Sample records for main geological features

  1. Virtual Tour of Maine Geology

    NSDL National Science Digital Library

    This selection of slide shows provides a photographic tour of Maine geology. Users can choose slide shows on surficial, bedrock, and coastal geology; fossils, geologic hazards, groundwater and wells; or mineral collecting, mining, and quarrying.

  2. Bedrock Geologic Map of Maine

    NSDL National Science Digital Library

    In this activity students study a map of bedrock geology which describes the types of rocks that exist in a given area. It shows these rock units as well as their known and inferred contacts. Consideration is also given to folding, faulting, unconformities, and similar rock relationships. These features are often included in bedrock geology maps. Students study the legend and scale and become aware of the other information that is included on the map such as the stratigraphic column, list of formations, and inset map of metamorphic grade. Students then locate their city or town and draw a 40-mile diameter circle around it and identify all the symbols inside the circle and the age of the various rocks. Student question sheets are available at this site. Although this activity was written for a map of Maine, it will work in any state where geological maps are available.

  3. Main features of meiosis

    SciTech Connect

    NONE

    1993-12-31

    Chapter 17, outlines the main features of meiosis, beginning with its significance and proceeding through the meiotic stages. Meiosis is the most important modification of mitosis because it is the reduction division that gives rise to the haploid generation in the life cycle. 17 refs., 6 figs.

  4. Maine Geological Survey: Online Educational Materials

    NSDL National Science Digital Library

    2009-12-08

    The Maine Geological Survey (MGS) has crafted a fine set of materials for those interested in learning more about the state's natural history via virtual tours, lesson plans, and maps. First up is the Virtual Tour of Maine Geology, which includes photographs of bedrock geology, geologic hazards, mineral collecting, and surficial geology. The Lesson Plans area contains 51 lessons, including "Igneous Rock Identification" and "Composition of Topsoil." A number of MGS maps are available online in the Maps and Publications area. The site includes a Bibliography of Maine Geology, which contains over 12,000 references. Additionally, the site contains a link to the MGS publications page, which has official state of Maine wall maps available for purchase.

  5. Maine Geological Survey: Online Educational Materials

    NSDL National Science Digital Library

    The Maine Geological Survey (MGS) has crafted a fine set of materials for those interested in learning more about the state's natural history via virtual tours, lesson plans, and maps. First up is the Virtual Tour of Maine Geology, which includes photographs of bedrock geology, geologic hazards, mineral collecting, and surficial geology. The Lesson Plans area contains 51 lessons, including "Igneous Rock Identification" and "Composition of Topsoil." A number of MGS maps are available online in the Maps and Publications area. The site includes a Bibliography of Maine Geology, which contains over 12,000 references. Additionally, the site contains a link to the MGS publications page, which has official state of Maine wall maps available for purchase.

  6. Bedrock Geologic Map of Maine and Surficial Geologic Map of Maine

    NASA Astrophysics Data System (ADS)

    Lyons, J. B.

    For the tectonic, structural, or surficial geologist, a geologic map is the ultimate document, encompassing within its bounds a concise display of the current status of geologic information for the region that it embraces. Because the state of Maine, areally, is half of the New England region, the new bedrock and surficial maps of that state, produced under the direction of State Geologist Walter Anderson with the collaboration of 13 bedrock area compilers, 12 surficial areal compilers, and aided by funding from the U.S. Department of Energy and the Maine Geological Survey, are important contributions to our knowledge of this portion of the northern Appalachian Mountains. These maps follow closely upon recently published bedrock maps of Massachusetts (E.-A. Zen et al., U.S. Geological Survey, Washington, D.C., 1983) and Connecticut U. Rodgers, Connecticut Geological and Natural History Survey, Hartford, 1985). Revisions of maps for the other New England states are in progress.

  7. The Geology of the Marginal Way, Ogunquit, Maine

    NSDL National Science Digital Library

    This guide introduces visitors to the geology of the Marginal Way, a mile-long public footpath in the southern coastal town of Ogunquit, Maine. Topics include bedrock geology (Silurian quartzites and phyllites), later intrusives (sills and dikes, mainly of basalt), and evidence of glaciation (striations). Suggested activities include observing graded bedding in the bedrock, estimating the ages of cross-cutting dikes, and looking for glacial striations. Permission and access information, directions, and suggestions for further reading are included.

  8. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer

    Marvinney, Robert

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  9. Maine Geological Survey Borehole Temperature Profiles

    SciTech Connect

    Marvinney, Robert

    2013-11-06

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  10. Geology and impact features of Riachão structure, northern Brazil

    NASA Astrophysics Data System (ADS)

    Maziviero, Mariana V.; Vasconcelos, Marcos A. R.; Crósta, Alvaro P.; Góes, Ana M.; Reimold, Wolf U.; de C. Carneiro, Cleyton

    2013-10-01

    Riachão, located at S7°42'/W46°38' in Maranhão State, northeastern Brazil, is a complex impact structure of about 4.1 km diameter, formed in Pennsylvanian to Permian sedimentary rocks of the Parnaíba Basin sequence. Although its impact origin was already proposed in the 1970s, information on its geology and shock features is still scarce in the literature. We present here the main geomorphological and geological characteristics of the Riachão impact structure obtained by integrated geophysical and remote sensing analysis, as well as geological field work and petrographic analysis. The identified lithostratigraphic units consist of different levels of the Pedra de Fogo Formation and, possibly, the Piauí Formation. Our petrographic analysis confirms the presence of shock-diagnostic planar microdeformation structures in quartz grains of sandstone from the central uplift as evidence for an impact origin of the Riachão structure. The absence of crater-filling impact breccias and melt rocks, shatter cones, as well as the restricted occurrence of microscopic shock effects, suggests that intense and relatively deep erosion has occurred since crater formation.

  11. Glacial and Postglacial Geology Highlights in the White Mountain National Forest, Western Maine

    NSDL National Science Digital Library

    This guide introduces visitors to the glacial and postglacial geology of the White Mountain National Forest in western Maine. The discussion covers the timing of the glaciation (the Laurentide Ice Sheet, 25,000-13,000 years ago) and the numerous features left behind: erosional features such as high cliffs, grooves and striations; depositional features such as till, erratics, and glacial lake deposits; and deposits reworked by meltwater streams such as outwash, alluvial fans, and stream terraces. Permission and access information, directions, and references are included.

  12. LROC Observations of Geologic Features in the Marius Hills

    Microsoft Academic Search

    S. Lawrence; J. D. Stopar; R. B. Hawke; B. W. Denevi; M. S. Robinson; T. Giguere; B. L. Jolliff

    2009-01-01

    Lunar volcanic cones, domes, and their associated geologic features are important objects of study for the LROC science team because they represent possible volcanic endmembers that may yield important insights into the history of lunar volcanism and are potential sources of lunar resources. Several hundred domes, cones, and associated volcanic features are currently targeted for high-resolution LROC Narrow Angle Camera

  13. Mojave National Preserve: A 3-D Tour Featuring Park Geology

    NSDL National Science Digital Library

    This virtual tour features three-dimensional images from the United States Geological Survey's (USGS) collection. It introduces visitors to the geology and landforms of Mojave National Preserve. Views include cinder cones, layered deposits of rhyolite and basalt tuff, and the Providence Mountain Range. Visitors can also see high desert flora (Joshua trees), limestone caverns, and the evaporite deposits of Soda Lake. The 3-D images are anaglyphs and require red and cyan 3-D viewing glasses.

  14. Some global features of palaeointensity in geological time

    Microsoft Academic Search

    Hidefumi Tanaka; Masaru Kono; Hideo Uchimura

    1995-01-01

    A global palaeointensity data base was constructed from all published data from volcanic rocks in geological time older than 0.03 Ma. The data base contains a total of 1123 flow mean data retrieved from 83 original papers. Various features of the Earth's dipole moment were examined from the data which are based on Thellier and Shaw methods.

  15. Geographical features of global water cycle during warm geological epochs

    SciTech Connect

    Georgiadi, A.G. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Geography

    1996-12-31

    The impact of global warming on the water cycle can be extremely complex and diverse. The goal of the investigation was to estimate the geographic features of the mean annual water budget of the world during climatic optimums of the Holocene and the Eemian interglacial periods. These geological epochs could be used as analogs of climatic warming on 1 degree, centigrade and 2 degrees, centigrade. The author used the results of climatic reconstructions based on a simplified version of a GCM.

  16. Geologic evolution of the Gulf of Maine region

    NASA Astrophysics Data System (ADS)

    Uchupi, Elazar; Bolmer, S. T.

    2008-12-01

    In this study we reconstruct the evolution of the northern New England passive margin whose development has been influenced by Pleistocene glaciations. The morphology of the northern New England shelf is rather unique consisting of a inner lowland, the Gulf of Maine, with an average depth of 150 m and an area of 90,700 km 2 and Georges Bank, a high whose crest is less than 40 m deep and has an area of 27,000 km 2. The bank's northern slope, facing the Gulf of Maine, has a maximum relief of 377 m. On the seaward side of Georges Bank is the 2000 m high continental slope deeply cut by canyons. Two channels, Northeast and Great South Channels, east and west of Georges Bank, provide passageways from the Gulf of Maine to the open sea. This morphology was acquired by a combination of Tertiary fluvial erosion, Pleistocene glacial erosion/deposition and Pleistocene/Holocene marine processes. Fluvial/glacial erosion in the Gulf of Maine was so extensive as to expose basement, thus making it possible to map the various terranes making up this foundation. These terranes include the pre-Carboniferous Avalon and Meguma units, a Carboniferous-Permian rift basin formed by the oblique continental collision during the closure of the Paleozoic proto-Atlantic and a Late Triassic-Early Jurassic rift system created during the opening of the present Atlantic. Basement in the Gulf of Maine remained above sea level from the opening of the Atlantic 190 Ma (Early Jurassic) to the Eocene 55 Ma. That the Gulf of Maine remained a high for so long may have been due to igneous activity along the northwest-trending Boston-Ottawa Lineation extending from the vicinity of the St. Lawrence River, Canada to Gulf of Maine from Late Triassic to Early Cretaceous. The northwest-trending New England Seamounts south of Georges Bank may represent a seaward extension of this lineation. On Georges Bank, rising hundreds of meters above the Gulf of Maine, the basement exposed in the gulf is mantled by sediments thousands of meters thick. Included in these sediments are Early Jurassic- to earliest Cretaceous reefs along the continental slope and carbonates north of the reefs grading landward into continental sediments, Cretaceous-Cenozoic continental/marine terrigenous sediments and Pleistocene glacial deposits. The continental slope on the seaward flank of Georges Bank has a complex history of early to mid Mesozoic carbonate accretion, mid to late Mesozoic and Cenozoic calcareous/terrigenous sediments and canyon erosion, burial and exhumation going back to Early Cretaceous.

  17. The Monte Carlo code MCSHAPE: Main features and recent developments

    NASA Astrophysics Data System (ADS)

    Scot, Viviana; Fernandez, Jorge E.

    2015-06-01

    MCSHAPE is a general purpose Monte Carlo code developed at the University of Bologna to simulate the diffusion of X- and gamma-ray photons with the special feature of describing the full evolution of the photon polarization state along the interactions with the target. The prevailing photon-matter interactions in the energy range 1-1000 keV, Compton and Rayleigh scattering and photoelectric effect, are considered. All the parameters that characterize the photon transport can be suitably defined: (i) the source intensity, (ii) its full polarization state as a function of energy, (iii) the number of collisions, and (iv) the energy interval and resolution of the simulation. It is possible to visualize the results for selected groups of interactions. MCSHAPE simulates the propagation in heterogeneous media of polarized photons (from synchrotron sources) or of partially polarized sources (from X-ray tubes). In this paper, the main features of MCSHAPE are illustrated with some examples and a comparison with experimental data.

  18. Tutorial on underwater electrical discharges: main features and applications

    NASA Astrophysics Data System (ADS)

    Krasik, Yakov

    2013-09-01

    Main features of underwater electrical discharge with short description of models (``bubble'', ``explosive emission'', ``ionization'' and ``thermal''), parameters of the discharge (threshold electric field versus polarity, time duration, frequency, pressure, interelectrode gap and area of electrodes, velocity of streamer propagation and density and temperature of the plasma, strong shock waves) and different electrical and optical diagnostics which were used in this research will be shortly reviewed. Such main applications of underwater electrical discharge as electro-hydraulic forming, destruction of rocks, low-inductance water spark gap switches, treatment of pollutants in water and extracorporeal shock wave lithotripsy will be discussed. Finally, results of application of underwater electrical explosion of single wires in nanosecond - microsecond timescales for research related to Equation of State of different materials at extreme conditions and underwater electrical explosion of wire arrays in cylindrical and spherical configurations for generation of converging strong shock waves using moderate high-power generators for research of compressed water at extreme conditions will be presented.

  19. LROC Observations of Geologic Features in the Marius Hills

    NASA Astrophysics Data System (ADS)

    Lawrence, S.; Stopar, J. D.; Hawke, R. B.; Denevi, B. W.; Robinson, M. S.; Giguere, T.; Jolliff, B. L.

    2009-12-01

    Lunar volcanic cones, domes, and their associated geologic features are important objects of study for the LROC science team because they represent possible volcanic endmembers that may yield important insights into the history of lunar volcanism and are potential sources of lunar resources. Several hundred domes, cones, and associated volcanic features are currently targeted for high-resolution LROC Narrow Angle Camera [NAC] imagery[1]. The Marius Hills, located in Oceanus Procellarum (centered at ~13.4°N, -55.4°W), represent the largest concentration of these volcanic features on the Moon including sinuous rilles, volcanic cones, domes, and depressions [e.g., 2-7]. The Marius region is thus a high priority for future human lunar exploration, as signified by its inclusion in the Project Constellation list of notional future human lunar exploration sites [8], and will be an intense focus of interest for LROC science investigations. Previous studies of the Marius Hills have utilized telescopic, Lunar Orbiter, Apollo, and Clementine imagery to study the morphology and composition of the volcanic features in the region. Complementary LROC studies of the Marius region will focus on high-resolution NAC images of specific features for studies of morphology (including flow fronts, dome/cone structure, and possible layering) and topography (using stereo imagery). Preliminary studies of the new high-resolution images of the Marius Hills region reveal small-scale features in the sinuous rilles including possible outcrops of bedrock and lobate lava flows from the domes. The observed Marius Hills are characterized by rough surface textures, including the presence of large boulders at the summits (~3-5m diameter), which is consistent with the radar-derived conclusions of [9]. Future investigations will involve analysis of LROC stereo photoclinometric products and coordinating NAC images with the multispectral images collected by the LROC WAC, especially the ultraviolet data, to enable measurements of color variations within and amongst deposits and provide possible compositional insights, including the location of possibly related pyroclastic deposits. References: [1] J. D. Stopar et al. (2009), LRO Science Targeting Meeting, Abs. 6039 [2] Greeley R (1971) Moon, 3, 289-314 [3] Guest J. E. (1971) Geol. and Phys. of the Moon, p. 41-53. [4] McCauley J. F. (1967) USGS Geologic Atlas of the Moon, Sheet I-491 [5] Weitz C. M. and Head J. W. (1999) JGR, 104, 18933-18956 [6] Heather D. J. et al. (2003) JGR, doi:10.1029/2002JE001938 [7] Whitford-Stark, J. L., and J. W. Head (1977) Proc. LSC 8th, 2705-2724 [8] Gruener J. and Joosten B. K. (2009) LRO Science Targeting Meeting, Abs. 6036 [9] Campbell B. A. et al. (2009) JGR, doi:10.1029/2008JE003253.

  20. Geologic Field Investigation: Investigating Coastal Features of Western Lake Superior, Inferring Possibilities of their Origins

    NSDL National Science Digital Library

    Paul Davis

    This geologic investigation will have students observing and investigating coastal features of Western Lake Superior using inquiry-based investigable questions, and inferring possibilities of the coastal features' origins.

  1. Glacial Features in the Western Gulf of Maine Inferred From High Resolution Bathymetric Data

    NASA Astrophysics Data System (ADS)

    Malik, M. A.; Licciardi, J. M.; Ward, L. G.; Mayer, L. A.

    2007-12-01

    Multibeam sonar surveys in the last decade have revealed submerged glacial features in the western Gulf of Maine (e.g., Valentine et al., 2003). Here we examine high-resolution multibeam bathymetric data acquired in 2001 and 2005 over Jeffreys Ledge to infer the origin of previously unrecognized small-scale marine glacial features. Ridges as high as 5 m appear throughout the length of Jeffreys Ledge in water depths of ~50 m. Bottom photographs of these features show boulders of up to 50 cm diameter in a flat sandy bottom devoid of finer material. These ridges are probably recessional moraines that have been reworked during lower relative sea level (~55 m below modern sea level). The moraine-like features imply stabilization of an ice margin along the length of Jeffreys Ledge. The central portion of Jeffreys Ledge also contains asymmetrical dune forms with a relief of 1-6 m and along-crest orientations trending NW-SE. These dunes may have formed during megaflood events with water flow toward the southwest. Streamlined bathymetric features with a relief of ~8 m and lengths up to 700 m occur east of Jeffreys Ledge. These features have similar dimensions but different orientations (N-S), as compared to southeast-oriented drumlins identified south of Cape Ann by Oldale et al. (1994). Dissimilar orientations of these drumlins are consistent with the lobate shape of the ice sheet and probable local ice flow directions. Numerous iceberg scours were observed in the basins east of Stellwagen Bank and Jeffreys Ledge with varying widths (50-300 m), scour depths (1-5 m) and lengths (3-10 km). Two dominant orientations of iceberg scours (E- W and N-S) were identified. Additional data such as seismic profiles, bottom photographs and bottom samples will further define the origin of these small-scale glacial features. Oldale, R.N., Knebel, H.J., Bothner, M.H., 1994, Geomorphology 9, 301-309. Valentine, P., Unger, T., Baker, J., 2003, U.S. Geological Survey Geologic Investigations Series Map I-2676C, scale 1:60,000.

  2. Maps of Lunar Topographic Roughness: Correlation with Geological Features

    NASA Astrophysics Data System (ADS)

    Kreslavsky, M. A.; Head, J. W.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2012-12-01

    Lunar Orbiter Laser Altimeter LOLA [Smith et al. 2010 Space Sci. Rev. 150, 209] on board the Lunar Reconnaissance Orbiter is accumulating high-precision lunar surface elevation measurements. This data set is an excellent source for mapping lunar topographic roughness [Rosenburg et al. 2011 JGR 116, E02001]. Such maps are useful in planetary geology for the following reasons. (1) Roughness maps provide a convenient one-glance synoptic overview of small-scale textures. (2) They help focus on typical background topography, while researcher's eyes usually pick prominent features. (3) Roughness maps utilize the exceptional along-orbit precision of laser altimeter data. In a series of roughness maps that we present here, we use the interquartile range of along-profile curvature at a given baseline as a measure of roughness. We use a progression of baselines starting from the double LOLA probing step: 0.12, 0.46, 0.92, 1.8 km. We also show some useful color composites combining these maps and showing the scale dependence of roughness. Available data allow roughness mapping at 8 pixels per degree resolution. The nature of the lunar roughness changes abruptly at sub-km scale. At 0.46 km baseline and longer, the most prominent feature on the roughness maps is the dichotomy between smooth maria and rough highlands. At 0.12 km baseline, the mare/highland boundary disappears; some mare surfaces are rougher and some are smoother than typical highlands. At this baseline the surface topography is controlled by regolith gardening and reflects small-scale resurfacing during the Copernican and Eratosthenian periods, while for longer baselines the topography is defined by bedrock geology and "remembers" Imbrian and earlier events. At short scales (0.12 km baseline) both the roughest and the smoothest terrains are related to Copernican-aged large impact craters. Craters themselves and their proximal ejecta are extremely rough; the roughest ejecta is separated from craters by prominent smoother annuli. The roughness of the young craters progressively decreases with age due to smoothing by accumulation of the regolith layer. The smoothest terrains are local relatively small impact melt sheets outside Copernican craters Rutherford and Glushko. Large Copernican craters Tycho, Jackson and Ohm have systems of long roughness rays composed of elongated clusters of secondary craters. There are at least a few prominent roughness "rays" on the north-eastern limb made of dense elongated crater clusters that are not associated with any impact crater; their origin is enigmatic. Mare surfaces have relatively wide variations of roughness; boundaries between rougher and smoother areas often do not correlate with boundaries of mare units. These roughness variations seem to be caused, at least, partly, by the varying density of small craters. At longer baselines (0.46, 0.92, 1.8 km), in addition to Copernican and Eratosthenian craters, large Late Imbrian craters have prominent roughness signatures; they also have smoother annuli between craters and rough ejecta. Orientale basin, unlike other basins, also has distinctive roughness signature, as discussed in [Kreslavsky & Head 2012 JGR 117, E00H24]. The youngest maria are smooth at all scales, while older maria and cryptomaria are progressively rougher at shorter baselines; sharp roughness contrasts coincide with known unit boundaries.

  3. Gravity and magnetic anomalies used to delineate geologic features associated with earthquakes and aftershocks in the central Virginia seismic zone

    NASA Astrophysics Data System (ADS)

    Shah, A. K.; Horton, J.; McNamara, D. E.; Spears, D.; Burton, W. C.

    2013-12-01

    Estimating seismic hazard in intraplate environments can be challenging partly because events are relatively rare and associated data thus limited. Additionally, in areas such as the central Virginia seismic zone, numerous pre-existing faults may or may not be candidates for modern tectonic activity, and other faults may not have been mapped. It is thus important to determine whether or not specific geologic features are associated with seismic events. Geophysical and geologic data collected in response to the Mw5.8 August 23, 2011 central Virginia earthquake provide excellent tools for this purpose. Portable seismographs deployed within days of the main shock showed a series of aftershocks mostly occurring at depths of 3-8 km along a southeast-dipping tabular zone ~10 km long, interpreted as the causative fault or fault zone. These instruments also recorded shallow (< 4 km) aftershocks clustered in several areas at distances of ~2-15 km from the main fault zone. We use new airborne geophysical surveys (gravity, magnetics, radiometrics, and LiDAR) to delineate the distribution of various surface and subsurface geologic features of interest in areas where the earthquake and aftershocks took place. The main (causative fault) aftershock cluster coincides with a linear, NE-trending gravity gradient (~ 2 mgal/km) that extends over 20 km in either direction from the Mw5.8 epicenter. Gravity modeling incorporating seismic estimates of Moho variations suggests the presence of a shallow low-density body overlying the main aftershock cluster, placing it within the upper 2-4 km of the main-fault hanging wall. The gravity, magnetic, and radiometric data also show a bend in generally NE-SW orientation of anomalies close to the Mw5.8 epicenter. Most shallow aftershock clusters occur near weaker short-wavelength gravity gradients of one to several km length. In several cases these gradients correspond to geologic contacts mapped at the surface. Along the gravity gradients, the aftershocks appear to cluster near areas with cross-cutting geologic features such as Jurassic diabase dikes. These associations suggest that local variations in rock density and/or rheology may have contributed to modifications of local stress regimes in a manner encouraging localized seismicity associated with the Mw5.8 event and its aftershocks. Such associations are comparable to results of previous studies recognizing correspondences between seismicity and features such as intrusive bodies and failed rifts in the New Madrid seismic zone and elsewhere. To explore whether similar correspondences may have occurred in the past, we use regional gravity and magnetic data to consider possible relations between historical earthquakes and comparable geologic features elsewhere in the central Virginia seismic zone.

  4. View of Feature 2, the remains of the Geology/Change Room, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Feature 2, the remains of the Geology/Change Room, view to the southeast - Orphan Lode Mine, North of West Rim Road between Powell Point and Maricopa Point, South Rim, Grand Canyon Village, Coconino County, AZ

  5. Yellowstone National Park: Historic 3-D Photographs Featuring Park Geology

    NSDL National Science Digital Library

    Stoffer Phil

    This source provides a series of 34 historic photographs of well-known geologic landmarks in Yellowstone National Park. The photographs can be viewed individually or as part of a tour that begins at Old Faithful and proceeds in a clockwise route around the park. The images were created by digital manipulation of antique stereographs and they may be viewed as black and white photos or in 3-D using special stereographic glasses.

  6. Going Batty! (Using Informational Text about Bats to teach Main Idea/Details and Text Features)

    NSDL National Science Digital Library

    Joe Atchison

    2012-06-13

    This lesson is a good review of main idea and details. It uses informational books about bats in the lesson. Students will use informational text features to help find the main idea and details. They will also use the knowledge of main idea/details and informational text features to complete a simple reseach sheet and/or book.

  7. Crustal thickness map of Brazil: Data compilation and main features

    NASA Astrophysics Data System (ADS)

    Assumpção, Marcelo; Bianchi, Marcelo; Julià, Jordi; Dias, Fábio L.; Sand França, George; Nascimento, Rosana; Drouet, Stéphane; Pavão, César Garcia; Albuquerque, Diogo Farrapo; Lopes, Afonso E. V.

    2013-04-01

    We present a crustal thickness map of Brazil and adjacent areas based on a compilation of data published in the literature as well as new measurements. We used crustal thicknesses mainly derived from seismic datasets such as deep seismic refraction experiments, receiver function analyses, and surface-wave dispersion velocities. Crustal thicknesses derived from modelling gravity anomalies commonly depend on assumptions, such as constant density contrast across the Moho interface, which are not always easily verifiable and were considered only along the continental shelf to fill large gaps in the seismic data. Our compilation shows that the crust in the stable continental area onshore has an average thickness of 39 ± 5 km (1-? deviation) and that no clear difference can be observed between low altitude, intracratonic sedimentary basins, NeoProterozoic foldbelts (except for the Borborema Province), and cratonic areas. The thinnest crust is found in the Borborema Province of NE Brazil (30-35 km) and along a narrow belt within Tocantins Province (˜35 km), roughly parallel to the Eastern border of the Amazon craton, while the thickest crust is found in the Amazon and São Francisco cratons (41 ± 4 km), and the Paraná Basin (42 ± 4 km). Both the Ponta Grossa and the Rio Grande Arches are areas of thinned crust, and the western border of the Brazilian platform, near the sub-Andean region, seems to be characterized by a crustal thickness of less than 40 km. Although sparse in data coverage, we expect the resulting crustal thickness map to be useful for future studies of isostasy, dynamic topography, and crustal evolution of the country.

  8. Lexico-Grammatical Features of Geology Textbooks: Process and Product Revisited.

    ERIC Educational Resources Information Center

    Love, Alison

    1993-01-01

    Examines lexico-grammatical features in an introductory textbook in relation to the thematic organization of the textbook. Comparison is made with a second textbook and the contribution of the lexico-grammatical feature to establish an epistemology of geology. Suggestions are made for supporting English-as-a-Second-Language students in processing…

  9. Gestures for Structural Geology: Linear and Planar Features

    NSDL National Science Digital Library

    Carol Ormand

    Ã Gesturing a possible orientation for a planar feature cutting into a 3D solid. Provenance: Kinnari Atit, Temple University Reuse: This item is offered under a Creative Commons Attribution-NonCommercial-ShareAlike license http://creativecommons.org/licenses/by-nc-sa/3.0/ You may reuse this item for non-commercial purposes as long as you provide attribution and offer any derivative works under a similar license. In this exercise, students use a pointer finger to gesture the orientations of linear features and use their hands (open and flat) to gesture the orientations of planar features. In the first part of the exercise, students can only see one surface of a wooden block, and are asked to speculate about how planar features penetrate through the interior. Later, they uncover the other faces of the block and gesture the actual orientations. This uses embodied learning to help students relate surficial (2D) observations to 3D interpretations.

  10. Automatic Detection and Classification of Features of Geologic David Thompson, Scott Niekum, Trey Smith, and David Wettergreen

    E-print Network

    Massachusetts at Amherst, University of

    Automatic Detection and Classification of Features of Geologic Interest David Thompson, Scott for onboard segmentation, detection and classification of geological properties. Field experiments performed alloca- tion of a rover's time and bandwidth resources. Advances in rover navigation are increasing

  11. Use and Features of Basalt Formations for Geologic Sequestration

    SciTech Connect

    McGrail, B. Peter; Ho, Anita M.; Reidel, Steve P.; Schaef, Herbert T.

    2003-01-01

    Extrusive lava flows of basalt are a potential host medium for geologic sequestration of anthropogenic CO2. Flood basalts and other large igneous provinces occur worldwide near population and power-producing centers and could securely sequester a significant fraction of global CO2 emissions. We describe the location, extent, and general physical and chemical characteristics of large igneous provinces that satisfy requirements as a good host medium for CO2 sequestration. Most lava flows have vesicular flow tops and bottoms as well as interflow zones that are porous and permeable and serve as regional aquifers. Additionally, basalt is iron-rich, and, under the proper conditions of groundwater pH, temperature, and pressure, injected CO2 will react with iron released from dissolution of primary minerals in the basalt to form stable ferrous carbonate minerals. Conversion of CO2 gas into a solid form was confirmed in laboratory experiments with supercritical CO2 in contact with basalt samples from Washington state.

  12. Crater Lake National Park: A 3-D Photographic Tour Featuring Park Geology

    NSDL National Science Digital Library

    This virtual tour features three-dimensional images from the United States Geological Survey's (USGS) collection. It introduces visitors to the geology, landforms, and history of Crater Lake in Oregon, a lake filling the caldera of what was Mount Mazama, an ancient volcano in the Cascades Range that erupted and collapsed about 7,700 years ago. The 3-D images are anaglyphs and require red and cyan 3-D viewing glasses.

  13. Topographic attributes as a guide for automated detection or highlighting of geological features

    NASA Astrophysics Data System (ADS)

    Viseur, Sophie; Le Men, Thibaud; Guglielmi, Yves

    2015-04-01

    Photogrammetry or LIDAR technology combined with photography allow geoscientists to obtain 3D high-resolution numerical representations of outcrops, generally termed as Digital Outcrop Models (DOM). For over a decade, these 3D numerical outcrops serve as support for precise and accurate interpretations of geological features such as fracture traces or plans, strata, facies mapping, etc. These interpretations have the benefit to be directly georeferenced and embedded into the 3D space. They are then easily integrated into GIS or geomodeler softwares for modelling in 3D the subsurface geological structures. However, numerical outcrops generally represent huge data sets that are heavy to manipulate and hence to interpret. This may be particularly tedious as soon as several scales of geological features must be investigated or as geological features are very dense and imbricated. Automated tools for interpreting geological features from DOMs would be then a significant help to process these kinds of data. Such technologies are commonly used for interpreting seismic or medical data. However, it may be noticed that even if many efforts have been devoted to easily and accurately acquire 3D topographic point clouds and photos and to visualize accurate 3D textured DOMs, few attentions have been paid to the development of algorithms for automated detection of the geological structures from DOMs. The automatic detection of objects on numerical data generally assumes that signals or attributes computed from this data allows the recognition of the targeted object boundaries. The first step consists then in defining attributes that highlight the objects or their boundaries. For DOM interpretations, some authors proposed to use differential operators computed on the surface such as normal or curvatures. These methods generally extract polylines corresponding to fracture traces or bed limits. Other approaches rely on the PCA technology to segregate different topographic plans. This approach assume that structural or sedimentary features coincide with topographic surface parts. In this work, several topographic attributes are proposed to highlight geological features on outcrops. Among them, differential operators are used but also combined and processed to display particular topographic shapes. Moreover, two kinds of attributes are used: unsupervised and supervised attributes. The supervised attributes integrate an a priori knowledge about the objects to extract (e.g.: a preferential orientation of fracture surfaces, etc.). This strategy may be compared to the one used for seismic interpretation. Indeed, many seismic attributes have been proposed to highlight geological structures hardly observable due to data noise. The same issue exist with topographic data: plants, erosions, etc. generate noise that make interpretation sometimes hard. The proposed approach has been applied on real case studies to show how it could help the interpretation of geological features. The obtained 'topographic attributes' are shown and discussed.

  14. Color heterogeneity of the surface of PHOBOS - Relationships to geologic features and comparison to meteorite analogs

    NASA Astrophysics Data System (ADS)

    Murchie, S. L.; Britt, D. T.; Head, J. W.; Pratt, S. F.; Fisher, P. C.; Zhukov, B. S.; Kuzmin, A. A.; Ksanfomality, L. V.; Zharkov, A. V.; Nikitin, G. E.; Fanale, F. P.; Blaney, D. L.; Bell, J. F.; Robinson, M. S.

    1991-04-01

    Color ratio images created from multispectral observations of Phobos are analyzed in order to characterize the spectral properties of Phobos' surface, to assess their spatial distributions and relationships with geologic features, and to compare Phobos' surface materials with possible meteorite analogs. Data calibration and processing is briefly discussed, and the observed spectral properties of Phobos and their lateral variations are examined. Attention is then given to the color properties of different types of impact craters, the origin of lateral variations in surface color, the relation between the spatial distribution of color properties and independently identifiable geologic features, and the relevance of color variation spatial distribution to the origin of the grooves.

  15. Geology and Origin of Europa's Mitten Feature (Murias Chaos)

    NASA Technical Reports Server (NTRS)

    Figueredo, P. H.; Chuang, F. C.; Rathbun, J.; Kirk, R. L.; Greeley, R.

    2002-01-01

    The "Mitten" (provisionally named Murias Chaos by the International Astronomical Union) is a region of elevated chaos-like terrain in the leading hemisphere of Europa. Its origin had been explained under the currently debated theories of melting through a thin lithosphere or convection within a thick one. Galileo observations reveal several characteristics that suggest that the Mitten is distinct from typical chaos terrain and point to a different formational process. Photoclinometric elevation estimates suggest that the Mitten is slightly elevated with respect to the surrounding terrain; geologic relations indicate that it must have raised significantly from the plains in its past, resembling disrupted domes on Europa's trailing hemisphere. Moreover, the Mitten material appears to have extruded onto the plains and flowed for tens of kilometers. The area subsequently subsided as a result of isostatic adjustment, viscous relaxation, and/or plains loading. Using plate flexure models, we estimated the elastic lithosphere in the area to be several kilometers thick. We propose that the Mitten originated by the ascent and extrusion of a large thermal diapir. Thermal-mechanical modeling shows that a Mitten-sized plume would remain sufficiently warm and buoyant to pierce through the crust and flow unconfined on the surface. Such a diapir probably had an initial radius between 5 and 8 km and an initial depth of 20-40 km, consistent with a thick-lithosphere model. In this scenario the Mitten appears to represent the surface expression of the rare ascent of a large diapir, in contrast to lenticulae and chaos terrain, which may form by isolated and clustered small diapirs, respectively.

  16. Spatial pattern of groundwater arsenic occurrence and association with bedrock geology in greater augusta, maine

    USGS Publications Warehouse

    Yang, Q.; Jung, H.B.; Culbertson, C.W.; Marvinney, R.G.; Loiselle, M.C.; Locke, D.B.; Cheek, H.; Thibodeau, H.; Zheng, Yen

    2009-01-01

    In New England, groundwater arsenic occurrence has been linked to bedrock geology on regional scales. To ascertain and quantify this linkage at intermediate (100-101 km) scales, 790 groundwater samples from fractured bedrock aquifers in the greater Augusta, Maine area are analyzed, and 31% of the sampled wells have arsenic concentrations >10 ??g/L. The probability of [As] exceeding 10 ??g/L mapped by indicator kriging is highest in Silurian pelite-sandstone and pelite-limestone units (???40%). This probability differs significantly (p < 0.001) from those in the Silurian - Ordovician sandstone (24%), the Devonian granite (15%), and the Ordovician - Cambrian volcanic rocks (9%). The spatial pattern of groundwater arsenic distribution resembles the bedrock map. Thus, bedrock geology is associated with arsenic occurrence in fractured bedrock aquifers of the study area at intermediate scales relevant to water resources planning. The arsenic exceedance rate for each rock unit is considered robust because low, medium, and high arsenic occurrences in four cluster areas (3-20 km2) with a low sampling density of 1-6 wells per km2 are comparable to those with a greater density of 5-42 wells per km2. About 12,000 people (21% of the population) in the greater Augusta area (???1135 km2) are at risk of exposure to >10 ??g/L arsenic in groundwater. ?? 2009 American Chemical Society.

  17. Spatial Pattern of Groundwater Arsenic Occurrence and Association with Bedrock Geology in Greater Augusta, Maine, USA

    PubMed Central

    Yang, Qiang; Jung, Hun Bok; Culbertson, Charles W.; Marvinney, Robert G.; Loiselle, Marc C.; Locke, Daniel B.; Cheek, Heidi; Thibodeau, Hilary; Zheng, Yan

    2009-01-01

    In New England, groundwater arsenic occurrence has been linked to bedrock geology on regional scales. To ascertain and quantify this linkage at intermediate (100-101 km) scales, 790 groundwater samples from fractured bedrock aquifers in the greater Augusta, Maine area are analyzed. 31% of the sampled wells have arsenic >10 ?g/L. The probability of [As] exceeding 10 ?g/L mapped by indicator kriging is highest in Silurian pelite-sandstone and pelite-limestone units (~40%). This probability differs significantly (p<0.001) from those in the Silurian-Ordovician sandstone (24%), the Devonian granite (15%) and the Ordovician-Cambrian volcanic rocks (9%). The spatial pattern of groundwater arsenic distribution resembles the bedrock map. Thus, bedrock geology is associated with arsenic occurrence in fractured bedrock aquifers of the study area at intermediate scales relevant to water resources planning. The arsenic exceedance rate for each rock unit is considered robust because low, medium and high arsenic occurrences in 4 cluster areas (3-20 km2) with a low sampling density of 1-6 wells per km2 are comparable to those with a greater density of 5-42 wells per km2. About 12,000 people (21% of the population) in the greater Augusta area (~1135 km2) are at risk of exposure to >10 ?g/L arsenic in groundwater. PMID:19475939

  18. Lava Beds National Monument: A 3-D Photographic Tour Featuring Park Geology

    NSDL National Science Digital Library

    This virtual tour features three-dimensional images from the United States Geological Survey's (USGS) collection. It introduces visitors to the volcanic landforms of Lava Beds National Monument in California, the site of extensive recent and Quaternary volcanism. Features include cinder and spatter cones, lava flows, and the monument's extensive network of lava tubes, many of which are open to the public. The 3-D images are anaglyphs and require red and cyan 3-D viewing glasses.

  19. Geology

    SciTech Connect

    Reidel, Stephen P.

    2008-01-17

    This chapter summarizes the geology of the single-shell tank (SST) farms in the context of the region’s geologic history. This chapter is based on the information in the geology data package for the SST waste management areas and SST RFI Appendix E, which builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  20. Discrimination of geological features using digital and photographic enhancements of Landsat multispectral scanner data

    NASA Astrophysics Data System (ADS)

    El Shazly, H.

    A variety of techniques for optically and digitally processing the Landsat multispectral scanner data were applied to scence number 1109-07493 of the Gulf of Suez Area. The results of each of these techniques were compared in order to assess the usefulness of each technique in the interpretation of the Landsat images. The best overall results for this scene were achieved using optically enhanced digital images. The high-bandpass color-infrared image was nearly as good. The intensity, hue and saturation images showed increased contrast between the various geological units, but lacked the fine detail necessary for certain aspects of geological interpretation. These results should equally apply to images of similar ground features but will probably differ when the features are significantly different.

  1. Sapping Features of the Colorado Plateau: a Comparative Planetary Geology Field Guide

    NASA Technical Reports Server (NTRS)

    Howard, Alan D. (editor); Kochel, R. Craig (editor); Holt, Henry E. (editor)

    1987-01-01

    This book is an attempt to determine geomorphic criteria to be used to distinguish between channels formed predominantly by sapping and seepage erosion and those formed principally by surface runoff processes. The geologic nature of the Colorado Plateau has resulted in geomorphic features that show similarities to some areas on Mars, especially certain valley networks within thick sandstone formations. Where spring sapping is an effective process, the valleys that develop are unique in terms of their morphology and network pattern.

  2. Framework for a U.S. Geological Survey Hydrologic Climate-Response Program in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Lent, Robert M.; Dudley, Robert W.; Schalk, Charles W.

    2009-01-01

    This report presents a framework for a U.S. Geological Survey (USGS) hydrologic climate-response program designed to provide early warning of changes in the seasonal water cycle of Maine. Climate-related hydrologic changes on Maine's rivers and lakes in the winter and spring during the last century are well documented, and several river and lake variables have been shown to be sensitive to air-temperature changes. Monitoring of relevant hydrologic data would provide important baseline information against which future climate change can be measured. The framework of the hydrologic climate-response program presented here consists of four major parts: (1) identifying homogeneous climate-response regions; (2) identifying hydrologic components and key variables of those components that would be included in a hydrologic climate-response data network - as an example, streamflow has been identified as a primary component, with a key variable of streamflow being winter-spring streamflow timing; the data network would be created by maintaining existing USGS data-collection stations and establishing new ones to fill data gaps; (3) regularly updating historical trends of hydrologic data network variables; and (4) establishing basins for process-based studies. Components proposed for inclusion in the hydrologic climate-response data network have at least one key variable for which substantial historical data are available. The proposed components are streamflow, lake ice, river ice, snowpack, and groundwater. The proposed key variables of each component have extensive historical data at multiple sites and are expected to be responsive to climate change in the next few decades. These variables are also important for human water use and (or) ecosystem function. Maine would be divided into seven climate-response regions that follow major river-basin boundaries (basins subdivided to hydrologic units with 8-digit codes or larger) and have relatively homogeneous climates. Key hydrologic variables within each climate-response region would be analyzed regularly to maintain up-to-date analyses of year-to-year variability, decadal variability, and longer term trends. Finally, one basin in each climate-response region would be identified for process-based hydrologic and ecological studies.

  3. Hydrologic characterization of faults and other potentially conductive geologic features in the unsaturated zone

    SciTech Connect

    Javandel, I.; Shan, C.

    1990-01-01

    The capability of characterizing near-vertical faults and other potentially highly conductive geologic features in the vicinity of a high-level-waste repository is of great importance in site characterization of underground waste-isolation projects. The possibility of using transient air pressure data at depth for characterizing these features in the unsaturated zone are investigated. Analytical solutions for calculating the pressure response of such systems are presented. Solutions are given for two types of barometric pressure fluctuations, step function and sinusoidal. 3 refs., 9 figs.

  4. Main Features of the Public Employment Service in the Slovak Republic

    Microsoft Academic Search

    Daniela Kalužná

    2008-01-01

    This report documents the main features of the Public Employment Service (PES) in Slovak Republic, with attention to unemployment benefit administration as well as employment services. The current institutional structure was established in 2004. The Central Office of Labour, Social Affairs and Family (COLSAF), a budget organisation of the state, governs 46 territorial local offices, corresponding to the needs of

  5. Geological structures from televiewer logs of GT-2, Fenton Hill, New Mexico: Part 1, Feature extraction

    SciTech Connect

    Burns, K.L.

    1987-07-01

    Patterns in reflected sonic intensity recognized during examination of televiewer logs of basement gneiss at the Hot Dry Rock Site, Fenton Hill, New Mexico, are due to geological fractures and foliations and to incipient breakouts. These features are obscured by artifacts caused by wellbore ellipticity, tool off-centering, and tool oscillations. An interactive method, developed for extraction of the structural features (fractures and foliations), uses human perception as a pattern detector and a chi-square test of harmonic form as a pattern discriminator. From imagery of GT-2, 733 structures were recovered. The acceptance rate of the discriminator was 54%. Despite these positive results, the general conclusion of this study is that intensity-mode imagery from Fenton Hill is not directly invertible for geological information because of the complexity of the televiewer imaging process. Developing a forward model of the intensity-imaging process, or converting to caliper-mode imagery, or doing both, will be necessary for high-fidelity feature extraction from televiewer data.

  6. Shallow geologic features of the upper continental slope, northwestern Gulf of Mexico 

    E-print Network

    Tatum, Tommy Edwin

    1977-01-01

    . William Bryanz High resolution seismic profiles collected by the U. S. Geologicel urvey zron the upper continental slope of the northwes". Gulf of v!exico were analyzed. for the purpose of describing and mapping she, liow geologic features. The noz... and upward. The most rece. . t out'ouiliing oz the continertal margir is seen oia seismic profiles as o'clicue progzadational seismic facies in the shelf-slcpe tr ns't' on area, . The sedimentary lc-ding initiated and mainta'neid a't and ~hale movement...

  7. Geologic Maps

    NSDL National Science Digital Library

    Russell Graymer

    This web site provides an introduction to geologic maps. Topics covered include what is a geologic map, unique features of geologic maps, letter symbols, faults, and strike and dip. Users may click to view colored geologic maps, the geologic map of the United States and the geologic relief map of the United States.

  8. Main Geologic-Paleoecological Events of the Late Pleistocene in the North of Western Siberia

    Microsoft Academic Search

    M. Levitan; Yu Lavrushin

    The major geological and paleoecological events of the Late Pleistocene in the north of West Siberia are two glaciations {Yermak\\u000a (Zyryan) and Sartan} and three transgressions (Kazantsev, Kargin and post-glacial) (Arkhipov, 2000) (Fig. 3.1). As stated\\u000a above, the Kazantsev transgression is correlated with the Eemian transgression of West Europe and MIS 5e (Troitsky, 1966;\\u000a Gudina, 1976; Arkhipov, 1997, 2000). The

  9. Geological images

    NSDL National Science Digital Library

    Marli Bryant Miller

    This site from Marli Bryant Miller, a professor at the University of Oregon, presents images of geological features from around the world. Photographs of glacial features, igneous and metamorphic rocks and processes, and structural geology are featured.

  10. Interpretation of small-scale geologic features and depositional facies analysis using borehole images

    SciTech Connect

    Foulk, L.S.; Young, R.A. (Schlumberger Well Services, New Orleans, LA (USA))

    1990-05-01

    Critical geologic features indicating the depositional facies of a sedimentary sequence are often small and, therefore, cannot be directly inferred from conventional wireline logs. However, recognition of smallscale geologic features, down to 1.25 cm (0.5 in.), is now routinely accomplished using high-resolution resistivity images. Facies analysis studies using images employ techniques similar to facies analysis using core. Facies analysis involves three steps: (1) recognition of internal sedimentary structures such as thin beds, crossbeds, convoluted bedding, fractures, bioturbation, shell fragments, concretions, and vugular porosity; (2) identification of bedding plane geometry and bed stacking patterns; and (3) fitting these observations into a facies model appropriate to the regional facies interpretation. Deep-water turbidite facies are recognized on images as thin regular laminations, usually in cyclic depositional units. Bioturbated facies, characterized on images by shell fragments, vertical burrows, and lateral disruptions of interbedded sand/shale laminations, indicate low-energy shallow-water shelf environments. Slumping, convoluted bedding and other soft sediment deformation are seen on images of deep-water slope or fan channel depositional units. Thin sands, interbedded with shale, thicken and coarsen upward in images from distal delta environments. All these environments have been identified through image studies in the Gulf of Mexico region. Results from image facies analysis augment core facies analysis, bringing core on-depth identifying missing core sections, and extending reservoir evaluation to noncored zones.

  11. Main Features of JSME Design and Construction Code for Fast Reactors

    SciTech Connect

    Masaki Morishita [Japan Atomic Energy Agency (Japan); Masayuki Sukekawa [Hitachi, Ltd. (Japan); Tomomi Otani [Mitubishi Heavy Industries, Ltd. (Japan)

    2006-07-01

    Since its foundation in 1997, the Main Committee on Power Generation Facility Codes, MC-PGFC, of the Japan Society of Mechanical Engineers, JSME, has issued a number of nuclear codes including the rules on design and construction and the rules on fitness-for-service for nuclear power plants. Some of these JSME nuclear codes have been endorsed by the regulatory body, and are now utilized in the regulatory processes of the actual plants. Among these nuclear codes recently published is the 'rules on design and construction for fast reactors'. It includes as its main body design rules on class 1 components for elevated temperature services. This paper overview the main features of the code. (authors)

  12. Classification of geological mapping features using satellite remote sensing and in-situ spectroradiometric measurements over Cyprus

    NASA Astrophysics Data System (ADS)

    Hadjimitsis, Diofantos G.; Achilleos, Constantia; Themistocleous, Kyriacos; Agapiou, Athos; Perdikou, Skevi

    2010-10-01

    This paper aims at establishing the spectral reflectance signature for a number of geological mapping features and specific rocks over the area of Cyprus. This will enable the investigation for specific geological features through classification using satellite images. The purpose is to provide a useful tool for geologists in observation of surface strata. Methodology followed includes extraction of the spectral reflectance signature of the geological features by using satellite imagery, such as those of Landsat TM/ETM+, ASTER etc. In addition in-situ spectro-radiometric measurements were collected for the same feature locations. The selected sites included mines and quarries, with no vegetation cover and therefore no influence on results. Spectral reflectance for each feature refers to average value of retreated satellite image value and measurement result. An algorithm is finally established, aiming to be used for classification purposes of geological mapping and other applications. This innovated approach will, also, prove by validation the accuracy of each method for the spectral reflectance signature estimation. This additional benefit would conclude recommendation for future satellite sensors navigation and work processes. NIR band was found to be suitable for discriminating betonite, limestone and diabase geological features (as found at quarries and mines).

  13. Morphohistological Features of Pancreatic Stump Are the Main Determinant of Pancreatic Fistula after Pancreatoduodenectomy

    PubMed Central

    Ridolfi, Cristina; Angiolini, Maria Rachele; Gavazzi, Francesca; Spaggiari, Paola; Tinti, Maria Carla; Uccelli, Fara; Madonini, Marco; Montorsi, Marco; Zerbi, Alessandro

    2014-01-01

    Introduction. Pancreatic surgery is challenging and associated with high morbidity, mainly represented by postoperative pancreatic fistula (POPF) and its further consequences. Identification of risk factors for POPF is essential for proper postoperative management. Aim of the Study. Evaluation of the role of morphological and histological features of pancreatic stump, other than main pancreatic duct diameter and glandular texture, in POPF occurrence after pancreaticoduodenectomy. Patients and Methods. Between March 2011 and April 2013, we performed 145 consecutive pancreaticoduodenectomies. We intraoperatively recorded morphological features of pancreatic stump and collected data about postoperative morbidity. Our dedicated pathologist designed a score to quantify fibrosis and inflammation of pancreatic tissue. Results. Overall morbidity was 59,3%. Mortality was 4,1%. POPF rate was 28,3%, while clinically significant POPF were 15,8%. Male sex (P = 0.009), BMI ? 25 (P = 0.002), prolonged surgery (P = 0.001), soft pancreatic texture (P < 0.001), small pancreatic duct (P < 0.001), pancreatic duct decentralization on stump anteroposterior axis, especially if close to the posterior margin (P = 0.031), large stump area (P = 0.001), and extended stump mobilization (P = 0.001) were related to higher POPF rate. Our fibrosis-and-inflammation score is strongly associated with POPF (P = 0.001). Discussion and Conclusions. Pancreatic stump features evaluation, including histology, can help the surgeon in fitting postoperative management to patient individual risk after pancreaticoduodenectomy. PMID:24900974

  14. GENETIC COVARIANCE STRUCTURE OF THE FOUR MAIN FEATURES OF BORDERLINE PERSONALITY DISORDER

    PubMed Central

    Distel, Marijn A.; Willemsen, Gonneke; Ligthart, Lannie; Derom, Catherine A.; Martin, Nicholas G.; Neale, Michael C.; Trull, Timothy J.; Boomsma, Dorret I.

    2013-01-01

    The patient population of borderline personality disorder (BPD) is heterogeneous; many different combinations of BPD symptoms can lead to a BPD diagnosis. We investigated to what extent the covariance among four main components of BPD is explained by shared genetic and environmental factors. Using an extended twin design, multivariate genetic models were applied to the scales of the PAI-BOR, a self-report questionnaire tapping four main features of BPD (affective instability, identity problems, negative relationships, and self-harm). Data on the four BPD scales were available for 5,533 twins and 1,202 siblings from the Netherlands, Belgium, and Australia. The correlations among the scales ranged from 0.23 to 0.50 and were best explained by a genetic common pathway model. This model specifies that genes and environment influence the covariance between four main features of BPD in qualitatively similar ways, through a single latent factor representing the BPD construct. The heritability of the latent BPD factor was 51% and the remainder of its variance was explained by unique environmental influences. For each BPD scale, except self-harm, around 50% of its variance was explained by the latent BPD factor. The remaining variance for each of the four scales was explained by genetic (4% for affective instability to 20% for self-harm) and environmental (38% for negative relationships to 67% for self-harm) factors that were specific to each scale. PMID:20695804

  15. On the main flow features of the SE Levantine (CYBO cruises 1995-2012)

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Hayes, Dan; Gertman, Isaac; Poulain, Pierre-Marie; Menna, Milena; Nicolaidis, Andreas

    2013-04-01

    The main characteristic of the circulation in the Eastern Mediterranean Levantine Basin is a general cyclonic flow following more or less the coastline, with several persistent eddies in the open sea. The interaction between all of these dynamical features produces a complicated flow pattern with strong spatial variability on a synoptic, seasonal and inter-annual scales. The continuous seasonal/annual hydrographic survey of the SE Levantine since 1995 within the frame of the Cyprus Basin Oceanography program (CYBO) and the Haifa-section cruises, along with data from project surveys (CYCLOPS, MSM/14) and recent data from autonomous platforms, such as those from Argos floats, drifters and gliders (NEMED, YPOKINOUMODA, GROOM projects) have all provided insight on the three dominating flow features in the SE Levantine Basin. Namely, the two warm core eddies, i.e. the Cyprus and Shikmona, and the open sea flow jet, that of the Mid Mediterranean. After some years of disputes, it is well-documented with all these in-situ data that the Cyprus warm core eddy is the most influential flow feature in the area, with significant fluctuations in time and space, while the generation of the Shikmona eddy was observed for the first time. Moreover, the cross basin flow of the MMJ is also well-document, confirming the relevant POEM results, to transfer also significant amount of AW further to the most-eastern part of the Levantine, after passing between Cyprus and along the northern periphery of the Cyprus warm core eddy.

  16. Structural features of eastern Tejon embayment from available seismic and subsurface data and field geology

    SciTech Connect

    Goodman, E.D.; Malin, P.E.

    1988-03-01

    The temporal and spatial relationships of normal, thrust, and strikeslip faults in the eastern Tejon embayment were investigated, and an integrated study of new CALCRUST data, industrial seismic data, well data, and surface geology yielded a set of geologic cross sections and a detailed structure map. Buried normal faults, trending northeast, dominate the central embayment structure. At the basin margins, the normal faults are truncated by younger thrust faults. The Springs fault zone is a complex subvertical fault with branching reverse faults. The White Wolf fault is probably segmented and multistranded. The active, lower angle segment of the White Wolf fault may be related to buried thrust faults west of uplifted Comanche Point. Thrust faulting also may explain the presence of exhumed normal faults at Comanche Point and in the Tehachapi foothills. These exhumed normal faults are probably late Oligocene to Pliocene. The Tunis volcanics formed during a period of widespread late Oligocene-early Miocene volcanism in central California. Volcanism and the inception of normal faulting at Tejon embayment apparently predated the passing of the Mendocino triple junction. Younger volcanic rocks are also widely distributed, probably due to regional transtension that occurred south of the Mendocino triple junction. Seismic data suggest that the deepening of Tejon embayment occurred mainly during the late early and middle Miocene. Convergence beginning during the Pliocene-Pleistocene is consistent with other documented changes along the modern San Andreas fault.

  17. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey. A Feature-Based Taxonomy

    NASA Astrophysics Data System (ADS)

    Bus, Schelte J.; Binzel, Richard P.

    2002-07-01

    The second phase of the Small Main-belt Asteroid Spectroscopic Survey (SMASSII) produced an internally consistent set of visible-wavelength charge-coupled device (CCD) spectra for 1447 asteroids (Bus and Binzel 2002, Icarus, ). These data provide a basis for developing a new asteroid taxonomy that utilizes more of the information contained in CCD spectra. Here we construct a classification system that builds on the robust framework provided by existing asteroid taxonomies. In particular, we define three major groupings (the S-, C-, and X-complexes) that adhere to the classical definitions of the S-, C-, and X-type asteroids. A total of 26 classes are defined, based on the presence or absence of specific spectral features. Definitions and boundary parameters are provided for each class, allowing new spectral observations to be placed in this system. Of these 26 classes, 12 bear familiar single-letter designations that follow previous conventions: A, B, C, D, K, O, Q, R, S, T, V, and X. A new L-class is introduced to describe 35 objects with spectra having a steep UV slope shortward of 0.75 ?m, but which are relatively flat longward of 0.75 ?m. Asteroids with intermediate spectral characteristics are assigned multiletter designations: Cb, Cg, Cgh, Ch, Ld, Sa, Sk, Sl, Sq, Sr, Xc, Xe, and Xk. Members of the Cgh- and Ch-classes have spectra containing a 0.7-?m feature that is generally attributed to hydration. Although previously considered featureless, CCD observations reveal distinct features of varying strengths in the spectra of asteroids in the X-complex, thus allowing the Xc-, Xe-, and Xk-classes to be established. Most notably, the spectra of Xe-type asteroids contain an absorption feature centered near 0.49 ?m that may be associated with troilite. Several new members are identified for previously unique or sparsely populated classes: 12 A-types, 3 O-types, and 3 R-types. Q-types are common within the near-Earth asteroid population but remain unobserved in the main belt. More than 30 new V-types are found in the vicinity of Vesta. The heliocentric distribution of the SMASSII taxonomic classes is similar to that determined from previous studies, though additional structure is revealed as a result of the larger sample size.

  18. Influence of ecological and geological features on rangewide patterns of genetic structure in a widespread passerine.

    PubMed

    Adams, R V; Burg, T M

    2015-02-01

    Geological and ecological features restrict dispersal and gene flow, leading to isolated populations. Dispersal barriers can be obvious physical structures in the landscape; however microgeographic differences can also lead to genetic isolation. Our study examined dispersal barriers at both macro- and micro-geographical scales in the black-capped chickadee, a resident North American songbird. Although birds have high dispersal potential, evidence suggests dispersal is restricted by barriers. The chickadee's range encompasses a number of physiological features which may impede movement and lead to divergence. Analyses of 913 individuals from 34 sampling sites across the entire range using 11 microsatellite loci revealed as many as 13 genetic clusters. Populations in the east were largely panmictic whereas populations in the western portion of the range showed significant genetic structure, which often coincided with large mountain ranges, such as the Cascade and Rocky Mountains, as well as areas of unsuitable habitat. Unlike populations in the central and southern Rockies, populations on either side of the northern Rockies were not genetically distinct. Furthermore, Northeast Oregon represents a forested island within the Great Basin; genetically isolated from all other populations. Substructuring at the microgeographical scale was also evident within the Fraser Plateau of central British Columbia, and in the southeast Rockies where no obvious physical barriers are present, suggesting additional factors may be impeding dispersal and gene flow. Dispersal barriers are therefore not restricted to large physical structures, although mountain ranges and large water bodies do play a large role in structuring populations in this study. PMID:25074576

  19. Main features and performances of the Long March-4 launch vehicle

    NASA Astrophysics Data System (ADS)

    The main features of the Long March-4 launch vehicle are reviewed. The advanced technical measures in the vehicle include a digital network, a digital zero adjusting scheme, a two-axis gimbaling mechanism adopted in the control system, and a constant-pressure helium full-duration primary/secondary two-way pressurization scheme used in the third-stage propulsion system. A columbium nozzle extension is incorporated in the third-stage engine. The surface tension propellant tank used in the attitude control engine system is examined along with the high-strength aluminum single-thin-layer common intertank bulkhead tankage design. Emphasis is placed on the good performance, multiple usage, high reliability, and favorable cost-effectiveness of the launch vehicle.

  20. Digital field mapping for stimulating Secondary School students in the recognition of geological features and landforms

    NASA Astrophysics Data System (ADS)

    Giardino, Marco; Magagna, Alessandra; Ferrero, Elena; Perrone, Gianluigi

    2015-04-01

    Digital field mapping has certainly provided geoscientists with the opportunity to map and gather data in the field directly using digital tools and software rather than using paper maps, notebooks and analogue devices and then subsequently transferring the data to a digital format for subsequent analysis. But, the same opportunity has to be recognized for Geoscience education, as well as for stimulating and helping students in the recognition of landforms and interpretation of the geological and geomorphological components of a landscape. More, an early exposure to mapping during school and prior to university can optimise the ability to "read" and identify uncertainty in 3d models. During 2014, about 200 Secondary School students (aged 12-15) of the Piedmont region (NW Italy) participated in a research program involving the use of mobile devices (smartphone and tablet) in the field. Students, divided in groups, used the application Trimble Outdoors Navigators for tracking a geological trail in the Sangone Valley and for taking georeferenced pictures and notes. Back to school, students downloaded the digital data in a .kml file for the visualization on Google Earth. This allowed them: to compare the hand tracked trail on a paper map with the digital trail, and to discuss about the functioning and the precision of the tools; to overlap a digital/semitransparent version of the 2D paper map (a Regional Technical Map) used during the field trip on the 2.5D landscape of Google Earth, as to help them in the interpretation of conventional symbols such as contour lines; to perceive the landforms seen during the field trip as a part of a more complex Pleistocene glacial landscape; to understand the classical and innovative contributions from different geoscientific disciplines to the generation of a 3D structural geological model of the Rivoli-Avigliana Morainic Amphitheatre. In 2013 and 2014, some other pilot projects have been carried out in different areas of the Piedmont region, and in the Sesia Val Grande Geopark, for testing the utility of digital field mapping in Geoscience education. Feedback from students are positive: they are stimulated and involved by the use of ICT for learning Geoscience, and they voluntary choose to work with their personal mobile device (more than 90% of them own a smartphone); they are interested in knowing the features of GPS, and of software for the visualization of satellite and aerial images, but they recognize the importance of integrating and comparing traditional and innovative methods in the field.

  1. Geologic map of the Simcoe Mountains Volcanic Field, Main Central Segment, Yakama Nation, Washington

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy

    2015-01-01

    Lava compositions other than various types of basalt are uncommon here. Andesite is abundant on and around Mount Adams but is very rare east of the Klickitat River. The only important nonbasaltic composition in the map area is rhyolite, which crops out in several patches around the central highland of the volcanic field, mainly in the upper canyons of Satus and Kusshi Creeks and Wilson Charley canyon. Because the rhyolites were some of the earliest lavas erupted here, they are widely concealed by later basalts and therefore crop out only in local windows eroded by canyons that cut through the overlying basalts.

  2. Eclipses by a Circumstellar Dust Feature in the Pre-Main Sequence Star KH15D

    E-print Network

    Catrina M. Hamilton; William Herbst; Candice Shih; Anthony J. Ferro

    2001-06-08

    Photometry and spectroscopy of the unique pre-main sequence eclipsing object KH15D in the young cluster NGC 2264 are presented. The orbital period is 48.34 days and both the length (~16 d) and depth (~3 mag) of the eclipse have increased with time. A brightening near the time of central eclipse is confirmed in the recent data but at a much smaller amplitude than was originally seen. Spectra taken when the star is bright show that the primary is a weak T Tauri star of spectral type K7. During eclipse there is no detectable change in spectral type or reddening, indicating that the obscuration is caused by rather large dust grains and/or macroscopic objects. Evidently the star is eclipsed by an extended feature in its circumstellar disk orbiting with a semi-major axis of ~0.2 AU. Continued photometric monitoring should allow us to probe the disk structure with a spatial resolution of ~3 x 10^6 km or better.

  3. The New Madrid earthquakes; an engineering-geologic interpretation of relict liquefaction features

    USGS Publications Warehouse

    Obermeier, Stephen F.

    1989-01-01

    Earthquake-induced sand blows and sand-filled fissures are present in a belt 40 to 60 km. wide that extends from near Charleston, Mo., southward to about 20 km. south of Marked Tree, Ark. This region of earthquake-induced sand blows and other liquefaction-related features is almost exclusively in the St. Francis Basin, an alluvial lowland that typically has a thin (2 to 8 m thick), clay-bearing topstratum underlain by about 30 to 60 m of unconsolidated sand (the substratum). Liquefaction of the substratum sands has made the sand blows. The sand blows and other liquefaction-related features on the ground surface in the St. Francis Basin are almost certainly results of the New Madrid earthquakes of 1811-12. In this report, geologic and engineering properties of the alluvium are used in combination with a map showing the bounds of the liquefaction-related features to locate approximately the epicentral zones for two of the major shocks: the earthquakes of December 16,1811, and February 7,1812. Properties used for the analysis included the Standard Penetration Resistance of the substratum sands, characteristics of the sand's grain size, thickness of the topstratum, and the thickness of the post-Tertiary alluvium. The method of analysis relies largely on the evaluation of the liquefaction potential of the sands. This is done by using the Standard Penetration Test blow counts and by devising a method that uses all possible combinations of liquefaction potential and a realistic relation between attenuation of earthquake accelerations and distance from the epicenter (or more correctly, energy-release center). Two interpreted 1811-12 energy-release centers generally agree well with zones of seismicity defined by modern, small earthquakes. Bounds on accelerations are placed at the limits of sand blows that were generated by the 1811-12 earthquakes in the St. Francis Basin. Conclusions show how the topstratum thickness, sand size of the substratum, and thickness of alluvium affected the distribution of sand blows in the St. Francis Basin.

  4. Geologic Maps

    NSDL National Science Digital Library

    Geologic Maps are unique in that they show the distribution of geologic features on a landscape through specific symbols and colors. The United States Geological Survey's (USGS) site Geologic Maps provides visitors with a good introduction to these concepts, which include the unique features of a geologic map; the meaning of their lines, colors, and symbols; the location of faults; and more. Anyone working with geologic maps or just interested in learning a little about cartography or geology will find this site easy to explore and full of good information.

  5. Capability of ERTS-1 imagery to investigate geological and structural features in a sedimentary basin (Bassin Parisien, France)

    NASA Technical Reports Server (NTRS)

    Cavelier, C.; Scanvic, J. Y.; Weecksteen, G.; Zizerman, A.

    1973-01-01

    A preliminary study of the MSS imagery of a sedimentary basin whose structure is regular is reported. Crops and natural vegetation are distributed all over the site located under temperate climate. Ground data available concern plant species geology and tectonic and are correlated with results from ERTS 1 imagery. This comparison shows a good correlation. The main geological units are detected or enhanced by way of agricultural land use and/or natural vegetation. Alluvial deposits are outlined by vegetation grass land and poplar trees. Some spatial relationship of geostructures, suspected until now, are identified or extended in associating results from different spectral bands.

  6. The Cyborg Astrobiologist: Scouting Red Beds for Uncommon Features with Geological Significance

    Microsoft Academic Search

    Patrick Charles McGuire; Enrique Díaz Martínez; Jens Ormö; Javier Gómez-Elvira; José Antonio Rodríguez Manfredi; Eduardo Sebastián-Martínez; Helge Ritter; Robert Haschke; Markus Oesker; Jörg Ontrup

    2005-01-01

    Abstract The ‘Cyborg Astrobiologist’ has undergone a second geologi cal field trial, at a site in northern Guadalajara, Spain, near Riba de Santiuste. The site at Riba de Santiuste is dominated by layered deposits of red sandstones. The Cyborg Astrobiologist is a wearable,computer,and video camera system that has demonstrated,a capability to find uncommon interest points in geological imagery in realtime

  7. Correlations between topography and deep-seated structures in low-relief areas: Examples of subtle terrain features with high impact on geological interpretations of geophysical data

    NASA Astrophysics Data System (ADS)

    Sandersen, Peter B. E.; Jørgensen, Flemming

    2014-05-01

    Denmark has a low-relief topography with a maximum elevation at 170 m above sea level and a near-surface geology dominated by the effects of numerous glacier advances during the Pleistocene. In 3D geological modelling of the Danish subsurface we combine near-surface geophysics, primarily AEM (Airborne ElectroMagnetic methods) with borehole data, seismic data etc. in order to model the groundwater-bearing sediments in the uppermost 300-400 m. The highly varied glacial succession and the underlying tertiary sediments require very dense data coverage in order to be able to perform modelling in sufficient detail. Geomorphological data and observations are used for the interpretations alongside the other data. The overall geomorphology of Denmark is generally the product of the youngest glacial episodes and the subsequent periglacial and postglacial modifications where the effects of earlier ice advances are either obscured or removed. As such, the geomorphology will mainly contribute with geological information about the youngest events and the uppermost parts of the subsurface. However, in many parts of the Danish area we have found a correlation between surface features and deep seated structures. These structures can be old faults that have created weak and easily erodible zones in the sediments above and these erosional patterns have created trends that have survived over a long period of time. Some of these fault zones have been tectonically active as late as the Holocene thus deforming near-surface sediments and the topography. Using geomorphological information such as lineament patterns, erosional patterns and variations in surface trends we are able to gain significant information about the deeper parts of the subsurface. This information is highly valuable when interpreting the geological setting from AEM data and seismic data. In the presentation we will show examples from Denmark that link geomorphological features in the present day terrain with deep seated tectonic structures and buried erosional features mapped by geophysical data. The examples will include detailed observations of subtle geomorphological features in LiDAR-data that represent fingerprints of events that are not related to the formation of the surface sediments themselves.

  8. Exploration of Wadi Zerka Ma'in rotational fault and its drainage pattern, Eastern of Dead Sea, by means of remote sensing, GIS and 3D geological modeling

    NASA Astrophysics Data System (ADS)

    Odeh, Taleb; Gloaguen, Richard; Schirmer, Mario; Geyer, Stefan; Rödiger, Tino; Siebert, Christian

    2009-09-01

    The Wadi Zerka Ma'in catchment area is located in the North East of the Dead Sea. It contains a confined river of about 23 km length. The region is characterized by a recent sharp base level drop and a strong orographic control on climatic parameters such as temperature and precipitation. It is controlled by three regional structural systems as follow: 1) the anticline - syncline system (late Cretaceous - end of Miocene) which is a part of Syrian fold arc system; 2) NW - SE faults system which were generated simultaneously and parallel to the Red Sea spreading; 3) NWW - SSE faults system which are perpendicular to the Dead Sea and younger than the Red Sea fault system; 4) NNW - SSE faults system (middle Miocene - until now) which were generated simultaneously and parallel to the active Dead Sea transform fault. The structural setting of the study area was evaluated by means of a three-dimensional (3D) geological model, a digital elevation model (DEM) with resolutions 15 meters and stream profile analysis. DEM generation was performed using ASTER data. We found that the Wadi is located at the junction of two main fault systems. The major feature is a trans-tensional fault displacement which changes from 0 to 200 m. We showed that the catchment area is a result of a rotational fault while the river changes its flow direction according to the different fault system directions. The lower portion of the basin is affected by the major base level drops and display contributing rivers in exceptional non-equilibrium. Thus this catchment allows observing the rapid adaptation of the drainage system to both climatic and tectonic forcing.

  9. The main features of the Uralian Paleozoic magmatism and the epioceanic nature of the orogen

    NASA Astrophysics Data System (ADS)

    Fershtater, G. B.

    2013-02-01

    The 2000 km Uralian Paleozoic orogen is situated on the western flank of the Uralo-Mongolian folded belt. It is characterized by an abundant variety of magmatic rocks and related ore deposits. Uralian Paleozoic magmatism is entirely subduction-related. It is proposed that the Uralian orogen represents a cold mobile belt in which the mantle temperature was 200 to 500 °C cooler than in the adjacent areas; a situation which is similar to the modern West Pacific Triangle Zone including Indonesia, the Philippine Islands, and southern Asia. During the course of the geological evolution of the Uralian orogen, the nature of the magmatism has changed from basic rocks of indisputable mantle origin (460-390 Ma) to mantle-crust gabbro-granitic complexes (370-315 Ma) followed by pure crustal granite magmatism (290-250 Ma). This order in rock type and age reflects the evolution of Paleozoic magmatic complexes from the beginning of subduction to the final stages of the orogen development.

  10. Main dipoles of the CNAO accelerator: some general features and systematic effects associated

    E-print Network

    Boyer, Edmond

    general characteristics of the main synchrotron dipole magnets designed for the CNAO project [1]. It gives;2. Magnetic field Figure 3 displays the vertical component of the magnetic field By as a function it reaches 20%. Figure 3: Vertical component of the magnetic field By (top) and its first derivative dBy /dz

  11. Main features implemented in the JET facility for deuterium-tritium operation

    Microsoft Academic Search

    M. Huguet; E. Bertolini

    1986-01-01

    One of the main objectives of the JET experiment is to reach near ignition conditions using deuterium-tritium mixtures so that significant heating of the plasma by alpha particles is achieved. This objective is reflected in the JET development plan which aims at one or two years of active operation and a few thousand deuterium-tritium shots. This approach, where it is

  12. Information needs for characterization of high-level waste repository sites in six geologic media. Volume 1. Main report

    SciTech Connect

    NONE

    1985-05-01

    Evaluation of the geologic isolation of radioactive materials from the biosphere requires an intimate knowledge of site geologic conditions, which is gained through precharacterization and site characterization studies. This report presents the results of an intensive literature review, analysis and compilation to delineate the information needs, applicable techniques and evaluation criteria for programs to adequately characterize a site in six geologic media. These media, in order of presentation, are: granite, shale, basalt, tuff, bedded salt and dome salt. Guidelines are presented to assess the efficacy (application, effectiveness, and resolution) of currently used exploratory and testing techniques for precharacterization or characterization of a site. These guidelines include the reliability, accuracy and resolution of techniques deemed acceptable, as well as cost estimates of various field and laboratory techniques used to obtain the necessary information. Guidelines presented do not assess the relative suitability of media. 351 refs., 10 figs., 31 tabs.

  13. Synergetic events in geological medium and nonlinear features of wave propagation.

    NASA Astrophysics Data System (ADS)

    Hachay, O. A.

    2009-04-01

    Geological medium is an open dynamical system, which is artificially and naturally influenced on different scale levels, which change it's state and which lead to a complicated many ranked hierarchic evolution. That is a topic of the synergetic theory (or science of self organization). The idea of physical meso mechanics which was elaborated by Russian academician Panin V.E., which includes the synergetic approach, is a constructive method for research of the state of heterogenic materials. That result had been obtained for specimens of different materials. In our investigations of time-dependent geological medium in the frame of natural experiments in real rock massive, which are hard man-caused influenced it had been showed, that the dynamics of the state can be revealed by using synergetic approach for hierarchic media. The important role for research of dynamic geological systems play the use of active and passive geophysical monitoring, which can be achieved with use of electromagnetic and seismic fields. As it had been showed by our experience the change of the system on the researched space bases and times can be revealed by parameters, linked with peculiarities of the medium of the second and higher rank. Thus the research of the state dynamics and the events of self organization we can provide with geophysical methods, oriented on the many ranked hierarchic time-dependent model of the medium. For fields of plastic deformation and stresses it had been considered a system of differential equations. The developing theory of modelling and interpretation of geophysical monitoring data must be active guided by the mathematical methods of nonlinear dynamics and control. The developing of that direction can allow us to forecast and prevent catastrophic man-made events (rock bursts). We had elaborated a new approach of forecasting such events using the method of constructing phase portraits using the data of electromagnetic monitoring and detailed seismological catalogue.

  14. The shallow geologic features of the upper continental slope, northern Gulf of Mexico

    E-print Network

    Buck, Arvo Viktor

    1981-01-01

    of the Gulf, The study area was divided into three subareas based on the characteristics of the sea floor topography and the shallow geologic structures present, In the northern area, a large influx of sediments has resulted in rapid basinward movement... of the shelf break and associated displaced sediment in the subsurface. Diapiric ridges downslope from the shelf break are oriented east-west and act as dams to sedh ent transport, In the Eastern Ilid-Slope area, the diapiric structures are more...

  15. Distribution and geological control of mud volcanoes and other fluid/free gas seepage features in the Mediterranean Sea and nearby Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Mascle, Jean; Mary, Flore; Praeg, Daniel; Brosolo, Laetitia; Camera, Laurent; Ceramicola, Silvia; Dupré, Stéphanie

    2014-06-01

    Existing knowledge on the distribution of mud volcanoes (MVs) and other significant fluid/free gas-venting features (mud cones, mud pies, mud-brine pools, mud carbonate cones, gas chimneys and, in some cases, pockmark fields) discovered on the seafloor of the Mediterranean Sea and in the nearby Gulf of Cadiz has been compiled using regional geophysical information (including multibeam coverage of most deepwater areas). The resulting dataset comprises both features proven from geological sampling, or in situ observations, and many previously unrecognized MVs inferred from geophysical evidence. The synthesis reveals that MVs clearly have non-random distributions that correspond to two main geodynamic settings: (1) the vast majority occur along the various tectono-sedimentary accretionary wedges of the Africa-Eurasia subduction zone, particularly in the central and eastern Mediterranean basins (external Calabrian Arc, Mediterranean Ridge, Florence Rise) but also along its westernmost boundary in the Gulf of Cadiz; (2) other MVs characterize thick depocentres along parts of the Mesozoic passive continental margins that border Africa from eastern Tunisia to the Levantine coasts, particularly off Egypt and, locally, within some areas of the western Mediterranean back-arc basins. Meaningfully accounting for MV distribution necessitates evidence of overpressured fluids and mud-rich layers. In addition, cross-correlations between MVs and other GIS-based data, such as maps of the Messinian evaporite basins and/or active (or recently active) tectonic trends, stress the importance of assessing geological control in terms of the presence, or not, of thick seals and potential conduits. It is contended that new MV discoveries may be expected in the study region, particularly along the southern Ionian Sea continental margins.

  16. Geological Features and Terrains on Enceladus as seen by Cassini ISS

    NASA Astrophysics Data System (ADS)

    Helfenstein, P.; Thomas, P. C.; Veverka, J.; Squyres, S.; Rathbun, J. A.; Denk, T.; Neukum, G.; Roatsch, T.; Wagner, R.; Perry, J.; Turtle, E.; McEwen, A. S.; Johnson, T. V.; Porco, C.; Cassini ISS Team

    2005-08-01

    Cassini's first year in orbit around Saturn was highlighted by two close flybys of Enceladus that enabled the ISS imaging experiment to map 60 finer spatial resolutions than the best Voyager coverage (< 1km/pixel). Fracturing and tectonic modification of the surface is much more pervasive than previously recognized; tectonic resurfacing has likely played a major role in producing the youthful appearance of Enceladus. Regions that were previously mapped from Voyager as "smooth plains" are now seen at sub-kilometer size-scales to be disrupted by extensive networks of fractures and grooves. The surface is regionally divided by diverse styles of tectonic features that we interpret to include deep rifts, horst-and-graben terrains, folded ridges, braided or vermicular networks of grooves, and an ubiquitous spidery network of sub-parallel, curvilinear, high-angle cracks that appear to dissect topographic structures into vertical slabs. ISS color images of morphologically youthful fractures, including a prominent set over the South Pole, reveal relatively blue fault scarps that may represent exposed wall-outcrops of coarse-grained ice. Possible evidence for past cryovolcanism includes kilometer-scale ridges and linear arrays of rounded domes that appear to have extruded through preexisting surface fractures. Some wrinkled, flow-like features with lobate margins are found near the ridge and dome features, but it is unclear if they are volcanic flows or tectonically folded grooved-terrain. New details of viscously-relaxed craters, first seen by Voyager, include central dome features with structurally breached summits and polygonal craters with lobate, rampart-like rims. Among the most mysterious newly-discovered features are small, sub-kilometer-sized dark spots and circular pits that sometimes cluster in a honeycomb like patterns near faults and scarps. Their origin is unknown, but perhaps the pits and dark spots identify sites of explosive venting of subsurface volatiles through fractures or volcanic conduits.

  17. Geologic features and ground-water storage capacity of the Sacramento Valley, California

    USGS Publications Warehouse

    Olmsted, F.H.; Davis, G.H.

    1961-01-01

    The Sacramento Valley constitutes the northern and smaller arm of the Central Valley of California. It is about 150 miles long by about 30 miles wide; and its area is about 5,000 square miles. The Sacramento Valley is drained by the Sacramento River, the largest in California, which rises west of Mount Shasta and flows southward to join the San Joaquin River near Suisun Bay and discharges through San Francisco Bay to the Pacific. Most of the valley floor is suitable for growing crops, and under irrigation the land is highly productive. The Sacramento Valley is underlain by sediments transported from the surrounding mountains by the Sacramento River and its tributaries. The floor of the valley slopes southward from about 300 feet above sea level at the north end near Red Bluff to sea level at Suisun Bay. The Sutter Buttes, which are erosional remnants of an old volcano rise to 2,132 feet above sea level near the center of the valley. The valley floor is not a featureless plain but is characterized by various types of topography, which have been assigned to four principal groups: 1, low hills and dissected alluvial uplands; 2, low alluvial plains and fans; 3, flood plains and natural levees; and 4, flood basins; a fifth and relatively minor group consists of the tidal Islands of the Sacramento-San Joaquin Delta, which are south of the principal area of investigation. The rocks that underlie the Sacramento Valley and the bordering mountains range from crystalline rocks of Paleozoic and Mesozoic age to unconsolidated alluvium of Recent age. These rocks have been subdivided into 20 geologic units which may be assigned to 2 broad categories: rocks that yield little water and rocks that yield water freely. The rocks of the first category are chiefly marine sedimentary rocks of Late Jurassic, Cretaceous, and Early Tertiary age and a basement complex of pre-Tertiary crystalline rocks. The rocks of the second category consist predominantly of nonmarine valley-filling sediments of late Tertiary and Quaternary age, which constitute the principal ground-water reservoir in the Sacramento Valley. The rocks that yield little or no water includes the following geologic units: 1, Basement complex of the Sierra Nevada (pre-Tertiary); 2, Shasta series (Lower Cretaceous); 3, Chico formation (Upper Cretaceous); 4, Paleocene series; 5, Eocene series (in part, water yielding); 6, basalt (Tertiary); 7, sedimentary rocks of volcanic origin on the west side of the Sacramento Valley (Tertiary, in part water yielding) ; 8, intrusive rhyolite and andesite and vent tuff of the Sutter Buttes (Pliocene); and 9, tuff-breccia of the Sutter Buttes (Pliocene, in part water yielding). The rocks that yield water freely, comprises the following geologic units: 1, Volcanic rocks from the Sierra Nevada (Eocene to Pliocene; in part yield little or no water); 2, Tuscan formation (Pliocene; in part yield little or no water); 3, Tehama formation (Pliocene); 4, Tehama formation and related continental sediments, undifferentiated (Pliocene and Pleistocene); 5, Laguna formation and related continental sediments (Pliocene and Pleistocene); 6, fanglomerate from the Cascade Range (Pleistocene); 7, Red Bluff formation (Pleistocene); 8, Victor formation and related deposits (Pleistocene); 9, alluvial-fan deposits (Pleistocene and Recent); 10, river deposits (Recent); and 11, flood-basin deposits (Recent). The volcanic rocks from the Sierra Nevada consist chiefly of andesitic and rhyolitic detritus. Most of these volcanic rocks are fragmental and were deposited either as mudflows or by streams. Their permeability is extremely variable, the poorly consolidated sandstone and conglomerate strata locally yield water copiously to wells, but the interbedded fine-grained and cemented strata are virtually impermeable and act as confining layers. The Tuscan formation, which occurs in the northeastern part of the valley, consists of fragmental andesitic and basaltic mate

  18. Geological survey of Maryland using EREP flight data. [mining, mapping, Chesapeake Bay islands, coastal water features

    NASA Technical Reports Server (NTRS)

    Weaver, K. N. (principal investigator)

    1973-01-01

    The author has identified the following significant results. Underflight photography has been used in the Baltimore County mined land inventory to determine areas of disturbed land where surface mining of sand and ground clay, or stone has taken place. Both active and abandoned pits and quarries were located. Aircraft data has been used to update cultural features of Calvert, Caroline, St. Mary's, Somerset, Talbot, and Wicomico Counties. Islands have been located and catalogued for comparison with older film and map data for erosion data. Strip mined areas are being mapped to obtain total area disturbed to aid in future mining and reclamation problems. Coastal estuarine and Atlantic Coast features are being studied to determine nearshore bedforms, sedimentary, and erosional patterns, and manmade influence on natural systems.

  19. Geological features and genesis of the Jinduicheng porphyry molybdenum deposit, Shaanxi Province, China

    Microsoft Academic Search

    Dianhao Huang; Chengyu Wu; Fengjun Nie

    1988-01-01

    Situated in the Henan-Shaanxi fault-uplift area on the southern margin of the Sino-Korean Paraplatform, the Jinduicheng porphyry\\u000a molybdenum deposit is the most important molybdenum producer in China. During Yenshanian the Jinduicheng granite porphyry\\u000a was emplaced in metaspilite of the Proterozoic Xionger Group, controlled by a NW-trending fault. Mineral compositions are\\u000a mainly quartz (25–40%), microcline and microcline-perthite (27–40%) and plagioclase (An

  20. Geologically recent small-scale surface features in Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Horne, David

    2013-04-01

    Leveed fissures and gutters, small scale (<1m) depositional and erosional features that have been imaged at several locations in the equatorial Meridiani Planum region by the Mars Exploration Rover Opportunity, occur in loose, dark basaltic sands that partly cover exposures of light-toned bedrock. Leveed fissures appear to have been formed by venting from beneath; possible explanations include wind creating blowholes near crater margins, volcanic fumarole activity, or gas/vapour escape resulting from the decomposition of small pockets of ground ice, methane clathrates or hydrated sulphate minerals. Some leveed fissures cross-cut and are therefore younger than aeolian ripples which are thought to have last been active c. 50,000 years ago. Some gutters are sharply defined and fresh, internally terraced, have a hole or hollow at or near one end, and in one case seem to give way to small depositional fans downslope; they have the appearance of having been formed by liquid flow rather than by wind erosion. There is evidence elsewhere that contemporary ground-ice thaw and consequent transient surface run-off may occur occasionally under present conditions in low, near-equatorial latitudes on Mars; short-lived (even for just a few minutes) meltwater emission and flow at the surface could erode gutters before evaporating. The decomposition of buried pockets of methane clathrates, which theoretical considerations suggest might be present and stable even in equatorial regions, could give rise to both methane venting (leveed fissures) and transient surface water (gutters). Yet another possibility is the decomposition, in response to local changes in thermal conditions, of hydrated magnesium sulphate minerals in the bedrock, which could release liquid water to the surface. Whatever their explanation, these features hint at previously unrecognized, young (perhaps even contemporary) martian surface processes.

  1. Detailed Geological Features of The Arabian Peninsula Obtained From The Aeromagnetic Data

    NASA Astrophysics Data System (ADS)

    Mogren, S.; Fairhead, D.; Jassim, S.

    2009-05-01

    A new seamless high-resolution data set, is presented showing more detailed features of the Arabian Shield and the Cover Rocks than any of the existing compilations. This paper describe the procedures of editing and reprocessing 28 separate aeromagnetic surveys covering the Arabian Shield and the Cover Rocks areas and merging them into one regional aeromagnetic dataset. These surveys have different specification of time-span, flightline spacing, flightheight, flightline direction as well as data errors. Processing was not straight forward since some continuation lines did not overlap, resulting in the generation of significant noise in the derived grid. Also the archived digital aeromagnetic surveys over the Cover Rocks had locations of data points truncated to 3 decimal places of a degree; this resulted in zigzagging of location points along the flightlines. A further problem was the original data had more than one flightline assigned with the same line number. These shortcomings resulted in many automated processing errors which were impossible to simply correct by using the available commercial software. Therefore, specially written software was designed to solve these problems. Finally microlevelling each survey, bring all surveys to a common datum and merging the surveys into an integrated/unified survey at a grid cell size of 200 m was achieved. This new compilation was comprehensively used to map the tectonic fabric of the Arabian Shield and the extension of the fault systems beneath the Phanerozoic cover, enabling a better understanding of basement evolution.

  2. The features of the use of GIS technologies for monitoring of the situation of main water lines in Azerbaijan

    NASA Astrophysics Data System (ADS)

    Gojamanov, M. H.; Z, Qurbanov, Ch.

    2014-11-01

    The characteristic feature of the unified system of water supply of Azerbaijan is the large spatial remoteness between the main water sources (Greater and Small Caucasian mountains) and water-using economic areas (Baku, Ganja, Sumgait etc). When operating the pipelines arise accident and emergency situations, which are connected with interaction of the technological elements of the water supply and the natural environment. Often this process is a violation of dynamic equilibrium, and is accompanied by activation of dangerous natural and natural-anthropogenic processes that have a negative impact on the condition of pipelines. Given that in Azerbaijan the basis of the water supply network was put in the XIX century, it is necessary to pay close attention to the assessment of the ecological situation of main lines of water pipelines, i.e. to conduct their monitoring. Ensuring the reliability of existing and planned pipelines, a comprehensive study of the impacts on the natural environment during the construction and operation of the technical facilities, the organization of system of information and analytical monitoring requires a comprehensive attract the materials of the aerospace sensing and GIS technologies. In this paper describe the work experience and are the results of monitoring of pipelines of water supply in Azerbaijan.

  3. MAINE AQUIFERS

    EPA Science Inventory

    AQFRS24 contains polygons of significant aquifers in Maine (glacial deposits that are a significant ground water resource) mapped at a scale 1:24,000. This statewide coverage was derived from aquifer boundaries delineated and digitized by the Maine Geological Survey from data com...

  4. Geological history of the Tyre region of Europa: A regional perspective on Europan surface features and ice thickness

    NASA Astrophysics Data System (ADS)

    Kadel, Steven D.; Chuang, Frank C.; Greeley, Ronald; Moore, Jeffrey M.; Galileo SSI Team

    Galileo images of the Tyre Macula region of Europa at regional (170 m/pixel) and local (~40 m/pixel) scales allow mapping and understanding of surface processes and landforms. Ridged plains, doublet and complex ridges, shallow pits, domes, ``chaos'' areas, impact structures, tilted blocks and massifs, and young fracture systems indicate a complex history of surface deformation on Europa. Regional and local morphologies of the Tyre region of Europa suggest that an impactor penetrated through several kilometers of water ice to a mobile layer below. The surface morphology was initially dominated by formation of ridged plains, followed by development of ridge bands and doublet ridges, with chaos and fracture formation dominating the latter part of the geologic history of the Tyre region. Two distinct types of chaos have been identified which, along with upwarped dome materials, appear to represent a continuum of features (domes-platy chaos-knobby chaos) resulting from increasing degrees of surface disruption associated with local lithospheric heating and thinning. Local and regional stratigraphic relationships, block heights, and the morphology of the Tyre impact structure suggest the presence of low-viscosity ice or liquid water beneath a thin (several kilometers) surface ice shell at the time of the impact. The very low impact crater density on the surface of Europa suggests that this thin shell has either formed or been thoroughly resurfaced in the very recent past.

  5. Geological History of the Tyre Region of Europa: A Regional Perspective on Europan Surface Features and Ice Thickness

    NASA Technical Reports Server (NTRS)

    Kadel, Steven D.; Chuang, Frank C.; Greeley, Ronald; Moore, Jeffrey M.

    2000-01-01

    Galileo images of the Tyre Macula region of Europa at regional (170 m/pixel) and local (approx. 40 m/pixel) scales allow mapping and understanding of surface processes and landforms. Ridged plains, doublet and complex ridges, shallow pits, domes, "chaos" areas. impact structures, tilted blocks and massifs, and young fracture systems indicate a complex history of surface deformation on Europa. Regional and local morphologies of the Tyre region of Europa suggest that an impactor penetrated through several kilometers of water ice tc a mobile layer below. The surface morphology was initially dominated by formation of ridged plains, followed by development of ridge bands and doublet ridges, with chaos and fracture formation dominating the latter part of the geologic history of the Tyre region. Two distinct types of chaos have been identified which, along with upwarped dome materials, appear to represent a continuum of features (domes-play chaos-knobby chaos) resulting from increasing degree of surface disruption associated with local lithospheric heating and thinning. Local and regional stratigraphic relationships, block heights, and the morphology of the Tyre impact structure suggest the presence of low-viscosity ice or liquid water beneath a thin (severa1 kilometers) surface ice shell at the time of the impact. The very low impact crater density on the surface of Europa suggests that this thin shell has either formed or been thoroughly resurfaced in the very recent past.

  6. Improving management of small natural features on private lands by negotiating the science–policy boundary for Maine vernal pools

    PubMed Central

    Calhoun, Aram J. K.; Jansujwicz, Jessica S.; Bell, Kathleen P.; Hunter, Malcolm L.

    2014-01-01

    Vernal pools are far more important for providing ecosystem services than one would predict based on their small size. However, prevailing resource-management strategies are not effectively conserving pools and other small natural features on private lands. Solutions are complicated by tensions between private property and societal rights, uncertainties over resource location and function, diverse stakeholders, and fragmented regulatory authority. The development and testing of new conservation approaches that link scientific knowledge, stakeholder decision-making, and conservation outcomes are important responses to this conservation dilemma. Drawing from a 15-y history of vernal pool conservation efforts in Maine, we describe the coevolution of pool conservation and research approaches, focusing on how research-based knowledge was produced and used in support of management decisions. As management shifted from reactive, top-down approaches to proactive and flexible approaches, research shifted from an ecology-focused program to an interdisciplinary program based on social–ecological systems. The most effective strategies for linking scientific knowledge with action changed as the decision-makers, knowledge needs, and context for vernal pool management advanced. Interactions among stakeholders increased the extent to which knowledge was coproduced and shifted the objective of stakeholder engagement from outreach to research collaboration and development of innovative conservation approaches. New conservation strategies were possible because of the flexible, solutions-oriented collaborations and trust between scientists and decision-makers (fostered over 15 y) and interdisciplinary, engaged research. Solutions to the dilemma of conserving small natural features on private lands, and analogous sustainability science challenges, will benefit from repeated negotiations of the science–policy boundary. PMID:25002496

  7. Effect of anthropogenic landscape features on population genetic differentiation of Przewalski's gazelle: main role of human settlement.

    PubMed

    Yang, Ji; Jiang, Zhigang; Zeng, Yan; Turghan, Mardan; Fang, Hongxia; Li, Chunwang

    2011-01-01

    Anthropogenic landscapes influence evolutionary processes such as population genetic differentiation, however, not every type of landscape features exert the same effect on a species, hence it is necessary to estimate their relative effect for species management and conservation. Przewalski's gazelle (Procapra przewalskii), which inhabits a human-altered area on Qinghai-Tibet Plateau, is one of the most endangered antelope species in the world. Here, we report a landscape genetic study on Przewalski's gazelle. We used skin and fecal samples of 169 wild gazelles collected from nine populations and thirteen microsatellite markers to assess the genetic effect of anthropogenic landscape features on this species. For comparison, the genetic effect of geographical distance and topography were also evaluated. We found significant genetic differentiation, six genetic groups and restricted dispersal pattern in Przewalski's gazelle. Topography, human settlement and road appear to be responsible for observed genetic differentiation as they were significantly correlated with both genetic distance measures [F(ST)/(1-F(ST)) and F'(ST)/(1-F'(ST))] in Mantel tests. IBD (isolation by distance) was also inferred as a significant factor in Mantel tests when genetic distance was measured as F(ST)/(1-F(ST)). However, using partial Mantel tests, AIC(c) calculations, causal modeling and AMOVA analysis, we found that human settlement was the main factor shaping current genetic differentiation among those tested. Altogether, our results reveal the relative influence of geographical distance, topography and three anthropogenic landscape-type on population genetic differentiation of Przewalski's gazelle and provide useful information for conservation measures on this endangered species. PMID:21625459

  8. Stereo 3-D Imagery Uses for Definition of Geologic Structures and Geomorphic Features (Anaglyph colored glasses employed)

    NASA Astrophysics Data System (ADS)

    Hicks, B. G.; Fuente, J. D.

    2008-12-01

    Recently completed projects incorporating TopoMorpher* digital images as adjuncts to commonly employed tools has emphasized the distinct advantage gained with STEREO 3-D DIGITAL IMAGERY. By manipulating scale, relief (four types of digital shading), sun angle, direction of viewing and tilt of scene, etc. -- to produce differing views of the same terrain -- aids in identifying, tracing, and interpreting ground surface anomalies. *TopoMorpher is a digital software product of Eighteen Software (18 software.com). The advantage of Stereo 3-D views combined with digital removal of vegetation which blocked interpretation (commonly called 'bare earth/naked' views) cannot be over-emphasized. The TopoMorpher program creates scenes transferable to disk for printing at any size. Included is with computer projector which allows large display and discussion ease for groups. The examples include (1) fault systems for targeting water well locations in bedrock and (2) delineation of debris slide and avalanche terrain. Combining geologic mapping and spring locations with Stereo 3-D TopoMorpher tracing of fault lineaments has allowed targeting of water well drilling sites. Selection of geophysical study areas for well siting has been simplified. Stereo 3-D TopoMorpher has a specific "relief/terrain setting" to define potential failure sites by producing detailed colored slope maps keyed to field-data derived parameters. Posters display individual project images and large scale overviews for identifying unusual major terrain features. Images at scales using 10 and 30 meter digital data as well as Lidar (< 1 meter) will be shown.

  9. [Main features of helminth parasitism in cattle in Ituri (Haut-Zaire). III. Geographic distribution and prevalence of the main helminths].

    PubMed

    Chartier, C; Bushu, M; Kamwenga, D

    1991-01-01

    A necropsic survey, carried out in eleven slaughterhouses in Ituri (Haut-Zaïre), has permitted to define the geographic distribution and prevalences of the main cattle helminths. Trematodes, except the paramphistomes, had a very heterogeneous distribution. Prevalence of Fasciola gigantica ranged from 9 to 72% according to the sites, but these variations were not linked to topographic or climatologic parameters. The infection with Schistosoma bovis was much variable as well (12.5 to 72%) and seemed absent from the central high altitude area. The occurrence of Dicrocoelium hospes was restricted to the northern part of Ituri with a moderate prevalence of about 35%. By contrast, nematodes had a fairly homogeneous distribution in Ituri. Prevalences were high for gastro-intestinal strongyles of the following genera, Haemonchus, Cooperia and Oesophagostomum (over 60%). Cysticercosis (Cysticercus bovis) occurred in 10 to 14% of cattle in the middle and south areas of Ituri whereas the north areas were nearly free. PMID:1775693

  10. Geologic History

    NSDL National Science Digital Library

    Philip Medina

    This unit introduces younger students to the concept of relative versus absolute time and how geologists determine the age of geologic events and features. Topics include the laws that determine relative age (superposition, cross-cutting relationships, included fragments, and others), and how to re-construct the geologic history of an area using these relationships. There is also information on geologic correlation and the use of index fossils to determine relative age. The section on absolute time discusses some ways of measurement (tree rings, radioactive dating) and introduces the concepts of natural selection and mass extinctions. A vocabulary and downloadable, printable student worksheets are provided.

  11. Usefulness of systematic in situ gamma-ray surveys in the radiometric characterization of natural systems with poorly contrasting geological features (examples from NE of Portugal).

    PubMed

    Duarte, Pedro; Mateus, António; Paiva, Isabel; Trindade, Romão; Santos, Pedro

    2011-02-01

    This paper focuses on the starting point of various studies that are being carried out in two possible locations being considered to host a hypothetical site for a repository for low and intermediate level radioactive waste (LILW) produced in Portugal in compliance with international requirements on the long-term safety of this kind of repository. Previous studies concerning the geology of the much larger geographical areas where these locations are included were fundamental in the choice of these locations and for the design of the survey strategy. One of the fundamental assessment studies during the site-selection is the overall radiological characterization of the locations and its relation to the geology. This paper pretends to show the adequability of using a fast and reasonably inexpensive survey technique such as in situ gamma-ray portable detectors, to access the radiometric response of the systems in study by providing the radiometric mapping of the areas. The existence of adequate radiometric maps represents a critical pre-requisite to constrain both the number and spatial distribution of samples to be collected for further analysis, sustaining as well the subsequent extrapolation of results needed to fully characterise the surveyed system. Both areas were surveyed using portable gamma-ray spectrometers with NaI(Tl) detectors. In situ gamma-ray measurements have clearly shown not only the poorly contrasting geological features, but also their differences representing: (i) a deformed/metamorphosed ophiolite complex and (ii) a monotonous meta-sedimentary sequence. The radiometric maps obtained have show heterogeneities that reflect mostly changes in rock-forming mineral assemblages, even in the presence of small variations of gamma radiation. These maps support objective criteria about the number/distribution of samples to be collected for subsequent comprehensive studies and reinforce the valuable contribution of in situ gamma spectrometry to assess, in radiological terms, the prevalent geological features. PMID:20971016

  12. Main clinical features in patients at their first psychiatric admission to Italian acute hospital psychiatric wards. The PERSEO study

    Microsoft Academic Search

    Andrea Ballerini; Roberto M Boccalon; Giancarlo Boncompagni; Massimo Casacchia; Francesco Margari; Lina Minervini; Roberto Righi; Federico Russo; Andrea Salteri; Sonia Frediani; Andrea Rossi; Marco Scatigna

    2007-01-01

    BACKGROUND: Few data are available on subjects presenting to acute wards for the first time with psychotic symptoms. The aims of this paper are (i) to describe the epidemiological and clinical characteristics of patients at their first psychiatric admission (FPA), including socio-demographic features, risk factors, life habits, modalities of onset, psychiatric diagnoses and treatments before admission; (ii) to assess the

  13. Schoolyard Geology

    NSDL National Science Digital Library

    This set of lessons provides teachers with ideas on how to turn their schoolyards into a rich geologic experience that students will find familiar, easily accessible, and personally relevant. The three lesson plans feature materials on mapping, rock descriptions and geologic interpretations, ages of rocks, and dinosaur tracks. Lesson 1, "Map Your Schoolyard," teaches students what maps are, what they are used for, and some symbols used on maps (north arrow, scale bar, legend, etc.). Lesson 2, "Rock Stories," illustrates how to make geologic observations and what important properties of rocks to look for. Lesson 3, "GeoSleuth Schoolyard," teaches students that geology is a lot like detective work, in which geologists infer the sequence and timing of events by collecting evidence and making observations. Relevant California state science standards are also listed.

  14. The use of fluoride as a natural tracer in water and the relationship to geological features: Examples from the Animas River Watershed, San Juan Mountains, Silverton, Colorado

    USGS Publications Warehouse

    Bove, D.J.; Walton-Day, K.; Kimball, B.A.

    2009-01-01

    Investigations within the Silverton caldera, in southwestern Colorado, used a combination of traditional geological mapping, alteration-assemblage mapping, and aqueous geochemical sampling that showed a relationship between geological and hydrologic features that may be used to better understand the provenance and evolution of the water. Veins containing fluorite, huebnerite, and elevated molybdenum concentrations are temporally and perhaps genetically associated with the emplacement of high-silica rhyolite intrusions. Both the rhyolites and the fluorite-bearing veins produce waters containing elevated concentrations of F-, K and Be. The identification of water samples with elevated F/Cl molar ratios (> 10) has also aided in the location of water draining F-rich sources, even after these waters have been diluted substantially. These unique aqueous geochemical signatures can be used to relate water chemistry to key geological features and mineralized source areas. Two examples that illustrate this relationship are: (1) surface-water samples containing elevated F-concentrations (> 1.8 mg/l) that closely bracket the extent of several small high-silica rhyolite intrusions; and (2) water samples containing elevated concentrations of F-(> 1.8 mg/ l) that spatially relate to mines or areas that contain late-stage fluorite/huebnerite veins. In two additional cases, the existence of high F-concentrations in water can be used to: (1) infer interaction of the water with mine waste derived from systems known to contain the fluorite/huebnerite association; and (2) relate changes in water quality over time at a high elevation mine tunnel to plugging of a lower elevation mine tunnel and the subsequent rise of the water table into mineralized areas containing fluorite/huebnerite veining. Thus, the unique geochemical signature of the water produced from fluorite veins indicates the location of high-silica rhyolites, mines, and mine waste containing the veins. Existence of high F-concentrations along with K and Be in water in combination with other geological evidence may be used to better understand the provenance of the water. ?? 2009 AAG/Geological Society of London.

  15. Comparison of LiDAR-derived directional topographic features with geologic field evidence: a case study of Doren landslide (Vorarlberg, Austria)

    NASA Astrophysics Data System (ADS)

    Zámolyi, András.; Székely, Balázs; Molnár, Gábor; Roncat, Andreas; Dorninger, Peter; Pocsai, Angelika; Wyszy?ski, Marek; Drexel, Peter

    2010-05-01

    The study area, the Doren Landslide, is located northeast of Dornbirn (Vorarlberg, Austria) within the Molasse zone in the foreland of the Northern Calcareous Alps. It developed in a prominent morphologic position at the margin of a plateau that is formed by alternating ridges and valleys of Molasse sediments of various composition and glacial moraine sediments. The stream valleys of the area are showing rapid incision into the relatively erodible material; this sediment transport balance/imbalance influences the valley sides that at places develop landslides of various scale. Of them the Doren Landslide is the most prominent one that is already endangering real estate entities. On-going research has focused on the repeated airborne and terrestrial laser scanning of the landslide in order to determine short-term volumetric and surface changes and the overall development of the phenomenon. Additionally, tectonic geomorphologic analysis using the digital terrain analysis approach was carried out by the authors aiming to document the geologic setting of the landslide and the adjacent areas in order to reveal possible relationship between the (micro)tectonic setting and the mass movement phenomena. In this study, linear and planar features derived from the LiDAR digital terrain model (DTM) by (i) visual lineament analysis and (ii) automated plane fitting are validated by the results of extensive field geological measurements. For the automated plane fitting, we apply a segmentation approach, originally developed for building detection and roof landscape modeling from ALS data (Dorninger & Pfeifer 2008). It is based on global seed-cluster determination using a four-dimensional feature space defined by locally determined three-dimensional regression planes for each point. Starting from these seeds, all points defining a connected, planar segment are assigned. Due to the design of the algorithm, millions of input points can be processed at once with acceptable processing time on standard computer systems. This allows for processing geomorphologically representative areas at once. For each segment, numerous parameter are derived which can be used for further exploitation. These are, for example, location, area, aspect, slope, and roughness. In the areas surrounding the recent landslide, the strike of geologically significant planes show a good correlation with the strike of lineaments mapped on the ALS-DTM. The mean strike direction that is prominent has an ENE - WSW orientation. However, within the area directly influenced by the recent landslide, observable differences between field geologic measurements and mapped lineaments occur. ESE - WNW striking linear features well mappable from the ALS-DTM are not recorded by field measurements of planar features (faults or bedding planes). This fact can be explained by several hypotheses. The orientation of patches derived by automated plane fitting also show distinct correlation with the field geologic measurements. Again, a good correlation between dip directions as well as dip values can be observed in areas surrounding the landslide. Detection of steep dipping fault surfaces within the landslide area shows promising results that can be further improved by adjusting the input parameters. The good correlation of three different types of lineament analysis (field geologic measurements, ALS-DTM analysis, automated plane fitting) prove the accuracy of laser scanned data and the reliability of observations derived from ALS-data. Dorninger, P., Pfeifer, N. (2008): A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds. Sensors, 8, 11, 7323 - 7343.

  16. Geology of the Caribbean

    USGS Publications Warehouse

    Dillon, William P.; Edgar, N.T.; Scanlon, K.M.; Klitgord, Kim D.

    1987-01-01

    The Venezuelan and Colombian basins are located on the Caribbean Plate whilst the Yucatan basin is on the North American Plate. The processes occurring at the boundaries between the Caribbean Plate and the adjacent North American, South American and Cocos Plates, and the resulting surface features and patterns of volcanic and earthquake activity are described. Most of the Caribbean area is floored by atypical oceanic crust and its most valuable main geologic resources identified so far are petroleum, together with sand and gravel. Geological research is being carried out with techniques for broad-range swath imaging of the seafloor, such as GLORIA, and for directly measuring the movement between plates. -J.G.Harvey

  17. Capability of ERTS-1 imagery to investigate geological and structural features in a sedimentary basin (Bassin Parisien, France)

    NASA Technical Reports Server (NTRS)

    Weecksteen, G. (principal investigator); Cavelier, C.; Scanvic, J. Y.; Zizerman, A.

    1973-01-01

    The author has identified the following significant results. The region covered by the MSS images has the benefit of complete geological mapping at scales of 1:80,000, 1:320,000, and 1:1,000,000. Comparison of imagery and exisiting geological maps, particularly the 1:1,000,000 scale, produces important information: (1) Good correspondence is seen between large units distinguished on the images and the concentric strata of the Jurassic, Cretaceous, and Paleocene on the map. (2) Comparison of MSS images with the hydrogeological map of the Parisian basin at 1:500,000 removes all ambiguity with regard to lithological variations. Among the many faults revealed, only three were considered: (1) the Metz; (2)Juranze; and (3) the double fault of the Marne. Imagery shows a conspicuous alignment of the Metz fault unknown until now and ending near Montereau against the group of north-south faults between Montargis and Bourbon l'Archambault. MSS images show that the Juranze fault divides beyond Brienne into two branches of equal importance. The northern one represents the known fault, the southern one was not known until now, but the convergence of the faults constitutes a tectonic trap. The double fault of the Marne is known for a total length of 50 km. ERTS-1 imagery suggest a prolongation toward the southeast which could bring its length to 110 km.

  18. Seismic structure of the main geological provinces off the SW Iberian margin: first results from the NEAREST-SEIS wide-angle seismic survey

    NASA Astrophysics Data System (ADS)

    Sallarès, Valentí; Martínez-Loriente, Sara; Gailler, Audrey; Bartolomé, Rafael; Gutscher, Marc-André; Graindorge, David; Lia Grácia, Eulà; Díaz, Jordi

    2010-05-01

    The region offshore the SW Iberian margin hosts the present-day NW-SE plate convergence between the European and African Plates at a rate of 4.5 mm/yr, fact that causes continuous seismic activity of moderate magnitude. In autumn 2008 a Spanish-French team carried out a refraction and wide-angle reflection seismic survey in the area (NEAREST-SEIS cruise), in the framework of the EU, FP6-funded NEAREST project. During the survey two long seismic profiles were acquired using a pool of 36 Ocean Bottom Seismometers (OBS), with the objectives of providing information about the geometry of the crust-mantle boundary and the physical properties of the crust, revealing the deep geometry of the main fault interfaces, and identifying the nature of the basement and the limits of the different geological provinces in the region. A total of 30 OBS were deployed along profile P1, which is 356 km long and trends NW-SE from the Tagus abyssal plain (TAP), crossing the Gorringe bank (GB), the Horseshoe abyssal plain (HAP) and the Coral Patch Ridge (CPR), up to the thrust-and-fold belt of the Seine abyssal plain (SAP). The acquired data were modeled by joint refraction and reflection travel time inversion, following a layer-stripping strategy. The inverted model show four well-differentiated domains in terms of its seismic structure: In the TAP a 3-4 km-thick, low velocity sedimentary layer covers the basement, which shows a remarkably high velocity (>7 km/s), similar to that of the basement outcropping in the Gorringe bank. In the HAP the sedimentary cover is thicker, showing an upper unit with low velocity corresponding to the Horseshoe gravitational unit, on top of a higher velocity lower unit, which may represent the highly consolidated Mesozoic sedimentary sequence. The thickness of the two units together exceeds 5 km. The basement shows the same velocity distribution as in TAP and GB, suggesting a common nature and origin. According to its seismic structure, and considering that there is no evidence for the presence of a basal reflector (e.g. Moho) in the record sections, we interpret this basement as highly serpentinized, exhumed mantle. In contrast, the CPR and SAP show evidences for the presence of a well-developed, 6-7 km-thick oceanic crust, underlying the 2-3 km-thick, moderate velocity, Mesozoic sedimentary sequence. Profile P2 is 256 km long, and trends S-N from the easternmost SAP beyond the NW Moroccan margin, crossing the Gulf of Cadiz imbricated wedge and the Portimao bank ending at the Iberian margin shelf. 15 OBS and 7 land-stations were deployed along this profile, and the recorded data were modeled following the same approach and strategy as for P1. The inverted model shows two main domains: In the southern half, there is a 3-4 km-thick cover of low velocity sediments, which represents the western edge of the sedimentary wedge that covers the internal Gulf of Cadiz, overlying a 7-8 km-thick oceanic crust. According to recent tectonic reconstructions, this crustal segment should have been emplaced there during the early phase of continental spreading between Iberia and Africa, in the context of Mesozoic Atlantic spreading. The northern part of P2 displays a relatively sharp ocean-continent transition zone concentrated in a ~50 km-wide band, that ends with the ~30 km-thick continental crust of the SW Iberian shelf.

  19. Louisiana Geological Survey

    NSDL National Science Digital Library

    The Louisiana Geological Survey, located at Louisiana State University, developed this website to promote its goal to provide geological and environmental data that will allow for environmentally sound natural resource development and economic decisions. Users can find general information about the Survey's mission, staff, plan, and history. The website features the research and publications of the Basin Research, Cartographic, Coastal, Geologic Mapping, and Water and Environmental sections. Researchers can discover stratigraphic charts of Louisiana, information on lignite resources, and other geologic data.

  20. Continuous hourly radon gradient observations at Cabauw, the Netherlands - a review of main features of the 2007-2009 dataset

    NASA Astrophysics Data System (ADS)

    Zahorowski, Wlodek; Vermeulen, Alex; Williams, Alastair; Chambers, Scott; Verheggen, Bart

    2010-05-01

    We report on results of the first three years of radon time series and radon gradient observations at the Cabauw site in the Netherlands (51.971oN, 4.927oE). Two 1500 L dual flow loop, two filter radon detectors with a sensitivity better than 40 mBq m-3 are installed at the site, ensuring that gradients can be defined to the required precision every hour. The inlets are mounted on the main meteorological tower at 20 m and 200 m above ground level. The Cabauw site, located 50 km inland on a polder in an agricultural region, has a simple orography with surface elevations changing by a few metres at most within a 20 km radius. The radon gradient observations are part of our larger program to characterise turbulent mixing processes throughout the lower atmosphere. The two other related measurement projects are the continuous hourly measurements of radon gradients in the surface layer on a 50 m tower at Lucas Heights, Australia (34.053°S, 150.981°E; see Chambers et al, this conference), and campaign-style measurements of radon profiles up to altitudes of 4000 m above ground level using light aircraft (see Williams et al., this conference). We observe well pronounced absolute radon and radon gradient signals at Cabauw, influenced by atmospheric processes occurring on seasonal, synoptic, and diurnal time scales. Seasonal variability. The lowest radon concentrations were observed in winter and summer, when the dominant air mass fetch was the Atlantic Ocean. In spring and autumn, concentrations were generally high, as the air mass fetch was primarily over western and/or central Europe. Even when the fetch was oceanic during the latter seasons, it was often over the North Sea where radon concentrations are perturbed by land emissions. In autumn, radon concentrations from the mainland European fetch were more than three times larger than the corresponding concentration from the Atlantic/North Sea regions. Synoptic variability. The radon signal is typically a combination of local and remote influences. Synoptic and diurnal components can be separated by comparing the radon signal at 20 m and 200 m, and by using wind speed as a selecting condition. For most of the data, the diurnal signal is strongly pronounced in the 20 m data, especially when wind speeds are lower than 3 ms-1. In low wind conditions, local influences dominate and the radon signal is predominantly a combination of local source variations and diurnal changes in the local mixing depth. On the other hand, under high wind conditions (> 7 ms-1) the remote signal dominates at both levels, reflecting variations in the radon source function over a wider fetch area, the geographic extent of which is defined by the radon half-life and prevailing wind conditions. The separation of these two signals provides an opportunity to compare subsets of radon time series and gradient observations with a column or regional model and thus evaluate mixing and transport schemes characteristic for the site and the region. Diurnal variability. Diurnal composite plots show that the 20 m signal is characterized by an early morning maximum and early afternoon minimum, predominantly reflecting changes in the boundary layer mixing depth on this time scale. The amplitude of this cycle ranged from 450 mBq m-3 in winter to 1460 mBq m-3 in spring. The 200 m Cabauw data exhibited a modest mid-morning maximum, consistent with upward mixing of radon from the surface as the nocturnal inversion breaks down.

  1. Geology of Caves

    NSDL National Science Digital Library

    This webpage of the United States Geological Survey (USGS) and National Park Service (NPS) describes the geology and features of caves. It discusses cave formation, features, minerals found in caves, uses of caves, and various investigations of caves. There is an educational activity on karst topography formation, and links for additional information.

  2. Geologic and hydrologic features of the San Bernardino area, California - with special reference to underflow across the San Jacinto fault

    USGS Publications Warehouse

    Dutcher, L.C.; Garrett, Arthur A.

    1963-01-01

    This is the second in a series of interpretive reports on subsurface outflow from the ground-water basins of San Bernardino County, Calif., prepared by the U.S. Geological Survey in cooperation with the San Bernardino County Flood Control District. One principal purpose of the study was to estimate the ground-water outflow from the Bunker Hill basin to the Rialto-Colton basin across the San Jacinto fault, which, except locally, forms a nearly impermeable boundary between the two basins. In addition, the report deals qualitatively with the geology, the fault barriers that divide the area into several ground-water basins, the physical nature and degree of imperviousness of the barriers, the occurrence and movement of ground water and fluctuations of water level in the basins, and the chemical quality of surface and ground waters in the San Bernardino area. The report includes a geologic map and sections, water-level-contour maps and profiles, and hydrographs of selected well. The Santa Ana River, the principal stream, flows generally westward across the area. Channels of the river and its tributaries overlie a large irregular structural depression filled with alluvial deposits ranging in age from late Tertiary to Recent and forming a valley bounded on the north by the San Gabriel Mountains, on the east by the San Bernardino Mountains, and on the south by an irregular group of hills. Large alluvial fans underlie most of the area, but its landforms also include alluvial benches and terraces near the mountains, stream channels, and elongate hills, ridges, and scarps along the trace of the San Jacinto fault, which strikes northwestward across the valley about in the center of the area. This fault and others divide the area into ground-water basins, which include the Bunker Hill, Rialto-Colton, upper and lower Lytle and Chino basins. The water-bearing deposits include the following units: the younger alluvium. of Recent age, which occupies principally the backfilled channels beneath the Santa Ana River and its tributaries and through which ground water moves from Bunker Hill basin to Rialto-Colton basin; the older alluvium, of Pleistocene age, which is the principal water-bearing unit of the area and yields water to more than a thousand wells; and continental deposits of Tertiary to Quaternary age, which crop out along the southern margin of the area and locally along the San Gabriel Mountains on the north. The younger alluvium attains a maximum thickness of about 125 feet beneath the Santa Ana River south of San Bernardino. Locally in the Bunker Hill basin it is composed of two members, an upper member of relatively impermeable clay and a lower member of highly permeable material in which water is confined by the upper member. The older alluvium locally has a known thickness greater than 700 feet; elsewhere in the San Bernardino Valley it may exceed 1,400 feet. Locally, where ground water is confined in Bunker Hill basin, the older alluvium is divided into three permeable water-bearing zones separated from each other and from the younger alluvium above by less permeable zones. In parts of Chino and Rialto-Colton basins the alluvium consists of a coarse-grained facies along a former course of a major stream that is interfingered with and overlain by relatively fine-grained deposits. The permeability of the younger alluvium in the area beneath the Santa Ana River downstream from the San Jacinto fault was determined from tests to be about 2,700 gallons per day per square foot. The permeability of the coarse water-yielding materials of the older alluvium several miles downstream was estimated from tests to be about the same magnitude. Rocks that yield practically no water include continental rocks of Tertiary age, which are not exposed in the area but are tapped by wells in Rialto-Colton basin, and crystalline and metamorphic rocks of pre-Tertiary age that form the bedrock of the area. Faults across the valley area fo

  3. Physical Geology

    NSDL National Science Digital Library

    Stephen Nelson

    This Tulane University course covers the nature of the Earth, the development of its surficial features, and the results of the interaction of chemical, physical, and biological factors on the planet. Lecture notes are about energy and minerals; igneous, metamorphic and sedimentary rocks; weathering and soils; geologic time; mass wasting; streams; groundwater; wind action and deserts; oceans; deformation of rock; earthquakes and the interior of the Earth; global tectonics; planetary changes; and glaciers.

  4. Relief and geology of the northern polar region of the planet Venus

    Microsoft Academic Search

    R. O. Kuzmin; G. A. Burba; V. P. Shashkina; A. F. Bogomolov; N. V. Zherikhin; G. I. Skrypnik; L. V. Kudrin; M. Yu. Berman; O. N. Rzhiga; A. I. Sidorenko; Yu. N. Aleksandrov

    1987-01-01

    A description is given of the topographic features of the relief of the northern polar region of the planet Venus. The main morphological types of terrains and also their geological relations are characterized. The relative age sequence of the geological subdivisions in the northern polar region of Venus is discussed.

  5. Geology Fieldnotes: Noatak National Monument

    NSDL National Science Digital Library

    This feature discusses the geologic framework, history, tectonic setting, and soil and rock types of Northwest Alaska, as seen in the Noatak National Monument. Links are also provided to maps, visitor information, and to geological and conservation organizations.

  6. Wyoming State Geological Survey

    NSDL National Science Digital Library

    This agency's mission is to study, examine, and seek an understanding of the geology, mineral resources, and physical features of the State; to prepare, publish, and distribute reports and maps of Wyoming's geology, mineral resources, and physical features; and to provide information, advice, and services related to the geology, mineral resources, and physical features of the State. This site contains details and reports about metals in Wyoming, earthquakes and other hazards, coal, industrial minerals, uranium, oil and gas. The field trip section contains details about various areas to visit with students and gives a general geologic description. There is also a searchable bibliography with publications about Wyoming geology. Links are provided for additional resources.

  7. Ohio Geological Survey

    NSDL National Science Digital Library

    This is the homepage of the Ohio Geological Survey. Materials available through the site include a variety of publications, particularly the Survey's reports, bulletins, information circulars, guidebooks, and many others. There is an extensive selection of maps, including topographic maps in several scales, and downloadable geologic maps of several themes (drift thickness, bedrock geology, karst areas, glacial geology, and many others), as well as digital maps and data. The interactive maps section features online map viewers of abandoned mines, earthquake epicenters, surficial geology, geology of Lake Erie, and others. The educational resources page has links to the 'Hands On Earth' series of activities, GeoFacts (short bulletins on Ohio geological topics), nontechnical educational leaflets, field guides, and links to other publications, rock and mineral clubs, educational associations, and related websites. There is also a link to the Ohio Seismic Network, a network of seismograph stations located at colleges, universities, and other institutions that collects and disseminates information about earthquakes in Ohio.

  8. A generalized geologic map of Mars.

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Masursky, H.; Saunders, R. S.

    1973-01-01

    A geologic map of Mars has been constructed largely on the basis of photographic evidence. Four classes of units are recognized: (1) primitive cratered terrain, (2) sparsely cratered volcanic eolian plains, (3) circular radially symmetric volcanic constructs such as shield volcanoes, domes, and craters, and (4) tectonic erosional units such as chaotic and channel deposits. Grabens are the main structural features; compressional and strike slip features are almost completely absent. Most grabens are part of a set radial to the main volcanic area, Tharsis.

  9. Geology of Brunei deltas, exploration status updated

    SciTech Connect

    Schreurs, J. [Brunei Shell Petroleum Co.Sdn. Bhd., Seria (Brunei Darussalam)

    1997-08-04

    This article summarizes the petroleum geology of Negara Brunei Darussalam, the smallest but oil and gas richest country in Northwest Borneo. The paper describes the exploration history, Brunei geology, structural geology, main hydrocarbon reservoirs, seals, formation pressures, and current exploration.

  10. Tour of Park Geology: Glaciers and Glacial Landforms

    NSDL National Science Digital Library

    This National Park Service (NPS) site provides links to geology fieldnotes about National Parks, National Monuments, and National Recreation Areas having to do with glaciers. Where appropriate links are provided to geology, visitor information, photographs, maps, multimedia resources, related links, and teacher features (resources for teaching geology with National Park examples). This site divides the parks into the following glacier categories: Active alpine glaciation, continental glaciation landforms, alpine glaciation landforms, and Ice age flood landforms (scablands). Some of the parks mentioned include Glacier Bay National Park in Alaska, Acadia National Park in Maine, Lake Roosevelt National Recreation Area in Washington, and many more.

  11. Main Features for the Conceptualization of the Post-Closure Evolution Scenario of the Cigeo LIL-HL Waste Repository - 13105

    SciTech Connect

    Landais, Patrick; Giffaut, Eric; Pepin, Guillaume; Plas, Frederic; Schumacher, S. [Andra, 1-7 rue Jean Monnet, 92298 Chatenay Malabry (France)] [Andra, 1-7 rue Jean Monnet, 92298 Chatenay Malabry (France)

    2013-07-01

    In France, in order to commission the planned geological repository by 2025, a license application for the industrial project of this geological repository called Cigeo (Centre Industriel de Stockage Geologique) must be submitted and reviewed by the competent authorities by 2015. On the basis of its preliminary design set up in 2009 and on the associated requirements for long-term safety, an overall conceptual model has been developed in order to prepare the performance and safety analysis. The Cigeo repository makes use of the passive safety response characteristics of both the engineered and geological barriers that allow: - resisting water ingress, with repository designs favoring the limitation of the water flows; - limiting the release of radionuclides and chemical toxics; - delaying and mitigating the spread of radionuclides and chemical toxics. In order to evaluate the performance of the various elements, a conceptual model of the thermo-hydro-chemico-mechanical (THMC) evolution of the different components of the repository has been designed. It takes stock of a 20 years research effort which allowed data to be obtained from various surface geological campaigns, in-situ experiments in URLs and wastes characterization, and advances in numerical simulation to be utilised. Based on the best available knowledge to date, this conceptual model constitutes a robust basis for the definition and development of the long-term safety scenarios. It also helps identifying the residual uncertainties, and provides guidelines for additional research and system optimizations. (authors)

  12. Geology Fieldnotes: Grand Canyon National Park, Arizona

    NSDL National Science Digital Library

    Visitors can access park geology information, photographs, related links, visitor information, multimedia resources, and resources for teaching geology with National Park examples. The park geology section discusses the Grand Canyon's geologic history, structural geology, and features a question-and-answer section about the canyon. The history of the canyon as a park and environmental issues surrounding it are also discussed. A geologic cross section of the canyon showing the various rock layers is included.

  13. Multi-instrument observations of plasma features in the Arctic ionosphere during the main phase of a geomagnetic storm in December 2006

    NASA Astrophysics Data System (ADS)

    Wu, Ye-wen; Liu, Rui-yuan; Zhang, Bei-chen; Wu, Zhen-sen; Hu, Hong-qiao; Zhang, Shun-rong; Zhang, Qing-he; Liu, Jun-ming; Honary, F.

    2013-12-01

    Arctic ionospheric variations during the main phase of a magnetic storm on 14-15 December, 2006 were investigated to characterize the high energy particle precipitation caused effects, based on multi-instrument observations. These include electron density observations provided by the Global Positioning System (GPS) total electron content (TEC) measurements, European Incoherent Scatter (EISCAT) radar, the radio occultation (RO) from both the CHAMP satellite and the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellite, as well as the ionospheric absorption of cosmic radio noise measured by the Imaging Riometer for Ionospheric Studies (IRIS) at Kilpisjärvi in the northern Finland (69.05°N, 20.79°E). Significant increases in the electron density for these different observations were found in the Arctic ionosphere during the main phase of the magnetic storm. These increase occurred in Scandinavian, Northwest part of Russia and Svalbard (SNRS) region, primarily at an altitude of about 110 km. These results are first reported for the SNRS region, and our study contributes to a more complete description of this space weather event during 14-15 December, 2006. Our observations also provide direct evidence that the stormtime E-layer electron density enhancement (e.g., the sporadic E) can form a nearly dominant portion in the observed TEC increase. These increases were accompanied by the ionospheric absorption enhancement at the altitude of about 90 km. The Y-component of magnetic field to the south of SNRS decreased, indicating strong upward field aligned electric current in the Arctic ionosphere. These features are interpreted as the effect of the high energy electron precipitation during the magnetic storm, which is caused by the sub-storm reflected on AL index and the measurements of IMAGE (International Monitor for Auroral Geomagnetic Effects) chain. The average energy of the precipitation electrons reached to about 10 keV and the boundary of the high energy electron precipitation was also found to move poleward with a speed of about 800 m/s.

  14. Distribution of Trichloroethylene and Geologic Controls on Contaminant Pathways near the Royal River, McKin Superfund Site Area, Gray, Maine

    USGS Publications Warehouse

    Lyford, Forest P.; Flight, L.E.; Stone, Janet Radway; Clifford, Scott

    1999-01-01

    Vapor-diffusion samplers were used in the autumn of 1997 to determine the lateral extent and distribution of concentrations of a trichloroethylene (TCE) plume in the ground-water discharge area near the McKin Superfund Site, Gray, Maine. Analyses of vapor in the samplers identified a plume about 800 feet wide entering the river near Boiling Springs, an area of ground-water discharge on the flood plain of the Royal River. The highest observed concentration of TCE in vapor was in an area of sand boils on the western bank of the river and about 200 feet downstream from Boiling Springs. Previous studies showed that most of the TCE load in the river originated in the area of the sand boils. In general, highest concentrations were observed on the western side of the river on the upgradient side of the plume, but TCE also was detected at numerous locations in the center and eastern bank of the river. The TCE plume discharges to the river where fine-grained glaciomarine sediments of the Presumpscot Formation are absent and where coarse-grained facies of buried glaciomarine fan deposits provide a pathway for ground-water flow. Based on results of analyses of vapor-diffusion samples and other previous studies, the plume appears to pass under and beyond the river near Boiling Springs and along the river for about 300 feet downstream from the sand boils. A coarse-grained, organic-rich layer at the base of the alluvial flood plain sediments is confined by overlying fine-grained alluvial sediments and may provide a conduit for ground-water leaking upward from buried glaciomarine fan deposits.

  15. Evolutionary history of fumitories (subfamily Fumarioideae, Papaveraceae): An old story shaped by the main geological and climatic events in the Northern Hemisphere.

    PubMed

    Pérez-Gutiérrez, Miguel A; Romero-García, Ana T; Fernández, M Carmen; Blanca, G; Salinas-Bonillo, María J; Suárez-Santiago, Víctor N

    2015-07-01

    Fumitories (subfamily Fumarioideae, Papaveraceae) represent, by their wide mainly northern temperate distribution (also present in South Africa) a suitable plant group to use as a model system for studying biogeographical links between floristic regions of the Northern Hemisphere and also the Southern Hemisphere Cape region. However, the phylogeny of the entire Fumarioideae subfamily is not totally known. In this work, we infer a molecular phylogeny of Fumarioideae, which we use to interpret the biogeographical patterns in the subfamily and to establish biogeographical links between floristic regions, such as those suggested by its different inter- and intra-continental disjunctions. The tribe Hypecoeae is the sister group of tribe Fumarieae, this latter holding a basal grade of monotypic or few-species genera with bisymmetric flowers, and a core group, Core Fumarieae, of more specious rich genera with zygomorphic flowers. The biogeographical analysis shows a subfamily that originated in East Asia at the end of the Early Cretaceous. From here, ancestral range expansions followed three different directions, one at the beginning of the Late Cretaceous by the ancestor of tribe Hypecoeae towards central Asia, and two during the Cretaceous-Palaeogene transition towards western North America and Indochina by the ancestor of the tribe Fumarieae. The ancestor of Core Fumarieae expanded its range from East Asia into the Himalayas before to the middle Eocene. The uplifts of the Qinghai-Tibetan Plateau together with the zonal climate pattern of the Palaeogene are suggested to be responsible both for the accelerated diversification rate resulting in the origin of the basal lineages of Core Fumarieae as well as for the westward migration of the ancestor of Fumarieae s.str. into the Irano-Turanian region. From here, this latter group reached South Africa during late Eocene and Mediterranean basin during Oligocene. There were two colonization waves of the Mediterranean following two different routes: a northern route during the early Oligocene by the subtribe Sarcocapninae, probably facilitated by the land bridge resulting of the Mediterranean microplate accretion; and a southern route into North Africa, through the Gomphotherium land bridge, taken by the subtribe Fumariinae between late Oligocene and middle Miocene. PMID:25862377

  16. Structural Geology: Deformation of Rocks

    E-print Network

    Kammer, Thomas

    . · Rocks deform when applied stress exceeds rock strength. Deformation may be ductile flow or brittleStructural Geology: Deformation of Rocks Geology 200 Geology for Environmental Scientists #12;Major of Maine #12;Chevron folds in brittle rocks. An example of angle parallel folding. #12;Angle parallel

  17. Geologic Explorations

    NSDL National Science Digital Library

    Alec Bodzin

    2002-04-01

    Geologic Explorations allows learners to explore a variety of unique geological formations of Utah using Quicktime Virtual Reality (QTVR) panoramas and digital still imagery. Spectacular panoramas and striking images capture Utah's unique geology and invite students to explore and learn interesting facts and concepts central to the study of geology.

  18. Geology Fieldnotes: Great Basin National Park, Nevada

    NSDL National Science Digital Library

    This Great Basin National Park site contains park geology information, park maps, visitor information, and teacher features (educational resources and links for teaching geology using National Park examples). The park geology section discusses the region's biogeography, glacial history, and the Lehman Caves. A park map and a features/relief map of the Great Basin National Park are included.

  19. British Geological Survey: Learning

    NSDL National Science Digital Library

    The British Geological Survey (BGS) has a wealth of information about the earth sciences, and they are quite willing to share it with others. This page contains information and resources for anyone interested in geology for educational or leisure purposes, and it is contained with four sections. First up is "Popular geology", which includes "Britain beneath our feet", an interactive atlas of geology, resources, and land quality. This section also contains graphics about climate change and earthquakes. The second section is titled "Educational resources". Here visitors can ask scientists at the BGS specific questions and they can also download several free posters. The third section is called "Educational news and events" and it features upcoming events at the BGS and links to their free magazine, "Earthwise". The site is rounded out by the fourth section titled "From the BGS Archives". Here visitors can view historic geological photographs and also view field sketches and watercolors by Alexander Henry Green, the celebrated Victorian geologist.

  20. Sanders, J. E., and Merguerian, Charles, 1994c, Glacial geology of Staten Island. The fundamental question pertaining to the Pleistocene features of the New York City

    E-print Network

    Merguerian, Charles

    Sanders, J. E., and Merguerian, Charles, 1994c, Glacial geology of Staten Island. The fundamental-moraine ridge in southern Staten Island prove that ice flowed regionally across Staten Island from NW to SE that on Staten Island are products of at least 3, possibly 4, glacial advances. We regard their ages as

  1. Usefulness of systematic in situ gamma-ray surveys in the radiometric characterization of natural systems with poorly contrasting geological features (examples from NE of Portugal)

    Microsoft Academic Search

    Pedro Duarte; António Mateus; Isabel Paiva; Romão Trindade; Pedro Santos

    2011-01-01

    This paper focuses on the starting point of various studies that are being carried out in two possible locations being considered to host a hypothetical site for a repository for low and intermediate level radioactive waste (LILW) produced in Portugal in compliance with international requirements on the long-term safety of this kind of repository. Previous studies concerning the geology of

  2. Geology Fieldnotes: Kobuk Valley National Park

    NSDL National Science Digital Library

    This feature discusses the geology, landforms, glacial history, soils, and mineral resources of Kobuk Valley National Park. Links are provided to maps, visitor information, a history of gold prospecting in the area, and to related geology and conservation organizations.

  3. Comment on “Sedimentary features of tsunami backwash deposits in a shallow marine Miocene setting, Mejillones Peninsula, northern Chile” by G. Cantalamessa and C. Di Celma [Sedimentary Geology 178 (2005) 259-273

    NASA Astrophysics Data System (ADS)

    Bahlburg, Heinrich; Spiske, Michaela; Weiss, Robert

    2010-05-01

    We discuss the contribution "Sedimentary features of tsunami backwash deposits in a shallow marine Miocene setting, Mejillones Peninsula, northern Chile" [Sedimentary Geology, 178 (2005) 259-273] by Cantalamessa and Di Celma in which coarse clastic deposits of Miocene age near Antofagasta, northern Chile, were interpreted as tsunami backwash deposits. Here we present sedimentological and structural evidence that the sediments in question are debris flow deposits connected to the formation of a small Neogene graben. They represent physically continuous distal subaqueous equivalents of graben flank debris flow alluvial fan breccias, and not tsunami deposits of any kind.

  4. Humboldt River main stem, Nevada

    USGS Publications Warehouse

    Warmath, Eric; Medina, Rose L.

    2001-01-01

    This data set contains the main stem of the Humboldt River as defined by Humboldt Project personnel of the U.S. Geological Survey Nevada District, 2001. The data set was digitized on screen using digital orthophoto quadrangles from 1994.

  5. International Geology

    ERIC Educational Resources Information Center

    Hoover, Linn

    1977-01-01

    Briefly discusses recent international programs in various areas of geology, including land-use problems, coping with geological hazards, and conserving the environment while searching for energy and mineral resources. (MLH)

  6. Environmental Geology

    ERIC Educational Resources Information Center

    Dunn, James R.

    1977-01-01

    Discusses ways that geologic techniques can be used to help evaluate our environment, make economic realities and environmental requirements more compatible, and expand the use of geology in environmental analyses. (MLH)

  7. Archeological Geology

    ERIC Educational Resources Information Center

    Rapp, George

    1977-01-01

    Describes the rapid expansion of archeological geology, especially in the area of archeological excavations, where geologists use dating techniques and knowledge of geological events to interpret archeological sites. (MLH)

  8. Structural Geology

    NSDL National Science Digital Library

    Created by the University of Nebraska-Lincoln, this site describes the basics of structural geology with text and images. The page includes the discussion of stress, strain, strike and dip, faults, folds, mountain building, erosion, economic geology, and environmental geology. This is a nice introduction to the basic topics in geology. Images from the field help to enhance the topics on the site. Instructors can use this resource to help create or simply enhance their curriculum.

  9. Geological Time

    NSDL National Science Digital Library

    "Why do engineers need to know about geologic time?" That question is answered in this resource from the University of Saskatchewan's Department of Civil and Geological Engineering. Provided here is a discussion of the concepts of geological time; relative dating methods, such as correlation; and absolute dating methods, such as radiometric methods. Diagrams and charts are included to demonstrate these complex concepts.

  10. ECOSYSTEM MODELING IN COBSCOOK BAY, MAINE:A SUMMARY, PERSPECTIVE, AND LOOK FORWARD

    EPA Science Inventory

    In the mid-1990s, an interdisciplinary, multi-institutional team of scientists was assembled to address basic issues concerning biological productivity and the unique co-occurrence of many unusual ecological features in Cobscook Bay, Maine. Cobscook Bay is a geologically complex,...

  11. Geological considerations for lunar telescopes

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey

    1988-01-01

    The geological features of the Moon that may be advantageous for astronomical observations are listed and described. The Moon's geologic environment offers wondrous opportunities for astronomy and presents fascinating challenges for engineers designing telescope facilities on the lunar surface. The geologic nature of the stark lunar surface and the Moon's tenuous atmosphere are summarized. The Moon as a stable platform is described as is its atmosphere, surface temperatures, its magnetic field, its regolith, and its crater morphologies.

  12. Recognition of the main geobotanical features along the Bragança mangrove coast (Brazilian Amazon Region) from Landsat TM and RADARSAT-1 data

    Microsoft Academic Search

    Pedro Walfir Martins Souza Filho; Waldir Renato Paradella

    2002-01-01

    Orbital remote sensing data were assessedfor mapping of the main geomorphologicaland vegetation units of the Bragançapeninsula (North Brazil), which belongs toa vast though sparsely mapped mangrovecoast. Wide wetland environmentscharacterize the region with extremevariations in extension, temporalevolution, and spatial complexity. Thiswork was based on different digitalprocessing techniques separately applied toLandsat TM and RADARSAT-1 images. Inaddition, both data were merged on apixel-to-pixel

  13. North Dakota Geological Survey

    NSDL National Science Digital Library

    This is the homepage of the North Dakota Geological Survey. Site materials include information on the state's oil, gas and coal resources, maps, publications, and regulations. The paleontology page features educational articles, information on fossil collecting, articles about fossil exhibits, and information on the state fossil collection. The state GIS hub creates and distributes digital spatial data that conforms to national mapping standards. The teaching tools page includes illustrations and descriptions of rocks and minerals found in the state, as well as information on meteorites and newsletter articles about teaching North Dakota geology. There are also links to landslide maps, surficial geology maps, and links to other survey publications such as reports, bulletins, field studies, other geological and topographic maps, and information on groundwater resources.

  14. Old Geology and New Geology

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 28 May 2003

    Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.

    Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Geologic History of Western US

    NSDL National Science Digital Library

    Ronald Blakey

    This web-site is a presentation showing graphically the Proterozoic and Phanerozoic geologic history of the Southwestern United States. There is a text file providing a brief narrative of the geologic history, which links to map graphics for each period. The graphics contain a scale and have labeled features to better understand what is happening as time progresses.

  16. Geology By Lightplane

    NSDL National Science Digital Library

    Maher, Louis J.

    In 1966, Professor Louis J. Maher of the University of Wisconsin-Madison's Department of Geology and Geophysics piloted a department-owned Cessna over the continental US taking photos for use in his geology courses. As Maher flew, his trusty co-pilot and graduate assistant, Charles Mansfield, snapped the photos. The resulting collection is an assortment of breathtaking images of classic geological features, now available online for noncommercial use by educators (download via FTP). Maher gives us birds-eye views of structural features in Wyoming's Wind River Range, sedimentary strata in Arches National Park and the Grand Canyon, glacial landscapes in Northern Minnesota, and ancient lava flows in Arizona, to name just a few.

  17. The geology of Ganymede

    NASA Technical Reports Server (NTRS)

    Shoemaker, E. M.; Lucchitta, B. K.; Wilhelms, D. E.; Plescia, J. B.; Squyres, S. W.

    1982-01-01

    A broad outline of the geologic history of Ganymede is presented, obtained from a first attempt to map the geology on a global scale and to interpret the characteristics of the observed geologic units. Features of the ancient cratered terrain such as craters and palimpsests, furrows and troughs, are discussed. The grooved terrain is described, including its sulci and cells, and the age relation of these units is considered along with the structure and origin of this terrain. The Gilgamesh Basin and Western Equatorial Basin in the post grooved terrain are treated, as are the bright and dark ray craters and the regolith. The development of all these regions and features is discussed in context. For the regolith, this includes the effect of water migration, sputtering, and thermal annealing. The histories of the ancient cratered terrain, the grooved terrain, and the post grooved terrain are presented.

  18. Geology by Lightplane

    NSDL National Science Digital Library

    Louis J. Maher

    This site is a collection of aerial images of US geological features. Detailed 2000-pixel-wide JPEG versions of these photos (averaging 1MB in size and suitable for video projection or for slides) can be down-loaded from an FTP site. There are also text captions for the photographs.

  19. Soviet geology, 1976

    Microsoft Academic Search

    V. A. Vakhrameyev

    1976-01-01

    The geological history of the Jurassic period shows that the most abrupt change in physiogeographical, and particularly in climatic, conditions occured not at its lower or upper limit but at the boundary between the middle and late epochs. This is shown especially clearly by a study of the lacustral and continental sediments which form such a significant feature of the

  20. USGS Geologic Hazards

    NSDL National Science Digital Library

    The Geologic Hazards section of the US Geological Survey (USGS) conducts research into the causes of geological phenomena such as landslides and earthquakes. The homepage connects visitors to the Geologic Hazards team's three main areas of endeavor. Geomagnetism provides links to the National Geomagnetic Information Center; Magnetic Observatories, Models, and Charts; and the Geomagnetic Information Node, which receives geomagnetic observatory data from around the world. The Landslide group studies the "causes and mechanisms of ground failure" to prevent "long-term losses and casualties." Their section provides links to the program and information center, publications, events, and current projects. The Earthquakes department hosts a wealth of information, including neotectonics, engineering seismology, and paleoseismology. Interactive maps are also provided.

  1. Utah Geology

    NSDL National Science Digital Library

    Utah Geological Survey's Web site, Utah Geology, offers a variety of interesting geological information about the state. Good descriptions, illustrations, and photographs can be accessed on earthquakes and hazards, dinosaurs and fossils, rocks and minerals, oil and energy, and more. For example, the Rocks and Minerals page contains everything from how to stake a mining claim to downloadable summaries of mineral activity in the state. There is quite a bit of information within the site, and anyone interested in geology will find themselves exploring these pages for quite a while.

  2. Searching the Sinus Amoris: Using profiles of geological units, impact and volcanic features to characterize a major terrane interface on the Moon

    Microsoft Academic Search

    P. Clark; S. Joerg; R. De HON

    1994-01-01

    Geochemical profiles of surface units, impact, and volcanic features are studied in detail to determine the underlying structure in an area of extensive mare\\/highland interface, Sinus Amoris. This study region includes and surrounds the northeastern embayment of Mare Tranquillitatis. The concentrations of two major rock-forming elements (Mg and Al), which were derived from the Apollo 15 orbital geochemical measurements, were

  3. North Cascades Geology: Geologic Time

    NSDL National Science Digital Library

    This article describes the period of geologic time spanned by the rocks of the North Cascades area of Washington. Users can access a simplified geologic time scale that provides links to geologic events in the North Cascades region. These include the deposition of various terranes, periods of intrusion and metamorphism, the beginning of the Cascade volcanic arc, and periods of major glaciation. Links to related materials are also provided.

  4. Physical Geology: Idaho Field Trip

    NSDL National Science Digital Library

    Simon Kattenhorn

    This optional field trip is designed to augment the in-class learning experience in introductory physical geology by providing students the opportunity to see firsthand local geological features and understand their context in the long-term tectonic evolution of the western United States. The university is conveniently located in a portion of the American west where a plethora of geological features are readily accessible over a total field trip duration of 6 hours. Over a total of 6 field stops, students are presented with an opportunity to observe features relevant to topics learned in class involving rock types, volcanic features (lava flows and ash fall deposits), faults and folds, mass wasting features, catastrophic flood deposits (Bonneville and Missoula floods), and loess deposits.

  5. MAINE OTRANS

    EPA Science Inventory

    OTRANS represents other transportation features - electric, pipeline, railroad, and telephone lines at 1:24,000 scale. Some New Hampshire and New Brunswick features are also included. Data for this coverage were digitized from USGS 1:24000 scale quadrangle maps by various contra...

  6. Geological gyrocompass

    NASA Astrophysics Data System (ADS)

    McKeown, M. H.; Beason, S. C.

    1988-08-01

    The geological gyrocompass is an accurate, portable instrument useful for geologic mapping and surveying which employs an aircraft gyrocompass, strike reference bars, a pair of sights and levelling devices for horizontally levelling the instrument. A clinometer graduated in degrees indicates the dip of the surface being measured.

  7. Yosemite Geology

    NSDL National Science Digital Library

    The National Park Service maintains the Yosemite National Park Web site and the corresponding Geology page. This Web site gives an overview of the geologic history of the site, tells how the Sierra Nevada range formed, explains the basics of granitic rock, shows how glaciers carved out the canyons, and much more.[JAB

  8. Mapping distribution and thickness of supraglacial debris in the Central Karakoram National Park: main features and implications to model glacier meltwater

    NASA Astrophysics Data System (ADS)

    Minora, Umberto; Mayer, Christoph; Bocchiola, Daniele; D'Agata, Carlo; Maragno, Davide; Lambrecht, Astrid; Vuillermoz, Elisa; smiraglia, claudio; diolaiuti, guglielmina

    2014-05-01

    Supraglacial debris plays a not negligible role in controlling magnitude and rates of buried ice melt (Østrem, 1959; Mattson et al., 1993). Knowledge on rock debris is essential to model ice melt (and consequently meltwater discharge) upon wide glacierized areas, as melt rates are mainly driven by debris thickness variability. This is particularly important for the Pamir-Himalaya-Karakoram area (PHK), where debris-covered glaciers are frequent (Smiraglia et al., 2007; Scherler et al., 2011) and where melt water from glaciers supports agriculture and hydropower production. By means of remote sensing techniques and field data, supraglacial debris can be detected, and then quantified in area and thickness. Supervised classifications of satellite imagery can be used to map debris on glaciers. They use different algorithms to cluster an image based on its pixel values, and Region Of Interests (ROIs) previously selected by the human operator. This can be used to obtain a supraglacial debris mask by which surface extension can be calculated. Moreover, kinetic surface temperature data derived from satellites (such as ASTER and Landsat), can be used to quantify debris thicknesses (Mihalcea et al., 2008). Ground Control Points (GCPs) are essential to validate the obtained debris thicknesses. We took the Central Karakoram National Park (CKNP) as a representative sample for PHK area. The CKNP is 12,000 km2 wide, with more than 700 glaciers, mostly debris covered (Minora et al., 2013). Among those we find some of the widest glaciers of the World (e.g: Baltoro). To improve the knowledge on these glaciers and to better model their melt and water discharge we proceeded as follows. Firstly we ran a Supervised Maximum Likelihood (SML) classification on 2001 and 2010 Landsat images to detect debris presence and distribution. Secondly we analyzed kinetic surface temperature (from Landsat) to map debris depth. This latter attempt took also advantage from field data of debris thickness and surface rock temperatures acquired in the study area since the ablation season 2004 (see Mihalcea et al., 2006; 2008b). A mean debris thickness of ca. 5.6 cm was found, probably greater than the local "critical value" (sensu Mattson et al., 1993). Moreover, our field data indicate a local critical value of about 5 cm, above which supraglacial debris thickness would lower ice melt rates compared to that of bare ice (Mihalcea et al., 2006). These findings suggest that in the CKNP area the abundant and extensive debris coverage may result in an actual reduction of buried ice melt. Moreover, Minora et al. (2013) reported quite stable conditions of glaciers in the CKNP area in the time window 2001-2011. This glacier behavior is consistent with the largely known "Karakoram Anomaly" (Hewitt, 2005) and requires further investigations. Among other possible important factors driving such a unique glacier trend, debris depth and distribution have to be considered. This work was carried out under the umbrella of the PAPRIKA project funded and managed by EvK2CNR Committee. The authors are also grateful to the SEED project (funded by the Pakistani and Italian Governments and managed by EvK2CNR).

  9. Tour of Park Geology: Oldest Rocks

    NSDL National Science Digital Library

    This park geology site provides links to tours of individual National Parks, Monuments, and Recreation Areas with the oldest known rocks. The parks are divided at this site into East and West. Where appropriate, for each park, links are provided to park geology, maps, photographs, geologic research, visitor information, multimedia resources, and teacher features (resources for teaching geology using National Park examples). Parks listed include: Voyaguers National Park, Keweenaw National Historic Park, Lake Meade National Recreation Area, and many more.

  10. Physical Geology: Principles and Perspectives

    NASA Astrophysics Data System (ADS)

    Skehan, James W.

    1984-04-01

    Textbooks on physical geology have proliferated over the past 20 years or more, during which time most fields have undergone a subject matter explosion. The challenge of authoring such a textbook is to accurately summarize the most important factual and theoretical results and to present the material in a pedagogically attractive and meaningful manner. The authors mainly have met that challenge.Basically, I could teach the course quite happily using this book as the text. An attractive feature is that the authors have summarized those aspects o f the science with which I am most familar in a generally acceptable and interesting manner. This includes excellent line drawings and block diagrams calculated to be very helpful to the student. Those chapters dealing with areas of the authors' scientific expertise are understandably stronger and smoother than some others. A useful perspective for the beginning student and teacher is an explicit discussion of geology as a science with a comparison and contrast of methods and results in relation to other fields of science.

  11. Geologic Time

    NSDL National Science Digital Library

    William L. Newman

    1997-01-01

    The Earth is very old -- 4.5 billion years or more -- according to recent estimates. This vast span of time, called geologic time by earth scientists, is difficult to comprehend in the familiar time units of months and years, or even centuries. How then do scientists reckon geologic time, and why do they believe the Earth is so old? A great part of the secret of the Earth's age is locked up in its rocks, and our centuries-old search for the key led to the beginning and nourished the growth of geologic science.

  12. Geologic time

    USGS Publications Warehouse

    Newman, William L.

    2000-01-01

    The Earth is very old 4 1/2 billion years or more according to recent estimates. This vast span of time, called geologic time by earth scientists, is difficult to comprehend in the familiar time units of months and years, or even centuries. How then do scientists reckon geologic time, and why do they believe the Earth is so old? A great part of the secret of the Earth's age is locked up in its rocks, and our centuries-old search for the key led to the beginning and nourished the growth of geologic science.

  13. Geology Fieldnotes: Lake Mead National Recreation Area, Nevada/Arizona

    NSDL National Science Digital Library

    This Lake Mead National Recreation Area site contains park geology information, maps, photographs, visitor information, and teacher features (resources for teaching geology using national park examples). Park Geology is a guided tutorial, covering two billion years of geologic time from the Precambrian through the Cenozoic.

  14. Geology Fieldnotes: Death Valley National Park, California/Nevada

    NSDL National Science Digital Library

    This Death Valley National Park site contains park geology information, park maps, photographs, visitor information, and teacher features (resources for teaching geology using National Park examples). The Park Geology section contains an exaggerated cross-section showing the vertical rise within Death Valley. A link is provided to Death Valley's expanded geology page.

  15. Main Features Virtex-7 690T FPGA

    E-print Network

    Haddadi, Hamed

    by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under · 128MB FLASH The NetFPGA project provides a flexible research and teaching tool ­ permitting of Defense or the U.S. Government. Support for the NetFPGA SUME project has been provided by the following

  16. Main Features of the Caspian Sea Hydrology

    Microsoft Academic Search

    Aleksey N. Kosarev; Valentin S. Tuzhilkin; Andrey G. Kostianoy

    \\u000a The Caspian Sea constantly attracts considerable attention thanks to its natural uniqueness, resource abundance, great historical\\u000a value and vital importance to human societies of the vast Caspian region. In these circumstances, improving theoretical and\\u000a applied knowledge of the sea is indispensable for addressing many complex issues. Specifically, there has been increasing\\u000a environmental concern over expanding extraction of hydrocarbons off and

  17. Geologic features of the sea bottom around a municipal sludge dumpsite near 39 degrees N., 73 degrees W., offshore New Jersey and New York

    USGS Publications Warehouse

    Robb, James M.

    1994-01-01

    The sea-floor of a dumpsite area offshore New York and New Jersey (Deep-water dumpsite 106) was studied using detailed bathymetry, sidescan-sonar images, subbottom profiles, bottom photographs, and bottom-sediment samples. These data show that this continental rise area contains deposits of submarine landslides and pathways of sediment gravity flows. Images of the sea floor obtained with a deep-towed high-resolution sidescan sonar system show offshore-trending furrowed surfaces over parts of the area. If such furrows are old, one might expect them to have been obliterated by sediment resuspension and redeposition due to the mostly gentle contour-parallel bottom currents that are measured in the present day. While most of the sea-floor features were probably formed during Pleistocene or early Holocene (glacial or early post-glacial) times, our information suggests that vigorous present-day episodes of offshore-directed transport may continue to occur, at unknown intervals.

  18. Geological assessing of urban environments with a systematic mapping survey: The 1:5000 urban geological map of Catalonia

    NASA Astrophysics Data System (ADS)

    Vilà, Miquel; Pi, Roser; Cirés, Jordi; de Paz, Ana; Berástegui, Xavier

    2010-05-01

    The ground features of urban areas and the geologic processes that operate on them are, in general, strongly altered from their natural original condition as a result of anthropogenic activities. Assessing the stability of the ground, the flooding areas, and, the health risk as a consequence of soil pollution, are, among others, fundamental topics of urban areas that require a better understanding. The development of systematic urban geological mapping projects provides valuable resources to address these issues. Since 2007, the Institut Geologic de Catalunya (IGC) runs an urban geological mapping project, to provide accurate geologic information of county capitals and towns of more than 10000 inhabitants of Catalonia. The urban zones of 131 towns will be surveyed for this project, totalizing an area of about 2200 km2 to be mapped in 15 years. According to the 2008 census, the 82 % of the population of Catalonia (7.242.458 inhabitants) lives in the areas to be mapped in this project. The mapping project integrates in a GIS environment the following subjects: - Data from pre-existing geotechnical reports, historical geological and topographical maps and, from historical aerial photographs. - Data from available borehole databases. - Geological characterization of outcrops inside the urban network and neighbouring areas. - Geological, chemical and physical characterisation of representative rocks, sediments and soils. - Ortophotographs (0.5 m pixel size) and digital elevation models (5 meter grid size) made from historical aerial photographs, to depict land use changes, artificial deposits and geomorphological elements that are either hidden or destroyed by urban sprawl. - Detailed geological mapping of quaternary sediments, subsurface bedrock and artificial deposits. - Data from subsurface prospection in areas with insufficient or confuse data. - 3D modelling of the main geological surfaces such as the top of the pre-quaternary basement. All the gathered data is harmonised and stored it in a database. The analysis of the database allows to compile and print the 1:5000 scale urban geological map according to the 1:5000 topographic grid of Catalonia. The map is composed by a principal map, geologic cross sections and several complementary maps, charts and tables. Regardless of the geological map units, the principal map also includes the main artificial deposits (such as infilled river valleys and road embankments), very recent or current superficial deposits, contours of outcropping areas, structural data and other relevant information gathered in stations, sampling points, boreholes indicating the thickness of artificial deposits and the depth of the pre-quaternary basement, contour lines of the top of the pre-quaternary basement surface and, water level data. The complementary maps and charts may change depending on the gathered data, the geological features of the area and the urban typology. However, the most representative complementary maps that includes the printed urban map are the quaternary subsurface bedrock map and the isopach map of thickness of quaternary and anthropogenic deposits. The map also includes charts and tables of relevant physical and chemical parameters of the geological materials, harmonised downhole lithological columns from selected boreholes, and, photographs and figures illustrating the geology of the mapped area and how urbanisation has changed the natural environment. The object of this systematic urban mapping survey is to provide a robust database to be used in targeted studies related to urban planning, geoengineering works, soil pollution and other important environmental issues that society should deal in the future.

  19. ReliefSeq: a gene-wise adaptive-K nearest-neighbor feature selection tool for finding gene-gene interactions and main effects in mRNA-Seq gene expression data.

    PubMed

    McKinney, Brett A; White, Bill C; Grill, Diane E; Li, Peter W; Kennedy, Richard B; Poland, Gregory A; Oberg, Ann L

    2013-01-01

    Relief-F is a nonparametric, nearest-neighbor machine learning method that has been successfully used to identify relevant variables that may interact in complex multivariate models to explain phenotypic variation. While several tools have been developed for assessing differential expression in sequence-based transcriptomics, the detection of statistical interactions between transcripts has received less attention in the area of RNA-seq analysis. We describe a new extension and assessment of Relief-F for feature selection in RNA-seq data. The ReliefSeq implementation adapts the number of nearest neighbors (k) for each gene to optimize the Relief-F test statistics (importance scores) for finding both main effects and interactions. We compare this gene-wise adaptive-k (gwak) Relief-F method with standard RNA-seq feature selection tools, such as DESeq and edgeR, and with the popular machine learning method Random Forests. We demonstrate performance on a panel of simulated data that have a range of distributional properties reflected in real mRNA-seq data including multiple transcripts with varying sizes of main effects and interaction effects. For simulated main effects, gwak-Relief-F feature selection performs comparably to standard tools DESeq and edgeR for ranking relevant transcripts. For gene-gene interactions, gwak-Relief-F outperforms all comparison methods at ranking relevant genes in all but the highest fold change/highest signal situations where it performs similarly. The gwak-Relief-F algorithm outperforms Random Forests for detecting relevant genes in all simulation experiments. In addition, Relief-F is comparable to the other methods based on computational time. We also apply ReliefSeq to an RNA-Seq study of smallpox vaccine to identify gene expression changes between vaccinia virus-stimulated and unstimulated samples. ReliefSeq is an attractive tool for inclusion in the suite of tools used for analysis of mRNA-Seq data; it has power to detect both main effects and interaction effects. Software Availability: http://insilico.utulsa.edu/ReliefSeq.php. PMID:24339943

  20. Greater Yellowstone Geology

    NSDL National Science Digital Library

    Mountain Prairie Institute

    This site features a collection of papers and maps about the Yellowstone hotspot by Dr. Ken Pierce of the Northern Rocky Mountain Science Center, an expert in the field. Papers on this site address topics such as Yellowstone glaciation, tracking the hotspot, the Yellowstone plume head, and a seven-day field trip guide to the quaternary geology and ecology of the Greater Yellowstone Ecosystem. Each downloadable paper map is listed with a brief description and a full citation.

  1. Coastal Geological Processes

    NSDL National Science Digital Library

    Coastlines are places of continuous, often dramatic geological activity. They change daily and seasonally, but especially over long time periods. This interactive feature discusses the forces that help shape coastal landforms like cliffs and beaches. Topics include waves, tides, and currents; weathering, erosion, and deposition; and other factors, such as the activity of organisms and human modifications. A background essay and discussion questions are included.

  2. Searching the Sinus Amoris: Using profiles of geological units, impact and volcanic features to characterize a major terrane interface on the Moon

    NASA Technical Reports Server (NTRS)

    Clark, P.; Joerg, S.; Dehon, R.

    1994-01-01

    Geochemical profiles of surface units, impact, and volcanic features are studied in detail to determine the underlying structure in an area of extensive mare/highland interface, Sinus Amoris. This study region includes and surrounds the northeastern embayment of Mare Tranquillitatis. The concentrations of two major rock-forming elements (Mg and Al), which were derived from the Apollo 15 orbital geochemical measurements, were used in this study. Mapped units and deposits associated with craters in the northwestern part of the region tend to have correlated low Mg and Al concentrations, indicating the presence of Potassium (K)-Rare Earth Elements (REE)-Phosphorus (P) (KREEP)-enriched basalt. Found along the northeastern rim of Tranquillitatis were areas with correlated high Mg and Al concentration, indicating the presence of troctolite. Distinctive west/east and north/south trends were observed in the concentrations of Mg and Al, and, by implication, in the distribution of major rock components on the surface. Evidence for a systematic geochemical transition in highland or basin-forming units may be observed here in the form of distinctive differences in chemistry in otherwise similar units in the western and eastern portions of the study region.

  3. Geological Surveys Bureau Browse Area

    NSDL National Science Digital Library

    Offered by the Iowa Geological Survey Bureau, the Browse Area page is a great collection of articles, photos, and maps about the state's geology geared especially to the public. Topics include Age of Dinosaurs in Iowa, Landscape Features, Satellite Image, Field Travels of Early Iowa Geologists, Meteorites in Iowa's History, Oil Exploration, and much more. This is a wonderful example of how government can provide informative and fun sites to the public without going overboard with high-end and complicated Web design.

  4. Upper Cenozoic Geologic Map, Yellowstone Plateau Volcanic Field

    NSDL National Science Digital Library

    Christiansen Robert

    This geologic map shows Tertiary and Quaternary rock formations, volcanic and surficial deposits, faults, contacts, and other geologic features in Yellowstone National Park. The map is freely downloadable as a PDF file.

  5. MAINE HYDROGRAPHY

    EPA Science Inventory

    Hydronet_me24 and Hydropoly_me24 depict Maine's hydrography data, based on 8-digit hydrological unit codes (HUC's) at the 1:24,000 scale. Some New Hampshire and New Brunswick hydrography data are also included. The NHD hydrography data was compiled from previous ArcIn...

  6. Structural Geology

    NASA Astrophysics Data System (ADS)

    Weber, John; Frankel, Kurt L.

    2011-05-01

    Structural geology and continental tectonics were ushered in to the modern quantitative age of geosciences with the arrival of the global plate tectonics paradigm (circa 1968), derived using new data from the oceans' depths, and John Ramsay's 1967 seminal work, Folding and Fracturing of Rocks. Fossen is to be applauded for crafting a unique, high-caliber, and accessible undergraduate textbook on structural geology that faithfully reflects this advance and the subsequent evolution of the discipline. This well-written text draws on Fossen's wealth of professional experience, including his broad and diverse academic research and experience in the petroleum industry. This book is beautifully illustrated, with excellent original color diagrams and with impressive color field photographs that are all keyed to locations and placed into geologic context.

  7. Geological processes and evolution

    USGS Publications Warehouse

    Head, J.W.; Greeley, R.; Golombek, M.P.; Hartmann, W.K.; Hauber, E.; Jaumann, R.; Masson, P.; Neukum, G.; Nyquist, L.E.; Carr, M.H.

    2001-01-01

    Geological mapping and establishment of stratigraphic relationships provides an overview of geological processes operating on Mars and how they have varied in time and space. Impact craters and basins shaped the crust in earliest history and as their importance declined, evidence of extensive regional volcanism emerged during the Late Noachian. Regional volcanism characterized the Early Hesperian and subsequent to that time, volcanism was largely centered at Tharsis and Elysium, continuing until the recent geological past. The Tharsis region appears to have been largely constructed by the Late Noachian, and represents a series of tectonic and volcanic centers. Globally distributed structural features representing contraction characterize the middle Hesperian. Water-related processes involve the formation of valley networks in the Late Noachian and into the Hesperian, an ice sheet at the south pole in the middle Hesperian, and outflow channels and possible standing bodies of water in the northern lowlands in the Late Hesperian and into the Amazonian. A significant part of the present water budget occurs in the present geologically young polar layered terrains. In order to establish more firmly rates of processes, we stress the need to improve the calibration of the absolute timescale, which today is based on crater count systems with substantial uncertainties, along with a sampling of rocks of unknown provenance. Sample return from carefully chosen stratigraphic units could calibrate the existing timescale and vastly improve our knowledge of Martian evolution.

  8. Geologic Time

    NSDL National Science Digital Library

    Timothy Heaton

    This site contains 24 questions on the topic of geologic time, which covers dating techniques and unconformities. This is part of the Principles of Earth Science course at the University of South Dakota. Users submit their answers and are provided immediate feedback.

  9. National Park Service: Tour of Park Geology

    NSDL National Science Digital Library

    The tour of Park geologic resources includes pages specific to individual National Parks, Monuments, Recreation Areas, Preserves, Seacoasts, Reserves, and Recreation Areas. These pages are indexed by park name, state, or by one of the following topics: basin and range, caves, Colorado Plateau, fossils, glaciers, hot springs, human use, mountain building, oldest rocks, plate tectonics, river systems, sand dunes, shoreline geology, or volcanoes. Organization of each of the pages typically follows a NPS template with categories for park geology, maps, photographs, geologic research, related links, visitor information, multimedia, and "teacher features" (educational resources and links for teaching geology with National Park examples.) Common subjects that are addressed at various park sites include: minerals, rocks, fossils, cave and karst systems, coastlines, glaciers, volcanoes, faults, landforms, landslides, structures, fluvial systems, sediments, soils, stratigraphic relations, processes that form or act on geologic features and their chemical compositions, and the history of the planet and its life forms.

  10. Park Geology: Tour of Basin and Range Parks

    NSDL National Science Digital Library

    This site provides links to tours of individual National Parks within the Basin and Range region. Where appropriate for each park, links are provided to park geology, maps, photographs, geologic research, related links, visitor information, multimedia resources, and teacher features. Some of the parks have an expanded geology page that features the geologic time, history, plate tectonics, rocks and minerals, and a virtual field trip of the park. Of particular note is the teacher feature section, which provides educational resources and links for teaching geology with National Park examples.

  11. Geology Fieldnotes: Capitol Reef National Park, Utah

    NSDL National Science Digital Library

    This Capitol Reef National Park site contains park geology information, park maps, photographs, visitor information, and a teacher feature (resources for teaching geology with National Park examples). Geologic data includes descriptions of the Waterpocket Fold, a monocline formed in the Laramide Orogeny and made of sedimentary rock. Also covered is erosion, and details about the Cathedral Valley outcrop of gypsum. This formation is Permian to Cretaceous in age (270-80 million years old).

  12. Quaternary geologic map of Minnesota

    NASA Technical Reports Server (NTRS)

    Goebel, J. E.

    1977-01-01

    The Quaternary Geologic Map of Minnesota is a compilation based both on the unique characteristics of satellite imagery and on the results of previous field investigations, both published and unpublished. The use of satellite imagery has made possible the timely and economical construction of this map. LANDSAT imagery interpretation proved more useful than expected. Most of the geologic units could be identified by extrapolating from specific sites where the geology had been investigated into areas where little was known. The excellent geographic registry coupled with the multi-spectral record of these images served to identify places where the geologic materials responded to their ecological environment and where the ecology responded to the geologic materials. Units were well located on the map at the scale selected for the study. Contacts between till units could be placed with reasonable accuracy. The reference points that were used to project delineations between units (rivers, lakes, hills, roads and other features), which had not been accurately located on early maps, could be accurately located with the help of the imagery. The tonal and color contrasts, the patterns reflecting geologic change and the resolution of the images permitted focusing attention on features which could be represented at the final scale of the map without distraction by other interesting but site-specific details.

  13. Maryland Geological Survey

    NSDL National Science Digital Library

    The Maryland Geological Survey (MGS) provides excellent information about the geology of the Old Line State, along with public reports and updates on various ongoing projects. The homepage features live earthquake data and maps that deal with oyster habitat restoration projects, fact sheets, and new reports on lead concentrations in well water across the state. The Publications area contains dozens of maps (such as that of the "Maryland Gold District") and links to Popular Publications such as "Caves of Maryland" and "Baltimore Building Stones Tour." The Data section is also quite useful, offering a number of informative data sets on sediment distribution in the Chesapeake Bay and Baltimore Harbor. Finally, the Education area contains an "Ask a Geologist" link that's quite useful for getting answers to Earth-based queries.

  14. MAINE BEDROCK SOURCE WATER PROTECTION AREAS

    EPA Science Inventory

    Bedrocksqpa_region_pws is a REGIONS SDE layer of bedrock source water protection areas in Maine with a high, moderate, or low probability of contributing water to community public water supplies. The Maine Drinking Water Program (MEDWP), in cooperation with the Maine Geological S...

  15. Geologic Mapping of Vesta

    NASA Technical Reports Server (NTRS)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; Le Corre, L.; Preusker, F.; Raymond, C. A.; Reddy, V.; Russell, C. T.; Roatsch, T.; Schenk, P. M.

    2014-01-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High- Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits. Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.

  16. Geologic mapping of Vesta

    NASA Astrophysics Data System (ADS)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; Le Corre, L.; Preusker, F.; Raymond, C. A.; Reddy, V.; Russell, C. T.; Roatsch, T.; Schenk, P. M.

    2014-11-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High-Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits. Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.

  17. Vesta: A Geological Overview

    NASA Astrophysics Data System (ADS)

    Jaumann, R.

    2012-04-01

    Observations from the Dawn spacecraft [1] enable the derivation of the asteroid 4Vesta's shape, facilitate mapping of the surface geology, and provide the first evidence for interpreting Vesta's geological evolution. Science data were acquired during the approach to Vesta, a circular polar (Survey) orbit at an altitude of 2700 km providing ~ 230 m/pix camera scale, and during a circular high-altitude mapping orbit (HAMO) at 700 km altitude with a camera scale of ~ 65 m/pixel. Currently Dawn is orbiting Vesta in a low-altitude mapping orbit (LAMO) at 210 km altitude, yielding a global image coverage of ~20 m/pixel at the time of EGU [2,3,4,5]. Geomorphology and distribution of surface features provide evidence for impact cratering, tectonic activity, and regolith and probable volcanic processes. Craters with dark rays, bright rays, and dark rim streaks have been observed, suggesting buried stratigraphy. The largest fresh craters retain a simple bowl-shaped morphology, with depth/diameter ratios roughly comparable to lunar values. The largest crater Rheasilvia, an ~500 km diameter depression at the south pole, includes an incomplete inward facing cuspate scarp and a large central mound surrounded by unusual complex arcuate ridge and groove patterns, and overlies an older ~400 km wide basin. A set of large equatorial troughs is related to these south polar structures. Vesta exhibits rugged topography ranging from -22 km to +19 km relative to a best fit ellipsoidal shape. Vesta's topography has a much greater range in elevation relative to its radius (15%) than do the Moon and Mars (1%) or the Earth (0.3%), but less than highly battered smaller asteroids like Lutetia (40%). This also identifies Vesta as a transitional body between asteroids and planets. The surface of Vesta exhibits very steep topographic slopes that are near the angle of repose. Impacts onto these steep surfaces, followed by slope failure, make resurfacing - due to impacts and their associated gravitational forces and seismic activity - an important geologic process on Vesta that significantly alters the morphology of geologic features and adds to the complexity of its geologic history. In general, Vesta's geology is more like the Moon and rocky planets than other asteroids.

  18. Tethys geology and tectonics revisited

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1991-01-01

    Tethys, a medium sized icy satellite of Saturn, was imaged by both Voyager 1 and 2 spacecraft at sufficiently high resolution to allow some geologic analysis. One fairly complete and several brief descriptions of Tethys' geology have been given. Partial results are given herein of a new analysis of Tethys' geology done as part of a comparative tectonic and cryovolcanic study of the saturnian satellites. A new geologic sketch map of Tethys' north polar area is given. This map is based on a sequence of images transformed to a polar stereographic projection at the same scale. The images present the same area under different illuminations, each of which brings out different features. A new global map is in progress.

  19. USGS - Coastal and Marine Geology Program Internet Map Server

    NSDL National Science Digital Library

    USGS

    This site from the USGS features marine geology resources, including the Coastal and Marine Map Server, the Gloria Mapping Program and data, and the Coastal and Marine Geology Program. Each of these resources presents data, maps, and publications. For example, the GLORIA system was developed specifically to map the morphology and texture of seafloor features in the deep ocean, while the Coastal and Marine Geology program features an interactive map server to view and create maps using available CMGP data sets.

  20. Teaching Geology

    NSDL National Science Digital Library

    The study of geology at the University of Colorado has a long and distinguished history, and in recent years they have also become increasingly interested in providing online teaching resources in the field. Educators will be glad to learn about this site's existence, as they can scroll through a list of interactive demonstrations that can be utilized in the classroom. Specifically, these demonstrations include a shaded interactive topographical map of the western United States, a magnetic field of the Earth, and several animated maps of various National Park sites. The site comes to a compelling conclusion with the inclusion of the geology department's slide library, which can be used without a password or registration.

  1. GEOLOGIC HISTORY AND URANIUM POTENTIAL OF THE BIG JOHN CALDERA, SOUTHERN TUSHAR MOUNTAINS, UTAH.

    USGS Publications Warehouse

    Steven, Thomas A.; Cunningham, Charles G.; Anderson, John J.

    1984-01-01

    The Big John caldera is an obscure subsidence structure on the western flank of the Tushar Mountains, within the Marysvale volcanic field of west-central Utah. The caldera subsided about 23 m. y. ago in response to ash-flow eruptions that deposited the Delano Peak Tuff Member of the Bullion Canyon Volcanics. During caldera development and subsequent filling and erosion, several geologic environments were formed that were favorable for the concentration of uranium; these environments form the focus of this report describing the major geologic features and main mining areas of the Marysvale volcanic field.

  2. Geologic Mapping of the Moon - Copernicus Crater

    NSDL National Science Digital Library

    This is a lesson about the Moon's Copernicus Crater. Learners will use observation to make their own geologic map of the Crater. They then identify crater features in a photogeologic image and use those observations to color their map with the appropriate geologic units.

  3. 2014 Maine Earth Science Day

    USGS Multimedia Gallery

    On October 15, 2014 Maine Earth Science Day was held at the Maine State Museum in Augusta. The USGS was represented by Charlie Culbertson, left, and Nick Waldron, right. This photo was taken as the two were packing up for the day, and shows a main feature of the table, a touch screen display with th...

  4. Geologic map of the Metis Mons quadrangle (V–6), Venus

    USGS Publications Warehouse

    Dohm, James M.; Tanaka, Kenneth L.; Skinner, James A.

    2011-01-01

    The Metis Mons quadrangle (V–6) in the northern hemisphere of Venus (lat 50° to 75° N., long 240° to 300° E.) includes a variety of coronae, large volcanoes, ridge and fracture (structure) belts, tesserae, impact craters, and other volcanic and structural features distributed within a plains setting, affording study of their detailed age relations and evolutionary development. Coronae in particular have magmatic, tectonic, and topographic signatures that indicate complex evolutionary histories. Previously, the geology of the map region has been described either in general or narrowly focused investigations. Based on Venera radar mapping, a 1:15,000,000-scale geologic map of part of the northern hemisphere of Venus included the V–6 map region and identified larger features such as tesserae, smooth and hummocky plains materials, ridge belts, coronae, volcanoes, and impact craters but proposed little relative-age information. Global-scale mapping from Magellan data identified similar features and also determined their mean global ages with crater counts. However, the density of craters on Venus is too low for meaningful relative-age determinations at local to regional scales. Several of the coronae in the map area have been described using Venera data (Stofan and Head, 1990), while Crumpler and others (1992) compiled detailed identification and description of volcanic and tectonic features from Magellan data. The main purpose of this map is to reconstruct the geologic history of the Metis Mons quadrangle at a level of detail commensurate with a scale of 1:5,000,000 using Magellan data. We interpret four partly overlapping stages of geologic activity, which collectively resulted in the formation of tesserae, coronae (oriented along structure belts), plains materials of varying ages, and four large volcanic constructs. Scattered impact craters, small shields and pancake-shaped domes, and isolated flows superpose the tectonically deformed materials and appear to be the most youthful materials in the map region.

  5. Comprehensive geological history of asteroid Vesta

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Williams, D. A.; McSween, H. Y.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2014-07-01

    In this paper, we present a time-stratigraphic scheme and geologic time scale for the asteroid Vesta, based on global geologic mapping and other analyses of NASA Dawn spacecraft data, supplemented with insights gained from laboratory studies of howardite-eucrite-diogenite (HED) meteorites and geophysical modeling. We identify four geologic time periods for Vesta, associated with the formation of major impacts: Pre-Veneneian, Veneneian, Rheasilvian, and Marcian. The Pre-Veneneian period covers the time from the formation of Vesta (a few Myr after the formation of the first solids in the proto-solar disk that took place at ˜4.57 Gyr ago) up to the Veneneia impact event. The Veneneian period covers the time between the Veneneia and Rheasilvia impact events. The Rheasilvian period covers the time between the formation of Rheasilvia and Marcia craters, and the Marcian period covers the time between the formation of Marcia crater until the present. Absolute ages for the boundaries of these periods have been derived by applying two crater chronologies, one based on the current understanding on asteroidal impact rate at Vesta and its evolution over time; the other is based on an extrapolated version of the lunar crater chronology. While the ages and durations of the various periods change considerably depending on which chronology is applied, the relative age of the Veneneia and Rheasilvia impacts is unambiguously determined by superposition relationships, while the formation of the Marcia crater clearly represents the youngest major geologic event on Vesta. Absolute model ages allow us to relate Vesta geologic time periods to key features of the main asteroid belt, such as the formation of the large vestan dynamical family. The formation ages of the Vesta's family can be assessed with independent means, such as by measuring the spreading of the family members in orbital space, and therefore provide a benchmark for both theoretical models of asteroid family evolution and crater chronology. Absolute ages also provide an important framework to interpret impact-generated radiometric ages of HEDs. Our proposed four-period geologic time scale for Vesta is consistent with those developed for other terrestrial bodies, such as the Moon, Mars, Earth, and Mercury, and allow us to place Vesta in the context of major phases of the evolution of the solar system, such as the Late Heavy Bombardment, a period of intense bombardment in the inner solar system triggered by the migration of the giant planets.

  6. Measuring geologic time on Mars

    Microsoft Academic Search

    Peter T. Doran; Steven L. Forman; Neil C. Sturchio; Stephen M. Clifford; Dimitri A. Papanastassiouje

    2000-01-01

    Recent images from Mars show compelling evidence of near-surface flowing water, aeolian activity, slope processes, and ice cap evolution that underscores the dynamic geologic history of the planet. Establishing an accurate chronology for Martian planetary features is critical for addressing fundamental questions about the evolution of the planet's surface and atmosphere and the differentiation of its interior. For example, how

  7. Geology on a Sand Budget

    ERIC Educational Resources Information Center

    Kane, Jacqueline

    2004-01-01

    Earth science teachers know how frustrating it can be to spend hundreds of dollars on three-dimensional (3-D) models of Earth's geologic features, to use the models for only a few class periods. To avoid emptying an already limited science budget, the author states that teachers can use a simple alternative to the expensive 3-D models--sand. She…

  8. Weird Geology: The Devil's Tower

    NSDL National Science Digital Library

    Lee Krystek

    This page features a brief introduction to the several theories about the geological processes that formed Devil's Tower, which rises 1,267 feet above the nearby Belle Fourche River and is still considered a sacred place by some Native American Tribes. Information on climbing the tower as well as images and a cross section are provided.

  9. geology.com

    NSDL National Science Digital Library

    2006-01-01

    This clearinghouse features an extensive selection of maps, imagery, news articles, and other Earth science resources. Highlights include an interactive map of meteor impact structures, an interactive map showing the highest points in the 50 states, and a state-by-state directory of imagery, maps, and links to geological information. There are also listings for imagery for U.S. cities and the continents, a map of the most dangerous volcanoes in the U.S., a mineral identification chart, and information on stream discharge monitoring.

  10. California Geological Survey-Educational Resources Center

    NSDL National Science Digital Library

    2007-01-01

    How do we understand the Earth and its complexity? It's a crucial question in our age. Fortunately, the California Geological Survey is interested in these matters. The Survey's Educational Resources Center site features California geology maps, teachers' aids, and "California Geology 101." This last resource is an interactive index of online geologic field trip guides and related sites. The resources include an exploration of the 1906 San Francisco Earthquake, replies to questions posed by the "Earthquake DOC," and a glossary of rock and mineral terminology. The maps should not be missed either, as they include a fault activity map of California and a detailed map of the Golden State's geomorphic provinces.

  11. Geology Fieldnotes: Fossil Butte National Monument, Wyoming

    NSDL National Science Digital Library

    Fossil Butte National Monument preserves a 50-million year old bed of Eocene limestone that contains one of the richest fossil deposits in the world. Site features include park geology information, photographs of fossils, related links, visitor information, multimedia resources, and resources for teaching geology with National Park examples. The park geology section discusses the Monument's geologic history and fossil beds, focusing on the conditions that created the fossil-rich region and on the history of fossil collection in the area. A map of the Monument is also included.

  12. Geology Fieldnotes: Badlands National Park, South Dakota

    NSDL National Science Digital Library

    Badlands National Park, located in southwestern South Dakota, consists of 244,000 acres of sharply eroded buttes, pinnacles and spires blended with the largest, protected mixed grass prairie in the United States. Features include information on park geology, maps, photographs, visitor information, links to related publications, and lesson plans for teaching geology with National Park examples. The park geology section discusses the Park's geologic history during the Eocene and Oligocene epochs and the rich fossil deposits found there. Maps of the park and the surrounding area are included.

  13. Geology Fieldnotes: Dinosaur National Monument, Colorado / Utah

    NSDL National Science Digital Library

    Dinosaur National Monument preserves a fossil bone deposit containing the bones of hundreds of dinosaurs, which was once enclosed in the sands of an ancient river. Features of the site include park geology information, maps, photographs, related links, visitor information, multimedia resources, and resources for teaching geology with National Park examples. The geology section discusses the park's geologic history and fossil beds. A park map of the Monument is included, and the photo album section contains drawings of some of the dinosaur species found at the Monument's Dinosaur Quarry.

  14. Main Report

    PubMed Central

    2006-01-01

    Background: States vary widely in their use of newborn screening tests, with some mandating screening for as few as three conditions and others mandating as many as 43 conditions, including varying numbers of the 40+ conditions that can be detected by tandem mass spectrometry (MS/MS). There has been no national guidance on the best candidate conditions for newborn screening since the National Academy of Sciences report of 19751 and the United States Congress Office of Technology Assessment report of 1988,2 despite rapid developments since then in genetics, in screening technologies, and in some treatments. Objectives: In 2002, the Maternal and Child Health Bureau (MCHB) of the Health Resources and Services Administration (HRSA) of the United States Department of Health and Human Services (DHHS) commissioned the American College of Medical Genetics (ACMG) to: Conduct an analysis of the scientific literature on the effectiveness of newborn screening.Gather expert opinion to delineate the best evidence for screening for specified conditions and develop recommendations focused on newborn screening, including but not limited to the development of a uniform condition panel.Consider other components of the newborn screening system that are critical to achieving the expected outcomes in those screened. Methods: A group of experts in various areas of subspecialty medicine and primary care, health policy, law, public health, and consumers worked with a steering committee and several expert work groups, using a two-tiered approach to assess and rank conditions. A first step was developing a set of principles to guide the analysis. This was followed by developing criteria by which conditions could be evaluated, and then identifying the conditions to be evaluated. A large and broadly representative group of experts was asked to provide their opinions on the extent to which particular conditions met the selected criteria, relying on supporting evidence and references from the scientific literature. The criteria were distributed among three main categories for each condition: The availability and characteristics of the screening test;The availability and complexity of diagnostic services; andThe availability and efficacy of treatments related to the conditions. A survey process utilizing a data collection instrument was used to gather expert opinion on the conditions in the first tier of the assessment. The data collection format and survey provided the opportunity to quantify expert opinion and to obtain the views of a diverse set of interest groups (necessary due to the subjective nature of some of the criteria). Statistical analysis of data produced a score for each condition, which determined its ranking and initial placement in one of three categories (high scoring, moderately scoring, or low scoring/absence of a newborn screening test). In the second tier of these analyses, the evidence base related to each condition was assessed in depth (e.g., via systematic reviews of reference lists including MedLine, PubMed and others; books; Internet searches; professional guidelines; clinical evidence; and cost/economic evidence and modeling). The fact sheets reflecting these analyses were evaluated by at least two acknowledged experts for each condition. These experts assessed the data and the associated references related to each criterion and provided corrections where appropriate, assigned a value to the level of evidence and the quality of the studies that established the evidence base, and determined whether there were significant variances from the survey data. Survey results were subsequently realigned with the evidence obtained from the scientific literature during the second-tier analysis for all objective criteria, based on input from at least three acknowledged experts in each condition. The information from these two tiers of assessment was then considered with regard to the overriding principles and other technology or condition-specific recommendations. On the basis of this information, conditions were assigned to one of thr

  15. The Geology of Callisto

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.

    1995-01-01

    The geology of Callisto is not boring. Although cratered terrain dominates Callisto (a key end-member of the Jovian satellite system), a number of more interesting features are apparent. Cratered terrain is broken into irregular map-able bright and dark subunits that vary in albedo by a factor of 2, and several relatively smooth units are depleted of small craters. Some of these areas may have been volcanically resurfaced. Lineaments, including parallel and radial sets, may be evidence for early global tectonism. Frost deposition occurs in cold traps, and impact scars have formed from tidally disrupted comets. Geologic evidence suggests that Callisto does have a chemically differentiated crust. Central pit and central dome craters and palimpsests are common. The preferred interpretation is that a relatively ice-rich material, at depths of 5 km or more, has been mobilized during impact and exposed as domes or palimpsests. The close similarity in crater morphologies and dimensions indicates that the outermost 10 km or so of Callisto may be as differentiated as on Ganymede. The geology of cratered terrain on Callisto is simpler than that of cratered terrain on Ganymede, however. Orbital evolution and tidal heating may provide the answer to the riddle of why Callisto and Ganymede are so different (Malhotra, 1991). We should expect a few surprises and begins to answer some fundamental questions when Callisto is observed by Galileo in late 1996.

  16. Geologic Time

    NSDL National Science Digital Library

    This Classroom Connectors lesson plan discusses the characteristics of geologic time, including the law of superposition, fossil preservation, casts and molds, and various events through the history of the Earth. The site provides goals, objectives, an outline, time required, materials, activities, and closure ideas for the lesson. The Classroom Connectors address content with an activity approach while incorporating themes necessary to raise the activity to a higher cognition level. The major motivation is to employ instructional strategies that bring the students physically and mentally into touch with the science they are studying.

  17. Geology. Grade 6. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Anchorage School District, AK.

    This resource book introduces sixth-grade children to the environment by studying rocks and other geological features. Nine lessons are provided on a variety of topics including: (1) geologic processes; (2) mountain building; (3) weathering; (4) geologic history and time; (5) plate tectonics; (6) rocks and minerals; (7) mineral properties; (8)…

  18. Geologic Heritage in the National Parks

    NSDL National Science Digital Library

    2013-03-22

    What is geologic heritage, you ask? In short, it "encompasses the significant geologic features, landforms, and landscapes characteristic of our Nation." The National Park Service has a special program to document these sites and to provide the public with resources about these unique destinations. The materials here are divided into four featured programs: Fossil Resources, Geologic Heritage Conservation, Park Geology Tour, and Cave and Karst Resources. Using the Park Geology Tour, visitors can search through thematic areas such as glaciers, fossils, and plate tectonics to find highlights from a vast array of National Park units. The Cave and Karst Resources program brings together resources on some of the over 4,900 caves in the National Park system, along with detailed photo galleries, newsletters, and brochures. Finally, under Fossil Resources visitors can find information about National Fossil Day and even helpful lesson plans for teachers.

  19. Illinois State Geological Survey

    NSDL National Science Digital Library

    The Illinois State Geological Survey (ISGS) homepage provides information on geologic mapping, earthquakes, fossils, groundwater, wetlands, glacial geology, bedrock geology, and Lake Michigan geology. Educational materials include field trip guides, short publications on Illinois geology for students and teachers, online tours, single-page maps, and a geologic column. Other materials include databases and collections of GIS data, well records, drill cores, and mining information; a bibliography of Illinois geology; online maps and data; and information on water and land use, resource development, and geologic hazards.

  20. Multidisciplinary analysis of Skylab photography for highway engineering purposes. [Maine

    NASA Technical Reports Server (NTRS)

    Stoeckeler, E. G.; Woodman, R. G. (principal investigators); Farrell, R. S.

    1975-01-01

    The author has identified the following significant results. The greatly increased resolution of ground features by Skylab as compared with LANDSAT is considered to be best in the S190B high resolution film, followed by S190A camera stations 4, 5, and 6 respectfully. Results of the study of vegetation damage sites using data derived from S190A film were disappointing. The major cause of detection problems is the graininess of the CIR film. Good results were achieved for the hydrology-land use study. Both camera systems gave better agreement with the ground truth than did LANDSAT imagery. Surficial geology and glacial landform areas were clearly visible in single scenes. Several previously unmapped or unknown features were detected, especially in eastern coastal Maine.

  1. Geology Fieldnotes: Yellowstone National Park, Wyoming/Idaho/Montana

    NSDL National Science Digital Library

    This Yellowstone National Park site contains park geology information, photographs, related links, visitor information, multimedia resources, and teacher features (resources for teaching geology with National Park examples). The park geology section discusses the Park's geologic history, structural geology, and describes many of the geologic sites and wildlife found in the park. It describes the sites found on the routes from Old Faithful to Mammoth Springs (East Thumb, Old Faithful, Midway, Lower, and Norris geysers, geyser basins, Gibbon Falls), Mammoth Springs to Tower Junction and the Canyon (Undine Falls, Lava Creek, Lamar Valley, Hayden Valley), and at the Yellowstone Lake area (West Thumb and Grant Village).

  2. Geology Fieldnotes: Carlsbad Caverns National Park, New Mexico

    NSDL National Science Digital Library

    Carlsbad Caverns National Park has been designated as a world heritage site because of its unique and surprising geology. Site features include park geology information, maps, photographs, related links, and visitor information. The park geology section discusses the caverns' geologic history, mineral formations, and preservation. The maps section includes a map of the Carlsbad Caverns National Park itself and a link to a map of the surrounding area.

  3. Geological Time Scale

    NSDL National Science Digital Library

    This document describes how geologic time is approached in discussions of geologic topics. The uses of relative time and absolute time are compared, and a geologic time scale is provided to represent both concepts. References are provided.

  4. Geologic Technician New Curriculum

    ERIC Educational Resources Information Center

    Karp, Stanley E.

    1970-01-01

    Describes a developing two-year geologic technician program at Bakersfield College in which a student may major in five areas - geologic drafting, land and legal, geologic assistant, engineering or paleontology. (RR)

  5. Geology of Wisconsin

    NSDL National Science Digital Library

    Steven Dutch

    1997-09-10

    This site contains geologic maps of Wisconsin including relief and topography maps; maps of the bedrock geology and elevation, Pleistocene geology, thickness of unconsolidated deposits, and soils; and atlases of geologic history. There is information on: rock types, Paleozoic formations, and the Pleistocene and Precambrian history of Wisconsin; how to obtain a geologic map of personal property; the Niagara Escarpment; castellated mounds; geologic field localities; and unusual weather events in Wisconsin. There is also a data table on earthquakes in Wisconsin.

  6. Preliminary Geologic Map of Newberry Volcano, Oregon

    NASA Astrophysics Data System (ADS)

    Donnelly-Nolan, J. M.; Ramsey, D. W.; Jensen, R. A.; Champion, D. E.; Calvert, A. T.

    2010-12-01

    The late Pleistocene and Holocene rear-arc Newberry Volcano is located in central Oregon east of the Cascades arc axis. Total area covered by the broad, shield-shaped edifice and its accompanying lava field is about 3,200 square kilometers, encompassing all or part of 38 U.S.G.S. 1:24,000-scale quadrangles. Distance from the northernmost extent of lava flows to the southernmost is about 115 km; east-west maximum width is less than 50 km. A printed version of the preliminary map at its intended publication scale of 1:50,000 is 8 ft high by 4 ft wide. More than 200 units have been identified so far, each typically consisting of the lava flow(s) and accompanying vent(s) that represent single eruptive episodes, some of which extend 10’s of kilometers across the edifice. Vents are commonly aligned north-northwest to north-northeast, reflecting a strong regional tectonic influence. The largest individual units on the map are basaltic, some extending nearly 50 km to the north through the cities of Bend and Redmond from vents low on the northern flank of the volcano. The oldest and most distal of the basalts is dated at about 350 ka. Silicic lava flows and domes are confined to the main edifice of the volcano; the youngest rhyolite flows are found within Newberry Caldera, including the rhyolitic Big Obsidian Flow, the youngest flow at Newberry Volcano (~1,300 yr B.P.). The oldest known rhyolite dome is dated at about 400 ka. Andesite units (those with silica contents between 57% and 63%) are the least common, with only 13 recognized to date. The present 6.5 by 8 km caldera formed about 75 ka with the eruption of compositionally-zoned rhyolite to basaltic andesite ash-flow tuff. Older widespread silicic ash-flow tuffs imply previous caldera collapses. Approximately 20 eruptions have occurred at Newberry since ice melted off the volcano in latest Pleistocene time. The mapping is being digitally compiled as a spatial geodatabase in ArcGIS. Within the geodatabase, feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The geodatabase can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. Map colors are being used to indicate compositions. Some map patterns have been added to distinguish the youngest lavas and the ash-flow tuffs. Geodatabase information can be used to better understand the evolution, growth, and potential hazards of the volcano.

  7. Geologic Mapping on Mars

    NSDL National Science Digital Library

    Germari De Villiers

    This lab is part of a Lunar and Planetary Geology course offered to both geology and non-geology majors, and it involves basic geological mapping of an area within the Tyrrhena Patera region on Mars. Students are encouraged to work in groups to prepare a geological map from a photomosaic map and to interpret the geologic stratigraphy from a geological map of the greater area. This activity reinforces mapping skills as well as group work skills, and aims to teach students more about Martian stratigraphy and geology through a hands-on activity.

  8. MAINE 1:24,000 HYDROLOGY POLYGONS

    EPA Science Inventory

    The Maine 1:24,000 Hydrology Polygons SDE feature class depicts double line river features, single line streams, pond, lake and coastal outlines in Maine from USGS 1:24,000 scale quadrangles. Some New Hampshire and New Brunswick features are also included. Codes are included to ...

  9. Urban geological mapping: Geotechnical data analysis for rational development planning

    Microsoft Academic Search

    Moufida El May; Mahmoud Dlala; Ismail Chenini

    2010-01-01

    Urban geology provides information on urban geologic environments as a scientific basis for planners and engineers for rational land use planning and urban development. Such mapping can be classified in terms of purpose, content and scale. In this study, procedure for preparation of engineering geological mapping in Tunis City (Tunisia) is given, as a case study. The main restricting factors

  10. Colorado Geological Survey

    NSDL National Science Digital Library

    The Colorado Geological Survey (CGS) is an agency of state government within the Department of Natural Resources whose mission is to help reduce the impact of geologic hazards on the citizens of Colorado, to promote the responsible economic development of mineral and mineral fuel resources, to provide geologic insight into water resources, and to provide geologic advice and information to a variety of constituencies. This site contains extensive information about Colorado geology such as maps, a geologic time scale for the state, program information, and state field trip information. This site hosts the Avalanche Information Center which contains avalanche forecasting and education center details. Publications report on geologic hazards, land use, environmental geology, mineral resources, oil, gas, coal, geologic mapping and earthquake information for the state. There are online editions of RockTalk, which is a quarterly newsletter published by the Colorado Geological Survey dealing with all aspects of geology throughout the state of Colorado. Links are provided for more resources.

  11. Geologic Map of the Northern Hemisphere of Vesta

    NASA Astrophysics Data System (ADS)

    Hiesinger, Harald; Ruesch, Ottaviano; Blewett, Dave T.; Buczkowski, Debra L.; Scully, Jennifer; Williams, Dave A.; Aileen Yingst, R.; Russell, Chris T.; Raymond, Carol A.

    2013-04-01

    For more than a year, the NASA Dawn mission acquired Framing Camera (FC) images from orbit around Vesta. The surface of the asteroid was completely imaged [1] before Dawn left for its next target, the asteroid Ceres. In an early phase of the mission, the southern and equatorial regions were imaged, allowing the production of several geologic quadrangle maps [2]. During the second High Altitude Mapping Orbit (HAMO-2), the northern hemisphere became illuminated and visible. Here we present the first geologic map of the northern vestan hemisphere, from 21°N to 85°N, derived mainly from HAMO-2 observations. Detailed studies of specific geologic features within this hemisphere are presented elsewhere [e.g., 3,4]. For our geologic map we used high-resolution FC images [5] with ~20 m/pixel from the Low Altitude Mapping Orbit (LAMO), which unfortunately only cover the southern part of the study area (21°N to 45°N). For areas farther north, LAMO images are supplemented with HAMO-2 images, which have a pixel scale of about 70 m/pixel. During the departure phase, images of the north pole area with even lower spatial resolutions were acquired. Due to observational constraints, considerable shadowing is present north of 75°. From these data, an albedo mosaic and a stereo-photogrammetric digital terrain model [6] was produced, which serve as basis for our geologic map. For the geologic mapping at a scale of 1:500,000, all data were incorporated into a Geographic Information System (ArcGIS). We have identified several geologic units within the study area, including cratered highland material (ch) and the Saturnalia Formation (Sf), which is characterized by large-scale ridges and troughs, presumably associated with the south polar Veneneia impact [7]. In addition, we mapped undifferentiated crater material (uc), discontinuous ejecta material (dem), and dark/bright crater material and dark/bright crater ray material (dc/bc and dcr/bcr). We will present a detailed description of the geologic units and their relative stratigraphy [8]. References: [1] Russell C. T. et al. (2012) GSA Ann. Meet., 152-1. [2] Yingst R. A. et al. (2012) EGU, Gen. Ass., 6225. [3] Blewett D. T. et al. (2012) GSA Ann. Meet., 152-9. [4] Scully J. (2012) DPS Meet. 44, #207.08. [5] Sierks H. et al. (2011) Space Sci Rev. [6] Preusker et al. (2012) LPSC 43, #2012. [7] Jaumann et al. (2012) Science Vol. 336, pp. 687-690. [8] Hiesinger H. et al. (2013) LPSC 44, #2582.

  12. Windows on Maine

    NSDL National Science Digital Library

    Created with funds provided by the Institute of Museum and Library Services (IMLS), Windows on Maine contains interesting and informative programs and video clips from Maine Public Broadcasting and other partners. On their homepage, visitors can use their interactive map and timeline to locate video clips of interest, and they can also search the entire collection for specific items. Visitors can also use the subject category menu to look over 25 different headings, including "earth sciences", "land disputes", and "Penobscot tribe". The map feature is a real pip, and visitors can customize their search by location and date, and it's a great way to learn about different regions, including Aroostook County (also known as "the County") and Downeast. Also, many of the videos also have additional resources attached to them, such as railroad timetables, historic photographs, and so on.

  13. Geologic Maps and Mapping

    NSDL National Science Digital Library

    This portal provides access to resources on geologic mapping, and to sources of geologic maps. There is an introduction to geologic mapping, which summarizes its principles and practices, and a history of United States Geological Survey (USGS) mapping activities from 1879 to the present, as well as links to papers on the values and hazards associated with geologic maps and mapping. Online sources of maps include the USGS Geologic Map Database, other federal map products (FEDMAP), state geological survey products (STATEMAP), and university map products (EDMAP).

  14. Tennessee Division of Geology

    NSDL National Science Digital Library

    This is the homepage of the Geology Division of the Tennessee Department of Environment and Conservation. It provides information on the division's programs, including geologic hazards research, public service, education programs, basic and applied research on geology and mineral resources, publication of geologic information, permitting of oil and gas wells, and regulation of Tennessee's oil and gas industry. Materials include a catalog of publications, maps, geologic bulletins, and the Public Information series of pamphlets; the Geology Division Newsletter; and information on the state's mineral industry. There is also a section on the Gray Fossil Site, an unusual assemblage of fossils and sedimentary geology encountered during road construction near the town of Gray, Tenessee.

  15. Petroleum geology of Tunisia

    SciTech Connect

    Burollet, P.F. (CIFEG, Paris (France)); Ferjami, A.B.; Mejri, F. (ETAP, Tunis (Tunisia))

    1990-05-01

    Recent discoveries and important oil shows have proven the existence of hydrocarbons in newly identified depocenters and reservoirs. In general, except for some areas around the producing fields, Tunisia is largely underdrilled. The national company ETAP has decided to release data and to publish a synthesis on the petroleum geology of Tunisia. The geology of Tunisia provides a fine example of the contrast between Alpine folding, which typifies northern Tunisia and the African craton area of the Saharan part. Eastern Tunisia corresponds to an unstable platform forming plains or low hills and extending eastwards to the shallow Pelagian Sea. There are a wide variety of basins: central and northern Tunisia represents a front basin the Saharan Ghadames basin or the Chott trough are sag basins; the Gulf of Gabes was formed as a distension margin the Gulf of Hammamet is a composite basin and several transversal grabens cut across the country, including offshore, and are rift-type basins. All these features are known to be oil prolific throughout the world. Two large fields and many modest-size pools are known in Tunisia. Oil and gas fields in the surrounding countries, namely the Saharan fields of Algeria and Libya the large Bouri field offshore Tripolitania and discoveries in the Italian part of the Straits of Sicily, suggest a corresponding potential in Tunisia. Exposed paleogeographic and structural maps, balanced sections, and examples of fields and traps will support an optimistic evaluation of the future oil exploration in Tunisia.

  16. Vermont Geological Survey

    NSDL National Science Digital Library

    The Vermont Geological Survey, also known as the Division of Geology and Mineral Resources in the Department of Environmental Conservation, conducts surveys and research relating to the geology, mineral resources and topography of the State. This site provides details about the states geology with a downloadable state geologic map and key, state rock information, gold in Vermont, fossils found in the state, bedrock mapping details, stream geomorphology, the Champlain thrust fault, earthquakes, radioactive waste and links for additional information.

  17. Geology Fieldnotes: Theodore Roosevelt National Park, North Dakota

    NSDL National Science Digital Library

    This Theodore Roosevelt National Park site contains park geology information, park maps, photographs, related links, visitor information, and teacher features (resources for teaching geology with National Park examples). The park geology section discusses the Park's geologic history and the region's role in shaping Theodore Roosevelt's conservation efforts while he was President. The section also contains a link to information on the geology of Theodore Roosevelt National Park. The park maps section contains an area map as well as two maps detailing the North and South Units of the Park.

  18. The West Virginia Geological and Economic Survey (WVGES)

    NSDL National Science Digital Library

    This site includes materials on geology, coal and petroleum resources, industrial minerals, geologic hazards, ground water, topographic and geologic maps, education, and earth science. Teacher education materials include rock camps and telecourses. Special features include popular geology pages and frequently-asked-questions about geology and resources; updates about new museum specimens, flood and landslide information for homeowners, documents on mountaintop removal mining materials, and coal resource and mapping project information. Consultations, maps, publications, selected database items, and copies of documents are available at modest cost.

  19. Relief and geology of the north polar region of the planet Venus

    NASA Technical Reports Server (NTRS)

    Kuzmin, R. O.; Burba, G. A.; Shashkina, V. P.; Bogomolov, A. F.; Zherikhin, N. V.; Skrypnik, G. I.; Kudrin, L. V.; Bergman, M. Y.; Rzhiga, O. N.; Sidorenko, A. I.

    1986-01-01

    Description of topographic features is given for the North polar region of the planet Venus. Principal geomorphic types of terrain are characterized as well as their geologic relations. Relative ages of geologic units in Venus North polar region are discussed.

  20. Gulf of Maine Strategic Regional Ocean Science Plan

    E-print Network

    Gulf of Maine Strategic Regional Ocean Science Plan Gulf of Maine Regional Ocean Science Council 2009 #12;Cover image courtesy of Gulf of Maine Census Program, based on data from the US Geological Survey #12;Editor and Compiler Judith Pederson, MIT Sea Grant College Program Gulf of Maine Regional

  1. Mount Apatite Park, Auburn, Maine

    NSDL National Science Digital Library

    This guide discusses the geology, mineralogy, and mineral collecting opportunities of the Mount Apatite quarries at Auburn, Maine. Topics include the history and occurrence of the granite pegmatites, which contain collectible specimens of apatite, tourmaline, lepidolite, and other minerals; the history of glaciation in the area; and the history of the mining industry in Auburn, an important producer of commercial feldspar in the early 1900s. There is also information for mineral collectors, including permission and access, directions, and information on the exposures and how to extract specimens from them. References and links to additonal information are included.

  2. Bald Mountain, Washington Plantation, Maine

    NSDL National Science Digital Library

    This guide provides information on the geology of Bald Mountain, an outstanding example of an unvegetated mountain summit in western Maine. Topics include the petrology of the metamorphic rocks exposed on the mountain (layered quartzite and schist), which preserve evidence of their sedimentary origin (graded bedding, cross-bedding). There is also information on the glacial history of the area, as indicated by the presence of glacial striations and erratics. For visitors, there is information on permission and access, directions, sampling information, and activities. References are included.

  3. Glossary of Geologic Terms

    NSDL National Science Digital Library

    This page from Iowa State University presents a general glossary of geologic terms. The site would be a good reference for geology coursework. This glossary of geologic terms is based on the glossary in Earth: An Introduction to Geologic Change, by S. Judson and S.M. Richardson (Englewood Cliffs, NJ, Prentice Hall, 1995). Where possible, definitions conform generally, and in some cases specifically, to definitions given in Robert L Bates and Julia A Jackson (editors), Glossary of Geology, 3rd ed., American Geological Institute, Alexandria, Virginia, 1987.

  4. Principles of Historical Geology Geology 331

    E-print Network

    Kammer, Thomas

    of a valley can be correlated. · This principle is used to trace coal seams from one mountain to the next in West Virginia. #12;Original Lateral Continuity #12;Geology Field Camp in the Badlands of South Dakota Rocks #12;James Hutton, 18th Century founder of Geology #12;Siccar Point, Scotland, where Hutton

  5. A generalized geologic map of Mars

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Masursky, H.; Saunders, R. S.

    1973-01-01

    A generalized geologic map of Mars has been constructed largely on the basis of differences in the topography of the surface. A number of topographic features on Mars whose form is highly diagnostic of their origin are shown. Of particular note are the shield volcanoes and lava plains. In some areas, the original features have been considerably modified by subsequent erosional and tectonic processes. These have not, however, resulted in homogenization of the planet's surface, but rather have emphasized its variegated character by leaving a characteristic imprint in specific areas. The topography of the planet, therefore, lends itself well to remote geologic interpretation.

  6. Geology and hydrocarbon potential of Tunisia basins

    Microsoft Academic Search

    A. Ben Ferjani; A. Chine

    1988-01-01

    In Tunisia, hydrocarbon deposits have been discovered in most sedimentary rocks dating from the Paleozoic to the Tertiary. Geologically, Tunisia is subdivided in two main areas: (1) the south, with the stable Saharan platform, where Paleozoic and Triassic sandstones constitute the main petroleum objectives, and (2) the north, which includes the Tertiary and Mesozoic mobile sedimentary basins affected by tectonic

  7. Geologic investigations

    SciTech Connect

    Orkild, P.P. [Geological Survey, Denver, CO (USA); Baldwin, M.J.; Townsend, D.R. [Fenix and Scisson, Inc., Mercury, NV (USA)

    1983-12-31

    The Climax stock is a composite granitic intrusive of Cretaceous age, composed of quartz monzonite and granodiorite, which intrudes rocks of Paleozoic and Precambrian age. Tertiary volcanic rocks, consisting of ash-flow and ash-fall tuffs, and tuffaceous sedimentary rocks overlie the sedimentary rocks and the stock. Erosion has removed much of the Tertiary volcanic rocks. Hydrothermal alteration of quartz monzonite and granodiorite is found mainly along joints and faults and varies from location to location. The Paleozoic carbonate rocks have been thermally and metasomatically altered to marble and tactite as much as 457 m (1500 ft) from the contact with the stock, although minor discontinuous metasomatic effects are noted in all rocks out to 914 m (3000 ft). Three major faults which define the Climax area structurally are the Tippinip, Boundary and Yucca faults. North of the junction of the Boundary and Yucca faults, the faults are collectively referred to as the Butte fault. The dominant joint sets and their average attitudes are N 32{degrees} W, 22{degrees} NE; N 60{degrees} W, vertical and N 35{degrees} E, vertical. Joints in outcrop are weathered and generally open, but in subsurface, the joints are commonly filled and healed with secondary minerals. 12 refs., 6 figs., 1 tab.

  8. Utah Geological Survey: Teaching Geology Resources

    NSDL National Science Digital Library

    From Arches National Park to the towering cliffs at Castle Rock Campground, Utah has some remarkable geology on display. The Utah Geological Survey decided to draw on these fantastic "outdoor laboratories" and create a set of resources designed for science educators. While some of the resources are geared towards users in Utah, many of the sections contain helpful overviews that will help all educators remain on a steady foundation of geologic knowledge. One key area on the site is the "Earthquakes & Geologic Hazards" section. Here, visitors can find well-composed and straight forward summaries on topics like liquefaction, ground cracks, and fault lines. Moving on to the "Teacher Resources" area, visitors will find the delightful "Glad You Asked" articles and the very useful "Teacher's Corner" column which provides information on reading a stone wall and geologic stretching.

  9. GSA Geologic Time Scale

    NSDL National Science Digital Library

    1999-01-01

    This Geological Society of America (GSA) site contains a detailed geologic time scale as an educational resource. It may be downloaded to a larger size, and includes all Eras, Eons, Periods, Epochs and ages as well as magnetic polarity information.

  10. Geophysics & Geology Inspected.

    ERIC Educational Resources Information Center

    Neale, E. R. W.

    1981-01-01

    Summarizes findings of a recently published report of the Canadian Geoscience Council, which includes the following topics regarding college geology: facilities; teaching; undergraduate enrollments; postgraduate enrollments; geologic research; and integration of Canadian geoscience with other countries. (CS)

  11. Geologic spatial analysis

    SciTech Connect

    Thiessen, R.L.; Eliason, J.R.

    1989-01-01

    This report describes the development of geologic spatial analysis research which focuses on conducting comprehensive three-dimensional analysis of regions using geologic data sets that can be referenced by latitude, longitude, and elevation/depth. (CBS)

  12. 3D reconstruction of complex geological bodies: Examples from the Alps

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Francesca, Salvi; Stefano, Zanchetta; Simone, Sterlacchini; Graziano, Guerra

    2009-01-01

    Cartographic geological and structural data collected in the field and managed by Geographic Information Systems (GIS) technology can be used for 3D reconstruction of complex geological bodies. Using a link between GIS tools and gOcad, stratigraphic and tectonic surfaces can be reconstructed taking into account any geometrical constraint derived from field observations. Complex surfaces can be reconstructed using large data sets analysed by suitable geometrical techniques. Three main typologies of geometric features and related attributes are exported from a GIS-geodatabase: (1) topographic data as points from a digital elevation model; (2) stratigraphic and tectonic boundaries, and linear features as 2D polylines; (3) structural data as points. After having imported the available information into gOcad, the following steps should be performed: (1) construction of the topographic surface by interpolation of points; (2) 3D mapping of the linear geological boundaries and linear features by vertical projection on the reconstructed topographic surface; (3) definition of geometrical constraints from planar and linear outcrop data; (4) construction of a network of cross-sections based on field observations and geometrical constraints; (5) creation of 3D surfaces, closed volumes and grids from the constructed objects. Three examples of the reconstruction of complex geological bodies from the Italian Alps are presented here. The methodology demonstrates that although only outcrop data were available, 3D modelling has allows the checking of the geometrical consistency of the interpretative 2D sections and of the field geology, through a 3D visualisation of geometrical models. Application of a 3D geometrical model to the case studies can be very useful in geomechanical modelling for slope-stability or resource evaluation.

  13. South Dakota Geological Survey

    NSDL National Science Digital Library

    The mission of the geological survey is to conduct geologic studies, hydrologic studies, and research, and to collect, correlate, preserve, interpret, and disseminate information, leading to a better understanding of the geology and hydrology of South Dakota. Information includes maps of relief, geology, ground water, and earthquakes; projects such as well testing, hydrology, and aquifers; and searchable databases, such as lithologic logs, digital base, and water quality. Links are provided for more information.

  14. South Carolina Geological Survey

    NSDL National Science Digital Library

    The South Carolina Geological Survey (SCGS) homepage contains information about state mapping, education and outreach programs, and recent news. For educators, there is the Earth Science education series of publications which includes presentations and page-size graphics on such topics as earthquakes, plate tectonics, geologic time, fossils, and others. Other materials include information on mineral resources, links to organizations in and about South Carolina geology, the South Carolina core repository, the Geologic Map of South Carolina, and others.

  15. Iowa Geological Survey Bureau

    NSDL National Science Digital Library

    The Iowa Geological Survey Bureau (GSB) homepage contains: general information about the geology of Iowa; the Natural Resources Geographic Information System, which is a collection of databases on geology and water wells; and information about GSB staff, geologic studies, water monitoring programs, and services. There are maps, photographs, general interest articles, technical abstracts, lists of available publications, and an on-line book about the natural resource history of Iowa.

  16. Main structural lineaments of north-eastern Morocco derived from gravity and aeromagnetic data

    NASA Astrophysics Data System (ADS)

    El Gout, Radia; Khattach, Driss; Houari, Mohammed-Rachid; Kaufmann, Olivier; Aqil, Hicham

    2010-09-01

    Many years ago, geophysical surveys (gravity and aeromagnetic) were initiated for economic investigation and recently the analysis of gravity and magnetic anomalies are used as a powerful tool for the geological mapping. The present study is based on various filtered maps of gravity and aeromagnetic anomalies of north-eastern Morocco (NEM) in order to highlight its main structural features. Filtering techniques such as horizontal gradient, upward continuation and Euler deconvolution were used to map structural lineaments in NEM. The obtained structural map is consistent with many faults already recognized or supposed by traditional structural studies, and highlights new major accidents by specifying their layout and dips.

  17. University of Maine School of Marine Sciences

    NSDL National Science Digital Library

    Located in Orono, Maine, the SMS is the largest concentration of marine expertise in Maine, and offers one of the largest research and educational programs in the Northeast. Research activities of faculty and students range from aquaculture, marine biology, marine biotechnology, oceanography, and marine geology, to public policy and marine archeology. Site offers information on graduate and undergraduate programs, current research, school news, upcoming events, and outreach initiatives.

  18. Geological Survey Program

    NSDL National Science Digital Library

    If your research or interests lie in the geology of South Dakota, then the state's Geological Survey Program Web site is for you. Offered are online publications and maps, a geologic reference database, a lithologic logs database, digital base maps, a water quality database, and several other quality information sources worth checking out.

  19. Hydrogeochemical modeling of a thermal system and lessons learned for CO 2 geologic storage

    Microsoft Academic Search

    L. F. Auqué; P. Acero; M. J. Gimeno; J. B. Gómez; M. P. Asta

    2009-01-01

    Geological storage of carbon dioxide is presently considered to be one of the main strategies to mitigate the impact of the emissions of this gas on global warming. Among the various alternatives considered for CO2 geological storage, one of the main geological candidates for hosting injected CO2 in the long term are deep porous reservoir rock formations saturated with brackish

  20. Geotechnical characterization for the Main Drift of the Exploratory Studies Facility

    SciTech Connect

    Kicker, D.C.; Martin, E.R.; Brechtel, C.E.; Stone, C.A. [Agapito Associates, Inc., Las Vegas, NV (United States); Kessel, D.S. [Sandia National Labs., Albuquerque, NM (United States). Yucca Mountain Project Management

    1997-07-01

    Geotechnical characterization of the Main Drift of the Exploratory Studies Facility was based on borehole data collected in site characterization drilling and on scanline rock mass quality data collected during the excavation of the North Ramp. The Main Drift is the planned 3,131-m near-horizontal tunnel to be excavated at the potential repository horizon for the Yucca Mountain Site Characterization Project. Main Drift borehole data consisted of three holes--USW SD-7, SD-9, and SD-12--drilled along the tunnel alignment. In addition, boreholes USW UZ-14, NRG-6, and NRG-7/7A were used to supplement the database on subsurface rock conditions. Specific data summarized and presented included lithologic and rock structure core logs, rock mechanics laboratory testing, and rock mass quality indices. Cross sections with stratigraphic and thermal-mechanical units were also presented. Topics discussed in the report include geologic setting, geologic features of engineering and construction significance, anticipated ground conditions, and the range of required ground support. Rock structural and rock mass quality data have been developed for each 3-m interval of core in the middle nonlithophysal stratigraphic zone of the Topopah Spring Tuff Formation. The distribution of the rock mass quality data in all boreholes used to characterize the Main Drift was assumed to be representative of the variability of the rock mass conditions to be encountered in the Main Drift. Observations in the North Ramp tunnel have been used to project conditions in the lower lithophysal zone and in fault zones.

  1. Arkansas Geological Survey

    NSDL National Science Digital Library

    The Arkansas Geological Survey (AGS) homepage aims to develop and provide knowledge of the geology and hydrogeology of the State, and to stimulate development and effective management and utilization of the mineral, fossil-fuel, and water resources of Arkansas while protecting the environment. The AGC collects and disperses geologic data consisting of geologic maps, historical data concerning resources, and various datasets concerning water, fossil-fuel, and mineral resources of Arkansas. The site contains publications that can be ordered, sections about Arkansas geology, a list of mineral producers of Arkansas, and reports on mineral resources.

  2. Virtual-Geology.Info

    NSDL National Science Digital Library

    At virtual-geology.info, Roger Suthren, a professor at Oxford Brookes University, offers educational materials on geologic phenomena throughout the world. Users can take virtual field trips to study the geology of Scotland, Alaska, and France. In the Regional Geology link, visitors can view wonderful pictures of the volcanoes of Germany, Italy, France, and Greece. Educators can find images of sediments and sedimentary rocks which can be used in a variety of classroom exercises. The website supplies descriptions and additional educational links about sedimentology and environmental geology.

  3. Geology of Kentucky

    NSDL National Science Digital Library

    This website contains geologic maps of Kentucky, with a discussion of geologic time in regards to the rocks, minerals, fossils, and economic deposits found there. There are also sections that describe strata and geologic structures beneath the surface (faults, basins, and arches), the structural processes (folding and faulting) that create stratigraphic units, the geomorphology of the state, geologic information by county, a general description of geologic time, fossil, rocks, and minerals of Kentucky, and a virtual field trip through Natural Bridges State Park. Links are provided for further information.

  4. Geologic map of Detrital, Hualapai, and Sacramento Valleys and surrounding areas, northwest Arizona

    USGS Publications Warehouse

    Beard, L. Sue; Kennedy, Jeffrey; Truini, Margot; Felger, Tracey

    2011-01-01

    A 1:250,000-scale geologic map and report covering the Detrital, Hualapai, and Sacramento valleys in northwest Arizona is presented for the purpose of improving understanding of the geology and geohydrology of the basins beneath those valleys. The map was compiled from existing geologic mapping, augmented by digital photogeologic reconnaissance mapping. The most recent geologic map for the area, and the only digital one, is the 1:1,000,000-scale Geologic Map of Arizona. The larger scale map presented here includes significantly more detailed geology than the Geologic Map of Arizona in terms of accuracy of geologic unit contacts, number of faults, fault type, fault location, and details of Neogene and Quaternary deposits. Many sources were used to compile the geology; the accompanying geodatabase includes a source field in the polygon feature class that lists source references for polygon features. The citations for the source field are included in the reference section.

  5. Activities in planetary geology for the physical and earth sciences

    NASA Technical Reports Server (NTRS)

    Dalli, R.; Greeley, R.

    1982-01-01

    A users guide for teaching activities in planetary geology, and for physical and earth sciences is presented. The following topics are discussed: cratering; aeolian processes; planetary atmospheres, in particular the Coriolis Effect and storm systems; photogeologic mapping of other planets, Moon provinces and stratigraphy, planets in stereo, land form mapping of Moon, Mercury and Mars, and geologic features of Mars.

  6. Geologic Time Scale 2004 - why, how, and where next!

    Microsoft Academic Search

    Felix Gradstein; James Ogg

    2004-01-01

    A Geologic Time Scale (GTS2004) is presented that integrates currently available stratigraphic and geochronologic information. Key features of the new scale are outlined, how it was constructed, and how it can be improved Since Geologic Time Scale 1989 by Harland and his team, many developments have taken place: (1) Stratigraphic standardization through the work of the International Commission on Stratigraphy

  7. Generalized Geologic Map of the Conterminous United States

    NSDL National Science Digital Library

    USGS

    This site from the USGS features a geologic map of the United States using data prepared for publication in the National Atlas of the United States. There are explanations, documentations, and PDF files presenting the geologic map and a map unit chart, plus archives of ArcInfo files in several formats.

  8. An Index of Geological Maps Useful for Teaching

    ERIC Educational Resources Information Center

    McDonnell, K. S.; Thomson, V. E.

    1972-01-01

    Australian and foreign geological maps that illustrate specified geological features are listed, together with their availability, title, and a short description. Includes citations of detailed sheets for New Zealand, Britain, and North America, and of general sheets for Asia, USSR, Africa, and North America. (AL)

  9. Some aspects of geological information contained in LANDSAT images

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (principal investigator); Liu, C. C.; Vitorello, I.; Meneses, P. R.

    1980-01-01

    The characteristics of MSS images and methods of interpretation are analyzed from a geological point of view. The supportive role of LANDSAT data are illustrated in several examples of surface expressions of geological features, such as synclines and anticlines, spectral characteristics of lithologic units, and circular impact structures.

  10. Geology Museum-Based Learning in Soil Science Education

    ERIC Educational Resources Information Center

    Mikhailova, E. A.; Tennant, C. H.; Post, C. J.; Cicimurri, C.; Cicimurri, D.

    2013-01-01

    Museums provide unique learning opportunities in soil science. The Bob Campbell Geology Museum in Clemson, SC, features an exhibit of minerals and rocks common in the state and in its geologic history. We developed a hands-on laboratory exercise utilizing an exhibit that gives college students an opportunity to visualize regional minerals and…

  11. The Basics of Rocks and Minerals and Polar Geology

    NSDL National Science Digital Library

    Julie Codispoti

    This article gives an overview of the differences between rocks and minerals, the three types of rocks, the rock cycle, and Antarctica's geologic features. It also includes resources for further reading and alignment with the National Science Education Standards.

  12. Spaceborne Imaging Radar: Geologic and Oceanographic Applications

    Microsoft Academic Search

    Charles Elachi

    1980-01-01

    Synoptic, large-area radar images of the earth's land and ocean surface, obtained from the Seasat orbiting spacecraft, show the potential for geologic mapping and for monitoring of ocean surface patterns. Structural and topographic features such as lineaments, anticlines, folds and domes, drainage patterns, stratification, and roughness units can be mapped. Ocean surface waves, internal waves, current boundaries, and large-scale eddies

  13. U.S. Geological Survey Research Centers

    NSDL National Science Digital Library

    Website of USGS' Coastal and Marine Geology Program. Site features an easy to use interactive resource locator with pull down menus. Resources are broken down by topic, region, and resource type. Information includes tsunamis, earthquakes, erosion, hurricanes, and much more. Information available for many different science disciplines. Access SoundWaves, USGS's monthly newsletter, and read impact studies from past hurricanes.

  14. Connecting Soils and Glacial Geology

    NSDL National Science Digital Library

    Holly Dolliver

    The goal of this activity is to provide students an opportunity to connect soil science to surficial geology by using a Soil Surveys. By the end of the activity, students should be able to use a Soil Survey to identify and interpret landforms and surficial features. This activity can be adapted to variety of process (ex. eolian deposits, glacial deposits, bedrock weathering, etc.). County-level soil surveys are available in both paper and online formats for the majority of the United States. Designed for a geomorphology course Has minimal/no quantitative component

  15. 21 January 2005: 13:00 Inhomogeneity as main source... -Robert Hack 1 Inhomogeneity as main source of

    E-print Network

    Hack, Robert

    21 January 2005: 13:00 Inhomogeneity as main source... - Robert Hack 1 Inhomogeneity as main source of problems in engineering geology Robert Hack 21 January 2005 #12;21 January 2005: 13:00 Inhomogeneity as main source... - Robert Hack 2 What is inhomogeneity (or non- homogeneity) : Inhomogeneity

  16. Hawaii Volcanoes National Park: A 3-D Photographic Geology Tour

    NSDL National Science Digital Library

    This virtual tour features three-dimensional images from the United States Geological Survey's (USGS) collection. It introduces visitors to the geology, landforms, and volcanism of Hawaii Volcanoes National Park. Features of interest include Kilauea Caldera and Halema'uma'u Crater, which have been the sites of very recent volcanic activity. There are also views of active lava flows, steam vents, and lava tubes. The 3-D images are anaglyphs and require red and cyan 3-D viewing glasses.

  17. OneGeology-Europe - The Challenges and progress of implementing a basic geological infrastructure for Europe

    NASA Astrophysics Data System (ADS)

    Asch, Kristine; Tellez-Arenas, Agnes

    2010-05-01

    OneGeology-Europe is making geological spatial data held by the geological surveys of Europe more easily discoverable and accessible via the internet. This will provide a fundamental scientific layer to the European Plate Observation System Rich geological data assets exist in the geological survey of each individual EC Member State, but they are difficult to discover and are not interoperable. For those outside the geological surveys they are not easy to obtain, to understand or to use. Geological spatial data is essential to the prediction and mitigation of landslides, subsidence, earthquakes, flooding and pollution. These issues are global in nature and their profile has also been raised by the OneGeology global initiative for the International Year of Planet Earth 2008. Geology is also a key dataset in the EC INSPIRE Directive, where it is also fundamental to the themes of natural risk zones, energy and mineral resources. The OneGeology-Europe project is delivering a web-accessible, interoperable geological spatial dataset for the whole of Europe at the 1:1 million scale based on existing data held by the European geological surveys. Proof of concept will be applied to key areas at a higher resolution and some geological surveys will deliver their data at high resolution. An important role is developing a European specification for basic geological map data and making significant progress towards harmonising the dataset (an essential first step to addressing harmonisation at higher data resolutions). It is accelerating the development and deployment of a nascent international interchange standard for geological data - GeoSciML, which will enable the sharing and exchange of the data within and beyond the geological community within Europe and globally. The geological dataset for the whole of Europe is not a centralized database but a distributed system. Each geological survey implements and hosts an interoperable web service, delivering their national harmonized geological data. These datasets are registered in a multilingual catalogue, who is one the main part of this system. This catalogue and a common metadata profile allows the discovery of national geological and applied geological maps at all scapes, Such an architecture is facilitating re-use and addition of value by a wide spectrum of users in the public and private sector and identifying, documenting and disseminating strategies for the reduction of technical and business barriers to re-use. In identifying and raising awareness in the user and provider communities, it is moving geological knowledge closer to the end-user where it will have greater societal impact and ensure fuller exploitation of a key data resource gathered at huge public expense. The project is providing examples of best practice in the delivery of digital geological spatial data to users, e.g. in the insurance, property, engineering, planning, mineral resource and environmental sectors. The scientifically attributed map data of the project will provide a pan-European base for science research and, importantly, a prime geoscience dataset capable of integration with other data sets within and beyond the geoscience domain. This presentation will demonstrate the first results of this project and will indicate how OneGeology-Europe is ensuring that Europe may play a leading role in the development of a geoscience spatial data infrastructure (SDI) globally.

  18. Textural features for radar image analysis

    NASA Technical Reports Server (NTRS)

    Shanmugan, K. S.; Narayanan, V.; Frost, V. S.; Stiles, J. A.; Holtzman, J. C.

    1981-01-01

    Texture is seen as an important spatial feature useful for identifying objects or regions of interest in an image. While textural features have been widely used in analyzing a variety of photographic images, they have not been used in processing radar images. A procedure for extracting a set of textural features for characterizing small areas in radar images is presented, and it is shown that these features can be used in classifying segments of radar images corresponding to different geological formations.

  19. Preliminaries Main Theorem

    E-print Network

    Nevins, Monica

    Preliminaries Main Theorem W-Graphs and their -Invariants Proof of the Main Theorem Type;Preliminaries Main Theorem W-Graphs and their -Invariants Proof of the Main Theorem Type An The other classical Jackson Todor MilevTau Signatures and Characters of Weyl Groups #12;Preliminaries Main Theorem W

  20. Geology Fieldnotes: Wind Cave National Park South Dakota

    NSDL National Science Digital Library

    Wind Cave National Park includes one of the world's longest and most complex caves and 28,295 acres of mixed-grass prairie, ponderosa pine forest, and associated wildlife. The cave is well known for its outstanding display of boxwork, an unusual cave formation composed of thin calcite fins resembling honeycombs. Features include park geology information, maps, photographs of cave formations, related links, and visitor information. The park geology section discusses geologic history, structural geology, cave formations, and history of exploration of the region. The park maps section includes an area map of Wind Cave National Park and a detailed cave map.

  1. Making a Geologic Cross Section Name _____________________________ Geology 100 Harbor Section

    E-print Network

    Harbor, David

    of cross section A for help) 2. What symbols represent these formations and in what geologic time periodsp. 1 Making a Geologic Cross Section Name _____________________________ Geology 100 ­ Harbor Section Your task is to complete a cross section of geologic structures from a geologic map. Please do

  2. Geologic Time: Online Edition

    NSDL National Science Digital Library

    1997-10-09

    Offered by the United States Geological Survey (USGS) as a general interest publication, this site is an online edition of a text by the same name, offering a concise overview of the concepts associated with the age of the Earth. The online edition was revised in October of 1997 to reflect current thinking on this topic. Section headers are Geologic Time, Relative Time Scale, Major Divisions of Geologic Time, Index Fossils, Radiometric Time Scale, and Age of the Earth.

  3. The Geology of Virginia

    NSDL National Science Digital Library

    From the College of William of Mary Department of Geology comes the Geology of Virginia Web site. From the Appalachian Plateau to the coastal plain, visitors can explore the geology and physical characteristics of the diverse landscape of the commonwealth of Virginia through simple descriptions and well designed graphics. Even if you don't live in the area, the site does a good job of capturing the interest of anyone looking for quality material on the presented subjects.

  4. Image Gallery for Geology

    NSDL National Science Digital Library

    Allen Glazner

    These images of geologic phenomena are used to supplement introductory geology classes at the University of North Carolina at Chapel Hill. The images are categorized under plutonic, volcanic and sedimentary rocks; structural geology; weathering; and coastlines. There are photographs of different kinds of volcanoes; lavas and pyroclastic rocks; volcanic hazards; different types of sedimentary rocks and sedimentary structures; folds and faults; beach processes; and barrier islands.

  5. Sedimentology and petroleum geology

    SciTech Connect

    Bjorlykke, K.O. (Oslo Univ. (Norway))

    1989-01-01

    This book presents an introduction to sedimentology as well as petroleum geology. It integrates both subjects, which are closely related but mostly treated separately. The author covers the basic aspects of sedimentology, sedimentary geochemistry and diagenesis. Principles of stratigraphy, seismic stratigraphy and basin modelling forms the base for the part on petroleum geology. Subjects discussed include the composition of kerogen and hydrocarbons, theories of migration and trapping of hydrocarbons and properties of reservoir rocks. Introductions to well logging and production geology are given.

  6. Introduction Main Result

    E-print Network

    Yan, Catherine Huafei

    Introduction Main Result Enumeration Crossings and Nestings of Two Edges in Set Partitions Yan Crossings and Nestings of Set Partitions #12;Introduction Main Result Enumeration Definition} Catherine Yan Crossings and Nestings of Set Partitions #12;Introduction Main Result Enumeration Definition

  7. The growth of geological structures by repeated earthquakes, 1, conceptual framework

    USGS Publications Warehouse

    King, G.C.P.; Stein, R.S.; Rundle, J.B.

    1988-01-01

    In many places, earthquakes with similar characteristics have been shown to recur. If this is common, then relatively small deformations associated with individual earthquake cycles should accumulate over time to create geological structures. It is shown that existing models developed to describe leveling line changes associated with the seismic cycle can be adapted to explain geological features associated with a fault. In these models an elastic layer containing the fault overlies a viscous half-space with a different density. Fault motion associated with an earthquake results in immediate deformation followed by a long period of readjustment as stresses relax in the viscous layer and isostatic equilibrium is restored. The flexural rigidity of the crust (or the apparent elastic thickness) provides the main control of the width of a structure. The loading due to erosion and deposition of sediment determines the ratio of uplift to subsidence between the two sides of the fault. -Authors

  8. Understanding Geologic Maps

    NSDL National Science Digital Library

    Cara Burberry

    This is an exercise in which students are reintroduced to geologic maps and encouraged to "deconstruct" the map into constituent elements in order to understand the geologic history of the area. The preceding lectures in the course have recapitulated material that the students have covered in Introduction to Physical Geology. During class, the students work through the maps that were part of lab exercises in the Intro level course, so that basic concepts are recalled (superposition, cross-cutting relationships, basic faults and folds). The final product is a geologic history of this map area.

  9. Geologic Mapping Exercise

    NSDL National Science Digital Library

    Andrew Smith

    This exercise is designed to simulate how a basic geological investigation of a site takes place. A basic geological investigation includes familiarizing yourself with the unconsolidated sediments, rocks, structural geology, and groundwater present at your site. As part of this exercise you will have to properly identify a variety of rock types and sediments, create maps that represent data you collected at each location, and complete a basic report of your findings (optional). Once completed, this exercise should give students a basic understanding of how the various concepts used throughout the semester are applied in the real world in the form of a geological investigation.

  10. OneGeology Web Services and Portal as a global geological SDI - latest standards and technology

    NASA Astrophysics Data System (ADS)

    Duffy, Tim; Tellez-Arenas, Agnes

    2014-05-01

    The global coverage of OneGeology Web Services (www.onegeology.org and portal.onegeology.org) achieved since 2007 from the 120 participating geological surveys will be reviewed and issues arising discussed. Recent enhancements to the OneGeology Web Services capabilities will be covered including new up to 5 star service accreditation scheme utilising the ISO/OGC Web Mapping Service standard version 1.3, core ISO 19115 metadata additions and Version 2.0 Web Feature Services (WFS) serving the new IUGS-CGI GeoSciML V3.2 geological web data exchange language standard (http://www.geosciml.org/) with its associated 30+ IUGS-CGI available vocabularies (http://resource.geosciml.org/ and http://srvgeosciml.brgm.fr/eXist2010/brgm/client.html). Use of the CGI simpelithology and timescale dictionaries now allow those who wish to do so to offer data harmonisation to query their GeoSciML 3.2 based Web Feature Services and their GeoSciML_Portrayal V2.0.1 (http://www.geosciml.org/) Web Map Services in the OneGeology portal (http://portal.onegeology.org). Contributing to OneGeology involves offering to serve ideally 1:1000,000 scale geological data (in practice any scale now is warmly welcomed) as an OGC (Open Geospatial Consortium) standard based WMS (Web Mapping Service) service from an available WWW server. This may either be hosted within the Geological Survey or a neighbouring, regional or elsewhere institution that offers to serve that data for them i.e. offers to help technically by providing the web serving IT infrastructure as a 'buddy'. OneGeology is a standards focussed Spatial Data Infrastructure (SDI) and works to ensure that these standards work together and it is now possible for European Geological Surveys to register their INSPIRE web services within the OneGeology SDI (e.g. see http://www.geosciml.org/geosciml/3.2/documentation/cookbook/INSPIRE_GeoSciML_Cookbook%20_1.0.pdf). The Onegeology portal (http://portal.onegeology.org) is the first port of call for anyone wishing to discover the availability of global geological web services and has new functionality to view and use such services including multiple projection support. KEYWORDS : OneGeology; GeoSciML V 3.2; Data exchange; Portal; INSPIRE; Standards; OGC; Interoperability; GeoScience information; WMS; WFS; Cookbook.

  11. Accounting for spatial patterns of multiple geological data sets in geological thematic mapping using GIS-based spatial analysis

    Microsoft Academic Search

    No-Wook Park; Kwang-Hoon Chi; Byung-Doo Kwon

    2007-01-01

    This paper presents a Geographic Information System (GIS)-based spatial analysis scheme to account for spatial patterns and\\u000a association in geological thematic mapping with multiple geological data sets. The multi-buffer zone analysis, the main part\\u000a of the present study, was addressed to reveal the spatial pattern around geological source primitives and statistical analysis\\u000a based on a contingency table was performed to

  12. The MEMIN Research Unit: New results from impact cratering experiments into geological materials

    NASA Astrophysics Data System (ADS)

    Poelchau, M. H.; Deutsch, A.; Thoma, K.; Kenkmann, T.

    2013-09-01

    The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on performing hypervelocity impact experiments, analyzing experimental impact craters and modeling cratering rocesses in geological materials. The main goal of the MEMIN project is to comprehensively quantify impact processes by conducting stringently controlled experimental impact cratering campaigns on the mesoscale with a multidisciplinary analytical approach. As a unique feature we use two-stage light gas guns capable of producing impact craters in thedecimeter size-range in solid rocks that, in turn, allow detailed spatial analysis of petrophysical, structural, and geochemical changes in target rocks and ejecta.

  13. Complex geological-geophysical study of active faults in the Sochi-Krasnaya Polyana region

    NASA Astrophysics Data System (ADS)

    Ovsyuchenko, A. N.; Khil'ko, A. V.; Shvarev, S. V.; Kostenko, K. A.; Marakhanov, A. V.; Rogozhin, E. A.; Novikov, S. S.; Lar'kov, A. S.

    2013-11-01

    The combined geological, geomorphologic, and geophysical study has significantly ascertained the spatial location of main seismogenerating structures in the region of Sochi. The research, which is aimed at identifying and thoroughly exploring all active faults in this area, was conducted in 2007-2009 in the territory between Adler and Krasnaya Polyana. It is found that the Monastyrskii and Krasnopolyanskii faults are the most important structures for seismic hazard assessment. Dramatic deformations of young deposits and prominent landforms are revealed, and seismogravitational features associated with these units are identified.

  14. Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service

    NASA Astrophysics Data System (ADS)

    Nonogaki, S.; Nemoto, T.

    2014-12-01

    Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.

  15. Geological Investigation Program for the Site of a New Nuclear Power Plant in Hungary

    NASA Astrophysics Data System (ADS)

    Gerstenkorn, András; Trosits, Dalma; Chikán, Géza; János Katona, Tamás

    2015-04-01

    Comprehensive site evalaution program is implemented for the new Nuclear Power Plant to be constructed at Paks site in Hungary with the aim of confirmation of acceptability of the site and definition of site-related design basis data. Most extensive part of this program is to investigate geological-tectonical features of the site with particular aim on the assessment of the capability of faults at and around the site, characterization of site seismic hazard, and definition of the design basis earthquake. A brief description of the scope and methodology of the geological, seismological, geophysical, geotechnical and hydrogeological investigations will be given on the poster. Main focus of the presentation is to show the graded structure and extent of the geological investigations that follow the needs and scale of the geological modeling, starting with the site and its vicinity, as well as on the near regional and the regional scale. Geological inverstigations includes several boreholes up-to the base-rock, plenty of boreholes discovering the Pannonian and large number of shallow boreholes for investigation of more recent development. The planning of the geological investigations is based on the 3D seismic survey performed around the site, that is complemented by shallow-seimic survey at and in the vicinity of the site. The 3D geophysical imaging provides essential geodynamic information to assess the capability of near site faults and for the seismic hazard analysis, as well as for the hydrogeological modeling. The planned seismic survey gives a unique dataset for understanding the spatial relationship between individual fault segments. Planning of the research (trenching, etc.) for paleoseismic manifestations is also based on the 3D seismic survey. The seismic survey and other geophysical data (including data of space geodesy) allow the amendment of the understanding and the model of the tectonic evolution of the area and geological events. As it is known from earlier studies, seismic sources in the near regional area are the dominating contributors to the site seimic hazard. Therefore a 3D geological model will be developed for the 50 km region around the site in order to consider different geological scenarios. Site-scale investigations are aimed on the characterization of local geotechnical and hydrogeological conditions. The geotechnical investigations provide data for the evaluation of site response, i.e. the free-field ground motion response spectra, assessment of the liquefaction hazard and foundation design. Important element of the hydrogeological survey is numerical groundwater modeling. The aim of hydrogeological modeling is the summary of hydrogeological data in a numeric system, the description, simulation of underground water flow and transport conditions.

  16. 3D geological modelling using laser and hyperspectral data

    Microsoft Academic Search

    Juan I. Nieto; Sildomar T. Monteiro; Diego Viejo

    2010-01-01

    This paper presents a ground based system for mapping the geology and the geometry of the environment remotely. The main objective of this work is to develop a framework for a mobile robotic platform that can build 3D geological maps. We investigate classification and registration algorithms that can work without any manual intervention. The system capabilities are demonstrated with data

  17. Geodynamics applications of continuum physics to geological problems

    Microsoft Academic Search

    D. L. Turcotte; G. Schubert

    1982-01-01

    This textbook deals with the fundamental physical processes necessary for an understanding of plate tectonics and a variety of geologic phenomena. The first chapter reviews plate tectonics; its main purpose is to provide physics, chemistry, and engineering students with the geologic background necessary to understand the applications throughout the rest of the book. It goes on to discuss in following

  18. Definitions Main Result

    E-print Network

    Heubach, Silvia

    Background Definitions Main Result Special Types of Patterns Summary Avoidance of partially ordered Avoidance of partially ordered patterns in compositions #12;Background Definitions Main Result Special Types of Patterns Summary Outline 1 Background 2 Definitions 3 Main Result Preliminaries Main Result 4 Special Types

  19. Geology Fieldnotes: Ice Age National Scientific Preserve

    NSDL National Science Digital Library

    This National Park Service (NPS) site gives information on the Ice Age National Scientific Preserve in Wisconsin, including geology, park maps, a photo album, and other media (books, videos, CDs). There is also a selection of links to other geologic and conservation organizations, and to information for visitors. This preserve contains a wealth of glacial features associated with the most recent Pleistocene continental glaciation including drumlins, kames, kettles, moraines, erratics, and eskers. It also contains a segment of the Ice Age National Scenic Trail, a 1000-plus mile hiking and backpacking trail that passes through this unique glacial landscape.

  20. Preliminary geologic mapping of Arsia Mons, Mars

    NASA Technical Reports Server (NTRS)

    Zimbelman, James R.

    1991-01-01

    Geologic mapping of the Tharsis Montes at a scale of 1:500,000 was recently initiated as part of the Mars Geologic Mapping Program of NASA. Detailed mapping of the three large shield volcanoes and their surroundings will help to clarify the sequence of events which led to the formation of these features, as well as provide a basis for comparing the complex histories of the three related yet distinctive volcanic centers. Preliminary mapping of Arsia Mons at a scale of 1:2 M was carried out in preparation for detailed mapping. A map is presented along with a discussion of its contents.

  1. Keck Consortium Structual Geology Slide Set

    NSDL National Science Digital Library

    The Keck Geology Consortium Structural Geology Slide Set was compiled by H. Robert Burger, Smith College with the support of the W. M. Keck Foundation, Los Angeles. The database was developed by the Department of Earth and Ocean Sciences, The University of British Columbia, Vancouver, BC, Canada. The CD-ROM comprises 100 high resolution photographs of structural features ranging from microscopic to aerial photograph scale. This web site provides a preview of the set (at a significantly lower resolution). It is intended for teaching use.

  2. The importance of geological data and derived information in seismic response assessment for urban sites. An example from the Island of Crete, Greece

    NASA Astrophysics Data System (ADS)

    Tsangaratos, Paraskevas; Loupasakis, Constantinos; Rozos, Dimitrios; Rondoyianni, Theodora; Vafidis, Antonios; Savvaidis, Alexandros; Soupios, Pantelis; Papadopoulos, Nikos; Sarris, Apostolos

    2015-04-01

    The magnitude, frequency content and duration of an earthquake ground motion depends mainly on the surrounding geological, tectonic and geomorphological conditions. Numerous reports have been contacted illustrating the necessity of providing accurate geological information in order to estimate the level of seismic hazard. In this context, geological information is the outcome of processing primary, raw field data and geotechnical investigation data that are non - organized and associated with the geological model of the study area. In most cases, the geological information is provided as an advance element, a key component of the "function" that solves any geo-environmental problem and is primarily reflected on analogue or digital maps. The main objective of the present study is to illustrate the importance of accurate geological information in the thirteen (13) selected sites of the Hellenic Accelerometric Network (HAN) in the area of Crete Island, in order to estimate the seismic action according to Eurocode (EC8). As an example the detailed geological-geotechnical map of the area around HAN site in Rethymno city, Crete is presented. The research area covers a 250m radius surrounding the RTHE HAN-station at a scale of 1: 2000 with detail description of the geological and geotechnical characteristics of the formations as well as the tectonic features (cracks, upthrust, thrust, etc) of the rock mass. The field survey showed that the RTHE station is founded over limestones and dolomites formations. The formations exhibit very good geomechanical behaviour; however they present extensive fragmentation and karstification. At this particular site the identification of a fault nearby the station proved to be significant information for the geophysical research as the location and orientation of the tectonic setting provided new perspective on the models of seismic wave prorogation. So, the geological data and the induced information along with the tectonic structure of the area, revealed variations that could alter the seismic wave prorogation models as well as the ground type/soil category of the foundation formations. In conclusion, the produced geological-geotechnical maps are the main mean of communication and flow of geological information between different scientific disciplines providing the bases for defining the ground type at each HAN site and calibrating the corresponding code prescribed spectra. This study is part of the on-going project that has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES. Investing in knowledge society through the European Social Fund.

  3. Geologic map of Chickasaw National Recreation Area, Murray County, Oklahoma

    USGS Publications Warehouse

    Blome, Charles D.; Lidke, David J.; Wahl, Ronald R.; Golab, James A.

    2013-01-01

    This 1:24,000-scale geologic map is a compilation of previous geologic maps and new geologic mapping of areas in and around Chickasaw National Recreation Area. The geologic map includes revisions of numerous unit contacts and faults and a number of previously “undifferentiated” rock units were subdivided in some areas. Numerous circular-shaped hills in and around Chickasaw National Recreation Area are probably the result of karst-related collapse and may represent the erosional remnants of large, exhumed sinkholes. Geospatial registration of existing, smaller scale (1:72,000- and 1:100,000-scale) geologic maps of the area and construction of an accurate Geographic Information System (GIS) database preceded 2 years of fieldwork wherein previously mapped geology (unit contacts and faults) was verified and new geologic mapping was carried out. The geologic map of Chickasaw National Recreation Area and this pamphlet include information pertaining to how the geologic units and structural features in the map area relate to the formation of the northern Arbuckle Mountains and its Arbuckle-Simpson aquifer. The development of an accurate geospatial GIS database and the use of a handheld computer in the field greatly increased both the accuracy and efficiency in producing the 1:24,000-scale geologic map.

  4. Geology and insolation-driven climatic history of Amazonian north polar materials on Mars.

    PubMed

    Tanaka, Kenneth L

    2005-10-13

    Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (approximately 3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago. PMID:16222294

  5. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (editor)

    1981-01-01

    This second issue in a new series intended to serve the planetary geology community with a form for quick and thorough communications includes (1) a catalog of terrestrial craterform structures for northern Europe; (2) abstracts of results of the Planetary Geology Program, and (3) a list of the photographic holdings of regional planetary image facilities.

  6. Petroleum geology of Tunisia

    Microsoft Academic Search

    P. F. Burollet; A. B. Ferjami; F. Mejri

    1990-01-01

    Recent discoveries and important oil shows have proven the existence of hydrocarbons in newly identified depocenters and reservoirs. In general, except for some areas around the producing fields, Tunisia is largely underdrilled. The national company ETAP has decided to release data and to publish a synthesis on the petroleum geology of Tunisia. The geology of Tunisia provides a fine example

  7. External Resource: Geologic Time

    NSDL National Science Digital Library

    1900-01-01

    This NASA sponsored webpage, Center for Educational Technologies, teaches students about Geologic Time. The age of Earth is so long compared to all periods of time that we humans are familiar with, it has been given a special name: Geologic time. The age

  8. Geologic time scale bookmark

    USGS Publications Warehouse

    U.S. Geological Survey

    2012-01-01

    This bookmark, designed for use with U.S. Geological Survey activities at the 2nd USA Science and Engineering Festival (April 26–29, 2012), is adapted from the more detailed Fact Sheet 2010–3059 "Divisions of Geologic Time." The information that it presents is widely sought by educators and students.

  9. National Geologic Map Database

    NSDL National Science Digital Library

    1997-01-01

    The National Geologic Map Database (NGMDB) is an Internet-based system for query and retrieval of earth-science map information, created as a collaborative effort between the USGS and the Association of American State Geologists. Its functions include providing a catalog of available map information; a data repository; and a source for general information on the nature and intended uses of the various types of earth-science information. The map catalog is a comprehensive, searchable catalog of all geoscience maps of the United States, in paper or digital format. It includes maps published in geological survey formal series and open-file series, maps in books, theses and dissertations, maps published by park associations, scientific societies, and other agencies, as well as publications that do not contain a map but instead provide a geological description of an area (for example, a state park). The geologic-names lexicon (GEOLEX) is a search tool for lithologic and geochronologic unit names. It now contains roughly 90% of the geologic names found in the most recent listing of USGS-approved geologic names. Current mapping activities at 1:24,000- and 1:100,000-scale are listed in the Geologic Mapping in Progress Database. Information on how to find topographic maps and list of geology-related links is also available.

  10. Geology of the Caribbean.

    ERIC Educational Resources Information Center

    Dillon, William P.; And Others

    1988-01-01

    Describes some of the geologic characteristics of the Caribbean region. Discusses the use of some new techniques, including broad-range swath imaging of the sea floor that produces photograph-like images, and satellite measurement of crustal movements, which may help to explain the complex geology of the region. (TW)

  11. California Geological Survey - Landslides

    NSDL National Science Digital Library

    California Geological Survey

    This page from the CA Geological Survey (CGS) presents information on landslides as well as maps and products of various past and present CGS programs to map and respond to landslides in the state of California, including the Forest and Watershed Geology Program, the Seismic Hazards Zonation Program, the Caltrans Highway Corridor Mapping project, and the Landslide Map Index.

  12. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (editor)

    1982-01-01

    Advances in Planetary Geology is a new series intended to serve the planetary geology community with a form for quick and thorough communications. There are no set lists of acceptable topics or formats, and submitted manuscripts will not undergo a formal review. All submissions should be in a camera ready form, preferably spaced, and submitted to the editor.

  13. Earth Sciences Geology Option

    E-print Network

    Kurapov, Alexander

    Earth Sciences with Geology Option Geological sciences focus on understanding the Earth, from its, mountain building, land surface evolution, and mineral resource creation over the Earth's 4.6 billion-year history. A geologist contributes to society through the discovery of earth resources, such as metals

  14. Layer Cake Geology

    NSDL National Science Digital Library

    John Wagner

    This classroom activity uses a cake to demonstrate geologic processes and introduce geologic terms. Students will learn how folds and faults occur, recognize the difference in behavior between brittle and ductile rocks, and attempt to predict structures likely to result from application of various forces to layered rocks. They will also attempt to interpret 'core samples' to determine subsurface rock structure.

  15. Earthquakes and Geology

    NSDL National Science Digital Library

    David Ozsvath

    In this activity, students investigate the relationship between intensity of ground motion and type of rock or alluvium, as seen in the 1994 Northridge, California earthquake. They will examine a map of Mercalli intensity, a cross-section showing geologic structures and rock types, and a map of surficial geology, and answer questions pertaining to amplification of ground motion and S-wave velocities.

  16. Glossary of geology

    SciTech Connect

    Bates, R.L.; Jackson, J.A.

    1987-01-01

    This third edition of the Glossary of Geology contains approximately 37,000 terms, or 1,000 more than the second edition. New entries are especially numerous in the fields of carbonate sedimentology, hydrogeology, marine geology, mineralogy, ore deposits, plate tectonics, snow and ice, and stratigraphic nomenclature. Many of the definitions provide background information.

  17. Main Idea: What is the Book About?

    NSDL National Science Digital Library

    ReadWorks

    2012-03-26

    In this resource, students will identify and describe what a book is mainly about using the title, text and pictures. The two featured texts that students will use are informational texts about tigers and ladybugs.

  18. Collins' bypass for the main ring

    SciTech Connect

    Ohnuma, S.

    1982-08-10

    Design of the bypass for the main ring at Fermilab is discussed. Specific design features discussed include space, path length, geometric closure, matching of betatron functions, and external dispersion. Bypass parameters are given. (GHT)

  19. Geology of Earth's Moon

    NSDL National Science Digital Library

    First, researchers at the University of California, San Diego discuss the importance of studying earthquakes on the moon, also known as moonquakes, and the Apollo Lunar Seismic Experiment (1). Users can discover the problems scientists must deal with when collecting the moon's seismic data. The students at Case Western Reserve University created the second website to address three missions the Institute of Space and Astronautical Science (ISAS) has planned between now and 2010, including a mission to the moon (2). Visitors can learn about the Lunar-A probe that will be used to photograph the surface of the moon, "monitor moonquakes, measure temperature, and study the internal structure." Next, the Planetary Data Service (PDS) at the USGS offers users four datasets that they can use to create an image of a chosen area of the moon (3). Each dataset can be viewed as a basic clickable map; a clickable map where users can specify size, resolution, and projection; or an advanced version where visitors can select areas by center latitude and longitude. The fourth site, produced by Robert Wickman at the University of North Dakota, presents a map of the volcanoes on the moon and compares their characteristics with those on earth (4). Students can learn how the gravitational forces on the Moon affect the lava flows. Next, Professor Jeff Ryan at the University of South Florida at Tampa supplies fantastic images and descriptive text of the lunar rocks obtained by the Apollo missions (5). Visitors can find links to images of meteorites, terrestrial rocks, and Apollo landings as well. At the Science Channel website, students and educators can find a video clip discussing the geologic studies on the moon along with videos about planets (6). Users can learn about how studying moon rocks help scientists better understand the formation of the earth. Next, the Smithsonian National Air and Space Museum presents its research of "lunar topography, cratering and impacts basins, tectonics, lava flows, and regolith properties" (7). Visitors can find summaries of the characteristics of the moon and the main findings since the 1950s. Lastly, the USGS Astrogeology Research Program provides archived lunar images and data collected between 1965 and 1992 by Apollo, Lunar Orbiter, Galileo, and Zond 8 missions (8). While the data is a little old, students and educators can still find valuable materials about the moon's topography, chemical composition, and geology.

  20. The Teacher-Friendly Guide to the Geology of Your Region

    NSDL National Science Digital Library

    2006-08-15

    The guides give teachers the background to make sense of regional and local geology in terms of a basic sequence of historical events and processes. The guides help teachers to meet national and state science standards by providing concrete examples of geologic processes that are closer to home than many classic textbook examples. The guides explain why geological features occur when and where they do in order to help students to remember and predict the nature of local geology.

  1. Geologic guide to the island of Hawaii: A field guide for comparative planetary geology

    NASA Technical Reports Server (NTRS)

    Greeley, R. (editor)

    1974-01-01

    With geological data available for all inner planets except Venus, we are entering an era of true comparative planetary geology, when knowledge of the differences and similarities for classes of structures (e.g., shield volcanoes) will lead to a better understanding of general geological processes, regardless of planet. Thus, it is imperative that planetologists, particularly those involved in geological mapping and surface feature analysis for terrestrial planets, be familiar with volcanic terrain in terms of its origin, structure, and morphology. One means of gaining this experience is through field trips in volcanic terrains - hence, the Planetology Conference in Hawaii. In addition, discussions with volcanologists at the conference provide an important basis for establishing communications between the two fields that will facilitate comparative studies as more data become available.

  2. Database of the Geology and Thermal Activity of Norris Geyser Basin, Yellowstone National Park

    USGS Publications Warehouse

    Flynn, Kathryn; Graham Wall, Brita; White, Donald E.; Hutchinson, Roderick A.; Keith, Terry E.C.; Clor, Laura; Robinson, Joel E.

    2008-01-01

    This dataset contains contacts, geologic units and map boundaries from Plate 1 of USGS Professional Paper 1456, 'The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming.' The features are contained in the Annotation, basins_poly, contours, geology_arc, geology_poly, point_features, and stream_arc feature classes as well as a table of geologic units and their descriptions. This dataset was constructed to produce a digital geologic map as a basis for studying hydrothermal processes in Norris Geyser Basin. The original map does not contain registration tic marks. To create the geodatabase, the original scanned map was georegistered to USGS aerial photographs of the Norris Junction quadrangle collected in 1994. Manmade objects, i.e. roads, parking lots, and the visitor center, along with stream junctions and other hydrographic features, were used for registration.

  3. Essential Elements of Geologic Reports.

    ERIC Educational Resources Information Center

    Webb, Elmer James

    1988-01-01

    Described is a report outline for geologic reports. Essential elements include title; abstract; introduction; stratigraphy; petrography; geochemistry; petrology; geophysics; structural geology; geologic history; modeling; economics; conclusions; and recommendations. (Author/CW)

  4. Roadside Geology of Yosemite Valley

    NSDL National Science Digital Library

    A virtual geology field trip to Yosemite Valley. Includes a geologic map of Yosemite, numerous large pictures of the area and discussion of geological events and natural disasters which have occurred in Yosemite.

  5. Digital Geologic Map Database of Medicine Lake Volcano, Northern California

    NASA Astrophysics Data System (ADS)

    Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

    2010-12-01

    Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the map, whose area is partly covered by a late Holocene andesite flow. Silicic lava flows are mostly confined to the main edifice of the volcano, with the youngest rhyolite flows found in and near the summit caldera, including the rhyolitic Little Glass Mountain (~1,000 yr B.P.) and Glass Mountain (~950 yr B.P.) flows, which are the youngest eruptions at Medicine Lake volcano. In postglacial time, 17 eruptions have added approximately 7.5 km3 to the volcano’s total estimated volume of 600 km3, which may be the largest by volume among Cascade Range volcanoes. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascade volcanoes except Mount St. Helens.

  6. Geologic coal assessment: The interface with economics

    USGS Publications Warehouse

    Attanasi, E.D.

    2001-01-01

    Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.

  7. Origins of Niagara: A Geological History

    NSDL National Science Digital Library

    Rick Berketa

    This site describes the geologic history and current hydrologic and cultural concerns associated with the natural resources of the Niagara region. Many topics are discussed, including the birth of Niagara Falls, the Wisconsin Glacier, rocks and sedimentary deposits, and the future of the falls. Hyperlinks connect one to related histories and facts concerning the Niagara Glen, Devil's Hole, the Niagara River Water Diversion Treaty, and two geologic tables: the Rock of Ages Chart and the Silurian Era Rock Chart. There are thumbnail photos dispersed throughout this document, which display geologic features such as a knick point, a gorge, and strata. A link connects to Thunder Alley, a comprehensive web site about Niagara Falls, of which this site is a part.

  8. USGS Coastal and Marine Geology Infobank

    NSDL National Science Digital Library

    This clearinghouse provides organized access to U.S. Geological Survey (USGS) coastal and marine data and metadata. The facilities section features material on Coastal and Marine Geology (CMG) regional centers such as maps and information about staff, facilities, labs, research libraries and archives. The Atlas includes maps for specific geographic areas and information about specific types of data within the area such as bathymetry, gravity, magnetics, sampling, and others. The Field Activities section provides information about specific data collection activities (date, place, crew, equipment used, data collected, publications). The Field Activity Collection System (FACS) provides information about field activities (overviews, crew lists, equipment lists, and events). The "Geology School" provides general, broad-based information about earth science concepts, processes and terminology, indexed to keywords. There is also a set of links to additional databases, software tools and viewers, and to related topics.

  9. Compositional Controls on the Geological Behavior of Icy Satellites, and a Call for More Lab Data

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.

    2006-12-01

    The tectonic, volcanic, and some other important types of geologic activity of solid planetary objects arises mainly from the differential partitioning and transport of thermal energy that produces rheological structures, density inversions, and unequilibrated pressure/stress gradients, thereby causing conditions that are prone to advective mass transfers and restabilization of stress conditions. The composition of icy satellites and solid planets determines the material properties of the condensed materials, and thus their physical responses to heating and virtually all geological processes. Many key mechanical and thermodynamic properties (e.g., melting temperature, effective viscosity, and thermal conductivity) vary across orders of magnitude among the volatile ices, silicates, metals, liquid solutions, gases, and other substances making up icy satellites. Given this wide range of material properties, it is easy to understand why there is so much variability in the appearance and geologic processes of icy satellites. However, another striking discovery are some key geological/morphological similarities among many satellites. There may be three explanations for their similar appearances. (1) Dissimilar materials and dissimilar satellite attributes and conditions may give rise to dissimilar features that merely appear to be similar but are actually produced by very different processes. (2) The icy satellites are actually made of very similar materials and have responded with roughly similar processes to make similar features. (3) The icy satellites are made of dissimilar materials and operate under disparate conditions, but nevertheless many of them tend to exhibit similar geological/geophysical processes so long as they are heated sufficiently. Examples may be cited that seem consistent with each of these explanations. Theoretical understanding and modeling of satellite differentiation, cryovolcanism, solid state diapirism, magnetic field induction, and other geologic and geophysical processes depends on adequate laboratory measurements of the physical and thermodynamic properties of ices, salts, silicates, brines, gases, and other materials making up icy satellites. Examples of existing measurements of solid/liquid phase equilibria, gas solubility in aqueous solutions, thermal conductivity of solids, and rheology of aqueous solutions, ices, and salts are shown, and theoretical applications to problems of cryovolcanism and tectonism on Enceladus and Titan are given. These applications, and comparisons to silicate systems controlling much about the geology of the terrestrial planets, suggest that the third explanation above may be a key to understanding strangely familiar landscapes on Titan and Enceladus. An insufficiency in our laboratory data and our compositional knowledge of icy satellites limits our understanding of those worlds.

  10. Environmental resources of selected areas of Hawaii: Geological hazards

    SciTech Connect

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

  11. FACILITIES MAINTENANCE MAIN WAREHOUSE

    E-print Network

    Hemmers, Oliver

    FACILITIES MAINTENANCE MAIN WAREHOUSE Workload Measurement, Validation, and Process Analysis, and process analysis/improvement study be conducted in the Facilities Maintenance Main Warehouse. This study was conducted from 15 February ­ 30 April 2007. Mr. Storlie is the process owner for the main warehouse. 2

  12. Formation evaluation: Geological procedures

    SciTech Connect

    Whittaker, A.

    1985-01-01

    This volume goes beyond a discussion of petroleum geology and the techniques of hydrocarbon (oil and gas) logging as a reservoir evaluation tool. It provides the logging geologist with a review of geological techniques and classification systems that will ensure the maximum development of communicable geological information. Contents include: 1. Introduction--cuttings recovery, cutting sampling, core sampling, rock classification; 2. Detrital rocks--classification, description; 3. Carbonate rocks--classification, description; 4. Chemical rocks-introduction, siliceous rocks, ferruginous rocks, aluminous rocks, phosphatic rocks, aluminous rocks, carbonaceous rocks; 5. Igneous and metamorpbic rocks; Appendix; References and Index.

  13. Journal of Geology

    NSDL National Science Digital Library

    From the University of Chicago Press's Journals Division, the Journal of Geology is currently available online free of charge (note: subscription fees may soon apply, but no initiation date is provided). This first-rate technical journal, which publishes "research and theory in geophysics, geochemistry, sedimentology, geomorphology, petrology, plate tectonics, volcanology, structural geology, mineralogy, and planetary sciences" has been in print form since 1893. All of the 1999 issues of the Journal of Geology electronic edition are available here. Internet users can access full-text articles with internal links to references and figures (html, .pdf. .ps).

  14. Geological Evolution of Venus: Rises, Plains, Plumes, and Plateaus

    E-print Network

    Hansen, Vicki

    Geological Evolution of Venus: Rises, Plains, Plumes, and Plateaus Roger J. Phillips* and Vicki L. Hansen Crustal plateaus and volcanic rises, major physiographic features on Venus, both formed over, un- derstanding the differences in the formation of two major features on Venus--crustal plateaus

  15. Geologic mapping of Northern Atla Regio on Venus: Preliminary data

    NASA Technical Reports Server (NTRS)

    Nikishin, A. M.; Burba, G. A.

    1993-01-01

    The Northern part of Atla Regio within the frame of C1-formate Magellan photo map 15N197 was mapped geologically at scale 1:8,000,000. This is a part of Russia's contribution into C1 geologic mapping efforts. The map is reproduced here being reduced about twice. The map shows that the Northern Atla area is predominantly a volcanic plain with numerous volcanic features: shield volcanoes, domes and hills with various morphology, corona-like constructions, radar bright and dark spots often with flow-like outlines. Relatively small areas of tessera occurred in the area are mainly semi-flooded with the plain material. Tesserae are considered to be the oldest terrains within the map sheet. There are many lineated terrains in the region. They are interpreted as the old, almost-buried tesserae (those with crossed lineaments) or partly buried ridge belts (those with parallel lineaments). These lineated terrains have an intermediate age between the young volcanic plains and the old tessera areas. Two prominent high volcanic shields are located within the region - Ozza Mons and Sapas Mona. The most prominent structure in Northern Atla is Ganis Chasma rift. The rift cuts volcanic plain and is considered to be under formation during approximately the same time with Ozza Mons shield. Ganis Chasma rift valley is highly fractured and bounded with fault scarps. Rift shoulder uplifts are typical for Ganis Chasma. There are few relatively young volcanic features inside the rift valley. The analysis of fracturing and rift valley geometry shows the rift originated due to 5-10 percent crustal extention followed by the crustal subsidence. The age sequence summary for the main terrain types in the region is (from older to younger ones): tesserae; lineated terrains with crossed lineaments; lineated terrains with parallel lineaments; volcanic plains; and prominent volcanic shields and Ganis Chasma rift valley. The geologic structure of Atla Regio as it appeared now with the Magellan high resolution images is very close to that of Beta Regio. Such conclusion coincide with the earlier ones based on the coarser data.

  16. Geological assessment of the greenhouse effect

    SciTech Connect

    Crowley, T.J. (Texas A M Univ., College Station, TX (United States))

    1993-12-01

    Geologic studies provide a valuable perspective on the importance of greenhouse forcing for climate change. On both Pleistocene and tectonic time scales, changes in climate are positively correlated with greenhouse gas variations. However, the sensitivity of the system to greenhouse gas changes cannot yet be constrained by paleoclimate data below its present large range. Geologic records do not support one of the major predictions of greenhouse models-namely, that tropical sea surface temperatures will increase. Geologic data also suggest that winter cooling in high-latitude land areas is less than predicted by models. As the above-mentioned predictions appear to be systemic features of the present generation of climate models, some significant changes in model design may be required to reconcile models and geologic data. However, full acceptance of this conclusion requires more measurements and more systematic compilations of existing geologic data. Since progress in data collection in this area has been quite slow, uncertainties associated with these conclusions may persist for some time. 106 refs., 6 figs.

  17. Iapetus: Tectonic structure and geologic history

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1991-01-01

    Many papers have been written about the surface of Iapetus, but most of these have discussed either the nature of the strongly contrasting light and dark materials or the cratering record. Little has been said about other geologic features on Iapetus, such as tectonic structures, which would provide constraints on Iapetus' thermal history. Most references have suggested that there is no conclusive evidence for any tectonic activity, even when thermal history studies indicate that there should be. However, a new study of Iapetus' surface involving the use of stereo pairs, an extensive tectonic network has been recognized. A few new observations concerning the craters and dark material were also made. Thus the geology and geologic history of Iapetus can be more fully outlined than before. The tectonic network is shown along with prominent craters and part of the dark material in the geologic/tectonic sketch map. The topology of crater rims and scarps are quite apparent and recognizable in the different image pairs. The heights and slopes of various features given are based on comparison with the depths of craters 50 to 100 km in diameter, which are assumed to have the same depths as craters of similar diameter on Rhea and Titania.

  18. Geology’s “Super Graphics” and the Public: Missed Opportunities for Geoscience Education

    NASA Astrophysics Data System (ADS)

    Clary, R. M.; Wandersee, J. H.

    2009-12-01

    The geosciences are very visual, as demonstrated by the illustration density of maps, graphs, photographs, and diagrams in introductory textbooks. As geoscience students progress, they are further exposed to advanced graphics, such as phase diagrams and subsurface seismic data visualizations. Photographs provide information from distant sites, while multivariate graphics supply a wealth of data for viewers to access. When used effectively, geology graphics have exceptional educational potential. However, geological graphic data are often presented in specialized formats, and are not easily interpreted by an uninformed viewer. In the Howe-Russell Geoscience Complex at Louisiana State University, there is a very large graphic (~ 30 ft x 6 ft) exhibited in a side hall, immediately off the main entrance hall. The graphic, divided into two obvious parts, displays in its lower section seismic data procured in the Gulf of Mexico, from near offshore Louisiana to the end of the continental shelf. The upper section of the graphic reveals drilling block information along the seismic line. Using Tufte’s model of graphic excellence and Paivio’s dual-coding theory, we analyzed the graphic in terms of data density, complexity, legibility, format, and multivariate presentation. We also observed viewers at the site on 5 occasions, and recorded their interactions with the graphic. This graphic can best be described as a Tufte “super graphic.” Its data are high in density and multivariate in nature. Various data sources are combined in a large format to provide a powerful example of a multitude of information within a convenient and condensed presentation. However, our analysis revealed that the graphic misses an opportunity to educate the non-geologist. The information and seismic “language” of the graphic is specific to the geology community, and the information is not interpreted for the lay viewer. The absence of title, descriptions, and symbol keys are detrimental. Terms are not defined. The absence of color keys and annotations is more likely to lead to an appreciation of graphic beauty, without concomitant scientific understanding. We further concluded that in its current location, constraints of space and reflective lighting prohibit the viewer from simultaneously accessing all subsurface data in a “big picture” view. The viewer is not able to fully comprehend the macro/micro aspects of the graphic design within the limited viewing space. The graphic is an example of geoscience education possibility, a possibility that is currently undermined and unrealized by lack of interpretation. Our analysis subsequently informed the development of a model to maximize the graphic’s educational potential, which can be applied to similar geological super graphics for enhanced public scientific understanding. Our model includes interactive displays that apply the auditory-visual dual coding approach to learning. Notations and aural explanations for geological features should increase viewer understanding, and produce an effective informal educational display.

  19. Geology and Human Health

    NSDL National Science Digital Library

    The link between geology and human health may not seem obvious, but it many ways geology can affect public health in a variety of crucial ways. Certainly, the relationship between geological factors and water and air quality is one that continues to interest policy makers and others. This site explores these issues, and it was created by the people at Carleton College's Professional Development for Geoscience Faculty initiative. Here visitors can make use of a wide range of educational and supporting materials, including classroom activities, key visualizations, and collections of external links. First-time users may wish to start at the "Resources for Educators" area, which includes a brief overview titled "Essential components of geology and human health" and several helpful posters. The remaining materials can be viewed in sections that include "Bookshelf", "Visualizations", and "Internet Resources".

  20. Devil's Tower Geology

    NSDL National Science Digital Library

    National Park Service (NPS)

    This site from the National Park Service briefly addresses the geology of Devil's Tower. The evolution of various theories on the formation of the tower are discussed. A slide show of the emplacement of the tower is also available.

  1. Bedrock Geology Mapping Exercise

    NSDL National Science Digital Library

    Jim Miller

    This field mapping and map-making exercise is a capstone project for a course on Geological Maps. Over a weekend (~12 hours of field work), students collect lithologic and structural data from outcrops scattered over a one square mile area. Back in the classroom, students digitally compile their field data (outcrop, structure measurements, traverse locations) into ArcMAP. They infer geologic linework (faults and contacts) and units from this data in ArcMAP and then export these data layers into Illustrator. In Illustrator, they add ancillary map components (a cross section, description of map units, correlation diagram, map symbol legend,...) to create a final map at a 1:10,000 scale. Their maps are printed out on 11"x17" paper and saved as a pdf file. This exercise helps the students to appreciate how field data is collected and how these geologic facts are interpretively organized into a four-dimensional picture that is a geologic map.

  2. Experiencing Structural Geology

    ERIC Educational Resources Information Center

    Davis, George H.

    1978-01-01

    Describes an undergraduate structural geology course that incorporates field lab time and research. Lectures, outside readings, and in-class experimentation are coordinated with the field work to prepare a scientific report. (MA)

  3. Stratigraphy and structural geology

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Wilhelms, D. E.; Greeley, R.; Guest, J. E.

    1976-01-01

    The immediate goal of stratigraphy and structural geology is to reduce the enormous complexity of a planetary surface to comprehensible proportions by dividing the near-surface rocks into units and mapping their distribution and attitude.

  4. Economic Geology and Education

    ERIC Educational Resources Information Center

    Geotimes, 1971

    1971-01-01

    Presents tabulated data of questionnaire responses from 207 colleges. More than 30 groups of data are included relating to various aspects of geology programs including enrollment, student and faculty data and courses. (PR)

  5. External Resource: Geology Jeopardy

    NSDL National Science Digital Library

    1900-01-01

    This interactive Geology Jeopardy game can by used by the individual to review concepts in earth science or in the classroom as a classroom activity. Topics: rocks, minerals, topography, plate tectonics, weathering, erosion, astronomy, meteorology.

  6. Interactive Geologic Timeline Activity

    NSDL National Science Digital Library

    Environmental Literacy and Inquiry Working Group at Lehigh University

    In this learning activity, students use a web-based geologic timeline to examine temperature, CO2 concentration, and ice cover data to investigate how climate has changed during the last 715 million years.

  7. Digital Geology of Idaho

    NSDL National Science Digital Library

    2012-02-17

    If you have ever wanted to learn about the geology of Idaho, this site is a great way to explore everything from Coeur d'Alene to the Sawtooth Mountains. This digital version of a course offered at Idaho State University systematically divides Idaho geology into a set of different teaching modules. The modules cover topics like the Idaho Batholith, the Columbia River Basalts, and the Lake Bonneville Flood. Each module contains maps, charts, diagrams, and photographs that illuminate the various geological processes that have formed, and continue to form, in each region of the state. Many of the modules also have fly-throughs that superimpose color-coded geology on 3-D topographic maps to provide a graphic visualization Idaho's rivers. Additionally, the site contains slide shows and a set of teaching exercises.

  8. Manitoba Geological Survey

    NSDL National Science Digital Library

    This site offers materials on Manitoba geology and minerals, mining and mineral exploration, a Digital Elevation Model of Southern Manitoba (DEMSM) landforms including oblique views, an interactive GIS map gallery of minerals and geology, a study of paleofloods in the Red River Basin including photographs illustrating how scientists delineated the paleofloods, and information on the Manitoba Protected Areas Initiative. Some maps and reports are available to download.

  9. Geologic Time Discussion Analogies

    NSDL National Science Digital Library

    Noah Fay

    The slides provide a fun way of discussing the immensity of geologic time and help to grasp the age of the earth, the time gaps between major geologic events, and the relative minuteness of humans time on earth. After the discussion with the class, students are given opportunity to develop their own analogies using "everyday" things (other than the calendar and money examples used in this activity).

  10. Interpreting Geologic Sections

    NSDL National Science Digital Library

    Paul Morris

    Athro, Limited is a for-profit corporation that publishes high school and college level biology, earth science, and geology course supplements and independent learning materials on the Web. This site provides instruction in interpreting the order of events in three hypothetical and one real geological section. For each section there is a list of events and an animation of the history of the section once the student has decided on the order of events.

  11. USGS: Geology in the Parks

    NSDL National Science Digital Library

    The US Geological Survey Geology in the Parks Web site is a cooperative project of the USGS Western Earth Surface Processes Team and the National Park Service. This extensive site covers geologic maps, plate tectonics, rocks and minerals, geologic time, US geologic provinces, park geology of the Mojave, Sunset Crater, Lake Mead, North Cascades, Death Valley, Yosemite National Park, and much more. Descriptions, graphics, photographs, and animations all contribute to this informative and interesting Web site making it a one stop, all encompassing, resource for everything geology and US national park related.

  12. Space Shuttle Main Engine. Overview

    NASA Astrophysics Data System (ADS)

    Jackson, Eugene D.

    An overview of the Space Shuttle Main Engine (SSME) is presented. The Space Shuttle propulsion system consists of two large solid booster motors, three SSME's, two orbital maneuvering system engines, and 44 reaction control system thrusters. The three SSME's burn liquid hydrogen and liquid oxygen from the external tank and are sequentially started at launch. Engine thrust is throttleable. The major components and some of their key features and operational parameters are outlined. The life and reliability being achieved by the SSME are presented.

  13. Geologic mapping of the Semipalatinsk region, Eastern Kazakstan, using Landsat Thematic Mapper and spot panchromatic data

    SciTech Connect

    Davis, P.A. [Geological Survey, Flagstaff, AZ (United States); Berlin, G.L. [Northern Arizona Univ., Flagstaff, AZ (United States)

    1992-12-31

    This geologic reconnaissance study centers on a 90 by 140 km area about 100 km southwest of Semipalatinsk near the east border of the Kazakstan Republic of the USSR. Semipalatinsk, a regional center for grain growing, and several other cities along the Irtysh River were originally established as fortified outposts by the Russians during the 18th and 19th centuries to contain the indigenous, nomadic Kazak herdsmen. The Kazakstan region remained largely undeveloped until after the 1917 Russian Revolution, when exploration geologists began discovering many large mineral deposits. Today, known resources include coal, copper, iron ore, lead, zinc, and barite; most of these are of national significance. These vast mineral resources have prompted development of many metallurgical and chemical industries in the republic. Despite the extensive exploration for mineral resources in this region, published geologic maps (Nalivkin, 1960; Esenov, 1971; Borovikov, 1972) are all at scales of 1:1,100,000 or smaller, and there are no detailed descriptions of the geology around Semipalatinsk in the open literature. Our preliminary examination of commercial remote-sensing, data indicated that the lithology and structure of this area are extremely varied and complex at all scales -- much more so than that portrayed on the published geologic maps. Therefore, the main objective of this study was to use commercially available remotely sensed data for the area and remotely sensed data obtained for analog study sites, as well as the sparse, sketchy information in the published literature, to better define and map the geologic units (Sheet 1), structure (Sheet 2), and drainage features (Sheet 3) of this area.

  14. United States Geological Survey: Contaminant Biology Program

    NSDL National Science Digital Library

    This is the homepage of the United States Geological Survey's (USGS) Contaminant Biology Program, whose mission is to investigate the effects and exposure of environmental contaminants (for example, mercury) on the living resources of the United States. The site features links to information on the program's projects, grouped under chemistry and toxicology; contaminated habitats; and monitoring and assessment. There are also links to news items and events, publications, links to biology science centers and cooperative research units, and links to related websites.

  15. Geology Fieldnotes: Zion National Park, Utah

    NSDL National Science Digital Library

    Annabelle Foos

    Zion is located on the edge of the Colorado Plateau, and is part of a formation known as the Grand Staircase (Bryce Canyon and the Grand Canyon are also part of this formation). The site discusses the formation of the park, from sedimentation 240 million years ago (Triassic), to lithification, uplift, and erosion. Visible formations include the Navajo sandstone and the Kaibab formation. Additional resources include visitor information, maps, photographs, and a teacher feature (lessons for teaching geology with National Parks as examples).

  16. Geologic evaluation and applications of ERTS-1 imagery over Georgia

    NASA Technical Reports Server (NTRS)

    Pickering, S. M.; Jones, R. C.

    1974-01-01

    Satellite imagery and other remote sensing tools and techniques have provided a powerful tool to assist geologic research; significantly increased the mapping efficiency of field geologists; shown new lineaments associated with known shear and fault zones; delineated new structural features; provided a tool to reevaluate tectonic history; helped to locate potential ground-water sources and areas of aquifer recharge; defined areas of geologic hazards; shown areas of heavy siltation in major reservoirs; and, by close interval repetition, aided in monitoring surface mine reclamation activities and the environmental protection of the intricate marshland system. The Georgia Geological Survey has been engaged in regional mapping for the new state geologic map. ERTS-1 images enlarged to compatible mapping scales have increased field geologic mapping efficiency by at least 25%. There are a number of areas where data from ERTS-1 imagery has allowed a notably higher level of precision than has been available with any amount of field work on the ground.

  17. Measuring Geologic Time on Mars

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Recent images from Mars show compelling evidence of near-surface flowing water, aeolian activity slope processes, and ice cap evolution that underscores the dynamic geologic history of the planet. Establishing an accurate chronology for Martian planetary features is critical for addressing fundamental questions about the evolution of the planet's surface and atmosphere and the differentiation of its interior. For example, how long was standing water on the surface? If life did evolve on Mars, did it occur before or after the evolution of life on Earth? These are arguably some of the most profound questions currently being asked by the planetary science community. Yet answers will not be forthcoming without an absolute chronology of Mars history, enabling the construction of a timescale comparable to Earth's. Discussion of methods for establishing such a chronology is particularly timely in light of new missions to Mars that are being planned to return in situ measurements or samples to Earth.

  18. Illustrated Glossary of Geologic Terms

    NSDL National Science Digital Library

    Provided by the Geology Department at Iowa State University, this handy illustrated glossary of geological terms is an excellent quick reference resource for students. Continuously upgraded with links to illustrations and text, this geological lexicon is based on the glossary in the textbook Earth: An Introduction to Geological Change by S. Judson and S.M. Richardson. Alphabetical tabs and internal links to related terms let users move quickly around this useful aid for geology students.

  19. Role of geology in diamond project development

    NASA Astrophysics Data System (ADS)

    Jakubec, Jaroslav

    2004-09-01

    For a mining operation to be successful, it is important to bring fundamental and applied science together. The mining engineer needs to understand the importance of geology, mineralogy and petrography, and how projects can benefit from the data collected during the exploration and pre-exploration stage. Geological scientists also need to understand the process of project development from the exploration stage through mine design and operation to mine closure. Kimberlite pipe or dyke emplacement, geology and petrology/mineralogy are three areas that illustrate how information obtained from the geological studies could directly influence the mining method selection and the project strategy and design. Kimberlite emplacement is one of the fundamental processes that rely on knowledge of the kimberlite body geology. Although the importance of the emplacement model is commonly recognized in the resource geology, mining engineers do not always appreciate its importance to the mine design. The knowledge of the orebody geometry, character of the contact zones, internal structures and distribution of inclusions could directly influence pit wall stability (thus strip ratio), underground mining method selection, dilution, treatability, and the dewatering strategy. Understanding the internal kimberlite geology mainly includes the geometry and character of individual phases, and the orientation and character of internal structures that transect the rock mass. For any mining method it is important to know "where the less and where the more competent rocks are located" to achieve stability. On the other hand, the detailed facies studies may not be important for the resource and mine design if the rock types have similar physical properties and diamond content. A good understanding of the kimberlite petrology and mineralogy could be crucial not only to the treatability (namely diamond damage and liberation), but also to the pit wall and underground excavation stability, support design, mine safety (mudrush risk assessment) and mine dewatering. There is no doubt that a better understanding of the kimberlite and country rock geology has a direct impact on the safety and economics of the mining operations. The process of mine design can start at the beginning of kimberlite discovery by incorporating the critical geological information without necessarily increasing the exploration budget. It is important to appreciate the usefulness of fundamental geological research and its impact on increased confidence in the mine design. Such studies should be viewed as worthwhile investments, not as cost items.

  20. Impact, and its implications for geology

    NASA Astrophysics Data System (ADS)

    Marvin, Ursula B.

    The publication of seminal texts on geology and on meteoritics in the 1790s, laid the groundwork for the emergence of each discipline as a modern branch of science. Within the past three decades, impact cratering has become universally accepted as a process that sculptures the surfaces of planets and satellites throughout the solar system. Nevertheless, one finds in-depth discussions of impact processes mainly in books on the Moon or in surveys of the Solar System. The historical source of the separation between meteoritics and geology is easy to identify. It began with Hutton. Meteorite impact is an extraordinary event acting instantaneously from outside the Earth. It violates Hutton's principles, which were enlarged upon and firmly established as fundamental to the geological sciences by Lyell. The split between meteoritics and geology surely would have healed as early as 1892 if the investigations conducted by Gilbert (1843-1918) at the crater in northern Arizona had yielded convincing evidence of meteorite impact. The 1950s and 1960s saw a burgeoning of interest in impact processes. The same period witnessed the so-called revolution in the Earth Sciences, when geologists yielded up the idea of fixed continents and began to view the Earth's lithosphere as a dynamic array of horizontally moving plates. Plate tectonics, however, is fully consistent with the geological concepts inherited from Hutton: the plates slowly split, slide, and suture, driven by forces intrinsic to the globe.

  1. Weighting Features

    Microsoft Academic Search

    Dietrich Wettschereck I; David W. Aha

    1995-01-01

    . Many case-based reasoning algorithms retrieve cases using aderivative of the k-nearest neighbor (k-NN) classifier, whose similarityfunction is sensitive to irrelevant, interacting, and noisy features. Manyproposed methods for reducing this sensitivity parameterize k-NN's similarityfunction with feature weights. We focus on methods that automaticallyassign weight settings using little or no domain-specific knowledge.Our goal is to predict the relative capabilities of these

  2. The Maine Event

    ERIC Educational Resources Information Center

    McHale, Tom

    2007-01-01

    In this article, the author describes the successful laptop program employed at Mt. Abram High School in Strong, Maine. Through the Maine Learning Technology Initiative, the school has issued laptops to all 36,000 teachers and students in grades 7-8. This program has helped level the playing field for a student population that is 50 percent to 55…

  3. MAINE MARINE WORM HABITAT

    EPA Science Inventory

    WORM provides a generalized representation at 1:24,000 scale of commercially harvested marine worm habitat in Maine, based on Maine Department of Marine Resources data from 1970's. Original maps were created by MDMR and published by USF&WS as part of the ""&quo...

  4. Teaching Main Idea Comprehension.

    ERIC Educational Resources Information Center

    Baumann, James F., Ed.

    Intended to help classroom teachers, curriculum developers, and researchers, this book provides current information on theoretical and instructional aspects of main idea comprehension. Titles and authors are as follows: "The Confused World of Main Idea" (James W. Cunningham and David W. Moore); "The Comprehension of Important Information in…

  5. Main results An application

    E-print Network

    Borne, Niels

    diagram: (X, x) // PX spec k (x,x) // X Ã?k X Niels Borne, Angelo Vistoli The Nori fundamental gerbe #12Motivation Main results An application Beyond the profinite fundamental gerbe The Nori fundamental on the fundamental group scheme, 5.5.2014 Niels Borne, Angelo Vistoli The Nori fundamental gerbe #12;Motivation Main

  6. Gulf of Maine: Weather

    NSDL National Science Digital Library

    Lessons and activities from the Gulf of Maine Research Institute (formerly Gulf of Maine Aquarium), focused on hurricanes, El Nino, fog, and volcanic eruptions. Emphasis on important hurricanes of the past. Resources include lessons, guides for simple experiments, and a student weather network. Downloadable materials and additional webpages also provided.

  7. DYNAMIC INTEGRATION OF EXPLICIT FEATURE EXTRACTION ALGORITHMS INTO MUVIS FRAMEWORK

    E-print Network

    Gabbouj, Moncef

    the offline feature extraction processing is its main task. MBrowser is the primary media browser). Features are represented by normalized feature vec- tors and extracted for indexing purposes. Such feature

  8. Geology Fieldnotes: Agate Fossil Beds National Monument, Nebraska

    NSDL National Science Digital Library

    Agate Fossil Beds National Monument preserves an important source for 19.2 million year-old Miocene mammal fossils from a chapter of evolution frequently referred to as the "Age of Mammals". Features include information on park geology, maps, photographs, visitor information, and links to related publications. The park geology section discusses the Monument's geologic history and climate, profiles of some of the Miocene mammals found in the deposits, and discusses the history of fossil collecting at the locality. The park map indicates quarry and private property areas within the Monument.

  9. Geologic mapping of tunnels using photogrammetry: Camera and target positioning

    SciTech Connect

    Coe, J.A. [Geological Survey, Denver, CO (United States); Dueholm, K.S. [Danmarks Tekniske Hoejskole, Lyngby (Denmark). Inst. of Surveying and Photogrammetry

    1991-09-01

    A photogrammetric method has been developed by the US Geological Survey and the US Bureau of Reclamation for the use in geologic mapping of tunnels (drifts). The method requires photographing the tunnel walls and roof with a calibrated small-format camera to obtain stereo pairs of photos which are then oriented in an analytical stereo plotter for measurement of geologic features. The method was tested in G-tunnel at Rainier Mesa on the Nevada Test Site. Calculations necessary to determine camera and target positions and problems encountered during testing were used to develop a set of generic formulas that can be applied to any tunnel. 7 figs.

  10. Environmental Resources of Selected Areas of Hawaii: Geological Hazards (DRAFT)

    SciTech Connect

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed Regis. 5925638) withdrawing its Notice of Intent (Fed Regis. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent U.S. Geological Survey (USGS) publications and open-file reports. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift, and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis). First, overviews of volcanic and earthquake activity, and details of offshore geologic hazards is provided for the Hawaiian Islands. Then, a more detailed discussion of onshore geologic hazards is presented with special emphasis on the southern third of Hawaii and the east rift zone of Kilauea.

  11. Minnesota Geological Survey

    NSDL National Science Digital Library

    Established in 1872 by the State of Minnesota as part of the University of Minnesota, the Minnesota Geological Survey (MGS) serves the people of Minnesota by providing systematic geoscience information to support the stewardship of water, land, and mineral resources. This rather lovely digital collection brings together a record of all items published by the MGS since its creation. Here, visitors will find documents, reports, maps, and GIS data for online viewing or downloading as well. The thematic collections here include the Aeromagnetic Map Series, the annual reports of the Minnesota Geological and Natural History Survey, and the wonderful county atlas series. Visitors with a penchant for geology, natural history, and geography will find much to enjoy here.

  12. Sedimentology and petroleum geology

    SciTech Connect

    Bjorlykke, K.

    1989-01-01

    In this introduction to sedimentology and petroleum geology the subjects, which are closely related but mostly treated separately, are integrated. The first part covers the basic aspects of sedimentology, sedimentary geochemistry and diagenesis, including brief discussions of flow in rivers and channels, types of sediment transport, lake and river deposits, deltas (river-dominated, tide-dominated, and wave-dominated) and the water budget. Principles of stratigraphy, seismic stratigraphy and basin modeling form the basis for the last part on petroleum geology. Here subjects include the composition of kerogen and hydrocarbons, theories of migration and trapping of hydrocarbons and properties of reservoir rocks. Finally, short introductions to well logging and production geology are given.

  13. Global sedimentary geology program

    SciTech Connect

    Ginsburg, R.N.; Clifton, H.E.; Weimer, R.J.

    1986-07-01

    The Society of Economic Paleontologists and Mineralogists, in collaboration with the International Association of Sedimentologists and the International Union of Geological Sciences Committee on Sedimentology, is developing a new international study under the provisional title of Global Sedimentary Geology Program (GSGP). Initially, three research themes are being considered: (1) event stratigraphy-the documentation of examples of mass extinctions, eustatic fluctuations in sea level, major episodes of volcanisms, and changes in ocean composition; (2) facies models in time and space-an expansion of the existing data base of examples of facies models (e.G., deltas, fluvial deposits, and submarine fans) and global-scale study of the persistence of facies at various times in geologic history; and (3) sedimentary indices of paleogeography and tectonics-the use of depositional facies and faunas in paleogeography and in assessing the timing, locus, and characteristics of tectonism. Plans are being developed to organize pilot projects in each of these themes.

  14. Geological fakes and frauds

    NASA Astrophysics Data System (ADS)

    Ruffell, Alastair; Majury, Niall; Brooks, William E.

    2012-02-01

    Some geological fakes and frauds are carried out solely for financial gain (mining fraud), whereas others maybe have increasing aesthetic appeal (faked fossils) or academic advancement (fabricated data) as their motive. All types of geological fake or fraud can be ingenious and sophisticated, as demonstrated in this article. Fake gems, faked fossils and mining fraud are common examples where monetary profit is to blame: nonetheless these may impact both scientific theory and the reputation of geologists and Earth scientists. The substitution or fabrication of both physical and intellectual data also occurs for no direct financial gain, such as career advancement or establishment of belief (e.g. evolution vs. creationism). Knowledge of such fakes and frauds may assist in spotting undetected geological crimes: application of geoforensic techniques helps the scientific community to detect such activity, which ultimately undermines scientific integrity.

  15. Geology for Everyone

    NSDL National Science Digital Library

    This Geological Survey of Ireland website can increase the public's excitement about geology by offering simple, straightforward materials on the basics of geology. The website is divided into numerous themes such as Volcanoes, Rocks, Caves, and the Water Cycle. The links from each of the headings introduce the topic with simple descriptions and remarkable pictures and offer easy experiments when applicable. Students and educators can take virtual tours of the Ox Mountains, Killiney Beach, and other Irish landscapes. Everyone should visit the Landscapes for the Living link, which offers outstanding images of the diverse landscapes of Europe. While some of the themes are currently under construction, including Planet Earth, Plate Tectonics, and Earthquakes, the authors indicate that these materials will be added in the near future.

  16. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper

    Microsoft Academic Search

    R. M. C. Lopes; K. L. Mitchell; E. R. Stofan; J. I. Lunine; R. Lorenz; F. Paganelli; R. L. Kirk; C. A. Wood; S. D. Wall; L. E. Robshaw; A. D. Fortes; C. D. Neish; J. Radebaugh; E. Reffet; S. J. Ostro; C. Elachi; M. D. Allison; Y. Anderson; R. Boehmer; G. Boubin; P. Callahan; P. Encrenaz; E. Flamini; G. Francescetti; Y. Gim; S. Hensley; M. A. Janssen; W. T. K. Johnson; K. Kelleher; D. O. Muhleman; G. Ori; R. Orosei; G. Picardi; F. Posa; L. E. Roth; R. Seu; S. Shaffer; L. A. Soderblom; B. Stiles; S. Vetrella; R. D. West; L. Wye; H. A. Zebker

    2007-01-01

    The Cassini Titan Radar Mapper obtained Synthetic Aperture Radar images of Titan's surface during four fly-bys during the mission's first year. These images show that Titan's surface is very complex geologically, showing evidence of major planetary geologic processes, including cryovolcanism. This paper discusses the variety of cryovolcanic features identified from SAR images, their possible origin, and their geologic context. The

  17. NA57 main results

    E-print Network

    G. E. Bruno; for the NA57 Collaboration

    2007-10-15

    The CERN NA57 experiment was designed to study the production of strange and multi-strange particles in heavy ion collisions at SPS energies; its physics programme is essentially completed. A review of the main results is presented.

  18. MAINE WEIRS 1990

    EPA Science Inventory

    WEIR90 shows point locations of herring weirs in Maine based on 1990 overflight by MDMR Marine Patrol, mapped at an approximate scale of 1:100,000. Data were screen digitized from paper maps used during the overflight....

  19. Geological modeling and infiltration pattern of a karstic system based upon crossed geophysical methods and image-guided inversion

    NASA Astrophysics Data System (ADS)

    Duran, Lea; Jardani, Abderrahim; Fournier, Matthieu; Massei, Nicolas

    2015-04-01

    Karstic aquifers represent an important part of the water resources worldwide. Though they have been widely studied on many aspects, their geological and hydrogeological modeling is still complex. Geophysical methods can provide useful subsurface information for the characterization and mapping of karstic systems, especially when not accessible by speleology. The site investigated in this study is a sinkhole-spring system, with small diameter conduits that run within a chalk aquifer (Norville, in Upper Normandy, France). This site was investigated using several geophysical methods: electrical tomography, self-potential, mise-à-la-masse methods, and electromagnetic method (EM34). Coupling those results with boreholes data, a 3D geological model of the hydrogeological basin was established, including tectonic features as well as infiltration structures (sinkhole, covered dolines). The direction of the karstic conduits near the main sinkhole could be established, and the major fault was shown to be a hydraulic barrier. Also the average concentration of dolines on the basin could be estimated, as well as their depth. At last, several hypotheses could be made concerning the location of the main conduit network between the sinkhole and the spring, using previous hydrodynamic study of the site along with geophysical data. In order to validate the 3D geological model, an image-guided inversion of the apparent resistivity data was used. With this approach it is possible to use geological cross sections to constrain the inversion of apparent resistivity data, preserving both discontinuities and coherences in the inversion of the resistivity data. This method was used on the major fault, enabling to choose one geological interpretation over another (fault block structure near the fault, rather than important folding). The constrained inversion was also applied on covered dolines, to validate the interpretation of their shape and depth. Key words: Magnetic and electrical methods, karstic system modeling; image-guided inversion

  20. Landmark Main Idea

    NSDL National Science Digital Library

    Amanda Shipley

    2012-07-23

    In this lesson, students will use key details to determine the main idea of informational text about landmarks. For the summative assessment, students will work in small groups to read an informational text about landmarks, fill out a Main Idea Pyramid Graphic Organizer, and then create a poster in the shape of the landmark they read about. Students will utilize the information on their graphic organizer when creating their poster.

  1. Roping Geologic Time

    NSDL National Science Digital Library

    Randall Richardson

    After having talked about the geologic time scale (Precambrian: prior to 570 Ma; Paleozoic: 570-245 Ma; Mesozoic: 245-65 Ma; Cenozoic: 65 Ma - Present), I ask for two volunteers from the class to hold a rope that is 50 feet long. I say that one end is the beginning of the Earth (4.6 billion years ago), and the other is today. I then give out 16 clothes pins and ask various students to put a cloths pin on the 'time line' at various 'geologic events'. For example, I ask them to put one where the dinosaurs died out (end of the Mesozoic). They almost invariably put it much too old (65 Ma is less than 2% of Earth history!). Then I ask them to put one on their birthday (they now laugh). Then I ask them to put one where we think hominoids (humans) evolved (~3-4 Ma), and they realize that we have not been here very long geologically. Then I ask them to put one at the end of the Precambrian, where life took off in terms of the numbers of species, etc. They are amazed that this only represents less than 15% of Earth history. Throughout the activity I have a quiz going on where the students calculate percentages of Earth History for major geologic events, and compare it to their own ages. On their time scale, the dinosaurs died only about two 'months' ago! The exercise is very effective at letting them get a sense of how long geologic time is, and how 'recently' some major geologic events happened when you consider a time scale that is the age of the earth.

  2. Airborne magnetic survey for geological purposes in the USSR and Russian Federation

    NASA Astrophysics Data System (ADS)

    Glebovsky, Yu. S.; Mishin, Alexey A.

    1993-11-01

    In 1991 it was 55 years since the application of airborne magnetic surveys on USSR territory, and 52 years since its practical usage at geological institutes. It is possible to outline three periods of such a survey. (1) 1936-55. In this period the magnetic field vertical component was measured with the use of an induction magnetometer developed by A.A. Logachev. The main features of this simple instrument is a half-ring collector, a type of suspension, a compensation mode of measuring with a semi-automatic analog recording, and so forth, and a special system of tuning enabling one to receive a root mean square error of the survey in the range of 50-200 nT. With the use of this magnetometer, the territory of 2,000,000 km2 was surveyed, a number of deposits were discovered ( Krasnokamensk iron-ore deposit in South Siberia in 1943 included), geological maps were refined, and in the period of 1948-49 the first survey in the Arctic (for geological zonation) was conducted.

  3. Modernizing Main Street

    ERIC Educational Resources Information Center

    Oguntoyinbo, Lekan

    2010-01-01

    This article features Entrepreneurship Pioneers Initiative (EPI), a nine-month-long educational program targeted to first-generation, small business owners offered through the Rutgers University Center for Urban Entrepreneurship and Economic Development. In its second year, EPI has worked with more than 40 businesses out of an applicant pool of…

  4. Petroleum development geology

    SciTech Connect

    Dickey, P.A.

    1986-01-01

    An overview of geological concepts and reservoir engineering practices as they apply to the field of development (production) geology is presented. The author touches on nearly every aspect of the field in the 21 chapters of the book. He summarizes the basic depositional origin, sedimentary characteristics, and petrology of hydrocarbon-bearing rocks. He discusses physical properties, origin, and migration of subsurface oil and gas, oil field water, and their behavior, including subsurface pressures and fluid mechanics. Also covered are various methods of estimating reserves, the major tools of the trade and their limitations, and case histories.

  5. Introduction to Geology

    NSDL National Science Digital Library

    Jagoutz, Oliver

    If you are having difficulty remembering the details of the Earth's geological structure or the nature of major minerals and rock types, you can consult this excellent introductory course offered as part of MIT's OpenCourseWare initiative. The materials are drawn from Professors Perron and Jagoutz's 2011 "Introduction to Geology" course, and they include a number of lecture notes, available for download in PDF file format. The course is designed for undergraduates, though anyone can benefit from examining the materials. Visitors can make their way through lecture notes that cover metamorphic rocks, rock deformation, earthquakes, and the formation of continents.

  6. Web Features

    NSDL National Science Digital Library

    Web Features, presented by the Economic Policy Institute (EPI), is a collection of online resources for consumers about public opinion data. An economic snapshot, updated weekly, provides graphs and charts to highlight an economic issue, and this site also includes a selection of opinions from the EPI staff and their analysis of current economic data written in layperson's terms.

  7. Geologic Maps and Structures Name ______________________________ Geology 100 Harbor section

    E-print Network

    Harbor, David

    in 3-D and to develop some facility in interpreting the nature of geologic structures from geologic maps and geologic cross sections. A big part of this task is developing a skill for thinking in 3-D shows the rocks that occur at the surface (or just below the soil) and is usually printed on top

  8. Geologic Map of the Nulato Quadrangle, West-Central Alaska

    USGS Publications Warehouse

    Patton, W.W., Jr.; Moll-Stalcup, E. J.

    2000-01-01

    Introduction The Nulato quadrangle encompasses approximately 17,000 km2 (6,500 mi2) of west-central Alaska within the Yukon River drainage basin. The quadrangle straddles two major geologic features-the Yukon-Koyukuk sedimentary basin, a huge triangle-shaped Cretaceous depression that stretches across western Alaska from the Brooks Range to the Yukon delta; and the Ruby geanticline,a broad uplift of pre-Cretaceous rocks that borders the Yukon-Koyukuk basin on the southeast. The Kaltag Fault crosses the quadrangle diagonally from northeast to southwest and dextrally offsets all major geologic features as much as 130 km.

  9. Feature Weighting in k-Means Clustering

    Microsoft Academic Search

    Dharmendra S. Modha; W. Scott Spangler

    2002-01-01

    Data sets with multiple, heterogeneous feature spaces occur frequently. We present an abstract frame- work for integrating multiple feature spaces in the k-means clustering algorithm. Our main ideas are (i) to represent each data object as a tuple of multiple feature vectors, (ii) to assign a suitable (and possibly different) distortion measure to each feature space, (iii) to combine distortions

  10. Feature Weighting in k-Means Clustering

    Microsoft Academic Search

    Dharmendra S. Modha; W. Scott Spangler

    2003-01-01

    Data sets with multiple, heterogeneous feature spaces occur frequently. We present an abstract framework for integrating multiple feature spaces in the k-means clustering algorithm. Our main ideas are (i) to represent each data object as a tuple of multiple feature vectors, (ii) to assign a suitable (and possibly different) distortion measure to each feature space, (iii) to combine distortions on

  11. Modelling of Geological Structures Using Emergence

    NASA Astrophysics Data System (ADS)

    Hillier, M.; de Kemp, E. A.; Sprague, K.

    2009-05-01

    A complex system based approach is used to model geological structures. Preliminary work is presented to show how mutually interacting agents can be used to probe local regions and obtain emergent behaviour of its geometrical properties. Models are built bottom up from the smaller components to simulate regions from camp scales to regional scales. In nature, very complex structures exhibiting discontinuous and heterogeneous features are common. Modelling such regions using conventional methods is cumbersome and influences between close proximity zones are generally not considered. Agents are able to detect local and global features in the entire model space, as detailed as the data set allows. These features are incorporated into the interpolation of a modeled zone if those features are coupled to that location. We attempt to see if opportunities exist for exploiting complex systems approaches in what is a classical knowledge driven modelling domain with high emphasis on expert interpretive methods. Geological maps (2D, 3D or 4D) are fundamentally an emergent result of an iterative mental process which focuses on reconciling disparate data. The end goal of our research is to point a way forward in which complexity can support the simulation of maps and thus support the interpretive workflow.

  12. Main sequence mass loss

    SciTech Connect

    Brunish, W.M.; Guzik, J.A.; Willson, L.A.; Bowen, G.

    1987-01-01

    It has been hypothesized that variable stars may experience mass loss, driven, at least in part, by oscillations. The class of stars we are discussing here are the delta Scuti variables. These are variable stars with masses between about 1.2 and 2.25 M/sub theta/, lying on or very near the main sequence. According to this theory, high rotation rates enhance the rate of mass loss, so main sequence stars born in this mass range would have a range of mass loss rates, depending on their initial rotation velocity and the amplitude of the oscillations. The stars would evolve rapidly down the main sequence until (at about 1.25 M/sub theta/) a surface convection zone began to form. The presence of this convective region would slow the rotation, perhaps allowing magnetic braking to occur, and thus sharply reduce the mass loss rate. 7 refs.

  13. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A wide variety of topics on planetary geology are presented. Subjects include stratigraphy and geomorphology of Copernicus, the Mamers valle region, and other selected regions of Mars and the Moon. Crater density and distribution are discussed for Callisto and the lunar surface. Spectroscopic analysis is described for Europa and Ganymede.

  14. IDAHO FLUVIAL GEOLOGY

    EPA Science Inventory

    Restricted availability. Major Attributes: Polygons described by geologic type codes & descriptions. May be incorporated into maps at the state/county/basin scale. Probably too coarse for use at the site scale. Scale: 1:500:000. Extent: Idaho. Projection: Albers. Source: ...

  15. Geologic evolution of Arizona

    Microsoft Academic Search

    J. P. Penny; S. J. Reynolds

    1989-01-01

    Seven years in the making, the 35 papers in this volume summarize the stratigraphic, structural, and tectonic evolution of Arizona from Precambrian through Quaternary time. Intended as a compendium of current knowledge of Arizona geology, the papers synthesize previous work with new data, ideas, and concepts as well as identifying unresolved problems for future research. Emphasis is placed on the

  16. Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    Included are a teacher's guidebook and two filmstrips, "Geology of Wisconsin," and associated materials. The following are described: outline of objectives; suggested use of the filmstrips and guidebook; outline of the filmstrip content; four pages of illustrations suitable for duplication; a test for each filmstrip; and a list of additional…

  17. Geological and Inorganic Materials.

    ERIC Educational Resources Information Center

    Jackson, L. L.; And Others

    1989-01-01

    Presents a review focusing on techniques and their application to the analysis of geological and inorganic materials that offer significant changes to research and routine work. Covers geostandards, spectroscopy, plasmas, microbeam techniques, synchrotron X-ray methods, nuclear activation methods, chromatography, and electroanalytical methods.…

  18. Dinosaur Paleobiology Geology 331

    E-print Network

    Kammer, Thomas

    Dinosaur Paleobiology Geology 331 Paleontology #12;Dinosaurs are popular with the public #12;Jack Horner, Montana State Univ. #12;Field Work in Montana #12;A dinosaur "drumstick" in its field jacket. #12;Abundant vascular canals in dinosaur bone support the warm- blooded theory #12;Thin section of dinosaur

  19. Geological impacts on nutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter reviews the nutritional roles of mineral elements, as part of a volume on health implications of geology. The chapter addresses the absorption and post-absorptive utilization of the nutritionally essential minerals, including their physiological functions and quantitative requirements....

  20. Glacial Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    This publication is a teacher's resource and guidebook for the presentation of the three filmstrips in the "Glacial Geology of Wisconsin" series. The first filmstrip is subtitled, "Evidence of the Glaciers," the second "How the Glaciers Reshaped the Landscape," and the third "Fossils of the Ice Age." Included are a list of objectives, an outline…

  1. Appendix E: Geology

    SciTech Connect

    Reidel, Steve; Chamness, Mickie A.

    2008-01-17

    This appendix provides a detailed description of geology under the Central Plateau of the Hanford Site, emphasizing the areas around tank farms. It is to be published by client CH2M HILL Hanford Group, Inc., as part of a larger, multi-contractor technical report.

  2. American Geological Institute Homepage

    NSDL National Science Digital Library

    This is the homepage of the American Geological Institute (AGI). Visitors can access information about geoscience education, public policy, environmental geoscience, careers in geoscience, publications, news articles, and events. Materials presented here include databases, curriculum materials, legislation and appropriations information, and an image bank.

  3. Geological Time Machine

    NSDL National Science Digital Library

    Allen Collins

    This University of California site provides an interactive geologic time scale to explore the history of the Earth. Beginning in the Precambrian Eon (4.6 million years ago) and ending today (Holocene Epoch), each Epoch, Period, Era, and Eon are covered. Information provided includes ancient life, dates, descriptions of major events, localities, tectonics, and stratigraphy. Links to additional resources are also available.

  4. Analysis of geological events

    Microsoft Academic Search

    K. L. Burns

    1975-01-01

    Geological events, such as emplacement of granite or growth of slaty cleavage, may be ordered into a sequence by two methods. One is to assign each event a place in a time scale, such as years before the present, which amounts to assigning events an age designation from the set of real numbers. In ordering such a list, the algebra

  5. The effect of geological and geographical features on environmental radiation

    SciTech Connect

    Yamada, J.; Oka, M. [Graduate school of Fujita Health University (Japan); Shimo, M.; Minami, K. [Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake-shi, Aichi, 470-1192 (Japan); Minato, S. [Radiation Earth Science Laboratory, 9-6, Yamaguchi-cho, Higashi-ku, Nagoya-shi Aichi, 461-0024 (Japan); Sugino, M. [Gunma Prefectural College of Health Sciences, 323-1, Kamioki-cho, maebashi-shi, 371-0052 (Japan); Hosoda, M. [Chuoh College of Medical Technology, 3-5-12, Tateishi, katushika-ku, Tokyo, 124-0012 (Japan); Fukushi, M. [Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo, 116-8551 (Japan)

    2008-08-07

    The gamma-ray dose rates were measured in Gifu and Tokushima Prefectures in Japan. Measurements were carried out by the car-borne survey method. The dose rate in basaltic terrain in Tokushima prefecture was almost same as average of basaltic terrain in Japan. On the other hand, the dose rate in basaltic terrain in Gifu Prefecture was not same. In situ measurement of terrestrial gamma-ray dose rate was carried out in this terrain to examine its cause. As a result, it was estimated that soil of rhyolite which attributed to neighbor terrain have deposited on this terrain.

  6. Estimation of channelized features in geological media using sparsity constraint

    E-print Network

    Jafarpour, Behnam

    2008-01-01

    In this thesis, a new approach is studied for inverse modeling of ill-posed problems with spatially continuous parameters that exhibit sparseness in an incoherent basis (e.g. a Fourier basis). The solution is constrained ...

  7. Cenozoic extensional features in the geology of central mainland Greece

    E-print Network

    Swanson, Erika (Erika M.)

    2008-01-01

    The Hellenides of Greece have undergone a series of extensional deformation events from early Miocene to present time. Two of the fault systems that accommodate this deformation in central Greece are the Itea-Amfissa ...

  8. Geology of California. Second Edition

    SciTech Connect

    Norris, R.M.; Webb, R.W.

    1990-01-01

    Two introductory chapters familiarize readers with basic geologic concepts. The following chapters describe the geology of each of California's 11 geomorphic provinces; the San Andreas fault and offshore geology are discussed in two separate chapters. Four appendices acquaint readers with technical words and terms, common minerals and rocks in California, geologic time, and geologic theories that pertain to California. During the 1960s evidence collected from the east Pacific sea floor off the western coast of North America gave scientists supporting data for Alfred Wegener's 1910 theory of continental drift. In addition to the confirmation of continental drift, since the 1960s scientists have discovered paleomagnetism, sea-floor spreading, exotic and suspect terranes, and polar wandering. These important concepts have had far reaching effects about how we understand the geology of California and how this region has evolved through geologic time. Improved investigative procedures enable earth scientists to comprehend previously puzzling aspects of California's geology.

  9. Geology of the Colorado Plateau

    NSDL National Science Digital Library

    Colorado Plateau Field Institute

    This web page provides a general description of the geology of the Colorado Plateau. Topics include information about the various geologic environments and processes active during the Precambrian and the Paleozoic, Mesozoic and Cenozoic Eras.

  10. Innovation IGCT main drives

    Microsoft Academic Search

    J. P. Lyons; V. Vlatkovic; P. M. Espelage; F. H. Boettner; E. Larsen

    1999-01-01

    The paper introduces the new IGCT drives which feature three-level NPC full regenerative power converters-the initial 3300 V product is rated up to 10 MVA. The drives utilize IGCT devices-new hard driven GTOs achieving unprecedented switching performance and effective PWM carrier frequencies up to 1 kHz. The converters use diodes formulated for soft recovery and efficient clamp snubbers to allow

  11. Applications of imaging radar to geology

    NASA Astrophysics Data System (ADS)

    Daily, M. I.

    Tone, texture, and features imaged by radars were studied. A variety of computer image processing techniques were developed to reveal characteristics of these scences. Field checking of sites suggests links between the geology and the images. Tonal studies examine the effects of varying frequency polarization, and illumination geometry. Most surficial geologic units in Death Valley, California, are distinguishable by use of multifrequency, multipolarization radar data. Quaternary basalt flows in Idaho are separable by changing illumination geometry in the vertical plane, whereas desert fans and dunes show little tonal variation as function of changing illumination aximuth. Topographic texture is strongly enhanced by radar's unusual imaging physics computer image processing techniques prove useful in classifying and enhancing image texture. The classification technique, yield results in good agreement with those of human interpreters. The enhancement technique resolves a plunging anticline that was not evident on unprocessed imagery. Identification of features such as lineaments and large topographic highs is critically dependent on radar system parameters. A mathematical model of topography-induced distortion provides insight into the relationship between a radar image and the illuminated terrain. Imaging radar is shown to be a useful sensor for geologic mapping, especially when complementary data are present. Careful image processing, field checking of interpretations, and an understanding of radar imaging physics are critical to effective utilization of this unusual sensor.

  12. The Geological Society Web Shop

    NSDL National Science Digital Library

    The Geological Society has launched an on-line bookshop, through which both Fellows and non-Fellows of the Society can purchase Geological Society books. Visitors can select books listed under the following headings: Tectonics, Economic Geology, Environmental, Petrology, Stratigraphy, Marine Studies, and Geophysics. The Geological Society Web Shop can be browsed or searched by keyword. Information on opening an account and purchasing books is available at the site.

  13. Geologic Map of New Jersey

    NSDL National Science Digital Library

    This map displays the sedimentary rocks of the Cenozoic, Mesozoic, and Paleozoic eras as well as the igneous and metamorphic rocks of the Mesozoic and Precambrian eras. There is a pagesize copy of the geologic map, a brief description of the geology and physiographic provinces of New Jersey, and information on bedrock geologic maps of New Jersey (in CD-ROM format).

  14. The Second Flowering of Geology.

    ERIC Educational Resources Information Center

    Cloud, Preston

    1983-01-01

    Discusses two "golden" ages in geological investigations/inquiry. The first, extending from the late eighteenth century through the early nineteenth century, established geology as a science based on naturalistic principles. The second, beginning after World War II, is characterized by advances in geological specialities and explanations based on…

  15. Ordering Geologic Events and Interpreting Geologic History: The Grand Canyon

    NSDL National Science Digital Library

    Jennifer Wenner

    This activity is designed to help students recognize the connections among things like rock identification and map reading with the "story" that these things can tell us in terms of geologic history. Students have already learned about using observation to identify rocks and the principles of interpreting geologic cross-sections. The activity gives students practice in rock ID, topo map reading, geologic map reading and the aspects of geologic time. Students work with rock samples and a geologic map of the Grand Canyon to interpret a history for the area.

  16. USGS National Geologic Map Database: State-wide Geologic Maps

    NSDL National Science Digital Library

    This search tool provides descriptions and availability information for geologic maps of the 50 States, the District of Columbia, and Puerto Rico. These geologic maps are published by a variety of organizations, including State geologic agencies, the U.S. Geological Survey (USGS), universities, and private companies. Title, date, scale, publisher, series (where applicable), and basic ordering information is provided for each map. A place name search and an advanced search using geologic themes, areas, publishers and other criteria allow for more specific queries to the database.

  17. From digital mapping to GIS-based 3D visualization of geological maps: example from the Western Alps geological units

    NASA Astrophysics Data System (ADS)

    Balestro, Gianni; Cassulo, Roberto; Festa, Andrea; Fioraso, Gianfranco; Nicolò, Gabriele; Perotti, Luigi

    2015-04-01

    Collection of field geological data and sharing of geological maps are nowadays greatly enhanced by using digital tools and IT (Information Technology) applications. Portable hardware allows accurate GPS localization of data and homogeneous storing of information in field databases, whereas GIS (Geographic Information Systems) applications enable generalization of field data and realization of geological map databases. A further step in the digital processing of geological map information consists of building virtual visualization by means of GIS-based 3D viewers, that allow projection and draping of significant geological features over photo-realistic terrain models. Digital fieldwork activities carried out by the Authors in the Western Alps, together with building of geological map databases and related 3D visualizations, are an example of application of the above described digital technologies. Digital geological mapping was performed by means of a GIS mobile software loaded on a rugged handheld device, and lithological, structural and geomorphological features with their attributes were stored in different layers that form the field database. The latter was then generalized through usual map processing steps such as outcrops interpolation, characterization of geological boundaries and selection of meaningful punctual observations. This map databases was used for building virtual visualizations through a GIS-based 3D-viewer that loaded detailed DTM (resolution of 5 meters) and aerial images. 3D visualizations were focused on projection and draping of significant stratigraphic contacts (e.g. contacts that separate different Quaternary deposits) and tectonic contacts (i.e. exhumation-related contacts that dismembered original ophiolite sequences). In our experience digital geological mapping and related databases ensured homogeneous data storing and effective sharing of information, and allowed subsequent building of 3D GIS-based visualizations. The latters gave realistic and easy-to-read representations of areas of geological interest and are a useful tool to overcome the problems that commonly occur in transferring contents of geological maps to non-expert users (e.g. in the frame of managing and disseminating geoheritage information). Although 3D GIS-based visualizations have not the capabilities of real 3D geological models (i.e. numerical models that actually allow building and checking geometry of geological units), they represent a useful for field geologists that can easily visualize their map representations and related uncertainties.

  18. Geologic Maps and Geologic Structures: A Texas Example

    NSDL National Science Digital Library

    Roger Steinberg

    This Historical Geology lab exercise is an accompaniment to lab class instruction about geologic structures (folding and faulting) and geologic maps. It also serves as an excellent introduction to the Geology of the state of Texas. "Coloring" geologic maps, an important part of the exercise, may seem like a very elementary learning technique. But this lab engages students actively, and since the subject is often already somewhat familiar to them, emphasizing both the geology and geography of Texas, students receive it enthusiastically. This activity could be adapted to other regions, since most states have color 8 1/2 by 11 geologic maps available. A color map could be scanned and modified in Photoshop to create a simplified black and white version as was done in the assignment handout.

  19. Evaluation of thermal data for geologic applications

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.; Palluconi, F. D.; Levine, C. J.; Abrams, M. J.; Nash, D. B.; Alley, R. E.; Schieldge, J. P.

    1982-01-01

    Sensitivity studies using thermal models indicated sources of errors in the determination of thermal inertia from HCMM data. Apparent thermal inertia, with only simple atmospheric radiance corrections to the measured surface temperature, would be sufficient for most operational requirements for surface thermal inertia. Thermal data does have additional information about the nature of surface material that is not available in visible and near infrared reflectance data. Color composites of daytime temperature, nighttime temperature, and albedo were often more useful than thermal inertia images alone for discrimination of lithologic boundaries. A modeling study, using the annual heating cycle, indicated the feasibility of looking for geologic features buried under as much as a meter of alluvial material. The spatial resolution of HCMM data is a major limiting factor in the usefulness of the data for geologic applications. Future thermal infrared satellite sensors should provide spatial resolution comparable to that of the LANDSAT data.

  20. Structural geology of the Earth's exterior*

    PubMed Central

    Burchfiel, B. C.

    1979-01-01

    Plate tectonics offers an explanation for the present motions and heterogeneity of the rocks that form the external part of the Earth. It explains the origin of the first-order heterogeneity of oceanic and continental lithospheres. Furthermore, it explains the youth and simplicity of the oceanic lithosphere and offers the potential to explain the antiquity, complexity, and evolution of the continental lithosphere. The framework of plate tectonics must be used carefully, because there are geological features within continents, particularly in the more ancient rocks, that may require alternative explanations. The task of understanding lithospheric motions through geologic time must be focused on the continents, where the major evidence for 95% of Earth history resides. In interpreting earth motions from the geologic record, three needs seem paramount: (i) to develop a three-dimensional understanding of the kinematics, dynamics, and thermal structure of modern plate boundary systems and at the same time to recognize those geological and geophysical features that are unrelated to plate interaction; (ii) to use this understanding to reconstruct the extent and evolution of ancient systems that form the major elements of continental crust; and (iii) to determine the dynamics and evolution of systems that have no modern analogs. Decoupling along subhorizontal zones within the lithosphere may be widespread in all types of plate boundary systems. Thus, in order to interpret the motion and dynamics of the mantle correctly, it is important to know if upper lithospheric motion within boundary systems is controlled directly or indirectly by or is independent of deeper mantle motions. PMID:16592704

  1. Maine Humanities Council

    NSDL National Science Digital Library

    Formed as a private nonprofit organization, the Maine Humanities Council (MHC) "promotes strong communities and informed citizens by providing Mainers with opportunities to explore the power and pleasure of ideas." Their work is supported by volunteer board members, and their projects include programs to promote reading and writing, guest lectures around the state, and online newsletters and discussion groups. In the "Programs" area, visitors can learn about these programs, and educators can check out the resources created especially for them. The "Connections" area contains links to their thoughtful blog, their "Humanities on Demand" podcasts, and their periodic newsletter "Synapse", which deals with medicine and literature. The podcasts are quite fun, and they include "Franco-American Women's Words in Maine" and a talk by Professor Dianne Sadoff of Rutgers University on Middlemarch, by George Eliot.

  2. Jupiter's Main Ring

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa. A faint mist of particles can be seen above and below the main rings; this vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic.

    Jupiter's main ring is a thin strand of material encircling the planet. The diffuse innermost boundary begins at approximately 123,000 km. The main ring's outer radius is found to be at 128,940 +/-50 km, slightly less than the Voyager value of 129,130 +/-100 km, but very close to the orbit of the satellite Adrastea (128,980 km). The main ring exhibits a marked drop in brightness at 127,849 +/-50 km, lying almost atop the orbit of the Jovian moon Metis at 127,978 km. Satellites seem to affect the structure of even tenuous rings like that found at Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at: http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at: http:/ /www.jpl.nasa.gov/galileo/sepo.

  3. Main roads to melanoma

    PubMed Central

    Palmieri, Giuseppe; Capone, Mariaelena; Ascierto, Maria Libera; Gentilcore, Giusy; Stroncek, David F; Casula, Milena; Sini, Maria Cristina; Palla, Marco; Mozzillo, Nicola; Ascierto, Paolo A

    2009-01-01

    The characterization of the molecular mechanisms involved in development and progression of melanoma could be helpful to identify the molecular profiles underlying aggressiveness, clinical behavior, and response to therapy as well as to better classify the subsets of melanoma patients with different prognosis and/or clinical outcome. Actually, some aspects regarding the main molecular changes responsible for the onset as well as the progression of melanoma toward a more aggressive phenotype have been described. Genes and molecules which control either cell proliferation, apoptosis, or cell senescence have been implicated. Here we provided an overview of the main molecular changes underlying the pathogenesis of melanoma. All evidence clearly indicates the existence of a complex molecular machinery that provides checks and balances in normal melanocytes. Progression from normal melanocytes to malignant metastatic cells in melanoma patients is the result of a combination of down- or up-regulation of various effectors acting on different molecular pathways. PMID:19828018

  4. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  5. Main-group pallasites

    Microsoft Academic Search

    John T. Wasson; Byeon-Gak Choi

    2003-01-01

    We used neutron activation to characterize the metal of 33 main-group pallasites (PMG), widely held to be samples of a core–mantle interface. Most PMG cluster in a narrow range of metal and silicate compositions, but 6 are assigned to an anomalous subset (PMG-am) because of their deviant metal compositions, and 4 others to another anomalous subset (PMG-as) because of their

  6. Main graphs: Quadratic equation

    E-print Network

    Utrecht, Universiteit

    Main graphs: Quadratic equation: Equation A2 +B+C = 0, has solutions given by the following 'abc equations: Equation dN dt = kN has the solution: N(t) = N0ekt; N0 is an (arbitrary) initial value of N. Characteristic time of change is = 1/k. Systems of linear differential equations: For system dx dt = ax+by dy dt

  7. Canada's Deep Geological Repository For Used Nuclear Fuel -The Geoscientific Site Evaluation Process

    NASA Astrophysics Data System (ADS)

    Hirschorn, S.; Ben Belfadhel, M.; Blyth, A.; DesRoches, A. J.; McKelvie, J. R. M.; Parmenter, A.; Sanchez-Rico Castejon, M.; Urrutia-Bustos, A.; Vorauer, A.

    2014-12-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. In May 2010, the NWMO published and initiated a nine-step site selection process to find an informed and willing community to host a deep geological repository for Canada's used nuclear fuel. The site selection process is designed to address a broad range of technical and social, economic and cultural factors. The suitability of candidate areas will be assessed in a stepwise manner over a period of many years and include three main steps: Initial Screenings; Preliminary Assessments; and Detailed Site Characterizations. The Preliminary Assessment is conducted in two phases. NWMO has completed Phase 1 preliminary assessments for the first eight communities that entered into this step. While the Phase 1 desktop geoscientific assessments showed that each of the eight communities contains general areas that have the potential to satisfy the geoscientific safety requirements for hosting a deep geological repository, the assessment identified varying degrees of geoscientific complexity and uncertainty between communities, reflecting their different geological settings and structural histories. Phase 2 activities will include a sequence of high-resolution airborne geophysical surveys and focused geological field mapping to ground-truth lithology and structural features, followed by limited deep borehole drilling and testing. These activities will further evaluate the site's ability to meet the safety functions that a site would need to ultimately satisfy in order to be considered suitable. This paper provides an update on the site evaluation process and describes the approach, methods and criteria that are being used to conduct the geoscientific Preliminary Assessments.

  8. Geologic interpretation of space shuttle radar images of Indonesia

    SciTech Connect

    Sabing, F.F.

    1983-11-01

    The National Aeronautics and Space Administration (NASA) space shuttle mission in November 1981 acquired images of parts of the earth with a synthetic aperture radar system at a wavelength of 23.5 cm (9.3 in.) and spatial resolution of 38 m (125 ft). This report describes the geologic interpretation of 1:250,000-scale images of Irian Jaya and eastern Kalimantan, Indonesia, where the all-weather capability of radar penetrates the persistent cloud cover. The inclined look direction of radar enhances subtle topographic features that may be the expression of geologic structures. On the Indonesian images, the following terrain categories are recognizable for geologic mapping: carbonate, clastic, volcanic, alluvial and coastal, melange, and metamorphic, as well as undifferentiated bedrock. Regional and local geologic structures are well expressed on the images.

  9. Mapping Vesta: A Geological Overview

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Pieters, C. M.; Russell, C. T.; Raymond, C. A.; Yingst, R.; Williams, D. A.; Schenk, P.; Neukum, G.; Mottola, S.; Buczkowski, D.; O'Brien, D. P.; Garry, W. B.; Blewett, D. T.; Denevi, B. W.; Roatsch, T.; Preusker, F.; Nathues, A.; Sierks, H.; Sykes, M. V.; De sanctis, M.; McSween, H. Y.; Keller, H. U.; Marchi, S.

    2011-12-01

    Observations from the Dawn (Russell et al., 2007) spacecraft enabled deriva-tion of 4Vesta's shape, facilitated mapping of the surface geology and pro-vided the first evidence for Vesta's geological evolution. The Dawn mission is equipped with a framing camera (FC), a visible and infrared mapping spectrometer (VIR) and a gamma-ray and neutron detector (GRaND). So far science data are collected during the approach to the asteroid and protoplanet Vesta, a circular polar orbit at an altitude of 2700 km providing ~ 230 m/pix camera resolution and a lower orbit, at 700 km altitude with a camera resolu-tion of ~ 65 m/pixel. Geomorphology and distribution of surface features provide evidence for impact cratering, tectonic activity, regolith and prob-able volcanic processes. Craters with dark rays, bright rays, and dark rim streaks have been observed, suggesting possible buried stratigraphy. The largest fresh craters retain a simple bowl-shaped morphology, with depth/diameter ratios roughly comparable to lunar values. The largest candi-date crater, a ~460 km depression at the south pole, has been shown to con-tain an incomplete inward facing cuspate scarp, and a large central mound surrounded by unusual complex arcuate ridge and groove patterns. Although asymmetric in general form, these characteristics do not contradict an impact origin but may also allow endogenic processes like convective downwelling or hybrid modification of an impact. Rapid rotation of Vesta during impact may explain some anomalous features (Jutzi and Asphaug, 2010). A set of large equatorial troughs may be related to the formation process of the south polar structure or due to stress caused by changes of the rotational axis. The crater size frequency and the chronology function is derived from the lunar chronology, scaled to impact frequencies modeled for Vesta according to (Bottke et al., 1994) and (O'Brien and Sykes, 2011). The northern hemi-sphere is heavily cratered by a large variety of ancient degraded and fresh sharp craters. Preliminary crater counts indicate only small differences in absolute surface model ages between the northern region and the south polar structure.

  10. Algebra, Geology and Economics

    NSDL National Science Digital Library

    Dowse, Mary

    The American Mathematical Association of Two-Year Colleges (AMATYC) has compiled a collection of mathematics resources related to various subjects and disciplines. â??Math Across the Community College Curriculumâ? is the title of the collection, which includes great math resources and applications for educators and students alike. In this particular resource, concepts from algebra, geology and economics are intertwined to create two dynamic activities for students. The projects, created by Mary Dowse, Tom Gruszka, and George Muncrief of Western New Mexico University, include both general learning objectives and subject specific objectives for what students will learn through the completion of the activities. The first activity focuses on the mathematics of economics, and the second activity focuses on geology and graphing. These activities can be easily adapted for use in the classroom, and are also useful for students who are looking for extra practice with these concepts.

  11. Geology of Britain Viewer

    NSDL National Science Digital Library

    If you've ever wanted to wander from John O'Groats to the Cotswolds without leaving your desk, this most wonderful website is for you. Created by the British Geological Survey, the Geology of Britain viewer helps interested parties learn more about the landforms in their backyards. After opening the viewer, visitors can click on an area of interest to look at everything from possible earthquake threats to rock layers to soil composition and more. Visitors should note that they can zoom in on the map and also use place names to refine their searches via the Go to Location button. Additionally, the basemap can be modified to show satellite photographs or various street maps as overlays. Finally, the site contains walking guides for several regions of Britain that might be helpful for those with a penchant for perambulation.

  12. The encyclopedia of applied geology

    SciTech Connect

    Finkl, C.W.

    1984-01-01

    This compendium of engineering geology data includes contributions by experts from many countries. Topics center around the field of engineering geology, with special focus on landscapes, earth materials, and the ''management'' of geological processes. How to use geology to serve man is given particular attention. More than 80 entries deal with hydrology, rock structure monitoring, soil mechanics, and engineering geology. Facts are provided on earth science information and sources, electrokinetics, forensic geology, geogryology, nuclear plant siting, photogrammetry, tunnels and tunneling, urban geomorphology, and well data systems. This guide explains the geology of alluvial plains, arid lands, beaches and coasts, delataic plains, cold regions, glacial landscapes, and urban environments. Detailed analyses are given of the geotechnical properties of caliche, clay, duricrust, soil, laterite, marine sediments, and rocks.

  13. General features

    SciTech Connect

    Wallace, R.E.

    1990-01-01

    The San Andreas fault system, a complex of faults that display predominantly large-scale strike slip, is part of an even more complex system of faults, isolated segments of the East Pacific Rise, and scraps of plates lying east of the East Pacific Rise that collectively separate the North American plate from the Pacific plate. This chapter briefly describes the San Andreas fault system, its setting along the Pacific Ocean margin of North America, its extent, and the patterns of faulting. Only selected characteristics are described, and many features are left for depictions on maps and figures.

  14. A Regional Guide to Iowa Landforms. Iowa Geological Survey Educational Series 3.

    ERIC Educational Resources Information Center

    Prior, Jean Cutler

    Presented is a non-technical account of the geological appearance and history of the state of Iowa. Included are Iowa's landscape features, geologic events, and processes that shaped the landscape. Maps and numerous illustrations picture the events and landforms described. Each of the state's seven principal landform regions is discussed in…

  15. Borehole geological assessment

    NASA Technical Reports Server (NTRS)

    Spuck, W. H., III (inventor)

    1979-01-01

    A method and apparatus are discussed for performing geological assessments of a formation located along a borehole, and a boring tool that bores a pair of holes into the walls of the borehole and into the surrounding strata along with a pair of probes which are installed in the holes. One of the probes applies an input such as a current or pressured fluid, and the other probe senses a corresponding input which it receives from the strata.

  16. Comprehending Geologic Time

    NSDL National Science Digital Library

    You can use this calculator to create your own metaphor for geologic time. The history of the could be the the distance from your home to school - you can figure out where dinosaurs would be on the trip. Or the history of time could be the length of a class - and you could figure how much of the class you have to sit through before intelligence appears.

  17. Geology - Plate Tectonics

    NSDL National Science Digital Library

    Visitors to this site can learn about the theory of plate tectonics, the history of its development, and the mechanisms that drive the formation, movement, and destruction of continents and tectonic plates. A selection of animations depicts the movements of crustal plates and continents through time. Each animation is accompanied by an interactive time scale that provides links to descriptions of the geology and paleontology of the selected era or period.

  18. Geologic Cross Sections

    NSDL National Science Digital Library

    Sharon Browning

    For this project, students must select a several hundred kilometer long section of Earth's surface, ideally crossing one or more major plate boundaries and research all major tectonic events to construct a cross section. Students should also take into account other factors like age of the ocean floor, average elevation and gravity anomalies across their area. The purpose is to demonstrate the geologic/tectonic history of their cross section and present it in a clear, concise summary.

  19. Integrating geology and perforating

    SciTech Connect

    Araujo, P.F. de [Petrobras, Rio de Janeiro (Brazil); Souza Padilha, S.T.C. de [Schlumberger Wireline and Testing, Rio de Janeiro (Brazil)

    1997-02-01

    Perforating is a very common well completion operation. Usually, it is considered to be as simple as making holes in casing. Actually, perforating is one of the most critical tasks for establishing a path from reservoir rock to borehole form which hydrocarbons can flow to surface. The objective of this article is to relate perforating technology with geological aspects and completion type to determine the best shooting equipment (gun type, charge and differential pressure) to perform the most efficient perforating job. Several subjects related to formation geology are taken into account for a shooting job, such as: compressive strength, reservoir pressure and thickness, lithology type, porosity and permeability, ratio between horizontal and vertical permeabilities, and fluid type. Gun geometry used in the oil industry incorporates several parameters, including shot density, hole entrance diameter, gun phase and jet penetration. API tests are done on perforating guns to define applicability and performance. A new geometrical parameter is defined as the relative angle of the jet, which is the angle between the jet tunnel and formation dip. GEOCAN is a methodology which relates geology to gun geometry and type to define the most efficient gun system for perforated completions. It uses the intelligent perforating technique with the SPAN (Schlumberger Perforating Analysis) program to confirm optimum gun choice.

  20. Exhumation of Greater Himalayan rock along the main central thrust in Nepal: Implications for channel flow

    USGS Publications Warehouse

    Robinson, D.M.; Pearson, O.N.

    2006-01-01

    South-vergent channel flow from beneath the Tibetan Plateau may have played an important role in forming the Himalaya. The possibility that Greater Himalayan rocks currently exposed in the Himalayan Fold-Thrust Belt flowed at mid-crustal depths before being exhumed is intriguing, and may suggest a natural link between orogenic processes operating under the Tibetan Plateau and in the fold-thrust belt. Conceptual and numeric models for the Himalayan-Tibetan Orogen currently reported in the literature do an admirable job of replicating many of the observable primary geological features and relationships. However, detailed observations from Greater Himalayan rocks exposed in the fold-thrust belt's external klippen, and from Lesser Himalayan rocks in the proximal footwall of the Main Central Thrust, suggest that since Early Miocene time, it may be more appropriate to model the evolution of the fold-thrust belt using the critical taper paradigm. This does not exclude the possibility that channel flow and linked extrusion of Greater Himalayan rocks may have occurred, but it places important boundaries on a permissible time frame during which these processes may have operated. ?? The Geological Society of London 2006.

  1. Bedrock geologic Map of the Central Block Area, Yucca Mountain, Nye County, Nevada

    SciTech Connect

    W.C. Day; C. Potter; D. Sweetkind; R.P. Dickerson; C.A. San Juan

    1998-09-29

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. As such, this map focuses on the central block at Yucca Mountain, which contains the potential repository site. The central block is a structural block of Tertiary volcanic rocks bound on the west by the Solitario Canyon Fault, on the east by the Bow Ridge Fault, to the north by the northwest-striking Drill Hole Wash Fault, and on the south by Abandoned Wash. Earlier reconnaissance mapping by Lipman and McKay (1965) provided an overview of the structural setting of Yucca Mountain and formed the foundation for selecting Yucca Mountain as a site for further investigation. They delineated the main block-bounding faults and some of the intrablock faults and outlined the zoned compositional nature of the tuff units that underlie Yucca Mountain. Scott and Bonk (1984) provided a detailed reconnaissance geologic map of favorable area at Yucca Mountain in which to conduct further site-characterization studies. Of their many contributions, they presented a detailed stratigraphy for the volcanic units, defined several other block-bounding faults, and outlined numerous intrablock faults. This study was funded by the U.S. Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bonk (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the Exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a consistent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described.

  2. Assessment of the geothermal resources of Indiana based on existing geologic data

    SciTech Connect

    Vaught, T.L.

    1980-12-01

    The general geology of Indiana is presented including the following: physiography, stratigraphy, and structural features. The following indicators of geothermal energy are discussed: heat flow and thermal gradient, geothermal occurrences, seismic activity, geochemistry, and deep sedimentary basins. (MHR)

  3. Assessing the capabilities of ground penetrating radar for applications in geologic and engineering subsurface studies

    E-print Network

    Servos, Stacia Lynn

    1998-01-01

    Ground penetrating radar (GPR) has evolved into an effective, non-destructive geophysical method for detecting subsurface features in a variety of fields, particularly geology, engineering ', hydrogeology, and archaeology. GPR emits a pulse...

  4. Aquarius Main Structure Configuration

    NASA Technical Reports Server (NTRS)

    Eremenko, Alexander

    2012-01-01

    The Aquarius/SAC-D Observatory is a joint US-Argentine mission to map the salinity at the ocean surface. This information is critical to improving our understanding of two major components of Earth's climate system - the water cycle and ocean circulation. By measuring ocean salinity from space, the Aquarius/SAC-D Mission will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Aquarius is the primary instrument on the SAC-D spacecraft. It consists of a Passive Microwave Radiometer to detect the surface emission that is used to obtain salinity and an Active Scatterometer to measure the ocean waves that affect the precision of the salinity measurement. The Aquarius Primary Structure houses instrument electronics, feed assemblies, and supports a deployable boom with a 2.5 m Reflector, and provides the structural interface to the SAC-D Spacecraft. The key challenge for the Aquarius main structure configuration is to satisfy the needs of component accommodations, ensuring that the instrument can meet all operational, pointing, environmental, and launch vehicle requirements. This paper describes the evolution of the Aquarius main structure configuration, the challenges of balancing the conflicting requirements, and the major configuration driving decisions and compromises.

  5. Geologic Evolution of North America: Geologic features suggest that the continent has grown and differentiated through geologic time.

    PubMed

    Engel, A E

    1963-04-12

    The oldest decipherable rock complexes within continents (more than 2.5 billion years old) are largely basaltic volcanics and graywacke. Recent and modern analogs are the island arcs formed along and adjacent to the unstable interface of continental and oceanic crusts. The major interfacial reactions (orogenies) incorporate pre-existing sial, oceanic crust, and mantle into crust of a more continental type. Incipient stages of continental evolution, more than 3 billion years ago, remain obscure. They may involve either a cataclysmic granite-forming event or a succession of volcanic-sedimentary and granite-forming cycles. Intermediate and recent stages of continental evolution, as indicated by data for North America, involve accretion of numerous crustal interfaces with fragments of adjacent continental crust and their partial melting, reinjection, elevation, unroofing, and stabilization. Areas of relict provinces defined by ages of granites suggest that continental growth is approximately linear. But the advanced differentiation found in many provinces and the known overlaps permit wide deviation from linearity in the direction of a more explosive early or intermediate growth. PMID:17819825

  6. Geological Investigations of Mars: The Human Factor

    NASA Astrophysics Data System (ADS)

    Neal, Clive R.

    2001-01-01

    Humans make better geologists than robots, and putting astronauts on the surface of Mars will greatly enhance scientific exploration and increase the chances for key scientific discoveries. Humans can recognize interesting samples and, importantly, place those samples in the overall geological context of the particular landing site. These attributes were amply demonstrated during the Apollo program, as for example when Jack Schmitt accidentally slipped and discovered the "orange soil" (glass beads) at the Apollo 17 site. These samples remain some of the most important collected during the Apollo program and are still being analyzed by scientists worldwide. Because the Apollo missions were each of limited duration, no instruments were carried along for actual analysis of rock samples prior to returning them to Earth. However, human expeditions to Mars will likely involve extended stays (months). Assuming a limited capacity for returning geological samples, it will be highly advantageous to carry some rudimentary kinds of analytical equipment to the Martian surface in order to ensure that the most significant geological samples are collected and returned to Earth. This paper discusses some of the most useful and practical types of analytical equipment that might be taken along in order to characterize geological samples on the surface of Mars. Some useful tools actually can be carried by astronauts into "the field" as opposed to remaining on the spacecraft lander. These portable instruments are mainly the simplest yet most important instruments. There is no substitute for a human eye coupled with a well-trained mind, and what the eye can see will be greatly enhanced by having a geological hammer (to expose fresh rock surfaces) and some kind of helmet compatible magnifier for first-order rock and mineral characterization.

  7. Integration of Geological Datasets for Gold Exploration in Nova Scotia

    Microsoft Academic Search

    G. F. Bonham-Carter; F. P. Agterberg; D. F. Wright

    1988-01-01

    A vari ety of regi onal geoscience datasets from Nova Scotia have been co-registered and ana lyzed using a geographic information system (GIS). The datasets include bedrock and surficial geological maps, airborne geophysical survey data, geochemistry of lake-sediment sa mples, and mineral occurrence data. A number of line features, including structural lineaments, fold axes and formation contacts, have also been

  8. Atlantis basin, Sirenum Terrae, Mars: geological setting and astrobiological implications

    Microsoft Academic Search

    Miguel A. de Pablo; Alberto G. Fairén

    2004-01-01

    The accomplishment of detailed geomorphological studies is a prerequisite for the location of regions in which the prevailing conditions in the past, or at present, may allow the development of possible life forms. The Atlantis basin, located in Sirenum Terrae, Southern hemisphere of Mars, is one of these astrobiologically interesting regions, where the existence of geological features such as ancient

  9. GIS-technologies as a mechanism to study geological structures

    NASA Astrophysics Data System (ADS)

    Sharapatov, Abish

    2014-05-01

    Specialized GIS-technologies allow creating multi-parameter models, completing multi-criteria optimisation tasks, and issues of geological profile forecasts using miscellaneous data. Pictorial and attributive geological and geophysical information collected to create GIS database is supplemented by the ERS (Earth's Remote Sensing) data, air spectrometry, space images, and topographic data. Among the important tasks are as follows: a unification of initial geological, geophysical and other types of information on a tectonic position, rock classification and stratigraphic scale; topographic bases (various projectures, scales); the levels of detail and exhaustibility; colors and symbols of legends; data structures and their correlation; units of measurement of physical quantities, and attribute systems of descriptions. Methods of the geological environment investigation using GIS-technology are based on a principle of the research target analogy with a standard. A similarity ratio is quantitative estimate. A geological forecast model is formed by structuring of geological information based on detailed analysis and aggregation of geological and formal knowledge bases on standard targets. Development of a bank of models of the analyzed geological structures of various range, ore-bearing features described by numerous prospecting indicators is the way to aggregate geological knowledge. The south terrain of the Valerianovskaya structure-facies zone (SFZ) of the Torgai paleo-rift structure covered with thick Mesozoic and Cenozoic rocks up to 2,000m is considered a so-called training ground for the development of GIS-technology. Parameters of known magnetite deposits located in the north of the SFZ (Sarybaiskoye, Sokolovskoye, etc.) are used to create the standard model. A meaning of the job implemented involves the following: - A goal-seeking nature of the research being performed and integration of the geological, geo-physical and other data (in many cases, efforts of the Earth scientists are odd, thus, solving only local tasks); - Development of specialized GIS-technology that ensures creating multi-parameter models, completing multi-criteria optimisation tasks, and issues of geological profile forecasts using miscellaneous data; - Application of the modern approach to the geological, petrological and genetic modeling of the targets in the geological zone under survey; determination of the structural and tectonic position of the Valerianovskaya SFZ and its relations to the mineralization; - A possibility to apply the GIS created for the region as a desk (local) system integrated to the regional or national bank of geospatial information with a corporate access via local and global networks.

  10. Applicability of ERTS-1 to Montana geology

    NASA Technical Reports Server (NTRS)

    Weidman, R. M. (principal investigator); Alt, D. D.; Berg, R.; Johns, W.; Flood, R.; Hawley, K.; Wackwitz, L.

    1976-01-01

    The author has identified the following significant results. Late autumn imagery provides the advantages of topographic shadow enhancement and low cloud cover. Mapping of rock units was done locally with good results for alluvium, basin fill, volcanics, inclined Paleozoic and Mesozoic beds, and host strata of bentonite beds. Folds, intrusive domes, and even dip directions were mapped where differential erosion was significant. However, mapping was not possible for belt strata, was difficult for granite, and was hindered by conifers compared to grass cover. Expansion of local mapping required geologic control and encountered significant areas unmappable from ERTS imagery. Annotation of lineaments provided much new geologic data. By extrapolating test site comparisons, it is inferred that 27 percent of some 1200 lineaments mapped from western Montana represent unknown faults. The remainder appear to be localized mainly by undiscovered faults and sets of minor faults or joints.

  11. Spaceborne imaging radar: geologic and oceanographic applications.

    PubMed

    Elachi, C

    1980-09-01

    Synoptic, large-area radar images of the earth's land and ocean surface, obtained from the Seasat orbiting spacecraft, show the potential for geologic mapping and for monitoring of ocean surface patterns. Structural and topographic features such as lineaments, anticlines, folds and domes, drainage patterns, stratification, and roughness units can be mapped. Ocean surface waves, internal waves, current boundaries, and large-scale eddies have been observed in numerous images taken by the Seasat imaging radar. This article gives an illustrated overview of these applications. PMID:17841450

  12. Spaceborne imaging radar - Geologic and oceanographic applications

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1980-01-01

    Synoptic, large-area radar images of the earth's land and ocean surface, obtained from the Seasat orbiting spacecraft, show the potential for geologic mapping and for monitoring of ocean surface patterns. Structural and topographic features such as lineaments, anticlines, folds and domes, drainage patterns, stratification, and roughness units can be mapped. Ocean surface waves, internal waves, current boundaries, and large-scale eddies have been observed in numerous images taken by the Seasat imaging radar. This article gives an illustrated overview of these applications.

  13. Wisconsin Geological and Natural History Survey

    NSDL National Science Digital Library

    The Wisconsin Geological and Natural History Survey, as part of the University of Wisconsin-Extension, is "an interdisciplinary organization that conducts natural resources surveys and research to produce information used for decision making, problem solving, planning, management, development, and education". The site offers downloadable online publications such as annual groundwater level summaries and understanding Wisconsin township, range, and section land descriptions. It also contains lists of other publications and various maps of Wisconsin, all of which can be ordered by mail. Information on the history of the survey and an interesting section that includes pictures and descriptions of karst (limestone) development and features is also available.

  14. US Geological Survey Volcano Hazards Program

    NSDL National Science Digital Library

    The US Geological Survey Volcano Hazards Program website presents its objectives "to advance the scientific understanding of volcanic processes and to lessen the harmful impacts of volcanic activity." The public can explore information on volcano monitoring, warning schemes, and emergency planning. Students and educators can find out about the types, effects, location, and history of volcano hazards. The website offers recent online volcano reports and maps, volcano factsheets, videos, and a photo glossary. Teachers can find online versions of many educational volcano-related books and videos. The website features the volcanic observatories in Alaska, the Cascades, Hawaii, Long Valley, and Yellowstone.

  15. Geology of Lofn Crater, Callisto

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Heiner, Sarah; Klemaszewski, James E.

    2001-01-01

    Lofn crater is a 180-km-diameter impact structure in the southern cratered plains of Callisto and is among the youngest features seen on the surface. The Lofn area was imaged by the Galileo spacecraft at regional-scale resolutions (875 m/pixel), which enable the general geology to be investigated. The morphology of Lofn crater suggests that (1) it is a class of impact structure intermediate between complex craters and palimpsests or (2) it formed by the impact of a projectile which fragmented before reaching the surface, resulting in a shallow crater (even for Callisto). The asymmetric pattern of the rim and ejecta deposits suggests that the impactor entered at a low angle from the northwest. The albedo and other characteristics of the ejecta deposits from Lofn also provide insight into the properties of the icy lithosphere and subsurface configuration at the time of impact. The "target" for the Lofn impact is inferred to have included layered materials associated with the Adlinda multiring structure northwest of Loh and ejecta deposits from the Heimdall crater area to the southeast. The Lofn impact might have penetrated through these materials into a viscous substrate of ductile ice or possibly liquid water. This interpretation is consistent with models of the current interior of Callisto based on geophysical information obtained from the Galileo spacecraft.

  16. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    NASA Astrophysics Data System (ADS)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  17. AMS Featured Reviews

    NSDL National Science Digital Library

    The American Mathematical Society's MathSciNet now presents Featured Reviews from Mathematical Reviews online. "Since its founding in 1940, Mathematical Reviews (MR) has aimed to serve researchers and scholars in the mathematical sciences by providing timely information on articles and books that contain new contributions to mathematical research," state the editors. The purpose of the Featured Reviews page is to assist researchers in accessing the most outstanding reviews without having to wade through the thousands of reviews that are posted to MR online each month. The editors state that the Featured Reviews "...will cover some of the very best papers published in mathematics, identified by the MR editors with the advice of distinguished outside mathematicians as being especially important in one or more of the areas covered by MR. The reviewers for these papers are asked to set the paper in context, perhaps with some historical background, state the main results of the paper, outline (in not too technical a fashion) the main new ideas in the paper and include their evaluation of the paper." Each four- to six-paragraph-long review, available in HTML, .dvi, .ps, or .pdf format, gives the reviewer's name and the full article citation, hyperlinked when possible. This should prove to be a valuable Web resource for academic mathematicians.

  18. Geological Survey of Tanzania

    NSDL National Science Digital Library

    The United Republic of Tanzania was formed in 1964 by the merger of Tanganyika and Zanzibar and is located on the eastern coast of Africa between the Great Lakes of the Rift Valley. Tanzania has a diverse mineral resource base that includes gold and base metals, diamond-bearing kimberlites, nickel, cobalt, copper, coal resources, and a variety of industrial minerals and rocks such as kaolin, graphite, and dimension stone. This web site was created by the Mineral Resources Department (MRD), a subsidiary of the Ministry of Energy and Minerals, and contains basic information about the country's logistical environment, mineral sector policy, geological database, and more.

  19. Co2 geological sequestration

    SciTech Connect

    Xu, Tianfu

    2004-11-18

    Human activities are increasingly altering the Earth's climate. A particular concern is that atmospheric concentrations of carbon dioxide (CO{sub 2}) may be rising fast because of increased industrialization. CO{sub 2} is a so-called ''greenhouse gas'' that traps infrared radiation and may contribute to global warming. Scientists project that greenhouse gases such as CO{sub 2} will make the arctic warmer, which would melt glaciers and raise sea levels. Evidence suggests that climate change may already have begun to affect ecosystems and wildlife around the world. Some animal species are moving from one habitat to another to adapt to warmer temperatures. Future warming is likely to exceed the ability of many species to migrate or adjust. Human production of CO{sub 2} from fossil fuels (such as at coal-fired power plants) is not likely to slow down soon. It is urgent to find somewhere besides the atmosphere to put these increased levels of CO{sub 2}. Sequestration in the ocean and in soils and forests are possibilities, but another option, sequestration in geological formations, may also be an important solution. Such formations could include depleted oil and gas reservoirs, unmineable coal seams, and deep saline aquifers. In many cases, injection of CO2 into a geological formation can enhance the recovery of hydrocarbons, providing value-added byproducts that can offset the cost of CO{sub 2} capture and sequestration. Before CO{sub 2} gas can be sequestered from power plants and other point sources, it must be captured. CO{sub 2} is also routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H{sub 2} production, and limestone calcination. Then CO{sub 2} must be compressed into liquid form and transported to the geological sequestration site. Many power plants and other large emitters of CO{sub 2} are located near geological formations that are amenable to CO{sub 2} sequestration.

  20. Ganges Features

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03285 Ganges Features

    This image shows part of Ganges Chasma. Several landslides occur at the top of the image, while dunes and canyon floor deposits are visible at the bottom of the image.

    Image information: VIS instrument. Latitude -6.8N, Longitude 312.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Environmental and engineering problems of karst geology in China

    SciTech Connect

    Yuan Daoxian (Inst. of Karst Geology, Guangxi (China))

    1988-10-01

    Karst terrane is generally regarded as a fragile and vulnerable environment. Its underground drainage system can aggravate both drought and flood problems; the lack of filtration in an underground conduit makes waste disposal more difficult; and the lack of soil cover in bare karstland can enhance deforestation. Moreover, karst terranes are quite often haunted by a series of engineering problems, such as water gushing into mines or transportation tunnels; leakage from reservoirs; and failure of building foundations. In China, there are more than 200 cases of karst collapse, which include many thousands of individual collapse points. Some of these are paleo and natural collapses, but most of them are modern collapses induced by human activities and they have caused serious damage. Many factors such as geologic structure, overburden thickness and character, lithologic features of karstified rock, and intensity of karstification are related to development and distribution of modern collapses. However, China's karst is mainly developed in pre-Triassic, old phase, hard, compact, carbonate rock. Consequently most modern collapses have occurred only in the overlying soil. So it is understandable that the fluctuation of the water table in the underlying karstified strata plays an important role in the process of collapse. Nevertheless, there are different explanations as to how the groundwater activities can induce collapse.

  2. Generalized surficial geologic map of the Fort Irwin area, San Bernadino: Chapter B in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    USGS Publications Warehouse

    Miller, David M.; Menges, Christopher M.; Lidke, David J.

    2014-01-01

    The geology and landscape of the Fort Irwin area, typical of many parts of the Mojave Desert, consist of rugged mountains separated by broad alluviated valleys that form the main coarse-resolution features of the geologic map. Crystalline and sedimentary rocks, Mesozoic and older in age, form most of the mountains with lesser accumulations of Miocene sedimentary and volcanic rocks. In detail, the area exhibits a fairly complex distribution of surficial deposits resulting from diverse rock sources and geomorphology that has been driven by topographic changes caused by recent and active faulting. Depositional environments span those typical of the Mojave Desert: alluvial fans on broad piedmonts, major intermittent streams along valley floors, eolian sand dunes and sheets, and playas in closed valleys that lack through-going washes. Erosional environments include rocky mountains, smooth gently sloping pediments, and badlands in readily eroded sediment. All parts of the landscape, from regional distribution of mountains, valleys, and faults to details of degree of soil development in surface materials, are portrayed by the surficial geologic map. Many of these attributes govern infiltration and recharge, and the surface distribution of permeable rock units such as Miocene sedimentary and volcanic rocks provides a basis for evaluating potential groundwater storage. Quaternary faults are widespread in the Fort Irwin area and include sinistral, east-striking faults that characterize the central swath of the area and the contrasting dextral, northwest-striking faults that border the east and west margins. Bedrock distribution and thickness of valley-fill deposits are controlled by modern and past faulting, and faults on the map help to identify targets for groundwater exploration.

  3. Geology of Mojave National Preserve

    NSDL National Science Digital Library

    This website of the United States Geological Survey (USGS) and the National Park Service (NPS) highlights the geology of the Mojave National Preserve in California. It includes a field trip describing areas of interest at the preserve, as well as a geologic time scale describing the history and development of this area. Processes that shaped this region include volcanism, tectonics, faulting, erosion, deposition, spreading, intrusions, and glaciation. There is a geologic map of the area with units and a legend, and links to maps and technical papers.

  4. Morphology, geology and geochemistry of the "Salar del Gran Bajo del Gualicho" (Rio Negro, Argentina)

    USGS Publications Warehouse

    Angelucci, A.; Barbieri, M.; Brodtkorb, A.; Ciccacci, S.; Civitelli, G.; De Barrio, R.; Di, Filippo M.; Fredi, P.; Friedman, I.; Lombardi, S.; Schalamuk, A.I.; Toro, B.

    1996-01-01

    A multidisciplinary study of the Gran Bajo del Gualicho area (Rio Negro - Argentina) was carried out; the aim was to delineate its geological and geomorphological evolution and to estabilish the genesis of salts filling the depression. Climatic conditions were analized first to individuate their role in the present morphogenetic processes; moreover the main morphological features of present landscape were examined as well as the stratigraphy of the outcropping formations, and of the Gran Bajo del Gualicho Formation in particular. Finally, a possible geomorphological evolution of the studied area was traced. Geophysical analyses allowed to estabilish that the paleosurface shaped on the crystalline basement is strongly uneven and shows evidence of the strong tectonic phases it underwent. The result of isotope analyses confirmed that the salt deposits on the Gran Bajo del Gualicho bottom were produced by fresh water evaporation, while strontium isotope ratio suggested that such waters were responsible for solubilization of more ancient evaporitic deposits.

  5. The application of geography markup language (GML) to the geological sciences

    NASA Astrophysics Data System (ADS)

    Lake, Ron

    2005-11-01

    GML 3.0 became an adopted specification of the Open Geospatial Consortium (OGC) in January 2003, and is rapidly emerging as the world standard for the encoding, transport and storage of all forms of geographic information. This paper looks at the application of GML to one of the more challenging areas of automated geography, namely the geological sciences. Specific features of GML of interest to geologists are discussed and then illustrated through a series of geological case studies. We conclude the paper with a discussion of anticipated geological web services that GML will enable. GML is written in XML and makes use of XML Schema for extensibility. It can be used both to represent or model geographic objects and to transport them across the Internet. In this way it serves as the foundation for all manner of geographic web services. Unlike vertical application grammars such as LandXML, GML was intended to define geographic application languages, and hence is applicable to any geographic domain including forestry, environmental sciences, geology and oceanography. This paper provides a review of the basic features of GML that are fundamental to the geological sciences including geometry, coverages, observations, reference systems and temporality. These constructs are then employed in a series of simple geological case studies including structural geological description, surficial geology, representation of geological time scales, mineral occurrences, geohazards and geochemical reconnaissance.

  6. Enriching Reverse Engineering with Feature Analysis

    E-print Network

    Nierstrasz, Oscar

    Enriching Reverse Engineering with Feature Analysis Inauguraldissertation der Philosophisch in a reverse engineering context. Features are abstractions of a system's problem domain that well- understood, they represent a valuable resource for reverse engineering a system, The main body of feature-related reverse

  7. Features and security aspects of FASS subsystem

    Microsoft Academic Search

    B. Markoski; Z. Ivankovic; M. Ivkovic; D. Radosav; P. Pecev

    2011-01-01

    This paper describes fundamental goals and features which one open source, free modular Administrator subsystem should provide. Main goal of entire project was to develop stand-alone administrator subsystem, with complete modular access control and strong data encryption of critical data. FASS (Free Administrator Subsystem) is a downgrade version of Administrator subsystem HEFES 2.0, and contains only its basic features. Features

  8. Main memory unit. [hybrid computers

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development of a main memory unit (MMU) for the space ultrareliable module computer (SUMC) model HTC is discussed. The design, fabrication, and test of basic memory modules (BMM) which were to be used in the design and construction of the MMU are described. The BMM was designed from state-of-the-art technologies which included large scale integration devices mounted and interconnected on a substrate to form a functional module to be utilized in the MMU development. A SUMC memory system design study is discussed which addressed itself to the BMM design and analysis to be conducted to determine the most efficient organization of the BMM in order to establish such modularity features as: word length expandability without redesign, high reliability, and fault tolerance. One MMU was designed, fabricated, tested, and delivered which will be electrical and mechanically compatible with the hybrid technology computer (HTC) model of the SUMC family of computers. The MMU will contain a storage capacity of 8196 36 bit words which includes a parity bit for each 8 bit byte of data.

  9. Geological controls on reservoir properties

    SciTech Connect

    Kaldi, J.G.

    1988-01-01

    The Midale field produces oil from the lower, middle, and upper zone carbonates of the Mississippian Midale beds. Like many older fields with declining production, the Midale reservoir is a prime candidate for enhance recovery operations. Therefore, recent geological investigations in this field have been directed toward detailed characterization of the rocks in terms of their potential response to the movement of various fluids. The reservoir was thus divided into flow units. Dividing was done by first detailing the depositional and diagenetic lithofacies. Next, quantitative data, including porosity and permeability measurements, pore geometry, and mercury injection capillary pressure curves, were generated for each lithofacies. From these analyses, comparing aspect ratios (pore to pore-throat relationships), coordination numbers (throats per pore), and recovery efficiencies (S/sub max/ - S/sub or/ on drainage and imbibition MICP curves) is possible, thereby determining flow units. The lower zone constitutes flow unit 1, made up of lime packstones to wackestones, locally having a vuggy texture where late-stage replacive anhydrites have been dissolved. Middle zone carbonates comprise 4 additional flow units. Upper zone carbonates (flow unit 6) are uniformly microcrystalline dolomites with a pervasive nonfabric selective microfracture system. Reservoir properties in the Midale reservoir are defined by the behavior of individual flow units; these, in turn, are controlled mainly by the rocks' sedimentary and diagenetic history.

  10. Studying Geology of Central Texas through Web-Based Virtual Field Trips

    Microsoft Academic Search

    C. Chan; S. D. Khan; J. S. Wellner

    2007-01-01

    Each year over 2500 students, mainly non-science majors, take introductory geology classes at the University of Houston. Optional field trips to Central Texas for these classes provide a unique learning opportunity for students to experience geologic concepts in a real world context. The field trips visit Enchanted Rock, Inks Lake, Bee Cave Road, Lion Mountain, and Slaughter Gap. Unfortunately, only

  11. Geologic amd seismologic investigations for Rocky Flats Plant. Volume I. Final report

    Microsoft Academic Search

    Krusi

    1981-01-01

    This report presents the results of comprehensive geologic and seismologic investigations conducted in north central Colorado between March 1980 and March 1981. These investigations were performed for the purpose of updating and complementing existing geologic and seismologic data for the Rocky Flats Plant site. Detailed investigations were performed along the main trace of the Golden Fault to evaluate the Quaternary

  12. New insights on the geological setting of the Northern Adriatic sea

    NASA Astrophysics Data System (ADS)

    Donda, F.; Civile, D.; Volpi, V.; Forlin, E.; De Santis, L.

    2012-04-01

    Whereas the onshore geological setting of the Northern Adriatic sea region is well known by now, less information are available on the structural setting of the offshore area. This region has been deeply investigated in the framework of the hydrocarbon exploration and by several research Institutions, the latter studies being mainly addressed to the reconstruction of the Quaternary stratigraphic evolution of this area. In 2009, OGS has performed a geophysical survey in the northern sector of the Northern Adriatic sea with R/V OGS Explora. About 800 km of 2D multichannel seismic and Chirp profiles have been acquired, together with Multibeam data in selected areas. The seismostratigraphic and structural analysis performed on the multichannel lines, together with the correlation of the available boreholes drilled in the area, led to the recognition of the major tectonic lineaments affecting the Northern Adriatic sea, approximately from the Tagliamento to the Po River deltas. In the northernmost sector of the study area, our data highlight the occurrence of tectonic features that may represent the offshore continuation of NW-SE Dinaric and NE-SW anti-Dinaric lineaments, previously inferred in the Gulf of Trieste structural model on the basis of onshore geology, and led to define their extension further to the South. Although most of the tectonic deformation appears to be sealed by the Plio-Quaternary succession, there are evidences that, in places, the deformation affects also these stratigraphic levels. This hypothesis is supported by the widespread occurrence of CH4-rich fluid seepages, which appear strongly related to features interpreted as migration paths propagating throughout the Plio-Pleistocene sequence. Offshore the Venice lagoon, the occurrence of sub-vertical lineaments are interpreted as possibly related to the continuation in the Adriatic sea of a fault system parallel to the NW-trending Schio-Vicenza feature.

  13. GeoSciML version 3: A GML application for geologic information

    NASA Astrophysics Data System (ADS)

    International Union of Geological Sciences., I. C.; Richard, S. M.

    2011-12-01

    After 2 years of testing and development, XML schema for GeoSciML version 3 are now ready for application deployment. GeoSciML draws from many geoscience data modelling efforts to establish a common suite of feature types to represent information associated with geologic maps (materials, structures, and geologic units) and observations including structure data, samples, and chemical analyses. After extensive testing and use case analysis, in December 2008 the CGI Interoperability Working Group (IWG) released GeoSciML 2.0 as an application schema for basic geological information. GeoSciML 2.0 is in use to deliver geologic data by the OneGeology Europe portal, the Geological Survey of Canada Groundwater Information Network (wet GIN), and the Auscope Mineral Resources portal. GeoSciML to version 3.0 is updated to OGC Geography Markup Language v3.2, re-engineered patterns for association of element values with controlled vocabulary concepts, incorporation of ISO19156 Observation and Measurement constructs for representing numeric and categorical values and for representing analytical data, incorporation of EarthResourceML to represent mineral occurrences and mines, incorporation of the GeoTime model to represent GSSP and stratigraphic time scale, and refactoring of the GeoSciML namespace to follow emerging ISO practices for decoupling of dependencies between standardized namespaces. These changes will make it easier for data providers to link to standard vocabulary and registry services. The depth and breadth of GeoSciML remains largely unchanged, covering the representation of geologic units, earth materials and geologic structures. ISO19156 elements and patterns are used to represent sampling features such as boreholes and rock samples, as well as geochemical and geochronologic measurements. Geologic structures include shear displacement structures (brittle faults and ductile shears), contacts, folds, foliations, lineations and structures with no preferred orientation (e.g. 'miarolitic cavities'). The Earth material package allows for the description of both individual components, such as minerals, and compound materials, such as rocks or unconsolidated materials. Provision is made for alteration, weathering, metamorphism, particle geometry, fabric, and petrophysical descriptions. Mapped features describe the shape of the geological features using standard GML geometries, such as polygons, lines, points or 3D volumes. Geological events provide the age, process and environment of formation of geological features. The Earth Resource section includes features to represent mineral occurrences and mines and associated human activities independently. This addition allows description of resources and reserves that can comply with national and internationally accepted reporting codes. GeoSciML v3 is under consideration as the data model for INSPIRE annex 2 geologic reporting in Europe.

  14. Deep Time: The Geologic Time Scale

    NSDL National Science Digital Library

    2007-01-01

    This page examines the issues involved in teaching students about the geologic time scale. There are suggestions for tackling troublesome issues in class as well as activities that can be used to clarify how geoscientists look at deep time. Five main concepts with which students struggle when thinking about Deep Time are addressed here: imagining or comprehending big numbers; the difference between relative and numerical age; the concept of "timescales"; the ways we know about the age of the Earth and other materials; and resolving perceived issues with religious beliefs.

  15. Integration of geological remote-sensing techniques in subsurface analysis

    USGS Publications Warehouse

    Taranik, James V.; Trautwein, Charles M.

    1976-01-01

    Geological remote sensing is defined as the study of the Earth utilizing electromagnetic radiation which is either reflected or emitted from its surface in wavelengths ranging from 0.3 micrometre to 3 metres. The natural surface of the Earth is composed of a diversified combination of surface cover types, and geologists must understand the characteristics of surface cover types to successfully evaluate remotely-sensed data. In some areas landscape surface cover changes throughout the year, and analysis of imagery acquired at different times of year can yield additional geological information. Integration of different scales of analysis allows landscape features to be effectively interpreted. Interpretation of the static elements displayed on imagery is referred to as an image interpretation. Image interpretation is dependent upon: (1) the geologist's understanding of the fundamental aspects of image formation, and (2.) his ability to detect, delineate, and classify image radiometric data; recognize radiometric patterns; and identify landscape surface characteristics as expressed on imagery. A geologic interpretation integrates surface characteristics of the landscape with subsurface geologic relationships. Development of a geologic interpretation from imagery is dependent upon: (1) the geologist's ability to interpret geomorphic processes from their static surface expression as landscape characteristics on imagery, (2) his ability to conceptualize the dynamic processes responsible for the evolution 6f interpreted geologic relationships (his ability to develop geologic models). The integration of geologic remote-sensing techniques in subsurface analysis is illustrated by development of an exploration model for ground water in the Tucson area of Arizona, and by the development of an exploration model for mineralization in southwest Idaho.

  16. Rocks and Geology in the San Francisco Bay Region

    NSDL National Science Digital Library

    Phil Stoffer

    This guide provides illustrated descriptions of 46 common and important varieties of igneous, sedimentary, and metamorphic rock found in the San Francisco Bay region. Rock types are described in context of their identification qualities, how they form, and where they occur. The guide also provides a discussion of regional geology, plate tectonics, the rock cycle, the significance of the selected rock types in relation to both earth history and the impact of mineral resources on the development in the region. There is also information on where rocks, fossils, and geologic features can be visited on public lands or in association with public displays in regional museums, park visitor centers, and other public facilities.

  17. Geology Fieldnotes: Jewel Cave National Monument, South Dakota

    NSDL National Science Digital Library

    Jewel Cave National Monument feaures the third longest cave in the world; airflow within its passages indicates a vast area yet to be explored. Cave tours provide opportunities for viewing this pristine cave system and its wide variety of rock formations. Features include park geology information, maps, related links, and visitor information. The park geology section discusses the history of the park's discovery and exploration by cavers, and describes some of the remarkable rock formations found in the cave. The maps section includes a map of Jewel Cave National Monument and the surrounding area.

  18. DaimaruDaimaru Agriculture Main GateMain Gate

    E-print Network

    Tachizawa, Kazuya

    JR Sapporo Sta. JR Sapporo Sta. DaimaruDaimaru Agriculture Main GateMain Gate Kita13-jo Gate 12-jo Sta. Kita 18-jo Sta. International Student Center MainCampusStreet PoplarAvenue Ginkgo AvenueGinkgo Avenue Ono Pond Ono Pond Bust of Dr. Clark The main Bldg. of facutly of Science (The Hokkaido Univ

  19. March 29, 2008 Operating Systems: Main Memory 1 Main Memory

    E-print Network

    Adam, Salah

    March 29, 2008 Operating Systems: Main Memory 1 Main Memory Chapter 8 #12;March 29, 2008 Operating Systems: Main Memory 2 Chapter Outline Background Contiguous Memory Allocation Paging Structure of the Page Table Segmentation #12;March 29, 2008 Operating Systems: Main Memory 3 Objectives To provide

  20. National Cooperative Geologic Mapping Program

    NSDL National Science Digital Library

    2012-06-13

    The National Cooperative Geologic Mapping Program (NCGMP) is "the primary source of funds for the production of geologic maps in the United States." The NCGMP was created by the National Geologic Mapping Act of 1992 and its work includes producing surficial and bedrock geologic map coverage for the entire country. The program has partnered with a range of educational institutions, and this site provides access to many of the fruits of this partnership, along with educational materials. The place to start here is the What's a Geologic Map? area. Here visitors can read a helpful article on this subject, authored by David R. Soller of the U.S. Geological Survey. Moving on, visitors can click on the National Geologic Map Database link. The database contains over 88,000 maps, along with a lexicon of geologic names, and material on the NCGMP's upcoming mapping initiatives. Those persons with an interest in the organization of the NCGMP should look at the Program Components area. Finally, the Products-Standards area contains basic information on the technical standards and expectations for the mapping work.

  1. Pennsylvania's contribution to petroleum geology

    Microsoft Academic Search

    Dickey

    1989-01-01

    John F. Carll of the Second Geological Survey of Pennsylvania laid the foundations of both petroleum geology and reservoir engineering. J. P. Lesley, director of the Second Survey, had introduced structure contours when he was working in the anthracite fields. He pointed out that the great oil fields of Pennsylvania were in the only part of the state where there

  2. GRADUATE PROGRAM IN GEOLOGICAL ENGINEERING

    E-print Network

    Geological Engineering Soils and Weak Rocks 3 2 CIVL 408 Geo-Environmental Engineering 3 2 CIVL 410GRADUATE PROGRAM IN GEOLOGICAL ENGINEERING 2013-2014 Prior to registering for courses, students-thesis) students registered in Geo. Eng. Constrained Elective Credits (9) Note: Consult with Grad Supervisor

  3. Photomicrography in the Geological Sciences.

    ERIC Educational Resources Information Center

    Davidson, Michael W.

    1991-01-01

    Describes the conversion of a standard biological brightfield microscope for examination of thin sections and characterize, in detail, the use of both black and white and color photomicrography in the geological sciences. Several illustrative examples on the use of transmitted and reflected polarized-light microscopy to solve geological problems…

  4. The Geophysical Revolution in Geology.

    ERIC Educational Resources Information Center

    Smith, Peter J.

    1980-01-01

    Discussed is the physicists' impact on the revolution in the earth sciences particularly involving the overthrow of the fixist notions in geology. Topics discussed include the mobile earth, the route to plate tectonics, radiometric dating, the earth's magnetic field, ocean floor spreading plate boundaries, infiltration of physics into geology and…

  5. Internet-based information system of digital geological data providing

    NASA Astrophysics Data System (ADS)

    Yuon, Egor; Soukhanov, Mikhail; Markov, Kirill

    2015-04-01

    One of the Russian Federal ?gency of mineral resources problems is to provide the geological information which was delivered during the field operation for the means of federal budget. This information should be present in the current, conditional form. Before, the leading way of presenting geological information were paper geological maps, slices, borehole diagrams reports etc. Technologies of database construction, including distributed databases, technologies of construction of distributed information-analytical systems and Internet-technologies are intensively developing nowadays. Most of geological organizations create their own information systems without any possibility of integration into other systems of the same orientation. In 2012, specialists of VNIIgeosystem together with specialists of VSEGEI started the large project - creating the system of providing digital geological materials with using modern and perspective internet-technologies. The system is based on the web-server and the set of special programs, which allows users to efficiently get rasterized and vectorised geological materials. These materials are: geological maps of scale 1:1M, geological maps of scale 1:200 000 and 1:2 500 000, the fragments of seamless geological 1:1M maps, structural zoning maps inside the seamless fragments, the legends for State geological maps 1:200 000 and 1:1 000 000, full author's set of maps and also current materials for international projects «Atlas of geological maps for Circumpolar Arctic scale 1:5 000 000» and «Atlas of Geologic maps of central Asia and adjacent areas scale 1:2 500 000». The most interesting and functional block of the system - is the block of providing structured and well-formalized geological vector materials, based on Gosgeolkart database (NGKIS), managed by Oracle and the Internet-access is supported by web-subsystem NGKIS, which is currently based on MGS-Framework platform, developed by VNIIgeosystem. One of the leading elements is the web-service, which realizes the interaction of all parts of the system and controls whole the way of the request from the user to the database and back, adopted to the GeoSciML and EarthResourceML view. The experience of creation the Internet-based information system of digital geological data providing, and also previous works, including the developing of web-service of NGKIS-system, allows to tell, that technological realization of presenting Russian geological-cartographical data with using of international standards is possible. While realizing, it could be some difficulties, associated with geological material depth. Russian informational geological model is more deep and wide, than foreign. This means the main problem of using international standards and formats: Russian geological data presentation is possible only with decreasing the data detalisation. But, such a problem becomes not very important, if the service publishes also Russian vocabularies, not associated with international vocabularies. In this case, the international format could be the interchange format to change data between Russian users. The integration into the international projects reaches developing of the correlation schemes between Russian and foreign classificators and vocabularies.

  6. Remote sensing aids geologic mapping.

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr.; Marrs, R. W.

    1973-01-01

    Remote sensing techniques have been applied to general geologic mapping along the Rio Grande rift zone in central Colorado. A geologic map of about 1,100 square miles was prepared utilizing (1) prior published and unpublished maps, (2) detailed and reconnaissance field maps made for this study, and (3) remote sensor data interpretations. The map is to be used for interpretation of the complex Cenozoic tectonic and geomorphic histories of the area. Regional and local geologic mapping can be aided by the proper application of remote sensing techniques. Conventional color and color infrared photos contain a large amount of easily-extractable general geologic information and are easily used by geologists untrained in the field of remote sensing. Other kinds of sensor data used in this study, with the exception of SLAR imagery, were generally found to be impractical or unappropriate for broad-scale general geologic mapping.

  7. Essentials of Geology

    NSDL National Science Digital Library

    Marshak, Stephen

    From subduction to the world of hot spot volcanoes, this online resource for students and teachers of geology will please users with its fun and useful animations, crossword puzzles, and well-written articles. The site was designed to complement a textbook created by W.W. Norton, but many of the materials can be used as stand-alone exercises. Visitors will want to begin by looking through the visually enticing animations, which cover the Earth's magnetic field, the spread of the sea floor, and the formation of ocean crust. All told, there are over sixty animations, and teachers may wish to recommend them to students. Additionally, visitors should note that they can also browse through the materials offered on the site by clicking on the chapter listings located near the top of the screen. It's hard to pass up a crossword puzzle, and visitors may find themselves spending more time there than at any other part of the site.

  8. Geology of National Parks

    NSDL National Science Digital Library

    Have you ever wondered what it would be like to take a historic tour of the Colorado River Canyon? Wonder no more, as this site from the U.S. Geological Survey makes just such a sojourn possible. Drawing on thousands of historic and contemporary photographs, views, documents, and other items, the USGS has created these fine 3D and photographic tours of dozens of national parks. On the site, visitors will find an alphabetical list of the parks, along with links to the 3D image galleries, standard image galleries, and selected online field guides. There's a great deal to recommend here, but visitors should definitely look at the stereograph images from the Powell Survey Expeditions of the Colorado River from 1871 and 1872 (in the "Other park-related resources" section) and the guidebook titled "Where's the San Andreas Fault?" Along with providing entertaining edification, this site might also spark some ideas for an upcoming trip.

  9. Geological consequences of superplumes

    SciTech Connect

    Larson, R.L. (Univ. of Rhode Island, Narragansett (United States))

    1991-10-01

    Superplumes are suggested to have caused the period of constant normal magnetic polarity in mid-Cretaceous time (124-83 Ma) and, possibly, the period of constant reversed polarity in Pennsylvania-Permian time (323-248 Ma). These times coincide with increases in world temperature, deposition of black shales, oil generation, and eustatic sea level in the mid-Cretaceous, and increased coal generation and gas accumulation in the Pennsylvanian-Permian, accompanied by an intracratonic Pennsylvanian transgression of epicontinental seas. These geologic anomalies are associated with episodes of increased world-wide ocean-crust production and mantle outgassing, especially of carbon and nutrients. These superplumes originated just above the core-mantle boundary, significantly increased convection in the outer core, and stopped the magnetic field reversal process for 41 m.y. in the Cretaceous and 75 m.y. in Pennsylvanian-Permian time.

  10. EAS 4801KF/8801KF GEOLOGIC FIELD TECHNIQUES

    E-print Network

    Black, Robert X.

    logistics. OPTIONAL TEXTBOOK Geology in the Field by R.R. Compton COURSE OBJECTIVES The main objective near Valley of Fire, NV; camp at Valley of Fire State Park March 28th: drive to Las Vegas for late flight back to Atlanta, returning March 29th LOGISTICS Students will need a sleeping bag, sleeping pad

  11. An unconventional GIS-based method to assess landslide susceptibility using point data features

    NASA Astrophysics Data System (ADS)

    Adami, S.; Bresolin, M.; Carraretto, M.; Castelletti, P.; Corò, D.; Di Mario, F.; Fiaschi, S.; Frasson, T.; Gandolfo, L.; Mazzalai, L.; Padovan, T.; Sartori, F.; Viganò, A.; Zulian, A.; De Agostini, A.; Pajola, M.; Floris, M.

    2012-04-01

    In this work are reported the results of a project performed by the students attending the course "GIS techniques in Applied Geology", in the master level of the Geological Sciences degree from the Department of Geosciences, University of Padua. The project concerns the evaluation of landslide susceptibility in the Val d'Agno basin, located in the North-Eastern Italian Alps and included in the Vicenza Province (Veneto Region, NE Italy). As well known, most of the models proposed to assess landslide susceptibility are based on the availability of spatial information on landslides and related predisposing environmental factors. Landslides and related factors are spatially combined in GIS systems to weight the influence of each predisposing factor and produce landslide susceptibility maps. The first and most important input factor is the layer landslide, which has to contain as minimum information shape and type of landslides, so it must be a polygon feature. In Italy, as well as in many countries all around the world, location and type of landslides are available in the main spatial databases (AVI project and IFFI project), but in few cases mass movements are delimited, thus they are spatially represented by point features. As an example, in the Vicenza Province, the IFFI database contains 1692 landslides stored in a point feature, but only 383 were delimited and stored in a polygon feature. In order to provide a method that allows to use all the information available and make an effective spatial prediction also in areas where mass movements are mainly stored in point features, punctual data representing landslide in the Val d'Agno basin have been buffered obtaining polygon features, which have been combined with morphometric (elevation, slope, aspect and curvature) and non-morphometric (land use, distance of roads and distance of river) factors. Two buffers have been created: the first has a radius of 10 meters, the minimum required for the analysis, and the second has a radius of 70 meters to obtain an area corresponding to the median value of landslide size distribution in the study area. The Val d'Agno basin has been chosen because the shape of a sufficient number of landslide is available, 169 over 451 phenomena stored in the IFFI point feature. A susceptibility analysis has been performed using the 169 shaped landslides and compared with the results coming from the analyses performed using buffered landslide point features. Finally, the prediction made using the different methods has been tested comparing the results with the landslides occurred in November 2010 due to an exceptional rainfall event that hit the study area triggering 128 instability phenomena.

  12. Geology of Sarawak deep water and its surroundings

    SciTech Connect

    Ismail, M.I.; Mohamad, A.M.; Ganesan, M.S.; Aziz, S.A. (Esso Production Malaysia Inc., Kuala Lumpur (Malaysia))

    1994-07-01

    A geological and geophysical investigation based primarily on seismic data indicates that four tectonostratigraphic zonations are recognizable in the Sarawak deep water and its surroundings. Zone A is a 7-8-km-thick Tertiary sedimentary basin in Sarawak deep water characterized by north-south-trending buried hills, extensional fault-bounded features, and local occurrences of compressional structures, and is separated from the northwest Sabah platform (zone B) by a major north-south-trending basin margin fault. This margin fault is distinct from the northwest-southeast transform fault known as Baram-Tinjar Line. The northwest Sabah platform, an attenuated continental crust that underwent late Mesozoic-Tertiary crystal stretching and rifting, is characterized by northeast-southwest-tending rift systems and generally up to 4 km-thick sedimentary cover. The leading edge of the northwest Sabah platform that was subducted beneath the northwest Borneo crust is marked by the Sabah trough (zone C). The western Sarawak deep water is occupied by a 13-km-thick, north-south-trending basin, the west Luconia delta province (zone D), demonstrating post mid-Miocene deltaic growth faults and toe-thrusts. Crustal offsets of the South China Sea Basin, north-south-trending basin margin fault between zones A and B, and extensional and compressional structures in zone A are evidence for north-south-directed transform motions leading to the development of the Sarawak deep-water Tertiary basin. Four main sedimentation phases describe the sedimentation history in Sarawak deep water and its surroundings. Oligocene-Miocene coastal plain sediments form the main hydrocarbon plays in the Sarawak deep water, and the numerous occurrences of amplitude anomalies clearly suggest a working hydrocarbon charge system.

  13. University of Maine Cooperative Extension

    E-print Network

    Leistikow, Bruce N.

    University of Maine Cooperative Extension Hand Signals Useful for Farmers Bulletin #2335 by Dawna L of Congress of May 8 and June 30, 1914, by the University of Maine Cooperative Extension, Vaughn H. Holyoke, Director for the University of Maine Cooperative Extension, the Land Grant University of the state of Maine

  14. Main Campus CO Cowell Hall

    E-print Network

    Galles, David

    Main Campus CO Cowell Hall CSI John Lo Schiavo, S.J Center for Science and Innovation FR Fromm Hall Main Bldg/Classrooms/Study Hall LMN Lone Mountain North LMP Pacific Wing LMR Rossi Wing Academic and Enrollment Services Lone Mountain Main Admission Office Lone Mountain Main Alumni Office Lone

  15. Geophysical and geological characterization of a hyper-extended domain: a point of view from Iberia

    NASA Astrophysics Data System (ADS)

    Stanton, Natasha; Manatschal, Gianreto; Marcia, Maia; Sauter, Daniel; Vianna, Adriano

    2013-04-01

    The domain that lies between the continent and the oceanic crust has been intensely surveyed and studied in the last decades. However, this region is not yet well constrained and the nature of the basement is almost unknown. The research community identified numerous questions that remain unanswered concerning the structural and thermal history and the nature of its crust. Despite the progress made, especially from the academic community on the Iberia and Newfoundland conjugate margins, the access to geological information is scarce and interpretations remain challenging. The available geological models still cannot account for the observed complexity, restricting the interpretations from the potential field methods and modeling, which depend on the geology to be reliable From this point of view, the aim of this study was to characterize the hyper-extended domain along the Iberia margin, i.e, the region that lies between the necking zone and the first true oceanic crust, using geophysical data. Along this margin, important geological and potential field datasets are available and decades of research provide good constrains for a variety of studies. We attempted to define the limits of this marginal system, identifying the main geophysical characteristics related to the different tectonic domains. Map transformations were used in order to enhance the lateral contrasts in the density and/or magnetization pattern, along with forward modeling, providing information about crustal composition/thickness variations. Our results suggest that the zone of exhumed mantle may extend far beyond what has been previously inferred based on the magnetic anomaly modeling. Our interpretations suggest the existence of a region characterized by an embryonic-type of crust to the west of the J magnetic anomaly, which structure and composition does not fit the expected "classical" oceanic crust. The lithospheric structure which is associated to this anomaly seems to constitute a key feature and its origin may be related to a profound change in the magmatic (and geodynamic?) history of this margin. However, it may not mark the continent-ocean boundary, once there is no geophysical evidence of a compositional change related to this feature. If this statement is true, one important remaining question is how the breakup is documented and when it occurred?

  16. An integrated geophysical and geological study of the Monturaqui impact crater, Chile

    NASA Astrophysics Data System (ADS)

    Ugalde, Hernan; Valenzuela, Millarca; Milkereit, Bernd

    The Monturaqui impact crater (350-370 m in diameter and 0.1 Ma old), located in a remote area in northern Chile, was surveyed in December 2003 with detailed geophysics (gravity and magnetics), topography, petrophysics, and geology. The geology of the Monturaqui area is characterized by a basement of Paleozoic granites overlain by Pliocene ignimbrite units. No impact breccia was found in the area. The granites are the main lithology affected by the impact. Although the granite samples analyzed did not show evidence of shock metamorphism, quartz, and to a lesser extent feldspar and biotite grains from impactite samples exhibit different degrees of shock, ranging from planar microdeformation and cleavage to the development of intense planar deformation features (PDFs) and diaplectic glasses in some grains. The differential GPS survey allowed the creation of a detailed digital elevation model of the crater. Its dimensions are 370 m along the east-west direction, 350 m along the north-south direction, and ˜34 m deep. The crater exhibits a circular morphology with a preferred northwest-southeast elongation that coincides with the steepest slopes (˜35°) on the southeast edge. The newly acquired gravity data shows a negative anomaly of ˜1 mGal at the center and allowed the creation of a 3-D model with a RMS error of <0.1 mGal, which supports the predictions of a fracturing-induced low-density granitic layer on top of the unfractured basement.

  17. The importance of geobotany in geological remote sensing applications

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Collins, W.; Elvidge, C.; Lyon, R. J. P.; Labovitz, M. L.; Milton, N. M.; Parrish, J.; Rock, B. N.; Wickland, D. E.; Arp, G. K.

    1983-01-01

    A description of the different effects of variations in ground cover vegetation on remote sensing data in geological and prospecting applications is presented. The different variations are divided into three categories: structural; taxonomic and spectral. Structural variations include changes in the physical appearance of ground cover which may be detectable by a remote sensing instrument. Taxonomic variations occur in those plant communities which are associated with specific geological regions. Spectral variations are due to specific geochemical stresses which may be useful in characterizing geological features at a site. The need for a general scheme for the interpretation of geobotanical remote sensing data is discussed: Geosat data for the field reflectance spectra of different tree species in West Virginia are presented as examples.

  18. Geologic exploration: The contribution of LANDSAT-4 thematic mapper data

    NASA Technical Reports Server (NTRS)

    Everett, J. R.; Dykstra, J. D.; Sheffield, C. A.

    1983-01-01

    The major advantages of the TM data over that of MSS systems are increased spatial resolution and a greater number of narrow, strategically placed spectral bands. The 30 meter pixel size permits finer definition of ground features and improves reliability of the photointerpretation of geologic structure. The value of the spatial data increases relative to the value of the spectral data as soil and vegetation cover increase. In arid areas with good exposure, it is possible with careful digital processing and some inventive color compositing to produce enough spectral differentiation of rock types and thereby produce facsimiles of standard geologic maps with a minimum of field work or reference to existing maps. Hue-saturation value images are compared with geological maps of Death Valley, California, the Big Horn/Wind River Basin of Wyoming, the area around Cement, Oklahoma, and Detroit. False color composites of the Ontario region are also examined.

  19. Geological Implications of a Physical Libration on Enceladus

    NASA Technical Reports Server (NTRS)

    Hurford, T. A.; Bills, B. G.; Helfenstein, P.; Greenberg, R.; Hoppa, G. V.; Hamilton, D. P.

    2008-01-01

    Given the non-spherical shape of Enceladus (Thomas et al., 2007), the satellite will experience gravitational torques that will cause it to physically librate as it orbits Saturn. Physical libration would produce a diurnal oscillation in the longitude of Enceladus tidal bulge which, could have a profound effect on the diurnal stresses experienced by the surface of the satellite. Although Cassini ISS has placed an observational upper limit on Enceladus libration amplitude of F < 1.5deg (Porco et al., 2006), smaller amplitudes can still have geologically significant consequences. Here we present the first detailed description of how physical libration affects tidal stresses and how those stresses then might affect geological processes including crack formation and propagation, south polar eruption activity, and tidal heating. Our goal is to provide a framework for testing the hypothesis that geologic features on Enceladus are produced by tidal stresses from diurnal physical and optical librations of the satellite.

  20. Mapping subsurface karst features with GPR: results and limitations

    NASA Astrophysics Data System (ADS)

    Anchuela, Ó. Pueyo; Casas-Sainz, A. M.; Soriano, M. A.; Pocoví-Juan, A.

    2009-07-01

    Ground penetrating radar (GPR) has been applied, with relative success, to locate paleo-collapses and cavities and to detect and characterise karst. One of its main advantages is that, while the penetration depth is limited to several tens of meters or even just several meters, the obtained resolution can be in the scale of centimeters. In this paper, we illustrate the applicability of GPR prospecting to the study of alluvial karst and the structures associated with subsidence areas. GPR radargrams obtained with two central frequency antennas (50 and 100 MHz) are balanced against direct observation of geological features of collapse structures in vertical exposures of gravel quarries. GPR-surveys offer the possibility of obtaining nearly continuous vertical cross-sections of the subsoil, and integration of data within a 3D frame. However, the study of the internal structure of the subsoil by means of the GPR-profiles has been usually neglected. In this work, we show that some hints about the evolution of individual dolines can be established from the study of the geometry of the sedimentary filling by means of GPR. The obtained results indicate that GPR allows to characterise the structures associated with karst features and can therefore be useful evaluating hazard susceptibility in doline fields, because: (1) when no surface evidences exists, it permits the detection of karst hazards in the subsoil, and (2) when surficial evidences of karst activity are present, it permits the characterisation of processes associated with subsidence.

  1. 6. MAIN AND SOUTH BAYS. DETAIL OF TOP OF MAIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. MAIN AND SOUTH BAYS. DETAIL OF TOP OF MAIN BAY COLUMN, GIRDER FOR ELECTRIC OVERHEAD TRAVEL CRANE, AND ROOF GIRDERS - Oldman Boiler Works, Fabricating Shop, 32 Illinois Street, Buffalo, Erie County, NY

  2. University of Maine at Farmington University of Southern Maine

    E-print Network

    New Hampshire, University of

    University of Maine at Farmington University of Southern Maine Plymouth State University University of New Hampshire University of Massachusetts at Boston University of Massachusetts at Amherst Worcester State University Massachusetts College of Liberal Arts Bridgewater State University Westfield State

  3. 22. View showing main anchor arm, as viewed from main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. View showing main anchor arm, as viewed from main cantilever arm looking south. Note upper chord eyebar arrangement. - Williamstown-Marietta Bridge, Spanning Ohio River between Williamstown & Marietta, Williamstown, Wood County, WV

  4. 37. Fore and main masts, and main boom lying in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. Fore and main masts, and main boom lying in storage yard. Stern of Museum Ship Wavetreet to left in photograph. - Schooner "Lettie G. Howard", South Street Seaport Museum, New York, New York County, NY

  5. Geological structures deduced from airborne geophysical surveys around Syowa Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Nogi, Y.; Jokat, W.; Kitada, K.; Steinhage, D.

    2012-12-01

    The area around Syowa Station, the Japanese Antarctic station in Lutzow-Holm Bay, is widely considered to be a junction of the Africa, India, Madagascar, and Antarctic continents, according to the reconstruction model of Gondwana. This area is key to investigating the formation of Gondwana. Joint Japanese-German airborne geophysical surveys were conducted around Syowa Station in January 2006 to reveal the tectonic evolution contributing to the formation of Gondwana in this area. Ice radar, magnetic, and gravity data were obtained from onshore areas. Several characteristic features that may be related to the tectonic evolution of Gondwana were inferred primarily from magnetic anomalies and from gravity anomalies and bedrock topography. The boundaries of the Lutzow-Holm Complex, the Yamato-Belgica Complex, and the Western Rayner Complex are defined, but the inland extension of the boundary between the Lutzow-Holm and the Yamato-Belgica Complexes is unknown south of 71S. The main geological structural trends of the Lutzow-Holm Complex derived from magnetic anomalies are NW-SE and are concordant with the geological results in the coastal region. However, nearly NE-SW-trending magnetic anomalies cut across the NW-SW magnetic anomaly trends, and the NE-SW right lateral strike-slip faults are deduced from the magnetic and the gravity anomaly data in the Lutzow-Holm Complex. The Lutzow-Holm Complex is divided into four blocks based on the estimated strike-slip faults. The strike-slip faults were possibly generated during a younger stage of Pan-African orogeny, after the formation of NW-SE-striking geological structures. These results provide new constraints for the formation of Gondwana.

  6. Satellite gravity field derivatives for identifying geological boundaries.

    NASA Astrophysics Data System (ADS)

    Alvarez, O.; Gimenez, M.; Braitenberg, C.; Folguera, A.

    2012-04-01

    The Pampean flat slab zone developed in the last 17 Ma between 27° and 33°S, and has denuded an intricate collage of crustal blocks amalgamated during the Pampean, Famatinian and San Rafael deformational stages, that is far of being completely understood. For potential field studies these amalgamations have the effect of defining important compositional and density heterogeneities. Geophysical data from different studies show a sharp boundary between the two adjacent and contrasting crusts of Pampia and the Cuyania terrane. Recent aeromagnetic surveys have inferred a mafic and ultramafic belt interpreted as a buried ophiolitic suite hosted in the corresponding suture. This boundary coincides locally with basement exposures of high to medium grade metamorphic rocks developed in close association with the Famatinian orogen of Early to Middle Ordovician age. Lower crustal rocks are exposed along this first order crustal discontinuity. The Río de la Plata basement crops out from southern Uruguay to eastern-center Argentina with an approximate surface of 20,000 km2. Oldest rocks have been dated in 2,200 and 1,700 Ma, indicating that they constituted a different block to Pampia. The boundary between Pampia and the Rio de la Plata craton is not exposed. However, a strong gravimetric anomaly identified in the central part of the foothills of the Sierras de Córdoba indicates a first order crustal discontinuity that has been related to their collision in Neoproterozoic times. This work focuses on the determination of mass heterogeneities over the Pampean flat slab zone using gravity anomaly and vertical gravity gradient, with the aim to determine discontinuities in the pattern of terrain amalgamation that conformed the basement. Satellite gravimetry is highly sensitive to these variations. Recent satellite missions, (CHAMP, GRACE, and GOCE) have introduced an extraordinary improvement in the global mapping of the gravity field. We control the quality of the terrestrial data entering the EGM2008 by a comparison analysis with the satellite only gravitational model of GOCE up to degree N=250. Using the global model EGM2008, the vertical gravity gradient and the gravity anomaly for South Central Andes are calculated. We correct the observations for the topographic effect using tesseroids by using a 1-arc minute global relief model of earth's surface. Results are compared to a schematic geological map of the South Central Andes region, which includes main geological features with regional dimensions presumably accompanied by crustal density variations. We clearly depict the geological structures and delineation of significant terrains such as Pampia, Cuyania, and Chilenia terranes. Of great interest is the contact between the Rio de la Plata craton and the Pampia Terrain, a boundary that has not been clearly defined till now. Our work aims to highlight the potential of this new tool of satellite gravimetry, with the addition of topographic correction, to achieve tectonic interpretation of medium to long wavelength of a determined study region. We demonstrate that the new gravity fields can be used for identifying geological boundaries related to density differences, in a regional dimension and thus are a new useful tool in geophysical exploration.

  7. Geol 102 Historical Geology The Geologic Timescale 2012

    E-print Network

    Holtz Jr., Thomas R.

    Geol 102 Historical Geology The Geologic Timescale 2012 EON ERA PERIOD (Special Units) EPOCH Range.332 Oligocene 33.9 - 23.03 Eocene 56.0 - 33.9 Paleocene 66.0 - 56.0 Cretaceous 145.0 - 66.0 Jurassic 201.3 - 145.0 Triassic 252.2 - 201.3 Permian 298.9 - 252.2 Pennsylvanian Sub-period 323.2 - 298.9 Mississippian Sub-period

  8. Geol 102 Historical Geology The Geologic Timescale 2009

    E-print Network

    Holtz Jr., Thomas R.

    Geol 102 Historical Geology The Geologic Timescale 2009 EON ERA PERIOD (Special Units) EPOCH Range.5 - 55.8 Mesozoic Cretaceous 145.5 - 65.5 Jurassic 199.6 - 145.5 Triassic 251.0 - 199.6 Paleozoic Permian 299.0 - 251.0 Carboniferous Pennsylvanian Sub-period 318.1 - 299.0 Mississippian Sub-period 359

  9. Geol 102 Historical Geology The Geologic Timescale 2011

    E-print Network

    Holtz Jr., Thomas R.

    Geol 102 Historical Geology The Geologic Timescale 2011 EON ERA PERIOD (Special Units) EPOCH Range 65.5 - 55.8 Mesozoic Cretaceous 145.5 - 65.5 Jurassic 201.5 - 145.5 Triassic 252.3 - 201.5 Paleozoic Permian 299.0 - 252.3 Carboniferous Pennsylvanian Sub-period 318.1 - 299.0 Mississippian Sub-period 359

  10. Geologic application of thermal-inertia mapping from satellite. [Powder River Basin, Wyoming

    NASA Technical Reports Server (NTRS)

    Offield, T. W. (principal investigator); Miller, S. H.; Watson, K.

    1980-01-01

    The author has identified the following significant results. Two night-time thermal images of the Powder River Basin, Wyoming distinctly show a major thermal feature. This feature is substantially coincident with a drainage divide and the southward facing slope appears cooler, suggesting a lower thermal inertia. An initial examination of regional geologic maps provides no clear evidence to suggest what type of geologic feature or structure may be present, although it can be noted that its northeastern end passes directly through Lead, South Dakota where the Homestake Gold Mine is located.

  11. Integration of potential-field and digital geologic data for two North American geoscience transects

    USGS Publications Warehouse

    Phillips, J.D.

    1990-01-01

    Two North American contributions to the Global Geoscience Transects Program, the Quebec-Maine-Gulf of Maine transect and the Great Lakes portion of the United States-Canadian Border transect, are among the first to produce digital geology in a form that can be combined with gridded gravity and aeromagnetic data. Maps of shaded relief and color-composite bandpass-filtered potential-field data combined with overlays of digitized geologic contacts and faults reveal significant new geologic information, including the relative thickness of plutons, the structure of poorly exposed or concealed magnetic units, and possible evidence for mineralized ground. -from Author

  12. ESA/Rosetta Encounters the Main Belt Asteroid (21) Lutetia: First Results on Lutetia Cratering History

    NASA Astrophysics Data System (ADS)

    Marchi, Simone; Barbieri, C.; Besse, S.; Kueppers, M.; Marzari, F.; Massironi, M.; Mottola, S.; Naletto, G.; Sierks, H.; OSIRIS Team

    2010-10-01

    On July 10, 2010 the ESA Rosetta spacecraft flown by the 100-km across main belt asteroid (21) Lutetia. According to present asteroid collisional models, Lutetia could be a primordial body, i.e. that survived intact to eons of fiery collisions within the main belt. Lutetia is the largest asteroid ever visited by a spacecraft so far, therefore it is the best candidate for understanding the formation and evolution of asteroids, which still remain elusive in many respects. These circumstances make of Lutetia flyby a milestone for the whole planetary community. The many instruments on board Rosetta gathered a great deal of information about Lutetia physical properties (e.g. surface composition, geology, shape, density). In this work, we present a preliminary analysis of the surface features detected on Lutetia thanks to the imaging system OSIRIS. The closest approach distance of Rosetta to Lutetia was about 3160 km, corresponding to a best resolution of about 60 m/pixel. Lutetia shows a very complex surface morphology and shape, possibly sculpted by large impacts. Impact craters have been counted down to diameters of about 300 m, while the largest detected crater has a size of about 60 km. We investigate the Lutetia cratering history and give a preliminary interpretation of the observations in terms of the current collisional models.

  13. Coyote Creek Geologic Map

    NSDL National Science Digital Library

    Timothy R. Walsh

    Students are required to make field observations, collect data and then create a detailed geologic map and report for a small area (approximately 1 sq. mile) on the edge of the Tularosa Basin in south central New Mexico. The study area is located within the Tularosa NE quadrangle, but maps from the Cat Mountain quadrangle to the East are also useful. Gently dipping carbonate and siliciclastic beds, igneous intrusions, bioherms and a normal fault are present in the study area along Coyote Creek, a few miles north of Tularosa, NM. The creek generally runs parallel to dip, allowing relatively easy access to inclined strata. Bioherm(s) are present in the lower section. Several dikes are present running both parallel and perpendicular to sedimentary bed strike. One is very non-resistant to weathering, creating unusual troughs as it passes through the carbonate bioherms. A sill is present in the upper section and a N/S trending normal fault roughly parallels strike of sedimentary beds.

  14. Petroleum geology of Kuwait

    SciTech Connect

    Youash, Y.

    1988-01-01

    The extremely large oil reserves in Kuwait result from the presence of all conditions necessary for hydrocarbon generation, migration, entrapment, and preservation, which can be ascribed to an exceptionally large trap volume in a simple geological setting and a late expulsion and migration from a huge area of thermally mature source rocks. The Lower and middle Cretaceous sequence of Kuwait is among the world's richest hydrocarbon habitats. The depositional history is dominated by sedimentation on a very stable broad platform characterized by quiescence as reflected by a continuous deposition in a slowly subsiding sea bottom. The reservoirs are composed of thick sandstone of the Wara, Burgan, and Zubar formations. In addition to these, Mauddud Limestone forms a good reservoir in the northern fields and, in the south, the oolitic limestone of the Lower Cretaceous in Greater Burgan, Umm Gudair, and Minagish fields contains substantial hydrocarbon deposits. The sandstone reservoirs are the world's largest over 1,500 ft (450 m) in thickness of perfect reservoir quality and composed of well-sorted, medium to coarse-grained sands that were deposited in a littoral or on the edge of a deltaic and coastal environment. The source rocks are mostly likely the same reservoir rocks, particularly with downdip more shaly development of widespread thermally mature organic rich facies juxataposed with a carbonate-sandstone shelf.

  15. Uranium geology of Bulgaria

    SciTech Connect

    Not Available

    1993-02-01

    Three major uranium districts containing several deposits, plus 32 additional deposits, have been identified in Bulgaria, all of which are detailed geologically in this article. Most of the deposits are located in the West Balkan mountains, the western Rhodope mountains, and the Thracian Basin. A few deposits occur in the East Balkan, eastern Rhodope and Sredna Gora mountains. The types of deposits are sandstone, vein, volcanic, and surficial. Sandstone deposits are hosted in Permian and Tertiary sediments. In early 1992, fifteen deposits were being exploited, of which roughly 70 percent of the uranium produced was being recovered using in-situ leaching (ISL) methods. The remainder was being recovered by conventional underground mining, except for one small deposit that utilized open-pit methods. Fifteen other Bulgarian deposits had been exhausted, while five deposits were still in the exploration stage. Uranium production began in Bulgaria in 1946, and cumulative production through 1991 exceeded 100 million pounds equivalent U3O8. Current annual production is on the order of one million pounds equivalent U3O8, about 750 thousand pounds of which are recovered by ISL operations.

  16. Geologic Map of the Valles Caldera, Jemez Mountains, New Mexico

    NASA Astrophysics Data System (ADS)

    Goff, F.; Gardner, J. N.; Reneau, S. L.; Kelley, S. A.; Kempter, K. A.; Lawrence, J. R.

    2011-12-01

    Valles caldera is famous as the type locality of large resurgent calderas (Smith and Bailey, 1968), the location of a classic 260-300 °C liquid-dominated geothermal system (Goff and Gardner, 1994), and the site of a long-lived late Pleistocene lake (Fawcett et al., 2011). We have published a detailed color geologic map of the Valles caldera and surrounding areas at 1:50,000 scale obtainable from New Mexico Bureau of Geology and Mineral Resources (geoinfo.nmt.edu/publications/maps/geologic/gm/79/). The new Valles map has been compiled from all or parts of nine 1:24,000 geologic maps completed between 2004 and 2008 (Bland, Cerro del Grant, Jarosa, Jemez Springs, Polvadera Peak, Redondo Peak, Seven Springs, Valle San Antonio, and Valle Toledo). Our map provides more detailed geology on the resurgent dome, caldera collapse breccias, post-caldera lava and tuff eruptions, intracaldera sedimentary and lacustrine deposits, and precaldera volcanic and sedimentary rocks than previous maps and incorporates recent stratigraphic revisions to the geology of the Jemez Mountains volcanic field. Three cross sections supported by surface geology, geophysical data and deep borehole logs (?4500 m) show an updated view of the caldera interior, depict a modern interpretation of caldera collapse and resurgence, and provide caldera-wide subsurface isotherms (?500 °C). A 30 page booklet included with the map contains extensive rock descriptions for 162 stratigraphic units and figures showing physiographic features, structural relations between Valles (1.25 Ma) and the earlier, comparably sized Toledo caldera (1.62 Ma), correlation charts of map units, and the distribution of pre- and post-caldera hydrothermal alteration styles, including recently documented zeolite-type alteration. Finally, the booklet includes a generalized model showing our interpretation of intracaldera structure and subjacent magma chambers, and relations of Valles to earlier Quaternary-Precambrian units.

  17. Production Data Integration into High Resolution Geologic Models with Trajectory-based Methods and A Dual Scale Approach

    E-print Network

    Kim, Jong Uk

    2012-02-14

    the essential features of the geologic model. To begin with, we sequentially coarsen the fine-scale geological model by grouping layers in such a way that the heterogeneity measure of an appropriately defined 'static' property is minimized within the layers...

  18. From Guindy IIT MADRAS MAIN

    E-print Network

    Kumar, M. Jagadesh

    From Guindy IIT MADRAS MAIN ENTRANCE From Adyar MADHYA KAILASH SIGNAL MADHYA KAILASH TEMPLE From Technology and Business Incubator From Guindy IIT MADRAS MAIN ENTRANCE From Adyar MADHYA KAILASH SIGNAL

  19. GeologicBoulderMap Writtenandeditedby

    E-print Network

    Patterson, William P.

    has a composition closer to a granodiorite than a granite. Similarly, the granite used for the stairs at the entrance to the Thorvaldson Building is also granodioritic in composition. Glossary of Geological Terms

  20. Terrestrial and Lunar Geological Terminology

    NASA Technical Reports Server (NTRS)

    Schrader, Christian

    2009-01-01

    This section is largely a compilation of defining geological terms concepts. Broader topics, such as the ramifications for simulant design and in situ resource utilization, are included as necessary for context.