 3749 Balam is a different triple asteroid system whose existence was suggested by combining lightcurves and AO observations [7]. The properties of these triple systems have been derived individually and published recently [1, 8,9,10]. We will review and contrast their characteristics, including the orbital parameters of the satellite orbits, the size and shape of the primary and the satellites, their taxonomic classes, their bulk densities, and their ages. The goal of this study is to uncover clues concerning the formation and evolution of these mini-planetary systems. The National Science Foundation supported this research under award number AAG-0807468. 1. Marchis et al. Nature 2005 2. Brown et al., IAU 7588, 2001 3. Merline et al. Nature 401, 1999 4. Marchis et al. IAU 1073, 2007 5. Marchis et al. IAU 8980, 2008 6. Marchis et al., IAU 9069, 2009 7. Marchis et al., IAU 8928, 2008 8. Marchis et al., A Dynamical Solution of the Triple Asteroid System (45) Eugenia , Icarus in press, 2010 9. Descamps et al, Triplicity and Physical Characteristics of Asteroid 216 Kleopatra Icarus, in revision, 2010 10. Marchis et al., Triplicity and Physical Characteristics of the main-belt Asteroid (93) Minerva, Icarus submitted 2010

  18. Origin of Short-Perihelion Comets

    NASA Technical Reports Server (NTRS)

    Guliyev, A. S.

    2011-01-01

    New regularities for short-perihelion comets are found. Distant nodes of cometary orbits of Kreutz family are concentrated in a plane with ascending node 76 and inclination 267 at the distance from 2 up to 3 a.u. and in a very narrow interval of longitudes. There is a correlation dependence between q and cos I concerning the found plane (coefficient of correlation 0.41). Similar results are received regarding to cometary families of Meyer, Kracht and Marsden. Distant nodes of these comets are concentrated close three planes (their parameters are discussed in the article) and at distances 1.4; 0.5; 6 a.u. accordingly. It is concluded that these comet groups were formed as a result of collision of parent bodies with meteoric streams. One more group, consisting of 7 comets is identified. 5 comet pairs are selected among sungrazers.

  19. Flight of the Comet

    NASA Image and Video Library

    2010-11-05

    Image taken by NASA EPOXI mission spacecraft during its flyby of comet Hartley 2 on Nov. 4, 2010. The spacecraft came within about 700 kilometers 435 miles of the comet nucleus at the time of closest approach.

  20. Observation of freakish-asteroid-discovered-resembles support my idea that many dark comets were arrested and lurked in the solar system after every impaction

    NASA Astrophysics Data System (ADS)

    Cao, Dayong

    2014-03-01

    New observations show that some asteroids are looked like comets. http://www.astrowatch.net/2013/11/freakish-asteroid-discovered-resembles.html, http://www.astrowatch.net/2013/11/astronomers-puzzle-over-newfound.html. It supports my idea that ``many dark comets with very special tilted orbits were arrested and lurked in the solar system'' - ``Sun's companion-dark hole seasonal took its dark comets belt and much dark matter to impact near our earth. And some of them probability hit on our earth. So this model kept and triggered periodic mass extinctions on our earth every 25 to 27 million years. After every impaction, many dark comets with very special tilted orbits were arrested and lurked in the solar system. Because some of them picked up many solar matter, so it looked like the asteroids. When the dark hole-Tyche goes near the solar system again, they will impact near planets.'' The idea maybe explains why do the asteroid looks like the comet? Where are the asteroids come from? What relationship do they have with the impactions and extinctions? http://meetings.aps.org/link/BAPS.2011.CAL.C1.7, http://meetings.aps.org/Meeting/CAL12/Event/181168, http://meetings.aps.org/link/BAPS.2013.MAR.H1.267. During 2009 to 2010, I had presented there are many dark comets like dark Asteroids near the orbit of Jupiter in ASP Meetings. In 2010, NASA's WISE found them. http://meetings.aps.org/link/BAPS.2011.APR.K1.17, http://www.nasa.gov/mission_pages/WISE/news/wise20100122.html Avoid Earth Extinction Associ.

  1. Comet ISON Passes Through Virgo

    NASA Image and Video Library

    2013-11-22

    Date: 8 Nov 2013 - Comet ISON shines in this five-minute exposure taken at NASA's Marshall Space Flight Center on Nov. 8, 2013.. The image was captured using a color CCD camera attached to a 14" telescope located at Marshall. At the time of this picture, comet ISON was 97 million miles from Earth, moving ever closer toward the sun. Credit: NASA/MSFC/Aaron Kingery -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure

  2. On the Determination of the Orbits of Comets

    NASA Astrophysics Data System (ADS)

    Englefield, Henry

    2013-06-01

    Preface; 1. General view of the method; 2. On the motion of the point of intersection of the radius vector and cord; 3. On the comparison of the parabolic cord with the space which answers to the mean velocity of the earth in the same time; 4. Of the reduction of the second longitude of the comet; 5. On the proportion of the three curtate distances of the comet from the earth; 6. Of the graphical declination of the orbit of the earth; 7. Of the numerical quantities to be prepared for the construction or computation of the comet's orbit; 8. Determination of the distances of the comet from the earth and the sun; 9. Determination of the elements of the orbit from the determined distances; 10. Determination of the place of the comet from the earth and sun; 11. Determination of the distances of the comet from the earth and sun; 12. Determination of the comet's orbit; 13. Determination of the place of the comet; 14. Application of the graphical method to the comet of 1769; 15. Application of the distances found; 16. Determination of the place of the comet, for another given time; 17. Application of the trigonometrical method to the comet of 1769; 18. Determination of the elements of the orbit of the comet of 1769; Example of the graphical operation for the orbit of the comet of 1769; Example of the trigonometrical operation for the orbit of the comet of 1769; Conclusion; La Place's general method for determining the orbits of comets; Determination of the two elements of the orbit; Application of La Place's method of finding the approximate perihelion distance; Application of La Place's method for correcting the orbit of a comet, to the comet of 1769; Explanation and use of the tables; Tables; Appendix; Plates.

  3. Effects of YORP-induced rotational fission on the small size end of the Main Belt asteroid size distribution

    NASA Astrophysics Data System (ADS)

    Rossi, Alessandro; Jacobson, S.; Marzari, F.; Scheeres, D.; Davis, D. R.

    2013-10-01

    From the results of a comprehensive asteroid population evolution model, we conclude that the YORP-induced rotational fission hypothesis has strong repercussions for the small size end of the Main Belt asteroid size frequency distribution. These results are consistent with observed asteroid population statistics. The foundation of this model is the asteroid rotation model of Marzari et al. (2011), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur). The YORP effect timescale for large asteroids with diameters D > ~6 km is longer than the collision timescale in the Main Belt, thus the frequency of large asteroids is determined by a collisional equilibrium (e.g. Bottke 2005), but for small asteroids with diameters D < ~6 km, the asteroid population evolution model confirms that YORP-induced rotational fission destroys small asteroids more frequently than collisions. Therefore, the frequency of these small asteroids is determined by an equilibrium between the creation of new asteroids out of the impact debris of larger asteroids and the destruction of these asteroids by YORP-induced rotational fission. By introducing a new source of destruction that varies strongly with size, YORP-induced rotational fission alters the slope of the size frequency distribution. Using the outputs of the asteroid population evolution model and a 1-D collision evolution model, we can generate this new size frequency distribution and it matches the change in slope observed by the SKADS survey (Gladman 2009). This agreement is achieved with both an accretional power-law or a truncated “Asteroids were Born Big” size frequency distribution (Weidenschilling 2010, Morbidelli 2009).

  4. How do the surfaces of comets evolve with time?: Insights from Rosetta's two-year journey with 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Elmaarry, M. R.; Groussin, O.; Thomas, N.; Pajola, M.; Auger, A. T.; Davidsson, B. J. R.; Hu, X.; Hviid, S. F.; Joerg, K.; Güttler, C.; Tubiana, C.; Bodewits, D.; Fornasier, S.; Vincent, J. B.; Sierks, H.

    2017-12-01

    Prior to the Rosetta mission at comet 67P/Churyumov-Gerasimenko (hereinafter referred to as 67P), we had limited snapshots of comets from flyby missions: the only comet other than 67P that showed evidence of long-term or seasonal changes was comet Tempel 1 because it was visited by spacecrafts on two separate occasions. With Rosetta, it was possible to monitor the surface of a comet continuously for approximately two years with high spatial resolution, which led to the discovery of a wide variety of changes that occur on comets, and made it possible to constrain the timing and rates of these changes. Comet 67P showed a variety of changes that affected its consolidated materials such as collapsing cliffs, moving boulders, and propagating fractures, which indicate ongoing weathering and erosion on the surface. Similarly, the comet's smooth and unconsolidated materials also displayed changes. However, these changes were mainly transient or short-lived involving the development of circular features that vary in size with time, textural changes in the "dusty" mantles, and retreating scarps similar in scale to what has been previously observed at Tempel 1. The changes in the smooth terrains are more difficult to explain but appear related to insolation since most of the changes to the surface of the comet occurred at, or close to, perihelion, mainly when the comet was around 2 AU away from the Sun. While many (100s) of changes have been detected so far on the surface, they are nonetheless small-scale, and minimally affecting the overall shape or landscape of the comet. This would suggest that higher activity is likely at the earlier stages of a comet's introduction into the inner solar system when comets possibly possess a higher inventory of volatiles (particularly CO and CO2), and/or amorphous ice.

  5. Comet 67P's Pitted Surface

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    High-resolution imagery of comet 67P ChuryumovGerasimenko has revealed that its surface is covered in active pits some measuring hundreds of meters both wide and deep! But what processes caused these pits to form?Pitted LandscapeESAs Rosetta mission arrived at comet 67P in August 2014. As the comet continued its journey around the Sun, Rosetta extensively documented 67Ps surface through high-resolution images taken with the on-board instrument NavCam. These images have revealed that active, circular depressions are a common feature on the comets surface.In an attempt to determine how these pits formed, an international team of scientists led by Olivier Mousis (Laboratory of Astrophysics of Marseille) has run a series of simulations of a region of the comet the Seth region that contains a 200-meter-deep pit. These simulations include the effects of various phase transitions, heat transfer through the matrix of ices and dust, and gas diffusion throughout the porous material.Escaping VolatilesAdditional examples of pitted areas on 67Ps northern-hemisphere surface include the Ash region and the Maat region (both imaged September 2014 by NavCam) [Mousis et al. 2015]Previous studies have already eliminated two potential formation mechanisms for the pits: impacts (the sizes of the pits werent right) and erosion due to sunlight (the pits dont have the right shape). Mousis and collaborators assume that the pits are instead caused by the depletion of volatile materials chemical compounds with low boiling points either via explosive outbursts at the comets surface, or via sinkholes opening from below the surface. But what process causes the volatiles to deplete when the comet heats?The authors simulations demonstrate that volatiles trapped beneath the comets surface either in icy structures called clathrates or within amorphous ice can be suddenly released as the comet warms up. The team shows that the release of volatiles from these two structures can create 200-meter

  6. Spectroscopic observations of comets

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Development of a spectrograph using a microchannel plate intensifier for observing faint comets is described. The spectrograph is capable of obtaining useful spectra of objects as faint as M(2) = 18. The increased guiding efficiency achieved by the optical coupling of the ISIT vidicon of the 154 cm telescope has resulted in a better signal to noise ratio. The ability to take a direct image of the comet aids in the interpretation of the spatial profile of the emissions. Spectra of comets Schwassmann-Wachmann 1, Bradfield, Encke, Tuttle, and Stephen-Oterma are discussed.

  7. The physical mechanism of comet outbursts: An experiment

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.

    1993-01-01

    During a series of impact experiments into regolith-like powders at the NASA Ames Research Center Vertical Gun Facility in 1976, I observed and filmed a unique anomalous event that may illuminate outburst mechanisms in comets. During one test, a new batch of basalt powder (half the mass in particles less than 800 microns in diameter) retained some air pressure while the vacuum chamber was being evacuated. As a result, the projectile impacted into gas-charged regolith. Instead of ejecting the normal, relatively negligible amount of debris, the disturbance triggered a major eruption that lasted at least 18 seconds. The experimental results have been recently re-analyzed with reference to cometary phenomena. A series of frames from this eruption experiment are shown. The ejecta velocities of 150 to 300 cm/s would have been sufficient to drive debris into the coma of a comet nucleus smaller than a few kilometers diameter. The event suggests a mechanism for comet outbursts, discussed briefly by Hartmann et al.: the pore space in a layer of regolith, possibly with weak effective tensile strength, becomes gas charged as ice slowly sublimates. Once the effective tensile strength is exceeded by the gas pressure, the surface fails locally, triggering an eruption such as photographed here. This model is consistent with the emerging view of regolith materials on comets and is closest to the recent model of Rickman et al. The earlier models generally picture a more uniform flow of debris off the comet, not outbursts. Rickman et al. allow gas pressure to build until it matches the overburden pressure, followed by 'instantaneous blow-off'. They note that as soon as the mantle is found to be unstable, we consider it to be instantaneously swept away by the gas pressure. The main new points made here are that the experiment gives a more realistic view of the blow-off process after surface failure occurs, and the present model gives a recharge mechanism that can explain recurrent

  8. Rosetta - ESA's new comet chaser

    NASA Astrophysics Data System (ADS)

    1999-06-01

    The Rosetta orbiter will literally chase comet Wirtanen for two years, sending back valuable data and ensuring Europe retains its lead in comet science. A lander will attach itself to this lump of frozen ice and dust, which is travelling through space at over 130,000 kilometres per hour, and analyse samples. Just as the re-discovery of the Rosetta Stone, 200 years ago, enabled the mysteries of ancient Egyptian hieroglyphics to be unrravelled, so the Rosetta mission will help scientists learn even more about comets, the most primitive objects in the solar system. In 1986, ESA's Giotto spacecraft flew into the tail of Halley's Comet. That was ESA's first interplanetary mission and it was hailed as an outstanding success. The pictures and scientific data that Giotto sent back placed Europe at the forefront of comet science. Notes for Editors : On the day of the press event, the now deactivated Giotto spacecraft will do an Earth flyby 13 years after its encounter with Halley's Comet. The British Museum is celebrating 200-years anniversary of the Rosetta Stone, with an exhibition that includes a model of its modern equivalent, the Rosetta spacecraft.

  9. Comets and nongravitational forces. IV.

    NASA Technical Reports Server (NTRS)

    Marsden, B. G.; Sekanina, Z.

    1971-01-01

    Orbital elements and nongravitational parameters are derived from observations at every apparition of the periodic comets Honda-Mrkos-Pajdusakova, Faye, Tempel 2, Biela, Brorsen, and Tempel-Swift. For all except the first comet, the observations go back a century and more, although the last three comets have failed to reappear for some considerable time. The circumstances of the splitting of P/Biela are studied, and it is shown that the motion of the primary component was scarcely affected; it is also demonstrated that, if the primary still exists, it may pass only 0.05 AU from the earth in November 1971. An up-to-date list of mass-loss rates from comets is presented. It is found that, while most of the reliable determinations indicate that the cometary nongravitational effects decrease with time, there are a few cases where the effects increase slightly. The former situation is discussed in terms of a nuclear core-mantle model, implying that these comets will eventually evolve into inert, asteroidal objects, while the nuclei of the other comets are interpreted as coreless, eventually to disappear completely (or almost completely).

  10. Multiwavelength Observations of Recent Comets

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Charnley, Steven B.; Gicquel, Adeline; Cordiner, Martin; Kuan, Yi-Jehng; Chuang, Yo-Ling; Villanueva, Geronimo; DiSanti, Michael A.; Bonev, Boncho P.; Remijan, Anthony J.; hide

    2013-01-01

    Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth. Comets are comprised of molecular ices, that may be pristine inter-stellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection. We will present a comparison of molecular abundances in these comets to those observed in others, supporting a long-term effort of building a comet taxonomy based on composition.

  11. The development of an electronic system to continually monitor, indicate and control, 'belt slippage' in industrial friction 'V' belt drive transmission systems

    NASA Astrophysics Data System (ADS)

    Brown, R. E.

    2012-05-01

    Belts have been used for centuries as a mechanism to transfer power from some form of drive system to a variety of load systems. Within industry today, many designs of belts but particularly friction, trapezoidal shaped 'V' belts are used and generally transfer power generated by electrical motors to numerous forms of driven load systems. It is suggested that belt systems, through their simplicity are sadly neglected by maintenance functions and generally are left unattended until high degrees of 'belt slippage' through loss of friction or 'belt breakage' provokes maintenance attention. These circumstances are most often identified through the reduced or loss of manufacturing production or the occurrence of catastrophic circumstances such as fire caused through excessive friction/ high belt slippage conditions. Obviously, these situations incur financial losses to companies and in some cases the near loss of the company's main manufacturing plant. Consequently, a satisfactory, viable solution is currently sought by industry to improve on current labour intensive maintenance practices. This paper will present an account of the development of an industrially robust, accurate and repeatable electronic system which continually monitors and indicates the degree of 'slippage' in a 'V' belt drive transmission system and in the circumstance of belt breakage or high belt slippage will enable and control the switching off the drive motor.

  12. Seasonal effects on the nucleus of comet 67P revealed by Rosetta/VIRTIS

    NASA Astrophysics Data System (ADS)

    Tosi, Federico; Capaccioni, Fabrizio; Filacchione, Gianrico; Erard, Stéphane; Rouseeau, Batiste; Combe, Jean-Philippe; Capria, Maria Teresa; Leyrat, Cédric; Longobardo, Andrea; Bockelée-Morvan, Dominique; Kappel, David; Arnold, Gabriele; Fonti, Sergio; Mancarella, Francesca; Kuehrt, Ekkehard; Mottola, Stefano

    2016-04-01

    We describe thermal effects on the nucleus of comet 67P. Due to the overall low thermal inertia of the nucleus surface, the surface temperature is essentially dominated by the instantaneous value of the solar incidence angle and the heliocentric distance. However, for each location, the smallest achievable value of insolation angle depends on the season and topography. Given the substantial obliquity of comet 67P, seasons are such that the northern hemisphere is mainly illuminated at aphelion while the southern hemisphere receives most insolation soon after perihelion. In addition, the heliocentric distance strongly affects the surface temperature, all other parameters being equal. This is a larger effect in comets than in asteroids, due to the wide range of heliocentric distance values spanned by comets. When Rosetta started its global mapping observation campaign, in early August 2014, hyperspectral images acquired by the VIRTIS imaging spectrometer onboard the Rosetta Orbiter covered only the northern regions of the cometary surface, and the equatorial belt became gradually unveiled, while the southern region has been revealed from 2015 onwards. In parallel, the comet's heliocentric distance has been decreasing from ˜3.6 AU down to 1.24 AU, the distance at which the perihelion passage occurred on 13 August 2015. By relating surface temperatures as measured by VIRTIS to three variables: solar incidence angle, true local solar time and heliocentric distance, we aim to separate the relative contributions due to season and to the heliocentric distance. To do this, we use both VIRTIS-M data (namely data from the mapping spectrometer covering the 1-5 μm range, available up to April 2015, i.e. before the failure of the IR cryocooler) and VIRTIS-H data (namely data from the high-resolution point spectrometer covering the 2-5 μm range), and we focus in particular on three regions: one in the northern hemisphere, one in the equatorial region and one in the southern

  13. On Course for a Comet

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows comet Tempel 1 as seen through the clear filter of the medium resolution imager camera on Deep Impact. It was taken on June 27, 2005, when the spacecraft was 6,229,030.3 kilometers (3,870,719 miles) away from the comet. Three images were combined to create this picture, and a logarithmic stretch was applied to enhance the coma of the comet.

  14. Worldwide interest in the comet assay: a bibliometric study.

    PubMed

    Neri, Monica; Milazzo, Daniele; Ugolini, Donatella; Milic, Mirta; Campolongo, Alessandra; Pasqualetti, Patrizio; Bonassi, Stefano

    2015-01-01

    The comet assay is a rapid, sensitive and relatively simple method for measuring DNA damage. A bibliometric study was performed to evaluate temporal and geographical trends, research quality and main areas of interest in scientific production in this field. A PubMed search strategy was developed and 7674 citations were retrieved in the period 1990-2013. Notably, the MeSH (Medical Subject Headings) term 'comet assay', officially introduced in 2000, is used by indexers only in two thirds of papers retrieved. Articles on the comet assay were published in 78 countries, spread over the 5 continents. The EU contributed the greatest output, producing >2900 articles with IF (42.0%) and totalling almost 10000 IF points, and was followed by USA. In the new millennium, research with this assay reached a plateau or slow decline in the most industrialised areas (USA, Germany, UK, Italy), while its use has boomed in emerging countries, with increases of 5- to 7-fold in the last 10 years in China, India and Brazil, for instance. This transition resulted in a slow decrease of scientific production quality, as the countries that increased their relative weight typically had lower mIFs. The most common MeSH terms used in papers using the comet assay referred to wide areas of interest, such as DNA damage and repair, cell survival and apoptosis, cancer and oxidative stress, occupational and environmental health. Keywords related to humans, rodents and cell culture were also frequently used. The top journal for the comet assay articles was found to be Mutation Research, followed by Mutagenesis. Most papers using the comet assay as a biomarker were published in genetic and toxicology journals, with a stress on environmental and occupational disciplines. © The Author 2014. Published by Oxford University Press on behalf of the Mutagenesis Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Discovery of a basaltic asteroid in the outer main belt

    PubMed

    Lazzaro; Michtchenko; Carvano; Binzel; Bus; Burbine; Mothe-Diniz; Florczak; Angeli; Harris

    2000-06-16

    Visible and near-infrared spectroscopic observations of the asteroid 1459 Magnya indicate that it has a basaltic surface. Magnya is at 3. 15 astronomical units (AU) from the sun and has no known dynamical link to any family, to any nearby large asteroid, or to asteroid 4 Vesta at 2.36 AU, which is the only other known large basaltic asteroid. We show that the region of the belt around Magnya is densely filled by mean-motion resonances, generating slow orbital diffusion processes and providing a potential mechanism for removing other basaltic fragments that may have been created on the same parent body as Magnya. Magnya may represent a rare surviving fragment from a larger, differentiated planetesimal that was disrupted long ago.

  16. Application of the theory of jet stream to the asteroidal belt

    NASA Technical Reports Server (NTRS)

    Ip, W.-H.

    1975-01-01

    The possibility of incorporating the resonant effect and jet stream formation process into the problems of the Hilda asteroids and Kirkwood gaps is discussed qualitatively. It appears that formation of the precursor jet streams of the resonant asteroids in the main belt would be suppressed due to the collisional perturbation effect of the ambient matter in this region. Together with the biased distribution of near-resonant asteroids, the depletion across the Kirkwood gaps could be understood. Within the context of jet stream theory the existence of Hilda asteroids outside the main belt requires the original limit of the main belt to be not much more extensive than the present value of 3.5 AU. This is suggestive of a cosmogonic origin of the observed outer limit.

  17. DRBE comet trails

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Richard G., E-mail: Richard.G.Arendt@nasa.gov

    2014-12-01

    Re-examination of the Cosmic Background Explorer Diffuse Infrared Background Experiment (DIRBE) data reveals the thermal emission of several comet dust trails. The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported. The known trails of 2P/Encke and 73P/Schwassmann–Wachmann 3 are also seen. The dust trails have 12 and 25 μm surface brightnesses of <0.1 and <0.15 MJy sr{sup −1}, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBEmore » data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals 1 additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.« less

  18. Studies of Asteroids and Comets

    NASA Technical Reports Server (NTRS)

    Bowell, Edward L. G.

    1998-01-01

    Research under this grant was carried out between 1989 and 1998. It comprised observational, theoretical, and computational research, mainly on asteroids. Two principal areas of research, centering on astrometry and photometry, were interrelated in their aim to study the overall structure of the asteroid belt and the orbital and physical properties of individual asteroids.

  19. An Archaean heavy bombardment from a destabilized extension of the asteroid belt.

    PubMed

    Bottke, William F; Vokrouhlický, David; Minton, David; Nesvorný, David; Morbidelli, Alessandro; Brasser, Ramon; Simonson, Bruce; Levison, Harold F

    2012-05-03

    The barrage of comets and asteroids that produced many young lunar basins (craters over 300 kilometres in diameter) has frequently been called the Late Heavy Bombardment (LHB). Many assume the LHB ended about 3.7 to 3.8 billion years (Gyr) ago with the formation of Orientale basin. Evidence for LHB-sized blasts on Earth, however, extend into the Archaean and early Proterozoic eons, in the form of impact spherule beds: globally distributed ejecta layers created by Chicxulub-sized or larger cratering events4. At least seven spherule beds have been found that formed between 3.23 and 3.47 Gyr ago, four between 2.49 and 2.63 Gyr ago, and one between 1.7 and 2.1 Gyr ago. Here we report that the LHB lasted much longer than previously thought, with most late impactors coming from the E belt, an extended and now largely extinct portion of the asteroid belt between 1.7 and 2.1 astronomical units from Earth. This region was destabilized by late giant planet migration. E-belt survivors now make up the high-inclination Hungaria asteroids. Scaling from the observed Hungaria asteroids, we find that E-belt projectiles made about ten lunar basins between 3.7 and 4.1 Gyr ago. They also produced about 15 terrestrial basins between 2.5 and 3.7 Gyr ago, as well as around 70 and four Chicxulub-sized or larger craters on the Earth and Moon, respectively, between 1.7 and 3.7 Gyr ago. These rates reproduce impact spherule bed and lunar crater constraints.

  20. Comet Borrelly Varied Landscape

    NASA Image and Video Library

    2001-11-03

    Sunlight illuminates the bowling-pin shaped nucleus from directly below comet Borrelly as seen by NASA Deep Space 1. At this distance, many features become vivid on the surface of the nucleus, including a jagged line between day and night on the comet.

  1. The comet rendezvous asteroid flyby mission to Comet Kopff - Getting there is half the fun

    NASA Technical Reports Server (NTRS)

    Sweetser, Theodore H.; Kiedron, Krystyna

    1990-01-01

    The goal of the Comet Rendezvous Asteroid Flyby mission (CRAF) is to fly 'outward to the beginning', to examine closely what are thought to be remnants of the origins of the solar system. In particular, the CRAF spacecraft will use a two-year delta-V-earth-gravity-assist (delta-V-EGA) trajectory to reach a rendezvous point near the aphelion of the Comet Kopff, flying by the asteroid 449 Hamburga on the way. This paper discusses the trajectory used to get to the comet. Topics covered include the launch period, possible additional asteroid flybys, the earth flyby, the Hamburga flyby, and the rendezvous with Comet Kopff.

  2. Comet prospects for 2004

    NASA Astrophysics Data System (ADS)

    Shanklin, J. D.

    2003-12-01

    2004 sees the return of 18 periodic comets. None are particularly bright and the best are likely to be 78P/Gehrels and 88P/Howell. Three new long period comets are likely to put on a good show: 2001 Q4 (NEAT) reaches perihelion in May, when it could make at least 3rd magnitude. Northern hemisphere observers will first pick it up just after perihelion as it rapidly moves north. 2002 T7 (LINEAR) could also reach 3rd magnitude at closest approach in May, however northern hemisphere observers will have lost it as a binocular object in mid-March. Observers at far southern latitudes may be able to see these two naked eye comets at the same time. 2003 K4 (LINEAR) could reach 6th magnitude as it brightens on its way to perihelion. Several other long period comets discovered in previous years are also still visible.

  3. Book Review: The Origins of Comets

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.

    1992-01-01

    In The Origins of Comets, Bailey, Clube, and Napier propose that the answer to whether the ancient heavens were more interesting is a resounding "yes." The sky, in fact, has changed and is still changing. The authors trace the study of comets back to ancient Babylonian times with a focus on theories of the origins of these enigmatic visitors. The book is really of three distinct parts: the first six chapters provide an excellent and delightfully readable historical account of comet studies up to this century. The next few chapters give a rather detailed treatment of current models for comet origins. The last section treats the authors' own theories about the relationship between giant comets and extinctions on Earth.

  4. A POSSIBLE DIVOT IN THE SIZE DISTRIBUTION OF THE KUIPER BELT'S SCATTERING OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankman, C.; Gladman, B. J.; Kaib, N.

    Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we explore the scattering-object (SO) size distribution. Although for D > 100 km the number of objects quickly rise as diameters decrease, we find a relative lack of smaller objects, ruling out a single power law at greater than 99% confidence. After studying traditional ''knees'' in the size distribution, we explore other formulations and find that, surprisingly, our analysis is consistent with a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, whichmore » then rises again as a power law. Motivated by other dynamically hot populations and the Centaurs, we argue for a divot size distribution where the number of smaller objects rises again as expected via collisional equilibrium. Extrapolation yields enough kilometer-scale SOs to supply the nearby Jupiter-family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now ''frozen in'' to portions of the Kuiper Belt sharing a ''hot'' orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's SO inclination distribution, the supply source that was scattered outward must have already been vertically heated to the of order 10 Degree-Sign .« less

  5. Meteoroid Streams from Sunskirter Comet Breakup

    NASA Astrophysics Data System (ADS)

    Jenniskens, P. M.

    2012-12-01

    In its first year of operations, the CAMS project (Cameras for Allsky Meteor Surveillance) has measured 47,000 meteoroid orbits at Earth, including some that pass the Sun as close as 0.008 AU. The population density increases significantly above perihelion distance q = 0.037 AU. Meteoroid streams are known with q about 0.1 AU. The Sun has a profound effect on comets that pass at 0.04-0.16 AU distance, called the sunskirter comets. SOHO and STEREO see families of small comets called the Marsden and Kracht groups. Sunlight is efficiently scattered by small 10-m sized fragments, making those fragments visible even when far from Earth. These comet groups are associated with meteor showers on Earth, in particular the Daytime Arietids and Delta Aquariids. All are related to 96P/Machholz, a highly inclined short-period (5.2 year) Jupiter family comet that comes to within 0.12 AU from the Sun, the smallest perihelion distance known among numbered comets. The proximity of the Sun speeds up the disintegration process, providing us a unique window on this important decay mechanism of Jupiter family comets and creating meteoroid streams. These are not the only sunskirting comets, however. In this presentation, we will present CAMS observations of the complete low-q meteoroid population at Earth and review their association with known parent bodies.

  6. Determination of orbits of comets: P/Kearns-Kwee, P/Gunn, including nongravitational effects in the comets' motion

    NASA Technical Reports Server (NTRS)

    Todorovic-Juchniewicz, Bozenna; Sitarski, Grzegorz

    1992-01-01

    To improve the orbits, all the positional observations of the comets were collected. The observations were selected and weighted according to objective mathematical criteria and the mean residuals a priori were calculated for both comets. We took into account nongravitational effects in the comets' motion using Marsden's method applied in two ways: either determining the three constant parameters, A(sub 1), A(sub 2), A(sub 3) or the four parameters A, eta, I, phi connected with the rotating nucleus of the comet. To link successfully all the observations, we had to assume for both comets that A(t) = A(sub O)exp(-B x t) where B was an additional nongravitational parameter.

  7. Rotational Period Determination of Two Mars-crossing, a Main Belt Asteroid and a PHA: (14309) Defoy, (56116) 1999 CZ7, (5813) Eizaburo and (3122) Florence.

    NASA Astrophysics Data System (ADS)

    Tomassini, Angelo; Scardella, Maurizio; Franceschini, Francesco; Pierri, Fernando

    2018-01-01

    The main-belt asteroids (5813) Eizaburo and two Mars crossing minor bodies, (14309) Defoy and (56116) 1999 CZ7, have been observed over several nights throughout 2017 March-September in order to determine their synodic rotational period. We also took the opportunity of the (3122) Florence close passage with the Earth in September-October to find its lightcurve.

  8. Comet Tempel 2: Orbit, ephemerides and error analysis

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1978-01-01

    The dynamical behavior of comet Tempel 2 is investigated and the comet is found to be very well behaved and easily predictable. The nongravitational forces affecting the motion of this comet are the smallest of any comet that is affected by nongravitational forces. The sign and time history of these nongravitational forces imply (1) a direct rotation of the comet's nucleus and (2) the comet's ability to outgas has not changed substantially over its entire observational history. The well behaved dynamical motion of the comet, the well observed past apparitions, the small nongravitational forces and the excellent 1988 ground based observing conditions all contribute to relatively small position and velocity errors in 1988 -- the year of a proposed rendezvous space mission to this comet. To assist in planned ground based and earth orbital observations of this comet, ephemerides are given for the 1978-79, 1983-84 and 1988 apparitions.

  9. IRAC Monitoring of the Late Heavy Comet Bombardment in the eta Corvi System

    NASA Astrophysics Data System (ADS)

    Marengo, Massimo; Lisse, Carey; Stapelfeldt, Karl; Hulsebus, Alan

    2014-12-01

    The nearby sun-like star eta Corvi (F2V, d=18 pc, age =1.2 Gyr) has long been known to possess a bright, dusty Kuiper Belt that has now been resolved with Herschel PACS. A warm inner dust belt indicated by an IRAS 12 micron excess and has recently been resolved as a 3-AU scale structure by VLT observations. In 2012 Lisse et al. further characterized this warm dust using Spitzer IRS, identifying the signatures of ice, organics and silicate dust in this system's Terrestrial Habitability Zone (THZ). The system appears to be undergoing a Late Heavy Bombardment (LHB), delivering primitive, water- and organic-rich material from the Kuiper Belt to the THZ, at roughly the same relative age as the solar system's LHB. Our data also showed an upturn in the excess flux shortwards of 6 micron ? evidence for a surprisingly large amount of icy dust scattering in the inner system (fscat/fstar ~ 1.0%). This results is corroborated by our recent 2-5 micron NASA/IRTF SpeX spectroscopy. In 2012 we have obtained Spitzer/IRAC photometric data for the system, detecting the disk at 3.6 and 4.5 micron in two separate epochs, followed by a third epoch in 2013. We now propose to continue our photometric monitoring with 15 additional visits to be scheduled within cycle 11, in order to extend our temporal coverage to 4 years on a variety of timescales ranging from days, to weeks, to months. The proposed campaign will allow us to test the two competing hypothesis for the origin of the warm disk: (1) single collison event leading to the breakup of a large Kuiper Belt object in the system or (2) continual raining of small comets scattered towards the inner system.

  10. Review of Dynamic Modeling and Simulation of Large Scale Belt Conveyor System

    NASA Astrophysics Data System (ADS)

    He, Qing; Li, Hong

    Belt conveyor is one of the most important devices to transport bulk-solid material for long distance. Dynamic analysis is the key to decide whether the design is rational in technique, safe and reliable in running, feasible in economy. It is very important to study dynamic properties, improve efficiency and productivity, guarantee conveyor safe, reliable and stable running. The dynamic researches and applications of large scale belt conveyor are discussed. The main research topics, the state-of-the-art of dynamic researches on belt conveyor are analyzed. The main future works focus on dynamic analysis, modeling and simulation of main components and whole system, nonlinear modeling, simulation and vibration analysis of large scale conveyor system.

  11. A catalog of observed nuclear magnitudes of Jupiter family comets

    NASA Astrophysics Data System (ADS)

    Tancredi, G.; Fernández, J. A.; Rickman, H.; Licandro, J.

    2000-10-01

    A catalog of a sample of 105 Jupiter family (JF) comets (defined as those with Tisserand constants T > 2 and orbital periods P < 20 yr) is presented with our ``best estimates'' of their absolute nuclear magnitudes H_N = V(1,0,0). The catalog includes all the nuclear magnitudes reported after 1950 until August 1998 that appear in the International Comet Quarterly Archive of Cometary Photometric Data, the Minor Planet Center (MPC) data base, IAU Circulars, International Comet Quarterly, and a few papers devoted to some particular comets, together with our own observations. Photometric data previous to 1990 have mainly been taken from the Comet Light Curve Catalogue (CLICC) compiled by Kamél (\\cite{kamel}). We discuss the reliability of the reported nuclear magnitudes in relation to the inherent sources of errors and uncertainties, in particular the coma contamination often present even at large heliocentric distances. A large fraction of the JF comets of our sample indeed shows various degrees of activity at large heliocentric distances, which is correlated with recent downward jumps in their perihelion distances. The reliability of coma subtraction methods to compute the nuclear magnitude is also discussed. Most absolute nuclear magnitudes are found in the range 15 - 18, with no magnitudes fainter than H_N ~ 19.5. The catalog can be found at: http://www.fisica.edu.uy/ ~ gonzalo/catalog/. Table 2 and Appendix B are only available in electronic form at http://www.edpsciences.org Table 5 is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  12. 103P/Hartley 2: ground-based monitoring of the EPOXI flyby comet

    NASA Astrophysics Data System (ADS)

    Tubiana, C.; Snodgrass, C.; Vincent, J.-B.; Barrera, L.; Nowajewski, P.; Retamales, G.; Lister, T.; Boehnhardt, H.

    2011-10-01

    Comet 103P/Hartley 2 was the fly-by target of the NASA EPOXI mission. Observations of this comet during its previous perihelion passage [1] and in 2008 when it was in its aphelion arc [2, 3] revealed a small and very active nucleus. We observed 103P from March 2010 to January 2011 using the 4m SOAR telescope located at Cerro Pachon, Chile. We took images in UBVRI filters using the SOAR Optical Imager (SOI). In addition, we made use of the large collection of (mostly BVR) images taken of the comet by school pupils using the two robotic 2m Faulkes Telescopes, which cover the same period. At the time of the observations, the comet was moving from 2.8 AU pre-perihelion to 1.6 AU post-perihelion heliocentric distance, when the comet was expected to display the most activity. The main purpose of our observations was the characterization of the activity of comet 103P and its evolution along the perihelion arc. We searched for the presence of dust coma structures and their evolution with changing heliocentric distance and determined gas and dust production rates, the dust color and the variation in these quantities as the comet passed perihelion. While no coma structures were detected between March and July 2010, a clear anisotropy in the coma in the anti-tail direction was detected in images obtained in November 2011 (Fig. 1). At the same place, the Laplace filter detects what might be a jet.

  13. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Dr. James L. Green, Director of Planetary Science at NASA, speaks during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  14. The 15 years of comet photometry: A comparative analysis of 80 comets

    NASA Technical Reports Server (NTRS)

    Osip, David J.; Schleicher, David G.; Millis, Robert L.; Ahearn, Michael F.; Birch, Peter V.

    1991-01-01

    In 1976, a program of narrowband photometry of comets was initiated that has encompassed well over 400 nights of observations. To date, the program has provided detailed information on 80 comets, 11 of which were observed during multiple apparitions. The filters (initially isolating CN, C2, and continuum and later including C3, OH, and NH) as well as the detectors used for the observations were changed over time, and the parameters adopted in the reduction and modeling of the data have likewise evolved. Accordingly, we have re-reduced the entire database and have derived production rates using current values for scalelengths and fluorescence efficiencies. Having completed this task, the results for different comets can now be meaningfully compared. The general characteristics that are discussed include ranges in composition (molecular production rate ratios) and dustiness (gas production compared with Af(rho)). Additionally an analysis of trends on how the production rates vary with heliocentric distance and on pre- and post-perihelion asymmetries in the production rates of individual comets. Possible taxonomic groupings are also described.

  15. A photometric survey of outer belt asteroids

    NASA Technical Reports Server (NTRS)

    Dimartino, M.; Gonano-Beurer, M.; Mottola, Stefano; Neukum, G.

    1992-01-01

    Since 1989, we have been conducting a research program devoted to the study of the Trojans and outer belt asteroids (Hilda and Cybele groups), in order to characterize their rotational properties and shapes. As an outcome of several observational campaigns, we determined rotational periods and lightcurve amplitudes for 23 distant asteroids, using both CCD and photoelectric photometry. In this paper, we compare the rotational properties of main belt asteroids and Trojans, based on the preliminary results of this survey.

  16. An Introduction to Comets and Their Origin.

    ERIC Educational Resources Information Center

    Chapman, Robert D.; Brandt, John C.

    1985-01-01

    Presents excerpts from "The Comet Book," a nontechnical primer on comets. Various topics discusses in these excerpts include such basic information about comets as their components, paths, and origins. (DH)

  17. Pattern of seat belt use by drivers in Trinidad and Tobago, West Indies

    PubMed Central

    2011-01-01

    Background In Trinidad and Tobago, the law on the mandatory use of seat belts was passed in 1995, but this law is hardly enforced. The objective of this study was to determine the frequency and predictors of seat belt use by motor vehicle drivers in the country. Findings A cross-sectional study of 959 motor vehicle drivers using a self-administered questionnaire. Data analysis included Pearson Chi square test and multinomial logistic regression analysis in order to determine the possible predictors of seat belt use by the drivers in Trinidad and Tobago. A majority of the drivers sometimes (51.8%) or always (31.6%) use a seat belt. About 16.7%, 29% and 54.2% of the drivers perceived that the other drivers use their seat belts more frequently, with the same frequency and less frequently respectively compared to themselves. The main reason for not using seat belt by the drivers was given as frequent stops (40.7%) and the main motivation to use seat belt by the drivers was given as stiffer penalties for non-compliance with the seat belt law (44.5%). The predictors of seat belt use were male driver, no formal or lower level of education, driving for less than 10 years, and the perception that the other drivers use seat belts with the same or higher frequency compared to the respondents. Conclusion Only a small proportion of the drivers in Trinidad and Tobago always use a seat belt when driving. There is the need to enforce the seat belt legislation in the country. PMID:21679410

  18. Mechanical and SEM analysis of artificial comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Thiel, K.; Kochan, H.; Roessler, K.; Gruen, E.; Schwehm, G.; Hellmann, H.; Hsiung, P.; Koelzer, G.

    1989-01-01

    Since 1987 experiments dealing with comet nucleus phenomena have been carried out in the DFVLR space simulation chambers. The main objective of these experiments is a better understanding of thermal behavior, surface phenomena and especially the gas dust interaction. As a function of different sample compositions and exposure to solar irradiation (xenon-bulbs) crusts of different hardness and thickness were measured. The measuring device consists of a motor driven pressure foot (5 mm diameter), which is pressed into the sample. The applied compressive force is electronically monitored. The microstructure of the crust and dust residuals is investigated by scanning electron microscopy (SEM) techniques. Stress-depth profiles of an unirradiated and an irradiated model comet are given.

  19. Laterally bendable belt conveyor

    DOEpatents

    Peterson, William J.

    1985-01-01

    An endless, laterally flexible and bendable belt conveyor particularly adapted for coal mining applications in facilitating the transport of the extracted coal up- or downslope and around corners in a continuous manner is disclosed. The conveying means includes a flat rubber belt reinforced along the middle portion thereof along which the major portion of the belt tension is directed so as to cause rotation of the tubular shaped belt when trammed around lateral turns thus preventing excessive belt bulging distortion between adjacent belt supports which would inhibit belt transport. Pretension induced into the fabric reinforced flat rubber belt by conventional belt take-up means supports the load conveyed when the belt conveyor is making lateral turns. The carrying and return portions of the belt are supported and formed into a tubular shape by a plurality of shapers positioned along its length. Each shaper is supported from above by a monorail and includes clusters of idler rollers which support the belt. Additional cluster rollers in each shaper permit the belt supporting roller clusters to rotate in response to the belt's operating tension imposed upon the cluster rollers by induced lateral belt friction forces. The freely rotating roller clusters thus permit the belt to twist on lateral curves without damage to itself while precluding escape of the conveyed material by effectively enclosing it in the tube-shaped, inner belt transport length.

  20. Kohoutek - A great comet coming.

    NASA Technical Reports Server (NTRS)

    Maran, S. P.; Hobbs, R. W.

    1973-01-01

    Passing inside the earth's orbit in late November, the comet Kohoutek will travel through the inner solar system during a unique period in the history of the space program, when Skylab and Mariner Venus-Mercury are in operation and the new C-141 Airborne Infrared Observatory is ready for flight. It is planned to investigate comprehensively the nature and evolution of the coma and tails of the comet. The detailed goals of the investigation include the identification of the parent molecules of the gases observed in comets, the determination of the processes that break down the parent molecules, the study of the physical nature of transient events in the comet, and the measurement of the solar-wind velocity in the inner solar system.

  1. Current ideas on the nature of comets

    NASA Technical Reports Server (NTRS)

    Rahe, J.

    1984-01-01

    The chemical composition, emission and line spectra, and structure of comet nuclei, cometary atmospheres, and comet tails are discussed. The role of ultraviolet and infrared astronomy in defining comets is examined.

  2. Swarm of Comets Artist Concept

    NASA Image and Video Library

    2015-11-24

    This illustration shows a star behind a shattered comet. Observations of the star KIC 8462852 by NASA's Kepler and Spitzer space telescopes suggest that its unusual light signals are likely from dusty comet fragments, which blocked the light of the star as they passed in front of it in 2011 and 2013. The comets are thought to be traveling around the star in a very long, eccentric orbit. http://photojournal.jpl.nasa.gov/catalog/PIA20053

  3. High-sodium comet

    NASA Astrophysics Data System (ADS)

    Friebele, Elaine

    In mid-April, astronomers in the Canary Islands discovered that Comet Hale-Bopp has a tail composed of sodium atoms, in addition to the commonly known ion and dust tails. Although sodium atoms have been seen at the centers of other comets, this is the first observation of a comet tail consisting of sodium.The discovery by Gabriele Cremonese of the Padova Astronomical Observatory in Italy and Don Pollaco of the Isaac Newton Group of telescopes at the Canary Islands, came from images of Hale-Bopp taken with a special wide-field camera fitted with a filter that isolates emission from sodium atoms. The sodium atoms are distributed over an enormous region in and around Hale-Bopp. It is not clear exactly how the sodium tail, which is 600,000 km wide and 50 million km long, was formed.

  4. Episodic Aging and End States of Comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    2008-01-01

    It is known that comets are aging very rapidly on cosmic scales, because they rapidly shed mass. The processes involved are (i) normal activity - sublimation of ices and expulsion of dust from discrete emission sources on and/or below the surface of a comet's nucleus, and (ii) nuclear fragmentation. Both modes are episodic in nature, the latter includes major steps in the comet's life cycle. The role and history of dynamical techniques used are described and results on mass losses due to sublimation and dust expulsion are reviewed. Studies of split comets, Holmes-like exploding comets, and cataclysmically fragmenting comets show that masses of 10 to 100 million tons are involved in the fragmentation process. This and other information is used to investigate the nature of comets' episodic aging. Based on recent advances in understanding the surface morphology of cometary nuclei by close-up imaging, a possible mechanism for large-scale fragmentation events is proposed and shown to be consistent with evidence available from observations. Strongly flattened pancake-like shapes appear to be required for comet fragments by conceptual constraints. Possible end states are briefly examined.

  5. The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites

    NASA Astrophysics Data System (ADS)

    Engrand, Cécile; Duprat, Jean; Bardin, Noémie; Dartois, Emmanuel; Leroux, Hugues; Quirico, Eric; Benzerara, Karim; Remusat, Laurent; Dobrică, Elena; Delauche, Lucie; Bradley, John; Ishii, Hope; Hilchenbach, Martin

    2016-10-01

    Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. Analyses of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko by the dust analyzers on Rosetta orbiter (COSIMA, GIADA, MIDAS) suggest a relationship to interplanetary dust/micrometeorites. A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system.

  6. Methods for computing comet core temperatures

    NASA Astrophysics Data System (ADS)

    McKay, C. P.; Squyres, S. W.; Reynolds, R. T.

    1986-06-01

    The temperature profile within the comet nucleus provides the key to an understanding of the history of the volatiles within a comet. Certain difficulties arise in connection with current cometary temperature models. It is shown that the constraint of zero net heat flow can be used to derive general analytical expressions which will allow for the determination of comet core temperature for a spherically symmetric comet, taking into account information about the surface temperature and the thermal conductivity. The obtained results are compared with the expression for comet core temperatures considered by Klinger (1981). Attention is given to analytical results, an example case, and numerical models. The formalization developed makes it possible to determine the core temperature on the basis of the numerical models of the surface temperature.

  7. Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    Harris, Alan W. (Editor); Bowell, Edward (Editor)

    1992-01-01

    Papers from the conference are presented and cover the following topics with respect to asteroids, comets, and/or meteors: interplanetary dust, cometary atmospheres, atmospheric composition, comet tails, astronomical photometry, chemical composition, meteoroid showers, cometary nuclei, orbital resonance, orbital mechanics, emission spectra, radio astronomy, astronomical spectroscopy, photodissociation, micrometeoroids, cosmochemistry, and interstellar chemistry.

  8. Asteroids and Comets Outreach Compilation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Contents include various different animations in the area of Asteroids and Comets. Titles of the short animated clips are: STARDUST Mission; Asteroid Castallia Impact Simulation; Castallia, Toutatis and the Earth; Simulation Asteroid Encounter with Earth; Nanorover Technology Task; Near Earth Asteroid Tracking; Champollian Anchor Tests; Early Views of Comets; Exploration of Small Bodies; Ulysses Resource Material from ESA; Ulysses Cometary Plasma Tail Animation; and various discussions on the Hale-Bopp Comet. Animation of the following are seen: the Stardust aerogel collector grid collecting cometary dust particles, comet and interstellar dust analyzer, Wiper-shield and dust flux monitor, a navigation camera, and the return of the sample to Earth; a comparison of the rotation of the Earth to the Castallia and Tautatis Asteroids; an animated land on Tautatis and the view of the motion of the sky from its surface; an Asteroid collision with the Earth; the USAF Station in Hawaii; close-up views of asteroids; automatic drilling of the Moon; exploding Cosmic Particles; and the dropping off of the plasma tail of a comet as it travels near the sun.

  9. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Dr. Anita Cochran, Assistant Director, McDonald Observatory at the University of Texas-Austin, speaks during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  10. Oort spike comets with large perihelion distances

    NASA Astrophysics Data System (ADS)

    Królikowska, Małgorzata; Dybczyński, Piotr A.

    2017-12-01

    The complete sample of large-perihelion nearly-parabolic comets discovered during the period 1901-2010 is studied, starting with their orbit determination. Next, an orbital evolution that includes three perihelion passages (previous-observed-next) is investigated in which a full model of Galactic perturbations and perturbations from passing stars is incorporated. We show that the distribution of planetary perturbations suffered by actual large-perihelion comets during their passage through the Solar system has a deep, unexpected minimum around zero, which indicates a lack of 'almost unperturbed' comets. Using a series of simulations we show that this deep well is moderately resistant to some diffusion of the orbital elements of the analysed comets. It seems reasonable to assert that the observed stream of these large-perihelion comets experienced a series of specific planetary configurations when passing through the planetary zone. An analysis of the past dynamics of these comets clearly shows that dynamically new comets can appear only when their original semimajor axes are greater than 20 000 au. On the other hand, dynamically old comets are completely absent for semimajor axes longer than 40 000 au. We demonstrate that the observed 1/aori-distribution exhibits a local minimum separating dynamically new from dynamically old comets. Long-term dynamical studies reveal a wide variety of orbital behaviour. Several interesting examples of the action of passing stars are also described, in particular the impact of Gliese 710, which will pass close to the Sun in the future. However, none of the obtained stellar perturbations is sufficient to change the dynamical status of the analysed comets.

  11. Comet ISON Approaching the Sun [still

    NASA Image and Video Library

    2013-11-27

    This movie from NASA’s STEREO spacecraft's Heliospheric Imager shows Comet ISON, Mercury, Comet Encke and Earth over a five-day period from Nov. 20 to Nov. 25, 2013. The sun sits right of the field of view of this camera. Comet ISON, which will round the sun on Nov. 28, is what's known as a sungrazing comet, due to its close approach. Foreshortening or the angle at which these images were obtained make Earth appear as if it is closer to the sun than Mercury. If you look closely you will also see a dimmer and smaller comet Encke near comet ISON. A comet’s journey through the solar system is perilous and violent. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. Even if the comet does not survive, tracking its journey will help scientists understand what the comet is made of, how it reacts to its environment, and what this explains about the origins of the solar system. Closer to the sun, watching how the comet and its tail interact with the vast solar atmosphere can teach scientists more about the sun itself. Image Credit: NASA/STEREO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. From the Vega mission to comet Halley to the Rosetta mission to comet 67/P Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Zelenyi, L. M.; Ksanfomality, L. V.

    2016-12-01

    The data acquired by the Vega and Giotto spacecraft, while investigating comet 1P/Halley in 1986, are compared to the results of the first phase of exploration of the nucleus of comet 67P/Churyumov-Gerasimenko performed with the Rosetta and Philae modules. The course of the Rosetta mission activity and the status of the modules after the Philae probe landing on the comet's nucleus are overviewed. Since some elements of the touchdown equipment failed, a number of in-situ experiments on the comet's nucleus were not carried out.

  13. On observing comets for nuclear rotation

    NASA Astrophysics Data System (ADS)

    Whipple, F. L.

    1981-10-01

    The prevalent non-gravitational motions among comets demonstrate that the sublimination does not reach a maximum at the instant of maximum insolation on the nucleus. The occurrence of halos or "parabolic" envelopes in the comae of some comets and of jets, rays, fans, streamers and similar phenomena very near the nucleus in the brightest comets demonstrates that the sublimation process is not uniform over the nuclei. In other words, the nuclei of many comets contain relatively small active regions which provide much or most of the sublimation when these areas are turned toward the Sun. The period of rotation can be determind by measurement of the diameters of the halos or of the latus recta of the "parabolic" envelopes, if the expansion velocities are averaged from observations as a function of solar distance. Experience from analyses of some 80 well observed comets shows that the nuclei are "spotted" for more than a third of all comets, regardless of the "age" as measured by the original inverse semimajor axis including correction for planetary perturbations.

  14. The 3.4 micron emission in comets

    NASA Technical Reports Server (NTRS)

    Brooke, Tim Y.; Knacke, Roger F.; Owen, T. C.; Tokunaga, Alan T.

    1989-01-01

    Emission features near 3.4 microns were detected in comet Bradfield (1987s) on 17 Nov. 1987 UT, and, marginally, on two earlier dates, with the Cooled Grating Array Spectrometer at the NASA Infrared Radio Telescope Facility (IRTF) (Brooke et al., 1988b). The central wavelength (3.36 microns) and width (approx. 0.15 microns) of the strongest feature coincide with those observed in comet Halley. A weaker emission feature at 3.52 microns and a strong feature extending shortward of 2.9 microns were also detected. This brings the number of comets in which these three features have been seen to three, two new (Bradfield, Wilson) and one old (Halley). It seems almost certain that the 3.4 micron features are emissions by C-H groups in complex molecules. Based on the similarity of the 3.4 micron features in comets Halley and Wilson, the authors suggest that a particular set of organic compounds may be common to all comets (Brooke et al. 1988a). The absence of the feature in some comets could then be due to photodestruction or evaporation of the organics when the comet approaches the sun, in combination with a predominance of thermal emission from non C-H emitting grains. Detection of the 3.4 micron emission feature in comet Bradfield at 4 = 0.9 AU provides support for this argument. Complex organics in comets could have been formed by particle irradiation of parent ices in the nucleus or been incorporated as grains at the time the comets formed. Since the most heavily irradiated layers of Halley would have been lost in its hundreds of perihelion passages, the authors believe the more likely explanation is that the 3.4 micron emitting material was incorporated in comet nuclei at the time of formation. The 3.4 micron comet feature resembles, but is not identical to, the interstellar 3.29 micron (and longer wavelength) emission features and the broad 3.4 micron feature seen in absorption toward the Galactic center. Detailed comparisons of cometary and interstellar organics

  15. Pattern of seat belt wearing in Nanjing, China

    PubMed Central

    Routley, V; Ozanne‐Smith, J; Li, D; Hu, X; Wang, P; Qin, Y

    2007-01-01

    Objective To describe the patterns of seat belt wearing in Nanjing, China for drivers, front seat passengers, and rear occupants of motor vehicles. Design Roadside observational study. Setting Four sites in central and northern Nanjing during daylight hours over 1 week in April 2005. Subjects Drivers and passengers of 17 147 cars, taxis, goods vans, and pickups, which traveled in the inside traffic lane. Main outcome measures Percentage seat belt wearing for each of seating position, age/sex, time of day, vehicle type, day of week. Results The rate of seat belt wearing was significantly higher in drivers (67.3%, 95% CI 66.6 to 68.0) than front seat passengers (18.9%, 95% CI, 18.0 to 19.8). It was negligible for second front seat passengers (2.6%, 95% CI 0.3 to 4.9) and rear seat passengers (0.5%, 95% CI 0.3 to 0.7). Belt tampering, such that protection would be reduced in the event of a crash, was observed for 18.5% of taxi drivers. Drivers were most likely to wear seat belts in cars and vans and at a city roundabout; front seat passengers were most likely to wear seat belts in non‐taxi vehicles, during the evening rush hour, if the driver was wearing a belt, and on the local north road. Drivers were least likely to wear a belt in the early morning, in pickups and taxis, on Tuesday (or the following week), and on the local north road; front seat passengers were least likely to wear a belt in taxis and if the driver was not wearing a belt. Conclusions Rates of seat belt wearing by passengers were low despite national legislation and provincial regulations coming into effect several months before the survey. Combined education and enforcement are necessary accompaniments to legislation. PMID:18056315

  16. Analysing of critical force effects of aircraft seat belt using truss elements

    NASA Astrophysics Data System (ADS)

    Klemenc, Marek; Markopoulos, Alexandros; Maršálek, Pavel

    2017-07-01

    This paper deals with the mathematical modelling of an aircraft seat belt crash test. The main goal is determination of a time course of the reactions in a lap belt anchoring points and their maximum values. This work was created on the basis of practical requirements from industry. Results are going to be reflected in developing a new type of aircraft seats. We mainly focus on the mathematical modelling of dynamic problems using the finite element method (FEM). Derived procedures are implemented in the Python programming language and are verified by several examples. A final calculation algorithm is applied on the analysis of the safety belt. We consider that a seat belt bending stiffness is very small compared to a tensile stiffness, therefore we used a 2D plane truss element.

  17. Mid-infrared spectra of comet nuclei

    NASA Astrophysics Data System (ADS)

    Kelley, Michael S. P.; Woodward, Charles E.; Gehrz, Robert D.; Reach, William T.; Harker, David E.

    2017-03-01

    Comet nuclei and D-type asteroids have several similarities at optical and near-IR wavelengths, including near-featureless red reflectance spectra, and low albedos. Mineral identifications based on these characteristics are fraught with degeneracies, although some general trends can be identified. In contrast, spectral emissivity features in the mid-infrared provide important compositional information that might not otherwise be achievable. Jovian Trojan D-type asteroids have emissivity features strikingly similar to comet comae, suggesting that they have the same compositions and that the surfaces of the Trojans are highly porous. However, a direct comparison between a comet and asteroid surface has not been possible due to the paucity of spectra of comet nuclei at mid-infrared wavelengths. We present 5-35 μm thermal emission spectra of comets 10P/Tempel 2, and 49P/Arend-Rigaux observed with the Infrared Spectrograph on the Spitzer Space Telescope. Our analysis reveals no evidence for a coma or tail at the time of observation, suggesting the spectra are dominated by the comet nucleus. We fit each spectrum with the near-Earth asteroid thermal model (NEATM) and find sizes in agreement with previous values. However, the NEATM beaming parameters of the nuclei, 0.74-0.83, are systematically lower than the Jupiter-family comet population mean of 1.03 ± 0.11, derived from 16- and 22-μm photometry. We suggest this may be either an artifact of the spectral reduction, or the consequence of an emissivity low near 16 μm. When the spectra are normalized by the NEATM model, a weak 10-μm silicate plateau is evident, with a shape similar to those seen in mid-infrared spectra of D-type asteroids. A silicate plateau is also evident in previously published Spitzer spectra of the nucleus of comet 9P/Tempel 1. We compare, in detail, these comet nucleus emission features to those seen in spectra of the Jovian Trojan D-types (624) Hektor, (911) Agamemnon, and (1172) Aneas, as well

  18. EPOXI at Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    A'Hearn, Michael F.; Belton, Michael J. S.; Delamere, W. Alan; Feaga, Lori M.; Hampton, Donald; Kissel, Jochen; Klaasen, Kenneth P.; McFadden, Jessica M.; Meech, Karen J.; Melosh, H. Jay; hide

    2011-01-01

    Understanding how comets work, i,e., what drives their activity, is crucial to using comets to study the early solar system. EPOXI flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus. taking both images and spectra. Unlike large, relatively inactive nuclei, this nncleus is outgassing primarily due to CO2, which drags chnnks of ice out of the nnclens. It also shows significant differences in the relative abundance of volatiles from various parts of the nucleus.

  19. Comet ISON Streaks Toward the Sun

    NASA Image and Video Library

    2013-11-22

    Date: 19 Nov 2013 Comet ISON shows off its tail in this three-minute exposure taken on 19 Nov. 2013 at 6:10 a.m. EST, using a 14-inch telescope located at the Marshall Space Flight Center. The comet is just nine days away from its close encounter with the sun; hopefully it will survive to put on a nice show during the first week of December. The star images are trailed because the telescope is tracking on the comet, which is now exhibiting obvious motion with respect to the background stars over a period of minutes. At the time of this image, Comet ISON was some 44 million miles from the sun -- and 80 million miles from Earth -- moving at a speed of 136,700 miles per hour. Credit: NASA/MSFC/Aaron Kingery -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way

  20. Groundbased Observations of [C I] 9850A Emission from Comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    Doane, N. E.; Oliversen, R. J.; Scherb, F.; Morgenthaler, J. P.; Roesler, F. L.; Woodward, R. C.; Harris, W. M.; Hilton, G. M.

    1999-05-01

    High spectral resolution observations of Comet Hale-Bopp [C I] 9850A emission were obtained at the NSO McMath-Pierce main telescope on 13 nights during 1997 March 9 to 10 and April 7 to 19. Spectra with good signal-to-noise were obtained using a dual- etalon 50mm Fabry-Perot spectrometer (R 40,000) with a 6 arcmin field of view. The comet was observed over a 0.92-1.00 AU range of heliocentric distances. Most observations were centered on the comet nucleus where the surface brightness ranged from about 70 to 170 Rayleighs. Several observations were also centered approximately 5 arcmin sunward and tailward of the comet nucleus. The sunward [C I] emission was fainter than the tailward emission. Assuming that CO photodissociation is the source of cometary C(1D) (and neglecting quenching), for a surface brightness of 120 Rayleighs, we estimate a (lower limit) CO production rate of about 2x10(30) per sec. These [C I] observationsare the first extensive set reported for this cometary emission line.

  1. The comet moment as a measure of DNA damage in the comet assay.

    PubMed

    Kent, C R; Eady, J J; Ross, G M; Steel, G G

    1995-06-01

    The development of rapid assays of radiation-induced DNA damage requires the definition of reliable parameters for the evaluation of dose-response relationships to compare with cellular endpoints. We have used the single-cell gel electrophoresis (SCGE) or 'comet' assay to measure DNA damage in individual cells after irradiation. Both the alkaline and neutral protocols were used. In both cases, DNA was stained with ethidium bromide and viewed using a fluorescence microscope at 516-560 nm. Images of comets were stored as 512 x 512 pixel images using OPTIMAS, an image analysis software package. Using this software we tested various parameters for measuring DNA damage. We have developed a method of analysis that rigorously conforms to the mathematical definition of the moment of inertia of a plane figure. This parameter does not require the identification of separate head and tail regions, but rather calculates a moment of the whole comet image. We have termed this parameter 'comet moment'. This method is simple to calculate and can be performed using most image analysis software packages that support macro facilities. In experiments on CHO-K1 cells, tail length was found to increase linearly with dose, but plateaued at higher doses. Comet moment also increased linearly with dose, but over a larger dose range than tail length and had no tendency to plateau.

  2. NASA Hubble Sees Comet ISON Intact

    NASA Image and Video Library

    2013-10-09

    This image from NASA Hubble Space Telescope of the sunward plunging comet ISON suggests that the comet is intact despite some predictions that the fragile icy nucleus might disintegrate as the sun warms it. In this NASA Hubble Space Telescope image taken on October 9, 2013 the comet's solid nucleus is unresolved because it is so small. If the nucleus broke apart then Hubble would have likely seen evidence for multiple fragments. Moreover, the coma or head surrounding the comet's nucleus is symmetric and smooth. This would probably not be the case if clusters of smaller fragments were flying along. What's more, a polar jet of dust first seen in Hubble images taken in April is no longer visible and may have turned off. This color composite image was assembled using two filters. The comet's coma appears cyan, a greenish-blue color due to gas, while the tail is reddish due to dust streaming off the nucleus. The tail forms as dust particles are pushed away from the nucleus by the pressure of sunlight. The comet was inside Mars' orbit and 177 million miles from Earth when photographed. Comet ISON is predicted to make its closest approach to Earth on 26 December, at a distance of 39.9 million miles. http://photojournal.jpl.nasa.gov/catalog/PIA18153

  3. Comets in Indian Scriptures

    NASA Astrophysics Data System (ADS)

    Das Gupta, P.

    2016-01-01

    The Indo-Aryans of ancient India observed stars and constellations for ascertaining auspicious times in order to conduct sacrificial rites ordained by the Vedas. Naturally, they would have sighted comets and referred to them in the Vedic texts. In Rigveda (circa 1700-1500 BC) and Atharvaveda (circa 1150 BC), there are references to dhumaketus and ketus, which stand for comets in Sanskrit. Rigveda speaks of a fig tree whose aerial roots spread out in the sky (Parpola 2010). Had this imagery been inspired by the resemblance of a comet's tail with long and linear roots of a banyan tree (ficus benghalensis)? Varahamihira (AD 550) and Ballal Sena (circa AD 1100-1200) described a large number of comets recorded by ancient seers, such as Parashara, Vriddha Garga, Narada, and Garga, to name a few. In this article, we propose that an episode in Mahabharata in which a radiant king, Nahusha, who rules the heavens and later turns into a serpent after he kicked the seer Agastya (also the star Canopus), is a mythological retelling of a cometary event.

  4. 30 CFR 75.1731 - Maintenance of belt conveyors and belt conveyor entries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maintenance of belt conveyors and belt conveyor....1731 Maintenance of belt conveyors and belt conveyor entries. (a) Damaged rollers, or other damaged belt conveyor components, which pose a fire hazard must be immediately repaired or replaced. All other...

  5. Are Comets 42P/Neujmin 3 and 53P/Van Biesbroeck Parts of one Comet?

    NASA Astrophysics Data System (ADS)

    Pittichova, J.; Meech, K. J.; Valsecchi, G. B.; Pittich, E. M.

    2003-05-01

    We want to present preliminary results of the observations of the physical parameters of comets 42P/Neujmin 3 and 53P/Van Biesbroeck: brightness, nucleus activity, rotation period, light-curve and color changes from our first three optical observing runs (March, and May 2003) at Mauna Kea, using UH 2.2m telescope and Tek2048 CCD camera. Comets 42P/Neujmin 3 and 53P/Van Biesbroeck have very well determined orbits, and their orbital histories are very interesting. Their current orbits are not very similar to each other; however, numerical integrations have shown that both comets had a rather close approach to Jupiter in January 1850, and that, before 1850, the two orbits were nearly identical. Given the extremely low probability of a chance coincidence of the six orbital elements at a given time, the natural conclusion is that the two objects are fragments of a single comet that split sometime in the late 1849 or early 1850. Among the known cases of split periodic comets, this one is peculiar for a number of reasons: 1. the splitting was probably not due to tidal stresses, since the 1850 encounter with Jupiter took place well outside the Roche lobe; 2. it is the only case discovered through a dynamical study; 3. in the only other case of splitting of a Jupiter family comet, that of 3D/Biela, the fragments did not survive for more than a couple of revolutions, whereas in the present case both fragments have passed perihelion more than ten times since the splitting. If these two comets are fragments of a single parent body, then they should show a certain degree of physical and chemical similarity, which we would like to obtain from spectroscopic observation in 2004, when both comets are close to their perihelion. Acknowledgments: Support for this work was provided by NASA Grant No. NAG5-12236 and Scientific Grant Agency VEGA of the Slovak Academy of Sciences, grant No. 2/1005/21.

  6. HT-COMET: a novel automated approach for high throughput assessment of human sperm chromatin quality

    PubMed Central

    Albert, Océane; Reintsch, Wolfgang E.; Chan, Peter; Robaire, Bernard

    2016-01-01

    STUDY QUESTION Can we make the comet assay (single-cell gel electrophoresis) for human sperm a more accurate and informative high throughput assay? SUMMARY ANSWER We developed a standardized automated high throughput comet (HT-COMET) assay for human sperm that improves its accuracy and efficiency, and could be of prognostic value to patients in the fertility clinic. WHAT IS KNOWN ALREADY The comet assay involves the collection of data on sperm DNA damage at the level of the single cell, allowing the use of samples from severe oligozoospermic patients. However, this makes comet scoring a low throughput procedure that renders large cohort analyses tedious. Furthermore, the comet assay comes with an inherent vulnerability to variability. Our objective is to develop an automated high throughput comet assay for human sperm that will increase both its accuracy and efficiency. STUDY DESIGN, SIZE, DURATION The study comprised two distinct components: a HT-COMET technical optimization section based on control versus DNAse treatment analyses (n = 3–5), and a cross-sectional study on 123 men presenting to a reproductive center with sperm concentrations categorized as severe oligozoospermia, oligozoospermia or normozoospermia. PARTICIPANTS/MATERIALS, SETTING, METHODS Sperm chromatin quality was measured using the comet assay: on classic 2-well slides for software comparison; on 96-well slides for HT-COMET optimization; after exposure to various concentrations of a damage-inducing agent, DNAse, using HT-COMET; on 123 subjects with different sperm concentrations using HT-COMET. Data from the 123 subjects were correlated to classic semen quality parameters and plotted as single-cell data in individual DNA damage profiles. MAIN RESULTS AND THE ROLE OF CHANCE We have developed a standard automated HT-COMET procedure for human sperm. It includes automated scoring of comets by a fully integrated high content screening setup that compares well with the most commonly used semi

  7. Dillon cutoff-Basement-involved tectonic link between the disturbed belt of west-central Montana and the overthrust belt of extreme southwestern Montana

    NASA Astrophysics Data System (ADS)

    O'Neill, J. Michael; Schmidt, Christopher J.; Genovese, Paul W.

    1990-11-01

    The front of the Cordilleran fold and thrust belt in western Montana follows the disturbed belt in the north, merges with the southwest Montana transverse zone in the west-central part of the region, and in southwestern Montana is marked by a broad zone characterized by complex interaction between thrust belt structures and basement uplifts. The front margin of the thrust belt in Montana reflects mainly thin-skinned tectonic features in the north, an east-trending lateral ramp that curves southwest in the central part into the Dillon cutoff, an oblique-slip, thick-skinned displacement transfer zone that cuts through basement rocks of the Lima recess, and a zone of overlap between thin- and thick-skinned thrusts in extreme southwestern Montana. The transverse ramp and basement-involved thrust faults are controlled by Proterozoic structures.

  8. Report of the Comet Science Working Group

    NASA Technical Reports Server (NTRS)

    1979-01-01

    General scientific questions and measurement objectives that can be addressed on a first comet mission relate to: (1) the chemical nature and the physical structure of comet nuclei as well as the changes that occur as functions of time and orbital position; (2) the chemical and physical nature of the atmospheres and ionospheres of comets, the processes which occur in them, and the development of these atmospheres and ionospheres as functions of time and orbital position; and (3) the nature of comet tails, the processes by which they are formed, and the interaction of comets with the solar wind. Capabilities of the various instruments required are discussed.

  9. Searching for Chips of Kuiper Belt Objects in Meteorites

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Ohsumi, K.; Briani, G.; Gounelle, M.; Mikouchi, T.; Satake, W.; Kurihara, T.; Weisberg, M. K.; Le, L.

    2009-01-01

    The Nice model [1&2] describes a scenario whereby the Jovian planets experienced a violent reshuffling event approx.3:9 Ga the giant planets moved, existing small body reservoirs were depleted or eliminated, and new reservoirs were created in particular locations. The Nice model quantitatively explains the orbits of the Jovian planets and Neptune [1], the orbits of bodies in several different small body reservoirs in the outer solar system (e.g., Trojans of Jupiter [2], the Kuiper belt and scattered disk [3], the irregular satellites of the giant planets [4], and the late heavy bombardment on the terrestrial planets approx.3:9 Ga [5]. This model is unique in plausibly explaining all of these phenomena. One issue with the Nice model is that it predicts that transported Kuiper Belt Objects (KBOs) (things looking like D class asteroids) should predominate in the outer asteroid belt, but we know only about 10% of the objects in the outer main asteroid belt appear to be D-class objects [6]. However based upon collisional modeling, Bottke et al. [6] argue that more than 90% of the objects captured in the outer main belt could have been eliminated by impacts if they had been weakly-indurated objects. These disrupted objects should have left behind pieces in the ancient regoliths of other, presumably stronger asteroids. Thus, a derived prediction of the Nice model is that ancient regolith samples (regolith-bearing meteorites) should contain fragments of collisionally-destroyed Kuiper belt objects. In fact KBO pieces might be expected to be present in most ancient regolith- bearing meteorites [7&8].

  10. Changing Speed of Comets

    ERIC Educational Resources Information Center

    Follows, Mike

    2003-01-01

    It is shown that highly elliptical orbits, such as those of comets, can be explained well in terms of energy rather than forces. The principle of conservation of energy allows a comet's velocity to be calculated at aphelion and perihelion. An example asks students to calculate whether they can run fast enough to escape from a small asteroid.…

  11. Piece of a Comet

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image shows a comet particle collected by the Stardust spacecraft. The particle is made up of the silicate mineral forsterite, also known as peridot in its gem form. It is surrounded by a thin rim of melted aerogel, the substance used to collect the comet dust samples. The particle is about 2 micrometers across.

  12. Report of Some Comets: The Discovery of Uranus and Comets by William, Caroline, and John Herschel

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Olson, R. J. M.

    2011-01-01

    We report on the discovery and drawings of comets by William, Caroline, and John Herschel. The first discovery, by William Herschel, in 1781 from Bath, published in the Philosophical Transactions of the Royal Society with the title "Report of a Comet," turned out to be Uranus, the first planet ever discovered, Mercury through Saturn having been known since antiquity. William's sister Caroline was given duties of sweeping the skies and turned out to be a discoverer of 8 comets in her own right, in addition to keeping William's notes. Caroline's comets were discovered from Slough between 1786 and 1797. In the process, we also discuss original documents from the archives of the Royal Society and of the Royal Astronomical Society. We conclude by showing comet drawings that we have recently attributed to John Herschel, including Halley's Comet from 1836, recently located in the Ransom Center of the University of Texas at Austin. Acknowledgments: Planetary astronomy at Williams College is supported in part by grant NNX08AO50G from NASA Planetary Astronomy. We thank Peter Hingley of the Royal Astronomical Society and Richard Oram of the Harry Ransom Center of The University of Texas at Austin for their assistance.

  13. Inventory of Volatiles in the Coma of Comet 67P/Churyumov-Gerasimenko from Rosetta ROSINA - An Overview of First Results

    NASA Astrophysics Data System (ADS)

    Altwegg, K.; Rubin, M.; Balsiger, H. R.; Jäckel, A.; Le Roy, L.; Wurz, P.; Gasc, S.; Calmonte, U.; Tzou, C. Y.; Mall, U. A.; Fiethe, B.; De Keyser, J. M.; Berthelier, J. J.; Reme, H.; Gombosi, T. I.; Fuselier, S.

    2014-12-01

    The European Space Agency's Rosetta spacecraft is now close in a bound orbit around comet 67P/Churyumov-Gerasimenko (67P/C-G). On board is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument suite. ROSINA consists of two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron-type Time-Of-Flight (RTOF), as well as the COmet Pressure Sensor (COPS). ROSINA is designed to detect and monitor the neutral gas and thermal plasma environment in the comet's coma by in situ investigation. The two mass spectrometers have high dynamic ranges and complement each other with high mass resolution (DFMS) and high time resolution and large mass range (RTOF). Especially the unprecedented sensitivity and mass resolution of DFMS together with the large mass range of RTOF will allow determining precisely light species (e.g. isotopologues) as well as detecting heavy organics. The pressure sensor COPS is capable to derive total gas densities, velocities, and temperatures. To date only limited data for the composition of cometary comae at heliocentric distances of more than 2.5 AU are available. The set is dominated by CO and daughter species of water from bright comets originating in the Oort cloud. While some molecules can be detected from far by remote sensing (e.g. CO) other molecules are much more difficult to observe from ground (e.g. CO2). The Rosetta mission presents a unique opportunity to directly probe the parent species in the thin cometary atmosphere of a Kuiper-belt object at more than 2.5 AU from the Sun and relate it to ground-based observations. Distances that far from the Sun are of particular interest as the comet's activity transitions from being super volatiles dominated to being water dominated. We will report on the first measurements of the volatile inventory obtained from ROSINA observations as Rosetta is following comet 67P/C-G in close vicinity.

  14. Spacecraft Images Comet Target Jets

    NASA Image and Video Library

    2010-11-04

    NASA Deep Impact spacecraft High- and Medium-Resolution Imagers HRI and MRI captured multiple jets emanating from comet Hartley 2 turning on and off while the spacecraft is 8 million kilometers 5 million miles away from the comet.

  15. Effectiveness of Ford's belt reminder system in increasing seat belt use

    PubMed Central

    Williams, A; Wells, J; Farmer, C

    2002-01-01

    Objectives: The study investigated the effectiveness in increasing seat belt use of Ford's belt reminder system, a supplementary system that provides intermittent flashing lights and chimes for five minutes if drivers are not belted. Methods: Seat belt use of drivers in relatively new cars with and without the reminder system was unobtrusively observed as vehicles were brought to dealerships for service. Results: Overall use rates were estimated at 71% for drivers in vehicles without the reminder system and 76% for drivers in vehicles with belt reminders (p<0.01). Conclusions: Seat belt use is relatively low in the United States. The present study showed that vehicle based reminder systems can be at least modestly effective in increasing belt use, which may encourage further development of such systems. PMID:12460965

  16. Comet ISON May Have Survived

    NASA Image and Video Library

    2013-11-30

    This movie shows Comet ISON orbiting around the sun – represented by the white circle -- on Nov. 28, 2013. ISON looks smaller as it streams away, but scientists believe its nucleus may still be intact. The video covers Nov. 27, 2013, 3:30 p.m. EST to Nov. 29, 2013, 8:30 a.m. EST. Continuing a history of surprising behavior, material from Comet ISON appeared on the other side of the sun on the evening on Nov. 28, 2013, despite not having been seen in observations during its closest approach to the sun. The question remains whether it is merely debris from the comet, or if some portion of the comet's nucleus survived, but late-night analysis from scientists with NASA's Comet ISON Observing Campaign suggest that there is at least a small nucleus intact. Credit: ESA/NASA/SOHO/Jhelioviewer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Origin and Evolution of Comet Clouds

    NASA Astrophysics Data System (ADS)

    Higuchi, Arika

    2007-01-01

    The Oort cloud (comet cloud) is a spherical comet reservoir surrounding a planetary system. We have investigated the comet cloud formation that consists of two dynamical stages of orbital evolution of planetesimals due to (1) planetary perturbation, and (2) the galactic tide. We investigated the first stage by using numerical calculations and obtained the probabilities of the fates of planetesimals as functions of the orbital parameters of the planets and planetesimals. We investigated the second stage by using the secular perturbation theory and showed the evolution of the structure of a comet cloud from a planetesimal disk. We found that (1) massive planets effectively produce comet cloud candidates by scattering and (2) many planetesimals with semimajor axes larger than 1,000 AU rise up their perihelion distances to the outside of the planetary region and become members of the Oort cloud in 5 Gyr.

  18. Comet Siding Spring Seen Next to Mars

    NASA Image and Video Library

    2017-12-08

    This composite NASA Hubble Space Telescope Image captures the positions of comet Siding Spring and Mars in a never-before-seen close passage of a comet by the Red Planet, which happened at 2:28 p.m. EDT October 19, 2014. The comet passed by Mars at approximately 87,000 miles (about one-third of the distance between Earth and the Moon). At that time, the comet and Mars were approximately 149 million miles from Earth. The comet image shown here is a composite of Hubble exposures taken between Oct. 18, 8:06 a.m. EDT to Oct. 19, 11:17 p.m. EDT. Hubble took a separate photograph of Mars at 10:37 p.m. EDT on Oct. 18. The Mars and comet images have been added together to create a single picture to illustrate the angular separation, or distance, between the comet and Mars at closest approach. The separation is approximately 1.5 arc minutes, or one-twentieth of the angular diameter of the full Moon. The background starfield in this composite image is synthesized from ground-based telescope data provided by the Palomar Digital Sky Survey, which has been reprocessed to approximate Hubble’s resolution. The solid icy comet nucleus is too small to be resolved in the Hubble picture. The comet’s bright coma, a diffuse cloud of dust enshrouding the nucleus, and a dusty tail, are clearly visible. This is a composite image because a single exposure of the stellar background, comet Siding Spring, and Mars would be problematic. Mars is actually 10,000 times brighter than the comet, and so could not be properly exposed to show detail in the Red Planet. The comet and Mars were also moving with respect to each other and so could not be imaged simultaneously in one exposure without one of the objects being motion blurred. Hubble had to be programmed to track on the comet and Mars separately in two different observations. The images were taken with Hubble’s Wide Field Camera 3. Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA

  19. A possible YORP effect on C and S Main Belt Asteroids

    NASA Astrophysics Data System (ADS)

    Carbognani, A.

    2011-01-01

    A rotating frequency analysis in a previous paper, showed that two samples of C and S-type asteroids belonging to the Main Belt, but not to any families, present two different values for the transition diameter to a Maxwellian distribution of the rotation frequency, respectively 48 and 33 km. In this paper, after a more detailed statistical analysis, aiming to verify that the result is physically relevant, we found a better estimate for the transition diameter, respectively D C = 44 ± 2 km and D S = 30 ± 1 km. The ratio between these estimated transition diameters, D C/ D S = 1.5 ± 0.1, can be supported with the help of the YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect, although other physical causes cannot be completely ruled out. In this paper we have derived a simple scaling law for YORP which, taking into account the different average heliocentric distance, the bulk density, the albedo and the asteroid "asymmetry surface factor", has enabled us to reasonably justify the ratio between the diameters transition of C-type and S-type asteroids. The same scaling law can be used to estimate a new ratio between the bulk densities of S and C asteroids samples (giving ρ S/ ρ C ≈ 2.9 ± 0.3), and can explain why the asteroids near the transition diameter have about the same absolute magnitude. For C-type asteroids, using the found density ratio and other estimates of S-type density, it is also possible to estimate an average bulk density equal to 0.9 ± 0.1 g cm -3, a value compatible with icy composition. The suggested explanation for the difference of the transition diameters is a plausible hypothesis, consistent with the data, but it needs to be studied more in depth with further observations.

  20. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Dr. James L. Green, Director of Planetary Science at NASA, right, speaks with Dr. Robert Farquar, an executive for space exploration at KinetX Inc., during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  1. Atlas of Secular Light Curves of Comets

    NASA Astrophysics Data System (ADS)

    Ferrin, Ignacio

    2007-12-01

    We have completed work on the secular light curves of 30 periodic and non-periodic comets. The objectives and approach of this project has been explained in Ferrin (Icarus, 178, 493-516, 2005). Each comet requires 2 plots. The time plot shows the reduced (to Δ = 1 AU) magnitude of the comet as a function of time, thus displaying the brightness history of the object. The log plot is a reflected double log plot. The reflection takes place at R=1 AU, to allow the determination of the absolute magnitude by extrapolation. 22 photometric parameters are measured from the plots, most of them new. The plots have been collected in a document that constitutes "The Atlas". We have defined a photometric age, P-AGE, that attempts to measure the age of a comet based on its activity. P-AGE has been scaled to human ages to help in its interpretation. We find that comets Hale-Bopp and 29P/SW 1, are baby comets (P-AGE < 3 comet years), while 107P, 162P and 169P are methuselah comets (P-AGE > 100 cy). The secular light curve of 9P/Tempel 1 exhibits sublimation due to H2O and due to CO. Comet 67P/Churyumov-Gerasimento to be visited by the Rossetta spacecraft in 2014 exhibits a photometric anomaly. Comet 65P/Gunn exhibits a lag in maximum brightness of LAG = + 254 days after perihelion. We suggest that the pole is pointing to the sun at that time. The secular light curves will be presented and a preliminary interpretation will be advanced. The secular light curves present complexity beyond current understanding. The observations described in this work were carried out at the National Observatory of Venezuela (ONV), managed by the Center for Research in Astronomy (CIDA), for the Ministry of Science and Technology (MinCyT).

  2. Abundant Solar Nebula Solids in Comets

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of

  3. ScienceCast 96: Sunset Comet

    NASA Image and Video Library

    2013-03-14

    Comet Pan-STARRS has survived its encounter with the sun and is now emerging from twilight in the sunset skies of the northern hemisphere. A NASA spacecraft monitoring the comet has beamed back pictures of a wild and ragged tail.

  4. Contamination of the asteroid belt by primordial trans-Neptunian objects.

    PubMed

    Levison, Harold F; Bottke, William F; Gounelle, Matthieu; Morbidelli, Alessandro; Nesvorný, David; Tsiganis, Kleomenis

    2009-07-16

    The main asteroid belt, which inhabits a relatively narrow annulus approximately 2.1-3.3 au from the Sun, contains a surprising diversity of objects ranging from primitive ice-rock mixtures to igneous rocks. The standard model used to explain this assumes that most asteroids formed in situ from a primordial disk that experienced radical chemical changes within this zone. Here we show that the violent dynamical evolution of the giant-planet orbits required by the so-called Nice model leads to the insertion of primitive trans-Neptunian objects into the outer belt. This result implies that the observed diversity of the asteroid belt is not a direct reflection of the intrinsic compositional variation of the proto-planetary disk. The dark captured bodies, composed of organic-rich materials, would have been more susceptible to collisional evolution than typical main-belt asteroids. Their weak nature makes them a prodigious source of micrometeorites-sufficient to explain why most are primitive in composition and are isotopically different from most macroscopic meteorites.

  5. CO in Distantly Active Comets

    NASA Astrophysics Data System (ADS)

    Womack, M.; Sarid, G.; Wierzchos, K.

    2017-03-01

    The activity of most comets near the Sun is dominated by the sublimation of frozen water, the most abundant ice in comets. Some comets, however, are active well beyond the water-ice sublimation limit of ˜3 au. Three bodies dominate the observational record and modeling efforts for distantly active comets: the long-period comet C/1995 O1 (Hale-Bopp), and the short-period comets (with Centaur orbits) 29P/Schwassmann-Wachmann 1 and 2060 Chiron. We summarize what is known about these three objects with an emphasis on their gaseous comae. We calculate their CN/CO and CO2/CO production rate ratios from the literature and discuss implications, such as HCN and CO2 outgassing are not significant contributors to their comae. Using our own data we derive CO production rates, Q(CO), for all three objects to examine whether there is a correlation between gas production and different orbital histories and/or size. The CO measurements of Hale-Bopp (4-11 AU) and 29P are consistent with a nominal production rate of Q(CO) = 3.5 × 1029 r-2 superimposed with sporadic outbursts. The similarity of Hale-Bopp CO production rates for pre- and post-perihelion suggests that thermal inertia was not very important and therefore most of the activity is at or near the surface of the comet. We further examine the applicability of existing models in explaining the systematic behavior of our small sample. We find that orbital history does not appear to play a significant role in explaining 29P’s CO production rates. 29P outproduces Hale-Bopp at the same heliocentric distance, even though it has been subjected to much more solar heating. Previous modeling work on such objects predicts that 29P should have been devolatilized over a fresher comet like Hale-Bopp. This may point to 29P having a different orbital history than current models predict, with its current orbit acquired more recently. On the other hand, Chiron’s CO measurements are consistent with it being significantly depleted over its

  6. Comet 'Bites the Dust' Around Dead Star

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Infrared Spectrometer Graph

    This artist's concept illustrates a comet being torn to shreds around a dead star, or white dwarf, called G29-38. NASA's Spitzer Space Telescope observed a cloud of dust around this white dwarf that may have been generated from this type of comet disruption. The findings suggest that a host of other comet survivors may still orbit in this long-dead solar system.

    The white dwarf G29-38 began life as a star that was about three times as massive as our sun. Its death involved the same steps that the sun will ultimately undergo billions of years from now. According to theory, the G29-38 star became brighter and brighter as it aged, until it bloated up into a dying star called a red giant. This red giant was large enough to engulf and evaporate any terrestrial planets like Earth that happened to be in its way. Later, the red giant shed its outer atmosphere, leaving behind a shrunken skeleton of star, called a white dwarf. If the star did host a planetary system, outer planets akin to Jupiter and Neptune and a remote ring of icy comets would remain.

    The Spitzer observations provide observational evidence for this orbiting outpost of comet survivors. Astronomers speculate that one such comet was knocked into the inner regions of G29-38, possibly by an outer planet. As the comet approached very close to the white dwarf, it may have been torn apart by the star's tidal forces. Eventually, all that would be left of the comet is a disk of dust.

    This illustration shows a comet in the process of being pulverized: part of it still exists as a chain of small clumps, while the rest has already spread out into a dusty disk. Comet Shoemaker-Levy 9 broke apart in a similar fashion when it plunged into Jupiter in 1994. Evidence for Comets Found in Dead Star's Dust The graph of data, or spectrum, from NASA's Spitzer Space Telescope indicates that a dead star, or white dwarf, called G29

  7. Comet formation

    NASA Astrophysics Data System (ADS)

    Blum, J.

    2014-07-01

    There has been vast progress in our understanding of planetesimal formation over the past decades, owing to a number of laboratory experiments as well as to refined models of dust and ice agglomeration in protoplanetary disks. Coagulation rapidly forms cm-sized ''pebbles'' by direct sticking in collisions at low velocities (Güttler et al. 2010; Zsom et al. 2010). For the further growth, two model approaches are currently being discussed: (1) Local concentration of pebbles in nebular instabilities until gravitational instability occurs (Johansen et al. 2007). (2) A competition between fragmentation and mass transfer in collisions among the dusty bodies, in which a few ''lucky winners'' make it to planetesimal sizes (Windmark et al. 2012a,b; Garaud et al. 2013). Predictions of the physical properties of the resulting bodies in both models allow a distinction of the two formation scenarios of planetesimals. In particular, the tensile strength (i.e, the inner cohesion) of the planetesimals differ widely between the two models (Skorov & Blum 2012; Blum et al. 2014). While model (1) predicts tensile strengths on the order of ˜ 1 Pa, model (2) results in rather compactified dusty bodies with tensile strengths in the kPa regime. If comets are km-sized survivors of the planetesimal-formation era, they should in principle hold the secret of their formation process. Water ice is the prime volatile responsible for the activity of comets. Thermophysical models of the heat and mass transport close to the comet-nucleus surface predict water-ice sublimation temperatures that relate to maximum sublimation pressures well below the kPa regime predicted for formation scenario (2). Model (1), however, is in agreement with the observed dust and gas activity of comets. Thus, a formation scenario for cometesimals involving gravitational instability is favored (Blum et al. 2014).

  8. The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites

    NASA Astrophysics Data System (ADS)

    Engrand, Cecile; Duprat, Jean; Bardin, Noemie; Dartois, Emmanuel; Leroux, Hugues; Quirico, Eric; Benzerara, Karim; Rémusat, Laurent; Dobrică, Elena; Delauche, Lucie; Bradley, John; Ishii, Hope; Hilchenbach, Martin; COSIMA Team

    2015-08-01

    Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. The Rosetta mission currently carries dust analyzers capable of measuring dust flux, sizes, physical properties and compositions of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko (COSIMA, GIADA, MIDAS), as well as gas analyzers (ROSINA, PTOLEMY, COSAC). A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system. We will present the implications of the analyses of samples in the laboratory and in space to a better understanding of the early protoplanetary disk.

  9. Comet Halley Returns. A Teacher's Guide, 1985-1986.

    ERIC Educational Resources Information Center

    Chapman, Robert D.; Bondurant, R. Lynn, Jr.

    This booklet was designed as an aid for elementary and secondary school teachers. It is divided into two distinct parts. Part I is a brief tutorial which introduces some of the most important concepts about comets. Areas addressed include: the historical importance of Comet Halley; how comets are found and names; cometary orbits; what Comet Halley…

  10. Condition-Based Conveyor Belt Replacement Strategy in Lignite Mines with Random Belt Deterioration

    NASA Astrophysics Data System (ADS)

    Blazej, Ryszard; Jurdziak, Leszek

    2017-12-01

    In Polish lignite surface mines, condition-based belt replacement strategies are applied in order to assure profitable refurbishment of worn out belts performed by external firms specializing in belt maintenance. In two of three lignite mines, staff asses belt condition subjectively during visual inspections. Only one mine applies specialized diagnostic device (HRDS) allowing objective magnetic evaluation of belt core condition in order to choose the most profitable moment for the dismantling of worn out belt segments from conveyors and sending them to the maintenance firm which provides their refurbishment. This article describes the advantages of a new diagnostic device called DiagBelt. It was developed at the Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology. Economic gains from its application are calculated for the lignite mine and for the belt maintenance firm, taking into account random life (durability) of new and reconditioned belts (after the 1st and the 2nd refurbishment). Recursive calculations for following years allow the estimation of the length and costs of replaced, reconditioned and purchased belts on an annual basis, while the use of the Monte Carlo method allows the estimation of their variability caused by random deterioration of belts. Savings are obtained due to better selection of moments (times) for the replacement of belt segments and die to the possibility to qualify worn out belts for refurbishment without the need to remove their covers. In effect, increased belt durability and lowered share of waste belts (which were not qualified for reconditioning) create savings which can quickly cover expenditures on new diagnostic tools and regular belt inspections in the mine.

  11. Comet Wild 2 - Stardust Approach Image

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image was taken during the close approach phase of Stardust's Jan 2, 2004 flyby of comet Wild 2. It is a distant side view of the roughly spherical comet nucleus. One hemisphere is in sunlight and the other is in shadow analogous to a view of the quarter moon. Several large depressed regions can be seen. Comet Wild 2 is about five kilometers (3.1 miles) in diameter.

  12. Colors and spin period distributions of sub-km main belt asteroids

    NASA Astrophysics Data System (ADS)

    Yoshida, Fumi; Lin, Hsing-Wen; Chen, Ying-Tung; Souami, Damya; Bouquillon, Sebastien; Ip, Wing-Huen; Chang, Chan-Kao; Nakamura, Tsuko; Dermawan, Budi; Yagi, Masafumi; Souchay, Jean

    2014-11-01

    The size dependency of space weathering on asteroid’s surface and collisional lifetimes suggest that small asteroids are younger than large asteroids. Therefore, the studies of smaller asteroid provide us new information about asteroid composition on fresh surface and their collisional evolution. We performed a color observation using 4 filters and lightcurve observation using 2 filters on different nights, using the 8.2m Subaru telescope/Suprime-Cam, for investigating the color and spin period distributions of sub-km main-belt asteroids (MBAs) that could not be seen before by middle class telescopes. In a lightcurve observation on Sep. 2, 2002, we kept taking images of a single sky field at near the opposition and near the ecliptic plane. Taking advantage of the wide field view of Suprime-Cam, this observation was planned to obtain lightcurves of 100 asteroids at the same time. Actually, we detected 112 MBAs and obtained their lightcurves by using a modified GAIA-GBOT PIPELINE. For the period analysis, we defined a criterion for judging whether an obtained rotational period is robust or not. Although Dermawan et al. (2011) have suggested that there are many fast rotators (FR) in MBAs, we noticed that many MBAs have long spin periods. Therefore, we could determine the rotation period of only 22 asteroids. We found one FR candidate (P=2.02 hr). We could measure the B-R color of 16 asteroids among the 22 MBAs. We divided them into S-like and C-like asteroids by the B-R color. The average rotational periods of C-like and S-like asteroids are 4.3 hr and 7.6 hr, respectively. C-like asteroids seem to rotate faster than S-like ones. We carried out a multi-color survey on Aug. 9 and 10, 2004 and then detected 154 MBAs. We classified them into several taxonomic types. Then we noticed that there are only very few Q-type candidates (non-weathered S-type) unlike the near Earth asteroid (NEAs) population, in which Q-type is a main component. This may indicate that most of Q

  13. The outbursts of the comet 29P/Schwassmann-Wachmann 1: A new approach to the old problem

    NASA Astrophysics Data System (ADS)

    Gronkowski, P.

    2014-02-01

    As far as outbursts activity is concerned, the 29P/Schwassmann-Wachmann 1 is the exceptional comet. This Centaur object shows quasi-regular flares with periodicities of 50 days eriodicity (Trigo-Rodriguez et al. 2010). In the introductory part of the presented paper the most well-known hypotheses which try to explain this cometary behaviour are reviewed. The second, actual part of this paper presents the new model for the outburst activity of this comet. The model is based on the idea of Ipatov (2012), according to which there are large cavities %%in comets %%with material under gas pressure, below a considerable fraction of the comet's surface containing material under high gas pressure. In favourite conditions the surface layers over the cavities are thrown away and the interior of these cavities is exposed. Consequently, an outburst of the comet's brightness may be observed. The main characteristics of an outburst of this comet, the brightness jump, %%in its brightness is calculated. Numerical simulations were carried out for wide range of possible cometary parameters. The obtained results are in good agreement with the real observations.

  14. Migration of comets to the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Ipatov, Sergei I.; Mather, John C.

    2007-05-01

    The orbital evolution of 30,000 objects with initial orbits close to those of Jupiter-family comets (JFCs) and also of 15,000 dust particles was integrated [1-3]. For initial orbital elements close to those of Comets 2P, 10P, 44P, and 113P, a few objects got Earth-crossing orbits with semi-major axes a<2 AU and aphelion distances Q<4.2 AU, or even got inner-Earth (Q<0.983 AU), Aten, or typical asteroidal orbits, and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Most of former trans-Neptunian objects that have typical near-Earth object (NEO) orbits moved in such orbits for Myrs, so during most of this time they were extinct comets. From a dynamical point of view, the fraction of extinct comets among NEOs can exceed several tens of percent, but, probably, many extinct comets disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes if these lifetimes were large. The probability of the collision of Comet 10P with the Earth during a dynamical lifetime of the comet was P[E]≈1.4•10-4, but 80% of this mean probability was due only to one object among 2600 considered objects with orbits close to that of Comet 10P. For runs for Comet 2P, P[E]≈(1-5)•10-4. For most other considered JFCs, 10-6 < P[E] < 10-5. For Comets 22P and 39P, P[E]≈ (1-2)•10-6; and for Comets 9P, 28P and 44P, P[E]≈(2-5)•10-6. For all considered JFCs, P[E]>4•10-6. The Bulirsh-Stoer method of integration and a symplectic method gave similar results. In our runs the probability of a collision of one object with the Earth could be greater than the sum of probabilities for thousands of other objects. The ratios of probabilities of collisions of JFCs with Venus and Mars to the mass of a planet usually were not smaller than that for Earth. For dust particles started from comets and asteroids, P[E ]was maximum for diameters d~100 μm. These maximum values of P [E] were usually (exclusive for 2P) greater at least by an order of

  15. Orbit-dependent spectral trends for the near-Earth asteroid population

    NASA Astrophysics Data System (ADS)

    Fevig, Ronald Adrey

    Results of visible to near-infrared spectrophotometric observations of 55 near- Earth asteroids (NEAs) are reported. The observing techniques, instrumentation, and method of data analysis are described. A new asteroid classification method that directly compares these NEA spectra with spectral features of meteorites is presented. Two major siliceous groups (having discernible "1-mm" absorptions) result from this method, OC-likes which match the spectra of ordinary chondrites and S-types. The dataset shows a preponderance of spectra consistent with ordinary chondrites (23 NEAs), as well as S-types (19), 2 with spectra consistent with black ordinary chondrites, 2 R-types, and 9 that show no 1-mm absorption. The spectral characteristics of the siliceous S-type and OC-like asteroids blend together, providing evidence that S-type asteroids are simply ordinary chondrites whose surface has been modified by weathering. This helps resolve the long standing question of the lack of main belt asteroids having spectra matching ordinary chondrite meteorites. Main belt asteroids have on average much older surfaces while NEAs that exhibit OC-like spectra have younger surfaces. It was found that fresh objects having spectra consistent with ordinary chondrites (1) occupy mostly highly eccentric Apollo orbits which encounter a strong collisional environment in the asteroid main-belt, (2) may have been recently injected into high eccentricity orbits, or (3) have suffered tidal disruption. S-type NEAs reside primarily in orbits that do not cross the asteroid main-belt. This orbit dependent trend is verified by using the larger NEA dataset of Binzel et al. (2004a). Nine NEAs from this survey exhibiting no 1-mm absorption can be associated with extinct comets, iron meteorites or enstatite meteorites. It is shown that most of these NEAs must be extinct comets, implying a considerably larger fraction of comets among the NEA population than previously thought. A correlation of these objects

  16. Active Asteroids in the NEO Population

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter

    2016-01-01

    Some main-belt asteroids evolve into near-Earth objects. They can then experience the same meteoroid-producing phenomena as active asteroids in the main belt. If so, they would produce meteoroid streams, some of which evolve to intersect Earth's orbit and produce meteor showers at Earth. Only few of those are known. Meteoroid streams that move in orbits with Tisserand parameter well in excess of 3 are the Geminids and Daytime Sextantids of the Phaethon complex and the lesser known epsilon Pegasids. The observed activity appears to be related to nearly whole scale disintegrations, rather than dust ejection from volatile outgassing as observed in active comets. There is only a small population of asteroids with a main-belt origin that recently disintegrated into meteoroid streams.

  17. The next three decades of the comet assay: a report of the 11th International Comet Assay Workshop.

    PubMed

    Koppen, Gudrun; Azqueta, Amaya; Pourrut, Bertrand; Brunborg, Gunnar; Collins, Andrew R; Langie, Sabine A S

    2017-05-01

    The International Comet Assay Workshops are a series of scientific conferences dealing with practical and theoretical aspects of the Comet Assay (single-cell gel electrophoresis)-a simple method for detecting DNA strand breaks. The first paper describing such an assay was published over 30 years ago in 1984 by Swedish researchers O. Ostling and K. J. Johanson. Appropriately, the theme for the 2015 meeting was looking to the future: 'The Next 3 Decades of the Comet Assay'. The programme included 25 oral and 43 poster presentations depicting the latest advances in technical developments as well as applications of the comet assay in genotoxicity testing (in vitro and in vivo) and biomonitoring of both humans and the environment. Open discussion sessions based on questions from the participants allowed exchange of practical details on current comet assay protocols. This report summarises technical issues of high importance which were discussed during the sessions. We provide information on ways to improve the assay performance, by testing for cytotoxicity, by using reference samples to reduce or allow for inter-experimental variation, and by standardising quantification of the damage, including replicates and scoring enough comets to ensure statistical validity. After 30 years of experimentation with the comet assay, we are in a position to control the important experimental parameters and make the comet assay a truly reliable method with a wealth of possible applications. © The Author 2017. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Venus orogenic belt environments - Architecture and origin

    NASA Astrophysics Data System (ADS)

    Head, James W.; Vorder Bruegge, Richard W.; Crumpler, L. S.

    1990-08-01

    Orogenic belt environments (Danu, Akna, Freyja, and Maxwell Montes) in Western Ishtar Terra, Venus, display a range of architectural elements, including (from the center of Western Ishtar outward) an inboard plateau (Lakshmi Planum), the linear orogenic belts themselves, outboard plateaus, steep scarps bounding Ishtar, adjacent linear foredeeps and outboard rises, and outboard low-lying volcanic plains. The main elements of the architecture are interpreted to be due to the convergence, underthrusting, and possible subduction of lowland plains at the margins of a preexisting tessera plateau of thicker crust.

  19. Dynamics of the Trans-Neptune Region: Apsidal Waves in the Kuiper Belt

    NASA Technical Reports Server (NTRS)

    Ward, William R.; Hahn, Joseph M.

    1998-01-01

    The role of apsidal density waves propagating in a primordial trans-Neptune disk (i.e., Kuiper belt) is investigated. It is shown that Neptune launches apsidal waves at its secular resonance near 40 AU that propagate radially outward, deeper into the particle disk. The wavelength of apsidal waves is considerably longer than waves that might be launched at Lindblad resonances, because the pattern speed, g(sub s), resulting from the apsis precession of Neptune is much slower than its mean motion, Omega(sub s). If the early Kuiper belt had a sufficient surface density, sigma, the disk's wave response to Neptune's secular perturbation would have spread the disturbing torque radially over a collective scale lambda(sub *) approx. = r(2(mu)(sub d)Omega/ absolute value of r dg/dr)(sup 1/2), where mu(sub d)equivalent pi(sigma)r(exp 2)/(1 solar mass) and Omega(r) and g(r) are respectively the mean motion and precession frequency of the disk particles. This results in considerably smaller eccentricities at resonance than had the disk particles been treated as noninteracting test particles. Consequently, particles are less apt to be excited into planet-crossing orbits, implying that the erosion timescales reported by earlier test-particle simulations of the Kuiper belt may be underestimated. It is also shown that the torque the disk exerts upon the planet (due to its gravitational attraction for the disk's spiral wave pattern) damps the planet's eccentricity and further inhibits the planet's ability to erode the disk. Key words: celestial mechanics, stellar dynamics - comets: general minor planets, asteroids

  20. COMET KOHAUTEK - ART CONCEPTS

    NASA Image and Video Library

    1973-11-27

    S73-37273 (24 Dec. 1973) --- An artist's concept illustrating the trajectory of the newly-discovered Comet Kohoutek in relation to the sun and to Earth and the plane of Earth's orbit. The picture show's the position of Kohoutek on Christmas Eve, 1973. The Skylab space station in Earth orbit will provide a favorable location from which to observe the passing of the comet. Photo credit: NASA

  1. Optical Detection of Anomalous Nitrogen in Comets

    NASA Astrophysics Data System (ADS)

    2003-12-01

    studies will provide crucial information about the detailed composition of a much larger number of comets than hitherto possible and hence, more information about the primordial matter from which the solar system formed. A better understanding of the origins of the cometary material (in particular the HCN and CN molecules [3]) and the connection with heavier organic molecules is highly desirable. This is especially so in view of the probable rôle of comets in bringing to the young Earth materials essential for the subsequent formation of life on our planet . PR Photo 28a/03 : Comet LINEAR (C/2000 WM1) - direct image and UVES slit position. PR Photo 28b/03 : Part of the UVES spectrum of Comet LINEAR (C/2000 WM1) with CN-band. PR Photo 28c/03 : Identification of nitrogen-15 in the spectrum. Cometary material Knowledge of the abundance of the stable isotopes [2] of the light elements in different solar system objects provides critical clues to the origin and early evolution of these objects and of the system as a whole. In order to gain the best possible insight into the origins and formation of the niche in which we live, it is therefore important to determine such isotopic abundance ratios in as many members of the solar family as possible. This is particularly true for comets, believed to be carriers of well-preserved specimens of the pristine material from which the solar system was made, some 4,600 million years ago. However, the detailed study of cometary material is a difficult task. Measurements of isotopic ratios is an especially daunting undertaking, mainly because of the extreme weakness of the spectral signatures (emissions) of the less abundant species like carbon-13, nitrogen-15, etc.. Measurements of microwave emission from those atoms suffer from additional, inherent uncertainties connected to the much stronger emission of the more abundant species. Measurements in the optical spectral region thus take on particular importance in this context. However, it is

  2. Evidence for geologic processes on comets

    NASA Astrophysics Data System (ADS)

    Sunshine, Jessica M.; Thomas, Nicolas; El-Maarry, Mohamed Ramy; Farnham, Tony L.

    2016-11-01

    Spacecraft missions have resolved the nuclei of six periodic comets and revealed a set of geologically intriguing and active small bodies. The shapes of these cometary nuclei are dominantly bilobate reflecting their formation from smaller cometesimals. Cometary surfaces include a diverse set of morphologies formed from a variety of mechanisms. Sublimation of ices, driven by the variable insolation over the time since each nucleus was perturbed into the inner Solar System, is a major process on comets and is likely responsible for quasi-circular depressions and ubiquitous layering. Sublimation from near-vertical walls is also seen to lead to undercutting and mass wasting. Fracturing has only been resolved on one comet but likely exists on all comets. There is also evidence for mass redistribution, where material lifted off the nucleus by subliming gases is deposited onto other surfaces. It is surprising that such sedimentary processes are significant in the microgravity environment of comets. There are many enigmatic features on cometary surfaces including tall spires, kilometer-scale flows, and various forms of depressions and pits. Furthermore, even after accounting for the differences in resolution and coverage, significant diversity in landforms among cometary surfaces clearly exists. Yet why certain landforms occur on some comets and not on others remains poorly understood. The exploration and understanding of geologic processes on comets is only beginning. These fascinating bodies will continue to provide a unique laboratory for examining common geologic processes under the uncommon conditions of very high porosity, very low strength, small particle sizes, and near-zero gravity.

  3. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Members of the audience look on as Dr. James L. Green, Director of Planetary Science at NASA, right, speaks with Dr. Robert Farquar, an executive for space exploration at KinetX Inc., during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  4. NEOWISE View of Comet Christensen

    NASA Image and Video Library

    2015-11-23

    An infrared view from NASA's NEOWISE mission of the Oort cloud comet C/2006 W3 (Christensen). The spacecraft observed this comet on April 20th, 2010 as it traveled through the constellation Sagittarius. Comet Christensen was nearly 370 million miles (600 million kilometers) from Earth at the time. The image is half of a degree of the sky on each side. Infrared light with wavelengths of 3.4, 12 and 22 micron channels are mapped to blue, green, and red, respectively. The signal at these wavelengths is dominated primarily by the comet's dust thermal emission, giving it a golden hue. The WISE spacecraft was put into hibernation in 2011 upon completing its goal of surveying the entire sky in infrared light. WISE cataloged three quarters of a billion objects, including asteroids, stars and galaxies. In August 2013, NASA decided to reinstate the spacecraft on a mission to find and characterize more asteroids. http://photojournal.jpl.nasa.gov/catalog/PIA20118

  5. The volatile composition of comets

    NASA Technical Reports Server (NTRS)

    Weaver, H. A.

    1988-01-01

    Comets may be our best probes of the physical and chemical conditions in the outer regions of the solar nebula during that crucial period when the planets formed. The volatile composition of cometary nuclei can be used to decide whether comets are the product of a condensation sequence similar to that invoked to explain the compositions of the planets and asteroids, or if comets are simply agglomerations of interstellar grains which have been insignificantly modified by the events that shaped the other bodies in the solar system. Although cometary nuclei are not generally accessible to observation, observations of cometary comae can illuminate at least some of the mysteries of the nuclei provided one has a detailed knowledge of the excitation conditions in the coma and also has access to basic atomic and molecular data on the many species present in comets. Examined here is the status of our knowledge of the volatile composition of cometary nuclei and how these data are obtained.

  6. Temporary satellite capture of comets by Jupiter

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, N. Yu.

    2012-05-01

    This paper studies the dynamical evolution of 97 Jupiter-family comets over an 800-year time period. More than two hundred encounters with Jupiter are investigated, with the observed comets moving during a certain period of time in an elliptic jovicentric orbit. In most cases this is an ordinary temporary satellite capture of a comet in Everhart's sense, not associated with a transition of the small body into Jupiter's family of satellites. The phenomenon occurs outside the Hill sphere with comets with a high Tisserand constant relative to Jupiter; the comets' orbits have a small inclination to the ecliptic plane. An analysis of 236 encounters has allowed the determination within the planar pair two-body problem of a region of orbits in the plane ( a, e) whose semimajor axes and eccentricities contribute to the phenomenon under study. Comets with orbits belonging to this region experience a temporary satellite capture during some of their encounters; the jovicentric distance function has several minima; and the encounters are characterized by reversions of the line of apsides and some others features of their combination that are intrinsic to comets in this region. Therefore, this region is called a region of comets with specific features in their encounters with Jupiter. Twenty encounters (out of 236), whereby the comet enters an elliptic jovicentric orbit in the Hill sphere, are identified and investigated. The size and shape of the elliptic heliocentric orbits enabling this transition are determined. It is found that in 11 encounters the motion of small bodies in the Hill sphere has features the most important of which is multiple minima of the jovicentric distance function. The study of these 20 encounters has allowed the introduction of the concept of temporary gravitational capture of a small body into the Hill sphere. An analysis of variations in the Tisserand constant in these (20) encounters of the observable comets shows that their motion is unstable in

  7. Opportunities for ballistic missions to Halley's comet

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Wooden, W. H., II

    1977-01-01

    Alternative strategies for ballistic missions to Halley's comet in 1985-86 are described. A large scientific return would be acquired from a ballistic Halley intercept in spite of the high flyby speeds that are associated with this mission mode. The possibility of retargeting the cometary spacecraft to additional comets after the Halley intercept also exists. Two cometary spacecraft of identical design would be used to carry out four separate cometary encounters over a 3 year period. One spacecraft would intercept Halley's comet before its perihelion passage in December 1985 and then go on to comet Borrelly with an encounter in January 1988. The other spacecraft would be targeted for a postperihelion Halley intercept in March 1986 before proceeding toward an encounter with comet Tempel 2 in September 1988.

  8. SOCCER: Comet Coma Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Uesugi, K. T.; Tsou, Peter

    1994-01-01

    Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. Sample Of Comet Coma Earth Return (SOCCER), a joint effort between NASA and the Institute of Space and Astronautical Science (ISAS) in Japan, has two primary science objectives: (1) the imaging of the comet nucleus and (2) the return to Earth of samples of volatile species and intact dust. This effort makes use of the unique strengths and capabilities of both countries in realizing this important quest for the return of samples from a comet. This paper presents an overview of SOCCER's science payloads, engineering flight system, and its mission operations.

  9. Halley’s comet; a benevolent visitor to Earth

    USGS Publications Warehouse

    Spall, H.

    1986-01-01

    In 1705 Edmund Halley, Professor of Geometry at Oxford University, collected and organized a mass of information on comets observed in 1531, 1607, and 1682, a task for which he had an uncommon genius. He was able to show that the comets had very similar orbits, and correctly drew the conclusion that they were the same object and more importantly that comets could therefore be periodic. He predicted that this comet would again be visible from the Earth in 1759. Since then it has been known as Halley's comet and it has played a significant role in the development of astronomy. 

  10. Dynamical and Physical Models of Ecliptic Comets

    NASA Astrophysics Data System (ADS)

    Dones, L.; Boyce, D. C.; Levison, H. F.; Duncan, M. J.

    2005-08-01

    In most simulations of the dynamical evolution of the cometary reservoirs, a comet is removed from the computer only if it is thrown from the Solar System or strikes the Sun or a planet. However, ejection or collision is probably not the fate of most active comets. Some, like 3D/Biela, disintegrate for no apparent reason, and others, such as the Sun-grazers, 16P/Brooks 2, and D/1993 F2 Shoemaker-Levy 9, are pulled apart by the Sun or a planet. Still others, like 107P/Wilson Harrington and D/1819 W1 Blanpain, are lost and then rediscovered as asteroids. Historically, amateurs discovered most comets. However, robotic surveys now dominate the discovery of comets (http://www.comethunter.de/). These surveys include large numbers of comets observed in a standard way, so the process of discovery is amenable to modeling. Understanding the selection effects for discovery of comets is a key problem in constructing models of cometary origin. To address this issue, we are starting new orbital integrations that will provide the best model to date of the population of ecliptic comets as a function of location in the Solar System and the size of the cometary nucleus, which we expect will vary with location. The integrations include the gravitational effects of the terrestrial and giant planets and, in some cases, nongravitational jetting forces. We will incorporate simple parameterizations for mantling and mass loss based upon detailed physical models. This approach will enable us to estimate the fraction of comets in different states (active, extinct, dormant, or disintegrated) and to track how the cometary size distribution changes as a function of distance from the Sun. We will compare the results of these simulations with bias-corrected models of the orbital and absolute magnitude distributions of Jupiter-family comets and Centaurs.

  11. Comet ISON Approaching the Sun [hd video

    NASA Image and Video Library

    2013-11-27

    This movie from NASA’s STEREO spacecraft's Heliospheric Imager shows Comet ISON, Mercury, Comet Encke and Earth over a five-day period from Nov. 20 to Nov. 25, 2013. The sun sits right of the field of view of this camera. Comet ISON, which will round the sun on Nov. 28, is what's known as a sungrazing comet, due to its close approach. Foreshortening or the angle at which these images were obtained make Earth appear as if it is closer to the sun than Mercury. If you look closely you will also see a dimmer and smaller comet Encke near comet ISON. A comet’s journey through the solar system is perilous and violent. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. Even if the comet does not survive, tracking its journey will help scientists understand what the comet is made of, how it reacts to its environment, and what this explains about the origins of the solar system. Closer to the sun, watching how the comet and its tail interact with the vast solar atmosphere can teach scientists more about the sun itself. Image Credit: NASA/STEREO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Halley's Comet Makes a Comeback.

    ERIC Educational Resources Information Center

    Glenn, William H.

    1984-01-01

    Presents information on Halley's Comet including its discovery, impact on history, planned investigations related to its 1986 return, where and when to make observations, and predicted calendar of events. Gives general information on comets such as physical structure, theoretical origin, and paths and provides an annotated reference list. (JM)

  13. Comet Halley and nongravitational forces

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1977-01-01

    The motion of comet Halley is investigated over the 1607-1911 interval. The required nongravitational-force model was found to be most consistent with a rocket-type thrust from the vaporization of water ice in the comet's nucleus. The nongravitational effects are time-independent over the investigated interval.

  14. Comets: Gases, ices, grains and plasma

    NASA Technical Reports Server (NTRS)

    Wilkening, L. L.

    1981-01-01

    The program and abstracts of the 97 papers delivered at the colloquium are presented. Cometary nuclei, comet dust, the coma, ion tails, several comet missions, and cometary origin and evolution were discussed.

  15. THE PLASMA ENVIRONMENT IN COMETS OVER A WIDE RANGE OF HELIOCENTRIC DISTANCES: APPLICATION TO COMET C/2006 P1 (MCNAUGHT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shou, Y.; Combi, M.; Gombosi, T.

    2015-08-20

    On 2007 January 12, comet C/2006 P1 (McNaught) passed its perihelion at 0.17 AU. Abundant remote observations offer plenty of information on the neutral composition and neutral velocities within 1 million kilometers of the comet nucleus. In early February, the Ulysses spacecraft made an in situ measurement of the ion composition, plasma velocity, and magnetic field when passing through the distant ion tail and the ambient solar wind. The measurement by Ulysses was made when the comet was at around 0.8 AU. With the constraints provided by remote and in situ observations, we simulated the plasma environment of Comet C/2006more » P1 (McNaught) using a multi-species comet MHD model over a wide range of heliocentric distances from 0.17 to 1.75 AU. The solar wind interaction of the comet at various locations is characterized and typical subsolar standoff distances of the bow shock and contact surface are presented and compared to analytic solutions. We find the variation in the bow shock standoff distances at different heliocentric distances is smaller than the contact surface. In addition, we modified the multi-species model for the case when the comet was at 0.7 AU and achieved comparable water group ion abundances, proton densities, plasma velocities, and plasma temperatures to the Ulysses/SWICS and SWOOPS observations. We discuss the dominating chemical reactions throughout the comet-solar wind interaction region and demonstrate the link between the ion composition near the comet and in the distant tail as measured by Ulysses.« less

  16. To Catch A Comet...Learning From Halley's.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Comet chronicles and stories extend back over thousands of years. A common theme has been that comets are a major cause of catastrophe and tragedy here on earth. In addition, both Aristotle and Ptolemy believed that comets were phenomena within the earth's atmosphere, and it wasn't until the 16th century, when Danish astronomer Tycho Brache…

  17. Radio Observations of Organics in Comets

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Charnley, Steven B.; Kuan, Yi-Jehng; Chuang, Yo-Ling; Villanueva, Geronimo; Coulson, Iain; Remijan, Anthony J.

    2012-01-01

    A major observational challenge in cometary science is to quantify the extent to which chemical compounds can be linked to either interstellar or nebular chemistry. Recently, there have been complimentary observations from multiple facilities to try to unravel the chemical complexity of comets and their origins. Incorporating results from various techniques can gain further insight into the abundances, production rates, distributions, and formation mechanisms of molecules in these objects [I]. Such studies have provided great detail towards molecules with a-typical chemistries, such as H2CO [2]. We report multiwavelength spectral observations of comets from two dynamical families including the JFC 103P/Hartley 2 and a long period comet C/2009 PI (Garradd) with the Arizona Radio Observatory's SMT and 12-m telescopes, as well as the NRAO Greenbank telescope, and the James Clerk Maxwell Telescope. Multiple parent volatiles (e.g. HCN, CH30H, CO) as well as daughter products (e.g, CS and 01-1) have been detected in these objects. We will present a comparison of molecular abundances in these comets to those observed in others, supporting a long-term effort of building a comet taxonomy based on composition. Previous work has revealed a range of abundances of parent species (from "organics-poor" to "organics-rich") with respect to water among comets [3,4,5], however the statistics are not well constrained.

  18. Photographic observations of six comets

    NASA Astrophysics Data System (ADS)

    de Sanctis, G.; Ferreri, W.; Zappala, V.

    Sixty-nine positions of six comets are given as obtained from photographic observations made at the Observatory of Torino from October 1980 to September 1982. Positions are given for Comets Encke, Stephan-Oterma, Meier, Bradfield, Panther, and Austin. Plates were measured with a Zeiss two-coordinate measuring machine. The AGK3 catalog was used to obtain the positions of reference stars and the coordinates of an additional cataloged star near the position of the comet on the plate. The mean values of the differences between the cataloged positions were found to be 0.72 arcsec and 0.52 arcsec in right ascension and declination, respectively.

  19. Comets - Chemistry and chemical evolution

    NASA Technical Reports Server (NTRS)

    Donn, B.

    1982-01-01

    Research on the chemical composition and conditions in comets and their possible role in the origin of life on earth is surveyed. The inorganic and organic compounds and ions indicated in the ultraviolet and visible spectra of comets are noted, and evidence for the existence of at least a small proportion of complex organic molecules in comets is presented. It is then pointed out that while cometary material could have reached the earth and provided volatile elements from which biochemical compounds could have formed, it is unlikely that a cometary nucleus could have withstood the temperatures and pressures necessary to sustain an environment in which life could have originated.

  20. Tectonic and volcanic monitoring using Sentinel-1: Current status and future plans of the COMET InSAR portal

    NASA Astrophysics Data System (ADS)

    Spaans, Karsten; Hatton, Emma; Gonzalez, Pablo; Walters, Richard; McDougall, Alistair; Wright, Tim; Hooper, Andy

    2017-04-01

    The advantages of the Sentinel-1 constellation for InSAR applications over previous radar missions are numerous, and include small baselines, a planned operation time of 20 years, continuous and systematic acquisition of data over tectonic and volcanic areas, near-global coverage of the earth and free data availability. In order to take advantage of these properties, we at the Centre for the Observation and Modelling of Earthquakes, Volcanoes, and Tectonics (COMET) are developing a system that routinely processes and freely distributes interferometric products and time series over tectonic and volcanic regions. This project, and similar efforts at other institutions, will be a game changer for the monitoring and studying of tectonic and volcanic activity using InSAR. Since December 2016, the COMET-LiCS InSAR portal (http://comet.nerc.ac.uk/COMET-LiCS-portal/) has been live, delivering interferograms and coherence estimates over the entire Alpine-Himalayan belt. The portal already contains tens of thousands of products, which can be browsed in a user-friendly portal, and downloaded for free by the general public. For our processing, we use the Climate and Environmental Monitoring from Space (CEMS) facility, where we have large storage and processing facilities to our disposal and a complete duplicate of the Sentinel-1 archive is maintained. This greatly simplifies the infrastructure we have had to develop for automated processing of large areas. Here we will give an overview of the current status of the processing system, as well as discuss future plans. We will cover the infrastructure we developed to automatically produce interferograms and its challenges, and the processing strategy for time series analysis. We will outline the objectives of the system in the near and distant future, and a roadmap for its continued development. Finally, we will highlight some of the scientific results and projects linked to the system.

  1. On the problem of origin of periodic comets.

    NASA Astrophysics Data System (ADS)

    Guliev, A. S.

    The problem of origin of periodic comets is viewed under various aspects. A steady growth of the fraction of these comets in the overall population of comets is emphasized. The number of discovered periodic comets with small eccentricities and with the Jacobi constant close to 3 is also growing eventually. Comparison of maximum magnitudes of the same comets in different apparitions at the same elongations as well as the analysis of exhausted comets indicate that the age of these objects does not exceed 1000 years. Capture is considered as an efficient mechanism for preserving equilibrium over reasonable time intervals. The analysis of the data given by Everhart and the calculations of the evolution of cometary orbits reveal small efficiency of capture. Comparison of the number of well established capture cases with the corresponding time interval shows that the age of the system of periodic comets must be 17000 years within the framework of this mechanism. This is most unlikely. Secular variations in the distributions of semimajor axes, inclinations, longitudes of perihelia, eccentricities of orbits of periodic comets are analysed. On the average, the eccentricities tend to increase, but this conflicts with the capture mechanism. A conclusion is made that the concept of capture in its classical and modern versions is unable to solve the problem of the origin of periodic comets on the whole. Other, more effective sources and mechanisms seem to be also in operation in enlarging the cometary system.

  2. What is a Sungrazing Comet? [hd video

    NASA Image and Video Library

    2013-11-27

    Sungrazing comets are a special class of comets that come very close to the sun at their nearest approach, a point called perihelion. To be considered a sungrazer, a comet needs to get within about 850,000 miles from the sun at perihelion. Many come even closer, even to within a few thousand miles. Being so close to the sun is very hard on comets for many reasons. They are subjected to a lot of solar radiation which boils off their water or other volatiles. The physical push of the radiation and the solar wind also helps form the tails. And as they get closer to the sun, the comets experience extremely strong tidal forces, or gravitational stress. In this hostile environment, many sungrazers do not survive their trip around the sun. Although they don't actually crash into the solar surface, the sun is able to destroy them anyway. Many sungrazing comets follow a similar orbit, called the Kreutz Path, and collectively belong to a population called the Kreutz Group. In fact, close to 85% of the sungrazers seen by the SOHO satellite are on this orbital highway. Scientists think one extremely large sungrazing comet broke up hundreds, or even thousands, of years ago, and the current comets on the Kreutz Path are the leftover fragments of it. As clumps of remnants make their way back around the sun, we experience a sharp increase in sungrazing comets, which appears to be going on now. Comet Lovejoy, which reached perihelion on December 15, 2011 is the best known recent Kreutz-group sungrazer. And so far, it is the only one that NASA's solar-observing fleet has seen survive its trip around the sun. Comet ISON, an upcoming sungrazer with a perihelion of 730,000 miles on November 28, 2013, is not on the Kreutz Path. In fact, ISON's orbit suggests that it may gain enough momentum to escape the solar system entirely, and never return. Before it does so, it will pass within about 40 million miles from Earth on December 26th. More information on this topic available at: www.nasa.gov/content/goddard/timeline-of-comet

  3. Autonomous Onboard Science Data Analysis for Comet Missions

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Tran, Daniel Q.; McLaren, David; Chien, Steve A.; Bergman, Larry; Castano, Rebecca; Doyle, Richard; Estlin, Tara; Lenda, Matthew

    2012-01-01

    Coming years will bring several comet rendezvous missions. The Rosetta spacecraft arrives at Comet 67P/Churyumov-Gerasimenko in 2014. Subsequent rendezvous might include a mission such as the proposed Comet Hopper with multiple surface landings, as well as Comet Nucleus Sample Return (CNSR) and Coma Rendezvous and Sample Return (CRSR). These encounters will begin to shed light on a population that, despite several previous flybys, remains mysterious and poorly understood. Scientists still have little direct knowledge of interactions between the nucleus and coma, their variation across different comets or their evolution over time. Activity may change on short timescales so it is challenging to characterize with scripted data acquisition. Here we investigate automatic onboard image analysis that could act faster than round-trip light time to capture unexpected outbursts and plume activity. We describe one edge-based method for detect comet nuclei and plumes, and test the approach on an existing catalog of comet images. Finally, we quantify benefits to specific measurement objectives by simulating a basic plume monitoring campaign.

  4. Storm-time radiation belt electron dynamics: Repeatability in the outer radiation belt

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Mann, I. R.; Rae, J.; Watt, C.; Boyd, A. J.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.

    2017-12-01

    During intervals of enhanced solar wind driving the outer radiation belt becomes extremely dynamic leading to geomagnetic storms. During these storms the flux of energetic electrons can vary by over 4 orders of magnitude. Despite recent advances in understanding the nature of competing storm-time electron loss and acceleration processes the dynamic behavior of the outer radiation belt remains poorly understood; the outer radiation belt can exhibit either no change, an enhancement, or depletion in radiation belt electrons. Using a new analysis of the total radiation belt electron content, calculated from the Van Allen probes phase space density (PSD), we statistically analyze the time-dependent and global response of the outer radiation belt during storms. We demonstrate that by removing adiabatic effects there is a clear and repeatable sequence of events in storm-time radiation belt electron dynamics. Namely, the relativistic (μ=1000 MeV/G) and ultra-relativistic (μ=4000 MeV/G) electron populations can be separated into two phases; an initial phase dominated by loss followed by a second phase dominated by acceleration. At lower energies, the radiation belt seed population of electrons (μ=150 MeV/G) shows no evidence of loss but rather a net enhancement during storms. Further, we investigate the dependence of electron dynamics as a function of the second adiabatic invariant, K. These results demonstrate a global coherency in the dynamics of the source, relativistic and ultra-relativistic electron populations as function of the second adiabatic invariant K. This analysis demonstrates two key aspects of storm-time radiation belt electron dynamics. First, the radiation belt responds repeatably to solar wind driving during geomagnetic storms. Second, the response of the radiation belt is energy dependent, relativistic electrons behaving differently than lower energy seed electrons. These results have important implications in radiation belt research. In particular

  5. Belt attachment and system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Abraham D.; Davidson, Erick M.

    Disclosed herein is a belt assembly including a flexible belt with an improved belt attachment. The belt attachment includes two crossbars spaced along the length of the belt. The crossbars retain bearings that allow predetermined movement in six degrees of freedom. The crossbars are connected by a rigid body that attaches to the bearings. Implements that are attached to the rigid body are simply supported but restrained in pitching rotation.

  6. Belt attachment and system

    DOEpatents

    Schneider, Abraham D.; Davidson, Erick M.

    2016-02-02

    Disclosed herein is a belt assembly including a flexible belt with an improved belt attachment. The belt attachment includes two crossbars spaced along the length of the belt. The crossbars retain bearings that allow predetermined movement in six degrees of freedom. The crossbars are connected by a rigid body that attaches to the bearings. Implements that are attached to the rigid body are simply supported but restrained in pitching rotation.

  7. The discovery rate of new comets in the age of large surveys. Trends, statistics, and an updated evaluation of the comet flux

    NASA Astrophysics Data System (ADS)

    Fernández, Julio A.

    We analyze a sample of 58 Oort cloud comets (OCCs) (original orbital energies x in the range 0 < x < 100, in units of 10-6 AU-1), plus 45 long-period comets with negative orbital energies or poorly determined or undetermined x, discovered during the period 1999-2007. To analyze the degree of completeness of the sample, we use Everhart's (1967 Astr. J 72, 716) concept of “excess magnitude” (in magnitudes × days), defined as the integrated magnitude excess that a given comet presents over the time above a threshold magnitude for detection. This quantity is a measure of the likelihood that the comet will be finally detected. We define two sub-samples of OCCs: 1) new comets (orbital energies 0 < x < 30) as those whose perihelia can shift from outside to the inner planetary region in a single revolution; and 2) inner cloud comets (orbital energies 30 ≤ x < 100), that come from the inner region of the Oort cloud, and for which external perturbers (essentially galactic tidal forces and passing stars) are not strong enough to allow them to overshoot the Jupiter-Saturn barrier. From the observed comet flux and making allowance for missed discoveries, we find a flux of OCCs brighter than absolute total magnitude 9 of ≃0.65 ± 0.18 per year within Earth's orbit. From this flux, about two-thirds corresponds to new comets and the rest to inner cloud comets. We find striking differences in the q-distribution of these two samples: while new comets appear to follow an uniform q-distribution, inner cloud comets show an increase in the rate of perihelion passages with q.

  8. An Interview with Catherine Comet.

    ERIC Educational Resources Information Center

    Scanlan, Mary

    1992-01-01

    Offers an interview with Catherine Comet, music director of the Grand Rapids (Michigan) Symphony. Reviews her childhood and early study in France and her experiences at the Julliard School of Music and on the contest circuit. Explains how she became a professional conductor. Discusses Comet's view of the importance that classical music can have…

  9. Maria Mitchell's Comet - a Challenge Once More?

    NASA Astrophysics Data System (ADS)

    Boyce, P. B.; Graham, A. P.; Strelnitski, V.

    1997-12-01

    This year marks the sesquicentennial of the discovery of a fateful comet by Maria Mitchell (1 October 1847). This was one of the first telescopic comets ever discovered and the first one discovered by a woman. It brought Maria Mitchell the gold medal from the King of Denmark, the first appointment of a woman as professor of Astronomy (at Vassar College) and the fame to be the first (and for ninety years - the only) woman - member of the American Academy of Arts and Sciences. It gave Maria Mitchell an unusually favorable opportunity to struggle for the rights of American women in science. We restore the circumstances of this discovery, and present the results of a modern re-calculation of the orbit of the comet, including its present position in the sky and its ephemeris for the next 50 years. The comet is 32(m) now and will slowly decrease in brightness. Our ability to detect faint objects has improved dramatically over the 150 years since the comet was discovered. By extrapolation, we show that modern technology may catch up with the declining brightness of the comet by the middle of the next century. Another challenge for astronomers!

  10. The COMET Sleep Research Platform.

    PubMed

    Nichols, Deborah A; DeSalvo, Steven; Miller, Richard A; Jónsson, Darrell; Griffin, Kara S; Hyde, Pamela R; Walsh, James K; Kushida, Clete A

    2014-01-01

    The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments-positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment.

  11. The COMET Sleep Research Platform

    PubMed Central

    Nichols, Deborah A.; DeSalvo, Steven; Miller, Richard A.; Jónsson, Darrell; Griffin, Kara S.; Hyde, Pamela R.; Walsh, James K.; Kushida, Clete A.

    2014-01-01

    Introduction: The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Background: Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments—positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. Discussion: The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. Conclusion: COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment. PMID:25848590

  12. Dynamical history of the asteroid belt and implications for terrestrial pla net bombardment

    NASA Astrophysics Data System (ADS)

    Minton, David Andrew

    The main asteroid belt spans ~ 2-4 AU in heliocentric distance and is sparsely populated by rocky debris. The dynamical structure of the main belt records clues to past events in solar system history. Evidence from the structure of the Kuiper belt, an icy debris belt beyond Neptune, suggests that the giant planets were born in a more compact configuration and later experienced planetesimal-driven planet migration. Giant planet migration caused both mean motion and secular resonances to sweep across the main asteroid belt, raising the eccentricity of asteroids into planet-crossing orbits and depleting the belt. I show that the present-day semimajor axis and eccentricity distributions of large main belt asteroids are consistent with excitation and depletion due to resonance sweeping during the epoch of giant planet migration. I also use an analytical model of the sweeping of the n 6 secular resonance, to set limits on the migration speed of Saturn. After planet migration, dynamical chaos became the dominant loss mechanism for asteroids with diameters D [Special characters omitted.] 10 km in the current asteroid belt. I find that the dynamical loss history of test particles from this region is well described with a logarithmic decay law. My model suggests that the rate of impacts from large asteroids may have declined by a factor of three over the last ~ 3 Gy, and that the present-day impact flux of D > 10 km objects on the terrestrial planets is roughly an order of magnitude less than estimates used in crater chronologies and impact hazard risk assessments. Finally, I have quantified the change in the solar wind 6 Li/ 7 Li ratio due to the estimated in-fall of chondritic material and enhanced dust production during the epoch of planetesimal-driven giant planet migration. The solar photosphere is currently highly depleted in lithium relative to chondrites, and 6 Li is expected to be far less abundant in the sun than 7 Li due to the different nuclear reaction rates of

  13. The Comet Halley Handbook: An Observer's Guide. Second Edition.

    ERIC Educational Resources Information Center

    Yeomans, Donald K.

    This handbook contains information on: (1) the orbit of comet Halley; (2) the expected physical behavior of comet Halley in 1985-1986, considering brightness estimates, coma diameters, and tail lengths; (3) observing conditions for comet Halley in 1985-1986; and (4) observing conditions for the dust tail of comet Halley in 1985-1986. Additional…

  14. 67P, Singing Comet

    NASA Astrophysics Data System (ADS)

    Smirnova, Ekaterina

    2017-04-01

    I would like to propose to present a short science-art-music collaboration film called "67P, Singing Comet" (5:27 min). If time of the session will allow, prior to the film I would like to make a slide show introduction to this project, highlighting the inspiration - the mission Rosetta by the European Space Agency (ESA) - and the artistic collaboration that took place in creating this piece. Inspired by the ESA Rosetta mission to the comet 67P, Ekaterina Smirnova (artist and project director, New York), Lee Mottram (clarinetist, Wales), Takuto Fukuda (composer, Japan) and Brian Hekker (video editor, New York) collaborated to create a unique atmospheric piece. Water and the origins of life throughout the Universe (specifically the Earth) is an element of the mission and the focus of Ekaterina's artistic vision. Ekaterina literally and figuratively paints a sensory assemblage using a combination of synthetic and natural elements to shape this artistic creation. To paint her watercolor works she is using a replica of the water found on the comet and implementing her own heartbeat into the music to create a recognizable inward sound of life. The Electro-Acoustic composition by Takuto Fukuda features an electronically manipulated performance by clarinetist Lee Mottram. The piece ceremoniously begins with reverberant bursts of low-register atonal bells transporting the listener to their ethereal inner origins of body and mind. The imagination takes the experience to an unknown destination as it gains speed gliding through the visual and audible textures of space and time. The comet's water similarly reacts with an ebb and flow thawing ice to potentially give life a chance as it is thrust along an orbit around the Sun. Near then far from the heat the comet forms frozen particles from vapors as it reaches it's furthest stretches creating an aerodynamic tail of icicles that slowly dissipate in a cycle that repeats itself until the comet's ultimate collision with an

  15. Comet Hartley 2 Gets a Visitor Artist Concept

    NASA Image and Video Library

    2010-10-26

    This artist concept shows a view of NASA EPOXI mission spacecraft during its Nov. 4, 2010 flyby of comet Hartley 2. The fluffy shell around the comet, called a coma, is made up of gas and dust that blew off the comet core, or nucleus.

  16. Comet Hartley 2 Looms Large in the Sky

    NASA Image and Video Library

    2010-11-03

    NASA EPOXI mission took this image of comet Hartley 2 on Nov. 2, 2010. The spacecraft will fly by the comet on Nov. 4, 2010. The white blob and the halo around it are the comet outer cloud of gas and dust, called a coma.

  17. Astronomical Resources: A Selected Halley's Comet Reading List.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1985-01-01

    Presents annotated lists of: (1) general introductory books about comets and Comet Halley; (2) books about comet history and lore; (3) introductory books for younger children; and (4) books for the serious amateur astronomer. A list of magazine and journal articles is included. (JN)

  18. Rosetta comet-chaser takes a close look at planet Mars

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Its final destination is comet Churyumov-Gerasimenko, which it will reach only in 2014, after travelling some 6000 million kilometres in 10 years (its epic voyage began on 2 March 2004 with a launch by an Ariane 5 rocket). Rosetta will next be heading for the Sun, and its journey will require two more swing-bys around the Earth, in November this year and November 2009. Once at its destination, Rosetta will first deposit, from a height of about one kilometre, a small but very complex lander on the comet’s nucleus. This lander, a sort of miniature chemical laboratory packed with sophisticated instruments, will analyse the surface and provide information on the nucleus. The Rosetta probe will then chase the comet for one year and observe its nucleus as it continues on its trip towards the inner solar system at a speed of 135,000 km per hour. There is still a long way to go, but so far everything seems to be going exactly according to plan. ESA's Director of Science, David Southwood, witnessing the Mars swing-by at ESOC with scientists involved in the mission and the operations teams, said: "Interplanetary expeditions rely on very complex communication links. ESA’s mission operations centre here in Darmstadt is doing a great job. I and all the scientists involved in the mission are grateful to the experts who are taking such good care of 'our baby'. And this is only the beginning. The true excitement of targeting and releasing the lander on the comet’s nucleus is yet to come. Today we have reached another milestone on the way to finding an answer to questions such as whether life on Earth began with the help of comets." “The successful Mars swingby of the ESA Rosetta spacecraft has been the most critical event in the mission since launch. Now we are heading back to Earth in order to gain, in November this year, further momentum for the subsequent visits of the asteroids and the comet. I would like to thank all those who have contributed to this achievement

  19. History of the dust released by comets

    NASA Technical Reports Server (NTRS)

    Jambor, B. J.

    1976-01-01

    The Finson-Brobstein theory is used to examine production and history of dust released from periodic comets and to compare dust size distribution in relation to the Zodiacal cloud. Results eliminate all of the bright new comets from contributors to the Zodiacal cloud. Among the periodic comets, all particles of size much smaller than 10 micrometer are also lost. Only the large particles remain as possible contributors.

  20. Study of Comets Composition and Structure

    NASA Astrophysics Data System (ADS)

    Khalaf, S. Z.; Selman, A. A.; Ali, H. S.

    2008-12-01

    The present paper focuses on the nature of the different interactions between cometary nucleus and tail with solar wind. The dynamics of the comet will impose many features that provide unique behavior of the comet when entering the solar system. These features are reviewed in this paper and few investigations are made. The calculations made in this work represent the analysis and interpretation of the different features of the comet, such as perihelion and eccentricity dependence on the gas production rate, and the dependence of the latter on the composition of the comet nucleus. The dependences of the heliocentric, bow shock, contact surface, and stand-off distances with gas production rate for many types of comets that cover linear and non-linear types are studied in this work. Important results are obtained which indicated the different physical interactions between cometary ions and solar wind. Furthermore, the important relation between mean molecular weight and gas production rate are analyzed and studied in this work and a conclusion is made that, as the gas production rate increases, the mean molecular weight will decrease exponentially. A detailed discussion for this unique relation is given.

  1. Two-Tailed Comet Assay (2T-Comet): Simultaneous Detection of DNA Single and Double Strand Breaks.

    PubMed

    Cortés-Gutiérrez, Elva I; Fernández, José Luis; Dávila-Rodríguez, Martha I; López-Fernández, Carmen; Gosálvez, Jaime

    2017-01-01

    A modification of the original comet assay was developed for the simultaneous evaluation of DNA single strand breaks (SSBs) and double strand breaks (DSBs) in human spermatozoa. The two-dimensional perpendicular tail comet assay (2T-comet) combines non-denaturing and denaturant conditions to the same sperm nucleoid. In this case, the species-specific deproteinized sperm is first subjected to an electrophoretic field under non-denaturing conditions to mobilize isolated free discrete DNA fragments produced from DSBs; this is then followed by a second electrophoresis running perpendicular to the first one but under alkaline conditions to produce DNA denaturation, exposing SSBs on the same linear DNA chain or DNA fragments flanked by DSBs. This procedure results in a two dimensional comet tail emerging from the core where two types of original DNA affected molecule can be simultaneously discriminated. The 2T-comet is a fast, sensitive, and reliable procedure to distinguish between single and double strand DNA damage within the same cell. It is an innovative method for assessing sperm DNA integrity, which has important implications for human fertility and andrological pathology. This technique may be adapted to assess different DNA break types in other species and other cell types.

  2. Landslides and impacts on comets.

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    2016-07-01

    The recent landing of Philae on the comet 67P/Czuriumow-Gierasimienko indicates that elastic properties of comet's nuclei could be similar to elastic properties of dry snow, namely Young modulus is assumed to be 106 - 108 Pa. We considered a simple model of two spheres (with radius 1400 m each) connected by cylinder (with radius of 200 m and length of 200 m). Density is 470 kg m-3. This shape corresponds approximately to shape of some comets. A few vibration modes are possible. In present research we consider 3 modes: bending, lengthening-shortening along axis of symmetry, and torsion. Let assume that comets are hit by small meteoroid of the mass of 1 kg and velocity 20 km s-1. The maximum values of acceleration of the surface resulting from this impact are given in Table 1. Note that these values are higher than acceleration of the gravity of the comet. Consequently, these vibrations could be an important factor of surface evolution, e.g. they could trigger landslides. It could be alternative mechanism to that presented in [4] (i.e. fluidization). Acknowledgement: The research is partly supported by Polish National Science Centre (decision 2014/15/B/ST 10/02117) References [1] T. Spohn, J. Knollenberg, A. J. Ball, M. Ba-naszkiewicz, J. Benkhoff, M. Grott, J. Gry-gorczuk, C. Hüttig, A. Hagermann, G. Kargl, E. Kaufmann, N. Kömle, E. Kührt, K. J. Kossacki, W. Marczewski, I. Pelivan, R. Schrödter, K. Seiferlin. (2015) Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov- Gera-simenko Science 31 July 2015: Vol. 349 no. 6247 DOI: 10.1126/science.aab0464 [2] Reuter B. (2013) On how to measure snow mechanical properties relevant to slab avalanche release. International Snow Science Workshop Grenoble - Chamonix Mont-Blanc - 2013 007 [3] Ball A.J. (1997) Ph. D. Thesis: Measuring Physical Properties at the Surface of a Comet Nu-cleus, Univ.of Kent U.K. [4] Belton M. J.S., Melosh J. (2009). Fluidization and multiphase transport of

  3. The long-term dynamical behavior of short-period comets

    NASA Technical Reports Server (NTRS)

    Levison, Harold F.; Duncan, Martin J.

    1993-01-01

    The orbits of the known short-period comets under the influence of the Sun and all the planets except Mercury and Pluto are numerically integrated. The calculation was undertaken in order to determine the dynamical lifetimes for these objects as well as explaining the current orbital element distribution. It is found that a comet can move between Jupiter-family and Halley-family comets several times in its dynamical lifetime. The median lifetime of the known short-period comets from the time they are first injected into a short-period comet orbit to ultimate ejection is approximately 50,000 years. The very flat inclination distribution of Jupiter-family comets is observed to become more distended as it ages. The only possible explanation for the observed flat distribution is that the comets become extinct before their inclination distribution can change significantly. It is shown that the anomalous concentration of the argument of perihelion of Jupiter-family comets near 0 and 180 deg is a direct result of their aphelion distance being close to 5.2AU and the comet being recently perturbed onto a Jupiter-family orbit. Also the concentration of their aphelion near Jupiter's orbit is a result of the conservation of the Tisserand invariant during the capture process.

  4. 49 CFR 393.93 - Seats, seat belt assemblies, and seat belt assembly anchorages.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Seats, seat belt assemblies, and seat belt assembly anchorages. 393.93 Section 393.93 Transportation Other Regulations Relating to Transportation... § 393.93 Seats, seat belt assemblies, and seat belt assembly anchorages. (a) Buses—(1) Buses...

  5. 49 CFR 393.93 - Seats, seat belt assemblies, and seat belt assembly anchorages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Seats, seat belt assemblies, and seat belt assembly anchorages. 393.93 Section 393.93 Transportation Other Regulations Relating to Transportation... § 393.93 Seats, seat belt assemblies, and seat belt assembly anchorages. (a) Buses—(1) Buses...

  6. 49 CFR 393.93 - Seats, seat belt assemblies, and seat belt assembly anchorages.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Seats, seat belt assemblies, and seat belt assembly anchorages. 393.93 Section 393.93 Transportation Other Regulations Relating to Transportation... § 393.93 Seats, seat belt assemblies, and seat belt assembly anchorages. (a) Buses—(1) Buses...

  7. 49 CFR 393.93 - Seats, seat belt assemblies, and seat belt assembly anchorages.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Seats, seat belt assemblies, and seat belt assembly anchorages. 393.93 Section 393.93 Transportation Other Regulations Relating to Transportation... § 393.93 Seats, seat belt assemblies, and seat belt assembly anchorages. (a) Buses—(1) Buses...

  8. 49 CFR 393.93 - Seats, seat belt assemblies, and seat belt assembly anchorages.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Seats, seat belt assemblies, and seat belt assembly anchorages. 393.93 Section 393.93 Transportation Other Regulations Relating to Transportation... § 393.93 Seats, seat belt assemblies, and seat belt assembly anchorages. (a) Buses—(1) Buses...

  9. A quantitative comet infection assay for influenza virus

    PubMed Central

    Lindsay, Stephen M.; Timm, Andrea; Yin, John

    2011-01-01

    Summary The virus comet assay is a cell-based virulence assay used to evaluate an antiviral drug or antibody against a target virus. The comet assay differs from the plaque assay in allowing spontaneous flows in 6-well plates to spread virus. When implemented quantitatively the comet assay has been shown to have an order-of-magnitude greater sensitivity to antivirals than the plaque assay. In this study, a quantitative comet assay for influenza virus is demonstrated, and is shown to have a 13-fold increase in sensitivity to ribavirin. AX4 cells (MDCK cells with increased surface concentration of α2–6 sialic acid, the influenza virus receptor) have reduced the comet size variability relative to MDCK cells, making them a better host cell for use in this assay. Because of enhanced antiviral sensitivity in flow-based assays, less drug is required, which could lead to lower reagent costs, reduced cytotoxicity, and fewer false-negative drug screen results. The comet assay also serves as a readout of flow conditions in the well. Observations from comets formed at varying humidity levels indicate a role for evaporation in the mechanism of spontaneous fluid flow in wells. PMID:22155578

  10. Ballistic intercept missions to Comet Encke

    NASA Technical Reports Server (NTRS)

    Mumma, M. (Compiler)

    1975-01-01

    The optimum ballistic intercept of a spacecraft with the comet Encke is determined. The following factors are considered in the analysis: energy requirements, encounter conditions, targeting error, comet activity, spacecraft engineering requirements and restraints, communications, and scientific return of the mission. A baseline model is formulated which includes the basic elements necessary to estimate the scientific return for the different missions considered. Tradeoffs which have major impact on the cost and/or scientific return of a ballistic mission to comet Encke are identified and discussed. Recommendations are included.

  11. THE PHOTODISSOCIATION OF FORMALDEHYDE IN COMETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, Paul D., E-mail: pfeldman@jhu.edu

    2015-10-20

    Observations of comets in the 905–1180 Å spectral band made with the Far Ultraviolet Spectroscopic Explorer in 2001 and 2004 show unusual features in the fluorescent emissions of CO and H{sub 2}. These include emission from a non-thermal high-J rotational population of CO and solar Lyα induced fluorescence from excited vibrational levels of H{sub 2}, both of which are attributed to the photodissociation of formaldehyde. In this paper we model the large number of observed H{sub 2} lines and demonstrate the dependence of the pumping on the heliocentric velocity of the comet and the solar line profiles. We also derivemore » the rotational and vibrational populations of H{sub 2} and show that they are consistent with the results of laboratory studies of the photodissociation of H{sub 2}CO. In addition to the principal series of H i and O i, the residual spectrum is found to consist mainly of the Rydberg series of C i multiplets from which we derive the mean carbon column abundance in the coma. Fluorescent emissions from N i and N{sub 2} are also searched for.« less

  12. Comet Siding Spring Mars Flyby

    NASA Image and Video Library

    2017-12-08

    On October 19, Comet Siding Spring will pass within 88,000 miles of Mars – just one third of the distance from the Earth to the Moon! Traveling at 33 miles per second and weighing as much as a small mountain, the comet hails from the outer fringes of our solar system, originating in a region of icy debris known as the Oort cloud. Comets from the Oort cloud are both ancient and rare. Since this is Comet Siding Spring’s first trip through the inner solar system, scientists are excited to learn more about its composition and the effects of its gas and dust on the Mars upper atmosphere. NASA will be watching closely before, during, and after the flyby with its entire fleet of Mars orbiters and rovers, along with the Hubble Space Telescope and dozens of instruments on Earth. The encounter is certain to teach us more about Oort cloud comets, the Martian atmosphere, and the solar system’s earliest ingredients. Learn more: www.youtube.com/watch?v=FG4KsatjFeI Credit: NASA’s Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Stardust: Catching a Comet and Bringing it Home

    NASA Technical Reports Server (NTRS)

    Brownlee, Donald E.

    2007-01-01

    The NASA STARDUST mission collected thousands of particles from Comet Wild 2 that are now being studied by two hundred scientists around the world. The spacecraft captured the samples during a close flyby of the comet in 2004 and returned them to Earth with a dramatic entry into the atmosphere early in 2006. The precious cargo of comet dust is being studied to determine new information about the origin of the Sun and planets. The comet formed at the edge of the solar system, beyond the orbit of Neptune, and is a sample of the material from which the solar system was formed. One of the most dramatic early findings from the mission was that a comet that formed in the coldest place in the solar system contained minerals that formed in the hottest place in the solar system. The comet samples are telling stories of fire and ice and they providing fascinating and unexpected information about our origins.

  14. Are comets connected to the origin of life

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1981-01-01

    Possible connections between comets and the origin of life on earth are discussed. The orbital evolution of comets and their origin are considered within a framework for the origin of the solar system, with particular attention given to the origin of the biosphere, and the origin of the Oort cloud. Evidence suggesting that cometary nuclei are undifferentiated throughout is considered, and a model of the average composition of a mean new comet is obtained from observational data which is similar to that of an interstellar frost. The chemistry of the model composition giving rise to the species observed in cometary spectra is considered, as well as the relations of cometary to cosmic abundances of oxygen, carbon and sulfur. The characteristics of possible sites for prebiotic chemistry, including interstellar clouds, the protosolar nebula, comets in the Oort cloud, periodic comets and the primitive earth, are examined, and a possible role of comets in bringing the interstellar prebiotic chemistry to earth is suggested.

  15. Strategies to increase seat belt use : an analysis of levels of fines and the type of law.

    DOT National Transportation Integrated Search

    2010-11-01

    The main objectives of this study were to determine the relationships between seat belt use in the States and (1) the : type of seat belt law enforcement (primary versus secondary), and (2) seat belt fine levels. : The study examined law type and lev...

  16. New catalogue of single-apparition comets discovered in the years 1901-1950. Part I

    NASA Astrophysics Data System (ADS)

    Królikowska, M.; Sitarski, G.; Pittich, E.; Szutowicz, S.; Ziołkowski, K.; Rickman, H.; Gabryszewski, R.; Rickman, B.

    2014-07-01

    A new catalogue of cometary orbits derived using a completely homogeneous method of data treatment, accurate methods of numerical integration, and modern model of the Solar System is presented. We constructed a sample of near-parabolic comets from the first half of the twentieth century with original reciprocals of semimajor axes less than 0.000130 au^{-1} in the Marsden and Williams Catalogue of Cometary Orbits (2008, hereafter MW08), i.e., comets of original semimajor axes larger than 7700 au. We found 38 such comets in MW08, where 32 have first-quality orbits (class 1A or 1B) and the remaining 6 have second-quality orbits (2A or 2B). We presented satisfactory non-gravitational (hereafter NG) models for thirteen of the investigated comets. The four main features, distinguishing this catalogue of orbits of single- apparition comets discovered in the early twentieth century from other catalogues of orbits of similarly old objects, are the following. 1. Old cometary positional observations require a very careful analysis. For the purpose of this new catalogue, great emphasis has been placed in collecting sets of observations as complete as possible for the investigated comets. Moreover, for many observations, comet-minus-star-type measurements were also available. This type of data was particularly valuable as the most original measurements of comet positions and has allowed us to recalculate new positions of comets using the PPM star catalogue. 2. Old cometary observations were prepared by observers usually as apparent positions in Right Ascension and Declination or as reduced positions for the epoch of the beginning of the year of a given observation. This was a huge advantage of these data, because this allows us to uniformly take into account all necessary corrections associated with the data reduction to the standard epoch. 3. The osculating orbits of single-apparition comets discovered more than sixty years ago have been formerly determined with very different

  17. Comparative study of icy patches on comet nuclei

    NASA Astrophysics Data System (ADS)

    Oklay, Nilda; Pommerol, Antoine; Barucci, Maria Antonietta; Sunshine, Jessica; Sierks, Holger; Pajola, Maurizio

    2016-07-01

    Cometary missions Deep Impact, EPOXI and Rosetta investigated the nuclei of comets 9P/Tempel 1, 103P/Hartley 2 and 67P/Churyumov-Gerasimenko respectively. Bright patches were observed on the surfaces of each of these three comets [1-5]. Of these, the surface of 67P is mapped at the highest spatial resolution via narrow angle camera (NAC) of the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS, [6]) on board the Rosetta spacecraft. OSIRIS NAC is equipped with twelve filters covering the wavelength range of 250 nm to 1000 nm. Various filters combinations are used during surface mapping. With high spatial resolution data of comet 67P, three types of bright features were detected on the comet surface: Clustered, isolated and bright boulders [2]. In the visible spectral range, clustered bright features on comet 67P display bluer spectral slopes than the average surface [2, 4] while isolated bright features on comet 67P have flat spectra [4]. Icy patches observed on the surface of comets 9P and 103P display bluer spectral slopes than the average surface [1, 5]. Clustered and isolated bright features are blue in the RGB composites generated by using the images taken in NIR, visible and NUV wavelengths [2, 4]. This is valid for the icy patches observed on comets 9P and 103P [1, 5]. Spectroscopic observations of bright patches on comets 9P and 103P confirmed the existence of water [1, 5]. There were more than a hundred of bright features detected on the northern hemisphere of comet 67P [2]. Analysis of those features from both multispectral data and spectroscopic data is an ongoing work. Water ice is detected in eight of the bright features so far [7]. Additionally, spectroscopic observations of two clustered bright features on the surface of comet 67P revealed the existence of water ice [3]. The spectral properties of one of the icy patches were studied by [4] using OSIRIS NAC images and compared with the spectral properties of the active regions observed

  18. Angle stations in or for endless conveyor belts

    DOEpatents

    Steel, Alan

    1987-04-07

    In an angle station for an endless conveyor belt, there are presented to each incoming run of the belt stationary curved guide members (18, 19) of the shape of a major segment of a right-circular cylinder and having in the part-cylindrical portion (16 or 17) thereof rectangular openings (15) arranged in parallel and helical paths and through which project small freely-rotatable rollers (14), the continuously-changing segments of the curved surfaces of which projecting through said openings (15) are in attitude to change the direction of travel of the belt (13) through 90.degree. during passage of the belt about the part-cylindrical portion (16 or 17) of the guide member (18 or 19). The rectangular openings (15) are arranged with their longer edges lengthwise of the diagonals representing the mean of the helix but with those of a plurality of the rows nearest to each end of the part-cylindrical portion (16 or 17) slightly out of axial symmetry with said diagonals, being slightly inclined in a direction about the intersections (40) of the diagonals of the main portion of the openings, to provide a "toe-in" attitude in relation to the line of run of the endless conveyor belt.

  19. ACTIVITY OF 50 LONG-PERIOD COMETS BEYOND 5.2 au

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sárneczky, K.; Szabó, Gy. M.; Csák, B.

    2016-12-01

    Remote investigations of ancient matter in the solar system have traditionally been carried out through observations of long-period (LP) comets, which are less affected by solar irradiation than their short-period counterparts orbiting much closer to the Sun. Here we summarize the results of our decade-long survey of the distant activity of LP comets. We found that the most important separation in the data set is based on the dynamical nature of the objects. Dynamically new comets are characterized by a higher level of activity on average: the most active new comets in our sample can be characterized by Afρ valuesmore » >3–4, higher than those for our most active returning comets. New comets develop more symmetric comae, suggesting a generally isotropic outflow. In contrast to this, the comae of recurrent comets can be less symmetrical, ocassionally exhibiting negative slope parameters, which suggest sudden variations in matter production. The morphological appearance of the observed comets is rather diverse. A surprisingly large fraction of the comets have long, tenuous tails, but the presence of impressive tails does not show a clear correlation with the brightness of the comets.« less

  20. An Analytical Method To Compute Comet Cloud Formation Efficiency And Its Application

    NASA Astrophysics Data System (ADS)

    Brasser, Ramon; Duncan, M. J.

    2007-07-01

    A quick analytical method is presented for calculating comet cloud formation efficiency in the case of a single planet or multiple-planet system for planets that are not too eccentric (e_p < 0.2). A method to calculate the fraction of comets that stay under the control of each planet is also presented. The location of the planet(s) in mass-semi-major axis space to form a comet cloud is constrained based on the conditions developed by Tremaine (1993) together with estimates of the likelihood of passing comets between planets; and, in the case of a single, eccentric planet, the additional constraint that it is, by itself, able to accelerate material to lower values of Tisserand parameter within the age of the stellar system without sweeping up the majority of the material beforehand. For a single planet, it turns out the efficiency is mainly a function of planetary mass and semi-major axis of the planet and density of the stellar environment. The theory has been applied to some extrasolar systems and compared to numerical simulations for both these systems and the Solar system, as well as a diffusion scheme based on the energy kick distribution of Everhart (1968). Results agree well with analytical predictions.

  1. Observational evidence of aging processes in comets

    NASA Astrophysics Data System (ADS)

    Meech, Karen J.

    1991-10-01

    Emphasis was on searching for systematic differences among two groups of comets: periodic comets which spend most of their time in the vicinity of the inner Solar System and the new comets which are believed to be passing through the inner Solar System for the first time. Such differences are expected, but have never been observed, in part because there has never been a systematic observational program aimed at addressing this question. Understanding possible physical and compositional differences between these two groups will lead to a better understanding of the cometary formation conditions in the early Solar System. The employed method studies the activity in the comets as a function of distance by obtaining charge coupled device (CCD) observations of the comets at frequent intervals on both the pre- and post-perihelion legs of their orbits in order to ascertain the distances at the onset and turn-off of activity through comparison with sublimation models.

  2. Migration of comets to near-Earth space

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.

    The orbital evolution of more than 21000 Jupiter-crossing objects under the gravitational influence of planets was investigated. For orbits close to that of Comet 2P, the mean collision probabilities of Jupiter-crossing objects with the terrestrial planets were greater by two orders of magnitude than for some other comets. For initial orbital elements close to those of Comets 2P, 10P, 44P, and 113P, a few objects (<0.1%) got Earth-crossing orbits with semi-major axes a<2 AU and aphelion distances Q<4.2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Some of them even got inner-Earth orbits (Q<0.983 AU) and Aten orbits for millions of years. Most former trans-Neptunian objects that have typical near-Earth object orbits moved in such orbits for millions of years, so during most of this time they were extinct comets or disintegrated into mini-comets.

  3. Giacobini-Zinner comet: Polarimetric and physical observations

    NASA Technical Reports Server (NTRS)

    Martel, M. T.; Maines, P.; Grudzinska, S.; Stawikowski, A.

    1984-01-01

    The results of observations of the Giacobini-Zinner comet on 25 and 31 October 1959 are presented. The magnitude of the comet was measured photoelectrically in two spectral regions. The radius is on the order of one kilometer. The photoelectric measurements of comets 1959b and 1957c were used to measure the abundances of the CN and C2 radicals and of solid particles in the heads.

  4. Constraints on Comet 332P/Ikeya-Murakami

    NASA Astrophysics Data System (ADS)

    Hui, Man-To; Ye, Quan-Zhi; Wiegert, Paul

    2017-01-01

    Encke-type comet 332P/Ikeya-Murakami is experiencing cascading fragmentation events during its 2016 apparition. It is likely the first splitting Encke-type comet ever observed. A nongravitational solution to the astrometry reveals a statistical detection of the radial and transverse nongravitational parameters, {A}1=(1.54+/- 0.39)× {10}-8 au day‑2 and {A}2=(7.19+/- 1.92)× {10}-9 au day‑2, respectively, which implies a nucleus erosion rate of (9.1+/- 1.7)‰ per orbital revolution. The mass-loss rate likely has to be supported by a much larger fraction of an active surface area than known cases of short-period comets; it may be relevant to the ongoing fragmentation. We failed to detect any serendipitous pre-discovery observations of the comet in archival data from major sky surveys, whereby we infer that 332P used to be largely inactive, and is perhaps among the few short-period comets that have been reactivated from weakly active or dormant states. We therefore constrain an upper limit to the nucleus size as 2.0 ± 0.2 km in radius. A search for small bodies in similar orbits to that of 332P reveals comet P/2010 B2 (WISE) to be the best candidate. From an empirical generalized Jupiter-family (Encke-type included) comet population model, we estimate the likelihood of a chance alignment of the 332P–P/2010 B2 pair to be 1 in 33, a small number indicative of a genetic linkage between the two comets on a statistical basis. The pair possibly originated from a common progenitor, which underwent a disintegration event well before the twentieth century.

  5. The gas production rate of periodic comet d'Arrest

    NASA Technical Reports Server (NTRS)

    Festou, Michel C.; Feldman, Paul D.; Ahearn, Michael F.

    1992-01-01

    Comet P/d'Arrest is a potential target for a rendezvous mission to a short period comet. Its light curve is rather peculiar, the comet being active only after perihelion passage. One apparition out of two is easy to observe from the ground. The 1995 apparition of the comet will offer a unique opportunity to characterize the outgassing properties of its nucleus.

  6. Study of a comet rendezvous mission. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Appendices to the comet Encke rendezvous mission consider relative positions of comet, earth and sun; viewing condition for Encke; detection of Taurid meteor streams; ephemeris of comet Encke; microwave and optical techniques in rendezvous mission; approach instruments; electrostatic equilibrium of ion engine spacecraft; comet flyby data for rendezvous spacecraft assembly; observations of P/Encke extracted from a compilation; and summary of technical innovations.

  7. Synaptic ribbon. Conveyor belt or safety belt?

    PubMed

    Parsons, T D; Sterling, P

    2003-02-06

    The synaptic ribbon in neurons that release transmitter via graded potentials has been considered as a conveyor belt that actively moves vesicles toward their release sites. But evidence has accumulated to the contrary, and it now seems plausible that the ribbon serves instead as a safety belt to tether vesicles stably in mutual contact and thus facilitate multivesicular release by compound exocytosis.

  8. Infrared Imaging, Spectroscopic, and Photometric Studies of Comets

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1997-01-01

    We have continued our program of infrared (IR) photometric, imaging, spectroscopic, and polarimetric temporal observations of comets to study the properties of comet dust and comet nuclei. During the first two years we digitized our IR data base on P/Halley and other recent comets to facilitate further analysis and comparison with other data bases, and found compelling evidence for the emission of a burst of small grains from P/Halley's nucleus at perihelion. We reported imaging and photometric observations of Comets Austin 1990 V and Swift-Tuttle 1992. The Swift-Tuttle 1992t observations included IR photometry, several 7-14 micron long-slit spectra of the coma and a time-sequence of more than 150 10 micron broadband images of the coma. An analysis of near-IR images of the inner coma of P/Halley obtained on three consecutive nights in 1986 March showed sunwardjets. We completed our analysis of IR imaging spectrosco-photometric data on comets. We also obtained observations of Comets Hyakutake 1996 B2 and Hale/Bopp 1995 01. We obtained infrared imaging, photometric, spectroscopic and polarimetric temporal observations of bright comets using a network of five telescopes, with emphasis on simultaneous observations of comets at many wavelengths with different instruments. Our program offers several unique advantages: 1) rapid observational response to new comets with dedicated infrared telescopes; 2) observations within a few degrees of the sun when comets are near perihelion and 3) access to advanced infrared array imagers and spectrometers. In particular, reduction, analysis, publication and archiving of our Jupiter/sl-9 and Comet Hyakutake infrared data received special emphasis. Instrumentation development included installation of the latest version of the innovative FORTH telescope control and a data acquisition system that enables us to control three telescopes remotely by telephone from anywhere in the world for comet observations in broad daylight. We have

  9. THE CANADA-FRANCE ECLIPTIC PLANE SURVEY-FULL DATA RELEASE: THE ORBITAL STRUCTURE OF THE KUIPER BELT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, J.-M.; Rousselot, P.; Mousis, O.

    2011-10-15

    We report the orbital distribution of the trans-Neptunian objects (TNOs) discovered during the Canada-France Ecliptic Plane Survey (CFEPS), whose discovery phase ran from early 2003 until early 2007. The follow-up observations started just after the first discoveries and extended until late 2009. We obtained characterized observations of 321 deg{sup 2} of sky to depths in the range g {approx} 23.5-24.4 AB mag. We provide a database of 169 TNOs with high-precision dynamical classification and known discovery efficiency. Using this database, we find that the classical belt is a complex region with sub-structures that go beyond the usual splitting of innermore » (interior to 3:2 mean-motion resonance [MMR]), main (between 3:2 and 2:1 MMR), and outer (exterior to 2:1 MMR). The main classical belt (a = 40-47 AU) needs to be modeled with at least three components: the 'hot' component with a wide inclination distribution and two 'cold' components (stirred and kernel) with much narrower inclination distributions. The hot component must have a significantly shallower absolute magnitude (H{sub g} ) distribution than the other two components. With 95% confidence, there are 8000{sup +1800}{sub -1600} objects in the main belt with H{sub g} {<=} 8.0, of which 50% are from the hot component, 40% from the stirred component, and 10% from the kernel; the hot component's fraction drops rapidly with increasing H{sub g} . Because of this, the apparent population fractions depend on the depth and ecliptic latitude of a trans-Neptunian survey. The stirred and kernel components are limited to only a portion of the main belt, while we find that the hot component is consistent with a smooth extension throughout the inner, main, and outer regions of the classical belt; in fact, the inner and outer belts are consistent with containing only hot-component objects. The H{sub g} {<=} 8.0 TNO population estimates are 400 for the inner belt and 10,000 for the outer belt to within a factor of two

  10. Low-frequency electromagnetic plasma waves at comet P/Grigg-Skjellerup: Overview and spectral characteristics

    NASA Technical Reports Server (NTRS)

    Glassmeier, Karl-Heinz; Neubauer, Fritz M.

    1993-01-01

    Large-amplitude electromagnetic plasma waves are one of the dominant features of the solar wind-comet interaction. Wave characteristics strongly depend on parameters such as the solar wind flow and Alfven velocities and the angle between flow and interplanetary magnetic field as well as the production rate. With respect to the latter the flyby of the spacecraft Giotto at comet P/Griff-Skjellerup provides a unique possibility to study such waves in further detail. Pickup ion-related wave signatures have been observed up to a distance of 600,000 km from the nucleus. Peak spectral power in the spacecraft frame of reference occurs at frequencies mainly somewhat below the water group ion gyrofrequency. From this the waves are determined to be mainly left-hand polarized waves, causing one-sided pitch angle diffusion outbound. The wave activity strongly increases close to the comet; upstream it exhibits a quadratic dependence on the water group pickup ion free energy. Furthermore, a phenomenological study of the wave characteristics provides a unique description of the fine-structure of the interaction region. Indications of steepened magnetosonic waves have been found in the outbound magnetosheath region.

  11. Aortic ruptures in seat belt wearers.

    PubMed

    Arajärvi, E; Santavirta, S; Tolonen, J

    1989-09-01

    Several investigations have indicated that rupture of the thoracic aorta is one of the leading causes of immediate death in victims of road traffic accidents. In Finland in 1983, 92% of front-seat passengers were seat belt wearers on highways and 82% in build-up areas. The mechanisms of rupture of the aorta have been intensively investigated, but the relationship between seat belt wearing and injury mechanisms leading to aortic rupture is still largely unknown. This study comprises 4169 fatally injured victims investigated by the Boards of Traffic Accident Investigation of Insurance Companies during the period 1972 to 1985. Chest injuries were recorded as the main cause of death in 1121 (26.9%) victims, 207 (5.0%) of those victims having worn a seat belt. Aortic ruptures were found at autopsy in 98 victims and the exact information of the location of the aortic tears was available in 68. For a control group, we analyzed 72 randomly chosen unbelted victims who had a fatal aortic rupture in similar accidents. The location of the aortic rupture in unbelted victims was more often in the ascending aorta, especially in drivers, whereas in seat belt wearers the distal descending aorta was statistically more often ruptured, especially in right-front passengers (p less than 0.05). The steering wheel predominated statistically as the part of the car estimated to have caused the injury in unbelted victims (37/72), and some interior part of the car was the most common cause of fatal thoracic impacts in seat belt wearers (48/68) (p less than 0.001). The mechanism of rupture of the aorta in the classic site just distal to the subclavian artery seems to be rapid deceleration, although complex body movements are also responsible in side impact collisions. The main mechanism leading to rupture of the ascending aorta seems to be severe blow to the bony thorax. This also often causes associated thoracic injuries, such as heart rupture and sternal fracture. Injuries in the ascending

  12. Chasing a Comet with a Solar Sail

    NASA Technical Reports Server (NTRS)

    Stough, Robert W.; Heaton, Andrew F.; Whorton, Mark S.

    2008-01-01

    Solar sail propulsion systems enable a wide range of missions that require constant thrust or high delta-V over long mission times. One particularly challenging mission type is a comet rendezvous mission. This paper presents optimal low-thrust trajectory designs for a range of sailcraft performance metrics and mission transit times that enables a comet rendezvous mission. These optimal trajectory results provide a trade space which can be parameterized in terms of mission duration and sailcraft performance parameters such that a design space for a small satellite comet chaser mission is identified. These results show that a feasible space exists for a small satellite to perform a comet chaser mission in a reasonable mission time.

  13. View shows stairs to second floor machine shop and belts ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View shows stairs to second floor machine shop and belts from main shaft going down into basement where they power machinery for elevator. - Thomas A. Edison Laboratories, Building No. 5, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  14. On the origin of comets

    NASA Technical Reports Server (NTRS)

    Mendis, A.; Alfven, H.

    1976-01-01

    Physico-chemical processes leading to the dynamic formation and physical evolution of comets are reviewed in relationship to the various theories that propose solar origins, protoplanetary origins, planetary origins and interstellar origins. Evidence points to the origins of comets by the growth and agglomeration of small particles from gas and dust at very low temperatures at undetermined regions in space.

  15. Interaction of Comets and the Solar Wind

    NASA Technical Reports Server (NTRS)

    Wagner, William (Technical Monitor); Raymond, John C.

    2003-01-01

    We had originally planned to analyze UVCS observations of Comet Machholz, but we obtained higher quality observations of Comet Kudo-Fujikawa in January 2003 at its 0.19 AU perihelion. Besides a large and rapidly increasing water outgassing rate, we detected a bright tail in doubly ionized carbon. The amount of carbon was greater than could be accounted for by GO photodissociation, and we attribute the carbon to evaporation of organics from dust. A spectacular disconnection event was apparent in the C III tail, and it coincides within the uncertainties with the position of the heliospheric current sheet. A paper is in press in Science, and it will be the subject of a press release. We are also analyzing two sungrazing comets. Comet C/2001 C2 shows evidence for sub-fragments and for a very long lasting source of neutrals, which we tentatively identify as evaporation of pyroxene dust grains. Comet C/2002 S2 shows a sudden 2 magnitude drop in optical brightness and an equally sudden recovery. UVCS observations during that time show a steadily increasing outgassing rate. We have derived solar wind densities for both comets, but we are still sorting out the ambiguities involving the fragmentation and optical behavior. We are collaborating with Philippe Lamy on the LASCO measurements.

  16. The effect of multiple encounters on short period comet orbits

    NASA Technical Reports Server (NTRS)

    Lowrey, B. E.

    1972-01-01

    The observed orbital elements of short period comets are found to be consistent with the hypothesis of derivation from long period comets as long as two assumptions are made. First, the distribution of short period comets has been randomized by multiple encounters with Jupiter and second, the short period comets have lower velocities of encounter with Jupiter than is generally expected. Some 16% of the observed short period comets have lower encounter velocities than is allowed mathematically using Laplace's method. This may be due to double encounter processes with Jupiter and Saturn, or as a result of prolonged encounters. The distribution of unobservable short period comets can be inferred in part from the observed comets. Many have orbits between Jupiter and Saturn with somewhat higher inclinations than those with perihelions near the earth. Debris from those comets may form the major component of the zodiacal dust.

  17. Orbit of Comet C/1850 Q1 (Bond)

    NASA Astrophysics Data System (ADS)

    Branham, Richard L., Jr.

    Comet C/1850 Q1 (Bond) is one of a number of comets catalogued with parabolic orbits. Given that there are sufficient observations, 104in right ascension and 103in declination, it proves possible to calculate a better orbit. Some of the difficulties of working with 19th century observations, which show considerable scatter, are discussed. Rectangular coordinates, both of the comet and the Sun, are interpolated by a recursive version of Aitken's method, rendering unnecessary the need to specify an order for the interpolation. Comet Bond's orbit is slightly hyperbolic.

  18. Comet Tempel 1 Went Back to Sleep

    NASA Astrophysics Data System (ADS)

    2005-07-01

    Astronomers Having Used ESO Telescopes Start Analysing Unique Dataset on the Comet Following the Deep Impact Mission Ten days after part of the Deep Impact spacecraft plunged onto Comet Tempel 1 with the aim to create a crater and expose pristine material from beneath the surface, astronomers are back in the ESO Offices in Santiago, after more than a week of observing at the ESO La Silla Paranal Observatory. In this unprecedented observing campaign - among the most ambitious ever conducted by a single observatory - the astronomers have collected a large amount of invaluable data on this comet. The astronomers have now started the lengthy process of data reduction and analysis. Being all together in a single place, and in close contacts with the space mission' scientific team, they will try to assemble a clear picture of the comet and of the impact. The ESO observations were part of a worldwide campaign to observe this unique experiment. During the campaign, ESO was connected by phone, email, and videoconference with colleagues in all major observatories worldwide, and data were freely exchanged between the different groups. This unique collaborative spirit provides astronomers with data taken almost around the clock during several days and this, with the largest variety of instruments, making the Deep Impact observing campaign one of the most successful of its kind, and thereby, ensuring the greatest scientific outcome. From the current analysis, it appears most likely that the impactor did not create a large new zone of activity and may have failed to liberate a large quantity of pristine material from beneath the surface. ESO PR Photo 22/05 ESO PR Photo 22/05 Evolution of Comet Tempel 1 (FORS2/VLT) [Preview - JPEG: 400 x 701 pix - 128k] [Normal - JPEG: 800 x 1401 pix - 357k] ESO PR Photo 22/05 Animated Gif Caption: ESO PR Photo 22/05 shows the evolution of Comet Tempel 1 as observed with the FORS2 instrument on Antu (VLT). The images obtained at the VLT show that

  19. Random, double- and single-strand DNA breaks can be differentiated in the method of Comet assay by the shape of the comet image.

    PubMed

    Georgieva, Milena; Zagorchev, Plamen; Miloshev, George

    2015-10-01

    Comet assay is an invaluable tool in DNA research. It is widely used to detect DNA damage as an indicator of exposure to genotoxic stress. A canonical set of parameters and specialized software programs exist for Comet assay data quantification and analysis. None of them so far has proven its potential to employ a computer-based algorithm for assessment of the shape of the comet as an indicator of the exact mechanism by which the studied genotoxins cut in the molecule of DNA. Here, we present 14 unique measurements of the comet image based on the comet morphology. Their mathematical derivation and statistical analysis allowed precise description of the shape of the comet image which in turn discriminated the cause of genotoxic stress. This algorithm led to the development of the "CometShape" software which allowed easy discrimination among different genotoxins depending on the type of DNA damage they induce. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Mars-Flyby Comet in False Color

    NASA Image and Video Library

    2014-11-07

    This frame from a movie sequence of images from NASA Mars Reconnaissance Orbiter MRO shows comet C/2013 A1 Siding Spring before and after its close pass by Mars in October 2014. False color enhances subtle variations in brightness in the comet coma.