Science.gov

Sample records for main engine high

  1. Test results of the highly instrumented Space Shuttle Main Engine

    NASA Astrophysics Data System (ADS)

    McConnaughey, H. V.; Leopard, J. L.; Lightfoot, R. M.

    1992-07-01

    Test results of a highly instrumented Space Shuttle Main Engine (SSME) are presented. The instrumented engine, when combined with instrumented high pressure turbopumps, contains over 750 special measurements, including flowrates, pressures, temperatures, and strains. To date, two different test series, accounting for a total of sixteen tests and 1,667 seconds, have been conducted with this engine. The first series, which utilized instrumented turbopumps, characterized the internal operating environment of the SSME for a variety of operating conditions. The second series provided system-level validation of a high pressure liquid oxygen turbopump that had been retrofitted with a fluid-film bearing in place of the usual pump-end ball bearings. Major findings from these two test series are highlighted in this paper. In addition, comparisons are made between model predictions and measured test data.

  2. Test results of the highly instrumented Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, H. V.; Leopard, J. L.; Lightfoot, R. M.

    1992-01-01

    Test results of a highly instrumented Space Shuttle Main Engine (SSME) are presented. The instrumented engine, when combined with instrumented high pressure turbopumps, contains over 750 special measurements, including flowrates, pressures, temperatures, and strains. To date, two different test series, accounting for a total of sixteen tests and 1,667 seconds, have been conducted with this engine. The first series, which utilized instrumented turbopumps, characterized the internal operating environment of the SSME for a variety of operating conditions. The second series provided system-level validation of a high pressure liquid oxygen turbopump that had been retrofitted with a fluid-film bearing in place of the usual pump-end ball bearings. Major findings from these two test series are highlighted in this paper. In addition, comparisons are made between model predictions and measured test data.

  3. Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Monk, Jan C.

    1992-01-01

    The topics are presented in viewgraph form and include the following: Space Transportation Main Engine (STME) definition, design philosophy, robust design, maximum design condition, casting vs. machined and welded forgings, operability considerations, high reliability design philosophy, engine reliability enhancement, low cost design philosophy, engine systems requirements, STME schematic, fuel turbopump, liquid oxygen turbopump, main injector, and gas generator. The major engine components of the STME and the Space Shuttle Main Engine are compared.

  4. High frequency data acquisition system for space shuttle main engine testing

    NASA Technical Reports Server (NTRS)

    Lewallen, Pat

    1987-01-01

    The high frequency data acquisition system developed for the Space Shuttle Main Engine (SSME) single engine test facility at the National Space Technology Laboratories is discussed. The real time system will provide engineering data for a complete set of SSME instrumentation (approx. 100 measurements) within 4 hours following engine cutoff, a decrease of over 48 hours from the previous analog tape based system.

  5. COBRA Main Engine Project

    NASA Technical Reports Server (NTRS)

    Snoddy, Jim; Sides, Steve; Lyles, Garry M. (Technical Monitor)

    2002-01-01

    The COBRA (CO-Optimized Booster for Reusable Applications) project include the following: 1. COBRA main engine project team. 2. COBRA and RLX cycles selected. 3. COBRA proto-type engine approach enables mission success. 4. COBRA provides quick, low cost demo of cycle and technologies. 5. COBRA cycle I risk reduction supports. 6. Achieving engine safety. 6. RLX cycle I risk reduction supports. 7. Flight qualification. 9. Life extension engine testing.

  6. Space Shuttle Main Engine instrumented High Pressure Oxidizer Turbopump technology test bed testing results summary

    NASA Technical Reports Server (NTRS)

    Koelbl, Mary E.

    1993-01-01

    This paper presents the test results from the Space Shuttle Main Engine (SSME) instrumented High Pressure Oxidizer Turbopump (HPOTP). The turbopump was tested on Engine 3001, a highly instrumented engine, in an effort to characterize the turbopump and the engine system. Seven tests, for a total duration of 766 seconds, were performed over a five month time period. The testing was performed at a wide variety of engine conditions. Changes in engine mixture ratio, power level, engine inlet oxidizer pressure, engine inlet fuel pressure, and engine start sequence were made. A discussion of all the HPOTP pressure and temperature data obtained are presented with comparisons to supporting analyses made where applicable. The effect of the various engine conditions on the measured data is addressed. This paper also discusses the challenges that were overcome to obtain the data. The significant instrumentation related problems encountered during the design, fabrication, and testing of this turbopump are summarized. Only those issues that affected the data obtained or the instrumentation itself are discussed. The relevance of the data to other noninstrumented turbomachinery is outlined. Conclusions and recommendations resulting from the test series will be presented.

  7. Space Shuttle Main Engine instrumented High Pressure Oxidizer Turbopump technology test bed testing results summary

    NASA Astrophysics Data System (ADS)

    Koelbl, Mary E.

    1993-06-01

    This paper presents the test results from the Space Shuttle Main Engine (SSME) instrumented High Pressure Oxidizer Turbopump (HPOTP). The turbopump was tested on Engine 3001, a highly instrumented engine, in an effort to characterize the turbopump and the engine system. Seven tests, for a total duration of 766 seconds, were performed over a five month time period. The testing was performed at a wide variety of engine conditions. Changes in engine mixture ratio, power level, engine inlet oxidizer pressure, engine inlet fuel pressure, and engine start sequence were made. A discussion of all the HPOTP pressure and temperature data obtained are presented with comparisons to supporting analyses made where applicable. The effect of the various engine conditions on the measured data is addressed. This paper also discusses the challenges that were overcome to obtain the data. The significant instrumentation related problems encountered during the design, fabrication, and testing of this turbopump are summarized. Only those issues that affected the data obtained or the instrumentation itself are discussed. The relevance of the data to other noninstrumented turbomachinery is outlined. Conclusions and recommendations resulting from the test series will be presented.

  8. Structural Evaluation of a Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump Turbine Blade

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali

    1996-01-01

    Thermal and structural finite-element analyses were performed on the first high pressure fuel turbopump turbine blade of the space shuttle main engine (SSME). A two-dimensional (2-D) finite-element model of the blade and firtree disk attachment was analyzed using the general purpose MARC (finite-element) code. The loading history applied is a typical test stand engine cycle mission, which consists of a startup condition with two thermal spikes, a steady state and a shutdown transient. The blade material is a directionally solidified (DS) Mar-M 246 alloy, the blade rotor is forged with waspalloy material. Thermal responses under steady-state and transient conditions were calculated. The stresses and strains under the influence of mechanical and thermal loadings were also determined. The critical regions that exhibited high stresses and severe localized plastic deformation were the blade-rotor gaps.

  9. Operational life improvement of SSME high-pressure turbopumps. [Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Hale, J. R.; Wood, B. K.

    1985-01-01

    The current Space Shuttle Main Engine (SSME) Phase I engine demonstrated excellent flight performance but showed limited operational life of the high-pressure fuel turbopumps (HPFTP). Design improvements, supporting analyses, and test results of the SSME Phase II development program are presented. The HPFTP improvements include reduction of turbine operating temperature by 110 to 130 R by reconstructing the seals and the flow contours; modifications of the first- and second-stage turbine blades by recontouring the shank, shotpeening the shank surface, and applying a multilayered, plasma-spray coating to the shank on the downstream side to reduce the effect of the disk coolant; and reduction of the tendency for thermal cracks in the turbine by changing weld configuration to avoid the concentration of stresses in local areas. The high-pressure oxidizer turbopump has been also modified to improve bearing life and to eliminate subsynchronous whirl.

  10. Space shuttle main engine controller

    NASA Technical Reports Server (NTRS)

    Mattox, R. M.; White, J. B.

    1981-01-01

    A technical description of the space shuttle main engine controller, which provides engine checkout prior to launch, engine control and monitoring during launch, and engine safety and monitoring in orbit, is presented. Each of the major controller subassemblies, the central processing unit, the computer interface electronics, the input electronics, the output electronics, and the power supplies are described and discussed in detail along with engine and orbiter interfaces and operational requirements. The controller represents a unique application of digital concepts, techniques, and technology in monitoring, managing, and controlling a high performance rocket engine propulsion system. The operational requirements placed on the controller, the extremely harsh operating environment to which it is exposed, and the reliability demanded, result in the most complex and rugged digital system ever designed, fabricated, and flown.

  11. Space shuttle main engine high pressure fuel pump aft platform seal cavity flow analysis

    NASA Technical Reports Server (NTRS)

    Lowry, S. A.; Keeton, L. W.

    1987-01-01

    A general purpose, three-dimensional computational fluid dynamics code named PHOENICS, developed by CHAM Inc., is used to model the flow in the aft-platform seal cavity in the high pressure fuel pump of the space shuttle main engine. The model is used to predict the temperatures, velocities, and pressures in the cavity for six different sets of boundary conditions. The results are presented as input for further analysis of two known problems in the region, specifically: erratic pressures and temperatures in the adjacent coolant liner cavity and cracks in the blade shanks near the outer diameter of the aft-platform seal.

  12. High pressure oxygen turbopump bearing cage stability analyses. [space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Merriman, T. L.; Kannel, J. W.

    1984-01-01

    The low service life of the high pressure oxygen turbopump (HPOTP) bearings used in the space shuttle main engine was examined by use of the Battelle "BASDAP' bearing computer stability model. The dynamic instability of the bearing cage resulted in excessive wear and eventual failure of the unit. By maintaining a cage/race clearance of no more than 0.25 millimeters (0.010 inches), ball/pocket clearance of no less than 0.54 millimeters (0.025 inches), dynamic balancing of the cages, and maintaining adequate lubricant films between the balls and races, cage instability and subsequent bearing degradation can be reduced.

  13. Rotordynamic Characteristics of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine)

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1984-01-01

    Rotational stability of turbopump components in the space shuttle main engine was studied via analysis of component and structural dynamic models. Subsynchronous vibration caused unacceptable migration of the rotor/housing unit with unequal load sharing of the synchronous bearings that resulted in the failure of the High Pressure Oxygen Turbopump. Linear analysis shows that a shrouded inducer eliminates the second critical speed and the stability problem, a stiffened rotor improves the rotordynamic characteristics of the turbopump, and installing damper boost/impeller seals reduces bearing loads. Nonlinear analysis shows that by increasing the "dead band' clearances, a marked reduction in peak bearing loads occurs.

  14. Improved rotor response of the uprated high pressure oxygen turbopump for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Beatty, R. F.; Hine, M. J.

    1989-01-01

    A means of eliminating the subsynchronous rotor whirl encountered during the development testing of the high-pressure oxygen turbopump of the Space Shuttle Main Engine is proposed. The rotor response is improved by reducing the pump end bearing loads and adding damping between the rotor and housing. In the present method, the impeller annular seals are converted into damping seals and the second rotor critical speed is increased due to the added stiffness of the seal conversion and the stiffening of the rotor shaft.

  15. A study of pump cavitation damage. [space shuttle main engine high pressure oxidizer turbopump

    NASA Technical Reports Server (NTRS)

    Brophy, M. C.; Stinebring, D. R.; Billet, M. L.

    1983-01-01

    The cavitation assessment for the space shuttle main engine high pressure oxidizer turbopump is documented. A model of the flow through the pump was developed. Initially, a computational procedure was used to analyze the flow through the inlet casing including the prediction of wakes downstream of the casing vanes. From these flow calculations, cavitation patterns on the inducer blades were approximated and the damage rate estimated. The model correlates the heavy damage on the housing and over the inducer with unsteady blade surface cavitation. The unsteady blade surface cavitation is due to the large incidence changes caused by the wakes of the upstream vanes. Very high cavitation damage rates are associated with this type of cavitation. Design recommendations for reducing the unsteady cavitation include removing the set of vanes closest to the inducer and modifying the remaining vanes.

  16. Vibration effects of the space shuttle main engine high pressure oxidizer turbopump bellows

    NASA Technical Reports Server (NTRS)

    Harp, J. A.

    1978-01-01

    A welded metal bellows was subjected to a series of vibration tests in a 400 psi oxygen environment to evaluate the effects of the bellows convolutes rubbing on the damper ring in the high pressure oxidizer turbopump of the space shuttle main engine. The bellows was subjected to approximately 2 million cycles at 0.007 in. double amplitude displacement during this series of tests, at a frequency of 400 Hz. Intrumentation of the test specimen revealed no significant heat buildup caused by the rubbing of the bellows convolutes on the damper ring. A final destruct test was made to determine if a fire would result if the bellows ruptured in the 400 psi oxygen environment, thus exposing a fresh metal surface. The vibration input was changed to 0.8 in. double amplitude displacement at 20 Hz to intentionally rupture the bellows. Failure occurred after 2.5 sec; no fire or heat buildup was encountered.

  17. Transient rotordynamic analysis for the space-shuttle main engine high-pressure oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1974-01-01

    A simulation study was conducted to examine the transient rotordynamics of the space shuttle main engine (SSME) high pressure oxygen turbopump (HPOTP) with the objective of identifying, anticipating, and avoiding rotordynamic problem areas. Simulations were performed for steady state operations at emergency power levels and for critical speed transitions. No problems are indicated in steady state operation of the HPOTP emergency power levels, although the results indicated that a rubbing condition will be experienced during critical speed transition at shutdown, particularly involving rotor deceleration rate and imbalance distribution rubbing at the turbine floating-ring seals. The condition is correctable by either reducing the imbalance at the HPOTP hot gas turbine wheels, or by a more rapid deceleration of the rotor through it critical speed.

  18. Effect of flange bolt preload on Space Shuttle main engine high pressure oxidizer turbopump housing analysis

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Johnston, L. M.; Czekalski, B.

    1991-01-01

    Cracks at the seal fillet flange and the strut pilot groove of primary turbine drain passage of the space shuttle main engine (SSME) high pressure oxidizer turbopump (HPOTP) were observed and reported. Stress information for critical structural components in the SSME under actual conditions is necessary for design and life prediction analysis. However, little information is available about the stress distribution at this location under various combinations of loadings and environments. Thus, a stress analysis was conducted to determine an influence of the various operation and installation loads on the stresses of the HPOTP main mounting flange. To do this, a 3-D finite element model of the HPOTP housing was generated. A fairly comfortable margin of stresses at the flange fillet with respect to the yield stress of Inconel 718 is shown. However, it was revealed that the bending stress arising from the housing flange bolt preloads could significantly affect the stress distribution at the strut pilot groove of primary turbine drain passage in the HPOTP housing. Consequently, the information obtained from the present 3-D analysis results should be useful in guiding the development of the SSME HPOTP.

  19. Space Shuttle Main Engine High Pressure Fuel Turbopump Turbine Blade Cracking

    NASA Technical Reports Server (NTRS)

    Lee, Henry

    1988-01-01

    The analytical results from two-dimensional (2D) and three-dimensional (3D) finite element model investigations into the cracking of Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) first- and second-stage turbine blades are presented. Specifically, the initiation causes for transverse cracks on the pressure side of the firststage blade fir tree lobes and face/corner cracks on the downstream fir tree face of the second-state blade are evaluated. Because the blade material, MAR-M-246 Hf (DS), is highly susceptible to hydrogen embrittlement in the -100 F to 400 F thermal environment, a steady-state condition (full power level = 109 percent) rather than a start-up or shut-down transient was considered to be the most likely candidate for generating a high-strain state in the fir tree areas. Results of the analyses yielded strain levels on both first- and second-stage blade fir tree regions that are of a magnitude to cause hydrogen assisted low cycle fatigue cracking. Also evident from the analysis is that a positive margin against fir tree cracking exists for the planned design modifications, which include shot peening for both first- and second-stage blade fir tree areas.

  20. Load cell verification of the uprated high pressure oxygen turbopump for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Beatty, R. F.; Hine, M. J.

    1986-01-01

    The high pressure turbomachinery of the Space Shuttle Main Engine has the highest power-to-weight ratio of any operational machine known. Subsynchronous rotor whirl of the high pressure oxygen turbopump occurred in development testing at full-power level (109 percent thrust). The means by which the turbopump was successfully uprated is presented herein. The subsynchronous motion was determined to be driven by impeller destabilizing forces in combination with low net damping and bearing degradation. The degradation resulted from ball wear due primarily to an excessive loading condition of operating too near the lightly damped rotor second critical speed while under a large static load and, secondarily, from reverse bearing loading or loss of internal clearance and coolant during simulated flight conditions. The rotor response was reduced by stiffening the shaft and supports, optimizing the stiffness and damping of annular seals, and increasing the bearing deadband. The uprated oxygen turbopump configuration was verified by converting the pump and bearing support into a load cell for the purpose of systematically quantifying the load reduction benefits relative to baseline turbopumps. The damped second critical speed margin and the load sharing have been substantially improved which has resulted in reduced bearing loads for improved service life of the machine at full-power level.

  1. The Space Shuttle Main Engine High-Pressure Fuel Turbopump rotordynamic instability problem

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1977-01-01

    The SSME (Space Shuttle Main Engine) HPFTP (High-Pressure Fuel Turbopump) has been subject to a rotordynamic instability problem, characterized by large and damaging subsynchronous whirling motion. The original design of the HPFTP (from a rotordynamic viewpoint) and the evolution of the HPFTP subsynchronous whirl problem are reviewed. The models and analysis which have been developed and utilized to explain the HPFTP instability and improve its stability performance are also reviewed. Elements of the rotordynamic model which are discussed in detail include the following: (a) hydrodynamic forces due to seals, (b) internal rotor damping, (c) bearing and casing support stiffness asymmetry, and (d) casing dynamics. The stability and synchronous response characteristics of the following two design alternatives are compared: (a) a 'stiff' symmetric bearing support design and (b) a damped asymmetric stiffness design. With appropriate interstage seal designs, both designs are shown, in theory to provide substantially improved stability and synchronous response characteristics in comparison to the original design. The asymmetric design is shown to have better stability and synchronous response characteristics than the stiffly supported design.

  2. Space Shuttle Era: Main Engines

    NASA Video Gallery

    Producing 500,000 pounds of thrust from a package weighing only 7,500 pounds, the Space Shuttle Main Engines are one of the shining accomplishments of the shuttle program. The success did not come ...

  3. Vibration characteristics of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine)

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Moyer, D. S.

    1985-01-01

    A review is presented of various rotordynamic problems which have been encountered and eliminated in developing the current flight engines, and continuing subsynchronous problems which are being encountered in developing a 109% power level engine. The basic model for the High Pressure Oxygen Turbopump (HPOTP) of the SSME including the structural dynamic model for the rotor and housing and component models for the liquid and gas seals, turbine-clearance excitation forces, and impeller-diffuser forces are discussed. Results from a linear model are used to examine the synchronous response and stability characteristics of the HPOTP, examining bearing load and stability problems associated with the second critical speed. Various seal modifications are examined and shown to have favorable consequences with respect to bearing reactions and stability.

  4. A model for the space shuttle main engine high pressure oxidizer turbopump shaft seal system

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    1990-01-01

    A simple static model is presented which solves for the flow properties of pressure, temperature, and mass flow in the Space Shuttle Main Engine pressure Oxidizer Turbopump Shaft Seal Systems. This system includes the primary and secondary turbine seals, the primary and secondary turbine drains, the helium purge seals and feed line, the primary oxygen drain, and the slinger/labyrinth oxygen seal pair. The model predicts the changes in flow variables that occur during and after failures of the various seals. Such information would be particularly useful in a post flight situation where processing of sensor information using this model could identify a particular seal that had experienced excessive wear. Most of the seals in the system are modeled using simple one dimensional equations which can be applied to almost any seal provided that the fluid is gaseous. A failure is modeled as an increase in the clearance between the shaft and the seal. Thus, the model does not attempt to predict how the failure process actually occurs (e.g., wear, seal crack initiation). The results presented were obtained using a FORTRAN implementation of the model running on a VAX computer. Solution for the seal system properties is obtained iteratively; however, a further simplified implementation (which does not include the slinger/labyrinth combination) was also developed which provides fast and reasonable results for most engine operating conditions. Results from the model compare favorably with the limited redline data available.

  5. Space Shuttle Main Engine. Overview

    NASA Astrophysics Data System (ADS)

    Jackson, Eugene D.

    An overview of the Space Shuttle Main Engine (SSME) is presented. The Space Shuttle propulsion system consists of two large solid booster motors, three SSME's, two orbital maneuvering system engines, and 44 reaction control system thrusters. The three SSME's burn liquid hydrogen and liquid oxygen from the external tank and are sequentially started at launch. Engine thrust is throttleable. The major components and some of their key features and operational parameters are outlined. The life and reliability being achieved by the SSME are presented.

  6. Assessment of crack growth in a space shuttle main engine first-stage, high-pressure fuel turbopump blade

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali

    1993-01-01

    A two-dimensional finite element fracture mechanics analysis of a space shuttle main engine (SSME) turbine blade firtree was performed using the MARC finite element code. The analysis was conducted under combined effects of thermal and mechanical loads at steady-state conditions. Data from a typical engine stand cycle of the SSME were used to run a heat transfer analysis and, subsequently, a thermal structural fracture mechanics analysis. Temperature and stress contours for the firtree under these operating conditions were generated. High stresses were found at the firtree lobes where crack initiation was triggered. A life assessment of the firtree was done by assuming an initial and a final crack size.

  7. Space Shuttle Main Engine Block I engine for STS-70

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Space Shuttle Main Engine (SSME) hoist prepares to lift the first Block I engine to be installed in an orbiter into the number one position on Discovery while the spaceplane is being prepared for the STS-70 mission in the high bay of Orbiter Processing Facility bay 2. The new engine, SSME No. 2036, features a new high-pressure liquid oxygen turbopump, a two-duct powerhead, a baffleless main injector, a single-coil heat exchange and start sequence modifications. The other two main engines to be used during the liftoff of the STS-70 are of the existing Phase II design.

  8. Vibration characteristics of the HPOTP (High-Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine)

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Moyer, D. S.

    1984-01-01

    Attention is given to rotor dynamic problems that have been encountered and eliminated in the course of Space Shuttle Main Engine (SSME) development, as well as continuing, subsynchronous problems which are being encountered in the development of a 109-percent power level engine. The basic model for the SSME's High Pressure Oxygen Turbopump (HPOTP) encompasses a structural dynamic model for the rotor and housing, and component models for the liquid and gas seals, turbine clearance excitation forces, and impeller diffuser forces. Linear model results are used to examine the synchronous response and stability characteristics of the HPOTP, with attention to bearing load and stability problems associated with the second critical speed. Differences between linear and nonlinear model results are discussed and explained in terms of simple models. Simulation results indicate that while synchronous bearing loads can be reduced, subsynchronous motion is not eliminated by seal modifications.

  9. Impeller shroud to casing leakage flow simulations in the Space Shuttle Main Engine high pressure fuel pump

    NASA Technical Reports Server (NTRS)

    Sindir, Munir M.

    1987-01-01

    Quasi-three-dimensional Navier-Stokes calculations were carried out for the Space Shuttle Main Engine high-pressure fuel pump to simulate the impeller shroud to casing leakage flow. This flow geometry was modeled as an axisymmetric cavity flow with a stationary surface representing the casing, and a rotating surface denoting the impeller. A 63 x 81-node mesh provided sufficient resolution in the regions of greatest flow variations and reduced the effects of numerical diffusion. The turbulence field was closed with the high Reynolds number form of the k-epsilon model supplemented with wall functions in the vicinity of the walls. Finally, a parametric study quantified the effects of through mass flow changes on this leakage flow.

  10. Cold flow simulation of the alternate turbopump development turbine of the Space Shuttle main engine high pressure fuel turbopump

    NASA Astrophysics Data System (ADS)

    Rutkowski, Richard J.

    1994-03-01

    Completion of the installation at the Naval Postgraduate School of a cold-flow test facility for the turbine of the Space Shuttle Main Engine High Pressure Fuel Turbopump is reported. The article to be tested is the first stage of the Alternate Turbopump Development model designed and manufactured by Pratt & Whitney. The purpose of the facility is to enable the development of non-intrusive flow measurements and comparison of those measurements with numerical simulations. Flow field characteristics of the turbine stator were predicted using a three-dimensional viscous flow code. A sensitivity study was conducted to determine the effect of inlet profile to flow field solution. Recommendations are made for future use of the test facility and validation of the numerical simulation scheme.

  11. Developing acceptance limits for measured bearing wear of the Space Shuttle Main Engine high pressure oxidizer turbopump

    NASA Technical Reports Server (NTRS)

    Genge, Gary G.

    1991-01-01

    The probabilistic design approach currently receiving attention for structural failure modes has been adapted for obtaining measured bearing wear limits in the Space Shuttle Main Engine high-pressure oxidizer turbopump. With the development of the shaft microtravel measurements to determine bearing health, an acceptance limit was neeed that protects against all known faiure modes yet is not overly conservative. This acceptance criteria limit has been successfully determined using probabilistic descriptions of preflight hardware geometry, empirical bearing wear data, mission requirements, and measurement tool precision as an input for a Monte Carlo simulation. The result of the simulation is a frequency distribution of failures as a function of preflight acceptance limits. When the distribution is converted into a reliability curve, a conscious risk management decision is made concerning the acceptance limit.

  12. Space shuttle main engine vibration data base

    NASA Technical Reports Server (NTRS)

    Lewallen, Pat

    1987-01-01

    In order to evaluate Space Shuttle Main Engine (SSME) vibration data without having to constantly replay analog tapes, the SSME Vibration Data Base was developed. This data base contains data that have been digitized at a high sample rate for the entire test duration. It provides quick and efficient recall capabilities for numerious computation and display routines. The data base components are described as well as some of the compution and display features.

  13. Shuttle Main Engine Firing in Gimbal Test

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A close-up view of a Space Shuttle Main Engine during a test at the John C. Stennis Space Center shows how the engine is gimballed, or rotated to evaluate the performance of its components under simulated flight conditions.

  14. Solution of the subsynchronous whirl problem in the high-pressure hydrogen turbomachinery of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Ek, M. C.

    1978-01-01

    Subsynchronous whirl of the high-pressure fuel turbopump limited operation of the Space Shuttle Main Engine for some months in early 1976. The means by which this problem was successfully attacked is of particular interest to the rotor-dynamics community, not only because this machinery was the highest power-to-weight ratio known (77,000 hp...760 pounds), but because of the multiple forcing functions involved and the means, both analytical and experimental, which were utilized in separating variables, pointing toward successful solutions, and evaluating results. The general means of identifying fundamental characteristics, analyzing data, and conducting computer investigations are delineated. The results of analysis and testing are discussed. Since whirl inception occurs at a shaft speed greater than twice the first system critical, this was increased by stiffening the shaft and bearing supports; the system damping and system stiffness was additionally increased by proper interstage seal design to the extent that the instability threshold is now beyond the operating range.

  15. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 3A: High pressure oxidizer turbo-pump preburner pump housing stress analysis report

    NASA Technical Reports Server (NTRS)

    Shannon, Robert V., Jr.

    1989-01-01

    The model generation and structural analysis performed for the High Pressure Oxidizer Turbopump (HPOTP) preburner pump volute housing located on the main pump end of the HPOTP in the space shuttle main engine are summarized. An ANSYS finite element model of the volute housing was built and executed. A static structural analysis was performed on the Engineering Analysis and Data System (EADS) Cray-XMP supercomputer

  16. Space transportation main engine reliability and safety

    NASA Technical Reports Server (NTRS)

    Monk, Jan C.

    1991-01-01

    Viewgraphs are used to illustrate the reliability engineering and aerospace safety of the Space Transportation Main Engine (STME). A technology developed is called Total Quality Management (TQM). The goal is to develop a robust design. Reducing process variability produces a product with improved reliability and safety. Some engine system design characteristics are identified which improves reliability.

  17. Space transportation main engine cycle assessment process

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, H. V.; Lyles, G. M.

    1991-01-01

    The Advanced Launch System (ALS) program selection process for a space transportation main engine (STME) power cycle is described in terms of the methodology employed. Low cost, robustness, and high reliability are the primary parameters for engine choice, suggesting simplicity of design and efficient fabrication methods as the crucial characteristics. An evaluation methodology is developed based on the Pugh (1981) process and the King (1989) matrices. The cycle configurations considered are the gas generator (GG), the closed expander, and the open expander. The cycle assessment team determined that the GG cycle is favored by most cycle discriminators, based on an assessment of the characteristics in terms of ALS goals. The lower development risk of the GG-cycle STME is consistent with the goals of the ALS program in terms of reliability and cost efficiency.

  18. Space shuttle main engine: Interactive design challenges

    NASA Technical Reports Server (NTRS)

    Mccarty, J. P.; Wood, B. K.

    1985-01-01

    The operating requirements established by NASA for the SSME were considerably more demanding than those for earlier rocket engines used in the military launch vehicles or Apollo program. The SSME, in order to achieve the high performance, low weight, long life, reusable objectives, embodied technical demands far in excess of its predecessor rocket engines. The requirements dictated the use of high combustion pressure and the staged combustion cycle which maximizes performance through total use of all propellants in the main combustion process. This approach presented a myriad of technical challenges for maximization of performance within attainable state of the art capabilities for operating pressures, operating temperatures and rotating machinery efficiencies. Controlling uniformity of the high pressure turbomachinery turbine temperature environment was a key challenge for thrust level and life capability demanding innovative engineering. New approaches in the design of the components were necessary to accommodate the multiple use, minimum maintenance objectives. Included were the use of line replaceable units to facilitate field maintenance automatic checkout and internal inspection capabilities.

  19. Space Shuttle Main Engine (SSME) Test Firing

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A Space Shuttle Main Engine (SSME) undergoing a full power level 290.04 second test firing at the National Space Technology Laboratories (currently called the Stennis Space Center) in Mississippi. The firings were part of a series of developmental testing designed to increase the amount of thrust available to the Shuttle from its three main engines. The additional thrust allowed the Shuttle to launch heavier payloads into orbit. The Marshall Space Flight Center (MSFC) had management responsibility of Space Shuttle propulsion elements, including the Main Engines.

  20. Space Shuttle Main Engine Test Firing

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A cloud of extremely hot steam boils out of the flame deflector at the A-1 test stand during a test firing of a Space Shuttle Main Engine (SSME) at the John C. Stennis Space Center, Hancock County, Mississippi.

  1. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 3B: High pressure fuel turbo-pump preburner pump bearing assembly analysis

    NASA Technical Reports Server (NTRS)

    Power, Gloria B.; Violett, Rebeca S.

    1989-01-01

    The analysis performed on the High Pressure Oxidizer Turbopump (HPOTP) preburner pump bearing assembly located on the Space Shuttle Main Engine (SSME) is summarized. An ANSYS finite element model for the inlet assembly was built and executed. Thermal and static analyses were performed.

  2. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 4: High pressure fuel turbo-pump inlet housing analysis

    NASA Technical Reports Server (NTRS)

    Pool, Kirby V.

    1989-01-01

    The analysis performed on the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) inlet housings is summarized. Three DIAL finite element models were build to aid in assessing the structural life of the welds and fillets at the vanes. Complete results are given.

  3. Space Shuttle Main Engine Public Test Firing

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A new NASA Space Shuttle Main Engine (SSME) roars to the approval of more than 2,000 people who came to John C. Stennis Space Center in Hancock County, Miss., on July 25 for a flight-certification test of the SSME Block II configuration. The engine, a new and significantly upgraded shuttle engine, was delivered to NASA's Kennedy Space Center in Florida for use on future shuttle missions. Spectators were able to experience the 'shake, rattle and roar' of the engine, which ran for 520 seconds - the length of time it takes a shuttle to reach orbit.

  4. Closeup View of the Space Shuttle Main Engine (SSME) 2044 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up View of the Space Shuttle Main Engine (SSME) 2044 mounted in a SSME Engine Handler in the SSME processing Facility at Kennedy Space Center. This view shows SSME 2044 with its expansion nozzle removed and an Engine Leak-Test Plug is set in the throat of the Main Combustion Chamber in the approximate center of the image, the insulated, High-Pressure Fuel Turbopump sits below that and the Low Pressure Oxidizer Turbopump Discharge Duct sits towards the top of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  5. Computational fluid dynamics analysis of Space Shuttle main engine multiple plume flows at high-altitude flight conditions

    NASA Technical Reports Server (NTRS)

    Dougherty, N. S.; Holt, J. B.; Liu, B. L.; Johnson, S. L.

    1992-01-01

    Computational fluid dynamics (CFD) analysis is providing verification of Space Shuttle flight performance details and is being applied to Space Shuttle Main Engine Multiple plume interaction flow field definition. Advancements in real-gas CFD methodology that are described have allowed definition of exhaust plume flow details at Mach 3.5 and 107,000 ft. The specific objective includes the estimate of flow properties at oblique shocks between plumes and plume recirculation into the Space Shuttle Orbiter base so that base heating and base pressure can be modeled accurately. The approach utilizes the Rockwell USA Real Gas 3-D Navier-Stokes (USARG3D) Code for the analysis. The code has multi-zonal capability to detail the geometry of the plumes based region and utilizes finite-rate chemistry to compute the plume expansion angle and relevant flow properties at altitude correctly. Through an improved definition of the base recirculation flow properties, heating, and aerodynamic design environments of the Space Shuttle Vehicle can be further updated.

  6. Cold flow testing of the Space Shuttle Main Engine alternate turbopump development high pressure fuel turbine model

    NASA Technical Reports Server (NTRS)

    Gaddis, Stephen W.; Hudson, Susan T.; Johnson, P. D.

    1992-01-01

    NASA's Marshall Space Flight Center has established a cold airflow turbine test program to experimentally determine the performance of liquid rocket engine turbopump drive turbines. Testing of the SSME alternate turbopump development (ATD) fuel turbine was conducted for back-to-back comparisons with the baseline SSME fuel turbine results obtained in the first quarter of 1991. Turbine performance, Reynolds number effects, and turbine diagnostics, such as stage reactions and exit swirl angles, were investigated at the turbine design point and at off-design conditions. The test data showed that the ATD fuel turbine test article was approximately 1.4 percent higher in efficiency and flowed 5.3 percent more than the baseline fuel turbine test article. This paper describes the method and results used to validate the ATD fuel turbine aerodynamic design. The results are being used to determine the ATD high pressure fuel turbopump (HPFTP) turbine performance over its operating range, anchor the SSME ATD steady-state performance model, and validate various prediction and design analyses.

  7. Cold flow testing of the Space Shuttle Main Engine alternate turbopump development high pressure fuel turbine model

    NASA Astrophysics Data System (ADS)

    Gaddis, Stephen W.; Hudson, Susan T.; Johnson, P. D.

    1992-06-01

    NASA's Marshall Space Flight Center has established a cold airflow turbine test program to experimentally determine the performance of liquid rocket engine turbopump drive turbines. Testing of the SSME alternate turbopump development (ATD) fuel turbine was conducted for back-to-back comparisons with the baseline SSME fuel turbine results obtained in the first quarter of 1991. Turbine performance, Reynolds number effects, and turbine diagnostics, such as stage reactions and exit swirl angles, were investigated at the turbine design point and at off-design conditions. The test data showed that the ATD fuel turbine test article was approximately 1.4 percent higher in efficiency and flowed 5.3 percent more than the baseline fuel turbine test article. This paper describes the method and results used to validate the ATD fuel turbine aerodynamic design. The results are being used to determine the ATD high pressure fuel turbopump (HPFTP) turbine performance over its operating range, anchor the SSME ATD steady-state performance model, and validate various prediction and design analyses.

  8. Identification of space shuttle main engine dynamics

    NASA Technical Reports Server (NTRS)

    Duyar, Ahmet; Guo, Ten-Huei; Merrill, Walter C.

    1989-01-01

    System identification techniques are used to represent the dynamic behavior of the Space Shuttle Main Engine. The transfer function matrices of the linearized models of both the closed loop and the open loop system are obtained by using the recursive maximum likelihood method.

  9. Design of a cold-flow test facility for the high pressure fuel turbopump turbine of the Space Shuttle main engine

    NASA Astrophysics Data System (ADS)

    Studevan, Colin C.

    1993-12-01

    The design and installation at the Naval Postgraduate School of a cold-flow test facility for the turbine of the high-pressure fuel turbopump of the Space Shuttle Main Engine, is reported. The specific article to be tested is the 'Alternate Development Model' designed and manufactured by Pratt & Whitney. The design of individual components is documented. The installation of the facility subsystem is described in detail. A preliminary estimation of turbine performance is made.

  10. Space shuttle main engine computed tomography applications

    NASA Technical Reports Server (NTRS)

    Sporny, Richard F.

    1990-01-01

    For the past two years the potential applications of computed tomography to the fabrication and overhaul of the Space Shuttle Main Engine were evaluated. Application tests were performed at various government and manufacturer facilities with equipment produced by four different manufacturers. The hardware scanned varied in size and complexity from a small temperature sensor and turbine blades to an assembled heat exchanger and main injector oxidizer inlet manifold. The evaluation of capabilities included the ability to identify and locate internal flaws, measure the depth of surface cracks, measure wall thickness, compare manifold design contours to actual part contours, perform automatic dimensional inspections, generate 3D computer models of actual parts, and image the relationship of the details in a complex assembly. The capabilities evaluated, with the exception of measuring the depth of surface flaws, demonstrated the existing and potential ability to perform many beneficial Space Shuttle Main Engine applications.

  11. General view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent features of the engine assembly in this view are the Low-Pressure Fuel Turbopump Discharge Duct looping around the right side and underneath the assembly, the High-Pressure Fuel Turbopump located on the lower left portion of the assembly, the Engine Controller and Main Fuel Valve Hydraulic Actuator located on the upper portion of the assembly and the Low-Pressure Oxidizer Turbopump Discharge Duct at the top of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  12. Closeup side view of Space Shuttle Main Engine (SSME) 2059 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up side view of Space Shuttle Main Engine (SSME) 2059 mounted in a SSME Engine Handler near the Drying Area in the High Bay section of the SSME Processing Facility. The prominent features of the SSME in this view are the hot-gas expansion nozzle extending from the approximate image center toward the image right. The main-engine components extend from the approximate image center toward image right until it meets up with the mount for the SSME Engine Handler. The engine is rotated to a position where the major components in the view are the Low-Pressure Fuel Turbopump Discharge Duct with reflective foil insulation on the upper side of the engine, the Low-Pressure Oxidizer Turbopump and its Discharge Duct on the right side of the engine assembly extending itself down and wrapping under the bottom side of the assembly to the High-Pressure Oxidizer Turbopump pump. The High-Pressure Oxidizer Turbopump Discharge Duct exists the turbopump and extends up to the top side of the assembly where it enters the main oxidizer valve. The sphere on the lower side of the engine assembly is an accumulator that is part of the SSMEs POGO suppression system. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  13. Space shuttle main engine plume radiation model

    NASA Technical Reports Server (NTRS)

    Reardon, J. E.; Lee, Y. C.

    1978-01-01

    The methods are described which are used in predicting the thermal radiation received by space shuttles, from the plumes of the main engines. Radiation to representative surface locations were predicted using the NASA gaseous plume radiation GASRAD program. The plume model is used with the radiative view factor (RAVFAC) program to predict sea level radiation at specified body points. The GASRAD program is described along with the predictions. The RAVFAC model is also discussed.

  14. Space shuttle main engine vibration data base

    NASA Technical Reports Server (NTRS)

    Lewallen, Pat

    1986-01-01

    The Space Shuttle Main Engine Vibration Data Base is described. Included is a detailed description of the data base components, the data acquisition process, the more sophisticated software routines, and the future data acquisition methods. Several figures and plots are provided to illustrate the various output formats accessible to the user. The numerous vibration data recall and analysis capabilities available through automated data base techniques are revealed.

  15. General view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent features of the engine assembly in this view are the Low-Pressure Oxidizer Turbopump Discharge Duct looping around the right side of the engine assembly then turning in and connecting to the High-Pressure Oxidizer Turbopump. The sphere in the approximate center of the assembly is the POGO System Accumulator, the Engine Controller is located on the bottom and slightly left of the center of the Engine Assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  16. The shuttle main engine: A first look

    NASA Technical Reports Server (NTRS)

    Schreur, Barbara

    1996-01-01

    Anyone entering the Space Shuttle Main Engine (SSME) team attends a two week course to become familiar with the design and workings of the engine. This course provides intensive coverage of the individual hardware items and their functions. Some individuals, particularly those involved with software maintenance and development, have felt overwhelmed by this volume of material and their lack of a logical framework in which to place it. To provide this logical framework, it was decided that a brief self-taught introduction to the overall operation of the SSME should be designed. To aid the people or new team members with an interest in the software, this new course should also explain the structure and functioning of the controller and its software. This paper presents a description of this presentation.

  17. Finite element analysis of the Space Shuttle Main Engine (SSME) alternate turbopump development (ATD) high pressure oxydizer turbopump (HPOTP)

    NASA Astrophysics Data System (ADS)

    Ham-Battista, G. L.; Helmick, G. L.; Hunt, G. L.; Franck, C. G.

    1993-04-01

    A 3D model of all stationary components of the ATD HPOTP is analyzed using a superelement solution technique to obtain a better understanding of the pump behavior and to support pump testing. Emphasis is place on the methods used for determining deflections. As part of the model verification, analyses were conducted on the main housing model under proof-pressure and push-test loading conditions. The analysis at 109 percent rate power level resulted in asymmetric deformation patterns which were used to calculate operating and rub clearances. The present analysis is considered to provide the most realistic representation of the ATD HPOTP to date.

  18. Space shuttle main engine hardware simulation

    NASA Technical Reports Server (NTRS)

    Vick, H. G.; Hampton, P. W.

    1985-01-01

    The Huntsville Simulation Laboratory (HSL) provides a simulation facility to test and verify the space shuttle main engine (SSME) avionics and software system using a maximum complement of flight type hardware. The HSL permits evaluations and analyses of the SSME avionics hardware, software, control system, and mathematical models. The laboratory has performed a wide spectrum of tests and verified operational procedures to ensure system component compatibility under all operating conditions. It is a test bed for integration of hardware/software/hydraulics. The HSL is and has been an invaluable tool in the design and development of the SSME.

  19. Studies and analyses of the space shuttle main engine: High-pressure oxidizer turbopump failure information propagation model

    NASA Technical Reports Server (NTRS)

    Glover, R. C.; Rudy, S. W.; Tischer, A. E.

    1987-01-01

    The high-pressure oxidizer turbopump (HPOTP) failure information propagation model (FIPM) is presented. The text includes a brief discussion of the FIPM methodology and the various elements which comprise a model. Specific details of the HPOTP FIPM are described. Listings of all the HPOTP data records are included as appendices.

  20. Analysis of experimental shaft seal data for high-performance turbomachines, as for Space Shuttle main engines

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.; Burcham, R. E.; Diamond, W. A.

    1985-01-01

    High-pressure, high-temperature seal flow (leakage) data for nonrotating and rotating Raleigh-step and convergent-tapered-bore seals were characterized in terms of a normalized flow coefficient. The data for normalized Rayleigh-steip and nonrotating tapered-bore seals were in reasonable agreement with theory, but data for the rotating tapered-bore seals were not. The tapered-bore-seal operational clearances estimated from the flow data were significantly larger than calculated. Although clearances are influenced by wear from conical to cylindrical geometry and errors in clearance corrections, the problem was isolated to the shaft temperature - rotational speed clearance correction. The geometric changes support the use of some conical convergence in any seal. Under these conditions rotation reduced the normalized flow coefficiently by nearly 10 percent.

  1. Analysis of experimental shaft seal data for high-performance turbomachines - As for Space Shuttle main engines

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mullen, R. L.; Braun, M. J.; Burcham, R. E.; Diamond, W. A.

    1987-01-01

    High-pressure, high-temperature seal flow (leakage) data for nonrotating and rotating Raleigh-step and convergent-tapered-bore seals were characterized in terms of a normalized flow coefficient. The data for normalized Rayleigh-step and nonrotating tapered-bore seals were in reasonable agreement with theory, but data for the rotating tapered-bore seals were not. The tapered-bore-seal operational clearances estimated from the flow data were significantly larger than calculated. Although clearances are influenced by wear from conical to cylindrical geometry and errors in clearance corrections, the problem was isolated to the shaft temperature - rotational speed clearance correction. The geometric changes support the use of some conical convergence in any seal. Under these conditions rotation reduced the normalized flow coefficiently by nearly 10 percent.

  2. Improvement of Space Shuttle Main Engine Low Frequency Acceleration Measurements

    NASA Technical Reports Server (NTRS)

    Stec, Robert C.

    1999-01-01

    The noise floor of low frequency acceleration data acquired on the Space Shuttle Main Engines is higher than desirable. Difficulties of acquiring high quality acceleration data on this engine are discussed. The approach presented in this paper for reducing the acceleration noise floor focuses on a search for an accelerometer more capable of measuring low frequency accelerations. An overview is given of the current measurement system used to acquire engine vibratory data. The severity of vibration, temperature, and moisture environments are considered. Vibratory measurements from both laboratory and rocket engine tests are presented.

  3. Space Shuttle Main Engine real time stability analysis

    NASA Astrophysics Data System (ADS)

    Kuo, F. Y.

    1993-06-01

    The Space Shuttle Main Engine (SSME) is a reusable, high performance, liquid rocket engine with variable thrust. The engine control system continuously monitors the engine parameters and issues propellant valve control signals in accordance with the thrust and mixture ratio commands. A real time engine simulation lab was installed at MSFC to verify flight software and to perform engine dynamic analysis. A real time engine model was developed on the AD100 computer system. This model provides sufficient fidelity on the dynamics of major engine components and yet simplified enough to be executed in real time. The hardware-in-the-loop type simulation and analysis becomes necessary as NASA is continuously improving the SSME technology, some with significant changes in the dynamics of the engine. The many issues of interfaces between new components and the engine can be better understood and be resolved prior to the firing of the engine. In this paper, the SSME real time simulation Lab at the MSFC, the SSME real time model, SSME engine and control system stability analysis, both in real time and non-real time is presented.

  4. General view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent features of the engine assembly in this view are the Low-Pressure Fuel Turbopump Discharge Duct looping diagonally across the top of the assembly and connecting to the High-Pressure Fuel Turbopump, the Low-Pressure Oxidizer Turbopump (LPOTP) located center right of the assembly and the LPOTP Discharge Duct looping around from the pump to the underside of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  5. Closeup view of the top of Space Shuttle Main Engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the top of Space Shuttle Main Engine (SSME) 2057 mounted in a SSME Engine Handler in the Vertical Processing area of the SSME Processing Facility at Kennedy Space Center. The most prominent components in this view is the large Low-Pressure Oxidizer Turbopump (LPOTP) Discharge Duct wrapping itself around the right side of the engine assembly. The smaller tube to the left of LPOTP Discharge Duct is the High-Pressure Oxidizer Duct used to supply the turbine of the LPOTP. The other major feature in this view is the Low-Pressure Fuel Turbopump at the top of the engine assembly. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  6. SPACE SHUTTLE MAIN ENGINE NO. 2036, THE FIRST BLOCK I ENGINE TO FLY

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Space Shuttle Main Engine (SSME) No. 2036, the first of the new Block I engines to fly, awaits installation into position one of the Orbiter Discovery in Orbiter Processing Facility 3 during preparation of the spaceplane for the STS-70 mission. The advanced powerplant features a new high- pressure liquid oxygen turbopump, a two-duct powerhead, a baffleless main injector, single-coil heat exchanger and start sequence modifications. These modifications are designed to improve both engine performance and safety.

  7. Space Shuttle Main Engine performance analysis

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1993-01-01

    For a number of years, NASA has relied primarily upon periodically updated versions of Rocketdyne's power balance model (PBM) to provide space shuttle main engine (SSME) steady-state performance prediction. A recent computational study indicated that PBM predictions do not satisfy fundamental energy conservation principles. More recently, SSME test results provided by the Technology Test Bed (TTB) program have indicated significant discrepancies between PBM flow and temperature predictions and TTB observations. Results of these investigations have diminished confidence in the predictions provided by PBM, and motivated the development of new computational tools for supporting SSME performance analysis. A multivariate least squares regression algorithm was developed and implemented during this effort in order to efficiently characterize TTB data. This procedure, called the 'gains model,' was used to approximate the variation of SSME performance parameters such as flow rate, pressure, temperature, speed, and assorted hardware characteristics in terms of six assumed independent influences. These six influences were engine power level, mixture ratio, fuel inlet pressure and temperature, and oxidizer inlet pressure and temperature. A BFGS optimization algorithm provided the base procedure for determining regression coefficients for both linear and full quadratic approximations of parameter variation. Statistical information relative to data deviation from regression derived relations was also computed. A new strategy for integrating test data with theoretical performance prediction was also investigated. The current integration procedure employed by PBM treats test data as pristine and adjusts hardware characteristics in a heuristic manner to achieve engine balance. Within PBM, this integration procedure is called 'data reduction.' By contrast, the new data integration procedure, termed 'reconciliation,' uses mathematical optimization techniques, and requires both

  8. Space Shuttle Main Engine performance analysis

    NASA Astrophysics Data System (ADS)

    Santi, L. Michael

    1993-11-01

    For a number of years, NASA has relied primarily upon periodically updated versions of Rocketdyne's power balance model (PBM) to provide space shuttle main engine (SSME) steady-state performance prediction. A recent computational study indicated that PBM predictions do not satisfy fundamental energy conservation principles. More recently, SSME test results provided by the Technology Test Bed (TTB) program have indicated significant discrepancies between PBM flow and temperature predictions and TTB observations. Results of these investigations have diminished confidence in the predictions provided by PBM, and motivated the development of new computational tools for supporting SSME performance analysis. A multivariate least squares regression algorithm was developed and implemented during this effort in order to efficiently characterize TTB data. This procedure, called the 'gains model,' was used to approximate the variation of SSME performance parameters such as flow rate, pressure, temperature, speed, and assorted hardware characteristics in terms of six assumed independent influences. These six influences were engine power level, mixture ratio, fuel inlet pressure and temperature, and oxidizer inlet pressure and temperature. A BFGS optimization algorithm provided the base procedure for determining regression coefficients for both linear and full quadratic approximations of parameter variation. Statistical information relative to data deviation from regression derived relations was also computed. A new strategy for integrating test data with theoretical performance prediction was also investigated. The current integration procedure employed by PBM treats test data as pristine and adjusts hardware characteristics in a heuristic manner to achieve engine balance. Within PBM, this integration procedure is called 'data reduction.' By contrast, the new data integration procedure, termed 'reconciliation,' uses mathematical optimization techniques, and requires both

  9. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 2: High pressure oxidizer turbo-pump turbine end bearing analysis

    NASA Technical Reports Server (NTRS)

    Sisk, Gregory A.

    1989-01-01

    The high-pressure oxidizer turbopump (HPOTP) consists of two centrifugal pumps, on a common shaft, that are directly driven by a hot-gas turbine. Pump shaft axial thrust is balanced in that the double-entry main inducer/impeller is inherently balanced and the thrusts of the preburner pump and turbine are nearly equal but opposite. Residual shaft thrust is controlled by a self-compensating, non-rubbing, balance piston. Shaft hang-up must be avoided if the balance piston is to perform properly. One potential cause of shaft hang-up is contact between the Phase 2 bearing support and axial spring cartridge of the HPOTP main pump housing. The status of the bearing support/axial spring cartridge interface is investigated under current loading conditions. An ANSYS version 4.3, three-dimensional, finite element model was generated on Lockheed's VAX 11/785 computer. A nonlinear thermal analysis was then executed on the Marshall Space Flight Center Engineering Analysis Data System (EADS). These thermal results were then applied along with the interference fit and bolt preloads to the model as load conditions for a static analysis to determine the gap status of the bearing support/axial spring cartridge interface. For possible further analysis of the local regions of HPOTP main pump housing assembly, detailed ANSYS submodels were generated using I-DEAS Geomod and Supertab (Appendix A).

  10. Fault diagnosis for the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Duyar, Ahmet; Merrill, Walter

    1992-01-01

    A conceptual design of a model-based fault detection and diagnosis system is developed for the Space Shuttle main engine. The design approach consists of process modeling, residual generation, and fault detection and diagnosis. The engine is modeled using a discrete time, quasilinear state-space representation. Model parameters are determined by identification. Residuals generated from the model are used by a neural network to detect and diagnose engine component faults. Fault diagnosis is accomplished by training the neural network to recognize the pattern of the respective fault signatures. Preliminary results for a failed valve, generated using a full, nonlinear simulation of the engine, are presented. These results indicate that the developed approach can be used for fault detection and diagnosis. The results also show that the developed model is an accurate and reliable predictor of the highly nonlinear and very complex engine.

  11. A study of boiling heat transfer as applied to the cooling of ball bearings in the high pressure oxygen turbopump of the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Schreiber, Will

    1986-01-01

    Two sets of ball bearings support the main shaft within the High Pressure Oxygen Turbopump (HPOTP) in the Space Shuttle Main Engine (SSME). In operation, these bearings are cooled and lubricated with high pressure liquid oxygen (LOX) flowing axially through the bearing assembly. Currently, modifications in the assembly design are being contemplated in order to enhance the lifetime of the bearings and to allow the HPOTP to operate under larger loads. An understanding of the fluid dynamics and heat transfer characteristics of the flowing LOX is necessary for the implementation of these design changes. The proposed computational model of the LOX fluid dynamics, in addition to dealing with a turbulent flow in a complex geometry, must address the complication associated with boiling and two-phase flow. The feasibility of and possible methods for modeling boiling heat transfer are considered. The theory of boiling as pertains to this particular problem is reviewed. Recommendations are given for experiments which would be necessary to establish validity for correlations needed to model boiling.

  12. The simulation of the alternate turbopump development high pressure oxygen and fuel turbopumps for the space shuttle main engine using the Shaberth computer program

    NASA Technical Reports Server (NTRS)

    Mcdonald, Gary H.

    1988-01-01

    The Space Shuttle Main Engine (SSME) is basically comprised of a combustion chamber and nozzle, high and low pressure oxygen turbopumps and high and low pressure fuel turbopumps. In the current configuration, the high pressure fuel (HPTFP) and high pressure oxygen turbopumps (HPOTP) have experienced a history of ball bearing wear. The wear problem can be attributed to numerous factors including the hydrodynamic axial and radial loads caused by the flow of liquid oxygen and liquid hydrogen through the turbopump impellers and turbine. Also, friction effects between the rolling elements, races, and cage can create thermally induced bearing geometry changes. To alleviate some of the current configuration problems, an alternate turbopump development (ATD) was proposed. However, the ATD HPOTP and HPTFP are constrained to operate interchangeably with the current turbopumps, thus, the operation conditions must be similar. The ATD configuration features a major change in bearings used to support the integrated shaft, impeller, and turbine system. A single ball and single roller will replace the pump-end and turbine and duplex ball bearings. The Shaft-Bearing-Thermal (SHABERTH) computer code was used to model the ATD HPOTP and ATD HPFTP configurations. A two bearing model was used to simulate the HPOTP and HPFTP bearings and shaft geometry. From SHABERTH, a comparison of bearing reaction loads, frictional heat generation rates, and Hertz contact stresses will be attempted with analysis at the 109 percent and 65 percent power levels.

  13. Space Shuttle Main Engine Liquid Air Insulation Redesign Lessons Learned

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell; Carroll, Paul; Head, Kenneth; Fasheh, John; Stuart, Jessica

    2010-01-01

    The Space Shuttle Main Engine Liquid Air Insulation redesign was required to prevent the reoccurance of the STS-111 High Pressure Speed Sensor In-Flight Anomaly. The STS-111 In-Flight Anomaly Failure Investigation Team's initial redesign of the High Pressure Fuel Turbopump Pump End Ball Bearing Liquid Air Insulation failed the certification test by producing Liquid Air. The certification test failure indicated not only the High Pressure Fuel Turbopump Liquid Air Insulation, but all other Space Shuttle Main Engine Liquid Air Insulation. This paper will document the original Space Shuttle Main Engine Liquid Air STS-111 In-Flight Anomaly investigation, the heritage Space Shuttle Main Engine Insulation certification testing faults, the techniques and instrumentation used to accurately test the Liquid Air Insulation systems on the Stennis Space Center SSME test stand, the analysis techniques used to identify the Liquid Air Insulation problem areas and the analytical verification of the redesign before entering certification testing, Trade study down selected to three potential design solutions, the results of the development testing which down selected the final Liquid Air Redesign are also documented within this paper.

  14. Developmental problems and their solution for the Space Shuttle main engine alternate liquid oxygen high-pressure turbopump: Anomaly or failure investigation the key

    NASA Astrophysics Data System (ADS)

    Ryan, R.; Gross, L. A.

    1995-05-01

    The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.

  15. Developmental problems and their solution for the Space Shuttle main engine alternate liquid oxygen high-pressure turbopump: Anomaly or failure investigation the key

    NASA Technical Reports Server (NTRS)

    Ryan, R.; Gross, L. A.

    1995-01-01

    The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.

  16. Fatigue Failure of Space Shuttle Main Engine Turbine Blades

    NASA Technical Reports Server (NTRS)

    Swanson, Gregrory R.; Arakere, Nagaraj K.

    2000-01-01

    Experimental validation of finite element modeling of single crystal turbine blades is presented. Experimental results from uniaxial high cycle fatigue (HCF) test specimens and full scale Space Shuttle Main Engine test firings with the High Pressure Fuel Turbopump Alternate Turbopump (HPFTP/AT) provide the data used for the validation. The conclusions show the significant contribution of the crystal orientation within the blade on the resulting life of the component, that the analysis can predict this variation, and that experimental testing demonstrates it.

  17. Engine systems analysis results of the Space Shuttle Main Engine redesigned powerhead initial engine level testing

    NASA Astrophysics Data System (ADS)

    Sander, Erik J.; Gosdin, Dennis R.

    1992-07-01

    Engineers regularly analyze SSME ground test and flight data with respect to engine systems performance. Recently, a redesigned SSME powerhead was introduced to engine-level testing in part to increase engine operational margins through optimization of the engine internal environment. This paper presents an overview of the MSFC personnel engine systems analysis results and conclusions reached from initial engine level testing of the redesigned powerhead, and further redesigns incorporated to eliminate accelerated main injector baffle and main combustion chamber hot gas wall degradation. The conclusions are drawn from instrumented engine ground test data and hardware integrity analysis reports and address initial engine test results with respect to the apparent design change effects on engine system and component operation.

  18. General view of the Space Shuttle Main Engine (SSME) assembly ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Space Shuttle Main Engine (SSME) assembly with the expansion nozzle removed and resting on a cushioned mat on the floor of the SSME Processing Facility. The most prominent features in this view are the Low-pressure oxidizer Turbopump discharge Duct looping from the upper left side of the engine assembly to the lower left side of the assembly, the Low-Pressure Fuel Turbopump (LPFTP) is on the upper left of the assembly in this view and the LPFTP Discharge Duct loops from the upper left to upper right then turns back and down the assembly to the High-Pressure Fuel Turbopump on the lower right of the assembly. The Engine Controller and the Main fuel Valve Hydraulic Actuator are on the lower left portion of the assembly. The vertical rod that is in the approximate center of the engine assembly is a piece of ground support equipment call a Gimbal Actuator Replacement Strut which are used on the SSMEs when they are not installed in an orbiter. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. Model Verification and Validation Concepts for a Probabilistic Fracture Assessment Model to Predict Cracking of Knife Edge Seals in the Space Shuttle Main Engine High Pressure Oxidizer

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Riha, David S.

    2013-01-01

    Physics-based models are routinely used to predict the performance of engineered systems to make decisions such as when to retire system components, how to extend the life of an aging system, or if a new design will be safe or available. Model verification and validation (V&V) is a process to establish credibility in model predictions. Ideally, carefully controlled validation experiments will be designed and performed to validate models or submodels. In reality, time and cost constraints limit experiments and even model development. This paper describes elements of model V&V during the development and application of a probabilistic fracture assessment model to predict cracking in space shuttle main engine high-pressure oxidizer turbopump knife-edge seals. The objective of this effort was to assess the probability of initiating and growing a crack to a specified failure length in specific flight units for different usage and inspection scenarios. The probabilistic fracture assessment model developed in this investigation combined a series of submodels describing the usage, temperature history, flutter tendencies, tooth stresses and numbers of cycles, fatigue cracking, nondestructive inspection, and finally the probability of failure. The analysis accounted for unit-to-unit variations in temperature, flutter limit state, flutter stress magnitude, and fatigue life properties. The investigation focused on the calculation of relative risk rather than absolute risk between the usage scenarios. Verification predictions were first performed for three units with known usage and cracking histories to establish credibility in the model predictions. Then, numerous predictions were performed for an assortment of operating units that had flown recently or that were projected for future flights. Calculations were performed using two NASA-developed software tools: NESSUS(Registered Trademark) for the probabilistic analysis, and NASGRO(Registered Trademark) for the fracture

  20. Space Shuttle Main Engine - The Relentless Pursuit of Improvement

    NASA Technical Reports Server (NTRS)

    VanHooser, Katherine P.; Bradley, Douglas P.

    2011-01-01

    The Space Shuttle Main Engine (SSME) is the only reusable large liquid rocket engine ever developed. The specific impulse delivered by the staged combustion cycle, substantially higher than previous rocket engines, minimized volume and weight for the integrated vehicle. The dual pre-burner configuration permitted precise mixture ratio and thrust control while the fully redundant controller and avionics provided a very high degree of system reliability and health diagnosis. The main engine controller design was the first rocket engine application to incorporate digital processing. The engine was required to operate at a high chamber pressure to minimize engine volume and weight. Power level throttling was required to minimize structural loads on the vehicle early in flight and acceleration levels on the crew late in ascent. Fatigue capability, strength, ease of assembly and disassembly, inspectability, and materials compatibility were all major considerations in achieving a fully reusable design. During the multi-decade program the design evolved substantially using a series of block upgrades. A number of materials and manufacturing challenges were encountered throughout SSME s history. Significant development was required for the final configuration of the high pressure turbopumps. Fracture control was implemented to assess life limits of critical materials and components. Survival in the hydrogen environment required assessment of hydrogen embrittlement. Instrumentation systems were a challenge due to the harsh thermal and dynamic environments within the engine. Extensive inspection procedures were developed to assess the engine components between flights. The Space Shuttle Main Engine achieved a remarkable flight performance record. All flights were successful with only one mission requiring an ascent abort condition, which still resulted in an acceptable orbit and mission. This was achieved in large part via extensive ground testing to fully characterize

  1. Space Shuttle Main Engine turbopump bearing assessment program

    NASA Technical Reports Server (NTRS)

    Breithaupt, Barbara Spiegel

    1994-01-01

    This paper documents the work done on the bearing assessment program over the past two and a half years. The objective of the program is to develop a nondestructive evaluation system for the space shuttle main engine high pressure oxidizer turbopumps which would be used to detect anomalies in installed bearings without component disassembly. Databases of various signatures are obtained by slowly turning the pump shafts before and after an engine firing. These signatures are then analyzed and compared to the original signatures to more accurately predict bearing wear.

  2. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 7: High pressure fuel turbo-pump third stage impeller analysis

    NASA Technical Reports Server (NTRS)

    Pool, Kirby V.

    1989-01-01

    This volume summarizes the analysis used to assess the structural life of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbo-Pump (HPFTP) Third Stage Impeller. This analysis was performed in three phases, all using the DIAL finite element code. The first phase was a static stress analysis to determine the mean (non-varying) stress and static margin of safety for the part. The loads involved were steady state pressure and centrifugal force due to spinning. The second phase of the analysis was a modal survey to determine the vibrational modes and natural frequencies of the impeller. The third phase was a dynamic response analysis to determine the alternating component of the stress due to time varying pressure impulses at the outlet (diffuser) side of the impeller. The results of the three phases of the analysis show that the Third Stage Impeller operates very near the upper limits of its capability at full power level (FPL) loading. The static loading alone creates stresses in some areas of the shroud which exceed the yield point of the material. Additional cyclic loading due to the dynamic force could lead to a significant reduction in the life of this part. The cyclic stresses determined in the dynamic response phase of this study are based on an assumption regarding the magnitude of the forcing function.

  3. 28. Main engine air pump located to port side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Main engine air pump located to port side of main engine cylinder beside engine bed. Dynamo lies aft of air pump (at right), pipe at extreme left of image carries lake water to condenser valves. - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT

  4. Thermographic Leak Detection of the Space Shuttle Main Engine Nozzle

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Russell, Samuel S.

    1999-01-01

    The Space Shuttle Main Engines Nozzles consist of over one thousand tapered Inconel coolant tubes brazed to a stainless steel structural jacket. Liquid Hydrogen flows through the tubing, from the aft to forward end of the nozzle, under high pressure to maintain a thermal balance between the rocket exhaust and the nozzle wall. Three potential problems occur within the SSME nozzle coolant tubes as a result of manufacturing anomalies and the highly volatile service environment including poor or incomplete bonding of the tubes to the structural jacket, cold wall leaks and hot wall leaks. Of these conditions the identification of cold wall leaks has been the most problematic. The methods and results presented in this summary addresses the thermographic identification of cold wall "interstitial" leaks between the structural jacket and coolant tubes of the Space Shuttle Main Engines Nozzles.

  5. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John; Rodela, Chris

    2006-01-01

    Pratt & Whitney Rocketdyne, Inc., in cooperation with NASA-Marshall Space Flight Center (MSFC), has developed a new Advanced Health Management System (AHMS) controller for the Space Shuttle Main Engine (SSME) that will increase the probability of successfully placing the shuttle into the intended orbit and increase the safety of the Space Transportation System (STS) launches. The AHMS is an upgrade o the current Block II engine controller whose primary component is an improved vibration monitoring system called the Real-Time Vibration Monitoring System (RTVMS) that can effectively and reliably monitor the state of the high pressure turbomachinery and provide engine protection through a new synchronous vibration redline which enables engine shutdown if the vibration exceeds predetermined thresholds. The introduction of this system required improvements and modification to the Block II controller such as redesigning the Digital Computer Unit (DCU) memory and the Flight Accelerometer Safety Cut-Off System (FASCOS) circuitry, eliminating the existing memory retention batteries, installation of the Digital Signal Processor (DSP) technology, and installation of a High Speed Serial Interface (HSSI) with accompanying outside world connectors. Test stand hot-fire testing along with lab testing have verified successful implementation and is expected to reduce the probability of catastrophic engine failures during the shuttle ascent phase and improve safely by about 23% according to the Quantitative Risk Assessment System (QRAS), leading to a safer and more reliable SSME.

  6. Unique material requirements in the Space Shuttle Main Engines

    NASA Technical Reports Server (NTRS)

    Fulton, D. L.; Shoemaker, M. C.; Bashir, S.

    1983-01-01

    Components operating in staged-combustion cycle liquid fuel rocket engines such as the Space Shuttle Main Engines (SSMEs) are subjected to severe temperature changes during start/stop transients, together with extremely high pressures, corrosive gases, high fluid velocities, demanding weight-control criteria, etc. Attention is given to the selection and application of metallic and nonmetallic materials for high temperature resistance, cryogenic properties, and hydrogen and oxygen compatibility. The materials in question include polyimides, Kel-F, Armalon, and Teflon among plastics, and gold and copper platings, weld-overlays and heat treatment modifications among metals and metallic processing techniques. The polymeric materials are oxygen-resistant, and the metallic ones hydrogen-resistant.

  7. Analysis of thermoelastohydrodynamic performance of journal misaligned engine main bearings

    NASA Astrophysics Data System (ADS)

    Bi, Fengrong; Shao, Kang; Liu, Changwen; Wang, Xia; Zhang, Jian

    2015-05-01

    To understand the engine main bearings' working condition is important in order to improve the performance of engine. However, thermal effects and thermal effect deformations of engine main bearings are rarely considered simultaneously in most studies. A typical finite element model is selected and the effect of thermoelastohydrodynamic(TEHD) reaction on engine main bearings is investigated. The calculated method of main bearing's thermal hydrodynamic reaction and journal misalignment effect is finite difference method, and its deformation reaction is calculated by using finite element method. The oil film pressure is solved numerically with Reynolds boundary conditions when various bearing characteristics are calculated. The whole model considers a temperature-pressure-viscosity relationship for the lubricant, surface roughness effect, and also an angular misalignment between the journal and the bearing. Numerical simulations of operation of a typical I6 diesel engine main bearing is conducted and importance of several contributing factors in mixed lubrication is discussed. The performance characteristics of journal misaligned main bearings under elastohydrodynamic(EHD) and TEHD loads of an I6 diesel engine are received, and then the journal center orbit movement, minimum oil film thickness and maximum oil film pressure of main bearings are estimated over a wide range of engine operation. The model is verified through the comparison with other present models. The TEHD performance of engine main bearings with various effects under the influences of journal misalignment is revealed, this is helpful to understand EHD and TEHD effect of misaligned engine main bearings.

  8. General view of the Space Shuttle Main Engine (SSME) assembly ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Space Shuttle Main Engine (SSME) assembly with the expansion nozzle removed and resting on a cushioned mat on the floor of the SSME Processing Facility. The most prominent features in this view are the Low-pressure Fuel Turbopump discharge Duct looping from the upper left side of the engine assembly to the lower left side of the assembly, the Low-Pressure Oxidizer Turbopump (LPOTP) is on the upper left of the assembly in this view and the LPOTP Discharge Duct loops from the upper left to upper right. The sphere in the middle right side of the assembly in this view is the POGO System Accumulator , the partial sphere to its left and slightly more toward the center of the assembly is the Heat Exchanger on the Oxidizer Preburner side of the Hot Gas Manifold, beneath that is the High-Pressure Oxidizer Turbopump (HPOTP) and the HPOTP Discharge duct loops from the pump around to the lower left of the assembly. The Pneumatic Control Assembly is in the approximate center of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  9. The cost of performance - A comparison of the space transportation main engine and the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Barisa, B. B.; Flinchbaugh, G. D.; Zachary, A. T.

    1989-01-01

    This paper compares the cost of the Space Shuttle Main Engine (SSME) and the Space Transportation Main Engine (STME) proposed by the Advanced Launch System Program. A brief description of the SSME and STME engines is presented, followed by a comparison of these engines that illustrates the impact of focusing on acceptable performance at minimum cost (as for the STME) or on maximum performance (as for the SSME). Several examples of cost reduction methods are presented.

  10. Lubrication of Space Shuttle Main Engine Turbopump Bearings

    NASA Technical Reports Server (NTRS)

    Gibson, Howard; Munafo, Paul (Technical Monitor)

    2001-01-01

    The Space Shuttle has three main engines that are used for propulsion into orbit. These engines are fed propellants by four turbopumps on each engine. A main element in the turbopump is the bearings supporting the rotor that spins the turbine blades and the pump impeller. These bearings are required to spin at very high speeds, support radial and thrust loads, and have high wear resistance without the benefit of lubrication. The liquid hydrogen and oxygen propellants flow through the bearings to cool the surfaces. The volatile nature of the propellants excludes any conventional means of lubrication. Lubrication for these bearings is provided by the ball separator inside the bearing. The separator is a composite material that supplies a transfer film of lubrication to the rings and balls. New separator materials and lubrication schemes have been investigated at Marshall Space Flight Center in a bearing test rig with promising results. Hybrid bearings with silicon nitride balls have also been evaluated. The use of hybrid, silicon nitride ball bearings in conjunction -with better separator materials has shown excellent results. The work that Marshall has done is being utilized in turbopumps flying on the space shuttle fleet and will be utilized in future space travel. This result of this work is valuable for all aerospace and commercial applications where high-speed bearings are used.

  11. Space Shuttle Main Engine (SSME) Reliability and Analysis Evolution

    NASA Technical Reports Server (NTRS)

    Stephens, Walter E.; Rogers, James H.; Biggs, Robert E.

    2010-01-01

    The Space Shuttle Main Engine (SSME) is a large thrust class, reusable, staged combustion cycle rocket engine employing liquid hydrogen and liquid oxygen propellants. A cluster of three SSMEs is used on every space shuttle mission to propel the space shuttle orbiter vehicle into low earth orbit. Development of the SSME began in the early 70 s and the first flight of the space shuttle occurred in 1981. Today, the SSME has accrued over one million seconds of ground test and flight operational time, launching 129 space shuttle missions. Given that the SSME is used to launch a manned vehicle, its reliability must be commensurate for the task. At the same time, the SSME is a high performance, high power density engine which traditionally does not lend itself towards high reliability. Furthermore, throughout its history, the SSME operational envelope has been explored and expanded leading to several major test failures. Hence, assessing the reliability of the SSME throughout its history has been a challenging undertaking. This paper provides a review and discussion of SSME reliability assessment techniques and results over its history. Basic reliability drivers such as engine design, test program, major failures, redesigns and upgrades will also be discussed.

  12. Finite element models of the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Muller, G. R.

    1980-01-01

    Finite element models were developed as input to dynamic simulations of the high pressure fuel turbopump (HPFTP), the high pressure oxidizer turbopump (HPOTP), and the space shuttle main engine (SSME). Descriptions are provided for the five basic finite element models: HPFTP rotor, HPFTP case, HPOTP rotor, HPOTP case, and SSME (excluding turbopumps). Modal results are presented for the HPFTP rotor, HPFTP case, HPOTP rotor, coupled HPFTP rotor and case, HPOTP case, coupled HPOTP rotor and case, SSME (excluding turbopumps), and SSME (including turbopumps). Results for the SSME (including turbopumps) model are compared to data from a SSME HPOTP modal survey.

  13. Main Chamber Injectors for Advanced Hydrocarbon Booster Engines

    NASA Technical Reports Server (NTRS)

    Long, Matthew R.; Bazarov, Vladimir G.; Anderson, William E.

    2003-01-01

    Achieving the highest possible specific impulse has long been a key driver for space launch systems. Recently, more importance has been placed on the need for increased reliability and streamlined launch operations. These general factors along with more specific mission requirements have provided a new focus that is centered on the oxidizer rich staged combustion (ORSC) cycle. Despite a history of use in Russia that extends back to the 1960's, a proven design methodology for ORSC cycle engines does not exist in the West. This lack of design expertise extends to the main chamber injector, a critical subcomponent that largely determines the engine performance and main chamber life. The goals of the effort described here are to establish an empirical knowledge base to provide a fundamental understanding of main chamber injectors and for verification of an injector design methodology for the ORSC cycle. The design of a baseline injector element, derived from information on Russian engines in the open literature, is presented. The baseline injector comprises a gaseous oxidizer core flow and an annular swirling fuel flow. Sets of equations describing the steady-state and the dynamic characteristics of the injector are presented; these equations, which form the basis of the design analysis methodology, will be verified in tests later this year. On-going cold flow studies, using nitrogen and water as simulants, are described which indicate highly atomized and symmetric sprays.

  14. Predicting engine parameters using the optic spectrum of the space shuttle main engine exhaust plume

    NASA Astrophysics Data System (ADS)

    Srivastava, Ashok N.; Buntine, Wray

    The Optical Plume Anomaly Detection (OPAD) system is under development to predict engine anomalies and engine parameters of the Space Shuttle's Main Engine (SSME). The anomaly detection is based on abnormal metal concentrations in the optical spectrum of the rocket plume. Such abnormalities could be indicative of engine corrosion or other malfunctions. Here, we focus on the second task of the OPAD system, namely the prediction of engine parameters such as rated power level (RPL) and mixture ratio (MR). Because of the high dimensionality of the spectrum, we developed a linear algorithm to resolve the optical spectrum of the exhaust plume into a number of separate components, each with a different physical interpretation. These components are used to predict the metal concentrations and engine parameters for online support of ground-level testing of the SSME. Currently, these predictions are labor intensive and cannot be done online. We predict RPL using neural networks and give preliminary results.

  15. Space shuttle three main engine return to launch site abort

    NASA Technical Reports Server (NTRS)

    Carter, J. F.; Bown, R. L.

    1975-01-01

    A Return-to-Launch-Site (RTLS) abort with three Space Shuttle Main Engines (SSME) operational was examined. The results are trajectories and main engine cutoff conditions that are approximately the same as for a two SSME case. Requiring the three SSME solution to match the two SSME abort eliminates additional crew training and is accomplished with negligible software impact.

  16. The space transportation main engine phase A' study

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Space Transportation Main Engine Phase A prime study was conducted over a 7 month period as an extension to the Phase A study. The Phase A prime program was designed to expand the study effort completed in Phase A, focusing on the baseline engine configuration selected. Analysis and trade studies were conducted to further optimize some of the major engine subsystems. These changes resulted in improvements to the baseline engine. Several options were evaluated for consideration by vehicle contractors.

  17. Space Shuttle Main Engine (SSME) alternate turbopump design and development

    NASA Astrophysics Data System (ADS)

    Mitchell, J. P.; Price, J. L.

    1992-08-01

    The development of high-pressure turbopumps for the 400,000-lb-thrust class Space Shuttle Main Engine (SSME) is examined with attention given to reducing maintenance and improving turbopump life. The high-pressure turbopump is designed with single-crystal turbine blades, an integral disk/shaft, a stiff rotor with larger bearings, and advanced homogeneous structural housings. The High-pressure Fuel Turbopump is shown to raise the fuel pressure significantly to enhance injection at all thrust levels, and the High-pressure Oxidizer Turbopump enhances oxidizer pressure for adequate injection at all power levels. Both of the turbopumps are tested in a high-pressure facility with attention given to start and shutdown characteristics, and breakaway torque and inertias are shown to influence combustor priming, ignition, temperature spikes, and thrust.

  18. Duct flow nonuniformities study for space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Thoenes, J.

    1985-01-01

    To improve the Space Shuttle Main Engine (SSME) design and for future use in the development of generation rocket engines, a combined experimental/analytical study was undertaken with the goals of first, establishing an experimental data base for the flow conditions in the SSME high pressure fuel turbopump (HPFTP) hot gas manifold (HGM) and, second, setting up a computer model of the SSME HGM flow field. Using the test data to verify the computer model it should be possible in the future to computationally scan contemplated advanced design configurations and limit costly testing to the most promising design. The effort of establishing and using the computer model is detailed. The comparison of computational results and experimental data observed clearly demonstrate that computational fluid mechanics (CFD) techniques can be used successfully to predict the gross features of three dimensional fluid flow through configurations as intricate as the SSME turbopump hot gas manifold.

  19. Stability testing of a modified Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Dennis, H.; Hutt, J.; Nesman, T.

    1991-01-01

    The testing of the combustion stability characteristics of Space Shuttle Main Engine (SSME) 0208 is described in terms of augmenting the technology base for large O/H thrust-chamber assemblies. The throat area is increased by 12 percent over that of the flight SSMEs, and the thrust chamber assembly does not include stability aids. Acoustic modes in the chamber are excited by means of rapid pressure generators employed in the start-transient through mainstage operations. Stability characteristics are determined by damp times which are facilitated by high-frequency instrumentation measuring oscillations and locating stable operating regions. All vibration modes are damped to within the requirements for a chamber mode set forth by the Chemical Propulsion Information Agency. No sustained chamber acoustic oscillations are exhibited in engine 0208's combustion chamber configuration in spite of the absence of baffles and acoustic cavities.

  20. LOX/Methane Main Engine Igniter Tests and Modeling

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.; Ajmani, Kumund

    2008-01-01

    The LOX/methane propellant combination is being considered for the Lunar Surface Access Module ascent main engine propulsion system. The proposed switch from the hypergolic propellants used in the Apollo lunar ascent engine to LOX/methane propellants requires the development of igniters capable of highly reliable performance in a lunar surface environment. An ignition test program was conducted that used an in-house designed LOX/methane spark torch igniter. The testing occurred in Cell 21 of the Research Combustion Laboratory to utilize its altitude capability to simulate a space vacuum environment. Approximately 750 ignition test were performed to evaluate the effects of methane purity, igniter body temperature, spark energy level and frequency, mixture ratio, flowrate, and igniter geometry on the ability to obtain successful ignitions. Ignitions were obtained down to an igniter body temperature of approximately 260 R with a 10 torr back-pressure. The data obtained is also being used to anchor a CFD based igniter model.

  1. Testing certifies the Space Shuttle Main Engine life improvement modifications

    NASA Technical Reports Server (NTRS)

    Wood, Byron K.

    1986-01-01

    Development and certification tests have been conducted on the Space Shuttle Main Engine to verify design changes made on the high-pressure turbopumps to expand operating margin at full-power level, increase life, and reduce maintenance requirements. Design changes are summarized and the verification process is described in detail. Methods of testing turbopumps for increased rotor stability, reduced bearing loads, extended bearing and turbine blade life, and reduced turbine operating temperatures are also described. Accomplishments to date in extending both the power level and life of the SSME are summarized.

  2. Jet Boost Pumps For The Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Meng, Sen Y.

    1991-01-01

    Brief report proposes use of jet boost pumps in conjunction with main pumps supplying liquid hydrogen and liquid oxygen to main engine of Space Shuttle. Main part of pump has no moving parts. Benefits include increased reliability, simplified ducts, and decreased weight.

  3. Closeup view of a Space Shuttle Main Engine (SSME) installed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of a Space Shuttle Main Engine (SSME) installed in position number one on the Orbiter Discovery. A ground-support mobile platform is in place below the engine to assist in technicians with the installation of the engine. This Photograph was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  4. Cassini Main Engine Assembly Cover Flight Management and Performance

    NASA Technical Reports Server (NTRS)

    Somawardhana, Ruwan P.; Millard, Jerry M.

    2010-01-01

    The Cassini spacecraft has performed its four year Prime Mission at Saturn and is currently in orbit at Saturn performing a two year extended mission. 12Its main engine nozzles are susceptible to impact damage from micrometeoroids and on-orbit dust. The spacecraft has an articulating device known as the Main Engine Assembly (MEA) cover which can close and shield the main engines from these threats. The cover opens to allow for main engine burns that are necessary to maintain the trajectory. Periodically updated analyses of potential on-orbit dust hazard threats have resulted in the need to continue to use the MEA cover beyond its intended use and beyond its design life. This paper provides a detailed Systems-level overview of the flight management of the MEA cover device and its flight performance to date.

  5. 35. VIEW OF MAIN DECK ENGINE FLAT, LOOKING AFT AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. VIEW OF MAIN DECK ENGINE FLAT, LOOKING AFT AT STEAM CHEST AND CYLINDER HEADS. ORIGINAL STEAM FIRE PUMP IS ON PORT SIDE - Steam Schooner WAPAMA, Kaiser Shipyard No. 3 (Shoal Point), Richmond, Contra Costa County, CA

  6. 12. VIEW FROM MAIN ENTRANCE OF STOVE, ENGINE LATHE, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW FROM MAIN ENTRANCE OF STOVE, ENGINE LATHE, AND GRINDER (L TO R) IN FOREGROUND, SHAFTING ABOVE LOOKING SOUTH. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  7. 18. VIEW TOWARD MAIN ENTRANCE OF AMERICAN TOOL ENGINE LATHE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW TOWARD MAIN ENTRANCE OF AMERICAN TOOL ENGINE LATHE, JIB CRANE ABOVE-LOOKING NORTH. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  8. General view of Main Steam Engine for shop lineshaft, cylinder ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of Main Steam Engine for shop lineshaft, cylinder side - East Broad Top Railroad & Coal Company, Machine Shop, State Route 994, West of U.S. Route 522, Rockhill Furnace, Huntingdon County, PA

  9. Detail view of flyball governor to Main Steam Engine that ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of flyball governor to Main Steam Engine that drove the overhead belt and shaft system - East Broad Top Railroad & Coal Company, Machine Shop, State Route 994, West of U.S. Route 522, Rockhill Furnace, Huntingdon County, PA

  10. Space Shuttle Main Engine: Thirty Years of Innovation

    NASA Technical Reports Server (NTRS)

    Jue, F. H.; Hopson, George (Technical Monitor)

    2002-01-01

    The Space Shuttle Main Engine (SSME) is the first reusable, liquid booster engine designed for human space flight. This paper chronicles the 30-year history and achievements of the SSME from authority to proceed up to the latest flight configuration - the Block 2 SSME.

  11. Space Shuttle Main Engine Turbopump Bearing Testing at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gibson, Howard; Thom, Robert; Moore, Chip

    2010-01-01

    The Space Shuttle has three main engines that are used for lift off into orbit. These engines are fed propellants by low and high pressure turbopumps on each engine. A main element of the pumps are the bearings supporting the main shaft that spins the turbine and pumps. These bearings must spin at high speeds, support the radial and axial thrust loads, and have high wear resistance without the benefit of lubrication. This paper describes the bearing testing that was done at the Marshall Space Flight Center and the results that were obtained to provide the best bearing design possible for safe and reliable engine performance.

  12. Iterative procedures for space shuttle main engine performance models

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1989-01-01

    Performance models of the Space Shuttle Main Engine (SSME) contain iterative strategies for determining approximate solutions to nonlinear equations reflecting fundamental mass, energy, and pressure balances within engine flow systems. Both univariate and multivariate Newton-Raphson algorithms are employed in the current version of the engine Test Information Program (TIP). Computational efficiency and reliability of these procedures is examined. A modified trust region form of the multivariate Newton-Raphson method is implemented and shown to be superior for off nominal engine performance predictions. A heuristic form of Broyden's Rank One method is also tested and favorable results based on this algorithm are presented.

  13. Space Shuttle Main Engine (SSME) Options for the Future Shuttle

    NASA Technical Reports Server (NTRS)

    Jue, Fred; Kuck, Fritz; McCool, Alex (Technical Monitor)

    2002-01-01

    The main engines for the Future Shuttle will focus on improved safety and operability. Performance enhancements may also be required for vehicle safety purposes to achieve more desirable abort scenarios. This paper discusses the potential improvements that will be considered for implementation into the Future Shuttle. Integrated engine and vehicle health management systems will achieve additional system-level reliability improvements over those currently in development. Advanced instrumentation for detecting leaks, analyzing component wear and degradation, and providing sophisticated operational data will be used for reliable engine control and scheduling maintenance operations. A new nozzle and main combustion chamber (MCC) will reduce failure probability by 50% and allow for higher thrust capability without requiring the entire engine to be redesigned. Turbopump improvements may range from minor component improvements to using 3rd-generation pumps built on the advanced concepts demonstrated by the Integrated Powerhead Development (IPD) program and the Space Launch Initiative (SLI) prototype engines.The main engines for the Future Shuttle will focus on improved safety and operability. Performance enhancements may also be required for vehicle safety purposes to achieve more desirable abort scenarios. This paper discusses the potential improvements that will be considered for implementation into the Future Shuttle. Integrated engine and vehicle health management systems will achieve additional system-level reliability improvements over those currently in development. Advanced instrumentation for detecting leaks, analyzing component wear and degradation, and providing sophisticated operational data will be used for reliable engine control and scheduling maintenance operations. A new nozzle and main combustion chamber (MCC) will reduce failure probability by 50% and allow for higher thrust capability without requiring the entire engine to be redesigned. Turbopump

  14. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John

    2004-01-01

    Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.

  15. Studies and analyses of the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Tischer, Alan E.; Glover, R. C.

    1987-01-01

    The primary objectives were to: evaluate ways to maximize the information yield from the current Space Shuttle Main Engine (SSME) condition monitoring sensors, identify additional sensors or monitoring capabilities which would significantly improve SSME data, and provide continuing support of the Main Engine Cost/Operations (MECO) model. In the area of SSME condition monitoring, the principal tasks were a review of selected SSME failure data, a general survey of condition monitoring, and an evaluation of the current engine monitoring system. A computerized data base was developed to assist in modeling engine failure information propagations. Each of the above items is discussed in detail. Also included is a brief discussion of the activities conducted in support of the MECO model.

  16. General view of the Space Shuttle Main Engine (SSME) assembly ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Space Shuttle Main Engine (SSME) assembly with the expansion nozzle removed and resting on a cushioned mat on the floor of the SSME Processing Facility. The most prominent features in this view are the Low-Pressure Fuel Turbopump (LPFTP) on the upper left of the engine assembly, the LPFTP Discharge Duct looping around the assembly, the Gimbal Bearing on the top center of the assembly, the Electrical Interface Panel sits just below the Gimbal Bearing and the Low-Pressure Oxidizer Turbopump is mounted on the top right of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  17. A simplified dynamic model of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Duyar, Ahmet; Eldem, Vasfi; Merrill, Walter; Guo, Ten-Huei

    1991-01-01

    A simplified model is presented of the space shuttle main engine (SSME) dynamics valid within the range of operation of the engine. This model is obtained by linking the linearized point models obtained at 25 different operating points of SSME. The simplified model was developed for use with a model-based diagnostic scheme for failure detection and diagnostics studies, as well as control design purposes.

  18. Structural dynamic analysis of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Scott, L. P.; Jamison, G. T.; Mccutcheon, W. A.; Price, J. M.

    1981-01-01

    This structural dynamic analysis supports development of the SSME by evaluating components subjected to critical dynamic loads, identifying significant parameters, and evaluating solution methods. Engine operating parameters at both rated and full power levels are considered. Detailed structural dynamic analyses of operationally critical and life limited components support the assessment of engine design modifications and environmental changes. Engine system test results are utilized to verify analytic model simulations. The SSME main chamber injector assembly is an assembly of 600 injector elements which are called LOX posts. The overall LOX post analysis procedure is shown.

  19. Space Shuttle Main Engine Debris Testing Methodology and Impact Tolerances

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.; Stephens, Walter

    2005-01-01

    In the wake of the Space Shuttle Columbia disaster every effort is being made to determine the susceptibility of Space Shuttle elements to debris impacts. Ice and frost debris is formed around the aft heat shield closure of the orbiter and liquid hydrogen feedlines. This debris has been observed to liberate upon lift-off of the shuttle and presents potentially dangerous conditions to the Space Shuttle Main Engine. This paper describes the testing done to determine the impact tolerance of the Space Shuttle Main Engine nozzle coolant tubes to ice strikes originating from the launch pad or other parts of the shuttle.

  20. Radial and circumferential flow surveys at the inlet and exit of the Space Shuttle Main Engine High Pressure Fuel Turbine Model

    NASA Astrophysics Data System (ADS)

    Hudson, S. T.; Bordelon, W. J., Jr.; Smith, A. W.; Ramachandran, N.

    1995-01-01

    The main objective of this test was to obtain detailed radial and circumferential flow surveys at the inlet and exit of the SSME High Pressure Fuel Turbine model using three-hole cobra probes, hot-film probes, and a laser velocimeter. The test was designed to meet several objectives. First, the techniques for making laser velocimeter, hot-film probe, and cobra probe measurements in turbine flows were developed and demonstrated. The ability to use the cobra probes to obtain static pressure and, therefore, velocity had to be verified; insertion techniques had to be established for the fragile hot-film probes; and a seeding method had to be established for the laser velocimetry. Once the measurement techniques were established, turbine inlet and exit velocity profiles, temperature profiles, pressure profiles, turbulence intensities, and boundary layer thicknesses were measured at the turbine design point. The blockage effect due to the model inlet and exit total pressure and total temperature rakes on the turbine performance was also studied. A small range of off-design points were run to obtain the profiles and to verify the rake blockage effects off-design. Finally, a range of different Reynolds numbers were run to study the effect of Reynolds number on the various measurements.

  1. General view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent feature in this view is the Expansion Nozzle . The rings that loop around the nozzle, vertically in this view, add structural stability to the nozzle walls and are referred to Hatbands. The ring on the left most edge of the nozzle is the Coolant Inlet Manifold. The tubes that branch off and connect to the manifold are Coolant Transfer Ducts and the tubes that terminate with a visible opening at the manifold are Drain Lines. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  2. Closeup view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent feature in this view is the Expansion Nozzle . The rings that loop around the nozzle, vertically in this view, add structural stability to the nozzle walls and are referred to Hatbands. The ring on the left most edge of the nozzle is the Coolant Inlet Manifold. The tubes that branch off and connect to the manifold are Coolant Transfer Ducts and the tubes that terminate with a visible opening at the manifold are Drain Lines. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  3. 23. BACKING DRUM IN FOREGROUND. MAIN ENGINE STEP DRUM IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. BACKING DRUM IN FOREGROUND. MAIN ENGINE STEP DRUM IN CENTER. TO RIGHT NOTE CYLINDER, PISTON ROD CROSSHEAD. AT END OF CRANKSHAFT NOTE WRIST PIN AND CRANE DISK. - Dredge CINCINNATI, Docked on Ohio River at foot of Lighthill Street, Pittsburgh, Allegheny County, PA

  4. General view of Main Steam Engine for shop lineshaft, valve ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of Main Steam Engine for shop lineshaft, valve chest side (EBT Railroad 1882, A.W. SIMS, SUPT.) - East Broad Top Railroad & Coal Company, Machine Shop, State Route 994, West of U.S. Route 522, Rockhill Furnace, Huntingdon County, PA

  5. 30. Engine controls and valve gear, looking aft on main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Engine controls and valve gear, looking aft on main (promenade) deck level. Threaded admission valve lift rods (two at immediate left of chronometer) permit adjustment of valve timing in lower and upper admission valves of cylinder (left rod controls lower valve, right rod upper valve). Valve rods are lifted by jaw-like "wipers" during operation. Exhaust valve lift rods and wipers are located to right of chronometer. Crank at extreme right drives valve wiper shaft when engaged to end of eccentric rod, shown under "Crank Indicator" dial. Pair of handles to immediate left of admission valve rods control condenser water valves; handles to right of exhaust valve rods control feedwater flow to boilers from pumps. Gauges indicate boiler pressure (left) and condenser vacuum (right); "Crank Indicator" on wall aids engineer in keeping engine crank off "dead-center" at stop so that engine may be easily restarted. - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT

  6. Holographic flow diagnostics for the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Summarized here are the results of an effort to produce holograms of the exhaust from the Space Shuttle Main Engine (SSME) being tested on a test stand at the Marshall Space Flight Center (MSFC). The effort took place from December 1990 to January 1992, during which seven trips were made from MetroLaser to MSFC. A brief outline of each trip is given. Due to the suspension of the SSME program in Huntsville and unexpected complications in resolving safety issues, the proposed holography system was not operated until November 1991. A NASA 100 mW Argon laser was installed in the holography system for an October engine test while these safety issues were being resolved. A video camera shadowgraph was made during this test, which was shut down prematurely after 20 seconds. System problems precluded successful operation of the holography system until the January 1992 engine test. No hologram resulted during this test due to heavy fog conditions around the engine.

  7. Holographic flow diagnostics for the Space Shuttle main engine

    NASA Astrophysics Data System (ADS)

    1992-02-01

    Summarized here are the results of an effort to produce holograms of the exhaust from the Space Shuttle Main Engine (SSME) being tested on a test stand at the Marshall Space Flight Center (MSFC). The effort took place from December 1990 to January 1992, during which seven trips were made from MetroLaser to MSFC. A brief outline of each trip is given. Due to the suspension of the SSME program in Huntsville and unexpected complications in resolving safety issues, the proposed holography system was not operated until November 1991. A NASA 100 mW Argon laser was installed in the holography system for an October engine test while these safety issues were being resolved. A video camera shadowgraph was made during this test, which was shut down prematurely after 20 seconds. System problems precluded successful operation of the holography system until the January 1992 engine test. No hologram resulted during this test due to heavy fog conditions around the engine.

  8. Automatic detection of anomalies in Space Shuttle Main Engine turbopumps

    NASA Astrophysics Data System (ADS)

    Lo, Ching F.; Whitehead, B. A.; Wu, Kewei

    1992-07-01

    A prototype expert system (developed on both PC and Symbolics 3670 lisp machine) for detecting anomalies in turbopump vibration data has been tested with data from ground tests 902-473, 902-501, 902-519, and 904-097 of the Space Shuttle Main Engine (SSME). The expert system has been utilized to analyze vibration data from each of the following SSME components: high-pressure oxidizer turbopump, high-pressure fuel turbopump, low-pressure fuel turbopump, and preburner boost pump. The expert system locates and classifies peaks in the power spectral density of each 0.4-sec window of steady-state data. Peaks representing the fundamental and harmonic frequencies of both shaft rotation and bearing cage rotation are identified by the expert system. Anomalies are then detected on the basis of sequential criteria and two threshold criteria set individually for the amplitude of each of these peaks: a prior threshold used during the first few windows of data in a test, and a posterior threshold used thereafter. In most cases the anomalies detected by the expert system agree with those reported by NASA. The two cases where there is significant disagreement will be further studied and the system design refined accordingly.

  9. Automatic detection of anomalies in Space Shuttle Main Engine turbopumps

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Whitehead, B. A.; Wu, Kewei

    1992-01-01

    A prototype expert system (developed on both PC and Symbolics 3670 lisp machine) for detecting anomalies in turbopump vibration data has been tested with data from ground tests 902-473, 902-501, 902-519, and 904-097 of the Space Shuttle Main Engine (SSME). The expert system has been utilized to analyze vibration data from each of the following SSME components: high-pressure oxidizer turbopump, high-pressure fuel turbopump, low-pressure fuel turbopump, and preburner boost pump. The expert system locates and classifies peaks in the power spectral density of each 0.4-sec window of steady-state data. Peaks representing the fundamental and harmonic frequencies of both shaft rotation and bearing cage rotation are identified by the expert system. Anomalies are then detected on the basis of sequential criteria and two threshold criteria set individually for the amplitude of each of these peaks: a prior threshold used during the first few windows of data in a test, and a posterior threshold used thereafter. In most cases the anomalies detected by the expert system agree with those reported by NASA. The two cases where there is significant disagreement will be further studied and the system design refined accordingly.

  10. Research Study: Space Shuttle Main Engine Plume Flowfield Model

    NASA Technical Reports Server (NTRS)

    Bender, Robert L.

    1988-01-01

    The initial research effort was an in-depth analysis of the shuttle main engine plumes in an effort to improve the flowfield model and to enhance shuttle base heating equipment predictions during ascent. A prediction methodology code was developed incorporating the improved plume model into a predictive tool which could consider different trajectoreis and engine perfromance variables. Various plume flow model improvement studies were ongoing at the time of the 51-L accident. Since that time, base heating and plume methodology improvements have continued as part of the overall emphasis on Shuttle design assurance before resuming flight schedule.

  11. Automatic detection of anomalies in Space Shuttle Main Engine turbopumps

    NASA Technical Reports Server (NTRS)

    Lo, Ching F. (Principal Investigator); Whitehead, Bruce; Wu, Kewei; Rogers, George

    1992-01-01

    A prototype expert system for detecting anomalies in turbopump vibration data has been tested with data from ground tests 902-473, 902-501 902-519, and 904-097 of the Space Shuttle Main Engine!nc (SSME). The expert system has been utilized to analyze vibration ion data from each of the following SSME components: pressure oxidizer turbopump, high-pressure fuel turbo pump, low-pressure fuel turbopump, and preburner boost pump. The expert system locates and classifies peaks in the power spectral density of each 0.4 s window of steady-state data. Peaks representing the fundamental and harmonic frequencies of both shaft rotation and bearing cage rotation are identified by the expert system. Anomalies are then detected on the basis of of two thresholds set individually for the amplitude of each of these peaks: a prior threshold used during the first few windows of data in a test, and a posterior threshold used thereafter. In most cases the anomalies detected by the expert system agree with those reported by NASA. The two cases where there is significant disagreement will be further studied and the system design refined accordingly.

  12. Nonlinear rotordynamics analysis. [Space Shuttle Main Engine turbopumps

    NASA Technical Reports Server (NTRS)

    Noah, Sherif T.

    1991-01-01

    Effective analysis tools were developed for predicting the nonlinear rotordynamic behavior of the Space Shuttle Main Engine (SSME) turbopumps under steady and transient operating conditions. Using these methods, preliminary parametric studies were conducted on both generic and actual HPOTP (high pressure oxygen turbopump) models. In particular, a novel modified harmonic balance/alternating Fourier transform (HB/AFT) method was developed and used to conduct a preliminary study of the effects of fluid, bearing and seal forces on the unbalanced response of a multi-disk rotor in the presence of bearing clearances. The method makes it possible to determine periodic, sub-, super-synchronous and chaotic responses of a rotor system. The method also yields information about the stability of the obtained response, thus allowing bifurcation analyses. This provides a more effective capability for predicting the response under transient conditions by searching in proximity of resonance peaks. Preliminary results were also obtained for the nonlinear transient response of an actual HPOTP model using an efficient, newly developed numerical method based on convolution integration. Currently, the HB/AFT is being extended for determining the aperiodic response of nonlinear systems. Initial results show the method to be promising.

  13. 27. VIEW FROM AFT OF MAIN HOISTING ENGINE WITH HOISTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VIEW FROM AFT OF MAIN HOISTING ENGINE WITH HOISTING DRUM IN FOREGROUND. NOTE MAIN HOISTING DRUM IS A STEP DRUM, WITH TWO DIAMETERS ON DRUM. WHEN BUCKET IS IN WATER THE CABLE IS ON THE SMALLER STEP, AS PICTURED, GIVING MORE POWER TO THE LINE. THE CABLE STEPS TO LARGER DIAMETER WHEN BUCKET IS OUT OF WATER, WHERE SPEED IS MORE IMPORTANT THAN POWER. SMALLER BACKING DRUM IN BACKGROUND. - Dredge CINCINNATI, Docked on Ohio River at foot of Lighthill Street, Pittsburgh, Allegheny County, PA

  14. TVC actuator model. [for the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Baslock, R. W.

    1977-01-01

    A prototype Space Shuttle Main Engine (SSME) Thrust Vector Control (TVC) Actuator analog model was successfully completed. The prototype, mounted on five printed circuit (PC) boards, was delivered to NASA, checked out and tested using a modular replacement technique on an analog computer. In all cases, the prototype model performed within the recording techniques of the analog computer which is well within the tolerances of the specifications.

  15. Investigations of ice formation in the Space Shuttle Main Engine 0209 main injector coolant cavity

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Charklwick, D. M.

    1991-01-01

    Severe main combustion chamber wall and main injector baffle element deterioration occurred during tests of Space Shuttle Main Engine 0209. One of the possible causes considered is ice formation and blockage of coolant to these components, resulting from the mixing of leaking hot turbine exhaust gas (hydrogen rich steam) and hydrogen coolant in the injector coolant cavity. The plausibility of ice blockage is investigated through simple mixing calculations for hot gas and hydrogen, investigation of condensation and water droplet formation, calculation of the freezing times for droplets, and the prediction of ice layer thicknesses. It is concluded that condensation and droplet formation can occur, and small water droplets that form can freeze very quickly when in contact with the cold coolant cavity surfaces. Copnservative analysis predicts, however, that the maximum thickness of the ice layers formed is too small to result in significant blockage of the coolant flow.

  16. Study of methods for applying and enhancing transfer film coatings of polytetrafluoroethylene (PTEE) to Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbo Pump (HPOTP) bearings

    NASA Technical Reports Server (NTRS)

    Kannel, J. W.; Dufrane, K. F.; Zugaro, F. F.

    1981-01-01

    Machines were constructed and evaluated for burnishing polytetrafluoroethylene on balls for use in the high pressure oxygen turbopump (HPOTP). The most positive performance was obtained with single-ball burnishing, but one technique for burnishing three balls simultaneously holds promise. Evaluations of the coatings in a HPOTP bearing of earlier design (employed smaller diameter balls) showed very little life enhancement before high torque and ball and race wear initiated. Other coating techniques, such as molybdenum disulfide combined with PTFE transfer films, hold promise for providing the more durable quantities of solid lubricant needed for the bearings.

  17. Space Shuttle Main Engine: Advanced Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Singer, Chirs

    1999-01-01

    The main gola of the Space Shuttle Main Engine (SSME) Advanced Health Management system is to improve flight safety. To this end the new SSME has robust new components to improve the operating margen and operability. The features of the current SSME health monitoring system, include automated checkouts, closed loop redundant control system, catastropic failure mitigation, fail operational/ fail-safe algorithms, and post flight data and inspection trend analysis. The features of the advanced health monitoring system include: a real time vibration monitor system, a linear engine model, and an optical plume anomaly detection system. Since vibration is a fundamental measure of SSME turbopump health, it stands to reason that monitoring the vibration, will give some idea of the health of the turbopumps. However, how is it possible to avoid shutdown, when it is not necessary. A sensor algorithm has been developed which has been exposed to over 400 test cases in order to evaluate the logic. The optical plume anomaly detection (OPAD) has been developed to be a sensitive monitor of engine wear, erosion, and breakage.

  18. Liquid Oxygen/Liquid Methane Ascent Main Engine Technology Development

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Stephenson, David D.

    2008-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LO2)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon the Exploration Systems Architecture Study (ESAS). The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. The current application considering this technology is the lunar ascent main engine (AME). AME is anticipated to be an expendable, pressure-fed engine to provide ascent from the moon at the completion of a 210 day lunar stay. The engine is expected to produce 5,500 lbf (24,465 N) thrust with variable inlet temperatures due to the cryogenic nature of the fuel and oxidizer. The primary technology risks include establishing reliable and robust ignition in vacuum conditions, maximizing specific impulse, developing rapid start capability for the descent abort, providing the capability for two starts and producing a total engine bum time over 500 seconds. This paper will highlight the efforts of the Marshall Space Flight Center (MSFC) in addressing risk reduction activities for this technology.

  19. Laser velocimeter measurements of the flow downstream of the Space Shuttle Main Engine high pressure oxidizer turbopump first-stage turbine nozzle

    NASA Technical Reports Server (NTRS)

    Ferguson, T. V.; Havskjold, G. L.; Rojas, L.

    1988-01-01

    A laser two-focus velocimeter was used in an open-loop water test facility in order to map the flowfield downstream of the SSME's high-pressure oxidizer turbopump first-stage turbine nozzle; attention was given to the effects of the upstream strut-downstream nozzle configuration on the flow at the rotor inlet, in order to estimate dynamic loads on the first-stage rotor blades. Velocity and flow angles were plotted as a function of circumferential position, and were found to clearly display the periodic behavior of the wake flow field. The influence of the upstream centerbody-supporting struts on the vane nozzle wake pattern was evident.

  20. A Basic Comparison of the Space Shuttle Main Engine and the J-2X Engine

    NASA Technical Reports Server (NTRS)

    Ayer, Adam

    2007-01-01

    With the introduction of the new manned space effort through the Constellation Program, there is an interest to have a basic comparison of the current Space Shuttle Main Engine (SSME) to the J-2X engine used for the second stage of both the Ares I and Ares V rockets. This paper seeks to compare size, weight and thrust capabilities while drawing simple conclusions on differences between the two engines.

  1. Turbine blade structural dynamic analysis. [for space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Dickerson, E. O.

    1980-01-01

    The paper presents structural dynamic analysis and test results for the Space Shuttle Main Engine turbine blades. Athough these blades are designed to avoid coincidence of natural frequencies with harmonic excitation forces, the complexity of the turbine hardware, its nonlinearities and lack of information regarding the forcing function have led to fatigue failures. A comparison of single-blade analysis and test modal frequencies, shapes, and stresses is given; analysis techniques to describe the forcing function, compute dynamic responses, and incorporate the nonlinearities of Coulomb-friction dampers are presented. Recommendations are made for new research to improve forcing function computations and structural damping estimates used in the analysis.

  2. Space shuttle main engine fault detection using neural networks

    NASA Technical Reports Server (NTRS)

    Bishop, Thomas; Greenwood, Dan; Shew, Kenneth; Stevenson, Fareed

    1991-01-01

    A method for on-line Space Shuttle Main Engine (SSME) anomaly detection and fault typing using a feedback neural network is described. The method involves the computation of features representing time-variance of SSME sensor parameters, using historical test case data. The network is trained, using backpropagation, to recognize a set of fault cases. The network is then able to diagnose new fault cases correctly. An essential element of the training technique is the inclusion of randomly generated data along with the real data, in order to span the entire input space of potential non-nominal data.

  3. Space Shuttle Main Engine nozzle thermal protection system

    NASA Technical Reports Server (NTRS)

    Nordlund, R. M.

    1985-01-01

    Two of the three Space Shuttle Main Engine (SSME) nozzles are exposed to significant reentry aeroheating loads. To ensure reusability of the Nozzle Assembly, the nozzle primary structure must not exceed specific temperature limits. Due to the thermal, pressure, and dynamic flexing of the nozzle during a mission cycle, an appropriate insulating system must have significant flexibility. Recent missions have demonstrated nozzle reentry aeroheating rates and heat loads much higher than predictions, higher than the capability of the original insulating system. A new insulating system has been developed using similar materials in an aerodynamically 'smooth' shape to both reduce the incoming heating and increase radiation cooling.

  4. Non-intrusive speed sensor. [space shuttle main engine turbopumps

    NASA Technical Reports Server (NTRS)

    Maram, J.; Wyett, L.

    1984-01-01

    A computerized literature search was performed to identify candidate technologies for remote, non-intrusive speed sensing applications in Space Shuttle Main Engine (SSME) turbopumps. The three most promising technologies were subjected to experimental evaluation to quantify their performance characteristics under the harsh environmental requirements within the turbopumps. Although the infrared and microwave approaches demonstrated excellent cavitation immunity in laboratory tests, the variable-source magnetic speed sensor emerged as the most viable approach. Preliminary design of this speed sensor encountered no technical obstacles and resulted in viable and feasible speed nut, sensor housing, and sensor coil designs.

  5. High Moisture Corn Evaluated for Northern Maine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Profitable rotation crops that can grow in cool, northern Maine climates are needed to sustain the diversity of potato systems. A field experiment was conducted to determine whether three high moisture corn hybrids were suitable for harvest as a short season rotation crop. Yield and grain moisture...

  6. Space Shuttle Main Engine (SSME) Systems Operation Overview and Evolution

    NASA Technical Reports Server (NTRS)

    Benefield, Philip A.; Kan, Kenneth C.

    2010-01-01

    The Space Shuttle Main Engine (SSME) is a large thrust class, reusable, staged combustion cycle rocket engine employing liquid hydrogen and liquid oxygen propellants. A cluster of three SSMEs is used on every space shuttle mission to propel the space shuttle orbiter vehicle into low earth orbit. Development of the SSME began in the early 70's and the first flight of the space shuttle occurred in 1981. Today, the SSME has accrued over one million seconds of ground test and flight operational time, launching 129 space shuttle missions. The systems operation of the SSME was developed and evolved to support the specific requirements of the Space Shuttle Program (SSP). This paper provides a systems operation overview of the SSME, including: engine cycle, propellant flowpaths, and major components; control system; operations during pre-start, start, mainstage, and shutdown phases; launch commit criteria (LCCs) and operational redlines. Furthermore, this paper will discuss how changes to the SSME over its history have impacted systems operations.

  7. Summary of Results from Space Shuttle Main Engine Off-Nominal Testing

    NASA Technical Reports Server (NTRS)

    Horton, James F.; Megivern, Jeffrey M.; McNutt, Leslie M.

    2011-01-01

    This paper is a summary of Space Shuttle Main Engine (SSME) off-nominal testing that occurred during 2008 and 2009. During the last two years of planned SSME testing at Stennis Space Center, Pratt & Whitney Rocketdyne worked with their NASA MSFC customer to systematically identify, develop, assess, and implement challenging test objectives in order to expand the knowledge of one of the world s most reliable and highly tested large rocket engine. The objectives successfully investigated three main areas of interest expanding engine performance margins, demonstrating system operational capabilities, and establishing ground work for new rocket engine technology. The testing gave the Space Shuttle Program new options to safely fly out the flight manifest and provided Pratt & Whitney Rocketdyne and NASA new insight into the operational capabilities of the SSME, capabilities which can be used in assessing potential future applications of the RS-25 engine.

  8. Space Shuttle Main Engine modal test correlation and optimization

    NASA Astrophysics Data System (ADS)

    Stec, Robert C.; Gupta, Viney K.; Chaney, Lisa; Haworth, John M.

    1993-04-01

    A cost-effective software testbed under development is described for updating and validating Finite-Element Models (FEMs) to certify large-scale Space Shuttle Main Engine (SSME) STARDYNE and NASTRAN FEMs against modal test data. The long-term objectives of the testbed are to provide timely support and certification of SSME components using modal testing: certify large-scale structures such as the SSME using modal survey tests, update FEMs for model validation against test frequencies and mode shapes, verify the load factors for design loads assumed to determine structural integrity, demonstrate the Rocketdyne software testbed based on state-of-the art methods - optimization, static/dynamic reduction, sparse Lanczos solvers and iterative perturbation algorithms, and to identify future enhancements and applications for the National Aeronautics and Space Administration (NASA)-Rocketdyne testbed "FEMOPT" developed for Space Station and SSME model certification.

  9. A History of Welding on the Space Shuttle Main Engine (1975 to 2010)

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.; Russell, Carolyn K.

    2010-01-01

    The Space Shuttle Main Engine (SSME) is a high performance, throttleable, liquid hydrogen fueled rocket engine. High thrust and specific impulse (Isp) are achieved through a staged combustion engine cycle, combined with high combustion pressure (approx.3000psi) generated by the two-stage pump and combustion process. The SSME is continuously throttleable from 67% to 109% of design thrust level. The design criteria for this engine maximize performance and weight, resulting in a 7,800 pound rocket engine that produces over a half million pounds of thrust in vacuum with a specific impulse of 452/sec. It is the most reliable rocket engine in the world, accumulating over one million seconds of hot-fire time and achieving 100% flight success in the Space Shuttle program. A rocket engine with the unique combination of high reliability, performance, and reusability comes at the expense of manufacturing simplicity. Several innovative design features and fabrication techniques are unique to this engine. This is as true for welding as any other manufacturing process. For many of the weld joints it seemed mean cheating physics and metallurgy to meet the requirements. This paper will present a history of the welding used to produce the world s highest performance throttleable rocket engine.

  10. Aft Engine shop worker removes a heat shield on Columbia's main engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Doug Buford, with the Aft Engine shop, works at removing a heat shield on Columbia, in the Orbiter Processing Facility. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  11. Aft Engine shop worker removes a heat shield on Columbia's main engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Doug Buford, with the Aft Engine shop, works at removing a heat shield on Columbia, in the Orbiter Processing Facility. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  12. Duct flow nonuniformities for Space Shuttle Main Engine (SSME)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A three-duct Space Shuttle Main Engine (SSME) Hot Gas Manifold geometry code was developed for use. The methodology of the program is described, recommendations on its implementation made, and an input guide, input deck listing, and a source code listing provided. The code listing is strewn with an abundance of comments to assist the user in following its development and logic. A working source deck will be provided. A thorough analysis was made of the proper boundary conditions and chemistry kinetics necessary for an accurate computational analysis of the flow environment in the SSME fuel side preburner chamber during the initial startup transient. Pertinent results were presented to facilitate incorporation of these findings into an appropriate CFD code. The computation must be a turbulent computation, since the flow field turbulent mixing will have a profound effect on the chemistry. Because of the additional equations demanded by the chemistry model it is recommended that for expediency a simple algebraic mixing length model be adopted. Performing this computation for all or selected time intervals of the startup time will require an abundance of computer CPU time regardless of the specific CFD code selected.

  13. Framework for a space shuttle main engine health monitoring system

    NASA Technical Reports Server (NTRS)

    Hawman, Michael W.; Galinaitis, William S.; Tulpule, Sharayu; Mattedi, Anita K.; Kamenetz, Jeffrey

    1990-01-01

    A framework developed for a health management system (HMS) which is directed at improving the safety of operation of the Space Shuttle Main Engine (SSME) is summarized. An emphasis was placed on near term technology through requirements to use existing SSME instrumentation and to demonstrate the HMS during SSME ground tests within five years. The HMS framework was developed through an analysis of SSME failure modes, fault detection algorithms, sensor technologies, and hardware architectures. A key feature of the HMS framework design is that a clear path from the ground test system to a flight HMS was maintained. Fault detection techniques based on time series, nonlinear regression, and clustering algorithms were developed and demonstrated on data from SSME ground test failures. The fault detection algorithms exhibited 100 percent detection of faults, had an extremely low false alarm rate, and were robust to sensor loss. These algorithms were incorporated into a hierarchical decision making strategy for overall assessment of SSME health. A preliminary design for a hardware architecture capable of supporting real time operation of the HMS functions was developed. Utilizing modular, commercial off-the-shelf components produced a reliable low cost design with the flexibility to incorporate advances in algorithm and sensor technology as they become available.

  14. Analysis of the Space Shuttle main engine simulation

    NASA Technical Reports Server (NTRS)

    Deabreu-Garcia, J. Alex; Welch, John T.

    1993-01-01

    This is a final report on an analysis of the Space Shuttle Main Engine Program, a digital simulator code written in Fortran. The research was undertaken in ultimate support of future design studies of a shuttle life-extending Intelligent Control System (ICS). These studies are to be conducted by NASA Lewis Space Research Center. The primary purpose of the analysis was to define the means to achieve a faster running simulation, and to determine if additional hardware would be necessary for speeding up simulations for the ICS project. In particular, the analysis was to consider the use of custom integrators based on the Matrix Stability Region Placement (MSRP) method. In addition to speed of execution, other qualities of the software were to be examined. Among these are the accuracy of computations, the useability of the simulation system, and the maintainability of the program and data files. Accuracy involves control of truncation error of the methods, and roundoff error induced by floating point operations. It also involves the requirement that the user be fully aware of the model that the simulator is implementing.

  15. Embedded expert system for space shuttle main engine maintenance

    NASA Technical Reports Server (NTRS)

    Pooley, J.; Thompson, W.; Homsley, T.; Teoh, W.; Jones, J.; Lewallen, P.

    1987-01-01

    The SPARTA Embedded Expert System (SEES) is an intelligent health monitoring system that directs analysis by placing confidence factors on possible engine status and then recommends a course of action to an engineer or engine controller. The technique can prevent catastropic failures or costly rocket engine down time because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable rocket engine systems. The SEES methodology synergistically integrates vibration analysis, pattern recognition and communications theory techniques with an artificial intelligence technique - the Embedded Expert System (EES).

  16. Update on development of the Space Shuttle main engine /as of 5 May 1977/

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.

    1977-01-01

    The development and testing of the Space Shuttle main engine are described. The preburners, main injector, main combustion chamber, and 35:1 expansion ratio test nozzle were successfully run at full power level (109 percent of rated power level). Integral combustion stability aids damped induced instability oscillations within 6 milliseconds. Three significant turbomachinery problems were identified and solved during the past year. These problems involved high-pressure fuel turbopump subsynchronous whirl, severe overheating of the turbine bearing and components and, in the high-pressure oxidizer turbopump, burning that first occurred in the drain cavity downstream of the primary oxidizer seal.

  17. Project Morpheus Main Engine Development and Preliminary Flight Testing

    NASA Technical Reports Server (NTRS)

    Morehead, Robert L.

    2011-01-01

    A LOX/Methane rocket engine was developed for a prototype terrestrial lander and then used to fly the lander at Johnson Space Center. The development path of this engine is outlined, including unique items such as variable acoustic damping and variable film cooling.

  18. Combustion Stability Characteristics of the Project Morpheus Liquid Oxygen / Liquid Methane Main Engine

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Morehead, Robert L.

    2014-01-01

    The project Morpheus liquid oxygen (LOX) / liquid methane (LCH4) main engine is a Johnson Space Center (JSC) designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. The engine met or exceeded all performance requirements without experiencing any in- ight failures, but the engine exhibited acoustic-coupled combustion instabilities during sea-level ground-based testing. First tangential (1T), rst radial (1R), 1T1R, and higher order modes were triggered by conditions during the Morpheus vehicle derived low chamber pressure startup sequence. The instability was never observed to initiate during mainstage, even at low power levels. Ground-interaction acoustics aggravated the instability in vehicle tests. Analysis of more than 200 hot re tests on the Morpheus vehicle and Stennis Space Center (SSC) test stand showed a relationship between ignition stability and injector/chamber pressure. The instability had the distinct characteristic of initiating at high relative injection pressure drop at low chamber pressure during the start sequence. Data analysis suggests that the two-phase density during engine start results in a high injection velocity, possibly triggering the instabilities predicted by the Hewitt stability curves. Engine ignition instability was successfully mitigated via a higher-chamber pressure start sequence (e.g., 50% power level vs 30%) and operational propellant start temperature limits that maintained \\cold LOX" and \\warm methane" at the engine inlet. The main engine successfully demonstrated 4:1 throttling without chugging during mainstage, but chug instabilities were observed during some engine shutdown sequences at low injector pressure drop, especially during vehicle landing.

  19. Multidisciplinary analysis of Skylab photography for highway engineering purposes. [Maine

    NASA Technical Reports Server (NTRS)

    Stoeckeler, E. G.; Woodman, R. G. (Principal Investigator); Farrell, R. S.

    1975-01-01

    The author has identified the following significant results. The greatly increased resolution of ground features by Skylab as compared with LANDSAT is considered to be best in the S190B high resolution film, followed by S190A camera stations 4, 5, and 6 respectfully. Results of the study of vegetation damage sites using data derived from S190A film were disappointing. The major cause of detection problems is the graininess of the CIR film. Good results were achieved for the hydrology-land use study. Both camera systems gave better agreement with the ground truth than did LANDSAT imagery. Surficial geology and glacial landform areas were clearly visible in single scenes. Several previously unmapped or unknown features were detected, especially in eastern coastal Maine.

  20. History and Benefits of Engine Level Testing Throughout the Space Shuttle Main Engine Program

    NASA Technical Reports Server (NTRS)

    VanHooser, Katherine; Kan, Kenneth; Maddux, Lewis; Runkle, Everett

    2010-01-01

    Rocket engine testing is important throughout a program s life and is essential to the overall success of the program. Space Shuttle Main Engine (SSME) testing can be divided into three phases: development, certification, and operational. Development tests are conducted on the basic design and are used to develop safe start and shutdown transients and to demonstrate mainstage operation. This phase helps form the foundation of the program, demands navigation of a very steep learning curve, and yields results that shape the final engine design. Certification testing involves multiple engine samples and more aggressive test profiles that explore the boundaries of the engine to vehicle interface requirements. The hardware being tested may have evolved slightly from that in the development phase. Operational testing is conducted with mature hardware and includes acceptance testing of flight assets, resolving anomalies that occur in flight, continuing to expand the performance envelope, and implementing design upgrades. This paper will examine these phases of testing and their importance to the SSME program. Examples of tests conducted in each phase will also be presented.

  1. High Performance Arcjet Engines

    NASA Technical Reports Server (NTRS)

    Kennel, Elliot B.; Ivanov, Alexey Nikolayevich; Nikolayev, Yuri Vyacheslavovich

    1994-01-01

    This effort sought to exploit advanced single crystal tungsten-tantalum alloy material for fabrication of a high strength, high temperature arcjet anode. The use of this material is expected to result in improved strength, temperature resistance, and lifetime compared to state of the art polycrystalline alloys. In addition, the use of high electrical and thermal conductivity carbon-carbon composites was considered, and is believed to be a feasible approach. Highly conductive carbon-carbon composite anode capability represents enabling technology for rotating-arc designs derived from the Russian Scientific Research Institute of Thermal Processes (NIITP) because of high heat fluxes at the anode surface. However, for US designs the anode heat flux is much smaller, and thus the benefits are not as great as in the case of NIITP-derived designs. Still, it does appear that the tensile properties of carbon-carbon can be even better than those of single crystal tungsten alloys, especially when nearly-single-crystal fibers such as vapor grown carbon fiber (VGCF) are used. Composites fabricated from such materials must be coated with a refractory carbide coating in order to ensure compatibility with high temperature hydrogen. Fabrication of tungsten alloy single crystals in the sizes required for fabrication of an arcjet anode has been shown to be feasible. Test data indicate that the material can be expected to be at least the equal of W-Re-HfC polycrystalline alloy in terms of its tensile properties, and possibly superior. We are also informed by our colleagues at Scientific Production Association Luch (NP0 Luch) that it is possible to use Russian technology to fabricate polycrystalline W-Re-HfC or other high strength alloys if desired. This is important because existing engines must rely on previously accumulated stocks of these materials, and a fabrication capability for future requirements is not assured.

  2. High Efficiency Engine Technologies Program

    SciTech Connect

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in

  3. Combustion Stability Characteristics of the Project Morpheus Liquid Oxygen/Liquid Methane Main Engine

    NASA Technical Reports Server (NTRS)

    Melcher, J. C.; Morehead, Robert L.

    2014-01-01

    The Project Morpheus liquid oxygen (LOX) / liquid methane rocket engines demonstrated acousticcoupled combustion instabilities during sea-level ground-based testing at the NASA Johnson Space Center (JSC) and Stennis Space Center (SSC). High-amplitude, 1T, 1R, 1T1R (and higher order) modes appear to be triggered by injector conditions. The instability occurred during the Morpheus-specific engine ignition/start sequence, and did demonstrate the capability to propagate into mainstage. However, the instability was never observed to initiate during mainstage, even at low power levels. The Morpheus main engine is a JSC-designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. Two different engine designs, named HD4 and HD5, and two different builds of the HD4 engine all demonstrated similar instability characteristics. Through the analysis of more than 200 hot fire tests on the Morpheus vehicle and SSC test stand, a relationship between ignition stability and injector/chamber pressure was developed. The instability has the distinct characteristic of initiating at high relative injection pressure drop (dP) at low chamber pressure (Pc); i.e., instabilities initiated at high dP/Pc at low Pc during the start sequence. The high dP/Pc during start results during the injector /chamber chill-in, and is enhanced by hydraulic flip in the injector orifice elements. Because of the fixed mixture ratio of the existing engine design (the main valves share a common actuator), it is not currently possible to determine if LOX or methane injector dP/Pc were individual contributors (i.e., LOX and methane dP/Pc typically trend in the same direction within a given test). The instability demonstrated initiation characteristic of starting at or shortly after methane injector chillin. Colder methane (e.g., sub-cooled) at the injector inlet prior to engine start was much more likely to result in an instability. A secondary effect of LOX

  4. Space Shuttle main engine turbopump bearing assessment program

    NASA Astrophysics Data System (ADS)

    Breithaupt, B. Spiegel

    1994-03-01

    This report documents the work done on the bearing assessment program over the past two and a half years. The objective of the program is to develop a nondestructive evaluation system for the SSME HPOTP's which would be used to detect anomalies in installed bearings without engine disassembly. Data bases of various signatures are obtained by slowly turning the pump shafts before and after an engine firing. These signatures are then analyzed and compared to the original signatures to more accurately predict bearing wear.

  5. Space Shuttle main engine turbopump bearing assessment program

    NASA Technical Reports Server (NTRS)

    Breithaupt, B. Spiegel

    1994-01-01

    This report documents the work done on the bearing assessment program over the past two and a half years. The objective of the program is to develop a nondestructive evaluation system for the SSME HPOTP's which would be used to detect anomalies in installed bearings without engine disassembly. Data bases of various signatures are obtained by slowly turning the pump shafts before and after an engine firing. These signatures are then analyzed and compared to the original signatures to more accurately predict bearing wear.

  6. Thermal-structural analyses of Space Shuttle Main Engine (SSME) hot section components

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Thompson, Robert L.

    1988-01-01

    Three dimensional nonlinear finite element heat transfer and structural analyses were performed for the first stage high pressure fuel turbopump (HPFTP) blade of the space shuttle main engine (SSME). Directionally solidified (DS) MAR-M 246 and single crystal (SC) PWA-1480 material properties were used for the analyses. Analytical conditions were based on a typical test stand engine cycle. Blade temperature and stress strain histories were calculated by using the MARC finite element computer code. The structural response of an SSME turbine blade was assessed and a greater understanding of blade damage mechanisms, convective cooling effects, and thermal mechanical effects was gained.

  7. Thermal finite-element analysis of space shuttle main engine turbine blade

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Tong, Michael T.; Kaufman, Albert

    1987-01-01

    Finite-element, transient heat transfer analyses were performed for the first-stage blades of the space shuttle main engine (SSME) high-pressure fuel turbopump. The analyses were based on test engine data provided by Rocketdyne. Heat transfer coefficients were predicted by performing a boundary-layer analysis at steady-state conditions with the STAN5 boundary-layer code. Two different peak-temperature overshoots were evaluated for the startup transient. Cutoff transient conditions were also analyzed. A reduced gas temperature profile based on actual thermocouple data was also considered. Transient heat transfer analyses were conducted with the MARC finite-element computer code.

  8. Thermal finite-element analysis of space shuttle main engine turbine blade

    SciTech Connect

    Abdul-Aziz, A.; Tong, M.T.; Kaufman, A.

    1987-10-01

    Finite-element, transient heat transfer analyses were performed for the first-stage blades of the space shuttle main engine (SSME) high-pressure fuel turbopump. The analyses were based on test engine data provided by Rocketdyne. Heat transfer coefficients were predicted by performing a boundary-layer analysis at steady-state conditions with the STAN5 boundary-layer code. Two different peak-temperature overshoots were evaluated for the startup transient. Cutoff transient conditions were also analyzed. A reduced gas temperature profile based on actual thermocouple data was also considered. Transient heat transfer analyses were conducted with the MARC finite-element computer code.

  9. Thin film heat flux sensor for Space Shuttle Main Engine turbine environment

    NASA Technical Reports Server (NTRS)

    Will, Herbert

    1991-01-01

    The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.

  10. Space Shuttle Main Engine: Part Number RS007001

    NASA Technical Reports Server (NTRS)

    Guinzburg, A.

    1977-01-01

    Topics considered include: low-pressure oxidizer turbopump; low-pressure fuel turbopump; high-pressure oxidizer turbopump; high-pressure oxidizer turbopump turbine; high-pressure fuel turbopump; and SSME propellant flow schematic.

  11. Space Shuttle Main Engine Joint Data List Applying Today's Desktop Technologies to Facilitate Engine Processing

    NASA Technical Reports Server (NTRS)

    Jacobs, Kenneth; Drobnick, John; Krell, Don; Neuhart, Terry; McCool, A. (Technical Monitor)

    2001-01-01

    Boeing-Rocketdyne's Space Shuttle Main Engine (SSME) is the world's first large reusable liquid rocket engine. The space shuttle propulsion system has three SSMEs, each weighing 7,400 lbs and providing 470,000 lbs of thrust at 100% rated power level. To ensure required safety and reliability levels are achieved with the reusable engines, each SSME is partially disassembled, inspected, reassembled, and retested at Kennedy Space Center between each flight. Maintenance processing must be performed very carefully to replace any suspect components, maintain proper engine configuration, and avoid introduction of contaminants that could affect performance and safety. The long service life, and number, complexity, and pedigree of SSME components makes logistics functions extremely critical. One SSME logistics challenge is documenting the assembly and disassembly of the complex joint configurations. This data (joint nomenclature, seal and fastener identification and orientation, assembly sequence, fastener torques, etc.) must be available to technicians and engineers during processing. Various assembly drawings and procedures contain this information, but in this format the required (practical) joint data can be hard to find, due to the continued use of archaic engineering drawings and microfilm for field site use. Additionally, the release system must traverse 2,500 miles between design center and field site, across three time zones, which adds communication challenges and time lags for critical engine configuration data. To aid in information accessibility, a Joint Data List (JDL) was developed that allows efficient access to practical joint data. The published JDL has been a very useful logistics product, providing illustrations and information on the latest SSME configuration. The JDL identifies over 3,350 unique parts across seven fluid systems, over 300 joints, times two distinct engine configurations. The JDL system was recently converted to a web-based, navigable

  12. Space Shuttle Main Engine nozzle mounted optic for throat plane spectroscopy

    NASA Astrophysics Data System (ADS)

    Bickford, R. L.; Duncan, D. B.; Madzsar, G.

    1991-06-01

    A program intended to develop a flight-capable nozzle mounted optic for monitoring emissions from metals entrained in the Space Shuttle Main Engine (SSME) flowfield is described. The optic will collect light emitted from metal atoms within the high-temperature, high-pressure SSME chamber and transfer the optical signal to a high-resolution spectrometer via a fiber-optic cable. The nozzle mounted optic makes it possible to conduct earth-to-orbit monitoring of flowfield emissions without requiring modifications to the SSME.

  13. Combustion Device Failures During Space Shuttle Main Engine Development

    NASA Technical Reports Server (NTRS)

    Goetz, Otto K.; Monk, Jan C.

    2005-01-01

    Major Causes: Limited Initial Materials Properties. Limited Structural Models - especially fatigue. Limited Thermal Models. Limited Aerodynamic Models. Human Errors. Limited Component Test. High Pressure. Complicated Control.

  14. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  15. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  16. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  17. Space Shuttle Main Engine Off-Nominal Low Power Level Operation

    NASA Technical Reports Server (NTRS)

    Bradley, Michael

    1997-01-01

    This paper describes Rocketdyne's successful analysis and demonstration of the Space Shuttle Main Engine (SSME) operation at off-nominal power levels during Reusable Launch Vehicle (RLV) evaluation tests. The nominal power level range for the SSME is from 65% rated power level (RPL) to 109% RPL. Off-nominal power levels incrementally demonstrated were: 17% RPL, 22% RPL, 27% RPL, 40% RPL, 45% RPL, and 50% RPL. Additional achievements during low power operation included: use of a hydrostatic bearing High Pressure Oxidizer Turbopump (HPOTP), nominal High Pressure Fuel Turbopump (HPFTP) first rotor critical speed operation, combustion stability at low power levels, and refined definition of nozzle flow separation heat loads.

  18. Automation based on knowledge modeling theory and its applications in engine diagnostic systems using Space Shuttle Main Engine vibrational data

    NASA Astrophysics Data System (ADS)

    Kim, Jonnathan H.

    1995-04-01

    Humans can perform many complicated tasks without explicit rules. This inherent and advantageous capability becomes a hurdle when a task is to be automated. Modern computers and numerical calculations require explicit rules and discrete numerical values. In order to bridge the gap between human knowledge and automating tools, a knowledge model is proposed. Knowledge modeling techniques are discussed and utilized to automate a labor and time intensive task of detecting anomalous bearing wear patterns in the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP).

  19. Space shuttle main engine anomaly data and inductive knowledge based systems: Automated corporate expertise

    NASA Technical Reports Server (NTRS)

    Modesitt, Kenneth L.

    1987-01-01

    Progress is reported on the development of SCOTTY, an expert knowledge-based system to automate the analysis procedure following test firings of the Space Shuttle Main Engine (SSME). The integration of a large-scale relational data base system, a computer graphics interface for experts and end-user engineers, potential extension of the system to flight engines, application of the system for training of newly-hired engineers, technology transfer to other engines, and the essential qualities of good software engineering practices for building expert knowledge-based systems are among the topics discussed.

  20. Test Results of the Modified Space Shuttle Main Engine at the Marshall Space Flight Center Technology Test Bed Facility

    NASA Technical Reports Server (NTRS)

    Cook, J.; Dumbacher, D.; Ise, M.; Singer, C.

    1990-01-01

    A modified space shuttle main engine (SSME), which primarily includes an enlarged throat main combustion chamber with the acoustic cavities removed and a main injector with the stability control baffles removed, was tested. This one-of-a-kind engine's design changes are being evaluated for potential incorporation in the shuttle flight program in the mid-1990's. Engine testing was initiated on September 15, 1988 and has accumulated 1,915 seconds and 19 starts. Testing is being conducted to characterize the engine system performance, combustion stability with the baffle-less injector, and both low pressure oxidizer turbopump (LPOTP) and high pressure oxidizer turbopump (HPOTP) for suction performance. These test results are summarized and compared with the SSME flight configuration data base. Testing of this new generation SSME is the first product from the technology test bed (TTB). Figure test plans for the TTB include the highly instrumented flight configuration SSME and advanced liquid propulsion technology items.

  1. Low loss injector for Space Shuttle main engine. Center director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L.

    1984-01-01

    An efficient propellant injection method to raise the Space Shuttle Main Engine (SSME) thrust and payload is discussed. Relatively large diameter injector elements with low pressure loss are recommended for the main combustion chamber and the pre-burners. Smaller losses admit more propellant flow which then raises thrust. Payload is not only gained by specific impulse but also by thrust. The chamber pressure is stabilized by selecting the proper cavity size for the injector elements while reducing the injection pressure loss which normally is kept high for stability. The rather large injector element recesses provide acoustic damping which makes baffles and acoustic absorbers unnecessary. A tenfold reduction of flow induced stresses which are rather high in the present design is shown. Relaxed tolerances, fewer elements, and better maintenance are offered. The study was conducted under a center director discretionary fund assignment.

  2. Airflow Model Testing to Determine the Distribution of Hot Gas Flow and O/F Ratio Across the Space Shuttle Main Engine Main Injector Assembly

    NASA Technical Reports Server (NTRS)

    Mahorter, L.; Chik, J.; McDaniels, D.; Dill, C.

    1990-01-01

    Engine 0209, the certification engine for the new Phase 2+ Hot Gas Manifold (HGM), showed severe deterioration of the Main Combustion Chamber (MCC) liner during hot fire tests. One theory on the cause of the damage held that uneven local distribution of the fuel rich hot gas flow through the main injector assembly was producing regions of high oxidizer/fuel (O/F) ratio near the wall of the MCC liner. Airflow testing was proposed to measure the local hot gas flow rates through individual injector elements. The airflow tests were conducted using full scale, geometrically correct models of both the current Phase 2 and the new Phase 2+ HGMs. Different main injector flow shield configurations were tested for each HGM to ascertain their effect on the pressure levels and distribution of hot gas flow. Instrumentation located on the primary faceplate of the main injector measured hot gas flow through selected injector elements. These data were combined with information from the current space shuttle main engine (SSME) power balances to produce maps of pressure, hot gas flow rate, and O/F ratio near the main injector primary plate. The O/F distributions were compared for the different injector and HGM configurations.

  3. Steady-state analysis of a nonlinear rotor-housing system. [Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Noah, S. T.; Kim, Y. B.

    1990-01-01

    The periodic steady state response of a high pressure oxygen turbopump (HBOTP) of a Space Shuttle main engine (SSME), involving a clearance between the bearing and housing carrier, is sought. A harmonic balance method utilizig Fast Fourier Transform (FFT) algorithm is developed for the analysis. An impedance method is used to reduce the number of degrees of freedom to the displacements at the bearing clearance. Harmonic and subharmonic responses to imbalance for various system parameters are studied. The results show that the computational technique developed in this study is an effective and flexible method for determining the stable and unstable periodic response of complex rotor-housing systems with clearance type nonlinearity.

  4. High-Temperature Rocket Engine

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Rosenberg, Sanders D.; Chazen, Melvin L.

    1994-01-01

    Two rocket engines that operate at temperature of 2,500 K designed to provide thrust for station-keeping adjustments of geosynchronous satellites, for raising and lowering orbits, and for changing orbital planes. Also useful as final propulsion stages of launch vehicles delivering small satellites to low orbits around Earth. With further development, engines used on planetary exploration missions for orbital maneuvers. High-temperature technology of engines adaptable to gas-turbine combustors, ramjets, scramjets, and hot components of many energy-conversion systems.

  5. Enabling High Efficiency Ethanol Engines

    SciTech Connect

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  6. High Stability Engine Control (HISTEC)

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Southwick, Robert D.; Gallops, George W.

    1996-01-01

    Future aircraft turbine engines, both commercial and military, must be able to successfully accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating a sufficient component design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight demonstrate an advanced, high-stability, integrated engine control system that uses measurement-based, real-time estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept, consisting of a Distortion Estimation System and a Stability Management Control, has been designed and developed. The Distortion Estimation System uses a small number of high-response pressure sensors at the engine face to calculate indicators of the type and extent of distortion in real time. The Stability Management Control, through direct control of the fan and compressor pressure ratio, accommodates the distortion by transiently increasing the amount of stall margin available based on information from the Distortion Estimation System. Simulation studies have shown the HISTEC distortion tolerant control is able to successfully estimate and accommodate time-varying distortion. Currently, hardware and software systems necessary for flight demonstration of the HISTEC concept are being designed and developed. The HISTEC concept will be flight tested in early 1997.

  7. History of Space Shuttle Main Engine Turbopump Bearing Testing at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gibson, Howard; Thom, Robert; Moore, Chip; Haluck, Dave

    2010-01-01

    The Space Shuttle is propelled into orbit by two solid rocket motors and three liquid fed main engines. After the solid motors fall away, the shuttle engines continue to run for a total time of 8 minutes. These engines are fed propellants by low and high pressure turbopumps. A critical part of the turbopump is the main shaft that supports the drive turbine and the pump inducer and impeller. Rolling element bearings hold the shaft in place during rotation. If the bearings were to fail, the shaft would move, allowing components to rub in a liquid oxygen or hydrogen environment, which could have catastrophic results. These bearings are required to spin at very high speeds, support radial and axial loads, and have high wear resistance without the benefit of a conventional means of lubrication. The Rocketdyne built Shuttle turbopumps demonstrated their capability to perform during launches; however, the seven hour life requirement was not being met. One of the limiting factors was the bearings. In the late 1970's, an engineering team was formed at the Marshall Space Flight Center (MSFC), to develop a test rig and plan for testing the Shuttle s main engine high pressure oxygen turbopump (HPOTP) bearings. The goals of the program were to better understand the operation of bearings in a cryogenic environment and to further develop and refine existing computer models used to predict the operational limits of these bearings. In 1982, testing began in a rig named the Bearing and Seal Material Tester or BSMT as it was commonly called. The first testing investigated the thermal margin and thermal runaway limits of the HPOTP bearings. The test rig was later used to explore potential bearing improvements in the area of increased race curvatures, new cage materials for better lubrication, new wear resistant rolling element materials, and other ideas to improve wear life. The most notable improvements during this tester s time was the incorporation of silicon nitride balls and

  8. Advanced Vacuum Plasma Spray (VPS) for a Robust, Longlife and Safe Space Shuttle Main Engine (SSME)

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Elam, Sandra K.; McKechnie, Timothy N.; Power, Christopher A.

    2010-01-01

    In 1984, the Vacuum Plasma Spray Lab was built at NASA/Marshall Space Flight Center for applying durable, protective coatings to turbine blades for the space shuttle main engine (SSME) high pressure fuel turbopump. Existing turbine blades were cracking and breaking off after five hot fire tests while VPS coated turbine blades showed no wear or cracking after 40 hot fire tests. Following that, a major manufacturing problem of copper coatings peeling off the SSME Titanium Main Fuel Valve Housing was corrected with a tenacious VPS copper coating. A patented VPS process utilizing Functional Gradient Material (FGM) application was developed to build ceramic lined metallic cartridges for space furnace experiments, safely containing gallium arsenide at 1260 degrees centigrade. The VPS/FGM process was then translated to build robust, long life, liquid rocket combustion chambers for the space shuttle main engine. A 5K (5,000 Lb. thrust) thruster with the VPS/FGM protective coating experienced 220 hot firing tests in pristine condition with no wear compared to the SSME which showed blanching (surface pulverization) and cooling channel cracks in less than 30 of the same hot firing tests. After 35 of the hot firing tests, the injector face plates disintegrated. The VPS/FGM process was then applied to spraying protective thermal barrier coatings on the face plates which showed 50% cooler operating temperature, with no wear after 50 hot fire tests. Cooling channels were closed out in two weeks, compared to one year for the SSME. Working up the TRL (Technology Readiness Level) to establish the VPS/FGM process as viable technology, a 40K thruster was built and is currently being tested. Proposed is to build a J-2X size liquid rocket engine as the final step in establishing the VPS/FGM process TRL for space flight.

  9. Pressurized high frequency thermoacoustic engines

    NASA Astrophysics Data System (ADS)

    Webb, Nicholas D.

    Acoustic heat engines show much promise for converting waste heat to electricity. Since most applications require high power levels, high frequency thermoacoustic engines can reach such performance by operating with a pressurized working gas. Results on a 3 kHz prime mover, consisting of a quarter-wave resonator and a random stack material between two heat exchangers, show that the acoustic power from such a device is raised substantially as the working gas is pressurized. At pressures up to approximately 10 bar, the increase in acoustic power is approximately linear to the increase in pressure, and thus is an effective way to increase the power output of thermoacoustic engines. Since the heat input was not changed during the experiments, the increases in acoustic power translate directly to increases in engine efficiency which is calculated as the output acoustic power divided by the input heat power. In most experiments run in this study, the engine efficiency increased by a factor of at least 4 as the pressure was increased from 2 bar up to about 10 bar. Further increases in pressure lead to acoustic power saturation and eventual attenuation. This is most likely due to a combination of several factors including the shrinking thermal penetration depth, and the fact that the losses increase faster with pressure in a random stack material than in traditional parallel plates. Pressurization also leads to a lower DeltaT for onset of oscillations in the range of 10 bar of mean pressure, potentially opening up even more heat sources that can power a thermoacoustic engine. Results from another 3 kHz engine, one that was pressurized itself as opposed to being placed in a pressurized chamber, are also presented. The configuration of this engine solves the problem of how to simultaneously pressurize the engine and inject heat into the hot heat exchanger. It was also noted that the geometry of the resonator cavity in the quarter wavelength pressurized engine plays an

  10. Leak Location and Classification in the Space Shuttle Main Engine Nozzle by Infrared Testing

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.; Walker, James L.; Lansing, Mathew

    2003-01-01

    The Space Shuttle Main Engine (SSME) is composed of cooling tubes brazed to the inside of a conical structural jacket. Because of the geometry there are regions that can't be inspected for leaks using the bubble solution and low-pressure method. The temperature change due escaping gas is detectable on the surface of the nozzle under the correct conditions. The methods and results presented in this summary address the thermographic identification of leaks in the Space Shuttle Main Engine nozzles. A highly sensitive digital infrared camera is used to record the minute temperature change associated with a leak source, such as a crack or pinhole, hidden within the nozzle wall by observing the inner "hot wall" surface as the nozzle is pressurized. These images are enhanced by digitally subtracting a thermal reference image taken before pressurization, greatly diminishing background noise. The method provides a nonintrusive way of localizing the tube that is leaking and the exact leak source position to within a very small axial distance. Many of the factors that influence the inspectability of the nozzle are addressed; including pressure rate, peak pressure, gas type, ambient temperature and surface preparation.

  11. Real-time control for manufacturing space shuttle main engines: Work in progress

    NASA Technical Reports Server (NTRS)

    Ruokangas, Corinne C.

    1988-01-01

    During the manufacture of space-based assemblies such as Space Shuttle Main Engines, flexibility is required due to the high-cost and low-volume nature of the end products. Various systems have been developed pursuing the goal of adaptive, flexible manufacturing for several space applications, including an Advanced Robotic Welding System for the manufacture of complex components of the Space Shuttle Main Engines. The Advanced Robotic Welding System (AROWS) is an on-going joint effort, funded by NASA, between NASA/Marshall Space Flight Center, and two divisions of Rockwell International: Rocketdyne and the Science Center. AROWS includes two levels of flexible control of both motion and process parameters: Off-line programming using both geometric and weld-process data bases, and real-time control incorporating multiple sensors during weld execution. Both control systems were implemented using conventional hardware and software architectures. The feasibility of enhancing the real-time control system using the problem-solving architecture of Schemer is investigated and described.

  12. High School Teachers' Conceptions of Engineers and Engineering

    ERIC Educational Resources Information Center

    Hoh, Yin Kiong

    2012-01-01

    This paper describes a workshop activity the author has carried out with 80 high school science teachers to enable them to overcome their stereotypical perceptions of engineers and engineering. The activity introduced them to the biographies of prominent women in engineering, and raised their awareness of these female engineers' contributions to…

  13. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  14. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  15. Configuration evaluation and criteria plan. Volume 2: Evaluation criteria plan (update). Space Transportation Main Engine (STME) configuration study

    NASA Technical Reports Server (NTRS)

    Bair, E. K.

    1987-01-01

    Candidate main engine configurations which enhance vehicle performance, operation and cost are identified. These candidate configurations are evaluated and the configurations which provide significant advantages over existing systems are selected for consideration for the next generation of launch vehicles. The unbiased selection of the Space Transportation Main Engine (STME) configuration requires that the candidate engines be evaluated against a predetermined set of criteria which must be properly weighted to emphasize critical requirements defined prior to the actual evaluation. During a prior study of the STME a Gas Generator Cycle engine was selected for conceptual design, with emphasis on reusability, reliability and low cost while achieving good performance. In this study emphasis is on expendable application of the STME while maintaining low cost and high reliability.

  16. Emissions of NOx, particle mass and particle numbers from aircraft main engines, APU's and handling equipment at Copenhagen Airport

    NASA Astrophysics Data System (ADS)

    Winther, Morten; Kousgaard, Uffe; Ellermann, Thomas; Massling, Andreas; Nøjgaard, Jacob Klenø; Ketzel, Matthias

    2015-01-01

    This paper presents a detailed emission inventory for NOx, particle mass (PM) and particle numbers (PN) for aircraft main engines, APU's and handling equipment at Copenhagen Airport (CPH) based on time specific activity data and representative emission factors for the airport. The inventory has a high spatial resolution of 5 m × 5 m in order to be suited for further air quality dispersion calculations. Results are shown for the entire airport and for a section of the airport apron area ("inner apron") in focus. The methodology presented in this paper can be used to quantify the emissions from aircraft main engines, APU and handling equipment in other airports. For the entire airport, aircraft main engines is the largest source of fuel consumption (93%), NOx, (87%), PM (61%) and PN (95%). The calculated fuel consumption [NOx, PM, PN] shares for APU's and handling equipment are 5% [4%, 8%, 5%] and 2% [9%, 31%, 0%], respectively. At the inner apron area for handling equipment the share of fuel consumption [NOx, PM, PN] are 24% [63%, 75%, 2%], whereas APU and main engines shares are 43% [25%, 19%, 54%], and 33% [11%, 6%, 43%], respectively. The inner apron NOx and PM emission levels are high for handling equipment due to high emission factors for the diesel fuelled handling equipment and small for aircraft main engines due to small idle-power emission factors. Handling equipment is however a small PN source due to the low number based emission factors. Jet fuel sulphur-PM sensitivity calculations made in this study with the ICAO FOA3.0 method suggest that more than half of the PM emissions from aircraft main engines at CPH originate from the sulphur content of the fuel used at the airport. Aircraft main engine PN emissions are very sensitive to the underlying assumptions. Replacing this study's literature based average emission factors with "high" and "low" emission factors from the literature, the aircraft main engine PN emissions were estimated to change with a

  17. Detection, Location, and Classification of Space Shuttle Main Engine Nozzle Leaks by Transient Thermographic Inspection

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.; Walker, James L.

    1998-01-01

    Leak checking and evaluation of pressure vessels by observing the slight temperature changes resulting from structural anomalies has been made possible through developments in high resolution infrared cameras and advanced image processing. These developments have made thermal nondestructive analysis a very practical and efficient method to determine material consistency and structural quality as well as monitor processes. The Space Shuttle Main Engine Nozzle has regions which can not be inspected with standard leak check methods. The Thermographic methods being developed to nondestructively test the Nozzle for leaks in inaccessible regions are reported. Also, a flash heating Thermographic investigation of the braze line bonding the cooling tubes to the outer structural jacket of the nozzle is reported.

  18. Thermal Analysis on Plume Heating of the Main Engine on the Crew Exploration Vehicle Service Module

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Yuko, James R.

    2007-01-01

    The crew exploration vehicle (CEV) service module (SM) main engine plume heating is analyzed using multiple numerical tools. The chemical equilibrium compositions and applications (CEA) code is used to compute the flow field inside the engine nozzle. The plume expansion into ambient atmosphere is simulated using an axisymmetric space-time conservation element and solution element (CE/SE) Euler code, a computational fluid dynamics (CFD) software. The thermal analysis including both convection and radiation heat transfers from the hot gas inside the engine nozzle and gas radiation from the plume is performed using Thermal Desktop. Three SM configurations, Lockheed Martin (LM) designed 604, 605, and 606 configurations, are considered. Design of multilayer insulation (MLI) for the stowed solar arrays, which is subject to plume heating from the main engine, among the passive thermal control system (PTCS), are proposed and validated.

  19. Sloshing in the Liquid Hydrogen and Liquid Oxygen Propellant Tanks After Main Engine Cut Off

    NASA Technical Reports Server (NTRS)

    Kim, Sura; West, Jeff

    2011-01-01

    NASA Marshall Space Flight Center is designing and developing the Main Propulsion System (MPS) for Ares launch vehicles. Propellant sloshing in the liquid hydrogen (LH2) and liquid oxygen (LO2) propellant tanks after Main Engine Cut Off (MECO) was modeled using the Volume of Fluid (VOF) module of the computational fluid dynamics code, CFD-ACE+. The present simulation shows that there is substantial sloshing side forces acting on the LH2 tank during the deceleration of the vehicle after MECO. The LH2 tank features a side wall drain pipe. The side loads result from the residual propellant mass motion in the LH2 tank which is initiated by the stop of flow into the drain pipe at MECO. The simulations show that radial force on the LH2 tank wall is less than 50 lbf and the radial moment calculated based up through the center of gravity of the vehicle is predicted to be as high as 300 lbf-ft. The LO2 tank features a bottom dome drain system and is equipped with sloshing baffles. The remaining LO2 in the tank slowly forms a liquid column along the centerline of tank under the zero gravity environments. The radial force on the LO2 tank wall is predicted to be less than 100 lbf. The radial moment calculated based on the center of gravity of the vehicle is predicted as high as 4500 lbf-ft just before MECO and dropped down to near zero after propellant draining stopped completely.

  20. The Development of Titanium Alloys for Application in the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Halchak, John A.; Jerman, Gregory A.; Zimmerman, Frank R.

    2010-01-01

    The high-strength-to-weight ratio of titanium alloys, particularly at cryogenic temperatures, make them attractive for application in rocket engines - offering the potential of superior performance while minimizing component weight. This was particularly attractive for rotating components, such as pump impellers, where titanium alloys presented the potential to achieve a major advance in rotational tip speed, with a reduction in stages and resultant saving in pump weight and complexity. The investigation into titanium alloys for application in cryogenic turbopumps began in the early 1960's. However, it was found that the reactivity of titanium limited applications and produced unique processing challenges. Specialized chemical compositions and processing techniques had to be developed. A substantial amount of material properties testing and trials in experimental turbopumps occurred, ultimately leading to application in the Space Shuttle Main Engine. One particular alloy stood out for use at liquid hydrogen temperatures, Ti-5Al-2.5Sn ELI. This alloy was employed for several critical components. This presentation deals with the development effort, the challenges that were encountered and operational experiences with Ti-5Al-2.5Sn ELI in the SSME.

  1. Understanding the Space Shuttle Main Engine Hydraulic Actuation System and Reviewing Its Evolution

    NASA Technical Reports Server (NTRS)

    McWade, Robert J.; Minor, Robert B.; McNutt, Leslie M.

    2010-01-01

    The complex engine start and thrust control requirements of the Space Shuttle Main Engine (SSME) require unique valve, actuator and control system hardware. The Hydraulic Actuation System (HAS) was designed, developed, and now operates to meet tight engine control requirement limits to assure safe, reliable and correct engine thrust at all times. The actuator is designed to be fail safe and fail operate in the areas where redundancy is important. The HAS has an additional pneumatic operating capability that insures a safe sequential closure of all actuators and propellant valves in the event of the loss of hydraulic system pressure or loss of electrical closed loop control of the actuator. The objective of this paper is to provide a complete description of the actuator s internal operating system, along with its interaction with all SSME system interfaces. Additionally the paper addresses the challenges, problems identified, and corrected, and lessons learned, during the course of the almost 35 years of engine operation.

  2. Space Shuttle Main Engine fuel preburner augmented spark igniter shutdown detonations

    NASA Technical Reports Server (NTRS)

    Dexter, C. E.; Mccay, T. D.

    1986-01-01

    Detonations were experienced in the Space Shuttle Main Engine fuel preburner (FPB) augmented spark igniter (ASI) during engine cutoff. Several of these resulted in over pressures sufficient to damage the FPB ASI oxidizer system. The detonations initiated in the FPB ASI oxidizer line when residual oxidizer (oxygen) in the line mixed with backflowing fuel (hydrogen) and detonated. This paper reviews the damage history to the FPB ASI oxidizer system, an engineering assessment of the problem cause, a verification of the mechanisms, the hazards associated with the detonations, and the solution implemented.

  3. An overview of the current technology relevant to the design and development of the Space Transportation Main Engine (STME)

    NASA Technical Reports Server (NTRS)

    Das, Digendra K.

    1991-01-01

    The objective of this project was to review the latest literature relevant to the Space Transportation Main Engine (STME). The search was focused on the following engine components: (1) gas generator; (2) hydrostatic/fluid bearings; (3) seals/clearances; (4) heat exchanges; (5) nozzles; (6) nozzle/main combustion chamber joint; (7) main injector face plate; and (8) rocket engine.

  4. Factors influencing design and selection of GTAW robotic welding machines for the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Flanigan, L.

    1986-01-01

    Proposed hardware and software for microprocessor-controlled power supplies and welding machines are described. The application of the automatic seven-axis welding machine, which is to be preprogrammed to allow minimum intervention by the welding operator during the actual process, to the welding of the Space Shuttle main engine is discussed. The production requirements for the gas tungsten arc welds for the Space Shuttle main engine are examined. Consideration is given to positioner design, welding variables, inert shielding gas management, filler metal wire control, the up loading and down loading of data from off-line computers, process improvements, tooling, the welding variable library, and adaptive sensor control.

  5. Space shuttle main engine definition (phase B). Volume 2: Avionics. [for space shuttle

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The advent of the space shuttle engine with its requirements for high specific impulse, long life, and low cost have dictated a combustion cycle and a closed loop control system to allow the engine components to run close to operating limits. These performance requirements, combined with the necessity for low operational costs, have placed new demands on rocket engine control, system checkout, and diagnosis technology. Based on considerations of precision environment, and compatibility with vehicle interface commands, an electronic control, makes available many functions that logically provide the information required for engine system checkout and diagnosis.

  6. Fluid mass and thermal loading effects on the modal characteristics of space shuttle main engine liquid oxygen inlet splitter vanes

    NASA Technical Reports Server (NTRS)

    Panossian, H. V.; Boehnlein, J. J.

    1987-01-01

    An analysis and evaluation of experimental modal survey test data on the variations of modal characteristics induced by pressure and thermal loading events are presented. Extensive modal survey tests were carried out on a Space Shuttle Main Engine (SSME) test article using liquid nitrogen under cryogenic temperatures and high pressures. The results suggest that an increase of pressure under constant cryogenic temperature or a decrease of temperature under high pressure induces an upward shift of frequencies of various modes of the structures.

  7. High School Engineering: Pre-Engineering for Future Engineers.

    ERIC Educational Resources Information Center

    Sutter, Gary R.

    1998-01-01

    Describes a course that bridges the gap between pure science and pure technology called Pre-Engineering. This course gives junior and senior students a chance to investigate the possibility of choosing engineering as a major in college as well as to experience hands-on activities, projects, laboratories, problem solving, and computer simulations…

  8. STS-26 space shuttle main engine (SSME) tested by technicians at NSTL

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Technicians use electronic equipment to run final tests on STS-26 space shuttle main engine (SSME) at National Space Technology Laboratory before shipping it to Kennedy Space Center (KSC) for installation in Discovery, Orbiter Vehicle (OV) 103. Red protective cover is secured over SSME nozzle.

  9. Alpha-canonical form representation of the open loop dynamics of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Duyar, Almet; Eldem, Vasfi; Merrill, Walter C.; Guo, Ten-Huei

    1991-01-01

    A parameter and structure estimation technique for multivariable systems is used to obtain a state space representation of open loop dynamics of the space shuttle main engine in alpha-canonical form. The parameterization being used is both minimal and unique. The simplified linear model may be used for fault detection studies and control system design and development.

  10. Apollo-11 25th Arniversary celebration: Space Shuttle Main Engine - Technology Test Bed (SSME-TTB)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    On the 25th Anniversary of the Apollo-11 space launch, Marshall celebrated with a test firing of the Space Shuttle Main Engine at the Technology Test Bed (SSME-TTB). This drew a large crowd who stood in the fields around the test site and watched as plumes of white smoke verified ignition.

  11. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1984-01-01

    Research concerning the development of pressure instrumentation for the space shuttle main engine is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.

  12. Inductive knowledge acquisition experience with commercial tools for space shuttle main engine testing

    NASA Technical Reports Server (NTRS)

    Modesitt, Kenneth L.

    1990-01-01

    Since 1984, an effort has been underway at Rocketdyne, manufacturer of the Space Shuttle Main Engine (SSME), to automate much of the analysis procedure conducted after engine test firings. Previously published articles at national and international conferences have contained the context of and justification for this effort. Here, progress is reported in building the full system, including the extensions of integrating large databases with the system, known as Scotty. Inductive knowledge acquisition has proven itself to be a key factor in the success of Scotty. The combination of a powerful inductive expert system building tool (ExTran), a relational data base management system (Reliance), and software engineering principles and Computer-Assisted Software Engineering (CASE) tools makes for a practical, useful and state-of-the-art application of an expert system.

  13. Quiet Clean Short-haul Experimental Engine (QCSEE) main reduction gears detailed design report

    NASA Technical Reports Server (NTRS)

    Defeo, A.; Kulina, M.

    1977-01-01

    Lightweight turbine engines with geared slower speed fans are considered. The design of two similar but different gear ratio, minimum weight, epicyclic star configuration main reduction gears for the under the wing (UTW) and over the wing (OTW) engines is discussed. The UTW engine reduction gear has a ratio of 2.465:1 and a 100% power design rating of 9885 kW (13,256 hp) at 3143 rpm fan speed. The OTW engine reduction gear has a ratio of 2.062:1 and a 100% power design rating of 12813 kW (17183 hp) at 3861 rpm fan speed. Details of configuration, stresses, deflections, and lubrication are presented.

  14. A data base and analysis program for shuttle main engine dynamic pressure measurements

    NASA Technical Reports Server (NTRS)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base management system is described for measurements obtained from space shuttle main engine (SSME) hot firing tests. The data were provided in terms of engine power level and rms pressure time histories, and power spectra of the dynamic pressure measurements at selected times during each test. Test measurements and engine locations are defined along with a discussion of data acquisition and reduction procedures. A description of the data base management analysis system is provided and subroutines developed for obtaining selected measurement means, variances, ranges and other statistics of interest are discussed. A summary of pressure spectra obtained at SSME rated power level is provided for reference. Application of the singular value decomposition technique to spectrum interpolation is discussed and isoplots of interpolated spectra are presented to indicate measurement trends with engine power level. Program listings of the data base management and spectrum interpolation software are given. Appendices are included to document all data base measurements.

  15. Space shuttle main engine sensor modeling using radial-basis-function neural networks

    NASA Astrophysics Data System (ADS)

    Wheeler, Kevin R.; Dhawan, Atam P.; Meyer, Claudia M.

    1994-11-01

    An efficient method of parameter prediction is needed for sensor validation of space shuttle main-engine (SSME) parameters during real-time safety monitoring and post-test analysis. Feedforward neural networks (FFNN) have been used to model the highly nonlinear and dynamic SSME parameters during startup. Due to several problems associated with the use of feedforward networks, radial-basis-function neural networks (RBFNN) were investigated in modeling SSME parameters. In this paper, RBFNNs are used to predict the high-pressure oxidizer turbine discharge temperature, a redlined parameter, during the startup transient. Data from SSME ground test firings were used to train and validate the RBFNNs. The performance of the RBFNN model is compared with that of a FFNN model, trained with the Quickprop learning algorithm. In comparison with the FFNN model, the RBFNN-based model was found to be more robust against variations in architecture and network parameters, and was faster to train. In addition, the performance of the RBFNN model during nominal operation and during simulated input sensor failures was found to be robust in the presence of small deviations in the input.

  16. CARS temperature measurements in the fuel preburner of the Space Shuttle main engine: A feasibility study

    NASA Technical Reports Server (NTRS)

    Beiting, E. J.; Luthe, J. C.

    1983-01-01

    This report discusses the feasibility of making temperature profile measurements in the fuel preburner of the main engine of the space shuttle (SSME) using coherent anti-Stokes Raman spectroscopy (CARS). The principal thrust of the work is to identify problems associated with making CARS measurements in high temperature gas phase hydrogen at very high pressures (approx 400 atmospheres). To this end a theoretical study was made of the characteristics of the CAR spectra of H2 as a function of temperature and pressure and the accuracy with which temperatures can be extracted from this spectra. In addition the experimental problems associated with carrying out these measurements on a SSME at NSTL were identified. A conceptual design of a CARS system suitable for this work is included. Many of the results of the calculations made in this report are plotted as a function of temperature. In the course of presenting these results, it was necessary to decide whether the number of density or the pressure should be treated as a fixed parameter.

  17. High-Performance Bipropellant Engine

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.; Schneider, Steven J.

    1999-01-01

    TRW, under contract to the NASA Lewis Research Center, has successfully completed over 10 000 sec of testing of a rhenium thrust chamber manufactured via a new-generation powder metallurgy. High performance was achieved for two different propellants, N2O4- N2H4 and N2O4 -MMH. TRW conducted 44 tests with N2O4-N2H4, accumulating 5230 sec of operating time with maximum burn times of 600 sec and a specific impulse Isp of 333 sec. Seventeen tests were conducted with N2O4-MMH for an additional 4789 sec and a maximum Isp of 324 sec, with a maximum firing duration of 700 sec. Together, the 61 tests totalled 10 019 sec of operating time, with the chamber remaining in excellent condition. Of these tests, 11 lasted 600 to 700 sec. The performance of radiation-cooled rocket engines is limited by their operating temperature. For the past two to three decades, the majority of radiation-cooled rockets were composed of a high-temperature niobium alloy (C103) with a disilicide oxide coating (R512) for oxidation resistance. The R512 coating practically limits the operating temperature to 1370 C. For the Earth-storable bipropellants commonly used in satellite and spacecraft propulsion systems, a significant amount of fuel film cooling is needed. The large film-cooling requirement extracts a large penalty in performance from incomplete mixing and combustion. A material system with a higher temperature capability has been matured to the point where engines are being readied for flight, particularly the 100-lb-thrust class engine. This system has powder rhenium (Re) as a substrate material with an iridium (Ir) oxidation-resistant coating. Again, the operating temperature is limited by the coating; however, Ir is capable of long-life operation at 2200 C. For Earth-storable bipropellants, this allows for the virtual elimination of fuel film cooling (some film cooling is used for thermal control of the head end). This has resulted in significant increases in specific impulse performance

  18. Italian High-speed Airplane Engines

    NASA Technical Reports Server (NTRS)

    Bona, C F

    1940-01-01

    This paper presents an account of Italian high-speed engine designs. The tests were performed on the Fiat AS6 engine, and all components of that engine are discussed from cylinders to superchargers as well as the test set-up. The results of the bench tests are given along with the performance of the engines in various races.

  19. Sloshing in Liquid Hydrogen and LOX Propellant Tanks After Main Engine Cut-off

    NASA Technical Reports Server (NTRS)

    Kim, Sura

    2011-01-01

    NASA Marshall Space Flight Center is designing and developing the Main Propulsion System (MPS) for Ares launch vehicles. The objective of this study is to calculate the sloshing forces and moments in the LH2 and LO2 propellant tanks using a CFD/VOF analysis under realistic flight conditions. Propellant sloshing in the liquid hydrogen (LH2) and the liquid oxygen (LO2) propellant tanks after Main Engine Cut Off (MECO) was modeled using the Volume of Fluid (VOF) module of the computational fluid dynamics code, CFD-ACE+. The present simulation shows that there are substantial sloshing side forces acting on the LH2 tank during the deceleration of the vehicle after MECO. The LH2 tank features a side wall drain pipe. The side loads result from the residual propellant mass motion in the LH2 tank which is initiated by the stop of flow into the drain pipe at MECO. The simulations show that radial force on the LH2 tank wall is less than 50 lbf and the radial moment calculated based up the center of gravity of the vehicle is predicted to be as high as 300 lbf-ft. The LO2 tank features a bottom dome drain system and is equipped with sloshing baffles. The remaining LO2 in the tank slowly forms a liquid column along the centerline of tank under the zero gravity environments. The radial force on the LO2 tank wall is predicted less than 100 lbf. The radial moment calculated based on the center of gravity of the vehicle is predicted as high as 4500 lbf-ft just before MECO and dropped down to near zero after propellant draining stopped completely.

  20. Binary interactions with high accretion rates onto main sequence stars

    NASA Astrophysics Data System (ADS)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10‑2 M ⊙ yr‑1 for solar type stars, and up to ≈ 1 M ⊙ yr‑1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  1. Numerical simulation methods of incompressible flows and an application to the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Chang, J. L. C.; Kwak, D.; Rogers, S. E.; Yang, R.-J.

    1988-01-01

    Incompressible Navier-Stokes solution methods are discussed with an emphasis on the pseudocompressibility method. A steady-state flow solver based on the pseudocompressibility approach is then described. This flow-solver code was used to analyze the internal flow in the Space Shuttle main engine hot-gas manifold. Salient features associated with this three-dimensional realistic flow simulation are discussed. Numerical solutions relevant to the current engine analysis and the redesign effort are discussed along with experimental results. This example demonstrates the potential of computational fluid dynamics as a design tool for aerospace applications.

  2. Space Shuttle Main Engine Start with Off-Nominal Propellant Inlet Pressures

    NASA Technical Reports Server (NTRS)

    Bradley, Michael

    1997-01-01

    This paper describes Rocketdyne's successful analysis and demonstration of the Space Shuttle Main Engine (SSME) operation at off-nominal propellant inlet conditions during the Reusable Launch Vehicle (RLV) evaluation tests. The nominal inlet condition range is: 103 to 111 psia and 170.5 to 178 deg. R for the oxidizer and 43 to 47 psia and 37 to 40 deg. R for the fuel. The SSME start was successfully demonstrated with engine inlet pressures of 50 psia liquid oxygen (LOX) with subcooled LOX at 160 deg R and 38 psia fuel at 38 deg. R. Four tests were used to incrementally modify the start sequence to demonstrate the final goal.

  3. Preliminary analysis of selected gas dynamic problems. [space shuttle main engine main combustion transients and IUS nozzle flow

    NASA Technical Reports Server (NTRS)

    Prozan, R. J.; Farmer, R. C.

    1985-01-01

    The VAST computer code was used to analyze SSME main combustion chamber start-up transients and the IUS flow field for a damaged nozzle was investigated to better understand the gas dynamic considerations involved in vehicle problems, the effect of start transients on the nozzle flow field for the SSME, and the possibility that a damaged nozzle could account for the acceleration anomaly noted on IUS burn. The results obtained were compared with a method of characteristics prediction. Pressure solutions from both codes were in very good agreement and the Mach number solution on the nozzle centerline deviates substantially for the high expansions for the SSME. Since this deviation was unexpected, the phenomenon is being further examined.

  4. Calculation of flow about posts and powerhead model. [space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Anderson, P. G.; Farmer, R. C.

    1985-01-01

    A three dimensional analysis of the non-uniform flow around the liquid oxygen (LOX) posts in the Space Shuttle Main Engine (SSME) powerhead was performed to determine possible factors contributing to the failure of the posts. Also performed was three dimensional numerical fluid flow analysis of the high pressure fuel turbopump (HPFTP) exhaust system, consisting of the turnaround duct (TAD), two-duct hot gas manifold (HGM), and the Version B transfer ducts. The analysis was conducted in the following manner: (1) modeling the flow around a single and small clusters (2 to 10) of posts; (2) modeling the velocity field in the cross plane; and (3) modeling the entire flow region with a three dimensional network type model. Shear stress functions which will permit viscous analysis without requiring excessive numbers of computational grid points were developed. These wall functions, laminar and turbulent, have been compared to standard Blasius solutions and are directly applicable to the cylinder in cross flow class of problems to which the LOX post problem belongs.

  5. Reliability growth modeling analysis of the space shuttle main engines based upon the Weibull process

    NASA Technical Reports Server (NTRS)

    Wheeler, J. T.

    1990-01-01

    The Weibull process, identified as the inhomogeneous Poisson process with the Weibull intensity function, is used to model the reliability growth assessment of the space shuttle main engine test and flight failure data. Additional tables of percentage-point probabilities for several different values of the confidence coefficient have been generated for setting (1-alpha)100-percent two sided confidence interval estimates on the mean time between failures. The tabled data pertain to two cases: (1) time-terminated testing, and (2) failure-terminated testing. The critical values of the three test statistics, namely Cramer-von Mises, Kolmogorov-Smirnov, and chi-square, were calculated and tabled for use in the goodness of fit tests for the engine reliability data. Numerical results are presented for five different groupings of the engine data that reflect the actual response to the failures.

  6. The main problems in the mechanical engineering sector and some possible directions of their solution

    NASA Astrophysics Data System (ADS)

    Strizhakova, E.

    2016-04-01

    The article shows the problems of the sector of mechanical engineering in the industrial system in Russia. The author's method of estimating the relative level of risk and the method of determining the de-industrialization degree of the sector based on the aggregated level of adaptability are given. According to them we have analysed the key indicators, such as basic, developed and advanced technologies, and investments in an old or new technology of industrial sectors. The main directions of the impact of industrial policy allowing a change in the current situation in mechanical engineering are given. The results can be applied in practice in formation of directions and actual control actions to improve the overall efficiency of mechanical engineering industry.

  7. Use of an expert system data analysis manager for space shuttle main engine test evaluation

    NASA Technical Reports Server (NTRS)

    Abernethy, Ken

    1988-01-01

    The ability to articulate, collect, and automate the application of the expertise needed for the analysis of space shuttle main engine (SSME) test data would be of great benefit to NASA liquid rocket engine experts. This paper describes a project whose goal is to build a rule-based expert system which incorporates such expertise. Experiential expertise, collected directly from the experts currently involved in SSME data analysis, is used to build a rule base to identify engine anomalies similar to those analyzed previously. Additionally, an alternate method of expertise capture is being explored. This method would generate rules inductively based on calculations made using a theoretical model of the SSME's operation. The latter rules would be capable of diagnosing anomalies which may not have appeared before, but whose effects can be predicted by the theoretical model.

  8. Investigation of instability, dynamic forces, and effect of dynamic loading on strength of cages for the bearings in the high pressure oxygen turbopumps for the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Dufrane, K. F.; Kannel, J. W.; Merriman, T. L.; Rosenfield, A. R.

    1985-01-01

    Experiments were performed to determine the effect of cyclic loading on bearing cage strength. A long term working tensile load of approximately 1300 N (300 lbs) was found to be the likely maximum. Higher loads caused a decrease in cage tensile strength after the 125,000 cycle testing period. Poisson's ratio in compression was found to be highly dependent upon the direction of the fiberglass plies. At room temperature the value was 0.15 with the plies and 0.68 across the plies. At -196 C (-321 F), the value with the plies was 0.20. The results of the analyses conducted have again demonstrated the critical need for improved lubrication in the high pressure oxygen turbopump bearings. Lubricant films with low shear strength and low friction coefficients promote cage stability and decrease ball/cage forces during marginal operating conditions. The analysis of the effect of combined bearing loads on ball/cage loads has identified a radial load of 3600 N (800 lbs) as the maximum for the current clearance of the balls and cage pockets. Liquid oxygen impinging on the cage in the direction of rotation was found to enhance cage stability.

  9. Real gas properties and Space Shuttle Main Engine fuel turbine performance prediction

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.

    1987-01-01

    The H2/H2O mixture thermodynamic and transport properties variations for the Space Shuttle Main Engine (SSME) fuel turbine over a range of temperatures and pressures are examined. The variation of molecular viscosity, specific heat at constant pressure, and Prandtl number for the hydrogen/steam mixture are fitted using polynominal relationships for future turbine performance use. The mixture property variations are calculated using GASP and WASP computer programs. The air equivalent performance of the SSME fuel turbine is computed.

  10. Phased Array Ultrasonic Examination of Space Shuttle Main Engine Nozzle Weld

    NASA Technical Reports Server (NTRS)

    James, S.; Engel, J.; Kimbrough, D.; Suits, M.; McCool, Alex (Technical Monitor)

    2001-01-01

    This paper describes a Phased Array Ultrasonic Examination that was developed for the examination of a limited access circumferential Inconel 718 fusion weld of a Space Shuttle Main Engine Nozzle - Cone. The paper discusses the selection and formation criteria used for the phased array focal laws, the reference standard that simulated hardware conditions, the examination concept, and results. Several unique constraints present during this examination included limited probe movement to a single axis and one-sided access to the weld.

  11. Fermilab main injector: High intensity operation and beam loss control

    NASA Astrophysics Data System (ADS)

    Brown, Bruce C.; Adamson, Philip; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K.; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen

    2013-07-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  12. High frequency dynamic engine simulation. [TF-30 engine

    NASA Technical Reports Server (NTRS)

    Schuerman, J. A.; Fischer, K. E.; Mclaughlin, P. W.

    1977-01-01

    A digital computer simulation of a mixed flow, twin spool turbofan engine was assembled to evaluate and improve the dynamic characteristics of the engine simulation to disturbance frequencies of at least 100 Hz. One dimensional forms of the dynamic mass, momentum and energy equations were used to model the engine. A TF30 engine was simulated so that dynamic characteristics could be evaluated against results obtained from testing of the TF30 engine at the NASA Lewis Research Center. Dynamic characteristics of the engine simulation were improved by modifying the compression system model. Modifications to the compression system model were established by investigating the influence of size and number of finite dynamic elements. Based on the results of this program, high frequency engine simulations using finite dynamic elements can be assembled so that the engine dynamic configuration is optimum with respect to dynamic characteristics and computer execution time. Resizing of the compression systems finite elements improved the dynamic characteristics of the engine simulation but showed that additional refinements are required to obtain close agreement simulation and actual engine dynamic characteristics.

  13. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix B: Data base plots for SSME tests 901-290 through 901-414

    NASA Technical Reports Server (NTRS)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is described. The data base represents dynamic pressure measurements obtained during single engine hot firing tesets of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is also included to estimate spectral trends with SSME power level. Flow dynamic environments in high performance rocket engines are discussed.

  14. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix C: Data base plots for SSME tests 902-214 through 902-314

    NASA Technical Reports Server (NTRS)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is reported. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is included to estimate spectral trends with SSME power level. Flow Dynamic Environments in High Performance Rocket Engines are described.

  15. Algorithms for real-time fault detection of the Space Shuttle Main Engine

    NASA Astrophysics Data System (ADS)

    Ruiz, C. A.; Hawman, M. W.; Galinaitis, W. S.

    1992-07-01

    This paper reports on the results of a program to develop and demonstrate concepts related to a realtime health management system (HMS) for the Space Shuttle Main Engine (SSME). An HMS framework was developed on the basis of a top-down analysis of the current rocket engine failure modes and the engine monitoring requirements. One result of Phase I of this program was the identification of algorithmic approaches for detecting failures of the SSME. Three different analytical techniques were developed which demonstrated the capability to detect failures significantly earlier than the existing redlines. Based on promising initial results, Phase II of the program was initiated to further validate and refine the fault detection strategy on a large data base of 140 SSME test firings, and implement the resultant algorithms in real time. The paper begins with an overview of the refined algorithms used to detect failures during SSME start-up and main-stage operation. Results of testing these algorithms on a data base of nominal and off-nominal SSME test firings is discussed. The paper concludes with a discussion of the performance of the algorithms operating on a real-time computer system.

  16. Algorithms for real-time fault detection of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Ruiz, C. A.; Hawman, M. W.; Galinaitis, W. S.

    1992-01-01

    This paper reports on the results of a program to develop and demonstrate concepts related to a realtime health management system (HMS) for the Space Shuttle Main Engine (SSME). An HMS framework was developed on the basis of a top-down analysis of the current rocket engine failure modes and the engine monitoring requirements. One result of Phase I of this program was the identification of algorithmic approaches for detecting failures of the SSME. Three different analytical techniques were developed which demonstrated the capability to detect failures significantly earlier than the existing redlines. Based on promising initial results, Phase II of the program was initiated to further validate and refine the fault detection strategy on a large data base of 140 SSME test firings, and implement the resultant algorithms in real time. The paper begins with an overview of the refined algorithms used to detect failures during SSME start-up and main-stage operation. Results of testing these algorithms on a data base of nominal and off-nominal SSME test firings is discussed. The paper concludes with a discussion of the performance of the algorithms operating on a real-time computer system.

  17. Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster

    NASA Technical Reports Server (NTRS)

    Ryan, Richard M.; Rothschild, William J.; Christensen, David L.

    1998-01-01

    The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety, performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key Criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket-engines characteristics. This includes BME impacts on vehicle system weight, performance, design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.

  18. Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster

    NASA Technical Reports Server (NTRS)

    Ryan, Richard M.; Rothschild, William J.; Christensen, David L.

    1998-01-01

    The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket engines' characteristics. This includes BME impacts on vehicle system weight, perfortnance,design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.

  19. Structural integrity and durability for Space Shuttle main engine and future reusable space propulsion systems

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Gawrylowicz, H. T.

    1986-01-01

    NASA is conducting a program which will establish a technology base for the orderly evolution of reusable space propulsion systems. As part of that program, NASA initiated a Structural Integrity and Durability effort for advanced high-pressure oxygen-hydrogen rocket engine technology. That effort focuses on the development of: (1) accurate analytical models to describe flow fields; aerothermodynamic loads; structural responses; and fatigue/fracture, from which life prediction codes can be evolved; and (2) advanced instrumentation with capabilities to verify the codes in an SSME-like environment as well as the potential for future use as diagnostic sensors for real-time condition monitoring of critical engine components.

  20. Operating manual for coaxial injection combustion model. [for the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Sutton, R. D.; Schuman, M. D.; Chadwick, W. D.

    1974-01-01

    An operating manual for the coaxial injection combustion model (CICM) is presented as the final report for an eleven month effort designed to provide improvement, to verify, and to document the comprehensive computer program for analyzing the performance of thrust chamber operation with gas/liquid coaxial jet injection. The effort culminated in delivery of an operation FORTRAN IV computer program and associated documentation pertaining to the combustion conditions in the space shuttle main engine. The computer program is structured for compatibility with the standardized Joint Army-Navy-NASA-Air Force (JANNAF) performance evaluation procedure. Use of the CICM in conjunction with the JANNAF procedure allows the analysis of engine systems using coaxial gas/liquid injection.

  1. Off-line programming motion and process commands for robotic welding of Space Shuttle main engines

    NASA Technical Reports Server (NTRS)

    Ruokangas, C. C.; Guthmiller, W. A.; Pierson, B. L.; Sliwinski, K. E.; Lee, J. M. F.

    1987-01-01

    The off-line-programming software and hardware being developed for robotic welding of the Space Shuttle main engine are described and illustrated with diagrams, drawings, graphs, and photographs. The menu-driven workstation-based interactive programming system is designed to permit generation of both motion and process commands for the robotic workcell by weld engineers (with only limited knowledge of programming or CAD systems) on the production floor. Consideration is given to the user interface, geometric-sources interfaces, overall menu structure, weld-parameter data base, and displays of run time and archived data. Ongoing efforts to address limitations related to automatic-downhand-configuration coordinated motion, a lack of source codes for the motion-control software, CAD data incompatibility, interfacing with the robotic workcell, and definition of the welding data base are discussed.

  2. A high performance thermoacoustic engine

    NASA Astrophysics Data System (ADS)

    Tijani, M. E. H.; Spoelstra, S.

    2011-11-01

    In thermoacoustic systems heat is converted into acoustic energy and vice versa. These systems use inert gases as working medium and have no moving parts which makes the thermoacoustic technology a serious alternative to produce mechanical or electrical power, cooling power, and heating in a sustainable and environmentally friendly way. A thermoacoustic Stirling heat engine is designed and built which achieves a record performance of 49% of the Carnot efficiency. The design and performance of the engine is presented. The engine has no moving parts and is made up of few simple components.

  3. Space shuttle main engine definition (phase B). Volume 5: Valves and interconnects. [for space shuttle

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1971-01-01

    The steady state thermodynamic cycle balance of the single preburner staged combustion engine, coupled with dynamic transient analyses, dictated in detail the location and requirements for each valve defined in this volume. Valve configuration selections were influenced by overall engine and vehicle system weight and failure mode determinations. Modulating valve actuators are external to the valve and are line replaceable. Development and satisfactory demonstration of a high pressure dynamic shaft seal has made this configuration practical. Pneumatic motor driven actuators that use engine pumped hydrogen gas as the working fluid are used. The helium control system is proposed as a module containing a cluster of solenoid actuated valves. The separable couplings and flanges are designed to assure minimum leakage with minimum coupling weight. The deflection of the seal surface in the flange is defined by finite element analysis that has been confirmed with test data. The seal design proposed has passed preliminary pressure cycling and thermal cycling tests.

  4. Pratt and Whitney Rocketdyne Space Shuttle Main Engine Heritage Commemorative: Powerhead and Ducts, Test and Flight Operations

    NASA Technical Reports Server (NTRS)

    Cook, Jerry R.; Willis, Martha

    2009-01-01

    The videos (Powerhead and Ducts, Test and Flight Operations) review the Space Shuttle Main Engine (SSME) program from Pratt and Whitney Rocketdyne. They include highlights from the engine's development and lifecycle through the engine testing to the deployment in the space shuttle.

  5. Validation of the space shuttle main engine steady state performance model

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1990-01-01

    The primary objective was to present methods for validating predictions of Rocketdyne's most current version of the Space Shuttle Main Engine (SSME) Power Balance Model (PBM) with respect to physical relations governing flow systems. This required the development and implementation of postprocessors to check results of PBM computations for satisfaction of conservation relations. A cursory uncertainty analysis of PBM predictions with respect to mass and energy balances was performed. In addition, an effort to identify the empirical relations and physical assumptions within PBM which impact the ability of the model to attain rigorous balance was begun.

  6. Spares Management : Optimizing Hardware Usage for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Gulbrandsen, K. A.

    1999-01-01

    The complexity of the Space Shuttle Main Engine (SSME), combined with mounting requirements to reduce operations costs have increased demands for accurate tracking, maintenance, and projections of SSME assets. The SSME Logistics Team is developing an integrated asset management process. This PC-based tool provides a user-friendly asset database for daily decision making, plus a variable-input hardware usage simulation with complex logic yielding output that addresses essential asset management issues. Cycle times on critical tasks are significantly reduced. Associated costs have decreased as asset data quality and decision-making capability has increased.

  7. Investigations for the improvement of space shuttle main engine electron beam welding equipment

    NASA Technical Reports Server (NTRS)

    Smock, R. A.; Taylor, R. A.; Wall, W. A., Jr.

    1977-01-01

    Progress made in the testing, evaluation, and correction of MSFC's 7.5 kW electron beam welder in support of space shuttle main engine component welding is summarized. The objective of this project was to locate and correct the deficiencies in the welder. Some 17 areas were deficient in the 7.5 kW ERI welding system and the associated corrective action was taken to improve its operational performance. An overall improvement of 20 times the original reliability was obtained at full rated capacity after the modifications were made.

  8. Space Shuttle Main Engine plume diagnostics: OPAD approach to vehicle health monitoring

    NASA Astrophysics Data System (ADS)

    Powers, W. T.; Cooper, A. E.; Wallace, T. L.; Buntine, W. L.; Whitaker, K.

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup, AEDC, in Tullahoma, Tennessee. This process, Optical Plume Anomaly Detection (OPAD), has formed the basis for various efforts in the development of in-flight plume spectroscopy and in addition produced a viable test stand vehicle health monitor. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data.

  9. Thrust chamber performance using Navier-Stokes solution. [space shuttle main engine viscous nozzle calculation

    NASA Technical Reports Server (NTRS)

    Chan, J. S.; Freeman, J. A.

    1984-01-01

    The viscous, axisymmetric flow in the thrust chamber of the space shuttle main engine (SSME) was computed on the CRAY 205 computer using the general interpolants method (GIM) code. Results show that the Navier-Stokes codes can be used for these flows to study trends and viscous effects as well as determine flow patterns; but further research and development is needed before they can be used as production tools for nozzle performance calculations. The GIM formulation, numerical scheme, and computer code are described. The actual SSME nozzle computation showing grid points, flow contours, and flow parameter plots is discussed. The computer system and run times/costs are detailed.

  10. Sen. John C. Stennis celebrates a successful Space Shuttle Main Engine test

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Sen. John C. Stennis dances a jig on top of the Test Control Center at Stennis Space Center following the successful test of a Space Shuttle Main Engine in 1978. A staunch supporter of the National Aeronautics and Space Administration (NASA), the senior senator from DeKalb, Miss., supported the establishment of the space center in Hancock County and spoke personally with local residents who would relocate their homes to accommodate Mississippi's entry into the space age. Stennis Space Center was named for Sen. Stennis by Executive Order of President Ronald Reagan on May 20, 1988.

  11. Space Shuttle Main Engine plume diagnostics: OPAD approach to vehicle health monitoring

    NASA Technical Reports Server (NTRS)

    Powers, W. T.; Cooper, A. E.; Wallace, T. L.; Buntine, W. L.; Whitaker, K.

    1993-01-01

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup, AEDC, in Tullahoma, Tennessee. This process, Optical Plume Anomaly Detection (OPAD), has formed the basis for various efforts in the development of in-flight plume spectroscopy and in addition produced a viable test stand vehicle health monitor. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data.

  12. Study of hydraulic actuation system for Space Shuttle main engine propellant valves

    NASA Technical Reports Server (NTRS)

    Ewel, Bob (Editor)

    1993-01-01

    Recent performance concerns involving the Space Shuttle Main Engine Propellant Valve Actuator assemblies prompted the NASA Marshall Space Flight Center to request an independent design assessment. Moog Inc. responded to this request and received a study contract with objectives of increasing valve reliability, decreasing maintenance costs while preserving the existing design interfaces. The results of the Propellant Valve Actuation System review focus on contamination control and the bypass valve design. Three proof of concept bypass valves employing design changes were built and successfully tested. Test results are presented.

  13. Size Distribution of Main-Belt Asteroids with High Inclination

    NASA Astrophysics Data System (ADS)

    Terai, Tsuyoshi; Itoh, Yoichi

    2011-04-01

    We investigated the size distribution of high-inclination main-belt asteroids (MBAs) so as to explore asteroid collisional evolution under hypervelocity collisions of around 10 km s-1. We performed a wide-field survey for high-inclination sub-km MBAs using the 8.2-m Subaru Telescope with the Subaru Prime Focus Camera (Suprime-Cam). Suprime-Cam archival data were also used. A total of 616 MBA candidates were detected in an area of 9.0 deg² with a limiting magnitude of 24.0 mag in the SDSS r filter. Most of the candidate diameters were estimated to be smaller than 1 km. We found a scarcity of sub-km MBAs with high inclination. Cumulative size distributions (CSDs) were constructed using Subaru data and published asteroid catalogs. The power-law indexes of the CSDs were 2.17±0.02 for low-inclination (<15°) MBAs and 2.02±0.03 for high-inclination (>15°) MBAs in the 0.7-50 km diameter range. The high-inclination MBAs had a shallower CSD. We also found that the CSD of S-like MBAs had a small slope with high inclination, whereas the slope did not vary with the inclination in the C-like group. The most probable cause of the shallow CSD of the high-inclination S-like MBAs is the large power-law index in the diameter-impact strength curve in hypervelocity collisions. The collisional evolution of MBAs may have advanced with oligopolistic survival during the dynamical excitation phase in the final stage of planet formation.

  14. HIGH ECLIPTIC LATITUDE SURVEY FOR SMALL MAIN-BELT ASTEROIDS

    SciTech Connect

    Terai, Tsuyoshi; Takahashi, Jun; Itoh, Yoichi

    2013-11-01

    Main-belt asteroids have been continuously colliding with one another since they were formed. Their size distribution is primarily determined by the size dependence of asteroid strength against catastrophic impacts. The strength scaling law as a function of body size could depend on collision velocity, but the relationship remains unknown, especially under hypervelocity collisions comparable to 10 km s{sup –1}. We present a wide-field imaging survey at an ecliptic latitude of about 25° for investigating the size distribution of small main-belt asteroids that have highly inclined orbits. The analysis technique allowing for efficient asteroid detections and high-accuracy photometric measurements provides sufficient sample data to estimate the size distribution of sub-kilometer asteroids with inclinations larger than 14°. The best-fit power-law slopes of the cumulative size distribution are 1.25 ± 0.03 in the diameter range of 0.6-1.0 km and 1.84 ± 0.27 in 1.0-3.0 km. We provide a simple size distribution model that takes into consideration the oscillations of the power-law slope due to the transition from the gravity-scaled regime to the strength-scaled regime. We find that the high-inclination population has a shallow slope of the primary components of the size distribution compared to the low-inclination populations. The asteroid population exposed to hypervelocity impacts undergoes collisional processes where large bodies have a higher disruptive strength and longer lifespan relative to tiny bodies than the ecliptic asteroids.

  15. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    NASA Astrophysics Data System (ADS)

    1993-11-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  16. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  17. Characterization of real gas properties for space shuttle main engine fuel turbine and performance calculations

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.

    1986-01-01

    Real thermodynamic and transport properties of hydrogen, steam, the SSME mixture, and air are developed. The SSME mixture properties are needed for the analysis of the space shuttle main engine fuel turbine. The mixture conditions for the gases, except air, are presented graphically over a temperature range from 800 to 1200 K, and a pressure range from 1 to 500 atm. Air properties are given over a temperature range of 320 to 500 K, which are within the bounds of the thermodynamics programs used, in order to provide mixture data which is more easily checked (than H2/H2O). The real gas property variation of the SSME mixture is quantified. Polynomial expressions, needed for future computer analysis, for viscosity, Prandtl number, and thermal conductivity are given for the H2/H2O SSME fuel turbine mixture at a pressure of 305 atm over a range of temperatures from 950 to 1140 K. These conditions are representative of the SSME turbine operation. Performance calculations are presented for the space shuttle main engine (SSME) fuel turbine. The calculations use the air equivalent concept. Progress towards obtaining the capability to evaluate the performance of the SSME fuel turbine, with the H2/H2O mixture, is described.

  18. Engineering Problem Finding in High School Students

    ERIC Educational Resources Information Center

    Franske, Benjamin James

    2009-01-01

    The purpose of this study was to explore the engineering problem finding ability of high school students at three high schools in Minnesota. Students at each of the three schools had differing backgrounds including pre-engineering coursework, traditional technology education coursework and advanced science coursework. Students were asked to find…

  19. Characterizing Observed Limit Cycles in the Cassini Main Engine Guidance Control System

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen; Weitl, Raquel M.

    2011-01-01

    The Cassini spacecraft dynamics-related telemetry during long Main Engine (ME) burns has indicated the presence of stable limit cycles between 0.03-0.04 Hz frequencies. These stable limit cycles cause the spacecraft to possess non-zero oscillating rates for extended periods of time. This indicates that the linear ME guidance control system does not model the complete dynamics of the spacecraft. In this study, we propose that the observed limit cycles in the spacecraft dynamics telemetry appear from a stable interaction between the unmodeled nonlinear elements in the ME guidance control system. Many nonlinearities in the control system emerge from translating the linear engine gimbal actuator (EGA) motion into a spacecraft rotation. One such nonlinearity comes from the gear backlash in the EGA system, which is the focus of this paper. The limit cycle characteristics and behavior can be predicted by modeling this gear backlash nonlinear element via a describing function and studying the interaction of this describing function with the overall dynamics of the spacecraft. The linear ME guidance controller and gear backlash nonlinearity are modeled analytically. The frequency, magnitude, and nature of the limit cycle are obtained from the frequency response of the ME guidance controller and nonlinear element. In addition, the ME guidance controller along with the nonlinearity is simulated. The simulation response contains a limit cycle with similar characterstics as predicted analytically: 0.03-0.04 Hz frequency and stable, sustained oscillations. The analytical and simulated limit cycle responses are compared to the flight telemetry for long burns such as the Saturn Orbit Insertion and Main Engine Orbit Trim Maneuvers. The analytical and simulated limit cycle characteristics compare well with the actual observed limit cycles in the flight telemetry. Both have frequencies between 0.03-0.04 Hz and stable oscillations. This work shows that the stable limit cycles occur

  20. Popham Beach, Maine: An example of engineering activity that saved beach property without harming the beach

    NASA Astrophysics Data System (ADS)

    Kelley, Joseph T.

    2013-10-01

    Beach and property erosion on coasts is a widespread and chronic problem. Historical approaches to this issue, including seawalls and sand replenishment, are often inappropriate or too expensive. In Maine, seawalls were banned in 1983 and replenishment is too costly to employ. Replacement of storm-damaged buildings is also not allowed, and a precedent case on Popham Beach, Maine required that the owner remove an unpermitted building from a site where an earlier structure was damaged. When the most popular park in Maine, Popham Beach State Park, experienced inlet associated erosion that threatened park infrastructure (a bathhouse), temporary measures were all that the law allowed. Because it was clear that the inlet channel causing the erosion would eventually change course, the state opted to erect a temporary seawall with fallen trees at the site. This may or may not have slowed the erosion temporarily, but reassured the public that "something was being done". Once a storm cut a new tidal inlet channel and closed off the old one, tidal water still entered the former channel and continued to threaten the bathhouse. To ultimately save the property, beach scraping was employed. Sand was scraped from the lower beach to construct a sand berm that deflected the tidal current away from the endangered property. This action created enough time for natural processes to drive the remains of the former spit onto the beach and widen it significantly. Whereas many examples of engineering practices exist that endanger instead of saving beaches, this example is one of an appropriate engineering effort to rescue unwisely located beach-front property.

  1. Automation based on knowledge modeling theory and its applications in engine diagnostic systems using Space Shuttle Main Engine vibrational data. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kim, Jonnathan H.

    1995-01-01

    Humans can perform many complicated tasks without explicit rules. This inherent and advantageous capability becomes a hurdle when a task is to be automated. Modern computers and numerical calculations require explicit rules and discrete numerical values. In order to bridge the gap between human knowledge and automating tools, a knowledge model is proposed. Knowledge modeling techniques are discussed and utilized to automate a labor and time intensive task of detecting anomalous bearing wear patterns in the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP).

  2. Development of a CCTV system for welder training and monitoring of Space Shuttle Main Engine welds

    NASA Technical Reports Server (NTRS)

    Gordon, S. S.; Flanigan, L. A.; Dyer, G. E.

    1987-01-01

    A Weld Operator's Remote Monitoring System (WORMS) for remote viewing of manual and automatic GTA welds has been developed for use in Space Shuttle Main Engine (SSME) manufacturing. This system utilizes fiberoptics to transmit images from a receiving lens to a small closed-circuit television (CCTV) camera. The camera converts the image to an electronic signal, which is sent to a videotape recorder (VTR) and a monitor. The overall intent of this system is to provide a clearer, more detailed view of welds than is available by direct observation. This system has six primary areas of application: (1) welder training; (2) viewing of joint penetration; (3) viewing visually inaccessible welds; (4) quality control and quality assurance; (5) remote joint tracking and adjustment of variables in machine welds; and (6) welding research and development. This paper describes WORMS and how it applies to each application listed.

  3. Flow-induced vibration of the SSME Lox posts: additional issues. [Space shuttle main engine

    SciTech Connect

    Chen, S.S.

    1984-12-01

    A mathematical model is presented for flow-induced vibration of the Space Shuttle Main Engine (SSME) liquid oxygen (LOX) posts. The definition of the critical flow velocity is addressed, and detuning of the vibrations of the LOX posts is discussed. Nonuniform flow distributions in the axial and transverse directions are examined briefly, followed by upstream turbulence. The dependence of response upon post location is addressed briefly. Scruton's number, a mass-damping parameter, is defined and its value for the SSME LOX posts is given. Also discussed are the interaction of turbulent buffeting and fluidelastic instability, post arrangement, and swirlers around the posts. The differences are discussed between the quasi-static, the analytical, and the general analytical mathematical models. (LEW)

  4. Space Shuttle Main Engine (SSME) LOX turbopump pump-end bearing analysis

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A simulation of the shaft/bearing system of the Space Shuttle Main Engine Liquid Oxygen turbopump was developed. The simulation model allows the thermal and mechanical characteristics to interact as a realistic simulation of the bearing operating characteristics. The model accounts for single and two phase coolant conditions, and includes the heat generation from bearing friction and fluid stirring. Using the simulation model, parametric analyses were performed on the 45 mm pump-end bearings to investigate the sensitivity of bearing characteristics to contact friction, axial preload, coolant flow rate, coolant inlet temperature and quality, heat transfer coefficients, outer race clearance and misalignment, and the effects of thermally isolating the outer race from the isolator.

  5. Range safety signal attenuation by the Space Shuttle main engine exhaust plumes

    NASA Technical Reports Server (NTRS)

    Pearce, B. E.

    1983-01-01

    An analysis of attenuation of the range safety signal at 416.5 MHz observed after SRB separation and ending at hand over to Bermuda, during which transmission must pass through the LOX/H2 propelled main engine exhaust plumes, is summarized. Absorption by free electrons in the exhaust plume can account for the nearly constant magnitude of the observed attenuation during this period; it does not explain the short term transient increases that occur at one or more times during this portion of the flight. It is necessary to assume that a trace amount (about 0.5 ppm) of easily ionizable impurity must be present in the exhaust flow. Other mechanisms of attenuation, such as scattering by turbulent fluctuations of both free and bound electrons and absorption by water vapor, were examined but found to be inadequate to explain the observations.

  6. A History of Space Shuttle Main Engine (SSME) Redline Limits Management

    NASA Technical Reports Server (NTRS)

    Arnold, Thomas M.

    2011-01-01

    The Space Shuttle Main Engine (SSME) has several "redlines", which are operational limits designated to preclude a catastrophic shutdown of the SSME. The Space Shuttle Orbiter utilizes a combination of hardware and software to enable or disable the automated redline shutdown capability. The Space Shuttle is launched with the automated SSME redline limits enabled, but there are many scenarios which may result in the manual disabling of the software by the onboard crew. The operational philosophy for manually enabling and disabling the redline limits software has evolved continuously throughout the history of the Space Shuttle Program, due to events such as SSME hardware changes and updates to Space Shuttle contingency abort software. In this paper, the evolution of SSME redline limits management will be fully reviewed, including the operational scenarios which call for manual intervention, and the events that triggered changes to the philosophy. Following this review, improvements to the management of redline limits for future spacecraft will be proposed.

  7. Signal Detection Techniques for Diagnostic Monitoring of Space Shuttle Main Engine Turbomachinery

    NASA Technical Reports Server (NTRS)

    Coffin, Thomas; Jong, Jen-Yi

    1986-01-01

    An investigation to develop, implement, and evaluate signal analysis techniques for the detection and classification of incipient mechanical failures in turbomachinery is reviewed. A brief description of the Space Shuttle Main Engine (SSME) test/measurement program is presented. Signal analysis techniques available to describe dynamic measurement characteristics are reviewed. Time domain and spectral methods are described, and statistical classification in terms of moments is discussed. Several of these waveform analysis techniques have been implemented on a computer and applied to dynamc signals. A laboratory evaluation of the methods with respect to signal detection capability is described. A unique coherence function (the hyper-coherence) was developed through the course of this investigation, which appears promising as a diagnostic tool. This technique and several other non-linear methods of signal analysis are presented and illustrated by application. Software for application of these techniques has been installed on the signal processing system at the NASA/MSFC Systems Dynamics Laboratory.

  8. Analysis of internal flows relative to the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Cooperative efforts between the Lockheed-Huntsville Computational Mechanics Group and the NASA-MSFC Computational Fluid Dynamics staff has resulted in improved capabilities for numerically simulating incompressible flows generic to the Space Shuttle Main Engine (SSME). A well established and documented CFD code was obtained, modified, and applied to laminar and turbulent flows of the type occurring in the SSME Hot Gas Manifold. The INS3D code was installed on the NASA-MSFC CRAY-XMP computer system and is currently being used by NASA engineers. Studies to perform a transient analysis of the FPB were conducted. The COBRA/TRAC code is recommended for simulating the transient flow of oxygen into the LOX manifold. Property data for modifying the code to represent LOX/GOX flow was collected. The ALFA code was developed and recommended for representing the transient combustion in the preburner. These two codes will couple through the transient boundary conditions to simulate the startup and/or shutdown of the fuel preburner. A study, NAS8-37461, is currently being conducted to implement this modeling effort.

  9. Space Shuttle main engine OPAD: The search for a hardware enhanced plume

    NASA Astrophysics Data System (ADS)

    Powers, W. T.; Cooper, A. E.; Wallace, Tim L.; Buntine, W. L.; Whitaker, K. W.

    1993-11-01

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup AEDC, in Tullahoma, Tennessee. This team continues to lead and guide efforts in the plume diagnostics arena. The process, Optical Plume Anomaly Detection (OPAD), formed the basis for various activities in the development of ground-based systems as well as the development of in-flight plume spectroscopy. OPAD currently provides and will continue to provide valuable information relative to future systems definitions, instrumentation development, code validation, and data diagnostic processing. OPAD is based on the detection of anomalous atomic and molecular species in the SSME plume using two complete, stand-alone optical spectrometers. To-date OPAD has acquired data on 44 test firings of the SSME at the Technology Test Bed (TTB) at MSFC. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data. It will encompass such issues as selection of instrumentation correlation of data to nominal engine operation, investigation of SSME component erosion via OPAD spectral data, necessity and benefits of plume seeding, application of artificial intelligence (AI) techniques to data analysis, and the present status of efforts to quantify specie erosion utilizing standard plume and chemistry codes as well as radiative models currently under development.

  10. Space Shuttle main engine OPAD: The search for a hardware enhanced plume

    NASA Technical Reports Server (NTRS)

    Powers, W. T.; Cooper, A. E.; Wallace, Tim L.; Buntine, W. L.; Whitaker, K. W.

    1993-01-01

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup AEDC, in Tullahoma, Tennessee. This team continues to lead and guide efforts in the plume diagnostics arena. The process, Optical Plume Anomaly Detection (OPAD), formed the basis for various activities in the development of ground-based systems as well as the development of in-flight plume spectroscopy. OPAD currently provides and will continue to provide valuable information relative to future systems definitions, instrumentation development, code validation, and data diagnostic processing. OPAD is based on the detection of anomalous atomic and molecular species in the SSME plume using two complete, stand-alone optical spectrometers. To-date OPAD has acquired data on 44 test firings of the SSME at the Technology Test Bed (TTB) at MSFC. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data. It will encompass such issues as selection of instrumentation correlation of data to nominal engine operation, investigation of SSME component erosion via OPAD spectral data, necessity and benefits of plume seeding, application of artificial intelligence (AI) techniques to data analysis, and the present status of efforts to quantify specie erosion utilizing standard plume and chemistry codes as well as radiative models currently under development.

  11. A neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Guo, T. H.; Musgrave, J.

    1992-01-01

    In order to properly utilize the available fuel and oxidizer of a liquid propellant rocket engine, the mixture ratio is closed loop controlled during main stage (65 percent - 109 percent power) operation. However, because of the lack of flight-capable instrumentation for measuring mixture ratio, the value of mixture ratio in the control loop is estimated using available sensor measurements such as the combustion chamber pressure and the volumetric flow, and the temperature and pressure at the exit duct on the low pressure fuel pump. This estimation scheme has two limitations. First, the estimation formula is based on an empirical curve fitting which is accurate only within a narrow operating range. Second, the mixture ratio estimate relies on a few sensor measurements and loss of any of these measurements will make the estimate invalid. In this paper, we propose a neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine. The estimator is an extension of a previously developed neural network based sensor failure detection and recovery algorithm (sensor validation). This neural network uses an auto associative structure which utilizes the redundant information of dissimilar sensors to detect inconsistent measurements. Two approaches have been identified for synthesizing mixture ratio from measurement data using a neural network. The first approach uses an auto associative neural network for sensor validation which is modified to include the mixture ratio as an additional output. The second uses a new network for the mixture ratio estimation in addition to the sensor validation network. Although mixture ratio is not directly measured in flight, it is generally available in simulation and in test bed firing data from facility measurements of fuel and oxidizer volumetric flows. The pros and cons of these two approaches will be discussed in terms of robustness to sensor failures and accuracy of the estimate during typical transients using

  12. New High in Engineering Degree Production. Facts

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2010

    2010-01-01

    Several of the state's key industry sectors depend heavily on employees with advanced scientific, analytic and technical knowledge. Among the fields closely related to these sectors, engineering degrees have posted the largest gain. This paper presents details on the following facts: (1) 2009 represented a record high for engineering degrees; (2)…

  13. Dynamic Characteristics and Stability Analysis of Space Shuttle Main Engine Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Gunter, Edgar J.; Branagan, Lyle

    1991-01-01

    The dynamic characteristics of the Space Shuttle high pressure oxygen pump are presented. Experimental data is presented to show the vibration spectrum and response under actual engine operation and also in spin pit testing for balancing. The oxygen pump appears to be operating near a second critical speed and is sensitive to self excited aerodynamic cross coupling forces in the turbine and pump. An analysis is presented to show the improvement in pump stability by the application of turbulent flow seals, preburner seals, and pump shaft cross sectional modifications.

  14. The Effect of Acoustic Disturbances on the Operation of the Space Shuttle Main Engine Fuel Flowmeter

    NASA Technical Reports Server (NTRS)

    Marcu, Bogdan; Szabo, Roland; Dorney, Dan; Zoladz, Tom

    2007-01-01

    The Space Shuttle Main Engine (SSME) uses a turbine fuel flowmeter (FFM) in its Low Pressure Fuel Duct (LPFD) to measure liquid hydrogen flowrates during engine operation. The flowmeter is required to provide accurate and robust measurements of flow rates ranging from 10000 to 18000 GPM in an environment contaminated by duct vibration and duct internal acoustic disturbances. Errors exceeding 0.5% can have a significant impact on engine operation and mission completion. The accuracy of each sensor is monitored during hot-fire engine tests on the ground. Flow meters which do not meet requirements are not flown. Among other parameters, the device is screened for a specific behavior in which a small shift in the flow rate reading is registered during a period in which the actual fuel flow as measured by a facility meter does not change. Such behavior has been observed over the years for specific builds of the FFM and must be avoided or limited in magnitude in flight. Various analyses of the recorded data have been made prior to this report in an effort to understand the cause of the phenomenon; however, no conclusive cause for the shift in the instrument behavior has been found. The present report proposes an explanation of the phenomenon based on interactions between acoustic pressure disturbances in the duct and the wakes produced by the FFM flow straightener. Physical insight into the effects of acoustic plane wave disturbances was obtained using a simple analytical model. Based on that model, a series of three-dimensional unsteady viscous flow computational fluid dynamics (CFD) simulations were performed using the MSFC PHANTOM turbomachinery code. The code was customized to allow the FFM rotor speed to change at every time step according to the instantaneous fluid forces on the rotor, that, in turn, are affected by acoustic plane pressure waves propagating through the device. The results of the simulations show the variation in the rotation rate of the flowmeter

  15. Use of probabilistic design methods for NASA applications. [to be used in design phase of Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.

    1992-01-01

    This paper presents a reliability evaluation process designed to improve the reliability of advanced launch systems. The work performed includes the development of a reliability prediction methodology to be used in the design phase of the Space Transportation Main Engine (STME). This includes prediction techniques which use historical data bases as well as deterministic and probabilistic engineering models for predicting design reliability. In summary, this paper describes a probabilistic design approach for the next-generation liquid rocket engine, the STME.

  16. Main-belt Asteroids in the K2 Engineering Field of View

    NASA Astrophysics Data System (ADS)

    Szabó, R.; Sárneczky, K.; Szabó, Gy. M.; Pál, A.; Kiss, Cs. P.; Csák, B.; Illés, L.; Rácz, G.; Kiss, L. L.

    2015-03-01

    Unlike NASA’s original Kepler Discovery Mission, the renewed K2 Mission will target the plane of the Ecliptic, observing each field for approximately 75 days. This will bring new opportunities and challenges, in particular the presence of a large number of main-belt asteroids that will contaminate the photometry. The large pixel size makes K2 data susceptible to the effects of apparent minor planet encounters. Here, we investigate the effects of asteroid encounters on photometric precision using a subsample of the K2 engineering data taken in 2014 February. We show examples of asteroid contamination to facilitate their recognition and distinguish these events from other error sources. We conclude that main-belt asteroids will have considerable effects on K2 photometry of a large number of photometric targets during the Mission that will have to be taken into account. These results will be readily applicable for future space photometric missions applying large-format CCDs, such as TESS and PLATO.

  17. SSME improved characterization using highly instrumented engine test data

    NASA Astrophysics Data System (ADS)

    Piekarski, Brian; Leahy, Joseph C.

    1992-07-01

    This paper discusses the analysis of Space Shuttle Main Engine (SSME) 3001 test data and its applications to steady-state models. Engine 3001 is a highly instrumented Phase II (current configuration) SSME that was tested at the Technology Test Bed facility located at Marshall Space Flight Center. A test series covering a carefully selected range of operating conditions was performed during 1991. An analysis of pressure, temperature and flowrate data was performed to evaluate the ability of steady-state models to accurately characterize the internal system of an SSME. Much of the special instrumentation was used to acquire data never before measured at the engine level prior to Engine 3001 testing. The analysis revealed that modifications are needed to improve model calculations of internal Hydrogen and Oxygen flows. Modifying steady-state models to more accurately simulate the internal flow system of an SSME should improve both engine performance evaluations and prediction capabilities.

  18. SSME improved characterization using highly instrumented engine test data

    NASA Technical Reports Server (NTRS)

    Piekarski, Brian; Leahy, Joseph C.

    1992-01-01

    This paper discusses the analysis of Space Shuttle Main Engine (SSME) 3001 test data and its applications to steady-state models. Engine 3001 is a highly instrumented Phase II (current configuration) SSME that was tested at the Technology Test Bed facility located at Marshall Space Flight Center. A test series covering a carefully selected range of operating conditions was performed during 1991. An analysis of pressure, temperature and flowrate data was performed to evaluate the ability of steady-state models to accurately characterize the internal system of an SSME. Much of the special instrumentation was used to acquire data never before measured at the engine level prior to Engine 3001 testing. The analysis revealed that modifications are needed to improve model calculations of internal Hydrogen and Oxygen flows. Modifying steady-state models to more accurately simulate the internal flow system of an SSME should improve both engine performance evaluations and prediction capabilities.

  19. Engineering in High School: Implementing TMMW & TPE.

    ERIC Educational Resources Information Center

    Bordoloi, Kiron C.; Cole, Joseph D.

    1979-01-01

    The success of two engineering and technology-oriented secondary school programs is discussed. Also presented is the Man Made World and the Technology-People-Environment at two suburban high schools. (BB)

  20. Assuring quality in high-consequence engineering

    SciTech Connect

    Hoover, Marcey L.; Kolb, Rachel R.

    2014-03-01

    In high-consequence engineering organizations, such as Sandia, quality assurance may be heavily dependent on staff competency. Competency-dependent quality assurance models are at risk when the environment changes, as it has with increasing attrition rates, budget and schedule cuts, and competing program priorities. Risks in Sandia's competency-dependent culture can be mitigated through changes to hiring, training, and customer engagement approaches to manage people, partners, and products. Sandia's technical quality engineering organization has been able to mitigate corporate-level risks by driving changes that benefit all departments, and in doing so has assured Sandia's commitment to excellence in high-consequence engineering and national service.

  1. Integrated Design Methodology for Highly Reliable Liquid Rocket Engine

    NASA Astrophysics Data System (ADS)

    Kuratani, Naoshi; Aoki, Hiroshi; Yasui, Masaaki; Kure, Hirotaka; Masuya, Goro

    The Integrated Design Methodology is strongly required at the conceptual design phase to achieve the highly reliable space transportation systems, especially the propulsion systems, not only in Japan but also all over the world in these days. Because in the past some catastrophic failures caused some losses of mission and vehicle (LOM/LOV) at the operational phase, moreover did affect severely the schedule delays and cost overrun at the later development phase. Design methodology for highly reliable liquid rocket engine is being preliminarily established and investigated in this study. The sensitivity analysis is systematically performed to demonstrate the effectiveness of this methodology, and to clarify and especially to focus on the correlation between the combustion chamber, turbopump and main valve as main components. This study describes the essential issues to understand the stated correlations, the need to apply this methodology to the remaining critical failure modes in the whole engine system, and the perspective on the engine development in the future.

  2. From Shuttle Main Engine to the Human Heart: A Presentation to the Federal Lab Consortium for Technology Transfer

    NASA Technical Reports Server (NTRS)

    Fogarty, Jennifer A.

    2010-01-01

    A NASA engineer received a heart transplant performed by Drs. DeBakey and Noon after suffering a serious heart attack. 6 months later that engineer returned to work at NASA determined to use space technology to help people with heart disease. A relationship between NASA and Drs. DeBakey and Noon was formed and the group worked to develop a low cost, low power implantable ventricular assist device (VAD). NASA patented the method to reduce pumping damage to red blood cells and the design of a continuous flow heart pump (#5,678,306 and #5,947,892). The technology and methodology were licensed exclusively to MicroMed Technology, Inc.. In late 1998 MicroMed received international quality and electronic certifications and began clinical trials in Europe. Ventricular assist devices were developed to bridge the gap between heart failure and transplant. Early devices were cumbersome, damaged red blood cells, and increased the risk of developing dangerous blood clots. Application emerged from NASA turbopump technology and computational fluid dynamics analysis capabilities. To develop the high performance required of the Space Shuttle main engines, NASA pushed the state of the art in the technology of turbopump design. NASA supercomputers and computational fluid dynamics software developed for use in the modeling analysis of fuel and oxidizer flow through rocket engines was used in the miniaturization and optimization of a very small heart pump. Approximately 5 million people worldwide suffer from chronic heart failure at a cost of 40 billion dollars In the US, more than 5000 people are on the transplant list and less than 3000 transplants are performed each year due to the lack of donors. The success of ventricular assist devices has led to an application as a therapeutic destination as well as a bridge to transplant. This success has been attributed to smaller size, improved efficiency, and reduced complications such as the formation of blood clots and infection.

  3. Experimental hydrogen-fueled automotive engine design data-base project. Volume 2. Main technical report

    SciTech Connect

    Swain, M.R.; Adt, R.R. Jr.; Pappas, J.M.

    1983-05-01

    Operational performance and emissions characteristics of hydrogen-fueled engines are reviewed. The project activities are reviewed including descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained. Analyses of other hydrogen engine project data are also presented and compared with the results of the present effort.

  4. Evaluation of space shuttle main engine fluid dynamic frequency response characteristics

    NASA Technical Reports Server (NTRS)

    Gardner, T. G.

    1980-01-01

    In order to determine the POGO stability characteristics of the space shuttle main engine liquid oxygen (LOX) system, the fluid dynamic frequency response functions between elements in the SSME LOX system was evaluated, both analytically and experimentally. For the experimental data evaluation, a software package was written for the Hewlett-Packard 5451C Fourier analyzer. The POGO analysis software is documented and consists of five separate segments. Each segment is stored on the 5451C disc as an individual program and performs its own unique function. Two separate data reduction methods, a signal calibration, coherence or pulser signal based frequency response function blanking, and automatic plotting features are included in the program. The 5451C allows variable parameter transfer from program to program. This feature is used to advantage and requires only minimal user interface during the data reduction process. Experimental results are included and compared with the analytical predictions in order to adjust the general model and arrive at a realistic simulation of the POGO characteristics.

  5. Testing and Comparative Evaluation of Space Shuttle Main Engine Flowmeter Bearings

    NASA Technical Reports Server (NTRS)

    Hissam, Andy; Leberman, Mike; McLeroy, Rick

    2005-01-01

    This paper provides a summary of testing of Space Shuttle Main Engine (SSME) flowmeter bearings and cage material. These tests were con&cM over a several month period in 2004 at the Marshall Space Flight Center. The test program's primary objective was to compare the performance of bearings using the existing cage material and bearings using a proposed replacement cage material. In order to meet the test objectives for this program, a flowmeter test rig was designed and fabricated to measure both breakaway and running torque for a flowmeter assembly. Other test parameters,,such as motor current and shaft speed, were also recorded and provide a means of comparing bearing performance. The flowmeter and bearings were tested in liquid hydrogen to simulate the flowmeter's operating environment as closely as possible. Based on the results from this testing, the bearings with the existing cage material are equivalent to the bearings with the proposed replacement cage material. No major differences exist between the old and new cage materials. Therefore, the new cage material is a suitable replacement for the existing cage material.

  6. Numerical analysis of flow in the hot gas manifold of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Owens, S. F.; Mukerjee, T.; Singhal, A. K.; Przekwas, A. J.; Glynn, D. R.; Costes, N. C.

    1986-01-01

    This paper presents a numerical model and results of analyses carried out to characterize the flow through the two duct configuration of the Hot Gas Manifold of the Space Shuttle Main Engine. Three dimensional computations have been performed for a half-scale air test model using a nonorthogonal body-fitted coordinate system. The calculation domain is extended from the inlet of the turnaround duct to the exit of the transfer duct. Three test cases, one for laminar flow and two for turbulent flow, have been considered. For turbulent flows, constant eddy viscosity and the k-epsilon model of turbulence were employed. As expected, laminar flow calculation predicts much larger pressure drop than turbulent flow cases. The turbulent flow results are in good agreement with the available flow-visualization data. This study and experimental data indicate that the two-transfer duct design will significantly improve the flow distribution in the Hot Gas Manifold and thereby enhance the overall performance of the SSME.

  7. Space Shuttle guidance for multiple main engine failures during first stage

    NASA Technical Reports Server (NTRS)

    Sponaugle, Steven J.; Fernandes, Stanley T.

    1987-01-01

    This paper presents contingency abort guidance schemes recently developed for multiple Space Shuttle main engine failures during the first two minutes of flight (first stage). The ascent and entry guidance schemes greatly improve the possibility of the crew and/or the Orbiter surviving a first stage contingency abort. Both guidance schemes were required to meet certain structural and controllability constraints. In addition, the systems were designed with the flexibility to allow for seasonal variations in the atmosphere and wind. The ascent scheme guides the vehicle to a desirable, lofted state at solid rocket booster burnout while reducing the structural loads on the vehicle. After Orbiter separation from the solid rockets and the external tank, the entry scheme guides the Orbiter through one of two possible entries. If the proper altitude/range/velocity conditions have been met, a return-to-launch-site 'Split-S' maneuver may be attempted. Otherwise, a down-range abort to an equilibrium glide and subsequent crew bailout is performed.

  8. A study of the effects of disk flexibility on the rotordynamics of the space shuttle main engine turbo-pumps

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1989-01-01

    Rotor dynamical analyses are typically performed using rigid disk models. Studies of rotor models in which the effects of disk flexibility were included indicate that is may be an important effect for many systems. This issue is addressed with respect to the Space Shuttle Main Engine high pressure turbo-pumps. Finite element analyses have been performed for a simplified free-free flexible disk rotor model and the modes and frequencies compared to those of a rigid disk model. The simple model was then extended to a more sophisticated HPTOP rotor model and similar results were observed. Equations were developed that are suitable for modifying the current rotordynamical analysis program to account for disk flexibility. Some conclusions are drawn from the results of this work as to the importance of disk flexibility on the HPTOP rotordynamics and some recommendations are given for follow-up research in this area.

  9. Numerical analysis of flow non-uniformity in the hot gas manifold of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Thoenes, J.; Robertson, S. J.; Ratliff, A. W.; Anderson, P. G.

    1985-01-01

    Three-dimensional viscous flow in a conceptual hot gas manifold (HGM) for the Space Shuttle Main Engine High Pressure Fuel Turbopump (SSME HPFTP) was numerically analyzed. A finite difference scheme was used to solve the Navier-Stokes equations. The exact geometry of the SSME HGM was modeled using boundary fitted curvilinear coordinates and the General Interpolants Method (GIM) code. Slight compressibility of the subsonic flow was modeled using a linearized equation of state with artificial compressibility. A time relaxation method was used to obtain a steady state solution. The feasibility and potential usefulness of computational methods in assisting the design of SSME components which involves the flow of fluids within complex geometrical shapes is demonstrated.

  10. Main chain type benzoxaine polymers for high performance applications

    NASA Astrophysics Data System (ADS)

    Chernykh, Andrey

    A new polymer with benzoxazine group in the main chain has been synthesized through the Mannich condensation of a difunctional phenol, formaldehyde and a diamine. Obtained polymer has weight average molecular weight of approximately 10,000 Da and a moderately broad polydispersity index. The new polymer is used to manufacturer self-supporting film of thermosetting resins. Aiming to obtain higher molecular weight, click chemistry approach has been applied to synthesize linear benzoxazine polymers. Three types of polymers have been prepared from dipropargyl- and novel diazide-functionalized benzoxazine monomers, showing a tremendous flexibility for applying click reaction to obtain various polymer architectures. The weight average molecular weight is estimated to be in the range from 50,000 to 100,000 Da which is significantly higher than the benzoxazine polymers which have been chain extended via Mannich reaction. Further developing approach of polycondensation of the monomers containing ozaxine rings, the oxidative coupling approach has been utilized in order to couple benzoxazines with terminal acetylene groups. A model benzoxazine compound containing diacetylene linkage exhibits unexpectedly low exothermic peak with the onset around 140°C, which is significantly lower than the temperature of conventional benzoxazine polymerization. The initial model studies have been made in order to understand this phenomenon and preliminary explanation is given. Extending this pathway to the difunctional propargyl- and ethynyl-functionalized benzoxazine monomers, a series of novel benzoxazine polymers containing diacetylene groups in the main chain have been synthesized. The weight average molecular weight of the polymers is achieved to be up to 50,000 Da. The effect of diacetylene moiety on the benzoxazine crosslinking behavior is even more pronounced for the obtained linear polymers showing exothermic peak with the onset at around 125°C and its maximum at 185°C. Upon

  11. A New, Highly Improved Two-Cycle Engine

    NASA Technical Reports Server (NTRS)

    Wiesen, Bernard

    2008-01-01

    The figure presents a cross-sectional view of a supercharged, variable-compression, two-cycle, internal-combustion engine that offers significant advantages over prior such engines. The improvements are embodied in a combination of design changes that contribute synergistically to improvements in performance and economy. Although the combination of design changes and the principles underlying them are complex, one of the main effects of the changes on the overall engine design is reduced (relative to prior two-cycle designs) mechanical complexity, which translates directly to reduced manufacturing cost and increased reliability. Other benefits include increases in the efficiency of both scavenging and supercharging. The improvements retain the simplicity and other advantages of two-cycle engines while affording increases in volumetric efficiency and performance across a wide range of operating conditions that, heretofore have been accessible to four-cycle engines but not to conventionally scavenged two-cycle ones, thereby increasing the range of usefulness of the two-cycle engine into all areas now dominated by the four-cycle engine. The design changes and benefits are too numerous to describe here in detail, but it is possible to summarize the major improvements: Reciprocating Shuttle Inlet Valve The entire reciprocating shuttle inlet valve and its operating gear is constructed as a single member. The shuttle valve is actuated in a lost-motion arrangement in which, at the ends of its stroke, projections on the shuttle valve come to rest against abutments at the ends of grooves in a piston skirt. This shuttle-valve design obviates the customary complex valve mechanism, actuated from an engine crankshaft or camshaft, yet it is effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines.

  12. Implementation of a model based fault detection and diagnosis for actuation faults of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.

    1992-01-01

    In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.

  13. [High content screening in chemical biology: overview and main challenges].

    PubMed

    Brodin, Priscille; DelNery, Elaine; Soleilhac, Emmanuelle

    2015-02-01

    The last two decades have seen the development of high content screening (HCS) methodology and its adaptation for the evaluation of small molecules as drug candidates or their use as chemical tools for research purpose. HCS was initially set-up for the understanding of the mechanism of action of compounds by testing them on cell based-assays for pharmacological and toxicological studies. Since the last decade, the use of HCS has been extended to academic research laboratories and this technology has become the starting point for numerous projects aiming at the identification of molecular targets and cellular pathways for a given disease on which novel type of drugs could act. This screening approach relies on image capture of fluorescently labeled cells therefore generating a large amount of data that must be handled by appropriate automated image analysis methods and storage instrumentation. These latter in addition to the integration and data sharing are current challenges that HCS must still tackle. PMID:25744266

  14. Process for forming a long gas turbine engine blade having a main wall with a thin portion near a tip

    SciTech Connect

    Campbell, Christian X; Thomaidis, Dimitrios

    2014-05-13

    A process is provided for forming an airfoil for a gas turbine engine involving: forming a casting of a gas turbine engine airfoil having a main wall and an interior cavity, the main wall having a wall thickness extending from an external surface of the outer wall to the interior cavity, an outer section of the main wall extending from a location between a base and a tip of the airfoil casting to the tip having a wall thickness greater than a final thickness. The process may further involve effecting movement, using a computer system, of a material removal apparatus and the casting relative to one another such that a layer of material is removed from the casting at one or more radial portions along the main wall of the casting.

  15. Quiet Clean Short-haul Experimental Engine (QCSEE) main reduction gears test program

    NASA Technical Reports Server (NTRS)

    Misel, O. W.

    1977-01-01

    Sets of under the wing (UTW) engine reduction gears and sets of over the wing (OTW) engine reduction gears were fabricated for rig testing and subsequent installation in engines. The UTW engine reduction gears which have a ratio of 2.465:1 and a design rating of 9712 kW at 3157 rpm fan speed were operated at up to 105% speed at 60% torque and 100% speed at 125% torque. The OTW engine reduction gears which have a ratio of 2.062:1 and a design rating of 12,615 kW at 3861 rpm fan speed were operated at up to 95% speed at 50% torque and 80% speed at 109% torque. Satisfactory operation was demonstrated at powers up to 12,172 kW, mechanical efficiency up to 99.1% UTW, and a maximum gear pitch line velocity of 112 m/s (22,300 fpm) with a corresponding star gear spherical roller bearing DN of 850,00 OTW. Oil and star gear bearing temperatures, oil churning, heat rejection, and vibratory characteristics were acceptable for engine installation.

  16. Space Shuttle Orbiter Main Engine Ignition Acoustic Pressure Loads Issue: Recent Actions to Install Wireless Instrumentation on STS-129

    NASA Technical Reports Server (NTRS)

    Wells, Nathan; Studor, George

    2009-01-01

    This slide presentation reviews the development and construction of the wireless acoustic instruments surrounding the space shuttle's main engines in preparation for STS-129. The presentation also includes information on end-of-life processing and the mounting procedure for the devices.

  17. Analysis of space shuttle main engine data using Beacon-based exception analysis for multi-missions

    NASA Technical Reports Server (NTRS)

    Park, H.; Mackey, R.; James, M.; Zak, M.; Kynard, M.; Sebghati, J.; Greene, W.

    2002-01-01

    This paper describes analysis of the Space Shuttle Main Engine (SSME) sensor data using Beacon-based exception analysis for multimissions (BEAM), a new technology developed for sensor analysis and diagnostics in autonomous space systems by the Jet Propulsion Laboratory (JPL).

  18. Impact of an Engineering Case Study in a High School Pre-Engineering Course

    ERIC Educational Resources Information Center

    Rutz, Eugene; Shafer, Michelle

    2011-01-01

    Students at an all-girls high school who were enrolled in an introduction to engineering course were presented an engineering case study to determine if the case study affected their attitudes toward engineering and their abilities to solve engineering problems. A case study on power plants was implemented during a unit on electrical engineering.…

  19. Analytical and experimental investigation of rubbing interaction in labyrinth seals for a liquid hydrogen fuel pump. [space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Dolan, F. X.; Kennedy, F. E.; Schulson, E. M.

    1984-01-01

    Cracking of the titanium knife edges on the labyrinth seals of the liquid hydrogen fuel pump in the Space Shuttle main engine is considered. Finite element analysis of the thermal response of the knife edge in sliding contact with the wear ring surface shows that interfacial temperatures can be quite high and they are significantly influenced by the thermal conductivity of the surfaces in rubbing contact. Thermal shock experiments on a test specimen similar to the knife edge geometry demonstrate that cracking of the titanium alloy is possible in a situation involving repeated thermal cycles over a wide temperature range, as might be realized during a rub in the liquid hydrogen fuel pump. High-speed rub interaction tests were conducted using a representative knife edge and seal geometry over a broad range of interaction rates and alternate materials were experimentally evaluated. Plasma-sprayed aluminum-graphite was found to be significantly better than presently used aluminum alloy seals from the standpoint of rub performance. Ion nitriding the titanium alloy knife-edges also improved rub performance compared to the untreated baseline.

  20. Component test results from the bearing life improvement program for the Space Shuttle Main Engine oxidizer turbopumps

    NASA Technical Reports Server (NTRS)

    Keba, John E.

    1992-01-01

    Interim results from a component test program to improve ball bearing life in the Space Shuttle Main Engine oxygen turbopumps are presented. Two specific bearing applications, using liquid oxygen as the bearing coolant, are addressed. The first, the thrust bearing of the low pressure pump, operates at relatively slow speed with predominantly axial load and little temperature rise in the bulk coolant. Testing has demonstrated a very significant reduction in bearing wear by increasing the bearing internal clearance. Heat generation data was obtained that indicates heavy, intermittent cage-to-ball contact occurs, providing a possible explanation for the observed wear. The second application is the turbine end bearings of the high pressure pump. These bearings operate at high speed and load with the possibility of significant coolant vaporization. Tests on production bearings and bearings having modified internal clearance and curvature yielded scattered but generally poor lives. A dramatic improvement was achieved by coating the standard cage with a thin film of fluorinated ethylene propylene and 15 percent molybdenum disulfide. Very promising results have also been obtained by replacing the standard balls with ones made of silicon nitride, especially in combination with the coated cage.

  1. Space Shuttle main engine. NASA has not evaluated the alternate fuel turbopump costs and benefits. Report to the Administrator of the National Aeronautics and Space Administration

    NASA Astrophysics Data System (ADS)

    1993-10-01

    NASA's plans to develop an alternate high pressure fuel turbopump for the Space Shuttle's main engines were assessed by the General Accounting Office as a part of the evaluation of the Space Shuttle Safety and Obsolescence Upgrade program. The objective was to determine whether NASA has adequately analyzed cost, performance, and benefits that are expected to result from this program in comparison to other alternatives before resuming development of the alternate pump, which was suspended in 1992. The alternate fuel pump is one of five improvements being developed or planned to significantly enhance safety margins of the engines.

  2. EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE

    SciTech Connect

    Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.

    2009-06-30

    This Low Friction (High Efficiency Roller Bearing) Engine (LFE) report presents the work done by The Timken Company to conduct a technology demonstration of the benefits of replacing hydrodynamic bearings with roller bearings in the crankshaft and camshaft assemblies of an internal combustion engine for the purpose of collecting data sufficient to prove merit. The engines in the present study have been more extensively converted to roller bearings than any previous studies (40 needle roller bearings per engine) to gain understanding of the full potential of application of bearing technology. The project plan called for comparative testing of a production vehicle which was already respected for having demonstrated low engine friction levels with a rollerized version of that engine. Testing was to include industry standard tests for friction, emissions and fuel efficiency conducted on instrumented dynamometers. Additional tests for fuel efficiency, cold start resistance and other measures of performance were to be made in the actual vehicle. Comparative measurements of noise, vibration and harshness (NVH), were planned, although any work to mitigate the suspected higher NVH level in the rollerized engine was beyond the scope of this project. Timken selected the Toyota Avalon with a 3.5L V-6 engine as the test vehicle. In an attempt to minimize cost and fabrication time, a ‘made-from’ approach was proposed in which as many parts as possible would be used or modified from production parts to create the rollerized engine. Timken commissioned its test partner, FEV Engine Technology, to do a feasibility study in which they confirmed that using such an approach was possible to meet the required dimensional restrictions and tolerances. In designing the roller bearing systems for the crank and cam trains, Timken utilized as many production engine parts as possible. The crankshafts were produced from production line forgings, which use Timken steel, modified with special

  3. Pulse Detonation Engines for High Speed Flight

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    2002-01-01

    Revolutionary concepts in propulsion are required in order to achieve high-speed cruise capability in the atmosphere and for low cost reliable systems for earth to orbit missions. One of the advanced concepts under study is the air-breathing pulse detonation engine. Additional work remains in order to establish the role and performance of a PDE in flight applications, either as a stand-alone device or as part of a combined cycle system. In this paper, we shall offer a few remarks on some of these remaining issues, i.e., combined cycle systems, nozzles and exhaust systems and thrust per unit frontal area limitations. Currently, an intensive experimental and numerical effort is underway in order to quantify the propulsion performance characteristics of this device. In this paper, we shall highlight our recent efforts to elucidate the propulsion potential of pulse detonation engines and their possible application to high-speed or hypersonic systems.

  4. Configuration evaluation and criteria plan. Volume 2: Evaluation critera plan (preliminary). Space Transportation Main Engine (STME) configuration study

    NASA Technical Reports Server (NTRS)

    Bair, E. K.

    1986-01-01

    The unbiased selection of the Space Transportation Main Engine (STME) configuration requires that the candidate engines be evaluated against a predetermined set of criteria which must be properly weighted to emphasize critical requirements defined prior to the actual evaluation. The evaluation and selection process involves the following functions: (1) determining if a configuration can satisfy basic STME requirements (yes/no); (2) defining the evaluation criteria; (3) selecting the criteria relative importance or weighting; (4) determining the weighting sensitivities; and (5) establishing a baseline for engine evaluation. The criteria weighting and sensitivities are cost related and are based on mission models and vehicle requirements. The evaluation process is used as a coarse screen to determine the candidate engines for the parametric studies and as a fine screen to determine concept(s) for conceptual design. The criteria used for the coarse and fine screen evaluation process is shown. The coarse screen process involves verifying that the candidate engines can meet the yes/no screening requirements and a semi-subjective quantitative evaluation. The fine screen engines have to meet all of the yes/no screening gates and are then subjected to a detailed evaluation or assessment using the quantitative cost evaluation processes. The option exists for re-cycling a concept through the quantitative portion of the screening and allows for some degree of optimization. The basic vehicle is a two stage LOX/HC, LOX/LH2 parallel burn vehicle capable of placing 150,000 lbs in low Earth orbit (LEO).

  5. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle)

    NASA Technical Reports Server (NTRS)

    Thorpe, Douglas G.

    1991-01-01

    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  6. Tailored Materials for High Efficiency CIDI Engines

    SciTech Connect

    Grant, G.J.; Jana, S.

    2012-03-30

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in

  7. High/variable mixture ratio O2/H2 engine

    NASA Technical Reports Server (NTRS)

    Adams, A.; Parsley, R. C.

    1988-01-01

    Vehicle/engine analysis studies have identified the High/Dual Mixture Ratio O2/H2 Engine cycle as a leading candidate for an advanced Single Stage to Orbit (SSTO) propulsion system. This cycle is designed to allow operation at a higher than normal O/F ratio of 12 during liftoff and then transition to a more optimum O/F ratio of 6 at altitude. While operation at high mixture ratios lowers specific impulse, the resultant high propellant bulk density and high power density combine to minimize the influence of atmospheric drag and low altitude gravitational forces. Transition to a lower mixture ratio at altitude then provides improved specific impulse relative to a single mixture ratio engine that must select a mixture ratio that is balanced for both low and high altitude operation. This combination of increased altitude specific impulse and high propellant bulk density more than offsets the compromised low altitude performance and results in an overall mission benefit. Two areas of technical concern relative to the execution of this dual mixture ratio cycle concept are addressed. First, actions required to transition from high to low mixture ratio are examined, including an assessment of the main chamber environment as the main chamber mixture ratio passes through stoichiometric. Secondly, two approaches to meet a requirement for high turbine power at high mixture ratio condition are examined. One approach uses high turbine temperature to produce the power and requires cooled turbines. The other approach incorporates an oxidizer-rich preburner to increase turbine work capability via increased turbine mass flow.

  8. Configuration evaluation and criteria plan. Volume 1: System trades study and design methodology plan (preliminary). Space Transportation Main Engine (STME) configuration study

    NASA Technical Reports Server (NTRS)

    Bair, E. K.

    1986-01-01

    The System Trades Study and Design Methodology Plan is used to conduct trade studies to define the combination of Space Shuttle Main Engine features that will optimize candidate engine configurations. This is accomplished by using vehicle sensitivities and engine parametric data to establish engine chamber pressure and area ratio design points for candidate engine configurations. Engineering analyses are to be conducted to refine and optimize the candidate configurations at their design points. The optimized engine data and characteristics are then evaluated and compared against other candidates being considered. The Evaluation Criteria Plan is then used to compare and rank the optimized engine configurations on the basis of cost.

  9. Fuels for high-compression engines

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1926-01-01

    From theoretical considerations one would expect an increase in power and thermal efficiency to result from increasing the compression ratio of an internal combustion engine. In reality it is upon the expansion ratio that the power and thermal efficiency depend, but since in conventional engines this is equal to the compression ratio, it is generally understood that a change in one ratio is accompanied by an equal change in the other. Tests over a wide range of compression ratios (extending to ratios as high as 14.1) have shown that ordinarily an increase in power and thermal efficiency is obtained as expected provided serious detonation or preignition does not result from the increase in ratio.

  10. Variable gamma computations for a forward-firing Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Saladino, A. J.; Praharaj, S. C.

    1992-01-01

    A procedure for solving an axisymmetric SSME nozzle exhausting with an equivalent mass flow of two nozzles is presented for the return-to-launch-site (RTLS) maneuver for an engine-out case. The algorithm incorporates a two-species variable gamma formulation along with diffusion terms associated with a species conservation equation. Coupling of this algorithm is accomplished explicitly to the Navier-Stokes PARC2DR and PARC3DR codes. Axisymmetric results indicate a very complicated flowfield with a bow shock extending to approximately 570 radii in front of the nozzle, and low temperatures on what would be an external tank (ET) aft of the nozzle.

  11. Object oriented fault diagnosis system for space shuttle main engine redlines

    NASA Technical Reports Server (NTRS)

    Rogers, John S.; Mohapatra, Saroj Kumar

    1990-01-01

    A great deal of attention has recently been given to Artificial Intelligence research in the area of computer aided diagnostics. Due to the dynamic and complex nature of space shuttle red-line parameters, a research effort is under way to develop a real time diagnostic tool that will employ historical and engineering rulebases as well as a sensor validity checking. The capability of AI software development tools (KEE and G2) will be explored by applying object oriented programming techniques in accomplishing the diagnostic evaluation.

  12. Genetic algorithm to optimize the design of main combustor and gas generator in liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Son, Min; Ko, Sangho; Koo, Jaye

    2014-06-01

    A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design.

  13. Quiet Clean Short-haul Experimental Engine (QCSEE) main reduction gears bearing development program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The viability of proposed bearing designs to operate at application conditions is described. Heat rejection variables were defined for the test conditions. Results indicate that there is potential for satisfactory operation of spherical roller bearing in the QCSEE main reduction gear application.

  14. Introducing High School Students and Science Teachers to Chemical Engineering.

    ERIC Educational Resources Information Center

    Bayles, Taryn Melkus; Aguirre, Fernando J.

    1992-01-01

    Describes a summer institute for science teachers and their students in which the main goal was to increase enrollment in engineering and to encourage women and minority groups to increase their representation in the engineering workforce. Includes a description of typical chemical engineering jobs and general instruction in material balances,…

  15. Advanced Development of a Compact 5-15 lbf Lox/Methane Thruster for an Integrated Reaction Control and Main Engine Propulsion System

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric A.; McManamen, John Patrick; Sooknanen, Josh; Studak, Joseph W.

    2011-01-01

    This paper describes the advanced development and testing of a compact 5 to 15 lbf LOX/LCH4 thruster for a pressure-fed integrated main engine and RCS propulsion system to be used on a spacecraft "vertical" test bed (VTB). The ability of the RCS thruster and the main engine to operate off the same propellant supply in zero-g reduces mass and improves mission flexibility. This compact RCS engine incorporates several features to dramatically reduce mass and parts count, to ease manufacturing, and to maintain acceptable performance given that specific impulse (Isp) is not the driver. For example, radial injection holes placed on the chamber body for easier drilling, and high temperature Haynes 230 were selected for the chamber over other more expensive options. The valve inlets are rotatable before welding allowing different orientations for vehicle integration. In addition, the engine design effort selected a coil-on-plug ignition system which integrates a relay and coil with the plug electrode, and moves some exciter electronics to avionics driver board. The engine injector design has small dribble volumes to target minimum pulse widths of 20 msec. and an efficient minimum impulse bit of less than 0.05 lbf-sec. The propellants, oxygen and methane, were chosen because together they are a non-toxic, Mars-forward, high density, space storable, and high performance propellant combination that is capable of pressure-fed and pump-fed configurations and integration with life support and power subsystems. This paper will present the results of the advanced development testing to date of the RCS thruster and the integration with a vehicle propulsion system.

  16. Engineering the future with America's high school students

    NASA Technical Reports Server (NTRS)

    Farrance, M. A.; Jenner, J. W.

    1993-01-01

    The number of students enrolled in engineering is declining while the need for engineers is increasing. One contributing factor is that most high school students have little or no knowledge about what engineering is, or what engineers do. To teach young students about engineering, engineers need good tools. This paper presents a course of study developed and used by the authors in a junior college course for high school students. Students learned about engineering through independent student projects, in-class problem solving, and use of career information resources. Selected activities from the course can be adapted to teach students about engineering in other settings. Among the most successful techniques were the student research paper assignments, working out a solution to an engineering problem as a class exercise, and the use of technical materials to illustrate engineering concepts and demonstrate 'tools of the trade'.

  17. Space shuttle main engine controller assembly, phase C-D. [with lagging system design and analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    System design and system analysis and simulation are slightly behind schedule, while design verification testing has improved. Input/output circuit design has improved, but digital computer unit (DCU) and mechanical design continue to lag. Part procurement was impacted by delays in printed circuit board, assembly drawing releases. These are the result of problems in generating suitable printed circuit artwork for the very complex and high density multilayer boards.

  18. Studies and analyses of the Space Shuttle Main Engine: SSME failure data review, diagnostic survey and SSME diagnostic evaluation

    NASA Technical Reports Server (NTRS)

    Glover, R. C.; Kelley, B. A.; Tischer, A. E.

    1986-01-01

    The results of a review of the Space Shuttle Main Engine (SSME) failure data for the period 1980 through 1983 are presented. The data was collected, evaluated, and ranked according to procedures established during this study. A number of conclusions and recommendations are made based upon this failure data review. The results of a state-of-the-art diagnostic survey are also presented. This survey covered a broad range of diagnostic sensors and techniques and the findings were evaluated for application to the SSME. Finally, a discussion of the initial activities for the on-going SSME diagnostic evaluation is included.

  19. A three-dimensional incompressible flow simulation method and its application to the Space Shuttle main engine. II Turbulent flow

    NASA Technical Reports Server (NTRS)

    Chang, J. L. C.; Rosen, R.; Dao, S. C.; Kwak, D.

    1985-01-01

    An implicit finite difference code cast in general curvilinear coordinates is further developed for three-dimensional incompressible turbulent flows. The code is based on the method of pseudocompressibility and utilizes the Beam and Warming implicit approximate factorization algorithm to achieve computational efficiency. A multiple-zone method is further extended to include composite-grids to overcome the excessive computer memory required for solving turbulent flows in complex three-dimensional geometries. A simple turbulence model is proposed for internal flows. The code is being used for the Space Shuttle Main Engine (SSME) internal flow analyses.

  20. Importance of understanding the main metabolic regulation in response to the specific pathway mutation for metabolic engineering of Escherichia coli

    PubMed Central

    Matsuoka, Yu; Shimizu, Kazuyuki

    2013-01-01

    Recent metabolic engineering practice was briefly reviewed in particular for the useful metabolite production such as natural products and biofuel productions. With the emphasis on systems biology approach, the metabolic regulation of the main metabolic pathways in E. coli was discussed from the points of view of enzyme level (allosteric and phosphorylation/ dephosphorylation) regulation, and gene level (transcriptional) regulation. Then the effects of the specific pathway gene knockout such as pts, pgi, zwf, gnd, pyk, ppc, pckA, lpdA, pfl gene knockout on the metabolism in E. coli were overviewed from the systems biology point of view with possible application for strain improvement point. PMID:24688678

  1. Replacement of environmentally hazardous corrosion protection paints on the space shuttle main engine using wire arc sprayed aluminum

    SciTech Connect

    Daniel, R.L.; Sanders, H.L.; Mendrek, M.J.

    1994-12-31

    With the advent of new environmental laws restricting hazardous emissions, environmentally safe thermal spray coatings are being developed to replace the traditional corrosion protection chromate primers. A wire arc sprayed aluminum coating is being developed for corrosion protection of low pressure liquid hydrogen carrying ducts on the Space Shuttle Main Engine. Currently, this hardware utilizes a chromate primer to provide protection against pitting corrosion leading to stress corrosion cracking induced by the cryogenic operating environment. Coating development, adhesion test, corrosion test, cryogenic flexibility and thermal cycle test results will be presented. Wire arc sprayed aluminum is proving to provide corrosion protection in cryogenic aerospace applications.

  2. High-throughput cellular RNA device engineering.

    PubMed

    Townshend, Brent; Kennedy, Andrew B; Xiang, Joy S; Smolke, Christina D

    2015-10-01

    Methods for rapidly assessing sequence-structure-function landscapes and developing conditional gene-regulatory devices are critical to our ability to manipulate and interface with biology. We describe a framework for engineering RNA devices from preexisting aptamers that exhibit ligand-responsive ribozyme tertiary interactions. Our methodology utilizes cell sorting, high-throughput sequencing and statistical data analyses to enable parallel measurements of the activities of hundreds of thousands of sequences from RNA device libraries in the absence and presence of ligands. Our tertiary-interaction RNA devices performed better in terms of gene silencing, activation ratio and ligand sensitivity than optimized RNA devices that rely on secondary-structure changes. We applied our method to build biosensors for diverse ligands and determine consensus sequences that enable ligand-responsive tertiary interactions. These methods advance our ability to develop broadly applicable genetic tools and to elucidate the underlying sequence-structure-function relationships that empower rational design of complex biomolecules. PMID:26258292

  3. Fiber optic Raman thermometer for Space Shuttle main engine preburner profiling

    NASA Technical Reports Server (NTRS)

    Shirley, J. A.

    1985-01-01

    The feasibility of combustion gas temperature measurements in the SSME fuel preburner using nonintrusive optical diagnostics was investigated. Temperature profiles are desired in the high pressure, hydrogen-rich preburner stream to evaluate designs to alleviate thermal stressing of the fuel pump turbine blades. Considering the preburner operating conditions and optical access restrictions, a spontaneous Raman backscattering system, implemented with optical fibers to couple to the combustion device, was selected as the most practical for gas temperature probing. A system is described which employs a remotely-located argon-ion laser to excite the molecular hydrogen Raman spectrum. The laser radiation is conveyed to the combustor through an optical fiber and focused through a window into the chamber by an optical head attached to the combustor. The gas temperature is determined from the distribution of rotational populations represented in the Raman spectrum.

  4. 9. General view of engine between cylinders with high pressure ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. General view of engine between cylinders with high pressure cylinder on left and low pressure cylinder on right. - Carnegie Steel-Ohio Works, Steam Engines, 912 Salt Springs Road, Youngstown, Mahoning County, OH

  5. Performance of annular high frequency thermoacoustic engines

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ivan A.

    This thesis presents studies of the behavior of miniature annular thermoacoustic prime movers and the imaging of the complex sound fields using PIV inside the small acoustic wave guides when driven by a temperature gradient. Thermoacoustic engines operating in the standing wave mode are limited in their acoustic efficiency by a high degree of irreversibility that is inherent in how they work. Better performance can be achieved by using traveling waves in the thermoacoustic devices. This has led to the development of an annular high frequency thermoacoustic prime mover consisting of a regenerator, which is a random stack in-between a hot and cold heat exchanger, inside an annular waveguide. Miniature devices were developed and studied with operating frequencies in the range of 2-4 kHz. This corresponds to an average ring circumference of 11 cm for the 3 kHz device, the resonator bore being 6 mm. A similar device of 11 mm bore, length of 18 cm was also investigated; its resonant frequency was 2 kHz. Sound intensities as high as 166.8 dB were generated with limited heat input. Sound power was extracted from the annular structure by an impedance-matching side arm. The nature of the acoustic wave generated by heat was investigated using a high speed PIV instrument. Although the acoustic device appears symmetric, its performance is characterized by a broken symmetry and by perturbations that exist in its structure. Effects of these are observed in the PIV imaging; images show axial and radial components. Moreover, PIV studies show effects of streaming and instabilities which affect the devices' acoustic efficiency. The acoustic efficiency is high, being of 40% of Carnot. This type of device shows much promise as a high efficiency energy converter; it can be reduced in size for microcircuit applications.

  6. Investigation of the Centaur boost pump overspeed condition at main engine shutdown on the Titan Centaur TC-2 flight

    NASA Technical Reports Server (NTRS)

    Baud, K. W.

    1975-01-01

    An investigation was conducted to evaluate a potential boost pump overspeed condition which could exist on the Titan/Centaur launch vehicle after main engine shut-off. Preliminary analyses indicated that the acceleration imparted to the unloaded boost pump-turbine assembly, caused by purging residual hydrogen peroxide from the turbine supply lines, could result in a pump-turbine overspeed. Previous test experience indicated that turbine damage occurs at speeds in excess of 75,000 rpm. Detailed theoretical analyses, in conjunction with pump tests, were conducted to establish the maximum pump-turbine speed at main engine shut-off. The analyses predicted a maximum speed of 68,000 rpm. Testing showed the pump-turbine speed to be 66,700 rpm in the overspeed condition. Inasmuch as both the analysis and tests showed the overspeed to be sufficiently less than the speed at which damage could occur, it was concluded that no corrective action would be required for the launch vehicle.

  7. Dualling Thomas: Maine College Helps Students Earn College Credit While in High School

    ERIC Educational Resources Information Center

    MacKenzie, Riley

    2016-01-01

    The Pathways Program allows juniors and seniors in high school who have a high school GPA of 3.0, a demonstrated capacity for college work, and a recommendation of the high school guidance counselor, to pursue their associate degrees at Thomas College in Waterville, Maine, while completing the requirements for their high school diploma at…

  8. Digital controller for high pressure rocket engine.

    NASA Technical Reports Server (NTRS)

    Thompson, Z.; Cummings, W. J.; Hall, D. M.

    1972-01-01

    Description of a general approach for the design of an adaptive digital control system for liquid bipropellant rocket engines. The technique employs linearized transfer functions derived from perturbations of an engine simulation. The linear models serve as a basis on which to develop candidate closed-loop control laws quickly and economically.

  9. High School Student Modeling in the Engineering Design Process

    ERIC Educational Resources Information Center

    Mentzer, Nathan; Huffman, Tanner; Thayer, Hilde

    2014-01-01

    A diverse group of 20 high school students from four states in the US were individually provided with an engineering design challenge. Students chosen were in capstone engineering courses and had taken multiple engineering courses. As students considered the problem and developed a solution, observational data were recorded and artifacts…

  10. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 6: Primary nozzle diffuser analysis

    NASA Technical Reports Server (NTRS)

    Foley, Michael J.

    1989-01-01

    The primary nozzle diffuser routes fuel from the main fuel valve on the Space Shuttle Main Engine (SSME) to the nozzle coolant inlet mainfold, main combustion chamber coolant inlet mainfold, chamber coolant valve, and the augmented spark igniters. The diffuser also includes the fuel system purge check valve connection. A static stress analysis was performed on the diffuser because no detailed analysis was done on this part in the past. Structural concerns were in the area of the welds because approximately 10 percent are in areas inaccessible by X-ray testing devices. Flow dynamics and thermodynamics were not included in the analysis load case. Constant internal pressure at maximum SSME power was used instead. A three-dimensional, finite element method was generated using ANSYS version 4.3A on the Lockheed VAX 11/785 computer to perform the stress computations. IDEAS Supertab on a Sun 3/60 computer was used to create the finite element model. Rocketdyne drawing number RS009156 was used for the model interpretation. The flight diffuser is denoted as -101. A description of the model, boundary conditions/load case, material properties, structural analysis/results, and a summary are included for documentation.

  11. Ultra-High Bypass Engine Aeroacoustic Study

    NASA Technical Reports Server (NTRS)

    Gliebe, Philip R.; Janardan, Bangalore A.

    2003-01-01

    A system study was carried out to identify potential advanced aircraft engine concepts and cycles which could be capable of achieving a 5 to 10 EPNdB reduction in community noise level relative to current FAR36 Stage 3 limits for a typical large-capacity commercial transport aircraft. The study was directed toward large twin-engine aircraft applications in the 400,000 to 500,000 pound take-off gross weight class. Four single rotation fan engine designs with fan pressure ratios from 1.3 to 1.75, and two counter-rotating fan engine configurations were studied. Several engine configurations were identified which, with further technology development, could achieve the objective of 5 to 10 EPNdB noise reduction. Optimum design fan pressure ratio is concluded to be in the range of 1.4 to 1.55 for best noise reduction with acceptable weight and Direct Operating Cost (DOC) penalties.

  12. Space Shuttle Main Engine Quantitative Risk Assessment: Illustrating Modeling of a Complex System with a New QRA Software Package

    NASA Technical Reports Server (NTRS)

    Smart, Christian

    1998-01-01

    During 1997, a team from Hernandez Engineering, MSFC, Rocketdyne, Thiokol, Pratt & Whitney, and USBI completed the first phase of a two year Quantitative Risk Assessment (QRA) of the Space Shuttle. The models for the Shuttle systems were entered and analyzed by a new QRA software package. This system, termed the Quantitative Risk Assessment System(QRAS), was designed by NASA and programmed by the University of Maryland. The software is a groundbreaking PC-based risk assessment package that allows the user to model complex systems in a hierarchical fashion. Features of the software include the ability to easily select quantifications of failure modes, draw Event Sequence Diagrams(ESDs) interactively, perform uncertainty and sensitivity analysis, and document the modeling. This paper illustrates both the approach used in modeling and the particular features of the software package. The software is general and can be used in a QRA of any complex engineered system. The author is the project lead for the modeling of the Space Shuttle Main Engines (SSMEs), and this paper focuses on the modeling completed for the SSMEs during 1997. In particular, the groundrules for the study, the databases used, the way in which ESDs were used to model catastrophic failure of the SSMES, the methods used to quantify the failure rates, and how QRAS was used in the modeling effort are discussed. Groundrules were necessary to limit the scope of such a complex study, especially with regard to a liquid rocket engine such as the SSME, which can be shut down after ignition either on the pad or in flight. The SSME was divided into its constituent components and subsystems. These were ranked on the basis of the possibility of being upgraded and risk of catastrophic failure. Once this was done the Shuttle program Hazard Analysis and Failure Modes and Effects Analysis (FMEA) were used to create a list of potential failure modes to be modeled. The groundrules and other criteria were used to screen

  13. High Acceleration, High Life Cycle, Reusable In-Space Main Engine: 2000-2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for the crew exploration vehicle. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.

  14. Acoustically shielded exhaust system for high thrust jet engines

    NASA Technical Reports Server (NTRS)

    Carey, John P. (Inventor); Lee, Robert (Inventor); Majjigi, Rudramuni K. (Inventor)

    1995-01-01

    A flade exhaust nozzle for a high thrust jet engine is configured to form an acoustic shield around the core engine exhaust flowstream while supplementing engine thrust during all flight conditions, particularly during takeoff. The flade airflow is converted from an annular 360.degree. flowstream to an arcuate flowstream extending around the lower half of the core engine exhaust flowstream so as to suppress exhaust noise directed at the surrounding community.

  15. Studies and analyses of the space shuttle main engine. Failure information propagation model data base and software

    NASA Technical Reports Server (NTRS)

    Tischer, A. E.

    1987-01-01

    The failure information propagation model (FIPM) data base was developed to store and manipulate the large amount of information anticipated for the various Space Shuttle Main Engine (SSME) FIPMs. The organization and structure of the FIPM data base is described, including a summary of the data fields and key attributes associated with each FIPM data file. The menu-driven software developed to facilitate and control the entry, modification, and listing of data base records is also discussed. The transfer of the FIPM data base and software to the NASA Marshall Space Flight Center is described. Complete listings of all of the data base definition commands and software procedures are included in the appendixes.

  16. High-Speed Multiprocessing For Engine Simulation

    NASA Technical Reports Server (NTRS)

    Milner, Edward J.; Arpasi, Dale J.

    1988-01-01

    Parallel microprocessors have computational power and speed for realistic simulations. Interactive information bus links front-end processor and computational processors. Real-time information bus links real-time extension processor and pre-processors. Computational processor and preprocessor communicate through shared memory. System used to simulate small turboshaft engine to demonstrate potential of multiprocessing in such applications. Real-time simulations aid development of new digital engine controls enabling testing of hardware and software under realistic conditions.

  17. High-Temperature Materials For Stirling Engines

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1990-01-01

    Heat-resistant piston rings and linings increase engine efficiency. Report discusses research on materials for piston rings and cylinder coatings in automotive Stirling engines. Data from tests show cobalt-based alloy, Stellite 6B, good choice for piston rings and PS200, plasma-sprayed metal-bonded chromium carbide matrix with dispersed solid lubricants, functions well as cylinder coating. Materials make it possible to place piston rings at tops of pistons ("hot" piston rings) instead of at cooler bottoms.

  18. Vibration, acoustic, and shock design and test criteria for components on the Solid Rocket Boosters (SRB), Lightweight External Tank (LWT), and Space Shuttle Main Engines (SSME)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The vibration, acoustics, and shock design and test criteria for components and subassemblies on the space shuttle solid rocket booster (SRB), lightweight tank (LWT), and main engines (SSME) are presented. Specifications for transportation, handling, and acceptance testing are also provided.

  19. Engine tests using high-sulfur diesel fuel. Final report

    SciTech Connect

    Frame, E.A.; Moon, R.B.

    1980-09-01

    This report covers the engine test evaluation of an organo-zinc additive for its effectiveness in combating the deleterious effects of using high-sulfur diesel fuel in a two-cycle U.S. Army diesel engine. The report also covers the 6V-53T testing of a preservative engine oil which in previous testing had shown promise in controlling the effects of using high-sulfur fuel.

  20. Knocking at the College Door: Projections of High School Graduates. Maine

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2013

    2013-01-01

    National and regional trends mask important variation among states in the supply of high school graduates. This profile provides brief indicators for Maine related to: current levels of educational attainment, projections of high school graduates into the future, and two common barriers to student access and success--insufficient academic…

  1. High efficiency stoichiometric internal combustion engine system

    DOEpatents

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  2. High-Lift Engine Aeroacoustics Technology (HEAT) Test Program Overview

    NASA Technical Reports Server (NTRS)

    Zuniga, Fanny A.; Smith, Brian E.

    1999-01-01

    The NASA High-Speed Research program developed the High-Lift Engine Aeroacoustics Technology (HEAT) program to demonstrate satisfactory interaction between the jet noise suppressor and high-lift system of a High-Speed Civil Transport (HSCT) configuration at takeoff, climb, approach and landing conditions. One scheme for reducing jet exhaust noise generated by an HSCT is the use of a mixer-ejector system which would entrain large quantities of ambient air into the nozzle exhaust flow through secondary inlets in order to cool and slow the jet exhaust before it exits the nozzle. The effectiveness of such a noise suppression device must be evaluated in the presence of an HSCT wing high-lift system before definitive assessments can be made concerning its acoustic performance. In addition, these noise suppressors must provide the required acoustic attenuation while not degrading the thrust efficiency of the propulsion system or the aerodynamic performance of the high-lift devices on the wing. Therefore, the main objective of the HEAT program is to demonstrate these technologies and understand their interactions on a large-scale HSCT model. The HEAT program is a collaborative effort between NASA-Ames, Boeing Commercial Airplane Group, Douglas Aircraft Corp., Lockheed-Georgia, General Electric and NASA - Lewis. The suppressor nozzles used in the tests were Generation 1 2-D mixer-ejector nozzles made by General Electric. The model used was a 13.5%-scale semi-span model of a Boeing Reference H configuration.

  3. Building a Framework for Engineering Design Experiences in High School

    ERIC Educational Resources Information Center

    Denson, Cameron D.; Lammi, Matthew

    2014-01-01

    In this article, Denson and Lammi put forth a conceptual framework that will help promote the successful infusion of engineering design experiences into high school settings. When considering a conceptual framework of engineering design in high school settings, it is important to consider the complex issue at hand. For the purposes of this…

  4. Examining Gender Inequality in a High School Engineering Course

    ERIC Educational Resources Information Center

    Riegle-Crumb, Catherine; Moore, Chelsea

    2013-01-01

    This paper examines gender inequality within the context of an upper-level high school engineering course recently offered in Texas. Data was collected from six high schools that serve students from a variety of backgrounds. Among the almost two hundred students who enrolled in this challenge-based engineering course, females constituted a clear…

  5. LED light engine concept with ultra-high scalable luminance

    NASA Astrophysics Data System (ADS)

    Hoelen, Christoph; de Boer, Dick; Bruls, Dominique; van der Eyden, Joost; Koole, Rolf; Li, Yun; Mirsadeghi, Mo; Vanbroekhoven, Vincent; Van den Bergh, John-John; Van de Voorde, Patrick

    2016-03-01

    Although LEDs have been introduced successfully in many general lighting applications during the past decade, high brightness light source applications are still suffering from the limited luminance of LEDs. High power LEDs are generally limited in luminance to ca 100 Mnit (108 lm/m2sr) or less, while dedicated devices for projection may achieve luminance values up to ca 300 Mnit with phosphor converted green. In particular for high luminous flux applications with limited étendue, like in front projection systems, only very modest luminous flux values in the beam can be achieved with LEDs compared to systems based on discharge lamps. In this paper we introduce a light engine concept based on a light converter rod pumped with blue LEDs that breaks through the étendue and brightness limits of LEDs, enabling LED light source luminance values that are more than 4 times higher than what can be achieved with LEDs so far. In LED front projection systems, green LEDs are the main limiting factor. With our green light emitting modules, peak luminance values well above 1.2 Gnit have been achieved, enabling doubling of the screen brightness of LED based DLP projection systems, and even more when this technology is applied to other colors as well. This light source concept, introduced as the ColorSpark High Lumen Density (HLD) LED technology, enables a breakthrough in the performance of LED-based light engines not only for projection, where >2700 ANSI lm was demonstrated, but for a wide variety of high brightness applications.

  6. High Pressure Reverse Flow APS Engine

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1972-01-01

    A design and test demonstration effort was undertaken to evaluate the concept of the reverse flow engine for the APS engine application. The 1500 lb (6672 N) thrust engine was designed to operate on gaseous hydrogen and gaseous oxygen propellants at a mixture ratio of 4 and to achieve the objective performance of 435 sec (4266 Nsec/kg) specific impulse. Superimposed durability requirements called for a million-cycle capability with 50 hours duration. The program was undertaken as a series of tasks including the initial preliminary design, design of critical test components and finally, the design and demonstration of an altitude engine which could be used interchangeably to examine operating parameters as well as to demonstrate the capability of the concept. The program results are reported with data to indicate that all of the program objectives were met or exceeded within the course of testing on the program. The analysis effort undertaken is also reported in detail and supplemented with test data in some cases where prior definitions could not be made. The results are contained of these analyses as well as the test results conducted throughout the course of the program. Finally, the test data and analytical results were combined to allow recommendations for a flight weight design. This preliminary design effort is also detailed.

  7. A high-efficiency double quantum dot heat engine

    NASA Astrophysics Data System (ADS)

    Liu, Y. S.; Yang, X. F.; Hong, X. K.; Si, M. S.; Chi, F.; Guo, Y.

    2013-08-01

    High-efficiency heat engine requires a large output power at the cost of less input heat energy as possible. Here we propose a heat engine composed of serially connected two quantum dots sandwiched between two metallic electrodes. The efficiency of the heat engine can approach the maximum allowable Carnot efficiency ηC. We also find that the strong intradot Coulomb interaction can induce additional work regions for the heat engine, whereas the interdot Coulomb interaction always suppresses the efficiency. Our results presented here indicate a way to fabricate high-efficiency quantum-dot thermoelectric devices.

  8. Using hypermedia to develop an intelligent tutorial/diagnostic system for the Space Shuttle Main Engine Controller Lab

    NASA Technical Reports Server (NTRS)

    Oreilly, Daniel; Williams, Robert; Yarborough, Kevin

    1988-01-01

    This is a tutorial/diagnostic system for training personnel in the use of the Space Shuttle Main Engine Controller (SSMEC) Simulation Lab. It also provides a diagnostic capable of isolating lab failures at least to the major lab component. The system was implemented using Hypercard, which is an program of hypermedia running on Apple Macintosh computers. Hypercard proved to be a viable platform for the development and use of sophisticated tutorial systems and moderately capable diagnostic systems. This tutorial/diagnostic system uses the basic Hypercard tools to provide the tutorial. The diagnostic part of the system uses a simple interpreter written in the Hypercard language (Hypertalk) to implement the backward chaining rule based logic commonly found in diagnostic systems using Prolog. Some of the advantages of Hypercard in developing this type of system include sophisticated graphics, animation, sound and voice capabilities, its ability as a hypermedia tool, and its ability to include digitized pictures. The major disadvantage is the slow execution time for evaluation of rules (due to the interpretive processing of the language). Other disadvantages include the limitation on the size of the cards, that color is not supported, that it does not support grey scale graphics, and its lack of selectable fonts for text fields.

  9. Genetic engineering for high methionine grain legumes.

    PubMed

    Müntz, K; Christov, V; Saalbach, G; Saalbach, I; Waddell, D; Pickardt, T; Schieder, O; Wüstenhagen, T

    1998-08-01

    Methionine (Met) is the primary limiting essential amino acid in grain legumes. The imbalance in amino acid composition restricts their biological value (BV) to 55 to 75% of that of animal protein. So far improvement of the BV could not be achieved by conventional breeding. Therefore, genetic engineering was employed by several laboratories to resolve the problem. Three strategies have been followed. A) Engineering for increased free Met levels; B) engineering of endogenous storage proteins with increased numbers of Met residues; C) transfer of foreign genes encoding Met-rich proteins, e.g. the Brazil nut 2S albumin (BNA) and its homologue from sunflower, into grain legumes. The latter strategy turned out to be most promising. In all cases the gene was put under the control of a developmentally regulated seed specific promoter and transferred into grain legumes using the bacterial Agrobacterium tumefaciens-system. Integration into and copy numbers in the plant genome as well as Mendelian inheritance and gene dosage effects were verified. After correct precursor processing the mature 2S albumin was intracellularly deposited in protein bodies which are part of the vacuolar compartment. The foreign protein amounted to 5 to 10% of the total seed protein in the best transgenic lines of narbon bean (Vicia narbonensis L., used in the authors' laboratories), lupins (Lupinus angustifolius L., used in CSIRO, Australia), and soybean (Glycine max (L.) Merr., used by Pioneer Hi-Bred, Inc., USA). In the narbon bean the increase of Met was directly related to the amount of 2S albumin in the transgenic seeds, but in soybean it remained below the theoretically expected value. Nevertheless, trangenic soybean reached 100%, whereas narbon bean and lupins reached approximately 80% of the FAO-standard for nutritionally balanced food proteins. These results document that the Met problem of grain legumes can be resolved by genetic engineering. PMID:9739551

  10. EngineSim: Turbojet Engine Simulator Adapted for High School Classroom Use

    NASA Technical Reports Server (NTRS)

    Petersen, Ruth A.

    2001-01-01

    EngineSim is an interactive educational computer program that allows users to explore the effect of engine operation on total aircraft performance. The software is supported by a basic propulsion web site called the Beginner's Guide to Propulsion, which includes educator-created, web-based activities for the classroom use of EngineSim. In addition, educators can schedule videoconferencing workshops in which EngineSim's creator demonstrates the software and discusses its use in the educational setting. This software is a product of NASA Glenn Research Center's Learning Technologies Project, an educational outreach initiative within the High Performance Computing and Communications Program.

  11. La Vida Robot - High School Engineering Program Combats Engineering Brain Drain

    ScienceCinema

    Cameron, Allan; Fredi, Lajvardi

    2009-09-01

    Carl Hayden High School has built an impressive reputation with its robotics club. At a time when interest in science, math and engineering is declining, the Falcon Robotics club has young people fired up about engineering. Their program in underwater robots (MATE) and FIRST robotics is becoming a national model, not for building robots, but for building engineers. Teachers Fredi Lajvardi and Allan Cameron will present their story (How kids 'from the mean streets of Phoenix took on the best from M.I.T. in the national underwater bot championship' - Wired Magazine, April 2005) and how every student needs the opportunity to 'do real engineering.'

  12. La Vida Robot - High School Engineering Program Combats Engineering Brain Drain

    SciTech Connect

    Cameron, Allan; Fredi, Lajvardi

    2006-03-15

    Carl Hayden High School has built an impressive reputation with its robotics club. At a time when interest in science, math and engineering is declining, the Falcon Robotics club has young people fired up about engineering. Their program in underwater robots (MATE) and FIRST robotics is becoming a national model, not for building robots, but for building engineers. Teachers Fredi Lajvardi and Allan Cameron will present their story (How kids 'from the mean streets of Phoenix took on the best from M.I.T. in the national underwater bot championship' - Wired Magazine, April 2005) and how every student needs the opportunity to 'do real engineering.'

  13. Biologically inspired highly efficient buoyancy engine

    NASA Astrophysics Data System (ADS)

    Akle, Barbar; Habchi, Wassim; Abdelnour, Rita; Blottman, John, III; Leo, Donald

    2012-04-01

    Undersea distributed networked sensor systems require a miniaturization of platforms and a means of both spatial and temporal persistence. One aspect of this system is the necessity to modulate sensor depth for optimal positioning and station-keeping. Current approaches involve pneumatic bladders or electrolysis; both require mechanical subsystems and consume significant power. These are not suitable for the miniaturization of sensor platforms. Presented in this study is a novel biologically inspired method that relies on ionic motion and osmotic pressures to displace a volume of water from the ocean into and out of the proposed buoyancy engine. At a constant device volume, the displaced water will alter buoyancy leading to either sinking or floating. The engine is composed of an enclosure sided on the ocean's end by a Nafion ionomer and by a flexible membrane separating the water from a gas enclosure. Two electrodes are placed one inside the enclosure and the other attached to the engine on the outside. The semi-permeable membrane Nafion allows water motion in and out of the enclosure while blocking anions from being transferred. The two electrodes generate local concentration changes of ions upon the application of an electrical field; these changes lead to osmotic pressures and hence the transfer of water through the semi-permeable membrane. Some aquatic organisms such as pelagic crustacean perform this buoyancy control using an exchange of ions through their tissue to modulate its density relative to the ambient sea water. In this paper, the authors provide an experimental proof of concept of this buoyancy engine. The efficiency of changing the engine's buoyancy is calculated and optimized as a function of electrode surface area. For example electrodes made of a 3mm diameter Ag/AgCl proved to transfer approximately 4mm3 of water consuming 4 Joules of electrical energy. The speed of displacement is optimized as a function of the surface area of the Nafion

  14. Method of sealing a high performance automotive engine and engine assembly

    SciTech Connect

    Rosenquist, G.A.

    1994-01-04

    A method of sealing a high performance internal combustion engine with a head gasket having a fire ring comprising providing a groove in the head or block generally concentric with each said combustion opening, each groove having a land area and a generally vertical wall, and positioning the gasket on the block so that when the head is torqued down, each groove receives a fire ring and compresses the wire ring thereof to provide a primary seal therewith at the land area, the wall engages the armor of the fire ring to form a secondary seal, and the head and block clamping surfaces engage the armor to clamp the armor. The head gasket has a main body of a first thickness including a central core and facing layers laminated to the core, and defines a plurality of combustion openings. A fire ring is disposed and secured in each combustion opening, each fire ring comprising a generally U-shaped armor having a pair of legs overlying and underlying the main body adjacent a combustion opening and a central body connecting the legs and ensheathing a wire ring for providing a combustion seal. In use, the combustion seal provides a labyrinth seal against the spaced surfaces of the groove and against a corner defined by the groove. 6 figs.

  15. High hyperdiploid childhood acute lymphoblastic leukemia: Chromosomal gains as the main driver event.

    PubMed

    Paulsson, Kajsa

    2016-01-01

    High hyperdiploid childhood acute lymphoblastic leukemia is characterized by multiple chromosomal gains. Recent results show that this subtype harbors relatively few genetic abnormalities besides the extra chromosomes, which appear to arise early and are likely the main driver event. Secondary hits primarily target genes in the rat sarcoma (RAS) signaling pathway and histone modifiers. PMID:27308574

  16. Challenges Faced by Maine School Districts in Providing High Quality Public Education. Research Brief

    ERIC Educational Resources Information Center

    Silvernail, David L.; Linet, Sarah R.

    2014-01-01

    The goal of this study was to: (1) identify challenges faced by Maine school districts in providing high quality public education; (2) describe the magnitude of the challenges; and (3) identify areas where school districts were experiencing some success in meeting these challenges. The School Districts Challenge Survey was distributed online to…

  17. High hyperdiploid childhood acute lymphoblastic leukemia: Chromosomal gains as the main driver event

    PubMed Central

    Paulsson, Kajsa

    2016-01-01

    ABSTRACT High hyperdiploid childhood acute lymphoblastic leukemia is characterized by multiple chromosomal gains. Recent results show that this subtype harbors relatively few genetic abnormalities besides the extra chromosomes, which appear to arise early and are likely the main driver event. Secondary hits primarily target genes in the rat sarcoma (RAS) signaling pathway and histone modifiers. PMID:27308574

  18. A Perspective on the Future of High Efficiency Engines

    SciTech Connect

    Wagner, Robert M; Curran, Scott; Green Jr, Johney Boyd

    2013-01-01

    New fuel economy standards and emissions regulations are accelerating the development of new engine technologies, sensors, and on-board computing. These developments will enable unprecedented engine control, which will in turn enable real-world implementations of low temperature combustion, high-speed controls, and other high efficiency engine technologies. With this expanded flexibility in engine design and control, the challenge will now be the exponential increase in the design and calibration space and the need for the development of new simulations, optimization methods, and self-learning control methodologies. This manuscript provides historical and future perspectives on the opportunities and challenges of this unparalleled technology growth on the next generation of high efficiency engines.

  19. Coal-fueled high-speed diesel engine development

    SciTech Connect

    Kakwani, R. M.; Winsor, R. E.; Ryan, III, T. W.; Schwalb, J. A.; Wahiduzzaman, S.; Wilson, Jr., R. P.

    1991-11-01

    The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

  20. LEADER - An integrated engine behavior and design analyses based real-time fault diagnostic expert system for Space Shuttle Main Engine (SSME)

    NASA Technical Reports Server (NTRS)

    Gupta, U. K.; Ali, M.

    1989-01-01

    The LEADER expert system has been developed for automatic learning tasks encompassing real-time detection, identification, verification, and correction of anomalous propulsion system operations, using a set of sensors to monitor engine component performance to ascertain anomalies in engine dynamics and behavior. Two diagnostic approaches are embodied in LEADER's architecture: (1) learning and identifying engine behavior patterns to generate novel hypotheses about possible abnormalities, and (2) the direction of engine sensor data processing to perform resoning based on engine design and functional knowledge, as well as the principles of the relevant mechanics and physics.

  1. Very high thrust-to-weight rocket engines

    NASA Astrophysics Data System (ADS)

    Glass, James F.; Goracke, B. David; Levack, Daniel J. H.

    1998-01-01

    High delta-V earth-to-orbit missions have put a premium on high performance booster rocket engines. While significant improvements to specific impulse are unlikely, high thrust-to-weight design provides a promising avenue for improving mission and vehicle capabilities and margins. Several approaches can contribute to achieving such engine designs, including proper design optimization, simplification, geometry, propellant selection, and the application of advanced materials. Incorporation of the first four approaches can yield factors of about two improvements in current liquid engine designs. The utilization of emerging material capabilities could yield another factor of two improvement with the possibility of even larger gains with far-term materials and designs.

  2. Design of the HEAO main bus shunt regulator. [High Energy Astronomical Observatory solar array

    NASA Technical Reports Server (NTRS)

    Middlebrook, R. D.; Kimble, S. G.

    1976-01-01

    The High Energy Astronomy Observatory (HEAO) is being built for NASA by an American company. The general requirements concerning the HEAO main bus regulator are examined. The bus regulated voltage is 33 V, the maximum shunt current is 45 A, and the regulator output impedance is to be less than 0.5 Ohm from dc to 100 kHz. Loop gain design considerations for the main bus regulator are discussed and a description is given of the general device configuration. Attention is also given to regulator loop design and performance.

  3. Thrust reverser for high bypass turbofan engine

    SciTech Connect

    Matta, R.K.; Bhutiani, P.K.

    1990-05-08

    This patent describes a thrust reverser for a gas turbine engine of the type which includes an outer wall spaced from the center body of a core engine to define a bypass duct therebetween. The thrust reverser comprising: circumferentially displaced blocker doors, each of the doors being movable between a normal position generally aligned with the outer wall and a thrust reversing position extending transversely of the bypass duct for blocking the exhaust of air through the bypass duct and directing the air through an opening in the outer wall for thrust reversal; each of the blocker doors being of lightweight construction and including a pit in the inner surface thereof in the normal position; means for covering the pit during normal flow of air through the bypass duct to reduce the pressure drop in the bypass duct and to reduce noise. The covering means including a pit cover hingedly mounted at one end thereof on the blocker door and means of biasing the pit cover away from the blocker door to a position providing smooth flow of air through the bypass duct during normal operation.

  4. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix F: Data base plots for SSME tests 750-120 through 750-200

    NASA Technical Reports Server (NTRS)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is presented. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is also included to estimate spectral trends with SSME power level.

  5. Near-infrared spectra of high-albedo outer main-belt asteroids

    SciTech Connect

    Kasuga, Toshihiro; Shirahata, Mai; Usui, Fumihiko; Kuroda, Daisuke; Ootsubo, Takafumi; Okamura, Natsuko; Hasegawa, Sunao

    2015-02-01

    Most outer main-belt asteroids have low albedos because of their carbonaceouslike bodies. However, infrared satellite surveys have revealed that some asteroids have high albedos, which may suggest the presence of unusual surface minerals for those primitive objects. We present new near-infrared (1.1–2.5 μm) spectra of four outer main-belt asteroids with albedos ≥ 0.1. The C-complex asteroids (555) Norma and (2542) Calpurnia are featureless and have (50%–60%) amorphous Mg pyroxenes that might explain the high albedos. Asteroids (701) Oriola (which is a C-complex asteroid) and (2670) Chuvashia (a D/T-type or M-type asteroid) show possible broad absorption bands (1.5–2.1 μm). The feature can be reproduced by either Mg-rich amorphous pyroxene (with 50%–60% and 80%–95% Mg, respectively) or orthopyroxene (crystalline silicate), which might be responsible for the high albedos. No absorption features of water ice (near 1.5 and 2.0 μm) are detected in the objects. We discuss the origin of high albedo components in the outer main-belt asteroids and their physical relations to comets.

  6. 60. 1901 STEAM ENGINE HOUSE LOOKING WEST. VISIBLE THROUGH HIGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. 1901 STEAM ENGINE HOUSE LOOKING WEST. VISIBLE THROUGH HIGH ARCHED PASSAGEWAYS AT LEFT (FORMER WINDOWS) IS 1902 STEAM TURBINE. - Boston Manufacturing Company, 144-190 Moody Street, Waltham, Middlesex County, MA

  7. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect

    Ross, M.A.

    1980-06-16

    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  8. Cf6 jet engine performance improvement: high pressure turbine roundness

    SciTech Connect

    Howard, W.D.; Fasching, W.A.

    1982-01-01

    An improved high pressure turbine stator reducing fuel consumption in current CF6-50 turbofan engines was developed. The feasibility of the roundness and clearance response improvements was demonstrated. Application of these improvements will result in a cruise SFC reduction of 0.22 percent for new engines. For high time engines, the improved roundness and response characteristics results in an 0.5 percent reduction in cruise SFC. A basic life capability of the improved HP turbine stator in over 800 simulated flight cycles without any sign of significant distress is shown.

  9. CF6 jet engine performance improvement: High pressure turbine roundness

    NASA Technical Reports Server (NTRS)

    Howard, W. D.; Fasching, W. A.

    1982-01-01

    An improved high pressure turbine stator reducing fuel consumption in current CF6-50 turbofan engines was developed. The feasibility of the roundness and clearance response improvements was demonstrated. Application of these improvements will result in a cruise SFC reduction of 0.22 percent for new engines. For high time engines, the improved roundness and response characteristics results in an 0.5 percent reduction in cruise SFC. A basic life capability of the improved HP turbine stator in over 800 simulated flight cycles without any sign of significant distress is shown.

  10. Creation of a gilded trap by the high economic value of the Maine lobster fishery.

    PubMed

    Steneck, R S; Hughes, T P; Cinner, J E; Adger, W N; Arnold, S N; Berkes, F; Boudreau, S A; Brown, K; Folke, C; Gunderson, L; Olsson, P; Scheffer, M; Stephenson, E; Walker, B; Wilson, J; Worm, B

    2011-10-01

    Unsustainable fishing simplifies food chains and, as with aquaculture, can result in reliance on a few economically valuable species. This lack of diversity may increase risks of ecological and economic disruptions. Centuries of intense fishing have extirpated most apex predators in the Gulf of Maine (United States and Canada), effectively creating an American lobster (Homarus americanus) monoculture. Over the past 20 years, the economic diversity of marine resources harvested in Maine has declined by almost 70%. Today, over 80% of the value of Maine's fish and seafood landings is from highly abundant lobsters. Inflation-corrected income from lobsters in Maine has steadily increased by nearly 400% since 1985. Fisheries managers, policy makers, and fishers view this as a success. However, such lucrative monocultures increase the social and ecological consequences of future declines in lobsters. In southern New England, disease and stresses related to increases in ocean temperature resulted in more than a 70% decline in lobster abundance, prompting managers to propose closing that fishery. A similar collapse in Maine could fundamentally disrupt the social and economic foundation of its coast. We suggest the current success of Maine's lobster fishery is a gilded trap. Gilded traps are a type of social trap in which collective actions resulting from economically attractive opportunities outweigh concerns over associated social and ecological risks or consequences. Large financial gain creates a strong reinforcing feedback that deepens the trap. Avoiding or escaping gilded traps requires managing for increased biological and economic diversity. This is difficult to do prior to a crisis while financial incentives for maintaining the status quo are large. The long-term challenge is to shift fisheries management away from single species toward integrated social-ecological approaches that diversify local ecosystems, societies, and economies. PMID:21797925

  11. Small, high-performance engine component technology status. [liquid rocket engine for spacecraft

    NASA Technical Reports Server (NTRS)

    Yost, M. C.; Csomor, A.

    1976-01-01

    Rocketdyne, under contract to NASA-Lewis Research Center, is engaged in developing the technology for major subsystems of a small, high-performance, liquid rocket engine with the capabilities required for high-energy, upper-stage applications. Included in these efforts are the high-pressure turbopumps, preburner, igniter components, and high-area-ratio thrust chamber. A brief description of the engine system and its subsystems is given. The status of the programs is reviewed and the results of the testing conducted are presented.

  12. High variable mixture ratio oxygen/hydrogen engine

    NASA Technical Reports Server (NTRS)

    Erickson, C. M.; Tu, W. H.; Weiss, A. H.

    1988-01-01

    The ability of an O2/H2 engine to operate over a range of high-propellant mixture ratios was previously shown to be advantageous in single stage to orbit (SSTO) vehicles. The results are presented for the analysis of high-performance engine power cycles operating over propellant mixture ratio ranges of 12 to 6 and 9 to 6. A requirement to throttle up to 60 percent of nominal thrust was superimposed as a typical throttle range to limit vehicle acceleration as propellant is expended. The object of the analysis was to determine areas of concern relative to component and engine operability or potential hazards resulting from the operating requirements and ranges of conditions that derive from the overall engine requirements. The SSTO mission necessitates a high-performance, lightweight engine. Therefore, staged combustion power cycles employing either dual fuel-rich preburners or dual mixed (fuel-rich and oxygen-rich) preburners were examined. Engine mass flow and power balances were made and major component operating ranges were defined. Component size and arrangement were determined through engine layouts for one of the configurations evaluated. Each component is being examined to determine if there are areas of concern with respect to component efficiency, operability, reliability, or hazard. The effects of reducing the maximum chamber pressure were investigated for one of the cycles.

  13. Engine panel seals for hypersonic engine applications: High temperature leakage assessments and flow modelling

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Mutharasan, Rajakkannu; Du, Guang-Wu; Miller, Jeffrey H.; Ko, Frank

    1992-01-01

    A critical mechanical system in advanced hypersonic engines is the panel-edge seal system that seals gaps between the articulating horizontal engine panels and the adjacent engine splitter walls. Significant advancements in seal technology are required to meet the extreme demands placed on the seals, including the simultaneous requirements of low leakage, conformable, high temperature, high pressure, sliding operation. In this investigation, the seal concept design and development of two new seal classes that show promise of meeting these demands will be presented. These seals include the ceramic wafer seal and the braided ceramic rope seal. Presented are key elements of leakage flow models for each of these seal types. Flow models such as these help designers to predict performance-robbing parasitic losses past the seals, and estimate purge coolant flow rates. Comparisons are made between measured and predicted leakage rates over a wide range of engine simulated temperatures and pressures, showing good agreement.

  14. Engineer's guide to high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Doss, James D.

    The physics, properties, preparation, and applications of high-Tc superconductors are described. Chapters are devoted to the history of superconductivity, fundamental considerations, superconductor applications, the processing of high-Tc superconductors, measurement techniques, and safety problems. Also provided are a review of basic electrical and magnetic theory; a table of units and conversions; a glossary of terms and symbols; and lists of superconductor-related products, services, publications, and associations.

  15. Energy efficient engine high-pressure turbine detailed design report

    NASA Technical Reports Server (NTRS)

    Thulin, R. D.; Howe, D. C.; Singer, I. D.

    1982-01-01

    The energy efficient engine high-pressure turbine is a single stage system based on technology advancements in the areas of aerodynamics, structures and materials to achieve high performance, low operating economics and durability commensurate with commercial service requirements. Low loss performance features combined with a low through-flow velocity approach results in a predicted efficiency of 88.8 for a flight propulsion system. Turbine airfoil durability goals are achieved through the use of advanced high-strength and high-temperature capability single crystal materials and effective cooling management. Overall, this design reflects a considerable extension in turbine technology that is applicable to future, energy efficient gas-turbine engines.

  16. High Latitude Dust Bands in the Main Asteroid Belt: Fingerprints of Recent Breakup Events

    NASA Astrophysics Data System (ADS)

    Bottke, William; Durda, Daniel; Jayaraman, Sumita; Lien, David; Nesvorny, David; Reach, William; Stansberry, John; Sykes, Mark; Walker, Russell

    2005-06-01

    The present population of main belt asteroids is largely the result of many past collisions. Ideally, the fragments produced by each impact event could help us understand the collisional processes that shaped the planets during early epochs. Most known asteroid fragment families, however, are very old and thus have undergone significant collisional and dynamical evolution since their formation. This evolution masks the properties of the original collisions. To overcome this problem, our team has used numerical methods and a large database of asteroid orbits to identify several families produced by recent disruption events (<< few tens of My). Not only have these young families undergone little collisional and dynamical evolution, but several of them appear to be the source of dust bands observed by IRAS (e.g., the Karin and Veritas families, both which are < 10 My old; Nesvorny et al. 2002; 2003). Here we propose to use Spitzer observations to investigate the structure of high latitude dust bands in the main asteroid belt. Our results indicate that 2 faint dust bands identified by IRAS, the J/K band at proper inclination i = 12 deg and the M/N band at i = 15 deg, were produced by break up events associated with asteroids (4652) Iannini and (1521) Seinajoki, respectively. Numerical integration work by our team suggests the former family is < 5 My old, making it the youngest family yet discovered in the main belt. Taking advantage of the increased sensitivity of Spitzer over IRAS, we will determine the dust production rate and size distribution in the high latitude bands, relate them to the Zodiacal Cloud, and use this data to constrain main belt collisional processes.

  17. High Pressure Regenerative Turbine Engine: 21st Century Propulsion

    NASA Technical Reports Server (NTRS)

    Lear, W. E.; Laganelli, A. L.; Senick, Paul (Technical Monitor)

    2001-01-01

    A novel semi-closed cycle gas turbine engine was demonstrated and was found to meet the program goals. The proof-of-principle test of the High Pressure Regenerative Turbine Engine produced data that agreed well with models, enabling more confidence in designing future prototypes based on this concept. Emission levels were significantly reduced as predicted as a natural attribute of this power cycle. Engine testing over a portion of the operating range allowed verification of predicted power increases compared to the baseline.

  18. High density fuel qualification for a gas turbine engine

    SciTech Connect

    Macleod, J.D.; Orbanski, B.; Hastings, P.R. Standard Aero, Ltd., Winnipeg, DND, Ottawa, )

    1992-01-01

    A program for the evaluation of gas turbine engine performance, carried out in the Engine Laboratory of the National Research Council of Canada, is described. Problems under consideration include performance alteration between JP-4 fuel and a high energy density fuel, called strategic military fuel (SMF); performance deterioration during the accelerated endurance test; and emission analysis. The T56 fuel control system is found to be capable of operation on the higher energy density fuel with no detrimental effects regarding control of the engine's normal operating regime. The deterioration of the engine performance during 150-hour endurance tests on SMF was very high, which was caused by an increase in turbine nozzle effective flow area and turbine blade untwist. The most significant performance losses during the endurance tests were on corrected output power, fuel flow, specific fuel consumption and compressor and turbine presure ratio. 9 refs.

  19. High Stability Engine Control (HISTEC) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Southwick, Robert D.; Gallops, George W.; Kerr, Laura J.; Kielb, Robert P.; Welsh, Mark G.; DeLaat, John C.; Orme, John S.

    1998-01-01

    The High Stability Engine Control (HISTEC) Program, managed and funded by the NASA Lewis Research Center, is a cooperative effort between NASA and Pratt & Whitney (P&W). The program objective is to develop and flight demonstrate an advanced high stability integrated engine control system that uses real-time, measurement-based estimation of inlet pressure distortion to enhance engine stability. Flight testing was performed using the NASA Advanced Controls Technologies for Integrated Vehicles (ACTIVE) F-15 aircraft at the NASA Dryden Flight Research Center. The flight test configuration, details of the research objectives, and the flight test matrix to achieve those objectives are presented. Flight test results are discussed that show the design approach can accurately estimate distortion and perform real-time control actions for engine accommodation.

  20. Engineering high-performance vertical cavity lasers

    SciTech Connect

    Lear, K.L.; Hou, H.Q.; Hietala, V.M.; Choquette, K.D.; Schneider, R.P. Jr.

    1996-12-31

    The cw and high-speed performance of vertical cavity surface emitting laser diodes (VCSELs) are affected by both electrical and optical issues arising from the geometry and fabrication of these devices. Structures with low resistance semiconductor mirrors and Al-oxide confinement layers address these issues and have produced record performance including 50% power conversion efficiency and modulation bandwidths up to 20 GHz at small bias currents.

  1. Accelerator System Development at High Voltage Engineering

    SciTech Connect

    Klein, M. G.; Gottdang, A.; Haitsma, R. G.; Mous, D. J. W.

    2009-03-10

    Throughout the years, HVE has continuously extended the capabilities of its accelerator systems to meet the rising demands from a diverse field of applications, among which are deep level ion implantation, micro-machining, neutron production for biomedical research, isotope production or accelerator mass spectrometry. Characteristic for HVE accelerators is the coaxial construction of the all solid state power supply around the acceleration tubes. With the use of solid state technology, the accelerators feature high stability and very low ripple. Terminal voltages range from 1 to 6 MV for HVE Singletrons and Tandetrons. The high-current versions of these accelerators can provide ion beams with powers of several kW. In the last years, several systems have been built with terminal voltages of 1.25 MV, 2 MV and 5 MV. Recently, the first system based on a 6 MV Tandetron has passed the factory tests. In this paper we describe the characteristics of the HVE accelerator systems and present as example recent systems.

  2. High energy density propulsion systems and small engine dynamometer

    NASA Astrophysics Data System (ADS)

    Hays, Thomas

    2009-07-01

    Scope and Method of Study. This study investigates all possible methods of powering small unmanned vehicles, provides reasoning for the propulsion system down select, and covers in detail the design and production of a dynamometer to confirm theoretical energy density calculations for small engines. Initial energy density calculations are based upon manufacturer data, pressure vessel theory, and ideal thermodynamic cycle efficiencies. Engine tests are conducted with a braking type dynamometer for constant load energy density tests, and show true energy densities in excess of 1400 WH/lb of fuel. Findings and Conclusions. Theory predicts lithium polymer, the present unmanned system energy storage device of choice, to have much lower energy densities than other conversion energy sources. Small engines designed for efficiency, instead of maximum power, would provide the most advantageous method for powering small unmanned vehicles because these engines have widely variable power output, loss of mass during flight, and generate rotational power directly. Theoretical predictions for the energy density of small engines has been verified through testing. Tested values up to 1400 WH/lb can be seen under proper operating conditions. The implementation of such a high energy density system will require a significant amount of follow-on design work to enable the engines to tolerate the higher temperatures of lean operation. Suggestions are proposed to enable a reliable, small-engine propulsion system in future work. Performance calculations show that a mature system is capable of month long flight times, and unrefueled circumnavigation of the globe.

  3. Jet engine powers large, high-temperature wind tunnel

    NASA Technical Reports Server (NTRS)

    Benham, T. F.; Mulliken, S. R.

    1967-01-01

    Wind tunnel for large component testing uses a jet engine with afterburner to provide high temperatures /1200 degrees to 2000 degrees F/ and controlled high velocity gas. This economical wind tunnel can accommodate parts ten feet by ten feet or larger, and is a useful technique for qualitative information.

  4. The Cornell Main Linac Cryomodule: A Full Scale, High Q Accelerator Module for cw Application

    NASA Astrophysics Data System (ADS)

    Eichhorn, R.; Bullock, B.; Elmore, B.; Clasby, B.; Furuta, F.; He, Y.; Hoffstaetter, G.; Liepe, M.; O'Connell, T.; Conway, J.; Quigley, P.; Sabol, D.; Sears, J.; Smith, E.; Veshcherevich, V.

    Cornell University is in the process of building a 10 m long superconducting accelerator module as a prototype of the main linac of a proposed ERL facility. This module houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/BPM section. In pushing the limits, a high quality factor of the cavities (2•1010) and high beam currents (100 mA accelerated plus 100 mA decelerated) were targeted. We will review the design shortly and present the results of the components tested before the assembly. This includes data of the quality-factors of all 6 cavities that we produced and treated in-house, the HOM absorber performance measured with beam on a test set-up as well as testing of the couplers and the tuners.

  5. Ultra High Bypass Ratio Low Noise Engine Study

    NASA Technical Reports Server (NTRS)

    Dalton, W. N., III

    2003-01-01

    A study was conducted to identify engine cycle and technologies needed for a regional aircraft which could be capable of achieving a 10 EPNdB reduction in community noise level relative to current FAR36 Stage 3 limits. The study was directed toward 100-passenger regional aircraft with engine configurations in the 15,000 pound thrust class. The study focused on Ultra High Bypass Ratio (UHBR) cycles due to low exhaust jet velocities and reduced fan tip speeds. The baseline engine for this study employed a gear-driven, 1000 ft/sec tip speed fan and had a cruise bypass ratio of 14:1. A revised engine configuration employing fan and turbine design improvements are predicted to be 9.2 dB below current takeoff limits and 12.8 dB below current approach limits. An economic analysis was also done by estimating Direct Operating Cost (DOC).

  6. Investigation of low NOx staged combustor concept in high-speed civil transport engines

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung Lee; Bittker, David A.; Niedzwiecki, Richard W.

    1989-01-01

    Levels of exhaust emissions due to high temperatures in the main combustor of high-speed civil transport (HSCT) engines during supersonic cruise are predicted. These predictions are based on a new combustor design approach: a rich burn/quick quench/lean burn combustor. A two-stage stirred reactor model is used to calculate the combustion efficiency and exhaust emissions of this novel combustor. A propane-air chemical kinetics model is used to simulate the fuel-rich combustion of jet fuel. Predicted engine exhaust emissions are compared with available experimental test data. The effect of HSCT engine operating conditions on the levels of exhaust emissions is also presented. The work described in this paper is a part of the NASA Lewis Research Center High-Speed Civil Transport Low NO(x) Combustor program.

  7. SSME/side loads analysis for flight configuration, revision A. [structural analysis of space shuttle main engine under side load excitation

    NASA Technical Reports Server (NTRS)

    Holland, W.

    1974-01-01

    This document describes the dynamic loads analysis accomplished for the Space Shuttle Main Engine (SSME) considering the side load excitation associated with transient flow separation on the engine bell during ground ignition. The results contained herein pertain only to the flight configuration. A Monte Carlo procedure was employed to select the input variables describing the side load excitation and the loads were statistically combined. This revision includes an active thrust vector control system representation and updated orbiter thrust structure stiffness characteristics. No future revisions are planned but may be necessary as system definition and input parameters change.

  8. NASA's high-temperature engine materials program for civil aeronautics

    NASA Technical Reports Server (NTRS)

    Gray, Hugh R.; Ginty, Carol A.

    1992-01-01

    The Advanced High-Temperature Engine Materials Technology Program is described in terms of its research initiatives and its goal of developing propulsion systems for civil aeronautics with low levels of noise, pollution, and fuel consumption. The program emphasizes the analysis and implementation of structural materials such as polymer-matrix composites in fans, casings, and engine-control systems. Also investigated in the program are intermetallic- and metal-matrix composites for uses in compressors and turbine disks as well as ceramic-matrix composites for extremely high-temperature applications such as turbine vanes.

  9. High-End Computing Challenges in Aerospace Design and Engineering

    NASA Technical Reports Server (NTRS)

    Bailey, F. Ronald

    2004-01-01

    High-End Computing (HEC) has had significant impact on aerospace design and engineering and is poised to make even more in the future. In this paper we describe four aerospace design and engineering challenges: Digital Flight, Launch Simulation, Rocket Fuel System and Digital Astronaut. The paper discusses modeling capabilities needed for each challenge and presents projections of future near and far-term HEC computing requirements. NASA's HEC Project Columbia is described and programming strategies presented that are necessary to achieve high real performance.

  10. [Determination of main degradation products of lignin using reversed-phase high performance liquid chromatography].

    PubMed

    Jiang, Zhijing; Zhu, Junjun; Li, Xin; Lian, Zhina; Yu, Shiyuan; Yong, Qiang

    2011-01-01

    An analytical method using reversed-phase high performance liquid chromatography (RP-HPLC) was developed for the separation and quantitative determination of main degradation products of lignin (4-hydroxybenzoic acid, vanillic acid, syringic acid, 4-hydroxybenzaldehyde, vanillin and syringaldehyde) during the steam exploded pretreatment for corn stovers. The separation was carried out on a C18 column with the mobile phase of acetonitrile-water (containing 1.5% acetic acid) at 30 degrees C at a flow rate of 0.8 mL/min and the detection wavelengths of 254 and 280 nm. Under the optimized conditions, the correlation coefficients of the 6 compounds were between 0.999 9 and 1.000 0. The recoveries of the 6 compounds were all above 96% and the relative standard deviations (n = 6) were less than 2.5%. This method is suitable for the determination of the main degradation products of lignin during the steam exploded pretreatment of lignocellulosics. PMID:21574401

  11. Engineering squeezed states in high-Q cavities

    SciTech Connect

    Almeida, N.G. de; Serra, R.M.; Villas-Boas, C.J.; Moussa, M.H. Y.

    2004-03-01

    While it has been possible to build fields in high-Q cavities with a high degree of squeezing for some years, the engineering of arbitrary squeezed states in these cavities has only recently been addressed [Phys. Rev. A 68, 061801(R) (2003)]. The present work examines the question of how to squeeze any given cavity-field state and, particularly, how to generate the squeezed displaced number state and the squeezed macroscopic quantum superposition in a a high-Q cavity.

  12. High Stability Engine Control (HISTEC): Flight Demonstration Results

    NASA Technical Reports Server (NTRS)

    Delaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.

    1998-01-01

    Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The High Stability Engine Control (HISTEC) program has developed technologies for an advanced, integrated engine control system that uses measurement- based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and/or decrease in fuel burn. The HISTEC concept was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two parts, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.

  13. The High Stability Engine Control (HISTEC) Program: Flight Demonstration Phase

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.

    1998-01-01

    Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight-demonstrate an advanced, integrated engine control system that uses measurement-based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been developed and was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two phases, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. This allows the design stall margin requirement to be reduced, which in turn can be traded for significantly increased performance and/or decreased weight. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.

  14. Protein engineering by highly parallel screening of computationally designed variants.

    PubMed

    Sun, Mark G F; Seo, Moon-Hyeong; Nim, Satra; Corbi-Verge, Carles; Kim, Philip M

    2016-07-01

    Current combinatorial selection strategies for protein engineering have been successful at generating binders against a range of targets; however, the combinatorial nature of the libraries and their vast undersampling of sequence space inherently limit these methods due to the difficulty in finely controlling protein properties of the engineered region. Meanwhile, great advances in computational protein design that can address these issues have largely been underutilized. We describe an integrated approach that computationally designs thousands of individual protein binders for high-throughput synthesis and selection to engineer high-affinity binders. We show that a computationally designed library enriches for tight-binding variants by many orders of magnitude as compared to conventional randomization strategies. We thus demonstrate the feasibility of our approach in a proof-of-concept study and successfully obtain low-nanomolar binders using in vitro and in vivo selection systems. PMID:27453948

  15. Protein engineering by highly parallel screening of computationally designed variants

    PubMed Central

    Sun, Mark G. F.; Seo, Moon-Hyeong; Nim, Satra; Corbi-Verge, Carles; Kim, Philip M.

    2016-01-01

    Current combinatorial selection strategies for protein engineering have been successful at generating binders against a range of targets; however, the combinatorial nature of the libraries and their vast undersampling of sequence space inherently limit these methods due to the difficulty in finely controlling protein properties of the engineered region. Meanwhile, great advances in computational protein design that can address these issues have largely been underutilized. We describe an integrated approach that computationally designs thousands of individual protein binders for high-throughput synthesis and selection to engineer high-affinity binders. We show that a computationally designed library enriches for tight-binding variants by many orders of magnitude as compared to conventional randomization strategies. We thus demonstrate the feasibility of our approach in a proof-of-concept study and successfully obtain low-nanomolar binders using in vitro and in vivo selection systems. PMID:27453948

  16. High-Temperature Magnetic Bearings for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Magnetic bearings are the subject of a new NASA Lewis Research Center and U.S. Army thrust with significant industry participation, and coordination with other Government agencies. The NASA/Army emphasis is on high-temperature applications for future gas turbine engines. Magnetic bearings could increase the reliability and reduce the weight of these engines by eliminating the lubrication system. They could also increase the DN (diameter of the bearing times rpm) limit on engine speed and allow active vibration cancellation systems to be used--resulting in a more efficient, "more electric" engine. Finally, the Integrated High-Performance Turbine Engine Technology (IHPTET) Program, a joint Department of Defense/industry program, identified a need for a hightemperature (as high as 1200 F) magnetic bearing that could be demonstrated in a phase III engine. This magnetic bearing is similar to an electric motor. It has a laminated rotor and stator made of cobalt steel. Wound around the stator are a series of electrical wire coils that form a series of electric magnets around the circumference. The magnets exert a force on the rotor. A probe senses the position of the rotor, and a feedback controller keeps it in the center of the cavity. The engine rotor, bearings, and case form a flexible structure that contains a large number of modes. The bearing feedback controller, which could cause some of these modes to become unstable, could be adapted to varying flight conditions to minimize seal clearances and monitor the health of the system. Cobalt steel has a curie point greater than 1700 F, and copper wire has a melting point beyond that. Therefore, practical limitations associated with the maximum magnetic field strength in the cobalt steel and the stress in the rotating components limit the temperature to about 1200 F. The objective of this effort is to determine the limits in temperature and speed of a magnetic bearing operating in an engine. Our approach is to use our in

  17. Valley-engineered ultra-thin silicon for high-performance junctionless transistors.

    PubMed

    Kim, Seung-Yoon; Choi, Sung-Yool; Hwang, Wan Sik; Cho, Byung Jin

    2016-01-01

    Extremely thin silicon show good mechanical flexibility because of their 2-D like structure and enhanced performance by the quantum confinement effect. In this paper, we demonstrate a junctionless FET which reveals a room temperature quantum confinement effect (RTQCE) achieved by a valley-engineering of the silicon. The strain-induced band splitting and a quantum confinement effect induced from ultra-thin-body silicon are the two main mechanisms for valley engineering. These were obtained from the extremely well-controlled silicon surface roughness and high tensile strain in silicon, thereupon demonstrating a device mobility increase of ~500% in a 2.5 nm thick silicon channel device. PMID:27389874

  18. Valley-engineered ultra-thin silicon for high-performance junctionless transistors

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Yoon; Choi, Sung-Yool; Hwang, Wan Sik; Cho, Byung Jin

    2016-07-01

    Extremely thin silicon show good mechanical flexibility because of their 2-D like structure and enhanced performance by the quantum confinement effect. In this paper, we demonstrate a junctionless FET which reveals a room temperature quantum confinement effect (RTQCE) achieved by a valley-engineering of the silicon. The strain-induced band splitting and a quantum confinement effect induced from ultra-thin-body silicon are the two main mechanisms for valley engineering. These were obtained from the extremely well-controlled silicon surface roughness and high tensile strain in silicon, thereupon demonstrating a device mobility increase of ~500% in a 2.5 nm thick silicon channel device.

  19. Valley-engineered ultra-thin silicon for high-performance junctionless transistors

    PubMed Central

    Kim, Seung-Yoon; Choi, Sung-Yool; Hwang, Wan Sik; Cho, Byung Jin

    2016-01-01

    Extremely thin silicon show good mechanical flexibility because of their 2-D like structure and enhanced performance by the quantum confinement effect. In this paper, we demonstrate a junctionless FET which reveals a room temperature quantum confinement effect (RTQCE) achieved by a valley-engineering of the silicon. The strain-induced band splitting and a quantum confinement effect induced from ultra-thin-body silicon are the two main mechanisms for valley engineering. These were obtained from the extremely well-controlled silicon surface roughness and high tensile strain in silicon, thereupon demonstrating a device mobility increase of ~500% in a 2.5 nm thick silicon channel device. PMID:27389874

  20. Analytical screening of low emissions, high performance duct burners for supersonic cruise aircraft engines

    NASA Technical Reports Server (NTRS)

    Lohmann, R. A.; Riecke, G. T.

    1977-01-01

    An analytical screening study was conducted to identify duct burner concepts capable of providing low emissions and high performance in advanced supersonic engines. Duct burner configurations ranging from current augmenter technology to advanced concepts such as premix-prevaporized burners were defined. Aerothermal and mechanical design studies provided the basis for screening these configurations using the criteria of emissions, performance, engine compatibility, cost, weight and relative risk. Technology levels derived from recently defined experimental low emissions main burners are required to achieve both low emissions and high performance goals. A configuration based on the Vorbix (Vortex burning and mixing) combustor concept was analytically determined to meet the performance goals and is consistent with the fan duct envelope of a variable cycle engine. The duct burner configuration has a moderate risk level compatible with the schedule of anticipated experimental programs.

  1. Implementing Concepts of Pharmaceutical Engineering into High School Science Classrooms

    ERIC Educational Resources Information Center

    Kimmel, Howard; Hirsch, Linda S.; Simon, Laurent; Burr-Alexander, Levelle; Dave, Rajesh

    2009-01-01

    The Research Experience for Teachers was designed to help high school science teachers develop skills and knowledge in research, science and engineering with a focus on the area of pharmaceutical particulate and composite systems. The experience included time for the development of instructional modules for classroom teaching. Results of the…

  2. HI-TIE: The University, the High School, and Engineering

    ERIC Educational Resources Information Center

    Ward, Robert C.; Maxwell, Lee M.

    1975-01-01

    Describes four years experience at Colorado State University with courses introducing high school students to engineering, including a Fortran IV computer programming course in which tapings of actual campus classroom sessions, supplemented with homework assignments, class roles, quizzes, and examinations were used. Benefits of the transitional…

  3. High School Student Information Access and Engineering Design Performance

    ERIC Educational Resources Information Center

    Mentzer, Nathan

    2014-01-01

    Developing solutions to engineering design problems requires access to information. Research has shown that appropriately accessing and using information in the design process improves solution quality. This quasi-experimental study provides two groups of high school students with a design problem in a three hour design experience. One group has…

  4. Promoting Engineering Education among High School and Middle School Students

    ERIC Educational Resources Information Center

    Goonatilake, Rohitha; Bachnak, Rafic A.

    2012-01-01

    Recent decline of students pursuing engineering degree programs is a great concern for many higher education authorities including Federal and State governments. Existing programs in high schools have not yet produced the desired results. Consequently, a number of initiatives to remedy this situation have been proposed and implemented. One such…

  5. Probabilistic Structural Analysis Methods for select space propulsion system components (PSAM). Volume 2: Literature surveys of critical Space Shuttle main engine components

    NASA Technical Reports Server (NTRS)

    Rajagopal, K. R.

    1992-01-01

    The technical effort and computer code development is summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis. Volume 2 is a summary of critical SSME components.

  6. High-performance computing in structural mechanics and engineering

    SciTech Connect

    Adeli, H.; Kamat, M.P.; Kulkarni, G.; Vanluchene, R.D. Georgia Inst. of Technology, Atlanta Montana State Univ., Bozeman )

    1993-07-01

    Recent advances in computer hardware and software have made multiprocessing a viable and attractive technology. This paper reviews high-performance computing methods in structural mechanics and engineering through the use of a new generation of multiprocessor computers. The paper presents an overview of vector pipelining, performance metrics for parallel and vector computers, programming languages, and general programming considerations. Recent developments in the application of concurrent processing techniques to the solution of structural mechanics and engineering problems are reviewed, with special emphasis on linear structural analysis, nonlinear structural analysis, transient structural analysis, dynamics of multibody flexible systems, and structural optimization. 64 refs.

  7. Synchronizing Photography For High-Speed-Engine Research

    NASA Technical Reports Server (NTRS)

    Chun, K. S.

    1989-01-01

    Light flashes when shaft reaches predetermined angle. Synchronization system facilitates visualization of flow in high-speed internal-combustion engines. Designed for cinematography and holographic interferometry, system synchronizes camera and light source with predetermined rotational angle of engine shaft. 10-bit resolution of absolute optical shaft encoder adapted, and 2 to tenth power combinations of 10-bit binary data computed to corresponding angle values. Pre-computed angle values programmed into EPROM's (erasable programmable read-only memories) to use as angle lookup table. Resolves shaft angle to within 0.35 degree at rotational speeds up to 73,240 revolutions per minute.

  8. Highly-nonlinear quantum-engineered polaritonic metasurfaces

    NASA Astrophysics Data System (ADS)

    Lee, Jongwon; Nookala, Nishant; Gomez-Diaz, Juan Sebastian; Tymchenko, Mykhailo; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus-Christian; Alù, Andrea; Belkin, Mikhail A.

    2015-08-01

    Intersubband transitions in n-doped semiconductor heterostructures allow one to quantum-engineer one of the largest known nonlinear response in condensed matter systems but only for the electric field polarized normal to semiconductor layer. By coupling of a quantum-engineered multi-quantum-well semiconductor layer with electromagnetically-engineered plasmonic elements we may produce ultrathin metasurfaces with giant nonlinear response. Here we experimentally demonstrate metasurfaces designed for second harmonic generation at λ≍9.9 μm with a record-high nonlinear response for condensed-matter systems in infrared/visible spectral range, up to 1.17×106 pm/V. The practical impact of the nonlinear metasurfaces proposed here may be extended to a variety of fields, including THz generation and detection, phase conjugation, and other nonlinear optical processes.

  9. THE HIGHLY ECCENTRIC PRE-MAIN-SEQUENCE SPECTROSCOPIC BINARY RX J0529.3+1210

    SciTech Connect

    Mace, G. N.; Prato, L.; Wasserman, L. H.; Franz, O. G.; Schaefer, G. H.; Simon, M.

    2009-03-15

    The young system RX J0529.3+1210 was initially identified as a single-lined spectroscopic binary. Using high-resolution infrared spectra, acquired with NIRSPEC on Keck II, we measured radial velocities for the secondary. The method of using the infrared regime to convert single-lined spectra into double-lined spectra, and derive the mass ratio for the binary system, has been successfully used for a number of young, low-mass binaries. For RX J0529.3+1210, a long-period (462 days) and highly eccentric (0.88) binary system, we determine the mass ratio to be 0.78 {+-} 0.05 using the infrared double-lined velocity data alone, and 0.73 {+-} 0.23 combining visible light and infrared data in a full orbital solution. The large uncertainty in the latter is the result of the sparse sampling in the infrared and the high eccentricity: the stars do not have a large velocity separation during most of their {approx}1.3 yr orbit. A mass ratio close to unity, consistent with the high end of the 1{sigma} uncertainty for this mass ratio value, is inconsistent with the lack of a visible light detection of the secondary component. We outline several scenarios for a color difference in the two stars, such as one heavily spotted component, higher-order multiplicity, or a unique evolutionary stage, favoring detection of only the primary star in visible light, even in a mass ratio {approx}1 system. However, the evidence points to a lower ratio. Although RX J0529.3+1210 exhibits no excess at near-infrared wavelengths, a small 24 {mu}m excess is detected, consistent with circumbinary dust. The properties of this binary and its membership in {lambda} Ori versus a new nearby stellar moving group at {approx}90 pc are discussed. We speculate on the origin of this unusual system and on the impact of such high eccentricity, the largest observed in a pre-main-sequence double-lined system to date, on the potential for planet formation.

  10. Test experience, 490 N high performance (321 sec Isp) engine

    NASA Technical Reports Server (NTRS)

    Schoenman, L.; Rosenberg, S. D.; Jassowski, D. M.

    1992-01-01

    Engines with area ratios of 44:1 and 286:1 are tested by means of hot fire tests using the NTO/MMH bipropellant to maximize the performance of the combined technologies. The low-thrust engine systems are designed with oxidation resistant materials that can operate at temperatures of more than 2204 C for tens of hours. The chamber is attached to the injector in a configuration that prevents overheating of the injector, valve, and the spacecraft interface. Three injectors with 44:1 area ratios are capable of nominal specific impulse values of 309 sec, and a performance of 321 lbf-sec/lbm is noted for an all-welded engine assembly with area ratio of 286:1. The all-welded engine is shown to have an acceptable design margin for thermal characteristics. High-performance liquid apogee engines are shown to perform optimally when based on iridium/rhenium chamber technology, use of a special platelet injector, and the minimization of losses due to fuel-film cooling.

  11. Erectile Dysfunction Among HIV Patients Undergoing Highly Active Antiretroviral Therapy: Dyslipidemia as a Main Risk Factor

    PubMed Central

    Romero-Velez, Gustavo; Lisker-Cervantes, Andrés; Villeda-Sandoval, Christian I; Sotomayor de Zavaleta, Mariano; Olvera-Posada, Daniel; Sierra-Madero, Juan Gerardo; Arreguin-Camacho, Lucrecia O; Castillejos-Molina, Ricardo A

    2014-01-01

    Objective To assess the prevalence and risk factors of erectile dysfunction (ED) in HIV patients from the HIV clinic of a tertiary referral center in Mexico City. Design Prevalence was obtained from cross-sectional studies, and the International Index of Erectile Function (IIEF), a standardized method, was used to assess ED. Methods A cross-sectional study was performed in the HIV clinic. Participants completed the IIEF to allow ED assessment. Information on demographics, clinical and HIV-related variables was retrieved from their medical records. Results One hundred and nine patients were included, with a mean age of 39.9 ± 8.8 years. ED was present in 65.1% of the individuals. Patients had been diagnosed with HIV for a mean of 92.7 ± 70.3 months and had undergone a mean 56.4 ± 45.5 months of HAART. The only variable associated with ED in the univariate analysis was dyslipidemia, and this association was also found in the multivariate analysis (P = 0.01). Conclusions ED is highly prevalent in HIV patients. Dyslipidemia should be considered as a risk factor for ED in HIV patients. Romero-Velez G, Lisker-Cervantes A, Villeda-Sandoval CI, Sotomayor de Zavaleta M, Olvera-Posada D, Sierra-Madero JG, Arreguin-Camacho LO, and Castillejos-Molina RA. Erectile dysfunction among HIV patients undergoing highly active antiretroviral therapy: Dyslipidemia as a main risk factor. Sex Med 2014;2:24–30. PMID:25356298

  12. Effects of Professional Development on Infusing Engineering Design into High School Science, Technology, Engineering, and Math (STEM) Curricula

    ERIC Educational Resources Information Center

    Avery, Zanj Kano

    2010-01-01

    The purpose of this study was to examine the effects of professional development (PD) on the infusion of engineering design into high school curricula. Four inservice teachers with backgrounds in physics, chemistry, industrial education, math, and electrical engineering participated in the 2006 National Center of Engineering and Technology…

  13. High-Speed Visualisation of Combustion in Modern Gasoline Engines

    NASA Astrophysics Data System (ADS)

    Sauter, W.; Nauwerck, A.; Han, K.-M.; Pfeil, J.; Velji, A.; Spicher, U.

    2006-07-01

    Today research and development in the field of gasoline engines have to face a double challenge: on the one hand, fuel consumption has to be reduced, while on the other hand, ever more stringent emission standards have to be fulfilled. The development of engines with its complexity of in-cylinder processes requires modern development tools to exploit the full potential in order to reduce fuel consumption. Especially optical, non-intrusive measurement techniques will help to get a better understanding of the processes. With the presented high-speed visualisation system the electromagnetic radiation from combustion in the UV range is collected by an endoscope and transmitted to a visualisation system by 10, 000 optical fibres. The signal is projected to 1, 920 photomultipliers, which convert the optical into electric signals with a maximum temporal resolution of 200 kHz. This paper shows the systematic application of flame diagnostics in modern combustion systems. For this purpose, a single-cylinder SI engine has been modified for a spray guided combustion strategy as well as for HCCI. The characteristics of flame propagation in both combustion modes were recorded and correlated with thermodynamic analyses. In case of the spray guided GDI engine, high pressure fuel injection was applied and evaluated.

  14. A High Throughput Mechanical Screening Device for Cartilage Tissue Engineering

    PubMed Central

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Greg R.; Cosgrove, Brian D.; Dodge, George R.; Mauck, Robert L.

    2014-01-01

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying ‘hits’, or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. PMID:24275442

  15. Engine having a high pressure hydraulic system and low pressure lubricating system

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

  16. 21. VIEW TO NORTHWEST, ENGINE/PUMP HOUSE EXTENSION, HIGH PRESSURE PISTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW TO NORTHWEST, ENGINE/PUMP HOUSE EXTENSION, HIGH PRESSURE PISTON OF STEAM ENGINE NO. 4; CONTROL PANEL MOUNTED ON THE ENGINE; FLOOR VALVES CONTROL THE STEAM. - Deer Island Pumping Station, Boston, Suffolk County, MA

  17. Investigation of High-Performance Fuels in Multicylinder and in Single-Cylinder Engines at High and Cruising Engine Speeds

    NASA Technical Reports Server (NTRS)

    Bell, Arthur H.; Nelson, R. Lee; Richard, Paul H.

    1947-01-01

    An investigation was conducted to compare the knock-limited performance of a 20-percent triptane blend in 28-K fuel with that of 28-R and 33-R fuels at high engine speeds, cruising speeds, and two compression ratios in an K-1830-94 multicylinder engine, Data were obtained with the standard compression ratio of 6.7 and with a compression ratio of 3.0, The three fuels were investigated at engine speeds of 1800, 2250, 2600, and 2800 rpm at high and low blower ratios. A carburetor-air temperature of approximate1y 100 deg F was maintained for the multicylinder-engine runs, Data were obtained on a single R-1830-94 cylinder engine as a means of checking the multicylinder data at the higher speeds. A satisfactory correlation between average mixture temperature and knock-limited manifold pressure was obtained by plotting knock-limited manifold pressure against average mixture temperature for the whole range of engine speeds at constant carburetor air temperature and cylinder-head temperature. The single-cylinder knock-limited performance based on charge-air flow matched that of the multicylinder engine within 6 percent under all the conditions except for 28-R fuel at 2800 rpm; these curves differed from each other by 11 percent in the rich region. The knock rating of 33-R fuel was found to be a little higher than that of the 20-percent triptane blend and 26-R fuel at high mixture temperatures (above 210 deg F) and lean mixtures. The 33-R fuel exhibited rich knock limits appreciably lower than the 20-percent triptane blend, Increasing the compression ratio from 6.7 to 8.0 lowered the knock-limited manifold pressure for all fuels approximately 15 to 18 inches of mercury absolute in the cruising range and 20 to 28 inches of mercury absolute at higher engine speeds. Brake specific fuel consumption was reduced 7 to 9 percent by the increase in compression ratio from 6.7 to 8,0,

  18. Combined application of plasma mutagenesis and gene engineering leads to 5-oxomilbemycins A3/A4 as main components from Streptomyces bingchenggensis.

    PubMed

    Wang, Hai-Yan; Zhang, Ji; Zhang, Yue-Jing; Zhang, Bo; Liu, Chong-Xi; He, Hai-Rong; Wang, Xiang-Jing; Xiang, Wen-Sheng

    2014-12-01

    Milbemycin oxime has been commercialized as effective anthelmintics in the fields of animal health, agriculture, and human infections. Currently, milbemycin oxime is synthesized by a two-step chemical reaction, which involves the ketonization of milbemycins A3/A4 to yield the intermediates 5-oxomilbemycins A3/A4 using CrO3 as catalyst. Due to the low efficiency and environmental unfriendliness of the ketonization of milbemycins A3/A4, it is imperative to develop alternative strategies to produce 5-oxomilbemycins A3/A4. In this study, the atmospheric and room temperature plasma (ARTP) mutation system was first employed to treat milbemycin-producing strain Streptomyces bingchenggensis, and a mutant strain BC-120-4 producing milbemycins A3, A4, B2, and B3 as main components was obtained, which favors the construction of genetically engineered strains producing 5-oxomilbemycins. Importantly, the milbemycins A3/A4 yield of BC-120-4 reached 3,890 ± 52 g/l, which was approximately two times higher than that of the initial strain BC-109-6 (1,326 ± 37 g/l). The subsequent interruption of the gene milF encoding a C5-ketoreductase responsible for the ketonization of milbemycins led to strain BCJ60 (∆milF) with the production of 5-oxomilbemycins A3/A4 and the elimination of milbemycins A3, A4, B2, and B3. The high 5-oxomilbemycins A3/A4 yield (3,470 ± 147 g/l) and genetic stability of BCJ60 implied the potential use in industry to prepare 5-oxomilbemycins A3/A4 for the semisynthesis of milbemycins oxime. PMID:25081559

  19. Energy efficient engine: High pressure turbine uncooled rig technology report

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1979-01-01

    Results obtained from testing five performance builds (three vane cascades and two rotating rigs of the Energy Efficient Engine uncooled rig have established the uncooled aerodynamic efficiency of the high-pressure turbine at 91.1 percent. This efficiency level was attained by increasing the rim speed and annulus area (AN(2)), and by increasing the turbine reaction level. The increase in AN(2) resulted in a performance improvement of 1.15 percent. At the design point pressure ratio, the increased reaction level rig demonstrated an efficiency of 91.1 percent. The results of this program have verified the aerodynamic design assumptions established for the Energy Efficient Engine high-pressure turbine component.

  20. High precision framework for chaos many-body engine

    NASA Astrophysics Data System (ADS)

    Grossu, I. V.; Besliu, C.; Felea, D.; Jipa, Al.

    2014-04-01

    In this paper we present a C# 4.0 high precision framework for simulation of relativistic many-body systems. In order to benefit from the, previously developed, chaos analysis instruments, all new modules were integrated with Chaos Many-Body Engine (Grossu et al. 2010, 2013). As a direct application, we used 46 digits precision for analyzing the "Butterfly Effect" of the gravitational force in a specific relativistic nuclear collision toy-model.

  1. The high education of optical engineering in East China

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Liu, Xiangdong; Wang, Xiaoping; Bai, Jian; Liu, Yuling

    2014-07-01

    The history and the development of the high education in the field of optical engineering in the area of East China will be presented in the paper. The overall situation of research and human resource training in optics and photonics will also be reviewed, it shows that China needs lots of talents and experts in this field to support the world optical industry in East China.

  2. Technology Transfer Challenges for High-Assurance Software Engineering Tools

    NASA Technical Reports Server (NTRS)

    Koga, Dennis (Technical Monitor); Penix, John; Markosian, Lawrence Z.

    2003-01-01

    In this paper, we describe our experience with the challenges thar we are currently facing in our effort to develop advanced software verification and validation tools. We categorize these challenges into several areas: cost benefits modeling, tool usability, customer application domain, and organizational issues. We provide examples of challenges in each area and identrfj, open research issues in areas which limit our ability to transfer high-assurance software engineering tools into practice.

  3. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 1: Engine design study assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial tranport engine are presented. The results of the phase 1 study effort cover the following areas: (1) statement of an airline's major objectives for future transport engines, (2) airline's method of evaluating engine proposals, (3) description of an optimum engine for a long range subsonic commercial transport including installation and critical design features, (4) discussion of engine performance problems and experience with performance degradation, (5) trends in engine and pod prices with increasing technology and objectives for the future, (6) discussion of the research objectives for composites, reversers, advanced components, engine control systems, and devices to reduce the impact of engine stall, and (7) discussion of the airline objectives for noise and pollution reduction.

  4. High-output LED-based light engine for profile lighting fixtures with high color uniformity using freeform reflectors.

    PubMed

    Gadegaard, Jesper; Jensen, Thøger Kari; Jørgensen, Dennis Thykjær; Kristensen, Peter Kjær; Søndergaard, Thomas; Pedersen, Thomas Garm; Pedersen, Kjeld

    2016-02-20

    In the stage lighting and entertainment market, light engines (LEs) for lighting fixtures are often based on high-intensity discharge (HID) bulbs. Switching to LED-based light engines gives possibilities for fast switching, additive color mixing, a longer lifetime, and potentially, more energy-efficient systems. The lumen output of a single LED is still not sufficient to replace an HID source in high-output profile fixtures, but combining multiple LEDs can create an LE with a similar output, but with added complexity. This paper presents the results of modeling and testing such a light engine. Custom ray-tracing software was used to design a high-output red, green and blue LED-based light engine with twelve CBT-90 LEDs using a dual-reflector principle. The simulated optical system efficiency was 0.626 with a perfect (R=1) reflector coating for light delivered on a target surface through the entire optical system. A profile lighting fixture prototype was created, and provided an output of 6744 lumen and an efficiency of 0.412. The lower efficiency was mainly due to a non-optimal reflector coating, and the optimized design is expected to reach a significantly higher efficiency. PMID:26906589

  5. The global Mercator Ocean analysis and forecasting high resolution system and its main future updates

    NASA Astrophysics Data System (ADS)

    Lellouche, Jean-Michel; Legalloudec, Olivier; Bourdallé-Badie, Romain; Garric, Gilles; Greiner, Eric; Drévillon, Marie; Regnier, Charly; Testut, Charles-Emmanuel; Benkiran, Mounir; Drillet, Yann

    2015-04-01

    In April 2013, Mercator Ocean has performed a major upgrade of the global 1/12° high resolution system. This system currently delivers daily services, and includes numerous improvements related to the ocean/sea-ice model and the assimilation scheme. Observations are assimilated by means of a reduced-order Kalman filter with a 3D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. Altimeter data, satellite Sea Surface Temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. A 3D-Var scheme provides a correction for the slowly-evolving large-scale biases in temperature and salinity. In April 2015, Mercator Ocean will open the Copernicus Marine Environment Monitoring Service and will be in charge of the global ocean at eddy resolving resolution. In this context, R&D activities conducted during the end of the MyOcean2 and MyOcean follow-on projects to deliver an improved version of the global system will continue throughout 2015. The main new updates we plan to integrate in the next version of the global system concern: 1) A new vertical mixing scheme k-epsilon: vertical physics has been explored with a special focus on the turbulent closure problem to improve the representation of temperature and salinity in the Mixed Layer Depth. 2) An adaptive tuning of observations errors: as the prescription of observation errors in the assimilation systems is often too approximate, some diagnostics have been developed. These diagnostics consist in the computation of the Desroziers ratio which is a function of observation errors, innovations and residuals. It helps to identify inconsistency on the specified observation errors and to tune an adaptive weight coefficient acting on the error of each assimilated observation. 3) The assimilation of sea-ice concentration observations: it is introduced in the

  6. Evaluation of feasibility of measuring EHD film thickness associated with cryogenic fluids. [for space shuttle main engine bearings

    NASA Technical Reports Server (NTRS)

    Kannel, J. W.; Merriman, T. L.; Stockwell, R. D.; Dufrane, K. F.

    1983-01-01

    The feasibility of measuring elastohydrodynamic (EHD) films as formed with a cryogenic (LN2) fluid is evaluated. Modifications were made to an existing twin disk EHD apparatus to allow for disk lubrication with liquid nitrogen. This disk apparatus is equipped with an X-ray system for measuring the thickness of any lubricant film that is formed between the disks. Several film thickness experiments were conducted with the apparatus which indicate that good lubrication films are filmed with LN2. In addition to the film thickness studies, failure analyses of three bearings were conducted. The HPOTP turbine end bearings had experienced axial loads of 36,000 to 44,000 N (8,000 to 10,000 lb). High continuous radial loads were also experienced, which were most likely caused by thermal growth of the inner race. The resulting high internal loads caused race spalling and ball wear to occur.

  7. Engineering Escherichia coli for high-level production of propionate.

    PubMed

    Akawi, Lamees; Srirangan, Kajan; Liu, Xuejia; Moo-Young, Murray; Perry Chou, C

    2015-07-01

    Mounting environmental concerns associated with the use of petroleum-based chemical manufacturing practices has generated significant interest in the development of biological alternatives for the production of propionate. However, biological platforms for propionate production have been limited to strict anaerobes, such as Propionibacteria and select Clostridia. In this work, we demonstrated high-level heterologous production of propionate under microaerobic conditions in engineered Escherichia coli. Activation of the native Sleeping beauty mutase (Sbm) operon not only transformed E. coli to be propionogenic (i.e., propionate-producing) but also introduced an intracellular "flux competition" between the traditional C2-fermentative pathway and the novel C3-fermentative pathway. Dissimilation of the major carbon source of glycerol was identified to critically affect such "flux competition" and, therefore, propionate synthesis. As a result, the propionogenic E. coli was further engineered by inactivation or overexpression of various genes involved in the glycerol dissimilation pathways and their individual genetic effects on propionate production were investigated. Generally, knocking out genes involved in glycerol dissimilation (except glpA) can minimize levels of solventogenesis and shift more dissimilated carbon flux toward the C3-fermentative pathway. For optimal propionate production with high C3:C2-fermentative product ratios, glycerol dissimilation should be channeled through the respiratory pathway and, upon suppressed solventogenesis with minimal production of highly reduced alcohols, the alternative NADH-consuming route associated with propionate synthesis can be critical for more flexible redox balancing. With the implementation of various biochemical and genetic strategies, high propionate titers of more than 11 g/L with high yields up to 0.4 g-propionate/g-glycerol (accounting for ~50 % of dissimilated glycerol) were achieved, demonstrating the

  8. Maine Ingredients

    ERIC Educational Resources Information Center

    Waters, John K.

    2009-01-01

    This article features Maine Learning Technology Initiative (MLTI), the nation's first-ever statewide 1-to-1 laptop program which marks its seventh birthday by expanding into high schools, providing an occasion to celebrate--and to examine the components of its success. The plan to put laptops into the hands of every teacher and student in grades 7…

  9. An observation on the main factor for the high fatalities by the March 11 earthquake

    NASA Astrophysics Data System (ADS)

    Ishida, M.; Baba, T.; Ando, M.

    2011-12-01

    On 11 March 2011, Mw9.0 earthquake occurred in Tohoku district, the northeastern Japan, and caused a large tsunami which affected the greater part of the area. During 115 years prior to this event, large tsunamis have struck the Tohoku region in 1960, 1933 and 1896. Therefore, disaster mitigation efforts have been undertaken in the Tohoku region, such as the construction of incomparably strong breakwaters, the annual practice for tsunami evacuation drill, the preparation of hazard maps, etc. Despite these long-term efforts, ca. 25,000 deaths and missing persons were reported by the National Police Headquarters, Japan. In order to clarify the causes of such high number of the fatalities, we interviewed 120 tsunami survivors in 7 cities mainly in Iwate prefecture in several periods after the earthquake. Since the tsunami arrived more than 20-30 min later after the strong ground shaking stopped and highlands are within about 10 to 20 minutes on foot, residents would have been saved if people had taken an immediate action. We found several major reasons why the residents delayed their evacuation actions as follows: 1. Earthquakes that were forecast for the offshore Tohoku by the governmental committee had been much smaller than the March 11 event. Accordingly, evacuation shelters were located at the lower level than that required for the incoming tsunami; 2. The earthquake magnitude and tsunami height of the first warning issue by Japan Meteorological Agency (JMA) was significantly smaller than those of the actual events. Majority of local residents thought that breakwaters would protect them. The JMA renewed the earthquake magnitude and tsunami height step by step, but the corrected information did not reach to the local residents because of the blackout of electric power. Consequently, the residents were unable to get the renewed information through TV or radio; 3. Fifty percent of the local residents experienced the 1960 Chile tsunami that significantly smaller than

  10. Computational Fluid Dynamics (CFD) Analyses in Support of Space Shuttle Main Engine (SSME) Heat Exchanger (HX) Vane Cracking Investigation

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Benjamin, Theodore G.; Cornelison, J.; Fredmonski, A. J.

    1993-01-01

    Integration issues involved with installing the alternate turbopump (ATP) High Pressure Oxygen Turbopump (HPOTP) into the SSME have raised questions regarding the flow in the HPOTP turnaround duct (TAD). Steady-state Navier-Stokes CFD analyses have been performed by NASA and Pratt & Whitney (P&W) to address these questions. The analyses have consisted of two-dimensional axisymmetric calculations done at Marshall Space Flight Center and three-dimensional calculations performed at P&W. These analyses have identified flowfield differences between the baseline ATP and the Rocketdyne configurations. The results show that the baseline ATP configuration represents a more severe environment to the inner HX guide vane. This vane has limited life when tested in conjunction with the ATP but infinite life when tested with the current SSME HPOTP. The CFD results have helped interpret test results and have been used to assess proposed redesigns. This paper includes details of the axisymmetric model, its results, and its contribution towards resolving the problem.

  11. Computational Fluid Dynamics (CFD) analyses in support of Space Shuttle Main Engine (SSME) heat exchanger (HX) vane cracking investigation

    NASA Astrophysics Data System (ADS)

    Garcia, Roberto; Benjamin, Theodore G.; Cornelison, J.; Fredmonski, A. J.

    1993-07-01

    Integration issues involved with installing the alternate turbopump (ATP) High Pressure Oxygen Turbopump (HPOTP) into the SSME have raised questions regarding the flow in the HPOTP turnaround duct (TAD). Steady-state Navier-Stokes CFD analyses have been performed by NASA and Pratt & Whitney (P&W) to address these questions. The analyses have consisted of two-dimensional axisymmetric calculations done at Marshall Space Flight Center and three-dimensional calculations performed at P&W. These analyses have identified flowfield differences between the baseline ATP and the Rocketdyne configurations. The results show that the baseline ATP configuration represents a more severe environment to the inner HX guide vane. This vane has limited life when tested in conjunction with the ATP but infinite life when tested with the current SSME HPOTP. The CFD results have helped interpret test results and have been used to assess proposed redesigns. This paper includes details of the axisymmetric model, its results, and its contribution towards resolving the problem.

  12. High Speed Balancing Applied to the T700 Engine

    NASA Technical Reports Server (NTRS)

    Walton, J.; Lee, C.; Martin, M.

    1989-01-01

    The work performed under Contracts NAS3-23929 and NAS3-24633 is presented. MTI evaluated the feasibility of high-speed balancing for both the T700 power turbine rotor and the compressor rotor. Modifications were designed for the existing Corpus Christi Army Depot (CCAD) T53/T55 high-speed balancing system for balancing T700 power turbine rotors. Tests conducted under these contracts included a high-speed balancing evaluation for T700 power turbines in the Army/NASA drivetrain facility at MTI. The high-speed balancing tests demonstrated the reduction of vibration amplitudes at operating speed for both low-speed balanced and non-low-speed balanced T700 power turbines. In addition, vibration data from acceptance tests of T53, T55, and T700 engines were analyzed and a vibration diagnostic procedure developed.

  13. An infrastructure for the creation of high end scientific and engineering software tools and applications

    SciTech Connect

    Drummond, L.A.; Marques, O.A.; Wilson, G.V.

    2003-04-01

    This document has been prepared as a response to the High End Computing Revitalization Task Force (HECRTF) call for white papers. Our main goal is to identify mechanism necessary for the design and implementation of an infrastructure to support development of high-end scientific and engineering software tools and applications. This infrastructure will provide a plethora of software services to facilitate the efficient deployment of future HEC technology as well as collaborations among researchers and engineers across disciplines and institutions. In particular, we address here the following points; Key software technologies that must be advanced to strengthen the foundation for developing new generations of HEC systems. A Software Infrastructure for minimizing ''time to solution'' by users of HEC systems.

  14. High-Fidelity Simulation in Biomedical and Aerospace Engineering

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    2005-01-01

    Contents include the following: Introduction / Background. Modeling and Simulation Challenges in Aerospace Engineering. Modeling and Simulation Challenges in Biomedical Engineering. Digital Astronaut. Project Columbia. Summary and Discussion.

  15. Nano-engineered ultra-high-gain microchannel plates

    NASA Astrophysics Data System (ADS)

    Beaulieu, D. R.; Gorelikov, D.; de Rouffignac, P.; Saadatmand, K.; Stenton, K.; Sullivan, N.; Tremsin, A. S.

    2009-08-01

    Highly localized and very fast electron amplification of microchannel plates (MCPs) enables a large number of high-resolution and high-sensitivity detection technologies, which provide spatial and/or temporal information for each detected photon/electron/ion/neutron. Although there has been significant progress in photocathode and readout technologies the MCPs themselves have not evolved much from the technology developed several decades ago. Substantial increases in the gain of existing MCP technology have been accomplished by utilizing state-of-the-art processes developed for nano-engineered structures. The gain of treated MCPs with aspect ratio of 40:1 is reproducibly measured to reach unprecedented values of 2×10 5. This gain enhancement is shown to be stable during MCP operation. In addition, the initial experiments indicate improved stability of gain as a function of extracted charge and MCP storage conditions. We also present results from a fully independent thin-film process for manufacturing non-lead glass MCPs using engineered thin films for both the resistive and emissive layers. These substrate-independent MCPs show high gain, less gain degradation with extracted charge, and greater pore-to-pore and plate-to-plate uniformity than has been possible with conventional lead glass structures.

  16. Math, Science, and Engineering Integration in a High School Engineering Course: A Qualitative Study

    ERIC Educational Resources Information Center

    Valtorta, Clara G.; Berland, Leema K.

    2015-01-01

    Engineering in K-12 classrooms has been receiving expanding emphasis in the United States. The integration of science, mathematics, and engineering is a benefit and goal of K-12 engineering; however, current empirical research on the efficacy of K-12 science, mathematics, and engineering integration is limited. This study adds to this growing…

  17. 3-D thermal analysis using finite difference technique with finite element model for improved design of components of rocket engine turbomachines for Space Shuttle Main Engine SSME

    NASA Technical Reports Server (NTRS)

    Sohn, Kiho D.; Ip, Shek-Se P.

    1988-01-01

    Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.

  18. Engineering High-Fidelity Residue Separations for Selective Harvest

    SciTech Connect

    Kevin L. Kenney; Christopher T. Wright; Reed L. Hoskinson; J. Rochard Hess; David J. Muth, Jr.

    2006-07-01

    Composition and pretreatment studies of corn stover and wheat stover anatomical fractions clearly show that some corn and wheat stover anatomical fractions are of higher value than others as a biofeedstock. This premise, along with soil sustainability and erosion control concerns, provides the motivation for the selective harvest concept for separating and collecting the higher value residue fractions in a combine during grain harvest. This study recognizes the analysis of anatomical fractions as theoretical feedstock quality targets, but not as practical targets for developing selective harvest technologies. Rather, practical quality targets were established that identified the residue separation requirements of a selective harvest combine. Data are presented that shows that a current grain combine is not capable of achieving the fidelity of residue fractionation established by the performance targets. However, using a virtual engineering approach, based on an understanding of the fluid dynamics of the air stream separation, the separation fidelity can be significantly improved without significant changes to the harvester design. A virtual engineering model of a grain combine was developed and used to perform simulations of the residue separator performance. The engineered residue separator was then built into a selective harvest test combine, and tests performed to evaluate the separation fidelity. Field tests were run both with and without the residue separator installed in the test combine, and the chaff and straw residue streams were collected during harvest of Challis soft white spring wheat. The separation fidelity accomplished both with and without the residue separator was quantified by laboratory screening analysis. The screening results showed that the engineered baffle separator did a remarkable job of effecting high-fidelity separation of the straw and chaff residue streams, improving the chaff stream purity and increasing the straw stream yield.

  19. Engineering Development of Coal-Fired High Performance Power Systems

    SciTech Connect

    2000-12-31

    This report presents work carried out under contract DE-AC22-95PC95144 ''Engineering Development of Coal-Fired High Performance Systems Phase II and III.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47% NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input all solid wastes benign cost of electricity {le}{le} 90% of present plants Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. Phase II, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase III. As part of a descoping initiative, the Phase III program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase II Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4, and 5) and the development of a site-specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: Task 2.2 HITAF Air Heaters

  20. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

  1. High temperature aircraft turbine engine bearing and lubrication system development

    SciTech Connect

    Grant, D.H.; Chin, H.A.; Klenke, C.; Galbato, A.T.; Ragen, M.A.; Spitzer, R.F.

    1998-12-31

    Results are reported for a project sponsored by the US Air Force Wright Laboratories. The major emphasis of this project was the evaluation of bearing materials with improved corrosion resistance, high hot hardness, and high fracture toughness, intended to meet the requirements of the Integrated High Performance Turbine Engine Technologies (IHPTET) Phase 2 engine. The project included material property studies on candidate bearing materials and lubricants which formed the selection basis for subscale and full-scale bearing rig verification tests. The carburizing stainless steel alloy Pyrowear 675 demonstrated significant fatigue life, fracture toughness, and corrosion resistance improvements relative to the M50 NiL baseline bearing material. The new Skylube 2 (MCS-2482) lubricant provided significant thermal degradation improvements with respect to the Skylube 600 (PWA-524, MIL-L-87100) lubricant. Two 130 mm bore Pyrowear 675 hybrid ball bearings with silicon nitride balls were run successfully for 231 hours with Skylube 2 lubricant at temperatures consistent with IHPTET 2 requirements.

  2. Knowledge engineering software: A demonstration of a high end tool

    SciTech Connect

    Salzman, G.C.; Krall, R.B.; Marinuzzi, J.G.

    1987-01-01

    Many investigators wanting to apply knowledge-based systems (KBS) as consultants for cancer diagnosis have turned to tools running on personal computers. While some of these tools serve well for small tasks, they lack the power available with the high end KBS tools such as KEE (Knowledge Engineering Environment) and ART (Automated Reasoning Tool). These tools were originally developed on Lisp machines and have the full functionality of the Lisp language as well as many additional features. They provide a rich and highly productive environment for the software developer. To illustrate the capability of one of these high end tools we have converted a table showing the classification of benign soft tissue tumors into a KEE knowledge base. We have used the tools available in Kee to identify the tumor type for a hypothetical patient. 10 figs.

  3. Engineering 3D Nanoplasmonic Assemblies for High Performance Spectroscopic Sensing.

    PubMed

    Dinda, S; Suresh, V; Thoniyot, P; Balčytis, A; Juodkazis, S; Krishnamoorthy, S

    2015-12-23

    We demonstrate the fabrication of plasmonic sensors that comprise gold nanopillar arrays exhibiting high surface areas, and narrow gaps, through self-assembly of amphiphilic diblock copolymer micelles on silicon substrates. Silicon nanopillars with high integrity over arbitrary large areas are obtained using copolymer micelles as lithographic templates. The gaps between metal features are controlled by varying the thickness of the evaporated gold. The resulting gold metal nanopillar arrays exhibit an engineered surface topography, together with uniform and controlled separations down to sub-10 nm suitable for highly sensitive detection of molecular analytes by Surface Enhanced Raman Spectroscopy (SERS). The significance of the approach is demonstrated through the control exercised at each step, including template preparation and pattern-transfer steps. The approach is a promising means to address trade-offs between resolutions, throughput, and performance in the fabrication of nanoplasmonic assemblies for sensing applications. PMID:26523480

  4. Infusing Engineering Design into High School STEM Courses

    ERIC Educational Resources Information Center

    Hynes, Morgan; Portsmore, Merredith; Dare, Emily; Milto, Elissa; Rogers, Chris; Hammer, David; Carberry, Adam

    2011-01-01

    The Tufts University Center for Engineering Education and Outreach (CEEO) strives to improve STEM education through engineering and believes every student should have the chance to engineer. Situated in Massachusetts, the first state to adopt engineering education at all levels in public schools (Massachusetts DOE, 2001), the CEEO supports the…

  5. Federal High School Graduation Rate Policies and the Impact on Maine

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    In today's economy, employers increasingly demand that workers have a high school diploma, yet America's graduation rates are unacceptably low, particularly among poor and minority students. Nationally, only about 70 percent of students graduate from high school on time with a regular diploma; for African American and Hispanic students, this…

  6. Location of Food Stores Near Schools Does Not Predict the Weight Status of Maine High School Students

    ERIC Educational Resources Information Center

    Harris, David E.; Blum, Janet Whatley; Bampton, Matthew; O'Brien, Liam M.; Beaudoin, Christina M.; Polacsek, Michele; O'Rourke, Karen A.

    2011-01-01

    Objective: To examine the relationship between stores selling calorie-dense food near schools and student obesity risk, with the hypothesis that high availability predicts increased risk. Methods: Mail surveys determined height, weight, and calorie-dense food consumption for 552 students at 11 Maine high schools. Driving distance from all food…

  7. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis

  8. An Engineering Research Program for High School Science Teachers: Year Two Changes and Results

    ERIC Educational Resources Information Center

    DeJong, Brian P.; Yelamarthi, Kumar; Kaya, Tolga

    2016-01-01

    The research experiences for teachers program at Central Michigan University was initiated to team in-service and pre-service teachers with undergraduate engineering students and engineering faculty, in an engineering research setting. During the six-week program, teachers learn engineering concepts and develop high-school instructional material…

  9. A probabilistic approach to the dynamic analysis of ducts subjected to multibase harmonic and random excitation. [for Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Debchaudhury, Amit; Rajagopal, K. R.; Ho, H.; Newell, J. F.

    1990-01-01

    The dynamic behavior of the discharge duct of the high-pressure oxidizer turbopump of a cryogenic rocket motor is investigated analytically. The probabilistic analysis program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress; Cruse et al., 1988) is used to treat the uncertainties due to random and harmonic excitation (e.g., pump noise, pump-induced harmonics, and combustion noise), variations in engine inlet pressure, and changes in system damping. The load modeling procedure, the variation in power-spectral density in different zones of the engine structure, and the dynamic structural-analysis technique are described, and the numerical results of the NESSUS analysis are presented in extensive tables and graphs and discussed in detail.

  10. Systems Engineering Provides Successful High Temperature Steam Electrolysis Project

    SciTech Connect

    Charles V. Park; Emmanuel Ohene Opare, Jr.

    2011-06-01

    This paper describes two Systems Engineering Studies completed at the Idaho National Laboratory (INL) to support development of the High Temperature Stream Electrolysis (HTSE) process. HTSE produces hydrogen from water using nuclear power and was selected by the Department of Energy (DOE) for integration with the Next Generation Nuclear Plant (NGNP). The first study was a reliability, availability and maintainability (RAM) analysis to identify critical areas for technology development based on available information regarding expected component performance. An HTSE process baseline flowsheet at commercial scale was used as a basis. The NGNP project also established a process and capability to perform future RAM analyses. The analysis identified which components had the greatest impact on HTSE process availability and indicated that the HTSE process could achieve over 90% availability. The second study developed a series of life-cycle cost estimates for the various scale-ups required to demonstrate the HTSE process. Both studies were useful in identifying near- and long-term efforts necessary for successful HTSE process deployment. The size of demonstrations to support scale-up was refined, which is essential to estimate near- and long-term cost and schedule. The life-cycle funding profile, with high-level allocations, was identified as the program transitions from experiment scale R&D to engineering scale demonstration.

  11. Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells.

    PubMed

    Zhao, Yixin; Zhu, Kai

    2014-12-01

    Organic and inorganic hybrid perovskites (e.g., CH3NH3PbI3) have emerged as a revolutionary class of light-absorbing semiconductors that has demonstrated a rapid increase in efficiency within a few years of active research. Controlling perovskite morphology and composition has been found critical to developing high-performance perovskite solar cells. The recent development of solution chemistry engineering has led to fabrication of greater than 15-17%-efficiency solar cells by multiple groups, with the highest certified 17.9% efficiency that has significantly surpassed the best-reported perovskite solar cell by vapor-phase growth. In this Perspective, we review recent progress on solution chemistry engineering processes and various control parameters that are critical to the success of solution growth of high-quality perovskite films. We discuss the importance of understanding the impact of solution-processing parameters and perovskite film architectures on the fundamental charge carrier dynamics in perovskite solar cells. The cost and stability issues of perovskite solar cells will also be discussed. PMID:26278951

  12. Damage-mitigating control of a reusable rocket engine for high performance and extended life

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Dai, Xiaowen

    1995-01-01

    The goal of damage mitigating control in reusable rocket engines is to achieve high performance with increased durability of mechanical structures such that functional lives of the critical components are increased. The major benefit is an increase in structural durability with no significant loss of performance. This report investigates the feasibility of damage mitigating control of reusable rocket engines. Phenomenological models of creep and thermo-mechanical fatigue damage have been formulated in the state-variable setting such that these models can be combined with the plant model of a reusable rocket engine, such as the Space Shuttle Main Engine (SSME), for synthesizing an optimal control policy. Specifically, a creep damage model of the main thrust chamber wall is analytically derived based on the theories of sandwich beam and viscoplasticity. This model characterizes progressive bulging-out and incremental thinning of the coolant channel ligament leading to its eventual failure by tensile rupture. The objective is to generate a closed form solution of the wall thin-out phenomenon in real time where the ligament geometry is continuously updated to account for the resulting deformation. The results are in agreement with those obtained from the finite element analyses and experimental observation for both Oxygen Free High Conductivity (OFHC) copper and a copper-zerconium-silver alloy called NARloy-Z. Due to its computational efficiency, this damage model is suitable for on-line applications of life prediction and damage mitigating control, and also permits parametric studies for off-line synthesis of damage mitigating control systems. The results are presented to demonstrate the potential of life extension of reusable rocket engines via damage mitigating control. The control system has also been simulated on a testbed to observe how the damage at different critical points can be traded off without any significant loss of engine performance. The research work

  13. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    SciTech Connect

    2011-01-31

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well

  14. Cooled highly twisted airfoil for a gas turbine engine

    SciTech Connect

    Kildea, R.J.

    1988-04-19

    This patent describes a cooled highly twisted airfoil for use in a gas turbine engine. The airfoil has a first cooling air cavity adjacent a leading edge of the airfoil, and a second cooling air cavity, separated from the first cavity by a wall. The second cavity provides cooling air to the first cavity by means of cooling holes provided in the wall. The improvement is characterized by: the wall comprising an integrally formed, continuous warped wall, defined as a surface of revolution about an axis, the axis determined such that the axis intersects the plane of a section close to a desired centerline of a series of impingement holes aligned in opposition to the leading edge, whereby cooling air is directed relatively precisely to the leading edge of the highly twisted airfoil through the impingement holes.

  15. High molecular weight bioemulsifiers, main properties and potential environmental and biomedical applications.

    PubMed

    Mnif, Inès; Ghribi, Dhouha

    2015-05-01

    High molecular weight bioemulsifiers are amphipathic polysaccharides, proteins, lipopolysaccharides, lipoproteins, or complex mixtures of these biopolymers, produced by a wide variety of microorganisms. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface respectively and/or emulsify hydrophobic compounds. Emulsan, fatty acids, phospholipids, neutral lipids, exopolysaccharides, vesicles and fimbriae are among the most popular high molecular weight bioemulsifiers. They have great physic-chemical properties like tolerance to extreme conditions of pH, temperature and salinity, low toxicity and biodegradability. Owing their emulsion forming and breaking capacities, solubilization, mobilization and dispersion activities and their viscosity reduction activity; they possess great environmental application as enhancer of hydrocarbon biodegradation and for microbial enhanced oil recovery. Besides, they are applied in biomedical fields for their antimicrobial and anti-adhesive activities and involvement in immune responses. PMID:25739564

  16. Probabilistic high cycle fatigue failure analysis with application to liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Sutharshana, S.; Newlin, L.; Ebbeler, D.; Moore, N.; O'Hara, K.

    1990-01-01

    A probabilistic high cycle fatigue (HCF) failure analysis of a welded duct in a rocket engine of the Space Shuttle main engine class is described. A state-of-the-art HCF failure prediction method was used in a Monte Carlo simulation to generate a distribution of failure lives. A stochastic stress/life model is used for material characterization, and a composite stress history is generated for accurately deriving the stress cycles for the fatigue-damage calculations. The HCF failure model expresses fatigue life as a function of stochastic parameters including environment, loads, material properties, geometry, and model specification errors. A series of HCF failure life analyses were performed to study the impact of a fixed parameter and to assess the importance of each stochastic input parameter through marginal analyses.

  17. Young Engineers and Sciences (YES) - Mentoring High School Students

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Asbell, E.; Reiff, P. H.

    2008-09-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  18. Education and the Economy: Boosting Maine's Economy by Improving High School Graduation Rates

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2011

    2011-01-01

    Building on its previous work examining education and the economy, the Alliance for Excellent Education (the Alliance), with generous support from State Farm[R], analyzed the economies of all fifty states and the District of Columbia to determine the economic benefits that states could see by improving high school graduation rates. Using a…

  19. Study of a High Voltage Ion Engine Power Supply

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.; Mayer, Eric

    1996-01-01

    A complete laboratory breadboard version of a ion engine power converter was built and tested. This prototype operated on a line voltage of 80-120 Vdc, and provided output ratings of 1100 V at 1.8 kW, and 250 V at 20 mA. The high-voltage (HV) output voltage rating was revised from the original value of 1350 V at the beginning of the project. The LV output was designed to hold up during a 1-A surge current lasting up to 1 second. The prototype power converter included a internal housekeeping power supply which also operated from the line input. The power consumed in housekeeping was included in the overall energy budget presented for the ion engine converter. HV and LV output voltage setpoints were commanded through potentiometers. The HV converter itself reached its highest power efficiency of slightly over 93% at low line and maximum output. This would dip below 90% at high line. The no-load (rated output voltages, zero load current) power consumption of the entire system was less than 13 W. A careful loss breakdown shows that converter losses are predominately Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) conduction losses and HV rectifier snubbing losses, with the rectifier snubbing losses becoming predominant at high line. This suggests that further improvements in power efficiency could best be obtained by either developing a rectifier that was adequately protected against voltage overshoot with less snubbing, or by developing a pre-regulator to reduced the range of line voltage on the converter. The transient testing showed the converter to be fully protected against load faults, including a direct short-circuit from the HV output to the LV output terminals. Two currents sensors were used: one to directly detect any core ratcheting on the output transformer and re-initiate a soft start, and the other to directly detect a load fault and quickly shut down the converter for load protection. The finished converter has been extensively fault tested

  20. Bio-Engineering High Performance Microbial Strains for MEOR

    SciTech Connect

    Xiangdong Fang; Qinghong Wang; Patrick Shuler

    2007-12-30

    The main objectives of this three-year research project are: (1) to employ the latest advances in genetics and bioengineering, especially Directed Protein Evolution technology, to improve the effectiveness of the microbial enhanced oil recovery (MEOR) process. (2) to improve the surfactant activity and the thermal stability of bio-surfactant systems for MEOR; and (3) to develop improved laboratory methods and tools that screen quickly candidate bio-systems for EOR. Biosurfactants have been receiving increasing attention as Enhanced Oil Recovery (EOR) agents because of their unique properties (i.e., mild production conditions, lower toxicity, and higher biodegradability) compared to their synthetic chemical counterparts. Rhamnolipid as a potent natural biosurfactant has a wide range of potential applications, including EOR and bioremediation. During the three-year of the project period, we have successfully cloned the genes involved in the rhamnolipid bio-synthesis. And by using the Transposon containing Rhamnosyltransferase gene rhlAB, we engineered the new mutant strains P. aeruginosa PEER02 and E. coli TnERAB so they can produce rhamnolipid biosurfactans. We were able to produce rhamnolipds in both P. aeroginosa PAO1-RhlA- strain and P. fluorescens ATCC15453 strain, with the increase of 55 to 175 fold in rhamnolipid production comparing with wild type bacteria strain. We have also completed the first round direct evolution studies using Error-prone PCR technique and have constructed the library of RhlAB-containing Transposon to express mutant gene in heterologous hosts. Several methods, such as colorimetric agar plate assay, colorimetric spectrophotometer assay, bioactive assay and oil spreading assay have been established to detect and screen rhamnolipid production. Our engineered P. aeruginosa PEER02 strain can produce rhamnolipids with different carbon sources as substrate. Interfacial tension analysis (IFT) showed that different rhamnolipids from different

  1. Space Shuttle Main Engine Low Pressure Oxidizer Turbo-Pump Inducer Dynamic Environment Characterization through Water Model and Hot-Fire Testing

    NASA Technical Reports Server (NTRS)

    Arellano, Patrick; Patton, Marc; Schwartz, Alan; Stanton, David

    2006-01-01

    The Low Pressure Oxidizer Turbopump (LPOTP) inducer on the Block II configuration Space Shuttle Main Engine (SSME) experienced blade leading edge ripples during hot firing. This undesirable condition led to a minor redesign of the inducer blades. This resulted in the need to evaluate the performance and the dynamic environment of the redesign, relative to the current configuration, as part of the design acceptance process. Sub-scale water model tests of the two inducer configurations were performed, with emphasis on the dynamic environment due to cavitation induced vibrations. Water model tests were performed over a wide range of inlet flow coefficient and pressure conditions, representative of the scaled operating envelope of the Block II SSME, both in flight and in ground hot-fire tests, including all power levels. The water test hardware, facility set-up, type and placement of instrumentation, the scope of the test program, specific test objectives, data evaluation process and water test results that characterize and compare the two SSME LPOTP inducers are discussed. In addition, dynamic characteristics of the two water models were compared to hot fire data from specially instrumented ground tests. In general, good agreement between the water model and hot fire data was found, which confirms the value of water model testing for dynamic characterization of rocket engine turbomachinery.

  2. High time service evaluation of thermal barrier coatings on the Rolls-Royce RB211 engine

    NASA Technical Reports Server (NTRS)

    Toriz, F. Chris

    1985-01-01

    One of the main concerns of airline operators for the use of thermal barrier coatings (TBC) in the turbine is that the coating will spall and cause a premature engine removal. Even though much cyclic data is available on TBCs, high time data is much harder and expensive to come by. The typical 150 h type test used to qualify hardware, or modifications, falls far short of the 5 to 10,000 hour experience desired. One way to obtain data demonstrating the longevity of TBCs is through a service evaluation program on a commercial engine. For a meaningful evaluation of the TBC system it must be applied to a component which operates in a typical hot end environment. In addition the component performance should not suffer if the coating is lost. For these reasons Rolls-Royce chose to coat the IP turbine nozzle guide vanes, and run these in an RB211 engine. Two ceramic top coats and several different bond coats were tested in a rainbow fashion on several engines. Three layer magnesium zirconate was used as a base line. Various yttria stabilized zirconia ceramics were used. Top MCrAlY bond coats were applied by various techniques. Some of the coated vanes have now accumulated ofer 5000 hours. The results are presented from the first sets with 2500 and 4200 hours of service respectively.

  3. New horizons for high-power lasers: applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Wignarajah, Sivakumaran

    2000-01-01

    Although material processing with high power lasers has found widespread use in a variety of industries such as the automotive industry, electrical and electronics industries, aerospace industry etc., civil engineering construction is one field that has lagged behind in the use of lasers for material processing. This is in spite of the fact that a large variety of materials including ceramics, metals and plastics are used in very large quantities for civil engineering construction. The main reasons for the delay in the adopting of laser for processing construction material seem to be the high costs involved and the lack of sufficient power for processing heavy and thick materials. However, with the advent of more compact lasers with higher powers, higher efficiencies and lower photon costs, greater interest has been shown in recent years in the possible uses of high power lasers for material processing in the construction industry. The author traces some of the past work carried out both in Japan and abroad on the use of lasers in civil engineering, specially with respect to the processing of inorganic material such as concrete, natural stones, tiles and rocks. Recent developments regarding laser decontamination and laser assisted rock excavation are also introduced.

  4. Development of a novel calcium phosphate cement composed mainly of calcium sodium phosphate with high osteoconductivity.

    PubMed

    Tanaka, Masashi; Takemoto, Mitsuru; Fujibayashi, Shunsuke; Kawai, Toshiyuki; Tsukanaka, Masako; Takami, Kimiaki; Motojima, Satoshi; Inoue, Hikaru; Nakamura, Takashi; Matsuda, Shuichi

    2014-06-01

    Two novel calcium phosphate cements (CPC) have been developed using calcium sodium phosphate (CSP) as the main ingredient. The first of these cements, labeled CAC, contained CSP, α-tricalcium phosphate (TCP), and anhydrous citric acid, whereas the second, labeled CABC, contained CSP, α-TCP, β-TCP, and anhydrous citric acid. Biopex(®)-R (PENTAX, Tokyo, Japan), which is a commercially available CPC (Com-CPC), and OSferion(®) (Olympus Terumo Biomaterials Corp., Tokyo, Japan), which is a commercially available porous β-TCP, were used as reference controls for analysis. In vitro analysis showed that CABC set in 5.7 ± 0.3 min at 22 °C and had a compressive strength of 86.0 ± 9.7 MPa after 5 days. Furthermore, this material had a compressive strength of 26.7 ± 3.7 MPa after 2 h in physiologic saline. CAC showed a statistically significantly lower compressive strength in the presence of physiologic saline and statistically significantly longer setting times than those of CABC. CABC and CAC exhibited apatite-forming abilities in simulated body fluid that were faster than that of Com-CPC. Samples of the materials were implanted into the femoral condyles of rabbits for in vivo analysis, and subsequent histological examinations revealed that CABC exhibited superior osteoconductivity and equivalent bioresorbability compared with Com-CPC, as well as superior osteoconductivity and bioresorbability compared with CAC. CABC could therefore be used as an alternative bone substitute material. PMID:24671331

  5. High temperature solar photon engines. [heat engines for terrestrial and space-based solar power plants

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Decher, R.; Mattick, A. T.; Lau, C. V.

    1978-01-01

    High temperature heat engines designed to make maximum use of the thermodynamic potential of concentrated solar radiation are described. Plasmas between 2000 K and 4000 K can be achieved by volumetric absorption of radiation in alkali metal vapors, leading to thermal efficiencies up to 75% for terrestrial solar power plants and up to 50% for space power plants. Two machines capable of expanding hot plasmas using practical technology are discussed. A binary Rankine cycle uses fluid mechanical energy transfer in a device known as the 'Comprex' or 'energy exchanger.' The second machine utilizes magnetohydrodynamics in a Brayton cycle for space applications. Absorption of solar energy and plasma radiation losses are investigated for a solar superheater using potassium vapor.

  6. Highly Elastic Micropatterned Hydrogel for Engineering Functional Cardiac Tissue

    PubMed Central

    Annabi, Nasim; Tsang, Kelly; Mithieux, Suzanne M.; Nikkhah, Mehdi; Ameri, Afshin

    2013-01-01

    Heart failure is a major international health issue. Myocardial mass loss and lack of contractility are precursors to heart failure. Surgical demand for effective myocardial repair is tempered by a paucity of appropriate biological materials. These materials should conveniently replicate natural human tissue components, convey persistent elasticity, promote cell attachment, growth and conformability to direct cell orientation and functional performance. Here, microfabrication techniques are applied to recombinant human tropoelastin, the resilience-imparting protein found in all elastic human tissues, to generate photocrosslinked biological materials containing well-defined micropatterns. These highly elastic substrates are then used to engineer biomimetic cardiac tissue constructs. The micropatterned hydrogels, produced through photocrosslinking of methacrylated tropoelastin (MeTro), promote the attachment, spreading, alignment, function, and intercellular communication of cardiomyocytes by providing an elastic mechanical support that mimics their dynamic mechanical properties in vivo. The fabricated MeTro hydrogels also support the synchronous beating of cardiomyocytes in response to electrical field stimulation. These novel engineered micropatterned elastic gels are designed to be amenable to 3D modular assembly and establish a versatile, adaptable foundation for the modeling and regeneration of functional cardiac tissue with potential for application to other elastic tissues. PMID:24319406

  7. Unsteady pressure loads in a generic high speed engine model

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Thurlow, Ernie M.

    1992-01-01

    Unsteady pressure loads were measured along the top interior wall of a generic high-speed engine (GHSE) model undergoing performance tests in the combustion-Heated Scramjet Test Facility at the Langley Research Center. Flow to the model inlet was simulated at 72000 ft and a flight Mach number of 4. The inlet Mach number was 3.5 with a total temperature and pressure of 1640 R and 92 psia. The unsteady pressure loads were measured with 5 piezoresistive gages, recessed into the wall 4 to 12 gage diameters to reduce incident heat flux to the diaphragms, and distributed from the inlet to the combustor. Contributors to the unsteady pressure loads included boundary layer turbulence, combustion noise, and transients generated by unstart loads. Typical turbulent boundary layer rms pressures in the inlet ranged from 133 dB in the inlet to 181 dB in the combustor over the frequency range from 0 to 5 kHz. Downstream of the inlet exist, combustion noise was shown to dominate boundary layer turbulence noise at increased heat release rates. Noise levels in the isolator section increased by 15 dB when the fuel-air ratio was increased from 0.37 to 0.57 of the stoichiometric ratio. Transient pressure disturbances associated with engine unstarts were measured in the inlet and have an upstream propagation speed of about 7 ft/sec and pressure jumps of at least 3 psia.

  8. High-throughput analysis and protein engineering using microcapillary arrays.

    PubMed

    Chen, Bob; Lim, Sungwon; Kannan, Arvind; Alford, Spencer C; Sunden, Fanny; Herschlag, Daniel; Dimov, Ivan K; Baer, Thomas M; Cochran, Jennifer R

    2016-02-01

    We describe a multipurpose technology platform, termed μSCALE (microcapillary single-cell analysis and laser extraction), that enables massively parallel, quantitative biochemical and biophysical measurements on millions of protein variants expressed from yeast or bacteria. μSCALE spatially segregates single cells within a microcapillary array, enabling repeated imaging, cell growth and protein expression. We performed high-throughput analysis of cells and their protein products using a range of fluorescent assays, including binding-affinity measurements and dynamic enzymatic assays. A precise laser-based extraction method allows rapid recovery of live clones and their genetic material from microcapillaries for further study. With μSCALE, we discovered a new antibody against a clinical cancer target, evolved a fluorescent protein biosensor and engineered an enzyme to reduce its sensitivity to its inhibitor. These protein analysis and engineering applications each have unique assay requirements and different host organisms, highlighting the flexibility and technical capabilities of the μSCALE platform. PMID:26641932

  9. High-Temperature Alloys for Automotive Stirling Engines

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Titran, R. H.

    1986-01-01

    Stirling engine is external-combustion engine that offers fuel economy, low emissions, low noise, and low vibrations. One of most critical areas in engine development concerns material selection for component parts. Alloys CG-27 and XF-818 identified capable of withstanding rigorous requirements of automotive Stirling engine. Alloys chosen for availability, performance, and manufacturability. Advanced iron-base alloys have potential for variety of applications, including stationary solar-power systems.

  10. High School Engineering and Technology Education Integration through Design Challenges

    ERIC Educational Resources Information Center

    Mentzer, Nathan

    2011-01-01

    This study contextualized the use of the engineering design process by providing descriptions of how each element in a design process was integrated in an eleventh grade industry and engineering systems course. The guiding research question for this inquiry was: How do students engage in the engineering design process in a course where technology…

  11. Highly efficient 6-stroke engine cycle with water injection

    SciTech Connect

    Szybist, James P; Conklin, James C

    2012-10-23

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  12. The main challenges that remain in applying high-throughput sequencing to clinical diagnostics.

    PubMed

    Loeffelholz, Michael; Fofanov, Yuriy

    2015-01-01

    Over the last 10 years, the quality, price and availability of high-throughput sequencing instruments have improved to the point that this technology may be close to becoming a routine tool in the diagnostic microbiology laboratory. Two groups of challenges, however, have to be resolved in order to move this powerful research technology into routine use in the clinical microbiology laboratory. The computational/bioinformatics challenges include data storage cost and privacy concerns, requiring analysis to be performed without access to cloud storage or expensive computational infrastructure. The logistical challenges include interpretation of complex results and acceptance and understanding of the advantages and limitations of this technology by the medical community. This article focuses on the approaches to address these challenges, such as file formats, algorithms, data collection, reporting and good laboratory practices. PMID:26394651

  13. Combustion in a High-Speed Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  14. A DETAILED KINEMATIC MAP OF CASSIOPEIA A'S OPTICAL MAIN SHELL AND OUTER HIGH-VELOCITY EJECTA

    SciTech Connect

    Milisavljevic, Dan; Fesen, Robert A.

    2013-08-01

    We present three-dimensional (3D) kinematic reconstructions of optically emitting material in the young Galactic supernova remnant Cassiopeia A (Cas A). These Doppler maps have the highest spectral and spatial resolutions of any previous survey of Cas A and represent the most complete catalog of its optically emitting material to date. We confirm that the bulk of Cas A's optically bright ejecta populate a torus-like geometry tilted approximately 30 Degree-Sign with respect to the plane of the sky with a -4000 to +6000 km s{sup -1} radial velocity asymmetry. Near-tangent viewing angle effects and an inhomogeneous surrounding circumstellar material/interstellar medium environment suggest that this geometry and velocity asymmetry may not be faithfully representative of the remnant's true 3D structure or the kinematic properties of the original explosion. The majority of the optical ejecta are arranged in several well-defined and nearly circular ring-like structures with diameters between approximately 30'' (0.5 pc) and 2' (2 pc). These ejecta rings appear to be a common phenomenon of young core-collapse remnants and may be associated with post-explosion input of energy from plumes of radioactive {sup 56}Ni-rich ejecta that rise, expand, and compress non-radioactive material. Our optical survey encompasses Cas A's faint outlying ejecta knots and exceptionally high-velocity NE and SW streams of S-rich debris often referred to as ''jets''. These outer knots, which exhibit a chemical make-up suggestive of an origin deep within the progenitor star, appear to be arranged in opposing and wide-angle outflows with opening half-angles of Almost-Equal-To 40 Degree-Sign.

  15. Interface engineering for high performance graphene electronic devices

    NASA Astrophysics Data System (ADS)

    Jung, Dae Yool; Yang, Sang Yoon; Park, Hamin; Shin, Woo Cheol; Oh, Joong Gun; Cho, Byung Jin; Choi, Sung-Yool

    2015-06-01

    A decade after the discovery of graphene flakes, exfoliated from graphite, we have now secured large scale and high quality graphene film growth technology via a chemical vapor deposition (CVD) method. With the establishment of mass production of graphene using CVD, practical applications of graphene to electronic devices have gained an enormous amount of attention. However, several issues arise from the interfaces of graphene systems, such as damage/unintentional doping of graphene by the transfer process, the substrate effects on graphene, and poor dielectric formation on graphene due to its inert features, which result in degradation of both electrical performance and reliability in actual devices. The present paper provides a comprehensive review of the recent approaches to resolve these issues by interface engineering of graphene for high performance electronic devices. We deal with each interface that is encountered during the fabrication steps of graphene devices, from the graphene/metal growth substrate to graphene/high-k dielectrics, including the intermediate graphene/target substrate.

  16. Enabling propulsion materials for high-speed civil transport engines

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.; Herbell, Thomas P.

    1992-01-01

    NASA Headquarters and LeRC have advocated an Enabling Propulsion Materials Program (EPM) to begin in FY-92. The High Speed Research Phase 1 program which began in FY-90 has focused on the environmental acceptability of a High Speed Civil Transport (HSCT). Studies by industry, including Boeing, McDonnell Douglas, GE Aircraft Engines, and Pratt & Whitney Aircraft, and in-house studies by NASA concluded that NO(x) emissions and airport noise reduction can only be economically achieved by revolutionary advancements in materials technologies. This is especially true of materials for the propulsion system where the combustor is the key to maintaining low emissions, and the exhaust nozzle is the key to reducing airport noise to an acceptable level. Both of these components will rely on high temperature composite materials that can withstand the conditions imposed by commercial aircraft operations. The proposed EPM program will operate in conjunction with the HSR Phase 1 Program and the planned HSR Phase 2 program slated to start in FY-93. Components and subcomponents developed from advanced materials will be evaluated in the HSR Phase 2 Program.

  17. Tripropellant engine study

    NASA Technical Reports Server (NTRS)

    Wheeler, D. B.

    1978-01-01

    Engine performance data, combustion gas thermodynamic properties, and turbine gas parameters were determined for various high power cycle engine configurations derived from the space shuttle main engine that will allow sequential burning of LOX/hydrocarbon and LOX/hydrogen fuels. Both stage combustion and gas generator pump power cycles were considered. Engine concepts were formulated for LOX/RP-1, LOX/CH4, and LOX/C3H8 propellants. Flowrates and operating conditions were established for this initial set of engine systems, and the adaptability of the major components of shuttle main engine was investigated.

  18. High-temperature, high-pressure optical port for rocket engine applications

    NASA Astrophysics Data System (ADS)

    Delcher, Ray; Nemeth, Ed; Powers, W. T.

    1993-06-01

    This paper discusses the design, fabrication, and test of a window assembly for instrumentation of liquid-fueled rocket engine hot gas systems. The window was designed to allow optical measurements of hot gas in the SSME fuel preburner and appears to be the first window designed for application in a rocket engine hot gas system. Such a window could allow the use of a number of remote optical measurement technologies including: Raman temperature and species concentration measurement, Raleigh temperature measurements, flame emission monitoring, flow mapping, laser-induced florescence, and hardware imaging during engine operation. The window assembly has been successfully tested to 8,000 psi at 1000 F and over 11,000 psi at room temperature. A computer stress analysis shows the window will withstand high temperature and cryogenic thermal shock.

  19. Engineering neural systems for high-level problem solving.

    PubMed

    Sylvester, Jared; Reggia, James

    2016-07-01

    There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a symbolic, top-down approach vs. a neural, bottom-up approach to engineering intelligent machine behaviors. While neurocomputational methods excel at lower-level cognitive tasks (incremental learning for pattern classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive problem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards addressing this limitation by developing a purely neural framework named galis. Our goal in this work is to integrate top-down (non-symbolic) control of a neural network system with more traditional bottom-up neural computations. galis is based on attractor networks that can be "programmed" with temporal sequences of hand-crafted instructions that control problem solving by gating the activity retention of, communication between, and learning done by other neural networks. We demonstrate the effectiveness of this approach by showing that it can be applied successfully to solve sequential card matching problems, using both human performance and a top-down symbolic algorithm as experimental controls. Solving this kind of problem makes use of top-down attention control and the binding together of visual features in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not only be instructed on how to solve card matching problems successfully, but its performance also qualitatively (and sometimes quantitatively) matches the performance of both human subjects that we had perform the same task and the top-down symbolic algorithm that we used as an experimental control. We conclude that the core principles underlying the galis framework provide a promising approach to engineering purely neurocomputational systems for problem

  20. Analysis of the Magneto-Hydrodynamic (MHD) Energy Bypass Engine for High-Speed Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Riggins, David W.

    2002-01-01

    The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet

  1. Performance deterioration of commercial high-bypass ratio turbofan engines

    NASA Technical Reports Server (NTRS)

    Mehalic, C. M.; Ziemianski, J. A.

    1980-01-01

    The results of engine performance deterioration investigations based on historical data, special engine tests, and specific tests to define the influence of flight loads and component clearances on performance are presented. The results of analyses of several damage mechanisms that contribute to performance deterioration such as blade tip rubs, airfoil surface roughness and erosion, and thermal distortion are also included. The significance of these damage mechanisms on component and overall engine performance is discussed.

  2. Reclaiming the High Ground: An Engineering Ethic for the New Age of Engineering.

    ERIC Educational Resources Information Center

    Stimpson, Brian

    1991-01-01

    Discussed is the meaning of engineering and technology and the need to develop a new philosophy and ethic commensurate with the finite resources of matter and energy. A new ethic is presented in terms of educating engineers in terms of stewardship of the earth and its resources. (KR)

  3. In Vitro Engineering of High Modulus Cartilage-Like Constructs

    PubMed Central

    Seedhom, Bahaa B.; Carey, Duane O.; Bulpitt, Andy J.; Treanor, Darren E.; Kirkham, Jennifer

    2016-01-01

    To date, the outcomes of cartilage repair have been inconsistent and have frequently yielded mechanically inferior fibrocartilage, thereby increasing the chances of damage recurrence. Implantation of constructs with biochemical composition and mechanical properties comparable to natural cartilage could be advantageous for long-term repair. This study attempted to create such constructs, in vitro, using tissue engineering principles. Bovine synoviocytes were seeded on nonwoven polyethylene terephthalate fiber scaffolds and cultured in chondrogenic medium for 4 weeks, after which uniaxial compressive loading was applied using an in-house bioreactor for 1 h per day, at a frequency of 1 Hz, for a further 84 days. The initial loading conditions, determined from the mechanical properties of the immature constructs after 4 weeks in chondrogenic culture, were strains ranging between 13% and 23%. After 56 days (sustained at 84 days) of loading, the constructs were stained homogenously with Alcian blue and for type-II collagen. Dynamic compressive moduli were comparable to the high end values for native cartilage and proportional to Alcian blue staining intensity. We suggest that these high moduli values were attributable to the bioreactor setup, which caused the loading regime to change as the constructs developed, that is, the applied stress and strain increased with construct thickness and stiffness, providing continued sufficient cell stimulation as further matrix was deposited. Constructs containing cartilage-like matrix with response to load similar to that of native cartilage could produce long-term effective cartilage repair when implanted. PMID:26850081

  4. In Vitro Engineering of High Modulus Cartilage-Like Constructs.

    PubMed

    Finlay, Scott; Seedhom, Bahaa B; Carey, Duane O; Bulpitt, Andy J; Treanor, Darren E; Kirkham, Jennifer

    2016-04-01

    To date, the outcomes of cartilage repair have been inconsistent and have frequently yielded mechanically inferior fibrocartilage, thereby increasing the chances of damage recurrence. Implantation of constructs with biochemical composition and mechanical properties comparable to natural cartilage could be advantageous for long-term repair. This study attempted to create such constructs, in vitro, using tissue engineering principles. Bovine synoviocytes were seeded on nonwoven polyethylene terephthalate fiber scaffolds and cultured in chondrogenic medium for 4 weeks, after which uniaxial compressive loading was applied using an in-house bioreactor for 1 h per day, at a frequency of 1 Hz, for a further 84 days. The initial loading conditions, determined from the mechanical properties of the immature constructs after 4 weeks in chondrogenic culture, were strains ranging between 13% and 23%. After 56 days (sustained at 84 days) of loading, the constructs were stained homogenously with Alcian blue and for type-II collagen. Dynamic compressive moduli were comparable to the high end values for native cartilage and proportional to Alcian blue staining intensity. We suggest that these high moduli values were attributable to the bioreactor setup, which caused the loading regime to change as the constructs developed, that is, the applied stress and strain increased with construct thickness and stiffness, providing continued sufficient cell stimulation as further matrix was deposited. Constructs containing cartilage-like matrix with response to load similar to that of native cartilage could produce long-term effective cartilage repair when implanted. PMID:26850081

  5. High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays

    NASA Astrophysics Data System (ADS)

    Ivey, Christopher; Bravo, Luis; Kim, Dokyun

    2014-11-01

    A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.

  6. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 2: Engine preliminary design assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial transport engine are presented. The results of the phase 2 study effort cover the following areas: (1) general review of preliminary engine designs suggested for a future aircraft, (2) presentation of a long range view of airline propulsion system objectives and the research programs in noise, pollution, and design which must be undertaken to achieve the goals presented, (3) review of the impact of propulsion system unreliability and unscheduled maintenance on cost of operation, (4) discussion of the reliability and maintainability requirements and guarantees for future engines.

  7. Integrated high-precision analyses of Holocene relative sea-level changes: Lessons from the coast of Maine

    SciTech Connect

    Gehrels, R.W.; Belknap, D.F.; Kelley, J.T.

    1996-09-01

    A suite of salt-marsh peat samples from four sites along the coast of Maine (Wells, Phippsburg, Gouldsboro, and Machiasport) has been analyzed using high-precision techniques to determine local relative sea-level trends and to evaluate proposed along-coast warping. A spatially variable set of relative sea-level records in Maine would have important implications for geophysical models that predict the response of the lithosphere during deglaciation and postglacial isostatic relaxation. The amplification of M{sub 2} tidal range in the Gulf of Maine and the Bay of Fundy during the Holocene is modeled and applied to the mean high water data yielding best-estimate envelopes of mean tide level change for each location. Average long-term (thousands of years) mean tide level rise did not exceed {approx}2 mm/yr at any time during the late Holocene at Wells, Phippsburg, and Machiasport. Between 4.5 and 3 ka (calibrated [cal]), the apparent rate of rise at Gouldsboro was higher than at any other site studied. This along-coast variation in the rate of mean tide level rise may reflect time of deglaciation, neotectonics, or differential isostatic adjustments. A slight acceleration of mean tide level rise has occurred during the past millennium in Gouldsboro and Machiasport. If 12 m downwarping in easternmost Maine occurred, as suggested in other publications, it must have happened prior to 5.7 ka(cal). 84 refs., 13 figs., 8 tabs.

  8. Reverse Engineering of Vaccine Antigens Using High Throughput Sequencing-enhanced mRNA Display

    PubMed Central

    Guo, Nini; Duan, Hongying; Kachko, Alla; Krause, Benjamin W.; Major, Marian E.; Krause, Philip R.

    2015-01-01

    Vaccine reverse engineering is emerging as an important approach to vaccine antigen identification, recently focusing mainly on structural characterization of interactions between neutralizing monoclonal antibodies (mAbs) and antigens. Using mAbs that bind unknown antigen structures, we sought to probe the intrinsic features of antibody antigen-binding sites with a high complexity peptide library, aiming to identify conformationally optimized mimotope antigens that capture mAb-specific epitopes. Using a high throughput sequencing-enhanced messenger ribonucleic acid (mRNA) display approach, we identified high affinity binding peptides for a hepatitis C virus neutralizing mAb. Immunization with the selected peptides induced neutralizing activity similar to that of the original mAb. Antibodies elicited by the most commonly selected peptides were predominantly against specific epitopes. Thus, using mRNA display to interrogate mAbs permits high resolution identification of functional peptide antigens that direct targeted immune responses, supporting its use in vaccine reverse engineering for pathogens against which potent neutralizing mAbs are available. Research in Context We used a large number of randomly produced small proteins (“peptides”) to identify peptides containing specific protein sequences that bind efficiently to an antibody that can prevent hepatitis C virus infection in cell culture. After the identified peptides were injected into mice, the mice produced their own antibodies with characteristics similar to the original antibody. This approach can provide previously unavailable information about antibody binding and could also be useful in developing new vaccines. PMID:26425692

  9. Exactly solvable model of a highly efficient thermoelectric engine.

    PubMed

    Horvat, Martin; Prosen, Tomaz; Casati, Giulio

    2009-07-01

    We propose a simple classical dynamical model of a thermoelectric (or thermochemical) heat engine based on a pair of ideal gas containers connected by two unequal scattering channels. The model is solved analytically and it is shown that a suitable combination of parameters can be chosen such that the engine operates at Carnot's efficiency. PMID:19658636

  10. Jet Engines as High-Capacity Vacuum Pumps

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.

    1983-01-01

    Large diffuser operations envelope and long run times possible. Jet engine driven ejector/diffuser system combines two turbojet engines and variable-area-ratio ejector in two stages. Applications in such industrial proesses as handling corrosive fumes, evaporation of milk and fruit juices, petroleum distillation, and dehydration of blood plasma and penicillin.

  11. Integrated high-precision analyses of Holocene relative sea-level changes: Lessons from the coast of Maine

    USGS Publications Warehouse

    Gehrels, W.R.; Belknap, D.F.; Kelley, J.T.

    1996-01-01

    A suite of salt-marsh peat samples from four sites along the coast of Maine (Wells, Phippsburg, Gouldsboro, and Machiasport) has been analyzed using high-precision techniques to determine local relative sea-level trends and to evaluate proposed along-coast warping. A spatially variable set of relative sea-level records in Maine would have important implications for geophysical models that predict the response of the lithosphere during deglaciation and postglacial isostatic relaxation. These models are often at odds with observed relative sea-level indicators near the margins of former glaciation, including those from Maine. Assemblages of agglutinated benthic foraminifera occur in vertical zones on the surface of modern salt marshes in Maine and can be used to accurately locate former mean high water levels in cores. Additional tools in this study include accelerator mass spectrometer 14C dating of individual plant fragments and precise leveling of elevations. The amplification of M2 tidal range in the Gulf of Maine and the Bay of Fundy during the Holocene is modeled and applied to the mean high water data yielding best-estimate envelopes of mean tide level change for each location. Average long-term (thousands of years) mean tide level rise did not exceed ???2 mm/yr at any time during the late Holocene at Wells, Phippsburg, and Machiasport. Between 4.5 and 3 ka (calibrated [cal]), the apparent rate of rise at Gouldsboro was higher than at any other site studied. This along-coast variation in the rate of mean tide level rise may reflect time of deglaciation, neotectonics, or differential isostatic adjustments. Between 8 and 5 ka (cal), only south-central Maine (Phippsburg) has a good record of relative sea-level change. At this locality, the rate of mean tide level rise was 5.0-8.8 mm/yr for the period 7.8-5.3 ka (cal), which may have resulted from collapse of a glacial forebulge. A slight acceleration of mean tide level rise has occurred during the past millennium

  12. Elimination of High-Frequency Combustion Instability in the Fastrac Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin; Nesman, Thomas E.

    1998-01-01

    NASA's Marshall Space Flight Center(MSFC) has been tasked with developing a 60,000 pound thrust, pump-fed, LOX/RP-1 engine under the Advanced Space Transportation Program(ASTP). This government-led design has been designated the Fastrac engine. The X-34 vehicle will use the Fastrac engine as the main propulsion system. The X-34 will be a suborbital vehicle developed by the Orbital Sciences Corporation. The X-34 vehicle will be launched from an L-1011 airliner. After launch, the X-34 vehicle will be able to climb to altitudes up to 250,000 feet and reach speeds up to Mach 8, over a mission range of 500 miles. The overall length, wingspan, and gross takeoff weight of the X-34 vehicle are 58.3 feet, 27.7 feet and 45,000 pounds, respectively. This report summarizes the plan of achieving a Fastrac thrust chamber assembly(TCA) stable bomb test that meets the JANNAF standards, the Fastrac TCA design, and the combustion instabilities exhibited by the Fastrac TCA during testing at MSFC's test stand 116 as determined from high-frequency fluctuating pressure measurements. This report also summarizes the characterization of the combustion instabilities from the pressure measurements and the steps taken to eliminate the instabilities.

  13. Direct fired reciprocating engine and bottoming high temperature fuel cell hybrid

    DOEpatents

    Geisbrecht, Rodney A.; Holcombe, Norman T.

    2006-02-07

    A system of a fuel cell bottoming an internal combustion engine. The engine exhaust gas may be combined in varying degrees with air and fed as input to a fuel cell. Reformer and oxidizers may be combined with heat exchangers to accommodate rich and lean burn conditions in the engine in peaking and base load conditions without producing high concentrations of harmful emissions.

  14. Bringing Engineering Design into High School Science Classrooms: The Heating/Cooling Unit

    ERIC Educational Resources Information Center

    Apedoe, Xornam S.; Reynolds, Birdy; Ellefson, Michelle R.; Schunn, Christian D.

    2008-01-01

    Infusing engineering design projects in K-12 settings can promote interest and attract a wide range of students to engineering careers. However, the current climate of high-stakes testing and accountability to standards leaves little room to incorporate engineering design into K-12 classrooms. We argue that design-based learning, the combination…

  15. Results of Summer Enrichment Program to Promote High School Students' Interest in Engineering

    ERIC Educational Resources Information Center

    Hart, Brenda; McAnulty, Kate

    2014-01-01

    For more than thirty years, personnel from the University of Louisville J.B. Speed School of Engineering have presented a summer program targeting high school students historically underrepresented in engineering fields. INSPIRE provides these students with an introduction to careers in engineering and assists the students in planning their…

  16. A Project-Based Engineering and Leadership Workshop for High School Students

    ERIC Educational Resources Information Center

    Ryder, Linda Sue; Pegg, Jerine; Wood, Nathan

    2012-01-01

    Summer outreach programs provide pre-college participants an introduction to college life and exposure to engineering in an effort to raise the level of interest and bring more students into engineering fields. The Junior Engineering, Mathematics, and Science (JEMS) program is a project-based summer workshop in which teams of high school students…

  17. Engaging High School and Engineering Students: A Multifaceted Outreach Program Based on a Mechatronics Platform

    ERIC Educational Resources Information Center

    Habash, Riadh W. Y.; Suurtamm, Christine

    2010-01-01

    If we aim to enhance the interest of students in engineering and therefore produce the best engineers, it is essential to strengthen the pipeline to high school education. This paper discusses several outreach activities undertaken by the Faculty of Engineering and Faculty of Education, University of Ottawa (UO), Ottawa, ON, Canada, to help the…

  18. Research on Innovative Practice Teaching System Based on the High-End Practice Teaching Environment for Software Engineering Speciality

    NASA Astrophysics Data System (ADS)

    Dong, Jianli; Li, Cunhua; Ji, Zhaohui; Wu, Junming

    Through the analysis of current culture status of undergraduate engineering applied talents, the paper points out that the main reason causing the lack of student integrated application and practice innovation abilities is the poor construction of high-end practice environment. And then, how to enhance the practice environment construction and practical teaching innovation as well as building an appropriate innovation practice teaching system for engineering applied talents are systematically discussed. It is very obvious that the application and promotion of this kind of innovative practice teaching system could enhance the practice innovation abilities and entrepreneurial and employment awareness of the graduates.

  19. A new generation of high performance engines for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Rosenberg, Sanders D.; Schoenman, Leonard

    1991-01-01

    Experimental data validating advanced engine designs at three thrust levels (5, 15, and 100 lbF) is presented. All of the three engine designs considered employ a Moog bipropellant torque motor valve, platelet injector design, and iridium-lined rhenium combustion chamber. Attention is focused on the performance, robustness, duration, and flexibility characteristics of the engines. It is noted that the 5- and 15-lbF thrust engines can deliver a steady state specific impulse in excess of 310 lbF-sec/lbm at an area ratio of 150:1, while the 150-lbF thrust engines deliver a steady state specific impulse of 320 lbF-sec/lbm at an area ratio of 250:1. The hot-fire test results reveal specific impulse improvements of 15 to 25 sec over conventional fuel film cooled columbium chamber designs while operating at maximum chamber temperatures.

  20. Engine having hydraulic and fan drive systems using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine comprises a hydraulic system attached to an engine housing that includes a high pressure pump and a hydraulic fluid flowing through at least one passageway. A fan drive system is also attached to the engine housing and includes a hydraulic motor and a fan which can move air over the engine. The hydraulic motor includes an inlet fluidly connected to the at least one passageway.