Science.gov

Sample records for main geological features

  1. Cores from marine geologic features in the western Gulf of Maine

    USGS Publications Warehouse

    Oldale, Robert N.; Edwards, Gerald B.

    1991-01-01

    Submerged geologic features located in the western Gulf of Maine between Cape Ann, Massachusetts and New Hampshire (fig. 1), were identified from high-resolution seismic-reflection data collected between 1979 and 1980. The features include the following. (1) A pair of end morained formed during the retreat of the Laurentide Ice Sheet from the Gulf of Maine (Oldale, 1985a). (2) A barrier spit and lagoon complex and (3) a paleodelta, both of which formed during a late Wisconsinan to early Holocene low relative sea-level stand (Oldale and others, 1983; Oldale, 1985b). (4) A wave-cut unconformity that was eroded as the sea transgressed to its present position. (5) A surficial sand depost that formed atop the unconformity in middle Holocene time. Vibracores (fig. 2) were taken in 1984 to corroborate the interpretations from the seismic data, to determine the sedimentary texture and structure of the features, to identify the nature of the unconformity, and to obtain material for 14C dating,

  2. Main features of meiosis

    SciTech Connect

    1993-12-31

    Chapter 17, outlines the main features of meiosis, beginning with its significance and proceeding through the meiotic stages. Meiosis is the most important modification of mitosis because it is the reduction division that gives rise to the haploid generation in the life cycle. 17 refs., 6 figs.

  3. Digitization of a geologic map for the Quebec-Maine-Gulf of Maine global geoscience transect

    USGS Publications Warehouse

    Wright, Bruce E.; Stewart, David B.

    1990-01-01

    The Bedrock Geologic Map of Maine was digitized and combined with digital geologic data for Quebec and the Gulf of Maine for the Quebec-Maine-Gulf of Maine Geologic Transect Project. This map is being combined with digital geophysical data to produce three-dimensional depictions of the subsurface geology and to produce cross sections of the Earth's crust. It is an essential component of a transect that stretches from the craton near Quebec City, Quebec, to the Atlantic Ocean Basin south of Georges Bank. The transect is part of the Global Geosciences Transect Project of the International Lithosphere Program. The Digital Line Graph format is used for storage of the digitized data. A coding scheme similar to that used for base category planimetric data was developed to assign numeric codes to the digitized geologic data. These codes were used to assign attributes to polygon and line features to describe rock type, age, name, tectonic setting of original deposition, mineralogy, and composition of igneous plutonic rocks, as well as faults and other linear features. The digital geologic data can be readily edited, rescaled, and reprojected. The attribute codes allow generalization and selective retrieval of the geologic features. The codes allow assignment of map colors based on age, lithology, or other attribute. The Digital Line Graph format is a general transfer format that is supported by many software vendors and is easily transferred between systems.

  4. Geological features in Wyoming from Nimbus 1

    NASA Technical Reports Server (NTRS)

    Short, N. M.

    1971-01-01

    The identification of ground features in Nimbus photography by comparisons with geology, soils, and vegetation maps is discussed for the Wyoming-Colorado area. It is concluded that in a semiarid region, high topographic relief shows good coassociation with exposed geology and with vegetation and, to a lesser degree, with soils types. In lower, flatter basins, most tonal patterns are related to subtle variations in soil color and vegetation cover. It is thought that maps based on spectral parameters as the proper descriptor of surface features may be required.

  5. Windblown Features on Venus and Geological Mapping

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1999-01-01

    The objectives of this study were to: 1) develop a global data base of aeolian features by searching Magellan coverage for possible time-variable wind streaks, 2) analyze the data base to characterize aeolian features and processes on Venus, 3) apply the analysis to assessments of wind patterns near the surface and for comparisons with atmospheric circulation models, 4) analyze shuttle radar data acquired for aeolian features on Earth to determine their radar characteristics, and 5) conduct geological mapping of two quadrangles. Wind, or aeolian, features are observed on Venus and aeolian processes play a role in modifying its surface. Analysis of features resulting from aeolian processes provides insight into characteristics of both the atmosphere and the surface. Wind related features identified on Venus include erosional landforms (yardangs), depositional dune fields, and features resulting from the interaction of the atmosphere and crater ejecta at the time of impact. The most abundant aeolian features are various wind streaks. Their discovery on Venus afforded the opportunity to learn about the interaction of the atmosphere and surface, both for the identification of sediments and in mapping near-surface winds.

  6. Maine Geological Survey Borehole Temperature Profiles

    SciTech Connect

    Marvinney, Robert

    2013-11-06

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  7. Enceladus’ Geysers: Relation to Geological Features

    NASA Astrophysics Data System (ADS)

    Helfenstein, Paul; Porco, Carolyn C.

    2015-09-01

    We apply histogram analysis, photogeological methods, and tidal stress modeling to Porco et al.'s survey of 101 Enceladus South Polar Basin geysers and their three-dimensional orientations to test if the jet azimuths are influenced by their placement relative to surface morphology and tectonic structures. Geysers emplaced along the three most active tiger stripe fractures (Damascus Sulcus, Baghdad Sulcus, and Cairo Sulcus) occur in local groupings with relatively uniform nearest-neighbor separation distances (∼5 km). Their placement may be controlled by uniformly spaced en echelon Riedel-type shear cracks originating from left-lateral strike-slip fault motion inferred to occur along tiger stripes. The spacing would imply a lithosphere thickness of ∼5 km in the vicinity of the tiger stripes. The orientations of tilted geyser jets are not randomly distributed; rather their azimuths correlate with the directions either of tiger stripes, cross-cutting fractures, or else fine-scale local tectonic fabrics. Diurnal tidal stress modeling suggests that periodic changes of plume activity are significantly affected by cross-cutting fractures that open and close at different times than the tiger stripes that they intersect. We find evidence of sub-kilometer scale morphological modification of surface geological features surrounding geysers from sublimation-aided erosion, and ablation, and scouring. We propose that the simultaneous crushing and shearing action of periodic transpressional tidal stress on ice condensing on the inside walls of geyser conduits is the mechanism that extrudes the peculiar, paired narrow ridges known as “shark fins” that flank the medial tiger stripe fissures. We present a gallery of high-resolution image mosaics showing the placement of all the jets in their source region and consequently their geological context.

  8. The Nordic seas, main oceanographic features

    NASA Astrophysics Data System (ADS)

    Blindheim, Johan; Østerhus, Svein

    This article presents a review of the main oceanographic features of the Nordic Seas (the Greenland, Iceland, and Norwegian Seas). It includes a short description of previous research, the bathymetry of the area, its general circulation, and the exchanges with the North Atlantic and Arctic Oceans. Water mass structure and temporal variations are discussed separately for the various basins. The most prominent variations are a cooling and freshening in the upper layers since the 1960s, particularly in the southwestern Norwegian Sea, and a rise in temperature and salinity in the deeper layers, particularly in the Greenland Sea. Some relations of these variations to ocean—atmosphere interactions are described, and the deep-water warming is ascribed to an increased influence of deep water from the Arctic Ocean and a reduced formation of deep water in the Greenland Sea. Renewal of the deep water in the Greenland Sea occurred in the late 1960s, and atmospheric observations suggest that this may have been the only renewal event in the 20th century.

  9. Geographical features of global water cycle during warm geological epochs

    SciTech Connect

    Georgiadi, A.G.

    1996-12-31

    The impact of global warming on the water cycle can be extremely complex and diverse. The goal of the investigation was to estimate the geographic features of the mean annual water budget of the world during climatic optimums of the Holocene and the Eemian interglacial periods. These geological epochs could be used as analogs of climatic warming on 1 degree, centigrade and 2 degrees, centigrade. The author used the results of climatic reconstructions based on a simplified version of a GCM.

  10. Domino effect in chemical accidents: main features and accident sequences.

    PubMed

    Darbra, R M; Palacios, Adriana; Casal, Joaquim

    2010-11-15

    The main features of domino accidents in process/storage plants and in the transportation of hazardous materials were studied through an analysis of 225 accidents involving this effect. Data on these accidents, which occurred after 1961, were taken from several sources. Aspects analyzed included the accident scenario, the type of accident, the materials involved, the causes and consequences and the most common accident sequences. The analysis showed that the most frequent causes are external events (31%) and mechanical failure (29%). Storage areas (35%) and process plants (28%) are by far the most common settings for domino accidents. Eighty-nine per cent of the accidents involved flammable materials, the most frequent of which was LPG. The domino effect sequences were analyzed using relative probability event trees. The most frequent sequences were explosion→fire (27.6%), fire→explosion (27.5%) and fire→fire (17.8%). PMID:20709447

  11. The Monte Carlo code MCSHAPE: Main features and recent developments

    NASA Astrophysics Data System (ADS)

    Scot, Viviana; Fernandez, Jorge E.

    2015-06-01

    MCSHAPE is a general purpose Monte Carlo code developed at the University of Bologna to simulate the diffusion of X- and gamma-ray photons with the special feature of describing the full evolution of the photon polarization state along the interactions with the target. The prevailing photon-matter interactions in the energy range 1-1000 keV, Compton and Rayleigh scattering and photoelectric effect, are considered. All the parameters that characterize the photon transport can be suitably defined: (i) the source intensity, (ii) its full polarization state as a function of energy, (iii) the number of collisions, and (iv) the energy interval and resolution of the simulation. It is possible to visualize the results for selected groups of interactions. MCSHAPE simulates the propagation in heterogeneous media of polarized photons (from synchrotron sources) or of partially polarized sources (from X-ray tubes). In this paper, the main features of MCSHAPE are illustrated with some examples and a comparison with experimental data.

  12. LROC Observations of Geologic Features in the Marius Hills

    NASA Astrophysics Data System (ADS)

    Lawrence, S.; Stopar, J. D.; Hawke, R. B.; Denevi, B. W.; Robinson, M. S.; Giguere, T.; Jolliff, B. L.

    2009-12-01

    Lunar volcanic cones, domes, and their associated geologic features are important objects of study for the LROC science team because they represent possible volcanic endmembers that may yield important insights into the history of lunar volcanism and are potential sources of lunar resources. Several hundred domes, cones, and associated volcanic features are currently targeted for high-resolution LROC Narrow Angle Camera [NAC] imagery[1]. The Marius Hills, located in Oceanus Procellarum (centered at ~13.4°N, -55.4°W), represent the largest concentration of these volcanic features on the Moon including sinuous rilles, volcanic cones, domes, and depressions [e.g., 2-7]. The Marius region is thus a high priority for future human lunar exploration, as signified by its inclusion in the Project Constellation list of notional future human lunar exploration sites [8], and will be an intense focus of interest for LROC science investigations. Previous studies of the Marius Hills have utilized telescopic, Lunar Orbiter, Apollo, and Clementine imagery to study the morphology and composition of the volcanic features in the region. Complementary LROC studies of the Marius region will focus on high-resolution NAC images of specific features for studies of morphology (including flow fronts, dome/cone structure, and possible layering) and topography (using stereo imagery). Preliminary studies of the new high-resolution images of the Marius Hills region reveal small-scale features in the sinuous rilles including possible outcrops of bedrock and lobate lava flows from the domes. The observed Marius Hills are characterized by rough surface textures, including the presence of large boulders at the summits (~3-5m diameter), which is consistent with the radar-derived conclusions of [9]. Future investigations will involve analysis of LROC stereo photoclinometric products and coordinating NAC images with the multispectral images collected by the LROC WAC, especially the ultraviolet data, to enable measurements of color variations within and amongst deposits and provide possible compositional insights, including the location of possibly related pyroclastic deposits. References: [1] J. D. Stopar et al. (2009), LRO Science Targeting Meeting, Abs. 6039 [2] Greeley R (1971) Moon, 3, 289-314 [3] Guest J. E. (1971) Geol. and Phys. of the Moon, p. 41-53. [4] McCauley J. F. (1967) USGS Geologic Atlas of the Moon, Sheet I-491 [5] Weitz C. M. and Head J. W. (1999) JGR, 104, 18933-18956 [6] Heather D. J. et al. (2003) JGR, doi:10.1029/2002JE001938 [7] Whitford-Stark, J. L., and J. W. Head (1977) Proc. LSC 8th, 2705-2724 [8] Gruener J. and Joosten B. K. (2009) LRO Science Targeting Meeting, Abs. 6036 [9] Campbell B. A. et al. (2009) JGR, doi:10.1029/2008JE003253.

  13. The oceanic islands - Azores. [geological, geophysical and geochemical features

    NASA Technical Reports Server (NTRS)

    Ridley, W. I.; Watkins, N. D.; Macfarlane, D. J.

    1974-01-01

    A presentation is made of the known geological, geophysical, and geochemical data on the Azores. The regional setting of the islands is described; under the geological heading, surface geology and petrochemistry are discussed; and paleomagnetism, marine magnetic surveys, gravity, seismology, and heat flow are treated in the geophysics category. A model for the origin of the Azores is constructed on the basis of these observations.

  14. Geological features and evolution history of Sinus Iridum, the Moon

    NASA Astrophysics Data System (ADS)

    Qiao, Le; Xiao, Long; Zhao, Jiannan; Huang, Qian; Haruyama, Junichi

    2014-10-01

    The Sinus Iridum region is one of the important candidate landing areas for the future Chinese lunar robotic and human missions. Considering its flat topography, abundant geomorphic features and complex evolutionary history, this region shows great significance to both lunar science and landing exploration, including powered descent, surface trafficability and in-situ exploration. First, we use Lunar Reconnaissance Orbiter (LRO) Altimeter (LOLA) and Camera (LROC) data to characterize regional topographic and geomorphological features within Sinus Iridum, e.g., wrinkle ridges and sinuous rilles. Then, we deduce the iron and titanium content for the mare surface using the Clementine ultraviolet-visible (UVVIS) data and generate mineral absorption features using the Chandrayaan-1 Moon Mineralogy Mapper (M3) spectrometer data. Later, we date the mare surface using crater size-frequency distribution (CSFD) method. CSFD measurements show that this region has experienced four major lava infilling events with model ages ranging from 3.32 Ga to 2.50 Ga. The regional magmatic activities evolved from Imbrian-aged low-titanium to Eratosthenian-aged medium-titanium. The inner Sinus Iridum is mainly composed of pyroxene-rich basalts with olivine abundance increasing with time, while the surrounding highlands have a feldspar-dominated composition. In the northern wall of Sinus Iridum, some potential olivine-rich materials directly excavated from the lunar mantle are visible. The Sinus Iridum region is an ideal target for future landing exploration, we propose two candidate landing sites for the future Chinese robotic and human missions.

  15. Maps of Lunar Topographic Roughness: Correlation with Geological Features

    NASA Astrophysics Data System (ADS)

    Kreslavsky, M. A.; Head, J. W.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2012-12-01

    Lunar Orbiter Laser Altimeter LOLA [Smith et al. 2010 Space Sci. Rev. 150, 209] on board the Lunar Reconnaissance Orbiter is accumulating high-precision lunar surface elevation measurements. This data set is an excellent source for mapping lunar topographic roughness [Rosenburg et al. 2011 JGR 116, E02001]. Such maps are useful in planetary geology for the following reasons. (1) Roughness maps provide a convenient one-glance synoptic overview of small-scale textures. (2) They help focus on typical background topography, while researcher's eyes usually pick prominent features. (3) Roughness maps utilize the exceptional along-orbit precision of laser altimeter data. In a series of roughness maps that we present here, we use the interquartile range of along-profile curvature at a given baseline as a measure of roughness. We use a progression of baselines starting from the double LOLA probing step: 0.12, 0.46, 0.92, 1.8 km. We also show some useful color composites combining these maps and showing the scale dependence of roughness. Available data allow roughness mapping at 8 pixels per degree resolution. The nature of the lunar roughness changes abruptly at sub-km scale. At 0.46 km baseline and longer, the most prominent feature on the roughness maps is the dichotomy between smooth maria and rough highlands. At 0.12 km baseline, the mare/highland boundary disappears; some mare surfaces are rougher and some are smoother than typical highlands. At this baseline the surface topography is controlled by regolith gardening and reflects small-scale resurfacing during the Copernican and Eratosthenian periods, while for longer baselines the topography is defined by bedrock geology and "remembers" Imbrian and earlier events. At short scales (0.12 km baseline) both the roughest and the smoothest terrains are related to Copernican-aged large impact craters. Craters themselves and their proximal ejecta are extremely rough; the roughest ejecta is separated from craters by prominent smoother annuli. The roughness of the young craters progressively decreases with age due to smoothing by accumulation of the regolith layer. The smoothest terrains are local relatively small impact melt sheets outside Copernican craters Rutherford and Glushko. Large Copernican craters Tycho, Jackson and Ohm have systems of long roughness rays composed of elongated clusters of secondary craters. There are at least a few prominent roughness "rays" on the north-eastern limb made of dense elongated crater clusters that are not associated with any impact crater; their origin is enigmatic. Mare surfaces have relatively wide variations of roughness; boundaries between rougher and smoother areas often do not correlate with boundaries of mare units. These roughness variations seem to be caused, at least, partly, by the varying density of small craters. At longer baselines (0.46, 0.92, 1.8 km), in addition to Copernican and Eratosthenian craters, large Late Imbrian craters have prominent roughness signatures; they also have smoother annuli between craters and rough ejecta. Orientale basin, unlike other basins, also has distinctive roughness signature, as discussed in [Kreslavsky & Head 2012 JGR 117, E00H24]. The youngest maria are smooth at all scales, while older maria and cryptomaria are progressively rougher at shorter baselines; sharp roughness contrasts coincide with known unit boundaries.

  16. Feature level fusion for enhanced geological mapping of ophiolile complex using ASTER and Landsat TM data

    NASA Astrophysics Data System (ADS)

    Pournamdari, M.; Hashim, M.

    2014-02-01

    Chromite ore deposit occurrence is related to ophiolite complexes as a part of the oceanic crust and provides a good opportunity for lithological mapping using remote sensing data. The main contribution of this paper is a novel approaches to discriminate different rock units associated with ophiolite complex using the Feature Level Fusion technique on ASTER and Landsat TM satellite data at regional scale. In addition this study has applied spectral transform approaches, consisting of Spectral Angle Mapper (SAM) to distinguish the concentration of high-potential areas of chromite and also for determining the boundary between different rock units. Results indicated both approaches show superior outputs compared to other methods and can produce a geological map for ophiolite complex rock units in the arid and the semi-arid region. The novel technique including feature level fusion and Spectral Angle Mapper (SAM) discriminated ophiolitic rock units and produced detailed geological maps of the study area. As a case study, Sikhoran ophiolite complex located in SE, Iran has been selected for image processing techniques. In conclusion, a suitable approach for lithological mapping of ophiolite complexes is demonstrated, this technique contributes meaningfully towards economic geology in terms of identifying new prospects.

  17. Glacial Features in the Western Gulf of Maine Inferred From High Resolution Bathymetric Data

    NASA Astrophysics Data System (ADS)

    Malik, M. A.; Licciardi, J. M.; Ward, L. G.; Mayer, L. A.

    2007-12-01

    Multibeam sonar surveys in the last decade have revealed submerged glacial features in the western Gulf of Maine (e.g., Valentine et al., 2003). Here we examine high-resolution multibeam bathymetric data acquired in 2001 and 2005 over Jeffreys Ledge to infer the origin of previously unrecognized small-scale marine glacial features. Ridges as high as 5 m appear throughout the length of Jeffreys Ledge in water depths of ~50 m. Bottom photographs of these features show boulders of up to 50 cm diameter in a flat sandy bottom devoid of finer material. These ridges are probably recessional moraines that have been reworked during lower relative sea level (~55 m below modern sea level). The moraine-like features imply stabilization of an ice margin along the length of Jeffreys Ledge. The central portion of Jeffreys Ledge also contains asymmetrical dune forms with a relief of 1-6 m and along-crest orientations trending NW-SE. These dunes may have formed during megaflood events with water flow toward the southwest. Streamlined bathymetric features with a relief of ~8 m and lengths up to 700 m occur east of Jeffreys Ledge. These features have similar dimensions but different orientations (N-S), as compared to southeast-oriented drumlins identified south of Cape Ann by Oldale et al. (1994). Dissimilar orientations of these drumlins are consistent with the lobate shape of the ice sheet and probable local ice flow directions. Numerous iceberg scours were observed in the basins east of Stellwagen Bank and Jeffreys Ledge with varying widths (50-300 m), scour depths (1-5 m) and lengths (3-10 km). Two dominant orientations of iceberg scours (E- W and N-S) were identified. Additional data such as seismic profiles, bottom photographs and bottom samples will further define the origin of these small-scale glacial features. Oldale, R.N., Knebel, H.J., Bothner, M.H., 1994, Geomorphology 9, 301-309. Valentine, P., Unger, T., Baker, J., 2003, U.S. Geological Survey Geologic Investigations Series Map I-2676C, scale 1:60,000.

  18. Field occurrences of liquefaction-induced features: A primer for engineering geologic analysis of paleoseismic shaking

    USGS Publications Warehouse

    Obermeier, S.F.; Olson, S.M.; Green, R.A.

    2005-01-01

    Discussed in this paper are the factors that control the typical manifestations of liquefaction that are found in continental field settings. The factors are given mainly in terms of the local geologic field situation and the geotechnical properties there. A meaningful interpretation of liquefaction-based data for quantitative analysis of paleoseismic shaking requires understanding of both geologic and geotechnical roles in the mode of ground failure at a specific site. Recommendations are made for the size of the field area that must be searched for liquefaction effects, in order to develop adequate data for engineering geologic/geotechnical analyses of paleoseismicity. The areal extent must be based on an appreciation that the tectonic situation can cause seismically induced liquefaction effects to form in some locales, but not in others nearby, even for a strong earthquake in the region. Our guidelines for the conduct of the field search and preliminary analysis of the data relate to three issues for which liquefaction features are especially useful in answering: Has there been strong Holocene/latest Pleistocene shaking in the region? Where was the tectonic source? And what was the strength of shaking? Understanding of the various factors that control the manifestations of liquefaction effects, which we present in this paper, is essential for developing credible answers to these questions. ?? 2004 Elsvier B.V. All rights reserved.

  19. Crustal thickness map of Brazil: Data compilation and main features

    NASA Astrophysics Data System (ADS)

    Assumpo, Marcelo; Bianchi, Marcelo; Juli, Jordi; Dias, Fbio L.; Sand Frana, George; Nascimento, Rosana; Drouet, Stphane; Pavo, Csar Garcia; Albuquerque, Diogo Farrapo; Lopes, Afonso E. V.

    2013-04-01

    We present a crustal thickness map of Brazil and adjacent areas based on a compilation of data published in the literature as well as new measurements. We used crustal thicknesses mainly derived from seismic datasets such as deep seismic refraction experiments, receiver function analyses, and surface-wave dispersion velocities. Crustal thicknesses derived from modelling gravity anomalies commonly depend on assumptions, such as constant density contrast across the Moho interface, which are not always easily verifiable and were considered only along the continental shelf to fill large gaps in the seismic data. Our compilation shows that the crust in the stable continental area onshore has an average thickness of 39 5 km (1-? deviation) and that no clear difference can be observed between low altitude, intracratonic sedimentary basins, NeoProterozoic foldbelts (except for the Borborema Province), and cratonic areas. The thinnest crust is found in the Borborema Province of NE Brazil (30-35 km) and along a narrow belt within Tocantins Province (35 km), roughly parallel to the Eastern border of the Amazon craton, while the thickest crust is found in the Amazon and So Francisco cratons (41 4 km), and the Paran Basin (42 4 km). Both the Ponta Grossa and the Rio Grande Arches are areas of thinned crust, and the western border of the Brazilian platform, near the sub-Andean region, seems to be characterized by a crustal thickness of less than 40 km. Although sparse in data coverage, we expect the resulting crustal thickness map to be useful for future studies of isostasy, dynamic topography, and crustal evolution of the country.

  20. Geological Features Study of the Lunar Surface Using the Lunar Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Fuping, G.; Yanmei, Y.

    2009-03-01

    Taking typical craters of lunar surface as the test areas, using the Clementine UVVIS, NIR and lidar data, we study the relationship between the geological features and physiognomy, analyze the rule of lithology or mineral distribution of the lunar.

  1. View of Feature 2, the remains of the Geology/Change Room, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Feature 2, the remains of the Geology/Change Room, view to the southeast - Orphan Lode Mine, North of West Rim Road between Powell Point and Maricopa Point, South Rim, Grand Canyon Village, Coconino County, AZ

  2. Use and Features of Basalt Formations for Geologic Sequestration

    SciTech Connect

    McGrail, B. Peter; Ho, Anita M.; Reidel, Steve P.; Schaef, Herbert T.

    2003-01-01

    Extrusive lava flows of basalt are a potential host medium for geologic sequestration of anthropogenic CO2. Flood basalts and other large igneous provinces occur worldwide near population and power-producing centers and could securely sequester a significant fraction of global CO2 emissions. We describe the location, extent, and general physical and chemical characteristics of large igneous provinces that satisfy requirements as a good host medium for CO2 sequestration. Most lava flows have vesicular flow tops and bottoms as well as interflow zones that are porous and permeable and serve as regional aquifers. Additionally, basalt is iron-rich, and, under the proper conditions of groundwater pH, temperature, and pressure, injected CO2 will react with iron released from dissolution of primary minerals in the basalt to form stable ferrous carbonate minerals. Conversion of CO2 gas into a solid form was confirmed in laboratory experiments with supercritical CO2 in contact with basalt samples from Washington state.

  3. Gravity and magnetic anomalies used to delineate geologic features associated with earthquakes and aftershocks in the central Virginia seismic zone

    NASA Astrophysics Data System (ADS)

    Shah, A. K.; Horton, J.; McNamara, D. E.; Spears, D.; Burton, W. C.

    2013-12-01

    Estimating seismic hazard in intraplate environments can be challenging partly because events are relatively rare and associated data thus limited. Additionally, in areas such as the central Virginia seismic zone, numerous pre-existing faults may or may not be candidates for modern tectonic activity, and other faults may not have been mapped. It is thus important to determine whether or not specific geologic features are associated with seismic events. Geophysical and geologic data collected in response to the Mw5.8 August 23, 2011 central Virginia earthquake provide excellent tools for this purpose. Portable seismographs deployed within days of the main shock showed a series of aftershocks mostly occurring at depths of 3-8 km along a southeast-dipping tabular zone ~10 km long, interpreted as the causative fault or fault zone. These instruments also recorded shallow (< 4 km) aftershocks clustered in several areas at distances of ~2-15 km from the main fault zone. We use new airborne geophysical surveys (gravity, magnetics, radiometrics, and LiDAR) to delineate the distribution of various surface and subsurface geologic features of interest in areas where the earthquake and aftershocks took place. The main (causative fault) aftershock cluster coincides with a linear, NE-trending gravity gradient (~ 2 mgal/km) that extends over 20 km in either direction from the Mw5.8 epicenter. Gravity modeling incorporating seismic estimates of Moho variations suggests the presence of a shallow low-density body overlying the main aftershock cluster, placing it within the upper 2-4 km of the main-fault hanging wall. The gravity, magnetic, and radiometric data also show a bend in generally NE-SW orientation of anomalies close to the Mw5.8 epicenter. Most shallow aftershock clusters occur near weaker short-wavelength gravity gradients of one to several km length. In several cases these gradients correspond to geologic contacts mapped at the surface. Along the gravity gradients, the aftershocks appear to cluster near areas with cross-cutting geologic features such as Jurassic diabase dikes. These associations suggest that local variations in rock density and/or rheology may have contributed to modifications of local stress regimes in a manner encouraging localized seismicity associated with the Mw5.8 event and its aftershocks. Such associations are comparable to results of previous studies recognizing correspondences between seismicity and features such as intrusive bodies and failed rifts in the New Madrid seismic zone and elsewhere. To explore whether similar correspondences may have occurred in the past, we use regional gravity and magnetic data to consider possible relations between historical earthquakes and comparable geologic features elsewhere in the central Virginia seismic zone.

  4. Geology and Origin of Europa's Mitten Feature (Murias Chaos)

    NASA Technical Reports Server (NTRS)

    Figueredo, P. H.; Chuang, F. C.; Rathbun, J.; Kirk, R. L.; Greeley, R.

    2002-01-01

    The "Mitten" (provisionally named Murias Chaos by the International Astronomical Union) is a region of elevated chaos-like terrain in the leading hemisphere of Europa. Its origin had been explained under the currently debated theories of melting through a thin lithosphere or convection within a thick one. Galileo observations reveal several characteristics that suggest that the Mitten is distinct from typical chaos terrain and point to a different formational process. Photoclinometric elevation estimates suggest that the Mitten is slightly elevated with respect to the surrounding terrain; geologic relations indicate that it must have raised significantly from the plains in its past, resembling disrupted domes on Europa's trailing hemisphere. Moreover, the Mitten material appears to have extruded onto the plains and flowed for tens of kilometers. The area subsequently subsided as a result of isostatic adjustment, viscous relaxation, and/or plains loading. Using plate flexure models, we estimated the elastic lithosphere in the area to be several kilometers thick. We propose that the Mitten originated by the ascent and extrusion of a large thermal diapir. Thermal-mechanical modeling shows that a Mitten-sized plume would remain sufficiently warm and buoyant to pierce through the crust and flow unconfined on the surface. Such a diapir probably had an initial radius between 5 and 8 km and an initial depth of 20-40 km, consistent with a thick-lithosphere model. In this scenario the Mitten appears to represent the surface expression of the rare ascent of a large diapir, in contrast to lenticulae and chaos terrain, which may form by isolated and clustered small diapirs, respectively.

  5. Geology and origin of Europa's "Mitten" feature (Murias Chaos)

    USGS Publications Warehouse

    Figueredo, P.H.; Chuang, F.C.; Rathbun, J.; Kirk, R.L.; Greeley, R.

    2002-01-01

    The "Mitten" (provisionally named Murias Chaos by the International Astronomical Union) is a region of elevated chaos-like terrain in the leading hemisphere of Europa. Its origin had been explained under the currently debated theories of melting through a thin lithosphere or convection within a thick one. Galileo observations reveal several characteristics that suggest that the Mitten is distinct from typical chaos terrain and point to a different formational process. Photoclinometric elevation estimates suggest that the Mitten is slightly elevated with respect to the surrounding terrain; geologic relations indicate that it must have raised significantly from the plains in its past, resembling disrupted domes on Europa's trailing hemisphere. Moreover, the Mitten material appears to have extruded onto the plains and flowed for tens of kilometers. The area subsequently subsided as a result of isostatic adjustment, viscous relaxation, and/or plains loading. Using plate flexure models, we estimated the elastic lithosphere in the area to be several kilometers thick. We propose that the Mitten originated by the ascent and extrusion of a large thermal diapir. Thermal-mechanical modeling shows that a Mitten-sized plume would remain sufficiently warm and buoyant to pierce through the crust and flow unconfined on the surface. Such a diapir probably had an initial radius between 5 and 8 km and an initial depth of 20-40 km, consistent with a thick-lithosphere model. In this scenario the Mitten appears to represent the surface expression of the rare ascent of a large diapir, in contrast to lenticulae and chaos terrain, which may form by isolated and clustered small diapirs, respectively.

  6. Lexico-Grammatical Features of Geology Textbooks: Process and Product Revisited.

    ERIC Educational Resources Information Center

    Love, Alison

    1993-01-01

    Examines lexico-grammatical features in an introductory textbook in relation to the thematic organization of the textbook. Comparison is made with a second textbook and the contribution of the lexico-grammatical feature to establish an epistemology of geology. Suggestions are made for supporting English-as-a-Second-Language students in processing…

  7. Geological features that contribute to ground control problems in underground coal mines. Information circular/1993

    SciTech Connect

    Shea-Albin, V.R.

    1993-01-01

    A major portion of ground control problems encountered in underground coal mines can be attributed to geologic features in the strata surrounding the extracted coal seam. The U.S. Bureau of Mines has compiled information from several sources on the geological features that contribute to ground control problems in underground coal mines. The compilation includes sedimentary features such as paleochannels, crevasse splays, clastic dikes, mold and cast structures, concretions, lithologic factors, and structural features, such as folds, fractures, joints, cleat, and faults. The compiled information will aid in identifying the features, predicting their occurrence in advance of mining, and controlling or minimizing roof failure when these features are encountered in an underground coal mine.

  8. Geological features that contribute to ground control problems in underground coal mines

    SciTech Connect

    Shea-Albin, V.R.

    1993-12-31

    Ground control problems are an important factor affecting safety, production, and efficiency in underground coal mines. A major portion of ground control problems encountered in underground coal mines can be attributed to geologic features in the strata surrounding the extracted coal seam. The U.S. Bureau of Mines has compiled information from numerous sources on the geological features that contribute to ground control problems in underground coal mines. The compilation includes (1) sedimentary features such as paleochannels, crevasse splays, clastic dikes, mold-and-cast structures, concretions, and lithologic factors, and (2) structural features such as folds, fractures, joints, cleat, and faults. The compiled information will aid in identifying the features, predicting their occurrence in advance of mining, and controlling or minimizing roof failure when these features are encountered in an underground coal mine. 69 refs., 14 figs.

  9. Topographic attributes as a guide for automated detection or highlighting of geological features

    NASA Astrophysics Data System (ADS)

    Viseur, Sophie; Le Men, Thibaud; Guglielmi, Yves

    2015-04-01

    Photogrammetry or LIDAR technology combined with photography allow geoscientists to obtain 3D high-resolution numerical representations of outcrops, generally termed as Digital Outcrop Models (DOM). For over a decade, these 3D numerical outcrops serve as support for precise and accurate interpretations of geological features such as fracture traces or plans, strata, facies mapping, etc. These interpretations have the benefit to be directly georeferenced and embedded into the 3D space. They are then easily integrated into GIS or geomodeler softwares for modelling in 3D the subsurface geological structures. However, numerical outcrops generally represent huge data sets that are heavy to manipulate and hence to interpret. This may be particularly tedious as soon as several scales of geological features must be investigated or as geological features are very dense and imbricated. Automated tools for interpreting geological features from DOMs would be then a significant help to process these kinds of data. Such technologies are commonly used for interpreting seismic or medical data. However, it may be noticed that even if many efforts have been devoted to easily and accurately acquire 3D topographic point clouds and photos and to visualize accurate 3D textured DOMs, few attentions have been paid to the development of algorithms for automated detection of the geological structures from DOMs. The automatic detection of objects on numerical data generally assumes that signals or attributes computed from this data allows the recognition of the targeted object boundaries. The first step consists then in defining attributes that highlight the objects or their boundaries. For DOM interpretations, some authors proposed to use differential operators computed on the surface such as normal or curvatures. These methods generally extract polylines corresponding to fracture traces or bed limits. Other approaches rely on the PCA technology to segregate different topographic plans. This approach assume that structural or sedimentary features coincide with topographic surface parts. In this work, several topographic attributes are proposed to highlight geological features on outcrops. Among them, differential operators are used but also combined and processed to display particular topographic shapes. Moreover, two kinds of attributes are used: unsupervised and supervised attributes. The supervised attributes integrate an a priori knowledge about the objects to extract (e.g.: a preferential orientation of fracture surfaces, etc.). This strategy may be compared to the one used for seismic interpretation. Indeed, many seismic attributes have been proposed to highlight geological structures hardly observable due to data noise. The same issue exist with topographic data: plants, erosions, etc. generate noise that make interpretation sometimes hard. The proposed approach has been applied on real case studies to show how it could help the interpretation of geological features. The obtained 'topographic attributes' are shown and discussed.

  10. Subsurface geologic features of the 2011 central Virginia earthquakes revealed by airborne geophysics

    USGS Publications Warehouse

    Shah, Anjana K.; Horton, J. Wright, Jr.; Burton, William C.; Spears, David B; Gilmer, Amy K

    2014-01-01

    Characterizing geologic features associated with major earthquakes provides insights into mechanisms contributing to fault slip and assists evaluation of seismic hazard. We use high-resolution airborne geophysical data combined with ground sample measurements to image subsurface geologic features associated with the 2011 Mw5.8 central Virginia intraplate earthquake and its aftershocks. Geologic mapping and magnetic data analyses suggest that the earthquake occurred near a complex juncture of geologic contacts. These contacts also intersect a >60-km long linear gravity gradient. Distal aftershocks occurred in tight, ~1 km-wide clusters near other obliquely oriented contacts that intersect gravity gradients, contrasting more linearly distributed seismicity observed at other seismic zones. These data and corresponding models suggest that local density contrasts (manifested as gravity gradients) modified the nearby stress regime in a manner favoring failure. However, along those gradients seismic activity is localized near structural complexities, suggesting a significant contribution from enhanced rheological weakness and/or increased rock permeability over limited areas. Regional magnetic data show a broader bend in geologic structures within the Central Virginia seismic zone, suggesting that nearby seismic activity may also be enhanced near localized rheological weaknesses and/or rock permeability. In contrast, away from the Mw5.8 epicenter geophysical lineaments are nearly continuous for tens of kilometers, especially toward the northeast. Continuity of associated geologic structures likely contributed to efficient propagation of seismic energy in that direction, consistent with moderate to high levels of damage from Louisa County to Washington, D.C. and neighboring communities.

  11. Spatial Pattern of Groundwater Arsenic Occurrence and Association with Bedrock Geology in Greater Augusta, Maine, USA

    PubMed Central

    Yang, Qiang; Jung, Hun Bok; Culbertson, Charles W.; Marvinney, Robert G.; Loiselle, Marc C.; Locke, Daniel B.; Cheek, Heidi; Thibodeau, Hilary; Zheng, Yan

    2009-01-01

    In New England, groundwater arsenic occurrence has been linked to bedrock geology on regional scales. To ascertain and quantify this linkage at intermediate (100-101 km) scales, 790 groundwater samples from fractured bedrock aquifers in the greater Augusta, Maine area are analyzed. 31% of the sampled wells have arsenic >10 μg/L. The probability of [As] exceeding 10 μg/L mapped by indicator kriging is highest in Silurian pelite-sandstone and pelite-limestone units (~40%). This probability differs significantly (p<0.001) from those in the Silurian-Ordovician sandstone (24%), the Devonian granite (15%) and the Ordovician-Cambrian volcanic rocks (9%). The spatial pattern of groundwater arsenic distribution resembles the bedrock map. Thus, bedrock geology is associated with arsenic occurrence in fractured bedrock aquifers of the study area at intermediate scales relevant to water resources planning. The arsenic exceedance rate for each rock unit is considered robust because low, medium and high arsenic occurrences in 4 cluster areas (3-20 km2) with a low sampling density of 1-6 wells per km2 are comparable to those with a greater density of 5-42 wells per km2. About 12,000 people (21% of the population) in the greater Augusta area (~1135 km2) are at risk of exposure to >10 μg/L arsenic in groundwater. PMID:19475939

  12. Spatial pattern of groundwater arsenic occurrence and association with bedrock geology in greater augusta, maine

    USGS Publications Warehouse

    Yang, Q.; Jung, H.B.; Culbertson, C.W.; Marvinney, R.G.; Loiselle, M.C.; Locke, D.B.; Cheek, H.; Thibodeau, H.; Zheng, Yen

    2009-01-01

    In New England, groundwater arsenic occurrence has been linked to bedrock geology on regional scales. To ascertain and quantify this linkage at intermediate (100-101 km) scales, 790 groundwater samples from fractured bedrock aquifers in the greater Augusta, Maine area are analyzed, and 31% of the sampled wells have arsenic concentrations >10 ??g/L. The probability of [As] exceeding 10 ??g/L mapped by indicator kriging is highest in Silurian pelite-sandstone and pelite-limestone units (???40%). This probability differs significantly (p < 0.001) from those in the Silurian - Ordovician sandstone (24%), the Devonian granite (15%), and the Ordovician - Cambrian volcanic rocks (9%). The spatial pattern of groundwater arsenic distribution resembles the bedrock map. Thus, bedrock geology is associated with arsenic occurrence in fractured bedrock aquifers of the study area at intermediate scales relevant to water resources planning. The arsenic exceedance rate for each rock unit is considered robust because low, medium, and high arsenic occurrences in four cluster areas (3-20 km2) with a low sampling density of 1-6 wells per km2 are comparable to those with a greater density of 5-42 wells per km2. About 12,000 people (21% of the population) in the greater Augusta area (???1135 km2) are at risk of exposure to >10 ??g/L arsenic in groundwater. ?? 2009 American Chemical Society.

  13. Spatial pattern of groundwater arsenic occurrence and association with bedrock geology in greater Augusta, Maine.

    PubMed

    Yang, Qiang; Jung, Hun Bok; Culbertson, Charles W; Marvinney, Robert G; Loiselle, Marc C; Locke, Daniel B; Cheek, Heidi; Thibodeau, Hilary; Zheng, Yan

    2009-04-15

    In New England, groundwater arsenic occurrence has been linked to bedrock geology on regional scales. To ascertain and quantify this linkage at intermediate (10(0)-10(1) km) scales, 790 groundwater samples from fractured bedrock aquifers in the greater Augusta, Maine area are analyzed, and 31% of the sampled wells have arsenic concentrations >10 microg/L. The probability of [As] exceeding 10 microg/L mapped by indicator kriging is highest in Silurian pelite-sandstone and pelite-limestone units (approximately 40%). This probability differs significantly (p < 0.001) from those in the Silurian-Ordovician sandstone (24%),the Devonian granite (15%), and the Ordovician-Cambrian volcanic rocks (9%). The spatial pattern of groundwater arsenic distribution resembles the bedrock map. Thus, bedrock geology is associated with arsenic occurrence in fractured bedrock aquifers of the study area at intermediate scales relevant to water resources planning. The arsenic exceedance rate for each rock unit is considered robust because low, medium, and high arsenic occurrences in four cluster areas (3-20 km2) with a low sampling density of 1-6 wells per km2 are comparable to those with a greater density of 5-42 wells per km2. About 12,000 people (21% of the population) in the greater Augusta area (approximately 1135 km2) are at risk of exposure to >10 microg/L arsenic in groundwater. PMID:19475939

  14. Scaling filtering and multiplicative cascade information integration techniques for geological, geophysical and geochemical data processing and geological feature recognition

    NASA Astrophysics Data System (ADS)

    Cheng, Q.

    2013-12-01

    This paper introduces several techniques recently developed based on the concepts of multiplicative cascade processes and multifractals for processing exploration geochemical and geophysical data for recognition of geological features and delineation of target areas for undiscovered mineral deposits. From a nonlinear point of view extreme geo-processes such as cloud formation, rainfall, hurricanes, flooding, landslides, earthquakes, igneous activities, tectonics and mineralization often show singular property that they may result in anomalous amounts of energy release or mass accumulation that generally are confined to narrow intervals in space or time. The end products of these non-linear processes have in common that they can be modeled as fractals or multifractals. Here we show that the three fundamental concepts of scaling in the context of multifractals: singularity, self-similarity and fractal dimension spectrum, make multifractal theory and methods useful for geochemical and geophysical data processing for general purposes of geological features recognition. These methods include: a local singularity analysis based on a area-density (C-A) multifractal model used as a scaling high-pass filtering technique capable of extracting weak signals caused by buried geological features; a suite of multifractal filtering techniques based on spectrum density - area (S-A) multifractal models implemented in various domain including frequency domain can be used for unmixing geochemical or geophysical fields according to distinct generalized self-similarities characterized in certain domain; and multiplicative cascade processes for integration of diverse evidential layers of information for prediction of point events such as location of mineral deposits. It is demonstrated by several case studies involving Fe, Sn, Mo-Ag and Mo-W mineral deposits that singularity method can be utilized to process stream sediment/soil geochemical data and gravity/aeromagnetic data as high-pass filtering technique for delineating anomalies caused by mineralization or boundaries of mineralization-associated geological bodies; S-A method can be applied as high-pass, low-pass or band -pass filtering techniques for extracting patterns of interest from mixing data; and cascade processes can be implemented to integrate diverse layers of information for mineral resources predictive mapping.

  15. Framework for a U.S. Geological Survey Hydrologic Climate-Response Program in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Lent, Robert M.; Dudley, Robert W.; Schalk, Charles W.

    2009-01-01

    It is important to monitor hydrologic systems in the United States that could change dramatically over the short term as a result of climate change. Many ecological effects of climate change can be understood only if hydrologic data networks are in place. Because of its humid, temperate climate and its substantial annual snowpack, Maine's seasonal water cycle is sensitive to air temperature changes (Hodgkins and others, 2003). Monitoring of relevant hydrologic data would provide important baseline information against which future climate change can be measured. A series of recent investigations by the U.S. Geological Survey (USGS) has documented changes in several components of the water cycle, including earlier snowmelt runoff in Maine during the last 30 to 40 years (Hodgkins and others, 2003), earlier lake- and river-ice breakups (Hodgkins and others, 2002; Hodgkins and others, 2005), and a denser and thinner late-winter snowpack (Hodgkins and Dudley, 2006). Snowmelt runoff timing was measured as the date, each year, by which half of the total winter-spring streamflow passed a streamflow-gaging station. Historical snowmelt runoff timing for the Piscataquis River in central Maine is shown in figure 1 as an example. Results of climate projections input to hydrologic models indicate that hydrologic trends, such as earlier spring snowmelt runoff, are expected to continue into the future (Hayhoe and others, 2007). These trends could affect species at the southern edge of their range in Maine, such as Atlantic salmon and Canada lynx, and may also affect availability of water for human use. This fact sheet describes the framework of a hydrologic climate-response program that would improve understanding of the effects of future climate change in Maine.

  16. Geologic significance of remotely sensed physiographic features of the Texas Panhandle and adjacent regions

    SciTech Connect

    Collins, E.W.

    1990-01-01

    Remotely sensed features such as linear drainages, escarpments, ridges, and aligned playas were identified on 1:250,000-scale Landsat images of the Texas Panhandle, eastern New Mexico, and the Oklahoma Panhandle and compared with detailed regional and site-specific geologic data from 32 field stations in these areas. The physiographic regions studied are the High Plains, Canadian Breaks, Rolling Plains, Pecos Valley, and Raton section. The authors collected structural data at the near features depicted on the 63 remotely sensed images, thus providing a case study of the correlation of surface and subsurface geologic data with remotely sensed features in areas of differing physiography. Results show that about 70 percent of the drainages, escarpments, and ridges coincide with the orientations of fracture sets, faults, or dikes in all areas except the low-relief High Plains. Detailed statistical analyses of lineaments performed for this study indicate that lineament interpretations only partly reflect the orientations of fracture sets and the structural grains of subsurface strata; thus, the combination of remotely sensed data and geologic data offers a more complete assessment of the surficial geology of the Texas Panhandle.

  17. Structural features of coals in zones of outburst-hazardous geological disturbances

    SciTech Connect

    Artemov, A.V.; Belikov, V.V.

    1981-01-01

    The results are given of investigation by methods of structural physical chemistry of the distinguishing features of the molecular structure and supermolecular organization of coals in zones of outburst-hazardous geological disturbances. The processes of the mechanicochemical degradation of coals in zones of outburst-hazardous disturbances took place more intensively than in nonhazardous zones and caused a substantial rise in the degree of looseness of the molecular and supermolecular structures and an increase in the concentration of paramagnetic centers in the coals. It is proposed to use structural indices to predict the potential outburst-hazardousness of coal beds in zones of geological disturbances. 1 ref.

  18. Computer Assisted Stratigraphic Sorting of Geologic Features on Europa and Other Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Crawford, Zane A.; Gleason, D.; Pappalardo, R. T.; Collins, G.; Weller, M.

    2006-09-01

    The ability to determine the relative ages of surface features imaged from spacecraft is vital to understanding the geologic histories of solid planetary bodies within our solar system. Historically the relative ages of surface features have primarily been inferred through impact crater counting studies. However, one may also directly infer relative ages based on the visible superposition relationships of intersecting geological features. This technique is particularly well suited to the icy satellites of the outer solar system, especially Europa, where linear features having many intersections are plentiful, and crater density is low. With potentially hundreds of features, having thousands of intersections, datasets quickly become too large to be effectively sorted by hand. We have developed an algorithm which allows a computer to assist in the temporal sorting of digitally mapped features based on their cross-cutting relationships. Digitally mapped features and their crosscutting relationships are represented as a graph, on which we perform a modified topologic sort; high confidence cyclical crosscutting relationships are resolved by assuming pre-existing features may experience re-activation. The algorithm allows the identification of those portions of a feature most likely to have re-activated, and also allows quantification of the confidence in each feature's location in the inferred temporal ordering. Portions of features which appear to have experienced re-activation are separated and then sorted as individual features in order to determine their last time of activity. The method is validated using synthetic datasets with known formation histories, which are statistically similar to the intended study regions. We apply the method to the Galileo E15 REGMAP01 and E17 NORPLN01 image mosaics of Europa to extract relative times of formation (or last activity) for 100 lineaments. By assuming they were formed by tensile failure, a history of greatest tensile stress orientations can be inferred.

  19. Geological feature selection in reservoir modelling and history matching with Multiple Kernel Learning

    NASA Astrophysics Data System (ADS)

    Demyanov, V.; Backhouse, L.; Christie, M.

    2015-12-01

    There is a continuous challenge in identifying and propagating geologically realistic features into reservoir models. Many of the contemporary geostatistical algorithms are limited by various modelling assumptions, like stationarity or Gaussianity. Another related challenge is to ensure the realistic geological features introduced into a geomodel are preserved during the model update in history matching studies, when the model properties are tuned to fit the flow response to production data. The above challenges motivate exploration and application of other statistical approaches to build and calibrate reservoir models, in particular, methods based on statistical learning. The paper proposes a novel data driven approach - Multiple Kernel Learning (MKL) - for modelling porous property distributions in sub-surface reservoirs. Multiple Kernel Learning aims to extract relevant spatial features from spatial patterns and to combine them in a non-linear way. This ability allows to handle multiple geological scenarios, which represent different spatial scales and a range of modelling concepts/assumptions. Multiple Kernel Learning is not restricted by deterministic or statistical modelling assumptions and, therefore, is more flexible for modelling heterogeneity at different scales and integrating data and knowledge. We demonstrate an MKL application to a problem of history matching based on a diverse prior information embedded into a range of possible geological scenarios. MKL was able to select the most influential prior geological scenarios and fuse the selected spatial features into a multi-scale property model. The MKL was applied to Brugge history matching benchmark example by calibrating the parameters of the MKL reservoir model parameters to production data. The history matching results were compared to the ones obtained from other contemporary approaches - EnKF and kernel PCA with stochastic optimisation.

  20. Skylab-4 visual observations project: Geological features of southwestern North America

    NASA Technical Reports Server (NTRS)

    Silver, L. T.

    1975-01-01

    Visual observations conducted by Skylab-4 crewmen on seven designated geological target areas and other targets of opportunity in parts of southwestern United States and northwestern Mexico were described. The experiments were designed to learn how effectively geologic features could be observed from orbit and what research information could be obtained from the observations when supported by ground studies. For the limited preparation they received, the crewmen demonstrated exceptional observational ability and produced outstanding photographic studies. They also formulated cogent opinions on how to improve future observational and photo-documentation techniques. From the photographs and other observations, it was possible to obtain significant research contributions to on-going field investigations. These contributions were integrated into other aspects of the ground investigations to the following topics: major faults, regional stratigraphy, occurrence of Precambrian crystalline rocks, mapping of Mesozoic volcanic rocks, regional geology.

  1. Geology

    SciTech Connect

    Reidel, Stephen P.

    2008-01-17

    This chapter summarizes the geology of the single-shell tank (SST) farms in the context of the region’s geologic history. This chapter is based on the information in the geology data package for the SST waste management areas and SST RFI Appendix E, which builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  2. Geologic Features on Titan's Surface as Revealed by the Cassini Titan Radar Mapper

    NASA Astrophysics Data System (ADS)

    Lopes, R. M.; Stofan, E.; Elachi, C.; Kirk, R.; Lorenz, R.; Lunine, J.; Mitchell, K. L.; Ori, G. G.; Paganelli, F.; Soderblom, L.; Wall, S.; Wood, C.

    2005-12-01

    The Cassini Titan Radar Mapper is one of the prime investigations to explore Titan's surface from orbit. Because of its almost opaque atmosphere, microwave remote sensing contributes uniquely to that investigation. The Titan Radar Mapper operates as a passive radiometer, scatterometer, altimeter, and synthetic aperture radar (SAR). We review the diversity of geologic features revealed using SAR during four fly-bys (Ta: October 2004, T3: February 2005, T7: September 2005, and T8: October 2005) and their context. Early SAR images from Ta and T3 reveal that Titan is very geologically complex (see Elachi et al., 2005, Science 13, 970-4). A variety of landforms and surface units were characterized morphologically and mapped, based on brightness variations, general planform shape and texture. Significant differences were seen in the geology between the Ta swath (centered at ~ 50N, 80W) and the T3 swath (centered at ~ 30N, 70W). The units in the Ta swath appear relatively young and no impact craters could be unambiguously identified. A variety of features which we argue to be cryovolcanic in origin were seen, including extensive flows, paterae, and a circular feature (Ganesa Macula) interpreted as a volcanic dome. We interpret radar-bright braided and sinuous channels and associated deposits to be fluvial in origin. Five distinct units were mapped in Ta, including a dark mottled unit that may represent the presence of surface liquids. The T3 swath displayed many of the same units seen in Ta, except for cryovolcanic features which are absent or indistinct. Among the new features in T3 are a large impact (440 km diameter) basin, a smaller (80 km diameter) crater, and dark lineated streaks, nicknamed "cat scratches" that are thought to be aeolian in origin. The dominant unit in T3 is a bright mottled unit that may contain ubiquitous small (less than 10 km across) topographic features. Groups of material that appear to be hills are more common in the T3 data than Ta. Based on the first two swaths (Ta and T3) we expect significant variations in the types and distribution of geologic features in the T7 and T8 data. The T8 swath will cover the landing site of the Huygens probe, providing a larger geologic context for the high-resolution near-infrared images obtained during the descent of the Huygens probe.

  3. Sapping Features of the Colorado Plateau: a Comparative Planetary Geology Field Guide

    NASA Technical Reports Server (NTRS)

    Howard, Alan D. (Editor); Kochel, R. Craig (Editor); Holt, Henry E. (Editor)

    1987-01-01

    This book is an attempt to determine geomorphic criteria to be used to distinguish between channels formed predominantly by sapping and seepage erosion and those formed principally by surface runoff processes. The geologic nature of the Colorado Plateau has resulted in geomorphic features that show similarities to some areas on Mars, especially certain valley networks within thick sandstone formations. Where spring sapping is an effective process, the valleys that develop are unique in terms of their morphology and network pattern.

  4. Hydrologic characterization of faults and other potentially conductive geologic features in the unsaturated zone

    SciTech Connect

    Javandel, I.; Shan, C.

    1990-01-01

    The capability of characterizing near-vertical faults and other potentially highly conductive geologic features in the vicinity of a high-level-waste repository is of great importance in site characterization of underground waste-isolation projects. The possibility of using transient air pressure data at depth for characterizing these features in the unsaturated zone are investigated. Analytical solutions for calculating the pressure response of such systems are presented. Solutions are given for two types of barometric pressure fluctuations, step function and sinusoidal. 3 refs., 9 figs.

  5. Framework for a U.S. Geological Survey Hydrologic Climate-Response Program in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Lent, Robert M.; Dudley, Robert W.; Schalk, Charles W.

    2009-01-01

    This report presents a framework for a U.S. Geological Survey (USGS) hydrologic climate-response program designed to provide early warning of changes in the seasonal water cycle of Maine. Climate-related hydrologic changes on Maine's rivers and lakes in the winter and spring during the last century are well documented, and several river and lake variables have been shown to be sensitive to air-temperature changes. Monitoring of relevant hydrologic data would provide important baseline information against which future climate change can be measured. The framework of the hydrologic climate-response program presented here consists of four major parts: (1) identifying homogeneous climate-response regions; (2) identifying hydrologic components and key variables of those components that would be included in a hydrologic climate-response data network - as an example, streamflow has been identified as a primary component, with a key variable of streamflow being winter-spring streamflow timing; the data network would be created by maintaining existing USGS data-collection stations and establishing new ones to fill data gaps; (3) regularly updating historical trends of hydrologic data network variables; and (4) establishing basins for process-based studies. Components proposed for inclusion in the hydrologic climate-response data network have at least one key variable for which substantial historical data are available. The proposed components are streamflow, lake ice, river ice, snowpack, and groundwater. The proposed key variables of each component have extensive historical data at multiple sites and are expected to be responsive to climate change in the next few decades. These variables are also important for human water use and (or) ecosystem function. Maine would be divided into seven climate-response regions that follow major river-basin boundaries (basins subdivided to hydrologic units with 8-digit codes or larger) and have relatively homogeneous climates. Key hydrologic variables within each climate-response region would be analyzed regularly to maintain up-to-date analyses of year-to-year variability, decadal variability, and longer term trends. Finally, one basin in each climate-response region would be identified for process-based hydrologic and ecological studies.

  6. The Main Features and the Key Challenges of the Education System in Taiwan

    ERIC Educational Resources Information Center

    Chien, Chiu-Kuei Chang; Lin, Lung-Chi; Chen, Chun-Fu

    2013-01-01

    Taiwan has undergone radical innovation of its educational system in the wake of political liberalization and democratization, with a request for a change in the idea which diverts from "de-centralization" to "individualization." The reforms have led to two main features of pluralism and generalization of education in our…

  7. Geological structures from televiewer logs of GT-2, Fenton Hill, New Mexico: Part 1, Feature extraction

    SciTech Connect

    Burns, K.L.

    1987-07-01

    Patterns in reflected sonic intensity recognized during examination of televiewer logs of basement gneiss at the Hot Dry Rock Site, Fenton Hill, New Mexico, are due to geological fractures and foliations and to incipient breakouts. These features are obscured by artifacts caused by wellbore ellipticity, tool off-centering, and tool oscillations. An interactive method, developed for extraction of the structural features (fractures and foliations), uses human perception as a pattern detector and a chi-square test of harmonic form as a pattern discriminator. From imagery of GT-2, 733 structures were recovered. The acceptance rate of the discriminator was 54%. Despite these positive results, the general conclusion of this study is that intensity-mode imagery from Fenton Hill is not directly invertible for geological information because of the complexity of the televiewer imaging process. Developing a forward model of the intensity-imaging process, or converting to caliper-mode imagery, or doing both, will be necessary for high-fidelity feature extraction from televiewer data.

  8. Effects of some common geological features on two-dimensional variably saturated flow

    SciTech Connect

    Bagtzoglou, A.C.; Ababou, R.; Sagar, B.; Islam, M.R.

    1993-12-31

    This paper presents results of unsaturated flow simulations undertaken as an auxiliary analysis for the Iterative Performance Assessment (IPA) project, one of the approaches adopted by the U.S. NRC to develop repository license application review capabilities. The effects on flow of common geological features, such as nonhorizontal stratification and vertical or near-vertical fault zones intersecting the strata, in a two-dimensional (2D) domain are studied. Results indicate that the presence of layers and crosscutting fault zones tend to induce three-dimensional (3D) unstable flows in the unsaturated zone. The instability is manifested in our simulations by an oscillatory behavior of steady state. This numerical instability imposes extremely stringent criteria on the time step used in the simulation. Finally, once stable steady-state solutions are attained, the effect of the crossing point in the matrix-fault unsaturated hydraulic conductivity curve on groundwater flux vectors and moisture content distributions is studied.

  9. Yasny lode-placer cluster: Geological and structural features and gold potential

    NASA Astrophysics Data System (ADS)

    Mel'nikov, A. V.; Stepanov, V. A.

    2014-03-01

    The geological and structural features and gold potential of the Yasny lode-placer cluster in Amur province have been investigated. The lode-placer cluster is an intrusive domal uplift elongated in the nearmeridional direction and surrounded by Neogene loose sediments. The cluster comprises placers that yielded 15 t gold mined from there and small occurrences of gold-quartz and gold-base-metal lodes. Association of native gold with cinnabar in the Yasny Creek placer allows us to forecast a new source of gold-mercury mineralization in the basin of this creek, which could be compared with the Kyuchyus deposit in Yakutia. Gold nuggets 79 kg in total weight were mined from Gar-2 River placer. They are comparable in weight and association with quartz to the world's largest Holtermann Plate nugget from Australia. Gold-quartz lodes have been forecasted in the basin of the Gar-2 Creek.

  10. [Age-related clinical and laboratory features of patients with occluded main arteries of lower extremities].

    PubMed

    Shishina, R N; Pchelintseva, T A

    2013-01-01

    The study of clinical and laboratory features of patients with occluded main arteries of lower extremities included morphological characteristics of peripheral blood platelets in patients of different age in the acute period of the disease and after surgical treatment. The results were subjected to correlation analysis versus standard hemostatic parameters. Mean cell volume and enhanced anisocytosis proved the most informative morphological indicators. The mean platelet volume was increased in all patients before and after surgery especially in the elder age group. It reflected persistent activation of thrombocytopoiesis as confirmed by the studies of hemostasis. Therefore, these parameters may be used for additional testing in diagnostics of the risk of ischemic complications and repeated thrombosis. The timely prescription of auxiliary corrective therapy increases effectiveness of the treatment and the quality of life in the patients with occluded main arteries of lower extremities. PMID:24437185

  11. Geological features of Subduction Transfer Edge Propagator (STEP) faults, examples from the Betics and Rif

    NASA Astrophysics Data System (ADS)

    Booth-Rea, Guillermo; Pérez-Peña, Vicente; Azañón, José Miguel; de Lis Mancilla, Flor; Morales, Jose; Stich, Daniel; Giaconia, Flavio

    2014-05-01

    Most of the geological features of the Betics and Rif have resulted from slab tearing, edge delamination and punctual slab breakoff events between offset STEP faults. New P-reciever function data of the deep structure under the Betics and Rif have helped to map the deep boundaries of slab tearing and rupture in the area. Linking surface geological features with the deep structure shows that STEP faulting under the Betics occurred along ENE-WSW segments offset towards the south, probably do to the westward narrowing of the Tethys slab. The surface expression of STEP faulting at the Betics consists of ENE-WSW dextral strike-slip fault segments like the Crevillente, Alpujarras or Torcal faults that are interrupted by basins and elongated extensional domes were exhumed HP middle crust occurs. Exhumation of deep crust erases the effects of strike-slip faulting in the overlying brittle crust. Slab tearing affected the eastern Betics during the Tortonian to Messinian, producing the Fortuna and Lorca basins, and later propagated westward generating the end-Messinian to Pleistocene Guadix-Baza basins and the Granada Pliocene-Pleistocene depocentre. At present slab tearing is occurring beneath the Málaga depression, where the Torcal dextral strike-slip fault ends in a region of active distributed shortening and where intermediate depth seismicity occurs. STEP fault migration has occurred at average rates between 2 and 4 cm/yr since the late Miocene, producing a wave of alternating uplift-subsidence pulses. These initiate with uplift related to slab flexure, subsidence related to slab-pull, followed by uplift after rupture and ending with thermal subsidence. This "yo-yo" type tectonic evolution leads to the generation of endorheic basins that later evolve to exhorheic when they are uplifted and captured above the region where asthenospheric upwelling occurs.

  12. NASA Now: Geology: Curiosity -- Main Science Goals - Duration: 7 minutes, 7 seconds.

    NASA Video Gallery

    Dr. Ashwin Vasavada, deputy project scientist for the Mars Science Laboratory, discusses the main science goals for Curiosity, including the investigation of the presence of water and evidence of l...

  13. Systematic comparison of automated geological feature detection methods for impact craters

    NASA Astrophysics Data System (ADS)

    Vinogradova, T.; Mjolsness, E.

    2001-12-01

    Accurate, automated crater counts will be essential in extrapolating from existing Mars crater catalogs to much larger catalogs of impact craters in high-resolution orbital imagery for use in relative dating of surfaces in such imagery. Once validated, automatic methods for performing crater counts could be integrated into tools such as the Planetary Image Atlas, which is designed to be a convenient interface through which a user can search for, display, and download images and other ancillary data for planetary Missions, and the Diamond Eye image mining system. Here we report on preliminary computational experiments in using a trainable feature detection algorithm [Burl et al. 2001] to detect craters in real and simulated Mars orbital imagery, and to derive approximate impact crater counts for geological use. In these experiments, we consider two uses of the trainable feature detector: first, directly as a crater detector, and second, as two detectors for sunlit and shadowed inner walls of craters which can then be assembled into a single crater detection based on multiple pieces of evidence. For both of these methods, we consider two data sources: one consisting of real Viking Orbiter imagery of Mars with human expert-supplied ground truth labels, and the other consisting of computer generated renderings of simplified, synthetic cratered terrain with 100% accurate ground truth labels and known, controllable crater density. Each detector reports out a numeric detection ``likelihood'' for every candidate crater. This likelihood must then be thresholded to produce a detection decision. For each combination of two data sources (one natural and one synthetic) and two crater detection methods (whole-crater and parts-model), we vary image complexity and finally measure detection accuracy. Detection accuracy is measured by a Receiver Operator Characteristic (ROC) curve in which detection efficiency (the fraction of true craters detected) and purity (the fraction of detected craters which are also true craters) are plotted against one another as a control parameter is varied, namely the likelihood threshold for deciding that a feature has been detected. The results allow a comparison of alternative geological feature-detection algorithms and show their relative strengths and weaknesses, and directions for future improvement. We also plot purity as a function of likelihood threshold in order to recalibrate the detection algorithm's own estimate of its accuracy. Finally we measure the accuracy with which an imperfect detector can be used to estimate true crater counts in an image, as a function of image complexity.

  14. Marinas, mines, and mudpots. Building a feature-based production system at the U.S. geological survey

    USGS Publications Warehouse

    Chappell, Gary B.; Neff, Kathryn C.

    1991-01-01

    By the mid-1990's, the U.S. Geological Survey expects to produce spatial data according to its new data model, Digital Line Graph-Enhanced (DLG-E). This new data model currently defines more than 200 unique feature types that describe the geographic phenomena portrayed on the series of 1:24,000-scale topographic maps. Characteristics of features are encoded as attributes, and linkages between features are expressed as relationships. Ultimately, features are tied to the spatial components that represent their location and (or) shape. Developing the ability to manipulate the features that compose the DLG-E world presents many new challenges in the design of a data production system. Primary among these challenges is controlling the attribution and value of each feature type to ensure consistency in data content. Methods are under development at the U.S. Geological Survey to provide automated control over the DLG-E data production process.

  15. On the main flow features of the SE Levantine (CYBO cruises 1995-2012)

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Hayes, Dan; Gertman, Isaac; Poulain, Pierre-Marie; Menna, Milena; Nicolaidis, Andreas

    2013-04-01

    The main characteristic of the circulation in the Eastern Mediterranean Levantine Basin is a general cyclonic flow following more or less the coastline, with several persistent eddies in the open sea. The interaction between all of these dynamical features produces a complicated flow pattern with strong spatial variability on a synoptic, seasonal and inter-annual scales. The continuous seasonal/annual hydrographic survey of the SE Levantine since 1995 within the frame of the Cyprus Basin Oceanography program (CYBO) and the Haifa-section cruises, along with data from project surveys (CYCLOPS, MSM/14) and recent data from autonomous platforms, such as those from Argos floats, drifters and gliders (NEMED, YPOKINOUMODA, GROOM projects) have all provided insight on the three dominating flow features in the SE Levantine Basin. Namely, the two warm core eddies, i.e. the Cyprus and Shikmona, and the open sea flow jet, that of the Mid Mediterranean. After some years of disputes, it is well-documented with all these in-situ data that the Cyprus warm core eddy is the most influential flow feature in the area, with significant fluctuations in time and space, while the generation of the Shikmona eddy was observed for the first time. Moreover, the cross basin flow of the MMJ is also well-document, confirming the relevant POEM results, to transfer also significant amount of AW further to the most-eastern part of the Levantine, after passing between Cyprus and along the northern periphery of the Cyprus warm core eddy.

  16. Influence of ecological and geological features on rangewide patterns of genetic structure in a widespread passerine.

    PubMed

    Adams, R V; Burg, T M

    2015-02-01

    Geological and ecological features restrict dispersal and gene flow, leading to isolated populations. Dispersal barriers can be obvious physical structures in the landscape; however microgeographic differences can also lead to genetic isolation. Our study examined dispersal barriers at both macro- and micro-geographical scales in the black-capped chickadee, a resident North American songbird. Although birds have high dispersal potential, evidence suggests dispersal is restricted by barriers. The chickadee's range encompasses a number of physiological features which may impede movement and lead to divergence. Analyses of 913 individuals from 34 sampling sites across the entire range using 11 microsatellite loci revealed as many as 13 genetic clusters. Populations in the east were largely panmictic whereas populations in the western portion of the range showed significant genetic structure, which often coincided with large mountain ranges, such as the Cascade and Rocky Mountains, as well as areas of unsuitable habitat. Unlike populations in the central and southern Rockies, populations on either side of the northern Rockies were not genetically distinct. Furthermore, Northeast Oregon represents a forested island within the Great Basin; genetically isolated from all other populations. Substructuring at the microgeographical scale was also evident within the Fraser Plateau of central British Columbia, and in the southeast Rockies where no obvious physical barriers are present, suggesting additional factors may be impeding dispersal and gene flow. Dispersal barriers are therefore not restricted to large physical structures, although mountain ranges and large water bodies do play a large role in structuring populations in this study. PMID:25074576

  17. Influence of ecological and geological features on rangewide patterns of genetic structure in a widespread passerine

    PubMed Central

    Adams, R V; Burg, T M

    2015-01-01

    Geological and ecological features restrict dispersal and gene flow, leading to isolated populations. Dispersal barriers can be obvious physical structures in the landscape; however microgeographic differences can also lead to genetic isolation. Our study examined dispersal barriers at both macro- and micro-geographical scales in the black-capped chickadee, a resident North American songbird. Although birds have high dispersal potential, evidence suggests dispersal is restricted by barriers. The chickadee's range encompasses a number of physiological features which may impede movement and lead to divergence. Analyses of 913 individuals from 34 sampling sites across the entire range using 11 microsatellite loci revealed as many as 13 genetic clusters. Populations in the east were largely panmictic whereas populations in the western portion of the range showed significant genetic structure, which often coincided with large mountain ranges, such as the Cascade and Rocky Mountains, as well as areas of unsuitable habitat. Unlike populations in the central and southern Rockies, populations on either side of the northern Rockies were not genetically distinct. Furthermore, Northeast Oregon represents a forested island within the Great Basin; genetically isolated from all other populations. Substructuring at the microgeographical scale was also evident within the Fraser Plateau of central British Columbia, and in the southeast Rockies where no obvious physical barriers are present, suggesting additional factors may be impeding dispersal and gene flow. Dispersal barriers are therefore not restricted to large physical structures, although mountain ranges and large water bodies do play a large role in structuring populations in this study. PMID:25074576

  18. Detailed side and overhead views of geologic features from joint panoramic and blimp operations

    SciTech Connect

    Chase, T.E.; Young, J.D. )

    1990-06-01

    A portion of the California coast, including the Loma Prieta earthquake damage at Moss Landing, is shown with the topography displayed from side and overhead viewing angles. This technique offers a different approach to mapping shorelines and studying the oceanographic forces creating and shaping these geologic features. Two pieces of equipment were developed to create these views. The first is a panoramic camera with viewing angles up to 360{degree} and two telephoto settings (70mm and 210mm) allowing a feature to be photographed from the same point with different lens magnifications. The second is a 20 ft helium-filled blimp with 35mm cameras mounted in a tray with a radio control receiver triggering the camera shutters after receiving a signal transmitted from a person on the ground. Video camcorders can also be carried. Tethered to the person on the ground, the blimp's height is determined by the amount of line payed out. Horizontal movement of the blimp is controlled by the operator walking or riding slowly in a boat or truck. The blimp can be flown at different elevations, remain in a stationary position for time-lapse photographs, or be moved about to prepare a mosaic of the area. Both systems can be used in remote areas because they are portable and the power supplies needed to operate are from lightweight batteries.

  19. Steeply dipping heaving bedrock, Colorado: Part 1 - Heave features and physical geological framework

    USGS Publications Warehouse

    Noe, D.C.; Higgins, J.D.; Olsen, H.W.

    2007-01-01

    Differentially heaving bedrock has caused severe damage near the Denver metropolitan area. This paper describes heave-feature morphologies, the underlying bedrock framework, and their inter-relationship. The heave features are linear to curvilinear and may attain heights of 0.7 m (2.4 ft), widths of 58 m (190 ft), and lengths of 1,067 m (3,500 ft). They are nearly symmetrical to highly asymmetrical in cross section, with width-to-height ratios of 45:1 to 400:1, and most are oriented parallel with the mountain front. The bedrock consists of Mesozoic sedimentary formations having dip angles of 30 degrees to vertical to overturned. Mixed claystone-siltstone bedding sequences up to 36-m (118-ft) thick are common in the heave-prone areas, and interbeds of bentonite, limestone, or sandstone may be present. Highly fractured zones of weathered to variably weathered claystone extend to depths of 19.5 to 22.3 m (64 to 73 ft). Fracture spacings are 0.1 to 0.2 m (0.3 to 0.7 ft) in the weathered and variably weathered bedrock and up to 0.75 m (2.5 ft) in the underlying, unweathered bedrock. Curvilinear shear planes in the weathered claystone show thrust or reverse offsets up to 1.2 m (3.9 ft). Three associations between heave-feature morphologies and the geological framework are recognized: (1) Linear, symmetrical to asymmetrical heaves are associated with primary bedding composition changes. (2) Linear, highly asymmetrical heaves are associated with shear planes along bedding. (3) Curvi-linear, highly asymmetrical heaves are associated with bedding-oblique shear planes.

  20. Geological Features Inferred from Local Seismic Tomography in the Sunda Strait and West Java regions, Indonesia

    NASA Astrophysics Data System (ADS)

    Nugraha, A. D.; Sakti, A. P.; Rohadi, S.; Widiyantoro, S.

    2012-12-01

    We have conducted seismic tomographic inversions to obtain a P-wave seismic velocity structure beneath the Sunda Strait and West Java regions, Indonesia. The Sunda Strait is located in a complex geological system i.e. in the transition from the oblique subduction beneath Sumatra to the nearly perpendicular subduction below Java. The Krakatau active volcano is located in the Sunda Strait. In this study, we have used selected P-wave arrival times from the data catalogs of the SeisComP-BMKG network (from 2009 to 2011) and the BMKG BALAI II network (from 1992 to 2011) compiled by Badan Meteorologi,Klimatologi dan Geofisika (BMKG), Indonesia. In total, there are 1,598 local earthquakes and 10,366 P-wave phases from 25 seismographic stations that have been used for the tomographic inversions. We have also relocated the hypocenter locations along with velocity inversions simultaneously. Our preliminary results depict some prominent geological features that include: (1) a low velocity anomaly beneath north of the Ujung Kulon region, which coincides with a low gravity anomaly resulting from a previous study, (2) a low velocity anomaly alignment beneath the Krakatau volcano in the Sunda Strait, (3) a sharp contrast in velocity anomalies extending from Pelabuhan Ratu towards Jakarta with a strike of SW-NE, and (4) a low velocity anomaly in the offshore of Pelabuhan Ratu that may be correlated with the continuation of the Cimandiri fault zone. More detailed information will be presented during the meeting. Keywords: tomography, Sunda Strait, West Java, velocity anomaly

  1. Digital field mapping for stimulating Secondary School students in the recognition of geological features and landforms

    NASA Astrophysics Data System (ADS)

    Giardino, Marco; Magagna, Alessandra; Ferrero, Elena; Perrone, Gianluigi

    2015-04-01

    Digital field mapping has certainly provided geoscientists with the opportunity to map and gather data in the field directly using digital tools and software rather than using paper maps, notebooks and analogue devices and then subsequently transferring the data to a digital format for subsequent analysis. But, the same opportunity has to be recognized for Geoscience education, as well as for stimulating and helping students in the recognition of landforms and interpretation of the geological and geomorphological components of a landscape. More, an early exposure to mapping during school and prior to university can optimise the ability to "read" and identify uncertainty in 3d models. During 2014, about 200 Secondary School students (aged 12-15) of the Piedmont region (NW Italy) participated in a research program involving the use of mobile devices (smartphone and tablet) in the field. Students, divided in groups, used the application Trimble Outdoors Navigators for tracking a geological trail in the Sangone Valley and for taking georeferenced pictures and notes. Back to school, students downloaded the digital data in a .kml file for the visualization on Google Earth. This allowed them: to compare the hand tracked trail on a paper map with the digital trail, and to discuss about the functioning and the precision of the tools; to overlap a digital/semitransparent version of the 2D paper map (a Regional Technical Map) used during the field trip on the 2.5D landscape of Google Earth, as to help them in the interpretation of conventional symbols such as contour lines; to perceive the landforms seen during the field trip as a part of a more complex Pleistocene glacial landscape; to understand the classical and innovative contributions from different geoscientific disciplines to the generation of a 3D structural geological model of the Rivoli-Avigliana Morainic Amphitheatre. In 2013 and 2014, some other pilot projects have been carried out in different areas of the Piedmont region, and in the Sesia Val Grande Geopark, for testing the utility of digital field mapping in Geoscience education. Feedback from students are positive: they are stimulated and involved by the use of ICT for learning Geoscience, and they voluntary choose to work with their personal mobile device (more than 90% of them own a smartphone); they are interested in knowing the features of GPS, and of software for the visualization of satellite and aerial images, but they recognize the importance of integrating and comparing traditional and innovative methods in the field.

  2. Main features and performances of the Long March-4 launch vehicle

    NASA Astrophysics Data System (ADS)

    The main features of the Long March-4 launch vehicle are reviewed. The advanced technical measures in the vehicle include a digital network, a digital zero adjusting scheme, a two-axis gimbaling mechanism adopted in the control system, and a constant-pressure helium full-duration primary/secondary two-way pressurization scheme used in the third-stage propulsion system. A columbium nozzle extension is incorporated in the third-stage engine. The surface tension propellant tank used in the attitude control engine system is examined along with the high-strength aluminum single-thin-layer common intertank bulkhead tankage design. Emphasis is placed on the good performance, multiple usage, high reliability, and favorable cost-effectiveness of the launch vehicle.

  3. Main features of the new software control system for the YuMO instrument

    NASA Astrophysics Data System (ADS)

    Kirilov, A. S.

    2012-03-01

    During the last years the new software instrumental complex Sonix+ has been developed at FLNP JINR to replace the former Sonix control system [1]. This complex has been tested at a number of IBR-2 instruments (REMUR, NERA-PR) and on instruments at other centers - KIA, Moscow (MOND), etc. We plan to install the new complex at the YuMO instrument as well. The Sonix+ is implemented on the PC/Windows XP platform, whereas the Sonix is based on the VME/Os-9 obsolete platform. The Sonix+ [1] has been designed considering the experience of long-term operation of the predecessor and recent trends. The paper is devoted to the main features of the new software and the comparison with the former one.

  4. Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies

    PubMed Central

    Phan, Liem Minh; Yeung, Sai-Ching Jim; Lee, Mong-Hong

    2014-01-01

    Cancer cells are well documented to rewire their metabolism and energy production networks to support and enable rapid proliferation, continuous growth, survival in harsh conditions, invasion, metastasis, and resistance to cancer treatments. Since Dr. Otto Warburg’s discovery about altered cancer cell metabolism in 1930, thousands of studies have shed light on various aspects of cancer metabolism with a common goal to find new ways for effectively eliminating tumor cells by targeting their energy metabolism. This review highlights the importance of the main features of cancer metabolism, summarizes recent remarkable advances in this field, and points out the potentials to translate these scientific findings into life-saving diagnosis and therapies to help cancer patients. PMID:24738035

  5. Geologic map of the Simcoe Mountains Volcanic Field, Main Central Segment, Yakama Nation, Washington

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy

    2015-01-01

    Lava compositions other than various types of basalt are uncommon here. Andesite is abundant on and around Mount Adams but is very rare east of the Klickitat River. The only important nonbasaltic composition in the map area is rhyolite, which crops out in several patches around the central highland of the volcanic field, mainly in the upper canyons of Satus and Kusshi Creeks and Wilson Charley canyon. Because the rhyolites were some of the earliest lavas erupted here, they are widely concealed by later basalts and therefore crop out only in local windows eroded by canyons that cut through the overlying basalts.

  6. Application of Geologic Mapping Techniques and Autonomous Feature Detection to Future Exploration of Europa

    NASA Astrophysics Data System (ADS)

    Bunte, M. K.; Tanaka, K. L.; Doggett, T.; Figueredo, P. H.; Lin, Y.; Greeley, R.; Saripalli, S.; Bell, J. F.

    2013-12-01

    Europa's extremely young surface age, evidence for extensive resurfacing, and indications of a sub-surface ocean elevate its astrobiological potential for habitable environments and make it a compelling focus for study. Knowledge of the global distribution and timing of Europan geologic units is a key step in understanding the history of the satellite and for identifying areas relevant for exploration. I have produced a 1:15M scale global geologic map of Europa which represents a proportionate distribution of four unit types and associated features: plains, linea, chaos, and crater materials. Mapping techniques differ somewhat from other planetary maps but do provide a method to establish stratigraphic markers and to illustrate the surface history through four periods of formation as a function of framework lineament cross-cutting relationships. Correlations of observed features on Europa with Earth analogs enforce a multi-process theory for formation rather than the typical reliance on the principle of parsimony. Lenticulae and microchaos are genetically similar and most likely form by diapirism. Platy and blocky chaos units, endmembers of archetypical chaos, are best explained by brine mobilization. Ridges account for the majority of lineaments and may form by a number of methods indicative of local conditions; most form by either tidal pumping or shear heating. The variety of morphologies exhibited by bands indicates that multiple formation mechanisms apply once fracturing of the brittle surface over a ductile subsurface is initiated. Mapping results support the interpretation that Europa's shell has thickened over time resulting in changes in the style and intensity of deformation. Mapping serves as an index for change detection and classification, aids in pre-encounter targeting, and supports the selection of potential landing sites. Highest priority target areas are those which indicate geophysical activity by the presence of volcanic plumes, outgassing, or disrupted surface morphologies. Areas of high interest include lineaments and chaos margins. The limitations on detecting activity at these locations are approximated by studying similar observed conditions on other bodies. By adapting machine learning and data mining techniques to signatures of plumes and morphology, I have demonstrated autonomous rule-based detection of known features using edge-detection and supervised classification methods. These methods successfully detect ≤94% of known volcanic plumes or jets at Io, Enceladus, and comets. They also allow recognition of multiple feature types. Applying these results to conditions expected for Europa enables a prediction of the potential for detection of similar features and enables recommendations for mission concepts to increase the science return and efficiency of future missions to observe Europa. This post-Galileo view of Europa provides a synthesis of the overall history of this unique icy satellite and will be a useful frame of reference for future exploration of the jovian system and other potentially active outer solar system bodies.

  7. Simulations using terrestrial geological analogues to assess interpretability of potential geological features of the Hermean surface restituted by the STereo imaging Camera of the SIMBIOSYS package (BepiColombo mission)

    NASA Astrophysics Data System (ADS)

    Massironi, M.; Forlani, G.; Cremonese, G.; Capria, M. T.; Da Deppo, V.; Giacomini, L.; Naletto, G.; Pasquaré, G.; Roncella, R.; Flamini, E.

    2008-06-01

    The BepiColombo space mission is one of the European Space Agency's cornerstone projects; it is planned for launch in 2013 to study the planet Mercury. One of the imaging instruments of BepiColombo is a STereo Camera (STC), whose main scientific objective is the global stereo mapping of the entire surface of Mercury. STC will permit the generation of a Digital Terrain Model (DTM) of Mercury's surface, improving the interpretation of morphological features at different scales and clarifying the stratigraphic relationships between different geological units. To evaluate the effectiveness of the STC-derived DTM for geological purposes, a series of simulations has been performed to find out to what extent the errors expected in the DTM may prevent the correct classification and interpretation of geological features. To meet this objective, Earth analogues (a crater, a lava cone and an endogenous dome) of likely components of the Hermean surface, small enough to be near the detection limit of the STC, were selected and a photorealistic three-dimensional (3D) model of each feature was generated using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) stereo images. Stereoscopic pairs of synthetic images of each feature were then generated from the 3D model at different locations along the BepiColombo orbit. For each stereo pair, the corresponding Hermean DTM was computed using image correlation and compared to the reference data to assess the loss of detail and interpretability. Results show that interpretation and quantitative analysis of simple craters morphologies and small volcanic features should be possible all along the periherm orbit arc. At the apoherm only the larger features can be unequivocally distinguished, but they will be reconstructed to a poor approximation.

  8. Extracranial stereotactic body radiotherapy. Review of main SBRT features and indications in primary tumors

    PubMed Central

    Rubio, Carmen; Morera, Rosa; Hernando, Ovidio; Leroy, Thomas.; Lartigau, S. Eric

    2013-01-01

    Aim Review of main SBRT features and indications in primary tumors. Background Stereotactic body radiotherapy has been developed in the last few years. SBRT allows the hypofractionated treatment of extra cranial tumors, using either a single or limited number of dose fractions, and resulting in the delivery of a high biological effective dose with low toxicity. Material and methods SBRT requires a high level of accuracy for all phases of the treatment process: effective patient immobilization, precise target localization, highly conformed dosimetry and image guided systems for treatment verification. The implementation of SBRT in routine requires a careful considering of organ motion. Gating and tracking are effective ways to do so, and less invasive technologies “fiducials free” have been developed. Due to the hypofractionated scheme, the physician must pay attention to new dosimetric constraints in organ at risk and new radiobiological models are needed to assess the optimal fractionation and dose schemes. Results Currently, SBRT is safe and effective to treat primary tumors, which are otherwise untreatable with conventional radiotherapy or surgery. SBRT has quickly developed because of its excellent results in terms of tolerance and its high locoregional control rates. SBRT indications in primary tumors, such as lung primary tumors, have become a standard of care for inoperable patients. SBRT seems to be effective in many others indications in curative or palliative intent such as liver primary tumors, and novel indications and strategies are currently emerging in prostate cancer, head and neck tumor recurrences or pelvis reirradiations. Conclusion Currently, SBRT is mainly used when there is no other therapeutic alternative for the patient. This is due to the lack of randomized trials in these settings. However, the results shown in retrospective studies let us hope to impose SBRT as a new standard of care for many patients in the next few years. PMID:24416584

  9. The New Madrid earthquakes; an engineering-geologic interpretation of relict liquefaction features

    USGS Publications Warehouse

    Obermeier, Stephen F.

    1989-01-01

    Earthquake-induced sand blows and sand-filled fissures are present in a belt 40 to 60 km. wide that extends from near Charleston, Mo., southward to about 20 km. south of Marked Tree, Ark. This region of earthquake-induced sand blows and other liquefaction-related features is almost exclusively in the St. Francis Basin, an alluvial lowland that typically has a thin (2 to 8 m thick), clay-bearing topstratum underlain by about 30 to 60 m of unconsolidated sand (the substratum). Liquefaction of the substratum sands has made the sand blows. The sand blows and other liquefaction-related features on the ground surface in the St. Francis Basin are almost certainly results of the New Madrid earthquakes of 1811-12. In this report, geologic and engineering properties of the alluvium are used in combination with a map showing the bounds of the liquefaction-related features to locate approximately the epicentral zones for two of the major shocks: the earthquakes of December 16,1811, and February 7,1812. Properties used for the analysis included the Standard Penetration Resistance of the substratum sands, characteristics of the sand's grain size, thickness of the topstratum, and the thickness of the post-Tertiary alluvium. The method of analysis relies largely on the evaluation of the liquefaction potential of the sands. This is done by using the Standard Penetration Test blow counts and by devising a method that uses all possible combinations of liquefaction potential and a realistic relation between attenuation of earthquake accelerations and distance from the epicenter (or more correctly, energy-release center). Two interpreted 1811-12 energy-release centers generally agree well with zones of seismicity defined by modern, small earthquakes. Bounds on accelerations are placed at the limits of sand blows that were generated by the 1811-12 earthquakes in the St. Francis Basin. Conclusions show how the topstratum thickness, sand size of the substratum, and thickness of alluvium affected the distribution of sand blows in the St. Francis Basin.

  10. Rare earth elements in coastal sediments of the northern Galician shelf: Influence of geological features

    NASA Astrophysics Data System (ADS)

    Prego, Ricardo; Caetano, Miguel; Bernárdez, Patricia; Brito, Pedro; Ospina-Alvarez, Natalia; Vale, Carlos

    2012-03-01

    The Northern coast of Galicia, NW Iberian Peninsula, exhibits a variety of geological features: Ortegal allochthonous complex, Ollo-de-Sapo autochthonous domain and massifs of Bares, Barqueiro and San-Ciprian. In order to examine the influence of terrestrial lithologies on coastal sediments, 103 samples were collected in the Rias of Ortigueira, Barqueiro and Viveiro, their neighbouring shelf and the estuaries of Mera, Sor and Landro rivers. Aluminium, Fe, Sc, particulate inorganic and organic carbon and rare earth elements (REE) were determined in the <2 mm fraction. In addition, calcite, muscovite, quartz and riebeckite minerals were identified and quantified in 33 selected samples. The distributions of riebeckite and Fe reflect the influence of Ortegal complex on the coastal areas around the Cape Ortegal. The highest concentrations of ΣREE were found in fine sediments from confined inner parts of the Rias (up to 233 mg kg-1), while most of the sands contained 11-70 mg kg-1. ΣREE normalised to European Shale (ES) highlights the relative abundance of lanthanides (ΣREEN>6) near Cape Ortegal and the innermost ria zones. The ratio between light and heavy REE (L/H) showed lower values (4-11) around Cape Ortegal and the shelf while higher ratios (15-23) were detected in west of the Cape Estaca-de-Bares and in the inner Viveiro Ria due to elevated contributions of La and Ce. The L/H values normalised to ES reflects the importance of HREE in the adjacent area to Ortegal Complex (LN/HN<0.8) and the LREE (LN/HN>1.4) in the inner estuaries and west Cape Estaca-de-Bares. The highest REE individual ES normalised were measured in fine-grained sediments of the Mera and Sor estuaries. Sediments from the eastern shelf of Cape Ortegal presented enhanced ratios only for HREE. These results indicate that distribution of REE in the northern Galician region is highly depending on the neighbouring lithological pattern, contrasting with the situation found in the western Galician shelf and the Bay of Biscay. Lanthanides can, thus, provide a useful tool to follow the sediment pathway in the land-sea boundary zones, denoting continental geochemical imprint or fluvial outputs accordingly to the existing hydrological and geological conditions.

  11. Automated feature extraction and spatial organization of seafloor pockmarks, Belfast Bay, Maine, USA

    USGS Publications Warehouse

    Andrews, B.D.; Brothers, L.L.; Barnhardt, W.A.

    2010-01-01

    Seafloor pockmarks occur worldwide and may represent millions of m3 of continental shelf erosion, but few numerical analyses of their morphology and spatial distribution of pockmarks exist. We introduce a quantitative definition of pockmark morphology and, based on this definition, propose a three-step geomorphometric method to identify and extract pockmarks from high-resolution swath bathymetry. We apply this GIS-implemented approach to 25km2 of bathymetry collected in the Belfast Bay, Maine USA pockmark field. Our model extracted 1767 pockmarks and found a linear pockmark depth-to-diameter ratio for pockmarks field-wide. Mean pockmark depth is 7.6m and mean diameter is 84.8m. Pockmark distribution is non-random, and nearly half of the field's pockmarks occur in chains. The most prominent chains are oriented semi-normal to the steepest gradient in Holocene sediment thickness. A descriptive model yields field-wide spatial statistics indicating that pockmarks are distributed in non-random clusters. Results enable quantitative comparison of pockmarks in fields worldwide as well as similar concave features, such as impact craters, dolines, or salt pools. ?? 2010.

  12. Characterizing the natural radiation levels throughout the main geological units of Sabkhat al Jabboul area, northern Syria.

    PubMed

    Al-Hilal, Mohamed; Aissa, Mosa

    2015-02-01

    The concentrations of equivalent eU, eTh, and K% were determined together with soil gas radon values and carborne gamma-ray survey in order to define the natural radioactivity levels throughout main geological units of Sabkhat al Jabboul region. Forty five soil and rock samples were collected from various lithofacies in each geological unit, and analyzed by γ-ray spectrometric technique for determining the concentration values of major radioelements. Such radiometric data could be used to differentiate between various lithologies of the investigated rocks. Although no distinct radioactive anomalies were found in the area, the radiometric profiles showed some minor variations with slightly higher values than the normal level. Despite the low radioactivity and the lack of rocks diversity in the surveyed area, it was possible to classify some certain rock types based on their radiometric response. The relationships between eU, eTh and their ratios were discussed for the Quaternary, Neogene and Paleogene formations, in order to evaluate the degree of uranium distribution and remobilization. The overall results of this radiometric survey were generally low, and lying within the range of the normal background levels in Syrian. PMID:25461509

  13. Geologically recent small-scale surface features in Meridiani Planum and Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Horne, David

    2014-05-01

    Enigmatic small scale (<1m) depositional and erosional features have been imaged at several locations in the equatorial Meridiani Planum region by the rover Opportunity. They occur in loose, dark basaltic sands partly covering exposures of light-toned bedrock. Leveed fissures are narrow, elongate, steep-sided depressions flanked by raised levees or half-cones of soil, typically 2-10 cm wide and up to 50 cm long in most cases. Some cross-cut and are therefore younger than eolian ripples thought to have last been active c. 50,000 years ago. Gutters are elongate, straight or sinuous surface depressions, typically 2-10cm wide and 1-5 cm deep, sometimes internally terraced or with a hollow near one end, and in one case seem to give way to small depositional fans downslope; they have the appearance of having been formed by liquid flow rather than by wind erosion. Leveed fissures were imaged at more than 25 locations by Opportunity between 2004 and 2013, particularly near the rims of Endurance, Erebus and Endeavour craters, but also on the plains between Santa Maria and Endeavour craters; sharply-defined gutters are less common but examples were imaged close to the rim of Endurance and on the approach to Endeavour, whereas subdued, possibly wind-softened examples are more widespread. Scrutiny of images obtained by the rover Spirit in Gusev Crater between 2004 and 2010 has so far failed to find any leveed fissures or gutters, but examples of both types of features, as well as numerous small holes suggestive of surface sediment falling into underlying voids, were imaged by the rover Curiosity in the Yellowknife Bay region of Gale Crater during 2013. Leveed fissures appear to have been formed by venting from beneath. Ground disturbance by the rover can be ruled out in many cases by the appearance of features in images taken before close approach. Blowholes seem plausible close to crater rims (where wind might enter a connected void system through a crater wall) but less so in plains areas between craters. Fumaroles seem unlikely since there is no other evidence of geologically young volcanic activity in the region. There is evidence elsewhere that contemporary ground-ice thaw and consequent transient surface run-off may occur occasionally under present conditions in low, near-equatorial latitudes on Mars; short-lived (even for just a few minutes) meltwater emission and flow at the surface could erode gutters before evaporating. The decomposition of buried pockets of methane clathrates, which theoretical considerations suggest might be present and stable even in equatorial regions, could give rise to both methane venting (leveed fissures) and transient surface water (gutters). Another possibility is the decomposition, due to local changes in thermal conditions, of hydrated magnesium sulphates in the bedrock, releasing liquid water. Whatever their explanation, these features hint at previously unrecognized, young martian surface processes which may even be active at the present day; in this context, the apparent downslope extension of a discrete dark dust streak on Burns Cliff (inside Endurance Crater), during Opportunity's approach to that locality, is particularly thought-provoking.

  14. Recent Crustal State of Stress of Khubsugul Area (north Mongolia): Geological Features and Physical Modeling

    NASA Astrophysics Data System (ADS)

    Sankov, V. A.; Miroshnitchenko, A. I.; Parfeevets, A. V.; Arzhannikova, A. V.

    The Khubsugul rift basin in North Mongolia is a submeridional part of the southwestern flank of the Baikal rift system. Its location, as that of the conjugate sublatitudinal Tunka segment of the rift system, is controlled by the margin of the Riphean block. Neotectonic faults of the N-S and NE strike are of the first importance in the basin boards formation. From the north the basin is limited by the Ikhkhorogol-Baikal fault of the latitudinal strike. From the geomorphological and satellite images data, faults of the NE strike are considered as the left-lateral strike- slips with a normal component, N-S faults - as normal faults with the right-lateral strike-slip component, NNW faults in the northern part of the basin - as the right- lateral strike-slips with a normal component, and E-W faults - as the left-lateral strike-slips with a reverse component. The paleostress reconstructions from microfault slip data allows as to determine the sequence of deformation types at formation of the basin. At the initial step, which coincides with main basalt volcanism in the Miocene, the northwesrtern extension prevailed. In the Pliocene the stress field of the Khubsugul area changed by the regional progressive compression - the compression axis is of the NNE direction, and the extension axis is of the WNW direction. Generally it corresponds to the present-day state of stress, computed using earthquake focal mechanisms data. The modeling of the state of stress of the late tectonic stage of the Khubsugul basin formation was carried out by polarizing-optical method. A gelatin-jelly was used as model stuff. The plain state of stress in an elastic plate with fractures under the effect of compressive forces was investigated. The joint of meridional and latitudinal faults under the external loading with the 15?E of regional compression axes was modeled. The obtained schemes of the distribution of tangential stresses and the trajectories of principle normal stresses were compared with the data on structural geology and seismology. The main conclusions are as follows: 1. The Pliocene-Quaternary development of the Khubsugul basin occurs in the setting of the NNE regional compression. 2. The present-day passive opening of the northern part of the basin occurs owing to a clockwise rotation of the Khamar- Daban block. The southern part of the basin is of low tectonic activity. 3. Zones of anomalous stresses and high observable and potential seismicity are located on the southern termination of the basin and in the northern block northwestward and northeastward of the northern basin termination.

  15. Close Up View Of The Spectral Properties Of Ganymede At Mid-latitudes With Respect To Geological Surface Features

    NASA Astrophysics Data System (ADS)

    Stephan, Katrin; Hibbitts, C. A.; Hansen, G. B.; Wagner, R.; Jaumann, R.

    2006-12-01

    Polar caps of Jupiter’s moon Ganymede are known to be characterized by a thin layer of relative small particles of water ice. An analysis of spectral data acquired by the Near Infrared Mapping Spectrometer during the Galileo mission was conducted in order to study variations of the spectral surface properties at mid-latitudes, where these polar caps become visible in Galileo and Voyager imaging data and influences of incoming radiation from Jupiter’s magnetosphere becomes dominant, in detail. The spectral analysis was performed referring to the abundance and particle size of water ice, the influence of impurities as well as the content of CO2. Additionally, the spectral properties were compared to morphological and geological characteristics as well as the geological age of specific surface features like impact craters using Galileo and Voyager imaging data. Results will be presented that indicate the importance of local influences of polar deposits e.g. the geographic position on Ganymede's surface for the interpretation of specific geologic surface features and their geological history.

  16. Influence of Main Characteristic Features of Spot Welding on Welded Connection/Joint Strength

    NASA Astrophysics Data System (ADS)

    Al Quran, Firas M. F.; Matarneh, M. I.; Belik, A. G.

    2014-03-01

    To provide the required quality of welded connection in spot welding, an investigation of the influence of characteristic features of welding conditions on the welded connection strength and choice of the best process parameters are carried out.

  17. New Style Geologic Map of Mostly Later Holocene and Recent Features of the Greater South Pole Basin

    NASA Astrophysics Data System (ADS)

    Wise, D. U.; Cianfarra, P.; Salvini, F.

    2008-12-01

    Topographic contour maps of the East Antarctic Plateau show a prominent but apparently unrecognized basin of ~700,000 km2 that lies ~200 m below surrounding surfaces. The basin's defining hallmark is a remarkably straight, 900 km-long headwall or headslope, passing almost under the pole and linking upper reaches of the Recovery and Foundation ice streams, the two separated by a central platform (CP). Throughout the basin a distinctive regional snow and firn unit, identifiable on satellite images by ~2km wavelength, zebra-striped megadunes, forms the basal horizon for a new type of geologic map for the Plateau. This unit underlies all other features, probably as an inactive paleo-climatic relic of diachronous Holocene age. Most deposits covering it consist of several generations of successively overprinted longitudinal dunes commonly intermingling with wind eroded channels, ice deformational features, and regionally curving snow streamers. Above this complex, a widespread but discontinuous, smooth surfaced deposit covers megadunes, local basins, major divides and floors of linear sags or extension zones. The young unit is irregularly disrupted and sheared over active ice streams. Over all these features are widespread, near-modern to modern fields or patches of active, longitudinal dunes with 100-300 m wavelengths. A prominent, graben-like, linear sag zone occurs along the headwall's brow line but unlike those of traditional grabens, its edges show no visible fault offset at present resolutions. At the foot of the headslope, a large bergshrund-like area is localized above the sub-glacial Recovery Lakes. Thick fill in this area covers the megadune unit only to be disrupted by still younger sag zones. On the CP floor, a number of sharp-edged, shear-bounded 100-300 km wide sub-provinces are defined by differences in thickness and types of megadune cover and by amounts of extension or crevassing. At the heads of some zones, shear lines encroach upslope into young cover while other zones show complex histories of deformational abandonment and/or reactivation. Apparently, the overall ice sheet has a complex history of zonal behavior involving unsteady or evolving local flow patterns. Bedrock topography exerts significant control on these flow patterns as indicated by major ice streams or basins localized above sub-glacial drainage channels and bedrock basins of the Recovery Lake and other systems. Several other shear-bounded sub-provinces overlie bedrock basins or lie immediately upstream of gaps in the Transantarctic Mountains. Just beyond the basin's edge, 'islands,' bounded by several generations of shear zones and differing in depositional and deformational history, are localized above bedrock highs. The most significant bedrock control is a probable fault line scarp, 900 km long and ~200 m high underlying the headslope. At one end this fault passes nearly under the pole while the other end splays to form a terrace in the headslope. Near the pole a second, opposite-facing scarp combines with the main scarp to form an uplifted horst block, isolating an arm of the greater basin, hindering ice drainage and forming an accumulation base for a ~50,000 km2 semi-triangular tableland. Geologic maps of this type may be helpful in correlations among drill cores and sampling sites, in estimating the amounts and patterns of younger accumulation, in refining details of complex ice flowage, and in piecing together a more unified overview of younger events on the Plateau. class="ab'>

  18. The Cyborg Astrobiologist: scouting red beds for uncommon features with geological significance

    NASA Astrophysics Data System (ADS)

    McGuire, Patrick Charles; Díaz-Martínez, Enrique; Ormö, Jens; Gómez-Elvira, Javier; Rodríguez-Manfredi, José Antonio; Sebastián-Martínez, Eduardo; Ritter, Helge; Haschke, Robert; Oesker, Markus; Ontrup, Jörg

    2005-04-01

    The `Cyborg Astrobiologist' has undergone a second geological field trial, at a site in northern Guadalajara, Spain, near Riba de Santiuste. The site at Riba de Santiuste is dominated by layered deposits of red sandstones. The Cyborg Astrobiologist is a wearable computer and video camera system that has demonstrated a capability to find uncommon interest points in geological imagery in real time in the field. In this second field trial, the computer vision system of the Cyborg Astrobiologist was tested at seven different tripod positions, on three different geological structures. The first geological structure was an outcrop of nearly homogeneous sandstone, which exhibits oxidized-iron impurities in red areas and an absence of these iron impurities in white areas. The white areas in these `red beds' have turned white because the iron has been removed. The iron removal from the sandstone can proceed once the iron has been chemically reduced, perhaps by a biological agent. In one instance the computer vision system found several (iron-free) white spots to be uncommon and therefore interesting, as well as several small and dark nodules. The second geological structure was another outcrop some 600 m to the east, with white, textured mineral deposits on the surface of the sandstone, at the bottom of the outcrop. The computer vision system found these white, textured mineral deposits to be interesting. We acquired samples of the mineral deposits for geochemical analysis in the laboratory. This laboratory analysis of the crust identifies a double layer, consisting of an internal millimetre-size layering of calcite and an external centimetre-size efflorescence of gypsum. The third geological structure was a 50 cm thick palaeosol layer, with fossilized root structures of some plants. The computer vision system also found certain areas of these root structures to be interesting. A quasi-blind comparison of the Cyborg Astrobiologist's interest points for these images with the interest points determined afterwards by a human geologist shows that the Cyborg Astrobiologist concurred with the human geologist 68% of the time (true-positive rate), with a 32% false-positive rate and a 32% false-negative rate. The performance of the Cyborg Astrobiologist's computer vision system was by no means perfect, so there is plenty of room for improvement. However, these tests validate the image-segmentation and uncommon-mapping technique that we first employed at a different geological site (Rivas Vaciamadrid) with somewhat different properties for the imagery.

  19. Main large data set features detection by a linear predictor model

    NASA Astrophysics Data System (ADS)

    Gutierrez, Carlos Enrique; Alsharif, Mohamad Reza, Prof.; Khosravy, Mahdi; Yamashita, Katsumi, Prof.; Miyagi, Hayao, Prof.; Villa, Rafael

    2014-10-01

    The aim of the present paper is to explore and obtain a simple method capable to detect the most important variables (features) from a large set of variables. To verify the performance of the approach described in the following sections, we used a set of news. Text sources are considered high-dimensional data, where each word is treated as a single variable. In our work, a linear predictor model has been used to uncover the most influential variables, reducing strongly the dimension of the data set. Input data is classified in two categories; arranged as a collection of plain text data, pre-processed and transformed into a numerical matrix containing around 10,000 different variables. We adjust the linear model's parameters based on its prediction results, the variables with strongest effect on output survive, while those with negligible effect are removed. In order to collect, automatically, a summarized set of features, we sacrifice some details and accuracy of the prediction model, although we try to balance the squared error with the subset obtained.

  20. Correlations between topography and deep-seated structures in low-relief areas: Examples of subtle terrain features with high impact on geological interpretations of geophysical data

    NASA Astrophysics Data System (ADS)

    Sandersen, Peter B. E.; Jørgensen, Flemming

    2014-05-01

    Denmark has a low-relief topography with a maximum elevation at 170 m above sea level and a near-surface geology dominated by the effects of numerous glacier advances during the Pleistocene. In 3D geological modelling of the Danish subsurface we combine near-surface geophysics, primarily AEM (Airborne ElectroMagnetic methods) with borehole data, seismic data etc. in order to model the groundwater-bearing sediments in the uppermost 300-400 m. The highly varied glacial succession and the underlying tertiary sediments require very dense data coverage in order to be able to perform modelling in sufficient detail. Geomorphological data and observations are used for the interpretations alongside the other data. The overall geomorphology of Denmark is generally the product of the youngest glacial episodes and the subsequent periglacial and postglacial modifications where the effects of earlier ice advances are either obscured or removed. As such, the geomorphology will mainly contribute with geological information about the youngest events and the uppermost parts of the subsurface. However, in many parts of the Danish area we have found a correlation between surface features and deep seated structures. These structures can be old faults that have created weak and easily erodible zones in the sediments above and these erosional patterns have created trends that have survived over a long period of time. Some of these fault zones have been tectonically active as late as the Holocene thus deforming near-surface sediments and the topography. Using geomorphological information such as lineament patterns, erosional patterns and variations in surface trends we are able to gain significant information about the deeper parts of the subsurface. This information is highly valuable when interpreting the geological setting from AEM data and seismic data. In the presentation we will show examples from Denmark that link geomorphological features in the present day terrain with deep seated tectonic structures and buried erosional features mapped by geophysical data. The examples will include detailed observations of subtle geomorphological features in LiDAR-data that represent fingerprints of events that are not related to the formation of the surface sediments themselves.

  1. Ordinary and Activated Bone Grafts: Applied Classification and the Main Features

    PubMed Central

    Deev, R. V.; Drobyshev, A. Y.; Bozo, I. Y.; Isaev, A. A.

    2015-01-01

    Bone grafts are medical devices that are in high demand in clinical practice for substitution of bone defects and recovery of atrophic bone regions. Based on the analysis of the modern groups of bone grafts, the particularities of their composition, the mechanisms of their biological effects, and their therapeutic indications, applicable classification was proposed that separates the bone substitutes into “ordinary” and “activated.” The main differential criterion is the presence of biologically active components in the material that are standardized by qualitative and quantitative parameters: growth factors, cells, or gene constructions encoding growth factors. The pronounced osteoinductive and (or) osteogenic properties of activated osteoplastic materials allow drawing upon their efficacy in the substitution of large bone defects. PMID:26649300

  2. Information needs for characterization of high-level waste repository sites in six geologic media. Volume 1. Main report

    SciTech Connect

    1985-05-01

    Evaluation of the geologic isolation of radioactive materials from the biosphere requires an intimate knowledge of site geologic conditions, which is gained through precharacterization and site characterization studies. This report presents the results of an intensive literature review, analysis and compilation to delineate the information needs, applicable techniques and evaluation criteria for programs to adequately characterize a site in six geologic media. These media, in order of presentation, are: granite, shale, basalt, tuff, bedded salt and dome salt. Guidelines are presented to assess the efficacy (application, effectiveness, and resolution) of currently used exploratory and testing techniques for precharacterization or characterization of a site. These guidelines include the reliability, accuracy and resolution of techniques deemed acceptable, as well as cost estimates of various field and laboratory techniques used to obtain the necessary information. Guidelines presented do not assess the relative suitability of media. 351 refs., 10 figs., 31 tabs.

  3. Hydrological and Geological Features Contributing to a Seepage Event at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Fedors, R. W.; Smart, K. J.; Parrott, J. D.

    2006-05-01

    The occurrence of an unusual seepage event in the Exploratory Studies Facility (ESF) tunnel at Yucca Mountain (YM) in 2005 provides an opportunity to further understand the hydrological system associated with flow in fractured rocks and seepage into tunnels. Understanding the contributing factors for this seepage occurrence in the ventilated tunnel will assist U.S. Nuclear Regulatory Commission in its assessment of Department of Energy flow models. The seepage event begin in the later portion of an El Nino winter (February 2005) predominantly along a 40-m [130-ft] section of the south ramp of the ESF tunnel. The stratigraphic section at this location is comprised of a portion of the Tiva Canyon Tuff, which is a rhyolitic ignimbrite. The effect of El Nino conditions in the semi-arid climate of southern Nevada near YM is greatly increased winter precipitation. Based on the ~50 years of record at a nearby meteorological station, the winter of 2004-2005 was the wettest winter on record. The previous largest winter precipitation amounts were recorded in the El Nino years of 1992-1993 and 1997-1998. During the 1997 El Nino year, a monitored set of boreholes in nearby Pagany Wash indicated that a saturated front traversed the entire Tiva Canyon Tuff section during a single event (Le Cain and Kurmack, 2002, USGS Water Resources Investigations Report 02-4035). It is unclear if the fracture system in the south ramp location was saturated in the February 2005 event; no data were available to estimate the saturated state of the fracture system. With heavy precipitation occurring throughout the winter, however, the matrix and fracture systems were likely primed (i.e., saturation levels were likely significantly higher than normal) for a significant percolation event. Ponding caused by focusing of runoff at the ground surface above seepage location in the south ramp of the ESF tunnel likely did not occur based on topographical and catchment considerations (no significant depressions or gullies). Analyses of the geological characteristics associated with the seepage location suggest the contributing factors that constrained seepage to this particular portion of the tunnel include (i) distance to the surface (i.e., ~60 m [200 ft]), (ii) gently dipping strata with distinct lithological contacts that may have laterally diverted water, (iii) faults and fractures, and (iv) downslope capping by rock units with different hydrological characteristics. This is an independent product of the CNWRA and does not necessarily reflect the views of regulatory positions of the NRC. The NRC staff views expressed herein are preliminary and do not constitute a final judgment or determination of the matters addressed or of the acceptability of a license application for a geologic repository at Yucca Mountain.

  4. Geological survey of Maryland using EREP flight data. [mining, mapping, Chesapeake Bay islands, coastal water features

    NASA Technical Reports Server (NTRS)

    Weaver, K. N. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Underflight photography has been used in the Baltimore County mined land inventory to determine areas of disturbed land where surface mining of sand and ground clay, or stone has taken place. Both active and abandoned pits and quarries were located. Aircraft data has been used to update cultural features of Calvert, Caroline, St. Mary's, Somerset, Talbot, and Wicomico Counties. Islands have been located and catalogued for comparison with older film and map data for erosion data. Strip mined areas are being mapped to obtain total area disturbed to aid in future mining and reclamation problems. Coastal estuarine and Atlantic Coast features are being studied to determine nearshore bedforms, sedimentary, and erosional patterns, and manmade influence on natural systems.

  5. Geologic features of areas of abnormal radioactivity south of Ocala, Marion County, Florida

    USGS Publications Warehouse

    Espenshade, Gilbert H.

    1956-01-01

    Areas of abnormal radioactivity south of Ocala, Marion County, Fla., discovered in 1953 by aerial survey, were investigated by surface examination and by 10 power auger drill holes. Inter-bedded clay, clayey sand, and uraniferous phosphorite occur in the areas of anomalous radioactivityo Miocene fossils occur at three localities in these beds which are evidently outliers- of Miocene sediments on the Ocala limestone of Eocene age. The preserved outliers are southwest of the main belt of Miocene sediments. The principal uraniferous rocks are clayey, sandy, pellet phosphori1te that occurs in beds a few feet thick, and very porous, phosphatic sand rock which makes abundant float at many places. Apatite forms the phosphate pellets in the unweathered phosphorite. The very porous, phosphatic sand rock is the highly leached residuum of the pellet phosphorite and is composed mainly of quartz, kaolinite, wavellite, and crandallite (pseudowavellite). It closely resembles the aluminum phosphate rock of the 'leached zone' of the Bone Valley formation in the land-pebble phosphate district.

  6. Distribution and geological control of mud volcanoes and other fluid/free gas seepage features in the Mediterranean Sea and nearby Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Mascle, Jean; Mary, Flore; Praeg, Daniel; Brosolo, Laetitia; Camera, Laurent; Ceramicola, Silvia; Dupré, Stéphanie

    2014-06-01

    Existing knowledge on the distribution of mud volcanoes (MVs) and other significant fluid/free gas-venting features (mud cones, mud pies, mud-brine pools, mud carbonate cones, gas chimneys and, in some cases, pockmark fields) discovered on the seafloor of the Mediterranean Sea and in the nearby Gulf of Cadiz has been compiled using regional geophysical information (including multibeam coverage of most deepwater areas). The resulting dataset comprises both features proven from geological sampling, or in situ observations, and many previously unrecognized MVs inferred from geophysical evidence. The synthesis reveals that MVs clearly have non-random distributions that correspond to two main geodynamic settings: (1) the vast majority occur along the various tectono-sedimentary accretionary wedges of the Africa-Eurasia subduction zone, particularly in the central and eastern Mediterranean basins (external Calabrian Arc, Mediterranean Ridge, Florence Rise) but also along its westernmost boundary in the Gulf of Cadiz; (2) other MVs characterize thick depocentres along parts of the Mesozoic passive continental margins that border Africa from eastern Tunisia to the Levantine coasts, particularly off Egypt and, locally, within some areas of the western Mediterranean back-arc basins. Meaningfully accounting for MV distribution necessitates evidence of overpressured fluids and mud-rich layers. In addition, cross-correlations between MVs and other GIS-based data, such as maps of the Messinian evaporite basins and/or active (or recently active) tectonic trends, stress the importance of assessing geological control in terms of the presence, or not, of thick seals and potential conduits. It is contended that new MV discoveries may be expected in the study region, particularly along the southern Ionian Sea continental margins.

  7. Coal mine bumps as related to geologic features in the northern part of the Sunnyside District, Carbon County, Utah

    USGS Publications Warehouse

    Osterwald, Frank W.; Dunrud, C. Richard; Collins, Donley S.

    1993-01-01

    Coal mine bumps, which are violent, spontaneous, and often catastrophic disruptions of coal and rock, were common in the Sunnyside coal mining district, Utah, before the introduction of protective-engineering methods, modern room-and-pillar retreat mining with continuous mining machines, and particularly modern longwall mining. The coal at Sunnyside, when stressed during mining, fails continuously with many popping, snapping, and banging noises. Although most of the bumps are beneficial because they make mining easier, many of the large ones are dangerous and in the past caused injuries and fatalities, particularly with room- and-pillar mining methods used in the early mining operations. Geologic mapping of underground mine openings revealed many types of deformational features, some pre-mine and some post-mine in age. Stresses resulting from mining are concentrated near the mine openings; if openings are driven at large angles to small pre-mine deformational features, particularly shatter zones in coal, abnormal stress buildups may occur and violent bumps may result. Other geologic features, such as ripple marks, oriented sand grains, intertongued rock contacts, trace fossils, and load casts, also influence the occurrence of bumps by impeding slip of coal and rocks along bedding planes. The stress field in the coal also varies markedly because of the rough ridge and canyon topography. These features may allow excessively large stress components to accumulate. At many places, the stresses that contribute to deformation and failures of mine openings are oriented horizontally. The stratigraphy of the rocks immediately above and below the mined coal bed strongly influences the deformation of the mine openings in response to stress accumulations. Triaxial compressive testing of coal from the Sunnyside No.1 and No.3 Mines indicates that the strength of the coal increases several times as the confining (lateral) stress is increased. Strengths of cores cut from single large blocks of coal vary widely. Although the strengths of coal cores increase slowly at high levels of confining stress, the coal in Sunnyside No. 1 Mine is slightly stronger in laboratory tests than coal in Sunnyside No.3 Mine. The coal in No.1 Mine probably can store larger amounts of stress than coal in the No.3 Mine, which may account for the apparently greater number of violent bumps in No.1 Mine. The strength of coal, and its ability to store stress before failure, may correlate in part with chemical composition, particularly with the amounts of benzene ring compounds in vitrain; coal with relatively large amounts of benzene ring compounds is stronger than coal with lesser amounts of these compounds. Alternatively, the chemical composition of coal may affect its response to stress. Increasing contents of kaolinite in coal appear to reduce its compressive strength at low confining stresses, resulting in easy failures of pillars and ribs in mine openings. Applications of the geologic factors outlined in this report, carefully coupled with advanced modern engineering methods, have markedly reduced the hazards from coal mine bumps and related failures of mine openings at Sunnyside. Similar studies probably could aid in reducing bump-related hazards in other coal mining areas.

  8. Geology and slope stability in selected parts of The Geysers geothermal resources area: a guide to geologic features indicative of stable and unstable terrain in areas underlain by Franciscan and related rocks

    SciTech Connect

    Bedrossian, T.L.

    1980-01-01

    The results of a 4-month study of various geologic and topographic features related to the stability of Franciscan terrain in The Geysers GRA are presented. The study consisted of investigations of geologic and topographic features, throughout The Geysers GRA, and geologic mapping at a scale of 1:12,000 of approximately 1500 acres (600 hectares) of landslide terrain within the canyon of Big Sulphur Creek in the vicinity of the Buckeye mine (see plate 1). The area mapped during this study was selected because: (1) it is an area of potential future geothermal development, and (2) it illustrates that large areas mapped as landslides on regional scales (McLaughlin, 1974, 1975b; McNitt, 1968a) may contain zones of varying slope stability and, therefore, should be mapped in more detail prior to development of the land.

  9. The features of the use of GIS technologies for monitoring of the situation of main water lines in Azerbaijan

    NASA Astrophysics Data System (ADS)

    Gojamanov, M. H.; Z, Qurbanov, Ch.

    2014-11-01

    The characteristic feature of the unified system of water supply of Azerbaijan is the large spatial remoteness between the main water sources (Greater and Small Caucasian mountains) and water-using economic areas (Baku, Ganja, Sumgait etc). When operating the pipelines arise accident and emergency situations, which are connected with interaction of the technological elements of the water supply and the natural environment. Often this process is a violation of dynamic equilibrium, and is accompanied by activation of dangerous natural and natural-anthropogenic processes that have a negative impact on the condition of pipelines. Given that in Azerbaijan the basis of the water supply network was put in the XIX century, it is necessary to pay close attention to the assessment of the ecological situation of main lines of water pipelines, i.e. to conduct their monitoring. Ensuring the reliability of existing and planned pipelines, a comprehensive study of the impacts on the natural environment during the construction and operation of the technical facilities, the organization of system of information and analytical monitoring requires a comprehensive attract the materials of the aerospace sensing and GIS technologies. In this paper describe the work experience and are the results of monitoring of pipelines of water supply in Azerbaijan.

  10. Geological History of the Tyre Region of Europa: A Regional Perspective on Europan Surface Features and Ice Thickness

    NASA Technical Reports Server (NTRS)

    Kadel, Steven D.; Chuang, Frank C.; Greeley, Ronald; Moore, Jeffrey M.

    2000-01-01

    Galileo images of the Tyre Macula region of Europa at regional (170 m/pixel) and local (approx. 40 m/pixel) scales allow mapping and understanding of surface processes and landforms. Ridged plains, doublet and complex ridges, shallow pits, domes, "chaos" areas. impact structures, tilted blocks and massifs, and young fracture systems indicate a complex history of surface deformation on Europa. Regional and local morphologies of the Tyre region of Europa suggest that an impactor penetrated through several kilometers of water ice tc a mobile layer below. The surface morphology was initially dominated by formation of ridged plains, followed by development of ridge bands and doublet ridges, with chaos and fracture formation dominating the latter part of the geologic history of the Tyre region. Two distinct types of chaos have been identified which, along with upwarped dome materials, appear to represent a continuum of features (domes-play chaos-knobby chaos) resulting from increasing degree of surface disruption associated with local lithospheric heating and thinning. Local and regional stratigraphic relationships, block heights, and the morphology of the Tyre impact structure suggest the presence of low-viscosity ice or liquid water beneath a thin (severa1 kilometers) surface ice shell at the time of the impact. The very low impact crater density on the surface of Europa suggests that this thin shell has either formed or been thoroughly resurfaced in the very recent past.

  11. The types of the landslide by the heavy rain presumed from geographical and geological features in Japan

    NASA Astrophysics Data System (ADS)

    Doshida, S.

    2014-12-01

    Various types of a landslide, such as a deep-seated landslide, a shallow landslide, and a debris flow, exist. And the risk and the damage area of a landslide change greatly with the types. Therefore it is very important to guess the type of a landslide generated in the future, in order to decrease the damage of a landslide. In this research, I investigated and studied the landslide disaster which occurred in the typhoon No.12 disaster in 2011 and the northern Kyusyu-island heavy rain disaster 2012, in Japan. The purpose of the study presumes the types of a landslide generated in the future by analyzing geographical and geological features.  Many deep-seated landslides and shallow landslides (debris flows) occurred by the typhoon No.12, 2011 in Japan. The precipitation exceeds 1,800 mm in four days in part regionally. Landslides occurred frequently in the Totsukawa area (Northern part) and Nachi-Katsuura area (Southern part), both area were the precipitation of about 1000 mm in four days. In the Totsukawa area, deep-seated landslides occurred frequently, and in Nachi-Katsuura area, shallow landslides (debris flows) occurred frequently. On the other hand, many deep-seated landslides and shallow landslides occurred by the northern Kyusyu-island heavy rain disaster 2012 in Japan too. Landslides occurred frequently in the Hoshino village area (Northern part) and Asodani area (Southern part). In both area, the total precipitation exceeds 500 mm and the hourly precipitation is about 80 mm. In the Hoshino village area, deep-seated landslides occurred frequently, and in Asodani area, shallow landslides occurred frequently.  The result compared with the deep-seated landslide area (Totsukawa and Hoshino village) and the shallow landslide area (Nachi-Katsuura and Asodani), area of landslide is larger and number of landslide is fewer in the deep-seated landslide area. In the shallow landslide area, the slope is steeper and the drainage network is more developed. It is surmised that these geographical differentiations are the geographical features formed of the past landslide. Therefore, it is important to read and analyze the past landslide disaster hysteresis from geographical feature for specifying the type of a landslide.

  12. Testing the Late Noachian Icy Highlands Model: Geological Observations, Processes and Origin of Fluvial and Lacustrine Features.

    NASA Astrophysics Data System (ADS)

    Head, James; Wordsworth, Robin; Forget, Francis; Madeleine, Jean-Baptiste; Halvey, Italy

    2014-05-01

    A new reconstruction of the Late Noachian Mars atmosphere and climate shows atmosphere-surface thermal coupling and an adiabatic cooling effect producing preferential distribution of snow and ice in the highlands. In this Late Noachian Icy Highlands (LNIH) scenario, snow and ice accumulate in the south circumpolar region and in the higher altitudes of the southern uplands, but the mean annual temperature is everywhere below freezing. How can the abundant evidence for water-related fluvial and lacustrine activity (valley networks, VN; open-basin lakes, OBL; closed-basin lakes; CBL) be reconciled with the icy highlands model? We investigate the nature of geologic processes operating in the icy highlands and use the Antarctic McMurdo Dry Valleys (MDV) as guidance in understanding and assessing how melting might be taking place. In the MDV, mean annual temperatures (MAT) are well below freezing. This results in a thick regional permafrost layer, the presence of an ice-table at shallow depths, and an overlying dry active layer. This configuration produces a perched aquifer and a horizontally stratified hydrologic system, where any melting results in local saturation of the dry active layer and channelized flow on top of the ice table. Top-down melting results in the dominance of lateral water transport, in contrast to temperate climates with vertical infiltration and transport to the groundwater table. Despite subzero MAT, MDV peak seasonal and peak daytime temperatures can exceed 273K and have a strong influence on the melting of available water ice. We present maps of the predicted distribution of LNIH snow and ice, compare these to the distribution of VN, OBL and CBL, and assess how top-down and bottom-up melting processes might explain the formation of these features in an otherwise cold and icy LN Mars. We assess the global near-surface water budget, analyze thickness estimates to distinguish areas of cold-based and wet-based glaciation, analyze the state of the ice cover and its susceptibility to melting and runoff, and describe top-down melting and fluvial channel formation processes in a LNIH environment. We find that: 1) episodic top-down melting of the LNIH is a robust mechanism to produce the observed fluvial and lacustrine features; 2) the characteristics and distribution of features in the Dorsa Argentea Formation are consistent with an extensive circum-polar ice cap during LNIH time; and 3) the nature of preserved LN impact craters is consistent with impact cratering processes in the LNIH environment. 393 words.

  13. Improving management of small natural features on private lands by negotiating the science-policy boundary for Maine vernal pools.

    PubMed

    Calhoun, Aram J K; Jansujwicz, Jessica S; Bell, Kathleen P; Hunter, Malcolm L

    2014-07-29

    Vernal pools are far more important for providing ecosystem services than one would predict based on their small size. However, prevailing resource-management strategies are not effectively conserving pools and other small natural features on private lands. Solutions are complicated by tensions between private property and societal rights, uncertainties over resource location and function, diverse stakeholders, and fragmented regulatory authority. The development and testing of new conservation approaches that link scientific knowledge, stakeholder decision-making, and conservation outcomes are important responses to this conservation dilemma. Drawing from a 15-y history of vernal pool conservation efforts in Maine, we describe the coevolution of pool conservation and research approaches, focusing on how research-based knowledge was produced and used in support of management decisions. As management shifted from reactive, top-down approaches to proactive and flexible approaches, research shifted from an ecology-focused program to an interdisciplinary program based on social-ecological systems. The most effective strategies for linking scientific knowledge with action changed as the decision-makers, knowledge needs, and context for vernal pool management advanced. Interactions among stakeholders increased the extent to which knowledge was coproduced and shifted the objective of stakeholder engagement from outreach to research collaboration and development of innovative conservation approaches. New conservation strategies were possible because of the flexible, solutions-oriented collaborations and trust between scientists and decision-makers (fostered over 15 y) and interdisciplinary, engaged research. Solutions to the dilemma of conserving small natural features on private lands, and analogous sustainability science challenges, will benefit from repeated negotiations of the science-policy boundary. PMID:25002496

  14. Improving management of small natural features on private lands by negotiating the science–policy boundary for Maine vernal pools

    PubMed Central

    Calhoun, Aram J. K.; Jansujwicz, Jessica S.; Bell, Kathleen P.; Hunter, Malcolm L.

    2014-01-01

    Vernal pools are far more important for providing ecosystem services than one would predict based on their small size. However, prevailing resource-management strategies are not effectively conserving pools and other small natural features on private lands. Solutions are complicated by tensions between private property and societal rights, uncertainties over resource location and function, diverse stakeholders, and fragmented regulatory authority. The development and testing of new conservation approaches that link scientific knowledge, stakeholder decision-making, and conservation outcomes are important responses to this conservation dilemma. Drawing from a 15-y history of vernal pool conservation efforts in Maine, we describe the coevolution of pool conservation and research approaches, focusing on how research-based knowledge was produced and used in support of management decisions. As management shifted from reactive, top-down approaches to proactive and flexible approaches, research shifted from an ecology-focused program to an interdisciplinary program based on social–ecological systems. The most effective strategies for linking scientific knowledge with action changed as the decision-makers, knowledge needs, and context for vernal pool management advanced. Interactions among stakeholders increased the extent to which knowledge was coproduced and shifted the objective of stakeholder engagement from outreach to research collaboration and development of innovative conservation approaches. New conservation strategies were possible because of the flexible, solutions-oriented collaborations and trust between scientists and decision-makers (fostered over 15 y) and interdisciplinary, engaged research. Solutions to the dilemma of conserving small natural features on private lands, and analogous sustainability science challenges, will benefit from repeated negotiations of the science–policy boundary. PMID:25002496

  15. Using Vertical electrical sounding survey and refraction seismic survey for determining the geological layers depths, the structural features and assessment groundwater in Aqaba area in South Jordan.

    NASA Astrophysics Data System (ADS)

    Akawwi, Emad; Alzoubi, Abdallah; Ben Abraham, Zvi; Rahamn Abo Alades, Abdel; Alrzouq, Rami; Tiber, Gidon; Neimi, Tina

    2010-05-01

    The study area is the Aqaba region (Southern wadi Araba basin). Aqaba region area located at 87900 and 89000 North and 147000 and 158000 East (Palestine grid). Tectonically Aqaba area lies within the tectonic plate boundary along the Arabian and African plate slide. This plate boundary comprises numerous and shot fault segments. The main aims of this study are to assessing the groundwater potential and its quality, to explain the subsurface geological conditions and support the ongoing geological, environmental and hydrogeological studies. Therefore, it was anticipated that the results of the geophysical surveying will give many different important parameters as The subsurface geological features, thicknesses of the different lithological units, depth to the bed rocks and depth to the water table. The groundwater can apply an important role in ensuring sustainable water supply in the area. This study was carried out in order to assess groundwater condition, geological layers thicknesses and structural features in Aqaba area by using vertical electrical sounding (VES) surveys and refraction seismic techniques. There are three geoelectrical cross section were carried out at different sites by using the Schlumberger array. The first cross section indicated three layers of different resistivity. The second cross section indicated four layers of different resistivity. The third geoelectrical cross sections indicated three layers. The refraction seismic method also has been conducted in the same area as VES. About 12 refraction seismic profiles have been carried out in the study area. The length of the first profile was 745 m at the direction N-S. This profile indicated two different layers with a different velocities. The length of the second profile was 1320 m with E-W direction. This profile indicated two different layers. The length of the third profile was about 515 m with a direction SE-NW. It recognized two different layers with a different velocities. The fourth profile was N-S direction and the length of this profile was 950 m. Two different layers were recognized along this profile. The fifth profile was located N-S with length about 340 m. Two layers were recognized from this profile. The sixth profile was located N-S direction and the length about 575 m. Three layers were recognized from this profile. The direction of the seventh profile was N-S with a length of about 235 m. two different layers were recognized the top layer was unconsolidated alluvium. The profile number 8 was located N-S with length about 232 m. two layers were conducted from this profile. The direction of ninth profile was NW-SE with length about 565 m. two layers were conducted along this profile. The length of the tenth profile was 235 m and the direction was N-S. Two layers with a different velocities were detected along this profile. Profile number eleven was located SW-NE with length about 475 m. two layers were recognized from this profile. The length of the last profile was 375 m with direction SE-NW. Two layers were conducted from this profile. It was found that the shallow aquifers exist at a depths ranging from 4 to 19 m and the relatively deep aquifers from 24 to 60 m below the ground surface. Keywords: Vertical electrical sounding, Aqaba, Resistivity, Groundwater, Layer depth, Geoelectrical.

  16. Main clinical features in patients at their first psychiatric admission to Italian acute hospital psychiatric wards. The PERSEO study

    PubMed Central

    Ballerini, Andrea; Boccalon, Roberto M; Boncompagni, Giancarlo; Casacchia, Massimo; Margari, Francesco; Minervini, Lina; Righi, Roberto; Russo, Federico; Salteri, Andrea; Frediani, Sonia; Rossi, Andrea; Scatigna, Marco

    2007-01-01

    Background Few data are available on subjects presenting to acute wards for the first time with psychotic symptoms. The aims of this paper are (i) to describe the epidemiological and clinical characteristics of patients at their first psychiatric admission (FPA), including socio-demographic features, risk factors, life habits, modalities of onset, psychiatric diagnoses and treatments before admission; (ii) to assess the aggressive behavior and the clinical management of FPA patients in Italian acute hospital psychiatric wards, called SPDCs (Servizio Psichiatrico Diagnosi e Cura = psychiatric service for diagnosis and management). Method Cross-sectional observational multi-center study involving 62 Italian SPDCs (PERSEO – Psychiatric EmeRgency Study and EpidemiOlogy). Results 253 FPA aged <= 40 were identified among 2521 patients admitted to Italian SPDCs over the 5-month study period. About half of FPA patients showed an aggressive behavior as defined by a Modified Overt Aggression Scale (MOAS) score greater than 0 Vs 46% of non-FPA patients (p = 0.3651). The most common was verbal aggression, while about 20% of FPA patients actually engaged in physical aggression against other people. 74% of FPA patients had no diagnosis at admission, while 40% had received a previous psychopharmacological treatment, mainly benzodiazepines and antidepressants. During SPDC stay, diagnosis was established in 96% of FPA patients and a pharmacological therapy was prescribed to 95% of them, mainly benzodiazepines, antipsychotics and mood stabilizers. Conclusion Subjects presenting at their first psychiatric ward admission have often not undergone previous adequate psychiatric assessment and diagnostic procedures. The first hospital admission allows diagnosis and psychopharmacological treatment to be established. In our population, aggressive behaviors were rather frequent, although most commonly verbal. Psychiatric symptoms, as evaluated by psychiatrists and patients, improved significantly from admission to discharge both for FPA and non-FPA patients. PMID:17239235

  17. Stereo 3-D Imagery Uses for Definition of Geologic Structures and Geomorphic Features (Anaglyph colored glasses employed)

    NASA Astrophysics Data System (ADS)

    Hicks, B. G.; Fuente, J. D.

    2008-12-01

    Recently completed projects incorporating TopoMorpher* digital images as adjuncts to commonly employed tools has emphasized the distinct advantage gained with STEREO 3-D DIGITAL IMAGERY. By manipulating scale, relief (four types of digital shading), sun angle, direction of viewing and tilt of scene, etc. -- to produce differing views of the same terrain -- aids in identifying, tracing, and interpreting ground surface anomalies. *TopoMorpher is a digital software product of Eighteen Software (18 software.com). The advantage of Stereo 3-D views combined with digital removal of vegetation which blocked interpretation (commonly called 'bare earth/naked' views) cannot be over-emphasized. The TopoMorpher program creates scenes transferable to disk for printing at any size. Included is with computer projector which allows large display and discussion ease for groups. The examples include (1) fault systems for targeting water well locations in bedrock and (2) delineation of debris slide and avalanche terrain. Combining geologic mapping and spring locations with Stereo 3-D TopoMorpher tracing of fault lineaments has allowed targeting of water well drilling sites. Selection of geophysical study areas for well siting has been simplified. Stereo 3-D TopoMorpher has a specific "relief/terrain setting" to define potential failure sites by producing detailed colored slope maps keyed to field-data derived parameters. Posters display individual project images and large scale overviews for identifying unusual major terrain features. Images at scales using 10 and 30 meter digital data as well as Lidar (< 1 meter) will be shown.

  18. Remote sensing based improvement of the geological map of the Neoproterozoic Ras Gharib segment in the Eastern Desert (NE-Egypt) using texture features

    NASA Astrophysics Data System (ADS)

    Jakob, Sandra; Bühler, Benjamin; Gloaguen, Richard; Breitkreuz, Christoph; Eliwa, Hassan Ali; El Gameel, Khaled

    2015-11-01

    Geological mapping in the Eastern Desert is impeded by difficult accessibility. We improve the existing geological maps by including texture features in a classification scheme of ASTER and Landsat 8 data. We tested the improvement of support vector machine classification using band ratios, principal component analysis (PCA) and texture analysis in the Ras Gharib segment (NE Egypt). A very high classification overall accuracy of 99.85% was achieved. We demonstrate that the input of textures provide valuable additional data for lithological mapping. With the gained information, the existing geological map of the study area was improved distinctly in precision and resolution, but also in terms of correction of yet wrong or inaccurate locations and of lithological unit extents.

  19. Interpretability of potential geological features of the Hermean surface restituted by the STereo imaging Camera of the SIMBIO-SYS package (BepiColombo mission).

    NASA Astrophysics Data System (ADS)

    Massironi, Matteo

    One of the imaging instruments of BepiColombo mission is the STereo Camera (STC) integrated in the SIMBIO-SYS package. STC will permit the generation of a Digital Terrain Model (DTM) of Mercury's surface, improving the interpretation of morphological features at different scales and clarifying the stratigraphic relationships between different geological units. To evaluate the effectiveness of the STC-derived DTM for geological purposes, a series of simulations has been performed to find out to what extent the errors expected in the DTM may prevent the correct classification and interpretation of geological features. To meet this objective, Earth analogues (craters, lava cones, endogenous domes, ridges) of likely components of the Hermean surface, small enough to be near the detection limit of the STC, were selected and a photorealistic 3D model of each feature was generated. Stereoscopic pairs of synthetic images of each feature were then generated from the 3D model at different locations along the BepiColombo orbit. For each stereo pair, the corresponding Hermean DTM was computed using image correlation and compared to the reference data to assess the loss of detail and interpretability. On these basis some considerations are made on scientific objectives that can be met thanks to STC surface restitution capabilities.

  20. Groundwater study using drill holes in the Abukuma granitic province, NE Japan: chemical and isotopic features in the fracture zone around the geological tectonic line

    NASA Astrophysics Data System (ADS)

    Takahashi, H. A.; Tsukamoto, H.; Kazahaya, K.; Takahashi, M.; Morikawa, N.; Yasuhara, M.; Inamura, A.; Handa, H.; Nakamura, T.

    2010-12-01

    Chemical and isotopic features of groundwater in a granitic province are considered to be controlled by water origin, water-rock reaction and/or fracture connection in rocks. Under the depth of a weathering layer, groundwater is existed only in cracks of granite, and its chemical nature or origin has been poorly understood because of difficulties on collection of water samples preserving its natural conditions. On the other hand, a geological tectonic line in a granitic province might provide an influence to groundwater as a path for ascending deep fluid. We conducted a study for chemical processes of groundwater in cracks with investigation of an influence of tectonic line by drilling three bore holes at two sites in a same rock body; Miharu site is located ca. 1.2km west from the Morioka-Shirakawa tectonic line, and Shirasawa site is ca. 5km west. In situ sampling of waters in cracks of granite are done with the single and double packer methods. The drill holes were made 305m and 135m at the Miharu site and 230m at the Shirasawa site. Using these bole holes, groundwater features in the fracture zone around the geological tectonic line can be compared with those outside it. Chemical type of groundwater has a variety with depth; the shallower groundwater is categorized as Ca-HCO3- type with slight NO3 contamination whereas deeper groundwater has Na-HCO3- type. Stable isotope composition of water showed that all the sample water is meteoric origin. Those have significantly low values (ca. 10‰ of δD lower than shallow groundwater) obviously indicating that the groundwater does not originate from the present meteoric water. Groundwater with low δD and δ18O values is likely recharged in an ice age consistent with the 14C date showing the age of carbon ranging from 10000 to 15000 yrBP. The vertical trends of chemical and isotopic components are similar between the two holes at the Miharu site, but different between the two sites, Miharu and Shirasawa. The differences between the two sites mainly appear as the δ13C values and concentration of total dissolved inorganic carbon, calcium and magnesium concentrations with higher values at the Miharu site. These suggest that carbonate dissolution is predicted at the Miharu site. Assuming carbonate dissolution occurred with external CO2 supply at the Miharu site only, chemical relationship could be expressed well. The δ13C profiles suggest that deep-seated CO2 is supplied at the Miharu site, and not be supplied at the Shirasawa site. Therefore, it is considered that the fractures related to the geological tectonic line acts as the pathway of ascending deep-seated CO2.

  1. MAINE AQUIFERS

    EPA Science Inventory

    AQFRS24 contains polygons of significant aquifers in Maine (glacial deposits that are a significant ground water resource) mapped at a scale 1:24,000. This statewide coverage was derived from aquifer boundaries delineated and digitized by the Maine Geological Survey from data com...

  2. Identification of the emission features near 3.5 microns in the pre main sequence star HD 97048

    NASA Technical Reports Server (NTRS)

    Baas, F.; Allamandola, L. J.; Geballe, T. R.; Persson, S. E.; Lacy, J. H.

    1982-01-01

    The spectrum of HD97048 was measured with a resolving power of 450 between 3.37 and 3.64 microns. The prominent feature near 3.5 microns is well resolved, with a peak at 3.53 microns and a wing extending to a shorter wavelength. The weaker feature near 3.4 microns is found to peak at 3.43 microns, in contrast to the 3.40 micron feature seen in other astronomical objects. The observed spectrum strongly resembles laboratory spectra of mixtures of monomeric and dimeric formaldehyde embedded in low temperature solids. Of various possible excitation mechanisms, ultraviolet pumped infrared fluorescence of formaldehyde in interstellar grains provides the best explanation for the observed spectrum of HD 97048.

  3. An initial model of seismic microzonation of Sikkim Himalaya through thematic mapping and GIS integration of geological and strong motion features^*

    NASA Astrophysics Data System (ADS)

    Nath, Sankar Kumar

    2005-05-01

    Seismic microzonation and hazard mapping was undertaken in the Sikkim Himalaya with local site conditions and strong ground motion attributes incorporated into a geographic information system. A strong motion network in Sikkim consisting of 9 digital accelerographs recorded more than 100 events during 1998-2002, of which 72 events are selected with signal-to-noise ratios ?3 for the estimation of site response (SR), peak ground acceleration (PGA) and resonance frequency (RF) at all stations. With these data and inputs from IRS-1C LISS III digital data, topo-sheets, geographical boundary of the State of Sikkim, surface geological maps, soil taxonomy map at 1:50,000 scale and seismic refraction profiles, the seismological and geological thematic maps, namely, SR, PGA, RF, lithology, soil class, slope, drainage, and landslide layers were generated. The geological and seismological layers are assigned normalized weights and feature ranks following a pair-wise comparison hierarchical approach and later integrated through GIS to create the microzonation map of the region. The overall SR, PGA and resonance frequency show an increasing trend in a NW-SE direction, peaking at Singtam in the lesser Himalaya. Six major hazard zones are demarcated with different percentages of probability index values in the geological, seismological hazard and microzonation maps. The maximum risk is attached to a probability greater than 78% in the Singtam and adjoining area. These maps offer generally better spatial representation of seismic hazards including site-specific analysis as a first level microzonation attempt.

  4. A geostatistical approach to assess the spatial association between indoor radon concentration, geological features and building characteristics: the case of Lombardy, Northern Italy.

    PubMed

    Borgoni, Riccardo; Tritto, Valeria; Bigliotto, Carlo; de Bartolo, Daniela

    2011-05-01

    Radon is a natural gas known to be the main contributor to natural background radiation exposure and second to smoking, a major leading cause of lung cancer. The main source of radon is the soil, but the gas can enter buildings in many different ways and reach high indoor concentrations. Monitoring surveys have been promoted in many countries in order to assess the exposure of people to radon. In this paper, two complementary aspects are investigated. Firstly, we mapped indoor radon concentration in a large and inhomogeneous region using a geostatistical approach which borrows strength from the geologic nature of the soil. Secondly, knowing that geologic and anthropogenic factors, such as building characteristics, can foster the gas to flow into a building or protect against this, we evaluated these effects through a multiple regression model which takes into account the spatial correlation of the data. This allows us to rank different building typologies, identified by architectonic and geological characteristics, according to their proneness to radon. Our results suggest the opportunity to differentiate construction requirements in a large and inhomogeneous area, as the one considered in this paper, according to different places and provide a method to identify those dwellings which should be monitored more carefully. PMID:21655128

  5. A Geostatistical Approach to Assess the Spatial Association between Indoor Radon Concentration, Geological Features and Building Characteristics: The Case of Lombardy, Northern Italy

    PubMed Central

    Borgoni, Riccardo; Tritto, Valeria; Bigliotto, Carlo; de Bartolo, Daniela

    2011-01-01

    Radon is a natural gas known to be the main contributor to natural background radiation exposure and second to smoking, a major leading cause of lung cancer. The main source of radon is the soil, but the gas can enter buildings in many different ways and reach high indoor concentrations. Monitoring surveys have been promoted in many countries in order to assess the exposure of people to radon. In this paper, two complementary aspects are investigated. Firstly, we mapped indoor radon concentration in a large and inhomogeneous region using a geostatistical approach which borrows strength from the geologic nature of the soil. Secondly, knowing that geologic and anthropogenic factors, such as building characteristics, can foster the gas to flow into a building or protect against this, we evaluated these effects through a multiple regression model which takes into account the spatial correlation of the data. This allows us to rank different building typologies, identified by architectonic and geological characteristics, according to their proneness to radon. Our results suggest the opportunity to differentiate construction requirements in a large and inhomogeneous area, as the one considered in this paper, according to different places and provide a method to identify those dwellings which should be monitored more carefully. PMID:21655128

  6. The use of fluoride as a natural tracer in water and the relationship to geological features: Examples from the Animas River Watershed, San Juan Mountains, Silverton, Colorado

    USGS Publications Warehouse

    Bove, D.J.; Walton-Day, K.; Kimball, B.A.

    2009-01-01

    Investigations within the Silverton caldera, in southwestern Colorado, used a combination of traditional geological mapping, alteration-assemblage mapping, and aqueous geochemical sampling that showed a relationship between geological and hydrologic features that may be used to better understand the provenance and evolution of the water. Veins containing fluorite, huebnerite, and elevated molybdenum concentrations are temporally and perhaps genetically associated with the emplacement of high-silica rhyolite intrusions. Both the rhyolites and the fluorite-bearing veins produce waters containing elevated concentrations of F-, K and Be. The identification of water samples with elevated F/Cl molar ratios (> 10) has also aided in the location of water draining F-rich sources, even after these waters have been diluted substantially. These unique aqueous geochemical signatures can be used to relate water chemistry to key geological features and mineralized source areas. Two examples that illustrate this relationship are: (1) surface-water samples containing elevated F-concentrations (> 1.8 mg/l) that closely bracket the extent of several small high-silica rhyolite intrusions; and (2) water samples containing elevated concentrations of F-(> 1.8 mg/ l) that spatially relate to mines or areas that contain late-stage fluorite/huebnerite veins. In two additional cases, the existence of high F-concentrations in water can be used to: (1) infer interaction of the water with mine waste derived from systems known to contain the fluorite/huebnerite association; and (2) relate changes in water quality over time at a high elevation mine tunnel to plugging of a lower elevation mine tunnel and the subsequent rise of the water table into mineralized areas containing fluorite/huebnerite veining. Thus, the unique geochemical signature of the water produced from fluorite veins indicates the location of high-silica rhyolites, mines, and mine waste containing the veins. Existence of high F-concentrations along with K and Be in water in combination with other geological evidence may be used to better understand the provenance of the water. ?? 2009 AAG/Geological Society of London.

  7. Comparison of LiDAR-derived directional topographic features with geologic field evidence: a case study of Doren landslide (Vorarlberg, Austria)

    NASA Astrophysics Data System (ADS)

    Zámolyi, András.; Székely, Balázs; Molnár, Gábor; Roncat, Andreas; Dorninger, Peter; Pocsai, Angelika; Wyszyński, Marek; Drexel, Peter

    2010-05-01

    The study area, the Doren Landslide, is located northeast of Dornbirn (Vorarlberg, Austria) within the Molasse zone in the foreland of the Northern Calcareous Alps. It developed in a prominent morphologic position at the margin of a plateau that is formed by alternating ridges and valleys of Molasse sediments of various composition and glacial moraine sediments. The stream valleys of the area are showing rapid incision into the relatively erodible material; this sediment transport balance/imbalance influences the valley sides that at places develop landslides of various scale. Of them the Doren Landslide is the most prominent one that is already endangering real estate entities. On-going research has focused on the repeated airborne and terrestrial laser scanning of the landslide in order to determine short-term volumetric and surface changes and the overall development of the phenomenon. Additionally, tectonic geomorphologic analysis using the digital terrain analysis approach was carried out by the authors aiming to document the geologic setting of the landslide and the adjacent areas in order to reveal possible relationship between the (micro)tectonic setting and the mass movement phenomena. In this study, linear and planar features derived from the LiDAR digital terrain model (DTM) by (i) visual lineament analysis and (ii) automated plane fitting are validated by the results of extensive field geological measurements. For the automated plane fitting, we apply a segmentation approach, originally developed for building detection and roof landscape modeling from ALS data (Dorninger & Pfeifer 2008). It is based on global seed-cluster determination using a four-dimensional feature space defined by locally determined three-dimensional regression planes for each point. Starting from these seeds, all points defining a connected, planar segment are assigned. Due to the design of the algorithm, millions of input points can be processed at once with acceptable processing time on standard computer systems. This allows for processing geomorphologically representative areas at once. For each segment, numerous parameter are derived which can be used for further exploitation. These are, for example, location, area, aspect, slope, and roughness. In the areas surrounding the recent landslide, the strike of geologically significant planes show a good correlation with the strike of lineaments mapped on the ALS-DTM. The mean strike direction that is prominent has an ENE - WSW orientation. However, within the area directly influenced by the recent landslide, observable differences between field geologic measurements and mapped lineaments occur. ESE - WNW striking linear features well mappable from the ALS-DTM are not recorded by field measurements of planar features (faults or bedding planes). This fact can be explained by several hypotheses. The orientation of patches derived by automated plane fitting also show distinct correlation with the field geologic measurements. Again, a good correlation between dip directions as well as dip values can be observed in areas surrounding the landslide. Detection of steep dipping fault surfaces within the landslide area shows promising results that can be further improved by adjusting the input parameters. The good correlation of three different types of lineament analysis (field geologic measurements, ALS-DTM analysis, automated plane fitting) prove the accuracy of laser scanned data and the reliability of observations derived from ALS-data. Dorninger, P., Pfeifer, N. (2008): A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds. Sensors, 8, 11, 7323 - 7343.

  8. Airborne geophysical surveys used to delineate geological features associated with the M5.8 August 23, 2011 earthquake in Louisa County, Virginia

    NASA Astrophysics Data System (ADS)

    Shah, A. K.; Horton, J. W.; Gilmer, A. K.

    2012-12-01

    The M5.8 August 23, 2011 Louisa County, VA intraplate earthquake was felt by more people than any other in U.S. history not only because of population density, but also because of the associated geology. However, because limited bedrock exposures pose a challenge to geologic mapping efforts and the earthquake hypocenter is located at a depth of ~6 km, many questions remain. Potential field and gamma-ray spectrometry data thus provide key tools for imaging and understanding both shallow and deep subsurface geologic features. In July 2012, the USGS commissioned a high-resolution magnetic, gravity, and radiometric (gamma-ray spectrometry) survey over a 20 km x 25 km area covering the epicenters of the Louisa County earthquake and its aftershocks. The surveys were flown with 200-m line spacing from an altitude of ~120 m above ground, providing up to a 20-fold improvement over regional magnetic and radiometric coverage. Gravity was measured using Sander Geophysics' AIRGrav system, capable of resolving anomalies as narrow as 800 m for the given survey configuration; in most parts of the survey area the spacing of ground stations is ~10-20 stations per 100 km2. Preliminary magnetic and radiometric data show numerous NE-trending linear anomalies within this part of the Appalachian Piedmont Province. These metamorphic and igneous rocks exhibit 200-500 nT magnetic anomalies of width 300-1000 km that are likely to be generated by contrasts between various metavolcanic and metasedimentary rocks such as magnetite-bearing quartzites and felsic to mafic gneisses. Magnetic lows and radiometric highs are observed over several granitoid intrusive bodies such as the Ellisville pluton, the Falmouth Intrusive Suite, and a Paleozoic pegmatite belt. Derivative magnetic maps delineate numerous thin (< 250 m wide) N- NNW-trending linear anomalies, suggesting that Jurassic diabase dikes are much more common in this area than previously mapped. Radiometric data mostly correlate with mapped bedrock units, but also exhibit anomalies consistent with SE fluvial transport and deposition of sediments several kilometers downstream from their sources. The probable causative fault of the Louisa County earthquake has been delineated near its hypocenter by aftershocks recorded by a network of portable seismometers, with most aftershocks occurring along a plane or planes from ~2.5 to 8 km depth (e.g. public data provided by R. Herrmann, SLU). The earthquake and aftershocks occurred near a change in orientation of primary magnetic lineations from ~N34E northeast of the earthquake to N44E southwest of the earthquake that is also visible in topographic and regional gravity trends. Magnetic anomalies are complex near the orientation change and feature arcuate lineations that bound prominent magnetic lows and abut primary lineations at angles of 20-35°. Northeast of the aftershock area, magnetic lineations are much straighter, with previous regional data suggesting that they extend essentially uninterrupted for a distance of 40 km or more. This in turn suggests broad continuity of major structures, including faults, for a significant distance to the northeast. We combine magnetic, gravity, radiometric, and geologic data to consider the relations between the M5.8 event and possible subsurface geologic features such as stratified geologic units and contacts, igneous intrusive bodies, and associated faults.

  9. Continuous hourly radon gradient observations at Cabauw, the Netherlands - a review of main features of the 2007-2009 dataset

    NASA Astrophysics Data System (ADS)

    Zahorowski, Wlodek; Vermeulen, Alex; Williams, Alastair; Chambers, Scott; Verheggen, Bart

    2010-05-01

    We report on results of the first three years of radon time series and radon gradient observations at the Cabauw site in the Netherlands (51.971oN, 4.927oE). Two 1500 L dual flow loop, two filter radon detectors with a sensitivity better than 40 mBq m-3 are installed at the site, ensuring that gradients can be defined to the required precision every hour. The inlets are mounted on the main meteorological tower at 20 m and 200 m above ground level. The Cabauw site, located 50 km inland on a polder in an agricultural region, has a simple orography with surface elevations changing by a few metres at most within a 20 km radius. The radon gradient observations are part of our larger program to characterise turbulent mixing processes throughout the lower atmosphere. The two other related measurement projects are the continuous hourly measurements of radon gradients in the surface layer on a 50 m tower at Lucas Heights, Australia (34.053°S, 150.981°E; see Chambers et al, this conference), and campaign-style measurements of radon profiles up to altitudes of 4000 m above ground level using light aircraft (see Williams et al., this conference). We observe well pronounced absolute radon and radon gradient signals at Cabauw, influenced by atmospheric processes occurring on seasonal, synoptic, and diurnal time scales. Seasonal variability. The lowest radon concentrations were observed in winter and summer, when the dominant air mass fetch was the Atlantic Ocean. In spring and autumn, concentrations were generally high, as the air mass fetch was primarily over western and/or central Europe. Even when the fetch was oceanic during the latter seasons, it was often over the North Sea where radon concentrations are perturbed by land emissions. In autumn, radon concentrations from the mainland European fetch were more than three times larger than the corresponding concentration from the Atlantic/North Sea regions. Synoptic variability. The radon signal is typically a combination of local and remote influences. Synoptic and diurnal components can be separated by comparing the radon signal at 20 m and 200 m, and by using wind speed as a selecting condition. For most of the data, the diurnal signal is strongly pronounced in the 20 m data, especially when wind speeds are lower than 3 ms-1. In low wind conditions, local influences dominate and the radon signal is predominantly a combination of local source variations and diurnal changes in the local mixing depth. On the other hand, under high wind conditions (> 7 ms-1) the remote signal dominates at both levels, reflecting variations in the radon source function over a wider fetch area, the geographic extent of which is defined by the radon half-life and prevailing wind conditions. The separation of these two signals provides an opportunity to compare subsets of radon time series and gradient observations with a column or regional model and thus evaluate mixing and transport schemes characteristic for the site and the region. Diurnal variability. Diurnal composite plots show that the 20 m signal is characterized by an early morning maximum and early afternoon minimum, predominantly reflecting changes in the boundary layer mixing depth on this time scale. The amplitude of this cycle ranged from 450 mBq m-3 in winter to 1460 mBq m-3 in spring. The 200 m Cabauw data exhibited a modest mid-morning maximum, consistent with upward mixing of radon from the surface as the nocturnal inversion breaks down.

  10. Seismic structure of the main geological provinces off the SW Iberian margin: first results from the NEAREST-SEIS wide-angle seismic survey

    NASA Astrophysics Data System (ADS)

    Sallarès, Valentí; Martínez-Loriente, Sara; Gailler, Audrey; Bartolomé, Rafael; Gutscher, Marc-André; Graindorge, David; Lia Grácia, Eulà; Díaz, Jordi

    2010-05-01

    The region offshore the SW Iberian margin hosts the present-day NW-SE plate convergence between the European and African Plates at a rate of 4.5 mm/yr, fact that causes continuous seismic activity of moderate magnitude. In autumn 2008 a Spanish-French team carried out a refraction and wide-angle reflection seismic survey in the area (NEAREST-SEIS cruise), in the framework of the EU, FP6-funded NEAREST project. During the survey two long seismic profiles were acquired using a pool of 36 Ocean Bottom Seismometers (OBS), with the objectives of providing information about the geometry of the crust-mantle boundary and the physical properties of the crust, revealing the deep geometry of the main fault interfaces, and identifying the nature of the basement and the limits of the different geological provinces in the region. A total of 30 OBS were deployed along profile P1, which is 356 km long and trends NW-SE from the Tagus abyssal plain (TAP), crossing the Gorringe bank (GB), the Horseshoe abyssal plain (HAP) and the Coral Patch Ridge (CPR), up to the thrust-and-fold belt of the Seine abyssal plain (SAP). The acquired data were modeled by joint refraction and reflection travel time inversion, following a layer-stripping strategy. The inverted model show four well-differentiated domains in terms of its seismic structure: In the TAP a 3-4 km-thick, low velocity sedimentary layer covers the basement, which shows a remarkably high velocity (>7 km/s), similar to that of the basement outcropping in the Gorringe bank. In the HAP the sedimentary cover is thicker, showing an upper unit with low velocity corresponding to the Horseshoe gravitational unit, on top of a higher velocity lower unit, which may represent the highly consolidated Mesozoic sedimentary sequence. The thickness of the two units together exceeds 5 km. The basement shows the same velocity distribution as in TAP and GB, suggesting a common nature and origin. According to its seismic structure, and considering that there is no evidence for the presence of a basal reflector (e.g. Moho) in the record sections, we interpret this basement as highly serpentinized, exhumed mantle. In contrast, the CPR and SAP show evidences for the presence of a well-developed, 6-7 km-thick oceanic crust, underlying the 2-3 km-thick, moderate velocity, Mesozoic sedimentary sequence. Profile P2 is 256 km long, and trends S-N from the easternmost SAP beyond the NW Moroccan margin, crossing the Gulf of Cadiz imbricated wedge and the Portimao bank ending at the Iberian margin shelf. 15 OBS and 7 land-stations were deployed along this profile, and the recorded data were modeled following the same approach and strategy as for P1. The inverted model shows two main domains: In the southern half, there is a 3-4 km-thick cover of low velocity sediments, which represents the western edge of the sedimentary wedge that covers the internal Gulf of Cadiz, overlying a 7-8 km-thick oceanic crust. According to recent tectonic reconstructions, this crustal segment should have been emplaced there during the early phase of continental spreading between Iberia and Africa, in the context of Mesozoic Atlantic spreading. The northern part of P2 displays a relatively sharp ocean-continent transition zone concentrated in a ~50 km-wide band, that ends with the ~30 km-thick continental crust of the SW Iberian shelf.

  11. Main Features of Plasma Control

    SciTech Connect

    Crisanti, F.; Albanese, R.; Ambrosino, G.

    2008-03-12

    In the recent years Plasma Control has always increased his importance in any advanced experiment. It is now clear that ITER will not be able to operate without a quite advanced and sophisticated control apparatus. Necessarily this system will have to integrate several different aspects of the Plasma behavior. One of the most important parts of a closed loop control system is the quality of the measurement of the plasma parameters that should be controlled. Eventually, this aspect involves sophisticated and complex diagnostic apparatus. This paper presents an overview of the present status, and further studies and developments needed, in the next future, for the design and realization of an integrated plasma control system aimed at both stabilizing the plasma non-axisymmetric instabilities and controlling the most important internal plasma parameters. In particular the Edge Localized Modes (ELMs), the Neo-Classical Tearing Modes (NTM), the Resistive Wall Mode (RWM) and the Plasma Profiles control system necessities will be shortly illustrated.

  12. Main Features of Plasma Control

    NASA Astrophysics Data System (ADS)

    Crisanti, F.; Albanese, R.; Ambrosino, G.

    2008-03-01

    In the recent years Plasma Control has always increased his importance in any advanced experiment. It is now clear that ITER will not be able to operate without a quite advanced and sophisticated control apparatus. Necessarily this system will have to integrate several different aspects of the Plasma behavior. One of the most important parts of a closed loop control system is the quality of the measurement of the plasma parameters that should be controlled. Eventually, this aspect involves sophisticated and complex diagnostic apparatus. This paper presents an overview of the present status, and further studies and developments needed, in the next future, for the design and realization of an integrated plasma control system aimed at both stabilizing the plasma non-axisymmetric instabilities and controlling the most important internal plasma parameters. In particular the Edge Localized Modes (ELMs), the Neo-Classical Tearing Modes (NTM), the Resistive Wall Mode (RWM) and the Plasma Profiles control system necessities will be shortly illustrated.

  13. Influence of geological features (geochemistry and mineralogy) of soil wich constitutes adobes in their durability - Huambo, Angola.

    NASA Astrophysics Data System (ADS)

    Duarte, Isabel; Pedro, Elsa; Varum, Humberto; Mirão, José; Pinho, António

    2014-05-01

    After long years of war, great efforts have been made for the socio-economic development of Angola, mainly in the construction industry. Among the construction techniques, the Adobe is the most used in the province of Huambo, especially by low-income families, which constitute the majority. This technique was established as a historical heritage in the culture of that population. The Huambo province is located in the central region of Angola (Central Plateau) and is bounded on the northeast and east by the province of Bié, on the south and southern by province of Huila, and on the west by the province of Benguela and on the northwest by the province of Kwanza Sul. Has an area of 35,771 km2 and approximately 2,301,524 inhabitants, which corresponds to 58 inhabitants per km2 (Government of the Province of Huambo, 2006). The buildings in this province, particularly in rural areas, were deeply marked by war. Given the current scenario of development of the country and considering the possibility of integrate systems and traditional building materials, that respect the environment and fit harmoniously into its natural habitat, one of the alternative options in the actual construction, undergoes resume old solutions and traditional materials such as adobe construction.It is in this context that this project is part of a scientific research in order to permit the improvement and optimization of these traditional solutions, responding to current demands for social, economic and environmental sustainability. The adobe is a building element with potential degradation by water. Due to the climate, subtropical, hot and humid, and geomorphology of the province, about 1000 to 2000 meters of altitude and an extensive river system, these buildings can be vulnerable and present early degradation, exacerbated by lack of knowledge of the properties of geomaterials used and techniques that allow their stabilization and conservation. This paper aims to study the influence of mineralogy and geochemistry of soils used in the production of adobes applied in the construction of habitations, mainly, because from this knowledge, we can develop alternatives to the resolution of recorded pathologies and to improve the strength and durability of those adobes. For this purpose, soil samples were collected, in which mineralogical and geochemical tests were performed. Simultaneously, durability and erodibility tests were done by the method of Geelong in the selected adobes. The results obtained from this research will identify, select and characterize the materials and methods used in construction in raw earth, contributing to the development of knowledge of these sustainable buildings solutions with a strong presence in the Huambo region. From the analysis of the data obtained will be defined a strategy for the next steps of the scientific research project in course designated "Earth Construction in Angola. Characterization, applications and potentialities.". This project aims to encourage the use of the geomaterials in ecological construction and contribute, however modestly, in building solutions with better performance characteristics, comfort, safety, durability and sustainability.

  14. Geology of the Caribbean

    USGS Publications Warehouse

    Dillon, William P.; Edgar, N.T.; Scanlon, K.M.; Klitgord, Kim D.

    1987-01-01

    The Venezuelan and Colombian basins are located on the Caribbean Plate whilst the Yucatan basin is on the North American Plate. The processes occurring at the boundaries between the Caribbean Plate and the adjacent North American, South American and Cocos Plates, and the resulting surface features and patterns of volcanic and earthquake activity are described. Most of the Caribbean area is floored by atypical oceanic crust and its most valuable main geologic resources identified so far are petroleum, together with sand and gravel. Geological research is being carried out with techniques for broad-range swath imaging of the seafloor, such as GLORIA, and for directly measuring the movement between plates. -J.G.Harvey

  15. Analysis of the OECD Main Steam Line Break Benchmark Problem Using the Refined Core Thermal-Hydraulic Nodalization Feature of the MARS/MASTER Code

    SciTech Connect

    Joo, Han Gyu; Jeong, Jae-Jun; Cho, Byung-Oh; Lee, Won Jae; Zee, Sung Quun

    2003-05-15

    The refined core thermal-hydraulics (T-H) nodalization feature of the MARS/MASTER code is used to generate a high-fidelity solution to the OECD main steam line break benchmark problem and to investigate the effects of core T-H nodalization. The MARS/MASTER coupling scheme is introduced first that enables efficient refined node core T-H calculations via the COBRA-III module. The base solution is generated using a fine T-H nodalization consisting of fuel assembly-sized radial nodes. Sensitivity studies are performed on core T-H nodalization to examine the impacts on core reactivity, power distribution, and transient behavior. The results indicate that the error in the peak local power can be very large (up to 25%) with a coarse T-H nodalization because of the inability to incorporate detailed thermal feedback. A demonstrative departure from nucleate boiling (DNB) calculation shows no occurrence of DNB in this problem.

  16. Radiocarbon Ages from Two Submerged Strandline Features in the Western Gulf of Maine and a Sea-Level Curve for the Northeastern Massachusetts Coastal Region

    USGS Publications Warehouse

    Oldale, R.N.; Colman, Steven M.; Jones, Glenn A.

    1993-01-01

    New radiocarbon dates provide ages for two submerged strandline features on the Massachusetts inner shelf. These ages provide limited control on a relative sea-level (RSL) curve for the late Wisconsinan and Holocene. The curve indicates a late Wisconsinan high stand of RSL of +33 m about 14,000 yr ago and a very short-lived relative low stand of about -43 m at about 12,000 yr ago followed by a rise to present sea level. Rapid changes of RSL around 12,000 yr ago may be related to changes in global glacial meltwater discharge and eustatic sea-level change shown by dated corals off Barbados. Variations in the magnitude and timing of RSL change from south to north along the coast of the western Gulf of Maine are due to greater crustal depression and later deglaciation to the north.

  17. Maine Ingredients

    ERIC Educational Resources Information Center

    Waters, John K.

    2009-01-01

    This article features Maine Learning Technology Initiative (MLTI), the nation's first-ever statewide 1-to-1 laptop program which marks its seventh birthday by expanding into high schools, providing an occasion to celebrate--and to examine the components of its success. The plan to put laptops into the hands of every teacher and student in grades 7…

  18. The main features of the craniate mitochondrial DNA between the ND1 and the COI genes were established in the common ancestor with the lancelet.

    PubMed

    Delarbre, C; Barriel, V; Tillier, S; Janvier, P; Gachelin, G

    1997-08-01

    We have cloned the mitochondrial DNA fragment extending from tRNA-Leu to the cytochrome oxidase subunit 1 (COI) genes of Branchiostoma lanceolatum, Myxine glutinosa, Lampetra fluviatilis, and Scyliorhinus caniculus and have determined their respective gene sequences and organization. In all four species, this region contains the ND1 and ND2 genes and the genes coding eight tRNAs, namely, tRNA-Ile, -Gln, -Met, -Trp, -Ala, -Asn, -Cys, and -Tyr. The gene order is the same in the hagfish, lamprey and dogfish. In the lancelet, the location of the tRNA genes is slightly different. The mitochondrial code of Myxine, Lampetra, and Scyliorhinus is identical to that of vertebrates. The code used by the lancelet is the same with the exception of AGA (a stop codon in vertebrates), which codes for glycine in the lancelet. From the comparison of the four maps with already published ones for other species, we propose that the main features of the craniate mtDNA between the ND1 and COI genes were established in the common ancestor to cephalochordates and vertebrates more than 400 MYA. The origin of replication of the light-strand (Ori-L), usually located between the tRNA-Asn and tRNA-Cys genes in vertebrates, was not found in the lancelet, hagfish, or lamprey (Lampetra). In contrast, it was found in the dogfish. Thus the position of Ori-L was established for the first time in the common ancestor to the Chondrichthyes and Osteichthyes and remained present in all later-emerging vertebrates. PMID:9254918

  19. Distribution of Trichloroethylene and Geologic Controls on Contaminant Pathways near the Royal River, McKin Superfund Site Area, Gray, Maine

    USGS Publications Warehouse

    Lyford, Forest P.; Flight, L.E.; Stone, Janet Radway; Clifford, Scott

    1999-01-01

    Vapor-diffusion samplers were used in the autumn of 1997 to determine the lateral extent and distribution of concentrations of a trichloroethylene (TCE) plume in the ground-water discharge area near the McKin Superfund Site, Gray, Maine. Analyses of vapor in the samplers identified a plume about 800 feet wide entering the river near Boiling Springs, an area of ground-water discharge on the flood plain of the Royal River. The highest observed concentration of TCE in vapor was in an area of sand boils on the western bank of the river and about 200 feet downstream from Boiling Springs. Previous studies showed that most of the TCE load in the river originated in the area of the sand boils. In general, highest concentrations were observed on the western side of the river on the upgradient side of the plume, but TCE also was detected at numerous locations in the center and eastern bank of the river. The TCE plume discharges to the river where fine-grained glaciomarine sediments of the Presumpscot Formation are absent and where coarse-grained facies of buried glaciomarine fan deposits provide a pathway for ground-water flow. Based on results of analyses of vapor-diffusion samples and other previous studies, the plume appears to pass under and beyond the river near Boiling Springs and along the river for about 300 feet downstream from the sand boils. A coarse-grained, organic-rich layer at the base of the alluvial flood plain sediments is confined by overlying fine-grained alluvial sediments and may provide a conduit for ground-water leaking upward from buried glaciomarine fan deposits.

  20. Evolutionary history of fumitories (subfamily Fumarioideae, Papaveraceae): An old story shaped by the main geological and climatic events in the Northern Hemisphere.

    PubMed

    Pérez-Gutiérrez, Miguel A; Romero-García, Ana T; Fernández, M Carmen; Blanca, G; Salinas-Bonillo, María J; Suárez-Santiago, Víctor N

    2015-07-01

    Fumitories (subfamily Fumarioideae, Papaveraceae) represent, by their wide mainly northern temperate distribution (also present in South Africa) a suitable plant group to use as a model system for studying biogeographical links between floristic regions of the Northern Hemisphere and also the Southern Hemisphere Cape region. However, the phylogeny of the entire Fumarioideae subfamily is not totally known. In this work, we infer a molecular phylogeny of Fumarioideae, which we use to interpret the biogeographical patterns in the subfamily and to establish biogeographical links between floristic regions, such as those suggested by its different inter- and intra-continental disjunctions. The tribe Hypecoeae is the sister group of tribe Fumarieae, this latter holding a basal grade of monotypic or few-species genera with bisymmetric flowers, and a core group, Core Fumarieae, of more specious rich genera with zygomorphic flowers. The biogeographical analysis shows a subfamily that originated in East Asia at the end of the Early Cretaceous. From here, ancestral range expansions followed three different directions, one at the beginning of the Late Cretaceous by the ancestor of tribe Hypecoeae towards central Asia, and two during the Cretaceous-Palaeogene transition towards western North America and Indochina by the ancestor of the tribe Fumarieae. The ancestor of Core Fumarieae expanded its range from East Asia into the Himalayas before to the middle Eocene. The uplifts of the Qinghai-Tibetan Plateau together with the zonal climate pattern of the Palaeogene are suggested to be responsible both for the accelerated diversification rate resulting in the origin of the basal lineages of Core Fumarieae as well as for the westward migration of the ancestor of Fumarieae s.str. into the Irano-Turanian region. From here, this latter group reached South Africa during late Eocene and Mediterranean basin during Oligocene. There were two colonization waves of the Mediterranean following two different routes: a northern route during the early Oligocene by the subtribe Sarcocapninae, probably facilitated by the land bridge resulting of the Mediterranean microplate accretion; and a southern route into North Africa, through the Gomphotherium land bridge, taken by the subtribe Fumariinae between late Oligocene and middle Miocene. PMID:25862377

  1. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Grant, John A., III; Nedell, Susan S.

    1987-01-01

    The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed.

  2. Advances in planetary geology

    SciTech Connect

    Not Available

    1987-06-01

    The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed.

  3. Environmental Geology

    ERIC Educational Resources Information Center

    Dunn, James R.

    1977-01-01

    Discusses ways that geologic techniques can be used to help evaluate our environment, make economic realities and environmental requirements more compatible, and expand the use of geology in environmental analyses. (MLH)

  4. Mathematical Geology.

    ERIC Educational Resources Information Center

    Jones, Thomas A.

    1983-01-01

    Mathematical techniques used to solve geological problems are briefly discussed (including comments on use of geostatistics). Highlights of conferences/meetings and conference papers in mathematical geology are also provided. (JN)

  5. Archeological Geology

    ERIC Educational Resources Information Center

    Rapp, George

    1977-01-01

    Describes the rapid expansion of archeological geology, especially in the area of archeological excavations, where geologists use dating techniques and knowledge of geological events to interpret archeological sites. (MLH)

  6. Environmental Geology

    ERIC Educational Resources Information Center

    Passero, Richard N.

    1978-01-01

    1977 was a year of continued and expanding efforts in the application of the geosciences to land-use planning, especially as they relate to geologic hazards, and elucidating the role of geology in public policy. The work of environmental geological programs is reviewed. (Author/MA)

  7. Adventitial Alterations Are the Main Features in Pulmonary Artery Remodeling due to Long-Term Chronic Intermittent Hypobaric Hypoxia in Rats

    PubMed Central

    Brito, Julio; Siques, Patricia; Arribas, Silvia M.; López de Pablo, Angel L.; González, M. Carmen; Naveas, Nelson; Flores, Karen; León-Velarde, Fabiola; Pulido, Ruth; Ordenes, Stefany; López, M. Rosario

    2015-01-01

    Long-term chronic intermittent exposure to altitude hypoxia is a labor phenomenon requiring further research. Using a rat model, we examined whether this type of exposure differed from chronic exposure in terms of pulmonary artery remodeling and other features. Rats were subjected to chronic hypoxia (CH, n = 9) and long-term intermittent hypoxia (CIH2x2; 2 days of hypoxia/2 days of normoxia, n = 10) in a chamber (428 Torr, 4,600 m of altitude) for 46 days and compared to rats under normoxia (NX, n = 10). Body weight, hematocrit, and right ventricle ratio were measured. Pulmonary artery remodeling was assessed using confocal microscopy of tissues stained with a nuclear dye (DAPI) and CD11b antibody. Both hypoxic conditions exhibited increased hematocrit and hypertrophy of the right ventricle, tunica adventitia, and tunica media, with no changes in lumen size. The medial hypertrophy area (larger in CH) depicted a significant increase in smooth muscle cell number. Additionally, CIH2x2 increased the adventitial hypertrophy area, with an increased cellularity and a larger prevalence of clustered inflammatory cells. In conclusion, CIH2x2 elicits milder effects on pulmonary artery medial layer muscularization and subsequent right ventricular hypertrophy than CH. However, CIH2x2 induces greater and characteristic alterations of the adventitial layer. PMID:25738150

  8. Bacterial Community Features Are Shaped by Geographic Location, Physicochemical Properties, and Oil Contamination of Soil in Main Oil Fields of China.

    PubMed

    Liao, Jingqiu; Wang, Jie; Huang, Yi

    2015-08-01

    Geographic location and physicochemical properties are thought to represent major factors that shape soil bacterial community abundance and diversity. Crude oil contamination is becoming a notable concern with respect to soil property variation; however, the quantifiable influences of geographic location, physicochemical properties, and oil contamination are still poorly understood. In this study, the 16S ribosomal RNA genes of bacteria in the four oil fields in China were analyzed by using pyrosequencing. Results showed that physicochemical properties were the most dominant factor of bacterial community distribution, followed by geographical location. Oil contamination was a driving factor whose indirect influence was stronger than its direct influence. Under the impact of these three factors, different oil fields presented diversified and distinguishable bacterial community features. The soil of sites with the highest total petroleum hydrocarbon content (HB), nitrogen content (DQ), and phosphorus content (XJ) contained the largest proportion of functional groups participating in hydrocarbon degradation, nitrogen turnover, and phosphorus turnover, respectively. The first dominant phylum of the site with loam soil texture (HB) was Actinobacteria instead of Proteobacteria in other sites with sandy or sandy loam soil texture (DQ, SL, XJ). The site with the highest salinization and alkalization (SL) exhibited the largest proportion of unique local bacteria. The site that was located in the desert with extremely low precipitation (XJ) had the most diversified bacteria distribution. The bacterial community diversity was strongly influenced by soil physicochemical properties. PMID:25676171

  9. Old Geology and New Geology

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 28 May 2003

    Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.

    Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. "Spacecraft Reveals Recent Geological Activity on the Moon": Exploring the Features of NASA Twitter Posts and Their Potential to Engage Adolescents

    ERIC Educational Resources Information Center

    Lesley, Mellinee

    2014-01-01

    Through a content analysis of 200 "tweets," this study was an exploration into the distinct features of text posted to NASA's "Twitter" site and the potential for these posts to serve as more engaging scientific text than traditional textbooks for adolescents. Results of the content analysis indicated the tweets and linked

  11. "Spacecraft Reveals Recent Geological Activity on the Moon": Exploring the Features of NASA Twitter Posts and Their Potential to Engage Adolescents

    ERIC Educational Resources Information Center

    Lesley, Mellinee

    2014-01-01

    Through a content analysis of 200 "tweets," this study was an exploration into the distinct features of text posted to NASA's "Twitter" site and the potential for these posts to serve as more engaging scientific text than traditional textbooks for adolescents. Results of the content analysis indicated the tweets and linked…

  12. Observation of Main-Group Tricarbonyls [B(CO)3 ] and [C(CO)3 ](+) Featuring a Tilted One-Electron Donor Carbonyl Ligand.

    PubMed

    Jian, Jiwen; Jin, Jiaye; Qu, Hui; Lin, Hailu; Chen, Mohua; Wang, Guanjun; Zhou, Mingfei; Andrada, Diego M; Hermann, Markus; Frenking, Gernot

    2016-02-01

    A combined experimental and theoretical study on the main-group tricarbonyls [B(CO)3 ] in solid noble-gas matrices and [C(CO)3 ](+) in the gas phase is presented. The molecules are identified by comparing the experimental and theoretical IR spectra and the vibrational shifts of nuclear isotopes. Quantum chemical ab initio studies suggest that the two isoelectronic species possess a tilted η(1) (μ1 -CO)-bonded carbonyl ligand, which serves as an unprecedented one-electron donor ligand. Thus, the central atoms in both complexes still retain an 8-electron configuration. A thorough analysis of the bonding situation gives quantitative information about the donor and acceptor properties of the different carbonyl ligands. The linearly bonded CO ligands are classical two-electron donors that display classical σ-donation and π-back-donation following the Dewar-Chatt-Duncanson model. The tilted CO ligand is a formal one-electron donor that is bonded by σ-donation and π-back-donation that involves the singly occupied orbital of the radical fragments [B(CO)2 ] and [C(CO)2 ](+) . PMID:26773594

  13. Climatic change and quasi-oscillations in central-west Argentina summer precipitation: main features and coherent behaviour with southern African region

    NASA Astrophysics Data System (ADS)

    Compagnucci, R. H.; Agosta, E. A.; Vargas, W. M.

    Summer rainfall variability (October to March) shows inter-annual to multi-decadal fluctuations over a vast area of subtropical Argentina between 28°S-38°S and 65°W-70°W. Statistically significant oscillations of quasi-period in the bands of 18-21, 6, 4 and 2 years can be found throughout the region and intra-regionally, though the latter are variable. The lower frequency variation produces alternating episodes of above and below normal rainfall each lasting roughly 9 years. This quasi-fluctuation appears to be shared with the summer rainfall region of South Africa and were in-phase related one another until mid-1970s. The teleconnection between both subtropical regions could be generated by an atmospheric-oceanic bridge through the global sea surface temperatures (SSTs), particularly those of the equatorial-tropical South Atlantic. From mid-1970s, the alternating wet and dry pattern has been interrupted in the Argentine region producing the longest, as yet unfinished, wet spell of the century. Thus, a significant change of the long-term variation was observed around 1977 toward lower frequencies. Since then the statistical model that explains more than 89% of the variance of the series until 1977, diverges from the observed values in the 1980s and 1990s. In addition the Yamamoto statistical index, employed to detect a climatic jump, reaches its major value in 1973 at the beginning of the current long wet spell. Therefore the change could be located between 1973 and 1977. Application of the t-student's test gives significant differences of mean values for pre-1977 and post-1977 sub-samples from both individual time series and the regional index series. The spectral analysis also shows changes in energy bands in concordance with the features of the change that occurred from mid-1970s. The change gives rise to a significant increment of more than 20% in average of normal rainfall over the region. Conversely, a drought between mid-1980s and the 1990s has been observed in the South African counterpart with severe characteristics, thereby continuing the quasi-18-year oscillation. Consequently, the low-frequency coherent behaviour between both the Argentine and South African regions is lost from the mid-1970s. The analysis of association of wet/dry spells and warm/cold, El Niño/La Niña episodes appears to be not significant at scales of year-to-year variability although at decadal to multi-decadal scales the association could be relevant. More than one process of multi-decadal variability of global SSTs could influence the Argentine summer rainfall region and the former bi-decadal teleconnection. Finally, potential hypothetical factors of change are discussed, such as the strengthening of direct and indirect mechanisms of moisture flux transport associated with global warming, low-level atmospheric circulation changes and/or to SSTs mean condition long-term variations over tropical and subtropical South Atlantic and South Pacific oceans.

  14. Mapping distribution and thickness of supraglacial debris in the Central Karakoram National Park: main features and implications to model glacier meltwater

    NASA Astrophysics Data System (ADS)

    Minora, Umberto; Mayer, Christoph; Bocchiola, Daniele; D'Agata, Carlo; Maragno, Davide; Lambrecht, Astrid; Vuillermoz, Elisa; smiraglia, claudio; diolaiuti, guglielmina

    2014-05-01

    Supraglacial debris plays a not negligible role in controlling magnitude and rates of buried ice melt (Østrem, 1959; Mattson et al., 1993). Knowledge on rock debris is essential to model ice melt (and consequently meltwater discharge) upon wide glacierized areas, as melt rates are mainly driven by debris thickness variability. This is particularly important for the Pamir-Himalaya-Karakoram area (PHK), where debris-covered glaciers are frequent (Smiraglia et al., 2007; Scherler et al., 2011) and where melt water from glaciers supports agriculture and hydropower production. By means of remote sensing techniques and field data, supraglacial debris can be detected, and then quantified in area and thickness. Supervised classifications of satellite imagery can be used to map debris on glaciers. They use different algorithms to cluster an image based on its pixel values, and Region Of Interests (ROIs) previously selected by the human operator. This can be used to obtain a supraglacial debris mask by which surface extension can be calculated. Moreover, kinetic surface temperature data derived from satellites (such as ASTER and Landsat), can be used to quantify debris thicknesses (Mihalcea et al., 2008). Ground Control Points (GCPs) are essential to validate the obtained debris thicknesses. We took the Central Karakoram National Park (CKNP) as a representative sample for PHK area. The CKNP is 12,000 km2 wide, with more than 700 glaciers, mostly debris covered (Minora et al., 2013). Among those we find some of the widest glaciers of the World (e.g: Baltoro). To improve the knowledge on these glaciers and to better model their melt and water discharge we proceeded as follows. Firstly we ran a Supervised Maximum Likelihood (SML) classification on 2001 and 2010 Landsat images to detect debris presence and distribution. Secondly we analyzed kinetic surface temperature (from Landsat) to map debris depth. This latter attempt took also advantage from field data of debris thickness and surface rock temperatures acquired in the study area since the ablation season 2004 (see Mihalcea et al., 2006; 2008b). A mean debris thickness of ca. 5.6 cm was found, probably greater than the local "critical value" (sensu Mattson et al., 1993). Moreover, our field data indicate a local critical value of about 5 cm, above which supraglacial debris thickness would lower ice melt rates compared to that of bare ice (Mihalcea et al., 2006). These findings suggest that in the CKNP area the abundant and extensive debris coverage may result in an actual reduction of buried ice melt. Moreover, Minora et al. (2013) reported quite stable conditions of glaciers in the CKNP area in the time window 2001-2011. This glacier behavior is consistent with the largely known "Karakoram Anomaly" (Hewitt, 2005) and requires further investigations. Among other possible important factors driving such a unique glacier trend, debris depth and distribution have to be considered. This work was carried out under the umbrella of the PAPRIKA project funded and managed by EvK2CNR Committee. The authors are also grateful to the SEED project (funded by the Pakistani and Italian Governments and managed by EvK2CNR).

  15. The geology of Ganymede

    NASA Technical Reports Server (NTRS)

    Shoemaker, E. M.; Lucchitta, B. K.; Wilhelms, D. E.; Plescia, J. B.; Squyres, S. W.

    1982-01-01

    A broad outline of the geologic history of Ganymede is presented, obtained from a first attempt to map the geology on a global scale and to interpret the characteristics of the observed geologic units. Features of the ancient cratered terrain such as craters and palimpsests, furrows and troughs, are discussed. The grooved terrain is described, including its sulci and cells, and the age relation of these units is considered along with the structure and origin of this terrain. The Gilgamesh Basin and Western Equatorial Basin in the post grooved terrain are treated, as are the bright and dark ray craters and the regolith. The development of all these regions and features is discussed in context. For the regolith, this includes the effect of water migration, sputtering, and thermal annealing. The histories of the ancient cratered terrain, the grooved terrain, and the post grooved terrain are presented.

  16. The geology of Ganymede

    NASA Astrophysics Data System (ADS)

    Shoemaker, E. M.; Lucchitta, B. K.; Wilhelms, D. E.; Plescia, J. B.; Squyres, S. W.

    A broad outline of the geologic history of Ganymede is presented, obtained from a first attempt to map the geology on a global scale and to interpret the characteristics of the observed geologic units. Features of the ancient cratered terrain such as craters and palimpsests, furrows and troughs, are discussed. The grooved terrain is described, including its sulci and cells, and the age relation of these units is considered along with the structure and origin of this terrain. The Gilgamesh Basin and Western Equatorial Basin in the post grooved terrain are treated, as are the bright and dark ray craters and the regolith. The development of all these regions and features is discussed in context. For the regolith, this includes the effect of water migration, sputtering, and thermal annealing. The histories of the ancient cratered terrain, the grooved terrain, and the post grooved terrain are presented.

  17. "Geological metadata" to share field geological knowledge and related map generalizations

    NASA Astrophysics Data System (ADS)

    Balestro, G.; Bini, S.; Piana, F.; Tallone, S.

    2009-04-01

    Sharing of geological information on the Web is rapidly increasing and steadily supported by ongoing IT innovation. Since GIS databases, metadata (MD) and spatial data infrastructures are tools gradually used in Earth science, concepts such as clearness, usefulness, quality and use constraints of web disseminated data, become matters of interest for the communities of geologists In field geosciences, the possibility to share actually understandable information is constrained by the peculiar approach adopted in knowledge acquisition (field survey) and knowledge representation (geological maps). Datasets comprehend both measurements/observations and applications of conceptual models, achieved with a large use of implicit knowledge that characterizes the analysis, processing and interpretation of original data. Field geological knowledge is biased by geologists' subjectivity and constrained by different type of uncertainties coming from capture methods, interpretative models and map generalizations. Shared information need thus specifications about i) the intended meanings of adopted concepts, ii) the physical paths (i.e. the operational steps concerning data acquisition on the field), iii) the knowledge paths (interpretation steps performed on data). Field geological data have to be organized in conceptually-driven systems, where explained information get retraceable. An attempt to reach this goal has been recently carried out by CNR IGG TO working group in the IDE-Univers project, by setting up a geoportal (http://www.geoportal-idec.net/ideunivers/), where geological information are described through ISO19915 MD standard and shared through WMS technology. The CNR IGGTO Server contains field data and related geological maps mainly stored in the frame of the CARG project (1:50000 Geological Map of Italy). Our strategy is to get this information conceptually described, using the Geographic MD international standard for the geological context, in order to give geological interpretations in an explicit format. These "geological metadata" have been compiled mainly as regard the "Identification" and the "Data Quality" classes. The Abstract element (Identification class) explains the criteria on which data are interpreted and the meaning of them, giving the peculiarities of interpreted features. The Resource Locator element (Identification class) allows to link datasets with conceptual supplemental information (conceptual schemas), where concepts and methods adopted in the acquisition of knowledge are given. The Lineage element (Data Quality class) gives the different process steps performed on data, specifying the provenance of interpreted features and making them retraceable. A further improvement of the readability of the information stored in the CNR IGGTO geoportal, is presently carried out in the frame of GIIDA project (an initiative to implement the Spatial Information Infrastructure of CNR for Environmental and Earth Observation data) by development of Wiki sites linkable to the MD sheets.

  18. Northeastern regional geologic characterization report, volume 1

    NASA Astrophysics Data System (ADS)

    1985-08-01

    This report presents available geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. For each of the states within the Northeastern Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening. The geologic factor and variables include deep mines and quarries, rock mass extent, postemplacement faulting, suspected Quaternary faulting, seismicity, rock and mineral resources, major ground-water discharge zones, ground-water resources, state of stress, thickness of rock mass, and thickness of overburden. Information is presented on age, areal extent, shape, composition, texture, degree and type of alteration, thickness, and structural features associated with each rock body or complex. Regional seismic and tectonic information is presented, including patterns of earthquake occurrence, earthquake magnitudes, horizontal ground accelerations, and vertical crusal movements. Also included are discussions of the rock and mineral deposits or mines located within or near crystalline bodies; ground-water resources and regional hydrology; postulated changes in climate and the associated effects; and landforms, surface processes, and surficial materials on or near the rock bodies. A discussion is also presented on the relationship between the US Department of Energy (DOE) Siting Guidelines (10 CFR 960) and the geologic disqualifying factor and regional screening variables to be used in the region-to-area screening process.

  19. Humboldt River main stem, Nevada

    USGS Publications Warehouse

    Warmath, Eric; Medina, Rose L.

    2001-01-01

    This data set contains the main stem of the Humboldt River as defined by Humboldt Project personnel of the U.S. Geological Survey Nevada District, 2001. The data set was digitized on screen using digital orthophoto quadrangles from 1994.

  20. Archeological Geology.

    ERIC Educational Resources Information Center

    Gifford, John A.

    1983-01-01

    Discusses some of the publication outlets, from international to relatively esoteric, used in archeological geology and comments on a possible future trend in publication of archeological-geology research. Publication outlets considered include books (including those published by university presses), journals, and government publications.…

  1. Engineering Geology

    ERIC Educational Resources Information Center

    Hatheway, Allen W.

    1978-01-01

    Engineering geology remains a potpourri of applied classical geology, and 1977 witnessed an upswing in demand for these services. Traditional foundation-related work was slight, but construction related to national needs increased briskly. Major cities turned to concerns of transit waste-water treatment and solid-waste disposal. (Author/MA)

  2. Geological gyrocompass

    NASA Astrophysics Data System (ADS)

    McKeown, M. H.; Beason, S. C.

    1988-08-01

    The geological gyrocompass is an accurate, portable instrument useful for geologic mapping and surveying which employs an aircraft gyrocompass, strike reference bars, a pair of sights and levelling devices for horizontally levelling the instrument. A clinometer graduated in degrees indicates the dip of the surface being measured.

  3. Geologic features of the sea bottom around a municipal sludge dumpsite near 39 degrees N., 73 degrees W., offshore New Jersey and New York

    USGS Publications Warehouse

    Robb, James M.

    1994-01-01

    The sea-floor of a dumpsite area offshore New York and New Jersey (Deep-water dumpsite 106) was studied using detailed bathymetry, sidescan-sonar images, subbottom profiles, bottom photographs, and bottom-sediment samples. These data show that this continental rise area contains deposits of submarine landslides and pathways of sediment gravity flows. Images of the sea floor obtained with a deep-towed high-resolution sidescan sonar system show offshore-trending furrowed surfaces over parts of the area. If such furrows are old, one might expect them to have been obliterated by sediment resuspension and redeposition due to the mostly gentle contour-parallel bottom currents that are measured in the present day. While most of the sea-floor features were probably formed during Pleistocene or early Holocene (glacial or early post-glacial) times, our information suggests that vigorous present-day episodes of offshore-directed transport may continue to occur, at unknown intervals.

  4. Glamorous Education: Main Features and Manifestations

    ERIC Educational Resources Information Center

    Mikhailovna, Nikolaeva Evgeniya; Dmitrievich, Schelkunov Mikhail

    2014-01-01

    Being a powerful social trend glamour culture has significant effect on a high education that results in the phenomenon of glamorous education (glam-education). Prerequisites of this type of education are democratization of high school that introduces stereotypes of glam-culture in educational environment; commercialization of education that uses…

  5. MAINE OTRANS

    EPA Science Inventory

    OTRANS represents other transportation features - electric, pipeline, railroad, and telephone lines at 1:24,000 scale. Some New Hampshire and New Brunswick features are also included. Data for this coverage were digitized from USGS 1:24000 scale quadrangle maps by various contra...

  6. MAINE POPULATION

    EPA Science Inventory

    MEPOP250 depicts Maine's 1950-1990 population data by town or Census in unorganized territories. Populations were compiled from US Census Bureau data where available or from Maine Municipal Information (mainly for older records). Unorganized towns with very low or zero pop...

  7. Searching the Sinus Amoris: Using profiles of geological units, impact and volcanic features to characterize a major terrane interface on the Moon

    NASA Astrophysics Data System (ADS)

    Clark, P.; Joerg, S.; Dehon, R.

    1994-02-01

    Geochemical profiles of surface units, impact, and volcanic features are studied in detail to determine the underlying structure in an area of extensive mare/highland interface, Sinus Amoris. This study region includes and surrounds the northeastern embayment of Mare Tranquillitatis. The concentrations of two major rock-forming elements (Mg and Al), which were derived from the Apollo 15 orbital geochemical measurements, were used in this study. Mapped units and deposits associated with craters in the northwestern part of the region tend to have correlated low Mg and Al concentrations, indicating the presence of Potassium (K)-Rare Earth Elements (REE)-Phosphorus (P) (KREEP)-enriched basalt. Found along the northeastern rim of Tranquillitatis were areas with correlated high Mg and Al concentration, indicating the presence of troctolite. Distinctive west/east and north/south trends were observed in the concentrations of Mg and Al, and, by implication, in the distribution of major rock components on the surface. Evidence for a systematic geochemical transition in highland or basin-forming units may be observed here in the form of distinctive differences in chemistry in otherwise similar units in the western and eastern portions of the study region.

  8. Searching the Sinus Amoris: Using profiles of geological units, impact and volcanic features to characterize a major terrane interface on the Moon

    NASA Technical Reports Server (NTRS)

    Clark, P.; Joerg, S.; Dehon, R.

    1994-01-01

    Geochemical profiles of surface units, impact, and volcanic features are studied in detail to determine the underlying structure in an area of extensive mare/highland interface, Sinus Amoris. This study region includes and surrounds the northeastern embayment of Mare Tranquillitatis. The concentrations of two major rock-forming elements (Mg and Al), which were derived from the Apollo 15 orbital geochemical measurements, were used in this study. Mapped units and deposits associated with craters in the northwestern part of the region tend to have correlated low Mg and Al concentrations, indicating the presence of Potassium (K)-Rare Earth Elements (REE)-Phosphorus (P) (KREEP)-enriched basalt. Found along the northeastern rim of Tranquillitatis were areas with correlated high Mg and Al concentration, indicating the presence of troctolite. Distinctive west/east and north/south trends were observed in the concentrations of Mg and Al, and, by implication, in the distribution of major rock components on the surface. Evidence for a systematic geochemical transition in highland or basin-forming units may be observed here in the form of distinctive differences in chemistry in otherwise similar units in the western and eastern portions of the study region.

  9. Geologic time

    USGS Publications Warehouse

    Newman, William L.

    2000-01-01

    The Earth is very old 4 1/2 billion years or more according to recent estimates. This vast span of time, called geologic time by earth scientists, is difficult to comprehend in the familiar time units of months and years, or even centuries. How then do scientists reckon geologic time, and why do they believe the Earth is so old? A great part of the secret of the Earth's age is locked up in its rocks, and our centuries-old search for the key led to the beginning and nourished the growth of geologic science.

  10. Environmental Geology

    ERIC Educational Resources Information Center

    Everett, A. Gordon

    1972-01-01

    Briefly summarizes the major applications, during 1971, of geology to environmental problems in the United States and mentions some of the related literature from professional meetings and from other publications. (PR)

  11. Engineering Geology

    ERIC Educational Resources Information Center

    Lee, Fitzhugh T.

    1974-01-01

    Briefly reviews the increasing application of geologic principles, techniques and data to engineering practices in the areas of land use and zoning controls, resource management energy programs and other fields. (BR)

  12. Geology, summary

    NASA Technical Reports Server (NTRS)

    Sabins, F. F., Jr.

    1975-01-01

    Trends in geologic application of remote sensing are identified. These trends are as follows: (1) increased applications of orbital imagery in fields such as engineering and environmental geology - some specific applications include recognition of active earthquake faults, site location for nuclear powerplants, and recognition of landslide hazards; (2) utilization of remote sensing by industry, especially oil and gas companies, and (3) application of digital image processing to mineral exploration.

  13. Bazhenov fm unconventional reservoir 3D geological modeling methodology

    NASA Astrophysics Data System (ADS)

    Telnova, A.; Baranov, V.; Bukhanov, N.

    2016-03-01

    The Bazhenov Formation has been studied for more than 50 years, but its petroleum potential, optimal STOIIP or resource estimation approaches, the methodology used to select a reservoir, determine its properties are still unclear. The distinctive features of bituminous shale are specific geochemical properties chosen as basic parameters to perform the geological modeling of the Bazhenov deposits and determine the key areas. The main objective of this paper is to choose an optimal 3D geological modeling algorithm and test conventional (petrophysical) and specific (geochemical) properties.

  14. ReliefSeq: a gene-wise adaptive-K nearest-neighbor feature selection tool for finding gene-gene interactions and main effects in mRNA-Seq gene expression data.

    PubMed

    McKinney, Brett A; White, Bill C; Grill, Diane E; Li, Peter W; Kennedy, Richard B; Poland, Gregory A; Oberg, Ann L

    2013-01-01

    Relief-F is a nonparametric, nearest-neighbor machine learning method that has been successfully used to identify relevant variables that may interact in complex multivariate models to explain phenotypic variation. While several tools have been developed for assessing differential expression in sequence-based transcriptomics, the detection of statistical interactions between transcripts has received less attention in the area of RNA-seq analysis. We describe a new extension and assessment of Relief-F for feature selection in RNA-seq data. The ReliefSeq implementation adapts the number of nearest neighbors (k) for each gene to optimize the Relief-F test statistics (importance scores) for finding both main effects and interactions. We compare this gene-wise adaptive-k (gwak) Relief-F method with standard RNA-seq feature selection tools, such as DESeq and edgeR, and with the popular machine learning method Random Forests. We demonstrate performance on a panel of simulated data that have a range of distributional properties reflected in real mRNA-seq data including multiple transcripts with varying sizes of main effects and interaction effects. For simulated main effects, gwak-Relief-F feature selection performs comparably to standard tools DESeq and edgeR for ranking relevant transcripts. For gene-gene interactions, gwak-Relief-F outperforms all comparison methods at ranking relevant genes in all but the highest fold change/highest signal situations where it performs similarly. The gwak-Relief-F algorithm outperforms Random Forests for detecting relevant genes in all simulation experiments. In addition, Relief-F is comparable to the other methods based on computational time. We also apply ReliefSeq to an RNA-Seq study of smallpox vaccine to identify gene expression changes between vaccinia virus-stimulated and unstimulated samples. ReliefSeq is an attractive tool for inclusion in the suite of tools used for analysis of mRNA-Seq data; it has power to detect both main effects and interaction effects. Software Availability: http://insilico.utulsa.edu/ReliefSeq.php. PMID:24339943

  15. ReliefSeq: A Gene-Wise Adaptive-K Nearest-Neighbor Feature Selection Tool for Finding Gene-Gene Interactions and Main Effects in mRNA-Seq Gene Expression Data

    PubMed Central

    McKinney, Brett A.; White, Bill C.; Grill, Diane E.; Li, Peter W.; Kennedy, Richard B.; Poland, Gregory A.; Oberg, Ann L.

    2013-01-01

    Relief-F is a nonparametric, nearest-neighbor machine learning method that has been successfully used to identify relevant variables that may interact in complex multivariate models to explain phenotypic variation. While several tools have been developed for assessing differential expression in sequence-based transcriptomics, the detection of statistical interactions between transcripts has received less attention in the area of RNA-seq analysis. We describe a new extension and assessment of Relief-F for feature selection in RNA-seq data. The ReliefSeq implementation adapts the number of nearest neighbors (k) for each gene to optimize the Relief-F test statistics (importance scores) for finding both main effects and interactions. We compare this gene-wise adaptive-k (gwak) Relief-F method with standard RNA-seq feature selection tools, such as DESeq and edgeR, and with the popular machine learning method Random Forests. We demonstrate performance on a panel of simulated data that have a range of distributional properties reflected in real mRNA-seq data including multiple transcripts with varying sizes of main effects and interaction effects. For simulated main effects, gwak-Relief-F feature selection performs comparably to standard tools DESeq and edgeR for ranking relevant transcripts. For gene-gene interactions, gwak-Relief-F outperforms all comparison methods at ranking relevant genes in all but the highest fold change/highest signal situations where it performs similarly. The gwak-Relief-F algorithm outperforms Random Forests for detecting relevant genes in all simulation experiments. In addition, Relief-F is comparable to the other methods based on computational time. We also apply ReliefSeq to an RNA-Seq study of smallpox vaccine to identify gene expression changes between vaccinia virus-stimulated and unstimulated samples. ReliefSeq is an attractive tool for inclusion in the suite of tools used for analysis of mRNA-Seq data; it has power to detect both main effects and interaction effects. Software Availability: http://insilico.utulsa.edu/ReliefSeq.php. PMID:24339943

  16. ECOSYSTEM MODELING IN COBSCOOK BAY, MAINE:A SUMMARY, PERSPECTIVE, AND LOOK FORWARD

    EPA Science Inventory

    In the mid-1990s, an interdisciplinary, multi-institutional team of scientists was assembled to address basic issues concerning biological productivity and the unique co-occurrence of many unusual ecological features in Cobscook Bay, Maine. Cobscook Bay is a geologically complex,...

  17. Theoretical geology

    NASA Astrophysics Data System (ADS)

    Mikeš, Daniel

    2010-05-01

    Theoretical geology Present day geology is mostly empirical of nature. I claim that geology is by nature complex and that the empirical approach is bound to fail. Let's consider the input to be the set of ambient conditions and the output to be the sedimentary rock record. I claim that the output can only be deduced from the input if the relation from input to output be known. The fundamental question is therefore the following: Can one predict the output from the input or can one predict the behaviour of a sedimentary system? If one can, than the empirical/deductive method has changes, if one can't than that method is bound to fail. The fundamental problem to solve is therefore the following: How to predict the behaviour of a sedimentary system? It is interesting to observe that this question is never asked and many a study is conducted by the empirical/deductive method; it seems that the empirical method has been accepted as being appropriate without question. It is, however, easy to argument that a sedimentary system is by nature complex and that several input parameters vary at the same time and that they can create similar output in the rock record. It follows trivially from these first principles that in such a case the deductive solution cannot be unique. At the same time several geological methods depart precisely from the assumption, that one particular variable is the dictator/driver and that the others are constant, even though the data do not support such an assumption. The method of "sequence stratigraphy" is a typical example of such a dogma. It can be easily argued that all the interpretation resulting from a method that is built on uncertain or wrong assumptions is erroneous. Still, this method has survived for many years, nonwithstanding all the critics it has received. This is just one example of the present day geological world and is not unique. Even the alternative methods criticising sequence stratigraphy actually depart from the same erroneous assumptions and do not solve the very fundamental issue that lies at the base of the problem. This problem is straighforward and obvious: a sedimentary system is inherently four-dimensional (3 spatial dimensions + 1 temporal dimension). Any method using an inferior number or dimensions is bound to fail to describe the evolution of a sedimentary system. It is indicative of the present day geological world that such fundamental issues be overlooked. The only reason for which one can appoint the socalled "rationality" in todays society. Simple "common sense" leads us to the conclusion that in this case the empirical method is bound to fail and the only method that can solve the problem is the theoretical approach. Reasoning that is completely trivial for the traditional exact sciences like physics and mathematics and applied sciences like engineering. However, not for geology, a science that was traditionally descriptive and jumped to empirical science, skipping the stage of theoretical science. I argue that the gap of theoretical geology is left open and needs to be filled. Every discipline in geology lacks a theoretical base. This base can only be filled by the theoretical/inductive approach and can impossibly be filled by the empirical/deductive approach. Once a critical mass of geologists realises this flaw in todays geology, we can start solving the fundamental problems in geology.

  18. Main Report

    PubMed Central

    2006-01-01

    Background: States vary widely in their use of newborn screening tests, with some mandating screening for as few as three conditions and others mandating as many as 43 conditions, including varying numbers of the 40+ conditions that can be detected by tandem mass spectrometry (MS/MS). There has been no national guidance on the best candidate conditions for newborn screening since the National Academy of Sciences report of 19751 and the United States Congress Office of Technology Assessment report of 1988,2 despite rapid developments since then in genetics, in screening technologies, and in some treatments. Objectives: In 2002, the Maternal and Child Health Bureau (MCHB) of the Health Resources and Services Administration (HRSA) of the United States Department of Health and Human Services (DHHS) commissioned the American College of Medical Genetics (ACMG) to: Conduct an analysis of the scientific literature on the effectiveness of newborn screening.Gather expert opinion to delineate the best evidence for screening for specified conditions and develop recommendations focused on newborn screening, including but not limited to the development of a uniform condition panel.Consider other components of the newborn screening system that are critical to achieving the expected outcomes in those screened. Methods: A group of experts in various areas of subspecialty medicine and primary care, health policy, law, public health, and consumers worked with a steering committee and several expert work groups, using a two-tiered approach to assess and rank conditions. A first step was developing a set of principles to guide the analysis. This was followed by developing criteria by which conditions could be evaluated, and then identifying the conditions to be evaluated. A large and broadly representative group of experts was asked to provide their opinions on the extent to which particular conditions met the selected criteria, relying on supporting evidence and references from the scientific literature. The criteria were distributed among three main categories for each condition: The availability and characteristics of the screening test;The availability and complexity of diagnostic services; andThe availability and efficacy of treatments related to the conditions. A survey process utilizing a data collection instrument was used to gather expert opinion on the conditions in the first tier of the assessment. The data collection format and survey provided the opportunity to quantify expert opinion and to obtain the views of a diverse set of interest groups (necessary due to the subjective nature of some of the criteria). Statistical analysis of data produced a score for each condition, which determined its ranking and initial placement in one of three categories (high scoring, moderately scoring, or low scoring/absence of a newborn screening test). In the second tier of these analyses, the evidence base related to each condition was assessed in depth (e.g., via systematic reviews of reference lists including MedLine, PubMed and others; books; Internet searches; professional guidelines; clinical evidence; and cost/economic evidence and modeling). The fact sheets reflecting these analyses were evaluated by at least two acknowledged experts for each condition. These experts assessed the data and the associated references related to each criterion and provided corrections where appropriate, assigned a value to the level of evidence and the quality of the studies that established the evidence base, and determined whether there were significant variances from the survey data. Survey results were subsequently realigned with the evidence obtained from the scientific literature during the second-tier analysis for all objective criteria, based on input from at least three acknowledged experts in each condition. The information from these two tiers of assessment was then considered with regard to the overriding principles and other technology or condition-specific recommendations. On the basis of this information, conditions were assigned to one of three categories as described above:Core Panel;Secondary Targets (conditions that are part of the differential diagnosis of a core panel condition.); andNot Appropriate for Newborn Screening (either no newborn screening test is available or there is poor performance with regard to multiple other evaluation criteria). ACMG also considered features of optimal newborn screening programs beyond the tests themselves by assessing the degree to which programs met certain goals (e.g., availability of educational programs, proportions of newborns screened and followed up). Assessments were based on the input of experts serving in various capacities in newborn screening programs and on 2002 data provided by the programs of the National Newborn Screening and Genetics Resource Center (NNSGRC). In addition, a brief cost-effectiveness assessment of newborn screening was conducted. Results: Uniform panel A total of 292 individuals determined to be generally representative of the regional distribution of the United States population and of areas of expertise or involvement in newborn screening provided a total of 3,949 evaluations of 84 conditions. For each condition, the responses of at least three experts in that condition were compared with those of all respondents for that condition and found to be consistent. A score of 1,200 on the data collection instrument provided a logical separation point between high scoring conditions (1,200–1,799 of a possible 2,100) and low scoring (<1,000) conditions. A group of conditions with intermediate scores (1,000–1,199) was identified, all of which were part of the differential diagnosis of a high scoring condition or apparent in the result of the multiplex assay. Some are identified by screening laboratories and others by diagnostic laboratories. This group was designated as a “secondary target” category for which the program must report the diagnostic result. Using the validated evidence base and expert opinion, each condition that had previously been assigned to a category based on scores gathered through the data collection instrument was reconsidered. Again, the factors taken into consideration were: 1) available scientific evidence; 2) availability of a screening test; 3) presence of an efficacious treatment; 4) adequate understanding of the natural history of the condition; and 5) whether the condition was either part of the differential diagnosis of another condition or whether the screening test results related to a clinically significant condition. The conditions were then assigned to one of three categories as previously described (core panel, secondary targets, or not appropriate for Newborn Screening). Among the 29 conditions assigned to the core panel are three hemoglobinopathies associated with a Hb/S allele, six amino acidurias, five disorders of fatty oxidation, nine organic acidurias, and six unrelated conditions (congenital hypothyroidism (CH), biotinidase deficiency (BIOT), congenital adrenal hyperplasia (CAH), classical galactosemia (GALT), hearing loss (HEAR) and cystic fibrosis (CF)). Twenty-three of the 29 conditions in the core panel are identified with multiplex technologies such as tandem mass spectrometry (MS/MS) or high pressure liquid chromatography (HPLC). On the basis of the evidence, six of the 35 conditions initially placed in the core panel were moved into the secondary target category, which expanded to 25 conditions. Test results not associated with potential disease in the infant (e.g., carriers) were also placed in the secondary target category. When newborn screening laboratory results definitively establish carrier status, the result should be made available to the health care professional community and families. Twenty-seven conditions were determined to be inappropriate for newborn screening at this time. Conditions with limited evidence reported in the scientific literature were more difficult to evaluate, quantify and place in one of the three categories. In addition, many conditions were found to occur in multiple forms distinguished by age-of-onset, severity, or other features. Further, unless a condition was already included in newborn screening programs, there was a potential for bias in the information related to some criteria. In such circumstances, the quality of the studies underlying the data such as expert opinion that considered case reports and reasoning from first principles determined the placement of the conditions into particular categories. Newborn screening program optimization – Assessment of the activities of newborn screening programs, based on program reports, was done for the six program components: education; screening; follow-up; diagnostic confirmation; management; and program evaluation. Considerable variation was found between programs with regard to whether particular aspects (e.g., prenatal education program availability, tracking of specimen collection and delivery) were included and the degree to which they are provided. Newborn screening program evaluation systems also were assessed in order to determine their adequacy and uniformity with the goal being to improve interprogram evaluation and comparison to ensure that the expected outcomes from having been identified in screening are realized. Conclusions: The state of the published evidence in the fast-moving worlds of newborn screening and medical genetics has not kept up with the implementation of new technologies, thus requiring the considerable use of expert opinion to develop recommendations about a core panel of conditions for newborn screening. Twenty-nine conditions were identified as primary targets for screening from which all components of the newborn screening system should be maximized. An additional 25 conditions were listed that could be identified in the course of screening for core panel conditions. Programs are obligated to establish a diagnosis and communicate the result to the health care provider and family. It is recognized that screening may not have been maximized for the detection of these secondary conditions but that some proportion of such cases may be found among those screened for core panel conditions. With additional screening, greater training of primary care health care professionals and subspecialists will be needed, as will the development of an infrastructure for appropriate follow-up and management throughout the lives of children who have been identified as having one of these rare conditions. Recommended actions to overcome barriers to an optimal newborn screening system include: The establishment of a national role in the scientific evaluation of conditions and the technologies by which they are screened;Standardization of case definitions and reporting procedures;Enhanced oversight of hospital-based screening activities;Long-term data collection and surveillance; andConsideration of the financial needs of programs to allow them to deliver the appropriate services to the screened population.

  19. MAINE WOODLOTS

    EPA Science Inventory

    MEOWN250 describes industrial, non-industrial, and public woodlot ownership in Maine at 1:250,000 scale. Industrial owners are those having at least one primary wood processing facility. Non-industrial owners are those with no primary wood processing facility. Public ownership...

  20. MAINE HYDROGRAPHY

    EPA Science Inventory

    Hydronet_me24 and Hydropoly_me24 depict Maine's hydrography data, based on 8-digit hydrological unit codes (HUC's) at the 1:24,000 scale. Some New Hampshire and New Brunswick hydrography data are also included. The NHD hydrography data was compiled from previous ArcIn...

  1. Geology Fulbrights

    NASA Astrophysics Data System (ADS)

    Fulbright grants in geology for 1988-89 remain open. Specific opportunities are available in Egypt, German Democratic Republic, Hungary, Iceland, Iraq, Kuwait, Morocco, Mozambique, Oman, Poland, Sudan, Syria, Tanzania, Turkey, U.S.S.R., West Bank, Yemen, and Zimbabwe. Other countries are also open to applications in any discipline, and geology is among their preferred fields.The grants are available until awarded and are open only to U.S. citizens. In Central and South America and French-speaking Africa, knowledge of host-country language is required. For more information, contact the Council for International Exchange of Scholars (CIES), 11 Dupont Circle N.W., Suite 300, Washington, DC 20036; tel. 202-939-5401.

  2. Geological processes and evolution

    USGS Publications Warehouse

    Head, J.W.; Greeley, R.; Golombek, M.P.; Hartmann, W.K.; Hauber, E.; Jaumann, R.; Masson, P.; Neukum, G.; Nyquist, L.E.; Carr, M.H.

    2001-01-01

    Geological mapping and establishment of stratigraphic relationships provides an overview of geological processes operating on Mars and how they have varied in time and space. Impact craters and basins shaped the crust in earliest history and as their importance declined, evidence of extensive regional volcanism emerged during the Late Noachian. Regional volcanism characterized the Early Hesperian and subsequent to that time, volcanism was largely centered at Tharsis and Elysium, continuing until the recent geological past. The Tharsis region appears to have been largely constructed by the Late Noachian, and represents a series of tectonic and volcanic centers. Globally distributed structural features representing contraction characterize the middle Hesperian. Water-related processes involve the formation of valley networks in the Late Noachian and into the Hesperian, an ice sheet at the south pole in the middle Hesperian, and outflow channels and possible standing bodies of water in the northern lowlands in the Late Hesperian and into the Amazonian. A significant part of the present water budget occurs in the present geologically young polar layered terrains. In order to establish more firmly rates of processes, we stress the need to improve the calibration of the absolute timescale, which today is based on crater count systems with substantial uncertainties, along with a sampling of rocks of unknown provenance. Sample return from carefully chosen stratigraphic units could calibrate the existing timescale and vastly improve our knowledge of Martian evolution.

  3. Geologic Nozzles

    NASA Astrophysics Data System (ADS)

    Kieffer, Susan Werner

    1989-02-01

    Sonic velocities of geologic fluids, such as volcanic magmas and geothermal fluids, can be as low as 1 m/s. Critical velocities in large rivers can be of the order of 1-10 m/s. Because velocities of fluids moving in these settings can exceed these characteristic velocities, sonic and supersonic gas flow and critical and supercritical shallow-water flow can occur. The importance of the low characteristic velocities of geologic fluids has not been widely recognized, and as a result, the importance of supercritical and supersonic flow in geological processes has generally been underestimated. The lateral blast at Mount St. Helens, Washington, propelled a gas heavily laden with dust into the atmosphere. Because of the low sound speed in this gas (about 100 m/s), the flow was internally supersonic. Old Faithful Geyser, Wyoming, is a converging-diverging nozzle in which liquid water refilling the conduit during the recharge cycle changes during eruption into a two-phase liquid-vapor mixture with a very low sound velocity. The high sound speed of liquid water determines the characteristics of harmonic tremor observed at the gyeser during the recharge interval, whereas the low sound speed of the liquid-vapor mixture influences the fluid flow characteristics of the eruption. At the rapids of the Colorado River in the Grand Canyon, Arizona, the channel is constricted into the shape of a converging-diverging nozzle by debris flows that enter from tributary canyons. Both subcritical and supercritical flow occur within the rapids. The transport capacity in the rapids can be so great that the river contours the channel to a characteristic shape. This shape can be used to interpret the flood history of the Colorado River over the past 10³-105 years. The unity of fluid mechanics in these three natural phenomena is provided by the well-known analogy between gas flow and shallow-water flow in converging-diverging nozzles.

  4. Geological assessing of urban environments with a systematic mapping survey: The 1:5000 urban geological map of Catalonia

    NASA Astrophysics Data System (ADS)

    Vilà, Miquel; Pi, Roser; Cirés, Jordi; de Paz, Ana; Berástegui, Xavier

    2010-05-01

    The ground features of urban areas and the geologic processes that operate on them are, in general, strongly altered from their natural original condition as a result of anthropogenic activities. Assessing the stability of the ground, the flooding areas, and, the health risk as a consequence of soil pollution, are, among others, fundamental topics of urban areas that require a better understanding. The development of systematic urban geological mapping projects provides valuable resources to address these issues. Since 2007, the Institut Geologic de Catalunya (IGC) runs an urban geological mapping project, to provide accurate geologic information of county capitals and towns of more than 10000 inhabitants of Catalonia. The urban zones of 131 towns will be surveyed for this project, totalizing an area of about 2200 km2 to be mapped in 15 years. According to the 2008 census, the 82 % of the population of Catalonia (7.242.458 inhabitants) lives in the areas to be mapped in this project. The mapping project integrates in a GIS environment the following subjects: - Data from pre-existing geotechnical reports, historical geological and topographical maps and, from historical aerial photographs. - Data from available borehole databases. - Geological characterization of outcrops inside the urban network and neighbouring areas. - Geological, chemical and physical characterisation of representative rocks, sediments and soils. - Ortophotographs (0.5 m pixel size) and digital elevation models (5 meter grid size) made from historical aerial photographs, to depict land use changes, artificial deposits and geomorphological elements that are either hidden or destroyed by urban sprawl. - Detailed geological mapping of quaternary sediments, subsurface bedrock and artificial deposits. - Data from subsurface prospection in areas with insufficient or confuse data. - 3D modelling of the main geological surfaces such as the top of the pre-quaternary basement. All the gathered data is harmonised and stored it in a database. The analysis of the database allows to compile and print the 1:5000 scale urban geological map according to the 1:5000 topographic grid of Catalonia. The map is composed by a principal map, geologic cross sections and several complementary maps, charts and tables. Regardless of the geological map units, the principal map also includes the main artificial deposits (such as infilled river valleys and road embankments), very recent or current superficial deposits, contours of outcropping areas, structural data and other relevant information gathered in stations, sampling points, boreholes indicating the thickness of artificial deposits and the depth of the pre-quaternary basement, contour lines of the top of the pre-quaternary basement surface and, water level data. The complementary maps and charts may change depending on the gathered data, the geological features of the area and the urban typology. However, the most representative complementary maps that includes the printed urban map are the quaternary subsurface bedrock map and the isopach map of thickness of quaternary and anthropogenic deposits. The map also includes charts and tables of relevant physical and chemical parameters of the geological materials, harmonised downhole lithological columns from selected boreholes, and, photographs and figures illustrating the geology of the mapped area and how urbanisation has changed the natural environment. The object of this systematic urban mapping survey is to provide a robust database to be used in targeted studies related to urban planning, geoengineering works, soil pollution and other important environmental issues that society should deal in the future.

  5. Geologic Framework Model (GFM2000)

    SciTech Connect

    T. Vogt

    2004-08-26

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the geologic framework model (200 feet [61 meters]), discussed in Section 6.4.2, limits the size of features that can be resolved by the model but is appropriate for the distribution of data available and its intended use. Uncertainty and limitations are discussed in Section 6.6 and model validation is discussed in Section 7.

  6. Geologic Mapping of Vesta

    NASA Technical Reports Server (NTRS)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; Le Corre, L.; Preusker, F.; Raymond, C. A.; Reddy, V.; Russell, C. T.; Roatsch, T.; Schenk, P. M.

    2014-01-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High- Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits. Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.

  7. Geologic mapping of Vesta

    NASA Astrophysics Data System (ADS)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; Le Corre, L.; Preusker, F.; Raymond, C. A.; Reddy, V.; Russell, C. T.; Roatsch, T.; Schenk, P. M.

    2014-11-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High-Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits. Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.

  8. Geologic Map of the Thaumasia Region, Mars

    USGS Publications Warehouse

    Dohm, Janes M.; Tanaka, Kenneth L.; Hare, Trent M.

    2001-01-01

    The geology of the Thaumasia region (fig. 1, sheet 3) includes a wide array of rock materials, depositional and erosional landforms, and tectonic structures. The region is dominated by the Thaumasia plateau, which includes central high lava plains ringed by highly deformed highlands; the plateau may comprise the ancestral center of Tharsis tectonism (Frey, 1979; Plescia and Saunders, 1982). The extensive structural deformation of the map region, which is without parallel on Mars in both complexity and diversity, occurred largely throughout the Noachian and Hesperian periods (Tanaka and Davis, 1988; Scott and Dohm, 1990a). The deformation produced small and large extensional and contractional structures (fig. 2, sheet 3) that resulted from stresses related to the formation of Tharsis (Frey, 1979; Wise and others, 1979; Plescia and Saunders, 1982; Banerdt and others, 1982, 1992; Watters and Maxwell, 1986; Tanaka and Davis, 1988; Francis, 1988; Watters, 1993; Schultz and Tanaka, 1994), from magmatic-driven uplifts, such as at Syria Planum (Tanaka and Davis, 1988; Dohm and others, 1998; Dohm and Tanaka, 1999) and central Valles Marineris (Dohm and others, 1998, Dohm and Tanaka, 1999), and from the Argyre impact (Wilhelms, 1973; Scott and Tanaka, 1986). In addition, volcanic, eolian, and fluvial processes have highly modified older surfaces in the map region. Local volcanic and tectonic activity often accompanied episodes of valley formation. Our mapping depicts and describes the diverse terrains and complex geologic history of this unique ancient tectonic region of Mars. The geologic (sheet 1), paleotectonic (sheet 2), and paleoerosional (sheet 3) maps of the Thaumasia region were compiled on a Viking 1:5,000,000-scale digital photomosaic base. The base is a combination of four quadrangles: the southeast part of Phoenicis Lacus (MC–17), most of the southern half of Coprates (MC–18), a large part of Thaumasia (MC–25), and the northwest margin of Argyre (MC–26). The medium-resolution Viking images used for mapping and base preparation also formed the basis of the 1:2,000,000 scale subquadrangle series. Earlier geologic maps of all or parts of the region include: (1) maps of the Phoenicis Lacus, Coprates, Thaumasia, and Argyre quadrangles at 1:5,000,000 scale based mainly on Mariner 9 images (respectively, Masursky and others, 1978; McCauley, 1978; McGill, 1978; and Hodges, 1980), (2) the global map of Mars at 1:25,000,000 (Scott and Carr, 1978) compiled largely from the 1:5,000,000 scale geologic maps, (3) maps showing lava flows in the Tharsis region at 1:2,000,000 scale compiled from Viking and Mariner 9 images (Scott, 1981; Scott and Tanaka, 1981a, b; Scott and others, 1981), (4) the map of the western equatorial region of Mars at 1:15,000,000 scale based on Viking images (Scott and Tanaka, 1986), and (5) the map of the Valles Marineris region at 1:2,000,000 scale compiled from Viking images (Witbeck and others, 1991). The previous maps have described the overall geology and geomorphology of the region but have not unraveled the detailed stratigraphy and complex evolution of this unique and geologically diverse martian province. The main purpose of this comprehensive mapping project is to reconstruct the stratigraphic, structural, and erosional histories of the Thaumasia region. The region is the last major province of the Tharsis region to undergo detailed structural mapping using Viking images; its history is essential to documenting the overall tectonic history of Tharsis. Other provinces of Tharsis that have been structurally mapped include Syria Planum (Tanaka and Davis, 1988), Tempe Terra and Ulysses Patera (Scott and Dohm, 1990b), and Alba Patera (Tanaka, 1990). Another primary mapping objective is to determine the region's volcanic history and assess the relations among fault systems and volcanoes (Wise and others, 1979; Scott and Tanaka, 1980; Whitford-Stark, 1982; Scott and Dohm, 1990a). A secondary mapping objective is to determine the distribution and ages of valleys. In our study, we incorporated detailed photogeologic mapping, comprehensive crater statistics (table 1), and geologic, paleotectonic, and paleoerosional Geographic Information System (GIS) databases. Sheets 1–3 show geologic units, faults and other significant structures, and valleys, respectively. To help unravel the complex geologic history of the Thaumasia region, we transferred the highly detailed geologic unit, paleotectonic, and paleoerosional information of sheets 1–3 into a multilayered GIS database for comparative analysis. The geologic information was transferred from hard copy into a digital format by scanning at 25 micron resolution on a drum scanner. The 2-bit scanned image was then converted to an x,y coordinate system using ARC/INFO's vectorization routine. The geologic unit, structural, and erosional data were transformed into the original map projection, Lambert Conformal. The average transformation root mean square error was 0.25 km (acceptable for the Thaumasia map base at 1:5,000,000 scale). After transformation, the features were properly attributed and tediously checked. Once digitized, the map data can be transformed into any map projection depending on the type of data analysis. For example, the equal-area sinusoidal projection was used for determining the precise area of geologic units (table 1). In addition to the geologic map and its attendant stratigraphic section, correlation chart, and description of map units, we include text sections that clarify the histories and temporal, spatial, and causal relations of the various geologic units and landforms of the Thaumasia region. The geologic summary section defines the sequence of major geologic events.

  9. Metamorphic geology

    NASA Astrophysics Data System (ADS)

    Peacock, Simon M.

    The complex heat- and mass-transfer processes of terrestrial metamorphism are described in a critical review of U.S. research from the period 1987-1990. Topics examined include metamorphic pressure-temperature-time paths and regional studies (crustal thickening, contact and subduction-zone metamorphism, crustal extension, and granulite facies metamorphism and crustal anatexis); metamorphic fluid-rock interaction in regional, contact, subduction-zone, and granulite terrains; metamorphic thermochemistry, phase relations, and mineral chemistry; metamorphic kinetics; and microstructures in metamorphic rocks. Textbooks and computer programs in metamorphic geology are briefly characterized, and it is concluded in general that a first-order explanation of the basic processes is now being developed. A comprehensive bibliography is provided.

  10. Tethys geology and tectonics revisited

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1991-01-01

    Tethys, a medium sized icy satellite of Saturn, was imaged by both Voyager 1 and 2 spacecraft at sufficiently high resolution to allow some geologic analysis. One fairly complete and several brief descriptions of Tethys' geology have been given. Partial results are given herein of a new analysis of Tethys' geology done as part of a comparative tectonic and cryovolcanic study of the saturnian satellites. A new geologic sketch map of Tethys' north polar area is given. This map is based on a sequence of images transformed to a polar stereographic projection at the same scale. The images present the same area under different illuminations, each of which brings out different features. A new global map is in progress.

  11. Northeastern Regional geologic characterization report. Volume 1. Final report

    SciTech Connect

    Not Available

    1985-08-01

    This report presents available geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. For each of the states within the Northeastern Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening. The geologic factor and variables include deep mines and quarries, rock mass extent, postemplacement faulting, suspected Quaternary faulting, seismicity, rock and mineral resources, major ground-water discharge zones, ground-water resources, state of stress, thickness of rock mass, and thickness of overburden. Information is presented on age, areal extent, shape, composition, texture, degree and type of alteration, thickness, and structural features associated with each rock body or complex. Regional seismic and tectonic information is presented, including patterns of earthquake occurrence, earthquake magnitudes, horizontal ground accelerations, and vertical crusal movements. Also included are discussions of the rock and mineral deposits or mines located within or near crystalline bodies; ground-water resources and regional hydrology; postulated changes in climate and the associated effects; and landforms, surface processes, and surficial materials on or near the rock bodies. A discussion is also presented on the relationship between the US Department of Energy (DOE) Siting Guidelines (10 CFR 960) and the geologic disqualifying factor and regional screening variables to be used in the region-to-area screening process.

  12. The Geology of Callisto

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.

    1995-01-01

    The geology of Callisto is not boring. Although cratered terrain dominates Callisto (a key end-member of the Jovian satellite system), a number of more interesting features are apparent. Cratered terrain is broken into irregular map-able bright and dark subunits that vary in albedo by a factor of 2, and several relatively smooth units are depleted of small craters. Some of these areas may have been volcanically resurfaced. Lineaments, including parallel and radial sets, may be evidence for early global tectonism. Frost deposition occurs in cold traps, and impact scars have formed from tidally disrupted comets. Geologic evidence suggests that Callisto does have a chemically differentiated crust. Central pit and central dome craters and palimpsests are common. The preferred interpretation is that a relatively ice-rich material, at depths of 5 km or more, has been mobilized during impact and exposed as domes or palimpsests. The close similarity in crater morphologies and dimensions indicates that the outermost 10 km or so of Callisto may be as differentiated as on Ganymede. The geology of cratered terrain on Callisto is simpler than that of cratered terrain on Ganymede, however. Orbital evolution and tidal heating may provide the answer to the riddle of why Callisto and Ganymede are so different (Malhotra, 1991). We should expect a few surprises and begins to answer some fundamental questions when Callisto is observed by Galileo in late 1996.

  13. Geologic Resource Evaluation of Pu'ukohola Heiau National Historic Site, Hawai'i: Part I, Geology and Coastal Landforms

    USGS Publications Warehouse

    Richmond, Bruce M.; Cochran, Susan A.; Gibbs, Ann E.

    2008-01-01

    Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues forming a link between the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Pu'ukohola Heiau National Historic Site (PUHE) is the smallest (~86 acres) of three National Parks located on the leeward Kona coast of the Island of Hawai'i. The main structure at PUHE, Pu'ukohola Heiau, is an important historical temple that was built during 1790-91 by King Kamehameha I (also known as Kamehameha the Great) and is often associated with the founding of the Hawaiian Kingdom (Greene, 1993). The temple was constructed to incur the favor of the king's personal war god Kuka'ilimoku during the time that Kamehameha I waged several battles in an attempt to extend his control over all the Hawaiian Islands. The park is also the site of the older Mailekini Heiau, which was used by the ancestors of Kamehameha I, and an offshore, submerged temple, Hale O Kapuni Heiau, that was dedicated to the shark god. The park occupies the scenic Hill of the Whale overlooking Kawaihae Bay and Pelekane Beach. The seaward-sloping lands of PUHE lie at the convergence of lava flows formed by both Mauna Kea and Kohala Volcanoes. The park coastline is mostly rocky, with the exception of a small beach developed at the north boundary where an intermittent stream enters the sea. The park is bounded to the north by Kawaihae Harbor, to the south by Samuel M. Spencer Beach Park, and to the west by a broad submerged reef. The adjacent reef area is discussed in detail in the accompanying report by Cochran and others (2006). They mapped from the shoreline to depths of approximately 40 m, where the shelf drops off to a sand-covered bottom. PUHE park boundaries extend only to the mean high-tide line, however, landscape impacts created by development around the park are of concern to Park management.

  14. Geology on a Sand Budget

    ERIC Educational Resources Information Center

    Kane, Jacqueline

    2004-01-01

    Earth science teachers know how frustrating it can be to spend hundreds of dollars on three-dimensional (3-D) models of Earth's geologic features, to use the models for only a few class periods. To avoid emptying an already limited science budget, the author states that teachers can use a simple alternative to the expensive 3-D models--sand. She…

  15. 2014 Maine Earth Science Day

    On October 15, 2014 Maine Earth Science Day was held at the Maine State Museum in Augusta. The USGS was represented by Charlie Culbertson, left, and Nick Waldron, right. This photo was taken as the two were packing up for the day, and shows a main feature of the table, a touch screen display with th...

  16. Detecting Molecular Features of Spectra Mainly Associated with Structural and Non-Structural Carbohydrates in Co-Products from BioEthanol Production Using DRIFT with Uni- and Multivariate Molecular Spectral Analyses

    PubMed Central

    Yu, Peiqiang; Damiran, Daalkhaijav; Azarfar, Arash; Niu, Zhiyuan

    2011-01-01

    The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS) from bioethanol processing in comparison with original feedstock (wheat (Triticum), corn (Zea mays)). The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. 1485–1188 cm−1), A_1240 (structural carbohydrates, peak area centered at ca. 1240 cm−1 with region and baseline: ca. 1292–1198 cm−1), A_CHO (total carbohydrates, peaks region and baseline: ca. 1187–950 cm−1), A_928 (non-structural carbohydrates, peak area centered at ca. 928 cm−1 with region and baseline: ca. 952–910 cm−1), A_860 (non-structural carbohydrates, peak area centered at ca. 860 cm−1 with region and baseline: ca. 880–827 cm−1), H_1415 (structural carbohydrate, peak height centered at ca. 1415 cm−1 with baseline: ca. 1485–1188 cm−1), H_1370 (structural carbohydrate, peak height at ca. 1370 cm−1 with a baseline: ca. 1485–1188 cm−1). The study shows that the grains had lower spectral intensity (KM Unit) of the cellulosic compounds of A_1240 (8.5 vs. 36.6, P < 0.05), higher (P < 0.05) intensities of the non-structural carbohydrate of A_928 (17.3 vs. 2.0) and A_860 (20.7 vs. 7.6) than their co-products from bioethanol processing. There were no differences (P > 0.05) in the peak area intensities of A_Cell (structural CHO) at 1292–1198 cm−1 and A_CHO (total CHO) at 1187–950 cm−1 with average molecular infrared intensity KM unit of 226.8 and 508.1, respectively. There were no differences (P > 0.05) in the peak height intensities of H_1415 and H_1370 (structural CHOs) with average intensities 1.35 and 1.15, respectively. The multivariate molecular spectral analyses were able to discriminate and classify between the corn and corn DDGS molecular spectra, but not wheat and wheat DDGS. This study indicated that the bioethanol processing changes carbohydrate molecular structural profiles, compared with the original grains. However, the sensitivities of different types of carbohydrates and different grains (corn and wheat) to the processing differ. In general, the bioethanol processing increases the molecular spectral intensities for the structural carbohydrates and decreases the intensities for the non-structural carbohydrates. Further study is needed to quantify carbohydrate related molecular spectral features of the bioethanol co-products in relation to nutrient supply and availability of carbohydrates. PMID:21673931

  17. MAINE BEDROCK SOURCE WATER PROTECTION AREAS

    EPA Science Inventory

    Bedrocksqpa_region_pws is a REGIONS SDE layer of bedrock source water protection areas in Maine with a high, moderate, or low probability of contributing water to community public water supplies. The Maine Drinking Water Program (MEDWP), in cooperation with the Maine Geological S...

  18. Comprehensive geological history of asteroid Vesta

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Williams, D. A.; McSween, H. Y.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2014-07-01

    In this paper, we present a time-stratigraphic scheme and geologic time scale for the asteroid Vesta, based on global geologic mapping and other analyses of NASA Dawn spacecraft data, supplemented with insights gained from laboratory studies of howardite-eucrite-diogenite (HED) meteorites and geophysical modeling. We identify four geologic time periods for Vesta, associated with the formation of major impacts: Pre-Veneneian, Veneneian, Rheasilvian, and Marcian. The Pre-Veneneian period covers the time from the formation of Vesta (a few Myr after the formation of the first solids in the proto-solar disk that took place at 4.57 Gyr ago) up to the Veneneia impact event. The Veneneian period covers the time between the Veneneia and Rheasilvia impact events. The Rheasilvian period covers the time between the formation of Rheasilvia and Marcia craters, and the Marcian period covers the time between the formation of Marcia crater until the present. Absolute ages for the boundaries of these periods have been derived by applying two crater chronologies, one based on the current understanding on asteroidal impact rate at Vesta and its evolution over time; the other is based on an extrapolated version of the lunar crater chronology. While the ages and durations of the various periods change considerably depending on which chronology is applied, the relative age of the Veneneia and Rheasilvia impacts is unambiguously determined by superposition relationships, while the formation of the Marcia crater clearly represents the youngest major geologic event on Vesta. Absolute model ages allow us to relate Vesta geologic time periods to key features of the main asteroid belt, such as the formation of the large vestan dynamical family. The formation ages of the Vesta's family can be assessed with independent means, such as by measuring the spreading of the family members in orbital space, and therefore provide a benchmark for both theoretical models of asteroid family evolution and crater chronology. Absolute ages also provide an important framework to interpret impact-generated radiometric ages of HEDs. Our proposed four-period geologic time scale for Vesta is consistent with those developed for other terrestrial bodies, such as the Moon, Mars, Earth, and Mercury, and allow us to place Vesta in the context of major phases of the evolution of the solar system, such as the Late Heavy Bombardment, a period of intense bombardment in the inner solar system triggered by the migration of the giant planets.

  19. Geologic Technician New Curriculum

    ERIC Educational Resources Information Center

    Karp, Stanley E.

    1970-01-01

    Describes a developing two-year geologic technician program at Bakersfield College in which a student may major in five areas - geologic drafting, land and legal, geologic assistant, engineering or paleontology. (RR)

  20. Efficient Geological Modelling of Large AEM Surveys

    NASA Astrophysics Data System (ADS)

    Bach, Torben; Martlev Pallesen, Tom; Jørgensen, Flemming; Lundh Gulbrandsen, Mats; Mejer Hansen, Thomas

    2014-05-01

    Combining geological expert knowledge with geophysical observations into a final 3D geological model is, in most cases, not a straight forward process. It typically involves many types of data and requires both an understanding of the data and the geological target. When dealing with very large areas, such as modelling of large AEM surveys, the manual task for the geologist to correctly evaluate and properly utilise all the data available in the survey area, becomes overwhelming. In the ERGO project (Efficient High-Resolution Geological Modelling) we address these issues and propose a new modelling methodology enabling fast and consistent modelling of very large areas. The vision of the project is to build a user friendly expert system that enables the combination of very large amounts of geological and geophysical data with geological expert knowledge. This is done in an "auto-pilot" type functionality, named Smart Interpretation, designed to aid the geologist in the interpretation process. The core of the expert system is a statistical model that describes the relation between data and geological interpretation made by a geological expert. This facilitates fast and consistent modelling of very large areas. It will enable the construction of models with high resolution as the system will "learn" the geology of an area directly from interpretations made by a geological expert, and instantly apply it to all hard data in the survey area, ensuring the utilisation of all the data available in the geological model. Another feature is that the statistical model the system creates for one area can be used in another area with similar data and geology. This feature can be useful as an aid to an untrained geologist to build a geological model, guided by the experienced geologist way of interpretation, as quantified by the expert system in the core statistical model. In this project presentation we provide some examples of the problems we are aiming to address in the project, and show some preliminary results.

  1. Geologic map of the Metis Mons quadrangle (V–6), Venus

    USGS Publications Warehouse

    Dohm, James M.; Tanaka, Kenneth L.; Skinner, James A.

    2011-01-01

    The Metis Mons quadrangle (V–6) in the northern hemisphere of Venus (lat 50° to 75° N., long 240° to 300° E.) includes a variety of coronae, large volcanoes, ridge and fracture (structure) belts, tesserae, impact craters, and other volcanic and structural features distributed within a plains setting, affording study of their detailed age relations and evolutionary development. Coronae in particular have magmatic, tectonic, and topographic signatures that indicate complex evolutionary histories. Previously, the geology of the map region has been described either in general or narrowly focused investigations. Based on Venera radar mapping, a 1:15,000,000-scale geologic map of part of the northern hemisphere of Venus included the V–6 map region and identified larger features such as tesserae, smooth and hummocky plains materials, ridge belts, coronae, volcanoes, and impact craters but proposed little relative-age information. Global-scale mapping from Magellan data identified similar features and also determined their mean global ages with crater counts. However, the density of craters on Venus is too low for meaningful relative-age determinations at local to regional scales. Several of the coronae in the map area have been described using Venera data (Stofan and Head, 1990), while Crumpler and others (1992) compiled detailed identification and description of volcanic and tectonic features from Magellan data. The main purpose of this map is to reconstruct the geologic history of the Metis Mons quadrangle at a level of detail commensurate with a scale of 1:5,000,000 using Magellan data. We interpret four partly overlapping stages of geologic activity, which collectively resulted in the formation of tesserae, coronae (oriented along structure belts), plains materials of varying ages, and four large volcanic constructs. Scattered impact craters, small shields and pancake-shaped domes, and isolated flows superpose the tectonically deformed materials and appear to be the most youthful materials in the map region.

  2. Visible Geology - Interactive online geologic block modelling

    NASA Astrophysics Data System (ADS)

    Cockett, R.

    2012-12-01

    Geology is a highly visual science, and many disciplines require spatial awareness and manipulation. For example, interpreting cross-sections, geologic maps, or plotting data on a stereonet all require various levels of spatial abilities. These skills are often not focused on in undergraduate geoscience curricula and many students struggle with spatial relations, manipulations, and penetrative abilities (e.g. Titus & Horsman, 2009). A newly developed program, Visible Geology, allows for students to be introduced to many geologic concepts and spatial skills in a virtual environment. Visible Geology is a web-based, three-dimensional environment where students can create and interrogate their own geologic block models. The program begins with a blank model, users then add geologic beds (with custom thickness and color) and can add geologic deformation events like tilting, folding, and faulting. Additionally, simple intrusive dikes can be modelled, as well as unconformities. Students can also explore the interaction of geology with topography by drawing elevation contours to produce their own topographic models. Students can not only spatially manipulate their model, but can create cross-sections and boreholes to practice their visual penetrative abilities. Visible Geology is easy to access and use, with no downloads required, so it can be incorporated into current, paper-based, lab activities. Sample learning activities are being developed that target introductory and structural geology curricula with learning objectives such as relative geologic history, fault characterization, apparent dip and thickness, interference folding, and stereonet interpretation. Visible Geology provides a richly interactive, and immersive environment for students to explore geologic concepts and practice their spatial skills.; Screenshot of Visible Geology showing folding and faulting interactions on a ridge topography.

  3. Bedrock geologic map of Vermont

    USGS Publications Warehouse

    Ratcliffe, Nicholas M.; Stanley, Rolfe S.; Gale, Marjorie H.; Thompson, Peter J.; Walsh, Gregory J.; With contributions by Hatch, Norman L., Jr.; Rankin, Douglas W.; Doolan, Barry L.; Kim, Jonathan; Mehrtens, Charlotte J.; Aleinikoff, John N.; McHone, J. Gregory; Cartography by Masonic, Linda M.

    2011-01-01

    The Bedrock Geologic Map of Vermont is the result of a cooperative agreement between the U.S. Geological Survey (USGS) and the State of Vermont. The State's complex geology spans 1.4 billion years of Earth's history. The new map comes 50 years after the most recent map of the State by Charles G. Doll and others in 1961 and a full 150 years since the publication of the first geologic map of Vermont by Edward Hitchcock and others in 1861. At a scale of 1:100,000, the map shows an uncommon level of detail for State geologic maps. Mapped rock units are primarily based on lithology, or rock type, to facilitate derivative studies in multiple disciplines. The 1961 map was compiled from 1:62,500-scale or smaller maps. The current map was created to integrate more detailed (1:12,000- to 1:24,000-scale) modern and older (1:62,500-scale) mapping with the theory of plate tectonics to provide a framework for geologic, tectonic, economic, hydrogeologic, and environmental characterization of the bedrock of Vermont. The printed map consists of three oversize sheets (52 x 76 inches). Sheets 1 and 2 show the southern and northern halves of Vermont, respectively, and can be trimmed and joined so that the entire State can be displayed as a single entity. These sheets also include 10 cross sections and a geologic structure map. Sheet 3 on the front consists of descriptions of 486 map units, a correlation of map units, and references cited. Sheet 3 on the back features a list of the 195 sources of geologic map data keyed to an index map of 7.5-minute quadrangles in Vermont, as well as a table identifying ages of rocks dated by uranium-lead zircon geochronology.

  4. Geomorphology and Structural Geology of Saturnalia Fossae and Adjacent Structures in the Northern Hemisphere of Vesta

    NASA Astrophysics Data System (ADS)

    Scully, J. E. C.; Yin, A.; Russell, C. T.; Buczkowski, D. L.; Williams, D. A.; Blewett, D. T.; Ruesch, O.; Hiesinger, H.; Le Corre, L.; Mercer, C.; Yingst, R. A.; Garry, W. B.; Jaumann, R.; Roatsch, T.; Preusker, F.; Gaskell, R. W.; Schröder, S. E.; Ammannito, E.; Pieters, C. M.; Raymond, C. A.

    2014-02-01

    This work examines the link between impact cratering processes and structural and geologic features in Vesta’s northern hemisphere through a mapping study of the Saturnalia Fossae, adjacent structural features and geologic units.

  5. Geologic conceptual model of the municipality of Sete Lagoas (MG, Brazil) and the surroundings.

    PubMed

    Galvão, Paulo; Hirata, Ricardo; Cordeiro, Arnaldo; Barbati, Daniela; Peñaranda, Jorge

    2016-03-01

    The study area is located in the state of Minas Gerais, Brazil, among the municipalities of Pedro Leopoldo, Matozinhos, and Sete Lagoas, with Velhas River as the eastern boundary. It is located in the São Francisco Craton, where carbonated argillo-arenaceous sediments are emplaced giving origin to the Bambuí Group, in the São Francisco Basin. Despite the geological knowledge previously developed, the region needs work on integration and detailing of such information. For this reason, the main objective was to contribute to the quality of the geologic cartography, the spatial distribution, and the structural framework geometry. Thus, geologic mapping, aerial photography interpretation, and evaluation of 270 lithologic well profiles were carried out. It was possible to establish a new geologic perspective of the region by obtaining the detailed geologic map of the municipality of Sete Lagoas, 14 geologic cross sections, and a geologic conceptual model. The study showed that the area is within a basin border, presenting a geometry conditioned by horst and graben system controlled by faulting. This structural feature displaced stratigraphic sequences positioning them side by side with lithologic sequences with different ages. PMID:26840000

  6. Geology. Grade 6. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Anchorage School District, AK.

    This resource book introduces sixth-grade children to the environment by studying rocks and other geological features. Nine lessons are provided on a variety of topics including: (1) geologic processes; (2) mountain building; (3) weathering; (4) geologic history and time; (5) plate tectonics; (6) rocks and minerals; (7) mineral properties; (8)…

  7. Geology. Grade 6. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Anchorage School District, AK.

    This resource book introduces sixth-grade children to the environment by studying rocks and other geological features. Nine lessons are provided on a variety of topics including: (1) geologic processes; (2) mountain building; (3) weathering; (4) geologic history and time; (5) plate tectonics; (6) rocks and minerals; (7) mineral properties; (8)

  8. Geology of kilauea volcano

    USGS Publications Warehouse

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  9. Geology of Kilauea volcano

    SciTech Connect

    Moore, R.B. . Federal Center); Trusdell, F.A. . Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  10. Ontology-aided annotation, visualization, and generalization of geological time-scale information from online geological map services

    NASA Astrophysics Data System (ADS)

    Ma, Xiaogang; Carranza, Emmanuel John M.; Wu, Chonglong; van der Meer, Freek D.

    2012-03-01

    Geological maps are increasingly published and shared online, whereas tools and services supporting information retrieval and knowledge discovery are underdeveloped. In this study, we developed an ontology of geological time scale by using a Resource Description Framework model to represent the ordinal hierarchical structure of the geological time scale and to encode collected annotations of geological time scale concepts. We also developed an animated graphical view of the developed ontology, and functions for interactions between the ontology, the animation and online geological maps published as layers of OGC Web Map Service. The featured functions include automatic annotations for geological time concepts recognized from a geological map, changing layouts in the animation to highlight a concept, showing legends of geological time contents in an online map with the animation, and filtering out and generalizing geological time features in an online map by operating the map legend shown in the animation. We set up a pilot system and carried out a user survey to test and evaluate the usability and usefulness of the developed ontology, animation and interactive functions. Results of the pilot system and the user survey demonstrate that our works enhance features of online geological map services and they are helpful for users to understand and to explore geological time contents and features, respectively, of a geological map.

  11. Geologic mapping of Europa

    USGS Publications Warehouse

    Greeley, R.; Figueredo, P.H.; Williams, D.A.; Chuang, F.C.; Klemaszewski, J.E.; Kadel, S.D.; Prockter, L.M.; Pappalardo, R.T.; Head, J. W., III; Collins, G.C.; Spaun, N.A.; Sullivan, R.J.; Moore, Johnnie N.; Senske, D.A.; Tufts, B.R.; Johnson, T.V.; Belton, M.J.S.; Tanaka, K.L.

    2000-01-01

    Galileo data enable the major geological units, structures, and surface features to be identified on Europa. These include five primary units (plains, chaos, band, ridge, and crater materials) and their subunits, along with various tectonic structures such as faults. Plains units are the most widespread. Ridged plains material spans a wide range of geological ages, including the oldest recognizable features on Europa, and appears to represent a style of tectonic resurfacing, rather than cryovolcanism. Smooth plains material typically embays other terrains and units, possibly as a type of fluid emplacement, and is among the youngest material units observed. At global scales, plains are typically mapped as undifferentiated plains material, although in some areas differences can be discerned in the near infrared which might be related to differences in ice grain size. Chaos material is composed of plains and other preexisting materials that have been severely disrupted by inferred internal activity; chaos is characterized by blocks of icy material set in a hummocky matrix. Band material is arrayed in linear, curvilinear, wedge-shaped, or cuspate zones with contrasting albedo and surface textures with respect to the surrounding terrain. Bilateral symmetry observed in some bands and the relationships with the surrounding units suggest that band material forms by the lithosphere fracturing, spreading apart, and infilling with material derived from the subsurface. Ridge material is mapped as a unit on local and some regional maps but shown with symbols at global scales. Ridge material includes single ridges, doublet ridges, and ridge complexes. Ridge materials are considered to represent tectonic processes, possibly accompanied by the extrusion or intrusion of subsurface materials, such as diapirs. The tectonic processes might be related to tidal flexing of the icy lithosphere on diurnal or longer timescales. Crater materials include various interior (smooth central, rough inner, and annular massif) and exterior (continuous ejecta) subunits. Structural features and landforms are shown with conventional symbols. Type localities for the units are identified, along with suggestions for portraying the features on geological maps, including colors and letter abbreviations for material units. Implementing these suggestions by the planetary mapping community would facilitate comparisons of maps for different parts of Europa and contribute to an eventual global synthesis of its complex geology. On the basis of initial mapping results, a stratigraphic sequence is suggested in which ridged plains form the oldest unit on Europa, followed by development of band material and individual ridges. Band materials tend to be somewhat older than ridges, but in many areas the two units formed simultaneously. Similarly, the formation of most chaos follows the development of ridged plains; although chaos is among the youngest materials on Europa, some chaos units might have formed contemporaneously with ridged plains. Smooth plains generally embay all other units and are late-stage in the evolution of the surface. C1 craters are superposed on ridged plains but are crosscut by other materials, including bands and ridges. Most c2 craters postdate all other units, but a few c2 craters are cut by ridge material. C3 craters constitute the youngest recognizable material on Europa. Copyright 2000 by the American Geophysical Union.

  12. Geologic investigations

    SciTech Connect

    Orkild, P.P.; Baldwin, M.J.; Townsend, D.R.

    1983-12-31

    The Climax stock is a composite granitic intrusive of Cretaceous age, composed of quartz monzonite and granodiorite, which intrudes rocks of Paleozoic and Precambrian age. Tertiary volcanic rocks, consisting of ash-flow and ash-fall tuffs, and tuffaceous sedimentary rocks overlie the sedimentary rocks and the stock. Erosion has removed much of the Tertiary volcanic rocks. Hydrothermal alteration of quartz monzonite and granodiorite is found mainly along joints and faults and varies from location to location. The Paleozoic carbonate rocks have been thermally and metasomatically altered to marble and tactite as much as 457 m (1500 ft) from the contact with the stock, although minor discontinuous metasomatic effects are noted in all rocks out to 914 m (3000 ft). Three major faults which define the Climax area structurally are the Tippinip, Boundary and Yucca faults. North of the junction of the Boundary and Yucca faults, the faults are collectively referred to as the Butte fault. The dominant joint sets and their average attitudes are N 32{degrees} W, 22{degrees} NE; N 60{degrees} W, vertical and N 35{degrees} E, vertical. Joints in outcrop are weathered and generally open, but in subsurface, the joints are commonly filled and healed with secondary minerals. 12 refs., 6 figs., 1 tab.

  13. Multidisciplinary analysis of Skylab photography for highway engineering purposes. [Maine

    NASA Technical Reports Server (NTRS)

    Stoeckeler, E. G.; Woodman, R. G. (Principal Investigator); Farrell, R. S.

    1975-01-01

    The author has identified the following significant results. The greatly increased resolution of ground features by Skylab as compared with LANDSAT is considered to be best in the S190B high resolution film, followed by S190A camera stations 4, 5, and 6 respectfully. Results of the study of vegetation damage sites using data derived from S190A film were disappointing. The major cause of detection problems is the graininess of the CIR film. Good results were achieved for the hydrology-land use study. Both camera systems gave better agreement with the ground truth than did LANDSAT imagery. Surficial geology and glacial landform areas were clearly visible in single scenes. Several previously unmapped or unknown features were detected, especially in eastern coastal Maine.

  14. MAINE 1:24,000 HYDROLOGY POLYGONS

    EPA Science Inventory

    The Maine 1:24,000 Hydrology Polygons SDE feature class depicts double line river features, single line streams, pond, lake and coastal outlines in Maine from USGS 1:24,000 scale quadrangles. Some New Hampshire and New Brunswick features are also included. Codes are included to ...

  15. MAINE 1:24,000 HYDROLOGY LINES

    EPA Science Inventory

    The Maine 1:24,000 Hydrology Lines SDE feature class depicts double line river features, single line streams, pond, lake and coastal outlines in Maine from USGS 1:24,000 scale quadrangles. Some New Hampshire and New Brunswick features are also included. Codes are included to sel...

  16. Okinawa, Japan: Geologic Battleground

    NASA Astrophysics Data System (ADS)

    Waymack, S. W.; Carrington, M. P.; Harpp, K. S.

    2005-12-01

    One of our main goals as instructors, particularly in introductory courses, is to impart students with an appreciation of how geology has influenced the course of human events. Despite the apparent accessibility of such topics, communicating this in a lively, relevant, and effective way often proves difficult. We use a series of historical events, the Pacific island hopping campaign of WWII, to engage students in an active, guided inquiry exercise to explore how terrain and the underlying geology of an area can shape historical events. Teams of students are assigned the role of planning either the defense or occupation of Okinawa Island, in the Ryukyu arc, in a theoretical version of the 1945 conflict. Students are given a package of information, including geologic and topographic maps, a list of military resources available to them at the time, and some historical background. Students also have access to "reconnaissance" images, 360o digital panoramas of the landscape of Okinawa, keyed to their maps. Each team has a week to plan their strategies and carry out additional research, which they subsequently bring to the table in the form of a written battle plan. With an instructor as arbiter, teams alternate drawing their maneuvers on a map of the island, to which the other team then responds. This continues one move at a time, until the instructor declares a victor. Throughout the exercise, the instructor guides students through analysis of each strategic decision in light of the island's structure and topography, with an emphasis on the appropriate interpretation of the maps. Students soon realize that an understanding of the island's terrain literally meant the difference between life and death for civilians and military participants alike in 1945. The karst landscape of Okinawa posed unique obstacles to both the Japanese and the American forces, including difficult landing sites, networks of natural caves, and sequences of hills aligned perpendicular to the length of the island and to American troop movement. This unique topography forced innovative tactics ranging from reverse slope defense to "blowtorch and corkscrew" offense in response. During this exercise, students apply their map-reading and interpretation skills, as well as their critical analysis abilities; the historical context, in turn, provides motivation to refine those skills. Sun Tzu wrote that all warfare is based on deception. What we hope to communicate to students with this activity is that much of warfare, and, more broadly, the way humans interact with the world, is inherently and undeniably based on geology.

  17. Geology for the Masses

    ERIC Educational Resources Information Center

    Dickinson, William R.

    1970-01-01

    Describes environmental geology as including planning to avoid natural hazards, acquire natural resources, and use land wisely. Describes philosophy and strategies for developing interdisciplinary, environmental geology education at the high school, college, professional graduate, and doctoral research levels. (PR)

  18. Geophysics & Geology Inspected.

    ERIC Educational Resources Information Center

    Neale, E. R. W.

    1981-01-01

    Summarizes findings of a recently published report of the Canadian Geoscience Council, which includes the following topics regarding college geology: facilities; teaching; undergraduate enrollments; postgraduate enrollments; geologic research; and integration of Canadian geoscience with other countries. (CS)

  19. Historical sketch: Radar geology

    NASA Technical Reports Server (NTRS)

    Macdonald, H.

    1980-01-01

    A chronological assessment is given of the broad spectra of technology associated with radar geology. Particular attention is given to the most recent developments made in the areas of microwave Earth resources applications and geologic remote sensing from aircraft and satellite. The significance of space derived radar in geologic investigations is discussed and the scientific basis for exploiting the sensitivity of radar signals to various aspects of geologic terrain is given.

  20. Geologic Map of the Northern Hemisphere of Vesta

    NASA Astrophysics Data System (ADS)

    Hiesinger, Harald; Ruesch, Ottaviano; Blewett, Dave T.; Buczkowski, Debra L.; Scully, Jennifer; Williams, Dave A.; Aileen Yingst, R.; Russell, Chris T.; Raymond, Carol A.

    2013-04-01

    For more than a year, the NASA Dawn mission acquired Framing Camera (FC) images from orbit around Vesta. The surface of the asteroid was completely imaged [1] before Dawn left for its next target, the asteroid Ceres. In an early phase of the mission, the southern and equatorial regions were imaged, allowing the production of several geologic quadrangle maps [2]. During the second High Altitude Mapping Orbit (HAMO-2), the northern hemisphere became illuminated and visible. Here we present the first geologic map of the northern vestan hemisphere, from 21°N to 85°N, derived mainly from HAMO-2 observations. Detailed studies of specific geologic features within this hemisphere are presented elsewhere [e.g., 3,4]. For our geologic map we used high-resolution FC images [5] with ~20 m/pixel from the Low Altitude Mapping Orbit (LAMO), which unfortunately only cover the southern part of the study area (21°N to 45°N). For areas farther north, LAMO images are supplemented with HAMO-2 images, which have a pixel scale of about 70 m/pixel. During the departure phase, images of the north pole area with even lower spatial resolutions were acquired. Due to observational constraints, considerable shadowing is present north of 75°. From these data, an albedo mosaic and a stereo-photogrammetric digital terrain model [6] was produced, which serve as basis for our geologic map. For the geologic mapping at a scale of 1:500,000, all data were incorporated into a Geographic Information System (ArcGIS). We have identified several geologic units within the study area, including cratered highland material (ch) and the Saturnalia Formation (Sf), which is characterized by large-scale ridges and troughs, presumably associated with the south polar Veneneia impact [7]. In addition, we mapped undifferentiated crater material (uc), discontinuous ejecta material (dem), and dark/bright crater material and dark/bright crater ray material (dc/bc and dcr/bcr). We will present a detailed description of the geologic units and their relative stratigraphy [8]. References: [1] Russell C. T. et al. (2012) GSA Ann. Meet., 152-1. [2] Yingst R. A. et al. (2012) EGU, Gen. Ass., 6225. [3] Blewett D. T. et al. (2012) GSA Ann. Meet., 152-9. [4] Scully J. (2012) DPS Meet. 44, #207.08. [5] Sierks H. et al. (2011) Space Sci Rev. [6] Preusker et al. (2012) LPSC 43, #2012. [7] Jaumann et al. (2012) Science Vol. 336, pp. 687-690. [8] Hiesinger H. et al. (2013) LPSC 44, #2582.

  1. Main Oxidizer Valve Design

    NASA Technical Reports Server (NTRS)

    Addona, Brad; Eddleman, David

    2015-01-01

    A developmental Main Oxidizer Valve (MOV) was designed by NASA-MSFC using additive manufacturing processes. The MOV is a pneumatically actuated poppet valve to control the flow of liquid oxygen to an engine's injector. A compression spring is used to return the valve to the closed state when pneumatic pressure is removed from the valve. The valve internal parts are cylindrical in shape, which lends itself to traditional lathe and milling operations. However, the valve body represents a complicated shape and contains the majority of the mass of the valve. Additive manufacturing techniques were used to produce a part that optimized mass and allowed for design features not practical with traditional machining processes.

  2. Geological exploration of Angola from Sumbe to Namibe: A review at the frontier between geology, natural resources and the history of geology

    NASA Astrophysics Data System (ADS)

    Masse, Pierre; Laurent, Olivier

    2016-01-01

    This paper provides a review of the Geological exploration of the Angola Coast (from Sumbe to Namibe) from pioneer's first geological descriptions and mining inventory to the most recent publications supported by the oil industry. We focus our attention on the following periods: 1875-1890 (Paul Choffat's work, mainly), 1910-1949 (first maps at country scale), 1949-1974 (detailed mapping of the Kwanza-Namibe coastal series), 1975-2000, with the editing of the last version of the Angola geological map at 1:1 million scale and the progressive completion of previous works. Since 2000, there is a renewal in geological fieldwork publications on the area mainly due to the work of university teams. This review paper thus stands at the frontier between geology, natural resources and the history of geology. It shows how geological knowledge has progressed in time, fueled by economic and scientific reasons.

  3. Geological Survey research 1976

    USGS Publications Warehouse

    U.S. Geological Survey

    1976-01-01

    This U.S. Geological Survey activities report includes a summary of recent (1976 fiscal year) scientific and economic results accompanied by a list of geologic and hydrologic investigations in progress and a report on the status of topographic mapping. The summary of results includes: (1) Mineral resources, Water resources, (2) Engineering geology and hydrology, (3) Regional geology, (4) Principles and processes, (5) Laboratory and field methods, (6) Topographic surveys and mapping, (7) Management of resources on public lands, (8) Land information and analysis, and (9) Investigations in other countries. Also included are lists of cooperating agencies and Geological Survey offices. (Woodard-USGS)

  4. Geological Survey research 1978

    USGS Publications Warehouse

    U.S. Geological Survey

    1978-01-01

    This U.S. Geological Survey activities report includes a summary of 1978 fiscal year scientific and economic results accompanied by a list of geologic and hydrologic investigations in progress and a report on the status of topographic mapping. The summary of results includes: (1) Mineral and water resources, (2) Engineering geology and hydrology, (3) Regional geology, (4) Principles and processes, (5) Laboratory and field methods, (6) Topographic surveys and mapping, (7) Management of resources on public lands, (8) Land information and analysis, and (9) Investigations in other countries. Also included are lists of cooperating agencies and Geological Survey offices. (Woodard-USGS)

  5. Forensic geology exhumed

    NASA Astrophysics Data System (ADS)

    Martinez, Joseph Didier

    Forensic geology binds applied geology to the world of legal controversy and action. However, the term forensic is often misconstrued. Although even some attorneys apply it only to the marshalling of evidence in criminal cases, it has a much broader definition. One dictionary defines it as pertaining to, connected with, or used in courts of law or public discussion and debate. The American Geological Institute's Glossary of Geology defines forensic geology as the application of the Earth sciences to the law. The cited reference to Murray and Tedrow [1975], however, deals mostly if not exclusively with the gathering and use of evidence in criminal cases, despite the widespread involvement of geologists in more general legal matters. It seems appropriate to exhume geology's wider application to the law, which is encompassed by forensic geology.

  6. Digital geologic map and GIS database of Venezuela

    USGS Publications Warehouse

    Garrity, Christopher P.; Hackley, Paul C.; Urbani, Franco

    2006-01-01

    The digital geologic map and GIS database of Venezuela captures GIS compatible geologic and hydrologic data from the 'Geologic Shaded Relief Map of Venezuela,' which was released online as U.S. Geological Survey Open-File Report 2005-1038. Digital datasets and corresponding metadata files are stored in ESRI geodatabase format; accessible via ArcGIS 9.X. Feature classes in the geodatabase include geologic unit polygons, open water polygons, coincident geologic unit linework (contacts, faults, etc.) and non-coincident geologic unit linework (folds, drainage networks, etc.). Geologic unit polygon data were attributed for age, name, and lithologic type following the Lexico Estratigrafico de Venezuela. All digital datasets were captured from source data at 1:750,000. Although users may view and analyze data at varying scales, the authors make no guarantee as to the accuracy of the data at scales larger than 1:750,000.

  7. Fractals in geology and geophysics

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1989-01-01

    The definition of a fractal distribution is that the number of objects N with a characteristic size greater than r scales with the relation N of about r exp -D. The frequency-size distributions for islands, earthquakes, fragments, ore deposits, and oil fields often satisfy this relation. This application illustrates a fundamental aspect of fractal distributions, scale invariance. The requirement of an object to define a scale in photograhs of many geological features is one indication of the wide applicability of scale invariance to geological problems; scale invariance can lead to fractal clustering. Geophysical spectra can also be related to fractals; these are self-affine fractals rather than self-similar fractals. Examples include the earth's topography and geoid.

  8. Vowel Features

    ERIC Educational Resources Information Center

    Lindau, Mona

    1978-01-01

    This paper presents an inventory of the features that are necessary to describe vowel systems in the languages of the world. The relationship between the features and then articulatory and acoustic correlates is explored. (Author/NCR)

  9. The Gulf of Maine in the Classroom.

    ERIC Educational Resources Information Center

    Brody, Michael J.

    This paper describes some of the correct, missing, and alternative conceptions which students possess related to the Gulf of Maine. Students (N=226) from grades 4, 8, and 11 were interviewed on 15 major concepts involving geology, physical and chemical oceanography, natural resources, ecology, and decision-making. The mean interview scores of the…

  10. Feature Indeterminacy and Feature Resolution.

    ERIC Educational Resources Information Center

    Dalrymple, Mary; Kaplan, Ronald M.

    2000-01-01

    Presents a theory of feature representation that accounts for feature indeterminacy and feature resolution within the lexical functional grammar (LFG) framework. The representations discussed, together with minimal extensions of LFG's description language, enable a simple and intuitive characterization of both these phenomena. (Author/VWL)

  11. Geological Survey research 1981

    USGS Publications Warehouse

    U.S. Geological Survey

    1982-01-01

    This U.S. Geological Survey activities report includes a summary of 1981 fiscal year scientific and economic results accompanied by a list of geologic, hydrologic, and cartographic investigations in progress. The summary of results includes: (1) Mineral, (2) Water resources, (3) Engineering geology and hydrology, (4) Regional geology, (5) Principles and processes, (6) Laboratory and field methods, (7) Topographic surveys and mapping, (8) Management of resources on public lands, (9) Land information and analysis, and (10) Investigations in other countries. Also included are lists of investigations in progress. (USGS)

  12. Relief and geology of the north polar region of the planet Venus

    NASA Technical Reports Server (NTRS)

    Kuzmin, R. O.; Burba, G. A.; Shashkina, V. P.; Bogomolov, A. F.; Zherikhin, N. V.; Skrypnik, G. I.; Kudrin, L. V.; Bergman, M. Y.; Rzhiga, O. N.; Sidorenko, A. I.

    1986-01-01

    Description of topographic features is given for the North polar region of the planet Venus. Principal geomorphic types of terrain are characterized as well as their geologic relations. Relative ages of geologic units in Venus North polar region are discussed.

  13. A Geospatial Information Grid Framework for Geological Survey

    PubMed Central

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper. PMID:26710255

  14. The geology and geophysics of Mars

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.

    1976-01-01

    The current state of knowledge concerning the regional geology and geophysics of Mars is summarized. Telescopic observations of the planet are reviewed, pre-Mariner models of its interior are discussed, and progress achieved with the Mariner flybys, especially that of Mariner 9, is noted. A map of the Martian geological provinces is presented to provide a summary of the surface geology and morphology. The contrast between the northern and southern hemispheres is pointed out, and the characteristic features of the surface are described in detail. The global topography of the planet is examined along with its gravitational field, gravity anomalies, and moment of inertia. The general sequence of events in Martian geological history is briefly outlined.

  15. Stochastic simulation of geological data using isometric mapping and multiple-point geostatistics with data incorporation

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Du, Yi; Huang, Tao; Li, Xue

    2016-02-01

    Constrained by current hardware equipment and techniques, acquisition of geological data sometimes is difficult or even impossible. Stochastic simulation for geological data is helpful to address this issue, providing multiple possible results of geological data for resource prediction and risk evaluation. Multiple-point geostatistics (MPS) being one of the main branches of stochastic simulation can extract the intrinsic features of patterns from training images (TIs) that provide prior information to limit the under-determined simulated results, and then copy them to the simulated regions. Because the generated models from TIs are not always linear, some MPS methods using linear dimensionality reduction are not suitable to deal with nonlinear models of TIs. A new MPS method named ISOMAPSIM was proposed to resolve this issue, which reduces the dimensionality of patterns from TIs using isometric mapping (ISOMAP) and then classifies these low-dimensional patterns for simulation. Since conditional models including hard data and soft data influence the simulated results greatly, this paper further studies ISOMAPSIM using hard data and soft data to obtain more accurate simulations for geological modeling. Stochastic simulation of geological data is processed respectively under several conditions according to different situations of conditional models. The tests show that the proposed method can reproduce the structural characteristics of TIs under all conditions, but the condition using soft data and hard data together performs best in simulation quality; moreover, the proposed method shows its advantages over other MPS methods that use linear dimensionality reduction.

  16. Main Pass Sampling

    On April 20, 2010, the Deepwater Horizon Drilling Platform exploded and sank, causing an enormous oil spill in the Gulf of Mexico. U.S. Geological Survey field offices responded immediately by organizing teams to take pre-spill sediment and water samples in order to establish a baseline survey. This...

  17. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1981-01-01

    This second issue in a new series intended to serve the planetary geology community with a form for quick and thorough communications includes (1) a catalog of terrestrial craterform structures for northern Europe; (2) abstracts of results of the Planetary Geology Program, and (3) a list of the photographic holdings of regional planetary image facilities.

  18. Geology of the Caribbean.

    ERIC Educational Resources Information Center

    Dillon, William P.; And Others

    1988-01-01

    Describes some of the geologic characteristics of the Caribbean region. Discusses the use of some new techniques, including broad-range swath imaging of the sea floor that produces photograph-like images, and satellite measurement of crustal movements, which may help to explain the complex geology of the region. (TW)

  19. Women in Early Geology.

    ERIC Educational Resources Information Center

    Elder, Eleanor S.

    1982-01-01

    Biographical sketches are given for several women who made early contributions to the science of geology. A short biography of Inge Lehmann is also included as a more recent example of a woman who has made a notable contribution to the geological field. (Author)

  20. Glossary of geology

    SciTech Connect

    Bates, R.L.; Jackson, J.A.

    1987-01-01

    This third edition of the Glossary of Geology contains approximately 37,000 terms, or 1,000 more than the second edition. New entries are especially numerous in the fields of carbonate sedimentology, hydrogeology, marine geology, mineralogy, ore deposits, plate tectonics, snow and ice, and stratigraphic nomenclature. Many of the definitions provide background information.

  1. People and Geology.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on the many natural resources we extract from the earth's crust, including metals, graphite, and other minerals, as well as fossil fuels. Contains teaching activities such as a geologic scavenger hunt, a geology chronology, and the recycling of aluminum. Includes a reproducible handout for the activity on aluminum.

  2. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1982-01-01

    Advances in Planetary Geology is a new series intended to serve the planetary geology community with a form for quick and thorough communications. There are no set lists of acceptable topics or formats, and submitted manuscripts will not undergo a formal review. All submissions should be in a camera ready form, preferably spaced, and submitted to the editor.

  3. People and Geology.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on the many natural resources we extract from the earth's crust, including metals, graphite, and other minerals, as well as fossil fuels. Contains teaching activities such as a geologic scavenger hunt, a geology chronology, and the recycling of aluminum. Includes a reproducible handout for the activity on aluminum.…

  4. Radiometric Dating in Geology.

    ERIC Educational Resources Information Center

    Pankhurst, R. J.

    1980-01-01

    Described are several aspects and methods of quantitatively measuring geologic time using a constant-rate natural process of radioactive decay. Topics include half lives and decay constants, radiogenic growth, potassium-argon dating, rubidium-strontium dating, and the role of geochronology in support of geological exploration. (DS)

  5. Field Geology/Processes

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  6. Reservoir geology using 3D modelling tools

    SciTech Connect

    Dubrule, O.; Samson, P.; Segonds, D.

    1996-12-31

    The last decade has seen tremendous developments in the area of quantitative geological modelling. These developments have a significant impact on the current practice of constructing reservoir models. A structural model can first be constructed on the basis of depth-converted structural interpretations produced on a seismic interpretation workstation. Surfaces and faults can be represented as geological objects, and interactively modified. Once the tectonic framework has been obtained, intermediate stratigraphic surfaces can be constructed between the main structural surfaces. Within each layer, reservoir attributes can be represented using various techniques. Examples show how the distribution of different facies (i.e. from fine to coarse grain) can be represented, or how various depositional units (for instance channels, crevasses and lobes in a turbidite setting) can be modelled as geological {open_quotes}objects{close_quotes} with complex geometries. Elf Aquitaine, in close co-operation with the GOCAD project in Nancy (France) is investigating how geological models can be made more realistic by developing interactive functionalities. Examples show that, contrary to standard deterministic or geostatistical modelling techniques (which tend to be difficult to control) the use of new 3D tools allows the geologist to interactively modify geological surfaces (including faults) or volumetric properties. Thus, the sensitivity of various economic parameters (oil in place, connected volumes, reserves) to major geological uncertainties can be evaluated. It is argued that future breakthroughs in geological modelling techniques are likely to happen in the development of interactive approaches rather than in the research of new mathematical algorithms.

  7. Reservoir geology using 3D modelling tools

    SciTech Connect

    Dubrule, O. ); Samson, P. ); Segonds, D. )

    1996-01-01

    The last decade has seen tremendous developments in the area of quantitative geological modelling. These developments have a significant impact on the current practice of constructing reservoir models. A structural model can first be constructed on the basis of depth-converted structural interpretations produced on a seismic interpretation workstation. Surfaces and faults can be represented as geological objects, and interactively modified. Once the tectonic framework has been obtained, intermediate stratigraphic surfaces can be constructed between the main structural surfaces. Within each layer, reservoir attributes can be represented using various techniques. Examples show how the distribution of different facies (i.e. from fine to coarse grain) can be represented, or how various depositional units (for instance channels, crevasses and lobes in a turbidite setting) can be modelled as geological [open quotes]objects[close quotes] with complex geometries. Elf Aquitaine, in close co-operation with the GOCAD project in Nancy (France) is investigating how geological models can be made more realistic by developing interactive functionalities. Examples show that, contrary to standard deterministic or geostatistical modelling techniques (which tend to be difficult to control) the use of new 3D tools allows the geologist to interactively modify geological surfaces (including faults) or volumetric properties. Thus, the sensitivity of various economic parameters (oil in place, connected volumes, reserves) to major geological uncertainties can be evaluated. It is argued that future breakthroughs in geological modelling techniques are likely to happen in the development of interactive approaches rather than in the research of new mathematical algorithms.

  8. Hazardous geological processes on the eastern slope of Sakhalin

    NASA Astrophysics Data System (ADS)

    Baranov, B. V.; Dozorova, K. A.; Rukavishnikova, D. D.

    2015-11-01

    The analysis of geological and geophysical data obtained from the eastern slope of Sakhalin Island provided grounds for defining several potentially hazardous geological processes in the region, such as seismicity, active tectonics, gas seepage, slope failure, and slumping. The peculiar features of the distribution of these throughout the eastern slope of Sakhalin are used for its zoning with respect to potential hazards.

  9. Activities in planetary geology for the physical and earth sciences

    NASA Technical Reports Server (NTRS)

    Dalli, R.; Greeley, R.

    1982-01-01

    A users guide for teaching activities in planetary geology, and for physical and earth sciences is presented. The following topics are discussed: cratering; aeolian processes; planetary atmospheres, in particular the Coriolis Effect and storm systems; photogeologic mapping of other planets, Moon provinces and stratigraphy, planets in stereo, land form mapping of Moon, Mercury and Mars, and geologic features of Mars.

  10. Geology Museum-Based Learning in Soil Science Education

    ERIC Educational Resources Information Center

    Mikhailova, E. A.; Tennant, C. H.; Post, C. J.; Cicimurri, C.; Cicimurri, D.

    2013-01-01

    Museums provide unique learning opportunities in soil science. The Bob Campbell Geology Museum in Clemson, SC, features an exhibit of minerals and rocks common in the state and in its geologic history. We developed a hands-on laboratory exercise utilizing an exhibit that gives college students an opportunity to visualize regional minerals and…

  11. Some aspects of geological information contained in LANDSAT images

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Liu, C. C.; Vitorello, I.; Meneses, P. R.

    1980-01-01

    The characteristics of MSS images and methods of interpretation are analyzed from a geological point of view. The supportive role of LANDSAT data are illustrated in several examples of surface expressions of geological features, such as synclines and anticlines, spectral characteristics of lithologic units, and circular impact structures.

  12. Geology Museum-Based Learning in Soil Science Education

    ERIC Educational Resources Information Center

    Mikhailova, E. A.; Tennant, C. H.; Post, C. J.; Cicimurri, C.; Cicimurri, D.

    2013-01-01

    Museums provide unique learning opportunities in soil science. The Bob Campbell Geology Museum in Clemson, SC, features an exhibit of minerals and rocks common in the state and in its geologic history. We developed a hands-on laboratory exercise utilizing an exhibit that gives college students an opportunity to visualize regional minerals and

  13. Geology of the Lachesis Tessera V18 Quadrangle, Venus

    NASA Astrophysics Data System (ADS)

    McGowan, E. M.; McGill, G. E.

    2011-03-01

    Summary of the geology of the Lachesis Tessera, focusing on a linear grouping of structural features that includes Breksta Linea. This grouping includes an unnamed corona that is obscured by a large gore.

  14. OneGeology-Europe - The Challenges and progress of implementing a basic geological infrastructure for Europe

    NASA Astrophysics Data System (ADS)

    Asch, Kristine; Tellez-Arenas, Agnes

    2010-05-01

    OneGeology-Europe is making geological spatial data held by the geological surveys of Europe more easily discoverable and accessible via the internet. This will provide a fundamental scientific layer to the European Plate Observation System Rich geological data assets exist in the geological survey of each individual EC Member State, but they are difficult to discover and are not interoperable. For those outside the geological surveys they are not easy to obtain, to understand or to use. Geological spatial data is essential to the prediction and mitigation of landslides, subsidence, earthquakes, flooding and pollution. These issues are global in nature and their profile has also been raised by the OneGeology global initiative for the International Year of Planet Earth 2008. Geology is also a key dataset in the EC INSPIRE Directive, where it is also fundamental to the themes of natural risk zones, energy and mineral resources. The OneGeology-Europe project is delivering a web-accessible, interoperable geological spatial dataset for the whole of Europe at the 1:1 million scale based on existing data held by the European geological surveys. Proof of concept will be applied to key areas at a higher resolution and some geological surveys will deliver their data at high resolution. An important role is developing a European specification for basic geological map data and making significant progress towards harmonising the dataset (an essential first step to addressing harmonisation at higher data resolutions). It is accelerating the development and deployment of a nascent international interchange standard for geological data - GeoSciML, which will enable the sharing and exchange of the data within and beyond the geological community within Europe and globally. The geological dataset for the whole of Europe is not a centralized database but a distributed system. Each geological survey implements and hosts an interoperable web service, delivering their national harmonized geological data. These datasets are registered in a multilingual catalogue, who is one the main part of this system. This catalogue and a common metadata profile allows the discovery of national geological and applied geological maps at all scapes, Such an architecture is facilitating re-use and addition of value by a wide spectrum of users in the public and private sector and identifying, documenting and disseminating strategies for the reduction of technical and business barriers to re-use. In identifying and raising awareness in the user and provider communities, it is moving geological knowledge closer to the end-user where it will have greater societal impact and ensure fuller exploitation of a key data resource gathered at huge public expense. The project is providing examples of best practice in the delivery of digital geological spatial data to users, e.g. in the insurance, property, engineering, planning, mineral resource and environmental sectors. The scientifically attributed map data of the project will provide a pan-European base for science research and, importantly, a prime geoscience dataset capable of integration with other data sets within and beyond the geoscience domain. This presentation will demonstrate the first results of this project and will indicate how OneGeology-Europe is ensuring that Europe may play a leading role in the development of a geoscience spatial data infrastructure (SDI) globally.

  15. Fundamentals of Structural Geology

    NASA Astrophysics Data System (ADS)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  16. North-south geological differences between the residual polar caps on Mars

    USGS Publications Warehouse

    Thomas, P.C.; Malin, M.C.; Edgett, K.S.; Carr, M.H.; Hartmann, W.K.; Ingersoll, A.P.; James, P.B.; Soderblom, L.A.; Veverka, J.; Sullivan, R.

    2000-01-01

    Polar processes can be sensitive indicators of global climate, and the geological features associated with polar ice caps can therefore indicate evolution of climate with time. The polar regions on Mars have distinctive morphologic and climatologic features: thick layered deposits, seasonal CO2 frost caps extending to mid latitudes, and near-polar residual frost deposits that survive the summer. The relationship of the seasonal and residual frost caps to the layered deposits has been poorly constrained, mainly by the limited spatial resolution of the available data. In particular, it has not been known if the residual caps represent simple thin frost cover or substantial geologic features. Here we show that the residual cap on the south pole is a distinct geologic unit with striking collapse and erosional topography; this is very different from the residual cap on the north pole, which grades into the underlying layered materials. These findings indicate that the differences between the caps are substantial (rather than reflecting short-lived differences in frost cover), and so support the idea of long-term asymmetry in the polar climates of Mars.

  17. The geologic mapping of asteroid Vesta

    NASA Astrophysics Data System (ADS)

    Williams, D.; Yingst, A.; Garry, B.

    2014-07-01

    As part of NASA's Dawn mission [1,2] we conducted a geologic mapping campaign to provide a systematic, cartography-based initial characterization of the global and regional geology of asteroid Vesta. The goal of geological maps is to place observations of surface features into their stratigraphic context to develop a geologic history of the evolution of planetary surfaces. Geologic mapping reduces the complexity of heterogeneous planetary surfaces into comprehensible portions, defining and characterizing discrete material units based upon physical attributes related to the geologic processes that produced them, and enabling identification of the relative roles of various processes (impact cratering, tectonism, volcanism, erosion and deposition) in shaping planetary surfaces [3,4]. The Dawn Science Team produced cartographic products of Vesta from the Framing Camera images, including global mosaics as well as 15 regional quadrangles [5], which served as bases for the mapping. We oversaw the geologic mapping campaign during the Nominal Mission, including production of a global geologic map at scale 1:500,000 using images from the High Altitude Mapping Orbit [6] and 15 quadrangle geologic maps at scale 1:250,000 using images from the Low Altitude Mapping Orbit [7]. The goal was to support the Dawn Team by providing geologic and stratigraphic context of surface features and supporting the analysis of data from the Visible and Infrared Spectrometer (VIR) and the Gamma Ray and Neutron Detector (GRaND). Mapping was done using ArcGIS™ software, in which quadrangle mapping built on interpretations derived from the global geologic map but were updated and modified to take advantage of the highest spatial resolution data. Despite challenges (e.g., Vesta's highly sloped surface [8] deforms impact craters and produces mass movements that buries contacts), we were successfully able to map the whole surface of Vesta and identify a geologic history as represented in our maps and the resulting time-stratigraphic system and geologic timescale. Key results from the geologic mapping of Vesta include: 1) surface units are dominated by features and materials produced by two major impact events, the older Veneneia and younger Rheasilvia impacts at the south pole 2) both impacts produced a ridge-and-trough terrain as a tectonic response to the impacts, mapped as the Saturnalia Fossae and the Divalia Fossae Formations, respectively 3) stratigraphic analysis of Vesta's heavily cratered terrains show that portions of the original crust are preserved and predate the Veneneia impact 4) the Marcia impact event marks the beginning of Vesta's final stratigraphic period, including exposure of fresh bright and dark material and preservation of young bright-rayed and dark-rayed craters. We conclude that a geologic mapping campaign, including both global and regional mapping, can be conducted during the limited planetary nominal mission timeline, and is an excellent way to engage younger team members (graduate students and postdocs) in mission data analysis activities.

  18. Essential Elements of Geologic Reports.

    ERIC Educational Resources Information Center

    Webb, Elmer James

    1988-01-01

    Described is a report outline for geologic reports. Essential elements include title; abstract; introduction; stratigraphy; petrography; geochemistry; petrology; geophysics; structural geology; geologic history; modeling; economics; conclusions; and recommendations. (Author/CW)

  19. Formation evaluation: Geological procedures

    SciTech Connect

    Whittaker, A.

    1985-01-01

    This volume goes beyond a discussion of petroleum geology and the techniques of hydrocarbon (oil and gas) logging as a reservoir evaluation tool. It provides the logging geologist with a review of geological techniques and classification systems that will ensure the maximum development of communicable geological information. Contents include: 1. Introduction--cuttings recovery, cutting sampling, core sampling, rock classification; 2. Detrital rocks--classification, description; 3. Carbonate rocks--classification, description; 4. Chemical rocks-introduction, siliceous rocks, ferruginous rocks, aluminous rocks, phosphatic rocks, aluminous rocks, carbonaceous rocks; 5. Igneous and metamorpbic rocks; Appendix; References and Index.

  20. Geology of caves

    USGS Publications Warehouse

    Morgan, I.M., Davies,W.E.

    1991-01-01

    A cave is a natural opening in the ground extending beyond the zone of light and large enough to permit the entry of man. Occurring in a wide variety of rock types and caused by widely differing geological processes, caves range in size from single small rooms to intercorinecting passages many miles long. The scientific study of caves is called speleology (from the Greek words spelaion for cave and logos for study). It is a composite science based on geology, hydrology, biology, and archaeology, and thus holds special interest for earth scientists of the U.S. Geological Survey.

  1. Geologic map of Detrital, Hualapai, and Sacramento Valleys and surrounding areas, northwest Arizona

    USGS Publications Warehouse

    Beard, L. Sue; Kennedy, Jeffrey; Truini, Margot; Felger, Tracey

    2011-01-01

    A 1:250,000-scale geologic map and report covering the Detrital, Hualapai, and Sacramento valleys in northwest Arizona is presented for the purpose of improving understanding of the geology and geohydrology of the basins beneath those valleys. The map was compiled from existing geologic mapping, augmented by digital photogeologic reconnaissance mapping. The most recent geologic map for the area, and the only digital one, is the 1:1,000,000-scale Geologic Map of Arizona. The larger scale map presented here includes significantly more detailed geology than the Geologic Map of Arizona in terms of accuracy of geologic unit contacts, number of faults, fault type, fault location, and details of Neogene and Quaternary deposits. Many sources were used to compile the geology; the accompanying geodatabase includes a source field in the polygon feature class that lists source references for polygon features. The citations for the source field are included in the reference section.

  2. Application of groundwater aggressiveness assessment method for estimation of the karst process at main gas pipeline construction

    NASA Astrophysics Data System (ADS)

    Ermolaeva, A. V.

    2016-03-01

    Main pipelines maintenance is connected with hazard engineering and geological working conditions. The article deals with the use of groundwater aggressiveness assessment method to estimate the karst processes development during the construction of main gas pipelines. The possibility of using this method is analyzed on the example of the initial section of the designed gas pipeline “Power of Siberia” (section “Chayanda-Lensk"). The calculation of the nonequilibrium index Ca was made in accordance with the geotechnical survey data. The dependencies between the geomorphological features of the terrain and the natural waters aggressiveness were determined.

  3. New geological data of New Siberian Archipelago

    NASA Astrophysics Data System (ADS)

    Sobolev, Nikolay; Petrov, Evgeniy

    2014-05-01

    The area of New Siberian Archipelago (NSA) encompasses different tectonic blocks is a clue for reconstruction of geological structure and geodynamic evolution of East Arctic. According to palaeomagnetic study two parts of the archipelago - Bennett and Anjou Islands formed a single continental block at least from the Early Palaeozoic. Isotope dating of De Long Islands igneous and sedimentary rocks suggests Neoproterozoic (Baikalian) age of its basement. The De Long platform sedimentary cover may be subdivided into two complexes: (1) intermediate of PZ-J variously deformed and metamorphosed rocks and (2) K-KZ of weakly lithified sediments. The former complex comprises the Cambrian riftogenic volcanic-clastic member which overlain by Cambrian-Ordovician turbiditic sequence, deposited on a continental margin. This Lower Palaeozoic complex is unconformably overlain by Early Cretaceous (K-Ar age of c.120 Ma) basalts with HALIP petrochemical affinities. In Anjou Islands the intermediate sedimentary complex encompasses the lower Ordovician -Lower Carboniferous sequence of shallow-marine limestone and subordinate dolomite, mudstone and sandstone that bear fossils characteristic of the Siberian biogeographic province. The upper Mid Carboniferous - Jurassic part is dominated by shallow-marine clastic sediments, mainly clays. The K-KZ complex rests upon the lower one with angular unconformity and consists mainly of coal-bearing clastic sediments with rhyolite lavas and tuffs in the bottom (117-110 Ma by K-Ar) while the complexe's upper part contains intraplate alkalic basalt and Neogene-Quaternary limburgite. The De-Long-Anjou block's features of geology and evolution resemble those of Wrangel Island located some 1000 km eastward. The Laptev Sea shelf outcrops in intrashelf rises (Belkovsky and Stolbovoy Islands) where its geology and structure may be observed directly. On Belkovsky Island non-dislocated Oligocene-Miocene sedimentary cover of littoral-marine coal-bearing unconformably overlies folded basement. The latter encompasses two sedimentary units: the Middle Devonian shallow-marine carbonate and Late-Devonian-Permian olistostrome - flysch deposited in transitional environment from carbonate platform to passive margin. Dating of detrital zircons suggests the Siberian Platform and Taimyr-Severnaya Zemlya areas as the most possible provenance. The magmatic activity on Belkovsky Island resulted in formation of Early Triassic gabbro-dolerite similar to the Siberian Platform traps. Proximity of Belkovsky Island to the north of Verkhoyansk foldbelt allows continuation of the latter into the Laptev Sea shelf. The geology of Bolshoy Lyakhovsky Island is discrepant from the rest of the NSA. In the south of Bolshoy Lyakhovsky Island the ophiolite crops complex out: it is composed of tectonic melange of serpentinized peridotite, bandedf gabbro, pillow-basalt, and pelagic sediments (black shales and cherts). All the rocks underwent epidot - amphibolite, glaucophane and greenschist facies metamorphism. The ophiolite is intruded by various in composition igneous massifs - from gabbro-diorite to leuco-granite, which occurred at 110-120 Ma. The Bolshoy Lyakhovsky Island structure is thought to be a westerly continuation of the South Anui suture of Chukchi.

  4. COGEOMAP; a new era in cooperative geologic mapping

    USGS Publications Warehouse

    Reinhardt, Juergen; Miller, David M.

    1987-01-01

    A program of cooperative geologic mapping was established between the U.S. Geological Survey and the State geological surveys in fiscal year 1985. The main purpose of the program is to increase general-purpose geologic mapping throughout the Nation. By combining State and Federal resources for geologic mapping through this cooperative program, new mapping has been started, and both geologic and geophysical maps that resulted from the program have already been published. The program grew from mapping projects in 18 States in fiscal year 1985 to a program involving 29 States in 1986, as the combined State and Federal resources in the program grew from about $2 million to nearly $3 million. As the program enlarges its scope, it faces the challenge of producing high-quality maps with uniform standards while promoting the use of new technologies to increase the speed of geologic and geophysical mapping and map production.

  5. Database for volcanic processes and geology of Augustine Volcano, Alaska

    USGS Publications Warehouse

    McIntire, Jacqueline; Ramsey, David W.; Thoms, Evan; Waitt, Richard B.; Beget, James E.

    2012-01-01

    This digital release contains information used to produce the geologic map published as Plate 1 in U.S. Geological Survey Professional Paper 1762 (Waitt and Begét, 2009). The main component of this digital release is a geologic map database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map plate, accompanying measured sections, and main report text from Professional Paper 1762. It should be noted that Augustine Volcano erupted in 2006, after the completion of the geologic mapping shown in Professional Paper 1762 and presented in this database. Information on the 2006 eruption can be found in U.S. Geological Survey Professional Paper 1769. For the most up to date information on the status of Alaska volcanoes, please refer to the U.S. Geological Survey Volcano Hazards Program website.

  6. OneGeology Web Services and Portal as a global geological SDI - latest standards and technology

    NASA Astrophysics Data System (ADS)

    Duffy, Tim; Tellez-Arenas, Agnes

    2014-05-01

    The global coverage of OneGeology Web Services (www.onegeology.org and portal.onegeology.org) achieved since 2007 from the 120 participating geological surveys will be reviewed and issues arising discussed. Recent enhancements to the OneGeology Web Services capabilities will be covered including new up to 5 star service accreditation scheme utilising the ISO/OGC Web Mapping Service standard version 1.3, core ISO 19115 metadata additions and Version 2.0 Web Feature Services (WFS) serving the new IUGS-CGI GeoSciML V3.2 geological web data exchange language standard (http://www.geosciml.org/) with its associated 30+ IUGS-CGI available vocabularies (http://resource.geosciml.org/ and http://srvgeosciml.brgm.fr/eXist2010/brgm/client.html). Use of the CGI simpelithology and timescale dictionaries now allow those who wish to do so to offer data harmonisation to query their GeoSciML 3.2 based Web Feature Services and their GeoSciML_Portrayal V2.0.1 (http://www.geosciml.org/) Web Map Services in the OneGeology portal (http://portal.onegeology.org). Contributing to OneGeology involves offering to serve ideally 1:1000,000 scale geological data (in practice any scale now is warmly welcomed) as an OGC (Open Geospatial Consortium) standard based WMS (Web Mapping Service) service from an available WWW server. This may either be hosted within the Geological Survey or a neighbouring, regional or elsewhere institution that offers to serve that data for them i.e. offers to help technically by providing the web serving IT infrastructure as a 'buddy'. OneGeology is a standards focussed Spatial Data Infrastructure (SDI) and works to ensure that these standards work together and it is now possible for European Geological Surveys to register their INSPIRE web services within the OneGeology SDI (e.g. see http://www.geosciml.org/geosciml/3.2/documentation/cookbook/INSPIRE_GeoSciML_Cookbook%20_1.0.pdf). The Onegeology portal (http://portal.onegeology.org) is the first port of call for anyone wishing to discover the availability of global geological web services and has new functionality to view and use such services including multiple projection support. KEYWORDS : OneGeology; GeoSciML V 3.2; Data exchange; Portal; INSPIRE; Standards; OGC; Interoperability; GeoScience information; WMS; WFS; Cookbook.

  7. Geotechnical characterization for the Main Drift of the Exploratory Studies Facility

    SciTech Connect

    Kicker, D.C.; Martin, E.R.; Brechtel, C.E.; Stone, C.A.; Kessel, D.S.

    1997-07-01

    Geotechnical characterization of the Main Drift of the Exploratory Studies Facility was based on borehole data collected in site characterization drilling and on scanline rock mass quality data collected during the excavation of the North Ramp. The Main Drift is the planned 3,131-m near-horizontal tunnel to be excavated at the potential repository horizon for the Yucca Mountain Site Characterization Project. Main Drift borehole data consisted of three holes--USW SD-7, SD-9, and SD-12--drilled along the tunnel alignment. In addition, boreholes USW UZ-14, NRG-6, and NRG-7/7A were used to supplement the database on subsurface rock conditions. Specific data summarized and presented included lithologic and rock structure core logs, rock mechanics laboratory testing, and rock mass quality indices. Cross sections with stratigraphic and thermal-mechanical units were also presented. Topics discussed in the report include geologic setting, geologic features of engineering and construction significance, anticipated ground conditions, and the range of required ground support. Rock structural and rock mass quality data have been developed for each 3-m interval of core in the middle nonlithophysal stratigraphic zone of the Topopah Spring Tuff Formation. The distribution of the rock mass quality data in all boreholes used to characterize the Main Drift was assumed to be representative of the variability of the rock mass conditions to be encountered in the Main Drift. Observations in the North Ramp tunnel have been used to project conditions in the lower lithophysal zone and in fault zones.

  8. Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service

    NASA Astrophysics Data System (ADS)

    Nonogaki, S.; Nemoto, T.

    2014-12-01

    Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.

  9. Quaternary Geologic Map of Connecticut and Long Island Sound Basin

    USGS Publications Warehouse

    Stone, Janet Radway; Schafer, John P.; London, Elizabeth Haley; DiGiacomo-Cohen, Mary L.; Lewis, Ralph S.; Thompson, Woodrow B.

    2005-01-01

    The Quaternary geologic map (sheet 1) and explanatory figures and cross sections (sheet 2) portray the geologic features formed in Connecticut during the Quaternary Period, which includes the Pleistocene (glacial) and Holocene (postglacial) Epochs. The Quaternary Period has been a time of development of many details of the landscape and of all the surficial deposits. At least twice in the late Pleistocene, continental ice sheets swept across Connecticut. Their effects are of pervasive importance to the present occupants of the land. The Quaternary geologic map illustrates the geologic history and the distribution of depositional environments during the emplacement of glacial and postglacial surficial deposits and the landforms resulting from those events.

  10. Reconstructing the Geologic Timeline.

    ERIC Educational Resources Information Center

    Hemler, Deb; Repine, Tom

    2002-01-01

    Reports on the use of a non-traditional approach to constructing a geological timeline that allows students to manipulate data, explore their understanding, and confront misconceptions. Lists possible steps to use in engaging students in this constructivist activity. (DDR)

  11. Stratigraphy and structural geology

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Wilhelms, D. E.; Greeley, R.; Guest, J. E.

    1976-01-01

    The immediate goal of stratigraphy and structural geology is to reduce the enormous complexity of a planetary surface to comprehensible proportions by dividing the near-surface rocks into units and mapping their distribution and attitude.

  12. Experiencing Structural Geology

    ERIC Educational Resources Information Center

    Davis, George H.

    1978-01-01

    Describes an undergraduate structural geology course that incorporates field lab time and research. Lectures, outside readings, and in-class experimentation are coordinated with the field work to prepare a scientific report. (MA)

  13. Economic Geology (Oil & Gas)

    ERIC Educational Resources Information Center

    Geotimes, 1972

    1972-01-01

    Briefly reviews the worldwide developments in petroleum geology in 1971, including exploration, new fields, and oil production. This report is condensed from the October Bulletin of the American Association of Petroleum Geologists. (PR)

  14. Preliminary geologic mapping of Arsia Mons, Mars

    NASA Technical Reports Server (NTRS)

    Zimbelman, James R.

    1991-01-01

    Geologic mapping of the Tharsis Montes at a scale of 1:500,000 was recently initiated as part of the Mars Geologic Mapping Program of NASA. Detailed mapping of the three large shield volcanoes and their surroundings will help to clarify the sequence of events which led to the formation of these features, as well as provide a basis for comparing the complex histories of the three related yet distinctive volcanic centers. Preliminary mapping of Arsia Mons at a scale of 1:2 M was carried out in preparation for detailed mapping. A map is presented along with a discussion of its contents.

  15. Geologic utility of small-scale airphotos

    NASA Technical Reports Server (NTRS)

    Clark, M. M.

    1969-01-01

    The geologic value of small scale airphotos is emphasized by describing the application of high altitude oblique and 1:120,000 to 1:145,000 scale vertical airphotos to several geologic problems in California. These examples show that small-scale airphotos can be of use to geologists in the following ways: (1) high altitude, high oblique airphotos show vast areas in one view; and (2) vertical airphotos offer the most efficient method of discovering the major topographic features and structural and lithologic characteristics of terrain.

  16. Geological structures created by falls of galactic comets

    NASA Astrophysics Data System (ADS)

    Barenbaum, A. A.

    2015-11-01

    With the use of the author's theoretical model are discussed geological structures which can be created by fallings of galactic comets on terrestrial planets: Mercury, Mars, Earth, Venus and the Moon. The model predicts that depending on combination of a number of conditions galactic comets may form on these planets following types of structures: craters, diatremes, lava sheets, volcanoes, dome-shaped surface uplift, as well as coronae and montes (on Venus). The main factors that influence on origin of these structures on planets are (i) density of gas shell, (ii) thickness of planetary lithosphere, (iii) composition and degree heating of lithosphere rocks, (iv) frequency of fallings galactic comets. We are discussing specific features of these structures on the Moon, Mars, Earth and Venus.

  17. Geologic guide to the island of Hawaii: A field guide for comparative planetary geology

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor)

    1974-01-01

    With geological data available for all inner planets except Venus, we are entering an era of true comparative planetary geology, when knowledge of the differences and similarities for classes of structures (e.g., shield volcanoes) will lead to a better understanding of general geological processes, regardless of planet. Thus, it is imperative that planetologists, particularly those involved in geological mapping and surface feature analysis for terrestrial planets, be familiar with volcanic terrain in terms of its origin, structure, and morphology. One means of gaining this experience is through field trips in volcanic terrains - hence, the Planetology Conference in Hawaii. In addition, discussions with volcanologists at the conference provide an important basis for establishing communications between the two fields that will facilitate comparative studies as more data become available.

  18. Geological myths and reality

    NASA Astrophysics Data System (ADS)

    Ostrihansky, Lubor

    2014-05-01

    Myths are the result of man's attempts to explain noteworthy features of his environment stemming from unfounded imagination. It is unbelievable that in 21st century the explanation of evident lithospheric plates movements and origin of forces causing this movement is still bound to myths, They are the myth about mantle convection, myth about Earth's expansion, myth about mantle heterogeneities causing the movement of plates and myth about mantle plumes. From 1971 to 1978 I performed extensive study (Ostřihanský 1980) about the terrestrial heat flow and radioactive heat production of batholiths in the Bohemian Massive (Czech Republic). The result, gained by extrapolation of the heat flow and heat production relationship, revealed the very low heat flow from the mantle 17.7mW m-2 close to the site of the Quarterly volcano active only 115,000 - 15,000 years ago and its last outbreak happened during Holocene that is less than 10,000 years ago. This volcano Komorní Hůrka (Kammerbühls) was known by J. W. Goethe investigation and the digging of 300 m long gallery in the first half of XIX century to reach the basaltic plug and to confirm the Stromboli type volcano. In this way the 19th century myth of neptunists that basalt was a sedimentary deposit was disproved in spite that famous poet and scientist J.W.Goethe inclined to neptunists. For me the result of very low heat flow and the vicinity of almost recent volcanoes in the Bohemian Massive meant that I refused the hypothesis of mantle convection and I focused my investigation to external forces of tides and solar heat, which evoke volcanic effects, earthquakes and the plate movement. To disclose reality it is necessary to present calculation of acting forces using correct mechanism of their action taking into account tectonic characteristics of geologic unites as the wrench tectonics and the tectonic of planets and satellites of the solar system, realizing an exceptional behavior of the Earth as quickly rotating body exposed to strong tidal action of Moon and Sun. Ostrihansky, L.: The structure of the earth's crust and the heat-flow--heat-generation relationship in the Bohemian Massif. Tectonophysics, 68(3-4), 325-337, doi:10.1016/0040-1951(80)90182-1 1980.

  19. Edge-following algorithm for tracking geological features

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.

    1977-01-01

    Sequential edge-tracking algorithm employs circular scanning to point permit effective real-time tracking of coastlines and rivers from earth resources satellites. Technique eliminates expensive high-resolution cameras. System might also be adaptable for application in monitoring automated assembly lines, inspecting conveyor belts, or analyzing thermographs, or x ray images.

  20. The effect of geological and geographical features on environmental radiation

    SciTech Connect

    Yamada, J.; Oka, M.; Shimo, M.; Minami, K.; Minato, S.; Sugino, M.; Hosoda, M.; Fukushi, M.

    2008-08-07

    The gamma-ray dose rates were measured in Gifu and Tokushima Prefectures in Japan. Measurements were carried out by the car-borne survey method. The dose rate in basaltic terrain in Tokushima prefecture was almost same as average of basaltic terrain in Japan. On the other hand, the dose rate in basaltic terrain in Gifu Prefecture was not same. In situ measurement of terrestrial gamma-ray dose rate was carried out in this terrain to examine its cause. As a result, it was estimated that soil of rhyolite which attributed to neighbor terrain have deposited on this terrain.

  1. Geologic coal assessment: The interface with economics

    USGS Publications Warehouse

    Attanasi, E.D.

    2001-01-01

    Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.

  2. Geologic map of Chickasaw National Recreation Area, Murray County, Oklahoma

    USGS Publications Warehouse

    Blome, Charles D.; Lidke, David J.; Wahl, Ronald R.; Golab, James A.

    2013-01-01

    This 1:24,000-scale geologic map is a compilation of previous geologic maps and new geologic mapping of areas in and around Chickasaw National Recreation Area. The geologic map includes revisions of numerous unit contacts and faults and a number of previously “undifferentiated” rock units were subdivided in some areas. Numerous circular-shaped hills in and around Chickasaw National Recreation Area are probably the result of karst-related collapse and may represent the erosional remnants of large, exhumed sinkholes. Geospatial registration of existing, smaller scale (1:72,000- and 1:100,000-scale) geologic maps of the area and construction of an accurate Geographic Information System (GIS) database preceded 2 years of fieldwork wherein previously mapped geology (unit contacts and faults) was verified and new geologic mapping was carried out. The geologic map of Chickasaw National Recreation Area and this pamphlet include information pertaining to how the geologic units and structural features in the map area relate to the formation of the northern Arbuckle Mountains and its Arbuckle-Simpson aquifer. The development of an accurate geospatial GIS database and the use of a handheld computer in the field greatly increased both the accuracy and efficiency in producing the 1:24,000-scale geologic map.

  3. Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Monk, Jan C.

    1992-01-01

    The topics are presented in viewgraph form and include the following: Space Transportation Main Engine (STME) definition, design philosophy, robust design, maximum design condition, casting vs. machined and welded forgings, operability considerations, high reliability design philosophy, engine reliability enhancement, low cost design philosophy, engine systems requirements, STME schematic, fuel turbopump, liquid oxygen turbopump, main injector, and gas generator. The major engine components of the STME and the Space Shuttle Main Engine are compared.

  4. The growth of geological structures by repeated earthquakes, 1, conceptual framework

    USGS Publications Warehouse

    King, G.C.P.; Stein, R.S.; Rundle, J.B.

    1988-01-01

    In many places, earthquakes with similar characteristics have been shown to recur. If this is common, then relatively small deformations associated with individual earthquake cycles should accumulate over time to create geological structures. It is shown that existing models developed to describe leveling line changes associated with the seismic cycle can be adapted to explain geological features associated with a fault. In these models an elastic layer containing the fault overlies a viscous half-space with a different density. Fault motion associated with an earthquake results in immediate deformation followed by a long period of readjustment as stresses relax in the viscous layer and isostatic equilibrium is restored. The flexural rigidity of the crust (or the apparent elastic thickness) provides the main control of the width of a structure. The loading due to erosion and deposition of sediment determines the ratio of uplift to subsidence between the two sides of the fault. -Authors

  5. Road guide to geological points of interest on the island of Hawaii

    NASA Technical Reports Server (NTRS)

    Stearns, H. T.; Macdonald, G. A.; Greeley, R.

    1974-01-01

    This road guide briefly describes the points of geologic interest along the main roads on Hawaii. It begins at Hilo and proceeds around the island in a clockwise direction on State Route 11 to Kailua, then returns to Hilo on State Route 19 to Hilo via Waimea, with side excursions on the other principal roads. Minimum excursion time is two days, allowing only very brief time for the various stops. The return to Hilo from Waimea can be made via Route 19 along the Hamakua Coast (wet, leeward side of island, displaying typical tropical erosion) or via Route 20 over the Humuula Saddle (high, relatively dry and cool; young volcanic features).

  6. Commencement of Geoparks, Geology day and International Earth Science Olympiad, IYPE in Japan

    NASA Astrophysics Data System (ADS)

    Tsukuda, Eikichi; Kodama, Kisaburo; Miyazaki, Teruki

    2010-05-01

    The GSJ is the main supporting organization of IYPE Japan, which is an implementation body of IYPE in Japan, serving as its secretariat. During the IYPE triennial activity, the GSJ has been supporting development of Geparks, establishment of "the Geology Day" and the Earth Science Olympiad activities with some academic societies, and has distributed geological maps with IYPE logo. The GSJ also established an outreach network "Geo-networks Tsukuba" as a local legacy of the IYPE, and has managed it with a local government, research organizations, nonprofit corporations and local media to increase geological and environmental literacy of public, especially among young people. The GSJ-AIST has also contributed internationally to IYPE by joining two international projects, OneGeology and the CCOP Book project. Geoparks in Japan are characterized by following features. The Japanese Islands and the surrounding seas are situated in the area of unique geologic features; the place where several tectonic plates meet and collide. This causes earthquakes and volcanic activities, and makes Japan one of most dynamic areas on the earth. The dynamics of the earth bring about not only geological hazards but also a lot of blessings. In August of 2009, three Geoparks, the Toya Caldera and Usu Volcano Geopark, the Itoigawa Geopark and the Unzen Volcanic Area Geopark, were accepted to join the Global Geopark Network from Japan for the first time. Since its launch in 2006, the GSJ has been playing a major role in promoting Geoparks in Japan together with Geological Society of Japan. The GSJ hosts the Japan Geopark Committee (JGC) for quality evaluation, serving as the information center of Geoparks in Japan. The Geology Day of Japan (10th of May) has been set up by the academic societies for geology in Japan and GSJ in 2007. The Geology Day is expected to provide the chances for the public to enjoy field trips and excursions and to understand the importance of geo-diversity. The Day commemorates the first publication of the geological map of Japan on 10th of May in 1878. A total of fifty-nine geology-related organizations including natural museums and academic societies have joined the eighty nine events for Geology Day all over Japan in 2009. After the great success of 1st Iinternational Earth Science Olympiad(IESO) in Korea (2007), 2nd Philippines (2008) and 3rd Taiwan (2009), 6th IESO was decided to be held in Japan (2012). We also expect great success of 4th IESO in Indonesia and 5th IESO in Italy. Earth science communities in Japan including Societies, Universities, and Research Institutes take present-day environmental crisis seriously and throw strong messages to young people for saving the earth. Under such circumstances, IESO provides wonderful chances to think of the earth, to make friendships among worldwide participants and to understand each other. We, earth science communities in Japan, promise strongly to support 6th IESO in Tsukuba, Japan (2012) and then to organize this event efficiently. Through the triennial activity of IYPE we all learned the importance of international cooperation and public outreach.

  7. Measuring Geologic Time on Mars

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Recent images from Mars show compelling evidence of near-surface flowing water, aeolian activity slope processes, and ice cap evolution that underscores the dynamic geologic history of the planet. Establishing an accurate chronology for Martian planetary features is critical for addressing fundamental questions about the evolution of the planet's surface and atmosphere and the differentiation of its interior. For example, how long was standing water on the surface? If life did evolve on Mars, did it occur before or after the evolution of life on Earth? These are arguably some of the most profound questions currently being asked by the planetary science community. Yet answers will not be forthcoming without an absolute chronology of Mars history, enabling the construction of a timescale comparable to Earth's. Discussion of methods for establishing such a chronology is particularly timely in light of new missions to Mars that are being planned to return in situ measurements or samples to Earth.

  8. Geologic map of Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P., III; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.

    2014-01-01

    This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.

  9. Geological fakes and frauds

    NASA Astrophysics Data System (ADS)

    Ruffell, Alastair; Majury, Niall; Brooks, William E.

    2012-02-01

    Some geological fakes and frauds are carried out solely for financial gain (mining fraud), whereas others maybe have increasing aesthetic appeal (faked fossils) or academic advancement (fabricated data) as their motive. All types of geological fake or fraud can be ingenious and sophisticated, as demonstrated in this article. Fake gems, faked fossils and mining fraud are common examples where monetary profit is to blame: nonetheless these may impact both scientific theory and the reputation of geologists and Earth scientists. The substitution or fabrication of both physical and intellectual data also occurs for no direct financial gain, such as career advancement or establishment of belief (e.g. evolution vs. creationism). Knowledge of such fakes and frauds may assist in spotting undetected geological crimes: application of geoforensic techniques helps the scientific community to detect such activity, which ultimately undermines scientific integrity.

  10. Geology of Io

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Craddock, R. A.; Crown, D. A.; Leshin, L. A.; Schaber, G. G.

    1987-01-01

    Geologic mapping of the Jovian satellite Io has been completed at 1:15,000,000 scale for an area lying between +40 and -90 deg latitude and 230 and 45 deg longitude, which includes portions of the Ruwa Patera quadrangle (Ji2) and the Lerna Region (Ji4) and the westernmost section of the Colchis Region (Ji3). Image resolution in the mapped area is commonly 0.5 to 2 km/pxl. High resolution areas (less than .5 km/pxl) are located near the south pole (Lerna Region) and in eastern Ruwa Patera quadrangle. Geologic maps for the Ruwa Patera quadrangle (Ji2) and the Lerna Region (Ji4) have been produced at 1:5,000,000 scale. The present effort reexamines the previously mapped areas and synthesizes the geology of Io on a global scale.

  11. Alaskan North Slope Geology

    NASA Astrophysics Data System (ADS)

    Hamilton, Warren

    The discovery well for the Prudhoe Bay field, the largest oil accumulatn yet found in the United States, was drilled on the Arctic coast of Alaska by ARCO and Exxon in 1968. A decade of exploratory geology and increasingly detailed geophysical surveys, mostly by Sinclair and British Petroleum in the early years, but then by a number of companies, preceded the discovery. Systematic U.S. Geological Survey (USGS) reconnaissance of the Brooks Range—the great mountain system of northern Alaska—had begun in the 1940s and was accelerated after the discovery, as was industry work. In the last decade, scientists from the Alaska Division of Geology and Geophysics and from various universities have become increasingly involved. This modestly priced two-volume work presents hitherto unavailable summaries of much of this modern work.

  12. The Maine Event

    ERIC Educational Resources Information Center

    McHale, Tom

    2007-01-01

    In this article, the author describes the successful laptop program employed at Mt. Abram High School in Strong, Maine. Through the Maine Learning Technology Initiative, the school has issued laptops to all 36,000 teachers and students in grades 7-8. This program has helped level the playing field for a student population that is 50 percent to 55…

  13. MAINE MARINE WORM HABITAT

    EPA Science Inventory

    WORM provides a generalized representation at 1:24,000 scale of commercially harvested marine worm habitat in Maine, based on Maine Department of Marine Resources data from 1970's. Original maps were created by MDMR and published by USF&WS as part of the ""&quo...

  14. Teaching Main Idea Comprehension.

    ERIC Educational Resources Information Center

    Baumann, James F., Ed.

    Intended to help classroom teachers, curriculum developers, and researchers, this book provides current information on theoretical and instructional aspects of main idea comprehension. Titles and authors are as follows: "The Confused World of Main Idea" (James W. Cunningham and David W. Moore); "The Comprehension of Important Information in…

  15. Remote geologic structural analysis of Yucca Flat

    SciTech Connect

    Foley, M.G.; Heasler, P.G.; Hoover, K.A. ); Rynes, N.J. ); Thiessen, R.L.; Alfaro, J.L. )

    1991-12-01

    The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.

  16. Remote geologic structural analysis of Yucca Flat

    SciTech Connect

    Foley, M.G.; Heasler, P.G.; Hoover, K.A.; Rynes, N.J.; Thiessen, R.L.; Alfaro, J.L.

    1991-12-01

    The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA`s characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL`s RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.

  17. Geological assessment of the greenhouse effect

    SciTech Connect

    Crowley, T.J. )

    1993-12-01

    Geologic studies provide a valuable perspective on the importance of greenhouse forcing for climate change. On both Pleistocene and tectonic time scales, changes in climate are positively correlated with greenhouse gas variations. However, the sensitivity of the system to greenhouse gas changes cannot yet be constrained by paleoclimate data below its present large range. Geologic records do not support one of the major predictions of greenhouse models-namely, that tropical sea surface temperatures will increase. Geologic data also suggest that winter cooling in high-latitude land areas is less than predicted by models. As the above-mentioned predictions appear to be systemic features of the present generation of climate models, some significant changes in model design may be required to reconcile models and geologic data. However, full acceptance of this conclusion requires more measurements and more systematic compilations of existing geologic data. Since progress in data collection in this area has been quite slow, uncertainties associated with these conclusions may persist for some time. 106 refs., 6 figs.

  18. Iapetus: Tectonic structure and geologic history

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1991-01-01

    Many papers have been written about the surface of Iapetus, but most of these have discussed either the nature of the strongly contrasting light and dark materials or the cratering record. Little has been said about other geologic features on Iapetus, such as tectonic structures, which would provide constraints on Iapetus' thermal history. Most references have suggested that there is no conclusive evidence for any tectonic activity, even when thermal history studies indicate that there should be. However, a new study of Iapetus' surface involving the use of stereo pairs, an extensive tectonic network has been recognized. A few new observations concerning the craters and dark material were also made. Thus the geology and geologic history of Iapetus can be more fully outlined than before. The tectonic network is shown along with prominent craters and part of the dark material in the geologic/tectonic sketch map. The topology of crater rims and scarps are quite apparent and recognizable in the different image pairs. The heights and slopes of various features given are based on comparison with the depths of craters 50 to 100 km in diameter, which are assumed to have the same depths as craters of similar diameter on Rhea and Titania.

  19. Geological Investigation Program for the Site of a New Nuclear Power Plant in Hungary

    NASA Astrophysics Data System (ADS)

    Gerstenkorn, András; Trosits, Dalma; Chikán, Géza; János Katona, Tamás

    2015-04-01

    Comprehensive site evalaution program is implemented for the new Nuclear Power Plant to be constructed at Paks site in Hungary with the aim of confirmation of acceptability of the site and definition of site-related design basis data. Most extensive part of this program is to investigate geological-tectonical features of the site with particular aim on the assessment of the capability of faults at and around the site, characterization of site seismic hazard, and definition of the design basis earthquake. A brief description of the scope and methodology of the geological, seismological, geophysical, geotechnical and hydrogeological investigations will be given on the poster. Main focus of the presentation is to show the graded structure and extent of the geological investigations that follow the needs and scale of the geological modeling, starting with the site and its vicinity, as well as on the near regional and the regional scale. Geological inverstigations includes several boreholes up-to the base-rock, plenty of boreholes discovering the Pannonian and large number of shallow boreholes for investigation of more recent development. The planning of the geological investigations is based on the 3D seismic survey performed around the site, that is complemented by shallow-seimic survey at and in the vicinity of the site. The 3D geophysical imaging provides essential geodynamic information to assess the capability of near site faults and for the seismic hazard analysis, as well as for the hydrogeological modeling. The planned seismic survey gives a unique dataset for understanding the spatial relationship between individual fault segments. Planning of the research (trenching, etc.) for paleoseismic manifestations is also based on the 3D seismic survey. The seismic survey and other geophysical data (including data of space geodesy) allow the amendment of the understanding and the model of the tectonic evolution of the area and geological events. As it is known from earlier studies, seismic sources in the near regional area are the dominating contributors to the site seimic hazard. Therefore a 3D geological model will be developed for the 50 km region around the site in order to consider different geological scenarios. Site-scale investigations are aimed on the characterization of local geotechnical and hydrogeological conditions. The geotechnical investigations provide data for the evaluation of site response, i.e. the free-field ground motion response spectra, assessment of the liquefaction hazard and foundation design. Important element of the hydrogeological survey is numerical groundwater modeling. The aim of hydrogeological modeling is the summary of hydrogeological data in a numeric system, the description, simulation of underground water flow and transport conditions.

  20. Petroleum development geology

    SciTech Connect

    Dickey, P.A.

    1986-01-01

    An overview of geological concepts and reservoir engineering practices as they apply to the field of development (production) geology is presented. The author touches on nearly every aspect of the field in the 21 chapters of the book. He summarizes the basic depositional origin, sedimentary characteristics, and petrology of hydrocarbon-bearing rocks. He discusses physical properties, origin, and migration of subsurface oil and gas, oil field water, and their behavior, including subsurface pressures and fluid mechanics. Also covered are various methods of estimating reserves, the major tools of the trade and their limitations, and case histories.

  1. Planetary geological processes

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M. C.; Solomonidou, Anezina

    2014-11-01

    In this introduction to planetary geology, we review the major geologic processes affecting the solid bodies of the solar system, namely volcanism, tectonism, impact cratering, and erosion. We illustrate the interplay of these processes in different worlds, briefly reviewing how they affect the surfaces of the Earth's Moon, Mercury, Venus and Mars, then focusing on two very different worlds: Jupiter's moon Io, the most volcanically active object in the solar system, and Saturn's moon Titan, where the interaction between a dense atmosphere and the surface make for remarkably earth-like landscapes despite the great differences in surface temperature and composition.

  2. Experimentation in planetary geology

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.

    1987-01-01

    Laboratory simulations of geological processes on the terrestrial planets are described, summarizing results published during the period 1983-1986. Included are studies of wind-driven processes on Mars and Venus (using the special wind-tunnel facilities at NASA Ames); simulations of shock-induced loss of volatiles from solids; equation-of-state determinations; impact experiments simulating cratering, spallation, regolith formation, and disruption; fluid-flow simulations of channel formation on Mars; and dust studies. The use of the microgravity environment of the Space Station for planetary-geology experiments is briefly considered.

  3. Geology and insolation-driven climatic history of Amazonian north polar materials on Mars

    USGS Publications Warehouse

    Tanaka, K.L.

    2005-01-01

    Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (???3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago. ?? 2005 Nature Publishing Group.

  4. Geology and insolation-driven climatic history of Amazonian north polar materials on Mars.

    PubMed

    Tanaka, Kenneth L

    2005-10-13

    Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (approximately 3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago. PMID:16222294

  5. 78 FR 57877 - National Cooperative Geologic Mapping Program (NCGMP) and National Geological and Geophysical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ....S. Geological Survey National Cooperative Geologic Mapping Program (NCGMP) and National Geological and Geophysical Data Preservation Program (NGGDPP) Advisory Committee AGENCY: U.S. Geological Survey....S. Geological Survey on planning and implementation of the geologic mapping and data...

  6. 77 FR 38318 - National Cooperative Geologic Mapping Program (NCGMP) and National Geological and Geophysical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ....S. Geological Survey National Cooperative Geologic Mapping Program (NCGMP) and National Geological and Geophysical Data Preservation Program (NGGDPP) Advisory Committee AGENCY: U.S. Geological Survey.... Geological Survey on planning and implementation of the geologic mapping and data preservation programs....

  7. Environmental resources of selected areas of Hawaii: Geological hazards

    SciTech Connect

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

  8. Database of the Geology and Thermal Activity of Norris Geyser Basin, Yellowstone National Park

    USGS Publications Warehouse

    Flynn, Kathryn; Graham Wall, Brita; White, Donald E.; Hutchinson, Roderick A.; Keith, Terry E.C.; Clor, Laura; Robinson, Joel E.

    2008-01-01

    This dataset contains contacts, geologic units and map boundaries from Plate 1 of USGS Professional Paper 1456, 'The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming.' The features are contained in the Annotation, basins_poly, contours, geology_arc, geology_poly, point_features, and stream_arc feature classes as well as a table of geologic units and their descriptions. This dataset was constructed to produce a digital geologic map as a basis for studying hydrothermal processes in Norris Geyser Basin. The original map does not contain registration tic marks. To create the geodatabase, the original scanned map was georegistered to USGS aerial photographs of the Norris Junction quadrangle collected in 1994. Manmade objects, i.e. roads, parking lots, and the visitor center, along with stream junctions and other hydrographic features, were used for registration.

  9. Geologic Map of the Hellas Region of Mars

    USGS Publications Warehouse

    Leonard, Gregory J.; Tanaka, Kenneth L.

    2001-01-01

    INTRODUCTION This geologic map of the Hellas region focuses on the stratigraphic, structural, and erosional histories associated with the largest well-preserved impact basin on Mars. Along with the uplifted rim and huge, partly infilled inner basin (Hellas Planitia) of the Hellas basin impact structure, the map region includes areas of ancient highland terrain, broad volcanic edifices and deposits, and extensive channels. Geologic activity recorded in the region spans all major epochs of martian chronology, from the early formation of the impact basin to ongoing resurfacing caused by eolian activity. The Hellas region, whose name refers to the classical term for Greece, has been known from telescopic observations as a prominent bright feature on the surface of Mars for more than a century (see Blunck, 1982). More recently, spacecraft imaging has greatly improved our visual perception of Mars and made possible its geologic interpretation. Here, our mapping at 1:5,000,000 scale is based on images obtained by the Viking Orbiters, which produced higher quality images than their predecessor, Mariner 9. Previous geologic maps of the region include those of the 1:5,000,000-scale global series based on Mariner 9 images (Potter, 1976; Peterson, 1977; King, 1978); the 1:15,000,000-scale global series based on Viking images (Greeley and Guest, 1987; Tanaka and Scott, 1987); and detailed 1:500,000-scale maps of Tyrrhena Patera (Gregg and others, 1998), Dao, Harmakhis, and Reull Valles (Price, 1998; Mest and Crown, in press), Hadriaca Patera (D.A. Crown and R. Greeley, map in preparation), and western Hellas Planitia (J.M. Moore and D.E. Wilhelms, map in preparation). We incorporated some of the previous work, but our map differs markedly in the identification and organization of map units. For example, we divide the Hellas assemblage of Greeley and Guest (1987) into the Hellas Planitia and Hellas rim assemblages and change the way units within these groupings are identified and mapped (table 1). The new classification scheme includes broad, geographically related categories and local, geologically and geomorphically related subgroups. Because of our mapping at larger scale, many of our map units were incorporated within larger units of the global-scale mapping (see table 1). Available Viking images of the Hellas region vary greatly in several aspects, which has complicated the task of producing a consistent photogeologic map. Best available image resolution ranges from about 30 to 300 m/pixel from place to place. Many images contain haze caused by dust clouds, and contrast and shading vary among images because of dramatic seasonal changes in surface albedo, opposing sun azimuths, and solar inclination. Enhancement of selected images on a computer-display system has greatly improved our ability to observe key geologic relations in several areas. Determination of the geologic history of the region includes reconstruction of the origin and sequence of formation, deformation, and modification of geologic units constituting (1) the impact-basin rim and surrounding highlands, (2) volcanic and channel assemblages on the northeast and south sides of the basin, (3) interior basin deposits, and (4) slope and surficial materials throughout the map area. Various surface modifications are attributed to volcanic, fluvial, eolian, mass-wasting, and possibly glacial and periglacial processes. Structures include basin faults (mostly inferred), wrinkle ridges occurring mainly in volcanic terrains and interior plains, volcanic collapse craters, and impact craters. Our interpretations in some cases rely on previous work, but in many significant cases we have offered new interpretations that we believe are more consistent with the observations documented by our mapping. Our primary intent for this mapping has been to elucidate the history of emplacement and modification of Hellas Planitia materials, which form the basis for analysis of their r

  10. General features

    SciTech Connect

    Wallace, R.E.

    1990-01-01

    The San Andreas fault system, a complex of faults that display predominantly large-scale strike slip, is part of an even more complex system of faults, isolated segments of the East Pacific Rise, and scraps of plates lying east of the East Pacific Rise that collectively separate the North American plate from the Pacific plate. This chapter briefly describes the San Andreas fault system, its setting along the Pacific Ocean margin of North America, its extent, and the patterns of faulting. Only selected characteristics are described, and many features are left for depictions on maps and figures.

  11. Carbon dioxide capture and geological storage.

    PubMed

    Holloway, Sam

    2007-04-15

    Carbon dioxide capture and geological storage is a technology that could be used to reduce carbon dioxide emissions to the atmosphere from large industrial installations such as fossil fuel-fired power stations by 80-90%. It involves the capture of carbon dioxide at a large industrial plant, its transport to a geological storage site and its long-term isolation in a geological storage reservoir. The technology has aroused considerable interest because it can help reduce emissions from fossil fuels which are likely to remain the dominant source of primary energy for decades to come. The main issues for the technology are cost and its implications for financing new or retrofitted plants, and the security of underground storage. PMID:17272239

  12. MAINE WEIRS 1990

    EPA Science Inventory

    WEIR90 shows point locations of herring weirs in Maine based on 1990 overflight by MDMR Marine Patrol, mapped at an approximate scale of 1:100,000. Data were screen digitized from paper maps used during the overflight.

  13. Geology: The Active Earth.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1987-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Geology: The Active Earth." Contents are organized into the following

  14. Briefing on geological sequestration

    EPA Science Inventory

    Geological sequestration (GS) is generally recognized as the injection and long-term (e.g., hundreds to thousands of years) trapping of gaseous, liquid or supercritical carbon dioxide (CO2) in subsurface media – primarily saline formations, depleted or nearly depleted oil and gas...

  15. Glacial Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    This publication is a teacher's resource and guidebook for the presentation of the three filmstrips in the "Glacial Geology of Wisconsin" series. The first filmstrip is subtitled, "Evidence of the Glaciers," the second "How the Glaciers Reshaped the Landscape," and the third "Fossils of the Ice Age." Included are a list of objectives, an outline…

  16. Glacial Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    This publication is a teacher's resource and guidebook for the presentation of the three filmstrips in the "Glacial Geology of Wisconsin" series. The first filmstrip is subtitled, "Evidence of the Glaciers," the second "How the Glaciers Reshaped the Landscape," and the third "Fossils of the Ice Age." Included are a list of objectives, an outline

  17. Life on Guam: Geology.

    ERIC Educational Resources Information Center

    Elkins, Gail

    This unit is part of a series of materials produced by a project to develop locally applicable class, lab, and field materials in ecology and social studies for Guam junior and senior high schools. While the materials were designed for Guam, they can be adapted to other localities. This unit is designed to acquaint the students with the geology of…

  18. Public perceptions of geology

    NASA Astrophysics Data System (ADS)

    Gibson, Hazel; Stewart, Iain; Anderson, Mark; Pahl, Sabine; Stokes, Alison

    2014-05-01

    Geological issues are increasingly intruding on the everyday lives of ordinary people. Whether it be onshore exploration and extraction of oil and gas, deep injection of water for geothermal power or underground storage of carbon dioxide and radioactive waste, many communities across Europe are being faced with potentially contested geological activity under their backyard. As well as being able to communicate the technical aspects of such work, geoscience professionals also need to appreciate that for most people the subsurface is an unfamiliar realm. In order to engage communities and individuals in effective dialogue about geological activities, an appreciation of what 'the public' already know and what they want to know is needed, but this is a subject that is in its infancy. In an attempt to provide insight into these key issues, this study examines the concerns the public have, relating to geology, by constructing 'Mental Models' of people's perceptions of the subsurface. General recommendations for public engagement strategies will be presented based on the results of selected case studies; specifically expert and non-expert mental models for communities in the south-west of England.

  19. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A wide variety of topics on planetary geology are presented. Subjects include stratigraphy and geomorphology of Copernicus, the Mamers valle region, and other selected regions of Mars and the Moon. Crater density and distribution are discussed for Callisto and the lunar surface. Spectroscopic analysis is described for Europa and Ganymede.

  20. Geologic Data Systems

    Several of the systems used for viewing and storing geologic data as it's captured from the onboard instrumentation. The USGS returned from a seafloor data mapping mission offshore of the Delmarva Peninsula (Ocean City, MD) on July 25th, 2014. The data collected is foundational to our continued und...

  1. Geological and Inorganic Materials.

    ERIC Educational Resources Information Center

    Jackson, L. L.; And Others

    1989-01-01

    Presents a review focusing on techniques and their application to the analysis of geological and inorganic materials that offer significant changes to research and routine work. Covers geostandards, spectroscopy, plasmas, microbeam techniques, synchrotron X-ray methods, nuclear activation methods, chromatography, and electroanalytical methods.…

  2. Geology en Espanol

    ERIC Educational Resources Information Center

    McGehee, Richard V.

    1973-01-01

    Describes a program in which an introductory geology class was conducted in Spanish at Western Michigan University. Although difficulties were encountered, the author evaluated the program as a great success, and a valuable experience for the person who wants to be effectively bilingual in his profession. (JR)

  3. Geological impacts on nutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter reviews the nutritional roles of mineral elements, as part of a volume on health implications of geology. The chapter addresses the absorption and post-absorptive utilization of the nutritionally essential minerals, including their physiological functions and quantitative requirements....

  4. IDAHO FLUVIAL GEOLOGY

    EPA Science Inventory

    Restricted availability. Major Attributes: Polygons described by geologic type codes & descriptions. May be incorporated into maps at the state/county/basin scale. Probably too coarse for use at the site scale. Scale: 1:500:000. Extent: Idaho. Projection: Albers. Source: ...

  5. Geology: The Active Earth.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1987-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Geology: The Active Earth." Contents are organized into the following…

  6. Modernizing Main Street

    ERIC Educational Resources Information Center

    Oguntoyinbo, Lekan

    2010-01-01

    This article features Entrepreneurship Pioneers Initiative (EPI), a nine-month-long educational program targeted to first-generation, small business owners offered through the Rutgers University Center for Urban Entrepreneurship and Economic Development. In its second year, EPI has worked with more than 40 businesses out of an applicant pool of…

  7. A multidimensional representation model of geographic features

    USGS Publications Warehouse

    Usery, E. Lynn; Timson, George; Coletti, Mark

    2016-01-01

    A multidimensional model of geographic features has been developed and implemented with data from The National Map of the U.S. Geological Survey. The model, programmed in C++ and implemented as a feature library, was tested with data from the National Hydrography Dataset demonstrating the capability to handle changes in feature attributes, such as increases in chlorine concentration in a stream, and feature geometry, such as the changing shoreline of barrier islands over time. Data can be entered directly, from a comma separated file, or features with attributes and relationships can be automatically populated in the model from data in the Spatial Data Transfer Standard format.

  8. Geologic mapping of Northern Atla Regio on Venus: Preliminary data

    NASA Technical Reports Server (NTRS)

    Nikishin, A. M.; Burba, G. A.

    1993-01-01

    The Northern part of Atla Regio within the frame of C1-formate Magellan photo map 15N197 was mapped geologically at scale 1:8,000,000. This is a part of Russia's contribution into C1 geologic mapping efforts. The map is reproduced here being reduced about twice. The map shows that the Northern Atla area is predominantly a volcanic plain with numerous volcanic features: shield volcanoes, domes and hills with various morphology, corona-like constructions, radar bright and dark spots often with flow-like outlines. Relatively small areas of tessera occurred in the area are mainly semi-flooded with the plain material. Tesserae are considered to be the oldest terrains within the map sheet. There are many lineated terrains in the region. They are interpreted as the old, almost-buried tesserae (those with crossed lineaments) or partly buried ridge belts (those with parallel lineaments). These lineated terrains have an intermediate age between the young volcanic plains and the old tessera areas. Two prominent high volcanic shields are located within the region - Ozza Mons and Sapas Mona. The most prominent structure in Northern Atla is Ganis Chasma rift. The rift cuts volcanic plain and is considered to be under formation during approximately the same time with Ozza Mons shield. Ganis Chasma rift valley is highly fractured and bounded with fault scarps. Rift shoulder uplifts are typical for Ganis Chasma. There are few relatively young volcanic features inside the rift valley. The analysis of fracturing and rift valley geometry shows the rift originated due to 5-10 percent crustal extention followed by the crustal subsidence. The age sequence summary for the main terrain types in the region is (from older to younger ones): tesserae; lineated terrains with crossed lineaments; lineated terrains with parallel lineaments; volcanic plains; and prominent volcanic shields and Ganis Chasma rift valley. The geologic structure of Atla Regio as it appeared now with the Magellan high resolution images is very close to that of Beta Regio. Such conclusion coincide with the earlier ones based on the coarser data.

  9. Impact, and its implications for geology

    NASA Technical Reports Server (NTRS)

    Marvin, Ursula B.

    1988-01-01

    The publication of seminal texts on geology and on meteoritics in the 1790s, laid the groundwork for the emergence of each discipline as a modern branch of science. Within the past three decades, impact cratering has become universally accepted as a process that sculptures the surfaces of planets and satellites throughout the solar system. Nevertheless, one finds in-depth discussions of impact processes mainly in books on the Moon or in surveys of the Solar System. The historical source of the separation between meteoritics and geology is easy to identify. It began with Hutton. Meteorite impact is an extraordinary event acting instantaneously from outside the Earth. It violates Hutton's principles, which were enlarged upon and firmly established as fundamental to the geological sciences by Lyell. The split between meteoritics and geology surely would have healed as early as 1892 if the investigations conducted by Gilbert (1843-1918) at the crater in northern Arizona had yielded convincing evidence of meteorite impact. The 1950s and 1960s saw a burgeoning of interest in impact processes. The same period witnessed the so-called revolution in the Earth Sciences, when geologists yielded up the idea of fixed continents and began to view the Earth's lithosphere as a dynamic array of horizontally moving plates. Plate tectonics, however, is fully consistent with the geological concepts inherited from Hutton: the plates slowly split, slide, and suture, driven by forces intrinsic to the globe.

  10. Geologic Resource Evaluation of Kaloko-Honokohau National Historical Park, Hawai'i: Geology and Coastal Landforms

    USGS Publications Warehouse

    Richmond, Bruce M.; Gibbs, Ann E.; Cochran, Susan A.

    2008-01-01

    Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues that link the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Kaloko-Honokohau National Historical Park (KAHO) was established in 1978 in order to preserve and protect traditional native Hawaiian culture and cultural sites. The park is the site of an ancient Hawaiian settlement, occupies 469 ha and is considered a locale of considerable cultural and historical significance. Cultural resources include fishponds, petroglyphs and a heiau (religious site). The fishponds are also recognized as exceptional birding areas and are important wetlands for migratory birds. The ocean and reef have been designated as a Marine Area Reserve, where green sea turtles commonly come ashore to rest. The park is also a valuable recreational resource, with approximately 4 km of coastline and a protective cove ideal for snorkeling and swimming. KAHO park boundaries extend beyond the mean high tide line and include the adjacent marine environment. An accompanying report for KAHO presents the results of benthic habitat mapping of the offshore waters, from the shoreline to approximately 40 m water depth. Ground-water quality and potential downslope impacts created by development around the park are of concern to Park management.

  11. Geologic Evolution of North America: Geologic features suggest that the continent has grown and differentiated through geologic time.

    PubMed

    Engel, A E

    1963-04-12

    The oldest decipherable rock complexes within continents (more than 2.5 billion years old) are largely basaltic volcanics and graywacke. Recent and modern analogs are the island arcs formed along and adjacent to the unstable interface of continental and oceanic crusts. The major interfacial reactions (orogenies) incorporate pre-existing sial, oceanic crust, and mantle into crust of a more continental type. Incipient stages of continental evolution, more than 3 billion years ago, remain obscure. They may involve either a cataclysmic granite-forming event or a succession of volcanic-sedimentary and granite-forming cycles. Intermediate and recent stages of continental evolution, as indicated by data for North America, involve accretion of numerous crustal interfaces with fragments of adjacent continental crust and their partial melting, reinjection, elevation, unroofing, and stabilization. Areas of relict provinces defined by ages of granites suggest that continental growth is approximately linear. But the advanced differentiation found in many provinces and the known overlaps permit wide deviation from linearity in the direction of a more explosive early or intermediate growth. PMID:17819825

  12. The importance of geological data and derived information in seismic response assessment for urban sites. An example from the Island of Crete, Greece

    NASA Astrophysics Data System (ADS)

    Tsangaratos, Paraskevas; Loupasakis, Constantinos; Rozos, Dimitrios; Rondoyianni, Theodora; Vafidis, Antonios; Savvaidis, Alexandros; Soupios, Pantelis; Papadopoulos, Nikos; Sarris, Apostolos

    2015-04-01

    The magnitude, frequency content and duration of an earthquake ground motion depends mainly on the surrounding geological, tectonic and geomorphological conditions. Numerous reports have been contacted illustrating the necessity of providing accurate geological information in order to estimate the level of seismic hazard. In this context, geological information is the outcome of processing primary, raw field data and geotechnical investigation data that are non - organized and associated with the geological model of the study area. In most cases, the geological information is provided as an advance element, a key component of the "function" that solves any geo-environmental problem and is primarily reflected on analogue or digital maps. The main objective of the present study is to illustrate the importance of accurate geological information in the thirteen (13) selected sites of the Hellenic Accelerometric Network (HAN) in the area of Crete Island, in order to estimate the seismic action according to Eurocode (EC8). As an example the detailed geological-geotechnical map of the area around HAN site in Rethymno city, Crete is presented. The research area covers a 250m radius surrounding the RTHE HAN-station at a scale of 1: 2000 with detail description of the geological and geotechnical characteristics of the formations as well as the tectonic features (cracks, upthrust, thrust, etc) of the rock mass. The field survey showed that the RTHE station is founded over limestones and dolomites formations. The formations exhibit very good geomechanical behaviour; however they present extensive fragmentation and karstification. At this particular site the identification of a fault nearby the station proved to be significant information for the geophysical research as the location and orientation of the tectonic setting provided new perspective on the models of seismic wave prorogation. So, the geological data and the induced information along with the tectonic structure of the area, revealed variations that could alter the seismic wave prorogation models as well as the ground type/soil category of the foundation formations. In conclusion, the produced geological-geotechnical maps are the main mean of communication and flow of geological information between different scientific disciplines providing the bases for defining the ground type at each HAN site and calibrating the corresponding code prescribed spectra. This study is part of the on-going project that has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES. Investing in knowledge society through the European Social Fund.

  13. Time Varying Feature Data

    NASA Astrophysics Data System (ADS)

    Echterhoff, J.; Simonis, I.; Atkinson, R.

    2012-04-01

    The infrastructure to gather, store and access information about our environment is improving and growing rapidly. The increasing amount of information allows us to get a better understanding of the current state of our environment, historical processes and to simulate and predict the future state of the environment. Finer grained spatial and temporal data and more reliable communications make it easier to model dynamic states and ephemeral features. The exchange of information within and across geospatial domains is facilitated through the use of harmonized information models. The Observations & Measurements (O&M) developed through OGC and standardised by ISO is an example of such a cross-domain information model. It is used in many domains, including meteorology, hydrology as well as the emergency management. O&M enables harmonized representation of common metadata that belong to the act of determining the state of a feature property, whether by sensors, simulations or humans. In addition to the resulting feature property value, information such as the result quality but especially the time that the result applies to the feature property can be represented. Temporal metadata is critical to modelling past and future states of a feature. The features, and the semantics of each property, are defined in domain specific Application Schema using the General Feature Model (GFM) from ISO 19109 and usually encoded following ISO 19136. However, at the moment these standards provide only limited support for the representation and handling of time varying feature data. Features like rivers, wildfires or gas plumes have a defined state - for example geographic extent - at any given point in time. To keep track of changes, a more complex model for example using time-series coverages is required. Furthermore, the representation and management of feature property value changes via the service interfaces defined by OGC and ISO - namely: WFS and WCS - would be rather complex. Keeping track of feature property value corrections or even feature (state change) cancellations for auditing purposes is also not easy to achieve. The aviation domain has strong requirements to represent and manage the state of aeronautical features through time. Being able to efficiently encode and manage feature state changes, keeping track of all changes for auditing purposes and being able to determine the future state of an aeronautical feature as currently known to the system are vital for aeronautical applications. In order to support these requirements, the Aeronautical Information Exchange Model (AIXM) which has been developed by the aviation domain is based on the so called AIXM Temporality Model (AIXM-TM). The AIXM-TM defines various rules for modeling, representing and handling the state of aeronautical features through time. This is a promising approach that can be incorporated into the GFM so that ultimately the modeling and management of time varying feature data is supported in an interoperable and harmonized way in all geospatial domains. This presentation gives an introduction to the main concepts of the AIXM-TM. It also shows how the GFM can be extended to support time varying feature data. Finally, the relationship of O&M and time varying features is discussed.

  14. Geologic evaluation and applications of ERTS-1 imagery over Georgia

    NASA Technical Reports Server (NTRS)

    Pickering, S. M.; Jones, R. C.

    1974-01-01

    Satellite imagery and other remote sensing tools and techniques have provided a powerful tool to assist geologic research; significantly increased the mapping efficiency of field geologists; shown new lineaments associated with known shear and fault zones; delineated new structural features; provided a tool to reevaluate tectonic history; helped to locate potential ground-water sources and areas of aquifer recharge; defined areas of geologic hazards; shown areas of heavy siltation in major reservoirs; and, by close interval repetition, aided in monitoring surface mine reclamation activities and the environmental protection of the intricate marshland system. The Georgia Geological Survey has been engaged in regional mapping for the new state geologic map. ERTS-1 images enlarged to compatible mapping scales have increased field geologic mapping efficiency by at least 25%. There are a number of areas where data from ERTS-1 imagery has allowed a notably higher level of precision than has been available with any amount of field work on the ground.

  15. Geologic Map Database of Texas

    USGS Publications Warehouse

    Stoeser, Douglas B.; Shock, Nancy; Green, Gregory N.; Dumonceaux, Gayle M.; Heran, William D.

    2005-01-01

    The purpose of this report is to release a digital geologic map database for the State of Texas. This database was compiled for the U.S. Geological Survey (USGS) Minerals Program, National Surveys and Analysis Project, whose goal is a nationwide assemblage of geologic, geochemical, geophysical, and other data. This release makes the geologic data from the Geologic Map of Texas available in digital format. Original clear film positives provided by the Texas Bureau of Economic Geology were photographically enlarged onto Mylar film. These films were scanned, georeferenced, digitized, and attributed by Geologic Data Systems (GDS), Inc., Denver, Colorado. Project oversight and quality control was the responsibility of the U.S. Geological Survey. ESRI ArcInfo coverages, AMLs, and shapefiles are provided.

  16. Using Snow to Teach Geology.

    ERIC Educational Resources Information Center

    Roth, Charles

    1991-01-01

    A lesson plan, directed at middle school students and older, describes using snow to study the geological processes of solidification of molten material, sedimentation, and metamorphosis. Provides background information on these geological processes. (MCO)

  17. Geology of California. Second Edition

    SciTech Connect

    Norris, R.M.; Webb, R.W.

    1990-01-01

    Two introductory chapters familiarize readers with basic geologic concepts. The following chapters describe the geology of each of California's 11 geomorphic provinces; the San Andreas fault and offshore geology are discussed in two separate chapters. Four appendices acquaint readers with technical words and terms, common minerals and rocks in California, geologic time, and geologic theories that pertain to California. During the 1960s evidence collected from the east Pacific sea floor off the western coast of North America gave scientists supporting data for Alfred Wegener's 1910 theory of continental drift. In addition to the confirmation of continental drift, since the 1960s scientists have discovered paleomagnetism, sea-floor spreading, exotic and suspect terranes, and polar wandering. These important concepts have had far reaching effects about how we understand the geology of California and how this region has evolved through geologic time. Improved investigative procedures enable earth scientists to comprehend previously puzzling aspects of California's geology.

  18. Spatial features register: toward standardization of spatial features

    USGS Publications Warehouse

    Cascio, Janette

    1994-01-01

    As the need to share spatial data increases, more than agreement on a common format is needed to ensure that the data is meaningful to both the importer and the exporter. Effective data transfer also requires common definitions of spatial features. To achieve this, part 2 of the Spatial Data Transfer Standard (SDTS) provides a model for a spatial features data content specification and a glossary of features and attributes that fit this model. The model provides a foundation for standardizing spatial features. The glossary now contains only a limited subset of hydrographic and topographic features. For it to be useful, terms and definitions must be included for other categories, such as base cartographic, bathymetric, cadastral, cultural and demographic, geodetic, geologic, ground transportation, international boundaries, soils, vegetation, water, and wetlands, and the set of hydrographic and topographic features must be expanded. This paper will review the philosophy of the SDTS part 2 and the current plans for creating a national spatial features register as one mechanism for maintaining part 2.

  19. Snow Falls - Maine

    As the Little Androscoggin River flows through western Maine it eventually reaches Snow Falls, a 25 ft cascading waterfall in the town of West Paris.  This photo was taken during a high flow event at the falls. The USGS monitors the Little Androscoggin River upstream of the falls at station 01...

  20. Indians of Maine.

    ERIC Educational Resources Information Center

    Maine State Dept. of Health and Welfare, Augusta.

    The relationships between the Penobscot and Passamaquoddy Indian Tribes and the State of Maine began in the 1820's. Treaties have left the Penobscot tribe with ownership of 146 islands in the Penobscot River while the Passamaquoddy tribe lives on land owned by the State. Both tribes presently have trust funds derived from the sale of land, and use

  1. Main Parachute Test

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Shown is the testing of the Main Parachute for the Ares/CLV first stage in support of the Ares/Constellation program at the Yuma Proving Ground, Arizona. This image is extracted from high definition video and is the highest resolution available.

  2. MAINE SCHOOLS AND LIBRARIES

    EPA Science Inventory

    SCHLIB shows point locations of libraries and educational institutions in Maine at 1:24,000 scale. Colleges, universities, technical colleges, high schools, middle schools, elementary schools, kindergarten/sub-primary and other special schools are included. The data was developed...

  3. Ladybugs of Maine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Color images are presented for the 57 species of Coccinellidae, commonly known as ladybugs, that are documented from Maine. Images are displayed in taxonomic order. Information on each species includes its genus-species name, length, and an actual-size silhouette beside a grid matched to the scale...

  4. 1 Main Street, Mars

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Located outside StenniSphere, the visitor center at John C. Stennis Space Center, 1 Main Street Mars is a model of how a habitat on Mars might look. Complete with thermometers, scales and clocks set to Martian equivalents, this exhibit shows how very different life on Mars can be.

  5. Introduction to ore geology

    SciTech Connect

    Evans, A.M.

    1987-01-01

    This textbook on ore geology is for second and third year undergraduates and closely parallels the undergraduate course given in this subject at England's University of Leicester. The volume covers three major areas: (1) principles of ore geology, (2) examples of the most important types of ore deposits, and (3) mineralization in space and time. Many chapters have been thoroughly revised for this edition and a chapter on diamonds has been added. Chapters on greisen and pegmatite have also been added, the former in response to the changing situation in tin mining following the recent tin crisis, and the latter in response to suggestions from geologists in a number of overseas countries. Some chapters have been considerably expanded and new sections added, including disseminated gold deposits and unconformity-associated uranium deposits. The author also expands on the importance of viewing mineral deposits from an economic standpoint.

  6. Geological Survey research, 1975

    USGS Publications Warehouse

    U.S. Geological Survey

    1975-01-01

    'Geological Survey Research 1975 ' is the 16th annual synopsis of the results of U.S. Geological Survey investigations. These studies are largely directed toward the development of knowledge that will assist the Nation to use and conserve the land and its physical resources wisely. They are wide ranging in scope and deal with almost every facet of solid-earth science and fact finding. Many of the studies are continuations of investigations that have been in progress for several years. But others reflect the increased attention being given to problems that have assumed greater importance in recent years--problems relating to mineral fuels and mineral resources, water quality, environmental impact of mineral resources, land-use analysis, earthquake hazards reduction, subsidence, and the applications of LANDSAT data, to cite a few examples. (Woodard-USGS)

  7. Borehole geological assessment

    NASA Technical Reports Server (NTRS)

    Spuck, W. H., III (Inventor)

    1979-01-01

    A method and apparatus are discussed for performing geological assessments of a formation located along a borehole, and a boring tool that bores a pair of holes into the walls of the borehole and into the surrounding strata along with a pair of probes which are installed in the holes. One of the probes applies an input such as a current or pressured fluid, and the other probe senses a corresponding input which it receives from the strata.

  8. The Second Flowering of Geology.

    ERIC Educational Resources Information Center

    Cloud, Preston

    1983-01-01

    Discusses two "golden" ages in geological investigations/inquiry. The first, extending from the late eighteenth century through the early nineteenth century, established geology as a science based on naturalistic principles. The second, beginning after World War II, is characterized by advances in geological specialities and explanations based on…

  9. 77 FR 19032 - Geological Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... Geological Survey Announcement of National Geospatial Advisory Committee Meeting AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of meeting. SUMMARY: The National Geospatial Advisory Committee (NGAC... advance. Please register by contacting Arista Maher at the U.S. Geological Survey (703-648-6283,...

  10. Geologic Map of North America

    The Geologic Map of North America is a product of GSA's Decade of North American Geology (DNAG) project. At a scale of 1:5,000,000, this map covers ~15% of Earth's surface and differs from previous maps in several important respects: it is the first such map to depict the geology of the seafloor, th...

  11. Environmental Trends in Geologic Education

    ERIC Educational Resources Information Center

    Pestrong, Raymond

    1970-01-01

    Considers strategies for developing college level introductory environmental geology courses, emphasizing relevance to local surroundings, Considers graduate studies in this field, but does not recommend the establishment of an environmental geology department at this time. Reviews the responsibilities the geology department has to the community…

  12. The Second Flowering of Geology.

    ERIC Educational Resources Information Center

    Cloud, Preston

    1983-01-01

    Discusses two "golden" ages in geological investigations/inquiry. The first, extending from the late eighteenth century through the early nineteenth century, established geology as a science based on naturalistic principles. The second, beginning after World War II, is characterized by advances in geological specialities and explanations based on

  13. Integrating geology and perforating

    SciTech Connect

    Araujo, P.F. de; Souza Padilha, S.T.C. de

    1997-02-01

    Perforating is a very common well completion operation. Usually, it is considered to be as simple as making holes in casing. Actually, perforating is one of the most critical tasks for establishing a path from reservoir rock to borehole form which hydrocarbons can flow to surface. The objective of this article is to relate perforating technology with geological aspects and completion type to determine the best shooting equipment (gun type, charge and differential pressure) to perform the most efficient perforating job. Several subjects related to formation geology are taken into account for a shooting job, such as: compressive strength, reservoir pressure and thickness, lithology type, porosity and permeability, ratio between horizontal and vertical permeabilities, and fluid type. Gun geometry used in the oil industry incorporates several parameters, including shot density, hole entrance diameter, gun phase and jet penetration. API tests are done on perforating guns to define applicability and performance. A new geometrical parameter is defined as the relative angle of the jet, which is the angle between the jet tunnel and formation dip. GEOCAN is a methodology which relates geology to gun geometry and type to define the most efficient gun system for perforated completions. It uses the intelligent perforating technique with the SPAN (Schlumberger Perforating Analysis) program to confirm optimum gun choice.

  14. Geologic mapping of tunnels using photogrammetry: Camera and target positioning

    NASA Astrophysics Data System (ADS)

    Coe, J. A.; Dueholm, K. S.

    A photogrammetric method has been developed by the U.S. Geological Survey and the U.S. Bureau of Reclamation for the use in geologic mapping of tunnels (drifts). The method requires photographing the tunnel walls and roof with a calibrated small-format camera to obtain stereo pairs of photos which are then oriented in an analytical stereo plotter for measurement of geologic features. The method was tested in G-tunnel at Rainier Mesa on the Nevada Test Site. Calculations necessary to determine camera and target positions and problems encountered during testing were used to develop a set of generic formulas that can be applied to any tunnel.

  15. Geologic mapping of tunnels using photogrammetry: Camera and target positioning

    SciTech Connect

    Coe, J.A.; Dueholm, K.S.

    1991-09-01

    A photogrammetric method has been developed by the US Geological Survey and the US Bureau of Reclamation for the use in geologic mapping of tunnels (drifts). The method requires photographing the tunnel walls and roof with a calibrated small-format camera to obtain stereo pairs of photos which are then oriented in an analytical stereo plotter for measurement of geologic features. The method was tested in G-tunnel at Rainier Mesa on the Nevada Test Site. Calculations necessary to determine camera and target positions and problems encountered during testing were used to develop a set of generic formulas that can be applied to any tunnel. 7 figs.

  16. Vertical Feature Mask Feature Classification Flag Extraction

    Atmospheric Science Data Center

    2013-03-28

      Vertical Feature Mask Feature Classification Flag Extraction This routine demonstrates ... stored in a CALIPSO Lidar Level 2 Vertical Feature Mask feature classification flag value. It is written in Interactive Data ... Products Catalog . Download  Vertical Feature Mask Feature Classification Flag Extraction routine  (5 KB) Interactive ...

  17. A campus-based course in field geology

    NASA Astrophysics Data System (ADS)

    Richard, G. A.; Hanson, G. N.

    2009-12-01

    GEO 305: Field Geology offers students practical experience in the field and in the computer laboratory conducting geological field studies on the Stony Brook University campus. Computer laboratory exercises feature mapping techniques and field studies of glacial and environmental geology, and include geophysical and hydrological analysis, interpretation, and mapping. Participants learn to use direct measurement and mathematical techniques to compute the location and geometry of features and gain practical experience in representing raster imagery and vector geographic data as features on maps. Data collecting techniques in the field include the use of hand-held GPS devices, compasses, ground-penetrating radar, tape measures, pacing, and leveling devices. Assignments that utilize these skills and techniques include mapping campus geology with GPS, using Google Earth to explore our geologic context, data file management and ArcGIS, tape and compass mapping of woodland trails, pace and compass mapping of woodland trails, measuring elevation differences on a hillside, measuring geologic sections and cores, drilling through glacial deposits, using ground penetrating radar on glaciotectonic topography, mapping the local water table, and the identification and mapping of boulders. Two three-hour sessions are offered per week, apportioned as needed between lecture; discussion; guided hands-on instruction in geospatial and other software such as ArcGIS, Google Earth, spreadsheets, and custom modules such as an arc intersection calculator; outdoor data collection and mapping; and writing of illustrated reports.

  18. Environmental Resources of Selected Areas of Hawaii: Geological Hazards (DRAFT)

    SciTech Connect

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed Regis. 5925638) withdrawing its Notice of Intent (Fed Regis. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent U.S. Geological Survey (USGS) publications and open-file reports. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift, and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis). First, overviews of volcanic and earthquake activity, and details of offshore geologic hazards is provided for the Hawaiian Islands. Then, a more detailed discussion of onshore geologic hazards is presented with special emphasis on the southern third of Hawaii and the east rift zone of Kilauea.

  19. Main group supramolecular chemistry.

    PubMed

    Pitt, Melanie A; Johnson, Darren W

    2007-09-01

    Metal directed self-assembly has yielded a wide array of two- and three-dimensional structures with fascinating new chemical properties. These structures have typically been prepared utilizing transition metals as directing units, owing to the well-defined coordination preferences these metals exhibit. An area of growing research interest involves the preparation of structures containing main group elements as directing units. This tutorial review surveys the wide range of structure types available through this approach, specifically covering unique structure types accessible from the unusual coordination geometries often exhibited by the elements in Groups 12-17 of the periodic table. This review should be of interest to supramolecular and main group chemists, and researchers in the fields of crystal engineering, host-guest chemistry, and molecular recognition. PMID:17660877

  20. Jupiter's Main Ring

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa. A faint mist of particles can be seen above and below the main rings; this vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic.

    Jupiter's main ring is a thin strand of material encircling the planet. The diffuse innermost boundary begins at approximately 123,000 km. The main ring's outer radius is found to be at 128,940 +/-50 km, slightly less than the Voyager value of 129,130 +/-100 km, but very close to the orbit of the satellite Adrastea (128,980 km). The main ring exhibits a marked drop in brightness at 127,849 +/-50 km, lying almost atop the orbit of the Jovian moon Metis at 127,978 km. Satellites seem to affect the structure of even tenuous rings like that found at Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at: http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at: http:/ /www.jpl.nasa.gov/galileo/sepo.

  1. Main roads to melanoma

    PubMed Central

    Palmieri, Giuseppe; Capone, Mariaelena; Ascierto, Maria Libera; Gentilcore, Giusy; Stroncek, David F; Casula, Milena; Sini, Maria Cristina; Palla, Marco; Mozzillo, Nicola; Ascierto, Paolo A

    2009-01-01

    The characterization of the molecular mechanisms involved in development and progression of melanoma could be helpful to identify the molecular profiles underlying aggressiveness, clinical behavior, and response to therapy as well as to better classify the subsets of melanoma patients with different prognosis and/or clinical outcome. Actually, some aspects regarding the main molecular changes responsible for the onset as well as the progression of melanoma toward a more aggressive phenotype have been described. Genes and molecules which control either cell proliferation, apoptosis, or cell senescence have been implicated. Here we provided an overview of the main molecular changes underlying the pathogenesis of melanoma. All evidence clearly indicates the existence of a complex molecular machinery that provides checks and balances in normal melanocytes. Progression from normal melanocytes to malignant metastatic cells in melanoma patients is the result of a combination of down- or up-regulation of various effectors acting on different molecular pathways. PMID:19828018

  2. Maine coast winds

    SciTech Connect

    Avery, Richard

    2000-01-28

    The Maine Coast Winds Project was proposed for four possible turbine locations. Significant progress has been made at the prime location, with a lease-power purchase contract for ten years for the installation of turbine equipment having been obtained. Most of the site planning and permitting have been completed. It is expect that the turbine will be installed in early May. The other three locations are less suitable for the project, and new locations are being considered.

  3. COBRA Main Engine Project

    NASA Technical Reports Server (NTRS)

    Snoddy, Jim; Sides, Steve; Lyles, Garry M. (Technical Monitor)

    2002-01-01

    The COBRA (CO-Optimized Booster for Reusable Applications) project include the following: 1. COBRA main engine project team. 2. COBRA and RLX cycles selected. 3. COBRA proto-type engine approach enables mission success. 4. COBRA provides quick, low cost demo of cycle and technologies. 5. COBRA cycle I risk reduction supports. 6. Achieving engine safety. 6. RLX cycle I risk reduction supports. 7. Flight qualification. 9. Life extension engine testing.

  4. Geologic mapping of the Semipalatinsk region, Eastern Kazakstan, using Landsat Thematic Mapper and spot panchromatic data

    SciTech Connect

    Davis, P.A.; Berlin, G.L.

    1992-12-31

    This geologic reconnaissance study centers on a 90 by 140 km area about 100 km southwest of Semipalatinsk near the east border of the Kazakstan Republic of the USSR. Semipalatinsk, a regional center for grain growing, and several other cities along the Irtysh River were originally established as fortified outposts by the Russians during the 18th and 19th centuries to contain the indigenous, nomadic Kazak herdsmen. The Kazakstan region remained largely undeveloped until after the 1917 Russian Revolution, when exploration geologists began discovering many large mineral deposits. Today, known resources include coal, copper, iron ore, lead, zinc, and barite; most of these are of national significance. These vast mineral resources have prompted development of many metallurgical and chemical industries in the republic. Despite the extensive exploration for mineral resources in this region, published geologic maps (Nalivkin, 1960; Esenov, 1971; Borovikov, 1972) are all at scales of 1:1,100,000 or smaller, and there are no detailed descriptions of the geology around Semipalatinsk in the open literature. Our preliminary examination of commercial remote-sensing, data indicated that the lithology and structure of this area are extremely varied and complex at all scales -- much more so than that portrayed on the published geologic maps. Therefore, the main objective of this study was to use commercially available remotely sensed data for the area and remotely sensed data obtained for analog study sites, as well as the sparse, sketchy information in the published literature, to better define and map the geologic units (Sheet 1), structure (Sheet 2), and drainage features (Sheet 3) of this area.

  5. Modelling of Geological Structures Using Emergence

    NASA Astrophysics Data System (ADS)

    Hillier, M.; de Kemp, E. A.; Sprague, K.

    2009-05-01

    A complex system based approach is used to model geological structures. Preliminary work is presented to show how mutually interacting agents can be used to probe local regions and obtain emergent behaviour of its geometrical properties. Models are built bottom up from the smaller components to simulate regions from camp scales to regional scales. In nature, very complex structures exhibiting discontinuous and heterogeneous features are common. Modelling such regions using conventional methods is cumbersome and influences between close proximity zones are generally not considered. Agents are able to detect local and global features in the entire model space, as detailed as the data set allows. These features are incorporated into the interpolation of a modeled zone if those features are coupled to that location. We attempt to see if opportunities exist for exploiting complex systems approaches in what is a classical knowledge driven modelling domain with high emphasis on expert interpretive methods. Geological maps (2D, 3D or 4D) are fundamentally an emergent result of an iterative mental process which focuses on reconciling disparate data. The end goal of our research is to point a way forward in which complexity can support the simulation of maps and thus support the interpretive workflow.

  6. Exploring Main Belt Asteroids

    NASA Astrophysics Data System (ADS)

    Sykes, M. V.; Larson, S. M.; Whiteley, R.; Fink, U.; Jedicke, R.; Emery, J.; Fevig, R.; Kelley, M.; Harris, A. W.; Ostro, S.; Reed, K.; Binzel, R. P.; Rivkin, A.; Magri, C.; Bottke, W.; Durda, D.; Walker, R.; Davis, D.; Hartmann, W. K.; Sears, D.; Yano, H.; Granahan, J.; Storrs, A.; Bus, S. J.; Bell, J. F.; Tholen, D.; Cellino, A.

    2001-11-01

    Terrestrial planet formation in the main asteroid belt was interrupted when growing protoplanets became sufficiently massive to gravitationally perturb the local population, causing bodies to collide with increased energy, thus ending accretion and commencing fragmentation and disruption. Few of these protoplanets are thought to have survived unshattered (e.g., Ceres, Vesta, Pallas), leaving a main belt population dominated by fragments of fragments, and significantly depleted of mass as a consequence of dynamical scattering. Yet, these fragments retain a record of the early steps of planet formation and evolution, as well as a record of early solar system conditions and the primordial composition gradient in that region. By exploring main belt asteroids through groundbased observations and spacecraft, modeling and theoretical work, we seek ultimately to recover this information. A single mission to a single target is not sufficient to address, in isolation, these questions. They require a foundation of robust, broad, and continuing groundbased, theoretical, and modeling programs. Such work is funded at a small fraction of a typical mission cost through the NASA Research and Analysis Program. Therefore, within the context of planetary decadal study recommendations to NASA, highest priority needs to be given to maintaining and growing a healthy R&A program over the next ten years and beyond. Missions also have an important role to play. An Earth orbiting remote sensing mission needs to be considered as a means of collecting important data for a large fraction of all main belt asteroids above a sub-kilometer diameter (while also realizing synergistic benefits to astrophysics). Missions to specific main belt targets can provide important new insights and leverage new understanding of existing data, models, and theories, but target definition (and corresponding instrument complement) is critical and must be based on our existing knowledge of these very diverse objects. Technological innovations may increase the cost effectiveness of future missions, such as solar electric propulsion (which enables rendezvous with multiple targets) and microsatellite technology (which may allow a large number of flyby targets by using many microsatellites).

  7. The encyclopedia of applied geology

    SciTech Connect

    Finkl, C.W.

    1984-01-01

    This compendium of engineering geology data includes contributions by experts from many countries. Topics center around the field of engineering geology, with special focus on landscapes, earth materials, and the ''management'' of geological processes. How to use geology to serve man is given particular attention. More than 80 entries deal with hydrology, rock structure monitoring, soil mechanics, and engineering geology. Facts are provided on earth science information and sources, electrokinetics, forensic geology, geogryology, nuclear plant siting, photogrammetry, tunnels and tunneling, urban geomorphology, and well data systems. This guide explains the geology of alluvial plains, arid lands, beaches and coasts, delataic plains, cold regions, glacial landscapes, and urban environments. Detailed analyses are given of the geotechnical properties of caliche, clay, duricrust, soil, laterite, marine sediments, and rocks.

  8. Aquarius main structure configuration

    NASA Astrophysics Data System (ADS)

    Eremenko, A.

    The Aquarius/SAC-D Observatory is a joint US-Argentine mission to map the salinity at the ocean surface. This information is critical to improving our understanding of two major components of Earth's climate system - the water cycle and ocean circulation. By measuring ocean salinity from space, the Aquarius/SAC-D Mission will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Aquarius is the primary instrument on the SAC-D spacecraft. It consists of a Passive Microwave Radiometer to detect the surface emission that is used to obtain salinity and an Active Scatterometer to measure the ocean waves that affect the precision of the salinity measurement. The Aquarius Primary Structure houses instrument electronics, feed assemblies, and supports a deployable boom with a 2.5 m Reflector, and provides the structural interface to the SAC-D Spacecraft. The key challenge for the Aquarius main structure configuration is to satisfy the needs of component accommodations, ensuring that the instrument can meet all operational, pointing, environmental, and launch vehicle requirements. This paper describes the evolution of the Aquarius main structure configuration, the challenges of balancing the conflicting requirements, and the major configuration driving decisions and compromises.

  9. Aquarius Main Structure Configuration

    NASA Technical Reports Server (NTRS)

    Eremenko, Alexander

    2012-01-01

    The Aquarius/SAC-D Observatory is a joint US-Argentine mission to map the salinity at the ocean surface. This information is critical to improving our understanding of two major components of Earth's climate system - the water cycle and ocean circulation. By measuring ocean salinity from space, the Aquarius/SAC-D Mission will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Aquarius is the primary instrument on the SAC-D spacecraft. It consists of a Passive Microwave Radiometer to detect the surface emission that is used to obtain salinity and an Active Scatterometer to measure the ocean waves that affect the precision of the salinity measurement. The Aquarius Primary Structure houses instrument electronics, feed assemblies, and supports a deployable boom with a 2.5 m Reflector, and provides the structural interface to the SAC-D Spacecraft. The key challenge for the Aquarius main structure configuration is to satisfy the needs of component accommodations, ensuring that the instrument can meet all operational, pointing, environmental, and launch vehicle requirements. This paper describes the evolution of the Aquarius main structure configuration, the challenges of balancing the conflicting requirements, and the major configuration driving decisions and compromises.

  10. Groundwater in Geologic Processes

    NASA Astrophysics Data System (ADS)

    Person, Mark

    Any student of geology who inspects a sample of galena or fluorite from one of the lead-zinc mines of the Mississippi Valley Ore district will be immediately struck by the hydrologic processes that were required to concentrate the requisite far-flung chemical components into a relatively thin layer of limestone. What was the nature and scale of the flow system that formed this ore body? How long did it last? Was it unlike modern flow systems? Until recently, these questions have been the sole domain of economic geologists.

  11. Co2 geological sequestration

    SciTech Connect

    Xu, Tianfu

    2004-11-18

    Human activities are increasingly altering the Earth's climate. A particular concern is that atmospheric concentrations of carbon dioxide (CO{sub 2}) may be rising fast because of increased industrialization. CO{sub 2} is a so-called ''greenhouse gas'' that traps infrared radiation and may contribute to global warming. Scientists project that greenhouse gases such as CO{sub 2} will make the arctic warmer, which would melt glaciers and raise sea levels. Evidence suggests that climate change may already have begun to affect ecosystems and wildlife around the world. Some animal species are moving from one habitat to another to adapt to warmer temperatures. Future warming is likely to exceed the ability of many species to migrate or adjust. Human production of CO{sub 2} from fossil fuels (such as at coal-fired power plants) is not likely to slow down soon. It is urgent to find somewhere besides the atmosphere to put these increased levels of CO{sub 2}. Sequestration in the ocean and in soils and forests are possibilities, but another option, sequestration in geological formations, may also be an important solution. Such formations could include depleted oil and gas reservoirs, unmineable coal seams, and deep saline aquifers. In many cases, injection of CO2 into a geological formation can enhance the recovery of hydrocarbons, providing value-added byproducts that can offset the cost of CO{sub 2} capture and sequestration. Before CO{sub 2} gas can be sequestered from power plants and other point sources, it must be captured. CO{sub 2} is also routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H{sub 2} production, and limestone calcination. Then CO{sub 2} must be compressed into liquid form and transported to the geological sequestration site. Many power plants and other large emitters of CO{sub 2} are located near geological formations that are amenable to CO{sub 2} sequestration.

  12. Geological interpretation of a Gemini photo

    USGS Publications Warehouse

    Hemphill, William R.; Danilchik, Walter

    1968-01-01

    Study of the Gemini V photograph of the Salt Range and Potwar Plateau, West Pakistan, indicates that small-scale orbital photographs permit recognition of the regional continuity of some geologic features, particularly faults and folds that could he easily overlooked on conventional air photographs of larger scale. Some stratigraphic relationships can also be recognized on the orbital photograph, but with only minimal previous geologic knowledge of the area, these interpretations are less conclusive or reliable than the interpretation of structure. It is suggested that improved atmospheric penetration could be achieved through the use of color infrared film. Photographic expression of topography could also be improved by deliberately photographing some areas during periods of low sun angle.

  13. Contributions to the geology of Washington

    USGS Publications Warehouse

    Smith, G.O.; Willis, Bailey

    1903-01-01

    Central Washington includes a part of two great topographic provinces; the great plain of the Columbia and the Cascade Range. The former, in its position and general desert-like character, suggests at once a resemblance to the Great Basin of Utah and Nevada; and the vastness of the desert plain is emphasized by the snowy peaks of the Cascades along its western border. These provinces are not to be regarded as unconnected in their geologic history, however great the contrast in their general features. The intermediate zone between the great plain on the east and the mountain range on the west is a strategic point for the investigation of the geologic structure and history and the interpretation of the present topography of both provinces. On the extensive basalt-covered plain monotony wearies the traveler, while on the rocky peaks of the Cascades the complexity taxes the powers of the observer. 

  14. Evaluation of thermal data for geologic applications

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.; Palluconi, F. D.; Levine, C. J.; Abrams, M. J.; Nash, D. B.; Alley, R. E.; Schieldge, J. P.

    1982-01-01

    Sensitivity studies using thermal models indicated sources of errors in the determination of thermal inertia from HCMM data. Apparent thermal inertia, with only simple atmospheric radiance corrections to the measured surface temperature, would be sufficient for most operational requirements for surface thermal inertia. Thermal data does have additional information about the nature of surface material that is not available in visible and near infrared reflectance data. Color composites of daytime temperature, nighttime temperature, and albedo were often more useful than thermal inertia images alone for discrimination of lithologic boundaries. A modeling study, using the annual heating cycle, indicated the feasibility of looking for geologic features buried under as much as a meter of alluvial material. The spatial resolution of HCMM data is a major limiting factor in the usefulness of the data for geologic applications. Future thermal infrared satellite sensors should provide spatial resolution comparable to that of the LANDSAT data.

  15. Testing geological conceptual models with GPR simulations

    NASA Astrophysics Data System (ADS)

    Pirot, G.; Lochbuehler, T.; Huber, E.; Caers, J.

    2012-12-01

    We present here a method for testing conceptual models of geological heterogeneity. This method is motivated by the modeling of the Tagliamento river, Italy, for which surface GPR data and sedimentological observations are available. Modeling heterogeneous aquifers issued from highly dynamic environments such as braided rivers systems requires some strong hypothesis concerning the morphology of the heterogeneities. Object shapes and sizes in object models, Training Images in Multiple Points Statistics models, or rules within process-based methods are some examples of these assumptions. These hypotheses result in smoother or stronger lithological contrasts in the simulated media. GPR data offer the advantages of underlining porosity and therefore hydraulic conductivity contrasts and being a non-intrusive method. With some treatment it can be used to identify main objects structures. By running forward GPR simulations on the simulated geological media, and by comparing the resulting patterns with the post processed GPR field data, we can test the validity of the prior conceptual model. To illustrate the method, we used different scenarii of a pseudo-genetic algorithm embedding DS simulations to obtain different types of geological heterogeneity. The GPR response is simulated for each geological model scenario. Post processing of those images are then statistically compared with those from the Tagliamento dataset, to accept or reject the conceptual model implied by the scenario.

  16. The Geologic Story of Yellowstone National Park

    USGS Publications Warehouse

    Keefer, William Richard

    1971-01-01

    In the aftermath of the Civil War, the United States expanded the exploration of her western frontiers to gain a measure of the vast lands and natural resources in the region now occupied by our Rocky Mountain States. As part of this effort, the Geological and Geographical Survey of the Territories was organized within the Department of the Interior, and staffed by a group of hardy, pioneering scientists under the leadership of geologist F. V. Hayden. During the summer of 1871, these men, accompanied by photographer William H. Jackson and artist Thomas Moran, made a reconnaissance geological study of the legendary and mysterious 'Yellowstone Wonderland' in remote northwestern Wyoming Territory. The scientific reports and illustrations prepared by Hayden and his colleagues, supplementing the startling accounts that had been published by members of the famous Washburn-Doane Expedition a year earlier, erased all doubts that this unique land was eminently worthy of being set aside 'for the benefit and enjoyment of the people.' By Act of Congress on March 1, 1872, our first National Park was established. During the past century, 50 million people have toured Yellowstone National Park, marveling at its never-ending display of natural wonders. No doubt many have paused to wonder about the origin of these unusual and complex geological features - a question, needless to say, that has intrigued and challenged scientists from the very first days of the Hayden Survey. During the past decade a group of U. S. Geological Survey scientists, in cooperation with the National Park Service and aided by the interest of the National Aeronautics and Space Administration in remote sensing of the geologic phenomena, has been probing the depths and farthest corners of the Park seeking more of the answers. Some of the results of this work, and those of earlier studies, are described in this book to provide a better understanding and enjoyment of this great National Park.

  17. Structural geology of the Earth's exterior*

    PubMed Central

    Burchfiel, B. C.

    1979-01-01

    Plate tectonics offers an explanation for the present motions and heterogeneity of the rocks that form the external part of the Earth. It explains the origin of the first-order heterogeneity of oceanic and continental lithospheres. Furthermore, it explains the youth and simplicity of the oceanic lithosphere and offers the potential to explain the antiquity, complexity, and evolution of the continental lithosphere. The framework of plate tectonics must be used carefully, because there are geological features within continents, particularly in the more ancient rocks, that may require alternative explanations. The task of understanding lithospheric motions through geologic time must be focused on the continents, where the major evidence for 95% of Earth history resides. In interpreting earth motions from the geologic record, three needs seem paramount: (i) to develop a three-dimensional understanding of the kinematics, dynamics, and thermal structure of modern plate boundary systems and at the same time to recognize those geological and geophysical features that are unrelated to plate interaction; (ii) to use this understanding to reconstruct the extent and evolution of ancient systems that form the major elements of continental crust; and (iii) to determine the dynamics and evolution of systems that have no modern analogs. Decoupling along subhorizontal zones within the lithosphere may be widespread in all types of plate boundary systems. Thus, in order to interpret the motion and dynamics of the mantle correctly, it is important to know if upper lithospheric motion within boundary systems is controlled directly or indirectly by or is independent of deeper mantle motions. PMID:16592704

  18. Geologic Mapping of Mars

    NASA Astrophysics Data System (ADS)

    Price, Katherine H.

    1998-05-01

    Planetary geologic mapping involves integrating a terrestrial-based understanding of surface and subsurface processes and mapping principles to investigate scientific questions. Mars mappers must keep in mind that physical processes, such as wind and flowing water on Mars, are or were different from terrestrial processes because the planetary atmospheres have changed differently over time. Geologic mapping of Mars has traditionally been done by hand using overlays on photomosaics of Viking Orbiter and Mariner images. Photoclinometry and shadow measurements have been used to determine elevations, and the distribution and size of craters have been used to determine the relative ages of surfaces- more densely cratered surfaces are older. Some mappers are now using computer software (ranging from Photoshop to ArcInfo) to facilitate mapping, though their applications must be carefully executed so that registration of the images remains true. Images and some mapping results are now available on the internet, and new data from recent missions to Mars (Pathfinder and Surveyor) will offer clarifying information to mapping efforts. This paper consists chiefly of pictures and diagrams.

  19. ecological geological maps: GIS-based evaluation of the Geo-Ecological Quality Index (GEQUI) in Sicily (Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    Nigro, Fabrizio; Arisco, Giuseppe; Perricone, Marcella; Renda, Pietro; Favara, Rocco

    2010-05-01

    The condition of landscapes and the ecological communities within them is strongly related to levels of human activity. As a consequence, determining status and trends in the pattern of human-dominated landscapes can be useful for understanding the overall conditions of geo-ecological resources. Ecological geological maps are recent tools providing useful informations about a-biotic and biotic features worldwide. These maps represents a new generation of geological maps and depict the lithospheric components conditions on surface, where ecological dynamics (functions and properties) and human activities develop. Thus, these maps are too a fundamental political tool to plan the human activities management in relationship to the territorial/environmental patterns of a date region. Different types of ecological geological maps can be develop regarding the: conditions (situations), zoning, prognosis and recommendations. The ecological geological conditions maps reflects the complex of parameters or individual characteristics of lithosphere, which characterized the opportunity of the influence of lithosphere components on the biota (man, fauna, flora, and ecosystem). The ecological geological zoning maps are foundamental basis for prognosis estimation and nature defenses measures. Estimation from the position of comfort and safety of human life and function of ecosystem is given on these maps. The ecological geological prognosis maps reflect the spatial-temporary prognoses of ecological geological conditions changing during the natural dynamic of natural surrounding and the main-during the economic mastering of territory and natural technical systems. Finally, the ecological geological recommendation maps are based on the ecological geological and social-economical informations, aiming the regulation of territory by the regulation of economic activities and the defense of bio- and socio-sphere extents. Each of these maps may also be computed or in analytic or in synthetic way. The first, characterized or estimated, prognosticated one or several indexes of geological ecological conditions. In the second type of maps, the whole complex is reflected, which defined the modern or prognosticable ecological geological situation. Regarding the ecological geological zoning maps, the contemporary state of ecological geological conditions may be evaluated by a range of parameters into classes of conditions and, on the basis of these informations, the estimation from the position of comfort and safety of human life and function of ecosystem is given. Otherwise, the concept of geoecological land evaluation has become established in the study of landscape/environmental plannings in recent years. It requires different thematic data-sets, deriving from the natural-, social- and amenity-environmental resources analysis, that may be translate in environmental (vulnerability/quality) indexes. There have been some attempts to develop integrated indices related to various aspects of the environment within the framework of sustainable development (e.g.: United Nations Commission on Sustainable Development, World Economic Forum, Advisory Board on Indicators of Sustainable Development of the International Institute for Sustainable Development, Living Planet Index established by the World Wide Fund for Nature, etc.). So, the ecological geological maps represent the basic tool for the geoecological land evaluation policies and may be computed in terms of index-maps. On these basis, a GIS application for assessing the ecological geological zoning is presented for Sicily (Central Mediterranean). The Geo-Ecological Quality Index (GEQUI) map was computed by considering a lot of variables. Ten variables (lithology, climate, landslide distribution, erosion rate, soil type, land cover, habitat, groundwater pollution, roads density and buildings density) generated from available data, were used in the model, in which weighting values to each informative layer were assigned. An overlay analysis was carried out, allowing to classify the region into five classes: bad, poor, moderate, good and high.

  20. Structural geology of impact craters

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Poelchau, Michael H.; Wulf, Gerwin

    2014-05-01

    The formation of impact craters is a highly dynamic and complex process that subjects the impacted target rocks to numerous types of deformation mechanisms. Understanding and interpreting these styles of micro-, meso- and macroscale deformation has proved itself challenging for the field of structural geology. In this paper, we give an overview of the structural inventory found in craters of all size ranges on Earth, and look into the structures of craters on other planetary bodies. Structural features are discussed here that are caused by i) extremely high pressures and temperatures that occur during the initial passage of the shock wave through the target rock and projectile, ii) the resulting flow field in the target that excavates and ejects rock materials, and iii) the gravitationally induced modification of the crater cavity into the final crater form. A special focus is put on the effects that low-angle impacting bodies have on crater formation. We hope that this review will help both planetary scientists and structural geologists understand the deformation processes and resulting structures generated by meteorite impact.

  1. Geology of Lofn Crater, Callisto

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Heiner, Sarah; Klemaszewski, James E.

    2001-01-01

    Lofn crater is a 180-km-diameter impact structure in the southern cratered plains of Callisto and is among the youngest features seen on the surface. The Lofn area was imaged by the Galileo spacecraft at regional-scale resolutions (875 m/pixel), which enable the general geology to be investigated. The morphology of Lofn crater suggests that (1) it is a class of impact structure intermediate between complex craters and palimpsests or (2) it formed by the impact of a projectile which fragmented before reaching the surface, resulting in a shallow crater (even for Callisto). The asymmetric pattern of the rim and ejecta deposits suggests that the impactor entered at a low angle from the northwest. The albedo and other characteristics of the ejecta deposits from Lofn also provide insight into the properties of the icy lithosphere and subsurface configuration at the time of impact. The "target" for the Lofn impact is inferred to have included layered materials associated with the Adlinda multiring structure northwest of Loh and ejecta deposits from the Heimdall crater area to the southeast. The Lofn impact might have penetrated through these materials into a viscous substrate of ductile ice or possibly liquid water. This interpretation is consistent with models of the current interior of Callisto based on geophysical information obtained from the Galileo spacecraft.

  2. Martian polar geological studies

    NASA Technical Reports Server (NTRS)

    Cutts, J. A. J.

    1977-01-01

    Multiple arcs of rugged mountains and adjacent plains on the surface of Mars were examined. These features, located in the southern polar region were photographed by Mariner 9. Comparisons are made with characteristics of a lunar basin and mare; Mare imbrium in particular. The martian feature is interpreted to have originated in the same way as its lunar analog- by volcanic flooding of a large impact basin. Key data and methodology leading to this conclusion are cited.

  3. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    NASA Astrophysics Data System (ADS)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  4. From digital mapping to GIS-based 3D visualization of geological maps: example from the Western Alps geological units

    NASA Astrophysics Data System (ADS)

    Balestro, Gianni; Cassulo, Roberto; Festa, Andrea; Fioraso, Gianfranco; Nicolò, Gabriele; Perotti, Luigi

    2015-04-01

    Collection of field geological data and sharing of geological maps are nowadays greatly enhanced by using digital tools and IT (Information Technology) applications. Portable hardware allows accurate GPS localization of data and homogeneous storing of information in field databases, whereas GIS (Geographic Information Systems) applications enable generalization of field data and realization of geological map databases. A further step in the digital processing of geological map information consists of building virtual visualization by means of GIS-based 3D viewers, that allow projection and draping of significant geological features over photo-realistic terrain models. Digital fieldwork activities carried out by the Authors in the Western Alps, together with building of geological map databases and related 3D visualizations, are an example of application of the above described digital technologies. Digital geological mapping was performed by means of a GIS mobile software loaded on a rugged handheld device, and lithological, structural and geomorphological features with their attributes were stored in different layers that form the field database. The latter was then generalized through usual map processing steps such as outcrops interpolation, characterization of geological boundaries and selection of meaningful punctual observations. This map databases was used for building virtual visualizations through a GIS-based 3D-viewer that loaded detailed DTM (resolution of 5 meters) and aerial images. 3D visualizations were focused on projection and draping of significant stratigraphic contacts (e.g. contacts that separate different Quaternary deposits) and tectonic contacts (i.e. exhumation-related contacts that dismembered original ophiolite sequences). In our experience digital geological mapping and related databases ensured homogeneous data storing and effective sharing of information, and allowed subsequent building of 3D GIS-based visualizations. The latters gave realistic and easy-to-read representations of areas of geological interest and are a useful tool to overcome the problems that commonly occur in transferring contents of geological maps to non-expert users (e.g. in the frame of managing and disseminating geoheritage information). Although 3D GIS-based visualizations have not the capabilities of real 3D geological models (i.e. numerical models that actually allow building and checking geometry of geological units), they represent a useful for field geologists that can easily visualize their map representations and related uncertainties.

  5. Minerals yearbook, 1991: Maine. Annual report

    SciTech Connect

    Harrison, D.K.; Anderson, W.; Foley, M.E.

    1993-07-01

    The report has been prepared under a Memorandum of Understanding between the U.S. Bureau of Mines, U.S. Department of the Interior, and the Maine Geological Survey for collecting information on all nonfuel minerals. The value of Maine's nonfuel mineral production in 1991 was $41.3 million, a $21.2 million decrease compared with that of 1990. Decreases in output and value were reported for most of the nonfuel minerals produced. The largest decreases in both production and value were for construction sand and gravel and dimension stone. Smaller decreases were estimated for both masonry and portland cement. Other mineral commodities produced in the State included common clay, gemstones, and peat. Perlite was shipped in from out-of-State and expanded at one plant in the State.

  6. Geologic map of Io

    USGS Publications Warehouse

    Williams, David A.; Keszthelyi, Laszlo P.; Crown, David A.; Yff, Jessica A.; Jaeger, Windy L.; Schenk, Paul M.; Geissler, Paul E.; Becker, Tammy L.

    2011-01-01

    Io, discovered by Galileo Galilei on January 7–13, 1610, is the innermost of the four Galilean satellites of the planet Jupiter (Galilei, 1610). It is the most volcanically active object in the Solar System, as recognized by observations from six National Aeronautics and Space Administration (NASA) spacecraft: Voyager 1 (March 1979), Voyager 2 (July 1979), Hubble Space Telescope (1990–present), Galileo (1996–2001), Cassini (December 2000), and New Horizons (February 2007). The lack of impact craters on Io in any spacecraft images at any resolution attests to the high resurfacing rate (1 cm/yr) and the dominant role of active volcanism in shaping its surface. High-temperature hot spots detected by the Galileo Solid-State Imager (SSI), Near-Infrared Mapping Spectrometer (NIMS), and Photopolarimeter-Radiometer (PPR) usually correlate with darkest materials on the surface, suggesting active volcanism. The Voyager flybys obtained complete coverage of Io's subjovian hemisphere at 500 m/pixel to 2 km/pixel, and most of the rest of the satellite at 5–20 km/pixel. Repeated Galileo flybys obtained complementary coverage of Io's antijovian hemisphere at 5 m/pixel to 1.4 km/pixel. Thus, the Voyager and Galileo data sets were merged to enable the characterization of the whole surface of the satellite at a consistent resolution. The United States Geological Survey (USGS) produced a set of four global mosaics of Io in visible wavelengths at a spatial resolution of 1 km/pixel, released in February 2006, which we have used as base maps for this new global geologic map. Much has been learned about Io's volcanism, tectonics, degradation, and interior since the Voyager flybys, primarily during and following the Galileo Mission at Jupiter (December 1995–September 2003), and the results have been summarized in books published after the end of the Galileo Mission. Our mapping incorporates this new understanding to assist in map unit definition and to provide a global synthesis of Io's geology.

  7. Geological modeling and infiltration pattern of a karstic system based upon crossed geophysical methods and image-guided inversion

    NASA Astrophysics Data System (ADS)

    Duran, Lea; Jardani, Abderrahim; Fournier, Matthieu; Massei, Nicolas

    2015-04-01

    Karstic aquifers represent an important part of the water resources worldwide. Though they have been widely studied on many aspects, their geological and hydrogeological modeling is still complex. Geophysical methods can provide useful subsurface information for the characterization and mapping of karstic systems, especially when not accessible by speleology. The site investigated in this study is a sinkhole-spring system, with small diameter conduits that run within a chalk aquifer (Norville, in Upper Normandy, France). This site was investigated using several geophysical methods: electrical tomography, self-potential, mise-à-la-masse methods, and electromagnetic method (EM34). Coupling those results with boreholes data, a 3D geological model of the hydrogeological basin was established, including tectonic features as well as infiltration structures (sinkhole, covered dolines). The direction of the karstic conduits near the main sinkhole could be established, and the major fault was shown to be a hydraulic barrier. Also the average concentration of dolines on the basin could be estimated, as well as their depth. At last, several hypotheses could be made concerning the location of the main conduit network between the sinkhole and the spring, using previous hydrodynamic study of the site along with geophysical data. In order to validate the 3D geological model, an image-guided inversion of the apparent resistivity data was used. With this approach it is possible to use geological cross sections to constrain the inversion of apparent resistivity data, preserving both discontinuities and coherences in the inversion of the resistivity data. This method was used on the major fault, enabling to choose one geological interpretation over another (fault block structure near the fault, rather than important folding). The constrained inversion was also applied on covered dolines, to validate the interpretation of their shape and depth. Key words: Magnetic and electrical methods, karstic system modeling; image-guided inversion

  8. Geologic studies in the Sierra de Pena Blanca, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Reyes-Cortes, Ignacio Alfonso

    The Sierra del Cuervo has been endowed with uranium mineralization, which has attracted many geological studies, and recently the author was part of a team with the goal of selecting a site of a radioactive waste repository. The first part of the work adds to the regional framework of stratigraphy and tectonics of the area. It includes the idea of a pull apart basin development, which justifies the local great thickness of the Cuervo Formation. It includes the regional structural frame work and the composite stratigraphic column of the Chihuahua Trough and the equivalent Cretaceous Mexican Sea. The general geologic features of the NE part of the Sierra del Cuervo are described, which include the folded ignimbrites and limestones in that area; the irregular large thicknesses of the Cuervo Formation; and the western vergence of the main folding within the area. Sanidine phenocrystals gave ages of 54.2 Ma and 51.8 Ma ± 2.3 Ma. This is the first time these dates have been reported in print. This age indicates a time before the folded structures which outcrop in the area, and 44 Ma is a date after the Cuervo Formation was folded. The Hidalgoan orogeny cycle affected the rocks between this lapse of time. Since then the area has been partially affected by three tensional overlapped stages, which resulted in the actual Basin and Range physiography. The jarosite related to the tectonic activity mineralization has been dated by the Ar-Ar method and yields an age of 9.8 Ma. This is the first report of a date of mineralization timing at Pena Blanca Uranium District in the Sierra del Cuervo. These are some of the frame work features that justify the allocation of a radioactive waste repository in the Sierra del Cuervo. An alluvial fan system within the Boquilla Colorada microbasin was selected as the best target for more detailed site assessment. The study also included the measurement of the alluvium thicknesses by geoelectric soundings; studies of petrography and weathered grade of the rock units; and the possible paths of potential leachate through the geologic media. The last part of the work relates to the natural analog of the Yucca Mountain, the Nopal I orebody, which is compared and found similar in its geologic frame work, in the lithologic units and their weathering, in the stratigraphic relationships with the vitrophyres and tuff horizons, in the climatic dryness, in the regional water table depth and the hydrologic features, in the ignimbritic units mineralogy, and in the radioactive waste fuel compared to the ore mineralogy of the Nopal I. There are mineralogic determinations of the fracture fill material in the orebody and host rock; detailed mapping of the fractures and surface alterations; and gamma ray grid measurements and electromagnetic soundings. All these studies indicate a support criteria to take the Nopal I as a natural analogue of the Yucca Mountain repository. The total evolution of the Nopal I orebody is exposed in the walls and floors of the +00 and +10 levels, which are ready to perform final safety tests in order to compare it with the future Yucca Mountain repository behavior. The Nopal in orebody has been there for several hundred of thousands and may be millions of years in an natural equilibrium with the surrounding environment. (Abstract shortened by UMI.)

  9. Practical aspects of geological prediction

    SciTech Connect

    Mallio, W.J.; Peck, J.H.

    1981-11-01

    Nuclear waste disposal requires that geology be a predictive science. The prediction of future events rests on (1) recognizing the periodicity of geologic events; (2) defining a critical dimension of effect, such as the area of a drainage basin, the length of a fault trace, etc; and (3) using our understanding of active processes the project the frequency and magnitude of future events in the light of geological principles. Of importance to nuclear waste disposal are longer term processes such as continental denudation and removal of materials by glacial erosion. Constant testing of projections will allow the practical limits of predicting geological events to be defined. 11 refs.

  10. Distinguishing seawater from geologic brine in saline coastal groundwater using radium-226; an example from the Sabkha of the UAE

    USGS Publications Warehouse

    Kraemer, Thomas F.; Wood, Warren W.; Sanford, Ward E.

    2014-01-01

    Sabkhat (Salt flats) are common geographic features of low-lying marine coastal areas that develop under hyper-arid climatic conditions. They are characterized by the presence of highly concentrated saline solutions and evaporitic minerals, and have been cited in the geologic literature as present-day representations of hyper-arid regional paleohydrogeology, paleoclimatology, coastal processes, and sedimentation in the geologic record. It is therefore important that a correct understanding of the origin and development of these features be achieved. Knowledge of the source of solutes is an important first step in understanding these features. Historically, two theories have been advanced as to the main source of solutes in sabkha brines: an early concept entailing seawater as the obvious source, and a more recent and dynamic theory involving ascending geologic brine forced upward into the base of the sabkha by a regional hydraulic gradient in the underlying formations. Ra-226 could uniquely distinguish between these sources under certain circumstances, as it is typically present at elevated activity of hundreds to thousands of Bq/m3 (Becquerels per cubic meter) in subsurface formation brines; at exceedingly low activities in open ocean and coastal water; and not significantly supplied to water from recently formed marine sedimentary framework material. The coastal marine sabkha of the Emirate of Abu Dhabi was used to test this hypothesis. The distribution of Ra-226 in 70 samples of sabkha brine (mean: 700 Bq/m3), 7 samples of underlying deeper formation brine (mean: 3416 Bq/m3), the estimated value of seawater (< 16 Bq/m3) and an estimate of supply from sabkha sedimentary framework grains (<~6 Bq/m3) provide the first direct evidence that ascending geologic brine contributes significantly to the solutes of this sabkha system.

  11. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  12. OneGeology - improving access to geoscience globally

    NASA Astrophysics Data System (ADS)

    Jackson, Ian; Asch, Kristine; Tellez-Arenas, Agnès.; Komac, Marko; Demicheli, Luca

    2010-05-01

    The OneGeology concept originated in early 2006. With the potential stimulus of the International Year of Planet Earth (IYPE) very much in mind, the challenge was: could we use IYPE to begin the creation of an interoperable digital geological dataset of the planet? Fourteen months later on the concept was unanimously endorsed by 83 representatives of the international geoscience community at a meeting in Brighton, UK, and goals were set to for a global launch at the 33rd IGC in Oslo in August 2008. The goals that the Brighton meeting agreed for OneGeology were deceptively simple. They were to: • improve the accessibility of geological map data • exchange know-how and skills so that all nations could participate • accelerate interoperability in the geosciences and the take up of a new "standard" (GeoSciML) At the time of writing (January 2010) there are 113 countries participating in OneGeology, more than 40 of which are serving data using a web map portal and protocols, registries and technology to "harvest" and serve data from around the world. An essential part of the development of OneGeology has been the exchange of know-how and provision of guidance and support so that any geological survey can participate and serve their data. The team have also moved forward and raised the profile of a crucial data model and interoperability standard - GeoSciML, which will allow geoscience data to be shared across the globe. OneGeology is coordinated through a two-part "hub" - a Secretariat based at the British Geological Survey (BGS), and the portal technology and servers provided by the French geological survey (BRGM). The "hub" is guided and supported by two international groups - the Operational Management Group (OMG) and the Technical Working Group (TWG). A Steering Group to provide strategic guidance for OneGeology and comprising geological survey directors representing the six continents was formed at the end of 2008. The Steering Group are now looking at options to incorporate Onegeology and consolidate its governance and sustainability. Two regional initiatives have been spawned which are strongly linked to OneGeology. OneGeology-Europe and the US project Geoscience Information Network (GIN) are progressing OneGeology goals in Europe and the USA. Additionally, in south-east Asia, CCOP members are making sure that OneGeology goals are progressed in their region. Each of these initiatives reinforces the other. A set of Success Criteria for the next 3 years, up to the 34 IGC in Brisbane, are providing new goals for the OneGeology work programme. Within these major aims are increasing the number of participants, increasing the number of those participants serving data, and increasing the number of participants moving from a web map service to a web feature service, which will offer significantly improved functionality. Communication and outreach have always been a priority for OneGeology; nonetheless the volume of global media coverage the project has received has been astounding. A dynamic website with rich and regularly updated content is a strong factor in that outreach. The audiences for these presentations range from geoscientists, to informatics and spatial data specialists, to environmental scientists, politicians and not least the general public. OneGeology has proved to be a project that has much broader appeal (and thus more opportunity to communicate the relevance of geology to society) than was ever envisaged. This external appeal has served to strengthen geoscience interest in the project, which has in turn given a higher profile and impetus to the interoperability standards OneGeology uses.

  13. Geology orbiter comparison study

    NASA Technical Reports Server (NTRS)

    Cutts, J. A. J.; Blasius, K. R.; Davis, D. R.; Pang, K. D.; Shreve, D. C.

    1977-01-01

    Instrument requirements of planetary geology orbiters were examined with the objective of determining the feasibility of applying standard instrument designs to a host of terrestrial targets. Within the basic discipline area of geochemistry, gamma-ray, X-ray fluorescence, and atomic spectroscopy remote sensing techniques were considered. Within the discipline area of geophysics, the complementary techniques of gravimetry and radar were studied. Experiments using these techniques were analyzed for comparison at the Moon, Mercury, Mars and the Galilean satellites. On the basis of these comparative assessments, the adaptability of each sensing technique was judged as a basic technique for many targets, as a single instrument applied to many targets, as a single instrument used in different mission modes, and as an instrument capability for nongeoscience objectives.

  14. Geology Exchange Program

    NASA Astrophysics Data System (ADS)

    Because geology professors cannot bring ore deposits from around the globe into their classrooms, the next best thing is to take their students to the deposits, according to David Norman, an associate professor of geochemistry at New Mexico Tech and Angus Moore of the Royal School of Mines. They organized a new exchange program between the New Mexico Institute of Mining and Technology in Socorro, N.M., and the Royal School of Mines in London, England. In May, 14 students from England toured deposits in New Mexico, Arizona, Utah, and Colorado; in the photograph, Norman (on the right) describes a rock from a New Mexico ore deposit to some of the visitors from England. In early June a contingency from New Mexico Tech began studying deposits in England, Spain, and Portugal. Norman and Moore say that the exchange program may be expanded next year.

  15. Geology of Europa

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Chyba, C.; Head, J. W.; McCord, T.; McKinnon, W. B.; Pappalardo, R. T.

    2004-01-01

    Europa is a rocky object of radius 1565 km (slightly smaller than Earth s moon) and has an outer shell of water composition estimated to be of order 100 km thick, the surface of which is frozen. The total volume of water is about 3 x 10(exp 9) cubic kilometers, or twice the amount of water on Earth. Moreover, like its neighbor Io, Europa experiences internal heating generated from tidal flexing during its eccentric orbit around Jupiter. This raises the possibility that some of the water beneath the icy crust is liquid. The proportion of rock to ice, the generation of internal heat, and the possibility of liquid water make Europa unique in the Solar System. In this chapter, we outline the sources of data available for Europa (with a focus on the Galileo mission), review previous and on-going research on its surface geology, discuss the astrobiological potential of Europa, and consider plans for future exploration.

  16. Geological consequences of superplumes

    SciTech Connect

    Larson, R.L. )

    1991-10-01

    Superplumes are suggested to have caused the period of constant normal magnetic polarity in mid-Cretaceous time (124-83 Ma) and, possibly, the period of constant reversed polarity in Pennsylvania-Permian time (323-248 Ma). These times coincide with increases in world temperature, deposition of black shales, oil generation, and eustatic sea level in the mid-Cretaceous, and increased coal generation and gas accumulation in the Pennsylvanian-Permian, accompanied by an intracratonic Pennsylvanian transgression of epicontinental seas. These geologic anomalies are associated with episodes of increased world-wide ocean-crust production and mantle outgassing, especially of carbon and nutrients. These superplumes originated just above the core-mantle boundary, significantly increased convection in the outer core, and stopped the magnetic field reversal process for 41 m.y. in the Cretaceous and 75 m.y. in Pennsylvanian-Permian time.

  17. Spaceborne imaging radar - Geologic and oceanographic applications

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1980-01-01

    Synoptic, large-area radar images of the earth's land and ocean surface, obtained from the Seasat orbiting spacecraft, show the potential for geologic mapping and for monitoring of ocean surface patterns. Structural and topographic features such as lineaments, anticlines, folds and domes, drainage patterns, stratification, and roughness units can be mapped. Ocean surface waves, internal waves, current boundaries, and large-scale eddies have been observed in numerous images taken by the Seasat imaging radar. This article gives an illustrated overview of these applications.

  18. The Geology of Vesta

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Russell, C. T.; Raymond, C. A.; Pieters, C. M.; Yingst, R. A.; Williams, D. A.; Buczkowski, D. L.; Krohn, K.; Otto, K.; Stephan, K.; DeSanctis, M. C.; Garry, W. B.; Blewett, D.

    2013-09-01

    The Dawn spacecraft collected over 28,000 images and a wealth of spectral data of Vesta's surface. These data enable analysis of Vesta's diverse geology including impact craters of all sizes and unusual shapes, a variety of ejecta blankets, large troughs, impact basins, enigmatic dark material, and considerable evidence for mass wasting and surface alteration processes [1,2,3]. Two large impact basins, Veneneia underlying the larger Rheasilvia basin dominate the south polar region [1,4]. The depression surrounding Vesta's south pole was formed by two giant impacts about one billion and two billion years ago [4,5]. Vesta's global tectonic patterns (two distinct sets of large troughs orthogonal to the axes of the impacts) strongly correlate with the locations of the two south polar impact basins, and were likely created by their formation [1,6]. Numerous unusual asymmetric impact craters and ejecta indicate the strong influence of topographic slope in cratering on Vesta [1]. One type of gully in crater walls is interpreted to form by dry granular flow, but another type is consistent with transient water flow [7]. Very steep topographic slopes near to the angle of repose are common; slope failures make resurfacing due to impacts and their associated gravitational slumping and seismic effects an important geologic process on Vesta [1]. Clusters of pits in combination with impact melt [8] suggest the presence of volatile materials underlying that melt in some crater floors. Relatively dark material of uncertain origin is intermixed in the regolith layers and partially excavated by younger impacts yielding dark outcrops, rays and ejecta [1,9]. Vesta's surface is reworked by intense impacts and thus much younger than the formation of its crust [2,5].

  19. Applicability of ERTS-1 to Montana geology

    NASA Technical Reports Server (NTRS)

    Weidman, R. M. (Principal Investigator); Alt, D. D.; Berg, R.; Johns, W.; Flood, R.; Hawley, K.; Wackwitz, L.

    1976-01-01

    The author has identified the following significant results. Late autumn imagery provides the advantages of topographic shadow enhancement and low cloud cover. Mapping of rock units was done locally with good results for alluvium, basin fill, volcanics, inclined Paleozoic and Mesozoic beds, and host strata of bentonite beds. Folds, intrusive domes, and even dip directions were mapped where differential erosion was significant. However, mapping was not possible for belt strata, was difficult for granite, and was hindered by conifers compared to grass cover. Expansion of local mapping required geologic control and encountered significant areas unmappable from ERTS imagery. Annotation of lineaments provided much new geologic data. By extrapolating test site comparisons, it is inferred that 27 percent of some 1200 lineaments mapped from western Montana represent unknown faults. The remainder appear to be localized mainly by undiscovered faults and sets of minor faults or joints.

  20. Planetary geological studies

    NASA Astrophysics Data System (ADS)

    Blasius, K. R.

    1981-02-01

    A global data base was assembled for the study of Mars crater ejecta morphology. The craters were classified as to morhology using individual photographic prints of Viking orbiter frames. Positional and scale information were derived by fitting digitized mosaic coordinates to lattitude-longitude coordinates of surface features from the Mars geodetic control net and feature coordinates from the U.S.G.S. series of 1:5,00,000 scale shaded relief maps. Crater morphology characteristics recorded are of two classes - attributes of each ejecta deposit and other crater charactersitics. Preliminary efforts to check the data base with findings of other workers are described.

  1. Niagara Falls Storage Site, Lewiston, New York: geologic report

    SciTech Connect

    Not Available

    1984-06-01

    This report is one of a series of engineering and environmental reports planned for the US Department of Energy's properties at Niagara Falls, New York. It describes the essential geologic features of the Niagara Falls Storage Site. It is not intended to be a definitive statement of the engineering methods and designs required to obtain desired performance features for any permanent waste disposal at the site. Results are presented of a geological investigation that consisted of two phases. Phase 1 occurred during July 1982 and included geologic mapping, geophysical surveys, and a limited drilling program in the vicinity of the R-10 Dike, planned for interim storage of radioactive materials. Phase 2, initiated in December 1982, included excavation of test pits, geophysical surveys, drilling, observation well installation, and field permeability testing in the South Dike Area, the Northern Disposal Area, and the K-65 Tower Area.

  2. Geologic information from satellite images. [geological interpretation of ERTS-1 and Skylab multispectral photography of Rocky Mountain areas

    NASA Technical Reports Server (NTRS)

    Lee, K.; Knepper, D. H., Jr. (Principal Investigator); Sawatzky, D. L.

    1974-01-01

    The author has identified the following significant results. Extracting geologic information from ERTS and Skylab/EREP images is best done by a geologist trained in photointerpretation. The information is at a regional scale, and three basic types are available: rock and soil, geologic structures, and landforms. Discrimination between alluvium and sedimentary or crystalline bedrock, and between units in thick sedimentary sequences is best, primarily because of topographic expression and vegetation differences. Discrimination between crystalline rock types is poor. Folds and fractures are the best displayed geologic features. They are recognizable by topographic expression, drainage patterns, and rock or vegetation tonal patterns. Landforms are easily discriminated by their familar shapes and patterns. It is possible to optimize the scale, format, spectral bands, conditions of acquisition, and sensor systems for best geologic interpretation. Several examples demonstrate the applicability of satellite images to tectonic analysis and petroleum and mineral exploration.

  3. Geology of Caves.

    ERIC Educational Resources Information Center

    Davies, W. E.; Morgan, I. M.

    One of a series of general interest publications on science topics, the booklet provides those interested in the study of caves (speleology) with a nontechnical introduction to the subject. Separate sections examine types of caves, how caves form, cave features, minerals found in caves, uses of caves, and caves as natural underground laboratories.…

  4. Geology on the Moon.

    ERIC Educational Resources Information Center

    Stonehouse, H. B.

    1979-01-01

    Presents three activities that allow students to practice some of the techniques used by lunar researchers, and to become more familiar with lunar features through scrutiny of lunar photography. Topics include dimensions of a crater, different surface ages, and types of rilles. (Author/MA)

  5. Delineating the Rattlesnake Springs, New Mexico Watershed Using Shallow Subsurface Geophysical Techniques and Geologic Mapping

    NASA Astrophysics Data System (ADS)

    Doser, D. I.; Langford, R. P.; Boykov, N. D.; Baker, M. R.; Kaip, G. M.

    2007-12-01

    Rattlesnake Springs serves as the sole water source for Carlsbad Caverns National Park. The recent development of oil and gas leases and agricultural lands surrounding the springs has led to concern about contamination of the karst aquifer. We have used geophysical techniques, combined with geologic mapping, to delineate possible fracture systems in the gypsum and carbonate bedrock that feed the spring system. Our initial work has focused on a 700 m by 700 m region surrounding the springs. We conducted a series of ground conductivity surveys with follow-up DC resistivity surveys (Wenner array vertical electrical soundings and a pole- pole survey) to determine variations in soil grain size and moisture content. Surface geologic mapping was used to identify a series of Holocene terraces and valleys that incise the terraces. Our combined results suggest that northwest-southeast and north-south trending fractures and dissolution features control regional water flow. Relict spring valleys are found to the west of the present springs. A pole-pole survey conducted around the perimeter of the springs suggests main water flow into the springs occurs from the northwest. We plan to complete a precision gravity survey in September and October 2007 to map bedrock topography and determine its relation to structural and dissolution features. Ground penetrating radar data will be collected on the northwestern side of the springs in an attempt to better delineate structures controlling inflow into the springs.

  6. Photomicrography in the Geological Sciences.

    ERIC Educational Resources Information Center

    Davidson, Michael W.

    1991-01-01

    Describes the conversion of a standard biological brightfield microscope for examination of thin sections and characterize, in detail, the use of both black and white and color photomicrography in the geological sciences. Several illustrative examples on the use of transmitted and reflected polarized-light microscopy to solve geological problems…

  7. Geologic mapping of Argyre Planitia

    NASA Technical Reports Server (NTRS)

    Gorsline, Donn S.; Parker, Timothy J.

    1995-01-01

    This report describes the results from the geologic mapping of the central and southern Argyre basin of Mars. At the Mars Geologic Mapper's Meeting in Flagstaff during July, 1993, Dave Scott (United States Geological Survey, Mars Geologic Mapping Steering Committee Chair) recommended that all four quadrangles be combined into a single 1:1,000,000 scale map for publication. It was agreed that this would be cost-effective and that the decrease in scale would not compromise the original science goals of the mapping. Tim Parker completed mapping on the 1:500,000 scale base maps, for which all the necessary materials had already been produced, and included the work as a chapter in his dissertation, which was completed in the fall of 1994. Geologic mapping of the two southernmost quadrangles (MTM -55036 and MTM -55043; MTM=Mars Transverse Mercator) was completed as planned during the first year of work. These maps and a detailed draft of the map text were given a preliminary review by Dave Scott during summer, 1993. Geologic mapping of the remaining two quadrangles (MTM -50036 and MTM -50043) was completed by summer, 1994. Results were described at the Mars Geologic Mappers Meeting, held in Pocatello, Idaho, during July, 1994. Funds for the third and final year of the project have been transferred to the Jet Propulsion Laboratory, where Tim Parker will revise and finalize all maps and map text for publication by the United States Geological Survey at the 1:1,000,000 map scale.

  8. Computer Assisted Instruction in Geology.

    ERIC Educational Resources Information Center

    Lepp, Henry

    The development of a computer self-test program in geology at Macalester College, Minnesota, is described. Based on the philosophy that tests, particularly those involving no grading, are useful study devices, computers are used to make tests available to students. Ten lessons have been developed on different topics in geology, and the computer

  9. The Geophysical Revolution in Geology.

    ERIC Educational Resources Information Center

    Smith, Peter J.

    1980-01-01

    Discussed is the physicists' impact on the revolution in the earth sciences particularly involving the overthrow of the fixist notions in geology. Topics discussed include the mobile earth, the route to plate tectonics, radiometric dating, the earth's magnetic field, ocean floor spreading plate boundaries, infiltration of physics into geology and

  10. The Geophysical Revolution in Geology.

    ERIC Educational Resources Information Center

    Smith, Peter J.

    1980-01-01

    Discussed is the physicists' impact on the revolution in the earth sciences particularly involving the overthrow of the fixist notions in geology. Topics discussed include the mobile earth, the route to plate tectonics, radiometric dating, the earth's magnetic field, ocean floor spreading plate boundaries, infiltration of physics into geology and…

  11. Geologic Map and Digital Data Base of the Almo Quadrangle and City of Rocks National Reserve, Cassia County, Idaho

    USGS Publications Warehouse

    Miller, David M.; Armstrong, Richard L.; Bedford, David R.; Davis, Marsha

    2008-01-01

    This geologic map describes the geology of the City of Rocks National Reserve and environs, located in the Albion Mountains of south-central Idaho. The most prominent geologic features of the Reserve are the spectacular rock spires that attracted visitors, beginning with commentary in the journals of travelers to California during the Gold Rush of 1849. The tectonic history is outlined, and descriptions of landscape processes, a newly discovered Quaternary fault, and features of the pinnacles are presented.

  12. Report on geologic remote sensing of the Columbia Plateau

    SciTech Connect

    Sandness, G.A.; Kimball, C.S.; Schmierer, K.E.; Lindberg, J.W.

    1982-05-01

    The purpose of this remote sensing study is to identify faults or other geologic features which may have a significant bearing on the structural and tectonic character of the Hanford Site and the surrounding region. Landsat imagery, Skylab photographs, and U-2 photographs were analyzed to identify and map geologic photolineaments in the Columbia Plateau. The Landsat and Skylab imagery provided a regional perspective and allowed the identification of large-scale linear features. The U-2 photography provided much greater spatial resolution as well as a stereoscopic viewing capability. This allowed identification of smaller structural or geologic features and the identification of many cultural and nongeologic lineaments detected in the Landsat and Skylab imagery. The area studied totals, approximately 85,000 square miles, and encompasses virtually all exposures of Columbia River Basalt in the states of Washington, Oregon, and Idaho. It also includes an area bordering the Columbia River Basalt outcrop. This border area was studied in order to identify significant structures that may extend into the plateau. Included are a description of the procedures used for image analysis, 20 lineament maps at a scale of 1:250,000, geological summaries for the areas covered by the lineament maps, and discussions of many of the lineaments shown on the maps. Comparisons of the lineament maps with available geologic maps showed that the number of detected lineaments was much greater than the number of known faults and other linear features. Approximately 70% of the faults shown on the geologic maps were detected and are characterized as lineaments. Lineament trends in the northwest-southeast and northeast-southwest directions were found to predominate throughout the study area.

  13. Main memory unit. [hybrid computers

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development of a main memory unit (MMU) for the space ultrareliable module computer (SUMC) model HTC is discussed. The design, fabrication, and test of basic memory modules (BMM) which were to be used in the design and construction of the MMU are described. The BMM was designed from state-of-the-art technologies which included large scale integration devices mounted and interconnected on a substrate to form a functional module to be utilized in the MMU development. A SUMC memory system design study is discussed which addressed itself to the BMM design and analysis to be conducted to determine the most efficient organization of the BMM in order to establish such modularity features as: word length expandability without redesign, high reliability, and fault tolerance. One MMU was designed, fabricated, tested, and delivered which will be electrical and mechanically compatible with the hybrid technology computer (HTC) model of the SUMC family of computers. The MMU will contain a storage capacity of 8196 36 bit words which includes a parity bit for each 8 bit byte of data.

  14. GIS-technologies as a mechanism to study geological structures

    NASA Astrophysics Data System (ADS)

    Sharapatov, Abish

    2014-05-01

    Specialized GIS-technologies allow creating multi-parameter models, completing multi-criteria optimisation tasks, and issues of geological profile forecasts using miscellaneous data. Pictorial and attributive geological and geophysical information collected to create GIS database is supplemented by the ERS (Earth's Remote Sensing) data, air spectrometry, space images, and topographic data. Among the important tasks are as follows: a unification of initial geological, geophysical and other types of information on a tectonic position, rock classification and stratigraphic scale; topographic bases (various projectures, scales); the levels of detail and exhaustibility; colors and symbols of legends; data structures and their correlation; units of measurement of physical quantities, and attribute systems of descriptions. Methods of the geological environment investigation using GIS-technology are based on a principle of the research target analogy with a standard. A similarity ratio is quantitative estimate. A geological forecast model is formed by structuring of geological information based on detailed analysis and aggregation of geological and formal knowledge bases on standard targets. Development of a bank of models of the analyzed geological structures of various range, ore-bearing features described by numerous prospecting indicators is the way to aggregate geological knowledge. The south terrain of the Valerianovskaya structure-facies zone (SFZ) of the Torgai paleo-rift structure covered with thick Mesozoic and Cenozoic rocks up to 2,000m is considered a so-called training ground for the development of GIS-technology. Parameters of known magnetite deposits located in the north of the SFZ (Sarybaiskoye, Sokolovskoye, etc.) are used to create the standard model. A meaning of the job implemented involves the following: - A goal-seeking nature of the research being performed and integration of the geological, geo-physical and other data (in many cases, efforts of the Earth scientists are odd, thus, solving only local tasks); - Development of specialized GIS-technology that ensures creating multi-parameter models, completing multi-criteria optimisation tasks, and issues of geological profile forecasts using miscellaneous data; - Application of the modern approach to the geological, petrological and genetic modeling of the targets in the geological zone under survey; determination of the structural and tectonic position of the Valerianovskaya SFZ and its relations to the mineralization; - A possibility to apply the GIS created for the region as a desk (local) system integrated to the regional or national bank of geospatial information with a corporate access via local and global networks.

  15. Remote sensing aids geologic mapping.

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr.; Marrs, R. W.

    1973-01-01

    Remote sensing techniques have been applied to general geologic mapping along the Rio Grande rift zone in central Colorado. A geologic map of about 1,100 square miles was prepared utilizing (1) prior published and unpublished maps, (2) detailed and reconnaissance field maps made for this study, and (3) remote sensor data interpretations. The map is to be used for interpretation of the complex Cenozoic tectonic and geomorphic histories of the area. Regional and local geologic mapping can be aided by the proper application of remote sensing techniques. Conventional color and color infrared photos contain a large amount of easily-extractable general geologic information and are easily used by geologists untrained in the field of remote sensing. Other kinds of sensor data used in this study, with the exception of SLAR imagery, were generally found to be impractical or unappropriate for broad-scale general geologic mapping.

  16. The Geologic Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Johnson, B. W.; Goldblatt, C.

    2013-12-01

    N2 is the dominant gas in Earth's atmosphere, and has been so through the majority of the planet's history. Originally thought to only be cycled in significant amounts through the biosphere, it is becoming increasingly clear that a large degree of geologic cycling can occur as well. N is present in crustal rocks at 10s to 100s of ppm and in the mantle at 1s to perhaps 10s of ppm. In light of new data, we present an Earth-system perspective of the modern N cycle, an updated N budget for the silicate Earth, and venture to explain the evolution of the N cycle over time. In an fashion similar to C, N has a fast, biologically mediated cycle and a slower cycle driven by plate tectonics. Bacteria fix N2 from the atmosphere into bioavailable forms. N is then cycled through the food chain, either by direct consumption of N-fixing bacteria, as NH4+ (the primary waste form), or NO3- (the most common inorganic species in the modern ocean). Some organic material settles as sediment on the ocean floor. In anoxic sediments, NH4+ dominates; due to similar ionic radii, it can readily substitute for K+ in mineral lattices, both in sedimentary rocks and in oceanic lithosphere. Once it enters a subduction zone, N may either be volatilized and returned to the atmosphere at arc volcanoes as N2 or N2O, sequestered into intrusive igneous rocks (as NH4+?), or subducted deep into the mantle, likely as NH4+. Mounting evidence indicates that a significant amount of N may be sequestered into the solid Earth, where it may remain for long periods (100s m.y.) before being returned to the atmosphere/biosphere by volcanism or weathering. The magnitude fluxes into the solid Earth and size of geologic N reservoirs are poorly constrained. The size of the N reservoirs contained in the solid Earth directly affects the evolution of Earth's atmosphere. It is possible that N now sequestered in the solid Earth was once in the atmosphere, which would have resulted in a higher atmospheric pressure, and therefore strengthened the greenhouse effect by pressure broadening the absorption of greenhouse gases. In addition,the behaviour of N is dependent on redox conditions in the ocean, which have not been constant over time.

  17. Geologic map and digital database of the Yucaipa 7.5' quadrangle, San Bernardino and Riverside Counties, California

    USGS Publications Warehouse

    Matti, Jonathan C.; Morton, D.M.; Cox, B.F.; Carson, S.E.; Yetter, T.J.; Digital preparation by: Cossette, P.M.; Wright, M.C.; Kennedy, S.A.; Dawson, M.L.; Hauser, R.M.

    2003-01-01

    This geologic database of the Yucaipa 7.5' quadrangle was prepared by the Southern California Areal Mapping Project (SCAMP), a regional geologic-mapping project sponsored jointly by the U.S. Geological Survey and the California Geological Survey. The database was developed as a contribution to the National Cooperative Geologic Mapping Program's National Geologic Map Database, and is intended to provide a general geologic setting of the Yucaipa quadrangle. The database and map provide information about earth materials and geologic structures, including faults and folds that have developed in the quadrangle due to complexities in the San Andreas Fault system. The Yucaipa 7.5' quadrangle contains materials and structures that provide unique insight into the Mesozoic and Cenozoic geologic evolution of southern California. Stratigraphic and structural elements include: (1) strands of the San Andreas Fault that bound far-traveled terranes of crystalline and sedimentary rock; (2) Mesozoic crystalline rocks that form lower and upper plates of the regionwide Vincent-Orocopia Thrust system; and (3) late Tertiary and Quaternary sedimentary materials and geologic structures that formed during the last million years or so and that record complex geologic interactions within the San Andreas Fault system. These materials and the structures that deform them provide the geologic framework for investigations of geologic hazards and ground-water recharge and subsurface flow. Geologic information contained in the Yucaipa database is general-purpose data that is applicable to land-related investigations in the earth and biological sciences. The term "generalpurpose" means that all geologic-feature classes have minimal information content adequate to characterize their general geologic characteristics and to interpret their general geologic history. However, no single feature class has enough information to definitively characterize its properties and origin. For this reason the database cannot be used for site-specific geologic evaluations, although it can be used to plan and guide investigations at the site-specific level.

  18. Canada's Deep Geological Repository For Used Nuclear Fuel -The Geoscientific Site Evaluation Process

    NASA Astrophysics Data System (ADS)

    Hirschorn, S.; Ben Belfadhel, M.; Blyth, A.; DesRoches, A. J.; McKelvie, J. R. M.; Parmenter, A.; Sanchez-Rico Castejon, M.; Urrutia-Bustos, A.; Vorauer, A.

    2014-12-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. In May 2010, the NWMO published and initiated a nine-step site selection process to find an informed and willing community to host a deep geological repository for Canada's used nuclear fuel. The site selection process is designed to address a broad range of technical and social, economic and cultural factors. The suitability of candidate areas will be assessed in a stepwise manner over a period of many years and include three main steps: Initial Screenings; Preliminary Assessments; and Detailed Site Characterizations. The Preliminary Assessment is conducted in two phases. NWMO has completed Phase 1 preliminary assessments for the first eight communities that entered into this step. While the Phase 1 desktop geoscientific assessments showed that each of the eight communities contains general areas that have the potential to satisfy the geoscientific safety requirements for hosting a deep geological repository, the assessment identified varying degrees of geoscientific complexity and uncertainty between communities, reflecting their different geological settings and structural histories. Phase 2 activities will include a sequence of high-resolution airborne geophysical surveys and focused geological field mapping to ground-truth lithology and structural features, followed by limited deep borehole drilling and testing. These activities will further evaluate the site's ability to meet the safety functions that a site would need to ultimately satisfy in order to be considered suitable. This paper provides an update on the site evaluation process and describes the approach, methods and criteria that are being used to conduct the geoscientific Preliminary Assessments.

  19. Principles of computer processing of Landsat data for geologic applications

    USGS Publications Warehouse

    Taranik, James V.

    1978-01-01

    The main objectives of computer processing of Landsat data for geologic applications are to improve display of image data to the analyst or to facilitate evaluation of the multispectral characteristics of the data. Interpretations of the data are made from enhanced and classified data by an analyst trained in geology. Image enhancements involve adjustments of brightness values for individual picture elements. Image classification involves determination of the brightness values of picture elements for a particular cover type. Histograms are used to display the range and frequency of occurrence of brightness values. Landsat-1 and -2 data are preprocessed at Goddard Space Flight Center (GSFC) to adjust for the detector response of the multispectral scanner (MSS). Adjustments are applied to minimize the effects of striping, adjust for bad-data lines and line segments and lost individual pixel data. Because illumination conditions and landscape characteristics vary considerably and detector response changes with time, the radiometric adjustments applied at GSFC are seldom perfect and some detector striping remain in Landsat data. Rotation of the Earth under the satellite and movements of the satellite platform introduce geometric distortions in the data that must also be compensated for if image data are to be correctly displayed to the data analyst. Adjustments to Landsat data are made to compensate for variable solar illumination and for atmospheric effects. GeoMetric registration of Landsat data involves determination of the spatial location of a pixel in. the output image and the determination of a new value for the pixel. The general objective of image enhancement is to optimize display of the data to the analyst. Contrast enhancements are employed to expand the range of brightness values in Landsat data so that the data can be efficiently recorded in a manner desired by the analyst. Spatial frequency enhancements are designed to enhance boundaries between features which have subtle differences in brightness values. Ratioing tends to reduce the effects due to topography and it tends to emphasize changes in brightness values between two Landsat bands. Simulated natural color is produced for geologists so that the colors of materials on images appear similar to colors of actual materials in the field. Image classification of Landsat data involves both machine assisted delineation of multispectral patterns in four-dimensional spectral space and identification of machine delineated multispectral patterns that represent particular cover conditions. The geological information derived from an analysis of a multispectral classification is usually related to lithology.

  20. A Regional Guide to Iowa Landforms. Iowa Geological Survey Educational Series 3.

    ERIC Educational Resources Information Center

    Prior, Jean Cutler

    Presented is a non-technical account of the geological appearance and history of the state of Iowa. Included are Iowa's landscape features, geologic events, and processes that shaped the landscape. Maps and numerous illustrations picture the events and landforms described. Each of the state's seven principal landform regions is discussed in

  1. Influence of physical fields of active geological faults on the human cardiovascular system

    NASA Astrophysics Data System (ADS)

    Shitov, A. V.; Borodin, A. S.; Tuzhilkin, D. A.; Apryatkina, M. L.

    2014-12-01

    Results of studying the human cardiovascular system within zones of Altai Mountain geological faults are presented. It is shown that features of the geological-geophysical characteristics have an effect on different control circuits of the human cardiovascular system and cause a change in its functioning.

  2. Geologic Landforms and Processes on Icy Satellites

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.; Moore, Jeffrey M.

    1998-01-01

    During the first reconaissence of the satellites of the outer solar system conducted by the Voyager missions (1979-1989), a surprising diversity of unusual geologic landforms were observed, in some cases with bewildering complexity (e.g., Triton). Impact features were certainly expected but the variety of volcanic, diapiric, tectonic, impact, and erosional landforms was only remotely suggested by some early theoretical works. These diagnostic features are manifestations of the internal composition, thermal history, and dynamical evolution of these bodies. It is the job of the geologist to interpret the morphology, stratigraphy, and composition of these deposits and structures to ascertain what materials were mobilized in the interior, in what amount, and the mechanism and cause of their mobilization. In this chapter, we review what is know about these features and what constraints can be placed on composition and thermal history. Particular emphasis is placed on volcanic features, as these are most directly related to satellite composition and thermal history. The surface spectra, high albedos, and low bulk densities of the satellites of the outer solar system indicate that water and other ices are abundant on these bodies, particularly on their surfaces. Ices, particularly water ice, are less dense than silicates and will tend to float and form crusts during differentiation or partial melting of the interior. Ices therefore take the place of silicates as 'crust-forming' minerals and dominate geologic processes on icy satellites. Melted ices form magma bodies, and sometimes are extruded as lavas, an unusual but still valid perspective for terrestrial geologists. The unusual properties of some ices, including their low melting temperatures, and low strengths (as well as the decrease in density on the freezing of water ice), will ultimately be very important in interpreting this record.

  3. Uranium geology of Bulgaria

    SciTech Connect

    Not Available

    1993-02-01

    Three major uranium districts containing several deposits, plus 32 additional deposits, have been identified in Bulgaria, all of which are detailed geologically in this article. Most of the deposits are located in the West Balkan mountains, the western Rhodope mountains, and the Thracian Basin. A few deposits occur in the East Balkan, eastern Rhodope and Sredna Gora mountains. The types of deposits are sandstone, vein, volcanic, and surficial. Sandstone deposits are hosted in Permian and Tertiary sediments. In early 1992, fifteen deposits were being exploited, of which roughly 70 percent of the uranium produced was being recovered using in-situ leaching (ISL) methods. The remainder was being recovered by conventional underground mining, except for one small deposit that utilized open-pit methods. Fifteen other Bulgarian deposits had been exhausted, while five deposits were still in the exploration stage. Uranium production began in Bulgaria in 1946, and cumulative production through 1991 exceeded 100 million pounds equivalent U3O8. Current annual production is on the order of one million pounds equivalent U3O8, about 750 thousand pounds of which are recovered by ISL operations.

  4. Geology, gravitation, cosmology

    NASA Astrophysics Data System (ADS)

    Zelinsky, I. P.; Kuzjmenko, G. I.

    This paper is devoted to the memory of G. A. Gamow and considers basic problems of standard cosmology and its modern development including quantum cosmology. Therefore, the paper marks the difficulties in this branch of science (among the myths, religion, and the physical aspects) and pays attention to cosmological conceptions being shaky and to the necessity to take into account some existing gravitational and cosmological versions for working out a more generally accepted one. The potential fruitfulness of using modern concepts of synergetics, fractal and soliton-wavemechanical theory is noted, too. Attention is also payed to the significance of the newest geological and geophysical data to extend the observational material. It is shown that the cyclic character of the processes, the hierarchy of the structures, and the planet energy, being studied in detail and thoroughly, are of universal significance. It is shown too, that, from these materials on the universal cyclicity, structureness and transformation of gravitation energy into electromagnetic radiation, it should be useful to undertake new studies and to find possible improvements of standard cosmology and of its modern developments, including quantum cosmology.

  5. Northeastern Regional geologic characterization report. Volume 2: Appendixes

    NASA Astrophysics Data System (ADS)

    1985-08-01

    This report presents available geological information pertinent to sitting a repository for high-level nuclear waste in crystalline rock in Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. For each of the states within the Northeastern Region, information is provided on the geologic disqualifing factor and the geologic regional screening variables to be used in region-to-area screening. The geologic factor and variables include deep mines and quarries, rock mass extent, postemplacement faulting, suspected Quaternary faulting, seismicity, rock and mineral resources, major ground-water discharge zones, ground-water resources, state of stress, thickness of rock mass, and thickness of overburden. Volume (2) of this report contain three appendices: Summary of Rock Body Characteristics; Glossary; and Mineral Resources Data.

  6. Northeastern regional geologic characterization report. Volume 3: Plates

    NASA Astrophysics Data System (ADS)

    1985-08-01

    This report presents available geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Connecticut, Maine, Massachusetts, New Hamsphire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. For each of the states within the Northeastern Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening. The geologic factor and variables include deep mines and quarries, rock mass extent, postemplacement faulting, suspected Quaternary faulting, seismicity, rock and mineral resources, state of stress, thickness of rock mass, and thickness of overburden. Volume 7(3) contains the following maps: index map; faults, ground acceleration, and in situ stress; rock and mineral resources; drainage basins and ground water discharge zones; ground water resources; and crystalline rock bodies.

  7. Geologic map of the Yucca Mountain region, Nye County, Nevada

    USGS Publications Warehouse

    Potter, Christopher J.; Dickerson, Robert P.; Sweetkind, Donald S.; Drake II, Ronald M.; Taylor, Emily M.; Fridrich, Christopher J.; San Juan, Carma A.; Day, Warren C.

    2002-01-01

    Yucca Mountain, Nye County, Nev., has been identified as a potential site for underground storage of high-level radioactive waste. This geologic map compilation, including all of Yucca Mountain and Crater Flat, most of the Calico Hills, western Jackass Flats, Little Skull Mountain, the Striped Hills, the Skeleton Hills, and the northeastern Amargosa Desert, portrays the geologic framework for a saturated-zone hydrologic flow model of the Yucca Mountain site. Key geologic features shown on the geologic map and accompanying cross sections include: (1) exposures of Proterozoic through Devonian strata inferred to have been deformed by regional thrust faulting and folding, in the Skeleton Hills, Striped Hills, and Amargosa Desert near Big Dune; (2) folded and thrust-faulted Devonian and Mississippian strata, unconformably overlain by Miocene tuffs and lavas and cut by complex Neogene fault patterns, in the Calico Hills; (3) the Claim Canyon caldera, a segment of which is exposed north of Yucca Mountain and Crater Flat; (4) thick densely welded to nonwelded ash-flow sheets of the Miocene southwest Nevada volcanic field exposed in normal-fault-bounded blocks at Yucca Mountain; (5) upper Tertiary and Quaternary basaltic cinder cones and lava flows in Crater Flat and at southernmost Yucca Mountain; and (6) broad basins covered by Quaternary and upper Tertiary surficial deposits in Jackass Flats, Crater Flat, and the northeastern Amargosa Desert, beneath which Neogene normal and strike-slip faults are inferred to be present on the basis of geophysical data and geologic map patterns. A regional thrust belt of late Paleozoic or Mesozoic age affected all pre-Tertiary rocks in the region; main thrust faults, not exposed in the map area, are interpreted to underlie the map area in an arcuate pattern, striking north, northeast, and east. The predominant vergence of thrust faults exposed elsewhere in the region, including the Belted Range and Specter Range thrusts, was to the east, southeast, and south. The vertical to overturned strata of the Striped Hills are hypothesized to result from successive stacking of three south-vergent thrust ramps, the lowest of which is the Specter Range thrust. The CP thrust is interpreted as a north-vergent backthrust that may have been roughly contemporaneous with the Belted Range and Specter Range thrusts. The southwest Nevada volcanic field consists predominantly of a series of silicic tuffs and lava flows ranging in age from 15 to 8 Ma. The map area is in the southwestern quadrant of the southwest Nevada volcanic field, just south of the Timber Mountain caldera complex. The Claim Canyon caldera, exposed in the northern part of the map area, contains thick deposits of the 12.7-Ma Tiva Canyon Tuff, along with widespread megabreccia deposits of similar age, and subordinate thick exposures of other 12.8- to 12.7-Ma Paintbrush Group rocks. An irregular, blocky fault array, which affects parts of the caldera and much of the nearby area, includes several large-displacement, steeply dipping faults that strike radially to the caldera and bound south-dipping blocks of volcanic rock. South and southeast of the Claim Canyon caldera, in the area that includes Yucca Mountain, the Neogene fault pattern is dominated by closely spaced, north-northwest- to north-northeast-striking normal faults that lie within a north-trending graben. This 20- to 25-km-wide graben includes Crater Flat, Yucca Mountain, and Fortymile Wash, and is bounded on the east by the 'gravity fault' and on the west by the Bare Mountain fault. Both of these faults separate Proterozoic and Paleozoic sedimentary rocks in their footwalls from Miocene volcanic rocks in their hanging walls. Stratigraphic and structural relations at Yucca Mountain demonstrate that block-bounding faults were active before and during eruption of the 12.8- to 12.7-Ma Paintbrush Group, and significant motion on these faults continued unt

  8. Assessment of the geothermal resources of Indiana based on existing geologic data

    SciTech Connect

    Vaught, T.L.

    1980-12-01

    The general geology of Indiana is presented including the following: physiography, stratigraphy, and structural features. The following indicators of geothermal energy are discussed: heat flow and thermal gradient, geothermal occurrences, seismic activity, geochemistry, and deep sedimentary basins. (MHR)

  9. The geologic evolution of the moon

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1971-01-01

    A synthesis of pre- and post-Apollo 11 studies is presented to produce an outline of the moon's geologic evolution from three lines of evidence: (1) relative ages of lunar landforms and rock types, (2) absolute ages of returned lunar samples, and (3) petrography, chemistry, and isotopic ratios of lunar rocks and soils. It is assumed that the ray craters, circular mare basins, and most intermediate circular landforms are primarily of impact origin, although many other landforms are volcanic or of hybrid origin. The moon's evolution is divided into four main stages, each including several distinct but overlapping events or processes.

  10. Geology and petroleum resources of northwestern Africa

    SciTech Connect

    Peterson, J.A.; Klemme, H.D.

    1986-05-01

    The main onshore basins of northwestern Africa are (1) basins in the Atlas folded geosynclinal belt adjacent to the Mediterranean Sea, (2) the Tindouf, Bechar, and Reggane basins of western Algeria and southern Morocco, and (3) the Taoudeni basin of Mauritania and Mali. Coastal basins are (1) the Essaouria basin of southwestern Morocco, (2) the Tarfaya basin of Western Sahara, (3) the Senegal basin of Senegal and western Mauritania, (4) the Sierra Leone-Liberia basin, and (5) the Ivory Coast basin. The petroleum geology and resource potential of these basins is detailed.

  11. Overview of Venus geology: Preliminary description of terrain units for Venus global geological mapping

    NASA Technical Reports Server (NTRS)

    Saunders, R. Stephen; Stofan, Ellen R.; Plaut, Jeffrey J.; Michaels, Gregory A.

    1992-01-01

    Venus terrain units can be categorized on the basis of morphology, reflectivity, backscatter, roughness, and emissivity. Morphology can be inferred from Magellan left-looking nominal incidence angle image mosaics, right-looking coverage, and more limited left-looking stereo. The typical resolution is about 300 m down to about 120 m near periapsis in the cycle one nominal coverage. The scale of geologic mapping governs definition of mappable terrain units. Initial global mapping is being compiled at a scale of 1:50 million. At this scale, the smallest individual features that can be mapped are about 125 km. The categories of terrain types are plains, complex ridge terrain, features with morphology suggesting volcanic or volcano-tectonic origin, features interpreted to be tectonic in origin, crater units, and surficial units such as splotches and streaks. Brief descriptions of terrain units are provided.

  12. Bedrock geologic Map of the Central Block Area, Yucca Mountain, Nye County, Nevada

    SciTech Connect

    W.C. Day; C. Potter; D. Sweetkind; R.P. Dickerson; C.A. San Juan

    1998-09-29

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. As such, this map focuses on the central block at Yucca Mountain, which contains the potential repository site. The central block is a structural block of Tertiary volcanic rocks bound on the west by the Solitario Canyon Fault, on the east by the Bow Ridge Fault, to the north by the northwest-striking Drill Hole Wash Fault, and on the south by Abandoned Wash. Earlier reconnaissance mapping by Lipman and McKay (1965) provided an overview of the structural setting of Yucca Mountain and formed the foundation for selecting Yucca Mountain as a site for further investigation. They delineated the main block-bounding faults and some of the intrablock faults and outlined the zoned compositional nature of the tuff units that underlie Yucca Mountain. Scott and Bonk (1984) provided a detailed reconnaissance geologic map of favorable area at Yucca Mountain in which to conduct further site-characterization studies. Of their many contributions, they presented a detailed stratigraphy for the volcanic units, defined several other block-bounding faults, and outlined numerous intrablock faults. This study was funded by the U.S. Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bonk (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the Exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a consistent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described.

  13. Working towards a European Geological Data Infrastructure

    NASA Astrophysics Data System (ADS)

    van der Krogt, Rob; Hughes, Richard; Pedersen, Mikael; Serrano, Jean-Jacques; Lee, Kathryn A.; Tulstrup, Jørgen; Robida, François

    2013-04-01

    The increasing importance of geological information for policy, regulation and business needs at European and international level has been recognized by the European Parliament and the European Commission, who have called for the development of a common European geological knowledge base. The societal relevance of geoscience data/information is clear from many current issues such as shale gas exploration (including environmental impacts), the availability of critical mineral resources in a global economy, management and security with regard to geohazards (seismic, droughts, floods, ground stability), quality of (ground-)water and soil and societal responses to the impacts of climate change. The EGDI-Scope project responds to this, aiming to prepare an implementation plan for a pan-European Geological Data Infrastructure (EGDI), under the umbrella of the FP7 e- Infrastructures program. It is envisaged that the EGDI will build on geological datasets and models currently held by the European Geological Surveys at national and regional levels, and will also provide a platform for datasets generated by the large number of relevant past, ongoing and future European projects which have geological components. With European policy makers and decision makers from (international) industry as the main target groups (followed by research communities and the general public) stakeholder involvement is imperative to the successful realization and continuity of the EGDI. With these ambitions in mind, the presentation will focus on the following issues, also based on the first results and experiences of the EGDI-Scope project that started mid-2012: • The organization of stakeholder input and commitment connected to relevant 'use cases' within different thematic domains; a number of stakeholder representatives is currently involved, but the project is open to more extensive participation; • A large number of European projects relevant for data delivery to EGDI has been reviewed; what can we conclude and what is the way forward? • The project has evaluated relevant existing interoperable infrastructures revealing a typology of infrastructures that may be useful models for the EGDI; • Planning for the EGDI also need to be integrated with other relevant international initiatives and programs such as GMES, GEO and EPOS, and with legally binding regulations like INSPIRE. The outcomes of these relevant evaluations and activities will contribute to the implementation plan for the EGDI including the prioritization of relevant datasets and the most important functional, technical (design, use of standards), legal and organizational requirements.

  14. Revised draft: Northeastern Regional geologic characterization report. Volume 1

    SciTech Connect

    Not Available

    1984-11-01

    This report presents available geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. For each of the states within the Northeastern Region, information is provided on the disqualifying factor and the screening variables to be used in region-to-area screening. These factors and variables include: hydrologically significant natural resources, rock mass extent, post-emplacement faulting, suspected Quaternary faulting, seismicity, rock and mineral resources, major ground-water discharge zones, water resources, ground-water salinity, and state of stress. Information is presented on its age, areal extent, shape, thickness of overburden, composition, texture, degree and type of alteration, rock mass thickness, and structural features associated with each rock body or complex. Regional seismic and tectonic information is presented, including patterns of earthquake occurrence, earthquake magnitudes, horizontal ground accelerations, and vertical crustal movements. Also included are discussions of the rock and mineral deposits or mines located within or near crystalline bodies; ground-water resources and regional hydrology; postulated changes in climate and the associated effects; and landforms, surface processes, and surficial materials on or near the subject rock bodies.

  15. Environmental and engineering problems of karst geology in China

    SciTech Connect

    Yuan Daoxian )

    1988-10-01

    Karst terrane is generally regarded as a fragile and vulnerable environment. Its underground drainage system can aggravate both drought and flood problems; the lack of filtration in an underground conduit makes waste disposal more difficult; and the lack of soil cover in bare karstland can enhance deforestation. Moreover, karst terranes are quite often haunted by a series of engineering problems, such as water gushing into mines or transportation tunnels; leakage from reservoirs; and failure of building foundations. In China, there are more than 200 cases of karst collapse, which include many thousands of individual collapse points. Some of these are paleo and natural collapses, but most of them are modern collapses induced by human activities and they have caused serious damage. Many factors such as geologic structure, overburden thickness and character, lithologic features of karstified rock, and intensity of karstification are related to development and distribution of modern collapses. However, China's karst is mainly developed in pre-Triassic, old phase, hard, compact, carbonate rock. Consequently most modern collapses have occurred only in the overlying soil. So it is understandable that the fluctuation of the water table in the underlying karstified strata plays an important role in the process of collapse. Nevertheless, there are different explanations as to how the groundwater activities can induce collapse.

  16. New prospective areas for geological exploration in eastern Europe

    SciTech Connect

    Namestnikov, Y.G. )

    1991-08-01

    Eastern Europe is a highly complex geological region. The region comprises platforms of various ages, each exhibiting a variety of structural styles. The major tectonic elements often straddle more than one country, with each country usually interpreting the geological features differently. This complicates the study of both geology and petroleum occurrence. This study of the geological structure and petroleum occurrence was done for the territory as a whole, notwithstanding national boundaries. Based on a series of structural-geological features, these basins are grouped into three categories: (1) platformal, (2) fold (in fold-nappe belts and intermontane depressions), and (3) combined (at the junctions of platformal and fold areas, i.e., foredeeps). The basins are divided into petroleum subbasins. To scientifically estimate the petroleum prospectivity, VNI-Izarubezhgeologia has recently analyzed the lithofacies characteristics of the sedimentary sequences occurring in Eastern Europe; the palaegeographical environments of sedimentation, organic matter and its maturity,a nd the distribution of reservoirs and seals. As a result of these studies a series of lithofacies maps (18 maps at 1:1,000,000 scale), a tectonic map (1:1,00,000), a petroleum distribution map, a prospectivity map (1:2,500,000), and a series of geodynamic reconstructions have been produced. As the result of this analysis, new petroleum exploration targets have been outlined. These new targets are in stratigraphic trap zones, in deep horizons (deeper than 3-3.5 km) and in areas defined as a result of geodynamic analysis.

  17. 30 CFR 780.22 - Geologic information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Geologic information shall include, at a minimum the following: (1) A description of the geology of the... adversely impacted by mining. The description shall include the areal and structural geology of the...

  18. 30 CFR 780.22 - Geologic information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Geologic information shall include, at a minimum the following: (1) A description of the geology of the... adversely impacted by mining. The description shall include the areal and structural geology of the...

  19. 30 CFR 780.22 - Geologic information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Geologic information shall include, at a minimum the following: (1) A description of the geology of the... adversely impacted by mining. The description shall include the areal and structural geology of the...

  20. The Essence of Urban Environmental Geology

    ERIC Educational Resources Information Center

    McKenzie, Garry D.; And Others

    1978-01-01

    Provides 60 quotations relating to urban geology, geologic hazards, engineering aspects of land use, urban resources, and geology and regional planning which have proven useful in developing central themes for lecture topics and student projects. (SL)

  1. 30 CFR 780.22 - Geologic information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Geologic information shall include, at a minimum the following: (1) A description of the geology of the... adversely impacted by mining. The description shall include the areal and structural geology of the...

  2. 30 CFR 780.22 - Geologic information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Geologic information shall include, at a minimum the following: (1) A description of the geology of the... adversely impacted by mining. The description shall include the areal and structural geology of the...

  3. Chapter B in Geological Survey research 1966

    USGS Publications Warehouse

    U.S. Geological Survey

    1966-01-01

    This collection of 43 short papers is the first published chapter of 'Geological Survey Research 1966.' The papers report on scientific and economic results of current work by members of the Conservation, Geologic, Topographic, and Water Resources Divisions of the U.S. Geological Survey. Chapter A, to be published later in the year, will present a summary of significant results of work done during fiscal year 1966, together with lists of investigations in progress, reports published, cooperating agencies, and Geological Survey offices. 'Geological Survey Research 1966' is the seventh volume of the annual series Geological Survey Research. The six volumes already published are listed below, with their series designations. Geological Survey Research 1960-Prof. Paper 400 Geological Survey Research 1961-Prof. Paper 424 Geological Survey Research 1962-Prof. Paper 450 Geological Survey Research 1963-Prof. Paper 475 Geological Survey Research 1964-Prof. Paper 501 Geological Survey Research 1965-Prof. Paper 525

  4. Geological mysteries on Ganymede

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows some unusual features on the surface of Jupiter's moon, Ganymede. NASA's Galileo spacecraft imaged this region as it passed Ganymede during its second orbit through the Jovian system. The region is located at 31 degrees latitude, 186 degrees longitude in the north of Marius Regio, a region of ancient dark terrain, and is near the border of a large swathe of younger, heavily tectonised bright terrain known as Nippur Sulcus. Situated in the transitional region between these two terrain types, the area shown here contains many complex tectonic structures, and small fractures can be seen crisscrossing the image. North is to the top-left of the picture, and the sun illuminates the surface from the southeast. This image is centered on an unusual semicircular structure about 33 kilometers (20 miles) across. A 38 kilometer (24 miles) long, remarkably linear feature cuts across its northern extent, and a wide east-west fault system marks its southern boundary. The origin of these features is the subject of much debate among scientists analyzing the data. Was the arcuate structure part of a larger feature? Is the straight lineament the result of internal or external processes? Scientists continue to study this data in order to understand the surface processes occurring on this complex satellite.

    The image covers an area approximately 80 kilometers (50 miles) by 52 kilometers (32 miles) across. The resolution is 189 meters (630 feet) per picture element. The images were taken on September 6, 1996 at a range of 9,971 kilometers (6,232 miles) by the solid state imaging (CCD) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  5. Geological evaluation and applications of ERTS-1 imagery over Georgia

    NASA Technical Reports Server (NTRS)

    Pickering, S. M.; Jones, R. C.

    1974-01-01

    ERTS-1 70mm and 9 x 9 film negatives are being used by conventional and color enhancement methods as a tool for geologic investigation. Geologic mapping and mineral exploration by conventional methods is very difficult in Georgia. Thick soil cover and heavy vegetation cause outcrops of bed rock to be small, rare and obscure. ERTS imagery, and remote sensing in general have helped delineate: (1) major tectonic boundaries; (2) lithologic contacts; (3) foliation trends; (4) topographic lineaments; and (5) faults. The ERTS-1 MSS imagery yields the greatest amount of geologic information on the Piedomont, Blue Ridge, and Valley and Ridge Provinces of Georgia where topography is strongly controlled by the bedrock geology. ERTS imagery, and general remote sensing techniques, have provided us with a powerful tool to assist geologic research; have significantly increased the mapping efficiency of our field geologists; have shown new lineaments associated with known shear and fault zones; have delineated new structural features; have provided a tool to re-evaluate our tectonic history; have helped to locate potential ground water sources and areas of aquifer recharge; have defined areas of geologic hazards; have shown areas of heavy siltation in major reservoirs; and by its close interval repetition, have aided in monitoring surface mine reclamation activities and the environmental protection of our intricate marshland system.

  6. Controlled-source Electromagnetic Responses of Spatially Hierarchial Geological Media

    NASA Astrophysics Data System (ADS)

    Everett, M. E.

    2002-12-01

    The controlled-source electromagnetic (CSEM) induction technique is gaining importance as a valuable near-surface geophysical tool for hydrogeophysical site assessment. However, CSEM responses are oftentimes difficult to interpret owing to the complexity of the host geological environmemnt. Bedding planes, joints, fracture zones, and other geological features conspire to generate a medium in which electrical conductivity is variable over a hierarchy of spatial scales. Rocks at each length scale offer different patterns of heterogeneity that reflect the complex interplay of their formative geological processes. The result is a rough, spatially hierarchial geological structure that leaves a similar imprint on the electrical conductivity structure. Even though CSEM induction obeys diffusive physics and is therefore inherently a smoothing operation, observed CSEM responses from a variety of geological settings have in common very rough spatial variability. In fact, CSEM profiles invariably are examples of fractional Brownian motion (fBm) signals. Existing algorithms for forward modeling of CSEM responses solve however the governing Maxwell equations in piecewise constant gridblocks of electrical conductivity. This pragmatic view of the subsurface electrical structure is outdated and inaccurate. The purpose of my presentation is to introduce hydrogeophysicists to the fractal nature of observed CSEM responses and to develop new concepts in forward modeling taking into account rough, spatially hierachial electrical conductivity structures. The CSEM response of man-made, non-fractal objects embedded in a fractal geological medium is also discussed in the context of target detection and discrimination algorithms. Practical applications to problems in applied hydrogeophysical investigations are emphasized.

  7. Exhumation of Greater Himalayan rock along the main central thrust in Nepal: Implications for channel flow

    USGS Publications Warehouse

    Robinson, D.M.; Pearson, O.N.

    2006-01-01

    South-vergent channel flow from beneath the Tibetan Plateau may have played an important role in forming the Himalaya. The possibility that Greater Himalayan rocks currently exposed in the Himalayan Fold-Thrust Belt flowed at mid-crustal depths before being exhumed is intriguing, and may suggest a natural link between orogenic processes operating under the Tibetan Plateau and in the fold-thrust belt. Conceptual and numeric models for the Himalayan-Tibetan Orogen currently reported in the literature do an admirable job of replicating many of the observable primary geological features and relationships. However, detailed observations from Greater Himalayan rocks exposed in the fold-thrust belt's external klippen, and from Lesser Himalayan rocks in the proximal footwall of the Main Central Thrust, suggest that since Early Miocene time, it may be more appropriate to model the evolution of the fold-thrust belt using the critical taper paradigm. This does not exclude the possibility that channel flow and linked extrusion of Greater Himalayan rocks may have occurred, but it places important boundaries on a permissible time frame during which these processes may have operated. ?? The Geological Society of London 2006.

  8. Processing and attenuation of noise in deep seismic-reflection data from the Gulf of Maine

    USGS Publications Warehouse

    Hutchinson, D.R.; Lee, M.W.

    1989-01-01

    The U.S. Geological Survey deep crustal studies reflection profile across the Gulf of Maine off southeastern New England was affected by three sources of noise: side-scattered noise, multiples, and 20-Hz whale sounds. The special processing most effective in minimizing this noise consisted of a combination of frequency-wavenumber (F-K) filtering, predictive deconvolution, and spectral whitening, each applied in the shot domain (prestack). Application of the F-K filter to remove side-scatter noise in the poststack domain resulted in a much poorer quality profile. The prestack noise suppression processing techniques resulted in a reflection profile with good signal-to-noise ratios and reliable strong reflections, especially at depths equivalent to the lower crust (24-34 km). Certain geologic features, such as a buried rift basin and a crustal fault are resolved much better within the upper crust after this processing. Finite difference migration of these data using realistic velocities produced excellent results. Migration was essential to distinguish between abundant dipping and subhorizontal reflections in the lower crust as well as to show an essentially transparent upper mantle. ?? 1989 Kluwer Academic Publishers.

  9. TerraLuna: A CosmoQuest Adventure in Geology

    NASA Astrophysics Data System (ADS)

    Gay, Pamela; Bracey, Georgia; Gugliucci, Nicole

    The content of the session will focus on CosmoQuest’s TerraLuna unit, a comparative geology unit that uses authentic data to study the geology of the Moon and Earth. Inquiry activities will allow teachers to help their students compare crater formation and other surface features on the two bodies, comparing Moon features to similar structures on Earth. Links to the latest data from NASA’s Lunar Reconnaissance Orbiter will be introduced and hands- on activities will be featured as the basis for inquiry learning in elementary and middle level classrooms. Teachers will be introduced to citizen science projects that will enable their students to think like real scientists and engage in authentic scientific research, providing a useful service to the scientific community. Participation in the workshop introduces teachers to the CosmoQuest website, which includes a suite of citizen science activities. The site provides teachers with an online community dedicated to science inquiry and educational support.

  10. Venus geology and tectonics - Hotspot and crustal spreading models and questions for the Magellan mission

    NASA Technical Reports Server (NTRS)

    Head, James W.; Crumpler, L. S.

    1990-01-01

    Spacecraft and ground-based observations of Venus have revealed a geologically young and active surface - with volcanoes, rift zones, orogenic belts and evidence for hotspots and crustal spreading - yet the processes responsible for these features cannot be identified from the available data. The Magellan spacecraft will acquire an unprecedented global data set which will provide a comprehensive and well resolved view of the planet. This will permit global geological mapping, an assessment of the style and relative importance of geological processes, and will help in the understanding of links between the surface geology and mantle dynamics of this earth-like planet.

  11. 29. MAIN CONTROL ROOM, PANELS WEST OF MAIN CONTROL AREA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. MAIN CONTROL ROOM, PANELS WEST OF MAIN CONTROL AREA, LOOKING SOUTH (LOCATION Q) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  12. 28. MAIN CONTROL ROOM, PANELS WEST OF MAIN CONTROL AREA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. MAIN CONTROL ROOM, PANELS WEST OF MAIN CONTROL AREA, LOOKING NORTH (LOCATION Q) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  13. 22. View showing main anchor arm, as viewed from main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. View showing main anchor arm, as viewed from main cantilever arm looking south. Note upper chord eyebar arrangement. - Williamstown-Marietta Bridge, Spanning Ohio River between Williamstown & Marietta, Williamstown, Wood County, WV

  14. 37. Fore and main masts, and main boom lying in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. Fore and main masts, and main boom lying in storage yard. Stern of Museum Ship Wavetreet to left in photograph. - Schooner "Lettie G. Howard", South Street Seaport Museum, New York, New York County, NY

  15. A primer in lunar geology

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Schultz, P. H. (Editor)

    1974-01-01

    Primary topics in lunar geology range from the evolution of the solar system to lunar photointerpretation, impact crater formation, and sampling to analyses on various Apollo lunar landing site geomorphologies.

  16. Outreach at Geology Camp 2008

    USGS Hydrologist, Andy Long, demonstrates an interactive groundwater-flow model in the USGS South Dakota Water Science Center laboratory to students attending Geology Camp with the South Dakota School of Mines in 2008....

  17. Geology in Our Everyday Lives.

    ERIC Educational Resources Information Center

    Mirsky, Arthur

    1989-01-01

    Discusses methods to help the public recognize the geologic aspect of societal problems. Suggests using methods that will arouse immediate interest and demonstrate relevance in direct and personal ways. (MVL)

  18. Terrestrial and Lunar Geological Terminology

    NASA Technical Reports Server (NTRS)

    Schrader, Christian

    2009-01-01

    This section is largely a compilation of defining geological terms concepts. Broader topics, such as the ramifications for simulant design and in situ resource utilization, are included as necessary for context.

  19. Perspectives in geology. Circular 525

    SciTech Connect

    Not Available

    1982-01-01

    The papers in this symposium present diverse perspectives in geology, mineral resources, paleontology, and environmental concerns. Papers within the scope of EDB have been entered individually into the data base. (ACR)

  20. Areal geology of the Little Cone quadrangle, Colorado

    USGS Publications Warehouse

    Bush, Alfred Lerner; Marsh, O.T.; Taylor, Richard Bartlett

    1958-01-01

    The Little Cone quadrangle includes an area of about 59 square miles in eastern San Miguel County in southwestern Colorado. It lies within and adjacent to the northeastern boundary of the Colorado Plateau physiographic province. The precipitous front of the San Juan Mountains lies a few miles to the east and northeast, and an outlier of the San Juans, the San Miguel Mountains, lies about a mile to the south. The quadrangle contains features characteristic of both the plateaus and the mountains, and has been affected by geologic events and processes of two different geologic environments.

  1. Central American geologic map project

    SciTech Connect

    Dengo, G.

    1986-07-01

    During the Northeast Quadrant Panel meeting of the Circum-Pacific Map Project held in Mexico City, February 1985, Central American panel members proposed and adopted plans for compiling a geologic map of Central America, probably at a scale of 1:500,000. A local group with participants from each country was organized and coordinated by Rolando Castillo, director, Central American School of Geology, University of Costa Rica, for the geologic aspects, and Fernando Rudin, director, Geographic Institute of Costa Rica, for the topographic base. In 1956, the US Geological Survey published a geologic map of the region at a scale of 1:1 million. Subsequent topographic and geologic mapping projects have provided a large amount of new data. The entire area is now covered by topographic maps at a scale of 1:50,000, and these maps have been used in several countries as a base for geologic mapping. Another regional map, the Metallogenic Map of Central America (scale = 1:2 million), was published in 1969 by the Central American Research Institute for Industry (ICAITI) with a generalized but updated geologic base map. Between 1969 and 1980, maps for each country were published by local institutions: Guatemala-Belize at 1:500,000, Honduras at 1:500,000, El Salvador at 1:100,000, Nicaragua at 1:1 million, Costa Rica at 1:200,000, and Panama at 1:1 million. This information, in addition to that of newly mapped areas, served as the base for the Central American part of the Geologic-Tectonic Map of the Caribbean Region (scale = 1:2.5 million), published by the US Geological Survey in 1980, and also fro the Northeast Quadrant Maps of the Circum-Pacific Region. The new project also involves bathymetric and geologic mapping of the Pacific and Caribbean margins of the Central American Isthmus. A substantial amount of new information of the Middle America Trench has been acquired through DSDP Legs 67 and 84.

  2. Visualization of three dimensional earth fissures in geological structure

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Yu, J.; Liu, Y.; Gong, H.; Chen, Y.; Chen, B.

    2015-11-01

    This paper proposes a new method for visualizing the earth fissures of geological structure in three dimensional (3-D) domains on the basis of the seismic data and features information of earth fissures. The seismic data were interpreted for obtaining the stratagraphic data with various lithological information and the depth of the earth fissures. The spatial distribution of the ground fissures including the dip, strike and width were digitalized on an ArcGIS platform. Firstly, the 3-D geological structure was rebuilt using the Generalized Tri-Prism (GTP) method which is a real solid method for displaying geological structures. The GTP method can reflect the inner material of the strata and can simulate complicated geological structures such as faults and stratagraphic pinch outs. The upper and lower surfaces of each stratum consist of Triangle Irregular Networks (TIN). The inner solid between the two surfaces are a series of triangular prisms. Secondly, since the width of the ground fissure gradually decreases with depth, multiple edge lines of the earth fissures on the bottom stratum surface are deduced on the basis of the fissure characteristics. Then, the model of the earth fissures consisting of a series of triangular pyramids can be constructed using these points and the edge lines. A cutting operation was carried out on the 3-D geological structure using this ground fissures model. If the surfaces of the ground fissures model intersects with the GTPs in the geological structure model, new GTPs were generated within the local regions. During this process, the topological relations between TIN, triangular prism and lines were reconstructed so that the visualization of ground fissures in the geological structure model is realized. This method can facilitate the mechanism for studying fissures and avoid the gaps between the fissure solid and the geological structure to accurately reflect their 3-D characteristics.

  3. Integration of geological remote-sensing techniques in subsurface analysis

    USGS Publications Warehouse

    Taranik, James V.; Trautwein, Charles M.

    1976-01-01

    Geological remote sensing is defined as the study of the Earth utilizing electromagnetic radiation which is either reflected or emitted from its surface in wavelengths ranging from 0.3 micrometre to 3 metres. The natural surface of the Earth is composed of a diversified combination of surface cover types, and geologists must understand the characteristics of surface cover types to successfully evaluate remotely-sensed data. In some areas landscape surface cover changes throughout the year, and analysis of imagery acquired at different times of year can yield additional geological information. Integration of different scales of analysis allows landscape features to be effectively interpreted. Interpretation of the static elements displayed on imagery is referred to as an image interpretation. Image interpretation is dependent upon: (1) the geologist's understanding of the fundamental aspects of image formation, and (2.) his ability to detect, delineate, and classify image radiometric data; recognize radiometric patterns; and identify landscape surface characteristics as expressed on imagery. A geologic interpretation integrates surface characteristics of the landscape with subsurface geologic relationships. Development of a geologic interpretation from imagery is dependent upon: (1) the geologist's ability to interpret geomorphic processes from their static surface expression as landscape characteristics on imagery, (2) his ability to conceptualize the dynamic processes responsible for the evolution 6f interpreted geologic relationships (his ability to develop geologic models). The integration of geologic remote-sensing techniques in subsurface analysis is illustrated by development of an exploration model for ground water in the Tucson area of Arizona, and by the development of an exploration model for mineralization in southwest Idaho.

  4. Generalized surficial geologic map of the Fort Irwin area, San Bernadino: Chapter B in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    USGS Publications Warehouse

    Miller, David M.; Menges, Christopher M.; Lidke, David J.

    2014-01-01

    The geology and landscape of the Fort Irwin area, typical of many parts of the Mojave Desert, consist of rugged mountains separated by broad alluviated valleys that form the main coarse-resolution features of the geologic map. Crystalline and sedimentary rocks, Mesozoic and older in age, form most of the mountains with lesser accumulations of Miocene sedimentary and volcanic rocks. In detail, the area exhibits a fairly complex distribution of surficial deposits resulting from diverse rock sources and geomorphology that has been driven by topographic changes caused by recent and active faulting. Depositional environments span those typical of the Mojave Desert: alluvial fans on broad piedmonts, major intermittent streams along valley floors, eolian sand dunes and sheets, and playas in closed valleys that lack through-going washes. Erosional environments include rocky mountains, smooth gently sloping pediments, and badlands in readily eroded sediment. All parts of the landscape, from regional distribution of mountains, valleys, and faults to details of degree of soil development in surface materials, are portrayed by the surficial geologic map. Many of these attributes govern infiltration and recharge, and the surface distribution of permeable rock units such as Miocene sedimentary and volcanic rocks provides a basis for evaluating potential groundwater storage. Quaternary faults are widespread in the Fort Irwin area and include sinistral, east-striking faults that characterize the central swath of the area and the contrasting dextral, northwest-striking faults that border the east and west margins. Bedrock distribution and thickness of valley-fill deposits are controlled by modern and past faulting, and faults on the map help to identify targets for groundwater exploration.

  5. Geologic effects of hurricanes

    NASA Astrophysics Data System (ADS)

    Coch, Nicholas K.

    1994-08-01

    Hurricanes are intense low pressure systems of tropical origin. Hurricane damage results from storm surge, wind, and inland flooding from heavy rainfall. Field observations and remote sensing of recent major hurricanes such as Hugo (1989), Andrew (1992) and Iniki (1992) are providing new insights into the mechanisms producing damage in these major storms. Velocities associated with hurricanes include the counterclockwise vortex winds flowing around the eye and the much slower regional winds that steer hurricane and move it forward. Vectorial addition of theseof these two winds on the higher effective wind speed than on the left side. Coast-parallel hurricane tracks keep the weaker left side of the storm against the coast, whereas coast-normal tracks produce a wide swath of destruction as the more powerful right side of the storm cuts a swath of destruction hundreds of kilometers inland. Storm surge is a function of the wind speed, central pressure, shelf slope, shoreline configuration, and anthropogenic alterations to the shoreline. Maximum surge heights are not under the eye of the hurricane, where the pressure is lowest, but on the right side of the eye at the radius of maximum winds, where the winds are strongest. Flood surge occurs as the hurricane approaches land and drives coastal waters, and superimposed waves, across the shore. Ebb surge occurs when impounded surface water flows seaward as the storm moves inland. Flood and ebb surge damage have been greatly increased in recent hurricanes as a result of anthropogenic changes along the shoreline. Hurricane wind damage occurs on three scales — megascale, mesoscale and microscale. Local wind damage is a function of wind speed, exposure and structural resistance to velocity pressure, wind drag and flying debris. Localized extreme damage is caused by gusts that can locally exceed sustained winds by a factor of two in areas where there is strong convective activity. Geologic changes occuring in hurricanes include beach erosion, dune erosion, inlet formation from flood and ebb surge, landscape changes through tree destruction by wind and nearshore channeling and sedimentation resulting from ebb surge. Multi-decadal wet and dry cycles in West Africa seem to be associated with increases (wet periods) and decreases (dry periods) in the frequency of Atlantic Coast landfalling hurricanes. Coastalzone population and development has increased markedly in a time of low hurricane frequency in the 24 year dry cycle from1970 to the present. However, no previous climatic cycle in this century has exceeded 26 years. We may entering a multi-decadal cycle of greater hurricane activity, placing these highly urbanized shorelines in considerable danger.

  6. Remote sensing aids geologic mapping

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr.; Marrs, R. W.

    1972-01-01

    Remote sensing techniques were applied to general geologic mapping along the Rio Grande rift zone in central Colorado. A geologic map of about 1,100 square miles was prepared utilizing (1) prior published and unpublished maps, (2) detailed and reconnaissance field maps made for this study, and (3) remote sensor data interpretations. The map is used for interpretation of the complex Cenozoic tectonic and geomorphic histories of the area.

  7. An overview of venus geology.

    PubMed

    Saunders, R S; Arvidson, R E; Head, J W; Schaber, G G; Stofan, E R; Solomon, S C

    1991-04-12

    The Magellan spacecraft is producing comprehensive image and altimetry data for the planet Venus. Initial geologic mapping of the planet reveals a surface dominated by volcanic plains and characterized by extensive volcanism and tectonic deformation. Geologic and geomorphologic units include plains terrains, tectonic terrains, and surficial material units. Understanding the origin of these units and the relation between them is an ongoing task of the Magellan team. PMID:17769270

  8. Health benefits of geologic materials and geologic processes

    USGS Publications Warehouse

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  9. Geologic Landforms on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Shown here is one of the highest-resolution images of Io (Latitude: -60 to +20 degrees, Longitude: 150 to 230 degrees) acquired by the Galileo spacecraft, revealing a great variety of landforms. There are rugged mountains several miles high, layered materials forming plateaus, and many irregular depressions called volcanic calderas. Similar landforms were seen near Io's south pole by the Voyager spacecraft, but Galileo has revealed that such landforms are ubiquitous. Several of the dark, flow-like features correspond to hot spots, and may be active lava flows. There are no landforms resembling impact craters, as the volcanism covers the surface with new deposits much more rapidly than the flux of comets and asteroids can create large impact craters.

    North is to the top of the picture and the sun illuminates the surface from the left. The image covers an area 2000 kilometers wide and the smallest features that can be discerned are 2.5 kilometers in size. This image was taken on November 6th, 1996, at a range of 245,719 kilometers by the Solid State Imaging (CCD) system on the Galileo Spacecraft.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  10. Morphology, geology and geochemistry of the "Salar del Gran Bajo del Gualicho" (Rio Negro, Argentina)

    USGS Publications Warehouse

    Angelucci, A.; Barbieri, M.; Brodtkorb, A.; Ciccacci, S.; Civitelli, G.; De Barrio, R.; Di, Filippo M.; Fredi, P.; Friedman, I.; Lombardi, S.; Schalamuk, A.I.; Toro, B.

    1996-01-01

    A multidisciplinary study of the Gran Bajo del Gualicho area (Rio Negro - Argentina) was carried out; the aim was to delineate its geological and geomorphological evolution and to estabilish the genesis of salts filling the depression. Climatic conditions were analized first to individuate their role in the present morphogenetic processes; moreover the main morphological features of present landscape were examined as well as the stratigraphy of the outcropping formations, and of the Gran Bajo del Gualicho Formation in particular. Finally, a possible geomorphological evolution of the studied area was traced. Geophysical analyses allowed to estabilish that the paleosurface shaped on the crystalline basement is strongly uneven and shows evidence of the strong tectonic phases it underwent. The result of isotope analyses confirmed that the salt deposits on the Gran Bajo del Gualicho bottom were produced by fresh water evaporation, while strontium isotope ratio suggested that such waters were responsible for solubilization of more ancient evaporitic deposits.

  11. The application of geography markup language (GML) to the geological sciences

    NASA Astrophysics Data System (ADS)

    Lake, Ron

    2005-11-01

    GML 3.0 became an adopted specification of the Open Geospatial Consortium (OGC) in January 2003, and is rapidly emerging as the world standard for the encoding, transport and storage of all forms of geographic information. This paper looks at the application of GML to one of the more challenging areas of automated geography, namely the geological sciences. Specific features of GML of interest to geologists are discussed and then illustrated through a series of geological case studies. We conclude the paper with a discussion of anticipated geological web services that GML will enable. GML is written in XML and makes use of XML Schema for extensibility. It can be used both to represent or model geographic objects and to transport them across the Internet. In this way it serves as the foundation for all manner of geographic web services. Unlike vertical application grammars such as LandXML, GML was intended to define geographic application languages, and hence is applicable to any geographic domain including forestry, environmental sciences, geology and oceanography. This paper provides a review of the basic features of GML that are fundamental to the geological sciences including geometry, coverages, observations, reference systems and temporality. These constructs are then employed in a series of simple geological case studies including structural geological description, surficial geology, representation of geological time scales, mineral occurrences, geohazards and geochemical reconnaissance.

  12. Internet-based information system of digital geological data providing

    NASA Astrophysics Data System (ADS)

    Yuon, Egor; Soukhanov, Mikhail; Markov, Kirill

    2015-04-01

    One of the Russian Federal аgency of mineral resources problems is to provide the geological information which was delivered during the field operation for the means of federal budget. This information should be present in the current, conditional form. Before, the leading way of presenting geological information were paper geological maps, slices, borehole diagrams reports etc. Technologies of database construction, including distributed databases, technologies of construction of distributed information-analytical systems and Internet-technologies are intensively developing nowadays. Most of geological organizations create their own information systems without any possibility of integration into other systems of the same orientation. In 2012, specialists of VNIIgeosystem together with specialists of VSEGEI started the large project - creating the system of providing digital geological materials with using modern and perspective internet-technologies. The system is based on the web-server and the set of special programs, which allows users to efficiently get rasterized and vectorised geological materials. These materials are: geological maps of scale 1:1M, geological maps of scale 1:200 000 and 1:2 500 000, the fragments of seamless geological 1:1M maps, structural zoning maps inside the seamless fragments, the legends for State geological maps 1:200 000 and 1:1 000 000, full author's set of maps and also current materials for international projects «Atlas of geological maps for Circumpolar Arctic scale 1:5 000 000» and «Atlas of Geologic maps of central Asia and adjacent areas scale 1:2 500 000». The most interesting and functional block of the system - is the block of providing structured and well-formalized geological vector materials, based on Gosgeolkart database (NGKIS), managed by Oracle and the Internet-access is supported by web-subsystem NGKIS, which is currently based on MGS-Framework platform, developed by VNIIgeosystem. One of the leading elements is the web-service, which realizes the interaction of all parts of the system and controls whole the way of the request from the user to the database and back, adopted to the GeoSciML and EarthResourceML view. The experience of creation the Internet-based information system of digital geological data providing, and also previous works, including the developing of web-service of NGKIS-system, allows to tell, that technological realization of presenting Russian geological-cartographical data with using of international standards is possible. While realizing, it could be some difficulties, associated with geological material depth. Russian informational geological model is more deep and wide, than foreign. This means the main problem of using international standards and formats: Russian geological data presentation is possible only with decreasing the data detalisation. But, such a problem becomes not very important, if the service publishes also Russian vocabularies, not associated with international vocabularies. In this case, the international format could be the interchange format to change data between Russian users. The integration into the international projects reaches developing of the correlation schemes between Russian and foreign classificators and vocabularies.

  13. The 3D Elevation Program: summary for Maine

    USGS Publications Warehouse

    Carswell, William J., Jr.

    2014-01-01

    Elevation data are essential to a broad range of applications, including forest resources management, wildlife and habitat management, national security, recreation, and many others. For the State of Maine, elevation data are critical for natural resources conservation, flood risk management, forest resources management, agriculture and precision farming, coastal zone management, and other business uses. Today, high-density light detection and ranging (lidar) data are the primary sources for deriving elevation models and other datasets. Federal, State, Tribal, and local agencies work in partnership to (1) replace data that are older and of lower quality and (2) provide coverage where publicly accessible data do not exist. A joint goal of State and Federal partners is to acquire consistent, statewide coverage to support existing and emerging applications enabled by lidar data. The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.

  14. The Geologic Story of the Uinta Mountains

    USGS Publications Warehouse

    Hansen, Wallace R.

    1969-01-01

    The opening of the West after the Civil War greatly stimulated early geologic exploration west of the 100th Meridian. One of the areas first studied, the Uinta Mountains region, gained wide attention as a result of the explorations of three Territorial Surveys, one headed by John Wesley Powell, one by Clarence King, and one by Ferdinand V. Hayden. Completion of the Union Pacific Railroad across southern Wyoming 100 years ago, in 1869, materially assisted geologic exploration, and the railheads at Green River and Rock Springs greatly simplified the outfitting of expeditions into the mountains. The overlap of the Powell, King, and Hayden surveys in the Uinta Mountains led to efforts that were less concerted than competitive and not without acrimony. Many parts of the area were seen by all three parties at almost the same time. Duplication was inevitable, of course, but all three surveys contributed vast quantities of new knowledge to the storehouse of geology, and many now-basic concepts arose from their observations. Powell's area of interest extended mainly southward from the Uinta Mountains to the Grand Canyon, including the boundless plateaus and canyons of southern Utah and northern Arizona. King's survey extended eastward from the High Sierra in California to Cheyenne, Wyoming, and encompassed a swath of country more than 100 miles wide. Hayden's explorations covered an immense region of mountains and basins from Yellowstone Park in Wyoming southeast throughout most of Colorado. Powell first entered the Uinta Mountains in the fall of 1868, having traveled north around the east end of the range from the White River country to Green River, Wyoming, then south over a circuitous route to Flaming Gorge and Browns Park, and finally back to the White River, where he spent the winter. In 1869, after reexamining much of the area visited the previous season, Powell embarked on his famous 'first boat trip' down the Green and Colorado Rivers. This trip was more exploratory than scientific; his second, more scientific trip was made 2 years later. Powell revisited the Uinta Mountains in 1874 and 1875 to complete the studies begun 6 years earlier. His classic 'Report on the Geology of the Eastern Portion of the Uinta Mountains and a Region of Country Adjacent Thereto' was published in 1876. King's survey?officially 'The United States Geological Exploration of the Fortieth Parallel'?is better known simply as the '40th Parallel Survey.' King began working eastward from California in 1867. The Uinta Mountains region, however, was mapped by S. F. Emmons, under the supervision of King, in the summers of 1869 and 1871. Emmons' work was monumental, and although he emphasized in his letter of transmittal to King the exploratory nature of the work?as the formal title of the report indicates?his maps, descriptions, and conclusions reflect a comprehensive understanding of the country and its rocks. The 40th Parallel report contains the best, most complete early descriptions of the Uinta Mountains. It, indeed, is a treasurechest of information and a landmark contribution to the emerging science of geology. Hayden visited the Uinta Mountains in 1870, descending the valley of Henrys Fork to Flaming Gorge in the fall after having earlier examined the higher part of the range to the west. Most of Hayden's observations were cursory, and he repeatedly expressed regret at having insufficient time for more detailed studies. In reference to the area between Clay Basin and Browns Park, he remarked (Hayden, 1871, p. 67) somewhat dryly that 'the geology of this portion of the Uinta range is very complicated and interesting. To have solved the problem to my entire satisfaction would have required a week or two.' Eighty-odd years later I spent several months there?looking at the same rocks. Powell was perhaps more creative?more intuitive?than either King or Hayden, and his breadth of interest in the fields of geology, physiography, ethnology, an

  15. Geology of Sarawak deep water and its surroundings

    SciTech Connect

    Ismail, M.I.; Mohamad, A.M.; Ganesan, M.S.; Aziz, S.A. )

    1994-07-01

    A geological and geophysical investigation based primarily on seismic data indicates that four tectonostratigraphic zonations are recognizable in the Sarawak deep water and its surroundings. Zone A is a 7-8-km-thick Tertiary sedimentary basin in Sarawak deep water characterized by north-south-trending buried hills, extensional fault-bounded features, and local occurrences of compressional structures, and is separated from the northwest Sabah platform (zone B) by a major north-south-trending basin margin fault. This margin fault is distinct from the northwest-southeast transform fault known as Baram-Tinjar Line. The northwest Sabah platform, an attenuated continental crust that underwent late Mesozoic-Tertiary crystal stretching and rifting, is characterized by northeast-southwest-tending rift systems and generally up to 4 km-thick sedimentary cover. The leading edge of the northwest Sabah platform that was subducted beneath the northwest Borneo crust is marked by the Sabah trough (zone C). The western Sarawak deep water is occupied by a 13-km-thick, north-south-trending basin, the west Luconia delta province (zone D), demonstrating post mid-Miocene deltaic growth faults and toe-thrusts. Crustal offsets of the South China Sea Basin, north-south-trending basin margin fault between zones A and B, and extensional and compressional structures in zone A are evidence for north-south-directed transform motions leading to the development of the Sarawak deep-water Tertiary basin. Four main sedimentation phases describe the sedimentation history in Sarawak deep water and its surroundings. Oligocene-Miocene coastal plain sediments form the main hydrocarbon plays in the Sarawak deep water, and the numerous occurrences of amplitude anomalies clearly suggest a working hydrocarbon charge system.

  16. The Enigmatic Thirteen Micron Feature

    NASA Astrophysics Data System (ADS)

    de Queiroz e Souza, Nelson

    Low and intermediate mass stars (0.8--8 solar masses) will eventually evolve into Asymptotic Giant Branch (AGB) stars and pulsate out their atmosphere into the space around them. That ejected material will eventually cool and form dust. Understanding the nature and formation of cosmic dust is crucial to understanding the Universe. Evolved intermediate mass stars (i.e. AGB stars) are major contributors of dust to the cosmos. Dust around AGB stars are studied by means of infrared spectroscopy from which we observe several interesting spectral features. The observed AGB star spectra have been classified according to their shapes and wavelength positions of the dust features. Alongside the main spectral features around 8-12mum, there is an enigmatic 13mum feature that appears in about half the oxygen-rich AGB stars. The carrier of this feature has not yet been unequivocally identified but has been attributed to various dust species, including corundum (crystalline Al2O3), spinel (MgAl2O4), and silica (SiO2). While there have been several attempts to determine the cause of this 13mum feature, previous studies have been somewhat contradictory. In order to investigate the origin and characteristics of this spectral feature we observe variations in the 13mum feature over varying stellar parameters. We have also acquired spatially resolved spectroscopic observations of nearby O-rich AGB stars using Michelle on Gemini North. Here we present data on the 13mum feature strength mapped over space around their respective AGB star. The most popular hypothesis for the carrier of the 13mm feature is not supported by our findings.

  17. MAINE MUSSEL SEED CONSERVATION AREAS

    EPA Science Inventory

    SEED shows point locations of Maine mussel seed conservation areas at 1:24,000 scale. Data for this coverage were screen digitized on a 1:24000 scale base using descriptions contained in Maine Department of Marine Resources (MDMR) rules. Coastal arcs from Maine Office of GIS 1:24...

  18. Geology of 243 Ida

    USGS Publications Warehouse

    Sullivan, R.; Greeley, R.; Pappalardo, R.; Asphaug, E.; Moore, Johnnie N.; Morrison, D.; Belton, M.J.S.; Carr, M.; Chapman, C.R.; Geissler, P.; Greenberg, R.; Granahan, J.; Head, J. W., III; Kirk, R.; McEwen, A.; Lee, P.; Thomas, P.C.; Veverka, J.

    1996-01-01

    The surface of 243 Ida is dominated by the effects of impacts. No complex crater morphologies are observed. A complete range of crater degradation states is present, which also reveals optical maturation of the surface (darkening and reddening of materials with increasing exposure age). Regions of bright material associated with the freshest craters might be ballistically emplaced deposits or the result of seismic disturbance of loosely-bound surface materials. Diameter/depth ratios for fresh craters on Ida are ???1:6.5, similar to Gaspra results, but greater than the 1:5 ratios common on other rocky bodies. Contributing causes include rim degradation by whole-body "ringing," relatively thin ejecta blankets around crater rims, or an extended strength gradient in near-surface materials due to low gravitational self-packing. Grooves probably represent expressions in surface debris of reactivated fractures in the deeper interior. Isolated positive relief features as large as 150 m are probably ejecta blocks related to large impacts. Evidence for the presence of debris on the surface includes resolved ejecta blocks, mass-wasting scars, contrasts in color and albedo of fresh crater materials, and albedo streaks oriented down local slopes. Color data indicate relatively uniform calcium abundance in pyroxenes and constant pyroxene/olivine ratio. A large, relatively blue unit across the northern polar area is probably related to regolith processes involving ejecta from Azzurra rather than representing internal compositional heterogeneity. A small number of bluer, brighter craters are randomly distributed across the surface, unlike on Gaspra where these features are concentrated along ridges. This implies that debris on Ida is less mobile and/or consistently thicker than on Gaspra. Estimates of the average depth of mobile materials derived from chute depths (20-60 m), grooves (???30 m), and shallowing of the largest degraded craters (20-50 m minimum, ???100 m maximum) suggest a thickness of potentially mobile materials of ???50 m, and a typical thickness for the debris layer of 50-100 m. ?? 1996 Academic Press, Inc.

  19. Galileo reveals new lunar features

    NASA Astrophysics Data System (ADS)

    Exciting new images of the Moon taken by the Jupiter-bound Galileo spacecraft December 8 and 9 promise to expand understanding of lunar geology. Galileo viewed the Moon from a new perspective, showing for the first time, through spectral techniques, the mineralogical composition of the lunar crust on the far side. The Galileo flyby also revealed the largest impact basin ever seen on the Moon.The mosaic at left was constructed from images that Galileo's Solid-State Imaging system obtained from a range of 567,000 km after the spacecraft had completed a flyby of Earth en route to Jupiter. The images were taken through violet and near-infrared filters and overlain digitally on an airbrushed map of the Moon to show how the colors relate to geographic features.

  20. New insights on the geological setting of the Northern Adriatic sea

    NASA Astrophysics Data System (ADS)

    Donda, F.; Civile, D.; Volpi, V.; Forlin, E.; De Santis, L.

    2012-04-01

    Whereas the onshore geological setting of the Northern Adriatic sea region is well known by now, less information are available on the structural setting of the offshore area. This region has been deeply investigated in the framework of the hydrocarbon exploration and by several research Institutions, the latter studies being mainly addressed to the reconstruction of the Quaternary stratigraphic evolution of this area. In 2009, OGS has performed a geophysical survey in the northern sector of the Northern Adriatic sea with R/V OGS Explora. About 800 km of 2D multichannel seismic and Chirp profiles have been acquired, together with Multibeam data in selected areas. The seismostratigraphic and structural analysis performed on the multichannel lines, together with the correlation of the available boreholes drilled in the area, led to the recognition of the major tectonic lineaments affecting the Northern Adriatic sea, approximately from the Tagliamento to the Po River deltas. In the northernmost sector of the study area, our data highlight the occurrence of tectonic features that may represent the offshore continuation of NW-SE Dinaric and NE-SW anti-Dinaric lineaments, previously inferred in the Gulf of Trieste structural model on the basis of onshore geology, and led to define their extension further to the South. Although most of the tectonic deformation appears to be sealed by the Plio-Quaternary succession, there are evidences that, in places, the deformation affects also these stratigraphic levels. This hypothesis is supported by the widespread occurrence of CH4-rich fluid seepages, which appear strongly related to features interpreted as migration paths propagating throughout the Plio-Pleistocene sequence. Offshore the Venice lagoon, the occurrence of sub-vertical lineaments are interpreted as possibly related to the continuation in the Adriatic sea of a fault system parallel to the NW-trending Schio-Vicenza feature.

  1. Ontology patterns for complex topographic feature yypes

    USGS Publications Warehouse

    Varanka, Dalia E.

    2011-01-01

    Complex feature types are defined as integrated relations between basic features for a shared meaning or concept. The shared semantic concept is difficult to define in commonly used geographic information systems (GIS) and remote sensing technologies. The role of spatial relations between complex feature parts was recognized in early GIS literature, but had limited representation in the feature or coverage data models of GIS. Spatial relations are more explicitly specified in semantic technology. In this paper, semantics for topographic feature ontology design patterns (ODP) are developed as data models for the representation of complex features. In the context of topographic processes, component assemblages are supported by resource systems and are found on local landscapes. The topographic ontology is organized across six thematic modules that can account for basic feature types, resource systems, and landscape types. Types of complex feature attributes include location, generative processes and physical description. Node/edge networks model standard spatial relations and relations specific to topographic science to represent complex features. To demonstrate these concepts, data from The National Map of the U. S. Geological Survey was converted and assembled into ODP.

  2. The Necessity of Geologic Disposal

    SciTech Connect

    R. Linden

    2004-07-01

    Nuclear wastes are the radioactive byproducts of nuclear power generation, nuclear weapons production, and other uses of nuclear material. Experts from around the world agree that deep geologic disposal of nuclear waste in a mined repository is the most environmentally sound means of removing these potential sources of radiation from interaction with the biosphere. Of the 360 millirem of background radiation received annually by the average American, from both natural and man-made sources, less than 1 millirem results from the nuclear fuel cycle. Spent nuclear fuel and high-level radioactive waste, destined for geologic disposal, are located at 126 sites in 39 states. The proposed repository site at Yucca Mountain, Nevada, is far more isolated from the general population than any sites where these radioactive materials are presently located. Only solid forms of high-level wastes will be transported for disposal in a geologic repository. For more than 50 years, nuclear materials have been safely transported in North America, Europe, and Asia, without a single significant radiation release. Since the 1950s, select panels from the National Academy of Sciences-National Research Council and interagency advisory groups, and international experts selected by the OECD/Nuclear Energy Agency, have examined the environmental, ethical, and intergenerational aspects of nuclear waste disposal, plus alternatives to geologic disposal. All have concluded that deep geologic disposal in a mined repository is clearly the preferred option. The concept of deep geologic disposal is based on the analogy to ore deposits, which are formed deep within the Earth's crust, commonly remain isolated from the biosphere for millions to billions of years, and are, generally, extremely difficult to detect. Before selecting the unsaturated tuffs at Yucca Mountain, DOE evaluated salt formations, basalts, and both crystalline and sedimentary rocks. Other nations generating nuclear power also plan to use deep geologic disposal, and are evaluating sites in granites, argillaceous rocks, and salt formations.

  3. GeoSciML version 3: A GML application for geologic information

    NASA Astrophysics Data System (ADS)

    International Union of Geological Sciences., I. C.; Richard, S. M.

    2011-12-01

    After 2 years of testing and development, XML schema for GeoSciML version 3 are now ready for application deployment. GeoSciML draws from many geoscience data modelling efforts to establish a common suite of feature types to represent information associated with geologic maps (materials, structures, and geologic units) and observations including structure data, samples, and chemical analyses. After extensive testing and use case analysis, in December 2008 the CGI Interoperability Working Group (IWG) released GeoSciML 2.0 as an application schema for basic geological information. GeoSciML 2.0 is in use to deliver geologic data by the OneGeology Europe portal, the Geological Survey of Canada Groundwater Information Network (wet GIN), and the Auscope Mineral Resources portal. GeoSciML to version 3.0 is updated to OGC Geography Markup Language v3.2, re-engineered patterns for association of element values with controlled vocabulary concepts, incorporation of ISO19156 Observation and Measurement constructs for representing numeric and categorical values and for representing analytical data, incorporation of EarthResourceML to represent mineral occurrences and mines, incorporation of the GeoTime model to represent GSSP and stratigraphic time scale, and refactoring of the GeoSciML namespace to follow emerging ISO practices for decoupling of dependencies between standardized namespaces. These changes will make it easier for data providers to link to standard vocabulary and registry services. The depth and breadth of GeoSciML remains largely unchanged, covering the representation of geologic units, earth materials and geologic structures. ISO19156 elements and patterns are used to represent sampling features such as boreholes and rock samples, as well as geochemical and geochronologic measurements. Geologic structures include shear displacement structures (brittle faults and ductile shears), contacts, folds, foliations, lineations and structures with no preferred orientation (e.g. 'miarolitic cavities'). The Earth material package allows for the description of both individual components, such as minerals, and compound materials, such as rocks or unconsolidated materials. Provision is made for alteration, weathering, metamorphism, particle geometry, fabric, and petrophysical descriptions. Mapped features describe the shape of the geological features using standard GML geometries, such as polygons, lines, points or 3D volumes. Geological events provide the age, process and environment of formation of geological features. The Earth Resource section includes features to represent mineral occurrences and mines and associated human activities independently. This addition allows description of resources and reserves that can comply with national and internationally accepted reporting codes. GeoSciML v3 is under consideration as the data model for INSPIRE annex 2 geologic reporting in Europe.

  4. Slim Battery Modelling Features

    NASA Astrophysics Data System (ADS)

    Borthomieu, Y.; Prevot, D.

    2011-10-01

    Saft has developed a life prediction model for VES and MPS cells and batteries. The Saft Li-ion Model (SLIM) is a macroscopic electrochemical model based on energy (global at cell level). The main purpose is to predict the battery performances during the life for GEO, MEO and LEO missions. This model is based on electrochemical characteristics such as Energy, Capacity, EMF, Internal resistance, end of charge voltage. It uses fading and calendar law effects on energy and internal impedance vs. time, temperature, End of Charge voltage. Based on the mission profile, satellite power system characteristics, the model proposes the various battery configurations. For each configuration, the model gives the battery performances using mission figures and profiles: power, duration, DOD, end of charge voltages, temperatures during eclipses and solstices, thermal dissipations and cell failures. For the GEO/MEO missions, eclipse and solstice periods can include specific profile such as plasmic propulsion fires and specific balancing operations. For LEO missions, the model is able to simulate high power peaks to predict radar pulses. Saft's main customers have been using the SLIM model available in house for two years. The purpose is to have the satellite builder power engineers able to perform by themselves in the battery pre-dimensioning activities their own battery simulations. The simulations can be shared with Saft engineers to refine the power system designs. This model has been correlated with existing life and calendar tests performed on all the VES and MPS cells. In comparing with more than 10 year lasting life tests, the accuracy of the model from a voltage point of view is less than 10 mV at end Of Life. In addition, thethe comparison with in-orbit data has been also done. b This paper will present the main features of the SLIM software and outputs comparison with real life tests. b0

  5. Geologic exploration: The contribution of LANDSAT-4 thematic mapper data

    NASA Technical Reports Server (NTRS)

    Everett, J. R.; Dykstra, J. D.; Sheffield, C. A.

    1983-01-01

    The major advantages of the TM data over that of MSS systems are increased spatial resolution and a greater number of narrow, strategically placed spectral bands. The 30 meter pixel size permits finer definition of ground features and improves reliability of the photointerpretation of geologic structure. The value of the spatial data increases relative to the value of the spectral data as soil and vegetation cover increase. In arid areas with good exposure, it is possible with careful digital processing and some inventive color compositing to produce enough spectral differentiation of rock types and thereby produce facsimiles of standard geologic maps with a minimum of field work or reference to existing maps. Hue-saturation value images are compared with geological maps of Death Valley, California, the Big Horn/Wind River Basin of Wyoming, the area around Cement, Oklahoma, and Detroit. False color composites of the Ontario region are also examined.

  6. Geological Implications of a Physical Libration on Enceladus

    NASA Technical Reports Server (NTRS)

    Hurford, T. A.; Bills, B. G.; Helfenstein, P.; Greenberg, R.; Hoppa, G. V.; Hamilton, D. P.

    2008-01-01

    Given the non-spherical shape of Enceladus (Thomas et al., 2007), the satellite will experience gravitational torques that will cause it to physically librate as it orbits Saturn. Physical libration would produce a diurnal oscillation in the longitude of Enceladus tidal bulge which, could have a profound effect on the diurnal stresses experienced by the surface of the satellite. Although Cassini ISS has placed an observational upper limit on Enceladus libration amplitude of F < 1.5deg (Porco et al., 2006), smaller amplitudes can still have geologically significant consequences. Here we present the first detailed description of how physical libration affects tidal stresses and how those stresses then might affect geological processes including crack formation and propagation, south polar eruption activity, and tidal heating. Our goal is to provide a framework for testing the hypothesis that geologic features on Enceladus are produced by tidal stresses from diurnal physical and optical librations of the satellite.

  7. Magnesium K-edge XANES spectroscopy of geological standards.

    PubMed

    Yoshimura, Toshihiro; Tamenori, Yusuke; Iwasaki, Nozomu; Hasegawa, Hiroshi; Suzuki, Atsushi; Kawahata, Hodaka

    2013-09-01

    Magnesium K-edge X-ray absorption near-edge structure (XANES) spectra have been investigated to develop a systematic understanding of a suite of Mg-bearing geological materials such as silicate and carbonate minerals, sediments, rocks and chemical reagents. For the model compounds the Mg XANES was found to vary widely between compounds and to provide a fingerprint for the form of Mg involved in geologic materials. The energy positions and resonance features obtained from these spectra can be used to specify the dominant molecular host site of Mg, thus shedding light on Mg partitioning and isotope fractionation in geologic materials and providing a valuable complement to existing knowledge of Mg geochemistry. PMID:23955037

  8. The importance of geobotany in geological remote sensing applications

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Collins, W.; Elvidge, C.; Lyon, R. J. P.; Labovitz, M. L.; Milton, N. M.; Parrish, J.; Rock, B. N.; Wickland, D. E.; Arp, G. K.

    1983-01-01

    A description of the different effects of variations in ground cover vegetation on remote sensing data in geological and prospecting applications is presented. The different variations are divided into three categories: structural; taxonomic and spectral. Structural variations include changes in the physical appearance of ground cover which may be detectable by a remote sensing instrument. Taxonomic variations occur in those plant communities which are associated with specific geological regions. Spectral variations are due to specific geochemical stresses which may be useful in characterizing geological features at a site. The need for a general scheme for the interpretation of geobotanical remote sensing data is discussed: Geosat data for the field reflectance spectra of different tree species in West Virginia are presented as examples.

  9. Geology Field Trips as Performance Evaluations

    ERIC Educational Resources Information Center

    Bentley, Callan

    2009-01-01

    One of the most important goals the author has for students in his introductory-level physical geology course is to give them the conceptual skills for solving geologic problems on their own. He wants students to leave his course as individuals who can use their knowledge of geologic processes and logic to figure out the extended geologic history…

  10. Geology and the environment in Kenya

    NASA Astrophysics Data System (ADS)

    Mathu, E. M.; Davies, T. C.

    1996-11-01

    Kenya is in a unique environmental setting by virtue of its geographical location, range of altitudes and perhaps most importantly, the Great Rift System that traverses it. The country displays virtually every facet of environmental geological phenonmena seismicity, volcanism, mass-movements, the impact of mining, mineral processing and geothermal energy resources development, soil and beach erosion, desertification, air, water and soil pollution, etc. A significant mass of data on these topics already exists, but it lies scattered in various journals and agency reports, some of which are not readily available to environmental researchers and country-planners. The aim of this paper, therefore, is to highlight some features of geology and the environment in Kenya and to set the scene for the subsequent papers in this issue, which examine more deeply various aspects of the subject. The uniqueness of the country's environmental setting is emphasised throughout, since it gives it a special appeal to geomorphologists, geophysicists, hydrologists and land-use planners. A comprehensive list of references is given at the end of this paper in order to aid the search process of those who seek additional information on areas covered in this review.

  11. A predictive geologic model of radon occurrence

    SciTech Connect

    Gregg, L.T. )

    1990-01-01

    Earlier work by LeGrand on predictive geologic models for radon focused on hydrogeologic aspects of radon transport from a given uranium/radium source in a fractured crystalline rock aquifer, and included submodels for bedrock lithology (uranium concentration), topographic slope, and water-table behavior and characteristics. LeGrand's basic geologic model has been modified and extended into a submodel for crystalline rocks (Blue Ridge and Piedmont Provinces) and a submodel for sedimentary rocks (Valley and Ridge and Coastal Plain Provinces). Each submodel assigns a ranking of 1 to 15 to the bedrock type, based on (a) known or supposed uranium/thorium content, (b) petrography/lithology, and (c) structural features such as faults, shear or breccia zones, diabase dikes, and jointing/fracturing. The bedrock ranking is coupled with a generalized soil/saprolite model which ranks soil/saprolite type and thickness from 1 to 10. A given site is thus assessed a ranking of 1 to 150 as a guide to its potential for high radon occurrence in the upper meter or so of soil. Field trials of the model are underway, comparing model predictions with measured soil-gas concentrations of radon.

  12. Geology of five small Australian impact craters

    USGS Publications Warehouse

    Shoemaker, E.M.; Macdonald, F.A.; Shoemaker, C.S.

    2005-01-01

    Here we present detailed geological maps and cross-sections of Liverpool, Wolfe Creek, Boxhole, Veevers and Dalgaranga craters. Liverpool crater and Wolfe Creek Meteorite Crater are classic bowlshaped, Barringer-type craters, Liverpool was likely formed during the Neoproterozoic and was filled and covered with sediments soon thereafter. In the Cenozoic, this cover was exhumed exposing the crater's brecciated wall rocks. Wolfe Creek Meteorite Crater displays many striking features, including well-bedded ejecta units, crater-floor faults and sinkholes, a ringed aeromagnetic anomaly, rim-skirting dunes, and numerous iron-rich shale balls. Boxhole Meteorite Crater, Veevers Meteorite Crater and Dalgaranga crater are smaller, Odessa-type craters without fully developed, steep, overturned rims. Boxhole and Dalgaranga craters are developed in highly follated Precambrian basement rocks with a veneer of Holocene colluvium. The pre-existing structure at these two sites complicates structural analyses of the craters, and may have influenced target deformation during impact. Veevers Meteorite Crater is formed in Cenozoic laterites, and is one of the best-preserved impact craters on Earth. The craters discussed herein were formed in different target materials, ranging from crystalline rocks to loosely consolidated sediments, containing evidence that the impactors struck at an array of angles and velocities. This facilitates a comparative study of the influence of these factors on the structural and topographic form of small impact craters. ?? Geological Society of Australia.

  13. Geologic Sequestration of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Benson, S. M.

    2003-04-01

    Geologic sequestration of carbon dioxide has emerged as one of the most promising options for making deep cuts in carbon dioxide emissions. Geologic sequestration involves the two-step process of first capturing carbon dioxide by separating it from stack emissions, followed by injection and long term storage in deep geologic formations. Sedimentary basins, including depleted oil and gas reservoirs, deep unminable coal seams, and brine-filled formations, provide the most attractive storage reservoirs. Over the past few years significant advances have been made in this technology, including development of simulation models and monitoring systems, implementation of commercial scale demonstration projects, and investigation of natural and industrial analogues for geologic storage of carbon dioxide. While much has been accomplished in a short time, there are many questions that must be answered before this technology can be employed on the scale needed to make significant reductions in carbon dioxide emissions. Questions such as how long must the carbon dioxide remain underground, to what extent will geochemical reactions completely immobilize the carbon dioxide, what can be done in the event that a storage site begins to leak at an unacceptable rate, what is the appropriate risk assessment, regulatory and legal framework, and will the public view this option favorably? This paper will present recent advances in the scientific and technological underpinnings of geologic sequestration and identify areas where additional information is needed.

  14. Use of submerged aquatic vegetation as habitat by young-of-the-year epibenthic fishes in shallow Maine nearshore waters

    NASA Astrophysics Data System (ADS)

    Lazzari, M. A.; Stone, B. Z.

    2006-09-01

    Epibenthic fishes were collected with daytime beam trawl tows ( n = 1713) in three shallow (<10 m) habitats of submerged aquatic vegetation (SAV), Zostera marina (eelgrass), Laminaria longicruris (kelp), Phyllophora sp. (algae), and unvegetated sandy/mud areas. We divided the Maine coast into three broad zones based upon geological features and sampled over five consecutive years; during April-November 2000 in the mid coast, in 2001 and 2002 along the south coast and in 2003 and 2004 along the eastern Maine coast. We quantified habitat use by eight economically important fish species ( Gadus morhua, Microgadus tomcod, Pollachius virens, Urophycis chuss, Urophycis tenuis, Osmerus mordax, Tautogolabrus adspersus, and Pseudopleuronectes americanus) and 10 other common epibenthic species ( n = 18 571). We identified the physical and biological variables most important in discriminating between habitats with and without individual fish species. Logistic regression models based on nearshore habitat characteristics were developed to predict the distribution of these species along the three zones representing broad geological regions of the Maine coast. Logistic regression models correctly classified individual fish species 58.7-97.1% of the time based on the temporal and physical habitat variables (month, temperature, salinity, and depth) and the presence-absence of submerged aquatic vegetation ( Zostera, Laminaria, or Phyllophora). Overall fish presence and economically important fish presence were correctly classified 61.1-79.8% and 66.0-73.6% of the time, respectively. The Maine shallow water fish community was composed primarily of young-of-the-year and juvenile fishes with all habitats functioning as facultative nursery areas. Presence of most fish species was positively associated with Zostera, Laminaria, and to a lesser extent, Phyllophora. This study provides direct evidence of shallow waters of the Gulf of Maine as critical facultative nursery habitat for juvenile G. morhua, M. tomcod, P. virens, U. tenuis, U. chuss, T. adspersus, O. mordax and P. americanus, and many ecologically important species.

  15. Geology of the pitchblende ores of Colorado

    USGS Publications Warehouse

    Bastin, Edson S.

    1915-01-01

    The large amount of public interest that has recently been manifested in radium because of the apparent cures of cancer effected by certain of its emanations makes it desirable to place before the public as promptly as possible all available information in regard to the occurrence of the minerals from which radium may be derived. The following account of the mode of occurrence of pitchblende at Quartz Hill, in Gilpin County, Colo., is therefore published in advance of a much larger report on the same region in which many other types of ore deposits will be considered. The field studies were made.in the fall of 1912. As the geologic relations at Quartz Hill differ in important particulars from those at foreign localities, a summary of the genetically important features of the principal European occurrences is included for purposes of comparison.

  16. Quaternary geology of Avery Island, Louisiana

    SciTech Connect

    Autin, W.J.; McCulloh, R.P.; Davison, A.T.

    1986-09-01

    Avery Island, one of the Five Islands salt domes of south-central Louisiana, is a piercement-type dome that has been uplifted from several kilometers' depth. It is nearly circular in plan with a maximum elevation approximately 50 m above the surrounding coastal marsh. Dissection has produced a terrain of gullies and steep slopes. The features identified indicate a complex geologic history for Avery Island. Deposition of late Pleistocene sediments in a low-relief alluvial plain and subsequent soil development predate domal uplift. The stratigraphy of loess and colluvial silts indicates the island was emergent during loess depositions. The degree of dissection, distribution of colluvium, and shearing of Quaternary sediments reflects continual uplift after loess deposition.

  17. 18. MAIN FLOOR HOLDING TANKS Main floor, looking at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. MAIN FLOOR - HOLDING TANKS Main floor, looking at holding tanks against the west wall, from which sluice gates are seen protruding. Right foreground-wooden holding tanks. Note narrow wooden flumes through which fish were sluiced into holding and brining tanks. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  18. View of the main interior space facing east. The main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the main interior space facing east. The main entry is on the left hand side at the rear. The exit to the deck is to the right. - San Luis Yacht Club, Avila Pier, South of Front Street, Avila Beach, San Luis Obispo County, CA

  19. Maine Indians: Topical Bibliography of Books in Maine State Library.

    ERIC Educational Resources Information Center

    1975

    Citations relative to the American Indians of Maine are presented in this topical bibliography of books currently located in the Maine State Library. The following are indicative of the subject topics and the number of citations to be found under each topic: (1) Antiquities (7); (2) Art (2); (3) Bibliography (1); (4) Government Relations (2); (5)…

  20. Designing using manufacturing features

    NASA Astrophysics Data System (ADS)

    Szecsi, T.; Hoque, A. S. M.

    2012-04-01

    This paper presents a design system that enables the composition of a part using manufacturing features. Features are selected from feature libraries. Upon insertion, the system ensures that the feature does not contradict the design-for-manufacture rules. This helps eliminating costly manufacturing problems. The system is developed as an extension to a commercial CAD/CAM system Pro/Engineer.

  1. Paleoliquefaction studies in continental setting; geologic and geotechnical factors in interpretations and back-analysis

    USGS Publications Warehouse

    Obermeier, Stephen F.; Pond, Eric C.; Olson, Scott M.; Green, Russell A.; Stark, Timothy D.; Mitchell, James K.

    2001-01-01

    Paleoliquefaction research in the last 15 years has greatly improved our ability to interpret the paleoseismic record throughout some large geographic areas, especially in regions of infrequent large earthquakes. Paleoliquefaction studies have been used extensively in the central and eastern U.S. to assess seismic hazards, and could be used elsewhere to good purpose because paleoliquefaction studies in some field settings can reveal more than other methods, such as fault studies, about the prehistoric strength of shaking and earthquake magnitude. We present guidelines for the conduct of a paleoliquefaction study in continental deposits, mainly in terms of the geologic/seismologic setting and geotechnical properties, because a successful interpretation requires factors from all these disciplines. No single discipline suffices alone. Their interactions must be appreciated in order to understand why seismically induced liquefaction features are found in some locales and not in others. The guidelines that we present also relate to three primary issues for which liquefaction features are especially useful for interpretations: Where was the tectonic source? What was the strength of shaking? And what was the magnitude? In discussing these issues we focus on the following aspects of level-ground liquefaction: (1) mechanisms that form seismic liquefaction features in the field; (2) field settings where liquefaction features should be present if strong seismic shaking has occurred; (3) field settings where an absence of liquefaction features indicates an absence of strong seismic shaking; (4) how liquefaction features should be used to interpret the tectonic source locale of a paleo-earthquake; and (5) how effects of liquefaction can be used to back-calculate the strength of shaking as well as earthquake magnitude. Several methods are available to back-calculate the strength of shaking and earthquake magnitude, and the most commonly used methods are presented and critiqued. Our critique of these methods points out the uncertainties attending each. Paleoliquefaction/paleoseismic case histories are presented to illustrate potential uncertainties in back-calculations and procedures to overcome these uncertainties. Reasonable confidence in paleoseismic interpretation generally requires using multiple methods of back-analysis, and achieving similar results from each method. An alternate approach can be used for paleo-earthquakes that were large enough to have caused liquefaction in a variety of geologic settings, in which there were differing factors affecting surface ground motions and liquefaction susceptibility. For this situation, a method such as the cyclic-stress method can be used to make back-calculations that can be cross-checked with results from other settings.

  2. U.S. Geological Survey deep seismic reflection profile across the Gulf of Maine

    USGS Publications Warehouse

    Hutchinson, Deborah R.; Klitgord, Kim D.; Lee, Myung W.; Trehu, Anne M.

    1988-01-01

    The Moho surface throughout the region is essentially flat and may have been produced by Mesozoic crustal extension. Associated modification of the lower crust was minimal in the northern Gulf and may have been moderate in the central and southern Gulf. The Franklin rift basin formed by reactivation of the inferred Avalon-Meguma boundary beneath Georges Bank as a low-angle detachment.

  3. Main geological problems of Western Anatolia and the significance of the Bodrum magmatic province

    NASA Astrophysics Data System (ADS)

    Yilmaz, Y.

    2008-07-01

    Western Anatolian Extended Terrain in Turkey stretches from the Balkan region in the north to the Taurides in the south. It contains a number of major tectonic entities including the Menderes Massif, the volcanic associations and the Neogene terrestrial cover sequence. In recent years the initiation of the N-S extension is viewed as a major factor responsible from the development of all these tectonic units. The initiation of the extension is regarded going back to the early Oligocene period. The data derived from our mapping project reveal that these units have developed under different tectonic regimes during different periods; for example the Menderes Massif, began to have formed during the late Creteceous and its development continued into the Miocene period. The Magmatic associations were formed in two separated phases; the early phase began during the Eocene- Oligocene time long before the extension started. The late phase is closely associated with the extensional regime. The Neogene sedimentary successions have 3 stratigraphic units separated by unconformities. The field data displays further that the N-S extension has not been uninterrupted. A major interruption occurred during the Early Pliocene period, and a region-wide, flat-lying erosional surface, as a key horizon, was developed.

  4. North Central Regional geologic characterization report. Volume 1. Final report

    SciTech Connect

    Not Available

    1985-08-01

    This report presents available geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Minnesota, Wisconsin, and the Upper Peninsula of Michigan. For each of the states within the North Central Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening. The geologic factor and variables include deep mines and quarries, rock mass extent, post-emplacement faulting, suspected Quaternary faulting, seismicity, rock and mineral resources, major groundwater discharge zones, groundwater resources, state of stress, thickness of rock mass, and thickness of overburden. Information is presented on age, areal extent, shape, composition, texture, degree and type of alteration, thickness, and structural features associated with each rock body or complex. Regional seismic and tectonic information is presented, including patterns of earthquake occurrence, earthquake magnitudes, horizontal ground accelerations, and vertical crustal movements. Also included are discussions of the rock and mineral deposits or mines located within or near crystalline rock bodies; groundwater resources and regional hydrology; postulated changes in climate and the associated effects; and landforms, surface processes, and surficial materials on or near the rock bodies. A discussion is also presented of the relationship between the US Department of Energy Siting Guidelines (10 CFR 960) and the geologic disqualifying factor and regional screening variables to be used in the region-to-area screening process. 43 figs., 15 tabs.

  5. Carleton College Geology Department: Seventy Years of Planning for Change

    NASA Astrophysics Data System (ADS)

    Savina, M. E.; Davidson, C.

    2003-12-01

    On the back of a fire door leading to the Carleton geology lounge and classroom, students have painted a geologic time scale representing the history of the geology department from its establishment in 1933 to its present configuration. Along the way, Laurence McKinley Gould, George Gibson, Duncan Stewart VII, Leonard Wilson, Eiler Henrickson, Ed Buchwald, Shelby Boardman, Mary Savina, David Bice, Clem Shearer, Bereket Haileab, Clint Cowan, Cam Davidson, Jenn Macalady and a host of other faculty have contributed to an excellent undergraduate program. Features that have maintained the strength of the program over the years include: Outstanding support staff (Betty Bray and Tim Vick); Weekly department meetings that include discussion of department goals and pedagogy, including attention to giving students the tools to complete the major and capstone project; Regular department retreats that allow more comprehensive discussion; Encouraging different teaching styles among the faculty; A curriculum that emphasizes active learning from day one in introductory geology through the senior capstone experience; Involving students in the department, from planning field trips to hiring to TAs; Increasing student role models by having sophomore, junior and senior majors in most courses; Emphasizing the liberal arts character of geology, rather than pre-professional; Bringing alumni back to campus on a regular basis; Publishing an annual alumni newsletter and maintaining a department web site; Creating a social and intellectual space within the department for students and faculty; Making a particular effort to be welcoming and affirming to people of all colors, ethnicities, affectional orientations and gender identities;

  6. 77 FR 6580 - National Cooperative Geologic Mapping Program (NCGMP) and National Geological and Geophysical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ....S. Geological Survey National Cooperative Geologic Mapping Program (NCGMP) and National Geological and Geophysical Data Preservation Program (NGGDPP) Advisory Committee AGENCY: U.S. Geological Survey... the National Geological Mapping Act of 1992; the Federal, State, and education components of the...

  7. 76 FR 19783 - National Cooperative Geologic Mapping Program (NCGMP) and National Geological and Geophysical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ....S. Geological Survey National Cooperative Geologic Mapping Program (NCGMP) and National Geological and Geophysical Data Preservation Program (NGGDPP) Advisory Committee AGENCY: U.S. Geological Survey... Committee will meet on June 22nd and June 23rd, 2011, in room 3A417 of the U.S. Geological...

  8. Background seismicity controlled by heterogeneity in subsurface geology: An example from the Wakayama region, southwest Japan

    NASA Astrophysics Data System (ADS)

    Maeda, S.; Toda, S.; Katao, H.

    2013-12-01

    Heterogeneity associated with shallow geologic structure is one of the factors to control the earthquake occurrence in the crust. Material properties properties such as strength, permeability, fluid content, and rheology, reflected from different lithological units may influence faulting behavior, thus seismicity. To explore the role of geologic heterogeneity into the seismicity, here we examine the spatial relationship between seismicity and geologic structure in the Wakayama region, northwestern Kii Peninsula, in which a significant high background rate of seismicity has been continuously recorded since the mid-1900 (~100 M≥2.0 earthquakes recorded per year since 2000). Epicenters of numerous small earthquakes are located mainly on the Mesozoic metamorphic rocks and accretion units bounded by major tectonic lines, which dimension is roughly ~40 km x ~40 km (hereinafter 'Wakayama seismic zone'). Within the Wakayama seismic zone, we observe many E-W and ENE-WSW trending dense seismic clusters plotted by the Japan Meteorological Agency (JMA) catalog. To see finer internal hypocenter distribution particularly characteristics of the seismic clusters, we employed the hypoDD method (Waldhauser and Ellsworth, 2000) to relocate the JMA hypocenters. Our hypoDD catalog made the clouds of clusters much sharper and enables us to compare with the detail and local geologic structure. We found that most of the E-W trending seismic clusters possibly correspond to the E-W trending local scale geologic faults, folds, bedding planes, and schistosity. We also found that there are two ~15-km-long and ~5-km-wide aseismic zones that are well corresponding to mafic to ultramafic rocks including serpentine (called 'Mikabu zone'). The Mikabu zones are also well expressed by the high Bouguer anomalies (Geological Survey of Japan, 2013). Employing Talwani model (Talwani, 1959), we estimated that higher density ultra-mafic rocks extended up to 5 km deep from the surface. We interpret that either high shear modulus (stronger) or less ductile property of ultra-mafic rocks dominate aseismic behavior. Unlike such significant E-W striking features, however, well-determined fault plane solutions by JMA and the National Research Institute for Earth Science and Disaster Prevention (NIED) show NS-trending reverse faults corresponding to EW compression. To resolve the inconsistency between the seismic trend and dominant fault strike, we further sought the focal mechanisms for smaller earthquakes using waveform data (P-wave first motion polarites) recorded in the SATARN seismic network system of DPRI, Kyoto University. As a result, among the many reverse fault mechanisms, we found some amounts of strike-slip ones, which may associate with the visible EW-trending seismic clusters. A few normal faulting solutions also suggest that local heterogeneity in stress and strength along the N-E trending geologic features originated from subduction accretional tectonics.

  9. Geological reasons causing rapid rate decline. A case study of Field T, Russia

    NASA Astrophysics Data System (ADS)

    Kuzmin, S.; Rukavishnikov, V.; Sukovatyi, V.

    2015-02-01

    The paper introduces the complex approach to determining possible geological reasons causing rate decline in the wells of Field T, Russia. Therefore, possible geological reasons are sequentially considered and were divided into three main groups: 1) rate decline due to poorer reservoir quality; 2) rate decline due to facies lateral substitution; 3) rate decline due to active fault tectonics. The most appropriate facies models were constructed on the basis of all available data. Besides, in this study, core, well logging, seismic and well test data were integrated for the fullest reservoir characterization. The core from several recently drilled wells was described in detail to determine clue features. Further, seismic data were interpreted: structural interpretation, including faults and attribute analysis, was implemented. Appropriate electrofacies models were chosen as well. At the final stage, all previously-mentioned data were integrated with appropriate facies model construction. However, as it turned out later, the facies model was not the key factor affecting the rapid decline that appeared in some wells. It is suggested that very proximal faults can be a possible explanation. To confirm this suggestion, well test data were additionally used and both analytical and numerical methods were applied to show the consistency of this theory.

  10. Delivery mechanisms of 3D geological models - a perspective from the British Geological Survey

    NASA Astrophysics Data System (ADS)

    Terrington, Ricky; Myers, Antony; Wood, Ben; Arora, Baneet

    2013-04-01

    The past decade has seen the British Geological Survey (BGS) construct over one hundred 3D geological models using software such as GOCAD®, GSI3D, EarthVision and Petrel across the United Kingdom and overseas. These models have been produced for different purposes and at different scales and resolutions in the shallow and deep subsurface. Alongside the construction of these models, the BGS and its collaborators have developed several options for disseminating these 3D geological models to external partners and the public. Initially, the standard formats for disseminating these 3D geological models by the BGS comprised of 2D images of cross-sections, GIS raster data and specialised visualisation software such as the LithoFrame Viewer. The LithoFrame Viewer is a thick-client software that allows the user to explore the 3D geometries of the geological units using a 3D interface, and generate synthetic cross-sections and boreholes on the fly. Despite the increased functionality of the LithoFrame Viewer over the other formats, the most popular data formats distributed remained 2D images of cross-sections, CAD based formats (e.g. DWG and DXF) and GIS raster data of surfaces and thicknesses, as these were the types of data that the external partners were most used too. Since 2009 software for delivering 3D geological models has advanced and types of data available have increased. Feature Manipulation Engine (FME) has been used to increase the number of outputs from 3D geological models. These include: • 3D PDFs (Adobe Acrobat) • KMZ/KML (GoogleEarth) • 3D shapefiles (ESRI) Alongside these later outputs, the BGS has developed other software such as GroundhogTM and Geovisionary (in collaboration with Virtalis). Groundhog is fully a web based application that allows the user to generate synthetic cross-sections, boreholes and horizontal slices from 3D geological models on the fly. Geovisionary provides some of the most advanced visualisation of 3D geological models in the world with its ability to stream high resolution national and world scale datasets seamlessly. All of these tools have some technological and visualisation limitations and not one delivery mechanism is suitable for all. The idea from the BGS when it comes to model delivery mechanisms is to offer as many different 3D data formats and delivery options as possible to cover all user requirements. Most importantly, it is about giving the user what they want and engaging with them to encourage the use of the advanced functionality of some of this software so that a deeper understanding about the subsurface is gained. Sometimes this solution might be a high-tech solution via mobile devices, but at other times a print-out of a contour plot might be what is required. In the end it is the consumer that has to be satisfied with the product they are receiving.

  11. Geologic Framework Model Analysis Model Report

    SciTech Connect

    R. Clayton

    2000-12-19

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the repository design. These downstream models include the hydrologic flow models and the radionuclide transport models. All the models and the repository design, in turn, will be incorporated into the Total System Performance Assessment (TSPA) of the potential radioactive waste repository block and vicinity to determine the suitability of Yucca Mountain as a host for the repository. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 2.

  12. Environmental geology of Harrison Bay, northern Alaska

    USGS Publications Warehouse

    Craig, J.D.; Thrasher, G.P.

    1982-01-01

    The surficial and shallow subsurface geology of Harrison Bay on the Beaufort Sea coast was mapped as part of the U.S. Geological Survey's prelease evaluation for Outer Continental Shelf (OCS) Oil and Gas Lease Sale 71. During the 1980 summer season, approximately 1600 km of multisensored, high-resolution geophysical profile data were collected along a rectangular grid with 4.8 km line spacing. Interpretation of these data is presented on five maps showing bathymetry, sea-floor microrelief, ice-gouge characteristics, Holocene sediment thickness, and geologic structure to depths of approximately 1000 m. On a broad scale, the seafloor is shallow and almost flat, although microrelief features produced by sediment transport and ice-gouge processes typically vary up to several meters in amplitude. Microrelief bedforms related to hydraulic processes are predominant in water depths less than 12 m. Microrelief caused by ice gouging generally increases with water depth, reaching a maximum of 2 m or more in water depths beyond the 20 m isobath. This intensely gouged area lies beneath the shear zone between the seasonal landfast ice and the mobile polar ice pack. The thickness of recent (Holocene) sediment increases offshore, from 2 m near the Colville River delta to 30 m or more on the outer shelf. The thin Holocene layer is underlain by a complex horizon interpreted to be the upper surface of a Pleistocene deposit similar in composition to the present Arctic Coastal Plain. The base of the inferred Pleistocene section is interpreted to be a low-angle unconformity 100 m below sea level. Beneath this Tertiary-Quaternary unconformity, strata are interpreted to be alluvial fan-delta plain deposits corresponding to the Colville Group and younger formations of Late Cretaceous to Tertiary age. Numerous high-angle faults downthrown to the north trend across the survey area. With few exceptions, these faults terminate at or below the 100 m unconformity, suggesting that most tectonism occurred before Quaternary time. Acoustic anomalies suggesting gas accumulation are rare, and where identified typically occur adjacent to faults. A laterally continuous zone of poor seismic data occurs in the nearshore area and is interpreted to be caused by subsea permafrost. This report describes these geologic conditions in Harrison Bay and discusses potential hazards that they may pose for future oil and gas operations in Sale 71 and adjacent Beaufort Sea shelf areas.

  13. The geology of the moon.

    NASA Technical Reports Server (NTRS)

    Fielder, G.

    1973-01-01

    With traditional astronomical methods in the background, geological exploration of the Moon has developed rapidly, but logically, since the dawn of the space age. As a result of these tremendous strides forward, we have been forced to revise our views of a cold, rigid moon built predominantly from stony meteorites. The interior of the moon is hot; the distant past has seen not only major impacts but also extensive volcanism altering the lunar surface, and major motions within the moon. Even today, weak moonquakes remain to remind us of the past upheavals that accompanied the geological processes now being unraveled through detailed studies of the lunar rocks.

  14. Geology of the American Southwest

    NASA Astrophysics Data System (ADS)

    Baldridge, W. Scott

    2004-06-01

    Scott Baldridge presents a concise guide to the geology of the Southwestern U.S. Two billion years of Earth history are represented in the rocks and landscape of the Southwest U.S., creating natural wonders such as the Grand Canyon, Monument Valley, and Death Valley. This region is considered a geologist's "dream", attracting a large number of undergraduate field classes and amateur geologists. The volume will prove invaluable to students and will also appeal to anyone interested in the geology and landscape of the region's National Parks.

  15. Photogrammetric Analysis of CPAS Main Parachutes

    NASA Technical Reports Server (NTRS)

    Ray, Eric; Bretz, David

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) is being designed to land the Orion Crew Module (CM) at a safe rate of descent at splashdown with a cluster of two to three Main parachutes. The instantaneous rate of descent varies based on parachute fly-out angles and geometric inlet area. Parachutes in a cluster oscillate between significant fly-out angles and colliding into each other. The former presents a sub-optimal inlet area and the latter lowers the effective drag area as the parachutes interfere with each other. The fly-out angles are also important in meeting a twist torque requirement. Understanding cluster behavior necessitates measuring the Mains with photogrammetric analysis. Imagery from upward looking cameras is analyzed to determine parachute geometry. Fly-out angles are measured from each parachute vent to an axis determined from geometry. Determining the scale of the objects requires knowledge of camera and lens calibration as well as features of known size. Several points along the skirt are tracked to compute an effective circumference, diameter, and inlet area as a function of time. The effects of this geometry are clearly seen in the system drag coefficient time history. Photogrammetric analysis is key in evaluating the effects of design features such as an Over-Inflation Control Line (OICL), Main Line Length Ratio (MLLR), and geometric porosity, which are varied in an attempt to minimize cluster oscillations. The effects of these designs are evaluated through statistical analysis.

  16. The Geological Context of Vesta's Dark Material

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Otto, K.; Krohn, K.; McCord, T. B.; Williams, D. A.; Yingst, R.; Stephan, K.; Combe, J.; Palomba, E.; Tosi, F.; Hiesinger, H.; Blewett, D. T.; Raymond, C. A.; Russell, C. T.

    2012-12-01

    Deposits of dark material appear on Vesta's surface as low-albedo features in the visible wavelength range of the Dawn camera and spec-trometer (1, 2, 3). This material is intermixed into the regolith and partially excavated by younger impacts exposed as chunks or layers out-cropping in crater walls, uncovered, broken and wasted by the impact process. Fans slumping down crater walls and dark deposits on crater floors are the result of gravity-driven mass wasting triggered by steep slopes and impact seismicity. The mixing of dark material with impact ejecta indicates that this material is processed together with the ejected material. Some small craters possess continuous dark ejecta similar to lunar dark-halo impact craters, indicating that the impact excavated the material from beneath a higher-albedo surface. Asymmetric distribution of dark material in impact craters and ejecta suggests non-continuous distribution in the local subsurface. Some positive relief dark edifices appear to be impact-sculpted hills with dark material distributed over the hill slopes. Dark features are in some places arranged as linear outcrops along scarps or as dark streaks crossing a range of topographies. Dark features inside and outside of craters are in some places arranged as linear outcrops along scarps or dark streaks crossing different topographies. Dark material is distributed unevenly across Vesta's surface. Clustering occurs for all types of dark material exposure. On a local scale craters expose or are associated with dark material, while others in the immediate vicinity are free of dark material. The wide variety of the different surface exposures of dark material and their different geological correlations with surface features as well as their uneven distribution indicate a globally inhomogeneous distribution in the subsurface. However on a global scale the dark material seems to be correlated with the rim and ejecta of the older Veneneia south polar basin structure. The origin of the dark material is still debated and it is tentatively suggested that dark material could be either exogenic, from carbon-rich low velocity impactors, or endogenic, from freshly exposed mafic material or impact melt (3). However the variety of geological settings of dark material suggest more than one process involved in their formation and also more than one source of its origin. References: (1) Jaumann et al., 2012, LPSC 43, #1807; (2) Jaumann, et al., 2012, Science 336, 687-690; (3) McCord, et al., 202, Nature, accepted. Grateful Support of the Dawn Instrument, Operations, and Science Teams is acknowledged. This work is supported by DLR, by NASA through the Dawn project and the Dawn at Vesta Participating Scientist program and by ASI.

  17. Locating potential biosignatures on Europa from surface geology observations.

    PubMed

    Figueredo, Patricio H; Greeley, Ronald; Neuer, Susanne; Irwin, Louis; Schulze-Makuch, Dirk

    2003-01-01

    We evaluated the astrobiological potential of the major classes of geologic units on Europa with respect to possible biosignatures preservation on the basis of surface geology observations. These observations are independent of any formational model and therefore provide an objective, though preliminary, evaluation. The assessment criteria include high mobility of material, surface concentration of non-ice components, relative youth, textural roughness, and environmental stability. Our review determined that, as feature classes, low-albedo smooth plains, smooth bands, and chaos hold the highest potential, primarily because of their relative young age, the emplacement of low-viscosity material, and indications of material exchange with the subsurface. Some lineaments and impact craters may be promising sites for closer study despite the comparatively lower astrobiological potential of their classes. This assessment will be expanded by multidisciplinary examination of the potential for habitability of specific features. PMID:14987486

  18. The subglacial geology of Wilkes Land, East Antarctica

    NASA Astrophysics Data System (ADS)

    Aitken, A. R. A.; Young, D. A.; Ferraccioli, F.; Betts, P. G.; Greenbaum, J. S.; Richter, T. G.; Roberts, J. L.; Blankenship, D. D.; Siegert, M. J.

    2014-04-01

    Wilkes Land is a key region for studying the configuration of Gondwana and for appreciating the role of tectonic boundary conditions on East Antarctic Ice Sheet (EAIS) behavior. Despite this importance, it remains one of the largest regions on Earth where we lack a basic knowledge of geology. New magnetic, gravity, and subglacial topography data allow the region's first comprehensive geological interpretation. We map lithospheric domains and their bounding faults, including the suture between Indo-Antarctica and Australo-Antarctica. Furthermore, we image subglacial sedimentary basins, including the Aurora and Knox Subglacial Basins and the previously unknown Sabrina Subglacial Basin. Commonality of structure in magnetic, gravity, and topography data suggest that pre-EAIS tectonic features are a primary control on subglacial topography. The preservation of this relationship after glaciation suggests that these tectonic features provide topographic and basal boundary conditions that have strongly influenced the structure and evolution of the EAIS.

  19. Geology of Mount Rainier National Park, Washington

    USGS Publications Warehouse

    Fiske, Richard S.; Hopson, Clifford Andrae; Waters, Aaron Clement

    1963-01-01

    Mount Rainier National Park includes 378 square miles of rugged terrain on the west slope of the Cascade Mountains in central Washington. Its mast imposing topographic and geologic feature is glacier-clad Mount Rainier. This volcano, composed chiefly of flows of pyroxene andesite, was built upon alt earlier mountainous surface, carved from altered volcanic and sedimentary rocks invaded by plutonic and hypabyssal igneous rocks of great complexity. The oldest rocks in the park area are those that make up the Olmnapecosh Formation of late Eocene age. This formation is more than 10,000 feet thick, and consists almost entirely of volcanic debris. It includes some lensoid accumulations of lava and coarse mudflows, heaped around volcanic centers., but these are surrounded by vastly greater volumes of volcanic clastic rocks, in which beds of unstratified coarse tuff-breccia, about 30 feet in average thickness, alternate with thin-bedded breccias, sandstones, and siltstones composed entirely of volcanic debris. The coarser tuff-breccias were probably deposited from subaqueous volcanic mudflows generated when eruption clouds were discharged directly into water, or when subaerial ash flows and mudflows entered bodies of water. The less mobile mudflows and viscous lavas built islands surrounded by this sea of thinner bedded water-laid clastics. In compostion the lava flows and coarse lava fragments of the Ohanapecosh Formation are mostly andesite, but they include less abundant dacite, basalt, and rhyolite. The Ohanapecosh Formation was folded, regionally altered to minerals characteristic of the zeolite facies of metamorphism, uplifted, and deeply eroded before the overlying Stevens Ridge Formation of Oligocene or early Miocene age was deposited upon it. The Stevens Ridge rocks, which are about 3,000 feet in maximum total thickness, consist mainly of massive ash flows. These are now devitrified and altered, but they originally consisted of rhyodacite pumice lapilli and glass shards, which compacted and welded into thick massive units during emplacement and cooling. Subordinate water-laid clastic rocks occur t(ward the top of the formation, and thin-bedded pyroclastic layers occur between some of the ash flows. Exposures on Backbone Ridge and on Carbon River below the mouth of Cataract Creek show that in places the thick basal Stevens Ridge ash flows swept with great violence over an old erosion surface developed on rocks of the Ohanapecosh Formation. Masses of mud, tree trunks, and other surface debris were swirled upward into the base of the lowermost ash fiery, and lobes and tongues of hot ash were forced downward into. the saprolitic mud. The Stevens Ridge Formation is concordantly overlain by the Fifes Peak Formation of probable early Miocene age, which consists of lava flows, subordinate mudflows, and minor quantities of tuffaceous clastic rocks. The lavas are predominantly olivine basalt and basaltic andesite, but they include a little rhyolite. They are slightly to moderately altered: the ferromagnesian phenocrysts are generally replaced by saponite, chiprite, or carbonate ; the glass is devitrified ; and the rocks are locally permeated by veinlets of zeolite. Swarms of diabase sills and dikes are probably intrusive equivalents of the Fifes Peak lavas. The upper part of the Fifes Peak Formation has been mostly eroded from Mount Rainier National Park, but farther north, in the Cedar Lake quadrangle, it attains a thickness of more than 5,000 feet. The Fifes Peak and earlier formations were gently folded, faulted, uplifted, and eroded before the. late Miocene Tatoosh pluton worked its way upward to shallow depths and eventually broke through to the surface. The rise of the pluton was accompanied by .the injection of a complicated melange of satellitic stocks, sills, and dikes. A favored horizon for intrusion of sills was along or near the unconfo

  20. To evaluate ERTS-1 data for usefulness as a geological sensor in the diverse geological terranes of New York State

    NASA Technical Reports Server (NTRS)

    Isachsen, Y. W. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. In the present imagery, obtained during the full foliage of summer and fall, the greatest amount of spectral geology is displayed in the Adirondack region where bedrock geology is strongly linked to topography. Of the four spectral bands imaged, band 5 and 7 provide the most geological information. The boundary between the basement rocks of the Adirondack Dome and the surrounding Lower Paleozoic rocks is well delineated except in the Northwest Lowlands and along parts of the eastern Adirondacks. Within the basement complex, the most prominently displayed features are numerous north-northeast trending faults and topographic lineaments, and arcuate east-west valleys developed in some of the weaker metasedimentary rocks. The majority of the faults and lineaments shown on the geologic map of New York appear in the ERTS-1 imagery. In addition, many new linears were detected, as well as a number of anomalous curvilinear elements, some circular in plan and measuring up to 25 km in diameter, which do not bear any clear relationship to mapped geological contacts. The possibility that it is an astrobleme will be investigated after snow melts in the spring.