These are representative sample records from related to your search topic.
For comprehensive and current results, perform a real-time search at

Bedrock Geologic Map of Maine  

NSDL National Science Digital Library

In this activity students study a map of bedrock geology which describes the types of rocks that exist in a given area. It shows these rock units as well as their known and inferred contacts. Consideration is also given to folding, faulting, unconformities, and similar rock relationships. These features are often included in bedrock geology maps. Students study the legend and scale and become aware of the other information that is included on the map such as the stratigraphic column, list of formations, and inset map of metamorphic grade. Students then locate their city or town and draw a 40-mile diameter circle around it and identify all the symbols inside the circle and the age of the various rocks. Student question sheets are available at this site. Although this activity was written for a map of Maine, it will work in any state where geological maps are available.


Surficial Geologic Map of Maine  

NSDL National Science Digital Library

In this activity students become familiar with the nature and use of the Surficial Geologic Map of Maine and gain practice in using maps other than topographic maps. They will discover that surficial geology deals primarily with the geologically youthful, unconsolidated sedimentary materials that exist at, or close to the surface of a specific area and are important because the surface deposits filter and control the access of water to the water table. Students also learn that the study of surficial geology is important for siting of waste disposal facilities and for resources such as sand, gravel, and clay. Although this activity was written for a map of Maine, it will work in any state where surficial geological maps are available.


Main features of meiosis  

SciTech Connect

Chapter 17, outlines the main features of meiosis, beginning with its significance and proceeding through the meiotic stages. Meiosis is the most important modification of mitosis because it is the reduction division that gives rise to the haploid generation in the life cycle. 17 refs., 6 figs.




Tectonics of the Urals and adjacent part of the West-Siberian platform basement: Main features of geology and development  

NASA Astrophysics Data System (ADS)

The Urals had undergone two main complete cycles of geodynamic development in the Riphean-Mesozoic time. The first one took place in the Riphean and Vendian and was completed by formation of the Timanides; the second is dated as Paleozoic-Early Mesozoic, belongs to the Uralides and can be divided into eight stages: (1) Continental riftogenesis (Cambrian - Early Ordovician). (2) Oceanic spreading (Middle-Late Ordovician). (3) Main subduction (Late Ordovician - Early Carboniferous). (4) Early collision (Late Devonian - Early Carboniferous) between the Magnitogorsk island arc and the passive margin of the Laurussia continent. (5) Late subduction of a relict oceanic crust of the Paleouralian ocean (Early-Carboniferous-Bashkirian). (6) Collision of Laurussian and Kazakhstanian continents. (7) A limited post-collisional extension and superplume magmatism (Triassic). (8) Thrust-and-fold deformation in the Early Jurassic time. Structure of the West Siberian plate is divided into three structural stages: (1) Folding of basement composed of rock complexes of almost exclusively Paleozoic age; (2) Riftogenesis with eruption of Early Triassic basalts (occasionally with some rhyolites), covered by terrigenous series of the Middle and Upper Triassic; (3) Deposition of a platform cover comprising Jurassic and younger sedimentary complexes, practically undeformed, which contain almost all deposits of oil and gas in the Western Siberia. The basement of the western part of the West Siberian plate is a prolongation of the structural zones of the eastern sector of Uralides, while the basement of the eastern part of the plate belongs to the Siberian craton and its folded margin. A huge block of the Kazakhstanides is situated to the east of the Uralides, beneath the platform cover and pinches out to the north. These main domains of the basement are divided by two major ophiolite sutures - Valerianovsk and Chara. Wide distribution of Triassic volcanogenic complexes under the platform cover of the West Siberian plate makes a principal difference from the Urals. Ophiolites are widely distributed under the platform cover of the West Siberian plate (especially in its central and western parts). Completion of Paleozoic geodynamic evolution of this region resulted from the collision of three continents (Laurussia, Siberia and Kazakhstania) accompanied by folding, highamplitude thrusting, intrusion of granite plutons, metamorphism and formation of a new crust of continental type. The time of these events which consolidated Paleozoic complexes of basement of future West Siberian megabasin is determined as Early Permian for the Cis-Uralian part of the platform. In the beginning of Triassic rifting, formation of a graben system, took place. A final stage of compressional deformation, mostly in the exposed part of the Urals, Pay-Khoy and Novaya Zemlya, occurred in the Lower Jurassic.

Ivanov, K. S.; Puchkov, V. N.; Fyodorov, Yu N.; Erokhin, Yu V.; Pogromskaya, O. E.



Maine Geological Survey: Online Educational Materials  

NSDL National Science Digital Library

The Maine Geological Survey (MGS) has crafted a fine set of materials for those interested in learning more about the state's natural history via virtual tours, lesson plans, and maps. First up is the Virtual Tour of Maine Geology, which includes photographs of bedrock geology, geologic hazards, mineral collecting, and surficial geology. The Lesson Plans area contains 51 lessons, including "Igneous Rock Identification" and "Composition of Topsoil." A number of MGS maps are available online in the Maps and Publications area. The site includes a Bibliography of Maine Geology, which contains over 12,000 references. Additionally, the site contains a link to the MGS publications page, which has official state of Maine wall maps available for purchase.



Maine Geological Survey: Online Educational Materials  

NSDL National Science Digital Library

The Maine Geological Survey (MGS) has crafted a fine set of materials for those interested in learning more about the state's natural history via virtual tours, lesson plans, and maps. First up is the Virtual Tour of Maine Geology, which includes photographs of bedrock geology, geologic hazards, mineral collecting, and surficial geology. The Lesson Plans area contains 51 lessons, including "Igneous Rock Identification" and "Composition of Topsoil." A number of MGS maps are available online in the Maps and Publications area. The site includes a Bibliography of Maine Geology, which contains over 12,000 references. Additionally, the site contains a link to the MGS publications page, which has official state of Maine wall maps available for purchase.



Geology Fieldnotes: Acadia National Park, Maine  

NSDL National Science Digital Library

This National Park Service website highlights the geology of Acadia National Park. The story begins 500 million years ago, and goes through rock cycles, formations (Ellsworth, Bar Harbor, and Cranberry formations), intrusions, the Ice Age, glacial features, and development of shore patterns. There are area and park maps, photos, and links to additional information.


Geology of the Cupsuptic quadrangle, Maine  

USGS Publications Warehouse

The Cupsuptic quadrangle, in west-central Maine, lies in a relatively narrow belt of pre-Silurian rocks extending from the Connecticut River valley across northern New Hampshire to north-central Maine. The Albee Formation, composed of green, purple, and black phyllite with interbedded-quartzite, is exposed in the core of a regional anticlinorium overlain to the southeast by greenstone of the Oquossoc Formation which in turn is overlain by black slate of the Kamankeag Formation. In the northern part of the quadrangle the Albee Formation is overlain by black slate, feldspathic graywacke, and minor greenstone of the Dixville Formation. The Kamankeag Formation is dated as 1-ate Middle Ordovician by graptolites (zone 12) found near the base of the unit. The Dixville Formation is correlated with the Kamankeag Formation and Oquossoc Formation and is considered to be Middle Ordovician. The Albee Formation is considered to be Middle to Lower Ordovician from correlations with similar rocks in northeastern and southwestern Vermont. The Oquossoc and Kamankeag Formations are correlated with the Amonoosuc and Partridge Formations of northern New Hampshire. The pre-Silurian rocks are unconformably overlain by unnamed rocks of Silurian age in the southeast, west-central, and northwest ninths of the quadrangle. The basal Silurian units are boulder to cobble polymict conglomerate and quartz-pebble conglomerate of late Lower Silurian (Upper Llandovery) age. The overlying rocks are either well-bedded slate and quartzite, silty limestone, or arenaceous limestone. Thearenaceous limestone contains Upper Silurian (Lower Ludlow) brachiopods. The stratified rocks have been intruded by three stocks of biotite-muscovite quartz monzonite, a large body of metadiorite and associated serpentinite, smaller bodies of gabbro, granodiorite, and intrusive felsite, as well as numerous diabase and quartz monzonite dikes. The metadiorite and serpentinite, and possibly the gabbro and granodiorite are Late Ordovician in age. The quartz monzonite is considered to be Late Devonian. Five tectonic events are inferred from the structural features in the area. The earliest was a period of folding producing tightly-appressed, northeast-trending folds in the rocks of pre-Silurian age. In the second stage the folded pre-Silurian rocks were uplifted, eroded, and truncated to produce a major unconformity between the Middle Ordovician and Lower Silurian rocks. These events constitute the Taconic orogeny. The third tectonic event was a period of folding, probably of Middle Devonian age, that warped the unconformity and overlying rocks into open, gently-plunging, east-trending folds. This period of folding undoubtedly changed the attitude of the early folds in the pre-Silurian units but it did not produce any recognizable, cross-cutting planar features in the older rocks. The fourth tectonic event was a period of igneous intrusion that locally deformed the northeast-trending folds in the pre-Silurian rocks into a macroscopic drag fold plunging at 80 degrees in a direction S.10?w. A north-trending, subvertical slip cleavage was produced locally during this period of Late Devonian (?) deformation. A period of faulting, possibly of Triassic age, dislocated some of the earlier features. The rocks are in the chlorite zone of regional metamorphism, but have been contact metamorphosed to sillimanite-bearing hornfels adjacent to the quartz monzonite stocks. The chemical changes in chlorite, biotite, garnet, cordierite, and muscovite in the chlorite, biotite, andalusite, and sillimanite zones have been-studied by optical and x-ray methods and by partial chemical analyses. The progressive changes in mineral assemblages have been graphically portrayed on quaternary diagrams and ternary projections.

Harwood, David S.



The Geology of the Marginal Way, Ogunquit, Maine  

NSDL National Science Digital Library

This guide introduces visitors to the geology of the Marginal Way, a mile-long public footpath in the southern coastal town of Ogunquit, Maine. Topics include bedrock geology (Silurian quartzites and phyllites), later intrusives (sills and dikes, mainly of basalt), and evidence of glaciation (striations). Suggested activities include observing graded bedding in the bedrock, estimating the ages of cross-cutting dikes, and looking for glacial striations. Permission and access information, directions, and suggestions for further reading are included.


Glacial and Postglacial Geology Highlights in the White Mountain National Forest, Western Maine  

NSDL National Science Digital Library

This guide introduces visitors to the glacial and postglacial geology of the White Mountain National Forest in western Maine. The discussion covers the timing of the glaciation (the Laurentide Ice Sheet, 25,000-13,000 years ago) and the numerous features left behind: erosional features such as high cliffs, grooves and striations; depositional features such as till, erratics, and glacial lake deposits; and deposits reworked by meltwater streams such as outwash, alluvial fans, and stream terraces. Permission and access information, directions, and references are included.


Pinnacles National Monument: A 3-D Tour Featuring Park Geology  

NSDL National Science Digital Library

This virtual tour features three-dimensional images from the United States Geological Survey's (USGS) collection. It introduces visitors to the geology and landforms of Pinnacles National Monument in California, the location of a belt of Tertiary volcanic rocks (tuff, breccia, and ash of rhyolite, dacite, and andesite composition). The location of the Pinnacles volcanic area near the San Andreas Fault has important implications for deciphering the geologic history of the fault system. Views include the trace of the San Andreas fault and erosional features (pinnacles, caves, cliffs, etc.) carved into the volcanic deposits. The 3-D images are anaglyphs and require red and cyan 3-D viewing glasses.


Mojave National Preserve: A 3-D Tour Featuring Park Geology  

NSDL National Science Digital Library

This virtual tour features three-dimensional images from the United States Geological Survey's (USGS) collection. It introduces visitors to the geology and landforms of Mojave National Preserve. Views include cinder cones, layered deposits of rhyolite and basalt tuff, and the Providence Mountain Range. Visitors can also see high desert flora (Joshua trees), limestone caverns, and the evaporite deposits of Soda Lake. The 3-D images are anaglyphs and require red and cyan 3-D viewing glasses.


Ambient tectonic stress as fragile geological feature  

NASA Astrophysics Data System (ADS)

seismic waves produce frictional failure within shallow pervasively cracked rocks. Distributed failure preferentially relaxes ambient tectonic stresses, providing a fragility measure of past strong shaking. Relaxation of the regional fault-normal compression appears to have occurred within granite from 768 m down to ˜1000-1600 m depth at the Pilot Hole near Parkfield, California. Subsequent movements on the main fault have imposed strike-slip stress within the relaxed region. Peak ground velocities of ˜2 m s-1 are inferred for infrequent (few 1000 yr recurrence) past earthquakes from stress relaxation within the granite and from the variation of S wave velocity with depth in the overlying sandstone. Conversely, frequent strong shaking in slowly deforming regions relaxes shallow ambient tectonic stress. This situation is expected beneath Whittier Narrows, where strong Love waves from numerous San Andreas events repeatedly produced nonlinear behavior.

Sleep, Norman H.



Color enhanced imagery of major geological features on Mars  

NASA Astrophysics Data System (ADS)

Red, green, and violet filtered color Viking imagery of Mars provides further detail of the planet's surface. Major geological features discussed here are the Tharsis volcanoes, the Labyrinthus Noctis-Valles Marineris region, dark-floored craters, Kasei Vallis, and Mareotis Fossae-Tempe Fossae. The imagery provides further evidence that dark material is mostly subsurface material underlying light material.

Trego, Kent D.



LROC Observations of Geologic Features in the Marius Hills  

NASA Astrophysics Data System (ADS)

Lunar volcanic cones, domes, and their associated geologic features are important objects of study for the LROC science team because they represent possible volcanic endmembers that may yield important insights into the history of lunar volcanism and are potential sources of lunar resources. Several hundred domes, cones, and associated volcanic features are currently targeted for high-resolution LROC Narrow Angle Camera [NAC] imagery[1]. The Marius Hills, located in Oceanus Procellarum (centered at ~13.4°N, -55.4°W), represent the largest concentration of these volcanic features on the Moon including sinuous rilles, volcanic cones, domes, and depressions [e.g., 2-7]. The Marius region is thus a high priority for future human lunar exploration, as signified by its inclusion in the Project Constellation list of notional future human lunar exploration sites [8], and will be an intense focus of interest for LROC science investigations. Previous studies of the Marius Hills have utilized telescopic, Lunar Orbiter, Apollo, and Clementine imagery to study the morphology and composition of the volcanic features in the region. Complementary LROC studies of the Marius region will focus on high-resolution NAC images of specific features for studies of morphology (including flow fronts, dome/cone structure, and possible layering) and topography (using stereo imagery). Preliminary studies of the new high-resolution images of the Marius Hills region reveal small-scale features in the sinuous rilles including possible outcrops of bedrock and lobate lava flows from the domes. The observed Marius Hills are characterized by rough surface textures, including the presence of large boulders at the summits (~3-5m diameter), which is consistent with the radar-derived conclusions of [9]. Future investigations will involve analysis of LROC stereo photoclinometric products and coordinating NAC images with the multispectral images collected by the LROC WAC, especially the ultraviolet data, to enable measurements of color variations within and amongst deposits and provide possible compositional insights, including the location of possibly related pyroclastic deposits. References: [1] J. D. Stopar et al. (2009), LRO Science Targeting Meeting, Abs. 6039 [2] Greeley R (1971) Moon, 3, 289-314 [3] Guest J. E. (1971) Geol. and Phys. of the Moon, p. 41-53. [4] McCauley J. F. (1967) USGS Geologic Atlas of the Moon, Sheet I-491 [5] Weitz C. M. and Head J. W. (1999) JGR, 104, 18933-18956 [6] Heather D. J. et al. (2003) JGR, doi:10.1029/2002JE001938 [7] Whitford-Stark, J. L., and J. W. Head (1977) Proc. LSC 8th, 2705-2724 [8] Gruener J. and Joosten B. K. (2009) LRO Science Targeting Meeting, Abs. 6036 [9] Campbell B. A. et al. (2009) JGR, doi:10.1029/2008JE003253.

Lawrence, S.; Stopar, J. D.; Hawke, R. B.; Denevi, B. W.; Robinson, M. S.; Giguere, T.; Jolliff, B. L.



Feature level fusion for enhanced geological mapping of ophiolile complex using ASTER and Landsat TM data  

NASA Astrophysics Data System (ADS)

Chromite ore deposit occurrence is related to ophiolite complexes as a part of the oceanic crust and provides a good opportunity for lithological mapping using remote sensing data. The main contribution of this paper is a novel approaches to discriminate different rock units associated with ophiolite complex using the Feature Level Fusion technique on ASTER and Landsat TM satellite data at regional scale. In addition this study has applied spectral transform approaches, consisting of Spectral Angle Mapper (SAM) to distinguish the concentration of high-potential areas of chromite and also for determining the boundary between different rock units. Results indicated both approaches show superior outputs compared to other methods and can produce a geological map for ophiolite complex rock units in the arid and the semi-arid region. The novel technique including feature level fusion and Spectral Angle Mapper (SAM) discriminated ophiolitic rock units and produced detailed geological maps of the study area. As a case study, Sikhoran ophiolite complex located in SE, Iran has been selected for image processing techniques. In conclusion, a suitable approach for lithological mapping of ophiolite complexes is demonstrated, this technique contributes meaningfully towards economic geology in terms of identifying new prospects.

Pournamdari, M.; Hashim, M.



The oceanic islands - Azores. [geological, geophysical and geochemical features  

NASA Technical Reports Server (NTRS)

A presentation is made of the known geological, geophysical, and geochemical data on the Azores. The regional setting of the islands is described; under the geological heading, surface geology and petrochemistry are discussed; and paleomagnetism, marine magnetic surveys, gravity, seismology, and heat flow are treated in the geophysics category. A model for the origin of the Azores is constructed on the basis of these observations.

Ridley, W. I.; Watkins, N. D.; Macfarlane, D. J.



Maps of Lunar Topographic Roughness: Correlation with Geological Features  

NASA Astrophysics Data System (ADS)

Lunar Orbiter Laser Altimeter LOLA [Smith et al. 2010 Space Sci. Rev. 150, 209] on board the Lunar Reconnaissance Orbiter is accumulating high-precision lunar surface elevation measurements. This data set is an excellent source for mapping lunar topographic roughness [Rosenburg et al. 2011 JGR 116, E02001]. Such maps are useful in planetary geology for the following reasons. (1) Roughness maps provide a convenient one-glance synoptic overview of small-scale textures. (2) They help focus on typical background topography, while researcher's eyes usually pick prominent features. (3) Roughness maps utilize the exceptional along-orbit precision of laser altimeter data. In a series of roughness maps that we present here, we use the interquartile range of along-profile curvature at a given baseline as a measure of roughness. We use a progression of baselines starting from the double LOLA probing step: 0.12, 0.46, 0.92, 1.8 km. We also show some useful color composites combining these maps and showing the scale dependence of roughness. Available data allow roughness mapping at 8 pixels per degree resolution. The nature of the lunar roughness changes abruptly at sub-km scale. At 0.46 km baseline and longer, the most prominent feature on the roughness maps is the dichotomy between smooth maria and rough highlands. At 0.12 km baseline, the mare/highland boundary disappears; some mare surfaces are rougher and some are smoother than typical highlands. At this baseline the surface topography is controlled by regolith gardening and reflects small-scale resurfacing during the Copernican and Eratosthenian periods, while for longer baselines the topography is defined by bedrock geology and "remembers" Imbrian and earlier events. At short scales (0.12 km baseline) both the roughest and the smoothest terrains are related to Copernican-aged large impact craters. Craters themselves and their proximal ejecta are extremely rough; the roughest ejecta is separated from craters by prominent smoother annuli. The roughness of the young craters progressively decreases with age due to smoothing by accumulation of the regolith layer. The smoothest terrains are local relatively small impact melt sheets outside Copernican craters Rutherford and Glushko. Large Copernican craters Tycho, Jackson and Ohm have systems of long roughness rays composed of elongated clusters of secondary craters. There are at least a few prominent roughness "rays" on the north-eastern limb made of dense elongated crater clusters that are not associated with any impact crater; their origin is enigmatic. Mare surfaces have relatively wide variations of roughness; boundaries between rougher and smoother areas often do not correlate with boundaries of mare units. These roughness variations seem to be caused, at least, partly, by the varying density of small craters. At longer baselines (0.46, 0.92, 1.8 km), in addition to Copernican and Eratosthenian craters, large Late Imbrian craters have prominent roughness signatures; they also have smoother annuli between craters and rough ejecta. Orientale basin, unlike other basins, also has distinctive roughness signature, as discussed in [Kreslavsky & Head 2012 JGR 117, E00H24]. The youngest maria are smooth at all scales, while older maria and cryptomaria are progressively rougher at shorter baselines; sharp roughness contrasts coincide with known unit boundaries.

Kreslavsky, M. A.; Head, J. W.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.



View of Feature 2, the remains of the Geology/Change Room, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

View of Feature 2, the remains of the Geology/Change Room, view to the southeast - Orphan Lode Mine, North of West Rim Road between Powell Point and Maricopa Point, South Rim, Grand Canyon Village, Coconino County, AZ


Yellowstone National Park: Historic 3-D Photographs Featuring Park Geology  

NSDL National Science Digital Library

This source provides a series of 34 historic photographs of well-known geologic landmarks in Yellowstone National Park. The photographs can be viewed individually or as part of a tour that begins at Old Faithful and proceeds in a clockwise route around the park. The images were created by digital manipulation of antique stereographs and they may be viewed as black and white photos or in 3-D using special stereographic glasses.

Stoffer Phil


Gestures for Structural Geology: Linear and Planar Features  

NSDL National Science Digital Library

à Gesturing a possible orientation for a planar feature cutting into a 3D solid. Provenance: Kinnari Atit, Temple University Reuse: This item is offered under a Creative Commons Attribution-NonCommercial-ShareAlike license You may reuse this item for non-commercial purposes as long as you provide attribution and offer any derivative works under a similar license. In this exercise, students use a pointer finger to gesture the orientations of linear features and use their hands (open and flat) to gesture the orientations of planar features. In the first part of the exercise, students can only see one surface of a wooden block, and are asked to speculate about how planar features penetrate through the interior. Later, they uncover the other faces of the block and gesture the actual orientations. This uses embodied learning to help students relate surficial (2D) observations to 3D interpretations.

Ormand, Carol


Going Batty! (Using Informational Text about Bats to teach Main Idea/Details and Text Features)  

NSDL National Science Digital Library

This lesson is a good review of main idea and details. It uses informational books about bats in the lesson. Students will use informational text features to help find the main idea and details. They will also use the knowledge of main idea/details and informational text features to complete a simple reseach sheet and/or book.

Atchison, Joe



Use and Features of Basalt Formations for Geologic Sequestration  

SciTech Connect

Extrusive lava flows of basalt are a potential host medium for geologic sequestration of anthropogenic CO2. Flood basalts and other large igneous provinces occur worldwide near population and power-producing centers and could securely sequester a significant fraction of global CO2 emissions. We describe the location, extent, and general physical and chemical characteristics of large igneous provinces that satisfy requirements as a good host medium for CO2 sequestration. Most lava flows have vesicular flow tops and bottoms as well as interflow zones that are porous and permeable and serve as regional aquifers. Additionally, basalt is iron-rich, and, under the proper conditions of groundwater pH, temperature, and pressure, injected CO2 will react with iron released from dissolution of primary minerals in the basalt to form stable ferrous carbonate minerals. Conversion of CO2 gas into a solid form was confirmed in laboratory experiments with supercritical CO2 in contact with basalt samples from Washington state.

McGrail, B. Peter; Ho, Anita M.; Reidel, Steve P.; Schaef, Herbert T.



Automatic Detection and Classification of Features of Geologic David Thompson, Scott Niekum, Trey Smith, and David Wettergreen  

E-print Network

Automatic Detection and Classification of Features of Geologic Interest David Thompson, Scott for onboard segmentation, detection and classification of geological properties. Field experiments performed of automatic rock identification. TABLE OF CONTENTS 1 INTRODUCTION 2 ROCK DETECTION AND CLASSIFICATION 3

Massachusetts at Amherst, University of


Crater Lake National Park: A 3-D Photographic Tour Featuring Park Geology  

NSDL National Science Digital Library

This virtual tour features three-dimensional images from the United States Geological Survey's (USGS) collection. It introduces visitors to the geology, landforms, and history of Crater Lake in Oregon, a lake filling the caldera of what was Mount Mazama, an ancient volcano in the Cascades Range that erupted and collapsed about 7,700 years ago. The 3-D images are anaglyphs and require red and cyan 3-D viewing glasses.



NSDL National Science Digital Library

With three levels to choose from on each page - beginner, intermediate or advanced - this site provides information on the many different kinds of geological exploration. The elements that make up minerals and the different ways minerals are developed, The special characteristics of minerals, like physical properties, is explained. Earths tectonic plates, the reasons they move, and the effects of the shifting are also given. Also featured is fossils and how they are developed and are found, as well as why fossils are useful tools for scientists.

Jennifer Bergman



Spatial Pattern of Groundwater Arsenic Occurrence and Association with Bedrock Geology in Greater Augusta, Maine, USA  

PubMed Central

In New England, groundwater arsenic occurrence has been linked to bedrock geology on regional scales. To ascertain and quantify this linkage at intermediate (100-101 km) scales, 790 groundwater samples from fractured bedrock aquifers in the greater Augusta, Maine area are analyzed. 31% of the sampled wells have arsenic >10 ?g/L. The probability of [As] exceeding 10 ?g/L mapped by indicator kriging is highest in Silurian pelite-sandstone and pelite-limestone units (~40%). This probability differs significantly (p<0.001) from those in the Silurian-Ordovician sandstone (24%), the Devonian granite (15%) and the Ordovician-Cambrian volcanic rocks (9%). The spatial pattern of groundwater arsenic distribution resembles the bedrock map. Thus, bedrock geology is associated with arsenic occurrence in fractured bedrock aquifers of the study area at intermediate scales relevant to water resources planning. The arsenic exceedance rate for each rock unit is considered robust because low, medium and high arsenic occurrences in 4 cluster areas (3-20 km2) with a low sampling density of 1-6 wells per km2 are comparable to those with a greater density of 5-42 wells per km2. About 12,000 people (21% of the population) in the greater Augusta area (~1135 km2) are at risk of exposure to >10 ?g/L arsenic in groundwater. PMID:19475939

Yang, Qiang; Jung, Hun Bok; Culbertson, Charles W.; Marvinney, Robert G.; Loiselle, Marc C.; Locke, Daniel B.; Cheek, Heidi; Thibodeau, Hilary; Zheng, Yan



Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank  

Microsoft Academic Search

The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or ‘features’, are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through

Avijit Gangopadhyay; Allan R. Robinson; Patrick J. Haley; Wayne G. Leslie; Carlos J. Lozano; James J. Bisagni; Zhitao Yu



Framework for a U.S. Geological Survey Hydrologic Climate-Response Program in Maine  

USGS Publications Warehouse

It is important to monitor hydrologic systems in the United States that could change dramatically over the short term as a result of climate change. Many ecological effects of climate change can be understood only if hydrologic data networks are in place. Because of its humid, temperate climate and its substantial annual snowpack, Maine's seasonal water cycle is sensitive to air temperature changes (Hodgkins and others, 2003). Monitoring of relevant hydrologic data would provide important baseline information against which future climate change can be measured. A series of recent investigations by the U.S. Geological Survey (USGS) has documented changes in several components of the water cycle, including earlier snowmelt runoff in Maine during the last 30 to 40 years (Hodgkins and others, 2003), earlier lake- and river-ice breakups (Hodgkins and others, 2002; Hodgkins and others, 2005), and a denser and thinner late-winter snowpack (Hodgkins and Dudley, 2006). Snowmelt runoff timing was measured as the date, each year, by which half of the total winter-spring streamflow passed a streamflow-gaging station. Historical snowmelt runoff timing for the Piscataquis River in central Maine is shown in figure 1 as an example. Results of climate projections input to hydrologic models indicate that hydrologic trends, such as earlier spring snowmelt runoff, are expected to continue into the future (Hayhoe and others, 2007). These trends could affect species at the southern edge of their range in Maine, such as Atlantic salmon and Canada lynx, and may also affect availability of water for human use. This fact sheet describes the framework of a hydrologic climate-response program that would improve understanding of the effects of future climate change in Maine.

Hodgkins, Glenn A.; Lent, Robert M.; Dudley, Robert W.; Schalk, Charles W.



Detailed side and overhead views of geologic features from joint panoramic and blimp operations  

Microsoft Academic Search

A portion of the California coast, including the Loma Prieta earthquake damage at Moss Landing, is shown with the topography displayed from side and overhead viewing angles. This technique offers a different approach to mapping shorelines and studying the oceanographic forces creating and shaping these geologic features. Two pieces of equipment were developed to create these views. The first is

T. E. Chase; J. D. Young



Scaling filtering and multiplicative cascade information integration techniques for geological, geophysical and geochemical data processing and geological feature recognition  

NASA Astrophysics Data System (ADS)

This paper introduces several techniques recently developed based on the concepts of multiplicative cascade processes and multifractals for processing exploration geochemical and geophysical data for recognition of geological features and delineation of target areas for undiscovered mineral deposits. From a nonlinear point of view extreme geo-processes such as cloud formation, rainfall, hurricanes, flooding, landslides, earthquakes, igneous activities, tectonics and mineralization often show singular property that they may result in anomalous amounts of energy release or mass accumulation that generally are confined to narrow intervals in space or time. The end products of these non-linear processes have in common that they can be modeled as fractals or multifractals. Here we show that the three fundamental concepts of scaling in the context of multifractals: singularity, self-similarity and fractal dimension spectrum, make multifractal theory and methods useful for geochemical and geophysical data processing for general purposes of geological features recognition. These methods include: a local singularity analysis based on a area-density (C-A) multifractal model used as a scaling high-pass filtering technique capable of extracting weak signals caused by buried geological features; a suite of multifractal filtering techniques based on spectrum density - area (S-A) multifractal models implemented in various domain including frequency domain can be used for unmixing geochemical or geophysical fields according to distinct generalized self-similarities characterized in certain domain; and multiplicative cascade processes for integration of diverse evidential layers of information for prediction of point events such as location of mineral deposits. It is demonstrated by several case studies involving Fe, Sn, Mo-Ag and Mo-W mineral deposits that singularity method can be utilized to process stream sediment/soil geochemical data and gravity/aeromagnetic data as high-pass filtering technique for delineating anomalies caused by mineralization or boundaries of mineralization-associated geological bodies; S-A method can be applied as high-pass, low-pass or band -pass filtering techniques for extracting patterns of interest from mixing data; and cascade processes can be implemented to integrate diverse layers of information for mineral resources predictive mapping.

Cheng, Q.




SciTech Connect

This chapter summarizes the geology of the single-shell tank (SST) farms in the context of the region’s geologic history. This chapter is based on the information in the geology data package for the SST waste management areas and SST RFI Appendix E, which builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

Reidel, Stephen P.



Skylab-4 visual observations project: Geological features of southwestern North America  

NASA Technical Reports Server (NTRS)

Visual observations conducted by Skylab-4 crewmen on seven designated geological target areas and other targets of opportunity in parts of southwestern United States and northwestern Mexico were described. The experiments were designed to learn how effectively geologic features could be observed from orbit and what research information could be obtained from the observations when supported by ground studies. For the limited preparation they received, the crewmen demonstrated exceptional observational ability and produced outstanding photographic studies. They also formulated cogent opinions on how to improve future observational and photo-documentation techniques. From the photographs and other observations, it was possible to obtain significant research contributions to on-going field investigations. These contributions were integrated into other aspects of the ground investigations to the following topics: major faults, regional stratigraphy, occurrence of Precambrian crystalline rocks, mapping of Mesozoic volcanic rocks, regional geology.

Silver, L. T.



Framework for a U.S. Geological Survey Hydrologic Climate-Response Program in Maine  

USGS Publications Warehouse

This report presents a framework for a U.S. Geological Survey (USGS) hydrologic climate-response program designed to provide early warning of changes in the seasonal water cycle of Maine. Climate-related hydrologic changes on Maine's rivers and lakes in the winter and spring during the last century are well documented, and several river and lake variables have been shown to be sensitive to air-temperature changes. Monitoring of relevant hydrologic data would provide important baseline information against which future climate change can be measured. The framework of the hydrologic climate-response program presented here consists of four major parts: (1) identifying homogeneous climate-response regions; (2) identifying hydrologic components and key variables of those components that would be included in a hydrologic climate-response data network - as an example, streamflow has been identified as a primary component, with a key variable of streamflow being winter-spring streamflow timing; the data network would be created by maintaining existing USGS data-collection stations and establishing new ones to fill data gaps; (3) regularly updating historical trends of hydrologic data network variables; and (4) establishing basins for process-based studies. Components proposed for inclusion in the hydrologic climate-response data network have at least one key variable for which substantial historical data are available. The proposed components are streamflow, lake ice, river ice, snowpack, and groundwater. The proposed key variables of each component have extensive historical data at multiple sites and are expected to be responsive to climate change in the next few decades. These variables are also important for human water use and (or) ecosystem function. Maine would be divided into seven climate-response regions that follow major river-basin boundaries (basins subdivided to hydrologic units with 8-digit codes or larger) and have relatively homogeneous climates. Key hydrologic variables within each climate-response region would be analyzed regularly to maintain up-to-date analyses of year-to-year variability, decadal variability, and longer term trends. Finally, one basin in each climate-response region would be identified for process-based hydrologic and ecological studies.

Hodgkins, Glenn A.; Lent, Robert M.; Dudley, Robert W.; Schalk, Charles W.



Sapping Features of the Colorado Plateau: a Comparative Planetary Geology Field Guide  

NASA Technical Reports Server (NTRS)

This book is an attempt to determine geomorphic criteria to be used to distinguish between channels formed predominantly by sapping and seepage erosion and those formed principally by surface runoff processes. The geologic nature of the Colorado Plateau has resulted in geomorphic features that show similarities to some areas on Mars, especially certain valley networks within thick sandstone formations. Where spring sapping is an effective process, the valleys that develop are unique in terms of their morphology and network pattern.

Howard, Alan D. (editor); Kochel, R. Craig (editor); Holt, Henry E. (editor)



Geological structures from televiewer logs of GT-2, Fenton Hill, New Mexico: Part 1, Feature extraction  

SciTech Connect

Patterns in reflected sonic intensity recognized during examination of televiewer logs of basement gneiss at the Hot Dry Rock Site, Fenton Hill, New Mexico, are due to geological fractures and foliations and to incipient breakouts. These features are obscured by artifacts caused by wellbore ellipticity, tool off-centering, and tool oscillations. An interactive method, developed for extraction of the structural features (fractures and foliations), uses human perception as a pattern detector and a chi-square test of harmonic form as a pattern discriminator. From imagery of GT-2, 733 structures were recovered. The acceptance rate of the discriminator was 54%. Despite these positive results, the general conclusion of this study is that intensity-mode imagery from Fenton Hill is not directly invertible for geological information because of the complexity of the televiewer imaging process. Developing a forward model of the intensity-imaging process, or converting to caliper-mode imagery, or doing both, will be necessary for high-fidelity feature extraction from televiewer data.

Burns, K.L.



Geology and slope stability in selected parts of The Geysers geothermal resources area: a guide to geologic features indicative of stable and unstable terrain in areas underlain by Franciscan and related rocks  

Microsoft Academic Search

The results of a 4-month study of various geologic and topographic features related to the stability of Franciscan terrain in The Geysers GRA are presented. The study consisted of investigations of geologic and topographic features, throughout The Geysers GRA, and geologic mapping at a scale of 1:12,000 of approximately 1500 acres (600 hectares) of landslide terrain within the canyon of




Geological images  

NSDL National Science Digital Library

This site from Marli Bryant Miller, a professor at the University of Oregon, presents images of geological features from around the world. Photographs of glacial features, igneous and metamorphic rocks and processes, and structural geology are featured.

Miller, Marli B.; Oregon, University O.


Characteristics and CT features of subcarinal air collections\\/main bronchial diverticula  

Microsoft Academic Search

The aim of this study was to evaluate the characteristics and CT features of subcarinal air collections on thin-section multidetector-row\\u000a computed tomography (MDCT). Two hundred asymptomatic adult subjects without a history of pulmonary disease underwent MDCT.\\u000a The CT appearances and characteristics of foci of extraluminal air contiguous to the main bronchus in the subcarinal region\\u000a were retrospectively analysed. Subcarinal air

Takeshi Higuchi; Naoya Takahashi; Motoi Shiotani; Haruo Maeda; Norihiko Yoshimura



Investigating geologic features and processes: A field investigation for earth science students at Leif Erickson Park, Duluth, Minnesota.  

NSDL National Science Digital Library

This activity is a field investigation where students observe and interpret the rocks types, geologic features, and processes typical to the north shore of Lake Superior. Students use their data to develop questions that could be further investigated and to predict the sequence of events leading to the formation of these rocks and features.

Severson, Laurie


NASA Now: Geology: Curiosity -- Main Science Goals - Duration: 7:07.  

NASA Video Gallery

Dr. Ashwin Vasavada, deputy project scientist for the Mars Science Laboratory, discusses the main science goals for Curiosity, including the investigation of the presence of water and evidence of l...


Icelandic Geology Resources  

NSDL National Science Digital Library

The main feature of this site from Hamrahlio College of Reykjavik, Iceland is an interactive geological map of Iceland showing lava flows and glaciers. Other highlights include links to related Icelandic geology pages (e.g., The Effect of Diatom Mining, Iceland's Ministry of the Environment), news sources and journals, and Icelandic geological societies (not all are in English). A recommended resource for glaciologists, volcanologists, and educators in earth science.

Douglas, Georg R.


The Main Shear Zone in Sør Rondane: A key feature for reconstructing the geodynamic evolution of East Antarctica  

NASA Astrophysics Data System (ADS)

Structural investigations were carried out along the Main Shear Zone (MSZ) of western Sør Rondane (22°-25°E, 71.5°-72.5°S) to gain new information about the position of the East-/West-Gondwana suture and the ancient plate tectonic configuration during Gondwana amalgamation. The WSW-ENE striking MSZ divides south-western Sør Rondane in a northern amphibolite-facies terrane and a southern tonalite-trondhjemite-granodiorite (TTG) terrane. The structure can be traced over a distance of ca. 100 km and reaches several hundred meters in width. It is characterized by a right-lateral sense of movement and marked by a transpressional and also transtensional regime. Ductilely deformed granitoids (ca. 560 Ma: SHRIMP U-Pb of zircon) and ductile - brittle structures, which evolved in a transitional ductile to brittle regime in an undeformed syenite (ca. 499-459 Ma, Ar-Ar mica), provide a late Proterozoic/ early Paleozoic time limit for the activity of the shear zone (Shiraishi et al., 2008; Shiraishi et al., 1997). Documentation of ductile and brittle deformation allows reconstructing up to eight deformation stages. Cross-cutting relationships of structural features mapped in the field complemented by published kinematic data reveal the following relative age succession: [i] Dn+1 - formation of the main foliation during peak metamorphism, [ii] Dn+2 - isoclinal, intrafolial folding of the main foliation, mostly foliation-parallel mylonitic shear zones (1-2 meter thick), [iii] Dn+3 - formation of tight to closed folds, [iv] Dn+4 - formation of relatively upright, large-scale open folds, [v] Dn+5 - granitoid intrusion (e.g. Vengen granite), [vi] Dn+6 - dextral shearing between amphibolite and TTG terranes, formation of the MSZ, [vii] Dn+7 - intrusion of late- to post-tectonic granitoids, first stage of brittle deformation (late shearing along MSZ), intrusion of post-kinematic mafic dykes, [viii] Dn+8 - second stage of brittle deformation including formation of conjugate fault systems. The latter point to a WNW-ESE respectively NW-SE oriented maximum paleostress direction and indicate the latest deformation event; they are possibly related to the break-up and fragmentation of Gondwana. Two contrasting models describe the configuration of East Gondwana during the Neoproterozoic and the final amalgamation of Gondwana. The first model proposes the existence of a Pan-African Orogen (East African/ Antarctic Orogen). The Main Shear Zone could represent the eastern extension of this orogen and may be related to a NE-directed lateral-escape tectonic model. Both published structural data from Sør Rondane and adjacent regions and the outcome of this study agree with this model and propose a suture of East- and West Gondwana located between Mühlig-Hofmann-Gebirge and Sør Rondane. The second model of an overlap of two orogens with different formation ages cannot be proved by structural data from the MSZ. Instead, tight test constraints of the second model may be provided by new magnetic anomaly maps based on a 2012/13 aerogeophysical survey. Shiraishi, K.; Dunkley, D.J.; Hokada, T.; Fanning, C.M.; Kagami, H.; and Hamamoto, T. (2008): Geochronological constraints on the Late Proterozoic to Cambrian crustal evolution of eastern Dronning Maud Land, East Antarctica: a synthesis of SHRIMP U-Pb age and Nd model age data. Geological Society, 308(1):21-67. Shiraishi, K.; Osanai, Y.; Ishizuka, H.; and Asami, M. (1997): Geological map of the Sør Rondane Mountains, Antarctica. Antarctica Geological Map Series, sheet 35, scale 1 : 25 0000. National Institute of PolarResearch, Tokyo.

Ruppel, Antonia; Läufer, Andreas; Lisker, Frank; Jacobs, Joachim; Elburg, Marlina; Damaske, Detlef; Lucka, Nicole



Geological features of Subduction Transfer Edge Propagator (STEP) faults, examples from the Betics and Rif  

NASA Astrophysics Data System (ADS)

Most of the geological features of the Betics and Rif have resulted from slab tearing, edge delamination and punctual slab breakoff events between offset STEP faults. New P-reciever function data of the deep structure under the Betics and Rif have helped to map the deep boundaries of slab tearing and rupture in the area. Linking surface geological features with the deep structure shows that STEP faulting under the Betics occurred along ENE-WSW segments offset towards the south, probably do to the westward narrowing of the Tethys slab. The surface expression of STEP faulting at the Betics consists of ENE-WSW dextral strike-slip fault segments like the Crevillente, Alpujarras or Torcal faults that are interrupted by basins and elongated extensional domes were exhumed HP middle crust occurs. Exhumation of deep crust erases the effects of strike-slip faulting in the overlying brittle crust. Slab tearing affected the eastern Betics during the Tortonian to Messinian, producing the Fortuna and Lorca basins, and later propagated westward generating the end-Messinian to Pleistocene Guadix-Baza basins and the Granada Pliocene-Pleistocene depocentre. At present slab tearing is occurring beneath the Málaga depression, where the Torcal dextral strike-slip fault ends in a region of active distributed shortening and where intermediate depth seismicity occurs. STEP fault migration has occurred at average rates between 2 and 4 cm/yr since the late Miocene, producing a wave of alternating uplift-subsidence pulses. These initiate with uplift related to slab flexure, subsidence related to slab-pull, followed by uplift after rupture and ending with thermal subsidence. This "yo-yo" type tectonic evolution leads to the generation of endorheic basins that later evolve to exhorheic when they are uplifted and captured above the region where asthenospheric upwelling occurs.

Booth-Rea, Guillermo; Pérez-Peña, Vicente; Azañón, José Miguel; de Lis Mancilla, Flor; Morales, Jose; Stich, Daniel; Giaconia, Flavio



Detailed side and overhead views of geologic features from joint panoramic and blimp operations  

SciTech Connect

A portion of the California coast, including the Loma Prieta earthquake damage at Moss Landing, is shown with the topography displayed from side and overhead viewing angles. This technique offers a different approach to mapping shorelines and studying the oceanographic forces creating and shaping these geologic features. Two pieces of equipment were developed to create these views. The first is a panoramic camera with viewing angles up to 360{degree} and two telephoto settings (70mm and 210mm) allowing a feature to be photographed from the same point with different lens magnifications. The second is a 20 ft helium-filled blimp with 35mm cameras mounted in a tray with a radio control receiver triggering the camera shutters after receiving a signal transmitted from a person on the ground. Video camcorders can also be carried. Tethered to the person on the ground, the blimp's height is determined by the amount of line payed out. Horizontal movement of the blimp is controlled by the operator walking or riding slowly in a boat or truck. The blimp can be flown at different elevations, remain in a stationary position for time-lapse photographs, or be moved about to prepare a mosaic of the area. Both systems can be used in remote areas because they are portable and the power supplies needed to operate are from lightweight batteries.

Chase, T.E.; Young, J.D. (Geological Survey, Menlo Park, CA (USA))



Influence of ecological and geological features on rangewide patterns of genetic structure in a widespread passerine.  


Geological and ecological features restrict dispersal and gene flow, leading to isolated populations. Dispersal barriers can be obvious physical structures in the landscape; however microgeographic differences can also lead to genetic isolation. Our study examined dispersal barriers at both macro- and micro-geographical scales in the black-capped chickadee, a resident North American songbird. Although birds have high dispersal potential, evidence suggests dispersal is restricted by barriers. The chickadee's range encompasses a number of physiological features which may impede movement and lead to divergence. Analyses of 913 individuals from 34 sampling sites across the entire range using 11 microsatellite loci revealed as many as 13 genetic clusters. Populations in the east were largely panmictic whereas populations in the western portion of the range showed significant genetic structure, which often coincided with large mountain ranges, such as the Cascade and Rocky Mountains, as well as areas of unsuitable habitat. Unlike populations in the central and southern Rockies, populations on either side of the northern Rockies were not genetically distinct. Furthermore, Northeast Oregon represents a forested island within the Great Basin; genetically isolated from all other populations. Substructuring at the microgeographical scale was also evident within the Fraser Plateau of central British Columbia, and in the southeast Rockies where no obvious physical barriers are present, suggesting additional factors may be impeding dispersal and gene flow. Dispersal barriers are therefore not restricted to large physical structures, although mountain ranges and large water bodies do play a large role in structuring populations in this study. PMID:25074576

Adams, R V; Burg, T M



Steeply dipping heaving bedrock, Colorado: Part 1 - Heave features and physical geological framework  

USGS Publications Warehouse

Differentially heaving bedrock has caused severe damage near the Denver metropolitan area. This paper describes heave-feature morphologies, the underlying bedrock framework, and their inter-relationship. The heave features are linear to curvilinear and may attain heights of 0.7 m (2.4 ft), widths of 58 m (190 ft), and lengths of 1,067 m (3,500 ft). They are nearly symmetrical to highly asymmetrical in cross section, with width-to-height ratios of 45:1 to 400:1, and most are oriented parallel with the mountain front. The bedrock consists of Mesozoic sedimentary formations having dip angles of 30 degrees to vertical to overturned. Mixed claystone-siltstone bedding sequences up to 36-m (118-ft) thick are common in the heave-prone areas, and interbeds of bentonite, limestone, or sandstone may be present. Highly fractured zones of weathered to variably weathered claystone extend to depths of 19.5 to 22.3 m (64 to 73 ft). Fracture spacings are 0.1 to 0.2 m (0.3 to 0.7 ft) in the weathered and variably weathered bedrock and up to 0.75 m (2.5 ft) in the underlying, unweathered bedrock. Curvilinear shear planes in the weathered claystone show thrust or reverse offsets up to 1.2 m (3.9 ft). Three associations between heave-feature morphologies and the geological framework are recognized: (1) Linear, symmetrical to asymmetrical heaves are associated with primary bedding composition changes. (2) Linear, highly asymmetrical heaves are associated with shear planes along bedding. (3) Curvi-linear, highly asymmetrical heaves are associated with bedding-oblique shear planes.

Noe, D.C.; Higgins, J.D.; Olsen, H.W.



Geologic features of Wudalianchi volcanic field, northeastern China: Implications for Martian volcanology  

NASA Astrophysics Data System (ADS)

Wudalianchi volcanic field, located in northeast China, consists of 14 Quaternary volcanoes with each volcano as a steep-sided scoria cone surrounded by gently sloping lava flows. Each cone is topped with a bowl-shaped or funnel-shaped crater. The volcanic cones are constructed by the accumulation of tephra and other ejecta. In this paper, their geologic features have been investigated and compared with some Martian volcanic features at Ascraeus Mons volcanoes observed on images obtained from High-Resolution Imaging Science Experiments (HiRISE), Mars Orbiter Camera (MOC), Context Imager (CTX) and Thermal Emission Imaging System (THEMIS). The results show that both Wudalianchi and Ascraeus Mons volcanoes are basaltic, share similar eruptive and geomorphologic features and eruptive styles, and have experienced multiple eruptive phases, in spite of the significant differences in their dimension and size. Both also show a variety of eruptive styles, such as fissure and central venting, tube-fed and channel-fed lava flows, and probably pyroclastic deposits. Three volcanic events are recognized at Ascraeus Mons, including an early phase of shield construction, a middle eruptive phase forming a low lava shield, and the last stage with aprons mantling both NE and SW flanks. We suggest that magma generation at both Wudalianchi and Ascraeus Mons might have been facilitated by an upwelling mantle plume or upwelling of asthenospheric mantle, and a deep-seated fault zone might have controlled magma emplacement and subsequent eruptions in Ascraeus Mons as observed in the Wudalianchi field, where the volcanoes are constructed along the northeast-striking faults. Fumarolic cones produced by water/magma interaction at the Wudalianchi volcanic field may also serve as an analogue for the pseudocraters identified at Isidis and Cerberus Planitia on Mars, suggesting existence of frozen water in the ground on Mars during Martian volcanic eruptions.

Xiao, Long; Wang, Chunzeng



Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies  

PubMed Central

Cancer cells are well documented to rewire their metabolism and energy production networks to support and enable rapid proliferation, continuous growth, survival in harsh conditions, invasion, metastasis, and resistance to cancer treatments. Since Dr. Otto Warburg’s discovery about altered cancer cell metabolism in 1930, thousands of studies have shed light on various aspects of cancer metabolism with a common goal to find new ways for effectively eliminating tumor cells by targeting their energy metabolism. This review highlights the importance of the main features of cancer metabolism, summarizes recent remarkable advances in this field, and points out the potentials to translate these scientific findings into life-saving diagnosis and therapies to help cancer patients. PMID:24738035

Phan, Liem Minh; Yeung, Sai-Ching Jim; Lee, Mong-Hong



The Hole as a Whole: Geological and Microbiological Features of Rock Weathering in Arid and Hyper-Arid Environments  

E-print Network

The Hole as a Whole: Geological and Microbiological Features of Rock Weathering in Arid and Hyper, Kibbutz Qetura, Hevel Eilot 88840, Israel A variety of rock weathering patterns and morphologies were and honeycomb weathering). Many studies attempted to explain the weathering morphology and mechanism. Yet

Simon, Emmanuel


Application of Geologic Mapping Techniques and Autonomous Feature Detection to Future Exploration of Europa  

NASA Astrophysics Data System (ADS)

Europa's extremely young surface age, evidence for extensive resurfacing, and indications of a sub-surface ocean elevate its astrobiological potential for habitable environments and make it a compelling focus for study. Knowledge of the global distribution and timing of Europan geologic units is a key step in understanding the history of the satellite and for identifying areas relevant for exploration. I have produced a 1:15M scale global geologic map of Europa which represents a proportionate distribution of four unit types and associated features: plains, linea, chaos, and crater materials. Mapping techniques differ somewhat from other planetary maps but do provide a method to establish stratigraphic markers and to illustrate the surface history through four periods of formation as a function of framework lineament cross-cutting relationships. Correlations of observed features on Europa with Earth analogs enforce a multi-process theory for formation rather than the typical reliance on the principle of parsimony. Lenticulae and microchaos are genetically similar and most likely form by diapirism. Platy and blocky chaos units, endmembers of archetypical chaos, are best explained by brine mobilization. Ridges account for the majority of lineaments and may form by a number of methods indicative of local conditions; most form by either tidal pumping or shear heating. The variety of morphologies exhibited by bands indicates that multiple formation mechanisms apply once fracturing of the brittle surface over a ductile subsurface is initiated. Mapping results support the interpretation that Europa's shell has thickened over time resulting in changes in the style and intensity of deformation. Mapping serves as an index for change detection and classification, aids in pre-encounter targeting, and supports the selection of potential landing sites. Highest priority target areas are those which indicate geophysical activity by the presence of volcanic plumes, outgassing, or disrupted surface morphologies. Areas of high interest include lineaments and chaos margins. The limitations on detecting activity at these locations are approximated by studying similar observed conditions on other bodies. By adapting machine learning and data mining techniques to signatures of plumes and morphology, I have demonstrated autonomous rule-based detection of known features using edge-detection and supervised classification methods. These methods successfully detect ?94% of known volcanic plumes or jets at Io, Enceladus, and comets. They also allow recognition of multiple feature types. Applying these results to conditions expected for Europa enables a prediction of the potential for detection of similar features and enables recommendations for mission concepts to increase the science return and efficiency of future missions to observe Europa. This post-Galileo view of Europa provides a synthesis of the overall history of this unique icy satellite and will be a useful frame of reference for future exploration of the jovian system and other potentially active outer solar system bodies.

Bunte, M. K.; Tanaka, K. L.; Doggett, T.; Figueredo, P. H.; Lin, Y.; Greeley, R.; Saripalli, S.; Bell, J. F.



Characterizing the natural radiation levels throughout the main geological units of Sabkhat al Jabboul area, northern Syria.  


The concentrations of equivalent eU, eTh, and K% were determined together with soil gas radon values and carborne gamma-ray survey in order to define the natural radioactivity levels throughout main geological units of Sabkhat al Jabboul region. Forty five soil and rock samples were collected from various lithofacies in each geological unit, and analyzed by ?-ray spectrometric technique for determining the concentration values of major radioelements. Such radiometric data could be used to differentiate between various lithologies of the investigated rocks. Although no distinct radioactive anomalies were found in the area, the radiometric profiles showed some minor variations with slightly higher values than the normal level. Despite the low radioactivity and the lack of rocks diversity in the surveyed area, it was possible to classify some certain rock types based on their radiometric response. The relationships between eU, eTh and their ratios were discussed for the Quaternary, Neogene and Paleogene formations, in order to evaluate the degree of uranium distribution and remobilization. The overall results of this radiometric survey were generally low, and lying within the range of the normal background levels in Syrian. PMID:25461509

Al-Hilal, Mohamed; Aissa, Mosa



The Hidden Earth: Visualization of Geologic Features and their Subsurface Geometry  

Microsoft Academic Search

ABSTRACT Geology is among the most visual of the sciences, with spatial reasoning taking place at various scales and in various contexts. Among,the spatial skills required in introductory college geology courses are spatial rotation (rotating objects in one’s mind), and visualization (transforming an object in one’s mind). To assess the role of spatial ability in geology, we designed an experiment

Michael D. Piburn; Stephen J. Reynolds; Debra E. Leedy; Carla M. McAuliffe; James P. Birk; Julia K. Johnson



Extracranial stereotactic body radiotherapy. Review of main SBRT features and indications in primary tumors  

PubMed Central

Aim Review of main SBRT features and indications in primary tumors. Background Stereotactic body radiotherapy has been developed in the last few years. SBRT allows the hypofractionated treatment of extra cranial tumors, using either a single or limited number of dose fractions, and resulting in the delivery of a high biological effective dose with low toxicity. Material and methods SBRT requires a high level of accuracy for all phases of the treatment process: effective patient immobilization, precise target localization, highly conformed dosimetry and image guided systems for treatment verification. The implementation of SBRT in routine requires a careful considering of organ motion. Gating and tracking are effective ways to do so, and less invasive technologies “fiducials free” have been developed. Due to the hypofractionated scheme, the physician must pay attention to new dosimetric constraints in organ at risk and new radiobiological models are needed to assess the optimal fractionation and dose schemes. Results Currently, SBRT is safe and effective to treat primary tumors, which are otherwise untreatable with conventional radiotherapy or surgery. SBRT has quickly developed because of its excellent results in terms of tolerance and its high locoregional control rates. SBRT indications in primary tumors, such as lung primary tumors, have become a standard of care for inoperable patients. SBRT seems to be effective in many others indications in curative or palliative intent such as liver primary tumors, and novel indications and strategies are currently emerging in prostate cancer, head and neck tumor recurrences or pelvis reirradiations. Conclusion Currently, SBRT is mainly used when there is no other therapeutic alternative for the patient. This is due to the lack of randomized trials in these settings. However, the results shown in retrospective studies let us hope to impose SBRT as a new standard of care for many patients in the next few years. PMID:24416584

Rubio, Carmen; Morera, Rosa; Hernando, Ovidio; Leroy, Thomas.; Lartigau, S. Eric



Geologic Maps  

NSDL National Science Digital Library

Geologic Maps are unique in that they show the distribution of geologic features on a landscape through specific symbols and colors. The United States Geological Survey's (USGS) site Geologic Maps provides visitors with a good introduction to these concepts, which include the unique features of a geologic map; the meaning of their lines, colors, and symbols; the location of faults; and more. Anyone working with geologic maps or just interested in learning a little about cartography or geology will find this site easy to explore and full of good information.



Automated feature extraction and spatial organization of seafloor pockmarks, Belfast Bay, Maine, USA  

USGS Publications Warehouse

Seafloor pockmarks occur worldwide and may represent millions of m3 of continental shelf erosion, but few numerical analyses of their morphology and spatial distribution of pockmarks exist. We introduce a quantitative definition of pockmark morphology and, based on this definition, propose a three-step geomorphometric method to identify and extract pockmarks from high-resolution swath bathymetry. We apply this GIS-implemented approach to 25km2 of bathymetry collected in the Belfast Bay, Maine USA pockmark field. Our model extracted 1767 pockmarks and found a linear pockmark depth-to-diameter ratio for pockmarks field-wide. Mean pockmark depth is 7.6m and mean diameter is 84.8m. Pockmark distribution is non-random, and nearly half of the field's pockmarks occur in chains. The most prominent chains are oriented semi-normal to the steepest gradient in Holocene sediment thickness. A descriptive model yields field-wide spatial statistics indicating that pockmarks are distributed in non-random clusters. Results enable quantitative comparison of pockmarks in fields worldwide as well as similar concave features, such as impact craters, dolines, or salt pools. ?? 2010.

Andrews, B.D.; Brothers, L.L.; Barnhardt, W.A.



Eclipses by a Circumstellar Dust Feature in the Pre-Main Sequence Star KH15D  

E-print Network

Photometry and spectroscopy of the unique pre-main sequence eclipsing object KH15D in the young cluster NGC 2264 are presented. The orbital period is 48.34 days and both the length (~16 d) and depth (~3 mag) of the eclipse have increased with time. A brightening near the time of central eclipse is confirmed in the recent data but at a much smaller amplitude than was originally seen. Spectra taken when the star is bright show that the primary is a weak T Tauri star of spectral type K7. During eclipse there is no detectable change in spectral type or reddening, indicating that the obscuration is caused by rather large dust grains and/or macroscopic objects. Evidently the star is eclipsed by an extended feature in its circumstellar disk orbiting with a semi-major axis of ~0.2 AU. Continued photometric monitoring should allow us to probe the disk structure with a spatial resolution of ~3 x 10^6 km or better.

Catrina M. Hamilton; William Herbst; Candice Shih; Anthony J. Ferro



Capability of ERTS-1 imagery to investigate geological and structural features in a sedimentary basin (Bassin Parisien, France)  

NASA Technical Reports Server (NTRS)

A preliminary study of the MSS imagery of a sedimentary basin whose structure is regular is reported. Crops and natural vegetation are distributed all over the site located under temperate climate. Ground data available concern plant species geology and tectonic and are correlated with results from ERTS 1 imagery. This comparison shows a good correlation. The main geological units are detected or enhanced by way of agricultural land use and/or natural vegetation. Alluvial deposits are outlined by vegetation grass land and poplar trees. Some spatial relationship of geostructures, suspected until now, are identified or extended in associating results from different spectral bands.

Cavelier, C.; Scanvic, J. Y.; Weecksteen, G.; Zizerman, A.



New Style Geologic Map of Mostly Later Holocene and Recent Features of the Greater South Pole Basin  

NASA Astrophysics Data System (ADS)

Topographic contour maps of the East Antarctic Plateau show a prominent but apparently unrecognized basin of ~700,000 km2 that lies ~200 m below surrounding surfaces. The basin's defining hallmark is a remarkably straight, 900 km-long headwall or headslope, passing almost under the pole and linking upper reaches of the Recovery and Foundation ice streams, the two separated by a central platform (CP). Throughout the basin a distinctive regional snow and firn unit, identifiable on satellite images by ~2km wavelength, zebra-striped megadunes, forms the basal horizon for a new type of geologic map for the Plateau. This unit underlies all other features, probably as an inactive paleo-climatic relic of diachronous Holocene age. Most deposits covering it consist of several generations of successively overprinted longitudinal dunes commonly intermingling with wind eroded channels, ice deformational features, and regionally curving snow streamers. Above this complex, a widespread but discontinuous, smooth surfaced deposit covers megadunes, local basins, major divides and floors of linear sags or extension zones. The young unit is irregularly disrupted and sheared over active ice streams. Over all these features are widespread, near-modern to modern fields or patches of active, longitudinal dunes with 100-300 m wavelengths. A prominent, graben-like, linear sag zone occurs along the headwall's brow line but unlike those of traditional grabens, its edges show no visible fault offset at present resolutions. At the foot of the headslope, a large bergshrund-like area is localized above the sub-glacial Recovery Lakes. Thick fill in this area covers the megadune unit only to be disrupted by still younger sag zones. On the CP floor, a number of sharp-edged, shear-bounded 100-300 km wide sub-provinces are defined by differences in thickness and types of megadune cover and by amounts of extension or crevassing. At the heads of some zones, shear lines encroach upslope into young cover while other zones show complex histories of deformational abandonment and/or reactivation. Apparently, the overall ice sheet has a complex history of zonal behavior involving unsteady or evolving local flow patterns. Bedrock topography exerts significant control on these flow patterns as indicated by major ice streams or basins localized above sub-glacial drainage channels and bedrock basins of the Recovery Lake and other systems. Several other shear-bounded sub-provinces overlie bedrock basins or lie immediately upstream of gaps in the Transantarctic Mountains. Just beyond the basin's edge, 'islands,' bounded by several generations of shear zones and differing in depositional and deformational history, are localized above bedrock highs. The most significant bedrock control is a probable fault line scarp, 900 km long and ~200 m high underlying the headslope. At one end this fault passes nearly under the pole while the other end splays to form a terrace in the headslope. Near the pole a second, opposite-facing scarp combines with the main scarp to form an uplifted horst block, isolating an arm of the greater basin, hindering ice drainage and forming an accumulation base for a ~50,000 km2 semi-triangular tableland. Geologic maps of this type may be helpful in correlations among drill cores and sampling sites, in estimating the amounts and patterns of younger accumulation, in refining details of complex ice flowage, and in piecing together a more unified overview of younger events on the Plateau. class="ab'>

Wise, D. U.; Cianfarra, P.; Salvini, F.



Correlations between topography and deep-seated structures in low-relief areas: Examples of subtle terrain features with high impact on geological interpretations of geophysical data  

NASA Astrophysics Data System (ADS)

Denmark has a low-relief topography with a maximum elevation at 170 m above sea level and a near-surface geology dominated by the effects of numerous glacier advances during the Pleistocene. In 3D geological modelling of the Danish subsurface we combine near-surface geophysics, primarily AEM (Airborne ElectroMagnetic methods) with borehole data, seismic data etc. in order to model the groundwater-bearing sediments in the uppermost 300-400 m. The highly varied glacial succession and the underlying tertiary sediments require very dense data coverage in order to be able to perform modelling in sufficient detail. Geomorphological data and observations are used for the interpretations alongside the other data. The overall geomorphology of Denmark is generally the product of the youngest glacial episodes and the subsequent periglacial and postglacial modifications where the effects of earlier ice advances are either obscured or removed. As such, the geomorphology will mainly contribute with geological information about the youngest events and the uppermost parts of the subsurface. However, in many parts of the Danish area we have found a correlation between surface features and deep seated structures. These structures can be old faults that have created weak and easily erodible zones in the sediments above and these erosional patterns have created trends that have survived over a long period of time. Some of these fault zones have been tectonically active as late as the Holocene thus deforming near-surface sediments and the topography. Using geomorphological information such as lineament patterns, erosional patterns and variations in surface trends we are able to gain significant information about the deeper parts of the subsurface. This information is highly valuable when interpreting the geological setting from AEM data and seismic data. In the presentation we will show examples from Denmark that link geomorphological features in the present day terrain with deep seated tectonic structures and buried erosional features mapped by geophysical data. The examples will include detailed observations of subtle geomorphological features in LiDAR-data that represent fingerprints of events that are not related to the formation of the surface sediments themselves.

Sandersen, Peter B. E.; Jørgensen, Flemming




E-print Network

of the grain boundary model in metals, the diffusion property of grain boundaries is explained and the energy) The Distortion Model: Both lattices share the same atoms in the grain boundary zone ; (c) Amorphicity: The grain) have realistic features. It is correct that some lattice distortion takes place around dangling bonds

Paris-Sud XI, Université de


Effects of optical remote sensor spectral and spatial resolution variation for geological feature recognition  

NASA Astrophysics Data System (ADS)

Using remote sensing data for geological applications requires specific spatial and spectral resolution combinations for the different geological problems. We evaluate the most adequate combinations for (1) lithological analysis and (2) delineation of depositional bodies. Responses of various hyperspectral and multispectral sensors were simulated using 2000 - 2500 nm laboratory reflectance spectra of metamorphic rocks. MIVIS data (40 bands in the 2000 - 2500 nm region) of a littoral were resampled and used to produce images with various band width and centers and with different ground resolutions. All the images were classified using Spectral Angle Mapper. Heat capacity images of a recent delta plain were obtained using spatially resampled MIVIS data and checking various combinations of resolutions for coalbedo and temperature increment.

Sgavetti, Maria A.; Longhi, Ilaria; Chiari, Roberto; Luca Guerra, G.; Barducci, Alessandro; Tonelli, Arnaldo M.



Information needs for characterization of high-level waste repository sites in six geologic media. Volume 1. Main report  

SciTech Connect

Evaluation of the geologic isolation of radioactive materials from the biosphere requires an intimate knowledge of site geologic conditions, which is gained through precharacterization and site characterization studies. This report presents the results of an intensive literature review, analysis and compilation to delineate the information needs, applicable techniques and evaluation criteria for programs to adequately characterize a site in six geologic media. These media, in order of presentation, are: granite, shale, basalt, tuff, bedded salt and dome salt. Guidelines are presented to assess the efficacy (application, effectiveness, and resolution) of currently used exploratory and testing techniques for precharacterization or characterization of a site. These guidelines include the reliability, accuracy and resolution of techniques deemed acceptable, as well as cost estimates of various field and laboratory techniques used to obtain the necessary information. Guidelines presented do not assess the relative suitability of media. 351 refs., 10 figs., 31 tabs.




Relationship between morphological feature of submarine landslides and geological condition -focus on Oshima-Oshima, Kaimon and Hawaii regions-  

NASA Astrophysics Data System (ADS)

Huge submarine landslides which generate the tsunami are found in the world. Those submarine landslides are generated by the collapse of the volcano and an unstable slope of sediments on the continental shelf. It is thought that a generation mechanism and morphological features of submarine landslides are different according to the environment (geological condition, topography, and transportation mechanism, etc) in each region. We compared submarine landslides in three different regions to clarify the relation of them. The comparison items are geological condition, morphological feature, form of submarine landslide and transportation mechanism. Oshima-Oshima is a volcanic island and tsunami was generated by collapse of volcanic edifice in 1741 eruption. Kaimon submarine landslide was generated by collapse of continental shelf slope off Kaimon volcano which has acted since 4000BP. There are many submarine landslides around Hawaii Islands. Nuuanu-Wailau submarine landslides are peculiar in those submarine landslides. Moreover, we compare some submarine landslides around Hawaii islands with Oshima-Oshima debris avalanche. Both Oshima-Oshima and Hawaii islands are volcanic islands, however the morphological features are different. As a morphological feature, Oshima-Oshima has thick sediment of 100-120m in front of collapse area and those sediment thins with distance. Nuuanu-Wailau submarine landslides have sediment including a huge blocks of 2km height at equal intervals around Hawaii islands. On the other hand, Kaimon submarine landslide has evenly thin sediment as a non volcanic type. In addition, in the case of Nuuanu-Wailau slides are smaller than Oshima-Oshima's case when we think about sediment extension to lateral side. Especially, sediment extension of Kaimon submarine landslide is small. These sediment distributions are related to the transportation mechanism. In general, sediment gravity flow is divided into 4 types (turbidity current, fluidized sediment flow, grain flow, debris flow). In general, if the speed is large during transportation, the extension to the lateral side is small. In addition, those flows show that coarse grains settle toward the base of the flow, and their speed and density reduce. The transportation mechanism of Oshima-Oshima debris avalanche is thought a debris flow, however in the case of Kaimon is thought turbidity current which has high speed and density. We clarify the relation among the transportation mechanism, the geological condition and the morphological features of submarine landslides.

Kaji, T.; Yamazaki, H.; Kato, Y.



Pattern of the main tectonic trends from remote geophysics, geological structures and satellite imagery, Central Eastern Desert, Egypt  

Microsoft Academic Search

The area under study lies in the Central Eastern Desert of Egypt and is covered by exposed Precambrian basement rocks to the east and Phanerozoic cover sediments to the west. The technique of using the autocovariance function was applied to remote geophysics (aeromagnetic and aeroradiometric data), and statistical trend analysis was conducted on data of geological structures and satellite imagery.

Said I. Rabie; Ahmed A. Ammar



Synergetic events in geological medium and nonlinear features of wave propagation.  

NASA Astrophysics Data System (ADS)

Geological medium is an open dynamical system, which is artificially and naturally influenced on different scale levels, which change it's state and which lead to a complicated many ranked hierarchic evolution. That is a topic of the synergetic theory (or science of self organization). The idea of physical meso mechanics which was elaborated by Russian academician Panin V.E., which includes the synergetic approach, is a constructive method for research of the state of heterogenic materials. That result had been obtained for specimens of different materials. In our investigations of time-dependent geological medium in the frame of natural experiments in real rock massive, which are hard man-caused influenced it had been showed, that the dynamics of the state can be revealed by using synergetic approach for hierarchic media. The important role for research of dynamic geological systems play the use of active and passive geophysical monitoring, which can be achieved with use of electromagnetic and seismic fields. As it had been showed by our experience the change of the system on the researched space bases and times can be revealed by parameters, linked with peculiarities of the medium of the second and higher rank. Thus the research of the state dynamics and the events of self organization we can provide with geophysical methods, oriented on the many ranked hierarchic time-dependent model of the medium. For fields of plastic deformation and stresses it had been considered a system of differential equations. The developing theory of modelling and interpretation of geophysical monitoring data must be active guided by the mathematical methods of nonlinear dynamics and control. The developing of that direction can allow us to forecast and prevent catastrophic man-made events (rock bursts). We had elaborated a new approach of forecasting such events using the method of constructing phase portraits using the data of electromagnetic monitoring and detailed seismological catalogue.

Hachay, O. A.



Distribution and geological control of mud volcanoes and other fluid/free gas seepage features in the Mediterranean Sea and nearby Gulf of Cadiz  

NASA Astrophysics Data System (ADS)

Existing knowledge on the distribution of mud volcanoes (MVs) and other significant fluid/free gas-venting features (mud cones, mud pies, mud-brine pools, mud carbonate cones, gas chimneys and, in some cases, pockmark fields) discovered on the seafloor of the Mediterranean Sea and in the nearby Gulf of Cadiz has been compiled using regional geophysical information (including multibeam coverage of most deepwater areas). The resulting dataset comprises both features proven from geological sampling, or in situ observations, and many previously unrecognized MVs inferred from geophysical evidence. The synthesis reveals that MVs clearly have non-random distributions that correspond to two main geodynamic settings: (1) the vast majority occur along the various tectono-sedimentary accretionary wedges of the Africa-Eurasia subduction zone, particularly in the central and eastern Mediterranean basins (external Calabrian Arc, Mediterranean Ridge, Florence Rise) but also along its westernmost boundary in the Gulf of Cadiz; (2) other MVs characterize thick depocentres along parts of the Mesozoic passive continental margins that border Africa from eastern Tunisia to the Levantine coasts, particularly off Egypt and, locally, within some areas of the western Mediterranean back-arc basins. Meaningfully accounting for MV distribution necessitates evidence of overpressured fluids and mud-rich layers. In addition, cross-correlations between MVs and other GIS-based data, such as maps of the Messinian evaporite basins and/or active (or recently active) tectonic trends, stress the importance of assessing geological control in terms of the presence, or not, of thick seals and potential conduits. It is contended that new MV discoveries may be expected in the study region, particularly along the southern Ionian Sea continental margins.

Mascle, Jean; Mary, Flore; Praeg, Daniel; Brosolo, Laetitia; Camera, Laurent; Ceramicola, Silvia; Dupré, Stéphanie



Integrated geophysical and geological studies of selected major tectonic features in south-central U.S  

NASA Astrophysics Data System (ADS)

The current dissertation includes three separate chapters, each utilizing the power of the integration of different geophysical datasets with geology to investigate tectonic and structural processes responsible for the geological evolution of selected major tectonic features in south-central U. S. These tectonic features are; the Arkoma basin of Oklahoma and Arkansas, the Llano uplift of central Texas, and the Meers fault of the southwestern Oklahoma. The Arkoma basin is an arcuate structural feature that extends from the Gulf coastal plain in central Arkansas westward 400 km to the Arbuckle Mountains in south-central Oklahoma. The interpretation of the 3-D seismic data reveals an E-W zone of crustal weakness in the northern part of the study area, which could be a Late Paleozoic tectonic inversion of the extension faulting that developed during Cambrian rifting and later foreland basin development. The seismic interpretation reveals a compressive deformation of the Late Paleozoic strata related to the Ouachita orogeny. Magnetic boundaries such as faults andor body edges extending E-W, NE-SW and NW-SE have been delineated using magnetic edge detector techniques in the northern, southeastern, and western parts of the study area, respectively. The Euler magnetic depth estimation method delineated the same faults determined using magnetic edge detector techniques. The maximum depth to faults dominating the basement and/or the intrabasement features determined by the Euler's method is about 3850 m. The fault trends delineated by the seismic interpretation and those determined by the Euler's method and the edge detector techniques show a very clear correlation. The Llano Uplift is a broad structural dome in central Texas with 2 to 3 km of structural relief relative to the subsurface Fort Worth and Kerr basins to the northeast and southwest. The initial uplift due to an arc-continent collision was followed by a continent-continent collision between the Laurentia and a southern continent during the Grenville orogeny. The extensional tectonism associated with the Cambrian rifting and the opening of the Gulf of Mexico played a pronounced role in the evolution of the Llano uplift. The compressional tectonism of the Late Paleozoic Ouachita orogeny as well as the Ouachita related foreland basins contributed to the rise of the Llano uplift area. The complete Bouguer gravity and reduced to pole total magnetic intensity (RTP) maps of the Llano uplift show anomalously high values. A number of short wavelengths maxima superimposed on a relatively broad, high gravity anomaly coincide with Llano uplift area. The sources of the short wavelength anomalies can be related to shallow mafic bodies that were intruded into the uppermost crust during subduction of the Laurentia (North America continent) beneath a southern continent during the Grenville orogeny. The source of the broad, circular gravity anomaly appears to be related to a deeper geologic body situated in the middle crust. The RTP map reveals NW-SE trending magnetic highs that coincide with metamorphic rock exposures. Based on the gravity signature, the Llano uplift is interpreted to be independent terrane with physical and geological properties that differ distinctly from its surroundings. The Meers fault is the southernmost element of the complex and frontal fault zone which separates the uplifted igneous rocks of the Wichita Mountains, and the Anadarko basin in southwest Oklahoma. Motion on the Meers fault represents continued activity on one of the largest structural features in North America. The Wichita uplift and the Anadarko basin, which are separated by the Meers fault and related subparallel fault strands, indicate significant intra-plate deformation along the trend of the Southern Oklahoma aulacogen. The interpretation of the gravity and magnetic data reveals clearer variations in the magnetic properties than densities of the rocks on both sides of the Meers fault. The high magnetic contrast on both sides of the Meers fault is mostly due to the Late Paleozoic movement, whic

Alrefaee, Hamed


Geological survey of Maryland using EREP flight data. [mining, mapping, Chesapeake Bay islands, coastal water features  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Underflight photography has been used in the Baltimore County mined land inventory to determine areas of disturbed land where surface mining of sand and ground clay, or stone has taken place. Both active and abandoned pits and quarries were located. Aircraft data has been used to update cultural features of Calvert, Caroline, St. Mary's, Somerset, Talbot, and Wicomico Counties. Islands have been located and catalogued for comparison with older film and map data for erosion data. Strip mined areas are being mapped to obtain total area disturbed to aid in future mining and reclamation problems. Coastal estuarine and Atlantic Coast features are being studied to determine nearshore bedforms, sedimentary, and erosional patterns, and manmade influence on natural systems.

Weaver, K. N. (principal investigator)



Geology and slope stability in selected parts of The Geysers geothermal resources area: a guide to geologic features indicative of stable and unstable terrain in areas underlain by Franciscan and related rocks  

SciTech Connect

The results of a 4-month study of various geologic and topographic features related to the stability of Franciscan terrain in The Geysers GRA are presented. The study consisted of investigations of geologic and topographic features, throughout The Geysers GRA, and geologic mapping at a scale of 1:12,000 of approximately 1500 acres (600 hectares) of landslide terrain within the canyon of Big Sulphur Creek in the vicinity of the Buckeye mine (see plate 1). The area mapped during this study was selected because: (1) it is an area of potential future geothermal development, and (2) it illustrates that large areas mapped as landslides on regional scales (McLaughlin, 1974, 1975b; McNitt, 1968a) may contain zones of varying slope stability and, therefore, should be mapped in more detail prior to development of the land.

Bedrossian, T.L.



Web Geologic Time Scale  

NSDL National Science Digital Library

The University of California-Berkeley Museum of Paleontology (last mentioned in the June 16, 1995 Scout Report) has recently updated its Web Geologic Time Scale, an online feature that helps users learn about the geologic timeline and explore related museum exhibits. The familiar geologic timeline appears on the main page of the Web site, with hypertext links for each division of time. Every page of the Web Geologic Time Machine site is liberally sprinkled with links to related UCMP Web pages; think of it as a portal to all online information available from the museum. Altogether, this Web site provides a well-organized and comprehensive resource for learning how the planet has changed over time, and would be a great addition to earth or life sciences classroom material for a broad range of grades.



Coal mine bumps as related to geologic features in the northern part of the Sunnyside District, Carbon County, Utah  

USGS Publications Warehouse

Coal mine bumps, which are violent, spontaneous, and often catastrophic disruptions of coal and rock, were common in the Sunnyside coal mining district, Utah, before the introduction of protective-engineering methods, modern room-and-pillar retreat mining with continuous mining machines, and particularly modern longwall mining. The coal at Sunnyside, when stressed during mining, fails continuously with many popping, snapping, and banging noises. Although most of the bumps are beneficial because they make mining easier, many of the large ones are dangerous and in the past caused injuries and fatalities, particularly with room- and-pillar mining methods used in the early mining operations. Geologic mapping of underground mine openings revealed many types of deformational features, some pre-mine and some post-mine in age. Stresses resulting from mining are concentrated near the mine openings; if openings are driven at large angles to small pre-mine deformational features, particularly shatter zones in coal, abnormal stress buildups may occur and violent bumps may result. Other geologic features, such as ripple marks, oriented sand grains, intertongued rock contacts, trace fossils, and load casts, also influence the occurrence of bumps by impeding slip of coal and rocks along bedding planes. The stress field in the coal also varies markedly because of the rough ridge and canyon topography. These features may allow excessively large stress components to accumulate. At many places, the stresses that contribute to deformation and failures of mine openings are oriented horizontally. The stratigraphy of the rocks immediately above and below the mined coal bed strongly influences the deformation of the mine openings in response to stress accumulations. Triaxial compressive testing of coal from the Sunnyside No.1 and No.3 Mines indicates that the strength of the coal increases several times as the confining (lateral) stress is increased. Strengths of cores cut from single large blocks of coal vary widely. Although the strengths of coal cores increase slowly at high levels of confining stress, the coal in Sunnyside No. 1 Mine is slightly stronger in laboratory tests than coal in Sunnyside No.3 Mine. The coal in No.1 Mine probably can store larger amounts of stress than coal in the No.3 Mine, which may account for the apparently greater number of violent bumps in No.1 Mine. The strength of coal, and its ability to store stress before failure, may correlate in part with chemical composition, particularly with the amounts of benzene ring compounds in vitrain; coal with relatively large amounts of benzene ring compounds is stronger than coal with lesser amounts of these compounds. Alternatively, the chemical composition of coal may affect its response to stress. Increasing contents of kaolinite in coal appear to reduce its compressive strength at low confining stresses, resulting in easy failures of pillars and ribs in mine openings. Applications of the geologic factors outlined in this report, carefully coupled with advanced modern engineering methods, have markedly reduced the hazards from coal mine bumps and related failures of mine openings at Sunnyside. Similar studies probably could aid in reducing bump-related hazards in other coal mining areas.

Osterwald, Frank W.; Dunrud, C. Richard; Collins, Donley S.



Geologic features of areas of abnormal radioactivity south of Ocala, Marion County, Florida  

USGS Publications Warehouse

Areas of abnormal radioactivity south of Ocala, Marion County, Fla., discovered in 1953 by aerial survey, were investigated by surface examination and by 10 power auger drill holes. Inter-bedded clay, clayey sand, and uraniferous phosphorite occur in the areas of anomalous radioactivityo Miocene fossils occur at three localities in these beds which are evidently outliers- of Miocene sediments on the Ocala limestone of Eocene age. The preserved outliers are southwest of the main belt of Miocene sediments. The principal uraniferous rocks are clayey, sandy, pellet phosphori1te that occurs in beds a few feet thick, and very porous, phosphatic sand rock which makes abundant float at many places. Apatite forms the phosphate pellets in the unweathered phosphorite. The very porous, phosphatic sand rock is the highly leached residuum of the pellet phosphorite and is composed mainly of quartz, kaolinite, wavellite, and crandallite (pseudowavellite). It closely resembles the aluminum phosphate rock of the 'leached zone' of the Bone Valley formation in the land-pebble phosphate district.

Espenshade, Gilbert H.



Mineralogy and morphology of geologic units at Libya Montes, Mars: Ancient aqueously derived outcrops, mafic flows, fluvial features, and impacts  

NASA Astrophysics Data System (ADS)

There is ample evidence of both ancient and long-lasting fluvial activity and chemical alteration in the Libya Montes region south of Isidis Basin. The region hosts Noachian to Amazonian aged surface rocks with extensive outcrops of olivine- and pyroxene-bearing material. Libya Montes also features surface outcrops and/or deposits hosting Fe/Mg-smectite, Fe/Mg-smectite mixed with carbonate and/or other Fe/Mg-rich phyllosilicates, and Al-smectite. These units likely formed through chemical alteration connected with hydrothermal activity resulting from the formation of the Isidis Basin and/or the pervasive fluvial activity throughout this region. The morphology and stratigraphy of the aqueous and mafic minerals are described using High Resolution Imaging Science Experiment and High Resolution Stereo Camera derived digital terrain models. Analyses of the Compact Reconnaissance Imaging Spectrometer for Mars spectra show variations in the chemistry of the Fe/Mg-smectite from nontronite-like exposures with spectral features near 2.29 and 2.4 µm more consistent with Fe3+2OH groups in the mineral structure, and saponite-like outcrops with spectral features near 2.31 and 2.38 µm characteristic of Mg2+3OH groups. These Fe/Mg-smectite bearing materials also have bands near 1.9 µm due to H2O and near 2.5 µm that could be due to the smectite, other phyllosilicates, and carbonates. All regions exhibiting carbonate features near 3.4-3.5 µm also have features consistent with the presence of olivine and Fe/Mg-smectite, indicating that the carbonate signatures occur in rocks likely containing a mixture of these minerals. The Al-smectite-bearing rocks have bands near 1.41, 1.91, and 2.19 µm that are more consistent with beidellite than other Al-phyllosilicates, indicating a higher-temperature or diagenetically processed origin for this material. Our interpretation of the geologic history of this region is that ancient Noachian basaltic crustal materials experienced extensive aqueous alteration at the time of the Isidis impact, during which the montes were also formed, followed by emplacement of a rough olivine-rich lava or melt, and finally the smooth pyroxene-bearing caprock unit.

Bishop, Janice L.; Tirsch, Daniela; Tornabene, Livio L.; Jaumann, Ralf; McEwen, Alfred S.; McGuire, Patrick C.; Ody, Anouck; Poulet, Francois; Clark, Roger N.; Parente, Mario; McKeown, Nancy K.; Mustard, John F.; Murchie, Scott L.; Voigt, Joana; Aydin, Zeynep; Bamberg, Marlene; Petau, Andreas; Michael, Gregory; Seelos, Frank P.; Hash, Christopher D.; Swayze, Gregg A.; Neukum, Gerhard



Yellowstone Geology  

NSDL National Science Digital Library

This Yellowstone National Park website provides geological information about the Park. Links include geologic highlights, hydrothermal features, reports by park geologists, and scientists' talks (videos). A wide array of information can be found on these links and the webpage is expanding as more topics are added.

Park, Yellowstone N.


Geological History of the Tyre Region of Europa: A Regional Perspective on Europan Surface Features and Ice Thickness  

NASA Technical Reports Server (NTRS)

Galileo images of the Tyre Macula region of Europa at regional (170 m/pixel) and local (approx. 40 m/pixel) scales allow mapping and understanding of surface processes and landforms. Ridged plains, doublet and complex ridges, shallow pits, domes, "chaos" areas. impact structures, tilted blocks and massifs, and young fracture systems indicate a complex history of surface deformation on Europa. Regional and local morphologies of the Tyre region of Europa suggest that an impactor penetrated through several kilometers of water ice tc a mobile layer below. The surface morphology was initially dominated by formation of ridged plains, followed by development of ridge bands and doublet ridges, with chaos and fracture formation dominating the latter part of the geologic history of the Tyre region. Two distinct types of chaos have been identified which, along with upwarped dome materials, appear to represent a continuum of features (domes-play chaos-knobby chaos) resulting from increasing degree of surface disruption associated with local lithospheric heating and thinning. Local and regional stratigraphic relationships, block heights, and the morphology of the Tyre impact structure suggest the presence of low-viscosity ice or liquid water beneath a thin (severa1 kilometers) surface ice shell at the time of the impact. The very low impact crater density on the surface of Europa suggests that this thin shell has either formed or been thoroughly resurfaced in the very recent past.

Kadel, Steven D.; Chuang, Frank C.; Greeley, Ronald; Moore, Jeffrey M.



Testing the Late Noachian Icy Highlands Model: Geological Observations, Processes and Origin of Fluvial and Lacustrine Features.  

NASA Astrophysics Data System (ADS)

A new reconstruction of the Late Noachian Mars atmosphere and climate shows atmosphere-surface thermal coupling and an adiabatic cooling effect producing preferential distribution of snow and ice in the highlands. In this Late Noachian Icy Highlands (LNIH) scenario, snow and ice accumulate in the south circumpolar region and in the higher altitudes of the southern uplands, but the mean annual temperature is everywhere below freezing. How can the abundant evidence for water-related fluvial and lacustrine activity (valley networks, VN; open-basin lakes, OBL; closed-basin lakes; CBL) be reconciled with the icy highlands model? We investigate the nature of geologic processes operating in the icy highlands and use the Antarctic McMurdo Dry Valleys (MDV) as guidance in understanding and assessing how melting might be taking place. In the MDV, mean annual temperatures (MAT) are well below freezing. This results in a thick regional permafrost layer, the presence of an ice-table at shallow depths, and an overlying dry active layer. This configuration produces a perched aquifer and a horizontally stratified hydrologic system, where any melting results in local saturation of the dry active layer and channelized flow on top of the ice table. Top-down melting results in the dominance of lateral water transport, in contrast to temperate climates with vertical infiltration and transport to the groundwater table. Despite subzero MAT, MDV peak seasonal and peak daytime temperatures can exceed 273K and have a strong influence on the melting of available water ice. We present maps of the predicted distribution of LNIH snow and ice, compare these to the distribution of VN, OBL and CBL, and assess how top-down and bottom-up melting processes might explain the formation of these features in an otherwise cold and icy LN Mars. We assess the global near-surface water budget, analyze thickness estimates to distinguish areas of cold-based and wet-based glaciation, analyze the state of the ice cover and its susceptibility to melting and runoff, and describe top-down melting and fluvial channel formation processes in a LNIH environment. We find that: 1) episodic top-down melting of the LNIH is a robust mechanism to produce the observed fluvial and lacustrine features; 2) the characteristics and distribution of features in the Dorsa Argentea Formation are consistent with an extensive circum-polar ice cap during LNIH time; and 3) the nature of preserved LN impact craters is consistent with impact cratering processes in the LNIH environment. 393 words.

Head, James; Wordsworth, Robin; Forget, Francis; Madeleine, Jean-Baptiste; Halvey, Italy



Improving management of small natural features on private lands by negotiating the science–policy boundary for Maine vernal pools  

PubMed Central

Vernal pools are far more important for providing ecosystem services than one would predict based on their small size. However, prevailing resource-management strategies are not effectively conserving pools and other small natural features on private lands. Solutions are complicated by tensions between private property and societal rights, uncertainties over resource location and function, diverse stakeholders, and fragmented regulatory authority. The development and testing of new conservation approaches that link scientific knowledge, stakeholder decision-making, and conservation outcomes are important responses to this conservation dilemma. Drawing from a 15-y history of vernal pool conservation efforts in Maine, we describe the coevolution of pool conservation and research approaches, focusing on how research-based knowledge was produced and used in support of management decisions. As management shifted from reactive, top-down approaches to proactive and flexible approaches, research shifted from an ecology-focused program to an interdisciplinary program based on social–ecological systems. The most effective strategies for linking scientific knowledge with action changed as the decision-makers, knowledge needs, and context for vernal pool management advanced. Interactions among stakeholders increased the extent to which knowledge was coproduced and shifted the objective of stakeholder engagement from outreach to research collaboration and development of innovative conservation approaches. New conservation strategies were possible because of the flexible, solutions-oriented collaborations and trust between scientists and decision-makers (fostered over 15 y) and interdisciplinary, engaged research. Solutions to the dilemma of conserving small natural features on private lands, and analogous sustainability science challenges, will benefit from repeated negotiations of the science–policy boundary. PMID:25002496

Calhoun, Aram J. K.; Jansujwicz, Jessica S.; Bell, Kathleen P.; Hunter, Malcolm L.



Effect of anthropogenic landscape features on population genetic differentiation of Przewalski's gazelle: main role of human settlement.  


Anthropogenic landscapes influence evolutionary processes such as population genetic differentiation, however, not every type of landscape features exert the same effect on a species, hence it is necessary to estimate their relative effect for species management and conservation. Przewalski's gazelle (Procapra przewalskii), which inhabits a human-altered area on Qinghai-Tibet Plateau, is one of the most endangered antelope species in the world. Here, we report a landscape genetic study on Przewalski's gazelle. We used skin and fecal samples of 169 wild gazelles collected from nine populations and thirteen microsatellite markers to assess the genetic effect of anthropogenic landscape features on this species. For comparison, the genetic effect of geographical distance and topography were also evaluated. We found significant genetic differentiation, six genetic groups and restricted dispersal pattern in Przewalski's gazelle. Topography, human settlement and road appear to be responsible for observed genetic differentiation as they were significantly correlated with both genetic distance measures [F(ST)/(1-F(ST)) and F'(ST)/(1-F'(ST))] in Mantel tests. IBD (isolation by distance) was also inferred as a significant factor in Mantel tests when genetic distance was measured as F(ST)/(1-F(ST)). However, using partial Mantel tests, AIC(c) calculations, causal modeling and AMOVA analysis, we found that human settlement was the main factor shaping current genetic differentiation among those tested. Altogether, our results reveal the relative influence of geographical distance, topography and three anthropogenic landscape-type on population genetic differentiation of Przewalski's gazelle and provide useful information for conservation measures on this endangered species. PMID:21625459

Yang, Ji; Jiang, Zhigang; Zeng, Yan; Turghan, Mardan; Fang, Hongxia; Li, Chunwang



Improving management of small natural features on private lands by negotiating the science-policy boundary for Maine vernal pools.  


Vernal pools are far more important for providing ecosystem services than one would predict based on their small size. However, prevailing resource-management strategies are not effectively conserving pools and other small natural features on private lands. Solutions are complicated by tensions between private property and societal rights, uncertainties over resource location and function, diverse stakeholders, and fragmented regulatory authority. The development and testing of new conservation approaches that link scientific knowledge, stakeholder decision-making, and conservation outcomes are important responses to this conservation dilemma. Drawing from a 15-y history of vernal pool conservation efforts in Maine, we describe the coevolution of pool conservation and research approaches, focusing on how research-based knowledge was produced and used in support of management decisions. As management shifted from reactive, top-down approaches to proactive and flexible approaches, research shifted from an ecology-focused program to an interdisciplinary program based on social-ecological systems. The most effective strategies for linking scientific knowledge with action changed as the decision-makers, knowledge needs, and context for vernal pool management advanced. Interactions among stakeholders increased the extent to which knowledge was coproduced and shifted the objective of stakeholder engagement from outreach to research collaboration and development of innovative conservation approaches. New conservation strategies were possible because of the flexible, solutions-oriented collaborations and trust between scientists and decision-makers (fostered over 15 y) and interdisciplinary, engaged research. Solutions to the dilemma of conserving small natural features on private lands, and analogous sustainability science challenges, will benefit from repeated negotiations of the science-policy boundary. PMID:25002496

Calhoun, Aram J K; Jansujwicz, Jessica S; Bell, Kathleen P; Hunter, Malcolm L



Main clinical features in patients at their first psychiatric admission to Italian acute hospital psychiatric wards. The PERSEO study  

PubMed Central

Background Few data are available on subjects presenting to acute wards for the first time with psychotic symptoms. The aims of this paper are (i) to describe the epidemiological and clinical characteristics of patients at their first psychiatric admission (FPA), including socio-demographic features, risk factors, life habits, modalities of onset, psychiatric diagnoses and treatments before admission; (ii) to assess the aggressive behavior and the clinical management of FPA patients in Italian acute hospital psychiatric wards, called SPDCs (Servizio Psichiatrico Diagnosi e Cura = psychiatric service for diagnosis and management). Method Cross-sectional observational multi-center study involving 62 Italian SPDCs (PERSEO – Psychiatric EmeRgency Study and EpidemiOlogy). Results 253 FPA aged <= 40 were identified among 2521 patients admitted to Italian SPDCs over the 5-month study period. About half of FPA patients showed an aggressive behavior as defined by a Modified Overt Aggression Scale (MOAS) score greater than 0 Vs 46% of non-FPA patients (p = 0.3651). The most common was verbal aggression, while about 20% of FPA patients actually engaged in physical aggression against other people. 74% of FPA patients had no diagnosis at admission, while 40% had received a previous psychopharmacological treatment, mainly benzodiazepines and antidepressants. During SPDC stay, diagnosis was established in 96% of FPA patients and a pharmacological therapy was prescribed to 95% of them, mainly benzodiazepines, antipsychotics and mood stabilizers. Conclusion Subjects presenting at their first psychiatric ward admission have often not undergone previous adequate psychiatric assessment and diagnostic procedures. The first hospital admission allows diagnosis and psychopharmacological treatment to be established. In our population, aggressive behaviors were rather frequent, although most commonly verbal. Psychiatric symptoms, as evaluated by psychiatrists and patients, improved significantly from admission to discharge both for FPA and non-FPA patients. PMID:17239235

Ballerini, Andrea; Boccalon, Roberto M; Boncompagni, Giancarlo; Casacchia, Massimo; Margari, Francesco; Minervini, Lina; Righi, Roberto; Russo, Federico; Salteri, Andrea; Frediani, Sonia; Rossi, Andrea; Scatigna, Marco



Geologic Maps Geology 200  

E-print Network

Geologic Maps Geology 200 Geology for Environmental Scientists #12;Geologic Map of the US #12;Symbols found on geologic maps #12;Horizontal Strata #12;Geologic map of part of the Grand Canyon. Each color represents a different formation. #12;Inclined Strata #12;Dome #12;Geologic map of the Black Hills

Kammer, Thomas


Identification of the emission features near 3.5 microns in the pre main sequence star HD 97048  

Microsoft Academic Search

The spectrum of HD97048 was measured with a resolving power of 450 between 3.37 and 3.64 microns. The prominent feature near 3.5 microns is well resolved, with a peak at 3.53 microns and a wing extending to a shorter wavelength. The weaker feature near 3.4 microns is found to peak at 3.43 microns, in contrast to the 3.40 micron feature

F. Baas; L. J. Allamandola; T. R. Geballe; S. E. Persson; J. H. Lacy



Geologic History  

NSDL National Science Digital Library

This unit introduces younger students to the concept of relative versus absolute time and how geologists determine the age of geologic events and features. Topics include the laws that determine relative age (superposition, cross-cutting relationships, included fragments, and others), and how to re-construct the geologic history of an area using these relationships. There is also information on geologic correlation and the use of index fossils to determine relative age. The section on absolute time discusses some ways of measurement (tree rings, radioactive dating) and introduces the concepts of natural selection and mass extinctions. A vocabulary and downloadable, printable student worksheets are provided.

Medina, Philip



An initial model of seismic microzonation of Sikkim Himalaya through thematic mapping and GIS integration of geological and strong motion features^*  

NASA Astrophysics Data System (ADS)

Seismic microzonation and hazard mapping was undertaken in the Sikkim Himalaya with local site conditions and strong ground motion attributes incorporated into a geographic information system. A strong motion network in Sikkim consisting of 9 digital accelerographs recorded more than 100 events during 1998-2002, of which 72 events are selected with signal-to-noise ratios ?3 for the estimation of site response (SR), peak ground acceleration (PGA) and resonance frequency (RF) at all stations. With these data and inputs from IRS-1C LISS III digital data, topo-sheets, geographical boundary of the State of Sikkim, surface geological maps, soil taxonomy map at 1:50,000 scale and seismic refraction profiles, the seismological and geological thematic maps, namely, SR, PGA, RF, lithology, soil class, slope, drainage, and landslide layers were generated. The geological and seismological layers are assigned normalized weights and feature ranks following a pair-wise comparison hierarchical approach and later integrated through GIS to create the microzonation map of the region. The overall SR, PGA and resonance frequency show an increasing trend in a NW-SE direction, peaking at Singtam in the lesser Himalaya. Six major hazard zones are demarcated with different percentages of probability index values in the geological, seismological hazard and microzonation maps. The maximum risk is attached to a probability greater than 78% in the Singtam and adjoining area. These maps offer generally better spatial representation of seismic hazards including site-specific analysis as a first level microzonation attempt.

Nath, Sankar Kumar




E-print Network

REMOTE SENSING IN GEOLOGICAL SURVEY OF BRAZIL August/2010 Mônica Mazzini Perrotta Remote Sensing Division Head #12;SUMMARY The Geological Survey of Brazil mission The Remote Sensing Division Main remote sensing data used in CPRM geologic projects Future perspective: the Spectral Library of Geological Survey


Digital Geology of Idaho  

NSDL National Science Digital Library

This online course systematically divides Idaho geology into 15 individual teaching modules which correspond with a two-credit, 15-week classroom course. Each module covers a specific area or type of geology in the state of Idaho. Topics include geology of basement rocks, rocks and geology of the Belt Supergroup, tectonic regimes, and geologic history. There are also modules on rocks and geology of the Idaho Batholith, volcanic history and deposits of the Snake River Plain and Columbia Plateau, and Pleistocene glaciation and floods from Lakes Missoula and Bonneville. Each of the modules provides geologic maps from a recently developed Geologic Map of Idaho, produced by the Idaho Geological Survey, and most also feature fly-throughs in which geologic information is draped over topography to provide visualizations of the geology along Idaho rivers.


A Geostatistical Approach to Assess the Spatial Association between Indoor Radon Concentration, Geological Features and Building Characteristics: The Case of Lombardy, Northern Italy  

PubMed Central

Radon is a natural gas known to be the main contributor to natural background radiation exposure and second to smoking, a major leading cause of lung cancer. The main source of radon is the soil, but the gas can enter buildings in many different ways and reach high indoor concentrations. Monitoring surveys have been promoted in many countries in order to assess the exposure of people to radon. In this paper, two complementary aspects are investigated. Firstly, we mapped indoor radon concentration in a large and inhomogeneous region using a geostatistical approach which borrows strength from the geologic nature of the soil. Secondly, knowing that geologic and anthropogenic factors, such as building characteristics, can foster the gas to flow into a building or protect against this, we evaluated these effects through a multiple regression model which takes into account the spatial correlation of the data. This allows us to rank different building typologies, identified by architectonic and geological characteristics, according to their proneness to radon. Our results suggest the opportunity to differentiate construction requirements in a large and inhomogeneous area, as the one considered in this paper, according to different places and provide a method to identify those dwellings which should be monitored more carefully. PMID:21655128

Borgoni, Riccardo; Tritto, Valeria; Bigliotto, Carlo; de Bartolo, Daniela



Programme Specification for Global Innovation Design This specification provides a concise summary of the main features of the programme and the  

E-print Network

opportunities that are provided. This specification provides a source of information for students, multicultural and multinational educational experience for postgraduate students of exceptional ability who summary of the main features of the programme and the learning outcomes that a typical student might

Subramanian, Sriram


The use of fluoride as a natural tracer in water and the relationship to geological features: Examples from the Animas River Watershed, San Juan Mountains, Silverton, Colorado  

USGS Publications Warehouse

Investigations within the Silverton caldera, in southwestern Colorado, used a combination of traditional geological mapping, alteration-assemblage mapping, and aqueous geochemical sampling that showed a relationship between geological and hydrologic features that may be used to better understand the provenance and evolution of the water. Veins containing fluorite, huebnerite, and elevated molybdenum concentrations are temporally and perhaps genetically associated with the emplacement of high-silica rhyolite intrusions. Both the rhyolites and the fluorite-bearing veins produce waters containing elevated concentrations of F-, K and Be. The identification of water samples with elevated F/Cl molar ratios (> 10) has also aided in the location of water draining F-rich sources, even after these waters have been diluted substantially. These unique aqueous geochemical signatures can be used to relate water chemistry to key geological features and mineralized source areas. Two examples that illustrate this relationship are: (1) surface-water samples containing elevated F-concentrations (> 1.8 mg/l) that closely bracket the extent of several small high-silica rhyolite intrusions; and (2) water samples containing elevated concentrations of F-(> 1.8 mg/ l) that spatially relate to mines or areas that contain late-stage fluorite/huebnerite veins. In two additional cases, the existence of high F-concentrations in water can be used to: (1) infer interaction of the water with mine waste derived from systems known to contain the fluorite/huebnerite association; and (2) relate changes in water quality over time at a high elevation mine tunnel to plugging of a lower elevation mine tunnel and the subsequent rise of the water table into mineralized areas containing fluorite/huebnerite veining. Thus, the unique geochemical signature of the water produced from fluorite veins indicates the location of high-silica rhyolites, mines, and mine waste containing the veins. Existence of high F-concentrations along with K and Be in water in combination with other geological evidence may be used to better understand the provenance of the water. ?? 2009 AAG/Geological Society of London.

Bove, D.J.; Walton-Day, K.; Kimball, B.A.



Comparison of LiDAR-derived directional topographic features with geologic field evidence: a case study of Doren landslide (Vorarlberg, Austria)  

NASA Astrophysics Data System (ADS)

The study area, the Doren Landslide, is located northeast of Dornbirn (Vorarlberg, Austria) within the Molasse zone in the foreland of the Northern Calcareous Alps. It developed in a prominent morphologic position at the margin of a plateau that is formed by alternating ridges and valleys of Molasse sediments of various composition and glacial moraine sediments. The stream valleys of the area are showing rapid incision into the relatively erodible material; this sediment transport balance/imbalance influences the valley sides that at places develop landslides of various scale. Of them the Doren Landslide is the most prominent one that is already endangering real estate entities. On-going research has focused on the repeated airborne and terrestrial laser scanning of the landslide in order to determine short-term volumetric and surface changes and the overall development of the phenomenon. Additionally, tectonic geomorphologic analysis using the digital terrain analysis approach was carried out by the authors aiming to document the geologic setting of the landslide and the adjacent areas in order to reveal possible relationship between the (micro)tectonic setting and the mass movement phenomena. In this study, linear and planar features derived from the LiDAR digital terrain model (DTM) by (i) visual lineament analysis and (ii) automated plane fitting are validated by the results of extensive field geological measurements. For the automated plane fitting, we apply a segmentation approach, originally developed for building detection and roof landscape modeling from ALS data (Dorninger & Pfeifer 2008). It is based on global seed-cluster determination using a four-dimensional feature space defined by locally determined three-dimensional regression planes for each point. Starting from these seeds, all points defining a connected, planar segment are assigned. Due to the design of the algorithm, millions of input points can be processed at once with acceptable processing time on standard computer systems. This allows for processing geomorphologically representative areas at once. For each segment, numerous parameter are derived which can be used for further exploitation. These are, for example, location, area, aspect, slope, and roughness. In the areas surrounding the recent landslide, the strike of geologically significant planes show a good correlation with the strike of lineaments mapped on the ALS-DTM. The mean strike direction that is prominent has an ENE - WSW orientation. However, within the area directly influenced by the recent landslide, observable differences between field geologic measurements and mapped lineaments occur. ESE - WNW striking linear features well mappable from the ALS-DTM are not recorded by field measurements of planar features (faults or bedding planes). This fact can be explained by several hypotheses. The orientation of patches derived by automated plane fitting also show distinct correlation with the field geologic measurements. Again, a good correlation between dip directions as well as dip values can be observed in areas surrounding the landslide. Detection of steep dipping fault surfaces within the landslide area shows promising results that can be further improved by adjusting the input parameters. The good correlation of three different types of lineament analysis (field geologic measurements, ALS-DTM analysis, automated plane fitting) prove the accuracy of laser scanned data and the reliability of observations derived from ALS-data. Dorninger, P., Pfeifer, N. (2008): A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds. Sensors, 8, 11, 7323 - 7343.

Zámolyi, András.; Székely, Balázs; Molnár, Gábor; Roncat, Andreas; Dorninger, Peter; Pocsai, Angelika; Wyszy?ski, Marek; Drexel, Peter



Geology of the Caribbean  

USGS Publications Warehouse

The Venezuelan and Colombian basins are located on the Caribbean Plate whilst the Yucatan basin is on the North American Plate. The processes occurring at the boundaries between the Caribbean Plate and the adjacent North American, South American and Cocos Plates, and the resulting surface features and patterns of volcanic and earthquake activity are described. Most of the Caribbean area is floored by atypical oceanic crust and its most valuable main geologic resources identified so far are petroleum, together with sand and gravel. Geological research is being carried out with techniques for broad-range swath imaging of the seafloor, such as GLORIA, and for directly measuring the movement between plates. -J.G.Harvey

Dillon, William P.; Edgar, N.T.; Scanlon, K.M.; Klitgord, Kim D.



Airborne geophysical surveys used to delineate geological features associated with the M5.8 August 23, 2011 earthquake in Louisa County, Virginia  

NASA Astrophysics Data System (ADS)

The M5.8 August 23, 2011 Louisa County, VA intraplate earthquake was felt by more people than any other in U.S. history not only because of population density, but also because of the associated geology. However, because limited bedrock exposures pose a challenge to geologic mapping efforts and the earthquake hypocenter is located at a depth of ~6 km, many questions remain. Potential field and gamma-ray spectrometry data thus provide key tools for imaging and understanding both shallow and deep subsurface geologic features. In July 2012, the USGS commissioned a high-resolution magnetic, gravity, and radiometric (gamma-ray spectrometry) survey over a 20 km x 25 km area covering the epicenters of the Louisa County earthquake and its aftershocks. The surveys were flown with 200-m line spacing from an altitude of ~120 m above ground, providing up to a 20-fold improvement over regional magnetic and radiometric coverage. Gravity was measured using Sander Geophysics' AIRGrav system, capable of resolving anomalies as narrow as 800 m for the given survey configuration; in most parts of the survey area the spacing of ground stations is ~10-20 stations per 100 km2. Preliminary magnetic and radiometric data show numerous NE-trending linear anomalies within this part of the Appalachian Piedmont Province. These metamorphic and igneous rocks exhibit 200-500 nT magnetic anomalies of width 300-1000 km that are likely to be generated by contrasts between various metavolcanic and metasedimentary rocks such as magnetite-bearing quartzites and felsic to mafic gneisses. Magnetic lows and radiometric highs are observed over several granitoid intrusive bodies such as the Ellisville pluton, the Falmouth Intrusive Suite, and a Paleozoic pegmatite belt. Derivative magnetic maps delineate numerous thin (< 250 m wide) N- NNW-trending linear anomalies, suggesting that Jurassic diabase dikes are much more common in this area than previously mapped. Radiometric data mostly correlate with mapped bedrock units, but also exhibit anomalies consistent with SE fluvial transport and deposition of sediments several kilometers downstream from their sources. The probable causative fault of the Louisa County earthquake has been delineated near its hypocenter by aftershocks recorded by a network of portable seismometers, with most aftershocks occurring along a plane or planes from ~2.5 to 8 km depth (e.g. public data provided by R. Herrmann, SLU). The earthquake and aftershocks occurred near a change in orientation of primary magnetic lineations from ~N34E northeast of the earthquake to N44E southwest of the earthquake that is also visible in topographic and regional gravity trends. Magnetic anomalies are complex near the orientation change and feature arcuate lineations that bound prominent magnetic lows and abut primary lineations at angles of 20-35°. Northeast of the aftershock area, magnetic lineations are much straighter, with previous regional data suggesting that they extend essentially uninterrupted for a distance of 40 km or more. This in turn suggests broad continuity of major structures, including faults, for a significant distance to the northeast. We combine magnetic, gravity, radiometric, and geologic data to consider the relations between the M5.8 event and possible subsurface geologic features such as stratified geologic units and contacts, igneous intrusive bodies, and associated faults.

Shah, A. K.; Horton, J. W.; Gilmer, A. K.



Physical Geology  

NSDL National Science Digital Library

This Tulane University course covers the nature of the Earth, the development of its surficial features, and the results of the interaction of chemical, physical, and biological factors on the planet. Lecture notes are about energy and minerals; igneous, metamorphic and sedimentary rocks; weathering and soils; geologic time; mass wasting; streams; groundwater; wind action and deserts; oceans; deformation of rock; earthquakes and the interior of the Earth; global tectonics; planetary changes; and glaciers.

Stephen Nelson


Maine Ingredients  

ERIC Educational Resources Information Center

This article features Maine Learning Technology Initiative (MLTI), the nation's first-ever statewide 1-to-1 laptop program which marks its seventh birthday by expanding into high schools, providing an occasion to celebrate--and to examine the components of its success. The plan to put laptops into the hands of every teacher and student in grades 7…

Waters, John K.



Influence of geological features (geochemistry and mineralogy) of soil wich constitutes adobes in their durability - Huambo, Angola.  

NASA Astrophysics Data System (ADS)

After long years of war, great efforts have been made for the socio-economic development of Angola, mainly in the construction industry. Among the construction techniques, the Adobe is the most used in the province of Huambo, especially by low-income families, which constitute the majority. This technique was established as a historical heritage in the culture of that population. The Huambo province is located in the central region of Angola (Central Plateau) and is bounded on the northeast and east by the province of Bié, on the south and southern by province of Huila, and on the west by the province of Benguela and on the northwest by the province of Kwanza Sul. Has an area of 35,771 km2 and approximately 2,301,524 inhabitants, which corresponds to 58 inhabitants per km2 (Government of the Province of Huambo, 2006). The buildings in this province, particularly in rural areas, were deeply marked by war. Given the current scenario of development of the country and considering the possibility of integrate systems and traditional building materials, that respect the environment and fit harmoniously into its natural habitat, one of the alternative options in the actual construction, undergoes resume old solutions and traditional materials such as adobe construction.It is in this context that this project is part of a scientific research in order to permit the improvement and optimization of these traditional solutions, responding to current demands for social, economic and environmental sustainability. The adobe is a building element with potential degradation by water. Due to the climate, subtropical, hot and humid, and geomorphology of the province, about 1000 to 2000 meters of altitude and an extensive river system, these buildings can be vulnerable and present early degradation, exacerbated by lack of knowledge of the properties of geomaterials used and techniques that allow their stabilization and conservation. This paper aims to study the influence of mineralogy and geochemistry of soils used in the production of adobes applied in the construction of habitations, mainly, because from this knowledge, we can develop alternatives to the resolution of recorded pathologies and to improve the strength and durability of those adobes. For this purpose, soil samples were collected, in which mineralogical and geochemical tests were performed. Simultaneously, durability and erodibility tests were done by the method of Geelong in the selected adobes. The results obtained from this research will identify, select and characterize the materials and methods used in construction in raw earth, contributing to the development of knowledge of these sustainable buildings solutions with a strong presence in the Huambo region. From the analysis of the data obtained will be defined a strategy for the next steps of the scientific research project in course designated "Earth Construction in Angola. Characterization, applications and potentialities.". This project aims to encourage the use of the geomaterials in ecological construction and contribute, however modestly, in building solutions with better performance characteristics, comfort, safety, durability and sustainability.

Duarte, Isabel; Pedro, Elsa; Varum, Humberto; Mirão, José; Pinho, António



Modern Geology, 1979, Vol. 7, pp. 43-51 0026-7775/79/0701-0043 $04.50/0  

E-print Network

, Fishlake National Forest, 170 North Main Richfield, Utah 84701. 43 the range (Figure 2). Horizontal. These factors are absent at cirque glacier locations. GEOLOGIC SETTING Pleistocene glacial features have been

Wang, Zhi "Luke"


Ohio Geological Survey  

NSDL National Science Digital Library

This is the homepage of the Ohio Geological Survey. Materials available through the site include a variety of publications, particularly the Survey's reports, bulletins, information circulars, guidebooks, and many others. There is an extensive selection of maps, including topographic maps in several scales, and downloadable geologic maps of several themes (drift thickness, bedrock geology, karst areas, glacial geology, and many others), as well as digital maps and data. The interactive maps section features online map viewers of abandoned mines, earthquake epicenters, surficial geology, geology of Lake Erie, and others. The educational resources page has links to the 'Hands On Earth' series of activities, GeoFacts (short bulletins on Ohio geological topics), nontechnical educational leaflets, field guides, and links to other publications, rock and mineral clubs, educational associations, and related websites. There is also a link to the Ohio Seismic Network, a network of seismograph stations located at colleges, universities, and other institutions that collects and disseminates information about earthquakes in Ohio.


Wyoming State Geological Survey  

NSDL National Science Digital Library

This agency's mission is to study, examine, and seek an understanding of the geology, mineral resources, and physical features of the State; to prepare, publish, and distribute reports and maps of Wyoming's geology, mineral resources, and physical features; and to provide information, advice, and services related to the geology, mineral resources, and physical features of the State. This site contains details and reports about metals in Wyoming, earthquakes and other hazards, coal, industrial minerals, uranium, oil and gas. The field trip section contains details about various areas to visit with students and gives a general geologic description. There is also a searchable bibliography with publications about Wyoming geology. Links are provided for additional resources.


Radiocarbon Ages from Two Submerged Strandline Features in the Western Gulf of Maine and a Sea-Level Curve for the Northeastern Massachusetts Coastal Region  

USGS Publications Warehouse

New radiocarbon dates provide ages for two submerged strandline features on the Massachusetts inner shelf. These ages provide limited control on a relative sea-level (RSL) curve for the late Wisconsinan and Holocene. The curve indicates a late Wisconsinan high stand of RSL of +33 m about 14,000 yr ago and a very short-lived relative low stand of about -43 m at about 12,000 yr ago followed by a rise to present sea level. Rapid changes of RSL around 12,000 yr ago may be related to changes in global glacial meltwater discharge and eustatic sea-level change shown by dated corals off Barbados. Variations in the magnitude and timing of RSL change from south to north along the coast of the western Gulf of Maine are due to greater crustal depression and later deglaciation to the north.

Oldale, R.N.; Colman, Steven M.; Jones, Glenn A.



Paleogeography Through Geologic Time  

NSDL National Science Digital Library

This website contains paleogeographic and plate tectonic reconstructions organized by geologic period. Users select a geologic period, and receive a summary of the major events that occurred during that period, a paleogeographic map, tectonics and sedimentation of the North Atlantic region, and global tectonic features from that time.

Blakey, Ronald


Main Features for the Conceptualization of the Post-Closure Evolution Scenario of the Cigeo LIL-HL Waste Repository - 13105  

SciTech Connect

In France, in order to commission the planned geological repository by 2025, a license application for the industrial project of this geological repository called Cigeo (Centre Industriel de Stockage Geologique) must be submitted and reviewed by the competent authorities by 2015. On the basis of its preliminary design set up in 2009 and on the associated requirements for long-term safety, an overall conceptual model has been developed in order to prepare the performance and safety analysis. The Cigeo repository makes use of the passive safety response characteristics of both the engineered and geological barriers that allow: - resisting water ingress, with repository designs favoring the limitation of the water flows; - limiting the release of radionuclides and chemical toxics; - delaying and mitigating the spread of radionuclides and chemical toxics. In order to evaluate the performance of the various elements, a conceptual model of the thermo-hydro-chemico-mechanical (THMC) evolution of the different components of the repository has been designed. It takes stock of a 20 years research effort which allowed data to be obtained from various surface geological campaigns, in-situ experiments in URLs and wastes characterization, and advances in numerical simulation to be utilised. Based on the best available knowledge to date, this conceptual model constitutes a robust basis for the definition and development of the long-term safety scenarios. It also helps identifying the residual uncertainties, and provides guidelines for additional research and system optimizations. (authors)

Landais, Patrick; Giffaut, Eric; Pepin, Guillaume; Plas, Frederic; Schumacher, S. [Andra, 1-7 rue Jean Monnet, 92298 Chatenay Malabry (France)] [Andra, 1-7 rue Jean Monnet, 92298 Chatenay Malabry (France)



Geology Fieldnotes: Grand Canyon National Park, Arizona  

NSDL National Science Digital Library

Visitors can access park geology information, photographs, related links, visitor information, multimedia resources, and resources for teaching geology with National Park examples. The park geology section discusses the Grand Canyon's geologic history, structural geology, and features a question-and-answer section about the canyon. The history of the canyon as a park and environmental issues surrounding it are also discussed. A geologic cross section of the canyon showing the various rock layers is included.


The Geology and Gravity Anomalies of the Troodos Massif, Cyprus  

Microsoft Academic Search

Over Cyprus there is one of the largest recorded gravity anomalies which reaches a maximum of over +250 mgal. This paper records the main geological features of the island, investigates the source of the gravity anomaly and correlates both lines of evidence in support of an hypothesis on the evolution and structure of the area. The topography of Cyprus, which

I. G. Gass; D. Masson-Smith




Microsoft Academic Search

The submarine geology of the eastern Coral Sea and New Hebrides Basins in the southwest Pacific is characterized by complex bathymetry, comprising numerous geomorphological and structural features related to the tectonic setting of the region near the margin of the India plate. Most of the main structural features of the region appear to be of Eocene age. Miocene and younger

Charles W. Landmesser; James E. Andrews; Gordon H. Packham


Geological structures  

Microsoft Academic Search

Here is an account of recent thinking in structural geology and tectonics. The book begins with a discussion of the history of geological structures, their division, and research techniques. It then introduces a broad range of viewpoints. Using examples, the book examines geological structures in the context of their geographical location. It considers the tectonic mechanisms which produce geologic structures.

T. Uemura; S. Mizutani



British Geological Survey: Learning  

NSDL National Science Digital Library

The British Geological Survey (BGS) has a wealth of information about the earth sciences, and they are quite willing to share it with others. This page contains information and resources for anyone interested in geology for educational or leisure purposes, and it is contained with four sections. First up is "Popular geology", which includes "Britain beneath our feet", an interactive atlas of geology, resources, and land quality. This section also contains graphics about climate change and earthquakes. The second section is titled "Educational resources". Here visitors can ask scientists at the BGS specific questions and they can also download several free posters. The third section is called "Educational news and events" and it features upcoming events at the BGS and links to their free magazine, "Earthwise". The site is rounded out by the fourth section titled "From the BGS Archives". Here visitors can view historic geological photographs and also view field sketches and watercolors by Alexander Henry Green, the celebrated Victorian geologist.


Oahu Geology Field Exercises  

NSDL National Science Digital Library

Three field guides are available to sites of geologic interest on Oahu. One is a visit to a landslide occurring in a neighborhood; another focuses on developing observational skills and determining the sequence of geologic events evident in a stratigraphic section; a third examines features associated with formation of a volcanic tuff ring. The worksheets are designed for teachers to implement as-is or modify for their classes.


Features | Poster

Skip to main content About Us Services Science For Our Staff Phonebook Poster Search form Search Main menu Home Science Publications Platinum Highlight Platinum Publications Technology Transfer Awards Health and Safety Outreach Students Features Poster


"Geological metadata" to share field geological knowledge and related map generalizations  

NASA Astrophysics Data System (ADS)

Sharing of geological information on the Web is rapidly increasing and steadily supported by ongoing IT innovation. Since GIS databases, metadata (MD) and spatial data infrastructures are tools gradually used in Earth science, concepts such as clearness, usefulness, quality and use constraints of web disseminated data, become matters of interest for the communities of geologists In field geosciences, the possibility to share actually understandable information is constrained by the peculiar approach adopted in knowledge acquisition (field survey) and knowledge representation (geological maps). Datasets comprehend both measurements/observations and applications of conceptual models, achieved with a large use of implicit knowledge that characterizes the analysis, processing and interpretation of original data. Field geological knowledge is biased by geologists' subjectivity and constrained by different type of uncertainties coming from capture methods, interpretative models and map generalizations. Shared information need thus specifications about i) the intended meanings of adopted concepts, ii) the physical paths (i.e. the operational steps concerning data acquisition on the field), iii) the knowledge paths (interpretation steps performed on data). Field geological data have to be organized in conceptually-driven systems, where explained information get retraceable. An attempt to reach this goal has been recently carried out by CNR IGG TO working group in the IDE-Univers project, by setting up a geoportal (, where geological information are described through ISO19915 MD standard and shared through WMS technology. The CNR IGGTO Server contains field data and related geological maps mainly stored in the frame of the CARG project (1:50000 Geological Map of Italy). Our strategy is to get this information conceptually described, using the Geographic MD international standard for the geological context, in order to give geological interpretations in an explicit format. These "geological metadata" have been compiled mainly as regard the "Identification" and the "Data Quality" classes. The Abstract element (Identification class) explains the criteria on which data are interpreted and the meaning of them, giving the peculiarities of interpreted features. The Resource Locator element (Identification class) allows to link datasets with conceptual supplemental information (conceptual schemas), where concepts and methods adopted in the acquisition of knowledge are given. The Lineage element (Data Quality class) gives the different process steps performed on data, specifying the provenance of interpreted features and making them retraceable. A further improvement of the readability of the information stored in the CNR IGGTO geoportal, is presently carried out in the frame of GIIDA project (an initiative to implement the Spatial Information Infrastructure of CNR for Environmental and Earth Observation data) by development of Wiki sites linkable to the MD sheets.

Balestro, G.; Bini, S.; Piana, F.; Tallone, S.



The Montana-Yellowstone Geologic Field Guide Database  

NSDL National Science Digital Library

For any college student majoring in the geophysical sciences, getting out into the field can be a key academic experience. This novel initiative, created by Carleton College's Science Education Resource Center (SERC), is a pilot project designed to make the field guide literature more accessible and useful to geoscience educators, students, and researchers. This site features published field guides and road logs for Montana and Yellowstone National Park, both of which are popular locations for summer field courses conducted by geology departments from San Diego, California to Orono, Maine. Visitors can search the database by topic, geographic location, and geologic province. Additionally, they can use the Top 10 area to find a list of the top ten geology field trips in the area based on geological interest, scenery, and general access. The site is rounded out by a collection of student exercises based on specific field localities in Montana.



Geological Time  

NSDL National Science Digital Library

"Why do engineers need to know about geologic time?" That question is answered in this resource from the University of Saskatchewan's Department of Civil and Geological Engineering. Provided here is a discussion of the concepts of geological time; relative dating methods, such as correlation; and absolute dating methods, such as radiometric methods. Diagrams and charts are included to demonstrate these complex concepts.



Interpreting the main HI and CO l-V features in the Galactic bar from self-consistent stellar and gas dynamical models  

E-print Network

A new picture accounting for the dominant features in the observed l-V distribution of the Milky Way gas within the central few kpcs is proposed, based on symmetry-free and high resolution 3D N-body and SPH simulations.

R. Fux



Humboldt River main stem, Nevada  

USGS Publications Warehouse

This data set contains the main stem of the Humboldt River as defined by Humboldt Project personnel of the U.S. Geological Survey Nevada District, 2001. The data set was digitized on screen using digital orthophoto quadrangles from 1994.

Warmath, Eric; Medina, Rose L.



North Dakota Geological Survey  

NSDL National Science Digital Library

This is the homepage of the North Dakota Geological Survey. Site materials include information on the state's oil, gas and coal resources, maps, publications, and regulations. The paleontology page features educational articles, information on fossil collecting, articles about fossil exhibits, and information on the state fossil collection. The state GIS hub creates and distributes digital spatial data that conforms to national mapping standards. The teaching tools page includes illustrations and descriptions of rocks and minerals found in the state, as well as information on meteorites and newsletter articles about teaching North Dakota geology. There are also links to landslide maps, surficial geology maps, and links to other survey publications such as reports, bulletins, field studies, other geological and topographic maps, and information on groundwater resources.



EPA Science Inventory

In the mid-1990s, an interdisciplinary, multi-institutional team of scientists was assembled to address basic issues concerning biological productivity and the unique co-occurrence of many unusual ecological features in Cobscook Bay, Maine. Cobscook Bay is a geologically complex,...


Geology by Lightplane  

NSDL National Science Digital Library

This site is a collection of aerial images of US geological features. Detailed 2000-pixel-wide JPEG versions of these photos (averaging 1MB in size and suitable for video projection or for slides) can be down-loaded from an FTP site. There are also text captions for the photographs.

Maher, Louis J.; Wisconsin-Madison, The D.


Soviet geology, 1976  

Microsoft Academic Search

The geological history of the Jurassic period shows that the most abrupt change in physiogeographical, and particularly in climatic, conditions occured not at its lower or upper limit but at the boundary between the middle and late epochs. This is shown especially clearly by a study of the lacustral and continental sediments which form such a significant feature of the

V. A. Vakhrameyev



Geological Features Extraction and Fusion Using Wavelet Transform of ASTER Images: Examples from the Neoproterozoic Allaqi-Heiani Suture, Southeastern Egypt  

NASA Astrophysics Data System (ADS)

Redundant wavelet transform (RWT) and discrete wavelet transform (DWT) are applied to the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) data to trace along strike continuation of geological structures in the E-W trending Neoproterozoic Allaqi-Heiani Suture in southern Egypt. Geological structures in the Allaqi-Heiani Suture are in the form of S-verging fold and thrust belt that constitute three nappes defined by distinctive lithological units specially ophiolite components including talc schist, serpentinite, and gabbro. Ophiolite components are distinctive from the surrounding rock types and they can be separated on the basis of their spectral characteristic in ASTER data using the RWT and DWT. The separated structural and lithological information is further fused together while the spectral information of their surrounding rock types is suppressed. Our results indicate that the lower nappes in the suture can be traced for the entire length of the suture whereas the upper nappes are folded about N-S trending axis.

Ren, D.; Abdelsalam, M. G.



USGS Geologic Hazards  

NSDL National Science Digital Library

The Geologic Hazards section of the US Geological Survey (USGS) conducts research into the causes of geological phenomena such as landslides and earthquakes. The homepage connects visitors to the Geologic Hazards team's three main areas of endeavor. Geomagnetism provides links to the National Geomagnetic Information Center; Magnetic Observatories, Models, and Charts; and the Geomagnetic Information Node, which receives geomagnetic observatory data from around the world. The Landslide group studies the "causes and mechanisms of ground failure" to prevent "long-term losses and casualties." Their section provides links to the program and information center, publications, events, and current projects. The Earthquakes department hosts a wealth of information, including neotectonics, engineering seismology, and paleoseismology. Interactive maps are also provided.


Desert Features  

NSDL National Science Digital Library

Sand covers only about 20 percent of the Earth's deserts. Nearly 50 percent of desert surfaces are gravel plains where removal of fine-grained material by the wind has exposed loose gravel and occasional cobbles. This web page, produced by the U.S. Geological Survey, features text and photographs that describe desert landforms, soils, plants, and the role of water in the formation of desert landscapes.



E-print Network

CAPSULE DESCRIPTION: Ilmenite, hemo-ilmenite or titaniferous magnetite accumulations as cross-cutting lenses or dike-like bodies, Ia> ers or disseminations within anorthositiclgabbroicinoritic rocks. These deposits can be subdivided into an ilmenite subtype (anorthosite-hosted titanium-iron) and a titaniferous magnetite subtype (gabbro-anorthosite-hosted iron-titanium). TECTONIC SETTING: Commonly associated with anorthosite-gabbro-norite-monzonite (mangerite)charnockite granite (AMCG) suites that are conventionally interpreted to be anorogenic and/or extensional. Some of the iron-titanium deposits occur at continental margins related to island arc magmatism followed by an episode of erogenic compression. DEPOSITIONAL ENVIRONMENT i GEOLOGICAL SETTING: Deposits occur in intrusive complexes which typically are emplaced at deeper levels in the crust. Progressive differentiation of liquids residual from anorthosite-norite magmas leads to late stage intrusions enriched in Fe and Ti oxides and apatite. AGE OF MINERALIZATION: Mainly Mesoproterozoic (1.65 to 0.90 Ga) for the ihnenite deposits, but this may be a consequence of a particular combination of tectonic circumstances, rather than any a priori temporal control. The Fe-Ti deposits with titaniferous magnetite do not appear to be restricted in time. HOST/ASSOCIATED ROCKS: Hosted by massive, layered or zoned intrusive complexes- anorthosite, norite,

G. A. Gross; C. F. Gower; D. V. Lefebure; Commodities (byproducts) Ti


California Geological Survey: Geologic Maps  

NSDL National Science Digital Library

This index provides access to a selection of geologic maps of California, as well as an overview of geologic and other mapping activities in the state. The index, which can be accessed by clicking on an interactive map of the state, contains lists of selected geologic maps in California prepared by the Regional Geologic Mapping Project (RGMP). The RGMP staff monitors the literature and collects references that contain geologic mapping that may be useful for future compilations. In addition, the site has information about Caltrans Highway Corridor Mapping, The Mineral Resources and Mineral Hazards Mapping Program, North Coast Watersheds Assessment Program, The Timber Harvesting Plan Enforcement Program, and The Seismic Hazards Mapping Program. A set of links is provided to other sources of geologic maps and map information.


Yosemite Geology  

NSDL National Science Digital Library

The National Park Service maintains the Yosemite National Park Web site and the corresponding Geology page. This Web site gives an overview of the geologic history of the site, tells how the Sierra Nevada range formed, explains the basics of granitic rock, shows how glaciers carved out the canyons, and much more.[JAB


Geologic Time.  

ERIC Educational Resources Information Center

One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

Newman, William L.


Geological Time  

Microsoft Academic Search

IN his Presidential Address to Section C at Dover, Sir A. Geikie has offered a bold challenge to Lord Kelvin and those who agree with him by calling upon them to give due weight to geological phenomena in forming an estimate of geological time. Permit me to say what I think about it.

O. Fisher



Engineering Geology  

ERIC Educational Resources Information Center

Engineering geology remains a potpourri of applied classical geology, and 1977 witnessed an upswing in demand for these services. Traditional foundation-related work was slight, but construction related to national needs increased briskly. Major cities turned to concerns of transit waste-water treatment and solid-waste disposal. (Author/MA)

Hatheway, Allen W.



Geology Major  

E-print Network

Geology Major Revised: 03/2013 Geology is a scientific discipline that aims to understand every aspect of modern and ancient Earth. A degree in geology the field of geology, environmental and geotechnical jobs exist for people with BS degrees. A master

Jiang, Huiqiang


Geology Fieldnotes: Glen Canyon National Recreation Area, Utah and Arizona  

NSDL National Science Digital Library

This Glen Canyon National Recreation Area site contains park geology information, photographs, related links, visitor information, multimedia resources, and teacher features (resources for teaching geology with National Park examples). The park geology section briefly discusses the Park's geologic history, structural geology, Navajo sandstone, and fossil beds. The park maps section contains a link to a features/relief map of Glen Canyon and the surrounding area, from the University of Texas at Austin Perry-Castaneda Library Map Collection.


Geology in North Dakota  

NSDL National Science Digital Library

The Department of Geosciences at North Dakota State University educates visitors about the geologic features and landforms of North Dakota through clear text and astonishing images at this website. In the Glacial Features of North Dakota link, visitors can learn about end moraines, eskers, kettle lakes, and kames. Educators can find amazing photographs of mass wasting including creep, slope failure, and slumps. Users can also find materials on stream features and satellite imagery of North Dakota. While the website concentrates on North Dakota, the materials can be a great addition to any earth science or geomorphology class.


Main features of the deep structure by local earthquake tomography and active tectonics: case of Rif Mountain (morocco) and Betic Cordillera (Spain)  

NASA Astrophysics Data System (ADS)

Within the Spain and Moroccan networks, a large volume of seismic data has been collected and used for investigating the lithosphere in the Betic-Rif Cordillera. The present study has two main goals: (1) Use the most actual seismological data from recent earthquakes in the Betic-Rif arc for investigating the lithosphere through the application of seismic local tomography techniques. (2) Define the possible structural blocks and explain the GPS velocities perturbation in this region. The resolution tests results indicate that the calculated images gave a close true structure for the studied regions from 5- to 60-km depth. The resulting tomographic image shows that the presence of two upper crust body (velocity 6.5 km/s) at 3- to 13-km depth between Iberian Betic and Moroccan Rif in the western and in the middle of Alboran Sea also shows the low velocity favoring the presence of melt in the base of these two bodies. The crustal bodies forms tectonic blocks in the Central Rif and in the Central Betic Cordillera.

Timoulali, Y.; Hahou, Y.; Jabour, N.; Merrouch, R.; El Kharrim, A.



Physical Geology: Idaho Field Trip  

NSDL National Science Digital Library

This optional field trip is designed to augment the in-class learning experience in introductory physical geology by providing students the opportunity to see firsthand local geological features and understand their context in the long-term tectonic evolution of the western United States. The university is conveniently located in a portion of the American west where a plethora of geological features are readily accessible over a total field trip duration of 6 hours. Over a total of 6 field stops, students are presented with an opportunity to observe features relevant to topics learned in class involving rock types, volcanic features (lava flows and ash fall deposits), faults and folds, mass wasting features, catastrophic flood deposits (Bonneville and Missoula floods), and loess deposits.

Simon Kattenhorn


Tour of Park Geology: Oldest Rocks  

NSDL National Science Digital Library

This park geology site provides links to tours of individual National Parks, Monuments, and Recreation Areas with the oldest known rocks. The parks are divided at this site into East and West. Where appropriate, for each park, links are provided to park geology, maps, photographs, geologic research, visitor information, multimedia resources, and teacher features (resources for teaching geology using National Park examples). Parks listed include: Voyaguers National Park, Keweenaw National Historic Park, Lake Meade National Recreation Area, and many more.


No geology without marine geology  

Microsoft Academic Search

A brief review is offered of the many problems where knowledge of the ocean floors and of marine processes in shallow water is indispensable for the further advancement of geology. The subject of turbidity currents is treated in greater detail, to demonstrate the interrelation of several aspects of marine geology with sedimentologic and paleogeographic investigations. It is obvious that the

P. H Kuenen



Geologic Time  

NSDL National Science Digital Library

The Earth is very old -- 4.5 billion years or more -- according to recent estimates. This vast span of time, called geologic time by earth scientists, is difficult to comprehend in the familiar time units of months and years, or even centuries. How then do scientists reckon geologic time, and why do they believe the Earth is so old? A great part of the secret of the Earth's age is locked up in its rocks, and our centuries-old search for the key led to the beginning and nourished the growth of geologic science.

Newman, William L.



Geologic time  

USGS Publications Warehouse

The Earth is very old 4 1/2 billion years or more according to recent estimates. This vast span of time, called geologic time by earth scientists, is difficult to comprehend in the familiar time units of months and years, or even centuries. How then do scientists reckon geologic time, and why do they believe the Earth is so old? A great part of the secret of the Earth's age is locked up in its rocks, and our centuries-old search for the key led to the beginning and nourished the growth of geologic science.

Newman, William L.




EPA Science Inventory

OTRANS represents other transportation features - electric, pipeline, railroad, and telephone lines at 1:24,000 scale. Some New Hampshire and New Brunswick features are also included. Data for this coverage were digitized from USGS 1:24000 scale quadrangle maps by various contra...


Mapping distribution and thickness of supraglacial debris in the Central Karakoram National Park: main features and implications to model glacier meltwater  

NASA Astrophysics Data System (ADS)

Supraglacial debris plays a not negligible role in controlling magnitude and rates of buried ice melt (Østrem, 1959; Mattson et al., 1993). Knowledge on rock debris is essential to model ice melt (and consequently meltwater discharge) upon wide glacierized areas, as melt rates are mainly driven by debris thickness variability. This is particularly important for the Pamir-Himalaya-Karakoram area (PHK), where debris-covered glaciers are frequent (Smiraglia et al., 2007; Scherler et al., 2011) and where melt water from glaciers supports agriculture and hydropower production. By means of remote sensing techniques and field data, supraglacial debris can be detected, and then quantified in area and thickness. Supervised classifications of satellite imagery can be used to map debris on glaciers. They use different algorithms to cluster an image based on its pixel values, and Region Of Interests (ROIs) previously selected by the human operator. This can be used to obtain a supraglacial debris mask by which surface extension can be calculated. Moreover, kinetic surface temperature data derived from satellites (such as ASTER and Landsat), can be used to quantify debris thicknesses (Mihalcea et al., 2008). Ground Control Points (GCPs) are essential to validate the obtained debris thicknesses. We took the Central Karakoram National Park (CKNP) as a representative sample for PHK area. The CKNP is 12,000 km2 wide, with more than 700 glaciers, mostly debris covered (Minora et al., 2013). Among those we find some of the widest glaciers of the World (e.g: Baltoro). To improve the knowledge on these glaciers and to better model their melt and water discharge we proceeded as follows. Firstly we ran a Supervised Maximum Likelihood (SML) classification on 2001 and 2010 Landsat images to detect debris presence and distribution. Secondly we analyzed kinetic surface temperature (from Landsat) to map debris depth. This latter attempt took also advantage from field data of debris thickness and surface rock temperatures acquired in the study area since the ablation season 2004 (see Mihalcea et al., 2006; 2008b). A mean debris thickness of ca. 5.6 cm was found, probably greater than the local "critical value" (sensu Mattson et al., 1993). Moreover, our field data indicate a local critical value of about 5 cm, above which supraglacial debris thickness would lower ice melt rates compared to that of bare ice (Mihalcea et al., 2006). These findings suggest that in the CKNP area the abundant and extensive debris coverage may result in an actual reduction of buried ice melt. Moreover, Minora et al. (2013) reported quite stable conditions of glaciers in the CKNP area in the time window 2001-2011. This glacier behavior is consistent with the largely known "Karakoram Anomaly" (Hewitt, 2005) and requires further investigations. Among other possible important factors driving such a unique glacier trend, debris depth and distribution have to be considered. This work was carried out under the umbrella of the PAPRIKA project funded and managed by EvK2CNR Committee. The authors are also grateful to the SEED project (funded by the Pakistani and Italian Governments and managed by EvK2CNR).

Minora, Umberto; Mayer, Christoph; Bocchiola, Daniele; D'Agata, Carlo; Maragno, Davide; Lambrecht, Astrid; Vuillermoz, Elisa; smiraglia, claudio; diolaiuti, guglielmina



Geologic Timeline  

NSDL National Science Digital Library

Dive into the depths of time with this Geologic Timeline. The farther you scroll down, the farther back in time you'll travel. Also, the longer a period is on this page, the longer it lasted in history!



Geology, summary  

NASA Technical Reports Server (NTRS)

Trends in geologic application of remote sensing are identified. These trends are as follows: (1) increased applications of orbital imagery in fields such as engineering and environmental geology - some specific applications include recognition of active earthquake faults, site location for nuclear powerplants, and recognition of landslide hazards; (2) utilization of remote sensing by industry, especially oil and gas companies, and (3) application of digital image processing to mineral exploration.

Sabins, F. F., Jr.



Geology Fieldnotes: Death Valley National Park, California/Nevada  

NSDL National Science Digital Library

This Death Valley National Park site contains park geology information, park maps, photographs, visitor information, and teacher features (resources for teaching geology using National Park examples). The Park Geology section contains an exaggerated cross-section showing the vertical rise within Death Valley. A link is provided to Death Valley's expanded geology page.


The Main Features of the Tibetan Dialent  

E-print Network

ounghusband Expedition, Col. L.A. Waddell, in his book 'Lhasa and its mysteries' (p. 144), published on his return from Lhasa in 1905'.2 Waddell's account of the relative richness of the Tibetan language in consonants was very much wide of the mark; he... was illustrated with tape-recordings of examples in the Balti, Golok, and Lhasa dialects.] 2. I have incidentally a personal link with Col. Waddell through my wife's grandfather, David Machonald, who was his Tibetan interpreter on the Expedition, and helped...

Sprigg, Richard K.



Main features of overexpanded triple jets  

NASA Astrophysics Data System (ADS)

The flowfield of an overexpanded triple free jet has been investigated. The flowfield was generated by three Laval nozzles set in a common end wall with equal spacing in a triangular configuration. Total pressure measurements were made for three exit Mach numbers of 1.5, 2, and 2.5 with the range of stagnation pressure from 2.9 to 4.5 atmospheres. The spacing between the nozzles based on the throat diameter was varied as 2.8, 3.6, 4.4, and 6. The triple jet has been compared to a single jet operating at the same initial flow conditions. It is shown that the triple jet in triangular configuration undergoes a transformation in its shape and axis orientation. The triple jet spreads at the base side more than at the top side. The differential spreading rate generates more flow disturbance and, therefore, enhances the mixing process.

Moustafa, Gamal H.



Main Features of the Caspian Sea Hydrology  

Microsoft Academic Search

\\u000a The Caspian Sea constantly attracts considerable attention thanks to its natural uniqueness, resource abundance, great historical\\u000a value and vital importance to human societies of the vast Caspian region. In these circumstances, improving theoretical and\\u000a applied knowledge of the sea is indispensable for addressing many complex issues. Specifically, there has been increasing\\u000a environmental concern over expanding extraction of hydrocarbons off and

Aleksey N. Kosarev; Valentin S. Tuzhilkin; Andrey G. Kostianoy


Geological Surveys Bureau Browse Area  

NSDL National Science Digital Library

Offered by the Iowa Geological Survey Bureau, the Browse Area page is a great collection of articles, photos, and maps about the state's geology geared especially to the public. Topics include Age of Dinosaurs in Iowa, Landscape Features, Satellite Image, Field Travels of Early Iowa Geologists, Meteorites in Iowa's History, Oil Exploration, and much more. This is a wonderful example of how government can provide informative and fun sites to the public without going overboard with high-end and complicated Web design.


Pennsylvania Geology  

NSDL National Science Digital Library

Three decades after it was published, the Second Geological Survey of Pennsylvania was described as "the most remarkable series of reports ever issued by any survey." Considering the diversity of other geological reports, this was no small compliment. Drawing on support from the Marion and Kenneth Pollock Libraries Program Fund, the Pennsylvania State University Libraries' Digital Preservation Unit was able to digitize not only this fabled Survey, but also the Third and Fourth Surveys as well. Visitors can use the search engine on the homepage to look for items of interest, or they can just browse through the collection at their leisure. The surveys include various maps and illustrations that track mineral deposits and the disposition and location of other natural resources. Additionally, users can look through a miscellaneous set of publications from the early 20th century related to survey work performed by the U.S. Geological Survey.


Teaching Geology  

NSDL National Science Digital Library

This rather remarkable website contains a great collection of resources for web-based instruction and demonstrations of geology concepts. The collection includes, under Classroom demonstration, the very useful SeisMac 3.0, which is an application for Mac OS X that turns a laptop computer into a " low-resolution strong-motion accelerometer," or a basic seismograph. It works by accessing the computer's Sudden Motion Sensor in order to display real-time, three axis accelerations graphs. Visitors can use the application to watch the seismic waves go up and down just by tapping their feet on the floor nearby. Other resources include Virtual Earth (an "interactive minicourse on thermal convection") and a link to Geology in the news, which collates important news stories with a geological theme.


Geological flows  

E-print Network

In this paper geology and planetology are considered using new conceptual basis of high-speed flow dynamics. Recent photo technics allow to see all details of a flow, 'cause the flow is static during very short time interval. On the other hand, maps and images of many planets are accessible. Identity of geological flows and high-speed gas dynamics is demonstrated. There is another time scale, and no more. All results, as far as the concept, are new and belong to the author. No formulae, pictures only.

Yu. N. Bratkov



ReliefSeq: A Gene-Wise Adaptive-K Nearest-Neighbor Feature Selection Tool for Finding Gene-Gene Interactions and Main Effects in mRNA-Seq Gene Expression Data  

PubMed Central

Relief-F is a nonparametric, nearest-neighbor machine learning method that has been successfully used to identify relevant variables that may interact in complex multivariate models to explain phenotypic variation. While several tools have been developed for assessing differential expression in sequence-based transcriptomics, the detection of statistical interactions between transcripts has received less attention in the area of RNA-seq analysis. We describe a new extension and assessment of Relief-F for feature selection in RNA-seq data. The ReliefSeq implementation adapts the number of nearest neighbors (k) for each gene to optimize the Relief-F test statistics (importance scores) for finding both main effects and interactions. We compare this gene-wise adaptive-k (gwak) Relief-F method with standard RNA-seq feature selection tools, such as DESeq and edgeR, and with the popular machine learning method Random Forests. We demonstrate performance on a panel of simulated data that have a range of distributional properties reflected in real mRNA-seq data including multiple transcripts with varying sizes of main effects and interaction effects. For simulated main effects, gwak-Relief-F feature selection performs comparably to standard tools DESeq and edgeR for ranking relevant transcripts. For gene-gene interactions, gwak-Relief-F outperforms all comparison methods at ranking relevant genes in all but the highest fold change/highest signal situations where it performs similarly. The gwak-Relief-F algorithm outperforms Random Forests for detecting relevant genes in all simulation experiments. In addition, Relief-F is comparable to the other methods based on computational time. We also apply ReliefSeq to an RNA-Seq study of smallpox vaccine to identify gene expression changes between vaccinia virus-stimulated and unstimulated samples. ReliefSeq is an attractive tool for inclusion in the suite of tools used for analysis of mRNA-Seq data; it has power to detect both main effects and interaction effects. Software Availability: PMID:24339943

McKinney, Brett A.; White, Bill C.; Grill, Diane E.; Li, Peter W.; Kennedy, Richard B.; Poland, Gregory A.; Oberg, Ann L.



Upper Cenozoic Geologic Map, Yellowstone Plateau Volcanic Field  

NSDL National Science Digital Library

This geologic map shows Tertiary and Quaternary rock formations, volcanic and surficial deposits, faults, contacts, and other geologic features in Yellowstone National Park. The map is freely downloadable as a PDF file.

Christiansen Robert


Antarctica Geology  

NSDL National Science Digital Library

This site contains information about the continent of Antarctica. There is a classroom practice and instructional module. The students will be able to describe the general geology of the land under the Antarctic ice and to explain from where the rocks may have come.


Geologic Time  

NSDL National Science Digital Library

This site contains 24 questions on the topic of geologic time, which covers dating techniques and unconformities. This is part of the Principles of Earth Science course at the University of South Dakota. Users submit their answers and are provided immediate feedback.

Heaton, Timothy


Geology Fieldnotes  

NSDL National Science Digital Library

This National Park Service (NPS) site delivers a brief description of the geology of the Black Hills National Park. Links to park maps, a photo album, books, videos, CDs, and a searchable data base of research needs that have been identified by the National Park Service are included. General information about the park's education and interpretive programs are also abailable.

National Park Services (NPS)


Geology of Crater Lake  

NSDL National Science Digital Library

The Geology of Crater Lake is a resource for an introductory course on the geology of Mount Mazama and the Crater Lake caldera. The actual course consists of two evening presentations and a one-day field trip. The presentations outline the mountain's geologic setting, eruptive history, and potential hazards. The field trip affords an opportunity to examine volcanic and glacial features around the caldera rim and to explore one of the most spectacular lakes in the world. Upon successful completion of this course a student will be capable of the following: to describe the geologic setting of Mount Mazama and the other Cascade volcanoes; to identify andesite, dacite, and basalt and explain how the compositions of the lavas that form these rocks influence their eruptive characters; and to outline the major types of hazards that future eruptions of Mount Mazama may pose to regional communities. Along with a course syllabus, a bibliography and related links are available. Those registered for the course can visit the Gradebook to view their marks.

Hirt, William


Geologic Framework Model (GFM2000)  

SciTech Connect

The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the geologic framework model (200 feet [61 meters]), discussed in Section 6.4.2, limits the size of features that can be resolved by the model but is appropriate for the distribution of data available and its intended use. Uncertainty and limitations are discussed in Section 6.6 and model validation is discussed in Section 7.

T. Vogt




EPA Science Inventory

Hydronet_me24 and Hydropoly_me24 depict Maine's hydrography data, based on 8-digit hydrological unit codes (HUC's) at the 1:24,000 scale. Some New Hampshire and New Brunswick hydrography data are also included. The NHD hydrography data was compiled from previous ArcIn...



EPA Science Inventory

MEOWN250 describes industrial, non-industrial, and public woodlot ownership in Maine at 1:250,000 scale. Industrial owners are those having at least one primary wood processing facility. Non-industrial owners are those with no primary wood processing facility. Public ownership...


National Archive of Geological Photographs  

NSDL National Science Digital Library

Provided by the British Geological Survey, this site contains a database of some 6,400 digitized images drawn from the National Archive of Geological Photographs (NAGP). The archive may be searched by keyword, advanced search, or browsed via themed galleries (Montserrat Volcanic Eruption, Beltmoss Quarry - working stone, Aerial photographs in and around Edinburgh, etc.). Unfortunately, the images are only available in one, rather small, size. They are accompanied by information on location, photographer, geologist, year taken, and descriptions of varying length. Additional information on the British Geological Survey may be accessed from the main page.


The Development of Geology in Serbia  

NASA Astrophysics Data System (ADS)

Geology in Serbia began to develop in the first half of the 19th century mainly for two reasons: the endeavours of Prince Miloš to expand the national economy (including mining) and the interest shown by European scientists for an unknown country. When in 1880 Jovan Žujovi? became the professor of geology and mineralogy at the High School in Belgrade, as the first Serbian geologist who studied in Belgrade and Paris, the development of geology in Serbia was strongly increased. Zujovic's successors: Sava Uroševi? (mineralogy, petrology), Svetolik Radovanovi? (palaeontology), Petar Pavlovi? (palaeontology), Vladimir Petkovi? (regional geology), Jelenko Mihailovi? (seismology) and others continued geological investigations in Serbia.

Jovic, V.



National Park Service: Tour of Park Geology  

NSDL National Science Digital Library

The tour of Park geologic resources includes pages specific to individual National Parks, Monuments, Recreation Areas, Preserves, Seacoasts, Reserves, and Recreation Areas. These pages are indexed by park name, state, or by one of the following topics: basin and range, caves, Colorado Plateau, fossils, glaciers, hot springs, human use, mountain building, oldest rocks, plate tectonics, river systems, sand dunes, shoreline geology, or volcanoes. Organization of each of the pages typically follows a NPS template with categories for park geology, maps, photographs, geologic research, related links, visitor information, multimedia, and "teacher features" (educational resources and links for teaching geology with National Park examples.) Common subjects that are addressed at various park sites include: minerals, rocks, fossils, cave and karst systems, coastlines, glaciers, volcanoes, faults, landforms, landslides, structures, fluvial systems, sediments, soils, stratigraphic relations, processes that form or act on geologic features and their chemical compositions, and the history of the planet and its life forms.


Maryland Geological Survey  

NSDL National Science Digital Library

The Maryland Geological Survey (MGS) provides excellent information about the geology of the Old Line State, along with public reports and updates on various ongoing projects. The homepage features live earthquake data and maps that deal with oyster habitat restoration projects, fact sheets, and new reports on lead concentrations in well water across the state. The Publications area contains dozens of maps (such as that of the "Maryland Gold District") and links to Popular Publications such as "Caves of Maryland" and "Baltimore Building Stones Tour." The Data section is also quite useful, offering a number of informative data sets on sediment distribution in the Chesapeake Bay and Baltimore Harbor. Finally, the Education area contains an "Ask a Geologist" link that's quite useful for getting answers to Earth-based queries.


Geologic mapping of Vesta  

NASA Astrophysics Data System (ADS)

We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High-Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits. Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.

Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; Le Corre, L.; Preusker, F.; Raymond, C. A.; Reddy, V.; Russell, C. T.; Roatsch, T.; Schenk, P. M.



Vesta: A Geological Overview  

NASA Astrophysics Data System (ADS)

Observations from the Dawn spacecraft [1] enable the derivation of the asteroid 4Vesta's shape, facilitate mapping of the surface geology, and provide the first evidence for interpreting Vesta's geological evolution. Science data were acquired during the approach to Vesta, a circular polar (Survey) orbit at an altitude of 2700 km providing ~ 230 m/pix camera scale, and during a circular high-altitude mapping orbit (HAMO) at 700 km altitude with a camera scale of ~ 65 m/pixel. Currently Dawn is orbiting Vesta in a low-altitude mapping orbit (LAMO) at 210 km altitude, yielding a global image coverage of ~20 m/pixel at the time of EGU [2,3,4,5]. Geomorphology and distribution of surface features provide evidence for impact cratering, tectonic activity, and regolith and probable volcanic processes. Craters with dark rays, bright rays, and dark rim streaks have been observed, suggesting buried stratigraphy. The largest fresh craters retain a simple bowl-shaped morphology, with depth/diameter ratios roughly comparable to lunar values. The largest crater Rheasilvia, an ~500 km diameter depression at the south pole, includes an incomplete inward facing cuspate scarp and a large central mound surrounded by unusual complex arcuate ridge and groove patterns, and overlies an older ~400 km wide basin. A set of large equatorial troughs is related to these south polar structures. Vesta exhibits rugged topography ranging from -22 km to +19 km relative to a best fit ellipsoidal shape. Vesta's topography has a much greater range in elevation relative to its radius (15%) than do the Moon and Mars (1%) or the Earth (0.3%), but less than highly battered smaller asteroids like Lutetia (40%). This also identifies Vesta as a transitional body between asteroids and planets. The surface of Vesta exhibits very steep topographic slopes that are near the angle of repose. Impacts onto these steep surfaces, followed by slope failure, make resurfacing - due to impacts and their associated gravitational forces and seismic activity - an important geologic process on Vesta that significantly alters the morphology of geologic features and adds to the complexity of its geologic history. In general, Vesta's geology is more like the Moon and rocky planets than other asteroids.

Jaumann, R.



Geologic Mapping of the Moon - Copernicus Crater  

NSDL National Science Digital Library

This is a lesson about the Moon's Copernicus Crater. Learners will use observation to make their own geologic map of the Crater. They then identify crater features in a photogeologic image and use those observations to color their map with the appropriate geologic units.



EPA Science Inventory

Bedrocksqpa_region_pws is a REGIONS SDE layer of bedrock source water protection areas in Maine with a high, moderate, or low probability of contributing water to community public water supplies. The Maine Drinking Water Program (MEDWP), in cooperation with the Maine Geological S...


Geologic map of the Metis Mons quadrangle (V–6), Venus  

USGS Publications Warehouse

The Metis Mons quadrangle (V–6) in the northern hemisphere of Venus (lat 50° to 75° N., long 240° to 300° E.) includes a variety of coronae, large volcanoes, ridge and fracture (structure) belts, tesserae, impact craters, and other volcanic and structural features distributed within a plains setting, affording study of their detailed age relations and evolutionary development. Coronae in particular have magmatic, tectonic, and topographic signatures that indicate complex evolutionary histories. Previously, the geology of the map region has been described either in general or narrowly focused investigations. Based on Venera radar mapping, a 1:15,000,000-scale geologic map of part of the northern hemisphere of Venus included the V–6 map region and identified larger features such as tesserae, smooth and hummocky plains materials, ridge belts, coronae, volcanoes, and impact craters but proposed little relative-age information. Global-scale mapping from Magellan data identified similar features and also determined their mean global ages with crater counts. However, the density of craters on Venus is too low for meaningful relative-age determinations at local to regional scales. Several of the coronae in the map area have been described using Venera data (Stofan and Head, 1990), while Crumpler and others (1992) compiled detailed identification and description of volcanic and tectonic features from Magellan data. The main purpose of this map is to reconstruct the geologic history of the Metis Mons quadrangle at a level of detail commensurate with a scale of 1:5,000,000 using Magellan data. We interpret four partly overlapping stages of geologic activity, which collectively resulted in the formation of tesserae, coronae (oriented along structure belts), plains materials of varying ages, and four large volcanic constructs. Scattered impact craters, small shields and pancake-shaped domes, and isolated flows superpose the tectonically deformed materials and appear to be the most youthful materials in the map region.

Dohm, James M.; Tanaka, Kenneth L.; Skinner, James A.




USGS Publications Warehouse

The Big John caldera is an obscure subsidence structure on the western flank of the Tushar Mountains, within the Marysvale volcanic field of west-central Utah. The caldera subsided about 23 m. y. ago in response to ash-flow eruptions that deposited the Delano Peak Tuff Member of the Bullion Canyon Volcanics. During caldera development and subsequent filling and erosion, several geologic environments were formed that were favorable for the concentration of uranium; these environments form the focus of this report describing the major geologic features and main mining areas of the Marysvale volcanic field.

Steven, Thomas A.; Cunningham, Charles G.; Anderson, John J.



The Geologic Time Scale  

NSDL National Science Digital Library

This site contains a large, easy to read, detailed geologic time scale for the Phanerozoic Eon (544 million years ago - Present). This is the period of time, also known as an eon, between the end of the Precambrian and today. The Phanerozoic begins with the start of the Cambrian period, 544 million years ago. It encompasses the period of abundant, complex life on Earth. The chart includes the Era, Period or System, and the Epoch or Series and features a brief description of each.


British Geological Survey: Geomagnetism  

NSDL National Science Digital Library

The British Geological Survey illustrates its work monitoring the earth's magnetic field in the UK at this website. Users can learn about the six observatories located in the Atlantic and the UK. Using the Grid Magnetic Angle Calculator, visitors can determine the angle between the British National grid north and the magnetic north. The website features Mercator projects created with the World Magnetic Model, geomagnetic data for the academic community, space weather services for industry, and more. Students can find tutorials about the Earth's magnetic field, magnetic reversals, and magnetic storms.


NSDL National Science Digital Library

This clearinghouse features an extensive selection of maps, imagery, news articles, and other Earth science resources. Highlights include an interactive map of meteor impact structures, an interactive map showing the highest points in the 50 states, and a state-by-state directory of imagery, maps, and links to geological information. There are also listings for imagery for U.S. cities and the continents, a map of the most dangerous volcanoes in the U.S., a mineral identification chart, and information on stream discharge monitoring.



National Park Service Geologic Resources  

NSDL National Science Digital Library

This collection of images shows geologic features in many of the country's national parks. The collection is searchable by park name, state, year, or by the name of the photograph. Each photo is accompanied by a brief caption that provides the photographer's name, the date, and a description of the photo.


Weird Geology: The Devil's Tower  

NSDL National Science Digital Library

This page features a brief introduction to the several theories about the geological processes that formed Devil's Tower, which rises 1,267 feet above the nearby Belle Fourche River and is still considered a sacred place by some Native American Tribes. Information on climbing the tower as well as images and a cross section are provided.

Krystek, Lee; Mystery, The M.


The National Park Service: Park Geology  

NSDL National Science Digital Library

A National Park Service (NPS) site primarily composed of three main sections corresponding to the following program areas within the Geologic Resources Division (GRD): Disturbed Lands Restoration and Abandoned Mineral Lands (AML), Mineral Management Programs, and Geology and Soils Programs. Of these, the first two consist principally of textual resources pertaining to Park System procedures, policies, and regulations - as well as reports on example restoration projects with a focus on stream corridor restoration, bioengineering, riparian management, and revegetation. Perhaps of most interest to educators will be the third main program area, the Geology and Soils Programs section. Here are included textual resources pertaining to NPS-GRD programs on cave and karst formations, coastal and shoreline geology, paleontology, soils (e.g., soil biology and soil surveying), geological indicators (geoindicators), and stratigraphy. Lastly, a searchable photographic collection and geologic glossary are available.


2014 Maine Earth Science Day  

USGS Multimedia Gallery

On October 15, 2014 Maine Earth Science Day was held at the Maine State Museum in Augusta. The USGS was represented by Charlie Culbertson, left, and Nick Waldron, right. This photo was taken as the two were packing up for the day, and shows a main feature of the table, a touch screen display with th...


Geologic nozzles  

USGS Publications Warehouse

The importance of the low characteristic velocities of geologic fluids has not been widely recognized, and as a result, the importance of supercritical and supersonic flow in geological processes has generally been underestimated. The lateral blast at Mount St. Helens, Washington, propelled a gas heavily laden with dust into the atmosphere. Because of the low sound speed in this gas (about 100 m/s), the flow was internally supersonic. Old Faithful Geyser, Wyoming, is a converging-diverging nozzle in which liquid water refilling the conduit during the recharge cycle changes during eruption into a two-phase liquid-vapor mixture with a very low sound velocity. The high sound speed of liquid water determines the characteristics of harmonic tremor observed at the geyser during the recharge interval, whereas the low sound speed of the liquid-vapor mixture influences the fluid flow characteristics of the eruption. At the rapids of the Colorado River in the Grand Canyon, Arizona, the channel is constricted into the shape of a converging-diverging nozzle by the debris flows that enter from tributary canyons. Both subcritical and supercritical flow occur within the rapids. -from Author

Werner, Kieffer S.



Geology Fieldnotes: Fossil Butte National Monument, Wyoming  

NSDL National Science Digital Library

Fossil Butte National Monument preserves a 50-million year old bed of Eocene limestone that contains one of the richest fossil deposits in the world. Site features include park geology information, photographs of fossils, related links, visitor information, multimedia resources, and resources for teaching geology with National Park examples. The park geology section discusses the Monument's geologic history and fossil beds, focusing on the conditions that created the fossil-rich region and on the history of fossil collection in the area. A map of the Monument is also included.


Geology Fieldnotes: Dinosaur National Monument, Colorado / Utah  

NSDL National Science Digital Library

Dinosaur National Monument preserves a fossil bone deposit containing the bones of hundreds of dinosaurs, which was once enclosed in the sands of an ancient river. Features of the site include park geology information, maps, photographs, related links, visitor information, multimedia resources, and resources for teaching geology with National Park examples. The geology section discusses the park's geologic history and fossil beds. A park map of the Monument is included, and the photo album section contains drawings of some of the dinosaur species found at the Monument's Dinosaur Quarry.


Geology Fieldnotes: Badlands National Park, South Dakota  

NSDL National Science Digital Library

Badlands National Park, located in southwestern South Dakota, consists of 244,000 acres of sharply eroded buttes, pinnacles and spires blended with the largest, protected mixed grass prairie in the United States. Features include information on park geology, maps, photographs, visitor information, links to related publications, and lesson plans for teaching geology with National Park examples. The park geology section discusses the Park's geologic history during the Eocene and Oligocene epochs and the rich fossil deposits found there. Maps of the park and the surrounding area are included.


Geology. Grade 6. Anchorage School District Elementary Science Program.  

ERIC Educational Resources Information Center

This resource book introduces sixth-grade children to the environment by studying rocks and other geological features. Nine lessons are provided on a variety of topics including: (1) geologic processes; (2) mountain building; (3) weathering; (4) geologic history and time; (5) plate tectonics; (6) rocks and minerals; (7) mineral properties; (8)…

Anchorage School District, AK.


Main Report  

PubMed Central

Background: States vary widely in their use of newborn screening tests, with some mandating screening for as few as three conditions and others mandating as many as 43 conditions, including varying numbers of the 40+ conditions that can be detected by tandem mass spectrometry (MS/MS). There has been no national guidance on the best candidate conditions for newborn screening since the National Academy of Sciences report of 19751 and the United States Congress Office of Technology Assessment report of 1988,2 despite rapid developments since then in genetics, in screening technologies, and in some treatments. Objectives: In 2002, the Maternal and Child Health Bureau (MCHB) of the Health Resources and Services Administration (HRSA) of the United States Department of Health and Human Services (DHHS) commissioned the American College of Medical Genetics (ACMG) to: Conduct an analysis of the scientific literature on the effectiveness of newborn screening.Gather expert opinion to delineate the best evidence for screening for specified conditions and develop recommendations focused on newborn screening, including but not limited to the development of a uniform condition panel.Consider other components of the newborn screening system that are critical to achieving the expected outcomes in those screened. Methods: A group of experts in various areas of subspecialty medicine and primary care, health policy, law, public health, and consumers worked with a steering committee and several expert work groups, using a two-tiered approach to assess and rank conditions. A first step was developing a set of principles to guide the analysis. This was followed by developing criteria by which conditions could be evaluated, and then identifying the conditions to be evaluated. A large and broadly representative group of experts was asked to provide their opinions on the extent to which particular conditions met the selected criteria, relying on supporting evidence and references from the scientific literature. The criteria were distributed among three main categories for each condition: The availability and characteristics of the screening test;The availability and complexity of diagnostic services; andThe availability and efficacy of treatments related to the conditions. A survey process utilizing a data collection instrument was used to gather expert opinion on the conditions in the first tier of the assessment. The data collection format and survey provided the opportunity to quantify expert opinion and to obtain the views of a diverse set of interest groups (necessary due to the subjective nature of some of the criteria). Statistical analysis of data produced a score for each condition, which determined its ranking and initial placement in one of three categories (high scoring, moderately scoring, or low scoring/absence of a newborn screening test). In the second tier of these analyses, the evidence base related to each condition was assessed in depth (e.g., via systematic reviews of reference lists including MedLine, PubMed and others; books; Internet searches; professional guidelines; clinical evidence; and cost/economic evidence and modeling). The fact sheets reflecting these analyses were evaluated by at least two acknowledged experts for each condition. These experts assessed the data and the associated references related to each criterion and provided corrections where appropriate, assigned a value to the level of evidence and the quality of the studies that established the evidence base, and determined whether there were significant variances from the survey data. Survey results were subsequently realigned with the evidence obtained from the scientific literature during the second-tier analysis for all objective criteria, based on input from at least three acknowledged experts in each condition. The information from these two tiers of assessment was then considered with regard to the overriding principles and other technology or condition-specific recommendations. On the basis of this information, conditions were assigned to one of thr



Geologic Heritage in the National Parks  

NSDL National Science Digital Library

What is geologic heritage, you ask? In short, it "encompasses the significant geologic features, landforms, and landscapes characteristic of our Nation." The National Park Service has a special program to document these sites and to provide the public with resources about these unique destinations. The materials here are divided into four featured programs: Fossil Resources, Geologic Heritage Conservation, Park Geology Tour, and Cave and Karst Resources. Using the Park Geology Tour, visitors can search through thematic areas such as glaciers, fossils, and plate tectonics to find highlights from a vast array of National Park units. The Cave and Karst Resources program brings together resources on some of the over 4,900 caves in the National Park system, along with detailed photo galleries, newsletters, and brochures. Finally, under Fossil Resources visitors can find information about National Fossil Day and even helpful lesson plans for teachers.



Geology Fieldnotes: Bryce Canyon National Park, Utah  

NSDL National Science Digital Library

Located on the Colorado Plateau in Utah, this canyon is comprised mostly of sedimentary rocks, and continues to be eroded and shaped by the Paria River. Its geologic and human history are outlined on this site, including the formation of the canyon, from the Cretaceous period (144 million years ago) to the present, and geologic features, such as fins, columns, pinnacles, and hoodoos. Visitor information, links to other resources, maps, and a teacher feature (resources for teaching geology with National Park examples) are also available.

Foos, Annabelle


Geological well log analysis. Third ed  

Microsoft Academic Search

Until recently, well logs have mainly been used for correlation, structural mapping, and quantitive evaluation of hydrocarbon bearing formations. This third edition of Geologic Well Log Analysis, however, describes how well logs can be used for geological studies and mineral exploration. This is done by analyzing well logs for numerous parameters and indices of significant mineral accumulation, primarily in sediments.




Bedrock geologic map of Vermont  

USGS Publications Warehouse

The Bedrock Geologic Map of Vermont is the result of a cooperative agreement between the U.S. Geological Survey (USGS) and the State of Vermont. The State's complex geology spans 1.4 billion years of Earth's history. The new map comes 50 years after the most recent map of the State by Charles G. Doll and others in 1961 and a full 150 years since the publication of the first geologic map of Vermont by Edward Hitchcock and others in 1861. At a scale of 1:100,000, the map shows an uncommon level of detail for State geologic maps. Mapped rock units are primarily based on lithology, or rock type, to facilitate derivative studies in multiple disciplines. The 1961 map was compiled from 1:62,500-scale or smaller maps. The current map was created to integrate more detailed (1:12,000- to 1:24,000-scale) modern and older (1:62,500-scale) mapping with the theory of plate tectonics to provide a framework for geologic, tectonic, economic, hydrogeologic, and environmental characterization of the bedrock of Vermont. The printed map consists of three oversize sheets (52 x 76 inches). Sheets 1 and 2 show the southern and northern halves of Vermont, respectively, and can be trimmed and joined so that the entire State can be displayed as a single entity. These sheets also include 10 cross sections and a geologic structure map. Sheet 3 on the front consists of descriptions of 486 map units, a correlation of map units, and references cited. Sheet 3 on the back features a list of the 195 sources of geologic map data keyed to an index map of 7.5-minute quadrangles in Vermont, as well as a table identifying ages of rocks dated by uranium-lead zircon geochronology.

Ratcliffe, Nicholas M.; Stanley, Rolfe S.; Gale, Marjorie H.; Thompson, Peter J.; Walsh, Gregory J.; With contributions by Hatch, Norman L., Jr.; Rankin, Douglas W.; Doolan, Barry L.; Kim, Jonathan; Mehrtens, Charlotte J.; Aleinikoff, John N.; McHone, J. Gregory; Cartography by Masonic, Linda M.



Geologic Technician New Curriculum  

ERIC Educational Resources Information Center

Describes a developing two-year geologic technician program at Bakersfield College in which a student may major in five areas - geologic drafting, land and legal, geologic assistant, engineering or paleontology. (RR)

Karp, Stanley E.



Geology of Wisconsin  

NSDL National Science Digital Library

This site contains geologic maps of Wisconsin including relief and topography maps; maps of the bedrock geology and elevation, Pleistocene geology, thickness of unconsolidated deposits, and soils; and atlases of geologic history. There is information on: rock types, Paleozoic formations, and the Pleistocene and Precambrian history of Wisconsin; how to obtain a geologic map of personal property; the Niagara Escarpment; castellated mounds; geologic field localities; and unusual weather events in Wisconsin. There is also a data table on earthquakes in Wisconsin.

Steven Dutch



Multidisciplinary analysis of Skylab photography for highway engineering purposes. [Maine  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. The greatly increased resolution of ground features by Skylab as compared with LANDSAT is considered to be best in the S190B high resolution film, followed by S190A camera stations 4, 5, and 6 respectfully. Results of the study of vegetation damage sites using data derived from S190A film were disappointing. The major cause of detection problems is the graininess of the CIR film. Good results were achieved for the hydrology-land use study. Both camera systems gave better agreement with the ground truth than did LANDSAT imagery. Surficial geology and glacial landform areas were clearly visible in single scenes. Several previously unmapped or unknown features were detected, especially in eastern coastal Maine.

Stoeckeler, E. G.; Woodman, R. G. (principal investigators); Farrell, R. S.



Preliminary Geologic Map of Newberry Volcano, Oregon  

NASA Astrophysics Data System (ADS)

The late Pleistocene and Holocene rear-arc Newberry Volcano is located in central Oregon east of the Cascades arc axis. Total area covered by the broad, shield-shaped edifice and its accompanying lava field is about 3,200 square kilometers, encompassing all or part of 38 U.S.G.S. 1:24,000-scale quadrangles. Distance from the northernmost extent of lava flows to the southernmost is about 115 km; east-west maximum width is less than 50 km. A printed version of the preliminary map at its intended publication scale of 1:50,000 is 8 ft high by 4 ft wide. More than 200 units have been identified so far, each typically consisting of the lava flow(s) and accompanying vent(s) that represent single eruptive episodes, some of which extend 10’s of kilometers across the edifice. Vents are commonly aligned north-northwest to north-northeast, reflecting a strong regional tectonic influence. The largest individual units on the map are basaltic, some extending nearly 50 km to the north through the cities of Bend and Redmond from vents low on the northern flank of the volcano. The oldest and most distal of the basalts is dated at about 350 ka. Silicic lava flows and domes are confined to the main edifice of the volcano; the youngest rhyolite flows are found within Newberry Caldera, including the rhyolitic Big Obsidian Flow, the youngest flow at Newberry Volcano (~1,300 yr B.P.). The oldest known rhyolite dome is dated at about 400 ka. Andesite units (those with silica contents between 57% and 63%) are the least common, with only 13 recognized to date. The present 6.5 by 8 km caldera formed about 75 ka with the eruption of compositionally-zoned rhyolite to basaltic andesite ash-flow tuff. Older widespread silicic ash-flow tuffs imply previous caldera collapses. Approximately 20 eruptions have occurred at Newberry since ice melted off the volcano in latest Pleistocene time. The mapping is being digitally compiled as a spatial geodatabase in ArcGIS. Within the geodatabase, feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The geodatabase can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. Map colors are being used to indicate compositions. Some map patterns have been added to distinguish the youngest lavas and the ash-flow tuffs. Geodatabase information can be used to better understand the evolution, growth, and potential hazards of the volcano.

Donnelly-Nolan, J. M.; Ramsey, D. W.; Jensen, R. A.; Champion, D. E.; Calvert, A. T.



Visible Geology - Interactive online geologic block modelling  

NASA Astrophysics Data System (ADS)

Geology is a highly visual science, and many disciplines require spatial awareness and manipulation. For example, interpreting cross-sections, geologic maps, or plotting data on a stereonet all require various levels of spatial abilities. These skills are often not focused on in undergraduate geoscience curricula and many students struggle with spatial relations, manipulations, and penetrative abilities (e.g. Titus & Horsman, 2009). A newly developed program, Visible Geology, allows for students to be introduced to many geologic concepts and spatial skills in a virtual environment. Visible Geology is a web-based, three-dimensional environment where students can create and interrogate their own geologic block models. The program begins with a blank model, users then add geologic beds (with custom thickness and color) and can add geologic deformation events like tilting, folding, and faulting. Additionally, simple intrusive dikes can be modelled, as well as unconformities. Students can also explore the interaction of geology with topography by drawing elevation contours to produce their own topographic models. Students can not only spatially manipulate their model, but can create cross-sections and boreholes to practice their visual penetrative abilities. Visible Geology is easy to access and use, with no downloads required, so it can be incorporated into current, paper-based, lab activities. Sample learning activities are being developed that target introductory and structural geology curricula with learning objectives such as relative geologic history, fault characterization, apparent dip and thickness, interference folding, and stereonet interpretation. Visible Geology provides a richly interactive, and immersive environment for students to explore geologic concepts and practice their spatial skills.; Screenshot of Visible Geology showing folding and faulting interactions on a ridge topography.

Cockett, R.



History of Geology.  

ERIC Educational Resources Information Center

Discusses: (1) geologists and the history of geology; (2) American historians and the history of geology; (3) history of geology in the 1980s; (4) sources for the history of geology (bibliographies, dictionaries, encyclopedias, handbooks, periodicals, public/official histories, compilations, and books); (5) research opportunities; and (6) other…

Greene, Mott T.



GEOLOGY (GEOL) Robinson Foundation  

E-print Network

177Geology GEOLOGY (GEOL) Robinson Foundation PROFESSOR HARBOR ASSOCIATE PROFESSORS KNAPP, CONNORS ASSISTANT PROFESSORS GREER, RAHL MAJORS BACHELOR OF SCIENCE A major in geology leading to a Bachelor of Science degree consists of 50 credits as follows: 1. Geology 160, 185, 211, 311, 330, 350

Dresden, Gregory


Tennessee Division of Geology  

NSDL National Science Digital Library

This is the homepage of the Geology Division of the Tennessee Department of Environment and Conservation. It provides information on the division's programs, including geologic hazards research, public service, education programs, basic and applied research on geology and mineral resources, publication of geologic information, permitting of oil and gas wells, and regulation of Tennessee's oil and gas industry. Materials include a catalog of publications, maps, geologic bulletins, and the Public Information series of pamphlets; the Geology Division Newsletter; and information on the state's mineral industry. There is also a section on the Gray Fossil Site, an unusual assemblage of fossils and sedimentary geology encountered during road construction near the town of Gray, Tenessee.


Main Injector power distribution system  

SciTech Connect

The paper describes a new power distribution system for Fermilab's Main Injector. The system provides 13.8 kV power to Main Injector accelerator (accelerator and conventional loads) and is capable of providing power to the rest of the laboratory (backfeed system). Design criteria, and features including simulation results are given.

Cezary Jach and Daniel Wolff



Petroleum geology of Tunisia  

SciTech Connect

Recent discoveries and important oil shows have proven the existence of hydrocarbons in newly identified depocenters and reservoirs. In general, except for some areas around the producing fields, Tunisia is largely underdrilled. The national company ETAP has decided to release data and to publish a synthesis on the petroleum geology of Tunisia. The geology of Tunisia provides a fine example of the contrast between Alpine folding, which typifies northern Tunisia and the African craton area of the Saharan part. Eastern Tunisia corresponds to an unstable platform forming plains or low hills and extending eastwards to the shallow Pelagian Sea. There are a wide variety of basins: central and northern Tunisia represents a front basin the Saharan Ghadames basin or the Chott trough are sag basins; the Gulf of Gabes was formed as a distension margin the Gulf of Hammamet is a composite basin and several transversal grabens cut across the country, including offshore, and are rift-type basins. All these features are known to be oil prolific throughout the world. Two large fields and many modest-size pools are known in Tunisia. Oil and gas fields in the surrounding countries, namely the Saharan fields of Algeria and Libya the large Bouri field offshore Tripolitania and discoveries in the Italian part of the Straits of Sicily, suggest a corresponding potential in Tunisia. Exposed paleogeographic and structural maps, balanced sections, and examples of fields and traps will support an optimistic evaluation of the future oil exploration in Tunisia.

Burollet, P.F. (CIFEG, Paris (France)); Ferjami, A.B.; Mejri, F. (ETAP, Tunis (Tunisia))



Vermont Geological Survey  

NSDL National Science Digital Library

The Vermont Geological Survey, also known as the Division of Geology and Mineral Resources in the Department of Environmental Conservation, conducts surveys and research relating to the geology, mineral resources and topography of the State. This site provides details about the states geology with a downloadable state geologic map and key, state rock information, gold in Vermont, fossils found in the state, bedrock mapping details, stream geomorphology, the Champlain thrust fault, earthquakes, radioactive waste and links for additional information.


Oklahoma Geological Survey  

NSDL National Science Digital Library

The Oklahoma Geological Survey is a state agency dedicated to geological research and public service. This site contains information on earthquakes, geographic names, general Oklahoma geology, and the mountains and water resources of the state. There are educational materials available to order, many of which are free. Geologic maps indicate rock types and ages, as well as the geologic provinces of the state. Links are provided for more resources.


Windows on Maine  

NSDL National Science Digital Library

Created with funds provided by the Institute of Museum and Library Services (IMLS), Windows on Maine contains interesting and informative programs and video clips from Maine Public Broadcasting and other partners. On their homepage, visitors can use their interactive map and timeline to locate video clips of interest, and they can also search the entire collection for specific items. Visitors can also use the subject category menu to look over 25 different headings, including "earth sciences", "land disputes", and "Penobscot tribe". The map feature is a real pip, and visitors can customize their search by location and date, and it's a great way to learn about different regions, including Aroostook County (also known as "the County") and Downeast. Also, many of the videos also have additional resources attached to them, such as railroad timetables, historic photographs, and so on.


Venus geology  

NASA Astrophysics Data System (ADS)

The Magellan mission to Venus is reviewed. The scientific investigations conducted by 243-day cycles encompass mapping with a constant incidence angle for the radar, observing surface changes from one cycle to the next, and targeting young-looking volcanos. The topography of Venus is defined by the upper boundary of the crust and upwelling from lower domains. Tectonic features such as rift zones, linear mountain belts, ridge belts, and tesserae are described. The zones of tesserae are unique to the planet. Volcanism accounts for about 80 percent of the observed surface, the remainder being volcanic deposits which have been reworked by tectonism or impacts. Magellan data reveal about 900 impact craters with flow-like ejecta resulting from the fall of meteoroids. It is concluded that the age of the Venusian surface varies between 0 and 800 million years. Tectonic and volcanic activities dominate the formation of the Venus topography; such processes as weathering and erosion are relatively unimportant on Venus.

McLaughlin, W. I.



Digital geologic map and GIS database of Venezuela  

USGS Publications Warehouse

The digital geologic map and GIS database of Venezuela captures GIS compatible geologic and hydrologic data from the 'Geologic Shaded Relief Map of Venezuela,' which was released online as U.S. Geological Survey Open-File Report 2005-1038. Digital datasets and corresponding metadata files are stored in ESRI geodatabase format; accessible via ArcGIS 9.X. Feature classes in the geodatabase include geologic unit polygons, open water polygons, coincident geologic unit linework (contacts, faults, etc.) and non-coincident geologic unit linework (folds, drainage networks, etc.). Geologic unit polygon data were attributed for age, name, and lithologic type following the Lexico Estratigrafico de Venezuela. All digital datasets were captured from source data at 1:750,000. Although users may view and analyze data at varying scales, the authors make no guarantee as to the accuracy of the data at scales larger than 1:750,000.

Garrity, Christopher P.; Hackley, Paul C.; Urbani, Franco



Geology Fieldnotes: Theodore Roosevelt National Park, North Dakota  

NSDL National Science Digital Library

This Theodore Roosevelt National Park site contains park geology information, park maps, photographs, related links, visitor information, and teacher features (resources for teaching geology with National Park examples). The park geology section discusses the Park's geologic history and the region's role in shaping Theodore Roosevelt's conservation efforts while he was President. The section also contains a link to information on the geology of Theodore Roosevelt National Park. The park maps section contains an area map as well as two maps detailing the North and South Units of the Park.


Kentucky Geological Survey  

NSDL National Science Digital Library

The University of Kentucky maintains the Kentucky Geological Survey Web site. Visitors will find a number of educational general information pages on rocks and minerals, fossils, coal, geologic hazards, industrial minerals, maps and GIS, oil and natural gas, and water, as well as the general geology of Kentucky. Each page contains specific information, data, and research summaries from the university. The geology of Kentucky page, for example, shows a map of geologic periods and gives descriptions of the rock strata in the state, a description of its landforms, and a geological photo album of physiographic regions and points of interest.


Glossary of Geologic Terms  

NSDL National Science Digital Library

This page from Iowa State University presents a general glossary of geologic terms. The site would be a good reference for geology coursework. This glossary of geologic terms is based on the glossary in Earth: An Introduction to Geologic Change, by S. Judson and S.M. Richardson (Englewood Cliffs, NJ, Prentice Hall, 1995). Where possible, definitions conform generally, and in some cases specifically, to definitions given in Robert L Bates and Julia A Jackson (editors), Glossary of Geology, 3rd ed., American Geological Institute, Alexandria, Virginia, 1987.


Relief and geology of the north polar region of the planet Venus  

NASA Technical Reports Server (NTRS)

Description of topographic features is given for the North polar region of the planet Venus. Principal geomorphic types of terrain are characterized as well as their geologic relations. Relative ages of geologic units in Venus North polar region are discussed.

Kuzmin, R. O.; Burba, G. A.; Shashkina, V. P.; Bogomolov, A. F.; Zherikhin, N. V.; Skrypnik, G. I.; Kudrin, L. V.; Bergman, M. Y.; Rzhiga, O. N.; Sidorenko, A. I.



Geologic investigations  

SciTech Connect

The Climax stock is a composite granitic intrusive of Cretaceous age, composed of quartz monzonite and granodiorite, which intrudes rocks of Paleozoic and Precambrian age. Tertiary volcanic rocks, consisting of ash-flow and ash-fall tuffs, and tuffaceous sedimentary rocks overlie the sedimentary rocks and the stock. Erosion has removed much of the Tertiary volcanic rocks. Hydrothermal alteration of quartz monzonite and granodiorite is found mainly along joints and faults and varies from location to location. The Paleozoic carbonate rocks have been thermally and metasomatically altered to marble and tactite as much as 457 m (1500 ft) from the contact with the stock, although minor discontinuous metasomatic effects are noted in all rocks out to 914 m (3000 ft). Three major faults which define the Climax area structurally are the Tippinip, Boundary and Yucca faults. North of the junction of the Boundary and Yucca faults, the faults are collectively referred to as the Butte fault. The dominant joint sets and their average attitudes are N 32{degrees} W, 22{degrees} NE; N 60{degrees} W, vertical and N 35{degrees} E, vertical. Joints in outcrop are weathered and generally open, but in subsurface, the joints are commonly filled and healed with secondary minerals. 12 refs., 6 figs., 1 tab.

Orkild, P.P. [Geological Survey, Denver, CO (USA); Baldwin, M.J.; Townsend, D.R. [Fenix and Scisson, Inc., Mercury, NV (USA)



Utah Geological Survey: Teaching Geology Resources  

NSDL National Science Digital Library

From Arches National Park to the towering cliffs at Castle Rock Campground, Utah has some remarkable geology on display. The Utah Geological Survey decided to draw on these fantastic "outdoor laboratories" and create a set of resources designed for science educators. While some of the resources are geared towards users in Utah, many of the sections contain helpful overviews that will help all educators remain on a steady foundation of geologic knowledge. One key area on the site is the "Earthquakes & Geologic Hazards" section. Here, visitors can find well-composed and straight forward summaries on topics like liquefaction, ground cracks, and fault lines. Moving on to the "Teacher Resources" area, visitors will find the delightful "Glad You Asked" articles and the very useful "Teacher's Corner" column which provides information on reading a stone wall and geologic stretching.


Bald Mountain, Washington Plantation, Maine  

NSDL National Science Digital Library

This guide provides information on the geology of Bald Mountain, an outstanding example of an unvegetated mountain summit in western Maine. Topics include the petrology of the metamorphic rocks exposed on the mountain (layered quartzite and schist), which preserve evidence of their sedimentary origin (graded bedding, cross-bedding). There is also information on the glacial history of the area, as indicated by the presence of glacial striations and erratics. For visitors, there is information on permission and access, directions, sampling information, and activities. References are included.


GSA Geologic Time Scale  

NSDL National Science Digital Library

This Geological Society of America (GSA) site contains a detailed geologic time scale as an educational resource. It may be downloaded to a larger size, and includes all Eras, Eons, Periods, Epochs and ages as well as magnetic polarity information.



Geologic Hazards: Geomagnetism  

NSDL National Science Digital Library

Anyone researching or interested in geomagnetism will appreciate the US Geological Survey's Geologic Hazards: Geomagnetism Web site. Visitors will find research publications, various downloadable magnetic charts, models, data plots, an online calculator for magnetic fields, and more.



Geophysics & Geology Inspected.  

ERIC Educational Resources Information Center

Summarizes findings of a recently published report of the Canadian Geoscience Council, which includes the following topics regarding college geology: facilities; teaching; undergraduate enrollments; postgraduate enrollments; geologic research; and integration of Canadian geoscience with other countries. (CS)

Neale, E. R. W.



Maine Cooperative Fish and Wildlife Research Unit and Department of Wildlife Ecology, University of Maine  

E-print Network

Maine Cooperative Fish and Wildlife Research Unit and Department of Wildlife Ecology, University Fisheries and Wildlife United States Geological Survey United States Fish and Wildlife Service Wildlife of this report in any way is withheld pending specific authorization from the Leader, Maine Cooperative Fish

Thomas, Andrew


South Carolina Geological Survey  

NSDL National Science Digital Library

The South Carolina Geological Survey (SCGS) homepage contains information about state mapping, education and outreach programs, and recent news. For educators, there is the Earth Science education series of publications which includes presentations and page-size graphics on such topics as earthquakes, plate tectonics, geologic time, fossils, and others. Other materials include information on mineral resources, links to organizations in and about South Carolina geology, the South Carolina core repository, the Geologic Map of South Carolina, and others.


Gulf of Maine Strategic Regional Ocean Science Plan  

E-print Network

Gulf of Maine Strategic Regional Ocean Science Plan Gulf of Maine Regional Ocean Science Council 2009 #12;Cover image courtesy of Gulf of Maine Census Program, based on data from the US Geological Survey #12;Editor and Compiler Judith Pederson, MIT Sea Grant College Program Gulf of Maine Regional


Geological Survey Program  

NSDL National Science Digital Library

If your research or interests lie in the geology of South Dakota, then the state's Geological Survey Program Web site is for you. Offered are online publications and maps, a geologic reference database, a lithologic logs database, digital base maps, a water quality database, and several other quality information sources worth checking out.


4th Interna onal Geologica Belgica Mee ng 2012. Moving Plates and Mel ng Icecaps Processes and Forcing Factors in Geology. Brussels 11-14/09/12 Recognizing pedogenic features in Paleogene sandstones  

E-print Network

sandstones and silcretes in Belgium. A key-feature for paleoenvironmental and sourcing material studies, Orléans, France 4 Kijnigstraat 1, 2250 Olen A few sandstones occurring in Belgium, especially those from "groundwater") origin for sandstones and silcretes. At field scale, pedogenic features in silcrete o en consist

Boyer, Edmond


Geologic Maps and Structures Name ______________________________ Geology 100 Harbor section  

E-print Network

Geologic Maps and Structures Name ______________________________ Geology 100 ­ Harbor section The objectives of this lab are for you to learn the basic geologic structures in 3-D and to develop some facility in interpreting the nature of geologic structures from geologic maps and geologic cross sections. A big part

Harbor, David


Geology of Kentucky  

NSDL National Science Digital Library

This website contains geologic maps of Kentucky, with a discussion of geologic time in regards to the rocks, minerals, fossils, and economic deposits found there. There are also sections that describe strata and geologic structures beneath the surface (faults, basins, and arches), the structural processes (folding and faulting) that create stratigraphic units, the geomorphology of the state, geologic information by county, a general description of geologic time, fossil, rocks, and minerals of Kentucky, and a virtual field trip through Natural Bridges State Park. Links are provided for further information.


Utah Geological Survey  

NSDL National Science Digital Library

This is the homepage of the Utah Geological Survey. Materials available here include news articles and information on geologic hazards; information on places of geological interest; and popular geology topics such as earthquakes, rocks and minerals, fossils, economic resources, groundwater resources, and others. Educational resources include teaching kits, the 'Teacher's Corner' column in the survey's newsletter, and a series of 'Glad You Asked' articles on state geological topics. There is also an extensive list of free K-12 educational materials, as well as a set of curriculum materials such as activity packets, slide shows, and teachers' handbooks, which are available to order.


Geological Survey research 1978  

USGS Publications Warehouse

This U.S. Geological Survey activities report includes a summary of 1978 fiscal year scientific and economic results accompanied by a list of geologic and hydrologic investigations in progress and a report on the status of topographic mapping. The summary of results includes: (1) Mineral and water resources, (2) Engineering geology and hydrology, (3) Regional geology, (4) Principles and processes, (5) Laboratory and field methods, (6) Topographic surveys and mapping, (7) Management of resources on public lands, (8) Land information and analysis, and (9) Investigations in other countries. Also included are lists of cooperating agencies and Geological Survey offices. (Woodard-USGS)

U.S. Geological Survey



Geological Survey research 1976  

USGS Publications Warehouse

This U.S. Geological Survey activities report includes a summary of recent (1976 fiscal year) scientific and economic results accompanied by a list of geologic and hydrologic investigations in progress and a report on the status of topographic mapping. The summary of results includes: (1) Mineral resources, Water resources, (2) Engineering geology and hydrology, (3) Regional geology, (4) Principles and processes, (5) Laboratory and field methods, (6) Topographic surveys and mapping, (7) Management of resources on public lands, (8) Land information and analysis, and (9) Investigations in other countries. Also included are lists of cooperating agencies and Geological Survey offices. (Woodard-USGS)

U.S. Geological Survey




NSDL National Science Digital Library

At, Roger Suthren, a professor at Oxford Brookes University, offers educational materials on geologic phenomena throughout the world. Users can take virtual field trips to study the geology of Scotland, Alaska, and France. In the Regional Geology link, visitors can view wonderful pictures of the volcanoes of Germany, Italy, France, and Greece. Educators can find images of sediments and sedimentary rocks which can be used in a variety of classroom exercises. The website supplies descriptions and additional educational links about sedimentology and environmental geology.


Arkansas Geological Survey  

NSDL National Science Digital Library

The Arkansas Geological Survey (AGS) homepage aims to develop and provide knowledge of the geology and hydrogeology of the State, and to stimulate development and effective management and utilization of the mineral, fossil-fuel, and water resources of Arkansas while protecting the environment. The AGC collects and disperses geologic data consisting of geologic maps, historical data concerning resources, and various datasets concerning water, fossil-fuel, and mineral resources of Arkansas. The site contains publications that can be ordered, sections about Arkansas geology, a list of mineral producers of Arkansas, and reports on mineral resources.


Fractals in geology and geophysics  

NASA Technical Reports Server (NTRS)

The definition of a fractal distribution is that the number of objects N with a characteristic size greater than r scales with the relation N of about r exp -D. The frequency-size distributions for islands, earthquakes, fragments, ore deposits, and oil fields often satisfy this relation. This application illustrates a fundamental aspect of fractal distributions, scale invariance. The requirement of an object to define a scale in photograhs of many geological features is one indication of the wide applicability of scale invariance to geological problems; scale invariance can lead to fractal clustering. Geophysical spectra can also be related to fractals; these are self-affine fractals rather than self-similar fractals. Examples include the earth's topography and geoid.

Turcotte, Donald L.



Kansas Geological Survey  

NSDL National Science Digital Library

The mission of the Kansas Geological Survey, operated by the University of Kansas in connection with its research and service program, is to conduct geological studies and research and to collect, correlate, preserve, and disseminate information leading to a better understanding of the geology of Kansas, with special emphasis on natural resources of economic value, water quality and quantity, and geologic hazards. The website includes information about the High Plains and Ogallala aquifers, the Upper Arkansas corridor, the Dakota aquifer, county and state geologic maps, an online bibliography of Kansas geology, publications, a photo archive, a digital petroleum atlas, a petroleum primer for the state, gravity and magnetic maps, Hugoton project information, and details about the Hutchinson Kansas natural gas fires. The educational resources section contains a mineral information page for the state, and GeoKansas, which provides information on state geology for schools.


U.S. GEOLOGICAL SURVEY Trends in Streamflow, River Ice, and  

E-print Network

U.S. GEOLOGICAL SURVEY Trends in Streamflow, River Ice, and Snowpack for Coastal River Basins in Maine During the 20th Century U.S. DEPARTMENT OF THE INTERIOR Water-Resources Investigations Report 02-4245 U.S. GEOLOGICAL SURVEY In cooperation with the MAINE ATLANTIC SALMON COMMISSION #12;U.S. GEOLOGICAL


The geology and geophysics of Mars  

NASA Technical Reports Server (NTRS)

The current state of knowledge concerning the regional geology and geophysics of Mars is summarized. Telescopic observations of the planet are reviewed, pre-Mariner models of its interior are discussed, and progress achieved with the Mariner flybys, especially that of Mariner 9, is noted. A map of the Martian geological provinces is presented to provide a summary of the surface geology and morphology. The contrast between the northern and southern hemispheres is pointed out, and the characteristic features of the surface are described in detail. The global topography of the planet is examined along with its gravitational field, gravity anomalies, and moment of inertia. The general sequence of events in Martian geological history is briefly outlined.

Saunders, R. S.



Geologic map of Detrital, Hualapai, and Sacramento Valleys and surrounding areas, northwest Arizona  

USGS Publications Warehouse

A 1:250,000-scale geologic map and report covering the Detrital, Hualapai, and Sacramento valleys in northwest Arizona is presented for the purpose of improving understanding of the geology and geohydrology of the basins beneath those valleys. The map was compiled from existing geologic mapping, augmented by digital photogeologic reconnaissance mapping. The most recent geologic map for the area, and the only digital one, is the 1:1,000,000-scale Geologic Map of Arizona. The larger scale map presented here includes significantly more detailed geology than the Geologic Map of Arizona in terms of accuracy of geologic unit contacts, number of faults, fault type, fault location, and details of Neogene and Quaternary deposits. Many sources were used to compile the geology; the accompanying geodatabase includes a source field in the polygon feature class that lists source references for polygon features. The citations for the source field are included in the reference section.

Beard, L. Sue; Kennedy, Jeffrey; Truini, Margot; Felger, Tracey



Gulf of Maine Research Institute  

NSDL National Science Digital Library

Teaching about aquatic environments, serving as neutral conveners, and facilitating marine research is the mission of the Gulf of Maine Research Institute. Features hundreds of web pages with information and classroom activities covering: oceans, human impact, weather, satellite imagery, remote sensing, Antarctica, global climate change, lobsters, turtles, marine, freshwater issues and more. The project of building the new aquarium at Portland is specially considered.


Activities in planetary geology for the physical and earth sciences  

NASA Technical Reports Server (NTRS)

A users guide for teaching activities in planetary geology, and for physical and earth sciences is presented. The following topics are discussed: cratering; aeolian processes; planetary atmospheres, in particular the Coriolis Effect and storm systems; photogeologic mapping of other planets, Moon provinces and stratigraphy, planets in stereo, land form mapping of Moon, Mercury and Mars, and geologic features of Mars.

Dalli, R.; Greeley, R.



Geotechnical characterization for the Main Drift of the Exploratory Studies Facility  

SciTech Connect

Geotechnical characterization of the Main Drift of the Exploratory Studies Facility was based on borehole data collected in site characterization drilling and on scanline rock mass quality data collected during the excavation of the North Ramp. The Main Drift is the planned 3,131-m near-horizontal tunnel to be excavated at the potential repository horizon for the Yucca Mountain Site Characterization Project. Main Drift borehole data consisted of three holes--USW SD-7, SD-9, and SD-12--drilled along the tunnel alignment. In addition, boreholes USW UZ-14, NRG-6, and NRG-7/7A were used to supplement the database on subsurface rock conditions. Specific data summarized and presented included lithologic and rock structure core logs, rock mechanics laboratory testing, and rock mass quality indices. Cross sections with stratigraphic and thermal-mechanical units were also presented. Topics discussed in the report include geologic setting, geologic features of engineering and construction significance, anticipated ground conditions, and the range of required ground support. Rock structural and rock mass quality data have been developed for each 3-m interval of core in the middle nonlithophysal stratigraphic zone of the Topopah Spring Tuff Formation. The distribution of the rock mass quality data in all boreholes used to characterize the Main Drift was assumed to be representative of the variability of the rock mass conditions to be encountered in the Main Drift. Observations in the North Ramp tunnel have been used to project conditions in the lower lithophysal zone and in fault zones.

Kicker, D.C.; Martin, E.R.; Brechtel, C.E.; Stone, C.A. [Agapito Associates, Inc., Las Vegas, NV (United States); Kessel, D.S. [Sandia National Labs., Albuquerque, NM (United States). Yucca Mountain Project Management



Connecting Soils and Glacial Geology  

NSDL National Science Digital Library

The goal of this activity is to provide students an opportunity to connect soil science to surficial geology by using a Soil Surveys. By the end of the activity, students should be able to use a Soil Survey to identify and interpret landforms and surficial features. This activity can be adapted to variety of process (ex. eolian deposits, glacial deposits, bedrock weathering, etc.). County-level soil surveys are available in both paper and online formats for the majority of the United States. Designed for a geomorphology course Has minimal/no quantitative component

Holly Dolliver


Geology: The Science of our World  

NSDL National Science Digital Library

This online course provides interactive laboratory exercises and information on mineralogy, map reading, and topography of New York City. There are also sections on rock formation and origins, geologic time, and Earth history. The course also features 'The Drowning of New York', an interactive study of the effects of climate change, sea level rise, and storm surges on the city.

Leveson, David



Calibrated Peer Review: Introduction - Why Study Geology?  

NSDL National Science Digital Library

Sarah Andrews is a geologist who has also written a series of successful mystery novels featuring (naturally) a geologist who solves crimes in her spare time. Students read her article, "Why Study Geology?", then write and essay addressing points listed in the Writing Prompt. After this, students are introduced to the process of Calibrated Peer Review and evaluate their papers.

Elizabeth Heise


The Basics of Rocks and Minerals and Polar Geology  

NSDL National Science Digital Library

This article gives an overview of the differences between rocks and minerals, the three types of rocks, the rock cycle, and Antarctica's geologic features. It also includes resources for further reading and alignment with the National Science Education Standards.

Codispoti, Julie


The Geological Society of London  

NSDL National Science Digital Library

The Geological Society of London promotes "the geosciences and the professional interests of UK geoscientists." The website offers media, geological, and society news. Researchers can find out about upcoming conferences covering a variety of geological topics as well as information on a series of journals. Everyone interested in geology can find materials on geological careers, including required education, qualifications, and funding. The website provides teaching resources on volcanoes, geologic hazards, and other geological phenomena.


Volcanic Features  

NSDL National Science Digital Library

This interactive resource adapted from the National Park Service illustrates the variety of landforms and features created by volcanoes. Featured are calderas, craters, fumaroles and other geothermal features, igneous rocks, lava flows, lava tubes, and maars.



OneGeology-Europe - The Challenges and progress of implementing a basic geological infrastructure for Europe  

NASA Astrophysics Data System (ADS)

OneGeology-Europe is making geological spatial data held by the geological surveys of Europe more easily discoverable and accessible via the internet. This will provide a fundamental scientific layer to the European Plate Observation System Rich geological data assets exist in the geological survey of each individual EC Member State, but they are difficult to discover and are not interoperable. For those outside the geological surveys they are not easy to obtain, to understand or to use. Geological spatial data is essential to the prediction and mitigation of landslides, subsidence, earthquakes, flooding and pollution. These issues are global in nature and their profile has also been raised by the OneGeology global initiative for the International Year of Planet Earth 2008. Geology is also a key dataset in the EC INSPIRE Directive, where it is also fundamental to the themes of natural risk zones, energy and mineral resources. The OneGeology-Europe project is delivering a web-accessible, interoperable geological spatial dataset for the whole of Europe at the 1:1 million scale based on existing data held by the European geological surveys. Proof of concept will be applied to key areas at a higher resolution and some geological surveys will deliver their data at high resolution. An important role is developing a European specification for basic geological map data and making significant progress towards harmonising the dataset (an essential first step to addressing harmonisation at higher data resolutions). It is accelerating the development and deployment of a nascent international interchange standard for geological data - GeoSciML, which will enable the sharing and exchange of the data within and beyond the geological community within Europe and globally. The geological dataset for the whole of Europe is not a centralized database but a distributed system. Each geological survey implements and hosts an interoperable web service, delivering their national harmonized geological data. These datasets are registered in a multilingual catalogue, who is one the main part of this system. This catalogue and a common metadata profile allows the discovery of national geological and applied geological maps at all scapes, Such an architecture is facilitating re-use and addition of value by a wide spectrum of users in the public and private sector and identifying, documenting and disseminating strategies for the reduction of technical and business barriers to re-use. In identifying and raising awareness in the user and provider communities, it is moving geological knowledge closer to the end-user where it will have greater societal impact and ensure fuller exploitation of a key data resource gathered at huge public expense. The project is providing examples of best practice in the delivery of digital geological spatial data to users, e.g. in the insurance, property, engineering, planning, mineral resource and environmental sectors. The scientifically attributed map data of the project will provide a pan-European base for science research and, importantly, a prime geoscience dataset capable of integration with other data sets within and beyond the geoscience domain. This presentation will demonstrate the first results of this project and will indicate how OneGeology-Europe is ensuring that Europe may play a leading role in the development of a geoscience spatial data infrastructure (SDI) globally.

Asch, Kristine; Tellez-Arenas, Agnes



Geologic Time: Online Edition  

NSDL National Science Digital Library

Offered by the United States Geological Survey (USGS) as a general interest publication, this site is an online edition of a text by the same name, offering a concise overview of the concepts associated with the age of the Earth. The online edition was revised in October of 1997 to reflect current thinking on this topic. Section headers are Geologic Time, Relative Time Scale, Major Divisions of Geologic Time, Index Fossils, Radiometric Time Scale, and Age of the Earth.



Pennsylvania Geological Survey  

NSDL National Science Digital Library

This is the homepage of the Pennsylvania Geological Survey. Users can access digital maps, data, and Geographic Information Systems (GIS), information on economic resources, and information on field mapping in the state. Classroom resources include a set of lesson plans on Pennsylvania geology; 'Rock Boxes', a set of rock samples which can be ordered; information on mineral collecting; and a series of educational publications, page-sized maps, and the 'Trail of Geology' park guide.


Sedimentology and petroleum geology  

SciTech Connect

This book presents an introduction to sedimentology as well as petroleum geology. It integrates both subjects, which are closely related but mostly treated separately. The author covers the basic aspects of sedimentology, sedimentary geochemistry and diagenesis. Principles of stratigraphy, seismic stratigraphy and basin modelling forms the base for the part on petroleum geology. Subjects discussed include the composition of kerogen and hydrocarbons, theories of migration and trapping of hydrocarbons and properties of reservoir rocks. Introductions to well logging and production geology are given.

Bjorlykke, K.O. (Oslo Univ. (Norway))



Geological map and stratigraphy of asteroid 21 Lutetia  

NASA Astrophysics Data System (ADS)

The OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) images acquired during the recent Rosetta fly-by of Lutetia (10th of July 2010), enabled us to unravel the long geological history of the asteroid. This is recorded on its highly varied surface which displays geological units of disparate ages. In particular, using images of the closest approach, five main regions (in turn subdivided into minor units) have been discriminated on the basis of crater density, overlapping and cross-cutting relationships, and presence of linear features (i.e., fractures, faults, grooves, troughs). Other regions, with still unclear stratigraphic position, were also recognized on images of lower resolution on the bases of geomorphological properties such as crater density, relationship with scarp and ridges, and sharp morphological boundaries. In this work the geological evolution of Lutetia surface is reconstructed through the description of its main units and related contacts. The oldest regions imaged during the closest approach (Achaia and Noricum) are pervasively affected by fractures and grooves and display surfaces so heavily cratered to be dated back to a period not far from the Late Heavy Bombardment (yielding Achaia a crater retention age of 3.6-3.7 Ga). A crater of 55 km diameter, named Massilia and corresponding to the Narbonensis region, cuts both Achaia and Noricum regions and probably represents the most prominent event of the Lutetia history. The considerable crater density on its floor and walls, the absence of discernable deposits related to the impact event, and the intense deformation of it floor - all attest to its relatively great age. The North Polar Cluster (Baetica region) is associated with smooth ejecta broadly mantling the surrounding units and displays few craters and no linear features, demonstrating its relatively young age (estimated at less than 300 Ma). The North Polar Crater Cluster is the product of superimposed impacts; the last one of 24 km of diameter excavated the pre-existing ejecta up to the bedrock which locally outcrops at the crater rim. The ejecta of this last impact were involved in several gravitational phenomena testified by the great variety of deposits made up of mega-boulders diamictons, fine materials, gravitational taluses and debris, and landslide accumulations. A part from the big cratering events generating Massilia and the North Polar Crater Cluster, the Lutetia geological history is also punctuated by minor events still recorded by its stratigraphic record well imaged by the closest approach data.

Massironi, Matteo; Marchi, Simone; Pajola, Maurizio; Snodgrass, Colin; Thomas, Nicolas; Tubiana, Cecilia; Baptiste Vincent, Jean; Cremonese, Gabriele; da Deppo, Vania; Ferri, Francesca; Magrin, Sara; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rickman, Hans; Rodrigo, Rafael; Koschny, Detlef; Osiris Team



Geologic Maps and Structures Name ______________________________ Geology 100 Harbor section  

E-print Network

Geologic Maps and Structures Name ______________________________ Geology 100 ­ Harbor section Read Ch. 7 before you begin. The objectives of this lab are for you to learn the basic geologic structures in 3-D and to develop some facility in interpreting the nature of geologic structures from geologic

Harbor, David


Environmental Geology Major  

E-print Network

Environmental Geology Major Revised: 04/2004 Environmental geology in environmental geology provides the diverse skills required to work in many different employment settings issues. Within the field of geology, environmental and geotechnical jobs exist for people with BS degrees

Jiang, Huiqiang


Department of Geology and Geological Engineering University of Mississippi Announces  

E-print Network

Department of Geology and Geological Engineering University of Mississippi Announces Krista Pursuing a degree within the Geology & Geological Engineering department Record of financial need the University of Mississippi with a Bachelor of Science degree in geological engineering in 1982. After earning

Elsherbeni, Atef Z.


DUST STORMS AND WATER ICE CLOUDS: FEATURE DETECTION FOR USE ONBOARD THEMIS. Kiri L. Wagstaff (, Jet Propulsion Laboratory, Pasadena, CA 91109, USA, Joshua L. Bandfield, Department of Geology,  

E-print Network

DUST STORMS AND WATER ICE CLOUDS: FEATURE DETECTION FOR USE ONBOARD THEMIS. Kiri L. Wagstaff (kiri), track the movements of the seasonal po- lar caps [1], and detect dust storms and water ice clouds on results obtained by our dust and water ice cloud detection algorithms when applied to raw data

Wagstaff, Kiri L.


Geologic Mapping Exercise  

NSDL National Science Digital Library

This exercise is designed to simulate how a basic geological investigation of a site takes place. A basic geological investigation includes familiarizing yourself with the unconsolidated sediments, rocks, structural geology, and groundwater present at your site. As part of this exercise you will have to properly identify a variety of rock types and sediments, create maps that represent data you collected at each location, and complete a basic report of your findings (optional). Once completed, this exercise should give students a basic understanding of how the various concepts used throughout the semester are applied in the real world in the form of a geological investigation.

Andrew Smith


Modeling Geologic Time  

NSDL National Science Digital Library

In this activity students convert major events in Earth history from years before present into scale distances. After a list of events and their scale distances have been formulated, students construct a geologic time scale on 5 meters of adding machine paper, beginning with the formation of the Earth. Students will investigate change through geologic time; design, construct and interpret a model of geologic time; relate major events in Earth history to the geologic time scale; and compare and relate the span of Earth history to events of historical time and of the human lifetime. Some sample events and their approximate relative ages are included.

Firebaugh, James


Geological Survey research 1981  

USGS Publications Warehouse

This U.S. Geological Survey activities report includes a summary of 1981 fiscal year scientific and economic results accompanied by a list of geologic, hydrologic, and cartographic investigations in progress. The summary of results includes: (1) Mineral, (2) Water resources, (3) Engineering geology and hydrology, (4) Regional geology, (5) Principles and processes, (6) Laboratory and field methods, (7) Topographic surveys and mapping, (8) Management of resources on public lands, (9) Land information and analysis, and (10) Investigations in other countries. Also included are lists of investigations in progress. (USGS)

U.S. Geological Survey



Arizona Geological Survey  

NSDL National Science Digital Library

This is the homepage of the Arizona Geological Survey. Information accessible here includes maps, information on oil, gas, and minerals in the state, back issues of the survey's newsletter, and a list of resources for public education in the state. These resources include information centers for Arizona geology and Earth Science, the survey's geology library and bibliographic database, a repository of rock cuttings and cores, and a contact for earth science education who will assist teacher groups in introducing local geology to their classes.


Hawaii Volcanoes National Park: A 3-D Photographic Geology Tour  

NSDL National Science Digital Library

This virtual tour features three-dimensional images from the United States Geological Survey's (USGS) collection. It introduces visitors to the geology, landforms, and volcanism of Hawaii Volcanoes National Park. Features of interest include Kilauea Caldera and Halema'uma'u Crater, which have been the sites of very recent volcanic activity. There are also views of active lava flows, steam vents, and lava tubes. The 3-D images are anaglyphs and require red and cyan 3-D viewing glasses.


Roadside and Engineering Geology of Auke Bay, Juneau Alaska  

NSDL National Science Digital Library

Students have learned the rudiments of outcrop evaluation, surveying and mapping of geomorphic features, and the hazards of urbanization in Juneau's glacierized and high relief terrain. Their task in this lab is to assess geologic hazards inherent in the landscape by collecting structural data and making observations at 6 sites with interesting features. They use their field notes as a basis for writing an engineering geology report to the city with their recommendations for site selection for home building.

Cathy Lynn Connor


Geology Fieldnotes: Wind Cave National Park South Dakota  

NSDL National Science Digital Library

Wind Cave National Park includes one of the world's longest and most complex caves and 28,295 acres of mixed-grass prairie, ponderosa pine forest, and associated wildlife. The cave is well known for its outstanding display of boxwork, an unusual cave formation composed of thin calcite fins resembling honeycombs. Features include park geology information, maps, photographs of cave formations, related links, and visitor information. The park geology section discusses geologic history, structural geology, cave formations, and history of exploration of the region. The park maps section includes an area map of Wind Cave National Park and a detailed cave map.


Quaternary Geologic Map of Connecticut and Long Island Sound Basin  

USGS Publications Warehouse

The Quaternary geologic map (sheet 1) and explanatory figures and cross sections (sheet 2) portray the geologic features formed in Connecticut during the Quaternary Period, which includes the Pleistocene (glacial) and Holocene (postglacial) Epochs. The Quaternary Period has been a time of development of many details of the landscape and of all the surficial deposits. At least twice in the late Pleistocene, continental ice sheets swept across Connecticut. Their effects are of pervasive importance to the present occupants of the land. The Quaternary geologic map illustrates the geologic history and the distribution of depositional environments during the emplacement of glacial and postglacial surficial deposits and the landforms resulting from those events.

Stone, Janet Radway; Schafer, John P.; London, Elizabeth Haley; DiGiacomo-Cohen, Mary L.; Lewis, Ralph S.; Thompson, Woodrow B.



21 January 2005: 13:00 Inhomogeneity as main source... -Robert Hack 1 Inhomogeneity as main source of  

E-print Network

21 January 2005: 13:00 Inhomogeneity as main source... - Robert Hack 1 Inhomogeneity as main source of problems in engineering geology Robert Hack 21 January 2005 #12;21 January 2005: 13:00 Inhomogeneity as main source... - Robert Hack 2 What is inhomogeneity (or non- homogeneity) : Inhomogeneity

Hack, Robert


Geology explorer: virtual geologic mapping and interpretation  

NASA Astrophysics Data System (ADS)

We are developing internet-based freeware for virtual mapping and geologic interpretation. This takes the form of a synthetic, virtual world, Planet Oit, where students are given the means and the equipment to carry out geologic investigation and interpretation as a geologist would in the field. The environment is designed to give students an authentic experience that includes elements of: (1) exploration of a spatially oriented, virtual, world; (2) practical, field oriented, expedition planning and decision-making; and (3) scientific problem solving (i.e. a "hands on" approach to mapping, geologic investigation, data acquisition, and interpretation). The game-like environment is networked, multi-player, and simulation-based. Planet Oit can be visited on the Internet at

Saini-Eidukat, Bernhardt; Schwert, Donald P.; Slator, Brian M.



OneGeology Web Services and Portal as a global geological SDI - latest standards and technology  

NASA Astrophysics Data System (ADS)

The global coverage of OneGeology Web Services ( and achieved since 2007 from the 120 participating geological surveys will be reviewed and issues arising discussed. Recent enhancements to the OneGeology Web Services capabilities will be covered including new up to 5 star service accreditation scheme utilising the ISO/OGC Web Mapping Service standard version 1.3, core ISO 19115 metadata additions and Version 2.0 Web Feature Services (WFS) serving the new IUGS-CGI GeoSciML V3.2 geological web data exchange language standard ( with its associated 30+ IUGS-CGI available vocabularies ( and Use of the CGI simpelithology and timescale dictionaries now allow those who wish to do so to offer data harmonisation to query their GeoSciML 3.2 based Web Feature Services and their GeoSciML_Portrayal V2.0.1 ( Web Map Services in the OneGeology portal ( Contributing to OneGeology involves offering to serve ideally 1:1000,000 scale geological data (in practice any scale now is warmly welcomed) as an OGC (Open Geospatial Consortium) standard based WMS (Web Mapping Service) service from an available WWW server. This may either be hosted within the Geological Survey or a neighbouring, regional or elsewhere institution that offers to serve that data for them i.e. offers to help technically by providing the web serving IT infrastructure as a 'buddy'. OneGeology is a standards focussed Spatial Data Infrastructure (SDI) and works to ensure that these standards work together and it is now possible for European Geological Surveys to register their INSPIRE web services within the OneGeology SDI (e.g. see The Onegeology portal ( is the first port of call for anyone wishing to discover the availability of global geological web services and has new functionality to view and use such services including multiple projection support. KEYWORDS : OneGeology; GeoSciML V 3.2; Data exchange; Portal; INSPIRE; Standards; OGC; Interoperability; GeoScience information; WMS; WFS; Cookbook.

Duffy, Tim; Tellez-Arenas, Agnes



The geologic mapping of asteroid Vesta  

NASA Astrophysics Data System (ADS)

As part of NASA's Dawn mission [1,2] we conducted a geologic mapping campaign to provide a systematic, cartography-based initial characterization of the global and regional geology of asteroid Vesta. The goal of geological maps is to place observations of surface features into their stratigraphic context to develop a geologic history of the evolution of planetary surfaces. Geologic mapping reduces the complexity of heterogeneous planetary surfaces into comprehensible portions, defining and characterizing discrete material units based upon physical attributes related to the geologic processes that produced them, and enabling identification of the relative roles of various processes (impact cratering, tectonism, volcanism, erosion and deposition) in shaping planetary surfaces [3,4]. The Dawn Science Team produced cartographic products of Vesta from the Framing Camera images, including global mosaics as well as 15 regional quadrangles [5], which served as bases for the mapping. We oversaw the geologic mapping campaign during the Nominal Mission, including production of a global geologic map at scale 1:500,000 using images from the High Altitude Mapping Orbit [6] and 15 quadrangle geologic maps at scale 1:250,000 using images from the Low Altitude Mapping Orbit [7]. The goal was to support the Dawn Team by providing geologic and stratigraphic context of surface features and supporting the analysis of data from the Visible and Infrared Spectrometer (VIR) and the Gamma Ray and Neutron Detector (GRaND). Mapping was done using ArcGIS™ software, in which quadrangle mapping built on interpretations derived from the global geologic map but were updated and modified to take advantage of the highest spatial resolution data. Despite challenges (e.g., Vesta's highly sloped surface [8] deforms impact craters and produces mass movements that buries contacts), we were successfully able to map the whole surface of Vesta and identify a geologic history as represented in our maps and the resulting time-stratigraphic system and geologic timescale. Key results from the geologic mapping of Vesta include: 1) surface units are dominated by features and materials produced by two major impact events, the older Veneneia and younger Rheasilvia impacts at the south pole 2) both impacts produced a ridge-and-trough terrain as a tectonic response to the impacts, mapped as the Saturnalia Fossae and the Divalia Fossae Formations, respectively 3) stratigraphic analysis of Vesta's heavily cratered terrains show that portions of the original crust are preserved and predate the Veneneia impact 4) the Marcia impact event marks the beginning of Vesta's final stratigraphic period, including exposure of fresh bright and dark material and preservation of young bright-rayed and dark-rayed craters. We conclude that a geologic mapping campaign, including both global and regional mapping, can be conducted during the limited planetary nominal mission timeline, and is an excellent way to engage younger team members (graduate students and postdocs) in mission data analysis activities.

Williams, D.; Yingst, A.; Garry, B.



New geological data of New Siberian Archipelago  

NASA Astrophysics Data System (ADS)

The area of New Siberian Archipelago (NSA) encompasses different tectonic blocks is a clue for reconstruction of geological structure and geodynamic evolution of East Arctic. According to palaeomagnetic study two parts of the archipelago - Bennett and Anjou Islands formed a single continental block at least from the Early Palaeozoic. Isotope dating of De Long Islands igneous and sedimentary rocks suggests Neoproterozoic (Baikalian) age of its basement. The De Long platform sedimentary cover may be subdivided into two complexes: (1) intermediate of PZ-J variously deformed and metamorphosed rocks and (2) K-KZ of weakly lithified sediments. The former complex comprises the Cambrian riftogenic volcanic-clastic member which overlain by Cambrian-Ordovician turbiditic sequence, deposited on a continental margin. This Lower Palaeozoic complex is unconformably overlain by Early Cretaceous (K-Ar age of c.120 Ma) basalts with HALIP petrochemical affinities. In Anjou Islands the intermediate sedimentary complex encompasses the lower Ordovician -Lower Carboniferous sequence of shallow-marine limestone and subordinate dolomite, mudstone and sandstone that bear fossils characteristic of the Siberian biogeographic province. The upper Mid Carboniferous - Jurassic part is dominated by shallow-marine clastic sediments, mainly clays. The K-KZ complex rests upon the lower one with angular unconformity and consists mainly of coal-bearing clastic sediments with rhyolite lavas and tuffs in the bottom (117-110 Ma by K-Ar) while the complexe's upper part contains intraplate alkalic basalt and Neogene-Quaternary limburgite. The De-Long-Anjou block's features of geology and evolution resemble those of Wrangel Island located some 1000 km eastward. The Laptev Sea shelf outcrops in intrashelf rises (Belkovsky and Stolbovoy Islands) where its geology and structure may be observed directly. On Belkovsky Island non-dislocated Oligocene-Miocene sedimentary cover of littoral-marine coal-bearing unconformably overlies folded basement. The latter encompasses two sedimentary units: the Middle Devonian shallow-marine carbonate and Late-Devonian-Permian olistostrome - flysch deposited in transitional environment from carbonate platform to passive margin. Dating of detrital zircons suggests the Siberian Platform and Taimyr-Severnaya Zemlya areas as the most possible provenance. The magmatic activity on Belkovsky Island resulted in formation of Early Triassic gabbro-dolerite similar to the Siberian Platform traps. Proximity of Belkovsky Island to the north of Verkhoyansk foldbelt allows continuation of the latter into the Laptev Sea shelf. The geology of Bolshoy Lyakhovsky Island is discrepant from the rest of the NSA. In the south of Bolshoy Lyakhovsky Island the ophiolite crops complex out: it is composed of tectonic melange of serpentinized peridotite, bandedf gabbro, pillow-basalt, and pelagic sediments (black shales and cherts). All the rocks underwent epidot - amphibolite, glaucophane and greenschist facies metamorphism. The ophiolite is intruded by various in composition igneous massifs - from gabbro-diorite to leuco-granite, which occurred at 110-120 Ma. The Bolshoy Lyakhovsky Island structure is thought to be a westerly continuation of the South Anui suture of Chukchi.

Sobolev, Nikolay; Petrov, Evgeniy



Investigating Potential Main Belt Comets  

NASA Astrophysics Data System (ADS)

The discovery of a new class of objects, the Main Belt Comets, has confirmed that ice has been preserved within the Main Belt, despite the fact that the snowline long ago migrated outwards to ~5AU. Main Belt Comets are cometary in appearance, with comae and dust tails visible, but are dynamically unremarkable when compared to asteroids within the Main Belt. Three of the four known Main Belt Comets are dynamically linked to the Themis Family - a collisional family of ~550 asteroids that was created when a 380km progenitor catastrophically disrupted approximately 2Gyr ago. Other Themis Family members are likely to have retained ice deposits and are, thus, potential Main Belt Comets, yet, conversely, hydrated minerals have been detected on one member of the family, asteroid 24 (Themis). The presence of these minerals imply that liquid water was once present on the asteroid, and suggest post-formation heating took place. The preservation of ice within Main Belt Comets suggests that the Themis Family may have once been, and may still be, an important reservoir of ice, while the detection of hydrated minerals on asteroid 24 (Themis) argues for post-formation heating in that region. We will search for hydration features on Themis Family asteroids to constrain the possible thermal evolution of potential Main Belt Comets.

Stevenson, Rachel; Jewitt, David



A Literary Map of Maine  

NSDL National Science Digital Library

Sure, you might know that Longfellow was a member of the literati who called Maine home, but did you know that Robert McCloskey was one as well? In case you might have forgotten, McCloskey was the author and illustrator of those children's classics "Make Way for Ducklings" and "Blueberries for Sal". It's easy to learn about dozens of Maine authors via this delightful website created as part of a partnership between the Maine Sunday Telegram and a number of library and humanities groups in Maine. Currently, the map features over 50 sites, and visitors can browse around at their leisure to learn about authors like Longfellow, Stephen King, and Richard Russo. Clicking on each site will pull up a brief excerpt of each author's work, along with a brief bio.


Petroleum geology of Tunisia  

Microsoft Academic Search

Recent discoveries and important oil shows have proven the existence of hydrocarbons in newly identified depocenters and reservoirs. In general, except for some areas around the producing fields, Tunisia is largely underdrilled. The national company ETAP has decided to release data and to publish a synthesis on the petroleum geology of Tunisia. The geology of Tunisia provides a fine example

P. F. Burollet; A. B. Ferjami; F. Mejri



Radiometric Dating in Geology.  

ERIC Educational Resources Information Center

Described are several aspects and methods of quantitatively measuring geologic time using a constant-rate natural process of radioactive decay. Topics include half lives and decay constants, radiogenic growth, potassium-argon dating, rubidium-strontium dating, and the role of geochronology in support of geological exploration. (DS)

Pankhurst, R. J.



Geologic Time Online Edition  

NSDL National Science Digital Library

This tutorial will help students learn and understand the concepts of geologic time and the age of the Earth. They will investigate the geologic time scale and learn about the use of index fossils and radiometric dating to determine the age of rock formations and fossils.


Geologic time scale bookmark  

USGS Publications Warehouse

This bookmark, designed for use with U.S. Geological Survey activities at the 2nd USA Science and Engineering Festival (April 26–29, 2012), is adapted from the more detailed Fact Sheet 2010–3059 "Divisions of Geologic Time." The information that it presents is widely sought by educators and students.

U.S. Geological Survey



Geological Map Problem  

NSDL National Science Digital Library

This is a lab activity that is designed to help introductory, non-science majors integrate their geological knowledge near the end of the course. In this activity, students work in self-selected groups of up to four per group on the history of a sketch geological map.

Robert Filson


People and Geology.  

ERIC Educational Resources Information Center

Provides background information on the many natural resources we extract from the earth's crust, including metals, graphite, and other minerals, as well as fossil fuels. Contains teaching activities such as a geologic scavenger hunt, a geology chronology, and the recycling of aluminum. Includes a reproducible handout for the activity on aluminum.…

Naturescope, 1987



Layer Cake Geology  

NSDL National Science Digital Library

This classroom activity uses a cake to demonstrate geologic processes and introduce geologic terms. Students will learn how folds and faults occur, recognize the difference in behavior between brittle and ductile rocks, and attempt to predict structures likely to result from application of various forces to layered rocks. They will also attempt to interpret 'core samples' to determine subsurface rock structure.

Wagner, John


Glossary of geology  

SciTech Connect

This third edition of the Glossary of Geology contains approximately 37,000 terms, or 1,000 more than the second edition. New entries are especially numerous in the fields of carbonate sedimentology, hydrogeology, marine geology, mineralogy, ore deposits, plate tectonics, snow and ice, and stratigraphic nomenclature. Many of the definitions provide background information.

Bates, R.L.; Jackson, J.A.



Advances in Planetary Geology  

NASA Technical Reports Server (NTRS)

Advances in Planetary Geology is a new series intended to serve the planetary geology community with a form for quick and thorough communications. There are no set lists of acceptable topics or formats, and submitted manuscripts will not undergo a formal review. All submissions should be in a camera ready form, preferably spaced, and submitted to the editor.

Woronow, A. (editor)



California Geological Survey - Landslides  

NSDL National Science Digital Library

This page from the CA Geological Survey (CGS) presents information on landslides as well as maps and products of various past and present CGS programs to map and respond to landslides in the state of California, including the Forest and Watershed Geology Program, the Seismic Hazards Zonation Program, the Caltrans Highway Corridor Mapping project, and the Landslide Map Index.

Survey, California G.


3D geological modelling using laser and hyperspectral data  

Microsoft Academic Search

This paper presents a ground based system for mapping the geology and the geometry of the environment remotely. The main objective of this work is to develop a framework for a mobile robotic platform that can build 3D geological maps. We investigate classification and registration algorithms that can work without any manual intervention. The system capabilities are demonstrated with data

Juan I. Nieto; Sildomar T. Monteiro; Diego Viejo



Geodynamics applications of continuum physics to geological problems  

Microsoft Academic Search

This textbook deals with the fundamental physical processes necessary for an understanding of plate tectonics and a variety of geologic phenomena. The first chapter reviews plate tectonics; its main purpose is to provide physics, chemistry, and engineering students with the geologic background necessary to understand the applications throughout the rest of the book. It goes on to discuss in following

D. L. Turcotte; G. Schubert



BS in GEOLOGY: Environmental Geology Emphasis (694029) MAP Sheet Department of Geological Sciences  

E-print Network

BS in GEOLOGY: Environmental Geology Emphasis (694029) MAP Sheet Department of Geological Sciences with environmental degradation and natural geologic hazards has led to a demand for geologists who are both well grounded in the fundamentals of the science of geology and specifically prepared to address environmental

Seamons, Kent E.


Field Geology/Processes  

NASA Technical Reports Server (NTRS)

The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert



Geologic utility of small-scale airphotos  

NASA Technical Reports Server (NTRS)

The geologic value of small scale airphotos is emphasized by describing the application of high altitude oblique and 1:120,000 to 1:145,000 scale vertical airphotos to several geologic problems in California. These examples show that small-scale airphotos can be of use to geologists in the following ways: (1) high altitude, high oblique airphotos show vast areas in one view; and (2) vertical airphotos offer the most efficient method of discovering the major topographic features and structural and lithologic characteristics of terrain.

Clark, M. M.



Geology Fieldnotes: Ice Age National Scientific Preserve  

NSDL National Science Digital Library

This National Park Service (NPS) site gives information on the Ice Age National Scientific Preserve in Wisconsin, including geology, park maps, a photo album, and other media (books, videos, CDs). There is also a selection of links to other geologic and conservation organizations, and to information for visitors. This preserve contains a wealth of glacial features associated with the most recent Pleistocene continental glaciation including drumlins, kames, kettles, moraines, erratics, and eskers. It also contains a segment of the Ice Age National Scenic Trail, a 1000-plus mile hiking and backpacking trail that passes through this unique glacial landscape.


Geology Fieldnotes: Colorado National Monument, Colorado  

NSDL National Science Digital Library

This monument lies in a region once known as the Uncompahgre Highland (igneous and metamorphic), but has been eroded away to the canyons and domes seen today. Mostly sandstone rocks are found today, dating back between 225-65 million years (Mesozoic), embedded with fossils dating back 100 million years. Uplift, faulting, and erosion are all processes that have shaped this area. The site covers geology as well as human history, and contains photos, links, visitor information, and a teacher feature (tools for teaching geology with National Park examples).

Foos, Annabelle


Keck Consortium Structual Geology Slide Set  

NSDL National Science Digital Library

The Keck Geology Consortium Structural Geology Slide Set was compiled by H. Robert Burger, Smith College with the support of the W. M. Keck Foundation, Los Angeles. The database was developed by the Department of Earth and Ocean Sciences, The University of British Columbia, Vancouver, BC, Canada. The CD-ROM comprises 100 high resolution photographs of structural features ranging from microscopic to aerial photograph scale. This web site provides a preview of the set (at a significantly lower resolution). It is intended for teaching use.


Textural features for radar image analysis  

NASA Technical Reports Server (NTRS)

Texture is seen as an important spatial feature useful for identifying objects or regions of interest in an image. While textural features have been widely used in analyzing a variety of photographic images, they have not been used in processing radar images. A procedure for extracting a set of textural features for characterizing small areas in radar images is presented, and it is shown that these features can be used in classifying segments of radar images corresponding to different geological formations.

Shanmugan, K. S.; Narayanan, V.; Frost, V. S.; Stiles, J. A.; Holtzman, J. C.



77 FR 19032 - Geological Survey  

Federal Register 2010, 2011, 2012, 2013, 2014

...DEPARTMENT OF THE INTERIOR Geological Survey Announcement of National Geospatial...Advisory Committee Meeting AGENCY: U.S. Geological Survey, Interior. ACTION: Notice...contacting Arista Maher at the U.S. Geological Survey (703-648-6283,...



Essential Elements of Geologic Reports.  

ERIC Educational Resources Information Center

Described is a report outline for geologic reports. Essential elements include title; abstract; introduction; stratigraphy; petrography; geochemistry; petrology; geophysics; structural geology; geologic history; modeling; economics; conclusions; and recommendations. (Author/CW)

Webb, Elmer James



Principles of Historical Geology Geology 331  

E-print Network

in Biostratigraphy Section #12;Principle of Superposition In any undeformed sequence of sedimentary rocks, each bed of a valley can be correlated. · This principle is used to trace coal seams from one mountain to the next;Igneous dikes in black, granite in pink #12;#12;Can you interpret the sequence of geologic events using

Kammer, Thomas


Geologic guide to the island of Hawaii: A field guide for comparative planetary geology  

NASA Technical Reports Server (NTRS)

With geological data available for all inner planets except Venus, we are entering an era of true comparative planetary geology, when knowledge of the differences and similarities for classes of structures (e.g., shield volcanoes) will lead to a better understanding of general geological processes, regardless of planet. Thus, it is imperative that planetologists, particularly those involved in geological mapping and surface feature analysis for terrestrial planets, be familiar with volcanic terrain in terms of its origin, structure, and morphology. One means of gaining this experience is through field trips in volcanic terrains - hence, the Planetology Conference in Hawaii. In addition, discussions with volcanologists at the conference provide an important basis for establishing communications between the two fields that will facilitate comparative studies as more data become available.

Greeley, R. (editor)



Geology and insolation-driven climatic history of Amazonian north polar materials on Mars  

USGS Publications Warehouse

Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (???3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago. ?? 2005 Nature Publishing Group.

Tanaka, K.L.



Geology and insolation-driven climatic history of Amazonian north polar materials on Mars.  


Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (approximately 3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago. PMID:16222294

Tanaka, Kenneth L



Database of the Geology and Thermal Activity of Norris Geyser Basin, Yellowstone National Park  

USGS Publications Warehouse

This dataset contains contacts, geologic units and map boundaries from Plate 1 of USGS Professional Paper 1456, 'The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming.' The features are contained in the Annotation, basins_poly, contours, geology_arc, geology_poly, point_features, and stream_arc feature classes as well as a table of geologic units and their descriptions. This dataset was constructed to produce a digital geologic map as a basis for studying hydrothermal processes in Norris Geyser Basin. The original map does not contain registration tic marks. To create the geodatabase, the original scanned map was georegistered to USGS aerial photographs of the Norris Junction quadrangle collected in 1994. Manmade objects, i.e. roads, parking lots, and the visitor center, along with stream junctions and other hydrographic features, were used for registration.

Flynn, Kathryn; Graham Wall, Brita; White, Donald E.; Hutchinson, Roderick A.; Keith, Terry E.C.; Clor, Laura; Robinson, Joel E.



Kentucky Geological Survey  

NSDL National Science Digital Library

In 1996 the Education Committee of the Kentucky Geological Survey, in conjunction with the Kentucky Society of Professional Geologists, established the Earth Science Education Network (ESEN). The network provided a group of geologists who served as resource persons for teachers, but has now been expanded to provide resources from around the globe. While primarily focusing on the geology of Kentucky, many of the online resources are applicable for educators throughout the U.S. There are links to Earth science topics and important websites, handouts and instructions for classroom demonstrations and activities, and also interesting information about Kentucky geology and publications.


What is Geologic Time?  

NSDL National Science Digital Library

This webpage of the National Park Service (NPS) and United States Geological Survey (USGS) discusses geologic time and what it represents. Beginning about 4.6 billion years ago and ending in the present day, this site exhibits (to scale) the various eras, periods, eons, and epochs of Earth's history with a downloadable geologic time scale available. Links provide maps of what the Earth looked like at various times in its history, as well as a description of how scientists developed the time scale and how they know the age of the Earth.


Formation evaluation: Geological procedures  

SciTech Connect

This volume goes beyond a discussion of petroleum geology and the techniques of hydrocarbon (oil and gas) logging as a reservoir evaluation tool. It provides the logging geologist with a review of geological techniques and classification systems that will ensure the maximum development of communicable geological information. Contents include: 1. Introduction--cuttings recovery, cutting sampling, core sampling, rock classification; 2. Detrital rocks--classification, description; 3. Carbonate rocks--classification, description; 4. Chemical rocks-introduction, siliceous rocks, ferruginous rocks, aluminous rocks, phosphatic rocks, aluminous rocks, carbonaceous rocks; 5. Igneous and metamorpbic rocks; Appendix; References and Index.

Whittaker, A.



Journal of Geology  

NSDL National Science Digital Library

From the University of Chicago Press's Journals Division, the Journal of Geology is currently available online free of charge (note: subscription fees may soon apply, but no initiation date is provided). This first-rate technical journal, which publishes "research and theory in geophysics, geochemistry, sedimentology, geomorphology, petrology, plate tectonics, volcanology, structural geology, mineralogy, and planetary sciences" has been in print form since 1893. All of the 1999 issues of the Journal of Geology electronic edition are available here. Internet users can access full-text articles with internal links to references and figures (html, .pdf. .ps).


Digital Geologic Map Database of Medicine Lake Volcano, Northern California  

NASA Astrophysics Data System (ADS)

Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the map, whose area is partly covered by a late Holocene andesite flow. Silicic lava flows are mostly confined to the main edifice of the volcano, with the youngest rhyolite flows found in and near the summit caldera, including the rhyolitic Little Glass Mountain (~1,000 yr B.P.) and Glass Mountain (~950 yr B.P.) flows, which are the youngest eruptions at Medicine Lake volcano. In postglacial time, 17 eruptions have added approximately 7.5 km3 to the volcano’s total estimated volume of 600 km3, which may be the largest by volume among Cascade Range volcanoes. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascade volcanoes except Mount St. Helens.

Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.



Geologic coal assessment: The interface with economics  

USGS Publications Warehouse

Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.

Attanasi, E.D.



Environmental resources of selected areas of Hawaii: Geological hazards  

SciTech Connect

This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

Staub, W.P.; Reed, R.M.



Geology and ground-water features of salt springs, seeps, and plains in the Arkansas and Red River basins of western Oklahoma and adjacent parts of Kansas and Texas  

USGS Publications Warehouse

The salt springs, seeps, and plains described in this report are in the Arkansas and Red River basins in western Oklahoma and adjacent areas in Kansas and Texas. The springs and seeps contribute significantly to the generally poor water quality of the rivers by bringing salt (HaCI) to the surface at an estimated daily rate of more than 8,000 tons. The region investigated is characterized by low hills and rolling plains. Many of the rivers are eroded 100 feet or more below the .surrounding upland surface and in places the valleys are bordered by steep bluffs. The alluvial plains of the major rivers are wide and the river channels are shallow and unstable. The flow of many surface streams is intermittent, especially in the western part of the area. All the natural salt-contributing areas studied are within the outcrop area of rocks of Permian age. The Permian rocks, commonly termed red beds, are composed principally of red and gray gypsiferous shale, siltstone, sandstone, gypsum, anhydrite, and dolomite. Many of the formations contain halite in the subsurface. The halite occurs mostly as discontinuous lenses in shale, although some of the thicker, more massive beds are extensive. It underlies the entire region studied at depths ranging from about 30 feet to more than 2,000 feet. The salt and associated strata show evidence of extensive removal of salt through solution by ground water. Although the salt generally occurs in relatively impervious shale small joints and fractures ,allow the passage of small quantities of water which dissolves the salt. Salt water occurs in the report area at depths ranging from less than 100 feet to more than 1,000 feet. Salt water occurs both as meteoric and connate, but the water emerging as salt springs is meteoric. Tritium analyses show that the age of the water from several springs is less than 20 years. The salt springs, seeps, and plains are confined to 13 local areas. The flow of the springs and seeps is small, but the chloride concentration in the water ranges from a few hundred parts per million to about 190,000 ppm. The wide range of concentration is believed to be due, in part, to differential dilution by fresh water. Alluvium in the vicinity of the salt springs remains saturated with salt water and evaporation from the alluvial surface causes the formation of a salt crust during dry weather. Those areas appear as salt plains that range in size from less than an acre to as much as 60 square miles. The rocks exposed at the surface in the vicinity of the salt springs are permeable enough to allow the infiltration of some precipitation. Under certain geologic and hydrologic conditions ground water percolates down and through salt-bearing rocks where it dissolves the .salt. Hydrostatic pressure of ground water at higher elevations forces the salt water to emerge as salt springs at lower elevations.

Ward, P.E.



Interactive Geologic Timeline Activity  

NSDL National Science Digital Library

In this learning activity, students use a web-based geologic timeline to examine temperature, CO2 concentration, and ice cover data to investigate how climate has changed during the last 715 million years.

University, Environmental L.


Scaling the Geologic Past  

ERIC Educational Resources Information Center

Describes construction of a Geologic Time Scale on a 100 foot roll of paper and suggests activities concerning its use. Includes information about fossils and suggestions for conducting a fossil field trip with students. (BR)

Gerritts, Mary



Comprehending Geologic Time  

NSDL National Science Digital Library

This online calculator helps students understand the classic analogy of relating the geologic time scale to a yard stick. It will help reinforce the concept of the briefness of human history relative to the age of the Earth.


Economic Geology (Oil & Gas)  

ERIC Educational Resources Information Center

Briefly reviews the worldwide developments in petroleum geology in 1971, including exploration, new fields, and oil production. This report is condensed from the October Bulletin of the American Association of Petroleum Geologists. (PR)

Geotimes, 1972



Photos of structural geology  

NSDL National Science Digital Library

This page contains four categories of structural geology photos: brittle structures, ductile structures, active tectonics, and unconformities. All photos are freely downloadable and are at resolutions sufficient for power point.

Miller, Marli


Reconstructing the Geologic Timeline.  

ERIC Educational Resources Information Center

Reports on the use of a non-traditional approach to constructing a geological timeline that allows students to manipulate data, explore their understanding, and confront misconceptions. Lists possible steps to use in engaging students in this constructivist activity. (DDR)

Hemler, Deb; Repine, Tom



Bedrock Geology Mapping Exercise  

NSDL National Science Digital Library

This field mapping and map-making exercise is a capstone project for a course on Geological Maps. Over a weekend (~12 hours of field work), students collect lithologic and structural data from outcrops scattered over a one square mile area. Back in the classroom, students digitally compile their field data (outcrop, structure measurements, traverse locations) into ArcMAP. They infer geologic linework (faults and contacts) and units from this data in ArcMAP and then export these data layers into Illustrator. In Illustrator, they add ancillary map components (a cross section, description of map units, correlation diagram, map symbol legend,...) to create a final map at a 1:10,000 scale. Their maps are printed out on 11"x17" paper and saved as a pdf file. This exercise helps the students to appreciate how field data is collected and how these geologic facts are interpretively organized into a four-dimensional picture that is a geologic map.

Miller, Jim


Geologic evolution of Arizona  

SciTech Connect

Seven years in the making, the 35 papers in this volume summarize the stratigraphic, structural, and tectonic evolution of Arizona from Precambrian through Quaternary time. Intended as a compendium of current knowledge of Arizona geology, the papers synthesize previous work with new data, ideas, and concepts as well as identifying unresolved problems for future research. Emphasis is placed on the geologic evolution of the state as a whole rather than specific local areas. The papers are organized in terms of geologic eras: Proterozoic, Paleozoic, Mesozoic, and Cenozoic. The concluding section offers topical studies in the areas of geophysics, industrial minerals, uranium, oil and gas, geothermal resources, hydrogeology, and environmental geology. California readers will find much of interest in this research volume because many of the tectonic processes that formed Arizona also affected the development of this state.

Penny, J.P.; Reynolds, S.J. (eds.)



Geologic map of Big Bend National Park, Texas  

USGS Publications Warehouse

The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and interpretation, was from the USGS Crustal Geophysics and Geochemistry Science Center. Mapping contributed from university professors and students was mostly funded by independent sources, including academic institutions, private industry, and other agencies.

Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.



Geologic exploration of Mars  

NASA Technical Reports Server (NTRS)

The scientific objectives and methods involved in a geologic exploration of Mars from a manned outpost are discussed. The constraints on outpost activities imposed by the limited crew size, limited amount of time available for science, the limited diversity of scientific expertise, and the competition between scientific disciplines are addressed. Three examples of possible outpost locations are examined: the Olympus Mons aureole, Mangala Valles/Daedalia Planum, and Candor Chasma. The geologic work that could be done at each site is pointed out.

Plescia, J. B.



Understanding Geologic Time  

NSDL National Science Digital Library

This informational tour offers students a basic understanding of geologic time, the evidence for events in the history of the Earth, relative and absolute dating techniques, and the significance of the Geologic Time Scale. Students move at a self-selected pace by answering questions correctly as they go. The teacher's guide contains all the details needed to use this computer activity, including handouts, a lesson plan, and assessment materials.

Scotchmoor, Judy


Geologic Time Discussion Analogies  

NSDL National Science Digital Library

The slides provide a fun way of discussing the immensity of geologic time and help to grasp the age of the earth, the time gaps between major geologic events, and the relative minuteness of humans time on earth. After the discussion with the class, students are given opportunity to develop their own analogies using "everyday" things (other than the calendar and money examples used in this activity).

Noah Fay


Johnston Geology Museum  

NSDL National Science Digital Library

The Johnston Geology Museum is part of the Emporia State University Earth Science Department. There is an online virtual tour of the collection which includes a Cretaceous mosasaur, a giant ground sloth, mastodon bones and tusk, brachiopods, Paleozoic corals, sedimentary structures, minerals and crystals. The Museum contains geological specimens predominantly from Kansas, and include the world famous Hamilton Quarry Fossil Assemblage, the Tri-State Mining Display, petrified tree stumps, and the Hawkins and the Calkins Indian Artifact Collections.



Interpreting Geologic Sections  

NSDL National Science Digital Library

Athro, Limited is a for-profit corporation that publishes high school and college level biology, earth science, and geology course supplements and independent learning materials on the Web. This site provides instruction in interpreting the order of events in three hypothetical and one real geological section. For each section there is a list of events and an animation of the history of the section once the student has decided on the order of events.

Paul Morris


Geology and Human Health  

NSDL National Science Digital Library

This site contains a variety of educational and supporting materials for faculty teaching in the emerging field of geology and human health. You will find links to internet resources, books, teaching activities, and a group email list, as well as posters, presentations and discussions from the spring 2004 workshop on Geology and Human Health. These resources reflect the contributions of faculty members from across the country and the collections will continue to grow as materials are developed.


Remote geologic structural analysis of Yucca Flat  

SciTech Connect

The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.

Foley, M.G.; Heasler, P.G.; Hoover, K.A. (Pacific Northwest Lab., Richland, WA (United States)); Rynes, N.J. (Northern Illinois Univ., De Kalb, IL (United States)); Thiessen, R.L.; Alfaro, J.L. (Washington State Univ., Pullman, WA (United States))



Remote geologic structural analysis of Yucca Flat  

SciTech Connect

The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA`s characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL`s RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.

Foley, M.G.; Heasler, P.G.; Hoover, K.A. [Pacific Northwest Lab., Richland, WA (United States); Rynes, N.J. [Northern Illinois Univ., De Kalb, IL (United States); Thiessen, R.L.; Alfaro, J.L. [Washington State Univ., Pullman, WA (United States)



Geological assessment of the greenhouse effect  

SciTech Connect

Geologic studies provide a valuable perspective on the importance of greenhouse forcing for climate change. On both Pleistocene and tectonic time scales, changes in climate are positively correlated with greenhouse gas variations. However, the sensitivity of the system to greenhouse gas changes cannot yet be constrained by paleoclimate data below its present large range. Geologic records do not support one of the major predictions of greenhouse models-namely, that tropical sea surface temperatures will increase. Geologic data also suggest that winter cooling in high-latitude land areas is less than predicted by models. As the above-mentioned predictions appear to be systemic features of the present generation of climate models, some significant changes in model design may be required to reconcile models and geologic data. However, full acceptance of this conclusion requires more measurements and more systematic compilations of existing geologic data. Since progress in data collection in this area has been quite slow, uncertainties associated with these conclusions may persist for some time. 106 refs., 6 figs.

Crowley, T.J. (Texas A M Univ., College Station, TX (United States))



Geology’s “Super Graphics” and the Public: Missed Opportunities for Geoscience Education  

NASA Astrophysics Data System (ADS)

The geosciences are very visual, as demonstrated by the illustration density of maps, graphs, photographs, and diagrams in introductory textbooks. As geoscience students progress, they are further exposed to advanced graphics, such as phase diagrams and subsurface seismic data visualizations. Photographs provide information from distant sites, while multivariate graphics supply a wealth of data for viewers to access. When used effectively, geology graphics have exceptional educational potential. However, geological graphic data are often presented in specialized formats, and are not easily interpreted by an uninformed viewer. In the Howe-Russell Geoscience Complex at Louisiana State University, there is a very large graphic (~ 30 ft x 6 ft) exhibited in a side hall, immediately off the main entrance hall. The graphic, divided into two obvious parts, displays in its lower section seismic data procured in the Gulf of Mexico, from near offshore Louisiana to the end of the continental shelf. The upper section of the graphic reveals drilling block information along the seismic line. Using Tufte’s model of graphic excellence and Paivio’s dual-coding theory, we analyzed the graphic in terms of data density, complexity, legibility, format, and multivariate presentation. We also observed viewers at the site on 5 occasions, and recorded their interactions with the graphic. This graphic can best be described as a Tufte “super graphic.” Its data are high in density and multivariate in nature. Various data sources are combined in a large format to provide a powerful example of a multitude of information within a convenient and condensed presentation. However, our analysis revealed that the graphic misses an opportunity to educate the non-geologist. The information and seismic “language” of the graphic is specific to the geology community, and the information is not interpreted for the lay viewer. The absence of title, descriptions, and symbol keys are detrimental. Terms are not defined. The absence of color keys and annotations is more likely to lead to an appreciation of graphic beauty, without concomitant scientific understanding. We further concluded that in its current location, constraints of space and reflective lighting prohibit the viewer from simultaneously accessing all subsurface data in a “big picture” view. The viewer is not able to fully comprehend the macro/micro aspects of the graphic design within the limited viewing space. The graphic is an example of geoscience education possibility, a possibility that is currently undermined and unrealized by lack of interpretation. Our analysis subsequently informed the development of a model to maximize the graphic’s educational potential, which can be applied to similar geological super graphics for enhanced public scientific understanding. Our model includes interactive displays that apply the auditory-visual dual coding approach to learning. Notations and aural explanations for geological features should increase viewer understanding, and produce an effective informal educational display.

Clary, R. M.; Wandersee, J. H.



Geologic mapping of Northern Atla Regio on Venus: Preliminary data  

NASA Technical Reports Server (NTRS)

The Northern part of Atla Regio within the frame of C1-formate Magellan photo map 15N197 was mapped geologically at scale 1:8,000,000. This is a part of Russia's contribution into C1 geologic mapping efforts. The map is reproduced here being reduced about twice. The map shows that the Northern Atla area is predominantly a volcanic plain with numerous volcanic features: shield volcanoes, domes and hills with various morphology, corona-like constructions, radar bright and dark spots often with flow-like outlines. Relatively small areas of tessera occurred in the area are mainly semi-flooded with the plain material. Tesserae are considered to be the oldest terrains within the map sheet. There are many lineated terrains in the region. They are interpreted as the old, almost-buried tesserae (those with crossed lineaments) or partly buried ridge belts (those with parallel lineaments). These lineated terrains have an intermediate age between the young volcanic plains and the old tessera areas. Two prominent high volcanic shields are located within the region - Ozza Mons and Sapas Mona. The most prominent structure in Northern Atla is Ganis Chasma rift. The rift cuts volcanic plain and is considered to be under formation during approximately the same time with Ozza Mons shield. Ganis Chasma rift valley is highly fractured and bounded with fault scarps. Rift shoulder uplifts are typical for Ganis Chasma. There are few relatively young volcanic features inside the rift valley. The analysis of fracturing and rift valley geometry shows the rift originated due to 5-10 percent crustal extention followed by the crustal subsidence. The age sequence summary for the main terrain types in the region is (from older to younger ones): tesserae; lineated terrains with crossed lineaments; lineated terrains with parallel lineaments; volcanic plains; and prominent volcanic shields and Ganis Chasma rift valley. The geologic structure of Atla Regio as it appeared now with the Magellan high resolution images is very close to that of Beta Regio. Such conclusion coincide with the earlier ones based on the coarser data.

Nikishin, A. M.; Burba, G. A.



The Fabled Maine Winter  

NSDL National Science Digital Library

No study of Maine weather would be complete without analysis of the year of 1816 - the year with no summer in an area from western Pennsylvania and New York, up through Quebec and across to Maine and the Canadian maritimes. In this five-unit lesson, students will investigate the causes and effects of the Fabled Maine Winter by exploring a variety of data sources. They will locate, graph, and analyze meteorological and climatological data for Portland, Maine, for more recent years to try to find one that most closely resembles the fabled Maine winter of 1816.


Illustrated Glossary of Geologic Terms  

NSDL National Science Digital Library

Provided by the Geology Department at Iowa State University, this handy illustrated glossary of geological terms is an excellent quick reference resource for students. Continuously upgraded with links to illustrations and text, this geological lexicon is based on the glossary in the textbook Earth: An Introduction to Geological Change by S. Judson and S.M. Richardson. Alphabetical tabs and internal links to related terms let users move quickly around this useful aid for geology students.


Geological myths and reality  

NASA Astrophysics Data System (ADS)

Myths are the result of man's attempts to explain noteworthy features of his environment stemming from unfounded imagination. It is unbelievable that in 21st century the explanation of evident lithospheric plates movements and origin of forces causing this movement is still bound to myths, They are the myth about mantle convection, myth about Earth's expansion, myth about mantle heterogeneities causing the movement of plates and myth about mantle plumes. From 1971 to 1978 I performed extensive study (Ost?ihanský 1980) about the terrestrial heat flow and radioactive heat production of batholiths in the Bohemian Massive (Czech Republic). The result, gained by extrapolation of the heat flow and heat production relationship, revealed the very low heat flow from the mantle 17.7mW m-2 close to the site of the Quarterly volcano active only 115,000 - 15,000 years ago and its last outbreak happened during Holocene that is less than 10,000 years ago. This volcano Komorní H?rka (Kammerbühls) was known by J. W. Goethe investigation and the digging of 300 m long gallery in the first half of XIX century to reach the basaltic plug and to confirm the Stromboli type volcano. In this way the 19th century myth of neptunists that basalt was a sedimentary deposit was disproved in spite that famous poet and scientist J.W.Goethe inclined to neptunists. For me the result of very low heat flow and the vicinity of almost recent volcanoes in the Bohemian Massive meant that I refused the hypothesis of mantle convection and I focused my investigation to external forces of tides and solar heat, which evoke volcanic effects, earthquakes and the plate movement. To disclose reality it is necessary to present calculation of acting forces using correct mechanism of their action taking into account tectonic characteristics of geologic unites as the wrench tectonics and the tectonic of planets and satellites of the solar system, realizing an exceptional behavior of the Earth as quickly rotating body exposed to strong tidal action of Moon and Sun. Ostrihansky, L.: The structure of the earth's crust and the heat-flow--heat-generation relationship in the Bohemian Massif. Tectonophysics, 68(3-4), 325-337, doi:10.1016/0040-1951(80)90182-1 1980.

Ostrihansky, Lubor



Measuring Geologic Time on Mars  

NASA Technical Reports Server (NTRS)

Recent images from Mars show compelling evidence of near-surface flowing water, aeolian activity slope processes, and ice cap evolution that underscores the dynamic geologic history of the planet. Establishing an accurate chronology for Martian planetary features is critical for addressing fundamental questions about the evolution of the planet's surface and atmosphere and the differentiation of its interior. For example, how long was standing water on the surface? If life did evolve on Mars, did it occur before or after the evolution of life on Earth? These are arguably some of the most profound questions currently being asked by the planetary science community. Yet answers will not be forthcoming without an absolute chronology of Mars history, enabling the construction of a timescale comparable to Earth's. Discussion of methods for establishing such a chronology is particularly timely in light of new missions to Mars that are being planned to return in situ measurements or samples to Earth.



Geology Fieldnotes: Zion National Park, Utah  

NSDL National Science Digital Library

Zion is located on the edge of the Colorado Plateau, and is part of a formation known as the Grand Staircase (Bryce Canyon and the Grand Canyon are also part of this formation). The site discusses the formation of the park, from sedimentation 240 million years ago (Triassic), to lithification, uplift, and erosion. Visible formations include the Navajo sandstone and the Kaibab formation. Additional resources include visitor information, maps, photographs, and a teacher feature (lessons for teaching geology with National Parks as examples).

Foos, Annabelle


United States Geological Survey: Contaminant Biology Program  

NSDL National Science Digital Library

This is the homepage of the United States Geological Survey's (USGS) Contaminant Biology Program, whose mission is to investigate the effects and exposure of environmental contaminants (for example, mercury) on the living resources of the United States. The site features links to information on the program's projects, grouped under chemistry and toxicology; contaminated habitats; and monitoring and assessment. There are also links to news items and events, publications, links to biology science centers and cooperative research units, and links to related websites.


Geologic mapping of the Semipalatinsk region, Eastern Kazakstan, using Landsat Thematic Mapper and spot panchromatic data  

SciTech Connect

This geologic reconnaissance study centers on a 90 by 140 km area about 100 km southwest of Semipalatinsk near the east border of the Kazakstan Republic of the USSR. Semipalatinsk, a regional center for grain growing, and several other cities along the Irtysh River were originally established as fortified outposts by the Russians during the 18th and 19th centuries to contain the indigenous, nomadic Kazak herdsmen. The Kazakstan region remained largely undeveloped until after the 1917 Russian Revolution, when exploration geologists began discovering many large mineral deposits. Today, known resources include coal, copper, iron ore, lead, zinc, and barite; most of these are of national significance. These vast mineral resources have prompted development of many metallurgical and chemical industries in the republic. Despite the extensive exploration for mineral resources in this region, published geologic maps (Nalivkin, 1960; Esenov, 1971; Borovikov, 1972) are all at scales of 1:1,100,000 or smaller, and there are no detailed descriptions of the geology around Semipalatinsk in the open literature. Our preliminary examination of commercial remote-sensing, data indicated that the lithology and structure of this area are extremely varied and complex at all scales -- much more so than that portrayed on the published geologic maps. Therefore, the main objective of this study was to use commercially available remotely sensed data for the area and remotely sensed data obtained for analog study sites, as well as the sparse, sketchy information in the published literature, to better define and map the geologic units (Sheet 1), structure (Sheet 2), and drainage features (Sheet 3) of this area.

Davis, P.A. [Geological Survey, Flagstaff, AZ (United States); Berlin, G.L. [Northern Arizona Univ., Flagstaff, AZ (United States)



Minnesota Geological Survey  

NSDL National Science Digital Library

The Minnesota Geological Survey (MGS) was established in 1872 as part of the University of Minnesota. The function of the MGS is to serve "the people of Minnesota by providing systematic geoscience information to support stewardship of water, land, and mineral resources." This website from the Digital Conservancy at the University of Minnesota provides access to all of items published by the MGS. The items are contained within the Collections area, and visitors will find headings here such as "Geology of Minnesota Parks," "County Atlas Series," and the "Bulletin of the Minnesota Geological and Natural History Survey." First-time visitors can check out the Recent Submissions area on the right-hand side of the page to look over some new findings, including hydrogeological maps of different counties around the state. One item that should not be missed is the "Geology of Minnesota: A Centennial Volume" from 1972. It's a tremendous volume and one that cannot be ignored by students of the physical landscape and geological history of the state.



Evaluation of ERTS-1 imagery for geological sensing over the diverse geological terrains of New York State  

NASA Technical Reports Server (NTRS)

Film positives of ERTS-1 imagery, both as received from NASA and photographically reprocessed, are analyzed by conventional and color additive viewing methods. The imagery reveals bedrock and surficial geological information at various scales. Features which can be identified to varying degrees include boundaries between major tectonic provinces, lithological contacts, foliation trends within massive gneisses, faults, and topographic lineaments. In the present imagery the greatest amount of spectral geology is displayed in the Adirondack region where bedrock geology is strongly linked to topography. Within this basement complex, the most prominantly displayed features are numerous north-northeast trending faults and topographic lineaments, and arcuate east-west valleys developed in some of the weaker metasedimentary rocks. The majority of the faults and lineaments shown on the geologic Map of New York at 1:250,000 appear in the ERTS imagery.

Isachsen, Y. W.; Fakundiny, R. H.; Forster, S. W.



Environmental Resources of Selected Areas of Hawaii: Geological Hazards (DRAFT)  

SciTech Connect

This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed Regis. 5925638) withdrawing its Notice of Intent (Fed Regis. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent U.S. Geological Survey (USGS) publications and open-file reports. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift, and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis). First, overviews of volcanic and earthquake activity, and details of offshore geologic hazards is provided for the Hawaiian Islands. Then, a more detailed discussion of onshore geologic hazards is presented with special emphasis on the southern third of Hawaii and the east rift zone of Kilauea.

Staub, W.P.



Geology Fieldnotes: Agate Fossil Beds National Monument, Nebraska  

NSDL National Science Digital Library

Agate Fossil Beds National Monument preserves an important source for 19.2 million year-old Miocene mammal fossils from a chapter of evolution frequently referred to as the "Age of Mammals". Features include information on park geology, maps, photographs, visitor information, and links to related publications. The park geology section discusses the Monument's geologic history and climate, profiles of some of the Miocene mammals found in the deposits, and discusses the history of fossil collecting at the locality. The park map indicates quarry and private property areas within the Monument.


Minnesota Geological Survey  

NSDL National Science Digital Library

Established in 1872 by the State of Minnesota as part of the University of Minnesota, the Minnesota Geological Survey (MGS) serves the people of Minnesota by providing systematic geoscience information to support the stewardship of water, land, and mineral resources. This rather lovely digital collection brings together a record of all items published by the MGS since its creation. Here, visitors will find documents, reports, maps, and GIS data for online viewing or downloading as well. The thematic collections here include the Aeromagnetic Map Series, the annual reports of the Minnesota Geological and Natural History Survey, and the wonderful county atlas series. Visitors with a penchant for geology, natural history, and geography will find much to enjoy here.


Geologic map of Mars  

USGS Publications Warehouse

This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.

Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P., III; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.



Sedimentology and petroleum geology  

SciTech Connect

In this introduction to sedimentology and petroleum geology the subjects, which are closely related but mostly treated separately, are integrated. The first part covers the basic aspects of sedimentology, sedimentary geochemistry and diagenesis, including brief discussions of flow in rivers and channels, types of sediment transport, lake and river deposits, deltas (river-dominated, tide-dominated, and wave-dominated) and the water budget. Principles of stratigraphy, seismic stratigraphy and basin modeling form the basis for the last part on petroleum geology. Here subjects include the composition of kerogen and hydrocarbons, theories of migration and trapping of hydrocarbons and properties of reservoir rocks. Finally, short introductions to well logging and production geology are given.

Bjorlykke, K.



Global sedimentary geology program  

SciTech Connect

The Society of Economic Paleontologists and Mineralogists, in collaboration with the International Association of Sedimentologists and the International Union of Geological Sciences Committee on Sedimentology, is developing a new international study under the provisional title of Global Sedimentary Geology Program (GSGP). Initially, three research themes are being considered: (1) event stratigraphy-the documentation of examples of mass extinctions, eustatic fluctuations in sea level, major episodes of volcanisms, and changes in ocean composition; (2) facies models in time and space-an expansion of the existing data base of examples of facies models (e.G., deltas, fluvial deposits, and submarine fans) and global-scale study of the persistence of facies at various times in geologic history; and (3) sedimentary indices of paleogeography and tectonics-the use of depositional facies and faunas in paleogeography and in assessing the timing, locus, and characteristics of tectonism. Plans are being developed to organize pilot projects in each of these themes.

Ginsburg, R.N.; Clifton, H.E.; Weimer, R.J.



Geology of Io  

NASA Technical Reports Server (NTRS)

Geologic mapping of the Jovian satellite Io has been completed at 1:15,000,000 scale for an area lying between +40 and -90 deg latitude and 230 and 45 deg longitude, which includes portions of the Ruwa Patera quadrangle (Ji2) and the Lerna Region (Ji4) and the westernmost section of the Colchis Region (Ji3). Image resolution in the mapped area is commonly 0.5 to 2 km/pxl. High resolution areas (less than .5 km/pxl) are located near the south pole (Lerna Region) and in eastern Ruwa Patera quadrangle. Geologic maps for the Ruwa Patera quadrangle (Ji2) and the Lerna Region (Ji4) have been produced at 1:5,000,000 scale. The present effort reexamines the previously mapped areas and synthesizes the geology of Io on a global scale.

Greeley, R.; Craddock, R. A.; Crown, D. A.; Leshin, L. A.; Schaber, G. G.



Regional geology and petroleum potential of the United State Chukchi shelf north of Point Hope  

SciTech Connect

An extensive frontier terrain that is prospective for petroleum but is as yet incompletely explored and entirely untested underlies the United States Chukchi shelf north of Point Hope. The area is in most places underlain by a thick section of sedimentary rocks prospective for oil and gas, and it contains diverse geologic structures and stratigraphic features that may have trapped hydrocarbon fluids. The prospective sedimentary section includes every geologic system from the Carboniferous to the Tertiary and includes several formations that contain petroleum deposits or strong shows of oil or gas on parts of the North Slope of Alaska. These formations have proved disappointing, however, where tested in a few exploratory wells in the western part of the National Petroleum Reserve in Alaska (NPRA), an area that lies adjacent to the Chukchi shelf. The data base consists mainly of the U.S. Geological Survey (USGS) multichannel seismic-reflection profiles and accompanying high-resolution seismic-reflection profiles shown in figure 10.1 and some additional USGS single-channel seismic-reflection profiles, sonobuoy refraction measurements, and seabed samples. The multichannel seismic profiles, on which the interpretations presented here are mainly based, are mostly 30 to 90 km apart, with typical line spacings of 40 to 50 km. Ice conditions during data acquisition were such, however, that profile coverage in the northern and northwestern parts of the Chukchi Sea is sparse. Because of the wide spacing and irregular distribution of the profiles, the interpretations are reconnaissance in character. Some of the profiles, particularly in the southwestern part of the study area, are affected by strong artifacts that further limit their usefulness for geologic interpretation and resource assessment.

Grantz, A.; May, S.D.



The Maine Event  

ERIC Educational Resources Information Center

In this article, the author describes the successful laptop program employed at Mt. Abram High School in Strong, Maine. Through the Maine Learning Technology Initiative, the school has issued laptops to all 36,000 teachers and students in grades 7-8. This program has helped level the playing field for a student population that is 50 percent to 55…

McHale, Tom



Gulf of Maine: Weather  

NSDL National Science Digital Library

Lessons and activities from the Gulf of Maine Research Institute (formerly Gulf of Maine Aquarium), focused on hurricanes, El Nino, fog, and volcanic eruptions. Emphasis on important hurricanes of the past. Resources include lessons, guides for simple experiments, and a student weather network. Downloadable materials and additional webpages also provided.




EPA Science Inventory

WORM provides a generalized representation at 1:24,000 scale of commercially harvested marine worm habitat in Maine, based on Maine Department of Marine Resources data from 1970's. Original maps were created by MDMR and published by USF&WS as part of the ""&quo...


on Hurricane Island, Maine  

Microsoft Academic Search

In 1981, a study was initiated to measure the effects of low-level trampling (100 to 200 tramples) on selected vegetation on Hurricane Island, Maine. Low levels of trampling are representative of general recreational use patterns on most Maine islands. The study was designed to compare percent survival of common island species when subjected to low-level trampling, to observe treadway formation,

R. E. Leonard; P. W. Conkling; J. L. McMahon


Principles of isotope geology  

Microsoft Academic Search

Discussions of methods of isotope dating using Rb-Sr, K-Ar, ⁴°Ar\\/³⁹Ar, Re-Os, Lu-Hf, K-Ca, U, Tb-Pb, ¹⁴C, common lead, S,O,H, fission track, and U-series disequilibrium are included in respective chapters. Introductory chapters discussing the basics of isotope geology, atomic structure, decay mechanisms and mass spectrometry are included along with two appendices; the geological time scale for the Phanerzoic and a fitting

G Faure



Geological Survey of Alabama  

NSDL National Science Digital Library

This is the homepage of the Geological Survey of Alabama (GSA), a data gathering and research agency that explores and evaluates the mineral, water, energy, biological, and other natural resources of the State of Alabama and conducts basic and applied research in these fields as a public service to citizens of the State. The GSA homepage contains a geologic map of Alabama; information on GSA news and events; GSA publications; GIS data and maps; an Ask the Geologist, Hydrogeologist and Biologist link; and a Geospatial Data Clearinghouse.


BGS Geological Timechart  

NSDL National Science Digital Library

This is the geological time scale developed by the British Geological Survey. The principal chart is the Phanerozoic (Cambrian to Quaternary) timescale. The names of the individual periods are live links, each one leading to a chart showing the subdivisions of each period into epochs and ages. The Proterozoic and Neoproterozoic sections are also linked to further subdivisions into eras and periods. Dates are in millions of years before present. A guide on the front page describes the bases for the divisions used on this time scale and how to use it, and a downloadable version is also provided.


Understanding Geological Time  

NSDL National Science Digital Library

In this classroom activity, middle school students gain an understanding of geologic time. The activity opens with background information for teachers about carbon and radiometric dating. In a classroom discussion, students share what they know about geologic time. Then, working in small groups responsible for different eras, students create a timeline for their assigned era by conducting library and Internet research. The activity concludes by having students review all the timelines to compare how long humans have been on the Earth to the length of time dinosaurs inhabited the planet.


Maine Folklife Center  

NSDL National Science Digital Library

Located at the University of Maine, the Maine Folklife Center is committed to documenting and understanding the folklore, folklife, and history of Maine and Atlantic Canada. Along with its various scholarly activities, the Center sponsors a number of festivals, lectures, and like-minded programs that encourage appreciation of the diverse cultural traditions within the region. The site will be useful to researchers with a penchant in these fields, as it contains information about the collections, including a rather extensive oral history collection (with work that documenting the cranberry culture of Massachusetts and the traditional music of Maine). There is also material on the public programs and exhibits sponsored by the center, and a set of external links that lead to other sites dealing with oral history, folklore, and Maine. While the Center's site does not have a great deal of online material for consideration, the center has transcribed the sixth volume of Northeast Folklore (originally published in 1964) and placed them online.


Geology of Badlands National Park: a preliminary report  

USGS Publications Warehouse

Badlands National Park is host to perhaps the most scenic geology and landscape features in the Western Interior region of the United States. Ongoing erosion that forms the "badlands" exposes ancient sedimentary strata of Late Cretaceous through Oligocene age. Quaternary erosional and depositional processes are responsible for most of the modern landscape features in the park and surrounding region. This report provides a basic overview of the park geology The discussions presented within include both well-established concepts and theories and new, preliminary data and interpretations. Much emphasis is placed on presenting information about the oldest and least studied rocks in the park (particularly the Late Cretaceous and earliest Tertiary deposits that underlie the White River beds throughout the park region). Rock formations and selected fossils they contain are described. Faults, folds, unconformities, and other geologic structures in the North Unit of the park are illustrated, including features associated with the Sage Creek anticline and fault system.

Stoffer, Philip W.



Geology of the Byrd Glacier Discontinuity (Ross Orogen): New survey data from the Britannia Range, Antarctica  

USGS Publications Warehouse

Field activities in the Britannia Range (Transantarctic Mountains, Antarctica) highlighted new geological features around the so-called Byrd Glacier discontinuity. Recent field surveys revealed the occurrence of significant amounts of medium- to high-grade metamorphic rocks, intruded by abundant coarse-grained porphyritic granitoids. Most of the granitoids are deformed, with foliation parallel to the regional foliation in the metamorphics. Two main episodes of deformation are observed. Tight to isoclinal folds and penetrative axial plane foliation are related to the D1 phase, open folds to the D2. The main foliation (D1) trends nearly E-W in agreement with the trend in the southern portion of the Byrd Glacier. In most outcrops, granitic dykes are folded and stretched by the D2 deformation, which shows similar characteristics with the D2 deformation south of the Byrd Glacier. This suggests the occurrence in the Ross orogen of an orogen-normal structure south and north of the Byrd Glacier.

Carosi, R.; Giacomini, F.; Talarico, F.; Stump, E.



Life on Guam: Geology.  

ERIC Educational Resources Information Center

This unit is part of a series of materials produced by a project to develop locally applicable class, lab, and field materials in ecology and social studies for Guam junior and senior high schools. While the materials were designed for Guam, they can be adapted to other localities. This unit is designed to acquaint the students with the geology of…

Elkins, Gail


Marine Environmental Geology  

NSDL National Science Digital Library

This course is an introduction to the aspects of marine geology and oceanography that affect the environment and marine resources. Service-learning is an essential component of how students learn about the earth. We deliver part of the content of this course by arranging for students to solve a problem with a local community partner.

Course taught by Prof. Ed Laine, Bowdoin College ( and Cathryn Field, Lab Instructor ( Example compiled by Suzanne Savanick, Science Education Resource Center (


Layer Cake Geology  

NSDL National Science Digital Library

This activity provides young students with a relevant model (a layer cake) to help them understand concepts about sedimentary rock layers (such as the Law of Superposition), correlation of the rock record with geologic time and relative ages of rocks and fossils.

Molly Ward


Public perceptions of geology  

NASA Astrophysics Data System (ADS)

Geological issues are increasingly intruding on the everyday lives of ordinary people. Whether it be onshore exploration and extraction of oil and gas, deep injection of water for geothermal power or underground storage of carbon dioxide and radioactive waste, many communities across Europe are being faced with potentially contested geological activity under their backyard. As well as being able to communicate the technical aspects of such work, geoscience professionals also need to appreciate that for most people the subsurface is an unfamiliar realm. In order to engage communities and individuals in effective dialogue about geological activities, an appreciation of what 'the public' already know and what they want to know is needed, but this is a subject that is in its infancy. In an attempt to provide insight into these key issues, this study examines the concerns the public have, relating to geology, by constructing 'Mental Models' of people's perceptions of the subsurface. General recommendations for public engagement strategies will be presented based on the results of selected case studies; specifically expert and non-expert mental models for communities in the south-west of England.

Gibson, Hazel; Stewart, Iain; Anderson, Mark; Pahl, Sabine; Stokes, Alison



Geologic Data Systems  

USGS Multimedia Gallery

Several of the systems used for viewing and storing geologic data as it's captured from the onboard instrumentation. The USGS returned from a seafloor data mapping mission offshore of the Delmarva Peninsula (Ocean City, MD) on July 25th, 2014. The data collected is foundational to our continued und...


Advances in planetary geology  

NASA Technical Reports Server (NTRS)

A wide variety of topics on planetary geology are presented. Subjects include stratigraphy and geomorphology of Copernicus, the Mamers valle region, and other selected regions of Mars and the Moon. Crater density and distribution are discussed for Callisto and the lunar surface. Spectroscopic analysis is described for Europa and Ganymede.



Glacial Geology of Wisconsin.  

ERIC Educational Resources Information Center

This publication is a teacher's resource and guidebook for the presentation of the three filmstrips in the "Glacial Geology of Wisconsin" series. The first filmstrip is subtitled, "Evidence of the Glaciers," the second "How the Glaciers Reshaped the Landscape," and the third "Fossils of the Ice Age." Included are a list of objectives, an outline…

Madison Public Schools, WI.


Dinosaur Paleobiology Geology 331  

E-print Network

Dinosaur Paleobiology Geology 331 Paleontology #12;Dinosaurs are popular with the public #12;Jack Horner, Montana State Univ. #12;Field Work in Montana #12;A dinosaur "drumstick" in its field jacket. #12;Abundant vascular canals in dinosaur bone support the warm- blooded theory #12;Thin section of dinosaur

Kammer, Thomas


Mass Extinctions Geology 331  

E-print Network

groups · Devonian ­ about 40% of marine genera including all stromatoporoids, all shallow water corals;Stromatoporoids and Corals #12;Rugose Corals #12;Victims · Permian ­ about 50 brachiopods ­ All rugose and tabulate corals ­ All remaining trilobites ­ Nearly all crinoids ­ Nearly all

Kammer, Thomas


Geological impacts on nutrition  

Technology Transfer Automated Retrieval System (TEKTRAN)

This chapter reviews the nutritional roles of mineral elements, as part of a volume on health implications of geology. The chapter addresses the absorption and post-absorptive utilization of the nutritionally essential minerals, including their physiological functions and quantitative requirements....


American Geological Institute Homepage  

NSDL National Science Digital Library

This is the homepage of the American Geological Institute (AGI). Visitors can access information about geoscience education, public policy, environmental geoscience, careers in geoscience, publications, news articles, and events. Materials presented here include databases, curriculum materials, legislation and appropriations information, and an image bank.


Briefing on geological sequestration  

EPA Science Inventory

Geological sequestration (GS) is generally recognized as the injection and long-term (e.g., hundreds to thousands of years) trapping of gaseous, liquid or supercritical carbon dioxide (CO2) in subsurface media ? primarily saline formations, depleted or nearly depleted oil and gas...



EPA Science Inventory

Restricted availability. Major Attributes: Polygons described by geologic type codes & descriptions. May be incorporated into maps at the state/county/basin scale. Probably too coarse for use at the site scale. Scale: 1:500:000. Extent: Idaho. Projection: Albers. Source: ...


Digital solar system geology  

NASA Technical Reports Server (NTRS)

All available synoptic maps of the solid-surface bodies of the Solar System were digitized for presentation in the planned Atlas of the Solar System by Greeley and Batson. Since the last report (Batson et al., 1990), preliminary Uranian satellite maps were replaced with improved versions, Galilean satellite geology was simplified and digitized, structure was added to many maps, and the maps were converted to a standard format, with corresponding standing colors for the mapped units. Following these changes, the maps were re-reviewed by their authors and are now undergoing final editing before preparation for publication. In some cases (for Mercury, Venus, and Mars), more detailed maps were digitized and then simplified for the Atlas. Other detailed maps are planned to be digitized in the coming year for the Moon and the Galilean satellites. For most of the remaining bodies such as the Uranian satellites, the current digitized versions contain virtually all the detail that can be mapped given the available data; those versions will be unchanged for the Atlas. These digital geologic maps are archived at the digital scale of 1/16 degree/ pixel, in sinusoidal format. The availability of geology of the Solar System in a digital database will facilitate comparisons and integration with other data: digitized lunar geologic maps have already been used in a comparison with Galileo SSI observations of the Moon.

Batson, R. M.; Kozak, R. C.; Isbell, Nancy K.



Appendix E: Geology  

SciTech Connect

This appendix provides a detailed description of geology under the Central Plateau of the Hanford Site, emphasizing the areas around tank farms. It is to be published by client CH2M HILL Hanford Group, Inc., as part of a larger, multi-contractor technical report.

Reidel, Steve; Chamness, Mickie A.



Geology of Jewel Cave  

NSDL National Science Digital Library

This National Park Service site provides an introduction to the Black Hill's Jewel Cave. The site describes the unique geologic history of the Black Hills, the formation of speleothems as well as unusual crystal growth in the cave. Photographs illustrate the descriptions.

National Park Services (NPS)


Geology of California. Second Edition  

SciTech Connect

Two introductory chapters familiarize readers with basic geologic concepts. The following chapters describe the geology of each of California's 11 geomorphic provinces; the San Andreas fault and offshore geology are discussed in two separate chapters. Four appendices acquaint readers with technical words and terms, common minerals and rocks in California, geologic time, and geologic theories that pertain to California. During the 1960s evidence collected from the east Pacific sea floor off the western coast of North America gave scientists supporting data for Alfred Wegener's 1910 theory of continental drift. In addition to the confirmation of continental drift, since the 1960s scientists have discovered paleomagnetism, sea-floor spreading, exotic and suspect terranes, and polar wandering. These important concepts have had far reaching effects about how we understand the geology of California and how this region has evolved through geologic time. Improved investigative procedures enable earth scientists to comprehend previously puzzling aspects of California's geology.

Norris, R.M.; Webb, R.W.



Using Snow to Teach Geology.  

ERIC Educational Resources Information Center

A lesson plan, directed at middle school students and older, describes using snow to study the geological processes of solidification of molten material, sedimentation, and metamorphosis. Provides background information on these geological processes. (MCO)

Roth, Charles



Geologic Map Database of Texas  

USGS Publications Warehouse

The purpose of this report is to release a digital geologic map database for the State of Texas. This database was compiled for the U.S. Geological Survey (USGS) Minerals Program, National Surveys and Analysis Project, whose goal is a nationwide assemblage of geologic, geochemical, geophysical, and other data. This release makes the geologic data from the Geologic Map of Texas available in digital format. Original clear film positives provided by the Texas Bureau of Economic Geology were photographically enlarged onto Mylar film. These films were scanned, georeferenced, digitized, and attributed by Geologic Data Systems (GDS), Inc., Denver, Colorado. Project oversight and quality control was the responsibility of the U.S. Geological Survey. ESRI ArcInfo coverages, AMLs, and shapefiles are provided.

Stoeser, Douglas B.; Shock, Nancy; Green, Gregory N.; Dumonceaux, Gayle M.; Heran, William D.



NA57 main results  

E-print Network

The CERN NA57 experiment was designed to study the production of strange and multi-strange particles in heavy ion collisions at SPS energies; its physics programme is essentially completed. A review of the main results is presented.

G. E. Bruno; for the NA57 Collaboration



The Maine Music Box  

NSDL National Science Digital Library

Created through a collaboration between the University of Maine's Fogler Library and other Maine libraries, The Maine Music Box contains hundreds of digitized sheet music scores from five major collections. First-time visitors to the site will want to click on the "About Maine Music Box" project as a way of getting started. Here they can check out the "User Information" area, which contains helpful tips on viewing the music and how to best browse the entire database. Additionally, those with a penchant for technical details and information science in general can also learn in copious detail how the database was created for this project. From there, visitors can move straight away into the main collection. Visitors can browse the collection by music subject, sheet music cover art, or just type in their own keywords. One of the best ways to look over the collection is to browse around in such areas as "Instructional Violin", "Maine Collection" and "Parlor Salon Collection". It's also worth remarking that this site may inspire a sing-a-long, a campfire get-together, or a miniature Chautauqua.


The Geological Society Web Shop  

NSDL National Science Digital Library

The Geological Society has launched an on-line bookshop, through which both Fellows and non-Fellows of the Society can purchase Geological Society books. Visitors can select books listed under the following headings: Tectonics, Economic Geology, Environmental, Petrology, Stratigraphy, Marine Studies, and Geophysics. The Geological Society Web Shop can be browsed or searched by keyword. Information on opening an account and purchasing books is available at the site.



E-print Network

GLACIAL GEOLOGY OF CAPE BIRD, ROSS ISLAND, ANTARCTICA BY TINA M. DOCHAT1, DAVID R. MARCHANT2, University of Maine, Orono, Maine, USA Dochat,TinaM.,Marchant,D.R.andDenton,G.H.,2000:Gla- cialgeologyof CapeBird,shells,andforaminifersindicatethatacomponent of theicewithinthissheetflowedthroughtheTAM,groundedon theRoss Seafloor,andultimatelyadvancedlandwardontothe lowerslopes of MountBird

Marchant, David R.


Ordering Geologic Events and Interpreting Geologic History: The Grand Canyon  

NSDL National Science Digital Library

This activity is designed to help students recognize the connections among things like rock identification and map reading with the "story" that these things can tell us in terms of geologic history. Students have already learned about using observation to identify rocks and the principles of interpreting geologic cross-sections. The activity gives students practice in rock ID, topo map reading, geologic map reading and the aspects of geologic time. Students work with rock samples and a geologic map of the Grand Canyon to interpret a history for the area.

Jennifer Wenner


Estimation of Channelized Features in Geological Media Using Sparsity Constraints  

E-print Network

to acknowledge Schlumberger for donating ECLIPSE reservoir simulator that was used in this research. I appreciate synthetic examples in characterization of hydrocarbon reservoirs. Thesis Supervisors: William T. Freeman

Goyal, Vivek K


Cenozoic extensional features in the geology of central mainland Greece  

E-print Network

The Hellenides of Greece have undergone a series of extensional deformation events from early Miocene to present time. Two of the fault systems that accommodate this deformation in central Greece are the Itea-Amfissa ...

Swanson, Erika (Erika M.)



The effect of geological and geographical features on environmental radiation  

SciTech Connect

The gamma-ray dose rates were measured in Gifu and Tokushima Prefectures in Japan. Measurements were carried out by the car-borne survey method. The dose rate in basaltic terrain in Tokushima prefecture was almost same as average of basaltic terrain in Japan. On the other hand, the dose rate in basaltic terrain in Gifu Prefecture was not same. In situ measurement of terrestrial gamma-ray dose rate was carried out in this terrain to examine its cause. As a result, it was estimated that soil of rhyolite which attributed to neighbor terrain have deposited on this terrain.

Yamada, J.; Oka, M. [Graduate school of Fujita Health University (Japan); Shimo, M.; Minami, K. [Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake-shi, Aichi, 470-1192 (Japan); Minato, S. [Radiation Earth Science Laboratory, 9-6, Yamaguchi-cho, Higashi-ku, Nagoya-shi Aichi, 461-0024 (Japan); Sugino, M. [Gunma Prefectural College of Health Sciences, 323-1, Kamioki-cho, maebashi-shi, 371-0052 (Japan); Hosoda, M. [Chuoh College of Medical Technology, 3-5-12, Tateishi, katushika-ku, Tokyo, 124-0012 (Japan); Fukushi, M. [Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo, 116-8551 (Japan)



The Second Flowering of Geology.  

ERIC Educational Resources Information Center

Discusses two "golden" ages in geological investigations/inquiry. The first, extending from the late eighteenth century through the early nineteenth century, established geology as a science based on naturalistic principles. The second, beginning after World War II, is characterized by advances in geological specialities and explanations based on…

Cloud, Preston



Environmental Trends in Geologic Education  

ERIC Educational Resources Information Center

Considers strategies for developing college level introductory environmental geology courses, emphasizing relevance to local surroundings, Considers graduate studies in this field, but does not recommend the establishment of an environmental geology department at this time. Reviews the responsibilities the geology department has to the community…

Pestrong, Raymond



Geologic Map of New Jersey  

NSDL National Science Digital Library

This map displays the sedimentary rocks of the Cenozoic, Mesozoic, and Paleozoic eras as well as the igneous and metamorphic rocks of the Mesozoic and Precambrian eras. There is a pagesize copy of the geologic map, a brief description of the geology and physiographic provinces of New Jersey, and information on bedrock geologic maps of New Jersey (in CD-ROM format).


Geologic Map of North America  

USGS Multimedia Gallery

The Geologic Map of North America is a product of GSA's Decade of North American Geology (DNAG) project. At a scale of 1:5,000,000, this map covers ~15% of Earth's surface and differs from previous maps in several important respects: it is the first such map to depict the geology of the seafloor, th...


The Lapworth Museum of Geology  

E-print Network

The Lapworth Museum of Geology Events The Lapworth Lectures take place on evenings during University term time. These lectures are on a wide range of geological geological topics, usually based around collections in the museum. These provide an opportunity to see

Birmingham, University of


Sunset Crater National Monument: A 3-D Photographic Geology Tour  

NSDL National Science Digital Library

This virtual tour features three-dimensional images from the United States Geological Survey's (USGS) collection. It introduces visitors to the geology, landforms, and volcanic history of Sunset Crater National Monument, which was the scene of volcanic activity beginning in 1064 to 1065 AD and continuing for approximately 200 years. Visitors can see Sunset Cater itself, cinder and spatter cones, the features of the Bonito Lava Flow, and other volcanoes of the San Francisco Volcanic Field. The 3-D images are anaglyphs and require red and cyan 3-D viewing glasses.



E-print Network

September 2012 BASIN RESEARCH AND ENERGY GEOLOGY STATE UNIVERSITY OF NEW YORK at BINGHAMTON research programs in geochemistry, sedimentary geology, or Earth surface processes with the potential the position, visit the Geological Sciences and Environmental Studies website (www.geology

Suzuki, Masatsugu


Geologic Maps and Geologic Structures: A Texas Example  

NSDL National Science Digital Library

This Historical Geology lab exercise is an accompaniment to lab class instruction about geologic structures (folding and faulting) and geologic maps. It also serves as an excellent introduction to the Geology of the state of Texas. "Coloring" geologic maps, an important part of the exercise, may seem like a very elementary learning technique. But this lab engages students actively, and since the subject is often already somewhat familiar to them, emphasizing both the geology and geography of Texas, students receive it enthusiastically. This activity could be adapted to other regions, since most states have color 8 1/2 by 11 geologic maps available. A color map could be scanned and modified in Photoshop to create a simplified black and white version as was done in the assignment handout.

Roger Steinberg


The Maine Memory Network  

NSDL National Science Digital Library

Once you have visited Maine, it is most certainly not a place that you will soon forget. This website is designed to make sure longtime residents and visitors alike will not forget this tranquil state, as it brings together a very wide range of historical documents and memories from around the state. The site itself was created by the Maine Historical Society, and is supported by monies from the Institute of Museum and Library Services and several other partners. Within the site, visitors can search for historical items and documents, view thematic online exhibits, and learn about how the site may be used effectively in classroom settings. One particularly fine exhibit is the one that offers some visual documentation of rural Aroostook County around the year 1900. In this exhibit, visitors can experience the dense forests and rugged terrain that dominate the landscape of this part of Maine.


Extending GIS Technology to Study Karst Features of Southeastern Minnesota  

NASA Astrophysics Data System (ADS)

This paper summarizes ongoing research on karst feature distribution of southeastern Minnesota. The main goals of this interdisciplinary research are: 1) to look for large-scale patterns in the rate and distribution of sinkhole development; 2) to conduct statistical tests of hypotheses about the formation of sinkholes; 3) to create management tools for land-use managers and planners; and 4) to deliver geomorphic and hydrogeologic criteria for making scientifically valid land-use policies and ethical decisions in karst areas of southeastern Minnesota. Existing county and sub-county karst feature datasets of southeastern Minnesota have been assembled into a large GIS-based database capable of analyzing the entire data set. The central database management system (DBMS) is a relational GIS-based system interacting with three modules: GIS, statistical and hydrogeologic modules. ArcInfo and ArcView were used to generate a series of 2D and 3D maps depicting karst feature distributions in southeastern Minnesota. IRIS ExplorerTM was used to produce satisfying 3D maps and animations using data exported from GIS-based database. Nearest-neighbor analysis has been used to test sinkhole distributions in different topographic and geologic settings. All current nearest-neighbor analyses testify that sinkholes in southeastern Minnesota are not evenly distributed in this area (i.e., they tend to be clustered). More detailed statistical methods such as cluster analysis, histograms, probability estimation, correlation and regression have been used to study the spatial distributions of some mapped karst features of southeastern Minnesota. A sinkhole probability map for Goodhue County has been constructed based on sinkhole distribution, bedrock geology, depth to bedrock, GIS buffer analysis and nearest-neighbor analysis. A series of karst features for Winona County including sinkholes, springs, seeps, stream sinks and outcrop has been mapped and entered into the Karst Feature Database of Southeastern Minnesota. The Karst Feature Database of Winona County is being expanded to include all the mapped karst features of southeastern Minnesota. Air photos from 1930s to 1990s of Spring Valley Cavern Area in Fillmore County were scanned and geo-referenced into our GIS system. This technology has been proved to be very useful to identify sinkholes and study the rate of sinkhole development.

Gao, Y.; Tipping, R. G.; Alexander, E. C.; Alexander, S. C.



Evaluation of thermal data for geologic applications  

NASA Technical Reports Server (NTRS)

Sensitivity studies using thermal models indicated sources of errors in the determination of thermal inertia from HCMM data. Apparent thermal inertia, with only simple atmospheric radiance corrections to the measured surface temperature, would be sufficient for most operational requirements for surface thermal inertia. Thermal data does have additional information about the nature of surface material that is not available in visible and near infrared reflectance data. Color composites of daytime temperature, nighttime temperature, and albedo were often more useful than thermal inertia images alone for discrimination of lithologic boundaries. A modeling study, using the annual heating cycle, indicated the feasibility of looking for geologic features buried under as much as a meter of alluvial material. The spatial resolution of HCMM data is a major limiting factor in the usefulness of the data for geologic applications. Future thermal infrared satellite sensors should provide spatial resolution comparable to that of the LANDSAT data.

Kahle, A. B.; Palluconi, F. D.; Levine, C. J.; Abrams, M. J.; Nash, D. B.; Alley, R. E.; Schieldge, J. P.



Geological interpretation of a Gemini photo  

USGS Publications Warehouse

Study of the Gemini V photograph of the Salt Range and Potwar Plateau, West Pakistan, indicates that small-scale orbital photographs permit recognition of the regional continuity of some geologic features, particularly faults and folds that could he easily overlooked on conventional air photographs of larger scale. Some stratigraphic relationships can also be recognized on the orbital photograph, but with only minimal previous geologic knowledge of the area, these interpretations are less conclusive or reliable than the interpretation of structure. It is suggested that improved atmospheric penetration could be achieved through the use of color infrared film. Photographic expression of topography could also be improved by deliberately photographing some areas during periods of low sun angle.

Hemphill, William R.; Danilchik, Walter



Web Features  

NSDL National Science Digital Library

Web Features, presented by the Economic Policy Institute (EPI), is a collection of online resources for consumers about public opinion data. An economic snapshot, updated weekly, provides graphs and charts to highlight an economic issue, and this site also includes a selection of opinions from the EPI staff and their analysis of current economic data written in layperson's terms.


Geology Training Module  

NSDL National Science Digital Library

This is a lesson where learners review the basic requirements for human survival. Learners will use an online, multimedia module, to which they make changes to Earth's layers and draw conclusions about the geologic conditions that are necessary for human survival. The lesson models scientific inquiry using the 5E instructional model and includes teacher notes, prerequisite concepts, common misconceptions, student journal and reading. This is lesson one in the Astro-Venture Geology Training Unit that were developed to increase students' awareness of and interest in astrobiology and the many career opportunities that utilize science, math and technology skills. The lessons are designed for educators to use with the Astro-Venture multimedia modules.


Introduction to ore geology  

SciTech Connect

This textbook on ore geology is for second and third year undergraduates and closely parallels the undergraduate course given in this subject at England's University of Leicester. The volume covers three major areas: (1) principles of ore geology, (2) examples of the most important types of ore deposits, and (3) mineralization in space and time. Many chapters have been thoroughly revised for this edition and a chapter on diamonds has been added. Chapters on greisen and pegmatite have also been added, the former in response to the changing situation in tin mining following the recent tin crisis, and the latter in response to suggestions from geologists in a number of overseas countries. Some chapters have been considerably expanded and new sections added, including disseminated gold deposits and unconformity-associated uranium deposits. The author also expands on the importance of viewing mineral deposits from an economic standpoint.

Evans, A.M.



Geological Survey research, 1975  

USGS Publications Warehouse

'Geological Survey Research 1975 ' is the 16th annual synopsis of the results of U.S. Geological Survey investigations. These studies are largely directed toward the development of knowledge that will assist the Nation to use and conserve the land and its physical resources wisely. They are wide ranging in scope and deal with almost every facet of solid-earth science and fact finding. Many of the studies are continuations of investigations that have been in progress for several years. But others reflect the increased attention being given to problems that have assumed greater importance in recent years--problems relating to mineral fuels and mineral resources, water quality, environmental impact of mineral resources, land-use analysis, earthquake hazards reduction, subsidence, and the applications of LANDSAT data, to cite a few examples. (Woodard-USGS)

U.S. Geological Survey



Algebra, Geology and Economics  

NSDL National Science Digital Library

The American Mathematical Association of Two-Year Colleges (AMATYC) has compiled a collection of mathematics resources related to various subjects and disciplines. â??Math Across the Community College Curriculumâ? is the title of the collection, which includes great math resources and applications for educators and students alike. In this particular resource, concepts from algebra, geology and economics are intertwined to create two dynamic activities for students. The projects, created by Mary Dowse, Tom Gruszka, and George Muncrief of Western New Mexico University, include both general learning objectives and subject specific objectives for what students will learn through the completion of the activities. The first activity focuses on the mathematics of economics, and the second activity focuses on geology and graphing. These activities can be easily adapted for use in the classroom, and are also useful for students who are looking for extra practice with these concepts.

Dowse, Mary


Geologic map and digital database of the Yucaipa 7.5' quadrangle, San Bernardino and Riverside Counties, California  

USGS Publications Warehouse

This geologic database of the Yucaipa 7.5' quadrangle was prepared by the Southern California Areal Mapping Project (SCAMP), a regional geologic-mapping project sponsored jointly by the U.S. Geological Survey and the California Geological Survey. The database was developed as a contribution to the National Cooperative Geologic Mapping Program's National Geologic Map Database, and is intended to provide a general geologic setting of the Yucaipa quadrangle. The database and map provide information about earth materials and geologic structures, including faults and folds that have developed in the quadrangle due to complexities in the San Andreas Fault system. The Yucaipa 7.5' quadrangle contains materials and structures that provide unique insight into the Mesozoic and Cenozoic geologic evolution of southern California. Stratigraphic and structural elements include: (1) strands of the San Andreas Fault that bound far-traveled terranes of crystalline and sedimentary rock; (2) Mesozoic crystalline rocks that form lower and upper plates of the regionwide Vincent-Orocopia Thrust system; and (3) late Tertiary and Quaternary sedimentary materials and geologic structures that formed during the last million years or so and that record complex geologic interactions within the San Andreas Fault system. These materials and the structures that deform them provide the geologic framework for investigations of geologic hazards and ground-water recharge and subsurface flow. Geologic information contained in the Yucaipa database is general-purpose data that is applicable to land-related investigations in the earth and biological sciences. The term "generalpurpose" means that all geologic-feature classes have minimal information content adequate to characterize their general geologic characteristics and to interpret their general geologic history. However, no single feature class has enough information to definitively characterize its properties and origin. For this reason the database cannot be used for site-specific geologic evaluations, although it can be used to plan and guide investigations at the site-specific level.

Matti, Jonathan C.; Morton, D.M.; Cox, B.F.; Carson, S.E.; Yetter, T.J.; Digital preparation by: Cossette, P.M.; Wright, M.C.; Kennedy, S.A.; Dawson, M.L.; Hauser, R.M.



Geologic Map and Digital Data Base of the Almo Quadrangle and City of Rocks National Reserve, Cassia County, Idaho  

USGS Publications Warehouse

This geologic map describes the geology of the City of Rocks National Reserve and environs, located in the Albion Mountains of south-central Idaho. The most prominent geologic features of the Reserve are the spectacular rock spires that attracted visitors, beginning with commentary in the journals of travelers to California during the Gold Rush of 1849. The tectonic history is outlined, and descriptions of landscape processes, a newly discovered Quaternary fault, and features of the pinnacles are presented.

Miller, David M.; Armstrong, Richard L.; Bedford, David R.; Davis, Marsha



Oceanography - Marine Geological Processes  

NSDL National Science Digital Library

A first year course in oceanography with extensive Internet resources. Topics covered include: principles of thermodynamics, heat and mass transfer, fluid mechanics, continuum mechanics, and time-series analysis applied to marine geological and geophysical data; applications to transport of marine sediments; Pleistocene sedimentation and global climate change; and the thermal balance of the oceanic lithosphere. The link to the lecture schedule provides detailed supporting materials.

Mcduff, Russell


Indian Education in Maine.  

ERIC Educational Resources Information Center

The Maine Department of Education assumed the responsibility for the education of Indian children living on Indian reservations on July 1, 1966. This report provides information on the present status of the program. Information is provided on number of schools, school enrollment for the 1969-1970 school year, characteristics of the teaching staff,…

Maine State Dept. of Education, Augusta.


Snow Falls - Maine  

USGS Multimedia Gallery

As the Little Androscoggin River flows through western Maine it eventually reaches Snow Falls, a 25 ft cascading waterfall in the town of West Paris.  This photo was taken during a high flow event at the falls. The USGS monitors the Little Androscoggin River upstream of the falls at station 01...



E-print Network

IRB 6400 MAIN APPLICATIONS Spot welding Press tending Material handling Machine tending Palletizing Assembly Industrial Robot High performance industrial robot The 6-axis IRB 6400 manipulator and S4Cplus precision. IRB 6400 accounts for one third of the 90,000 ABB robot installations. The family of 6400 robots

De Luca, Alessandro



EPA Science Inventory

SCHLIB shows point locations of libraries and educational institutions in Maine at 1:24,000 scale. Colleges, universities, technical colleges, high schools, middle schools, elementary schools, kindergarten/sub-primary and other special schools are included. The data was developed...


Oliver Kullmann Main results  

E-print Network

Oliver Kullmann Main results Complement invariance Lean clause-sets Minimal unsatisfiability SAT and Outlook SAT and the Polya Permanent Problem Oliver Kullmann Computer Science Department Swansea University SAT 2007, Lisbon, May 30, 2007 SAT: Connecting combinatorics and linear algebra #12;Oliver Kullmann

Martin, Ralph R.


Spatial features register: toward standardization of spatial features  

USGS Publications Warehouse

As the need to share spatial data increases, more than agreement on a common format is needed to ensure that the data is meaningful to both the importer and the exporter. Effective data transfer also requires common definitions of spatial features. To achieve this, part 2 of the Spatial Data Transfer Standard (SDTS) provides a model for a spatial features data content specification and a glossary of features and attributes that fit this model. The model provides a foundation for standardizing spatial features. The glossary now contains only a limited subset of hydrographic and topographic features. For it to be useful, terms and definitions must be included for other categories, such as base cartographic, bathymetric, cadastral, cultural and demographic, geodetic, geologic, ground transportation, international boundaries, soils, vegetation, water, and wetlands, and the set of hydrographic and topographic features must be expanded. This paper will review the philosophy of the SDTS part 2 and the current plans for creating a national spatial features register as one mechanism for maintaining part 2.

Cascio, Janette



Strategic Petroleum Reserve (SPR) geological site characterization report, Sulphur Mines Salt Dome: Section I, Section II, and Section III  

Microsoft Academic Search

The report comprises three sections: Sulphur Mines cavern stability issues; geological site characterization for Sulphur Mines SPR site in Sulphur, Louisiana (main body of report); and salt properties for Sulphur Mines Dome (no data given). The second section covers the geology and hydrology of the region, site, caprock, and salt dome, and geologic and hydrologic hazards. (DLC)



Development of a 3-D geological model towards natural hazards mitigation, St. Lawrence River Valley, Eastern Canada  

Microsoft Academic Search

As part of the Canadian Government's main goals to ensure safe and strong communities for its citizens, the Geological Survey of Canada has recently undertaken the development of a 3-D geological model and a seamless surficial geology map of the St. Lawrence River valley in Eastern Canada. This paper summarizes the initial phase of this project, which consists of gathering,



Integrating geology and perforating  

SciTech Connect

Perforating is a very common well completion operation. Usually, it is considered to be as simple as making holes in casing. Actually, perforating is one of the most critical tasks for establishing a path from reservoir rock to borehole form which hydrocarbons can flow to surface. The objective of this article is to relate perforating technology with geological aspects and completion type to determine the best shooting equipment (gun type, charge and differential pressure) to perform the most efficient perforating job. Several subjects related to formation geology are taken into account for a shooting job, such as: compressive strength, reservoir pressure and thickness, lithology type, porosity and permeability, ratio between horizontal and vertical permeabilities, and fluid type. Gun geometry used in the oil industry incorporates several parameters, including shot density, hole entrance diameter, gun phase and jet penetration. API tests are done on perforating guns to define applicability and performance. A new geometrical parameter is defined as the relative angle of the jet, which is the angle between the jet tunnel and formation dip. GEOCAN is a methodology which relates geology to gun geometry and type to define the most efficient gun system for perforated completions. It uses the intelligent perforating technique with the SPAN (Schlumberger Perforating Analysis) program to confirm optimum gun choice.

Araujo, P.F. de [Petrobras, Rio de Janeiro (Brazil); Souza Padilha, S.T.C. de [Schlumberger Wireline and Testing, Rio de Janeiro (Brazil)



Mapping Vesta: A Geological Overview  

NASA Astrophysics Data System (ADS)

Observations from the Dawn (Russell et al., 2007) spacecraft enabled deriva-tion of 4Vesta's shape, facilitated mapping of the surface geology and pro-vided the first evidence for Vesta's geological evolution. The Dawn mission is equipped with a framing camera (FC), a visible and infrared mapping spectrometer (VIR) and a gamma-ray and neutron detector (GRaND). So far science data are collected during the approach to the asteroid and protoplanet Vesta, a circular polar orbit at an altitude of 2700 km providing ~ 230 m/pix camera resolution and a lower orbit, at 700 km altitude with a camera resolu-tion of ~ 65 m/pixel. Geomorphology and distribution of surface features provide evidence for impact cratering, tectonic activity, regolith and prob-able volcanic processes. Craters with dark rays, bright rays, and dark rim streaks have been observed, suggesting possible buried stratigraphy. The largest fresh craters retain a simple bowl-shaped morphology, with depth/diameter ratios roughly comparable to lunar values. The largest candi-date crater, a ~460 km depression at the south pole, has been shown to con-tain an incomplete inward facing cuspate scarp, and a large central mound surrounded by unusual complex arcuate ridge and groove patterns. Although asymmetric in general form, these characteristics do not contradict an impact origin but may also allow endogenic processes like convective downwelling or hybrid modification of an impact. Rapid rotation of Vesta during impact may explain some anomalous features (Jutzi and Asphaug, 2010). A set of large equatorial troughs may be related to the formation process of the south polar structure or due to stress caused by changes of the rotational axis. The crater size frequency and the chronology function is derived from the lunar chronology, scaled to impact frequencies modeled for Vesta according to (Bottke et al., 1994) and (O'Brien and Sykes, 2011). The northern hemi-sphere is heavily cratered by a large variety of ancient degraded and fresh sharp craters. Preliminary crater counts indicate only small differences in absolute surface model ages between the northern region and the south polar structure.

Jaumann, R.; Pieters, C. M.; Russell, C. T.; Raymond, C. A.; Yingst, R.; Williams, D. A.; Schenk, P.; Neukum, G.; Mottola, S.; Buczkowski, D.; O'Brien, D. P.; Garry, W. B.; Blewett, D. T.; Denevi, B. W.; Roatsch, T.; Preusker, F.; Nathues, A.; Sierks, H.; Sykes, M. V.; De sanctis, M.; McSween, H. Y.; Keller, H. U.; Marchi, S.



Delineating the Rattlesnake Springs, New Mexico Watershed Using Shallow Subsurface Geophysical Techniques and Geologic Mapping  

NASA Astrophysics Data System (ADS)

Rattlesnake Springs serves as the sole water source for Carlsbad Caverns National Park. The recent development of oil and gas leases and agricultural lands surrounding the springs has led to concern about contamination of the karst aquifer. We have used geophysical techniques, combined with geologic mapping, to delineate possible fracture systems in the gypsum and carbonate bedrock that feed the spring system. Our initial work has focused on a 700 m by 700 m region surrounding the springs. We conducted a series of ground conductivity surveys with follow-up DC resistivity surveys (Wenner array vertical electrical soundings and a pole- pole survey) to determine variations in soil grain size and moisture content. Surface geologic mapping was used to identify a series of Holocene terraces and valleys that incise the terraces. Our combined results suggest that northwest-southeast and north-south trending fractures and dissolution features control regional water flow. Relict spring valleys are found to the west of the present springs. A pole-pole survey conducted around the perimeter of the springs suggests main water flow into the springs occurs from the northwest. We plan to complete a precision gravity survey in September and October 2007 to map bedrock topography and determine its relation to structural and dissolution features. Ground penetrating radar data will be collected on the northwestern side of the springs in an attempt to better delineate structures controlling inflow into the springs.

Doser, D. I.; Langford, R. P.; Boykov, N. D.; Baker, M. R.; Kaip, G. M.



Geologic map of the Skull Creek Quadrangle, Moffat County Colorado  

USGS Publications Warehouse

The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

Van Loenen, R. E.; Selner, Gary; Bryant, W.A.



Geology Fieldnotes: Hagerman Fossil Beds National Monument, Idaho  

NSDL National Science Digital Library

Hagerman Fossil Beds National Monument preserves the world's richest known fossil deposits from the late Pliocene epoch, approximately 3.5 million years ago. Site features include park geology information, maps, photographs, related links, visitor information, multimedia resources, and resources for teaching geology with National Park examples. The park geology section discusses the Monument's geologic history and includes information on some of the plants and animals found in the fossil beds. These plants and animals represent the last glimpse of time that existed before the Ice Age, and the earliest appearances of modern flora and fauna. A timeline of events during the Cenozoic era accompanies this information. The maps section includes a map of the National Monument and surrounding area.


Random Forest Based Feature Induction  

Microsoft Academic Search

We propose a simple yet effective strategy to induce a task dependent feature representation using ensembles of random decision trees. The new feature mapping is efficient in space and time, and provides a metric transformation that is non parametric and not implicit in nature (i.e. not expressed via a kernel matrix), nor limited to the transductive setup. The main advantage

Celine Vens; Fabrizio Costa



Feature Weighting in k-Means Clustering  

Microsoft Academic Search

Data sets with multiple, heterogeneous feature spaces occur frequently. We present an abstract framework for integrating multiple feature spaces in the k-means clustering algorithm. Our main ideas are (i) to represent each data object as a tuple of multiple feature vectors, (ii) to assign a suitable (and possibly different) distortion measure to each feature space, (iii) to combine distortions on

Dharmendra S. Modha; W. Scott Spangler



Maine Humanities Council  

NSDL National Science Digital Library

Formed as a private nonprofit organization, the Maine Humanities Council (MHC) "promotes strong communities and informed citizens by providing Mainers with opportunities to explore the power and pleasure of ideas." Their work is supported by volunteer board members, and their projects include programs to promote reading and writing, guest lectures around the state, and online newsletters and discussion groups. In the "Programs" area, visitors can learn about these programs, and educators can check out the resources created especially for them. The "Connections" area contains links to their thoughtful blog, their "Humanities on Demand" podcasts, and their periodic newsletter "Synapse", which deals with medicine and literature. The podcasts are quite fun, and they include "Franco-American Women's Words in Maine" and a talk by Professor Dianne Sadoff of Rutgers University on Middlemarch, by George Eliot.


Main roads to melanoma  

PubMed Central

The characterization of the molecular mechanisms involved in development and progression of melanoma could be helpful to identify the molecular profiles underlying aggressiveness, clinical behavior, and response to therapy as well as to better classify the subsets of melanoma patients with different prognosis and/or clinical outcome. Actually, some aspects regarding the main molecular changes responsible for the onset as well as the progression of melanoma toward a more aggressive phenotype have been described. Genes and molecules which control either cell proliferation, apoptosis, or cell senescence have been implicated. Here we provided an overview of the main molecular changes underlying the pathogenesis of melanoma. All evidence clearly indicates the existence of a complex molecular machinery that provides checks and balances in normal melanocytes. Progression from normal melanocytes to malignant metastatic cells in melanoma patients is the result of a combination of down- or up-regulation of various effectors acting on different molecular pathways. PMID:19828018

Palmieri, Giuseppe; Capone, Mariaelena; Ascierto, Maria Libera; Gentilcore, Giusy; Stroncek, David F; Casula, Milena; Sini, Maria Cristina; Palla, Marco; Mozzillo, Nicola; Ascierto, Paolo A



Jupiter's Main Ring  

NASA Technical Reports Server (NTRS)

A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa. A faint mist of particles can be seen above and below the main rings; this vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic.

Jupiter's main ring is a thin strand of material encircling the planet. The diffuse innermost boundary begins at approximately 123,000 km. The main ring's outer radius is found to be at 128,940 +/-50 km, slightly less than the Voyager value of 129,130 +/-100 km, but very close to the orbit of the satellite Adrastea (128,980 km). The main ring exhibits a marked drop in brightness at 127,849 +/-50 km, lying almost atop the orbit of the Jovian moon Metis at 127,978 km. Satellites seem to affect the structure of even tenuous rings like that found at Jupiter.

The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at: Background information and educational context for the images can be found at: http:/ /



Stars main sequence  

NSDL National Science Digital Library

What happens during most of a star's life? This activity page, part of an interactive laboratory series for grades 8-12, introduces students to the main sequence phase of a star's existence. This phase is where a star lives out the majority of its life. In an interactive lab activity, students predict the length of the main sequence for four different stars. The predictions can be printed for later evaluation. Students view diagrams that compare the size and color of stars to human lives, and equilibrium within a star is stressed. Finally, students choose between two hypotheses about the length of life of a star. Students write a one- to three-sentence explanation for their hypotheses. The correct answer is provided. Copyright 2005 Eisenhower National Clearinghouse

University of Utah. Astrophysics Science Project Integrating Research and Education (ASPIRE)



Energetic Main Idea  

NSDL National Science Digital Library

In this lesson, students will learn about different forms of energy and how to find the main idea and key details in informational text. Included with the lesson is an anticipation guide to assess prior knowledge, plus a rubric to score the students' summative assessment. Also present is a list of books to choose from so that teachers can use the books that fit their students best.

Shipley, Amanda



Maine coast winds  

SciTech Connect

The Maine Coast Winds Project was proposed for four possible turbine locations. Significant progress has been made at the prime location, with a lease-power purchase contract for ten years for the installation of turbine equipment having been obtained. Most of the site planning and permitting have been completed. It is expect that the turbine will be installed in early May. The other three locations are less suitable for the project, and new locations are being considered.

Avery, Richard



Main graphs: Quadratic equation  

E-print Network

Main graphs: Quadratic equation: Equation A2 +B+C = 0, has solutions given by the following 'abc equations: Equation dN dt = kN has the solution: N(t) = N0ekt; N0 is an (arbitrary) initial value of N. Characteristic time of change is = 1/k. Systems of linear differential equations: For system dx dt = ax+by dy dt

Utrecht, Universiteit


Time Varying Feature Data  

NASA Astrophysics Data System (ADS)

The infrastructure to gather, store and access information about our environment is improving and growing rapidly. The increasing amount of information allows us to get a better understanding of the current state of our environment, historical processes and to simulate and predict the future state of the environment. Finer grained spatial and temporal data and more reliable communications make it easier to model dynamic states and ephemeral features. The exchange of information within and across geospatial domains is facilitated through the use of harmonized information models. The Observations & Measurements (O&M) developed through OGC and standardised by ISO is an example of such a cross-domain information model. It is used in many domains, including meteorology, hydrology as well as the emergency management. O&M enables harmonized representation of common metadata that belong to the act of determining the state of a feature property, whether by sensors, simulations or humans. In addition to the resulting feature property value, information such as the result quality but especially the time that the result applies to the feature property can be represented. Temporal metadata is critical to modelling past and future states of a feature. The features, and the semantics of each property, are defined in domain specific Application Schema using the General Feature Model (GFM) from ISO 19109 and usually encoded following ISO 19136. However, at the moment these standards provide only limited support for the representation and handling of time varying feature data. Features like rivers, wildfires or gas plumes have a defined state - for example geographic extent - at any given point in time. To keep track of changes, a more complex model for example using time-series coverages is required. Furthermore, the representation and management of feature property value changes via the service interfaces defined by OGC and ISO - namely: WFS and WCS - would be rather complex. Keeping track of feature property value corrections or even feature (state change) cancellations for auditing purposes is also not easy to achieve. The aviation domain has strong requirements to represent and manage the state of aeronautical features through time. Being able to efficiently encode and manage feature state changes, keeping track of all changes for auditing purposes and being able to determine the future state of an aeronautical feature as currently known to the system are vital for aeronautical applications. In order to support these requirements, the Aeronautical Information Exchange Model (AIXM) which has been developed by the aviation domain is based on the so called AIXM Temporality Model (AIXM-TM). The AIXM-TM defines various rules for modeling, representing and handling the state of aeronautical features through time. This is a promising approach that can be incorporated into the GFM so that ultimately the modeling and management of time varying feature data is supported in an interoperable and harmonized way in all geospatial domains. This presentation gives an introduction to the main concepts of the AIXM-TM. It also shows how the GFM can be extended to support time varying feature data. Finally, the relationship of O&M and time varying features is discussed.

Echterhoff, J.; Simonis, I.; Atkinson, R.



Influence of physical fields of active geological faults on the human cardiovascular system  

NASA Astrophysics Data System (ADS)

Results of studying the human cardiovascular system within zones of Altai Mountain geological faults are presented. It is shown that features of the geological-geophysical characteristics have an effect on different control circuits of the human cardiovascular system and cause a change in its functioning.

Shitov, A. V.; Borodin, A. S.; Tuzhilkin, D. A.; Apryatkina, M. L.



Geologic information from satellite images. [geological interpretation of ERTS-1 and Skylab multispectral photography of Rocky Mountain areas  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Extracting geologic information from ERTS and Skylab/EREP images is best done by a geologist trained in photointerpretation. The information is at a regional scale, and three basic types are available: rock and soil, geologic structures, and landforms. Discrimination between alluvium and sedimentary or crystalline bedrock, and between units in thick sedimentary sequences is best, primarily because of topographic expression and vegetation differences. Discrimination between crystalline rock types is poor. Folds and fractures are the best displayed geologic features. They are recognizable by topographic expression, drainage patterns, and rock or vegetation tonal patterns. Landforms are easily discriminated by their familar shapes and patterns. It is possible to optimize the scale, format, spectral bands, conditions of acquisition, and sensor systems for best geologic interpretation. Several examples demonstrate the applicability of satellite images to tectonic analysis and petroleum and mineral exploration.

Lee, K.; Knepper, D. H., Jr. (principal investigators); Sawatzky, D. L.



GIS-technologies as a mechanism to study geological structures  

NASA Astrophysics Data System (ADS)

Specialized GIS-technologies allow creating multi-parameter models, completing multi-criteria optimisation tasks, and issues of geological profile forecasts using miscellaneous data. Pictorial and attributive geological and geophysical information collected to create GIS database is supplemented by the ERS (Earth's Remote Sensing) data, air spectrometry, space images, and topographic data. Among the important tasks are as follows: a unification of initial geological, geophysical and other types of information on a tectonic position, rock classification and stratigraphic scale; topographic bases (various projectures, scales); the levels of detail and exhaustibility; colors and symbols of legends; data structures and their correlation; units of measurement of physical quantities, and attribute systems of descriptions. Methods of the geological environment investigation using GIS-technology are based on a principle of the research target analogy with a standard. A similarity ratio is quantitative estimate. A geological forecast model is formed by structuring of geological information based on detailed analysis and aggregation of geological and formal knowledge bases on standard targets. Development of a bank of models of the analyzed geological structures of various range, ore-bearing features described by numerous prospecting indicators is the way to aggregate geological knowledge. The south terrain of the Valerianovskaya structure-facies zone (SFZ) of the Torgai paleo-rift structure covered with thick Mesozoic and Cenozoic rocks up to 2,000m is considered a so-called training ground for the development of GIS-technology. Parameters of known magnetite deposits located in the north of the SFZ (Sarybaiskoye, Sokolovskoye, etc.) are used to create the standard model. A meaning of the job implemented involves the following: - A goal-seeking nature of the research being performed and integration of the geological, geo-physical and other data (in many cases, efforts of the Earth scientists are odd, thus, solving only local tasks); - Development of specialized GIS-technology that ensures creating multi-parameter models, completing multi-criteria optimisation tasks, and issues of geological profile forecasts using miscellaneous data; - Application of the modern approach to the geological, petrological and genetic modeling of the targets in the geological zone under survey; determination of the structural and tectonic position of the Valerianovskaya SFZ and its relations to the mineralization; - A possibility to apply the GIS created for the region as a desk (local) system integrated to the regional or national bank of geospatial information with a corporate access via local and global networks.

Sharapatov, Abish



Terrestrial analogs, planetary geology, and the nature of geological reasoning  

NASA Astrophysics Data System (ADS)

Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

Baker, Victor R.



Structural geology of impact craters  

NASA Astrophysics Data System (ADS)

The formation of impact craters is a highly dynamic and complex process that subjects the impacted target rocks to numerous types of deformation mechanisms. Understanding and interpreting these styles of micro-, meso- and macroscale deformation has proved itself challenging for the field of structural geology. In this paper, we give an overview of the structural inventory found in craters of all size ranges on Earth, and look into the structures of craters on other planetary bodies. Structural features are discussed here that are caused by i) extremely high pressures and temperatures that occur during the initial passage of the shock wave through the target rock and projectile, ii) the resulting flow field in the target that excavates and ejects rock materials, and iii) the gravitationally induced modification of the crater cavity into the final crater form. A special focus is put on the effects that low-angle impacting bodies have on crater formation. We hope that this review will help both planetary scientists and structural geologists understand the deformation processes and resulting structures generated by meteorite impact.

Kenkmann, Thomas; Poelchau, Michael H.; Wulf, Gerwin



Bedrock geologic Map of the Central Block Area, Yucca Mountain, Nye County, Nevada  

SciTech Connect

Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. As such, this map focuses on the central block at Yucca Mountain, which contains the potential repository site. The central block is a structural block of Tertiary volcanic rocks bound on the west by the Solitario Canyon Fault, on the east by the Bow Ridge Fault, to the north by the northwest-striking Drill Hole Wash Fault, and on the south by Abandoned Wash. Earlier reconnaissance mapping by Lipman and McKay (1965) provided an overview of the structural setting of Yucca Mountain and formed the foundation for selecting Yucca Mountain as a site for further investigation. They delineated the main block-bounding faults and some of the intrablock faults and outlined the zoned compositional nature of the tuff units that underlie Yucca Mountain. Scott and Bonk (1984) provided a detailed reconnaissance geologic map of favorable area at Yucca Mountain in which to conduct further site-characterization studies. Of their many contributions, they presented a detailed stratigraphy for the volcanic units, defined several other block-bounding faults, and outlined numerous intrablock faults. This study was funded by the U.S. Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bonk (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the Exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a consistent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described.

W.C. Day; C. Potter; D. Sweetkind; R.P. Dickerson; C.A. San Juan



Wisconsin Geological and Natural History Survey  

NSDL National Science Digital Library

The Wisconsin Geological and Natural History Survey, as part of the University of Wisconsin-Extension, is "an interdisciplinary organization that conducts natural resources surveys and research to produce information used for decision making, problem solving, planning, management, development, and education". The site offers downloadable online publications such as annual groundwater level summaries and understanding Wisconsin township, range, and section land descriptions. It also contains lists of other publications and various maps of Wisconsin, all of which can be ordered by mail. Information on the history of the survey and an interesting section that includes pictures and descriptions of karst (limestone) development and features is also available.



Wisconsin Geological and Natural History Survey  

NSDL National Science Digital Library

The Wisconsin Geological and Natural History Survey, as part of the University of Wisconsin-Extension, is "an interdisciplinary organization that conducts natural resources surveys and research to produce information used for decision making, problem solving, planning, management, development, and education". The site offers downloadable online publications such as annual groundwater level summaries and understanding Wisconsin township, range, and section land descriptions. It also contains lists of other publications and various maps of Wisconsin, all of which can be ordered by mail. Information on the history of the survey and an interesting section that includes pictures and descriptions of karst (limestone) development and features is also available.



Idaho Geological Survey: Earth Science Education  

NSDL National Science Digital Library

The Idaho Geological Survey (IGS) operates and maintains the Earth Science Education Web site, which contains many interesting original and outside linked resources for students and teachers. The activities offered by IGS include topics on astronomy, earthquakes, general earth science, hydrogeology, landslides, volcanoes, and weather and climate. Other links on the site are geared toward professional development for educators, including a curriculum development project and an online clearinghouse publication of professional development courses, workshops, and conferences. Although the layout and design of it make it a bit difficult to use efficiently, the site contains many quality features and is worth exploring.


General features  

SciTech Connect

The San Andreas fault system, a complex of faults that display predominantly large-scale strike slip, is part of an even more complex system of faults, isolated segments of the East Pacific Rise, and scraps of plates lying east of the East Pacific Rise that collectively separate the North American plate from the Pacific plate. This chapter briefly describes the San Andreas fault system, its setting along the Pacific Ocean margin of North America, its extent, and the patterns of faulting. Only selected characteristics are described, and many features are left for depictions on maps and figures.

Wallace, R.E.



Geological controls on BSR occurrences in the incipient arc-continent collision zone off southwest Taiwan  

E-print Network

Geological controls on BSR occurrences in the incipient arc-continent collision zone off southwest, and tectonic features can be observed. Four major occurrences of BSR types of ridge type, basin type, submarine

Lin, Andrew Tien-Shun


Assessment of the geothermal resources of Indiana based on existing geologic data  

SciTech Connect

The general geology of Indiana is presented including the following: physiography, stratigraphy, and structural features. The following indicators of geothermal energy are discussed: heat flow and thermal gradient, geothermal occurrences, seismic activity, geochemistry, and deep sedimentary basins. (MHR)

Vaught, T.L.



Geology Online Laboratory Manual  

NSDL National Science Digital Library

The 16 labs in this manual cover specific subjects from a range of topics including mineralogy, sedimentology, litho- and biostratigraphy, vertebrate and invertebrate paleontology, relative dating, and geologic map interpretation. Labs contain reference text, photos, illustrations, diagrams, and classification charts which prepare students for the accompanying exercises. Answers are not provided and labs are not designed for online interaction, but hard copies of the lab manual are available for purchase from the Georgia Perimeter College Online Bookstore. A link from the site provides ordering information and instructions.

Gore, P.; College, Georgia P.


Structural Geology and Geomechanics  

NSDL National Science Digital Library

The teaching and research program, Structural Geology and Geomechanics at Stanford University, concentrates on brittle deformation in the earth's crust as well as fracturing and faulting of rocks under ductile conditions. Researchers can learn about the group's research which effectively unites field observations, laboratory experiments, and theoretical modeling. Scientists can learn about the program's software such as the Poly3Dinv which uses triangular dislocations to solve linear inverse problems. The site also publicizes the Stanford Rock Fracture Project, which researches rock fractures, crustal deformation, and fluid flow.


Geological Survey of Tanzania  

NSDL National Science Digital Library

The United Republic of Tanzania was formed in 1964 by the merger of Tanganyika and Zanzibar and is located on the eastern coast of Africa between the Great Lakes of the Rift Valley. Tanzania has a diverse mineral resource base that includes gold and base metals, diamond-bearing kimberlites, nickel, cobalt, copper, coal resources, and a variety of industrial minerals and rocks such as kaolin, graphite, and dimension stone. This web site was created by the Mineral Resources Department (MRD), a subsidiary of the Ministry of Energy and Minerals, and contains basic information about the country's logistical environment, mineral sector policy, geological database, and more.



Exhumation of Greater Himalayan rock along the main central thrust in Nepal: Implications for channel flow  

USGS Publications Warehouse

South-vergent channel flow from beneath the Tibetan Plateau may have played an important role in forming the Himalaya. The possibility that Greater Himalayan rocks currently exposed in the Himalayan Fold-Thrust Belt flowed at mid-crustal depths before being exhumed is intriguing, and may suggest a natural link between orogenic processes operating under the Tibetan Plateau and in the fold-thrust belt. Conceptual and numeric models for the Himalayan-Tibetan Orogen currently reported in the literature do an admirable job of replicating many of the observable primary geological features and relationships. However, detailed observations from Greater Himalayan rocks exposed in the fold-thrust belt's external klippen, and from Lesser Himalayan rocks in the proximal footwall of the Main Central Thrust, suggest that since Early Miocene time, it may be more appropriate to model the evolution of the fold-thrust belt using the critical taper paradigm. This does not exclude the possibility that channel flow and linked extrusion of Greater Himalayan rocks may have occurred, but it places important boundaries on a permissible time frame during which these processes may have operated. ?? The Geological Society of London 2006.

Robinson, D.M.; Pearson, O.N.



Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation  

Microsoft Academic Search

A modeling method that takes into account known points on a geological interface and plane orientation data such as stratification\\u000a or foliation planes is described and tested. The orientations data do not necessarily belong to one of the interfaces but\\u000a are assumed to sample the main anisotropy of a geological formation as in current geological situations. The problem is to

Christian Lajaunie; Gabriel Courrioux; Laurent Manuel



Geologic Map of the Central Marysvale Volcanic Field, Southwestern Utah  

USGS Publications Warehouse

The geologic map of the central Marysvale volcanic field, southwestern Utah, shows the geology at 1:100,000 scale of the heart of one of the largest Cenozoic volcanic fields in the Western United States. The map shows the area of 38 degrees 15' to 38 degrees 42'30' N., and 112 degrees to 112 degrees 37'30' W. The Marysvale field occurs mostly in the High Plateaus, a subprovince of the Colorado Plateau and structurally a transition zone between the complexly deformed Great Basin to the west and the stable, little-deformed main part of the Colorado Plateau to the east. The western part of the field is in the Great Basin proper. The volcanic rocks and their source intrusions in the volcanic field range in age from about 31 Ma (Oligocene) to about 0.5 Ma (Pleistocene). These rocks overlie sedimentary rocks exposed in the mapped area that range in age from Ordovician to early Cenozoic. The area has been deformed by thrust faults and folds formed during the late Mesozoic to early Cenozoic Sevier deformational event, and later by mostly normal faults and folds of the Miocene to Quaternary basin-range episode. The map revises and updates knowledge gained during a long-term U.S. Geological Survey investigation of the volcanic field, done in part because of its extensive history of mining. The investigation also was done to provide framework geologic knowledge suitable for defining geologic and hydrologic hazards, for locating hydrologic and mineral resources, and for an understanding of geologic processes in the area. A previous geologic map (Cunningham and others, 1983, U.S. Geological Survey Miscellaneous Investigations Series I-1430-A) covered the same area as this map but was published at 1:50,000 scale and is obsolete due to new data. This new geologic map of the central Marysvale field, here published as U.S. Geological Survey Geologic Investigations Series I-2645-A, is accompanied by gravity and aeromagnetic maps of the same area and the same scale (Campbell and others, 1999, U.S. Geological Survey Geologic Investigations Series I-2645-B).

Rowley, Peter D.; Cunningham, Charles G.; Steven, Thomas A.; Workman, Jeremiah B.; Anderson, John J.; Theissen, Kevin M.



Geol 102 Historical Geology The Geologic Timescale 2012  

E-print Network

.0 Triassic 252.2 - 201.3 Permian 298.9 - 252.2 Pennsylvanian Sub-period 323.2 - 298.9 Mississippian Sub-periodGeol 102 Historical Geology The Geologic Timescale 2012 EON ERA PERIOD (Special Units) EPOCH Range

Holtz Jr., Thomas R.


Martian polar geological studies  

NASA Technical Reports Server (NTRS)

Multiple arcs of rugged mountains and adjacent plains on the surface of Mars were examined. These features, located in the southern polar region were photographed by Mariner 9. Comparisons are made with characteristics of a lunar basin and mare; Mare imbrium in particular. The martian feature is interpreted to have originated in the same way as its lunar analog- by volcanic flooding of a large impact basin. Key data and methodology leading to this conclusion are cited.

Cutts, J. A. J.




E-print Network

#12;#12;THREE-DIMENSIONAL GEOLOGIC MAPS AND VISUALIZATION #12;THREE-DIMENSIONAL GEOLOGIC MAPS AND VISUALIZATION TRADITIONAL GEOLOGIC MAPS GOALS * To produce multipurpose geologic maps and databases of the San as `proof of concept' * To explore methods for analyzing, visualizing, and releasing 3D geologic maps

Militzer, Burkhard


WSU B.S. Geology Curriculum (structural)  

E-print Network

WSU B.S. Geology Curriculum Geology GEL 3300 (structural) GEL 3400 (sed/strat) Geology Elective 1 Geology Elective 2 Yr 1 Yr 2 Yr 3 Yr 4 PHY 2130/31 MAT 2010 PHY 2140/41 CHEM 1220/30 MAT 1800 Cognates GEL 5593 (writing intensive) GEL 3160 (petrology) GEL 3650 (field camp) Geology Elective 3 GEL 2130

Berdichevsky, Victor


76 FR 19783 - National Cooperative Geologic Mapping Program (NCGMP) and National Geological and Geophysical...  

Federal Register 2010, 2011, 2012, 2013, 2014

...DEPARTMENT OF THE INTERIOR U.S. Geological Survey National Cooperative Geologic...Program (NCGMP) and National Geological and Geophysical Data Preservation...Advisory Committee AGENCY: U.S. Geological Survey, Interior. ACTION:...



Generalized surficial geologic map of the Fort Irwin area, San Bernadino: Chapter B in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California  

USGS Publications Warehouse

The geology and landscape of the Fort Irwin area, typical of many parts of the Mojave Desert, consist of rugged mountains separated by broad alluviated valleys that form the main coarse-resolution features of the geologic map. Crystalline and sedimentary rocks, Mesozoic and older in age, form most of the mountains with lesser accumulations of Miocene sedimentary and volcanic rocks. In detail, the area exhibits a fairly complex distribution of surficial deposits resulting from diverse rock sources and geomorphology that has been driven by topographic changes caused by recent and active faulting. Depositional environments span those typical of the Mojave Desert: alluvial fans on broad piedmonts, major intermittent streams along valley floors, eolian sand dunes and sheets, and playas in closed valleys that lack through-going washes. Erosional environments include rocky mountains, smooth gently sloping pediments, and badlands in readily eroded sediment. All parts of the landscape, from regional distribution of mountains, valleys, and faults to details of degree of soil development in surface materials, are portrayed by the surficial geologic map. Many of these attributes govern infiltration and recharge, and the surface distribution of permeable rock units such as Miocene sedimentary and volcanic rocks provides a basis for evaluating potential groundwater storage. Quaternary faults are widespread in the Fort Irwin area and include sinistral, east-striking faults that characterize the central swath of the area and the contrasting dextral, northwest-striking faults that border the east and west margins. Bedrock distribution and thickness of valley-fill deposits are controlled by modern and past faulting, and faults on the map help to identify targets for groundwater exploration.

Miller, David M.; Menges, Christopher M.; Lidke, David J.



Controlled-source Electromagnetic Responses of Spatially Hierarchial Geological Media  

NASA Astrophysics Data System (ADS)

The controlled-source electromagnetic (CSEM) induction technique is gaining importance as a valuable near-surface geophysical tool for hydrogeophysical site assessment. However, CSEM responses are oftentimes difficult to interpret owing to the complexity of the host geological environmemnt. Bedding planes, joints, fracture zones, and other geological features conspire to generate a medium in which electrical conductivity is variable over a hierarchy of spatial scales. Rocks at each length scale offer different patterns of heterogeneity that reflect the complex interplay of their formative geological processes. The result is a rough, spatially hierarchial geological structure that leaves a similar imprint on the electrical conductivity structure. Even though CSEM induction obeys diffusive physics and is therefore inherently a smoothing operation, observed CSEM responses from a variety of geological settings have in common very rough spatial variability. In fact, CSEM profiles invariably are examples of fractional Brownian motion (fBm) signals. Existing algorithms for forward modeling of CSEM responses solve however the governing Maxwell equations in piecewise constant gridblocks of electrical conductivity. This pragmatic view of the subsurface electrical structure is outdated and inaccurate. The purpose of my presentation is to introduce hydrogeophysicists to the fractal nature of observed CSEM responses and to develop new concepts in forward modeling taking into account rough, spatially hierachial electrical conductivity structures. The CSEM response of man-made, non-fractal objects embedded in a fractal geological medium is also discussed in the context of target detection and discrimination algorithms. Practical applications to problems in applied hydrogeophysical investigations are emphasized.

Everett, M. E.



Morphology, geology and geochemistry of the "Salar del Gran Bajo del Gualicho" (Rio Negro, Argentina)  

USGS Publications Warehouse

A multidisciplinary study of the Gran Bajo del Gualicho area (Rio Negro - Argentina) was carried out; the aim was to delineate its geological and geomorphological evolution and to estabilish the genesis of salts filling the depression. Climatic conditions were analized first to individuate their role in the present morphogenetic processes; moreover the main morphological features of present landscape were examined as well as the stratigraphy of the outcropping formations, and of the Gran Bajo del Gualicho Formation in particular. Finally, a possible geomorphological evolution of the studied area was traced. Geophysical analyses allowed to estabilish that the paleosurface shaped on the crystalline basement is strongly uneven and shows evidence of the strong tectonic phases it underwent. The result of isotope analyses confirmed that the salt deposits on the Gran Bajo del Gualicho bottom were produced by fresh water evaporation, while strontium isotope ratio suggested that such waters were responsible for solubilization of more ancient evaporitic deposits.

Angelucci, A.; Barbieri, M.; Brodtkorb, A.; Ciccacci, S.; Civitelli, G.; De Barrio, R.; Di, Filippo M.; Fredi, P.; Friedman, I.; Lombardi, S.; Schalamuk, A.I.; Toro, B.



GEOLOGY, October 2011 955 INTRODUCTION  

E-print Network

., 2006). In particular, the underlying Arabian-Nubian Shield (ANS) was designated a likely provenanceGEOLOGY, October 2011 955 INTRODUCTION The early Paleozoic sequence at the northern periphery (in­ Cambrian landscape of northern Gondwana. Geology, October 2011; v. 39; no. 10; p. 955­958; doi:10.1130/G

Dov, Avigad


Computer Assisted Instruction in Geology.  

ERIC Educational Resources Information Center

The development of a computer self-test program in geology at Macalester College, Minnesota, is described. Based on the philosophy that tests, particularly those involving no grading, are useful study devices, computers are used to make tests available to students. Ten lessons have been developed on different topics in geology, and the computer…

Lepp, Henry


Geologic mapping of Argyre Planitia  

NASA Technical Reports Server (NTRS)

This report describes the results from the geologic mapping of the central and southern Argyre basin of Mars. At the Mars Geologic Mapper's Meeting in Flagstaff during July, 1993, Dave Scott (United States Geological Survey, Mars Geologic Mapping Steering Committee Chair) recommended that all four quadrangles be combined into a single 1:1,000,000 scale map for publication. It was agreed that this would be cost-effective and that the decrease in scale would not compromise the original science goals of the mapping. Tim Parker completed mapping on the 1:500,000 scale base maps, for which all the necessary materials had already been produced, and included the work as a chapter in his dissertation, which was completed in the fall of 1994. Geologic mapping of the two southernmost quadrangles (MTM -55036 and MTM -55043; MTM=Mars Transverse Mercator) was completed as planned during the first year of work. These maps and a detailed draft of the map text were given a preliminary review by Dave Scott during summer, 1993. Geologic mapping of the remaining two quadrangles (MTM -50036 and MTM -50043) was completed by summer, 1994. Results were described at the Mars Geologic Mappers Meeting, held in Pocatello, Idaho, during July, 1994. Funds for the third and final year of the project have been transferred to the Jet Propulsion Laboratory, where Tim Parker will revise and finalize all maps and map text for publication by the United States Geological Survey at the 1:1,000,000 map scale.

Gorsline, Donn S.; Parker, Timothy J.




E-print Network

GEOLOGY, June 2009 483 INTRODUCTION Fine-grained sedimentary rocks (grain size known as shales or mud- stones, are the most abundant sedimentary rock type. They contain the bulk of geologic his- tory recorded in sedimentary rocks (Schieber, 1998), and are a key element in organic

Polly, David


Geologic disposal of nuclear waste  

Microsoft Academic Search

The natural and engineered barriers provided by geologic storage of nuclear wastes are the most likely choice of countries looking for a permanent solution. A review of the properties of nuclear wastes and the management strategies that will protect the public and the environment describes the isolation and disposal systems and their geologic requirements. These include a host-rock formation of

K. Stahlkopf; R. Williams; A. B. Carson



Photomicrography in the Geological Sciences.  

ERIC Educational Resources Information Center

Describes the conversion of a standard biological brightfield microscope for examination of thin sections and characterize, in detail, the use of both black and white and color photomicrography in the geological sciences. Several illustrative examples on the use of transmitted and reflected polarized-light microscopy to solve geological problems…

Davidson, Michael W.




E-print Network

DEPARTMENT OF GEOLOGY & GEOPHYSICS UNDERGRADUATE SURVIVAL MANUAL 2013-2014 SCHOOL OF OCEAN & EARTH and Geophysics 1 Job Opportunities 1 Prepare Educationally 1 Challenges and Rewards 1 THE DEPARTMENT OF GEOLOGY & GEOPHYSICS 2 Who We Are 2 Where To Get Help 2 POLICIES, PROCEDURES & REQUIREMENTS 3 University of Hawaii


The Geophysical Revolution in Geology.  

ERIC Educational Resources Information Center

Discussed is the physicists' impact on the revolution in the earth sciences particularly involving the overthrow of the fixist notions in geology. Topics discussed include the mobile earth, the route to plate tectonics, radiometric dating, the earth's magnetic field, ocean floor spreading plate boundaries, infiltration of physics into geology and…

Smith, Peter J.



AMS Featured Reviews  

NSDL National Science Digital Library

The American Mathematical Society's MathSciNet now presents Featured Reviews from Mathematical Reviews online. "Since its founding in 1940, Mathematical Reviews (MR) has aimed to serve researchers and scholars in the mathematical sciences by providing timely information on articles and books that contain new contributions to mathematical research," state the editors. The purpose of the Featured Reviews page is to assist researchers in accessing the most outstanding reviews without having to wade through the thousands of reviews that are posted to MR online each month. The editors state that the Featured Reviews "...will cover some of the very best papers published in mathematics, identified by the MR editors with the advice of distinguished outside mathematicians as being especially important in one or more of the areas covered by MR. The reviewers for these papers are asked to set the paper in context, perhaps with some historical background, state the main results of the paper, outline (in not too technical a fashion) the main new ideas in the paper and include their evaluation of the paper." Each four- to six-paragraph-long review, available in HTML, .dvi, .ps, or .pdf format, gives the reviewer's name and the full article citation, hyperlinked when possible. This should prove to be a valuable Web resource for academic mathematicians.


The geologic evolution of the moon  

NASA Technical Reports Server (NTRS)

A synthesis of pre- and post-Apollo 11 studies is presented to produce an outline of the moon's geologic evolution from three lines of evidence: (1) relative ages of lunar landforms and rock types, (2) absolute ages of returned lunar samples, and (3) petrography, chemistry, and isotopic ratios of lunar rocks and soils. It is assumed that the ray craters, circular mare basins, and most intermediate circular landforms are primarily of impact origin, although many other landforms are volcanic or of hybrid origin. The moon's evolution is divided into four main stages, each including several distinct but overlapping events or processes.

Lowman, P. D., Jr.



Geology and petroleum resources of northwestern Africa  

SciTech Connect

The main onshore basins of northwestern Africa are (1) basins in the Atlas folded geosynclinal belt adjacent to the Mediterranean Sea, (2) the Tindouf, Bechar, and Reggane basins of western Algeria and southern Morocco, and (3) the Taoudeni basin of Mauritania and Mali. Coastal basins are (1) the Essaouria basin of southwestern Morocco, (2) the Tarfaya basin of Western Sahara, (3) the Senegal basin of Senegal and western Mauritania, (4) the Sierra Leone-Liberia basin, and (5) the Ivory Coast basin. The petroleum geology and resource potential of these basins is detailed.

Peterson, J.A.; Klemme, H.D.



Geology orbiter comparison study  

NASA Technical Reports Server (NTRS)

Instrument requirements of planetary geology orbiters were examined with the objective of determining the feasibility of applying standard instrument designs to a host of terrestrial targets. Within the basic discipline area of geochemistry, gamma-ray, X-ray fluorescence, and atomic spectroscopy remote sensing techniques were considered. Within the discipline area of geophysics, the complementary techniques of gravimetry and radar were studied. Experiments using these techniques were analyzed for comparison at the Moon, Mercury, Mars and the Galilean satellites. On the basis of these comparative assessments, the adaptability of each sensing technique was judged as a basic technique for many targets, as a single instrument applied to many targets, as a single instrument used in different mission modes, and as an instrument capability for nongeoscience objectives.

Cutts, J. A. J.; Blasius, K. R.; Davis, D. R.; Pang, K. D.; Shreve, D. C.



Geological consequences of superplumes  

SciTech Connect

Superplumes are suggested to have caused the period of constant normal magnetic polarity in mid-Cretaceous time (124-83 Ma) and, possibly, the period of constant reversed polarity in Pennsylvania-Permian time (323-248 Ma). These times coincide with increases in world temperature, deposition of black shales, oil generation, and eustatic sea level in the mid-Cretaceous, and increased coal generation and gas accumulation in the Pennsylvanian-Permian, accompanied by an intracratonic Pennsylvanian transgression of epicontinental seas. These geologic anomalies are associated with episodes of increased world-wide ocean-crust production and mantle outgassing, especially of carbon and nutrients. These superplumes originated just above the core-mantle boundary, significantly increased convection in the outer core, and stopped the magnetic field reversal process for 41 m.y. in the Cretaceous and 75 m.y. in Pennsylvanian-Permian time.

Larson, R.L. (Univ. of Rhode Island, Narragansett (United States))



Geology in the News  

NSDL National Science Digital Library

For this activity students read the newspaper on a daily basis, listen to news on the radio, or watch television, to acquire material related to the earth sciences. They will look for natural hazards (earthquakes, volcanoes, landslides, hurricanes, etc.), human-made hazards (urbanization, compromised engineering projects, etc.), environmental issues, or resource extraction issues which all appear in the news with great frequency and are easily accessible. Students are reminded that they should look for information on the local level (water quality, solid waste management, development issues, etc.), as well as national and world wide issues. The news items may then be presented to the class as show-and-tell exercises with follow-up discussion by the class; a bulletin board that could be dedicated to posting the geologic events of the week; or scrapbooks of events, arranged either chronologically or by category of events compiled by individuals or classes.

David Mogk


Optimization of LOM Open Pit Mine Plan Under Geological Uncertainty COSMO-Stochastic Mine Planning Laboratory  

E-print Network

Optimization of LOM Open Pit Mine Plan Under Geological Uncertainty COSMO-Stochastic Mine Planning Laboratory Iain Farmer: McGill University Introduction: Historically, 60% of mines has introduced geological risk as the main risk factor for a mining project and presented a way

Barthelat, Francois


TerraLuna: A CosmoQuest Adventure in Geology  

NASA Astrophysics Data System (ADS)

The content of the session will focus on CosmoQuest’s TerraLuna unit, a comparative geology unit that uses authentic data to study the geology of the Moon and Earth. Inquiry activities will allow teachers to help their students compare crater formation and other surface features on the two bodies, comparing Moon features to similar structures on Earth. Links to the latest data from NASA’s Lunar Reconnaissance Orbiter will be introduced and hands- on activities will be featured as the basis for inquiry learning in elementary and middle level classrooms. Teachers will be introduced to citizen science projects that will enable their students to think like real scientists and engage in authentic scientific research, providing a useful service to the scientific community. Participation in the workshop introduces teachers to the CosmoQuest website, which includes a suite of citizen science activities. The site provides teachers with an online community dedicated to science inquiry and educational support.

Gay, Pamela; Bracey, Georgia; Gugliucci, Nicole


Geologic and Mineralogic Mapping of Av-6 (Gegania) and Av-7 (Lucaria) Quadrangles of Asteroid 4 Vesta  

NASA Astrophysics Data System (ADS)

NASA's Dawn spacecraft arrived at the asteroid 4 Vesta in July 2011 and is now collecting imaging and spectroscopic data during its one-year orbital mission. The maps we present are based on information obtained by the Visible and Infrared Mapping Spectrometer VIR-MS and the multi-color Framing Camera FC. VIR covers the wavelength range between 0.25 to 5.1 µm while FC covers the range 0.4 to 1.0 µm. The VIR instrument has a significant higher spectral resolution than FC but the latter achieves higher spatial resolution data. As part of the geological and mineralogical analysis of the surface, a series of 15 quadrangles have been defined covering the entire surface of Vesta. We report about the mapping results of quadrangle Av-6 (Gegania) and Av-7 (Lucaria). The Gegania quadrangle is dominated by old craters showing no ejecta blankets and rays while several small fresh craters do. The most obvious geologic features are a set of equatorial troughs, a group of three ghost craters of similar diameter (~57 km), an ejecta mantling of the Gegania crater and three smaller craters showing bright and dark ejecta rays. The quadrangle contains two main geologic units: 1) the northern cratered trough terrain and 2) the equatorial ridge and trough terrain. The quadrangle shows moderate variation in Band II center wavelength and Band II depth. FC color ratio variations of some recent craters and their ejecta are linked to the bright and dark material. The bright material is possibly excavated eucritic material while the dark material could be remnants of a CM2 impator(s) or an excavated subsurface layer of endogenic origin. The most prominent geologic features in the Lucaria quadrangle are the 40 km long hill Lucaria Tholus, a set of equatorial troughs, some relatively fresh craters with bright and dark material and mass wasting. The quadrangle contains three main geologic units: 1) the northern cratered trough terrain, 2) the equatorial ridge and trough terrain, and 3) the equatorial cratered terrain. The quadrangle exhibits moderate variation in Band II center wavelength and only small variation in Band II depth. FC ratio maps show a distinct variation of the pseudo 1-µm band depth. Ejecta material showing steeper VIS spectral slope is located in the western part of the quadrangle.

Nathues, A.; Le Corre, L.; Reddy, V.; De Sanctis, M. C.; Williams, D. A.; Garry, W. B.; Yingst, R. A.; Jaumann, R.; Ammannito, E.; Capaccioni, F.; Preusker, F.; Palomba, E.; Roatsch, T.; Tosi, F.; Zambon, F.; Pieters, C. M.; Russell, C. T.; Raymond, C. A.



Rocks and Geology in the San Francisco Bay Region  

NSDL National Science Digital Library

This guide provides illustrated descriptions of 46 common and important varieties of igneous, sedimentary, and metamorphic rock found in the San Francisco Bay region. Rock types are described in context of their identification qualities, how they form, and where they occur. The guide also provides a discussion of regional geology, plate tectonics, the rock cycle, the significance of the selected rock types in relation to both earth history and the impact of mineral resources on the development in the region. There is also information on where rocks, fossils, and geologic features can be visited on public lands or in association with public displays in regional museums, park visitor centers, and other public facilities.

Stoffer, Philip W. (Philip Ward)



49 CFR 801.59 - Geological records.  

Code of Federal Regulations, 2010 CFR

...2010-10-01 2010-10-01 false Geological records. 801.59 Section...Public Disclosure § 801.59 Geological records. Pursuant to 5 U...b)(9), records concerning geological wells are exempt from public...



Geological Survey Research 1966, Chapter B  

USGS Publications Warehouse

This collection of 43 short papers is the first published chapter of 'Geological Survey Research 1966.' The papers report on scientific and economic results of current work by members of the Conservation, Geologic, Topographic, and Water Resources Divisions of the U.S. Geological Survey. Chapter A, to be published later in the year, will present a summary of significant results of work done during fiscal year 1966, together with lists of investigations in progress, reports published, cooperating agencies, and Geological Survey offices. 'Geological Survey Research 1966' is the seventh volume of the annual series Geological Survey Research. The six volumes already published are listed below, with their series designations. Geological Survey Research 1960-Prof. Paper 400 Geological Survey Research 1961-Prof. Paper 424 Geological Survey Research 1962-Prof. Paper 450 Geological Survey Research 1963-Prof. Paper 475 Geological Survey Research 1964-Prof. Paper 501 Geological Survey Research 1965-Prof. Paper 525

U.S. Geological Survey



GeoSciML version 3: A GML application for geologic information  

NASA Astrophysics Data System (ADS)

After 2 years of testing and development, XML schema for GeoSciML version 3 are now ready for application deployment. GeoSciML draws from many geoscience data modelling efforts to establish a common suite of feature types to represent information associated with geologic maps (materials, structures, and geologic units) and observations including structure data, samples, and chemical analyses. After extensive testing and use case analysis, in December 2008 the CGI Interoperability Working Group (IWG) released GeoSciML 2.0 as an application schema for basic geological information. GeoSciML 2.0 is in use to deliver geologic data by the OneGeology Europe portal, the Geological Survey of Canada Groundwater Information Network (wet GIN), and the Auscope Mineral Resources portal. GeoSciML to version 3.0 is updated to OGC Geography Markup Language v3.2, re-engineered patterns for association of element values with controlled vocabulary concepts, incorporation of ISO19156 Observation and Measurement constructs for representing numeric and categorical values and for representing analytical data, incorporation of EarthResourceML to represent mineral occurrences and mines, incorporation of the GeoTime model to represent GSSP and stratigraphic time scale, and refactoring of the GeoSciML namespace to follow emerging ISO practices for decoupling of dependencies between standardized namespaces. These changes will make it easier for data providers to link to standard vocabulary and registry services. The depth and breadth of GeoSciML remains largely unchanged, covering the representation of geologic units, earth materials and geologic structures. ISO19156 elements and patterns are used to represent sampling features such as boreholes and rock samples, as well as geochemical and geochronologic measurements. Geologic structures include shear displacement structures (brittle faults and ductile shears), contacts, folds, foliations, lineations and structures with no preferred orientation (e.g. 'miarolitic cavities'). The Earth material package allows for the description of both individual components, such as minerals, and compound materials, such as rocks or unconsolidated materials. Provision is made for alteration, weathering, metamorphism, particle geometry, fabric, and petrophysical descriptions. Mapped features describe the shape of the geological features using standard GML geometries, such as polygons, lines, points or 3D volumes. Geological events provide the age, process and environment of formation of geological features. The Earth Resource section includes features to represent mineral occurrences and mines and associated human activities independently. This addition allows description of resources and reserves that can comply with national and internationally accepted reporting codes. GeoSciML v3 is under consideration as the data model for INSPIRE annex 2 geologic reporting in Europe.

International Union of Geological Sciences., I. C.; Richard, S. M.



Use of submerged aquatic vegetation as habitat by young-of-the-year epibenthic fishes in shallow Maine nearshore waters  

NASA Astrophysics Data System (ADS)

Epibenthic fishes were collected with daytime beam trawl tows ( n = 1713) in three shallow (<10 m) habitats of submerged aquatic vegetation (SAV), Zostera marina (eelgrass), Laminaria longicruris (kelp), Phyllophora sp. (algae), and unvegetated sandy/mud areas. We divided the Maine coast into three broad zones based upon geological features and sampled over five consecutive years; during April-November 2000 in the mid coast, in 2001 and 2002 along the south coast and in 2003 and 2004 along the eastern Maine coast. We quantified habitat use by eight economically important fish species ( Gadus morhua, Microgadus tomcod, Pollachius virens, Urophycis chuss, Urophycis tenuis, Osmerus mordax, Tautogolabrus adspersus, and Pseudopleuronectes americanus) and 10 other common epibenthic species ( n = 18?571). We identified the physical and biological variables most important in discriminating between habitats with and without individual fish species. Logistic regression models based on nearshore habitat characteristics were developed to predict the distribution of these species along the three zones representing broad geological regions of the Maine coast. Logistic regression models correctly classified individual fish species 58.7-97.1% of the time based on the temporal and physical habitat variables (month, temperature, salinity, and depth) and the presence-absence of submerged aquatic vegetation ( Zostera, Laminaria, or Phyllophora). Overall fish presence and economically important fish presence were correctly classified 61.1-79.8% and 66.0-73.6% of the time, respectively. The Maine shallow water fish community was composed primarily of young-of-the-year and juvenile fishes with all habitats functioning as facultative nursery areas. Presence of most fish species was positively associated with Zostera, Laminaria, and to a lesser extent, Phyllophora. This study provides direct evidence of shallow waters of the Gulf of Maine as critical facultative nursery habitat for juvenile G. morhua, M. tomcod, P. virens, U. tenuis, U. chuss, T. adspersus, O. mordax and P. americanus, and many ecologically important species.

Lazzari, M. A.; Stone, B. Z.



Main ring lattice and beam dynamics  

SciTech Connect

The main-ring lattice considered in this note is based on previous studies made for high-energy rings of the TRIUMF Kaon Factory as well as for the main ring and second-generation storage ring proposed for an advanced hadron facility at Los Alamos. The reason for further study of the design concepts is mainly to increase the dynamic aperture for coupled motion in the presence of the sextupoles used for chromaticity adjustment and magnet imperfection compensation. At the same time, it was interesting to include the features required for slow extraction and direct H/sup /minus// injection and obtain a complete layout of the ring as close as possible to a realistic structure for estimating the stability limit. The basic ideas retained for the design of the main ring lattice are briefly recalled here. 10 refs., 2 figs., 1 tab.

Guignard, G.