These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

September 2012 Malaria: vector mosquitoes  

E-print Network

N° 413 September 2012 Malaria: vector mosquitoes are constantly adapting Scientific news Actualidad cientifica Actualité scientifique On the recommendations of the WHO, 290 million impregnated mosquito nets ability of the mosquitoes that carry it to adapt to pyrethrinoids, the officially recommended insecticides

2

Genetics of Mosquito Vector Competence  

PubMed Central

Mosquito-borne diseases are responsible for significant human morbidity and mortality throughout the world. Efforts to control mosquito-borne diseases have been impeded, in part, by the development of drug-resistant parasites, insecticide-resistant mosquitoes, and environmental concerns over the application of insecticides. Therefore, there is a need to develop novel disease control strategies that can complement or replace existing control methods. One such strategy is to generate pathogen-resistant mosquitoes from those that are susceptible. To this end, efforts have focused on isolating and characterizing genes that influence mosquito vector competence. It has been known for over 70 years that there is a genetic basis for the susceptibility of mosquitoes to parasites, but until the advent of powerful molecular biological tools and protocols, it was difficult to assess the interactions of pathogens with their host tissues within the mosquito at a molecular level. Moreover, it has been only recently that the molecular mechanisms responsible for pathogen destruction, such as melanotic encapsulation and immune peptide production, have been investigated. The molecular characterization of genes that influence vector competence is becoming routine, and with the development of the Sindbis virus transducing system, potential antipathogen genes now can be introduced into the mosquito and their effect on parasite development can be assessed in vivo. With the recent successes in the field of mosquito germ line transformation, it seems likely that the generation of a pathogen-resistant mosquito population from a susceptible population soon will become a reality. PMID:10704476

Beerntsen, Brenda T.; James, Anthony A.; Christensen, Bruce M.

2000-01-01

3

Using Cell Phones for Mosquito Vector Surveillance and Control  

E-print Network

Using Cell Phones for Mosquito Vector Surveillance and Control S. Lozano-Fuentes, S. Ghosh, J. M--Novel, low-cost approaches to improving prevention and control of vector-borne diseases, such as mosquito the use of cell phones for field capture and rapid transfer of mosquito vector surveillance data

Bieman, James M.

4

ORIGINAL RESEARCH Chikungunya Virus and the Mosquito Vector  

E-print Network

ORIGINAL RESEARCH Chikungunya Virus and the Mosquito Vector Aedes aegypti in New Caledonia (South mosquitoes. During the 2005­ 2006 epidemic that occurred in the Indian Ocean Islands, a viral strain of infected Aedes species mosquitoes, particularly Aedes aegypti and Aedes albopictus. It induces an arthro

Paris-Sud XI, Université de

5

Promoting health education and public awareness about dengue and its mosquito vector in Saudi Arabia.  

PubMed

Currently, dengue fever is considered as main health problems in Mekkah and Jeddah of Kingdom of Saudi Arabia (KSA) with dramatically increase in the number of cases reported every year. This is associated with obvious failure in the recent control and management programs for the mosquito vector (Aedes aegypti). Here, we suggested promoting the health education and public awareness among Saudi people to improve the control of dengue mosquito vector. Several suggestions and recommendations were highlighted here to ensure effectiveness in the future control and management programs of dengue mosquito vector in KSA. PMID:25403705

Aziz, Al; Al-Shami, Salman; Mahyoub, Jazem A; Hatabbi, Mesed; Ahmad, Abu; Md Rawi, Che

2014-11-18

6

The Plasmodium bottleneck: malaria parasite losses in the mosquito vector  

PubMed Central

Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005

Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo

2014-01-01

7

Individual experience affects host choice in malaria vector mosquitoes  

PubMed Central

Background Despite epidemiological importance, few studies have explored whether individual experience and learning could affect the vertebrate host choice of mosquito disease vectors. Here, we investigated whether a first successful blood meal can modulate mosquito preference during a second blood meal. Methods In no-choice situations, females of the mosquito Anopheles coluzzii, one of the primary African malaria vectors, were first allowed to feed on either human, rabbit or guinea pig. Four days later in dual-choice situations, the same mosquitoes were allowed to choose between the two uncommon hosts, rabbit and guinea pig, as a source of blood. ELISA assays were then used to determine which host mosquitoes fed on. Results Our results indicate that, overall, mosquitoes preferred to feed on rabbit over guinea pig and that the nature of the first blood meal had a significant impact on the mosquito host choice during the second blood meal. Compared to mosquitoes that previously fed on guinea pigs or humans, mosquitoes that fed on rabbits were less likely to choose this host species during a second exposition. The decreased preference for rabbit was observed four days after mosquitoes were first exposed to this host, suggesting that the effect lasts at least the duration of a gonotrophic cycle. Furthermore, this effect was observed after only one successful blood meal. Fitness measurements on mosquitoes fed on the three different vertebrate hosts showed that the origin of the blood meal affected mosquito longevity but not fecundity. In particular, human-fed mosquitoes lived longer than guinea pig-fed or rabbit-fed mosquitoes. Conclusions Our study demonstrates that individual experience affects host choice in this mosquito species and might have strong repercussions on biting patterns in natural conditions and hence on malaria transmission. PMID:24885668

2014-01-01

8

Genetic approaches to interfere with malaria transmission by vector mosquitoes  

PubMed Central

Malaria remains one of the world’s most devastating diseases, causing over one million deaths every year. The most vulnerable stages of Plasmodium development in the vector mosquito occur in the midgut lumen, making the midgut a prime target for intervention. Mosquito transgenesis and paratransgenesis are two novel strategies that aim at rendering the vector incapable of sustaining Plasmodium development. Mosquito transgenesis involves direct genetic engineering of the mosquito itself for delivery of anti-Plasmodium effector molecules. Conversely, paratransgenesis involves the genetic modification of mosquito symbionts for expression of anti-pathogen effector molecules. Here we consider both genetic manipulation strategies for rendering mosquitoes refractory to Plasmodium infection, and discuss challenges for the translation of laboratory findings to field applications. PMID:23395485

Wang, Sibao; Jacobs-Lorena, Marcelo

2013-01-01

9

Genetic approaches to interfere with malaria transmission by vector mosquitoes.  

PubMed

Malaria remains one of the most devastating diseases worldwide, causing over 1 million deaths every year. The most vulnerable stages of Plasmodium development in the vector mosquito occur in the midgut lumen, making the midgut a prime target for intervention. Mosquito transgenesis and paratransgenesis are two novel strategies that aim at rendering the vector incapable of sustaining Plasmodium development. Mosquito transgenesis involves direct genetic engineering of the mosquito itself for delivery of anti-Plasmodium effector molecules. Conversely, paratransgenesis involves the genetic modification of mosquito symbionts for expression of anti-pathogen effector molecules. Here we consider both genetic manipulation strategies for rendering mosquitoes refractory to Plasmodium infection, and discuss challenges for the translation of laboratory findings to field applications. PMID:23395485

Wang, Sibao; Jacobs-Lorena, Marcelo

2013-03-01

10

[Mosquitoes as vectors for exotic pathogens in Germany].  

PubMed

As a result of intensified globalization of international trade and of substantial travel activities, mosquito-borne exotic pathogens are becoming an increasing threat for Europe. In Germany some 50 different mosquito species are known, several of which have vector competence for pathogens. During the last few years a number of zoonotic arboviruses that are pathogenic for humans have been isolated from mosquitoes in Germany including Usutu, Sindbis and Batai viruses. In addition, filarial worms, such as Dirofilaria repens have been repeatedly detected in mosquitoes from the federal state of Brandenburg. Other pathogens, in particular West Nile virus, are expected to emerge sooner or later in Germany as the virus is already circulating in neighboring countries, e.g. France, Austria and the Czech Republic. In upcoming years the risk for arbovirus transmission might increase in Germany due to increased occurrence of new so-called "invasive" mosquito species, such as the Asian bush mosquito Ochlerotatus japonicus or the Asian tiger mosquito Aedes albopictus. These invasive species are characterized by high vector competence for a broad range of pathogens and a preference for human blood meals. For risk assessment, a number of mosquito and pathogen surveillance projects have been initiated in Germany during the last few years; however, mosquito control strategies and plans of action have to be developed and put into place to allow early and efficient action against possible vector-borne epidemics. PMID:24781910

Becker, N; Krüger, A; Kuhn, C; Plenge-Bönig, A; Thomas, S M; Schmidt-Chanasit, J; Tannich, E

2014-05-01

11

Repellency of Volatile Oils from Plants against Three Mosquito Vectors  

Microsoft Academic Search

Volatile oils extracted by steam distillation from four plant species turmeric (Curcuma longa), kaffir lime (Citrus hystrix), citronella grass (Cymbopogon winterianus) and hairy basil (Ocimum americanum)), were evaluated in mosquito cages and in a large room for their repellency effects against three mosquito vectors, Aedes aegypti, Anopheles dirus and Culex quinquefasciatus. The oils from turmeric, citronella grass and hairy basil,

Apiwat Tawatsin; Steve D. Wratten; R. Roderic Scott; Usavadee Thavara; Yenchit Techadamrongsin

2004-01-01

12

Harnessing mosquito-Wolbachia symbiosis for vector and disease control.  

PubMed

Mosquito species, members of the genera Aedes, Anopheles and Culex, are the major vectors of human pathogens including protozoa (Plasmodium sp.), filariae and of a variety of viruses (causing dengue, chikungunya, yellow fever, West Nile). There is lack of efficient methods and tools to treat many of the diseases caused by these major human pathogens, since no efficient vaccines or drugs are available; even in malaria where insecticide use and drug therapies have reduced incidence, 219 million cases still occurred in 2010. Therefore efforts are currently focused on the control of vector populations. Insecticides alone are insufficient to control mosquito populations since reduced susceptibility and even resistance is being observed more and more frequently. There is also increased concern about the toxic effects of insecticides on non-target (even beneficial) insect populations, on humans and the environment. During recent years, the role of symbionts in the biology, ecology and evolution of insect species has been well-documented and has led to suggestions that they could potentially be used as tools to control pests and therefore diseases. Wolbachia is perhaps the most renowned insect symbiont, mainly due to its ability to manipulate insect reproduction and to interfere with major human pathogens thus providing new avenues for pest control. We herein present recent achievements in the field of mosquito-Wolbachia symbiosis with an emphasis on Aedes albopictus. We also discuss how Wolbachia symbiosis can be harnessed for vector control as well as the potential to combine the sterile insect technique and Wolbachia-based approaches for the enhancement of population suppression programs. PMID:24252486

Bourtzis, Kostas; Dobson, Stephen L; Xi, Zhiyong; Rasgon, Jason L; Calvitti, Maurizio; Moreira, Luciano A; Bossin, Hervé C; Moretti, Riccardo; Baton, Luke Anthony; Hughes, Grant L; Mavingui, Patrick; Gilles, Jeremie R L

2014-04-01

13

Vector Competence of New Zealand Mosquitoes for Selected Arboviruses  

PubMed Central

New Zealand (NZ) historically has been free of arboviral activity with the exception of Whataroa virus (Togaviridae: Alphavirus), which is established in bird populations and is transmitted by local mosquitoes. This naive situation is threatened by global warming, invasive mosquitoes, and tourism. To determine the threat of selected medically important arboviruses to NZ, vector competence assays were conducted using field collected endemic and introduced mosquito species. Four alphaviruses (Togaviridae): Barmah Forest virus, Chikungunya virus, Ross River virus, and Sindbis virus, and five flaviviruses (Flaviviridae): Dengue virus 2, Japanese encephalitis virus, Murray Valley encephalitis virus, West Nile virus, and Yellow fever virus were evaluated. Results indicate some NZ mosquito species are highly competent vectors of selected arboviruses, particularly alphaviruses, and may pose a threat were one of these arboviruses introduced at a time when the vector was prevalent and the climatic conditions favorable for virus transmission. PMID:21734146

Kramer, Laura D.; Chin, Pam; Cane, Rachel P.; Kauffman, Elizabeth B.; Mackereth, Graham

2011-01-01

14

Laboratory vector competence experiments with yellow fever virus and five South African mosquito species including Aedes aegypti  

Microsoft Academic Search

Three domestic and peridomestic mosquito species, selected because their prevalence, distribution and ecology favoured them as potential urban vectors of yellow fever (YF) in South Africa, were submitted to numerous tests for infectivity [measured as dose needed to infect 50% of the mosquitoes (MID50)], mainly with a Kenyan strain (BC7914) of the virus. Use of a Nigerian virus strain (TVP1617)

Peter G. Jupp; Alan Kemp

2002-01-01

15

Identification of Wolbachia Strains in Mosquito Disease Vectors  

PubMed Central

Wolbachia bacteria are common endosymbionts of insects, and some strains are known to protect their hosts against RNA viruses and other parasites. This has led to the suggestion that releasing Wolbachia-infected mosquitoes could prevent the transmission of arboviruses and other human parasites. We have identified Wolbachia in Kenyan populations of the yellow fever vector Aedes bromeliae and its relative Aedes metallicus, and in Mansonia uniformis and Mansonia africana, which are vectors of lymphatic filariasis. These Wolbachia strains cluster together on the bacterial phylogeny, and belong to bacterial clades that have recombined with other unrelated strains. These new Wolbachia strains may be affecting disease transmission rates of infected mosquito species, and could be transferred into other mosquito vectors as part of control programs. PMID:23185484

Osei-Poku, Jewelna; Han, Calvin; Mbogo, Charles M.; Jiggins, Francis M.

2012-01-01

16

Devising novel strategies against vector mosquitoes and house flies  

Technology Transfer Automated Retrieval System (TEKTRAN)

In 1932, the United States Department of Agriculture established an entomological research laboratory in Orlando, Florida. The initial focus of the program was on investigations of mosquitoes (including malaria vectors under conditions “simulating those of South Pacific jungles”) and other insects ...

17

Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes.  

PubMed

Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. PMID:25554792

Neafsey, Daniel E; Waterhouse, Robert M; Abai, Mohammad R; Aganezov, Sergey S; Alekseyev, Max A; Allen, James E; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W; Blandin, Stephanie A; Brockman, Andrew I; Burkot, Thomas R; Burt, Austin; Chan, Clara S; Chauve, Cedric; Chiu, Joanna C; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L M; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B; Guelbeogo, Wamdaogo M; Hall, Andrew B; Han, Mira V; Hlaing, Thaung; Hughes, Daniel S T; Jenkins, Adam M; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C; Kirmitzoglou, Ioannis K; Koekemoer, Lizette L; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K N; Lirakis, Manolis; Lobo, Neil F; Lowy, Ernesto; MacCallum, Robert M; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N; Moore, Wendy; Murphy, Katherine A; Naumenko, Anastasia N; Nolan, Tony; Novoa, Eva M; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A; Pakpour, Nazzy; Papathanos, Philippos A; Peery, Ashley N; Povelones, Michael; Prakash, Anil; Price, David P; Rajaraman, Ashok; Reimer, Lisa J; Rinker, David C; Rokas, Antonis; Russell, Tanya L; Sagnon, N'Fale; Sharakhova, Maria V; Shea, Terrance; Simão, Felipe A; Simard, Frederic; Slotman, Michel A; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J; Thomas, Gregg W C; Tojo, Marta; Topalis, Pantelis; Tubio, José M C; Unger, Maria F; Vontas, John; Walton, Catherine; Wilding, Craig S; Willis, Judith H; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K; Collins, Frank H; Cornman, Robert S; Crisanti, Andrea; Donnelly, Martin J; Emrich, Scott J; Fontaine, Michael C; Gelbart, William; Hahn, Matthew W; Hansen, Immo A; Howell, Paul I; Kafatos, Fotis C; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A T; Ribeiro, José M; Riehle, Michael A; Sharakhov, Igor V; Tu, Zhijian; Zwiebel, Laurence J; Besansky, Nora J

2015-01-01

18

Climatic and landscape correlates for potential West Nile virus mosquito vectors in the Seattle region.  

PubMed

Climatic and landscape patterns have been associated with both relative mosquito abundance and transmission of mosquito-borne illnesses in many parts of the world, especially warm and tropical climes. To determine if temperature, precipitation, or degree of urbanization were similarly important in the number of potential mosquito vectors for West Nile virus in the moderately temperate climate of western Washington, mosquitoes were collected using CDC carbon-dioxide/light traps set throughout the Seattle region during the summers of 2003 and 2004. The type and abundance of recovered species were compared to ecological correlates. Temperature and mosquito abundance were positively correlated, while precipitation was not strongly correlated with numbers of mosquitoes. Potential WNV mosquito vectors were most abundant in urban and suburban sites, including sites near communal roosts of American crows (Corvus brachyrhynchos). Exurban sites had the greatest vector species diversity, and Culex pipiens was the most abundant species throughout the region. PMID:17633422

Pecoraro, Heidi L; Day, Heather L; Reineke, Robert; Stevens, Nathan; Withey, John C; Marzluff, John M; Meschke, J Scott

2007-06-01

19

Eastern Equine Encephalitis Virus in Mosquitoes and Their Role as Bridge Vectors  

PubMed Central

Eastern equine encephalitis virus (EEEV) is maintained in an enzootic cycle involving Culiseta melanura mosquitoes and avian hosts. Other mosquito species that feed opportunistically on mammals have been incriminated as bridge vectors to humans and horses. To evaluate the capacity of these mosquitoes to acquire, replicate, and potentially transmit EEEV, we estimated the infection prevalence and virus titers in mosquitoes collected in Connecticut, USA, by cell culture, plaque titration, and quantitative reverse transcription–PCR. Cs. melanura mosquitoes were the predominant source of EEEV (83 [68%] of 122 virus isolations) and the only species to support consistently high virus titers required for efficient transmission. Our findings suggest that Cs. melanura mosquitoes are primary enzootic and epidemic vectors of EEEV in this region, which may explain the relative paucity of human cases. This study emphasizes the need for evaluating virus titers from field-collected mosquitoes to help assess their role as vectors. PMID:21122215

Andreadis, Theodore G.

2010-01-01

20

Eastern equine encephalitis virus in mosquitoes and their role as bridge vectors.  

PubMed

Eastern equine encephalitis virus (EEEV) is maintained in an enzootic cycle involving Culiseta melanura mosquitoes and avian hosts. Other mosquito species that feed opportunistically on mammals have been incriminated as bridge vectors to humans and horses. To evaluate the capacity of these mosquitoes to acquire, replicate, and potentially transmit EEEV, we estimated the infection prevalence and virus titers in mosquitoes collected in Connecticut, USA, by cell culture, plaque titration, and quantitative reverse transcription-PCR. Cs. melanura mosquitoes were the predominant source of EEEV (83 [68%] of 122 virus isolations) and the only species to support consistently high virus titers required for efficient transmission. Our findings suggest that Cs. melanura mosquitoes are primary enzootic and epidemic vectors of EEEV in this region, which may explain the relative paucity of human cases. This study emphasizes the need for evaluating virus titers from field-collected mosquitoes to help assess their role as vectors. PMID:21122215

Armstrong, Philip M; Andreadis, Theodore G

2010-12-01

21

New protective battle-dress impregnated against mosquito vector bites  

PubMed Central

Background Mixing repellent and organophosphate (OP) insecticides to better control pyrethroid resistant mosquito vectors is a promising strategy developed for bed net impregnation. Here, we investigated the opportunity to adapt this strategy to personal protection in the form of impregnated clothes. Methods We compared standard permethrin impregnated uniforms with uniforms manually impregnated with the repellent KBR3023 alone and in combination with an organophosphate, Pirimiphos-Methyl (PM). Tests were carried out with Aedes aegypti, the dengue fever vector, at dusk in experimental huts. Results Results showed that the personal protection provided by repellent KBR3023-impregnated uniforms is equal to permethrin treated uniforms and that KBR3023/PM-impregnated uniforms are more protective. Conclusion The use of repellents alone or combined with OP on clothes could be promising for personal protection of military troops and travellers if residual activity of the repellents is extended and safety is verified. PMID:20809969

2010-01-01

22

Quantifying the mosquito’s sweet tooth: modelling the effectiveness of attractive toxic sugar baits (ATSB) for malaria vector control  

PubMed Central

Background Current vector control strategies focus largely on indoor measures, such as long-lasting insecticide treated nets (LLINs) and indoor residual spraying (IRS); however mosquitoes frequently feed on sugar sources outdoors, inviting the possibility of novel control strategies. Attractive toxic sugar baits (ATSB), either sprayed on vegetation or provided in outdoor bait stations, have been shown to significantly reduce mosquito densities in these settings. Methods Simple models of mosquito sugar-feeding behaviour were fitted to data from an ATSB field trial in Mali and used to estimate sugar-feeding rates and the potential of ATSB to control mosquito populations. The model and fitted parameters were then incorporated into a larger integrated vector management (IVM) model to assess the potential contribution of ATSB to future IVM programmes. Results In the Mali experimental setting, the model suggests that about half of female mosquitoes fed on ATSB solution per day, dying within several hours of ingesting the toxin. Using a model incorporating the number of gonotrophic cycles completed by female mosquitoes, a higher sugar-feeding rate was estimated for younger mosquitoes than for older mosquitoes. Extending this model to incorporate other vector control interventions suggests that an IVM programme based on both ATSB and LLINs may substantially reduce mosquito density and survival rates in this setting, thereby substantially reducing parasite transmission. This is predicted to exceed the impact of LLINs in combination with IRS provided ATSB feeding rates are 50% or more of Mali experimental levels. In addition, ATSB is predicted to be particularly effective against Anopheles arabiensis, which is relatively exophilic and therefore less affected by IRS and LLINs. Conclusions These results suggest that high coverage with a combination of LLINs and ATSB could result in substantial reductions in malaria transmission in this setting. Further field studies of ATSB in other settings are needed to assess the potential of ATSB as a component in future IVM malaria control strategies. PMID:23968494

2013-01-01

23

Odorant receptor-mediated sperm activation in disease vector mosquitoes  

PubMed Central

Insects, such as the malaria vector mosquito, Anopheles gambiae, depend upon chemoreceptors to respond to volatiles emitted from a range of environmental sources, most notably blood meal hosts and oviposition sites. A subset of peripheral signaling pathways involved in these insect chemosensory-dependent behaviors requires the activity of heteromeric odorant receptor (OR) ion channel complexes and ligands for numerous A. gambiae ORs (AgOrs) have been identified. Although AgOrs are expressed in nonhead appendages, studies characterizing potential AgOr function in nonolfactory tissues have not been conducted. In the present study, we explore the possibility that AgOrs mediate responses of spermatozoa to endogenous signaling molecules in A. gambiae. In addition to finding AgOr transcript expression in testes, we show that the OR coreceptor, AgOrco, is localized to the flagella of A. gambiae spermatozoa where Orco-specific agonists, antagonists, and other odorant ligands robustly activate flagella beating in an Orco-dependent process. We also demonstrate Orco expression and Orco-mediated activation of spermatozoa in the yellow fever mosquito, Aedes aegypti. Moreover, we find Orco localization in testes across distinct insect taxa and posit that OR-mediated responses in spermatozoa may represent a general characteristic of insect reproduction and an example of convergent evolution. PMID:24550284

Pitts, R. Jason; Liu, Chao; Zhou, Xiaofan; Malpartida, Juan C.; Zwiebel, Laurence J.

2014-01-01

24

Odorant receptor-mediated sperm activation in disease vector mosquitoes.  

PubMed

Insects, such as the malaria vector mosquito, Anopheles gambiae, depend upon chemoreceptors to respond to volatiles emitted from a range of environmental sources, most notably blood meal hosts and oviposition sites. A subset of peripheral signaling pathways involved in these insect chemosensory-dependent behaviors requires the activity of heteromeric odorant receptor (OR) ion channel complexes and ligands for numerous A. gambiae ORs (AgOrs) have been identified. Although AgOrs are expressed in nonhead appendages, studies characterizing potential AgOr function in nonolfactory tissues have not been conducted. In the present study, we explore the possibility that AgOrs mediate responses of spermatozoa to endogenous signaling molecules in A. gambiae. In addition to finding AgOr transcript expression in testes, we show that the OR coreceptor, AgOrco, is localized to the flagella of A. gambiae spermatozoa where Orco-specific agonists, antagonists, and other odorant ligands robustly activate flagella beating in an Orco-dependent process. We also demonstrate Orco expression and Orco-mediated activation of spermatozoa in the yellow fever mosquito, Aedes aegypti. Moreover, we find Orco localization in testes across distinct insect taxa and posit that OR-mediated responses in spermatozoa may represent a general characteristic of insect reproduction and an example of convergent evolution. PMID:24550284

Pitts, R Jason; Liu, Chao; Zhou, Xiaofan; Malpartida, Juan C; Zwiebel, Laurence J

2014-02-18

25

MosquitoMap and the Mal-area calculator: new web tools to relate mosquito species distribution with vector borne disease  

PubMed Central

Background Mosquitoes are important vectors of diseases but, in spite of various mosquito faunistic surveys globally, there is a need for a spatial online database of mosquito collection data and distribution summaries. Such a resource could provide entomologists with the results of previous mosquito surveys, and vector disease control workers, preventative medicine practitioners, and health planners with information relating mosquito distribution to vector-borne disease risk. Results A web application called MosquitoMap was constructed comprising mosquito collection point data stored in an ArcGIS 9.3 Server/SQL geodatabase that includes administrative area and vector species x country lookup tables. In addition to the layer containing mosquito collection points, other map layers were made available including environmental, and vector and pathogen/disease distribution layers. An application within MosquitoMap called the Mal-area calculator (MAC) was constructed to quantify the area of overlap, for any area of interest, of vector, human, and disease distribution models. Data standards for mosquito records were developed for MosquitoMap. Conclusion MosquitoMap is a public domain web resource that maps and compares georeferenced mosquito collection points to other spatial information, in a geographical information system setting. The MAC quantifies the Mal-area, i.e. the area where it is theoretically possible for vector-borne disease transmission to occur, thus providing a useful decision tool where other disease information is limited. The Mal-area approach emphasizes the independent but cumulative contribution to disease risk of the vector species predicted present. MosquitoMap adds value to, and makes accessible, the results of past collecting efforts, as well as providing a template for other arthropod spatial databases. PMID:20167090

2010-01-01

26

Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors  

Microsoft Academic Search

BACKGROUND: Several observations support the hypothesis that vector-driven selection plays an important role in shaping dengue virus (DENV) genetic diversity. Clustering of DENV genetic diversity at a particular location may reflect underlying genetic structure of vector populations, which combined with specific vector genotype × virus genotype (G × G) interactions may promote adaptation of viral lineages to local mosquito vector

Louis Lambrechts; Christine Chevillon; Rebecca G Albright; Butsaya Thaisomboonsuk; Jason H Richardson; Richard G Jarman; Thomas W Scott

2009-01-01

27

Detection and Monitoring of Spatio-temporal Change in the Distribution of Mosquito Vector Populations  

Technology Transfer Automated Retrieval System (TEKTRAN)

Mosquitoes transmit blood-borne disease agents that cause morbidity and mortality in human and animal populations. Preemption of epidemics/epizootics of mosquito-borne disease is predicated on the timely and effective application of vector control. Such timing is decided on the basis of adult mosq...

28

Vector Competence of Australian Mosquitoes for Yellow Fever Virus  

PubMed Central

The vector competence of Australian mosquitoes for yellow fever virus (YFV) was evaluated. Infection and transmission rates in Cairns and Townsville populations of Aedes aegypti and a Brisbane strain of Ae. notoscriptus were not significantly different from a well-characterized YFV-susceptible strain of Ae. aegypti. After exposure to 107.2 tissue culture infectious dose (TCID50)/mL of an African strain of YFV, > 70% of Ae. aegypti and Ae. notoscriptus became infected, and > 50% transmitted the virus. When exposed to 106.7 TCID50/mL of a South American strain of YFV, the highest infection (64%) and transmission (56%) rates were observed in Ae. notoscriptus. The infection and transmission rates in the Cairns Ae. aegypti were both 24%, and they were 36% and 28%, respectively, for the Townsville population. Because competent vectors are present, the limited number of travelers from endemic areas and strict vaccination requirements will influence whether YFV transmission occurs in Australia. PMID:21896802

van den Hurk, Andrew F.; McElroy, Kate; Pyke, Alyssa T.; McGee, Charles E.; Hall-Mendelin, Sonja; Day, Andrew; Ryan, Peter A.; Ritchie, Scott A.; Vanlandingham, Dana L.; Higgs, Stephen

2011-01-01

29

Monitoring malaria vector control interventions: effectiveness of five different adult mosquito sampling methods.  

PubMed

Long-term success of ongoing malaria control efforts based on mosquito bed nets (long-lasting insecticidal net) and indoor residual spraying is dependent on continuous monitoring of mosquito vectors, and thus on effective mosquito sampling tools. The objective of our study was to identify the most efficient mosquito sampling tool(s) for routine vector surveillance for malaria and lymphatic filariasis transmission in coastal Kenya. We evaluated relative efficacy of five collection methods--light traps associated with a person sleeping under a net, pyrethrum spray catches, Prokopack aspirator, clay pots, and urine-baited traps--in four villages representing three ecological settings along the south coast of Kenya. Of the five methods, light traps were the most efficient for collecting female Anopheles gambiae s.l. (Giles) (Diptera: Culicidae) and Anopheles funestus (Giles) (Diptera: Culicidae) mosquitoes, whereas the Prokopack aspirator was most efficient in collecting Culex quinquefasciatus (Say) (Diptera: Culicidae) and other culicines. With the low vector densities here, and across much of sub-Saharan Africa, wherever malaria interventions, long-lasting insecticidal nets, and/or indoor residual spraying are in place, the use of a single mosquito collection method will not be sufficient to achieve a representative sample of mosquito population structure. Light traps will remain a relevant tool for host-seeking mosquitoes, especially in the absence of human landing catches. For a fair representation of the indoor mosquito population, light traps will have to be supplemented with aspirator use, which has potential for routine monitoring of indoor resting mosquitoes, and can substitute the more labor-intensive and intrusive pyrethrum spray catches. There are still no sufficiently efficient mosquito collection methods for sampling outdoor mosquitoes, particularly those that are bloodfed. PMID:24180120

Onyango, Shirley A; Kitron, Uriel; Mungai, Peter; Muchiri, Eric M; Kokwaro, Elizabeth; King, Charles H; Mutuku, Francis M

2013-09-01

30

Transmission of tularemia from a water source by transstadial maintenance in a mosquito vector  

PubMed Central

Mosquitoes are thought to function as mechanical vectors of Francisella tularensis subspecies holarctica (F. t. holarctica) causing tularemia in humans. We investigated the clinical relevance of transstadially maintained F. t. holarctica in mosquitoes. Aedes egypti larvae exposed to a fully virulent F. t. holarctica strain for 24?hours, were allowed to develop into adults when they were individually homogenized. Approximately 24% of the homogenates tested positive for F. t. DNA in PCR. Mice injected with the mosquito homogenates acquired tularemia within 5 days. This novel finding demonstrates the possibility of transmission of bacteria by adult mosquitoes having acquired the pathogen from their aquatic larval habitats. PMID:25609657

Bäckman, Stina; Näslund, Jonas; Forsman, Mats; Thelaus, Johanna

2015-01-01

31

Transmission of tularemia from a water source by transstadial maintenance in a mosquito vector  

NASA Astrophysics Data System (ADS)

Mosquitoes are thought to function as mechanical vectors of Francisella tularensis subspecies holarctica (F. t. holarctica) causing tularemia in humans. We investigated the clinical relevance of transstadially maintained F. t. holarctica in mosquitoes. Aedes egypti larvae exposed to a fully virulent F. t. holarctica strain for 24 hours, were allowed to develop into adults when they were individually homogenized. Approximately 24% of the homogenates tested positive for F. t. DNA in PCR. Mice injected with the mosquito homogenates acquired tularemia within 5 days. This novel finding demonstrates the possibility of transmission of bacteria by adult mosquitoes having acquired the pathogen from their aquatic larval habitats.

Bäckman, Stina; Näslund, Jonas; Forsman, Mats; Thelaus, Johanna

2015-01-01

32

Interspecific transfer of Wolbachia into the mosquito disease vector Aedes albopictus  

E-print Network

-induced CI has attracted interest as a potential agent for affecting medically important disease vectors important mosquito. Using embryonic microinjection, Wolbachia is transferred from Drosophila simulans strategies. Keywords: Wolbachia; Aedes albopictus; Drosophila; cytoplasmic incompatibility 1. INTRODUCTION

Dobson, Stephen L.

33

Climate-based models for West Nile Culex mosquito vectors in the Northeastern US  

NASA Astrophysics Data System (ADS)

Climate-based models simulating Culex mosquito population abundance in the Northeastern US were developed. Two West Nile vector species, Culex pipiens and Culex restuans, were included in model simulations. The model was optimized by a parameter-space search within biological bounds. Mosquito population dynamics were driven by major environmental factors including temperature, rainfall, evaporation rate and photoperiod. The results show a strong correlation between the timing of early population increases (as early warning of West Nile virus risk) and decreases in late summer. Simulated abundance was highly correlated with actual mosquito capture in New Jersey light traps and validated with field data. This climate-based model simulates the population dynamics of both the adult and immature mosquito life stage of Culex arbovirus vectors in the Northeastern US. It is expected to have direct and practical application for mosquito control and West Nile prevention programs.

Gong, Hongfei; Degaetano, Arthur T.; Harrington, Laura C.

2011-05-01

34

Mosquito genomics. Extensive introgression in a malaria vector species complex revealed by phylogenomics.  

PubMed

Introgressive hybridization is now recognized as a widespread phenomenon, but its role in evolution remains contested. Here, we use newly available reference genome assemblies to investigate phylogenetic relationships and introgression in a medically important group of Afrotropical mosquito sibling species. We have identified the correct species branching order to resolve a contentious phylogeny and show that lineages leading to the principal vectors of human malaria were among the first to split. Pervasive autosomal introgression between these malaria vectors means that only a small fraction of the genome, mainly on the X chromosome, has not crossed species boundaries. Our results suggest that traits enhancing vectorial capacity may be gained through interspecific gene flow, including between nonsister species. PMID:25431491

Fontaine, Michael C; Pease, James B; Steele, Aaron; Waterhouse, Robert M; Neafsey, Daniel E; Sharakhov, Igor V; Jiang, Xiaofang; Hall, Andrew B; Catteruccia, Flaminia; Kakani, Evdoxia; Mitchell, Sara N; Wu, Yi-Chieh; Smith, Hilary A; Love, R Rebecca; Lawniczak, Mara K; Slotman, Michel A; Emrich, Scott J; Hahn, Matthew W; Besansky, Nora J

2015-01-01

35

Comparative Genomic Analysis of Drosophila melanogaster and Vector Mosquito Developmental Genes  

PubMed Central

Genome sequencing projects have presented the opportunity for analysis of developmental genes in three vector mosquito species: Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A comparative genomic analysis of developmental genes in Drosophila melanogaster and these three important vectors of human disease was performed in this investigation. While the study was comprehensive, special emphasis centered on genes that 1) are components of developmental signaling pathways, 2) regulate fundamental developmental processes, 3) are critical for the development of tissues of vector importance, 4) function in developmental processes known to have diverged within insects, and 5) encode microRNAs (miRNAs) that regulate developmental transcripts in Drosophila. While most fruit fly developmental genes are conserved in the three vector mosquito species, several genes known to be critical for Drosophila development were not identified in one or more mosquito genomes. In other cases, mosquito lineage-specific gene gains with respect to D. melanogaster were noted. Sequence analyses also revealed that numerous repetitive sequences are a common structural feature of Drosophila and mosquito developmental genes. Finally, analysis of predicted miRNA binding sites in fruit fly and mosquito developmental genes suggests that the repertoire of developmental genes targeted by miRNAs is species-specific. The results of this study provide insight into the evolution of developmental genes and processes in dipterans and other arthropods, serve as a resource for those pursuing analysis of mosquito development, and will promote the design and refinement of functional analysis experiments. PMID:21754989

Behura, Susanta K.; Haugen, Morgan; Flannery, Ellen; Sarro, Joseph; Tessier, Charles R.; Severson, David W.; Duman-Scheel, Molly

2011-01-01

36

Rapid selection against arbovirus-induced apoptosis during infection of a mosquito vector.  

PubMed

Millions of people are infected each year by arboviruses (arthropod-borne viruses) such as chikungunya, dengue, and West Nile viruses, yet for reasons that are largely unknown, only a relatively small number of mosquito species are able to transmit arboviruses. Understanding the complex factors that determine vector competence could facilitate strategies for controlling arbovirus infections. Apoptosis is a potential antiviral defense response that has been shown to be important in other virus-host systems. However, apoptosis is rarely seen in arbovirus-infected mosquito cells, raising questions about its importance as an antiviral defense in mosquitoes. We tested the effect of stimulating apoptosis during arbovirus infection by infecting Aedes aegypti mosquitoes with a Sindbis virus (SINV) clone called MRE/Rpr, in which the MRE-16 strain of SINV was engineered to express the proapoptotic gene reaper from Drosophila. MRE/Rpr exhibited an impaired infection phenotype that included delayed midgut infection, delayed virus replication, and reduced virus accumulation in saliva. Nucleotide sequencing of the reaper insert in virus populations isolated from individual mosquitoes revealed evidence of rapid and strong selection against maintenance of Reaper expression in MRE/Rpr-infected mosquitoes. The impaired phenotype of MRE/Rpr, coupled with the observed negative selection against Reaper expression, indicates that apoptosis is a powerful defense against arbovirus infection in mosquitoes and suggests that arboviruses have evolved mechanisms to avoid stimulating apoptosis in mosquitoes that serve as vectors. PMID:25713358

O'Neill, Katelyn; Olson, Bradley J S C; Huang, Ning; Unis, Dave; Clem, Rollie J

2015-03-10

37

RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti  

Microsoft Academic Search

BACKGROUND: Hematophagy is a common trait of insect vectors of disease. Extensive genome-wide transcriptional changes occur in mosquitoes after blood meals, and these are related to digestive and reproductive processes, among others. Studies of these changes are expected to reveal molecular targets for novel vector control and pathogen transmission-blocking strategies. The mosquito Aedes aegypti (Diptera, Culicidae), a vector of Dengue

Mariangela Bonizzoni; W Augustine Dunn; Corey L Campbell; Ken E Olson; Michelle T Dimon; Osvaldo Marinotti; Anthony A James

2011-01-01

38

Heritability and adaptive phenotypic plasticity of adult body size in the mosquito Aedes aegypti with implications for dengue vector competence  

E-print Network

individual life stages to heterogeneous and often stressful environmental conditions. The yellow fever and dengue fever vector mosquito, Aedes aegypti, typically breeds in small water-filled containers

Severson, David

39

Comparative Genomic Analysis of Drosophila melanogaster and Vector Mosquito Developmental Genes  

Microsoft Academic Search

Genome sequencing projects have presented the opportunity for analysis of developmental genes in three vector mosquito species: Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A comparative genomic analysis of developmental genes in Drosophila melanogaster and these three important vectors of human disease was performed in this investigation. While the study was comprehensive, special emphasis centered on genes that 1) are

Susanta K. Behura; Morgan Haugen; Ellen Flannery; Joseph Sarro; Charles R. Tessier; David W. Severson; Molly Duman-Scheel

2011-01-01

40

Repellent, Irritant and Toxic Effects of 20 Plant Extracts on Adults of the Malaria Vector Anopheles gambiae Mosquito  

PubMed Central

Pyrethroid insecticides induce an excito-repellent effect that reduces contact between humans and mosquitoes. Insecticide use is expected to lower the risk of pathogen transmission, particularly when impregnated on long-lasting treated bednets. When applied at low doses, pyrethroids have a toxic effect, however the development of pyrethroid resistance in several mosquito species may jeopardize these beneficial effects. The need to find additional compounds, either to kill disease-carrying mosquitoes or to prevent mosquito contact with humans, therefore arises. In laboratory conditions, the effects (i.e., repellent, irritant and toxic) of 20 plant extracts, mainly essential oils, were assessed on adults of Anopheles gambiae, a primary vector of malaria. Their effects were compared to those of DEET and permethrin, used as positive controls. Most plant extracts had irritant, repellent and/or toxic effects on An. gambiae adults. The most promising extracts, i.e. those combining the three types of effects, were from Cymbopogon winterianus, Cinnamomum zeylanicum and Thymus vulgaris. The irritant, repellent and toxic effects occurred apparently independently of each other, and the behavioural response of adult An. gambiae was significantly influenced by the concentration of the plant extracts. Mechanisms underlying repellency might, therefore, differ from those underlying irritancy and toxicity. The utility of the efficient plant extracts for vector control as an alternative to pyrethroids may thus be envisaged. PMID:24376515

Deletre, Emilie; Martin, Thibaud; Campagne, Pascal; Bourguet, Denis; Cadin, Andy; Menut, Chantal; Bonafos, Romain; Chandre, Fabrice

2013-01-01

41

Efficacy of mosquito traps for collecting potential West Nile mosquito vectors in a natural Mediterranean wetland.  

PubMed

Surveillance, research, and control of mosquito-borne diseases such as West Nile virus require efficient methods for sampling mosquitoes. We compared the efficacy of BG-Sentinel and Centers for Disease Control and Prevention (CDC)-CO(2) traps in terms of the abundances of host-seeking and blood-fed female mosquitoes and the origin of mosquito bloodmeals. Our results indicate that BG-Sentinel traps that use CO(2) and attractants are as effective as CDC-CO(2) traps for Culex mosquito species, Ochlerotatus caspius, and they are also highly efficient at capturing Anopheles atroparvus host-seeking and blood-fed females with or without CO(2). The CDC-CO(2) trap is the least efficient method for capturing blood-fed females. BG-Sentinel traps with attractants and CO(2) were significantly better at capturing mosquitoes that had fed on mammals than the unbaited BG-Sentinel and CDC-CO(2) traps in the cases of An. atroparvus and Cx. theileri. These results may help researchers to optimize trapping methods by obtaining greater sample sizes and saving time and money. PMID:22492149

Roiz, David; Roussel, Marion; Muñoz, Joaquin; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi

2012-04-01

42

Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection  

PubMed Central

The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission. PMID:22693451

Boissière, Anne; Tchioffo, Majoline T.; Bachar, Dipankar; Abate, Luc; Marie, Alexandra; Nsango, Sandrine E.; Shahbazkia, Hamid R.; Awono-Ambene, Parfait H.; Levashina, Elena A.; Christen, Richard; Morlais, Isabelle

2012-01-01

43

Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection.  

PubMed

The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission. PMID:22693451

Boissière, Anne; Tchioffo, Majoline T; Bachar, Dipankar; Abate, Luc; Marie, Alexandra; Nsango, Sandrine E; Shahbazkia, Hamid R; Awono-Ambene, Parfait H; Levashina, Elena A; Christen, Richard; Morlais, Isabelle

2012-01-01

44

Spatial autocorrelation of West Nile virus vector mosquito abundance in a seasonally wet suburban environment  

Microsoft Academic Search

The objective of this study is to quantify and model spatial dependence in mosquito vector populations and develop predictions\\u000a for unsampled locations using geostatistics. Mosquito control program trap sites are often located too far apart to detect\\u000a spatial dependence but the results show that integration of spatial data over time for Cx. pipiens-restuans and according to meteorological conditions for Ae.

P. R. Trawinski; D. S. Mackay

2009-01-01

45

Mosquito PlasmodiumInteractions in Response to Immune Activation of the Vector  

Microsoft Academic Search

Lowenberger, C. A., Kamal, S., Chiles, J., Paskewitz, S., Bulet, P., Hoffmann, J. A., and Christensen, B. M. 1999. Mosquito-Plasmodiuminteractions in response to immune activation of the vector.Experimental Parasitology91,59–69. During the development ofPlasmodiumsp. within the mosquito midgut, the parasite undergoes a series of developmental changes. The elongated ookinete migrates through the layers of the midgut where it forms the oocyst

Carl A. Lowenberger; Sofie Kamal; Jody Chiles; Susan Paskewitz; Philippe Bulet; Jules A. Hoffmann; Bruce M. Christensen

1999-01-01

46

First report of the infection of insecticide-resistant malaria vector mosquitoes with an entomopathogenic fungus under field conditions  

Microsoft Academic Search

BACKGROUND: Insecticide-resistant mosquitoes are compromising the ability of current mosquito control tools to control malaria vectors. A proposed new approach for mosquito control is to use entomopathogenic fungi. These fungi have been shown to be lethal to both insecticide-susceptible and insecticide-resistant mosquitoes under laboratory conditions. The goal of this study was to see whether entomopathogenic fungi could be used to

Annabel FV Howard; Raphael N’Guessan; Constantianus JM Koenraadt; Alex Asidi; Marit Farenhorst; Martin Akogbéto; Bart GJ Knols; Willem Takken

2011-01-01

47

Potential impacts of climate change on the ecology of dengue and its mosquito vector the Asian tiger mosquito (Aedes albopictus)  

NASA Astrophysics Data System (ADS)

Shifts in temperature and precipitation patterns caused by global climate change may have profound impacts on the ecology of certain infectious diseases. We examine the potential impacts of climate change on the transmission and maintenance dynamics of dengue, a resurging mosquito-vectored infectious disease. In particular, we project changes in dengue season length for three cities: Atlanta, GA; Chicago, IL and Lubbock, TX. These cities are located on the edges of the range of the Asian tiger mosquito within the United States of America and were chosen as test cases. We use a disease model that explicitly incorporates mosquito population dynamics and high-resolution climate projections. Based on projected changes under the Special Report on Emissions Scenarios (SRES) A1fi (higher) and B1 (lower) emission scenarios as simulated by four global climate models, we found that the projected warming shortened mosquito lifespan, which in turn decreased the potential dengue season. These results illustrate the difficulty in predicting how climate change may alter complex systems.

Erickson, R. A.; Hayhoe, K.; Presley, S. M.; Allen, L. J. S.; Long, K. R.; Cox, S. B.

2012-09-01

48

Chitosan/Interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae.  

PubMed

Vector mosquitoes inflict more human suffering than any other organism-and kill more than one million people each year. The mosquito genome projects facilitated research in new facets of mosquito biology, including functional genetic studies in the primary African malaria vector Anopheles gambiae and the dengue and yellow fever vector Aedes aegypti. RNA interference- (RNAi-) mediated gene silencing has been used to target genes of interest in both of these disease vector mosquito species. Here, we describe a procedure for preparation of chitosan/interfering RNA nanoparticles that are combined with food and ingested by larvae. This technically straightforward, high-throughput, and relatively inexpensive methodology, which is compatible with long double stranded RNA (dsRNA) or small interfering RNA (siRNA) molecules, has been used for the successful knockdown of a number of different genes in A. gambiae and A. aegypti larvae. Following larval feedings, knockdown, which is verified through qRT-PCR or in situ hybridization, can persist at least through the late pupal stage. This methodology may be applicable to a wide variety of mosquito and other insect species, including agricultural pests, as well as other non-model organisms. In addition to its utility in the research laboratory, in the future, chitosan, an inexpensive, non-toxic and biodegradable polymer, could potentially be utilized in the field. PMID:25867635

Zhang, Xin; Mysore, Keshava; Flannery, Ellen; Michel, Kristin; Severson, David W; Zhu, Kun Yan; Duman-Scheel, Molly

2015-01-01

49

Host Feeding Patterns of Established and Potential Mosquito Vectors of West Nile Virus in the Eastern United States  

PubMed Central

An important variable in determining the vectorial capacity of mosquito species for arthropod-borne infections is the degree of contact of the vector and the vertebrate reservoir. This parameter can be estimated by examining the host-feeding habits of vectors. Serological and polymerase chain reaction based methods have been used to study the host-feedings patterns of 21 mosquito species from New York, New Jersey, and Tennessee, 19 of which previously have been found infected with West Nile virus. Mammalophilic mosquito species in New Jersey and New York fed primarily upon white-tailed deer, while those from Memphis, Tennessee, fed mainly upon domestic dogs. A total of 24 different avian host species were detected among the avian-derived blood meals. American Robin, Northern Cardinal, Northern Mockingbird, Tufted Titmouse, and Brown-headed Cowbird were common avian hosts, while blood meals derived from the American Crow were relatively rare. Although the majority of common host species were potentially among the most abundant birds at each location, the proportion of blood meals from the most commonly fed upon avian species was greater than was predicted based upon the likely abundance of these species alone. These findings suggest that vector species for West Nile virus may preferentially feed upon certain avian hosts. PMID:15018775

APPERSON, CHARLES S.; HASSAN, HASSAN K.; HARRISON, BRUCE A.; SAVAGE, HARRY M.; ASPEN, STEPHEN E.; FARAJOLLAHI, ARY; CRANS, WAYNE; DANIELS, THOMAS J.; FALCO, RICHARD C.; BENEDICT, MARK; ANDERSON, MICHAEL; McMILLEN, LARRY; UNNASCH, THOMAS R.

2008-01-01

50

Evidence for regular ongoing introductions of mosquito disease vectors into the Galápagos Islands  

PubMed Central

Wildlife on isolated oceanic islands is highly susceptible to the introduction of pathogens. The recent establishment in the Galápagos Islands of the mosquito Culex quinquefasciatus, a vector for diseases such as avian malaria and West Nile fever, is considered a serious risk factor for the archipelago's endemic fauna. Here we present evidence from the monitoring of aeroplanes and genetic analysis that C. quinquefasciatus is regularly introduced via aircraft into the Galápagos Archipelago. Genetic population structure and admixture analysis demonstrates that these mosquitoes breed with, and integrate successfully into, already-established populations of C. quinquefasciatus in the Galápagos, and that there is ongoing movement of mosquitoes between islands. Tourist cruise boats and inter-island boat services are the most likely mechanism for transporting Culex mosquitoes between islands. Such anthropogenic mosquito movements increase the risk of the introduction of mosquito-borne diseases novel to Galápagos and their subsequent widespread dissemination across the archipelago. Failure to implement and maintain measures to prevent the human-assisted transport of mosquitoes to and among the islands could have catastrophic consequences for the endemic wildlife of Galápagos. PMID:19675009

Bataille, Arnaud; Cunningham, Andrew A.; Cedeño, Virna; Cruz, Marilyn; Eastwood, Gillian; Fonseca, Dina M.; Causton, Charlotte E.; Azuero, Ronal; Loayza, Jose; Martinez, Jose D. Cruz; Goodman, Simon J.

2009-01-01

51

Vertebrate attenuated West Nile virus mutants have differing effects on vector competence in Culex tarsalis mosquitoes  

PubMed Central

Previous mutational analyses of naturally occurring West Nile virus (WNV) strains and engineered mutant WNV strains have identified locations in the viral genome that can have profound phenotypic effect on viral infectivity, temperature sensitivity and neuroinvasiveness. We chose six mutant WNV strains to evaluate for vector competence in the natural WNV vector Culex tarsalis, two of which contain multiple ablations of glycosylation sites in the envelope and NS1 proteins; three of which contain mutations in the NS4B protein and an attenuated natural bird isolate (Bird 1153) harbouring an NS4B mutation. Despite vertebrate attenuation, all NS4B mutant viruses displayed enhanced vector competence by Cx. tarsalis. Non-glycosylated mutant viruses displayed decreased vector competence in Cx. tarsalis mosquitoes, particularly when all three NS1 glycosylation sites were abolished. These results indicate the importance of both the NS4B protein and NS1 glycosylation in the transmission of WNV by a significant mosquito vector. PMID:23303828

Van Slyke, Greta A.; Jia, Yongqing; Whiteman, Melissa C.; Wicker, Jason A.; Barrett, Alan D. T.

2013-01-01

52

Vector–Host Interactions in Avian Nests: Do Mosquitoes Prefer Nestlings over Adults?  

PubMed Central

The hypothesis that nestlings are a significant driver of arbovirus transmission and amplification is based upon findings that suggest nestlings are highly susceptible to being fed upon by vector mosquitoes and to viral infection and replication. Several previous studies have suggested that nestlings are preferentially fed upon relative to adults in the nest, and other studies have reported a preference for adults over nestlings. We directly tested the feeding preference of nestling and adult birds in a natural setting, introducing mosquitoes into nesting boxes containing eastern bluebirds (Sialia sialis), collecting blood-fed mosquitoes, and matching the source of mosquito blood meals to individual birds using microsatellite markers. Neither nestlings nor adults were fed upon to an extent significantly greater than would be predicted based upon their relative abundance in the nests, although feeding upon mothers decreased as the age of the nestlings increased. PMID:20682889

Burkett-Cadena, Nathan D.; Ligon, Russell A.; Liu, Mark; Hassan, Hassan K.; Hill, Geoffrey E.; Eubanks, Micky D.; Unnasch, Thomas R.

2010-01-01

53

Vector-host interactions in avian nests: do mosquitoes prefer nestlings over adults?  

PubMed

The hypothesis that nestlings are a significant driver of arbovirus transmission and amplification is based upon findings that suggest nestlings are highly susceptible to being fed upon by vector mosquitoes and to viral infection and replication. Several previous studies have suggested that nestlings are preferentially fed upon relative to adults in the nest, and other studies have reported a preference for adults over nestlings. We directly tested the feeding preference of nestling and adult birds in a natural setting, introducing mosquitoes into nesting boxes containing eastern bluebirds (Sialia sialis), collecting blood-fed mosquitoes, and matching the source of mosquito blood meals to individual birds using microsatellite markers. Neither nestlings nor adults were fed upon to an extent significantly greater than would be predicted based upon their relative abundance in the nests, although feeding upon mothers decreased as the age of the nestlings increased. PMID:20682889

Burkett-Cadena, Nathan D; Ligon, Russell A; Liu, Mark; Hassan, Hassan K; Hill, Geoffrey E; Eubanks, Micky D; Unnasch, Thomas R

2010-08-01

54

The Effective Population Size of Malaria Mosquitoes: Large Impact of Vector Control  

PubMed Central

Malaria vectors in sub-Saharan Africa have proven themselves very difficult adversaries in the global struggle against malaria. Decades of anti-vector interventions have yielded mixed results—with successful reductions in transmission in some areas and limited impacts in others. These varying successes can be ascribed to a lack of universally effective vector control tools, as well as the development of insecticide resistance in mosquito populations. Understanding the impact of vector control on mosquito populations is crucial for planning new interventions and evaluating existing ones. However, estimates of population size changes in response to control efforts are often inaccurate because of limitations and biases in collection methods. Attempts to evaluate the impact of vector control on mosquito effective population size (Ne) have produced inconclusive results thus far. Therefore, we obtained data for 13–15 microsatellite markers for more than 1,500 mosquitoes representing multiple time points for seven populations of three important vector species—Anopheles gambiae, An. melas, and An. moucheti—in Equatorial Guinea. These populations were exposed to indoor residual spraying or long-lasting insecticidal nets in recent years. For comparison, we also analyzed data from two populations that have no history of organized vector control. We used Approximate Bayesian Computation to reconstruct their demographic history, allowing us to evaluate the impact of these interventions on the effective population size. In six of the seven study populations, vector control had a dramatic impact on the effective population size, reducing Ne between 55%–87%, the exception being a single An. melas population. In contrast, the two negative control populations did not experience a reduction in effective population size. This study is the first to conclusively link anti-vector intervention programs in Africa to sharply reduced effective population sizes of malaria vectors. PMID:23271973

Athrey, Giridhar; Hodges, Theresa K.; Reddy, Michael R.; Overgaard, Hans J.; Matias, Abrahan; Ridl, Frances C.; Kleinschmidt, Immo; Caccone, Adalgisa; Slotman, Michel A.

2012-01-01

55

Mosquitoes  

NSDL National Science Digital Library

This tutorial is part of a series of entomological tutorials and covers the general biology and ecology of mosquitoes. The tutorial has 100 questions (50 in each of 2 tutorials); incorrect answers lead to additional information describing the correct answers. Covers all mosquito genera and their habitats, identification, life cycle, biology, and economic importance. Requires Windows. MAC is not supported. The cost for the tutorial CD is $15.

0000-00-00

56

Man Bites Mosquito: Understanding the Contribution of Human Movement to Vector-Borne Disease Dynamics  

PubMed Central

In metropolitan areas people travel frequently and extensively but often in highly structured commuting patterns. We investigate the role of this type of human movement in the epidemiology of vector-borne pathogens such as dengue. Analysis is based on a metapopulation model where mobile humans connect static mosquito subpopulations. We find that, due to frequency dependent biting, infection incidence in the human and mosquito populations is almost independent of the duration of contact. If the mosquito population is not uniformly distributed between patches the transmission potential of the pathogen at the metapopulation level, as summarized by the basic reproductive number, is determined by the size of the largest subpopulation and reduced by stronger connectivity. Global extinction of the pathogen is less likely when increased human movement enhances the rescue effect but, in contrast to classical theory, it is not minimized at an intermediate level of connectivity. We conclude that hubs and reservoirs of infection can be places people visit frequently but briefly and the relative importance of human and mosquito populations in maintaining the pathogen depends on the distribution of the mosquito population and the variability in human travel patterns. These results offer an insight in to the paradoxical observation of resurgent urban vector-borne disease despite increased investment in vector control and suggest that successful public health intervention may require a dual approach. Prospective studies can be used to identify areas with large mosquito populations that are also visited by a large fraction of the human population. Retrospective studies can be used to map recent movements of infected people, pinpointing the mosquito subpopulation from which they acquired the infection and others to which they may have transmitted it. PMID:19707544

Adams, Ben; Kapan, Durrell D.

2009-01-01

57

Cytochrome B Analysis of Mosquito Blood Meals: Identifying Wildlife Hosts of West Nile Virus Mosquito Vectors in Wyoming, USA  

Technology Transfer Automated Retrieval System (TEKTRAN)

Female mosquitoes commonly exhibit patterns of blood feeding from vertebrate hosts, a behavior that strongly influences mosquito pathogen infection and transmission. The vertebrate host dynamics of the mosquito transmitted arbovirus, West Nile virus (family Flaviviridae, genus Flavivirus, WNV) in sa...

58

Efficacy of extracts of Bacillus thuringiensis israelensis for the control of mosquito vectors.  

Technology Transfer Automated Retrieval System (TEKTRAN)

More than 1 million human cases of Chikungunya were recently reported in India. Aedes aegypti (the yellow fever mosquito) is an important disease vector in India where it transmits Chikungunya, dengue, and yellow fever viruses to humans. In this study, scientists from Bharathiar University in Coim...

59

Mosquito vector biology and control in Latin America - a 20TH symposium  

Technology Transfer Automated Retrieval System (TEKTRAN)

The 20th Annual Latin American symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 76th Annual Meeting in Lexington, KY in March 2010. The principal objective, as for the previous 19 symposia, was to promote participation in the AMCA by vector control spec...

60

MOSQUITO VECTOR CONTROL AND BIOLOGY IN LATIN AMERICA - A 16TH SYMPOSIUM  

Technology Transfer Automated Retrieval System (TEKTRAN)

The 16th Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 72nd Annual Meeting in Detroit, Michigan in February 2006. The principal objective, as for the previous 15 symposia, was to promote participation in the AMCA by vector cont...

61

Mosquito vector biology and control in Latin America - A 21st symposium  

Technology Transfer Automated Retrieval System (TEKTRAN)

The 21st Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 77th Annual Meeting in Anaheim, CA in March 2011. The principal objective, as for the previous 20 symposia, was to promote participation in the AMCA by vector control specia...

62

MOSQUITO VECTOR CONTROL AND BIOLOGY IN LATIN AMERICA - A 19TH SYMPOSIUM  

Technology Transfer Automated Retrieval System (TEKTRAN)

The 19th Annual Latin American symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 75th Annual Meeting in New Orleans, LA, in April 2009. The principal objective, as for the previous 18 symposia, was to promote participation in the AMCA by vector control s...

63

Using global information technology to detect, monitor, and control mosquito pest and disease vector populations.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Geographic Information Systems (GIS), image analysis, and remote sensing comprise global information technologies that are used to characterize pest and vector populations of mosquitoes. At this national meeting, scientists from ARS and McNeese State University organized and convened a half-day sym...

64

MOSQUITO VECTOR CONTROL AND BIOLOGY IN LATIN AMERICA- An 18TH SYMPOSIUM  

Technology Transfer Automated Retrieval System (TEKTRAN)

The 18th Annual Latin American symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 74th Annual Meeting in Sparks, NV, in March 2008. The principal objective, as for the previous 17 symposia, was to promote participation in the AMCA by vector control speci...

65

Mosquito Vector Control and Biology in Latin America - A 17th Symposium  

Technology Transfer Automated Retrieval System (TEKTRAN)

The 17th Annual Latin America American symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 73rd Annual Meeting in Orlando, FL, in April 2007. The principal objective, as for the previous 16 symposia, was to promote participation in the AMCA by vector cont...

66

CURRENT STATUS OF THE MOSQUITO BACULOVIRUS CUNINPV FOR CONTROL OF CULEX VECTORS OF ENCEPHALITIS  

Technology Transfer Automated Retrieval System (TEKTRAN)

Baculoviruses have been intensively investigated due to their potential as biological control agents for insects and because of their importance as gene expression vectors. Mosquito baculoviruses have been difficult if not impossible to transmit and therefore basic biological studies have been hind...

67

Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa  

Microsoft Academic Search

BACKGROUND: The mosquito vectors of Plasmodium spp. have largely been overlooked in studies of ecology and evolution of avian malaria and other vertebrates in wildlife. METHODS: Plasmodium DNA from wild-caught Coquillettidia spp. collected from lowland forests in Cameroon was isolated and sequenced using nested PCR. Female Coquillettidia aurites were also dissected and salivary glands were isolated and microscopically examined for

Kevin Y Njabo; Anthony J Cornel; Ravinder NM Sehgal; Claire Loiseau; Wolfgang Buermann; Ryan J Harrigan; John Pollinger; Gediminas Valki?nas; Thomas B Smith

2009-01-01

68

Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea  

Microsoft Academic Search

Background  Indoor-based anti-vector interventions remain the preferred means of reducing risk of malaria transmission in malaria endemic\\u000a areas around the world. Despite demonstrated success in reducing human-mosquito interactions, these methods are effective\\u000a solely against endophilic vectors. It may be that outdoor locations serve as an important venue of host seeking by Anopheles gambiae sensu lato (s.l.) mosquitoes where indoor vector suppression

Michael R Reddy; Hans J Overgaard; Simon Abaga; Vamsi P Reddy; Adalgisa Caccone; Anthony E Kiszewski; Michel A Slotman

2011-01-01

69

[Four species of mosquito as possible vectors for Dirofilaria immitis piedmont rice-fields].  

PubMed

Wild mosquitoes were allowed to feed, during two nights, on a heartworm-infected dog with a very high microfilaraemia (72,000 and 78,000 microfilariae/ml just prior to be allocated in the live trap). A heartworm-free dog was used as control bait in the second night. Engorged mosquitoes (Aedes caspius, Anopheles maculipennis s.l., Culex modestus, and Cx pipiens) were kept under laboratory conditions, artificially fed until day 10 post-infection (PI) and then dissected for the presence of Dirofilaria immitis larvae. Mortality of Ae. caspius and Cx modestus was significantly higher than controls on day 3 PI (89.4 and 80.3%, respectively), but survival rates were similar in the following period. Third-stage larvae were observed from day 12 to 17 PI in the four mosquito species studied. However, vector efficiency was significantly higher in Ae. caspius which produced 102 (73.9%) of the 138 infective larvae found. Although less efficient vectors, the other 3 species may contribute to D. immitis transmission in the study area due to their abundance (Cx modestus) or higher resistance to the negative effects of infection (An. maculipennis s.l., Cx pipiens). As far as Cx pipiens is concerned, this mosquito, which luckily fed the least frequently on the dog, confirmed to act as powerful vector in iperendemic areas. The risks for veterinary and medical health, related to the zoo-antropophylic host-feeding pattern of the studied species, are discussed. PMID:10870556

Rossi, L; Pollono, F; Meneguz, P G; Cancrini, G

1999-12-01

70

Mosquitoes as a Potential Vector of Ranavirus Transmission in Terrestrial Turtles.  

PubMed

Ranaviruses are significant pathogens of amphibians, reptiles, and fishes, contributing to mass mortality events worldwide. Despite an increasing focus on ranavirus ecology, our understanding of ranavirus transmission, especially among reptilian hosts, remains limited. For example, experimental evidence for oral transmission of the virus in chelonians is mixed. Consequently, vector-borne transmission has been hypothesized in terrestrial turtle species. To test this hypothesis, mosquitoes captured during a 2012/2013 ranavirus outbreak in box turtles from southwestern Indiana were pooled by genus and tested for ranavirus DNA using qPCR. Two of 30 pools tested positive for ranavirus. Additionally, an individual Aedes sp. mosquito observed engorging on a box turtle also tested positive for ranavirus. Although our approach does not rule out the possibility that the sequenced ranavirus was simply from virus in bloodmeal, it does suggests that mosquitoes may be involved in virus transmission as a mechanical or biological vector among ectothermic vertebrates. While additional studies are needed to elucidate the exact role of mosquitoes in ranavirus ecology, our study suggests that a greater focus on vector-borne transmission may be necessary to fully understand ranaviral disease dynamics in herpetofauna. PMID:25212726

Kimble, Steven J A; Karna, Ajit K; Johnson, April J; Hoverman, Jason T; Williams, Rod N

2014-09-12

71

Targeted Trapping of Mosquito Vectors in the Chesapeake Bay Area of Maryland  

PubMed Central

Most adult mosquito surveillance in Maryland is performed using dry ice-baited or unbaited Centers for Disease Control (CDC) miniature light traps suspended ?1.5 m above the ground. However, standardized trapping methods may miss mosquito species involved in disease transmission cycles. During a 2-yr study, the effectiveness of the olfactory attractant 1-octen-3-ol alone and in combination with carbon dioxide was evaluated for collecting mosquito vector species. In addition, trap heights were examined to determine the optimal vertical placement to target various species. We evaluated the results during the second year by targeting selected species by using various habitat–height–bait combinations. Although Culex erraticus Dyar & Knab and Anopheles quadrimaculatus Say were not successfully targeted, Culex salinarius Coquillett, Aedes vexans Meigen, Anopheles bradleyi/crucians King, Coquillettidia perturbans Walker, Aedes sollicitans Walker, and Aedes taeniorhynchus Wiedemann were preferentially captured using targeted trapping schemes. PMID:16619593

Shone, Scott M.; Glass, Gregory E.; Norris, Douglas E.

2014-01-01

72

The Genome of Anopheles darlingi, the main neotropical malaria vector  

PubMed Central

Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ?100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector–human and vector–parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi. PMID:23761445

Marinotti, Osvaldo; Cerqueira, Gustavo C.; de Almeida, Luiz Gonzaga Paula; Ferro, Maria Inês Tiraboschi; Loreto, Elgion Lucio da Silva; Zaha, Arnaldo; Teixeira, Santuza M. R.; Wespiser, Adam R.; Almeida e Silva, Alexandre; Schlindwein, Aline Daiane; Pacheco, Ana Carolina Landim; da Silva, Artur Luiz da Costa; Graveley, Brenton R.; Walenz, Brian P.; Lima, Bruna de Araujo; Ribeiro, Carlos Alexandre Gomes; Nunes-Silva, Carlos Gustavo; de Carvalho, Carlos Roberto; Soares, Célia Maria de Almeida; de Menezes, Claudia Beatriz Afonso; Matiolli, Cleverson; Caffrey, Daniel; Araújo, Demetrius Antonio M.; de Oliveira, Diana Magalhães; Golenbock, Douglas; Grisard, Edmundo Carlos; Fantinatti-Garboggini, Fabiana; de Carvalho, Fabíola Marques; Barcellos, Fernando Gomes; Prosdocimi, Francisco; May, Gemma; de Azevedo Junior, Gilson Martins; Guimarães, Giselle Moura; Goldman, Gustavo Henrique; Padilha, Itácio Q. M.; Batista, Jacqueline da Silva; Ferro, Jesus Aparecido; Ribeiro, José M. C.; Fietto, Juliana Lopes Rangel; Dabbas, Karina Maia; Cerdeira, Louise; Agnez-Lima, Lucymara Fassarella; Brocchi, Marcelo; de Carvalho, Marcos Oliveira; Teixeira, Marcus de Melo; Diniz Maia, Maria de Mascena; Goldman, Maria Helena S.; Cruz Schneider, Maria Paula; Felipe, Maria Sueli Soares; Hungria, Mariangela; Nicolás, Marisa Fabiana; Pereira, Maristela; Montes, Martín Alejandro; Cantão, Maurício E.; Vincentz, Michel; Rafael, Miriam Silva; Silverman, Neal; Stoco, Patrícia Hermes; Souza, Rangel Celso; Vicentini, Renato; Gazzinelli, Ricardo Tostes; Neves, Rogério de Oliveira; Silva, Rosane; Astolfi-Filho, Spartaco; Maciel, Talles Eduardo Ferreira; Ürményi, Turán P.; Tadei, Wanderli Pedro; Camargo, Erney Plessmann; de Vasconcelos, Ana Tereza Ribeiro

2013-01-01

73

Geostatistical evaluation of integrated marsh management impact on mosquito vectors using before-after-control-impact (BACI) design  

Microsoft Academic Search

BACKGROUND: In many parts of the world, salt marshes play a key ecological role as the interface between the marine and the terrestrial environments. Salt marshes are also exceedingly important for public health as larval habitat for mosquitoes that are vectors of disease and significant biting pests. Although grid ditching and pesticides have been effective in salt marsh mosquito control,

Ilia Rochlin; Tom Iwanejko; Mary E Dempsey; Dominick V Ninivaggi

2009-01-01

74

Description of the Transcriptomes of Immune Response-Activated Hemocytes from the Mosquito Vectors Aedes aegypti and Armigeres subalbatus  

Microsoft Academic Search

Mosquito-borne diseases, including dengue, malaria, and lymphatic filariasis, exact a devastating toll on global health and economics, killing or debilitating millions every year (54). Mosquito innate immune re- sponses are at the forefront of concerted research efforts aimed at defining potential target genes that could be manipulated to engineer pathogen resistance in vector populations. We aimed to describe the pivotal

Lyric C. Bartholomay; Wen-Long Cho; Thomas A. Rocheleau; Jon P. Boyle; Eric T. Beck; Jeremy F. Fuchs; Paul Liss; Michael Rusch; Katherine M. Butler; Roy Chen-Chih Wu; Shih-Pei Lin; Hang-Yen Kuo; I-Yu Tsao; Chiung-Yin Huang; Tze-Tze Liu; Kwang-Jen Hsiao; Shih-Feng Tsai; Ueng-Cheng Yang; Anthony J. Nappi; Nicole T. Perna; Chen-Cheng Chen; Bruce M. Christensen

2004-01-01

75

Comparative responses of mosquito vectors of West Nile virus to light traps augmented with chemical attractant and to human hosts.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Scientists in the USA seek to develop Global Information Technology (GIS, GPS, remote sensing)-based systems that can be used to deploy sentinel traps for mosquito vectors and for the implementation and evaluation of mosquito control. Achieving this objective requires the development of methods for...

76

Mosquitoes and transmission of malaria parasites – not just vectors  

PubMed Central

The regional malaria epidemics of the early 1900s provided the basis for much of our current understanding of malaria epidemiology. Colonel Gill, an eminent malariologist of that time, suggested that the explosive nature of the regional epidemics was due to a sudden increased infectiousness of the adult population. His pertinent observations underlying this suggestion have, however, gone unheeded. Here, the literature on Plasmodium seasonal behaviour is reviewed and three historical data sets, concerning seasonal transmission of Plasmodium falciparum, are examined. It is proposed that the dramatic seasonal increase in the density of uninfected mosquito bites results in an increased infectiousness of the human reservoir of infection and, therefore, plays a key role in "kick-starting" malaria parasite transmission. PMID:15533243

Paul, Richard EL; Diallo, Mawlouth; Brey, Paul T

2004-01-01

77

Mosquitoes (Diptera: Culicidae) and their relevance as disease vectors in the city of Vienna, Austria.  

PubMed

Mosquitoes (Diptera: Culicidae) are important vectors for a wide range of pathogenic organisms. As large parts of the human population in developed countries live in cities, the occurrence of vector-borne diseases in urban areas is of particular interest for epidemiologists and public health authorities. In this study, we investigated the mosquito occurrence in the city of Vienna, Austria, in order to estimate the risk of transmission of mosquito-borne diseases. Mosquitoes were captured using different sampling techniques at 17 sites in the city of Vienna. Species belonging to the Culex pipiens complex (78.8 %) were most abundant, followed by Coquillettidia richiardii (10.2 %), Anopheles plumbeus (5.4 %), Aedes vexans (3.8 %), and Ochlerotatus sticticus (0.7 %). Individuals of the Cx. pipiens complex were found at 80.2 % of the trap sites, while 58.8 % of the trap sites were positive for Cq. richiardii and Ae. vexans. Oc. sticticus was captured at 35.3 % of the sites, and An. plumbeus only at 23.5 % of the trap sites. Cx. pipiens complex is known to be a potent vector and pathogens like West Nile virus (WNV), Usutu virus (USUV), Tahyna virus (TAHV), Sindbis virus (SINV), Plasmodium sp., and Dirofilaria repens can be transmitted by this species. Cq. richiardii is a known vector species for Batai virus (BATV), SINV, TAHV, and WNV, while Ae. vexans can transmit TAHV, USUV, WNV, and Dirofilaria repens. An. plumbeus and Oc. sticticus seem to play only a minor role in the transmission of vector-borne diseases in Vienna. WNV, which is already wide-spread in Europe, is likely to be the highest threat in Vienna as it can be transmitted by several of the most common species, has already been shown to pose a higher risk in cities, and has the possibility to cause severe illness. PMID:25468380

Lebl, Karin; Zittra, Carina; Silbermayr, Katja; Obwaller, Adelheid; Berer, Dominik; Brugger, Katharina; Walter, Melanie; Pinior, Beate; Fuehrer, Hans-Peter; Rubel, Franz

2015-02-01

78

166 Journal of Vector Ecology June2008 Colonization of abandoned swimming pools by larval mosquitoes and their  

E-print Network

of fishes were collected, with Gambusia affinis accounting for 76% of the catch. Diversity of fishes the effect of Gambusia affinis on mosquito presence. Journal of Vector Ecology 33 (1): 166-172. 2008. Keyword

Jordan, Frank

79

Efficacy of Advanced Odomos repellent cream (N, N-diethyl-benzamide) against mosquito vectors  

PubMed Central

Background & objectives: Repellents are commonly used personal protection measures to avoid mosquito bites. In the present study, Advanced Odomos cream (12% N, N-diethyl-benzamide) was tested for its efficacy against mosquitoes in comparison to DEET (N,N-diethyl-3-methyl benzamide). Methods: Bioassays were conducted to assess the repellency of Advanced Odomos and DEET creams against Anopheles stephensi and Aedes aegypti. Their efficacy was tested on human volunteers applied with different concentrations of test creams ranging from 1 to 12 mg/cm2 and by exposing them to mosquitoes at hourly intervals. Field evaluation was also carried out to test the duration of protection of the test creams against Anopheles and Aedes mosquitoes during whole night and day time collections, respectively on human volunteers. Mosquito collections were done using torch light and aspirator. Results: Complete (100%) protection was achieved at 10 mg/cm2 cream formulation of Advanced Odomos (1.2 mg a.i/cm2) dose against An. stephensi and 12 mg/cm2 (1.44 mg a.i./cm2) against Ae. aegypti on human baits. There was no statistically significant differences in per cent protection against mosquito bites between Advanced o0 domos and DEET cream (P>0.05) in respective doses. Complete protection up to 11 h was observed against Anopheles mosquitoes during whole night collections and up to 6 h against Ae. aegypti in day time collections. No adverse reactions such as itching, irritation, vomiting, nausea, etc. were reported by the volunteers. Interpretation & conclusions: Advanced odomos cream applied at 10 mg/cm2 concentration provided 100% protection from Anopheles mosquitoes up to 11 h whereas about 6 h protection was recorded against Ae. aegypti. The laboratory and field trials indicate that for longer protection against Anopheles mosquitoes 10 mg/cm2 will be appropriate and in case of Ae. aegypti more than 10 mg/cm2 application is required for complete protection. In conclusion, the Advanced Odomos cream was comparable to the known repellent cream DEET for prolonged protection against malaria and dengue vectors. PMID:21537097

Mittal, P.K.; Sreehari, U.; Razdan, R.K.; Dash, A.P.; Ansari, M.A.

2011-01-01

80

Occurrence of a mosquito vector in bird houses: Developmental consequences and potential epidemiological implications.  

PubMed

Even with continuous vector control, dengue is still a growing threat to public health in Southeast Asia. Main causes comprise difficulties in identifying productive breeding sites and inappropriate targeted chemical interventions. In this region, rural families keep live birds in backyards and dengue mosquitoes have been reported in containers in the cages. To focus on this particular breeding site, we examined the capacity of bird fecal matter (BFM) from the spotted dove, to support Aedes albopictus larval growth. The impact of BFM larval uptake on some adult fitness traits influencing vectorial capacity was also investigated. In serial bioassays involving a high and low larval density (HD and LD), BFM and larval standard food (LSF) affected differently larval development. At HD, development was longer in the BFM environment. There were no appreciable mortality differences between the two treatments, which resulted in similar pupation and adult emergence successes. BFM treatment produced a better gender balance. There were comparable levels of blood uptake and egg production in BFM and LSF females at LD; that was not the case for the HD one, which resulted in bigger adults. BFM and LSF females displayed equivalent lifespans; in males, this parameter was shorter in those derived from the BFM/LD treatment. Taken together these results suggest that bird defecations successfully support the development of Ae. albopictus. Due to their cryptic aspects, containers used to supply water to encaged birds may not have been targeted by chemical interventions. PMID:25617636

Dieng, Hamady; Hassan, Rahimah Binti; Hassan, Ahmad Abu; Ghani, Idris Abd; Abang, Fatimah Bt; Satho, Tomomitsu; Miake, Fumio; Ahmad, Hamdan; Fukumitsu, Yuki; Hashim, Nur Aida; Zuharah, Wan Fatma; Kassim, Nur Faeza Abu; Majid, Abdul Hafiz Ab; Selvarajoo, Rekha; Nolasco-Hipolito, Cirilo; Ajibola, Olaide Olawunmi; Tuen, Andrew Alek

2015-05-01

81

Turning cigarette butt waste into an alternative control tool against an insecticide-resistant mosquito vector.  

PubMed

Annually, 4.5 trillion cigarette butts (CBs) are flicked into our environment. Evidence exists that CB waste is deadly to aquatic life, but their lethality to the aquatic life of the main dengue vector is unknown. CBs are full of toxicants that occur naturally, during planting and manufacturing, which may act as larvicidal agents. We assessed Aedes aegypti vulnerability to Marlboro butts during its development. Overall, CBs showed insecticidal activities against larvae. At early phases of development, mortality rates were much higher in two CBs solution (2CBSol) and 3CBSol microcosms (MICRs). Larval survival gradually decreased with development in 1CBSol-MICRs. However, in great presence of CBs, mortality was high even for the late developmental stages. These results suggest that A. aegypti larvae are vulnerable to CB presence in their habitats, but this effect was seen most during the early developmental phases and in the presence of increased amounts of cigarette remnants. CB filters are being used as raw material in many sectors, i.e., brick, art, fashion, plastic industries, as a practical solution to the pollution problem, the observed butt waste toxicity to mosquito larvae open new avenues for the identification of novel insecticide products. PMID:23999373

Dieng, Hamady; Rajasaygar, Sudha; Ahmad, Abu Hassan; Ahmad, Hamdan; Rawi, Che Salmah Md; Zuharah, Wan Fatma; Satho, Tomomitsu; Miake, Fumio; Fukumitsu, Yuki; Saad, Ahmad Ramli; Ghani, Idris Abd; Vargas, Ronald Enrique Morales; Majid, Abdul Hafiz Ab; Abubakar, Sazaly

2013-12-01

82

Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus  

Microsoft Academic Search

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression in a variety of organisms, including insects, vertebrates, and plants. miRNAs play important roles in cell development and differentiation as well as in the cellular response to stress and infection. To date, there are limited reports of miRNA identification in mosquitoes, insects that act as essential vectors for

Rebecca L Skalsky; Dana L Vanlandingham; Frank Scholle; Stephen Higgs; Bryan R Cullen

2010-01-01

83

Simplified Models of Vector Control Impact upon Malaria Transmission by Zoophagic Mosquitoes  

PubMed Central

Background High coverage of personal protection measures that kill mosquitoes dramatically reduce malaria transmission where vector populations depend upon human blood. However, most primary malaria vectors outside of sub-Saharan Africa can be classified as “very zoophagic,” meaning they feed occasionally (<10% of blood meals) upon humans, so personal protection interventions have negligible impact upon their survival. Methods and Findings We extended a published malaria transmission model to examine the relationship between transmission, control, and the baseline proportion of bloodmeals obtained from humans (human blood index). The lower limit of the human blood index enables derivation of simplified models for zoophagic vectors that (1) Rely on only three field-measurable parameters. (2) Predict immediate and delayed (with and without assuming reduced human infectivity, respectively) impacts of personal protection measures upon transmission. (3) Illustrate how appreciable indirect communal-level protection for non-users can be accrued through direct personal protection of users. (4) Suggest the coverage and efficacy thresholds required to attain epidemiological impact. The findings suggest that immediate, indirect, community-wide protection of users and non-users alike may linearly relate to the efficacy of a user’s direct personal protection, regardless of whether that is achieved by killing or repelling mosquitoes. High protective coverage and efficacy (?80%) are important to achieve epidemiologically meaningful impact. Non-users are indirectly protected because the two most common species of human malaria are strict anthroponoses. Therefore, the small proportion of mosquitoes that are killed or diverted while attacking humans can represent a large proportion of those actually transmitting malaria. Conclusions Simplified models of malaria transmission by very zoophagic vectors may be used by control practitioners to predict intervention impact interventions using three field-measurable parameters; the proportion of human exposure to mosquitoes occurring when an intervention can be practically used, its protective efficacy when used, and the proportion of people using it. PMID:22701527

Kiware, Samson S.; Chitnis, Nakul; Moore, Sarah J.; Devine, Gregor J.; Majambere, Silas; Merrill, Stephen; Killeen, Gerry F.

2012-01-01

84

Laboratory evaluation of Indian medicinal plants as repellents against malaria, dengue, and filariasis vector mosquitoes.  

PubMed

Mosquito-borne diseases have an economic impact, including loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates; however, no part of the world is free from vector-borne diseases. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus, and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticides, in the present study, the repellent activity of crude hexane, ethyl acetate, benzene, chloroform, and methanol extracts of leaf of Erythrina indica and root of Asparagus racemosus were assayed for their repellency against three important vector mosquitoes, viz., Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The crude extract was applied on a membrane used for membrane feeding of unfed mosquitoes in a 1-ft cage. About 50 unfed 3-4-day-old laboratory-reared pathogen-free strains of A. stephensi, A. aegypti, and C. quinquefasciatus were introduced in a 1-ft cage fitted with a membrane with blood for feeding with temperature maintained at 37 °C through circulating water bath maintained at 40-45 °C. Three concentrations (1.0, 2.0, and 5.0 mg/cm(2)) of the crude extracts were evaluated. Repellents in E. indica afforded longer protection time against A. stephensi, A. aegypti, and C. quinquefasciatus than those in A. racemosus at 5.0 mg/cm(2) concentration, and the mean complete protection time ranged from 120 to 210 min with the different extracts tested. In this observation, these two plant crude extracts gave protection against mosquito bites; also, the repellent activity is dependent on the strength of the plant extracts. These results suggest that the leaf extract of E. indica and root extract of A. racemosus have the potential to be used as an ideal eco-friendly approach for the control of mosquitoes. This is the first report on the mosquito repellent activity of the reported A. racemosus and E. indica plants. PMID:25399815

Govindarajan, Marimuthu; Sivakumar, Rajamohan

2015-02-01

85

Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus.  

PubMed

We evaluated the potential for several North American mosquito species to transmit the newly introduced West Nile (WN) virus. Mosquitoes collected in the New York City metropolitan area during the recent WN virus outbreak, at the Assateague Island Wildlife Refuge, VA, or from established colonies were allowed to feed on chickens infected with WN virus isolated from a crow that died during the 1999 outbreak. These mosquitoes were tested approximately 2 wk later to determine infection, dissemination, and transmission rates. Aedes albopictus (Skuse), Aedes atropalpus (Coquillett), and Aedes japonicus (Theobald) were highly susceptible to infection, and nearly all individuals with a disseminated infection transmitted virus by bite. Culex pipiens L. and Aedes sollicitans (Walker) were moderately susceptible. In contrast, Aedes vexans (Meigen), Aedes aegypti (L.), and Aedes taeniorhynchus (Wiedemann) were relatively refractory to infection, but individual mosquitoes inoculated with WN virus did transmit virus by bite. Infected female Cx. pipiens transmitted WN virus to one of 1,618 F1 progeny, indicating the potential for vertical transmission of this virus. In addition to laboratory vector competence, host-feeding preferences, relative abundance, and season of activity also determine the role that these species could play in transmitting WN virus. PMID:11296813

Turell, M J; O'Guinn, M L; Dohm, D J; Jones, J W

2001-03-01

86

The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector.  

PubMed

Mosquitoes are vectors of a number of important human and animal diseases. The development of novel vector control strategies requires a thorough understanding of mosquito biology. To facilitate this, we used RNA-seq to identify novel genes and provide the first high-resolution view of the transcriptome throughout development and in response to blood feeding in a mosquito vector of human disease, Aedes aegypti, the primary vector for Dengue and yellow fever. We characterized mRNA expression at 34 distinct time points throughout Aedes development, including adult somatic and germline tissues, by using polyA+ RNA-seq. We identify a total of 14,238 novel new transcribed regions corresponding to 12,597 new loci, as well as many novel transcript isoforms of previously annotated genes. Altogether these results increase the annotated fraction of the transcribed genome into long polyA+ RNAs by more than twofold. We also identified a number of patterns of shared gene expression, as well as genes and/or exons expressed sex-specifically or sex-differentially. Expression profiles of small RNAs in ovaries, early embryos, testes, and adult male and female somatic tissues also were determined, resulting in the identification of 38 new Aedes-specific miRNAs, and ~291,000 small RNA new transcribed regions, many of which are likely to be endogenous small-interfering RNAs and Piwi-interacting RNAs. Genes of potential interest for transgene-based vector control strategies also are highlighted. Our data have been incorporated into a user-friendly genome browser located at www.Aedes.caltech.edu, with relevant links to Vectorbase (www.vectorbase.org). PMID:23833213

Akbari, Omar S; Antoshechkin, Igor; Amrhein, Henry; Williams, Brian; Diloreto, Race; Sandler, Jeremy; Hay, Bruce A

2013-09-01

87

Laboratory vector competence experiments with yellow fever virus and five South African mosquito species including Aedes aegypti.  

PubMed

Three domestic and peridomestic mosquito species, selected because their prevalence, distribution and ecology favoured them as potential urban vectors of yellow fever (YF) in South Africa, were submitted to numerous tests for infectivity [measured as dose needed to infect 50% of the mosquitoes (MID50)], mainly with a Kenyan strain (BC7914) of the virus. Use of a Nigerian virus strain (TVP1617) did not significantly alter infectivity. After artificial infective blood meals with titres of 7.0-8.0 log10MID50/mL, head squash infection rates (HSIRs) determined by the indirect fluorescent antibody test were 0-4% (Eretmapodites quinquevittatus), 0-29% (Aedes simpsoni s. s.) and 0-21% (5 populations of Aedes aegypti). For some populations of Ae. aegypti tests were repeated with blood meals incorporating freshly prepared rather than frozen mouse brain but HSIRs did not increase. HSIRs did increase when a high infecting titre of 9.0 log10MID50/mL was used with the Richards Bay population (67-90%). It is concluded that these 3 mosquito species are potentially poor YF vectors but that Ae. simpsoni and Richards Bay Ae. aegypti are the most susceptible to the virus. However, the latter 2 species could support person-to-person transmission only if they were present at very high densities. This rarely occurs with Ae. simpsoni in South Africa but Ae. aegypti may occur at high densities although only in discrete foci. The feral Ae. furcifer and Ae. cordellieri had HSIRs of 29% and 3% respectively and Ae. furcifer 'transmitted' the virus in vitro at a transmission rate of 25%. This suggests that Ae. furcifer would be more important than Ae. cordellieri in transmission between monkeys in West Africa. PMID:12474475

Jupp, Peter G; Kemp, Alan

2002-01-01

88

Mosquito Vector Diversity across Habitats in Central Thailand Endemic for Dengue and Other Arthropod-Borne Diseases  

PubMed Central

Recent years have seen the greatest ecological disturbances of our times, with global human expansion, species and habitat loss, climate change, and the emergence of new and previously-known infectious diseases. Biodiversity loss affects infectious disease risk by disrupting normal relationships between hosts and pathogens. Mosquito-borne pathogens respond to changing dynamics on multiple transmission levels and appear to increase in disturbed systems, yet current knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat change is limited. We characterize mosquito communities across habitats with differing levels of anthropogenic ecological disturbance in central Thailand. During the 2008 rainy season, adult mosquito collections from 24 sites, representing 6 habitat types ranging from forest to urban, yielded 62,126 intact female mosquitoes (83,325 total mosquitoes) that were assigned to 109 taxa. Female mosquito abundance was highest in rice fields and lowest in forests. Diversity indices and rarefied species richness estimates indicate the mosquito fauna was more diverse in rural and less diverse in rice field habitats, while extrapolated estimates of true richness (Chao1 and ACE) indicated higher diversity in the forest and fragmented forest habitats and lower diversity in the urban. Culex sp. (Vishnui subgroup) was the most common taxon found overall and the most frequent in fragmented forest, rice field, rural, and suburban habitats. The distributions of species of medical importance differed significantly across habitat types and were always lowest in the intact, forest habitat. The relative abundance of key vector species, Aedes aegypti and Culex quinquefasciatus, was negatively correlated with diversity, suggesting that direct species interactions and/or habitat-mediated factors differentially affecting invasive disease vectors may be important mechanisms linking biodiversity loss to human health. Our results are an important first step for understanding the dynamics of mosquito vector distributions under changing environmental features across landscapes of Thailand. PMID:24205420

Thongsripong, Panpim; Green, Amy; Kittayapong, Pattamaporn; Kapan, Durrell; Wilcox, Bruce; Bennett, Shannon

2013-01-01

89

Development of a population suppression strain of the human malaria vector mosquito, Anopheles stephensi  

PubMed Central

Background Transgenic mosquito strains are being developed to contribute to the control of dengue and malaria transmission. One approach uses genetic manipulation to confer conditional, female-specific dominant lethality phenotypes. Engineering of a female-specific flightless phenotype provides a sexing mechanism essential for male-only mosquito, release approaches that result in population suppression of target vector species. Methods An approach that uses a female-specific gene promoter and antibiotic-repressible lethal factor to produce a sex-specific flightless phenotype was adapted to the human malaria vector, Anopheles stephensi. Transposon- and site-specific recombination-mediated technologies were used to generate a number of transgenic An. stephensi lines that when combined through mating produced the phenotype of flight-inhibited females and flight-capable males. Results The data shown here demonstrate the successful engineering of a female-specific flightless phenotype in a malaria vector. The flightless phenotype was repressible by the addition of tetracycline to the larval diet. This conditional phenotype allows the rearing of the strains under routine laboratory conditions. The minimal level of tetracycline that rescues the flightless phenotype is higher than that found as an environmental contaminant in circumstances where there is intensive use of antibiotics. Conclusions These studies support the further development of flightless female technology for applications in malaria control programmes that target the vectors. PMID:23622561

2013-01-01

90

miRNA Genes of an Invasive Vector Mosquito, Aedes albopictus  

PubMed Central

Aedes albopictus, a vector of Dengue and Chikungunya viruses, is a robust invasive species in both tropical and temperate environments. MicroRNAs (miRNAs) regulate gene expression and biological processes including embryonic development, innate immunity and infection. While a number of miRNAs have been discovered in some mosquitoes, no comprehensive effort has been made to characterize them from different developmental stages from a single species. Systematic analysis of miRNAs in Ae. albopictus will improve our understanding of its basic biology and inform novel strategies to prevent virus transmission. Between 10–14 million Illumina sequencing reads per sample were obtained from embryos, larvae, pupae, adult males, sugar-fed and blood-fed adult females. A total of 119 miRNA genes represented by 215 miRNA or miRNA star (miRNA*) sequences were identified, 15 of which are novel. Eleven, two, and two of the newly-discovered miRNA genes appear specific to Aedes, Culicinae, and Culicidae, respectively. A number of miRNAs accumulate predominantly in one or two developmental stages and the large number that showed differences in abundance following a blood meal likely are important in blood-induced mosquito biology. Gene Ontology (GO) analysis of the targets of all Ae. albopictus miRNAs provides a useful starting point for the study of their functions in mosquitoes. This study is the first systematic analysis of miRNAs based on deep-sequencing of small RNA samples of all developmental stages of a mosquito species. A number of miRNAs are related to specific physiological states, most notably, pre- and post-blood feeding. The distribution of lineage-specific miRNAs is consistent with mosquito phylogeny and the presence of a number of Aedes-specific miRNAs likely reflects the divergence between the Aedes and Culex genera. PMID:23840875

Zheng, Peiming; Chen, Maoshan; James, Anthony A.; Chen, Xiaoguang; Tu, Zhijian

2013-01-01

91

[The relationship between mosquito vectors and aquatic birds in the potential transmission of 2 arboviruses].  

PubMed

The authors studied for two years the role of the chicks of aquatic birds in the arboviral cycles in coastal lagoons in central Panama in order to determine the relation between Culex (Melanoconion) ocossa and Mansonia (Mansonia) dyari mosquitoes in the transmission and dissemination of the viruses of Saint Louis Encephalitis (SLE) and Venezuelan Equine Encephalitis (VEE). Mosquitoes were captured every fifteen days on two consecutive nights to isolate the virus, using light traps (CDC) and baited traps. The attempts to isolate the virus were made using Vero cell cultures and the determination of antibodies was performed. The results of the serologic tests seem to indicate that four bird species: the ex (?) heron (Bubulcus ibis), the American heron (Casmerodius albus), the spoon-billed duck (Cochlearius cochlearius) and the needle crow (Anhinga anhinga) could function as intermediate hosts in the transmission cycle of SLE. Two species, the ibis (Endocimus albus) and the spoon-billed duck (Cochlearius cochlearius) could also be intermediate hosts of VEE in the coastal lagoons of Panama. The presence of antibodies in chicks could indicate an infection acquired recently, after their birth, in this area. The VEE virus was recovered from blood filled mosquitoes which had fed on a spoon-billed duck probably infected and exposed in a Trinidad #10 trap. No SLE virus was isolated. Other unknown viruses were isolated from mosquitoes selected for these studies, such as C. ocossa and M. dyari. The results obtained with these studies indicate the need for more studies utilizing new field techniques in order to establish a link between SLE and VEE, the vector mosquitoes and the aquatic birds in the coastal lagoons of the area under investigation. PMID:8101009

Adames, A J; Dutary, B; Tejera, H; Adames, E; Galindo, P

1993-05-01

92

Early warning of West Nile virus mosquito vector: climate and land use models successfully explain phenology and abundance of Culex pipiens mosquitoes in north-western Italy  

PubMed Central

Background West Nile Virus (WNV) is an emerging global health threat. Transmission risk is strongly related to the abundance of mosquito vectors, typically Culex pipiens in Europe. Early-warning predictors of mosquito population dynamics would therefore help guide entomological surveillance and thereby facilitate early warnings of transmission risk. Methods We analysed an 11-year time series (2001 to 2011) of Cx. pipiens mosquito captures from the Piedmont region of north-western Italy to determine the principal drivers of mosquito population dynamics. Linear mixed models were implemented to examine the relationship between Cx. pipiens population dynamics and environmental predictors including temperature, precipitation, Normalized Difference Water Index (NDWI) and the proximity of mosquito traps to urban areas and rice fields. Results Warm temperatures early in the year were associated with an earlier start to the mosquito season and increased season length, and later in the year, with decreased abundance. Early precipitation delayed the start and shortened the length of the mosquito season, but increased total abundance. Conversely, precipitation later in the year was associated with a longer season. Finally, higher NDWI early in the year was associated with an earlier start to the season and increased season length, but was not associated with abundance. Proximity to rice fields predicted higher total abundance when included in some models, but was not a significant predictor of phenology. Proximity to urban areas was not a significant predictor in any of our models. Predicted variations in start of the season and season length ranged from one to three weeks, across the measured range of variables. Predicted mosquito abundance was highly variable, with numbers in excess of 1000 per trap per year when late season temperatures were low (average 21°C) to only 150 when late season temperatures were high (average 30°C). Conclusions Climate data collected early in the year, in conjunction with local land use, can be used to provide early warning of both the timing and magnitude of mosquito outbreaks. This potentially allows targeted mosquito control measures to be implemented, with implications for prevention and control of West Nile Virus and other mosquito borne diseases. PMID:24924622

2014-01-01

93

Molecular evidence for a kdr-like pyrethroid resistance mechanism in the malaria vector mosquito Anopheles stephensi  

Microsoft Academic Search

The mosquito Anopheles stephensi Liston (Diptera: Culicidae) is the urban vector of malaria in several countries of the Middle East and Indian subcontinent. Extensive use of residual insecticide spraying for malaria vector control has selected An. stephensi resistance toDDT, dieldrin, malathio n and other organophosphates throughout much of its range and to pyrethroids in the Middle East. Metabolic resistance mechanisms

A. A. E NAYATI; H. V A TANDOOST; H. L A DONNI; J. HEMINGWAY

2003-01-01

94

Global Climate Change and Its Potential Impact on Disease Transmission by Salinity-Tolerant Mosquito Vectors in Coastal Zones  

PubMed Central

Global climate change can potentially increase the transmission of mosquito vector-borne diseases such as malaria, lymphatic filariasis, and dengue in many parts of the world. These predictions are based on the effects of changing temperature, rainfall, and humidity on mosquito breeding and survival, the more rapid development of ingested pathogens in mosquitoes and the more frequent blood feeds at moderately higher ambient temperatures. An expansion of saline and brackish water bodies (water with <0.5?ppt or parts per thousand, 0.5–30?ppt and >30?ppt salt are termed fresh, brackish, and saline respectively) will also take place as a result of global warming causing a rise in sea levels in coastal zones. Its possible impact on the transmission of mosquito-borne diseases has, however, not been adequately appreciated. The relevant impacts of global climate change on the transmission of mosquito-borne diseases in coastal zones are discussed with reference to the Ross–McDonald equation and modeling studies. Evidence is presented to show that an expansion of brackish water bodies in coastal zones can increase the densities of salinity-tolerant mosquitoes like Anopheles sundaicus and Culex sitiens, and lead to the adaptation of fresh water mosquito vectors like Anopheles culicifacies, Anopheles stephensi, Aedes aegypti, and Aedes albopictus to salinity. Rising sea levels may therefore act synergistically with global climate change to increase the transmission of mosquito-borne diseases in coastal zones. Greater attention therefore needs to be devoted to monitoring disease incidence and preimaginal development of vector mosquitoes in artificial and natural coastal brackish/saline habitats. It is important that national and international health agencies are aware of the increased risk of mosquito-borne diseases in coastal zones and develop preventive and mitigating strategies. Application of appropriate counter measures can greatly reduce the potential for increased coastal transmission of mosquito-borne diseases consequent to climate change and a rise in sea levels. It is proposed that the Jaffna peninsula in Sri Lanka may be a useful case study for the impact of rising sea levels on mosquito vectors in tropical coasts. PMID:22723781

Ramasamy, Ranjan; Surendran, Sinnathamby Noble

2012-01-01

95

Dynamics of the “Popcorn” Wolbachia Infection in Outbred Aedes aegypti Informs Prospects for Mosquito Vector Control  

PubMed Central

Forty percent of the world's population is at risk of contracting dengue virus, which produces dengue fever with a potentially fatal hemorrhagic form. The wMelPop Wolbachia infection of Drosophila melanogaster reduces life span and interferes with viral transmission when introduced into the mosquito Aedes aegypti, the primary vector of dengue virus. Wolbachia has been proposed as an agent for preventing transmission of dengue virus. Population invasion by Wolbachia depends on levels of cytoplasmic incompatibility, fitness effects, and maternal transmission. Here we characterized these traits in an outbred genetic background of a potential target population of Ae. aegypti using two crossing schemes. Cytoplasmic incompatibility was strong in this background, and the maternal transmission rate of Wolbachia was high. The infection substantially reduced longevity of infected adult females, regardless of whether adults came from larvae cultured under high or low levels of nutrition or density. The infection reduced the viability of diapausing and nondiapausing eggs. Viability was particularly low when eggs were laid by older females and when diapausing eggs had been stored for a few weeks. The infection affected mosquito larval development time and adult body size under different larval nutrition levels and densities. The results were used to assess the potential for wMelPop-CLA to invade natural populations of Ae. aegypti and to develop recommendations for the maintenance of fitness in infected mosquitoes that need to compete against field insects. PMID:21135075

Yeap, H. L.; Mee, P.; Walker, T.; Weeks, A. R.; O'Neill, S. L.; Johnson, P.; Ritchie, S. A.; Richardson, K. M.; Doig, C.; Endersby, N. M.; Hoffmann, A. A.

2011-01-01

96

Productivity and population density estimates of the dengue vector mosquito Aedes aegypti (Stegomyia aegypti) in Australia.  

PubMed

New mosquito control strategies centred on the modifying of populations require knowledge of existing population densities at release sites and an understanding of breeding site ecology. Using a quantitative pupal survey method, we investigated production of the dengue vector Aedes aegypti (L.) (Stegomyia aegypti) (Diptera: Culicidae) in Cairns, Queensland, Australia, and found that garden accoutrements represented the most common container type. Deliberately placed 'sentinel' containers were set at seven houses and sampled for pupae over 10 weeks during the wet season. Pupal production was approximately constant; tyres and buckets represented the most productive container types. Sentinel tyres produced the largest female mosquitoes, but were relatively rare in the field survey. We then used field-collected data to make estimates of per premises population density using three different approaches. Estimates of female Ae. aegypti abundance per premises made using the container-inhabiting mosquito simulation (CIMSiM) model [95% confidence interval (CI) 18.5-29.1 females] concorded reasonably well with estimates obtained using a standing crop calculation based on pupal collections (95% CI 8.8-22.5) and using BG-Sentinel traps and a sampling rate correction factor (95% CI 6.2-35.2). By first describing local Ae. aegypti productivity, we were able to compare three separate population density estimates which provided similar results. We anticipate that this will provide researchers and health officials with several tools with which to make estimates of population densities. PMID:23205694

Williams, C R; Johnson, P H; Ball, T S; Ritchie, S A

2013-09-01

97

Efficacy of Thai herbal essential oils as green repellent against mosquito vectors.  

PubMed

Repellency activity of Thai essential oils derived from ylang ylang (Cananga odorata (Lamk.) Hook.f. & Thomson: Annonaceae) and lemongrass (Cymbopogon citratus (DC.) Stapf: Poaceae) were tested against two mosquito vectors, Aedes aegypti (L.) and Culex quinquefasciatus (Say). There were compared with two chemical repellents (DEET 20% w/w; Sketolene Shield(®) and IR3535, ethyl butylacetylaminopropionate 12.5% w/w; Johnson's Baby Clear Lotion Anti-Mosquito(®)). Each herbal repellent was applied in three diluents; coconut oil, soybean oil and olive oil at 0.33 ?l/cm(2) on the forearm of volunteers. All herbal repellent exhibited higher repellent activity than IR3535 12.5% w/w, but lower repellent activity than DEET 20% w/w. The C. odorata oil in coconut oil exhibited excellent activity with 98.9% protection from bites of A. aegypti for 88.7±10.4 min. In addition, C. citratus in olive oil showed excellent activity with 98.8% protection from bites of C. quinquefasciatus for 170.0±9.0 min. While, DEET 20% w/w gave protection for 155.0±7.1-182.0±12.2 min and 98.5% protection from bites of two mosquito species. However, all herbal repellent provided lower repellency activity (97.4-98.9% protection for 10.5-88.7 min) against A. aegypti than C. quinquefasciatus (98.3-99.2% protection for 60-170 min). Our data exhibited that C. odorata oil and C. citratus oil are suitable to be used as green repellents for mosquito control, which are safe for humans, domestic animals and environmental friendly. PMID:25438256

Soonwera, Mayura; Phasomkusolsil, Siriporn

2015-02-01

98

Landscape Movements of Anopheles gambiae Malaria Vector Mosquitoes in Rural Gambia  

PubMed Central

Background For malaria control in Africa it is crucial to characterise the dispersal of its most efficient vector, Anopheles gambiae, in order to target interventions and assess their impact spatially. Our study is, we believe, the first to present a statistical model of dispersal probability against distance from breeding habitat to human settlements for this important disease vector. Methods/Principal Findings We undertook post-hoc analyses of mosquito catches made in The Gambia to derive statistical dispersal functions for An. gambiae sensu lato collected in 48 villages at varying distances to alluvial larval habitat along the River Gambia. The proportion dispersing declined exponentially with distance, and we estimated that 90% of movements were within 1.7 km. Although a ‘heavy-tailed’ distribution is considered biologically more plausible due to active dispersal by mosquitoes seeking blood meals, there was no statistical basis for choosing it over a negative exponential distribution. Using a simple random walk model with daily survival and movements previously recorded in Burkina Faso, we were able to reproduce the dispersal probabilities observed in The Gambia. Conclusions/Significance Our results provide an important quantification of the probability of An. gambiae s.l. dispersal in a rural African setting typical of many parts of the continent. However, dispersal will be landscape specific and in order to generalise to other spatial configurations of habitat and hosts it will be necessary to produce tractable models of mosquito movements for operational use. We show that simple random walk models have potential. Consequently, there is a pressing need for new empirical studies of An. gambiae survival and movements in different settings to drive this development. PMID:23874719

Thomas, Christopher J.; Cross, Dónall E.; Bøgh, Claus

2013-01-01

99

A novel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus.  

PubMed

The objective of this study was to develop a herbal formulation to control dengue vector mosquitoes. PONNEEM, a novel herbal formulation prepared using the oils of neem (Azadirachta indica), karanj (Pongamia glabra) and their extracts, was tested for larvicidal, ovicidal and oviposition deterrent activities against Aedes aegypti and Aedes albopictus at 1, 0.5, 0.3 and 0.1 ppm concentrations. Cent percent larvicidal and ovicidal activities were observed at 0.1 ppm in the two mosquito species under laboratory and sunlight-exposed conditions up to 12 months from the date of manufacture. Oviposition deterrent activity of 69.97% and 71.05% was observed at 1 ppm concentration of PONNEEM against A. aegypti and A. albopictus, respectively. Reduction in enzyme levels for ?-esterase was 0.089 ± 0.008 and 0.099 ± 0.140 ?g napthol produced/min/mg larval protein; for ?-esterase, it was 0.004 ± 0.009 and 0.001 ± 0.028 ?g napthol produced/min/mg larval protein; for glutathione S-transferase, it was 10.4814 ± 0.23 and 11.4811 ± 0.21 ?mol/min/mg larval protein and for total protein, it was 0.177 ± 0.010 and 0.008 ± 0.005 mg/individual larva in treated groups of A. aegypti and A. albopictus, respectively. The nontarget organisms such as Gambusia affinis and Diplonychus indicus were not affected. No mortality was observed in control. PONNEEM can be used effectively for the management of human vector mosquitoes. PMID:22042505

Maheswaran, Rajan; Ignacimuthu, Savarimuthu

2012-05-01

100

Simulation Modelling of Population Dynamics of Mosquito Vectors for Rift Valley Fever Virus in a Disease Epidemic Setting  

PubMed Central

Background Rift Valley Fever (RVF) is weather dependent arboviral infection of livestock and humans. Population dynamics of mosquito vectors is associated with disease epidemics. In our study, we use daily temperature and rainfall as model inputs to simulate dynamics of mosquito vectors population in relation to disease epidemics. Methods/Findings Time-varying distributed delays (TVDD) and multi-way functional response equations were implemented to simulate mosquito vectors and hosts developmental stages and to establish interactions between stages and phases of mosquito vectors in relation to vertebrate hosts for infection introduction in compartmental phases. An open-source modelling platforms, Universal Simulator and Qt integrated development environment were used to develop models in C++ programming language. Developed models include source codes for mosquito fecundity, host fecundity, water level, mosquito infection, host infection, interactions, and egg time. Extensible Markup Language (XML) files were used as recipes to integrate source codes in Qt creator with Universal Simulator plug-in. We observed that Floodwater Aedines and Culicine population continued to fluctuate with temperature and water level over simulation period while controlled by availability of host for blood feeding. Infection in the system was introduced by floodwater Aedines. Culicines pick infection from infected host once to amplify disease epidemic. Simulated mosquito population show sudden unusual increase between December 1997 and January 1998 a similar period when RVF outbreak occurred in Ngorongoro district. Conclusion/Significance Findings presented here provide new opportunities for weather-driven RVF epidemic simulation modelling. This is an ideal approach for understanding disease transmission dynamics towards epidemics prediction, prevention and control. This approach can be used as an alternative source for generation of calibrated RVF epidemics data in different settings. PMID:25259792

Mweya, Clement N.; Holst, Niels; Mboera, Leonard E. G.; Kimera, Sharadhuli I.

2014-01-01

101

Mosquito vector biology and control in Latin America--a 23rd symposium.  

PubMed

The 23rd Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 79th Annual Meeting in Atlantic City, NJ, in February 2013. The principal objective, as for the previous 22 symposia, was to promote participation in the AMCA by vector control specialists, public health workers, and academicians from Latin America. This publication includes summaries of 49 presentations that were given orally in Spanish or presented as posters by participants from Colombia, Mexico, and the USA. Topics addressed in the symposium included: surveillance, ecology, chemical and biological control, and insecticide resistance associated with Aedes aegypti; surveillance and control of Anopheles vectors of malaria; and studies of dengue and West Nile viruses, Chagas disease, and Lutzomyia. PMID:24199500

Clark, Gary G; Fernandez-Salas, Ildefonso

2013-09-01

102

Mosquito vector biology and control in Latin America--a 22nd symposium.  

PubMed

The 22nd Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 78th Annual Meeting in Austin, TX, in February 2012. The principal objective, as for the previous 21 symposia, was to promote participation in the AMCA by vector control specialists, public health workers, and academicians from Latin America. This publication includes summaries of 21 presentations that were given orally in Spanish or presented as posters by participants from Mexico, Colombia, Venezuela, and the USA. Topics addressed in the symposium included surveillance, chemical control, insecticide resistance, and genetics associated with Aedes aegypti; food sources and control of Culex; taxonomy, surveillance, and control of Anopheles vectors of malaria; and studies of dengue virus and Leishmania. PMID:22894120

Clark, Gary G; Rubio-Palis, Yasmin

2012-06-01

103

Visual arrestins in olfactory pathways of Drosophila and the malaria vector mosquito Anopheles gambiae  

PubMed Central

Arrestins are important components for desensitization of G protein-coupled receptor cascades that mediate neurotransmission as well as olfactory and visual sensory reception. We have isolated AgArr1, an arrestin-encoding cDNA from the malaria vector mosquito, Anopheles gambiae, where olfaction is critical for vectorial capacity. Analysis of AgArr1 expression revealed an overlap between chemosensory and photoreceptor neurons. Furthermore, an examination of previously identified arrestins from Drosophila melanogaster exposed similar bimodal expression, and Drosophila arrestin mutants demonstrate impaired electrophysiological responses to olfactory stimuli. Thus, we show that arrestins in Drosophila are required for normal olfactory physiology in addition to their previously described role in visual signaling. These findings suggest that individual arrestins function in both olfactory and visual pathways in Dipteran insects; these genes may prove useful in the design of control strategies that target olfactory-dependent behaviors of insect disease vectors. PMID:11792843

Merrill, C. E.; Riesgo-Escovar, J.; Pitts, R. J.; Kafatos, F. C.; Carlson, J. R.; Zwiebel, L. J.

2002-01-01

104

Molecular Characterization of Larval Peripheral Thermosensory Responses of the Malaria Vector Mosquito Anopheles gambiae  

PubMed Central

Thermosensation provides vital inputs for the malaria vector mosquito, Anopheles gambiae which utilizes heat-sensitivity within a broad spectrum of behaviors, most notably, the localization of human hosts for blood feeding. In this study, we examine thermosensory behaviors in larval-stage An. gambiae, which as a result of their obligate aquatic habitats and importance for vectorial capacity, represents an opportunistic target for vector control as part of the global campaign to eliminate malaria. As is the case for adults, immature mosquitoes respond differentially to a diverse array of external heat stimuli. In addition, larvae exhibit a striking phenotypic plasticity in thermal-driven behaviors that are established by temperature at which embryonic development occurs. Within this spectrum, RNAi-directed gene-silencing studies provide evidence for the essential role of the Transient Receptor Potential sub-family A1 (TRPA1) channel in mediating larval thermal-induced locomotion and thermal preference within a discrete upper range of ambient temperatures. PMID:23940815

Liu, Chao; Zwiebel, Laurence J.

2013-01-01

105

Larvicidal Activity of Cassia occidentalis (Linn.) against the Larvae of Bancroftian Filariasis Vector Mosquito Culex quinquefasciatus  

PubMed Central

Background & Objectives. The plan of this work was to study the larvicidal activity of Cassia occidentalis (Linn.) against the larvae of Culex quinquefasciatus. These larvae are the most significant vectors. They transmit the parasites and pathogens which cause a deadly disease like filariasis, dengue, yellow fever, malaria, Japanese encephalitis, chikungunya, and so forth, which are considered harmful towards the population in tropic and subtropical regions. Methods. The preliminary laboratory trail was undertaken to determine the efficacy of petroleum ether and N-butanol extract of dried whole plant of Cassia occidentalis (Linn.) belonging to the family Caesalpiniaceae at various concentrations against the late third instar larvae of Culex quinquefasciatus by following the WHO guidelines. Results. The results suggest that 100% mortality effect of petroleum ether and N-butanol extract of Cassia occidentalis (Linn.) was observed at 200 and 300?ppm (parts per million). The results obviously showed use of plants in insect control as an alternative method for minimizing the noxious effect of some pesticide compounds on the environment. Thus the extract of Cassia occidentalis (Linn.) is claimed as more selective and biodegradable agent. Conclusion. This study justified that plant Cassia occidentalis (Linn.) has a realistic mortality result for larvae of filarial vector. This is safe to individual and communities against mosquitoes. It is a natural weapon for mosquito control. PMID:24688786

Kumar, Deepak; Chawla, Rakesh; Dhamodaram, P.; Balakrishnan, N.

2014-01-01

106

Antipathogen genes and the replacement of disease-vectoring mosquito populations: a model-based evaluation.  

PubMed

Recently, genetic strategies aimed at controlling populations of disease-vectoring mosquitoes have received considerable attention as alternatives to traditional measures. Theoretical studies have shown that female-killing (FK), antipathogen (AP), and reduce and replace (R&R) strategies can each decrease the number competent vectors. In this study, we utilize a mathematical model to evaluate impacts on competent Aedes aegypti populations of FK, AP, and R&R releases as well as hybrid strategies that result from combinations of these three approaches. We show that while the ordering of efficacy of these strategies depends upon population life history parameters, sex ratio of releases, and switch time in combination strategies, AP-only and R&R/AP releases typically lead to the greatest long-term reduction in competent vectors. R&R-only releases are often less effective at long-term reduction of competent vectors than AP-only releases or R&R/AP releases. Furthermore, the reduction in competent vectors caused by AP-only releases is easier to maintain than that caused by FK-only or R&R-only releases even when the AP gene confers a fitness cost. We discuss the roles that density dependence and inclusion of females play in the order of efficacy of the strategies. We anticipate that our results will provide added impetus to continue developing AP strategies. PMID:25558284

Robert, Michael A; Okamoto, Kenichi W; Gould, Fred; Lloyd, Alun L

2014-12-01

107

Antipathogen genes and the replacement of disease-vectoring mosquito populations: a model-based evaluation  

PubMed Central

Recently, genetic strategies aimed at controlling populations of disease-vectoring mosquitoes have received considerable attention as alternatives to traditional measures. Theoretical studies have shown that female-killing (FK), antipathogen (AP), and reduce and replace (R&R) strategies can each decrease the number competent vectors. In this study, we utilize a mathematical model to evaluate impacts on competent Aedes aegypti populations of FK, AP, and R&R releases as well as hybrid strategies that result from combinations of these three approaches. We show that while the ordering of efficacy of these strategies depends upon population life history parameters, sex ratio of releases, and switch time in combination strategies, AP-only and R&R/AP releases typically lead to the greatest long-term reduction in competent vectors. R&R-only releases are often less effective at long-term reduction of competent vectors than AP-only releases or R&R/AP releases. Furthermore, the reduction in competent vectors caused by AP-only releases is easier to maintain than that caused by FK-only or R&R-only releases even when the AP gene confers a fitness cost. We discuss the roles that density dependence and inclusion of females play in the order of efficacy of the strategies. We anticipate that our results will provide added impetus to continue developing AP strategies. PMID:25558284

Robert, Michael A; Okamoto, Kenichi W; Gould, Fred; Lloyd, Alun L

2014-01-01

108

Into the environment of mosquito-borne disease: A spatial analysis of vector distribution using traditional and remotely sensed methods  

NASA Astrophysics Data System (ADS)

Spatially explicit information is increasingly available for infectious disease modeling. However, such information is reluctantly or inappropriately incorporated. My dissertation research uses spatially explicit data to assess relationships between landscape and mosquito species distribution and discusses challenges regarding accurate predictive risk modeling. The goal of my research is to use remotely sensed environmental information and spatial statistical methods to better understand mosquito-borne disease epidemiology for improvement of public health responses. In addition to reviewing the progress of spatial infectious disease modeling, I present four research projects. I begin by evaluating the biases in surveillance data and build up to predictive modeling of mosquito species presence. In the first study I explore how mosquito surveillance trap types influence estimations of mosquito populations. Then. I use county-based human surveillance data and landscape variables to identify risk factors for West Nile virus disease. The third study uses satellite-based vegetation indices to identify spatial variation among West Nile virus vectors in an urban area and relates the variability to virus transmission dynamics. Finally, I explore how information from three satellite sensors of differing spatial and spectral resolution can be used to identify and distinguish mosquito habitat across central Connecticut wetlands. Analyses presented here constitute improvements to the prediction of mosquito distribution and therefore identification of disease risk factors. Current methods for mosquito surveillance data collection are labor intensive and provide an extremely limited, incomplete picture of the species composition and abundance. Human surveillance data offers additional challenges with respect to reporting bias and resolution, but is nonetheless informative in identifying environmental risk factors and disease transmission dynamics. Remotely sensed imagery supports mosquito and human disease surveillance data by providing spatially explicit, line resolution information about environmental factors relevant to vector-borne disease processes. Together, surveillance and remotely sensed environmental data facilitate improved description and modeling of disease transmission. Remote sensing can be used to develop predictive maps of mosquito distribution in relation to disease risk. This has implications for increased accuracy of mosquito control efforts. The projects presented in this dissertation enhance current public health capacities by examining the applications of spatial modeling with respect to mosquito-borne disease.

Brown, Heidi E.

109

A survey of mosquitoes breeding in used tires in Spain for the detection of imported potential vector species.  

PubMed

The used tire trade has facilitated the introduction, spread, and establishment of the Asian tiger mosquito, Aedes albopictus, and other mosquito species in several countries of America, Africa, Oceania, and Europe. A strategy for detecting these imported mosquito vectors was developed in Spain during 2003-2004 by EVITAR (multidisciplinary network for the study of viruses transmitted by arthropods and rodents). A survey in 45 locations found no invasive species. Eight autochthonous species of mosquitoes were detected in used tires, including Culex pipiens, Cx. hortensis, Cx. modestus, Anopheles atroparvus, An. claviger, Culiseta longiareolata, Cs. annulata, and Aedes caspius. Dominant species were Cx. pipiens and Cs. longiareolata. Aedes caspius was found in only once, near its natural breeding habitat. Considering the recent discovery of an established population of Ae. albopictus in Catalonia, the increasing commerce of used tires in Spain for recycling, storage, and recapping might greatly contribute to the rapid spread of this species across the Iberian Peninsula. PMID:17633420

Roiz, D; Eritja, R; Escosa, R; Lucientes, J; Marquès, E; Melero-Alcíbar, R; Ruiz, S; Molina, R

2007-06-01

110

St. Louis Encephalitis virus mosquito vectors dynamics in three different environments in relation to remotely sensed environmental conditions.  

PubMed

In Argentina the St. Louis Encephalitis virus (SLEV) is an endemic and widely distributed pathogen transmitted by the cosmopolitan mosquito Culex quinquefasciatus. During two outbreaks in Córdoba city, in 2005 and 2010, Culex interfor was also found infected, but its role as vector of SLEV is poorly known. This mosquito species is distributed from central Argentina to southern Brazil. The primary aim of this study was to analyze the population dynamic of Cx. interfor and Cx. quinquefasciatus in three different environments (urban, suburban and non-urban) in relation to remotely sensed environmental data for vegetation (NDVI and NDWI) and temperature (brightness temperature). Cx. quinquefasciatus and Cx. interfor were found at the three sampled sites, being both the most abundant Culex species, with peaks in early and midsummer. Temporal distribution patterns of both mosquito species were highly correlated in a non-urban area of high SLEV risk transmission. Cx. quinquefasciatus and Cx. interfor were associated with the most urbanized site and the non-urban environment, respectively; high significant correlations were detected between vegetation indices and abundance of both mosquito species confirming these associations. These data provide a foundation for building density maps of these two SLEV mosquito vectors using remotely sensed data to help inform vector control programs. PMID:25792419

Batallán, Gonzalo P; Estallo, Elizabet L; Flores, Fernando S; Sartor, Paolo; Contigiani, Marta S; Almirón, Walter R

2015-06-01

111

Monitoring the aquatic toxicity of mosquito vector control spray pesticides to freshwater receiving waters.  

PubMed

Pesticides are applied to state and local waterways in California to control insects such as mosquitoes, which are known to serve as a vector for West Nile Virus infection of humans. The California State Water Resources Control Board adopted a National Pollutant Discharge Elimination System General Permit to address the discharge to waters of the United States of pesticides resulting from adult and larval mosquito control. Because pesticides used in spray activities have the potential to cause toxicity to nontarget organisms in receiving waters, the current study was designed to determine whether toxicity testing provides additional, useful environmental risk information beyond chemical analysis in monitoring spray pesticide applications. Monitoring included a combination of aquatic toxicity tests and chemical analyses of receiving waters from agricultural, urban, and wetland habitats. The active ingredients monitored included the organophosphate pesticides malathion and naled, the pyrethroid pesticides etofenprox, permethrin, and sumithrin, pyrethrins, and piperonyl butoxide (PBO). Approximately 15% of the postapplication water samples were significantly toxic. Toxicity of half of these samples was attributed to the naled breakdown product dichlorvos. Toxicity of 2 other water samples likely occurred when PBO synergized the effects of pyrethroid pesticides that were likely present in the receiving system. Four of 43 postapplication sediment samples were significantly more toxic than their corresponding pre-application samples, but none of the observed toxicity was attributed to the application events. These results indicate that many of the spray pesticides used for adult mosquito control do not pose significant acute toxicity risk to invertebrates in receiving systems. In the case of naled in water, analysis of only the active ingredient underestimated potential impacts to the receiving system, because toxicity was attributed to the breakdown product, dichlorvos. Toxicity testing can provide useful risk information about unidentified, unmeasured toxicants or mixtures of toxicants. In this case, toxicity testing provided information that could lead to the inclusion of dichlorvos monitoring as a permit requirement. PMID:24659580

Phillips, Bryn M; Anderson, Brian S; Voorhees, Jennifer P; Siegler, Katie; Denton, Debra; TenBrook, Patti; Larsen, Karen; Isorena, Philip; Tjeerdema, Ron S

2014-07-01

112

piRNA pathway gene expression in the malaria vector mosquito Anopheles stephensi  

PubMed Central

The ability of transposons to mobilize to new places in a genome enables them to introgress rapidly into populations. The piRNA pathway has been characterized recently in the germ line of the fruit fly, Drosophila melanogaster, and is responsible for downregulating transposon mobility. Transposons have been used as tools in mosquitoes to genetically transform a number of species including Anopheles stephensi, a vector of human malaria. These mobile genetic elements also have been proposed as tools to drive antipathogen effector genes into wild mosquito populations to replace pathogen-susceptible insects with those engineered genetically to be resistant to or unable to transmit a pathogen. The piRNA pathway may affect the performance of such proposed genetic engineering strategies. In the present study, we identify and describe the An. stephensi orthologues of the major genes in the piRNA pathway, Ago3, Aubergine (Aub) and Piwi. Consistent with a role in protection from transposon movement, these three genes are expressed constitutively in the germ-line cells of ovaries and induced further after a blood meal. PMID:24947897

Macias, V; Coleman, J; Bonizzoni, M; James, A A

2014-01-01

113

Vector ability of mosquitoes for isolates of Plasmodium elongatum from raptors in Florida.  

PubMed

Three isolates of Plasmodium elongatum were obtained from 3 species of raptors (red-tailed hawk [Buteo jamaicensis], bald eagle [Haliaeetus leucocephalus], and eastern screech owl [Otus asio]) from Florida using isodiagnostic techniques in Pekin ducks (Anas platyrhynchos). Six to 10 species of mosquitoes were tested for susceptibility to these 3 isolates. Complete development of the sporogonic cycle of the 3 isolates of P. elongatum occurred in 3 species of mosquitoes, Culex nigripalpus, Culex restuans, and Culex salinarius. The pattern of susceptibility was similar among the 3 isolates of P. elongatum in Cx. nigripalpus. Culex restuans and Cx. salinarius were significantly more susceptible than Cx. nigripalpus to the 3 isolates of P. elongatum tested. Culex nigripalpus transmitted all 3 isolates of P. elongatum from duck to duck both by bite and after intraperitoneal injection of sporozoites. Infections of the 2 isolates tested occurred in ducks after intraperitoneal injection of sporozoites from Cx. restuans and Cx. salinarius. The results suggest that these 3 Culex species are potential vectors of P. elongatum from raptors in Florida. PMID:9645854

Nayar, J K; Knight, J W; Telford, S R

1998-06-01

114

Colonization of a newly constructed urban wetland by mosquitoes in England: implications for nuisance and vector species.  

PubMed

Urban wetlands are being created in the UK as part of sustainable urban drainage strategies, to create wetland habitats lost during development, to provide a habitat for protected species, and to increase the public's access to 'blue-space' for the improvement of health and well-being. Sewage treatment reedbeds are also being incorporated into newly constructed wetlands to offer an alternative approach to dealing with sewage. This field study aims to provide the first UK evidence of how such newly constructed aquatic habitats are colonized by mosquitoes. A number of new aquatic habitats were surveyed for immature mosquitoes every fortnight over the first two years following wetland construction. The majority of mosquitoes collected were Culex sp. and were significantly associated with the sewage treatment reedbed system, particularly following storm events and sewage inflow. Other more natural aquatic habitats that were subject to cycles of drying and re-wetting contributed the majority of the remaining mosquitoes colonizing. Colonization of permanent habitats was slow, particularly where fluctuations in water levels inhibited emergent vegetation growth. It is recommended that during the planning process for newly constructed wetlands consideration is given on a case-by-case basis to the impact of mosquitoes, either as a cause of nuisance or as potential vectors. Although ornithophagic Culex dominated in this wetland, their potential role as enzootic West Nile virus vectors should not be overlooked. PMID:25424253

Medlock, Jolyon M; Vaux, Alexander G C

2014-12-01

115

Evaluation of larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector  

PubMed Central

Objective To evaluate the larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector. Methods The synthesized AgNPs were characterized by UV-vis. spectrum, Fourier transform infrared and X-ray diffraction. Larvae were exposed to varying concentrations of aqueous extract of synthesized AgNPs for 10 min. The different concentrations of 5, 2.5, 1.25, 0.625 and 0.312 mg/L silver nanoparticles were tested against the Culex larvae. Results The mortality rate of Agaricus bisporus biogenic nanoparticles against Culex larvae are 5 mg/L (100%), 2.5 mg/L (81%), 1.25 mg/L (62%), 0.625 mg/L (28%) and 0.312 mg/L (11%). Conclusions These results suggest that the synthesized biogenic AgNPs have the potential to be used as an ideal eco-friendly approach for controlling Culex larvae.

Dhanasekaran, Dharumadurai; Thangaraj, Ramasamy

2013-01-01

116

Bicluster pattern of codon context usages between flavivirus and vector mosquito Aedes aegypti: relevance to infection and transcriptional response of mosquito genes.  

PubMed

The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in most of the subtropical and tropical countries. Besides DENV, yellow fever virus (YFV) is also transmitted by A. aegypti. Susceptibility of A. aegypti to West Nile virus (WNV) has also been confirmed. Although studies have indicated correlation of codon bias between flaviviridae and their animal/insect hosts, it is not clear if codon sequences have any relation to susceptibility of A. aegypti to DENV, YFV and WNV. In the current study, usages of codon context sequences (codon pairs for neighboring amino acids) of the vector (A. aegypti) genome as well as the flaviviral genomes are investigated. We used bioinformatics methods to quantify codon context bias in a genome-wide manner of A. aegypti as well as DENV, WNV and YFV sequences. Mutual information statistics was applied to perform bicluster analysis of codon context bias between vector and flaviviral sequences. Functional relevance of the bicluster pattern was inferred from published microarray data. Our study shows that codon context bias of DENV, WNV and YFV sequences varies in a bicluster manner with that of specific sets of genes of A. aegypti. Many of these mosquito genes are known to be differentially expressed in response to flaviviral infection suggesting that codon context sequences of A. aegypti and the flaviviruses may play a role in the susceptible interaction between flaviviruses and this mosquito. The bias in usages of codon context sequences likely has a functional association with susceptibility of A. aegypti to flaviviral infection. The results from this study will allow us to conduct hypothesis-driven tests to examine the role of codon context bias in evolution of vector-virus interactions at the molecular level. PMID:24838953

Behura, Susanta K; Severson, David W

2014-10-01

117

Inter-epidemic abundance and distribution of potential mosquito vectors for Rift Valley fever virus in Ngorongoro district, Tanzania  

PubMed Central

Background Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that primarily affects ruminants but also has the capacity to infect humans. Objective To determine the abundance and distribution of mosquito vectors in relation to their potential role in the virus transmission and maintenance in disease epidemic areas of Ngorongoro district in northern Tanzania. Methods A cross-sectional entomological investigation was carried out before the suspected RVF outbreak in October 2012. Mosquitoes were sampled both outdoors and indoors using the Centre for Disease Control (CDC) light traps and Mosquito Magnets baited with attractants. Outdoor traps were placed in proximity with breeding sites and under canopy in banana plantations close to the sleeping places of animals. Results A total of 1,823 mosquitoes were collected, of which 87% (N=1,588) were Culex pipiens complex, 12% (N=226) Aedes aegypti, and 0.5% (N=9) Anopheles species. About two-thirds (67%; N=1,095) of C. pipiens complex and nearly 100% (N=225) of A. aegypti were trapped outdoors using Mosquito Magnets. All Anopheles species were trapped indoors using CDC light traps. There were variations in abundance of C. pipiens complex and A. aegypti among different ecological and vegetation habitats. Over three quarters (78%) of C. pipiens complex and most (85%) of the A. aegypti were trapped in banana and maize farms. Both C. pipiens complex and A. aegypti were more abundant in proximity with cattle and in semi-arid thorn bushes and lower Afro-montane. The highest number of mosquitoes was recorded in villages that were most affected during the RVF epidemic of 2007. Of the tested 150 pools of C. pipiens complex and 45 pools of A. aegypti, none was infected with RVF virus. Conclusions These results provide insights into unique habitat characterisation relating to mosquito abundances and distribution in RVF epidemic-prone areas of Ngorongoro district in northern Tanzania. PMID:25613346

Mweya, Clement N.; Kimera, Sharadhuli I.; Mellau, Lesakit S. B.; Mboera, Leonard E. G.

2015-01-01

118

Chikungunya virus and the mosquito vector Aedes aegypti in New Caledonia (South Pacific Region).  

PubMed

Chikungunya virus (CHIKV) is transmitted to humans through the bite of Aedes mosquitoes. During the 2005-2006 epidemic that occurred in the Indian Ocean Islands, a viral strain harboring a substitution of an alanine to valine at position 226 (E1-A226V) of the E1 glycoprotein enhanced the transmissibility of CHIKV by Aedes albopictus. In March 2011, autochthonous transmission of CHIKV was reported in New Caledonia (NC), an island located in the southwest Pacific Ocean. This was the first report of local chikungunya (CHIK) transmission in this region of the world. Phylogenetic analysis based on the complete genome demonstrated that the CHIKV-NC strain isolated from the first autochthonous human case belongs to the Asian lineage. This is consistent with the Indonesian origin of CHIK cases previously imported and detected. Thus the CHIKV-NC does not present a valine substitution at position E1-226. In New Caledonia, the putative vector of CHIKV is Aedes aegypti, since no other potential vector has ever been described. For example, A. albopictus is not found in NC. Vector competence experiments showed that A. aegypti from New Caledonia was able to transmit, as early as 3 days post-infection, two CHIKV strains: CHIKV-NC belonging to the Asian lineage, and CHIKV-RE from Reunion Island harboring the E1-A226V mutation. Thus the extrinsic incubation period of both CHIKV strains in this vector species could be considered to be quite short. These results illustrate the threat of the spread of CHIKV in the South Pacific region. From February to June 2011 (the end of the alert), only 33 cases were detected. Implementation of drastic vector control measures and the occurrence of the cold season probably helped to limit the extent of the outbreak, but other factors may have also been involved and are discussed. PMID:23167500

Dupont-Rouzeyrol, Myrielle; Caro, Valérie; Guillaumot, Laurent; Vazeille, Marie; D'Ortenzio, Eric; Thiberge, Jean-Michel; Baroux, Noémie; Gourinat, Ann-Claire; Grandadam, Marc; Failloux, Anna-Bella

2012-12-01

119

A generic model for a single strain mosquito-transmitted disease with memory on the host and the vector.  

PubMed

In the present investigation, three mathematical models on a common single strain mosquito-transmitted diseases are considered. The first one is based on ordinary differential equations, and other two models are based on fractional order differential equations. The proposed models are validated using published monthly dengue incidence data from two provinces of Venezuela during the period 1999-2002. We estimate several parameters of these models like the order of the fractional derivatives (in case of two fractional order systems), the biting rate of mosquito, two probabilities of infection, mosquito recruitment and mortality rates, etc., from the data. The basic reproduction number, R0, for the ODE system is estimated using the data. For two fractional order systems, an upper bound for, R0, is derived and its value is obtained using the published data. The force of infection, and the effective reproduction number, R(t), for the three models are estimated using the data. Sensitivity analysis of the mosquito memory parameter with some important responses is worked out. We use Akaike Information Criterion (AIC) to identify the best model among the three proposed models. It is observed that the model with memory in both the host, and the vector population provides a better agreement with epidemic data. Finally, we provide a control strategy for the vector-borne disease, dengue, using the memory of the host, and the vector. PMID:25645185

Sardar, Tridip; Rana, Sourav; Bhattacharya, Sabyasachi; Al-Khaled, Kamel; Chattopadhyay, Joydev

2015-05-01

120

Present and future projections of habitat suitability of the Asian tiger mosquito, a vector of viral pathogens, from global climate simulation  

PubMed Central

Climate change can influence the transmission of vector-borne diseases (VBDs) through altering the habitat suitability of insect vectors. Here we present global climate model simulations and evaluate the associated uncertainties in view of the main meteorological factors that may affect the distribution of the Asian tiger mosquito (Aedes albopictus), which can transmit pathogens that cause chikungunya, dengue fever, yellow fever and various encephalitides. Using a general circulation model at 50 km horizontal resolution to simulate mosquito survival variables including temperature, precipitation and relative humidity, we present both global and regional projections of the habitat suitability up to the middle of the twenty-first century. The model resolution of 50 km allows evaluation against previous projections for Europe and provides a basis for comparative analyses with other regions. Model uncertainties and performance are addressed in light of the recent CMIP5 ensemble climate model simulations for the RCP8.5 concentration pathway and using meteorological re-analysis data (ERA-Interim/ECMWF) for the recent past. Uncertainty ranges associated with the thresholds of meteorological variables that may affect the distribution of Ae. albopictus are diagnosed using fuzzy-logic methodology, notably to assess the influence of selected meteorological criteria and combinations of criteria that influence mosquito habitat suitability. From the climate projections for 2050, and adopting a habitat suitability index larger than 70%, we estimate that approximately 2.4 billion individuals in a land area of nearly 20 million km2 will potentially be exposed to Ae. albopictus. The synthesis of fuzzy-logic based on mosquito biology and climate change analysis provides new insights into the regional and global spreading of VBDs to support disease control and policy making. PMID:25688015

Proestos, Y.; Christophides, G. K.; Ergüler, K.; Tanarhte, M.; Waldock, J.; Lelieveld, J.

2015-01-01

121

Present and future projections of habitat suitability of the Asian tiger mosquito, a vector of viral pathogens, from global climate simulation.  

PubMed

Climate change can influence the transmission of vector-borne diseases (VBDs) through altering the habitat suitability of insect vectors. Here we present global climate model simulations and evaluate the associated uncertainties in view of the main meteorological factors that may affect the distribution of the Asian tiger mosquito (Aedes albopictus), which can transmit pathogens that cause chikungunya, dengue fever, yellow fever and various encephalitides. Using a general circulation model at 50 km horizontal resolution to simulate mosquito survival variables including temperature, precipitation and relative humidity, we present both global and regional projections of the habitat suitability up to the middle of the twenty-first century. The model resolution of 50 km allows evaluation against previous projections for Europe and provides a basis for comparative analyses with other regions. Model uncertainties and performance are addressed in light of the recent CMIP5 ensemble climate model simulations for the RCP8.5 concentration pathway and using meteorological re-analysis data (ERA-Interim/ECMWF) for the recent past. Uncertainty ranges associated with the thresholds of meteorological variables that may affect the distribution of Ae. albopictus are diagnosed using fuzzy-logic methodology, notably to assess the influence of selected meteorological criteria and combinations of criteria that influence mosquito habitat suitability. From the climate projections for 2050, and adopting a habitat suitability index larger than 70%, we estimate that approximately 2.4 billion individuals in a land area of nearly 20 million km(2) will potentially be exposed to Ae. albopictus. The synthesis of fuzzy-logic based on mosquito biology and climate change analysis provides new insights into the regional and global spreading of VBDs to support disease control and policy making. PMID:25688015

Proestos, Y; Christophides, G K; Ergüler, K; Tanarhte, M; Waldock, J; Lelieveld, J

2015-04-01

122

VECTOR-BORNE DISEASES, SURVEILLANCE, PREVENTION Host Antibodies in Mosquito Bloodmeals: A Potential Tool to Detect  

E-print Network

, it carries away a blood sample containing speciÞc antibodies that can provide a history of the immune antibodies in blood-fed mosquitoes in the laboratory. Mosquitoes were fed on blood containing a speci be detected in mosquitoes that had been air-dried or preserved in ethanol. This research indicates that

Lowenberger, Carl

123

Distribution and habitat characterization of the recently introduced invasive mosquito Aedes koreicus [Hulecoeteomyia koreica], a new potential vector and pest in north-eastern Italy  

PubMed Central

Background The container breeding species belonging to the genus Aedes (Meigen) are frequently recorded out of their place of origin. Invasive Aedes species are proven or potential vectors of important Arboviruses and their establishment in new areas pose a threat for human and animal health. A new species of exotic mosquito was recorded in 2011 in north-eastern Italy: Aedes (Finlaya) koreicus [Hulecoeteomyia koreica]. The aim of this study was to characterize the biology, the environment and the current distribution of this mosquito in north-eastern Italy. Morphological details useful to discriminate this species from other invasive Aedes mosquitoes are also given (see Additional files). Methods All possible breeding sites for larval development were monitored. In addition, ovitraps and traps for adults were used to collect eggs and adults. The mosquitoes (larvae and adults) were identified morphologically and molecularly. Environmental data and climatic variables during the period of mosquito activity (from April to October) were considered. Results Aedes koreicus was found in 37 municipalities (39.4%) and was detected in 40.2% of places and in 37.3% of larval habitats monitored, in a range of altitude from 173 to 1250 m.a.s.l.. Garden centres were the most common locations (66.7%), followed by streets/squares (57.1%), private gardens (46.4%) and cemeteries (21.1%) (p?main larval habitats were catch basins (48.5%) and artificial water containers (41.8%). As for Aedes albopictus [Stegomyia albopicta], ovitraps were attractive for adult females resulting in the higher rate of positivity (15/21; 71.4%) among breeding sites. The period of Ae. koreicus activity ranged from March 29 to October 29. Conclusion The species is clearly established in the area and is now overlapping with other vectors such as Ae. albopictus and colonizing areas over 800 m.a.s.l, not yet or sporadically reached by the tiger mosquito. The data collected are essential to assess the risk of colonization of other parts of Italy and Europe, as well as the risk of spreading of pathogens transmitted. These findings stress the importance of implementing entomological surveillance for early detection of invasive species, which is necessary for eradication or limitation of its further spread. PMID:24457085

2013-01-01

124

The Effects of Climate Change and Globalization on Mosquito Vectors: Evidence from Jeju Island, South Korea on the Potential for Asian Tiger Mosquito (Aedes albopictus) Influxes and Survival from Vietnam Rather Than Japan  

PubMed Central

Background Climate change affects the survival and transmission of arthropod vectors as well as the development rates of vector-borne pathogens. Increased international travel is also an important factor in the spread of vector-borne diseases (VBDs) such as dengue, West Nile, yellow fever, chikungunya, and malaria. Dengue is the most important vector-borne viral disease. An estimated 2.5 billion people are at risk of infection in the world and there are approximately 50 million dengue infections and an estimated 500,000 individuals are hospitalized with dengue haemorrhagic fever annually. The Asian tiger mosquito (Aedes albopictus) is one of the vectors of dengue virus, and populations already exist on Jeju Island, South Korea. Currently, colder winter temperatures kill off Asian tiger mosquito populations and there is no evidence of the mosquitos being vectors for the dengue virus in this location. However, dengue virus-bearing mosquito vectors can inflow to Jeju Island from endemic area such as Vietnam by increased international travel, and this mosquito vector's survival during colder winter months will likely occur due to the effects of climate change. Methods and Results In this section, we show the geographical distribution of medically important mosquito vectors such as Ae. albopictus, a vector of both dengue and chikungunya viruses; Culex pipiens, a vector of West Nile virus; and Anopheles sinensis, a vector of Plasmodium vivax, within Jeju Island, South Korea. We found a significant association between the mean temperature, amount of precipitation, and density of mosquitoes. The phylogenetic analyses show that an Ae. albopictus, collected in southern area of Jeju Island, was identical to specimens found in Ho Chi Minh, Vietnam, and not Nagasaki, Japan. Conclusion Our results suggest that mosquito vectors or virus-bearing vectors can transmit from epidemic regions of Southeast Asia to Jeju Island and can survive during colder winter months. Therefore, Jeju Island is no longer safe from vector borne diseases (VBDs) due to the effects of globalization and climate change, and we should immediately monitor regional climate change to identify newly emerging VBDs. PMID:23894312

Jeong, Ji Yeon; Yoo, Seung Jin; Koh, Young-Sang; Lee, Seogjae; Heo, Sang Taek; Seong, Seung-Yong; Lee, Keun Hwa

2013-01-01

125

Transmission Blocking Immunity in Plasmodium v\\/vax Malaria: Antibodies Raised against a Peptide Block Parasite Development in the Mosquito Vector  

Microsoft Academic Search

Summary One approach towards the development of a vaccine against malaria is to immunize against the parasite sexual stages that mediate transmission of the parasite from man to mosquito. Anti- bodies against these stages, ingested with the blood meal, inhibit the parasite development in the mosquito vector, constituting \\

Valerie A. Snewin; Sunil Premawansa; S Gamini; M. G. Kapilananda; Preethi V. Udagama; Denise M. Mattei; Elizabeth Khouri; Giuseppe De; J. S. M. Peiris; Kamini N. Mendis; Peter H. David

126

Field evaluation of the efficacy and persistence of insect repellents DEET, IR3535, and KBR 3023 against Anopheles gambiae complex and other Afrotropical vector mosquitoes  

Microsoft Academic Search

Synthetic insect repellents, IR3535 and KBR 3023 (also known as picaridin, or by the trade name Bayrepel®), were tested in Burkina Faso against mosquito vectors of disease to compare their relative efficacy and persistence profiles to those of the ‘gold standard’ DEET. Collection of >49000 mosquitoes (?95% belonging to the Anopheles gambiae complex) showed that after an exposure of 10h,

Carlo Costantini; Athanase Badolo; Edith Ilboudo-Sanogo

2004-01-01

127

The Spiroindolone Drug Candidate NITD609 Potently Inhibits Gametocytogenesis and Blocks Plasmodium falciparum Transmission to Anopheles Mosquito Vector  

PubMed Central

The global malaria agenda has undergone a reorientation from control of clinical cases to entirely eradicating malaria. For that purpose, a key objective is blocking transmission of malaria parasites from humans to mosquito vectors. The new antimalarial drug candidate NITD609 was evaluated for its transmission-reducing potential and compared to a few established antimalarials (lumefantrine, artemether, primaquine), using a suite of in vitro assays. By the use of a microscopic readout, NITD609 was found to inhibit the early and late development of Plasmodium falciparum gametocytes in vitro in a dose-dependent fashion over a range of 5 to 500 nM. In addition, using the standard membrane feeding assay, NITD609 was also found to be a very effective drug in reducing transmission to the Anopheles stephensi mosquito vector. Collectively, our data suggest a strong transmission-reducing effect of NITD609 acting against different P. falciparum transmission stages. PMID:22508309

van Pelt-Koops, J. C.; Pett, H. E.; Graumans, W.; van der Vegte-Bolmer, M.; van Gemert, G. J.; Rottmann, M.; Yeung, B. K. S.; Diagana, T. T.

2012-01-01

128

Field evaluation of CDC gravid trap attractants to primary West Nile virus vectors, Culex mosquitoes in New York State.  

PubMed

A field study was conducted to evaluate two CDC gravid trap attractants available for the West Nile virus surveillance program in New York State (NYS). According to potential attractiveness, a common lawn sod in NYS, Kentucky bluegrass (Poa pratensis) infusion and a rabbit chow infusion were compared for attractiveness to primary West Nile virus vectors, Culex mosquitoes. Attractiveness of each infusion was measured by the number of adult mosquitoes caught in CDC gravid traps and the number of egg rafts laid in ovitraps. Both gravid trap and ovitrap studies demonstrated that lawn sod infusion with a 7-day incubation period had better attractiveness to Culex restuans/Culex pipiens than rabbit chow infusion with the same incubation period. Attractiveness of lawn sod infusions was increased as they became aged within a week's period. Lawn sod infusion also attracted more Ochlerotatus japonicus, a potentially important West Nile virus vector in New York. PMID:15532922

Lee, Joon-Hak; Kokas, John E

2004-09-01

129

Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes.  

PubMed

Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternative sources of mosquito control agents because they constitute a rich source of bioactive compounds that are biodegradable into nontoxic products and potentially suitable for use to control mosquitoes. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, in the present study, the adulticidal activity of silver nanoparticles (AgNPs) synthesized using Feronia elephantum plant leaf extract against adults of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. The range of concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 ?g mL(-1)) and aqueous leaf extract (40, 80, 120, 160, and 200 ?g mL(-1)) were tested against the adults of A. stephensi, A. aegypti, and C. quinquefasciatus. Adults were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of F. elephantum for all three important vector mosquitoes. The synthesized AgNPs from F. elephantum were highly toxic than crude leaf aqueous extract to three important vector mosquito species. The results were recorded from UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy analysis (EDX), and transmission electron microscopy (TEM). Synthesized AgNPs against the vector mosquitoes A. stephensi, A. aegypti, and C. quinquefasciatus had the following lethal dose (LD)?? and LD?? values: A. stephensi had LD?? and LD?? values of 18.041 and 32.575 ?g mL(-1); A. aegypti had LD?? and LD?? values of 20.399 and 37.534 ?g mL(-1); and C. quinquefasciatus had LD?? and LD?? values of 21.798 and 39.596 ?g mL(-1). No mortality was observed in the control. These results suggest that the leaf aqueous extracts of F. elephantum and green synthesis of AgNPs have the potential to be used as an ideal eco-friendly approach for the control of the A. stephensi, A. aegypti, and C. quinquefasciatus. This is the first report on the adulticidal activity of the plant extracts and AgNPs. PMID:25146645

Veerakumar, Kaliyan; Govindarajan, Marimuthu

2014-11-01

130

First report in italy of the exotic mosquito species Aedes (Finlaya) koreicus, a potential vector of arboviruses and filariae  

PubMed Central

Background In the Veneto region (north-eastern Italy) an entomological surveillance system has been implemented since the introduction of the Asian tiger mosquito (Aedes albopictus) in 1991. During the routine monitoring activity in a tiger mosquito-free area, an unexpected mosquito was noticed, which clearly did not belong to the recorded Italian fauna. Findings At the end of May 2011, twelve larvae and pupae were collected in a small village in Belluno province (Veneto region) from a single manhole. Ten adults reared in the laboratory were morphologically and genetically identified as Aedes (Finlaya) koreicus (Edwards, 1917), a species native to Southeast Asia. The subsequent investigations carried out in the following months in the same village provided evidence that this species had become established locally. Entomological and epidemiological investigations are currently ongoing in the surrounding area, to verify the eventual extension of the species outside the village and to trace back the route of entry into Italy. Conclusions This is the first report in Italy of the introduction of the exotic mosquito Ae. koreicus. This species has been shown experimentally to be competent in the transmission of the Japanese encephalitis virus and of the dog heartworm Dirofilaria immitis and is considered a potential vector of other arboviruses. Thus, the establishment of this species may increase the current risk or pose new potential threats, for human and animal health. This finding considerably complicates the entomological monitoring of the Asian tiger mosquito Ae. albopictus in Italy and stresses the importance of implementing the entomological surveillance for the early detection of and the rapid response against invasive mosquito species. PMID:21951867

2011-01-01

131

Evaluation of larvicidal efficacy of Solanum xanthocarpum storage against vector mosquitoes in north - western Rajasthan.  

PubMed

Efficacy of the methanol extracts from fruits without seeds, whole yellow ripe fruits and seeds of the plant Solanum xanthocarpum was evaluated against larvae of Anopheles culicifacies, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus, the important vector mosquitoes prevalent in the arid region. Experiments were carried out on late 3rd or early 4th instar larvae of these mosquitoes using standard WHO technique. 24 and 48 hr LC50 and LC90 values along with their fiducial limits, regression equation, chi-square (chi2)/heterogeneity of the response have been determined by log probit regression analysis. The 24 hr LC50 values as observed for fruit without seeds, whole fruits and seeds after six months were 79.6, 91.7 and 131.7; 131.4, 186.9 and 195.6; 273.4, 290.9 and 377.6 and 384.9, 450.6 and 520.0 mg l(-1) for An. culicifacies, An. stephensi, Ae. aegypti and Cx. quinquefasciatus respectively. However, the 24 hr LC50 values for fresh yellow ripe fruits and seeds determined previously were 51.6 and 66.9; 52.2 and 73.7; 118.3 and 123.8 and 157.1 and 154.9 mg l(-1) for the above four vector species respectively showing that the efficacy was decreased two to three times more after six months of storage. The 24 hr LC50 values were also determined after one year of storage for fruit without seeds, whole fruits and seeds. The values were 103.3, 120.1 and 195.7; 146.3, 224.3 and 251.2; 316.9, 336.5 and 426.2 and 393.0, 500.3 and 656.7 mg l(-1) as compared to the 24 hr LC50 values of 47.4, 51.6 and 66.9; 52.3, 52.2 and 73.7; 108.0, 118.3 and 123.8 and 141.1, 157.1 and 154.9 mg l(-1) of all the three fresh preparations for the above four vector species respectively showing that the efficacy was further decreased after one year of storage. Further the extracts should be used when they have been prepared from the fresh plant parts instead of the old stored parts. Larvae of anophelines were found more susceptible as compared to culicine. HPLC and IR studies showed that active component might be present in the fruits and seeds of this plant species. The study would be of great importance while planning vector control strategy based on alternative plant derived insecticides. PMID:20143723

Bansal, S K; Singh, Karam V; Sherwani, M R K

2009-09-01

132

Mosquito Life Cycle  

NSDL National Science Digital Library

In this activity, learners build a plastic emergence chamber (or use purchased "mini mosquito breeder") to observe and analyze the mosquito life cycle. Learners record daily observations for 8-14 days by counting the number of larvae, pupae, and adults present in the chamber. This resource includes background information about the mosquito life cycle and mosquitoes as disease vectors plus a link to a mosquito reference manual.

2013-07-30

133

Sialic Acid Expression in the Mosquito Aedes aegypti and Its Possible Role in Dengue Virus-Vector Interactions  

PubMed Central

Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to ?-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-?-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission.

Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H.

2015-01-01

134

Requirement of Glycosylation of West Nile Virus Envelope Protein for Infection of, but Not Spread within, Culex quinquefasciatus Mosquito Vectors  

PubMed Central

Most of sequenced West Nile virus (WNV) genomes encode a single N-linked glycosylation site on their envelope (E) proteins. We previously found that WNV lacking the E protein glycan was severely inhibited in its ability to replicate and spread within two important mosquito vector species, Culex pipiens and Cx. tarsalis. However, recent work with a closely related species, Cx. pipiens pallens, found no association between E protein glycosylation and either replication or dissemination. To examine this finding further, we expanded upon our previous studies to include an additional Culex species, Cx. quinquefasciatus. The non-glycosylated WNV-N154I virus replicated less efficiently in mosquito tissues after intrathoracic inoculation, but there was little difference in replication efficiency in the midgut after peroral infection. Interestingly, although infectivity was inhibited when WNV lacked the E protein glycan, there was little difference in viral spread throughout the mosquito. These data indicate that E protein glycosylation affects WNV–vector interactions in a species-specific manner. PMID:21813861

Moudy, Robin M.; Payne, Anne F.; Dodson, Brittany L.; Kramer, Laura D.

2011-01-01

135

Systematic list of the species added to the mosquito museum at the Vector Control Research Centre, Pondicherry, India.  

PubMed

Mosquito species housed in the mosquito museum at the Vector Control Research Centre, Pondicherry, India, were increased from 181 to 266 species belonging to 22 genera. The systematic list of the 85 species added to the collection is provided. The collection consists of a total of 31,874 adult specimens, of which 23,696 are individually mounted on minuten pins, while the rest are held in stock vials. It also includes 2,456 male genitalia and 470 female genitalia preparations, 3,523 larvae, 4,745 larval exuviae, and 3,057 pupal exuviae on microscope slides. Representative specimens of different species are available from 16 states and 3 union territories of India. PMID:21476442

Rajavel, A R; Natarajan, R; Vaidyanathan, K; Jambulingam, P

2011-03-01

136

Chromobacterium Csp_P Reduces Malaria and Dengue Infection in Vector Mosquitoes and Has Entomopathogenic and In Vitro Anti-pathogen Activities  

PubMed Central

Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito's vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies. PMID:25340821

Bahia, Ana C.; Saraiva, Raul G.; Dong, Yuemei; Kang, Seokyoung; Tripathi, Abhai; Mlambo, Godfree; Dimopoulos, George

2014-01-01

137

The fog of war: why the environmental crusade for anadromous fish species in California could disarm the state's local vector control districts in their war against mosquitoes.  

PubMed

In California, local mosquito and vector control districts have successfully controlled mosquito and vector-borne diseases by improving drainage patterns and applying pesticides. The Bay-Delta Conservation Plan, which is a proposed habitat conservation plan for the Sacramento-San Joaquin Bay-Delta estuary, proposes to add over 70,000 acres of habitat in the Delta to improve conditions for threatened and endangered aquatic and terrestrial species. This habitat could also be a suitable mosquito breeding habitat, which will be located in close proximity to urban and suburban communities. Wetland management practices and continued pesticide applications in the Delta could mitigate the effects of a new mosquito breeding habitat. Recent legal developments, however, require districts to obtain and comply with Clean Water Act permits, which restrict the application of pesticides in or near waters of the United States. Moreover, the U.S. Environmental Protection Agency has taken the first step in a rulemaking process that could further limit or prohibit the use of certain vector control pesticides in the Delta. In the near term and until less harmful methods for mosquito control are available, local vector control districts' application of mosquito control pesticides should be exempt from Clean Water Act permit requirements. PMID:23856372

Siptroth, Stephen M; Shanahan, Richard P

2011-12-01

138

Pupicidal and repellent activities of Pogostemon cablin essential oil chemical compounds against medically important human vector mosquitoes  

PubMed Central

Objective To determine the repellent and pupicidal activities of Pogostemon cablin (P. cablin) chemical compositions were assayed for their toxicity against selected important vector mosquitoes, viz., Aedes aegypti (Ae. aegypti), Anopheles stephensi (An. stephensi) and Culex quinquefasciatus (Cx. quinquefasciatus) (Diptera: Culicidae). Methods The plants dry aerial parts were subjected to hydrodistillation using a modified Clevenger-type apparatus. The composition of the essential oil was analyzed by Gas Chromatography (GC) and GC mass spectrophotometry. Evaluation was carried out in a net cage (45 cm×30 cm×45 cm) containing 100 blood starved female mosquitoes and were assayed in the laboratory condition by using the protocol of WHO 2010. The repellent activity of P. cablin chemical compositions at concentration of 2mg/cm2were applied on skin of fore arm in man and exposed against adult female mosquitoes. The pupicidal activity was determined against selected important vector mosquitoes to concentration of 100 mg/L and mortality of each pupa was recorded after 24 h of exposure to the compounds. Results Chemical constituents of 15 compounds were identified in the oil of P.cablin compounds representing to 98.96%. The major components in essential oil were â-patchoulene, á-guaiene, ã-patchoulene, á-bulnesene and patchouli alcohol. The repellent activity of patchouli alcohol compound was found to be most effective for repellent activity and 2 mg/cm2 concentration provided 100% protection up to 280 min against Ae. aegypti, An. stephensi and Cx. quinquefasciatus, respectively. Similarly, pupae exposed to 100 mg/L concentrations of P. cablin chemical compositions. Among five compounds tested patchouli alcoholwas found to be most effective for pupicidal activity provided 28.44, 26.28 and 25.36 against Ae.aegypti, An.stephensi and Cx. quinquefasciatus, respectively. The percent adult emergence was inversely proportional to the concentration of compounds and directly proportional to the pupal mortality. Conclusion These results suggest that the P. cablin chemical compositions have the potential to be used as an ideal eco-friendly approach for the control of mosquitoes. This is the first report on the mosquito repellent and pupicidal activities of the reported P. cablin chemical compositions.

Gokulakrishnan, J; Kuppusamy, Elumalai; Shanmugam, Dhanasekaran; Appavu, Anandan; Kaliyamoorthi, Krishnappa

2013-01-01

139

Larvicidal efficacy of different plant parts of railway creeper, Ipomoea cairica Extract Against Dengue Vector Mosquitoes, Aedes albopictus (Diptera: Culicidae) and Aedes aegypti (Diptera: Culicidae).  

PubMed

Natural insecticides from plant origin against mosquito vectors have been the main concern for research due to their high level of eco-safety. Control of mosquitoes in their larval stages are an ideal method since Aedes larvae are aquatic, thus it is easier to deal with them in this habitat. The present study was specifically conducted to explore the larvicidal efficacy of different plant parts of Ipomoea cairica (L.) or railway creeper crude extract obtained using two different solvents; methanol and acetone against late third-stage larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae). Plant materials of I. cairica leaf, flower, and stem were segregated, airdried, powdered, and extracted using Soxhlet apparatus. Larvicidal bioassays were performed by using World Health Organization standard larval susceptibility test method for each species which were conducted separately for different concentration ranging from 10 to 450 ppm. Both acetone and methanol extracts showed 100% mortality at highest concentration tested (450 ppm) after 24 h of exposure. Results from factorial ANOVA indicated that there were significant differences in larvicidal effects between mosquito species, solvent used and plant parts (F=5.71, df=2, P<0.05). The acetone extract of I. cairica leaf showed the most effective larvicidal action in Ae. aegypti with LC50 of 101.94 ppm followed by Ae. albopictus with LC50 of 105.59 ppm compared with other fractions of I. cairica extract obtained from flower, stem, and when methanol are used as solvent. The larvae of Ae. aegypti appeared to be more susceptible to I. cairica extract with lower LC50 value compared with Ae. albopictus (F=8.83, df=1, P<0.05). Therefore, this study suggests that the acetone extract of I. cairica leaf can be considered as plant-derived insecticide for the control of Aedes mosquitoes. This study quantified the larvicidal property of I. cairica extract, providing information on lethal concentration that may have potential for a more eco-friendly Aedes mosquito control program. PMID:25368088

AhbiRami, Rattanam; Zuharah, Wan Fatma; Thiagaletchumi, Maniam; Subramaniam, Sreeramanan; Sundarasekar, Jeevandran

2014-01-01

140

Different mosquito species host Wickerhamomyces anomalus ( Pichia anomala ): perspectives on vector-borne diseases symbiotic control  

Microsoft Academic Search

The genetic manipulation of the microbial community associated with hematophagus insects is particularly relevant for public\\u000a health applications. Within mosquito populations, this relationship has been overlooked until recently. New advances in molecular\\u000a biotechnology propose the genetic manipulation of mosquito symbionts to prevent the transmission of pathogens to humans by\\u000a interfering with the obligatory life cycle stages within the insect through

Irene Ricci; Michela Mosca; Matteo Valzano; Claudia Damiani; Patrizia Scuppa; Paolo Rossi; Elena Crotti; Alessia Cappelli; Ulisse Ulissi; Aida Capone; Fulvio Esposito; Alberto Alma; Mauro Mandrioli; Luciano Sacchi; Claudio Bandi; Daniele Daffonchio; Guido Favia

2011-01-01

141

An update on the incidence of dengue gaining strength in Saudi Arabia and current control approaches for its vector mosquito  

PubMed Central

Background The cases of dengue reported earlier in the late 1990s from the Kingdom of Saudi Arabia (KSA) occurred in the cities of Jeddah and Makkah. Although the kingdom has ample financial resources to establish effective control measures for the dengue vector, numerous cases of dengue occur and fluctuate in numbers from year to year. This necessitates a serious review of the current vector control strategies being practiced in order to identify the existing shortcomings. This short report provides an update on epidemiology of dengue in KSA (specifically in cities of Jeddah and Makkah) with a critical look at the current vector control strategies. Findings In 2013, 4411 cases of dengue were reported, with 8 cases of mortality. This number of dengue incidence was four times higher compared to 2012. In 2013, the highest number of 1272 dengue cases was reported in May, while the lowest number (37) of cases was reported in September. Conclusions It is evident that the control strategies of the dengue vector presently employed are inadequate. There seems to be serious deficiencies in following proper scientific procedures during field application(s) of control materials against the vector as is evident by the increases in the number of dengue cases as well as frequent outbreaks of the vector mosquito populations. In this review, some specific suggestions are made to draw attention to the relevant KSA authorities of the possible reasons behind unsuccessful control results and as to how to improve the strategy of dengue vector control in the kingdom. PMID:24890567

2014-01-01

142

Dopamine Receptor Antagonists as New Mode-of-Action Insecticide Leads for Control of Aedes and Culex Mosquito Vectors  

PubMed Central

Background New mode-of-action insecticides are sought to provide continued control of pesticide resistant arthropod vectors of neglected tropical diseases (NTDs). We previously identified antagonists of the AaDOP2 D1-like dopamine receptor (DAR) from the yellow fever mosquito, Aedes aegypti, with toxicity to Ae. aegypti larvae as leads for novel insecticides. To extend DAR-based insecticide discovery, we evaluated the molecular and pharmacological characteristics of an orthologous DAR target, CqDOP2, from Culex quinquefasciatus, the vector of lymphatic filariasis and West Nile virus. Methods/Results CqDOP2 has 94.7% amino acid identity to AaDOP2 and 28.3% identity to the human D1-like DAR, hD1. CqDOP2 and AaDOP2 exhibited similar pharmacological responses to biogenic amines and DAR antagonists in cell-based assays. The antagonists amitriptyline, amperozide, asenapine, chlorpromazine and doxepin were between 35 to 227-fold more selective at inhibiting the response of CqDOP2 and AaDOP2 in comparison to hD1. Antagonists were toxic to both C. quinquefasciatus and Ae. aegypti larvae, with LC50 values ranging from 41 to 208 ?M 72 h post-exposure. Orthologous DOP2 receptors identified from the African malaria mosquito, Anopheles gambiae, the sand fly, Phlebotomus papatasi and the tsetse fly, Glossina morsitans, had high sequence similarity to CqDOP2 and AaDOP2. Conclusions DAR antagonists represent a putative new insecticide class with activity against C. quinquefasciatus and Ae. aegypti, the two most important mosquito vectors of NTDs. There has been limited change in the sequence and pharmacological properties of the DOP2 DARs of these species since divergence of the tribes Culicini and Aedini. We identified antagonists selective for mosquito versus human DARs and observed a correlation between DAR pharmacology and the in vivo larval toxicity of antagonists. These data demonstrate that sequence similarity can be predictive of target potential. On this basis, we propose expanded insecticide discovery around orthologous DOP2 targets from additional dipteran vectors. PMID:25793586

Nuss, Andrew B.; Ejendal, Karin F. K.; Doyle, Trevor B.; Meyer, Jason M.; Lang, Emma G.; Watts, Val J.; Hill, Catherine A.

2015-01-01

143

Retrospective search for dengue vector mosquito Aedes albopictus in areas visited by a German traveler who contracted dengue in Japan.  

PubMed

A German traveler developed dengue fever in late August 2013, following a direct flight from Germany. Autochthonous dengue virus (DENV) infection has not been reported in Japan. To evaluate the risk of autochthonous DENV transmission in Japan, the authors performed a retrospective search of the five areas visited by the German patient to determine the population density of dengue vector mosquito, Aedes albopictus. The annual mean temperature of each area was higher than 12°C, which is considered suitable for the establishment of A. albopictus populations. Our retrospective search revealed the population density of A. albopictus to be high in the urban areas of Japan. PMID:25063022

Kobayashi, Mutsuo; Komagata, Osamu; Yonejima, Mayuko; Maekawa, Yoshihide; Hirabayashi, Kimio; Hayashi, Toshihiko; Nihei, Naoko; Yoshida, Masahiro; Tsuda, Yoshio; Sawabe, Kyoko

2014-09-01

144

Neural responses to one- and two-tone stimuli in the hearing organ of the dengue vector mosquito  

PubMed Central

SUMMARY Recent studies demonstrate that mosquitoes listen to each other's wing beats just prior to mating in flight. Field potentials from sound-transducing neurons in the antennae contain both sustained and oscillatory components to pure and paired tone stimuli. Described here is a direct comparison of these two types of response in the dengue vector mosquito, Aedes aegypti. Across a wide range of frequencies and intensities, sustained responses to one- and two-tone stimuli are about equal in magnitude to oscillatory responses to the beats produced by two-tone stimuli. All of these responses are much larger than the oscillatory responses to one-tone stimuli. Similarly, the frequency range extends up to at least the fifth harmonic of the male flight tone for sustained responses to one- and two-tone stimuli and oscillatory responses at the beat frequency of two-tone stimuli, whereas the range of oscillatory response to a one-tone stimulus is limited to, at most, the third harmonic. Thresholds near the fundamental of the flight tone are lower for oscillatory responses than for sustained deflections, lower for males than for females, and within the behaviorally relevant range. A simple model of the transduction process can qualitatively account for both oscillatory and sustained responses to pure and paired tones. These data leave open the question as to which of several alternative strategies underlie flight tone matching behavior in mosquitoes. PMID:20348350

Arthur, Ben J.; Wyttenbach, Robert A.; Harrington, Laura C.; Hoy, Ronald R.

2010-01-01

145

Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes.  

PubMed

Mosquitoes are blood-feeding insects and serve as the most important vectors for spreading human diseases such as malaria, yellow fever, dengue fever, and filariasis. The continued use of synthetic insecticides has resulted in resistance in mosquitoes. Synthetic insecticides are toxic and affect the environment by contaminating soil, water, and air, and then natural products may be an alternative to synthetic insecticides because they are effective, biodegradable, eco-friendly, and safe to environment. Botanical origin may serve as suitable alternative biocontrol techniques in the future. The present study was carried out to establish the larvicidal potential of leaf extracts of Gmelina asiatica and synthesized silver nanoparticles using aqueous leaf extract against late third instar larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the larvae of An. stephensi (lethal dose (LC50)?=?22.44 ?g/mL; LC90 40.65 ?g/mL), Ae. aegypti (LC50?=?25.77 ?g/mL; LC90 45.98 ?g/mL), and C. quinquefasciatus (LC50?=?27.83 ?g/mL; LC90 48.92 ?g/mL), respectively. No mortality was observed in the control. This is the first report on mosquito larvicidal activity of plant-synthesized nanoparticles. Thus, the use of G. asiatica to synthesize silver nanoparticles is a rapid, eco-friendly, and a single-step approach and the AgNps formed can be potential mosquito larvicidal agents. PMID:25666372

Muthukumaran, Udaiyan; Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L

2015-05-01

146

Repellent properties of Cardiospermum halicacabum Linn. (Family: Sapindaceae) plant leaf extracts against three important vector mosquitoes  

PubMed Central

Objective To determine repellent activity of hexane, ethyl acetate, benzene, chloroform and methanol extract of Cardiospermum halicacabum (C. halicacabum) against Culex quinquefasciatus (Cx. quinquefasciatus), Aedes aegypti (Ae. aegypti) and Anopheles stephensi (An. stephensi). Methods Evaluation was carried out in a net cage (45 cm×30 cm×25 cm) containing 100 blood starved female mosquitoes of three mosquito species and were assayed in the laboratory condition by using the protocol of WHO 2005; The plant leaf crude extracts of C. halicacabum was applied at 1.0, 2.5, and 5.0 mg/cm2 separately in the exposed area of the fore arm. Only ethanol served as control. Results In this observation, the plant crude extracts gave protection against mosquito bites without any allergic reaction to the test person, and also, the repellent activity was dependent on the strength of the plant extracts. The tested plant crude extracts had exerted promising repellent against all the three mosquitoes. Conclusions From the results it can be concluded the crude extract of C. halicacabum was potential for controlling Cx. quinquefasciatus, Ae. aegypti and An. stephensi mosquitoes. PMID:23569979

Govindarajan, M; Sivakumar, R

2012-01-01

147

The ecology of vector snail habitats and mosquito breeding-places  

PubMed Central

The ecology of freshwater snails—in particular those which act as intermediate hosts of bilharziasis—is reviewed in the light of the much more extensive knowledge available on the breeding-places of anopheline mosquitos. Experimental ecological methods are recommended for the field and laboratory investigation of a number of common problems involved in the study of snail habitats and mosquito breeding-places. Among the environmental factors discussed are temperature, oxygen concentration, water movement, pollution and salinity. Sampling methods for estimating populations of both snails and mosquito larvae are also described. An attempt is made to show how malacologists and entomologists alike would benefit from improved facilities for keeping abreast of general developments in the wider field of freshwater ecology. PMID:13596888

Muirhead-Thomson, R. C.

1958-01-01

148

Impact of climate and mosquito vector abundance on sylvatic arbovirus circulation dynamics in Senegal.  

PubMed

Sylvatic arboviruses have been isolated in Senegal over the last 50 years. The ecological drivers of the pattern and frequency of virus infection in these species are largely unknown. We used time series analysis and Bayesian hierarchical count modeling on a long-term arbovirus dataset to test associations between mosquito abundance, weather variables, and the frequency of isolation of dengue, yellow fever, chikungunya, and Zika viruses. We found little correlation between mosquito abundance and viral isolations. Rainfall was a negative predictor of dengue virus (DENV) isolation but a positive predictor of Zika virus isolation. Temperature was a positive predictor of yellow fever virus (YFV) isolations but a negative predictor of DENV isolations. We found slight interference between viruses, with DENV negatively associated with concurrent YFV isolation and YFV negatively associated with concurrent isolation of chikungunya virus. These findings begin to characterize some of the ecological associations of sylvatic arboviruses with each other and climate and mosquito abundance. PMID:25404071

Althouse, Benjamin M; Hanley, Kathryn A; Diallo, Mawlouth; Sall, Amadou A; Ba, Yamar; Faye, Ousmane; Diallo, Diawo; Watts, Douglas M; Weaver, Scott C; Cummings, Derek A T

2015-01-01

149

Olfactory learning and memory in the disease vector mosquito Aedes aegypti.  

PubMed

Olfactory learning in blood-feeding insects, such as mosquitoes, could play an important role in host preference and disease transmission. However, standardised protocols allowing testing of their learning abilities are currently lacking, and how different olfactory stimuli are learned by these insects remains unknown. Using a Pavlovian conditioning paradigm, we trained individuals and groups of Aedes aegypti mosquitoes to associate an odorant conditioned stimulus (CS) with a blood-reinforced thermal stimulus (unconditioned stimulus; US). Results showed, first, that mosquitoes could learn the association between L-lactic acid and the US, and retained the association for at least 24 h. Second, the success of olfactory conditioning was dependent upon the CS--some odorants that elicited indifferent responses in naïve mosquitoes, such as L-lactic acid and 1-octen-3-ol, were readily learned, whereas others went from aversive to attractive after training (Z-3-hexen-1-ol) or were untrainable (?-myrcene and benzyl alcohol). Third, we examined whether mosquitoes' ability to learn could interfere with the action of the insect repellent DEET. Results demonstrated that pre-exposure and the presence of DEET in the CS reduced the aversive effects of DEET. Last, the nature of the formed memories was explored. Experiments using cold-shock treatments within the first 6 h post-training (for testing anaesthesia-resistant memory) and a protein synthesis inhibitor (cycloheximide; to disrupt the formation of long-term memory) both affected mosquitoes' performances. Together, these results show that learning is a crucial component in odour responses in A. aegypti, and provide the first evidence for the functional role of different memory traces in these responses. PMID:24737761

Vinauger, Clément; Lutz, Eleanor K; Riffell, Jeffrey A

2014-07-01

150

Interspecific competition during transmission of two sympatric malaria parasite species to the mosquito vector.  

PubMed Central

The role of species interactions in structuring parasite communities remains controversial. Here, we show that interspecific competition between two avian malaria parasite species, Plasmodium gallinaceum and P. juxtanucleare, occurs as a result of interference during parasite fertilization within the bloodmeal of the mosquito. The significant reduction in the transmission success of P. gallinaceum to mosquitoes, due to the co-infecting P. juxtanucleare, is predicted to have compromised its colonization of regions occupied by P. juxtanucleare and, thus, may have contributed to the restricted global distribution of P. gallinaceum. Such interspecies interactions may occur between human malaria parasites and, thus, impact upon parasite species epidemiology, especially in regions of seasonal transmission. PMID:12573069

Paul, Rick E L; Nu, Van Anh Ton; Krettli, Antoniana U; Brey, Paul T

2002-01-01

151

Entomopathogenic fungi for mosquito control: A review  

PubMed Central

Fungal diseases in insects are common and widespread and can decimate their populations in spectacular epizootics. Virtually all insect orders are susceptible to fungal diseases, including Dipterans. Fungal pathogens such as Lagenidium, Coelomomyces and Culicinomyces are known to affect mosquito populations, and have been studied extensively. There are, however, many other fungi that infect and kill mosquitoes at the larval and/or adult stage. The discovery, in 1977, of the selective mosquito-pathogenic bacterium Bacillus thuringiensis Berliner israelensis (Bti) curtailed widespread interest in the search for other suitable biological control agents. In recent years interest in mosquito-killing fungi is reviving, mainly due to continuous and increasing levels of insecticide resistance and increasing global risk of mosquito-borne diseases. This review presents an update of published data on mosquito-pathogenic fungi and mosquito-pathogen interactions, covering 13 different fungal genera. Notwithstanding the potential of many fungi as mosquito control agents, only a handful have been commercialized and are marketed for use in abatement programs. We argue that entomopathogenic fungi, both new and existing ones with renewed/improved efficacies may contribute to an expansion of the limited arsenal of effective mosquito control tools, and that they may contribute in a significant and sustainable manner to the control of vector-borne diseases such as malaria, dengue and filariasis. PMID:15861235

Scholte, Ernst-Jan; Knols, Bart G.J.; Samson, Robert A.; Takken, Willem

2004-01-01

152

NonVector Transmission of Dengue and Other Mosquito-Borne Flaviviruses  

Microsoft Academic Search

A number of mosquito-borne viruses in the family Flaviviridae, genus Flavivirus, cause significant illnesses in humans. These diseases include dengue, yellow fever, West Nile fever, Japanese encephalitis, St. Louis encephalitis and Murray Valley encephalitis. The viruses cause syndromes that can be generally classified as one of three types: haemorrhagic fever, fever with rash and arthralgia, and encephalitis. Transmission of dengue

Lin H. Chen; Mary E. Wilson

2005-01-01

153

Effect of environmental temperature on the vector competence of mosquitoes for Rift Valley fever virus  

Technology Transfer Automated Retrieval System (TEKTRAN)

Environmental temperature has been shown to affect the ability of mosquitoes to transmit numerous arboviruses and for Rift Valley fever virus (RVFV) in particular. We evaluated the effect of incubation temperatures ranging from 14-26ºC on infection, dissemination, and transmission rates for Culex ta...

154

Made-to-measure malaria vector control strategies: rational design based on insecticide properties and coverage of blood resources for mosquitoes.  

PubMed

Eliminating malaria from highly endemic settings will require unprecedented levels of vector control. To suppress mosquito populations, vector control products targeting their blood hosts must attain high biological coverage of all available sources, rather than merely high demographic coverage of a targeted resource subset, such as humans while asleep indoors. Beyond defining biological coverage in a measurable way, the proportion of blood meals obtained from humans and the proportion of bites upon unprotected humans occurring indoors also suggest optimal target product profiles for delivering insecticides to humans or livestock. For vectors that feed only occasionally upon humans, preferred animal hosts may be optimal targets for mosquito-toxic insecticides, and vapour-phase insecticides optimized to maximize repellency, rather than toxicity, may be ideal for directly protecting people against indoor and outdoor exposure. However, for vectors that primarily feed upon people, repellent vapour-phase insecticides may be inferior to toxic ones and may undermine the impact of contact insecticides applied to human sleeping spaces, houses or clothing if combined in the same time and place. These concepts are also applicable to other mosquito-borne anthroponoses so that diverse target species could be simultaneously controlled with integrated vector management programmes. Measurements of these two crucial mosquito behavioural parameters should now be integrated into programmatically funded, longitudinal, national-scale entomological monitoring systems to inform selection of available technologies and investment in developing new ones. PMID:24739261

Killeen, Gerry F; Seyoum, Aklilu; Gimnig, John E; Stevenson, Jennifer C; Drakeley, Christopher J; Chitnis, Nakul

2014-01-01

155

Made-to-measure malaria vector control strategies: rational design based on insecticide properties and coverage of blood resources for mosquitoes  

PubMed Central

Eliminating malaria from highly endemic settings will require unprecedented levels of vector control. To suppress mosquito populations, vector control products targeting their blood hosts must attain high biological coverage of all available sources, rather than merely high demographic coverage of a targeted resource subset, such as humans while asleep indoors. Beyond defining biological coverage in a measurable way, the proportion of blood meals obtained from humans and the proportion of bites upon unprotected humans occurring indoors also suggest optimal target product profiles for delivering insecticides to humans or livestock. For vectors that feed only occasionally upon humans, preferred animal hosts may be optimal targets for mosquito-toxic insecticides, and vapour-phase insecticides optimized to maximize repellency, rather than toxicity, may be ideal for directly protecting people against indoor and outdoor exposure. However, for vectors that primarily feed upon people, repellent vapour-phase insecticides may be inferior to toxic ones and may undermine the impact of contact insecticides applied to human sleeping spaces, houses or clothing if combined in the same time and place. These concepts are also applicable to other mosquito-borne anthroponoses so that diverse target species could be simultaneously controlled with integrated vector management programmes. Measurements of these two crucial mosquito behavioural parameters should now be integrated into programmatically funded, longitudinal, national-scale entomological monitoring systems to inform selection of available technologies and investment in developing new ones. PMID:24739261

2014-01-01

156

Examination of the genetic basis for sexual dimorphism in the Aedes aegypti (dengue vector mosquito) pupal brain  

PubMed Central

Background Most animal species exhibit sexually dimorphic behaviors, many of which are linked to reproduction. A number of these behaviors, including blood feeding in female mosquitoes, contribute to the global spread of vector-borne illnesses. However, knowledge concerning the genetic basis of sexually dimorphic traits is limited in any organism, including mosquitoes, especially with respect to differences in the developing nervous system. Methods Custom microarrays were used to examine global differences in female vs. male gene expression in the developing pupal head of the dengue vector mosquito, Aedes aegypti. The spatial expression patterns of a subset of differentially expressed transcripts were examined in the developing female vs. male pupal brain through in situ hybridization experiments. Small interfering RNA (siRNA)-mediated knockdown studies were used to assess the putative role of Doublesex, a terminal component of the sex determination pathway, in the regulation of sex-specific gene expression observed in the developing pupal brain. Results Transcripts (2,527), many of which were linked to proteolysis, the proteasome, metabolism, catabolic, and biosynthetic processes, ion transport, cell growth, and proliferation, were found to be differentially expressed in A. aegypti female vs. male pupal heads. Analysis of the spatial expression patterns for a subset of dimorphically expressed genes in the pupal brain validated the data set and also facilitated the identification of brain regions with dimorphic gene expression. In many cases, dimorphic gene expression localized to the optic lobe. Sex-specific differences in gene expression were also detected in the antennal lobe and mushroom body. siRNA-mediated gene targeting experiments demonstrated that Doublesex, a transcription factor with consensus binding sites located adjacent to many dimorphically expressed transcripts that function in neural development, is required for regulation of sex-specific gene expression in the developing A. aegypti brain. Conclusions These studies revealed sex-specific gene expression profiles in the developing A. aegypti pupal head and identified Doublesex as a key regulator of sexually dimorphic gene expression during mosquito neural development.

2014-01-01

157

Toxicity of essential oil from Indian borage on the larvae of the African malaria vector mosquito, Anopheles gambiae  

PubMed Central

Background Essential oils are currently studied for the control of different disease vectors, because of their efficacy on targeted organisms. In the present investigation, the larvicidal potential of essential oil extracted from Indian borage (Plectranthus amboinicus) was studied against the African anthropophagic malaria vector mosquito, Anopheles gambiae. The larvae of An. gambiae s.s laboratory colony and An. gambiae s.l of wild populations were assayed and the larval mortality was observed at 12, 24 and 48 h after exposure period with the concentrations of 3.125, 6.25, 12.5, 25, 50 and 100 ppm. Findings Larval mortality rates of the essential oil was entirely time and dose dependent. The LC50 values of the laboratory colony were 98.56 (after 12h) 55.20 (after 24 h) and 32.41 ppm (after 48 h) and the LC90 values were 147.40 (after 12h), 99.09 (after 24 h) and 98.84 ppm (after 48 h). The LC50 and LC90 values of the wild population were 119.52, 179.85 (after 12h) 67.53, 107.60 (after 24 h) and 25.51, 111.17 ppm (after 48 h) respectively. The oil showed good larvicidal potential after 48 h of exposure period against An. gambiae. The essential oil of Indian borage is a renowned natural source of larvicides for the control of the African malaria vector mosquito, An. gambiae. Conclusion The larvicidal efficacy shown by plant extracts against An. gambiae should be tested in semi field and small scale trials for effective compounds to supplement the existing larval control tools. PMID:23206364

2012-01-01

158

Current procedures of the integrated urban vector-mosquito control as an example in Cotonou (Benin, West Africa) and Wroc?aw area (Poland).  

PubMed

Current strategy of Integrated Vector Management (IVM) comprises the general approach of environmentally friendly control measures. With regard to mosquitoes it includes first of all application of microbial insecticides based on Bacillus thuringiensis israelensis (Bti) and B. sphaericus (Bs) delta-endotoxins as well as the reduction of breeding habitats and natural enemy augmentation. It can be achieved thorough implementation of the interdisciplinary program, i. e., understanding of mosquito vector ecology, the appropriate vector-diseases (e. g., malariometric) measurements and training of local personnel responsible for mosquito abatement activities, as well as community involvement. Biocontrol methods as an alternative to chemical insecticides result from the sustainability development concept, growing awareness of environmental pollution and the development of insecticide-resistant strains of vector-mosquito populations in many parts of the world. Although sustainable trends are usually considered in terms of the monetary and training resources within countries, environmental concerns are actually more limiting factors for the duration of an otherwise successful vector control effort. In order to meet these new needs, increasing efforts have been made in search of and application of natural enemies, such as parasites, bacterial pathogens and predators which may control populations of insect vectors. The biological control agent based on the bacterial toxins Bti and Bs has been used in the Wroc?aw's University and Municipal Mosquito Control Programs since 1998. In West-Africa biocontrol appears to be an effective and safe tool to combat malaria in addition to bed-nets, residual indoor spraying and appropriate diagnosis and treatment of malaria parasites which are the major tools in the WHO Roll Back Malaria Program. IVM studies carried out 2005-2008 in Cotonou (Benin) as well those in Wroc?aw Irrigated Fields during the last years include the following major steps: 1. Mapping of all breeding sites in the project area and recording data in a geographical information system (GIS/relational database). All districts, streets and houses are numbered for quick reference during the operation; 2. Studying mosquito vector bionomics, migration and vectorial capacity in the project area, before, during and after the routine Bti treatments; 3. Assessment of the optimum for effective larvicide insecticide dosages at major breeding sites against the different target mosquito species; 4. Implementation of the microbial control agents in the integrated routine program. Adaptation of the application equipment to the local situation, training of the field staff, and routine treatments; 5. Conducting surveillance of vector-disease (e. g., malariometric) parameters in the control and experimental area before, during, and after the application of biocontrol agents. PMID:20209805

Rydzanicz, Katarzyna; Lonc, Elzbieta; Becker, Norbert

2009-01-01

159

September 2012 The tiger mosquito  

E-print Network

N° 412 September 2012 The tiger mosquito is more flighty than first thought Scientific news Actualidad cientifica Actualité scientifique Female tiger mosquitoes, the vectors of the chikun- gunya virus their life, contrary to what scientists thought. Female tiger mosquitoes, vectors of the chikungunya virus

160

Investigating the Potential Range Expansion of the Vector Mosquito Aedes Aegypti in Mexico with NASA Earth Science Remote Sensing Results  

NASA Technical Reports Server (NTRS)

In tropical and sub ]tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio ]economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data-- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation-- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

Crosson, W. L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Monaghan, A. J.; Eisen, L.; Lozano-Fuentes, S.; Ochoa, C.; Tapia, B.; Welsh-Rodriquez, C. M.; Quattrochi, D.; MorenoMadrinan, M. J.

2012-01-01

161

Genetic divergence between populations of feral and domestic forms of a mosquito disease vector assessed by transcriptomics  

PubMed Central

Culex pipiens, an invasive mosquito and vector of West Nile virus in the US, has two morphologically indistinguishable forms that differ dramatically in behavior and physiology. Cx. pipiens form pipiens is primarily a bird-feeding temperate mosquito, while the sub-tropical Cx. pipiens form molestus thrives in sewers and feeds on mammals. Because the feral form can diapause during the cold winters but the domestic form cannot, the two Cx. pipiens forms are allopatric in northern Europe and, although viable, hybrids are rare. Cx. pipiens form molestus has spread across all inhabited continents and hybrids of the two forms are common in the US. Here we elucidate the genes and gene families with the greatest divergence rates between these phenotypically diverged mosquito populations, and discuss them in light of their potential biological and ecological effects. After generating and assembling novel transcriptome data for each population, we performed pairwise tests for nonsynonymous divergence (Ka) of homologous coding sequences and examined gene ontology terms that were statistically over-represented in those sequences with the greatest divergence rates. We identified genes involved in digestion (serine endopeptidases), innate immunity (fibrinogens and ?-macroglobulins), hemostasis (D7 salivary proteins), olfaction (odorant binding proteins) and chitin binding (peritrophic matrix proteins). By examining molecular divergence between closely related yet phenotypically divergent forms of the same species, our results provide insights into the identity of rapidly-evolving genes between incipient species. Additionally, we found that families of signal transducers, ATP synthases and transcription regulators remained identical at the amino acid level, thus constituting conserved components of the Cx. pipiens proteome. We provide a reference with which to gauge the divergence reported in this analysis by performing a comparison of transcriptome sequences from conspecific (yet allopatric) populations of another member of the Cx. pipiens complex, Cx. quinquefasciatus. PMID:25755934

2015-01-01

162

Genetic divergence between populations of feral and domestic forms of a mosquito disease vector assessed by transcriptomics.  

PubMed

Culex pipiens, an invasive mosquito and vector of West Nile virus in the US, has two morphologically indistinguishable forms that differ dramatically in behavior and physiology. Cx. pipiens form pipiens is primarily a bird-feeding temperate mosquito, while the sub-tropical Cx. pipiens form molestus thrives in sewers and feeds on mammals. Because the feral form can diapause during the cold winters but the domestic form cannot, the two Cx. pipiens forms are allopatric in northern Europe and, although viable, hybrids are rare. Cx. pipiens form molestus has spread across all inhabited continents and hybrids of the two forms are common in the US. Here we elucidate the genes and gene families with the greatest divergence rates between these phenotypically diverged mosquito populations, and discuss them in light of their potential biological and ecological effects. After generating and assembling novel transcriptome data for each population, we performed pairwise tests for nonsynonymous divergence (Ka) of homologous coding sequences and examined gene ontology terms that were statistically over-represented in those sequences with the greatest divergence rates. We identified genes involved in digestion (serine endopeptidases), innate immunity (fibrinogens and ?-macroglobulins), hemostasis (D7 salivary proteins), olfaction (odorant binding proteins) and chitin binding (peritrophic matrix proteins). By examining molecular divergence between closely related yet phenotypically divergent forms of the same species, our results provide insights into the identity of rapidly-evolving genes between incipient species. Additionally, we found that families of signal transducers, ATP synthases and transcription regulators remained identical at the amino acid level, thus constituting conserved components of the Cx. pipiens proteome. We provide a reference with which to gauge the divergence reported in this analysis by performing a comparison of transcriptome sequences from conspecific (yet allopatric) populations of another member of the Cx. pipiens complex, Cx. quinquefasciatus. PMID:25755934

Price, Dana C; Fonseca, Dina M

2015-01-01

163

Laboratory and field evaluations of the insect repellent 3535 (ethyl butylacetylaminopropionate) and deet against mosquito vectors in Thailand.  

PubMed

The insect repellents 3535 (ethyl butylacetylaminopropionate or IR3535) and deet (N,N-diethyl-3-methylbenzamide) were prepared as 20% solutions in absolute ethanol and evaluated for repellency against many mosquito species in Thailand under laboratory and field conditions using human subjects. In the laboratory, 0.1 ml was applied per 30-cm2 of exposed area on a volunteer's forearm (0.66-0.67 mg active ingredient [AI]/ cm2), whereas in the field, volunteers' legs (from knee to ankle, with a surface area of about 712-782 cm2) were treated with 3 ml per exposed area (0.76-0.84 mg AI/cm2). In the laboratory, both IR3535 and deet showed equal repellency (P > 0.05) for 9.8 and 9.7 h against Aedes aegypti, for 13.7 and 12.7 h against Culex quinquefasciatus, and for 14.8 and 14.5 h against Cx. tritaeniorhynchus, respectively. Anopheles dirus was significantly less sensitive to IR3535 than to deet (P < 0.05), with a mean protection time of 3.8 and 5.8 h, respectively. Under field conditions, both IR3535 and deet provided a high degree of protection against various mosquito vectors ranging from 94 to 100% during the test periods. Both repellents provided a high level of protection for at least 8 h against Ae. albopictus and for at least 5 h against Cx. gelidus, Cx. tritaeniorhynchus, Cx. quinquefasciatus, Mansonia dives, Ma. uniformis, Ma. annulata, Ma. annulifera, Anopheles minimus, and An. maculatus. This study clearly documents the potential of IR3535 for use as a topical treatment against a wide range of mosquito species belonging to several genera. PMID:14529087

Thavara, U; Tawatsin, A; Chompoosri, J; Suwonkerd, W; Chansang, U R; Asavadachanukorn, P

2001-09-01

164

A simple and rapid DNA extraction method for the detection of Wuchereria bancrofti infection in the vector mosquito, Culex quinquefasciatus by Ssp I PCR assay  

Microsoft Academic Search

A simple, rapid and inexpensive method for the extraction of DNA from filarial vector, Culexquinquefasciatus, useful in Ssp I PCR assay for xenomonitoring of infection with Wuchereriabancrofti is presented. The DNA extracted by this method was found suitable for PCR detection of W. bancrofti infection in pools of 10–30 mosquitoes. The PCR assay employing the simplified DNA extraction method was

V. Vasuki; S. L. Hoti; C. Sadanandane; P. Jambulingam

2003-01-01

165

REPELLENCY OF ESSENTIAL OILS EXTRACTED FROM PLANTS IN THAILAND AGAINST FOUR MOSQUITO VECTORS (DIPTERA: CULICIDAE) AND OVlPOSlTlON DETERRENT EFFECTS AGAINST AEDES AEGYPTl (DIPTERA: CULICIDAE)  

Microsoft Academic Search

In this study we evaluated and reported repellent effects of essential oils from Thai plants against 4 mosquito vectors: Aedes aegypti, Ae. albopictus, Anopheles dirus and Culex quinquefasciatus under laboratory conditions using human volunteers. The essent~al oils were ex- tracted from 18 plant species, belonging to 11 families, and the oils were then prepared as 10% solution in absolute ethanol

Apiwat Tawatsin; Preecha Asavadachanukorn; Usavadee Thavara; Prapai Wongsinkongman; Pranee Chavalit-tumrong; Noppamas Soonthornchareonnon; Mir S Mulla; Narumon Komalamisra

2006-01-01

166

Vol. 32, no. 2 Journal of Vector Ecology 207 Larval mosquito communities in discarded vehicle tires in a forested and unforested  

E-print Network

not different between sites, even though light levels were greater and canopy cover was less at the unforested).Illegaldumping of tires in urban and wooded areas, coupled with declines in natural mosquito breeding sites (e.g., tree holes), have made discarded tires an important source of disease vectors. Tires in peridomestic

Juliano, Steven A.

167

Molecular and Functional Characterization of Odorant-Binding Protein Genes in an Invasive Vector Mosquito, Aedes albopictus  

PubMed Central

Aedes albopictus is a major vector of dengue and Chikungunya viruses. Olfaction plays a vital role in guiding mosquito behaviors and contributes to their ability to transmit pathogens. Odorant-binding proteins (OBPs) are abundant in insect olfactory tissues and involved in the first step of odorant reception. While comprehensive descriptions are available of OBPs from Aedes aegypti, Culex quinquefasciatus and Anopheles gambiae, only a few genes from Ae. albopictus have been reported. In this study, twenty-one putative AalbOBP genes were cloned using their homologues in Ae. aegypti to query an Ae. albopictus partial genome sequence. Two antenna-specific OBPs, AalbOBP37 and AalbOBP39, display a remarkable similarity in their overall folding and binding pockets, according to molecular modeling. Binding affinity assays indicated that AalbOBP37 and AalbOBP39 had overlapping ligand affinities and are affected in different pH condition. Electroantennagrams (EAG) and behavioral tests show that these two genes were involved in olfactory reception. An improved understanding of the Ae. albopictus OBPs is expected to contribute to the development of more efficient and environmentally-friendly mosquito control strategies. PMID:23935894

Deng, Yuhua; Yan, Hui; Gu, Jinbao; Xu, Jiabao; Wu, Kun; Tu, Zhijian; James, Anthony A.; Chen, Xiaoguang

2013-01-01

168

Evaluation of plant-mediated synthesized silver nanoparticles against vector mosquitoes.  

PubMed

Diseases transmitted by blood-feeding mosquitoes, such as dengue fever, dengue hemorrhagic fever, Japanese encephalitis, malaria, and filariasis, are increasing in prevalence, particularly in tropical and subtropical zones. To control mosquitoes and mosquito-borne diseases, which have worldwide health and economic impacts, synthetic insecticide-based interventions are still necessary, particularly in situations of epidemic outbreak and sudden increases of adult mosquitoes. Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and eco-friendly reducing and capping agents. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, in the present study, the adulticidal activity of silver nanoparticles (AgNPs) synthesized using Heliotropium indicum plant leaf extract against adults of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. Adult mosquitoes were exposed to varying concentrations of aqueous extract of H. indicum and synthesized AgNPs for 24 h. AgNPs were rapidly synthesized using the leaf extract of H. indicum, and the formation of nanoparticles was observed within 6 h. The results recorded from UV-vis spectrum, Fourier transform infrared, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the adult of A. stephensi (lethal dose (LD)???=?26.712 ?g/mL; LD???=?49.061 ?g/mL), A. aegypti (LD???=?29.626 ?g/mL; LD???=?54.269 ?g/mL), and C. quinquefasciatus (LD???=?32.077 ?g/mL; LD???=?58.426 ?g/mL), respectively. No mortality was observed in the control. These results suggest that the leaf aqueous extracts of H.indicum and green synthesis of AgNPs have the potential to be used as an ideal eco-friendly approach for the control of the A. stephensi, A. aegypti, and C. quinquefasciatus. This is the first report on the adulticidal activity of the plant extracts and AgNPs. PMID:25300419

Veerakumar, Kaliyan; Govindarajan, Marimuthu; Hoti, S L

2014-12-01

169

Mosquito larvicidal activity of Aloe vera (Family: Liliaceae) leaf extract and Bacillus sphaericus, against Chikungunya vector, Aedes aegypti  

PubMed Central

The bio-efficacy of Aloe vera leaf extract and bacterial insecticide, Bacillus sphaericus larvicidal activity was assessed against the first to fourth instars larvae of Aedes aegypti, under the laboratory conditions. The plant material was shade dried at room temperature and powdered coarsely. A. vera and B. sphaericus show varied degrees of larvicidal activity against various instars larvae of A. aegypti. The LC50 of A. vera against the first to fourth instars larvae were 162.74, 201.43, 253.30 and 300.05 ppm and the LC90 442.98, 518.86, 563.18 and 612.96 ppm, respectively. B. sphaericus against the first to fourth instars larvae the LC50 values were 68.21, 79.13, 93.48, and 107.05 ppm and the LC90 values 149.15, 164.67, 183.84, and 201.09 ppm, respectively. However, the combined treatment of A. vera + B. sphaericus (1:2) material shows highest larvicidal activity of the LC50 values 54.80, 63.11, 74.66 and 95.10 ppm; The LC90 values of 145.29, 160.14, 179.74 and 209.98 ppm, against A. aegypti in all the tested concentrations than the individuals and clearly established that there is a substantial amount of synergist act. The present investigation clearly exhibits that both A. vera and B. sphaericus materials could serve as a potential larvicidal agent. Since, A. aegypti is a container breeder vector mosquito this user and eco-friendly and low-cost vector control strategy could be a viable solution to the existing dengue disease burden. Therefore, this study provides first report on the mosquito larvicidal activity the combined effect of A. vera leaf extract and B. sphaericus against as target species of A. aegypti. PMID:23961212

Subramaniam, Jayapal; Kovendan, Kalimuthu; Mahesh Kumar, Palanisamy; Murugan, Kadarkarai; Walton, William

2012-01-01

170

Cell Phone-Based System (Chaak) for Surveillance of Immatures of Dengue Virus Mosquito Vectors  

PubMed Central

Capture of surveillance data on mobile devices and rapid transfer of such data from these devices into an electronic database or data management and decision support systems promote timely data analyses and public health response during disease outbreaks. Mobile data capture is used increasingly for malaria surveillance and holds great promise for surveillance of other neglected tropical diseases. We focused on mosquito-borne dengue, with the primary aims of: 1) developing and field-testing a cell phone-based system (called Chaak) for capture of data relating to the surveillance of the mosquito immature stages, and 2) assessing, in the dengue endemic setting of Mérida, México, the cost-effectiveness of this new technology versus paper-based data collection. Chaak includes a desktop component, where a manager selects premises to be surveyed for mosquito immatures, and a cell phone component, where the surveyor receives the assigned tasks and captures the data. Data collected on the cell phone can be transferred to a central database through different modes of transmission, including near-real time where data are transferred immediately (e.g., over the Internet) or by first storing data on the cell phone for future transmission. Spatial data are handled in a novel, semantically driven, geographic information system. Compared with a pen-and-paper-based method, use of Chaak improved the accuracy and increased the speed of data transcription into an electronic database. The cost-effectiveness of using the Chaak system will depend largely on the up-front cost of purchasing cell phones and the recurring cost of data transfer over a cellular network. PMID:23926788

LOZANO–FUENTES, SAUL; WEDYAN, FADI; HERNANDEZ–GARCIA, EDGAR; SADHU, DEVADATTA; GHOSH, SUDIPTO; BIEMAN, JAMES M.; TEP-CHEL, DIANA; GARCÍA–REJÓN, JULIÁN E.; EISEN, LARS

2014-01-01

171

Replacing a Native Wolbachia with a Novel Strain Results in an Increase in Endosymbiont Load and Resistance to Dengue Virus in a Mosquito Vector  

PubMed Central

Wolbachia is a maternally transmitted endosymbiotic bacterium that is estimated to infect up to 65% of insect species. The ability of Wolbachia to both induce pathogen interference and spread into mosquito vector populations makes it possible to develop Wolbachia as a biological control agent for vector-borne disease control. Although Wolbachia induces resistance to dengue virus (DENV), filarial worms, and Plasmodium in mosquitoes, species like Aedes polynesiensis and Aedes albopictus, which carry native Wolbachia infections, are able to transmit dengue and filariasis. In a previous study, the native wPolA in Ae. polynesiensis was replaced with wAlbB from Ae. albopictus, and resulted in the generation of the transinfected “MTB” strain with low susceptibility for filarial worms. In this study, we compare the dynamics of DENV serotype 2 (DENV-2) within the wild type “APM” strain and the MTB strain of Ae. polynesiensis by measuring viral infection in the mosquito whole body, midgut, head, and saliva at different time points post infection. The results show that wAlbB can induce a strong resistance to DENV-2 in the MTB mosquito. Evidence also supports that this resistance is related to a dramatic increase in Wolbachia density in the MTB's somatic tissues, including the midgut and salivary gland. Our results suggests that replacement of a native Wolbachia with a novel infection could serve as a strategy for developing a Wolbachia-based approach to target naturally infected insects for vector-borne disease control. PMID:23755311

Lu, Peng; Xi, Zhiyong

2013-01-01

172

Associative learning in the dengue vector mosquito, Aedes aegypti: avoidance of a previously attractive odor or surface color that is paired with an aversive stimulus  

PubMed Central

SUMMARY Associative learning has been shown in a variety of insects, including the mosquitoes Culex quinquefasciatus and Anopheles gambiae. This study demonstrates associative learning for the first time in Aedes aegypti, an important vector of dengue, yellow fever and chikungunya viruses. This species prefers to rest on dark surfaces and is attracted to the odor of 1-octen-3-ol. After training in which a dark surface alone or a dark surface with odor was paired with electric shock, mosquitoes avoided the previously attractive area. The association was stronger when odor was included in training, was retained for at least 60 min but not for 24 h, and was equal for males and females. These results demonstrate the utility of a bulk-training paradigm for mosquitoes similar to that used with Drosophila melanogaster. PMID:22996441

Menda, Gil; Uhr, Joshua H.; Wyttenbach, Robert A.; Vermeylen, Françoise M.; Smith, David M.; Harrington, Laura C.; Hoy, Ronald R.

2013-01-01

173

Host-feeding patterns of potential mosquito vectors in Connecticut, U.S.A.: molecular analysis of bloodmeals from 23 species of Aedes, Anopheles, Culex, Coquillettidia, Psorophora, and Uranotaenia.  

PubMed

We evaluated the blood-feeding patterns in several mosquito species that may serve as vectors of disease agents in the northeastern United States. Blood-fed mosquitoes were collected from 91 different sites throughout Connecticut over a 6-yr period (June-October 2002-2007), and the host-feeding patterns of 23 mosquito species representing six genera were examined by using a polymerase chain reaction-based assay and sequencing portions of the cytochrome b gene of mitochondrial DNA. This study was part of a statewide surveillance program and for some of the mosquito species a limited number of specimens were examined [e.g., Aedes communis (De Geer) (1), Anopheles barberi Coquillett (1), Uranotaenia sapphirina (Osten Sacken) (5)]. With the exception of Culex territans Walker that acquired bloodmeals from all four classes of vertebrates--birds, reptiles, amphibians, and mammals--all species of Aedes, Anopheles, Coquillettidia, Psorophora, and to a lesser degree, Uranotaenia, were found to feed predominately upon mammalian hosts. Fourteen mammalian species were identified as sources of blood, but the majority of feedings were taken from the white-tailed deer, Odocoileus virginianus. Human-derived bloodmeals were identified from 13 of the 23 mosquito species. Limited avian-derived bloodmeals were detected in Aedes canadensis (Theobald), Aedes cantator (Coquillett), Aedes cinereus Meigen, Aedes triseriatus (Coquillett), Aedes trivittatus (Coquillett), Coquillettidia perturbans (Walker) Cx. territans, Psorophoraferox (von Humboldt), and Ur. sapphirina. American robin, Turdus migratorius, was the most common source of avian blood, followed by a few other mostly Passeriformes birds. We conclude that the white-tailed deer serve as the main vertebrate host for these mammalophilic mosquitoes in this region of the United States. This feeding pattern supports enzootic amplification of arboviruses, including Jamestown Canyon, Cache Valley, and Potosi viruses that perpetuate in cervid hosts. Occasional feeding on avian hosts suggests that some of these mosquito species, such as Cq. perturbans, also could facilitate transmission of West Nile and eastern equine encephalitis viruses from viremic birds to mammalian hosts. PMID:19058640

Molaei, Goudarz; Andreadis, Theodore G; Armstrong, Philip M; Diuk-Wasser, Maria

2008-11-01

174

Ecological niche modelling of potential West Nile virus vector mosquito species and their geographical association with equine epizootics in Italy.  

PubMed

In Italy, West Nile virus (WNV) equine outbreaks have occurred annually since 2008. Characterizing WNV vector habitat requirements allows for the identification of areas at risk of viral amplification and transmission. Maxent-based ecological niche models were developed using literature records of 13 potential WNV Italian vector mosquito species to predict their habitat suitability range and to investigate possible geographical associations with WNV equine outbreak occurrence in Italy from 2008 to 2010. The contribution of different environmental variables to the niche models was also assessed. Suitable habitats for Culex pipiens, Aedes albopictus, and Anopheles maculipennis were widely distributed; Culex modestus, Ochlerotatus geniculatus, Ochlerotatus caspius, Coquillettidia richiardii, Aedes vexans, and Anopheles plumbeus were concentrated in north-central Italy; Aedes cinereus, Culex theileri, Ochlerotatus dorsalis, and Culiseta longiareolata were restricted to coastal/southern areas. Elevation, temperature, and precipitation variables showed the highest predictive power. Host population and landscape variables provided minor contributions. WNV equine outbreaks had a significantly higher probability to occur in habitats suitable for Cx. modestus and Cx. pipiens, providing circumstantial evidence that the potential distribution of these two species coincides geographically with the observed distribution of the disease in equines. PMID:24121802

Mughini-Gras, Lapo; Mulatti, Paolo; Severini, Francesco; Boccolini, Daniela; Romi, Roberto; Bongiorno, Gioia; Khoury, Cristina; Bianchi, Riccardo; Montarsi, Fabrizio; Patregnani, Tommaso; Bonfanti, Lebana; Rezza, Giovanni; Capelli, Gioia; Busani, Luca

2014-01-01

175

Repellency of essential oils extracted from plants in Thailand against four mosquito vectors (Diptera: Culicidae) and oviposition deterrent effects against Aedes aegypti (Diptera: Culicidae).  

PubMed

In this study we evaluated and reported repellent effects of essential oils from Thai plants against 4 mosquito vectors: Aedes aegypti, Ae. albopictus, Anopheles. dirus and Culex quinquefasciatus under laboratory conditions using human volunteers. The essential oils were extracted from 18 plant species, belonging to 11 families, and the oils were then prepared as 10% solution in absolute ethanol with additives. Two chemical repellents, deet and IR3535, were also prepared in the same formulation as the essential oil repellents and tested for repellency as controls. The essential oils were also evaluated for oviposition deterrent effects against Ae. aegypti under laboratory conditions. The results show night-biting mosquitoes (An. dirus and Cx. quinquefasciatus) and Ae. albopictus were more sensitive to all the essential oils (repellency 4.5 - 8 hours) than was Ae. aegypti (repellency 0.3 - 2.8 hours), whereas deet and IR3535 provided excellent repellency against all four mosquito species (repellency 6.7- 8 hours). All essential oils exhibited oviposition deterrent activity against Ae. aegypti with various degrees of repellency ranging from 16.6 to 94.7%, whereas deet and IR3535 had no repellency. The present study demonstrates the potential for using essential oils as mosquito repellents and oviposition deterrents. These findings may lead to new and more effective strategies for protection from and control of mosquitoes. PMID:17333734

Tawatsin, Apiwat; Asavadachanukorn, Preecha; Thavara, Usavadee; Wongsinkongman, Prapai; Bansidhi, Jaree; Boonruad, Thidarat; Chavalittumrong, Pranee; Soonthornchareonnon, Noppamas; Komalamisra, Narumon; Mulla, Mir S

2006-09-01

176

The Effect of Virus-Blocking Wolbachia on Male Competitiveness of the Dengue Vector Mosquito, Aedes aegypti  

PubMed Central

Background The bacterial endosymbiont Wolbachia blocks the transmission of dengue virus by its vector mosquito Aedes aegypti, and is currently being evaluated for control of dengue outbreaks. Wolbachia induces cytoplasmic incompatibility (CI) that results in the developmental failure of offspring in the cross between Wolbachia-infected males and uninfected females. This increases the relative success of infected females in the population, thereby enhancing the spread of the beneficial bacterium. However, Wolbachia spread via CI will only be feasible if infected males are sufficiently competitive in obtaining a mate under field conditions. We tested the effect of Wolbachia on the competitiveness of A. aegypti males under semi-field conditions. Methodology/Principal Findings In a series of experiments we exposed uninfected females to Wolbachia-infected and uninfected males simultaneously. We scored the competitiveness of infected males according to the proportion of females producing non-viable eggs due to incompatibility. We found that infected males were equally successful to uninfected males in securing a mate within experimental tents and semi-field cages. This was true for males infected by the benign wMel Wolbachia strain, but also for males infected by the virulent wMelPop (popcorn) strain. By manipulating male size we found that larger males had a higher success than smaller underfed males in the semi-field cages, regardless of their infection status. Conclusions/Significance The results indicate that Wolbachia infection does not reduce the competitiveness of A. aegypti males. Moreover, the body size effect suggests a potential advantage for lab-reared Wolbachia-males during a field release episode, due to their better nutrition and larger size. This may promote Wolbachia spread via CI in wild mosquito populations and underscores its potential use for disease control. PMID:25502564

Segoli, Michal; Hoffmann, Ary A.; Lloyd, Jane; Omodei, Gavin J.; Ritchie, Scott A.

2014-01-01

177

Barcoding Turkish Culex mosquitoes to facilitate arbovirus vector incrimination studies reveals hidden diversity and new potential vectors.  

PubMed

As a precursor to planned arboviral vector incrimination studies, an integrated systematics approach was adopted using morphology and DNA barcoding to examine the Culex fauna present in Turkey. The mitochondrial COI gene (658bp) were sequenced from 185 specimens collected across 11 Turkish provinces, as well as from colony material. Although by morphology only 9 species were recognised, DNA barcoding recovered 13 distinct species including: Cx. (Barraudius) modestus, Cx. (Culex) laticinctus, Cx. (Cux.) mimeticus, Cx. (Cux.) perexiguus, Cx. (Cux.) pipiens, Cx. (Cux.) pipiens form molestus, Cx. (Cux.) quinquefasciatus, Cx. (Cux.) theileri, Cx. (Cux.) torrentium, Cx. (Cux.) tritaeniorhynchus and Cx. (Maillotia) hortensis. The taxon formerly identified as Cx. (Neoculex) territans was shown to comprise two distinct species, neither of which correspond to Cx. territans s.s. These include Cx. (Neo.) impudicus and another uncertain species, which may be Cx. (Neo.) europaeus or Cx. (Neo.) martinii (herein=Cx. (Neo.) sp. 1). Detailed examination of the Pipiens Group revealed Cx. pipiens, Cx. pipiens f. molestus and the widespread presence of the highly efficient West Nile virus vector Cx. quinquefasciatus for the first time. Four new country records are reported, increasing the Culex of Turkey to 15 recognised species and Cx. pipiens f. molestus. A new taxonomic checklist is provided, annotated with respective vector competencies for transmission of arboviruses. PMID:25446171

Gunay, Filiz; Alten, Bulent; Simsek, Fatih; Aldemir, Adnan; Linton, Yvonne-Marie

2015-03-01

178

Mosquito Immunity against Arboviruses  

PubMed Central

Arthropod-borne viruses (arboviruses) pose a significant threat to global health, causing human disease with increasing geographic range and severity. The recent availability of the genome sequences of medically important mosquito species has kick-started investigations into the molecular basis of how mosquito vectors control arbovirus infection. Here, we discuss recent findings concerning the role of the mosquito immune system in antiviral defense, interactions between arboviruses and fundamental cellular processes such as apoptosis and autophagy, and arboviral suppression of mosquito defense mechanisms. This knowledge provides insights into co-evolutionary processes between vector and virus and also lays the groundwork for the development of novel arbovirus control strategies that target the mosquito vector. PMID:25415198

Sim, Shuzhen; Jupatanakul, Natapong; Dimopoulos, George

2014-01-01

179

Anti-mosquito plants as an alternative or incremental method for malaria vector control among rural communities of Bagamoyo District, Tanzania  

PubMed Central

Background Plants represent one of the most accessible resources available for mosquito control by communities in Tanzania. However, no documented statistics exist for their contribution in the management of mosquitoes and other insects except through verbal and some publications. This study aimed at assessing communities’ knowledge, attitudes and practices of using plants as an alternative method for mosquito control among selected communities in a malaria-prone area in Tanzania. Methods Questionnaires were administered to 202 respondents from four villages of Bagamoyo District, Pwani Region, in Tanzania followed by participatory rural appraisal with village health workers. Secondary data collection for plants mentioned by the communities was undertaken using different search engines such as googlescholar, PubMED and NAPRALERT. Results Results showed about 40.3% of respondents used plants to manage insects, including mosquitoes. A broad profile of plants are used, including “mwarobaini” (Azadirachta indica) (22.5%), “mtopetope” (Annona spp) (20.8%), “mchungwa/mlimau” (Citrus spp) (8.3%), “mvumbashi/uvumbati” (Ocimum spp) (7.4%), “mkorosho” (Anacadium occidentale) (7.1%), “mwembe” (5.4%) (Mangifera indica), “mpera” (4.1%) (Psidium spp) and “maganda ya nazi” (4.1%) (Cocos nucifera). Majority of respondents collected these plants from the wild (54.2%), farms (28.9%) and/or home gardens (6%). The roles played by these plants in fighting mosquitoes is reflected by the majority that deploy them with or without bed-nets (p > 0.55) or insecticidal sprays (p >0.22). Most respondents were aware that mosquitoes transmit malaria (90.6%) while few respondents associated elephantiasis/hydrocele (46.5%) and yellow fever (24.3%) with mosquitoes. Most of the ethnobotanical uses mentioned by the communities were consistent with scientific information gathered from the literature, except for Psidium guajava, which is reported for the first time in insect control. Conclusion This survey has indicated some knowledge gap among community members in managing mosquito vectors using plant. The communities need a basic health education and sensitization for effective exploitation of this valuable tool for reducing mosquitoes and associated disease burdens. On the other hand, the government of Tanzania should strengthen advocacy of botanical pesticides development, registration and regulation for public health benefits because they are source of pest control tools people rely on them. PMID:25015092

2014-01-01

180

The role of male harassment on female fitness for the dengue vector mosquito Aedes aegypti  

PubMed Central

Sexual harassment studies in insects suggest that females can incur several kinds of costs from male harassment and mating. Here, we examined direct and indirect costs of male harassment on components of female fitness in the predominantly monandrous mosquito Aedes aegypti. To disentangle the costs of harassment versus the costs of mating, we held females at a low or high density with males whose claspers were modified to prevent insemination, and compared these to females held with normal males and to those held with females or alone. A reduced longevity was observed when females were held under high density conditions with males or females, regardless if male claspers had been modified. There was no consistent effect of harassment on female fecundity. Net reproductive rate (R0) was higher in females held at low density with normal males compared to females held with males in the other treatments, even though only a small number of females showed direct evidence of remating. Indirect costs and benefits that were not due to harassment alone were observed. Daughters of females held with normal males at high density had reduced longevity compared to daughters from females held without conspecifics. However, their fitness (R0) was higher compared to females in all other treatments. Overall, our results indicate that A. aegypti females do not suffer a fitness cost from harassment of males when kept at moderate densities, and they suggest the potential for benefits obtained from ejaculate components. PMID:25544799

Helinski, Michelle E.H.; Harrington, Laura C.

2014-01-01

181

Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac[3xP3-EGFP afm  

Microsoft Academic Search

We report efficient germ-line transformation in the yellow fever mosquito Aedes aegypti accomplished using the piggyBac transposable element vector pBac[3xP3-EGFP afm]. Two transgenic lines were established and characterized; each contained the Vg-Defensin A transgene with strong eye-specific expression of the enhanced green fluorescent protein (EGFP) marker gene regulated by the artificial 3xP3 promoter. Southern blot hybridization and inverse PCR analyses

V. Kokoza; A. Ahmed; E. A. Wimmer; A. S. Raikhel

2001-01-01

182

Septiembre de 2012 El mosquito tigre  

E-print Network

N° 412 Septiembre de 2012 El mosquito tigre: más promiscuo de lo previsto Scientific news Actualidad cientifica Actualité scientifique Los mosquitos tigre hembra, que transmiten el virus chikungunya los mosquitos machos, permitiría reducir la población de mosquitos vectores presente en la naturaleza

183

Determinants of the population growth of the West Nile virus mosquito vector Culex pipiens in a repeatedly affected area in Italy  

PubMed Central

Background The recent spread of West Nile Virus in temperate countries has raised concern. Predicting the likelihood of transmission is crucial to ascertain the threat to Public and Veterinary Health. However, accurate models of West Nile Virus (WNV) expansion in Europe may be hampered by limited understanding of the population dynamics of their primary mosquito vectors and their response to environmental changes. Methods We used data collected in north-eastern Italy (2009–2011) to analyze the determinants of the population growth rate of the primary WNV vector Culex pipiens. A series of alternative growth models were fitted to longitudinal data on mosquito abundance to evaluate the strength of evidence for regulation by intrinsic density-dependent and/or extrinsic environmental factors. Model-averaging algorithms were then used to estimate the relative importance of intrinsic and extrinsic variables in describing the variations of per-capita growth rates. Results Results indicate a much greater contribution of density-dependence in regulating vector population growth rates than of any environmental factor on its own. Analysis of an average model of Cx. pipiens growth revealed that the most significant predictors of their population dynamics was the length of daylight, estimated population size and temperature conditions in the 15 day period prior to sampling. Other extrinsic variables (including measures of precipitation, number of rainy days, and humidity) had only a minor influence on Cx. pipiens growth rates. Conclusions These results indicate the need to incorporate density dependence in combination with key environmental factors for robust prediction of Cx. pipiens population expansion and WNV transmission risk. We hypothesize that detailed analysis of the determinants of mosquito vector growth rate as conducted here can help identify when and where an increase in vector population size and associated WNV transmission risk should be expected. PMID:24428887

2014-01-01

184

wFlu: Characterization and Evaluation of a Native Wolbachia from the Mosquito Aedes fluviatilis as a Potential Vector Control Agent  

PubMed Central

There is currently considerable interest and practical progress in using the endosymbiotic bacteria Wolbachia as a vector control agent for human vector-borne diseases. Such vector control strategies may require the introduction of multiple, different Wolbachia strains into target vector populations, necessitating the identification and characterization of appropriate endosymbiont variants. Here, we report preliminary characterization of wFlu, a native Wolbachia from the neotropical mosquito Aedes fluviatilis, and evaluate its potential as a vector control agent by confirming its ability to cause cytoplasmic incompatibility, and measuring its effect on three parameters determining host fitness (survival, fecundity and fertility), as well as vector competence (susceptibility) for pathogen infection. Using an aposymbiotic strain of Ae. fluviatilis cured of its native Wolbachia by antibiotic treatment, we show that in its natural host wFlu causes incomplete, but high levels of, unidirectional cytoplasmic incompatibility, has high rates of maternal transmission, and no detectable fitness costs, indicating a high capacity to rapidly spread through host populations. However, wFlu does not inhibit, and even enhances, oocyst infection with the avian malaria parasite Plasmodium gallinaceum. The stage- and sex-specific density of wFlu was relatively low, and with limited tissue distribution, consistent with the lack of virulence and pathogen interference/symbiont-mediated protection observed. Unexpectedly, the density of wFlu was also shown to be specifically-reduced in the ovaries after bloodfeeding Ae. fluviatilis. Overall, our observations indicate that the Wolbachia strain wFlu has the potential to be used as a vector control agent, and suggests that appreciable mutualistic coevolution has occurred between this endosymbiont and its natural host. Future work will be needed to determine whether wFlu has virulent host effects and/or exhibits pathogen interference when artificially-transfected to the novel mosquito hosts that are the vectors of human pathogens. PMID:23555728

Gonçalves, Daniela da Silva; Moreira, Luciano Andrade

2013-01-01

185

The Influence of the Orbital Evolution of Main Belt Asteroids on Their Spin Vectors  

NASA Astrophysics Data System (ADS)

It was found that certain features in the observed spin vector distribution of main belt asteroids can be explained by the differences in the dynamical spin vector evolution between objects with high and low orbital inclinations. In particular, the deficiency of high-inclination objects whose spin vectors are close to the ecliptic plane can be accounted for. The present spin vector distribution of main belt asteroids is due to several factors connected with their collisional and dynamical evolution. In this paper, the influence of the orbital evolution on the spin axis of asteroids is examined in the case of 25 objects with typical main belt orbital evolution and 125 synthetic objects, during an integration over a time period of 1 Myr. This investigation produced the following general results: • The difference between maximum and minimum obliquity increases in an approximately linear fashion with increasing orbital inclination of the studied objects. • The inclination is the major factor influencing the magnitude of the obliquity variation. This variation is generally larger for asteroids with their initial spin vectors located close to the orbital plane. • In general, the regular obliquity differences are relatively insensitive to differences in the shape, composition, and spin rate of the asteroids. The result is compared with the properties of the observed spin vectors for 73 main belt asteroids and good agreement is found between the above results and the existing spin vector distribution.

Skoglöv, E.; Erikson, A.

2002-11-01

186

Mosquito control then, now, and in the future.  

PubMed

This is a memorial lecture honoring the late Professor Stanley B. Freeborn of the University of California. In the spirit of his life-long academic and research interests in mosquitoes and mosquito-borne diseases, I am presenting here the evolution of vector control technology, especially that pertaining to mosquitoes and mosquito-borne diseases during the 20th century. Vector control technology in the first half of this century was relatively simple, utilizing source reduction, larvivorous fish, petroleum hydrocarbon oils, and some simple synthetic and botanical materials. During the 2nd half of this century, however, various classes of synthetic organic chemicals, improved petroleum oil formulations, insect growth regulators, synthetic pyrethroids, and microbial control agents were developed and employed in mosquito control and control of other disease-vectoring insects. Among these groups of control agents, petroleum oil formulations have endured to be used through the whole century. It is likely that petroleum oil formulations, insect growth regulators, and microbial control agents will provide the main thrust against vectors at least during the first quarter of the 21st century. It is also possible that effective tools through the development of vaccines and molecular entomology techniques might become available for the control of vectors and vector-borne diseases during this period of the 21st century. PMID:7707066

Mulla, M S

1994-12-01

187

Larvicidal activity of selected plant hydrodistillate extracts against the house mosquito, Culex pipiens, a West Nile virus vector.  

PubMed

The larvicidal activity of hydrodistillate extracts from Chrysanthemum coronarium L., Hypericum scabrum L., Pistacia terebinthus L. subsp. palaestina (Boiss.) Engler, and Vitex agnus castus L. was investigated against the West Nile vector, Culex pipiens L. (Diptera: Culicidae). Yield and identification of the major essential oils from each distillation was determined by GC-MS analyses. The major essential oil component for each plant species was as follows: ?-pinene for P. terebinthus palaestina, and H. scabrum (45.3% and 42.3%, respectively), trans-?-caryophyllene for V. agnus castus (22.1%), and borneol for C. coronarium (20.9%). A series of distillate concentrations from these plants (that ranged from 1 ppm to 500 ppm, depending on plant species) were assessed against late third to early fourth C. pipiens larvae at 1, 6, and 24 h posttreatment. In general, larval mortality to water treated with a distillate increased as concentration and exposure time increased. H. scabrum and P. terebinthus palaestina were most effective against the mosquito larvae and both produced 100% mortality at 250 ppm at 24-h continuous exposure compared with the other plant species. Larval toxicity of the distillates at 24 h (LC(50) from most toxic to less toxic) was as follows: P. terebinthus palaestina (59.2 ppm) > H. scabrum (82.2 ppm) > V. agnus castus (83.3 ppm) > C. coronarium (311.2 ppm). But when LC(90) values were compared, relative toxicity ranking changed as follows: H. scabrum (185.9 ppm) > V. agnus castus (220.7 ppm) > P. terebinthus palaestina (260.7 ppm) > C. coronarium (496.3 ppm). Extracts of native Turkish plants continue to provide a wealth of potential sources for biologically active agents that may be applied against arthropod pests of man and animals. PMID:21053014

Cetin, Huseyin; Yanikoglu, Atila; Cilek, James E

2011-04-01

188

Mechanisms of Pyrethroid Resistance in the Dengue Mosquito Vector, Aedes aegypti: Target Site Insensitivity, Penetration, and Metabolism  

PubMed Central

Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1534C mutations in domains II and III, respectively, of voltage-sensitive sodium channel (Vssc, the target site of pyrethroid insecticide) were 0.44 and 0.56, respectively. In contrast, only G1016 alleles were present after two permethrin selections, indicating that G1016 can more contribute to the insensitivity of Vssc than C1534. In vivo metabolism studies showed that the SP strain excreted permethrin metabolites more rapidly than a susceptible SMK strain. Pretreatment with piperonyl butoxide caused strong inhibition of excretion of permethrin metabolites, suggesting that cytochrome P450 monooxygenases (P450s) play an important role in resistance development. In vitro metabolism studies also indicated an association of P450s with resistance. Microarray analysis showed that multiple P450 genes were over expressed during the larval and adult stages in the SP strain. Following quantitative real time PCR, we focused on two P450 isoforms, CYP9M6 and CYP6BB2. Transcription levels of these P450s were well correlated with the rate of permethrin excretion and they were certainly capable of detoxifying permethrin to 4?-HO-permethrin. Over expression of CYP9M6 was partially due to gene amplification. There was no significant difference in the rate of permethrin reduction from cuticle between SP and SMK strains. PMID:24945250

Kasai, Shinji; Komagata, Osamu; Itokawa, Kentaro; Shono, Toshio; Ng, Lee Ching; Kobayashi, Mutsuo; Tomita, Takashi

2014-01-01

189

Ovicidal, larvicidal and adulticidal properties of Asparagus racemosus (Willd.) (Family: Asparagaceae) root extracts against filariasis (Culex quinquefasciatus), dengue (Aedes aegypti) and malaria (Anopheles stephensi) vector mosquitoes (Diptera: Culicidae).  

PubMed

Several diseases are associated to the mosquito-human interaction. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The present investigation was undertaken to study the ovicidal, larvicidal and adulticidal activities of crude hexane, ethyl acetate, benzene, chloroform and methanol extracts of root of Asparagus racemosus were assayed for their toxicity against three important vector mosquitoes, viz., Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). The mean percent hatchability of the eggs was observed after 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. The methanol extract of Asparagus racemosus against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi exerted 100% mortality (zero hatchability) at 375, 300 and 225 ppm, respectively. Control eggs showed 99-100% hatchability. The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of root of Asparagus racemosus against the larvae of Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi with the LC50 and LC90 values were 115.13, 97.71 and 90.97 ppm and 210.96, 179.92, and 168.82 ppm, respectively. The adult mortality was observed after 24 h recovery period. The plant crude extracts showed dose-dependent mortality. At higher concentrations, the adult showed restless movement for some times with abnormal wagging and then died. Among the extracts tested, the highest adulticidal activity was observed in methanol extract against Anopheles stephensi followed by Aedes aegypti and Culex quinquefasciatus with the LD50 and LD90 values were 120.44, 135.60, and 157.71 ppm and 214.65, 248.35, and 290.95 ppm, respectively. No mortality was recorded in the control. The finding of the present investigation revealed that the root extract of Asparagus racemosus possess remarkable ovicidal, larvicidal and adulticidal activity against medically important vector mosquitoes and this is the low cost and ideal eco-friendly approach for the control of mosquitoes. This is the first report on the mosquito ovicidal, larvicidal and adulticidal activities of the reported Asparagus racemosus root. PMID:24488078

Govindarajan, Marimuthu; Sivakumar, Rajamohan

2014-04-01

190

Chitosan/siRNA nanoparticle targeting demonstrates a requirement for single-minded during larval and pupal olfactory system development of the vector mosquito Aedes aegypti  

PubMed Central

Background Essentially nothing is known about the genetic regulation of olfactory system development in vector mosquitoes, which use olfactory cues to detect blood meal hosts. Studies in Drosophila melanogaster have identified a regulatory matrix of transcription factors that controls pupal/adult odorant receptor (OR) gene expression in olfactory receptor neurons (ORNs). However, it is unclear if transcription factors that function in the D. melanogaster regulatory matrix are required for OR expression in mosquitoes. Furthermore, the regulation of OR expression during development of the larval olfactory system, which is far less complex than that of pupae/adults, is not well understood in any insect, including D. melanogaster. Here, we examine the regulation of OR expression in the developing larval olfactory system of Aedes aegypti, the dengue vector mosquito. Results A. aegypti bears orthologs of eight transcription factors that regulate OR expression in D. melanogaster pupae/adults. These transcription factors are expressed in A. aegypti larval antennal sensory neurons, and consensus binding sites for these transcription factors reside in the 5’ flanking regions of A. aegypti OR genes. Consensus binding sites for Single-minded (Sim) are located adjacent to over half the A. aegypti OR genes, suggesting that this transcription factor functions as a major regulator of mosquito OR expression. To functionally test this hypothesis, chitosan/siRNA nanoparticles were used to target sim during larval olfactory development. These experiments demonstrated that Sim positively regulates expression of a large subset of OR genes, including orco, the obligate co-receptor in the assembly and function of heteromeric OR/Orco complexes. Decreased innervation of the antennal lobe was also noted in sim knockdown larvae. These OR expression and antennal lobe defects correlated with a larval odorant tracking behavioral defect. OR expression and antennal lobe defects were also observed in sim knockdown pupae. Conclusions The results of this investigation indicate that Sim has multiple functions during larval and pupal olfactory system development in A. aegypti. PMID:24552425

2014-01-01

191

Investigating the Potential Range Expansion of the Vector Mosquito Aedes Aegypti in Mexico with NASA Earth Science Remote Sensing Results  

NASA Technical Reports Server (NTRS)

Dengue (Breakbone) fever is caused by one of four viruses carried by mosquitoes in tropical and subtropical areas. Cases have increased dramatically in the past few decades; there are currently approximately 100 million infections annually around the globe. Our project will integrate environmental observations, including weather, land use, vegetation type, amount and greenness, soil moisture, and mosquito populations with investigations of the human dynamics of the system via household surveys.

Estes, Sue M.

2011-01-01

192

Population Genetics of Two Key Mosquito Vectors of Rift Valley Fever Virus Reveals New Insights into the Changing Disease Outbreak Patterns in Kenya  

PubMed Central

Rift Valley fever (RVF) outbreaks in Kenya have increased in frequency and range to include northeastern Kenya where viruses are increasingly being isolated from known (Aedes mcintoshi) and newly-associated (Ae. ochraceus) vectors. The factors contributing to these changing outbreak patterns are unclear and the population genetic structure of key vectors and/or specific virus-vector associations, in particular, are under-studied. By conducting mitochondrial and nuclear DNA analyses on >220 Kenyan specimens of Ae. mcintoshi and Ae. ochraceus, we uncovered high levels of vector complexity which may partly explain the disease outbreak pattern. Results indicate that Ae. mcintoshi consists of a species complex with one of the member species being unique to the newly-established RVF outbreak-prone northeastern region of Kenya, whereas Ae. ochraceus is a homogeneous population that appears to be undergoing expansion. Characterization of specimens from a RVF-prone site in Senegal, where Ae. ochraceus is a primary vector, revealed direct genetic links between the two Ae. ochraceus populations from both countries. Our data strongly suggest that unlike Ae. mcintoshi, Ae. ochraceus appears to be a relatively recent, single 'introduction' into Kenya. These results, together with increasing isolations from this vector, indicate that Ae. ochraceus will likely be of greater epidemiological importance in future RVF outbreaks in Kenya. Furthermore, the overall vector complexity calls into question the feasibility of mosquito population control approaches reliant on genetic modification. PMID:25474018

Tchouassi, David P.; Bastos, Armanda D. S.; Sole, Catherine L.; Diallo, Mawlouth; Lutomiah, Joel; Mutisya, James; Mulwa, Francis; Borgemeister, Christian; Sang, Rosemary; Torto, Baldwyn

2014-01-01

193

Population genetics of two key mosquito vectors of rift valley Fever virus reveals new insights into the changing disease outbreak patterns in kenya.  

PubMed

Rift Valley fever (RVF) outbreaks in Kenya have increased in frequency and range to include northeastern Kenya where viruses are increasingly being isolated from known (Aedes mcintoshi) and newly-associated (Ae. ochraceus) vectors. The factors contributing to these changing outbreak patterns are unclear and the population genetic structure of key vectors and/or specific virus-vector associations, in particular, are under-studied. By conducting mitochondrial and nuclear DNA analyses on >220 Kenyan specimens of Ae. mcintoshi and Ae. ochraceus, we uncovered high levels of vector complexity which may partly explain the disease outbreak pattern. Results indicate that Ae. mcintoshi consists of a species complex with one of the member species being unique to the newly-established RVF outbreak-prone northeastern region of Kenya, whereas Ae. ochraceus is a homogeneous population that appears to be undergoing expansion. Characterization of specimens from a RVF-prone site in Senegal, where Ae. ochraceus is a primary vector, revealed direct genetic links between the two Ae. ochraceus populations from both countries. Our data strongly suggest that unlike Ae. mcintoshi, Ae. ochraceus appears to be a relatively recent, single 'introduction' into Kenya. These results, together with increasing isolations from this vector, indicate that Ae. ochraceus will likely be of greater epidemiological importance in future RVF outbreaks in Kenya. Furthermore, the overall vector complexity calls into question the feasibility of mosquito population control approaches reliant on genetic modification. PMID:25474018

Tchouassi, David P; Bastos, Armanda D S; Sole, Catherine L; Diallo, Mawlouth; Lutomiah, Joel; Mutisya, James; Mulwa, Francis; Borgemeister, Christian; Sang, Rosemary; Torto, Baldwyn

2014-12-01

194

The entomopathogenic fungus Metarhizium anisopliae for mosquito control. Impact on the adult stage of the African malaria vector Anopheles gambiae and filariasis vector Culex quinquefasciatus  

Microsoft Academic Search

Insect-pathogenie fungi for mosquito control (Chapters 1-3)Malaria and lymphatic tilariasis impose serious human health burdens in the tropics. Up to 500 million cases of malaria are reported annually, resulting in an estimated 1.5-2.7million deaths, of which 90% occur in sub-Saharan Africa. Malaria is caused by protozoa of the genus Plasmodium and is transmitted through bites of mosquitoes belonging to the

E. J. Scholte

2004-01-01

195

MOSQUITO BIOLOGY  

Technology Transfer Automated Retrieval System (TEKTRAN)

This article summarizes current knowledge of mosquito biology. It presents basic information on mosquito morphology, geographic distribution, systematic classification, life cycles, host preference, and public and veterinary health importance. Mosquitoes belong to the order Diptera, family Culicid...

196

Field evaluation of the efficacy and persistence of insect repellents DEET, IR3535, and KBR 3023 against Anopheles gambiae complex and other Afrotropical vector mosquitoes.  

PubMed

Synthetic insect repellents, IR3535 and KBR 3023 (also known as picaridin, or by the trade name Bayrepel, were tested in Burkina Faso against mosquito vectors of disease to compare their relative efficacy and persistence profiles to those of the 'gold standard' DEET. Collection of >49000 mosquitoes (approximately 95% belonging to the Anopheles gambiae complex) showed that after an exposure of 10h, KBR 3023 produced the highest protection against anophelines, followed by DEET, then IR3535. The response of aedines was more variable. By fitting a logistic plane model we estimated 95% effective dosages (ED95) for An. gambiae s.l., as well as a decay constant characterizing the exponential loss of repellent from the skin, with time. The ED95 values for DEET, IR3535, and KBR 3023 were 94.3, 212.4, and 81.8 microg/cm2 respectively. The decay constants were estimated at -0.241, -0.240, and -0.170 h(-1) respectively. The corresponding estimates of half-life were 2.9, 2.9, and 4.1h. Immunoenzymatic detection of the circumsporozoite protein (CSP) of Plasmodium falciparum in 842 An. gambiae s.l. showed that CSP-positive mosquitoes were equally frequent in treated and control subjects, indicating that the repellents could produce a reduction in the number of malaria infectious bites. PMID:15363644

Costantini, Carlo; Badolo, Athanase; Ilboudo-Sanogo, Edith

2004-11-01

197

Mosquito Surveillance for Prevention and Control of Emerging Mosquito-Borne Diseases in Portugal — 2008–2014  

PubMed Central

Mosquito surveillance in Europe is essential for early detection of invasive species with public health importance and prevention and control of emerging pathogens. In Portugal, a vector surveillance national program—REVIVE (REde de VIgilância de VEctores)—has been operating since 2008 under the custody of Portuguese Ministry of Health. The REVIVE is responsible for the nationwide surveillance of hematophagous arthropods. Surveillance for West Nile virus (WNV) and other flaviviruses in adult mosquitoes is continuously performed. Adult mosquitoes—collected mainly with Centre for Disease Control light traps baited with CO2—and larvae were systematically collected from a wide range of habitats in 20 subregions (NUTS III). Around 500,000 mosquitoes were trapped in more than 3,000 trap nights and 3,500 positive larvae surveys, in which 24 species were recorded. The viral activity detected in mosquito populations in these years has been limited to insect specific flaviviruses (ISFs) non-pathogenic to humans. Rather than emergency response, REVIVE allows timely detection of changes in abundance and species diversity providing valuable knowledge to health authorities, which may take control measures of vector populations reducing its impact on public health. This work aims to present the REVIVE operation and to expose data regarding mosquito species composition and detected ISFs. PMID:25396768

Osório, Hugo C.; Zé-Zé, Líbia; Amaro, Fátima; Alves, Maria J.

2014-01-01

198

Mosquito surveillance for prevention and control of emerging mosquito-borne diseases in Portugal - 2008-2014.  

PubMed

Mosquito surveillance in Europe is essential for early detection of invasive species with public health importance and prevention and control of emerging pathogens. In Portugal, a vector surveillance national program-REVIVE (REde de VIgilância de VEctores)-has been operating since 2008 under the custody of Portuguese Ministry of Health. The REVIVE is responsible for the nationwide surveillance of hematophagous arthropods. Surveillance for West Nile virus (WNV) and other flaviviruses in adult mosquitoes is continuously performed. Adult mosquitoes-collected mainly with Centre for Disease Control light traps baited with CO2-and larvae were systematically collected from a wide range of habitats in 20 subregions (NUTS III). Around 500,000 mosquitoes were trapped in more than 3,000 trap nights and 3,500 positive larvae surveys, in which 24 species were recorded. The viral activity detected in mosquito populations in these years has been limited to insect specific flaviviruses (ISFs) non-pathogenic to humans. Rather than emergency response, REVIVE allows timely detection of changes in abundance and species diversity providing valuable knowledge to health authorities, which may take control measures of vector populations reducing its impact on public health. This work aims to present the REVIVE operation and to expose data regarding mosquito species composition and detected ISFs. PMID:25396768

Osório, Hugo C; Zé-Zé, Líbia; Amaro, Fátima; Alves, Maria J

2014-11-01

199

Structural changes of the follicular cells during developmental stages of the malaria vector mosquitoes Anopheles pharoensis (Diptera: Culicidae) in Egypt.  

PubMed

The structure modulation of follicular cells and the ovarian changes during fourth larval instar and pupal stage of the malaria vector mosquitoes Anopheles pharoensis Theobald were investigated using the light and electron microscopy. The generative organs consist of a pair of polytrophic ovaries (OV), which are oblong, spindle-shaped bodies, lying dorsolaterally and occupying the region from the mid-fifth to the mid-sixth abdominal segment in the fourth larval instar, while in the pupal stage, each ovary (OV) is situated in the haemocoel of the sixth abdominal segment. It is an oblong body slightly larger in diameter; the lumen of the calyx becomes wider and central, and the pedicel (P) consists of one row of compact discoidal cells; meanwhile, in the fourth larval instar, the pedicel is without a lumen and consists of two rows of discoidal cells which are arranged as a short column between the follicle and calyx. The mean volume of the follicle in the fourth larval instar is 9.078?±?3.0178 ?m(3), meanwhile in the pupal stage being 12.051?±?2.427 ?m(3). The germarium (G) decreases in size in the pupal stage and contains a group of cells from which the oogonia differentiate, follicular cells which are similar to trophocytes, undifferentiated into one oocyte (O), which will develop into an egg and it is statistically the smallest one measured (0.058?±?0.0041 ?m(3), 0.303?±?0.0086 ?m(3)) in fourth larval instar and pupal stage, respectively as compared to the others within the follicle which will be accompanied as nurse cells (NC). The follicle is enclosed by a mononuclear flattened cells (follicular membrane), which have distinct boundaries. The vitellarium is differentiated into primary (F1) and secondary follicles (F2) in the pupal stage. The Golgi apparatus (GA) appears as discrete bits which are restricted to the perinuclear zone. The mitochondria (M) in the fourth larval instar are in the form of granules and short rods. They are perinuclearly distributed, forming a ring that surrounds the comparatively large nucleus. In the pupal stage, a similar condition to that described for the larva is observed, but with an increase in size and numbers, due to breaking up of rods into granules. PMID:25241910

Yamany, Abeer S; Adham, Fatma K; Mehlhorn, Heinz

2014-11-01

200

[The mosquito-borne viruses in Europe].  

PubMed

Epidemiologic changes of vector-borne diseases in recent years have multiple causes, including climate change. There are about 3500 species of mosquitoes worldwide, three-quarters of which live in tropical and subtropical wetlands. Main viruses transmitted by mosquitoes in Europe belong to the genus Flavivirus; some of them have been recently reported in Italy (Usutu and Japanese encephalitis virus), while others have been circulating for years and autochthonous transmission has been documented (West Nile virus). Mosquito-borne viruses can be classified according to the vector (Aedes or Culex), which, in turn, is associated with different vertebrate host and pathology. The Flavivirus transmitted by Culex have birds as a reservoir and can cause meningoencephalitis, while viruses transmitted by Aedes have primates as reservoir, do not have neurotropism and mainly cause hemorrhagic diseases. Other arbovirus, potentially responsible of epidemics, are the Chikungunya virus (Alphavirus family), introduced for the first time in Europe in 2007, and the virus of Rift Valley fever (Phlebovirus family). The spread in non-endemic areas of vector-born diseases have highlighted the importance of surveillance systems and vector control strategies. PMID:25805223

Rossati, Antonella; Bargiacchi, Olivia; Kroumova, Vesselina; Garavelli, Pietro Luigi

2015-03-01

201

Rapid Detection and Identification of Wuchereria bancrofti, Brugia malayi, B. pahangi, and Dirofilaria immitis in Mosquito Vectors and Blood Samples by High Resolution Melting Real-Time PCR  

PubMed Central

A simple, rapid, and high-throughput method for detection and identification of Wuchereria bancrofti, Brugia malayi, Brugia pahangi, and Dirofilaria immitis in mosquito vectors and blood samples was developed using a real-time PCR combined with high-resolution melting (HRM) analysis. Amplicons of the 4 filarial species were generated from 5S rRNA and spliced leader sequences by the real-time PCR and their melting temperatures were determined by the HRM method. Melting of amplicons from W. bancrofti, B. malayi, D. immitis, and B. pahangi peaked at 81.5±0.2?, 79.0±0.3?, 76.8±0.1?, and 79.9±0.1?, respectively. This assay is relatively cheap since it does not require synthesis of hybridization probes. Its sensitivity and specificity were 100%. It is a rapid and technically simple approach, and an important tool for population surveys as well as molecular xenomonitoring of parasites in vectors. PMID:24516268

Thanchomnang, Tongjit; Intapan, Pewpan M.; Tantrawatpan, Chairat; Lulitanond, Viraphong; Chungpivat, Sudchit; Taweethavonsawat, Piyanan; Kaewkong, Worasak; Sanpool, Oranuch; Janwan, Penchom; Choochote, Wej

2013-01-01

202

Recent amplification of miniature inverted-repeat transposable elements in the vector mosquito Culex pipiens: characterization of the Mimo family  

Microsoft Academic Search

We describe a new family of repetitive elements, named Mimo, from the mosquito Culex pipiens. Structural characteristics of these elements fit well with those of miniature inverted-repeat transposable elements (MITEs), which are ubiquitous and highly abundant in plant genomes. The occurrence of Mimo in C. pipiens provides new evidence that MITEs are not restricted to plant genomes, but may be

Cédric Feschotte; Claude Mouchès

2000-01-01

203

Impact of Wolbachia on Infection with Chikungunya and Yellow Fever Viruses in the Mosquito Vector Aedes aegypti  

PubMed Central

Incidence of disease due to dengue (DENV), chikungunya (CHIKV) and yellow fever (YFV) viruses is increasing in many parts of the world. The viruses are primarily transmitted by Aedes aegypti, a highly domesticated mosquito species that is notoriously difficult to control. When transinfected into Ae. aegypti, the intracellular bacterium Wolbachia has recently been shown to inhibit replication of DENVs, CHIKV, malaria parasites and filarial nematodes, providing a potentially powerful biocontrol strategy for human pathogens. Because the extent of pathogen reduction can be influenced by the strain of bacterium, we examined whether the wMel strain of Wolbachia influenced CHIKV and YFV infection in Ae. aegypti. Following exposure to viremic blood meals, CHIKV infection and dissemination rates were significantly reduced in mosquitoes with the wMel strain of Wolbachia compared to Wolbachia-uninfected controls. However, similar rates of infection and dissemination were observed in wMel infected and non-infected Ae. aegypti when intrathoracic inoculation was used to deliver virus. YFV infection, dissemination and replication were similar in wMel-infected and control mosquitoes following intrathoracic inoculations. In contrast, mosquitoes with the wMelPop strain of Wolbachia showed at least a 104 times reduction in YFV RNA copies compared to controls. The extent of reduction in virus infection depended on Wolbachia strain, titer and strain of the virus, and mode of exposure. Although originally proposed for dengue biocontrol, our results indicate a Wolbachia-based strategy also holds considerable promise for YFV and CHIKV suppression. PMID:23133693

van den Hurk, Andrew F.; Hall-Mendelin, Sonja; Pyke, Alyssa T.; Frentiu, Francesca D.; McElroy, Kate; Day, Andrew; Higgs, Stephen; O'Neill, Scott L.

2012-01-01

204

Absence of knockdown resistance suggests metabolic resistance in the main malaria vectors of the Mekong region  

PubMed Central

Background As insecticide resistance may jeopardize the successful malaria control programmes in the Mekong region, a large investigation was previously conducted in the Mekong countries to assess the susceptibility of the main malaria vectors against DDT and pyrethroid insecticides. It showed that the main vector, Anopheles epiroticus, was highly pyrethroid-resistant in the Mekong delta, whereas Anopheles minimus sensu lato was pyrethroid-resistant in northern Vietnam. Anopheles dirus sensu stricto showed possible resistance to type II pyrethroids in central Vietnam. Anopheles subpictus was DDT- and pyrethroid-resistant in the Mekong Delta. The present study intends to explore the resistance mechanisms involved. Methods By use of molecular assays and biochemical assays the presence of the two major insecticide resistance mechanisms, knockdown and metabolic resistance, were assessed in the main malaria vectors of the Mekong region. Results Two FRET/MCA assays and one PCR-RFLP were developed to screen a large number of Anopheles populations from the Mekong region for the presence of knockdown resistance (kdr), but no kdr mutation was observed in any of the study species. Biochemical assays suggest an esterase mediated pyrethroid detoxification in An. epiroticus and An. subpictus of the Mekong delta. The DDT resistance in An. subpictus might be conferred to a high GST activity. The pyrethroid resistance in An. minimus s.l. is possibly associated with increased detoxification by esterases and P450 monooxygenases. Conclusion As different metabolic enzyme systems might be responsible for the pyrethroid and DDT resistance in the main vectors, each species may have a different response to alternative insecticides, which might complicate the malaria vector control in the Mekong region. PMID:19400943

Verhaeghen, Katrijn; Van Bortel, Wim; Trung, Ho Dinh; Sochantha, Tho; Coosemans, Marc

2009-01-01

205

An affordable, quality-assured community-based system for high-resolution entomological surveillance of vector mosquitoes that reflects human malaria infection risk patterns  

PubMed Central

Background More sensitive and scalable entomological surveillance tools are required to monitor low levels of transmission that are increasingly common across the tropics, particularly where vector control has been successful. A large-scale larviciding programme in urban Dar es Salaam, Tanzania is supported by a community-based (CB) system for trapping adult mosquito densities to monitor programme performance. Methodology An intensive and extensive CB system for routine, longitudinal, programmatic surveillance of malaria vectors and other mosquitoes using the Ifakara Tent Trap (ITT-C) was developed in Urban Dar es Salaam, Tanzania, and validated by comparison with quality assurance (QA) surveys using either ITT-C or human landing catches (HLC), as well as a cross-sectional survey of malaria parasite prevalence in the same housing compounds. Results Community-based ITT-C had much lower sensitivity per person-night of sampling than HLC (Relative Rate (RR) [95% Confidence Interval (CI)]?=?0.079 [0.051, 0.121], P?vectors caught) and cost-effective (153US$ versus 187US$ per An. gambiae caught) because it allowed more spatially extensive and temporally intensive sampling (4284 versus 335 trap nights distributed over 615 versus 240 locations with a mean number of samples per year of 143 versus 141). Despite the very low vectors densities (Annual estimate of about 170 An gambiae s.l bites per person per year), CB-ITT was the only entomological predictor of parasite infection risk (Odds Ratio [95% CI]?=?4.43[3.027,7. 454] per An. gambiae or Anopheles funestus caught per night, P =0.0373). Discussion and conclusion CB trapping approaches could be improved with more sensitive traps, but already offer a practical, safe and affordable system for routine programmatic mosquito surveillance and clusters could be distributed across entire countries by adapting the sample submission and quality assurance procedures accordingly. PMID:22624853

2012-01-01

206

Blood meal analysis, flavivirus screening, and influence of meteorological variables on the dynamics of potential mosquito vectors of West Nile virus in northern Italy.  

PubMed

An extended area of northern Italy has experienced several West Nile virus (WNV) outbreaks and the emergence of Usutu virus (USUV) during previous years. Our aim was to study some of the factors that could explain disease patterns in the Trentino region, where circulation was detected in human sera and sentinel chickens, but no human or equine cases were reported. We collected Culex species (Diptera: Culicidae) in peridomestic environments. The collected specimens were analyzed for feeding behavior, the influence of temperature and rainfall on the abundance of mosquitoes, and the occurrence of flaviviruses. Analysis of blood meals showed that Culex pipiens fed mainly on blackbirds (Turdus merula) and house sparrows (Passer domesticus), while Culex hortensis fed strictly on lizards. The abundance of Cx. pipiens females correlated positively with mean temperature and negatively with rainfall (one to four weeks before capture). This negative relationship could be due to the direct effect of the flushing of habitats together with an indirect effect of oviposition repellency. The mean weekly temperature influenced the abundance of Cx. hortensis. No flaviviruses were detected in the analyzed Culex mosquitoes. These data suggest a silent cycle at low enzootic transmission levels in the area. Furthermore, we present the first contribution to understanding the transmission role of Cx. pipiens mosquitoes in Italy by identifying vertebrate hosts to species level. PMID:22548533

Roiz, David; Vazquez, Ana; Rosà, Roberto; Muñoz, Joaquin; Arnoldi, Daniele; Rosso, Fausta; Figuerola, Jordi; Tenorio, Antonio; Rizzoli, Annapaola

2012-06-01

207

Use of Remote Sensing Surveillance to Monitor Environmental Parameters Associated with Mosquito Abundance and Vector-borne Diseases  

NASA Technical Reports Server (NTRS)

Lymphatic filariasis persists as a major cause of clinical morbidity and a significant impediment to socioeconomic development in various parts of the world including Egypt. In Egypt, filariasis has been endemic since time immemorial. Early epidemiologic studies identified Culex pipiens L. as the main vector of the disease and also showed that the geographic distribution of the disease is highly focal and concentrated in lower Egypt. Between 1950 and 1965, a large scale filariasis control program was carried out by the Egyptian Ministry of Health (EMOH) in the endemic areas. Control efforts led to a steady decrease of the disease in areas of the country previously identified as endemic. However, spot surveys conducted in various parts of the Nile Delta during the 1970's and 1980's revealed that the downward trend of the disease had stopped and that the prevalence and intensity of microfilaraemia had increased.

1996-01-01

208

Aquatic vegetation and their natural hospitability to the immatures of Mansonia mosquitos, the vectors of Brugia malayi in Shertallai, Kerala, India.  

PubMed

Prevalence of various aquatic vegetation and their role in supporting vector breeding were studied by drawing plant samples from natural fresh water habitats in Shertallai region which is endemic for Brugia malayi. As many as 30 aquatic plant species were identified in addition to the most abundant and preferred host plants such as Pistia stratiotes, Salvinia molesta and Eichhornia crassipes which are of major concern due to their contribution for vector proliferation. Fallow lands and paddy fields recorded relatively a higher number of plant species. Natural breeding of Mansonia, the vector mosquitos was observed in 16 of them. Using the data on the prevalence, proportion of samples positive for Mansonia breeding and immature density, two indices viz, natural hospitability Index (NH) and Mansonia host plant Index (MHI) were developed for each plant species. Ranking of these plants in relation to Mansonia breeding was done based on these indices. Monochoria vaginalis has been identified to be one of the most important auxiliary host plant. Three grasses viz, Hygrorhiza aristata, Sacciolepis interrupta and Leersia hexandra were found to support all the three species of Mansonia viz, Ma. annulifera, Ma. uniformis and Ma. indiana with considerable immature density. The inclusion of these plants for weed/vector control is emphasized. PMID:7667728

Krishnamoorthy, K; Rajendran, G; Panicker, K N

1994-12-01

209

Transcriptional regulation of mosquito oogenesis  

Microsoft Academic Search

The Eastern treehole mosquito, Aedes triseriatus (Say), is the primary vector of La Crosse virus (LACV) in the United States. LACV is maintained in natural populations in part by transovarial transmission from infected females to their progeny. Our understanding of the innate immune response in mosquito ovaries is a fundamental step toward understanding the transmission cycle of LACV and other

Patrick David Jennings

2011-01-01

210

INSECTICIDES RECOMMENDED FOR MOSQUITO CONTROL IN  

E-print Network

1 INSECTICIDES RECOMMENDED FOR MOSQUITO CONTROL IN NEW JERSEY IN 2012 L. B. Brattsten, Professor and proprietary examples APPENDIX: Best Management Practices for Mosquito Control in New Jersey New Jersey mosquito control commissions and agencies responsible for reducing the populations of nuisance and vector

Wang, Changlu

211

Chikungunya A mosquito-borne disease  

E-print Network

species are present in Florida · Aedes aegypti · Also called the Yellow Fever Mosquito · Aedes albopictus #12;Chikungunya Vector: Aedes aegypti, the Yellow Fever Mosquito #12;Larval habitats of container transmitted by mosquitoes · It is also called "contorted fever" and "that which bends up" · The virus

Florida, University of

212

Measurement of landing mosquito density on humans  

Technology Transfer Automated Retrieval System (TEKTRAN)

In conventional vector surveillance systems, adult mosquito density and the rate of human-mosquito contact is estimated from the mosquito numbers captured in mechanical traps. However, the design of the traps, their placement in the habitat and operating time, microclimate, and other environmental ...

213

Prevalence and distribution of pox-like lesions, avian malaria, and mosquito vectors in Kipahulu valley, Haleakala National Park, Hawai'i, USA  

USGS Publications Warehouse

We determined prevalence and altitudinal distribution of introduced avian malarial infections (Plasmodium relictum) and pox-like lesions (Avipoxvirus) in forest birds from K?pahulu Valley, Haleakal? National Park, on the island of Maui, and we identified primary larval habitat for the mosquito vector of this disease. This intensively managed wilderness area and scientific reserve is one of the most pristine areas of native forest remaining in the state of Hawai‘i, and it will become increasingly important as a site for restoration and recovery of endangered forest birds. Overall prevalence of malarial infections in the valley was 8% (11/133) in native species and 4% (4/101) in nonnative passerines; prevalence was lower than reported for comparable elevations and habitats elsewhere in the state. Infections occurred primarily in ‘Apapane (Himatione sanguinea) and Hawai‘i ‘Amakihi (Hemignathus virens) at elevations below 1,400 m. Pox-like lesions were detected in only two Hawai‘i ‘Amakihi (2%; 2/94) at elevations below 950 m. We did not detect malaria or pox in birds caught at 1,400 m in upper reaches of the valley. Adult mosquitoes (Culex quinquefasciatus) were captured at four sites at elevations of 640, 760, 915, and 975 m, respectively. Culex quinquefasciatus larvae were found only in rock holes along intermittent tributaries of the two largest streams in the valley, but not in standing surface water, pig wallows, ground pools, tree cavities, and tree fern cavities. Mosquito populations in the valley are low, and they are probably influenced by periods of high rainfall that flush stream systems.

Aruch, Samuel; Atkinson, Carter T.; Savage, Amy F.; Lapointe, Dennis

2007-01-01

214

Using a new odour-baited device to explore options for luring and killing outdoor-biting malaria vectors: a report on design and field evaluation of the Mosquito Landing Box  

PubMed Central

Background Mosquitoes that bite people outdoors can sustain malaria transmission even where effective indoor interventions such as bednets or indoor residual spraying are already widely used. Outdoor tools may therefore complement current indoor measures and improve control. We developed and evaluated a prototype mosquito control device, the ‘Mosquito Landing Box’ (MLB), which is baited with human odours and treated with mosquitocidal agents. The findings are used to explore technical options and challenges relevant to luring and killing outdoor-biting malaria vectors in endemic settings. Methods Field experiments were conducted in Tanzania to assess if wild host-seeking mosquitoes 1) visited the MLBs, 2) stayed long or left shortly after arrival at the device, 3) visited the devices at times when humans were also outdoors, and 4) could be killed by contaminants applied on the devices. Odours suctioned from volunteer-occupied tents were also evaluated as a potential low-cost bait, by comparing baited and unbaited MLBs. Results There were significantly more Anopheles arabiensis, An. funestus, Culex and Mansonia mosquitoes visiting baited MLB than unbaited controls (P?0.028). Increasing sampling frequency from every 120 min to 60 and 30 min led to an increase in vector catches of up to 3.6 fold (P?0.002), indicating that many mosquitoes visited the device but left shortly afterwards. Outdoor host-seeking activity of malaria vectors peaked between 7:30 and 10:30pm, and between 4:30 and 6:00am, matching durations when locals were also outdoors. Maximum mortality of mosquitoes visiting MLBs sprayed or painted with formulations of candidate mosquitocidal agent (pirimiphos-methyl) was 51%. Odours from volunteer occupied tents attracted significantly more mosquitoes to MLBs than controls (P<0.001). Conclusion While odour-baited devices such as the MLBs clearly have potential against outdoor-biting mosquitoes in communities where LLINs are used, candidate contaminants must be those that are effective at ultra-low doses even after short contact periods, since important vector species such as An. arabiensis make only brief visits to such devices. Natural human odours suctioned from occupied dwellings could constitute affordable sources of attractants to supplement odour baits for the devices. The killing agents used should be environmentally safe, long lasting, and have different modes of action (other than pyrethroids as used on LLINs), to curb the risk of physiological insecticide resistance. PMID:23642306

2013-01-01

215

trans-Packaged West Nile Virus-Like Particles: Infectious Properties In Vitro and in Infected Mosquito Vectors  

PubMed Central

A trans-packaging system for West Nile virus (WNV) subgenomic replicon RNAs (repRNAs), deleted for the structural coding region, was developed. WNV repRNAs were efficiently encapsidated by the WNV C/prM/E structural proteins expressed in trans from replication-competent, noncytopathic Sindbis virus-derived RNAs. Infectious virus-like particles (VLPs) were produced in titers of up to 109 infectious units/ml. WNV VLPs established a single round of infection in a variety of different cell lines without production of progeny virions. The infectious properties of WNV and VLPs were indistinguishable when efficiencies of infection of a number of different cell lines and inhibition of infection by neutralizing antibodies were determined. To investigate the usefulness of VLPs to address biological questions in vivo, Culex pipiens quinquefasciatus mosquitoes were orally and parenterally infected with VLPs, and dissected tissues were analyzed for WNV antigen expression. Antigen-positive cells in midguts of orally infected mosquitoes were detected as early as 2 days postinfection and as late as 8 days. Intrathoracic inoculation of VLPs into mosquitoes demonstrated a dose-dependent pattern of infection of secondary tissues and identified fat body, salivary glands, tracheal cells, and midgut muscle as susceptible WNV VLP infection targets. These results demonstrate that VLPs can serve as a valuable tool for the investigation of tissue tropism during the early stages of infection, where virus spread and the need for biosafety level 3 containment complicate the use of wild-type virus. PMID:15479801

Scholle, Frank; Girard, Yvette A.; Zhao, Qizu; Higgs, Stephen; Mason, Peter W.

2004-01-01

216

Mosquitos and You! Mosquito Control and Prevention  

E-print Network

Mosquitos and You! Mosquito Control and Prevention Teacher's Guide State of Florida Science Produced by Volusia County Health Department #12;Mosquitos and You! Mosquito Control and Prevention Training & Development Team Volusia County Health Department Jonas Stewart Mosquito Control Director

217

Evaluation of attractive toxic sugar bait (ATSB)-barrier for control of vector and nuisance mosquitoes and its effect on non-target organisms in sub-tropical environments in Florida.  

Technology Transfer Automated Retrieval System (TEKTRAN)

We evaluated the efficacy of attractive toxic sugar baits (ATSB) in the laboratory and the field with the Environmental Protection Agency exempt active ingredient eugenol against vector and nuisance mosquitoes. In the laboratory, eugenol combined in attractive sugar bait (ASB) solution provided high...

218

Use of GIS-based spatial modeling approach to characterize the spatial patterns of malaria mosquito vector breeding habitats in northwestern Thailand.  

PubMed

We sampled 291 bodies of water for Anopheles larvae around three malaria-endemic villages of Ban Khun Huay, Ban Pa Dae, and Ban Tham Seau, Mae Sot district, Tak Province, Thailand during August 2001-December 2002 and collected 4,387 larvae from 12 categories of breeding habitat types. We modeled surface slope and wetness indices to identify the extent and spatial pattern of potential mosquito breeding habitats by digitizing base topographical maps of the study site and overlaying them with coordinates for each larval habitat. Topographical contours and streamlines were incorporated into the Geographical Information System (GIS). We used Global Positioning System (GPS) instruments to locate accurately each field observed breeding habitat, and produced a 30-m spatial resolution Digital Elevation Model (DEM). The slope (of less than 12 degrees) and wetness (more than 8 units) derived from spatial modeling were positively associated with the abundance of major malaria vectors An. dirus, An. maculatus, An. minimus, and An. sawadwongporni. These associations permit real-time monitoring and possibly forecasting of the distributions of these four species, enabling public health agencies to institute control measures before the mosquitos emerge as adults and transmit disease. PMID:15115121

Sithiprasasna, Ratana; Linthicum, Kenneth J; Liu, Gang-Jun; Jones, James W; Singhasivanon, Pratap

2003-09-01

219

Relative abundance of tree hole-breeding mosquitoes in Boone County, Missouri, USA, with emphasis on the vector potential of Aedes triseriatus for canine heartworm, Dirofilaria immitis (Spirurida: Filariidae).  

PubMed

Aedes (Protomacleaya) triseriatus currently shares its habitat in the USA with the introduced species Aedes (Finlaya) japonicus and Aedes (Stegomyia) albopictus. In the late 1980s, before the introduction of these 2 species, Ae. triseriatus was the dominant tree hole- and artificial container-breeding mosquito in central Missouri. Aedes triseriatus represented 89% of the mosquito immatures collected from water-filled tree holes and artificial containers at 3 forested field sites in central Missouri, from May to October, 1986 to 1988. Laboratory-reared female Ae. triseriatus were able to support larval development of Dirofilaria immitis (canine heartworm) to the infective 3rd larval stage. A blood meal from a microfilaremic Collie-mix dog was sufficient to infect adult female mosquitoes, indicating that Ae. triseriatus is a possible vector of canine heartworm in central Missouri. Confirmation of the vector status of this species depends on the yet-to-be observed transmission of D. immitis by Ae. triseriatus in the field, possibly by experimental infection of dogs by wild-caught mosquitoes. Defining the role of this species in epizootic outbreaks could contribute toward accurate risk assessment as the abundance of Ae. triseriatus increases and decreases in response to the success of Ae. albopictus, Ae. japonicus, or other introduced container-breeding mosquitoes. PMID:16252517

Debboun, Mustapha; Green, Theodore J; Rueda, Leopoldo M; Hall, Robert D

2005-09-01

220

The value of long-term mosquito surveillance data  

Technology Transfer Automated Retrieval System (TEKTRAN)

One of the most important activities performed by mosquito and vector control agencies is mosquito population surveillance. Mosquito population surveillance data are the written results of adult or larval mosquito sampling, recorded and preserved on paper forms or entered into electronic spreadshee...

221

Culex pipiens s.l. and Culex torrentium (Culicidae) in Wroc?aw area (Poland): occurrence and breeding site preferences of mosquito vectors.  

PubMed

Both ornithophilic mosquito species, Culex pipiens s.l. (L.) and Culex torrentium (Martini, 1925), occur sympatric in temperate Europe. They are presumed to be primary vectors of West Nile and Sindbis viruses. Differentiation of these morphologically similar Culex species is essential for evaluation of different vector roles, for mosquito surveillance and integrated control strategies. Cx. torrentium has been neglected or erroneously determined as Cx. pipiens s.l. in some previous studies, because only males of both species can be diagnosed reliably by morphology. Thus, knowledge about species abundance, geographical distribution, breeding site preferences and the zoonotic risk assessment is incomplete also in Poland. In Wroc?aw area (Silesian Lowland), besides typical urban breeding sites, huge sewage irrigation fields provide suitable breeding conditions for Culex species. They are also inhabited by 180 resident and migratory bird species serving as potential virus reservoirs. In this study, morphology of larvae and males as well as species diagnostic enzyme markers, namely adenylate kinase (AK) and 2-hydroxybutyrate dehydrogenase (HBDH), were used to discriminate Cx. pipiens s.l. and Cx. torrentium. In a total of 650 Culex larvae from 24 natural and artificial breeding sites, Cx. pipiens s.l. had a proportion of 94.0% and Cx. torrentium only 6.0%. It could be shown that both species are well adapted to various breeding site types like ditches, catch basins, flower pots and buckets with diverse water quality. Cx. torrentium preferred more artificial water containers in urban surrounding (12% species proportion), whereas in semi-natural breeding sites, Cx. torrentium was rare (3%). In 12 of 24 breeding sites, larvae of both species have been found associated. PMID:25339516

Weitzel, Thomas; Jawie?, Piotr; Rydzanicz, Katarzyna; Lonc, Elzbieta; Becker, Norbert

2015-01-01

222

Comparative larvicidal potential of different plant parts of Withania somnifera against vector mosquitoes in the semi-arid region of Rajasthan.  

PubMed

Larvicidal potential of the extracts from different parts viz. green and red fruits, seeds, fruit without seeds, leaves and roots of Withania somnifera in different solvents was evaluated against larvae of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus, the important disease vectors prevalent in the semi-arid region. Experiments were carried out on late 3rd or early 4th instar larvae of these mosquitoes using standard WHO technique. 24 and 48 hr LC50 values along with their 95% confidence limits, regression equation, chi-square (chi2)/heterogeneity of the response have been determined by log probit regression analysis. The 24 hr LC50 values as observed for whole green fruits in water, methanol and petroleum ether were 350.9, 372.4, 576.9; 115.0, 197.1, 554.6; 154.9, 312.0, 1085.0 while corresponding values for red fruits were 473.5, 406.4,445.2; 94.7, 94.5, 1013.0; 241.8, 535.0, 893.3 mg l(-1) for An. stephensi, Ae. aegypti and Cx. quinquefasciatus respectively showing that methanol extracts were more effective against anophelines as compared to culicines when whole fruits were taken. The 24 hr LC50 values as observed for seeds in acetone, methanol and petroleum ether were 188.1, 777.5, 822.5; 245.5, 769.0, 1169.0; 140.3, 822.9, 778.4 and for fruit without seeds were 80.2, 97.6, 146.6; 88.4, 404.4, 1030.0; 30.0, 44.5, 54.2 mg l(-1) for the above mosquito species respectively showing that extract of fruit without seeds were most effective in petroleum ether followed by acetone and methanol extracts. However, experiments conducted with methanol extracts of leaves and roots of this plant species did not show any appreciable larvicidal activity and a 20-40% mortality was observed up to 500 mg l(-1) of the extracts. Overall larvae of anophelines were found more susceptible as compared to culicines to all the extracts tested. Petroleum ether extract of fruit without seeds was found most effective against all the mosquito species showing that active ingredient might be present in this part of the plant species. The study would be of great importance while planning vector control strategy based on alternative plant derived insecticides. PMID:21888235

Bansal, S K; Singh, Karam V; Sharma, Sapna; Sherwani, M R K

2011-01-01

223

Evolutionary and dispersal history of Triatoma infestans, main vector of Chagas disease, by chromosomal markers.  

PubMed

Chagas disease, one of the most important vector-borne diseases in the Americas, is caused by Trypanosoma cruzi and transmitted to humans by insects of the subfamily Triatominae. An effective control of this disease depends on elimination of vectors through spraying with insecticides. Genetic research can help insect control programs by identifying and characterizing vector populations. In southern Latin America, Triatoma infestans is the main vector and presents two distinct lineages, known as Andean and non-Andean chromosomal groups, that are highly differentiated by the amount of heterochromatin and genome size. Analyses with nuclear and mitochondrial sequences are not conclusive about resolving the origin and spread of T. infestans. The present paper includes the analyses of karyotypes, heterochromatin distribution and chromosomal mapping of the major ribosomal cluster (45S rDNA) to specimens throughout the distribution range of this species, including pyrethroid-resistant populations. A total of 417 specimens from seven different countries were analyzed. We show an unusual wide rDNA variability related to number and chromosomal position of the ribosomal genes, never before reported in species with holocentric chromosomes. Considering the chromosomal groups previously described, the ribosomal patterns are associated with a particular geographic distribution. Our results reveal that the differentiation process between both T. infestans chromosomal groups has involved significant genomic reorganization of essential coding sequences, besides the changes in heterochromatin and genomic size previously reported. The chromosomal markers also allowed us to detect the existence of a hybrid zone occupied by individuals derived from crosses between both chromosomal groups. Our genetic studies support the hypothesis of an Andean origin for T. infestans, and suggest that pyrethroid-resistant populations from the Argentinean-Bolivian border are most likely the result of recent secondary contact between both lineages. We suggest that vector control programs should make a greater effort in the entomological surveillance of those regions with both chromosomal groups to avoid rapid emergence of resistant individuals. PMID:25017654

Panzera, Francisco; Ferreiro, María J; Pita, Sebastián; Calleros, Lucía; Pérez, Ruben; Basmadjián, Yester; Guevara, Yenny; Brenière, Simone Frédérique; Panzera, Yanina

2014-10-01

224

[Fighting mosquitoes in the Netherlands: risks and control of exotic mosquitoes].  

PubMed

- Mosquitoes play a significant role globally in the transmission of so-called vector-borne diseases- In the Netherlands, native mosquitoes are capable of transmitting infectious disease. This has not resulted in outbreaks of disease over the last 50 years.- The establishment of exotic mosquito species could pose risks to public health, especially in the case of the Asian tiger mosquito (Aedes albopictus).- Several organisations are working together to prevent the establishment of exotic mosquitoes in the Netherlands.- A plan for controlling native mosquito species is also currently being developed. PMID:25761288

Brandwagt, D A H; Stroo, C J; Braks, M A H; Fanoy, E B

2015-01-01

225

Changes in species richness and spatial distribution of mosquitoes (Diptera: Culicidae) inferred from museum specimen records and a recent inventory: a case study from Belgium suggests recent expanded distribution of arbovirus and malaria vectors.  

PubMed

Mosquito (Diptera: Culicidae) distribution data from a recent inventory of native and invading mosquito species in Belgium were compared with historical data from the period 1900-1960 that were retrieved from a revision of the Belgian Culicidae collection at the Royal Belgian Institute of Natural Sciences. Both data sets were used to investigate trends in mosquito species richness in several regions in Belgium. The relative change in distribution area of mosquito species was particularly important for species that use waste waters and used tires as larval habitats and species that recently shifted their larval habitat to artificial larval habitats. More importantly, several of these species are known as vectors of arboviruses and Plasmodium sp. and the apparent habitat shift of some of them brought these species in proximity to humans. Similar studies comparing current mosquito richness with former distribution data retrieved from voucher specimens from collections is therefore encouraged because they can generate important information concerning health risk assessment at both regional and national scale. PMID:23540109

Dekoninck, W; Hendrickx, F; Versteirt, V; Coosemans, M; De Clercq, E M; Hendrickx, G; Hance, T; Grootaert, P

2013-03-01

226

Larvicidal potential of wild mustard (Cleome viscosa) and gokhru (Tribulus terrestris) against mosquito vectors in the semi-arid region of Western Rajasthan.  

PubMed

Cleome viscosa L. (Family: Capparaceae) commonly known as Tickweed or wild mustard and Tribulus terrestris L. (Family: Zygophyllaceae) commonly known as Gokhru, growing wildly in the desert areas in the monsoon and post monsoon season, are of great medicinal importance. Comparative larvicidal efficacy of the extracts from seeds of C. viscosa and fruits and leaves of T. terrestris was evaluated against 3rd or early 4th stage larvae of Anopheles stephensi (Liston), Aedes aegypti (Linnaeus) and Culex quinquefasciatus (Say) in different organic solvents. 24 and 48 hr LC50 and LC90 values along with their 95% fiducial limits, regression equation, chi-square (chi2)/ heterogeneity of the response was determined by log probit regression analysis. The 24 hr LC50 values as determined for seeds of C. viscosa were 144.1, 99.5 and 127.1 (methanol); 106.3, 138.9 and 118.5 (acetone) and 166.4, 162.5 and 301.9 mg l(-1) (petroleum ether extracts) for all the three mosquito species respectively showing that methanol and acetone extracts were a little bit more effective than the petroleum ether extracts. Experiments were carried out with fruits and leaves of T. terrestris with all the solvents and mosquito species. The 24 hr LC50 values, as determined for fruits of T. terrestris were 70.8, 103.4 and 268.2 (methanol); 74.0,120.5 and 132.0 (acetone) and 73.8,113.5 and 137.4 mg l(-1) (petroleum ether extracts) while the 24 hr LC50 values for leaves were 124.3, 196.8 and 246.5 (methanol); 163.4, 196.9 and 224.3 (acetone) and 135.8, 176.8 and 185.9 mg l(-1) (petroleum ether extracts) for all the three mosquito species respectively. The results clearly indicate that fruit extracts of T. terrestris were more effective as compared to leaves extracts in the three solvents tested. Larvae of An. stephensi were found more sensitive to both fruit and leaves extracts of T. terrestris followed by larvae of Ae. aegypti and Cx. quinquefasciatus. Extracts from the seeds of C. viscosa were found less effective as compared to the fruit extracts of T. terrestris indicating that active larvicidal principle may be present in the fruits of this plant species. The studywould be of great importance while formulating the control strategy, for vectors of malaria, dengue and lymphatic filariasis, based on alternative plant based insecticides in this semi-arid region. PMID:24665757

Bansal, S K; Singh, Karam V; Sharma, Sapna

2014-03-01

227

Participatory mapping of target areas to enable operational larval source management to suppress malaria vector mosquitoes in Dar es Salaam, Tanzania  

PubMed Central

Background Half of the population of Africa will soon live in towns and cities where it can be protected from malaria by controlling aquatic stages of mosquitoes. Rigorous but affordable and scaleable methods for mapping and managing mosquito habitats are required to enable effective larval control in urban Africa. Methods A simple community-based mapping procedure that requires no electronic devices in the field was developed to facilitate routine larval surveillance in Dar es Salaam, Tanzania. The mapping procedure included (1) community-based development of sketch maps and (2) verification of sketch maps through technical teams using laminated aerial photographs in the field which were later digitized and analysed using Geographical Information Systems (GIS). Results Three urban wards of Dar es Salaam were comprehensively mapped, covering an area of 16.8 km2. Over thirty percent of this area were not included in preliminary community-based sketch mapping, mostly because they were areas that do not appear on local government residential lists. The use of aerial photographs and basic GIS allowed rapid identification and inclusion of these key areas, as well as more equal distribution of the workload of malaria control field staff. Conclusion The procedure developed enables complete coverage of targeted areas with larval control through comprehensive spatial coverage with community-derived sketch maps. The procedure is practical, affordable, and requires minimal technical skills. This approach can be readily integrated into malaria vector control programmes, scaled up to towns and cities all over Tanzania and adapted to urban settings elsewhere in Africa. PMID:17784963

Dongus, Stefan; Nyika, Dickson; Kannady, Khadija; Mtasiwa, Deo; Mshinda, Hassan; Fillinger, Ulrike; Drescher, Axel W; Tanner, Marcel; Castro, Marcia C; Killeen, Gerry F

2007-01-01

228

Mosquito larvicidal and ovicidal properties of Eclipta alba (L.) Hassk (Asteraceae) against chikungunya vector, Aedes aegypti (Linn.) (Diptera: Culicidae)  

Microsoft Academic Search

ObjectiveThe present study deals with the investigation of larvicidal and ovicidal activities of benzene, hexane, ethyl acetate, methanol and chloroform leaf extract of Eclipta alba (E. alba) against dengue vector, Aedes aegypti (Ae. Aegypti).

M Govindarajan; P Karuppannan

2011-01-01

229

Factors Influencing Stakeholders Attitudes Toward Genetically Modified Aedes Mosquito.  

PubMed

Dengue fever is a debilitating and infectious disease that could be life-threatening. It is caused by the dengue virus which affects millions of people in the tropical area. Currently, there is no cure for the disease as there is no vaccine available. Thus, prevention of the vector population using conventional methods is by far the main strategy but has been found ineffective. A genetically modified (GM) mosquito is among the favoured alternatives to curb dengue fever in Malaysia. Past studies have shown that development and diffusion of gene technology products depends heavily upon public acceptance. The purpose of this study is to identify the relevant factors influencing stakeholders' attitudes toward the GM Aedes mosquito and to analyse the relationships between all the factors using the structural equation model. A survey was carried out on 509 respondents from various stakeholder groups in the Klang Valley region of Malaysia. Results of the survey have confirmed that public perception towards complex issues such as gene technology should be seen as a multi-faceted process. The perceived benefit-perceived risk balance is very important in determining the most predominant predictor of attitudes toward a GM mosquito. In this study the stakeholders perceived the benefit of the GM mosquito as outweighing its risk, translating perceived benefit as the most important direct predictor of attitudes toward the GM mosquito. Trust in key players has a direct influence on attitudes toward the GM mosquito while moral concern exhibited an indirect influence through perceived benefits. Other factors such as attitudes toward technology and nature were also indirect predictors of attitudes toward the GM mosquito while religiosity and engagement did not exhibited any significant roles. The research findings serve as a useful database to understand public acceptance and the social construct of public attitudes towards the GM mosquito to combat dengue. PMID:24906652

Amin, Latifah; Hashim, Hasrizul

2014-06-01

230

Mosquitoes, models, and dengue.  

PubMed

In the last 10 years dengue has spread markedly through Latin America and the Caribbean (Dominican Republic, Jamaica, Barbados, Mexico, Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, Panama, Ecuador, Colombia, Venezuela, and Brazil). The mosquito Aedes aegypti has taken advantage of increased urbanization and crowding to transmit the dengue virus. The mosquito infests tires, cans, and water jars near dwellings. The female mosquito practices multiple, interrupted feeding. Thus, mosquito infesting and feeding practices facilitate dengue transmission in crowded conditions. Factors contributing to the spread of dengue include numbers of infected and susceptible human hosts, strain of dengue virus, size of mosquito population, feeding habits, time from infection to ability to transmit virus for both vector and host, likelihood of virus transmission from human to mosquito to human, and temperature (which affects vector distribution, size, feeding habits, and extrinsic incubation period). Public health models may use simulation models to help them plan or evaluate the potential impact of different intervention strategies and/or of environmental changes (e.g., global warming). Other factors contributing to the dengue epidemic are international travel, urbanization, population growth, crowding, poverty, a weakened public health infrastructure, and limited support for sustained disease control programs. Molecular epidemiology by nucleic acid sequence analysis is another sophisticated technique used to study infectious diseases. It showed that dengue type 3 isolated from Panama and Nicaragua in 1994 was identical to that responsible for the major dengue hemorrhagic fever epidemics in Sri Lanka and India in the 1980s. Public health officials must remember three priorities relevant to dengue and other emerging infections: the need to strengthen surveillance efforts, dedicated and sustained involvement in prevention and control needs at the local level, and a strong public health infrastructure at the international, national, and local levels to maintain support for surveillance and control activities. PMID:8622446

Lifson, A R

1996-05-01

231

Contrasting patterns of tolerance between chemical and biological insecticides in mosquitoes exposed to UV-A.  

PubMed

Mosquitoes are vectors of major human diseases, such as malaria, dengue or yellow fever. Because no efficient treatments or vaccines are available for most of these diseases, control measures rely mainly on reducing mosquito populations by the use of insecticides. Numerous biotic and abiotic factors are known to modulate the efficacy of insecticides used in mosquito control. Mosquito breeding sites vary from opened to high vegetation covered areas leading to a large ultraviolet gradient exposure. This ecological feature may affect the general physiology of the insect, including the resistance status against insecticides. In the context of their contrasted breeding sites, we assessed the impact of low-energetic ultraviolet exposure on mosquito sensitivity to biological and chemical insecticides. We show that several mosquito detoxification enzyme activities (cytochrome P450, glutathione S-transferases, esterases) were increased upon low-energy UV-A exposure. Additionally, five specific genes encoding detoxification enzymes (CYP6BB2, CYP6Z7, CYP6Z8, GSTD4, and GSTE2) previously shown to be involved in resistance to chemical insecticides were found over-transcribed in UV-A exposed mosquitoes, revealed by RT-qPCR experiments. More importantly, toxicological bioassays revealed that UV-exposed mosquitoes were more tolerant to four main chemical insecticide classes (DDT, imidacloprid, permethrin, temephos), whereas the bioinsecticide Bacillus thuringiensis subsp. israelensis (Bti) appeared more toxic. The present article provides the first experimental evidence of the capacity of low-energy UV-A to increase mosquito tolerance to major chemical insecticides. This is also the first time that a metabolic resistance to chemical insecticides is linked to a higher susceptibility to a bioinsecticide. These results support the use of Bti as an efficient alternative to chemical insecticides when a metabolic resistance to chemicals has been developed by mosquitoes. PMID:23911355

Tetreau, Guillaume; Chandor-Proust, Alexia; Faucon, Frédéric; Stalinski, Renaud; Akhouayri, Idir; Prud'homme, Sophie M; Raveton, Muriel; Reynaud, Stéphane

2013-09-15

232

Alboserpin, a Factor Xa Inhibitor from the Mosquito Vector of Yellow Fever, Binds Heparin and Membrane Phospholipids and Exhibits Antithrombotic Activity*  

PubMed Central

The molecular mechanism of factor Xa (FXa) inhibition by Alboserpin, the major salivary gland anticoagulant from the mosquito and yellow fever vector Aedes albopictus, has been characterized. cDNA of Alboserpin predicts a 45-kDa protein that belongs to the serpin family of protease inhibitors. Recombinant Alboserpin displays stoichiometric, competitive, reversible and tight binding to FXa (picomolar range). Binding is highly specific and is not detectable for FX, catalytic site-blocked FXa, thrombin, and 12 other enzymes. Alboserpin displays high affinity binding to heparin (KD ? 20 nm), but no change in FXa inhibition was observed in the presence of the cofactor, implying that bridging mechanisms did not take place. Notably, Alboserpin was also found to interact with phosphatidylcholine and phosphatidylethanolamine but not with phosphatidylserine. Further, annexin V (in the absence of Ca2+) or heparin outcompetes Alboserpin for binding to phospholipid vesicles, suggesting a common binding site. Consistent with its activity, Alboserpin blocks prothrombinase activity and increases both prothrombin time and activated partial thromboplastin time in vitro or ex vivo. Furthermore, Alboserpin prevents thrombus formation provoked by ferric chloride injury of the carotid artery and increases bleeding in a dose-dependent manner. Alboserpin emerges as an atypical serpin that targets FXa and displays unique phospholipid specificity. It conceivably uses heparin and phosphatidylcholine/phosphatidylethanolamine as anchors to increase protein localization and effective concentration at sites of injury, cell activation, or inflammation. PMID:21673107

Calvo, Eric; Mizurini, Daniella M.; Sá-Nunes, Anderson; Ribeiro, José M. C.; Andersen, John F.; Mans, Ben J.; Monteiro, Robson Q.; Kotsyfakis, Michail; Francischetti, Ivo M. B.

2011-01-01

233

Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?  

PubMed Central

Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus (0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats. PMID:20140379

Mocellin, Márcio Goulart; Simões, Taynãna César; do Nascimento, Teresa Fernandes Silva; Teixeira, Maria Lucia França; Lounibos, Leon Philip; de Oliveira, Ricardo Lourenço

2012-01-01

234

Ixodes hexagonus is the main candidate as vector of Theileria annae in northwest Spain.  

PubMed

Babesia canis and Babesia gibsoni have, until recently, been considered the only piroplasms that parasitise dogs. However, recent reports indicate that "small" Babesia infections in Spanish dogs are surprisingly frequent and molecular phylogenetic analysis indicates that the infecting agent is closely related to Babesia microti. Because the 18SrDNA sequence was not completely identical to that of B. microti, the new name "Theileria annae" was assigned to the canine agent. No information is available regarding the possible vector of the new piroplasm, T. annae. As part of an effort to identify the tick that may transmit T. annae in northwest Spain we asked veterinary surgeons practising in the region to collect and send to our laboratory ticks from dogs visiting their clinics. Seven hundred and twenty ticks collected from dogs of unknown clinical status during 1998 and 636 ticks collected between November 2001 and March 2002 from 38 dogs infected with T. annae and 131 uninfected dogs were identified. Results from the first study indicated that among the Ixodidae, Ixodes hexagonus clearly predominates over Ixodes ricinus (26.11% versus 6.67%). This observation was consistent with results of the second study, in which I. hexagonus was detected in all infected dogs and 71.8% of non-infected dogs and I. ricinus was not detected in either the infected or non-infected dogs. Results from the 2001-2002 study also indicate that the presence of Dermacentor reticulatus adult females is significantly less frequent among infected than non-infected dogs (OR=0.44; 95% CI: 0.21-0.92). On the other hand, I. hexagonus adult females and males are 6.75 and 4.24 times more likely to be detected among infected than non-infected dogs, respectively, with the association being, in both cases, statistically significant (95% CI: 1.97-23.12 and 1.92-9.36, respectively). I. hexagonus emerges as the main candidate as vector of T. annae because it feeds on dogs more frequently than other ticks and because B. microti is transmitted by Ixodes ticks, both in North America and Europe. In the absence of definitive confirmation of this hypothesis, our observations suggest that I. hexagonus might serve the same role as does Ixodes scapularis (=Ixodes dammini), the vector of B. microti in eastern North America. PMID:12581593

Camacho, A T; Pallas, E; Gestal, J J; Guitián, F J; Olmeda, A S; Telford, S R; Spielman, A

2003-02-28

235

[Detection of flavivirus in mosquitoes (Diptera: Culicidae) from Easter Island-Chile].  

PubMed

Flaviviruses are arthropod-borne viruses, mainly by mosquitoes of the genera Aedes and Culex (Culicidae) that are detected in tropical and subtropical areas. Main flaviviruses of public health importance are: dengue, West Nile virus, yellow fever, among others. In continental Chile, flaviviruses has not been detected. However, there are indigenous cases of dengue detected in Easter Island since 2002, as the presence of its vector Aedes aegypti. The aim of this study was: To determine diversity of flavivirus mosquitoes present in Easter Island. Thirty pools of mosquitoes collected in Hanga Roa were analyzed; a RT-PCR nested flavivirus was performed. Thirteen positive samples were detected and the amplification products were sequenced, identifying two specific flavivirus Insect, the Cell fusing agent virus and other related viruses Kamiti River. This is the first study in Chile showed the presence of flavivirus in vectors in Easter Island. PMID:25860055

Collao, Ximena; Prado, Lorena; González, Christian; Vásquez, Ana; Araki, Romina; Henríquez, Tuki; Peña M, Cindy

2015-02-01

236

IDENTIFICATION OF CANDIDATE ATTRACTANT COMPOUNDS FROM CHICKEN FEATHERS FOR THE MOSQUITO VECTOR OF THE WEST NILE VIRUS BY GC/MS  

Technology Transfer Automated Retrieval System (TEKTRAN)

Mosquitoes are the primary source of many diseases, including yellow fever, malaria, dengue fever, encephalitis and West Nile Virus (WNV). Because the WNV is maintained in nature by the bird-mosquito-bird cycle, identification of odors emitted from avian hosts will aid in the development of better t...

237

SOURCE REDUCTION BEHAVIOR AS AN INDEPENDENT MEASUREMENT OF THE IMPACT OF A PUBLIC HEALTH EDUCATION CAMPAIGN IN AN INTEGRATED VECTOR MANAGEMENT PROGRAM FOR THE ASIAN TIGER MOSQUITO  

Technology Transfer Automated Retrieval System (TEKTRAN)

The goal of this study was to evaluate the effectiveness of a public health educational campaign to reduce backyard mosquito-larval habitats. Three communities each, within two New Jersey counties, were randomly selected to receive (1) both education and mosquito control, (2) education only, and (3)...

238

A review of recent knowledge of the ecology of the main vectors of trypanosomiasis*  

PubMed Central

In this survey of recent ecological research on the main vectors of trypanosomiasis in those countries of East, Central and West Africa that are not predominantly French-speaking, the authors, after outlining the distribution of tsetse flies and the type of country in which they occur, discuss the direct and indirect effects of climate on these insects—particularly on their physiological water balance and on pupal fat reserves—and their recent advances into new areas. They review the considerable work that has been done on the resting habits and breeding-sites of different Glossina species, knowledge of which is important for effective control, and research on predators of pupae and adult flies and on the feeding activity of tsetse flies. Means of assessing populations and various factors affecting the size and nutritional status of tsetse flies are also discussed, as is the effect on the fly population of artificial changes in the habitat. Finally, a plea is made for a revision of present methods of land use and stock management, if full advantage is to be taken of achievements in fly control. PMID:13928678

Langridge, W. P.; Kernaghan, R. J.; Glover, P. E.

1963-01-01

239

Review: Improving our knowledge of male mosquito biology in relation to genetic control programmes.  

PubMed

The enormous burden placed on populations worldwide by mosquito-borne diseases, most notably malaria and dengue, is currently being tackled by the use of insecticides sprayed in residences or applied to bednets, and in the case of dengue vectors through reduction of larval breeding sites or larviciding with insecticides thereof. However, these methods are under threat from, amongst other issues, the development of insecticide resistance and the practical difficulty of maintaining long-term community-wide efforts. The sterile insect technique (SIT), whose success hinges on having a good understanding of the biology and behaviour of the male mosquito, is an additional weapon in the limited arsenal against mosquito vectors. The successful production and release of sterile males, which is the mechanism of population suppression by SIT, relies on the release of mass-reared sterile males able to confer sterility in the target population by mating with wild females. A five year Joint FAO/IAEA Coordinated Research Project brought together researchers from around the world to investigate the pre-mating conditions of male mosquitoes (physiology and behaviour, resource acquisition and allocation, and dispersal), the mosquito mating systems and the contribution of molecular or chemical approaches to the understanding of male mosquito mating behaviour. A summary of the existing knowledge and the main novel findings of this group is reviewed here, and further presented in the reviews and research articles that form this Acta Tropica special issue. PMID:24252487

Lees, Rosemary Susan; Knols, Bart; Bellini, Romeo; Benedict, Mark Q; Bheecarry, Ambicadutt; Bossin, Hervé Christophe; Chadee, Dave D; Charlwood, Jacques; Dabiré, Roch K; Djogbenou, Luc; Egyir-Yawson, Alexander; Gato, René; Gouagna, Louis Clément; Hassan, Mo'awia Mukhtar; Khan, Shakil Ahmed; Koekemoer, Lizette L; Lemperiere, Guy; Manoukis, Nicholas C; Mozuraitis, Raimondas; Pitts, R Jason; Simard, Frederic; Gilles, Jeremie R L

2014-04-01

240

Microsporidian isolates from mosquitoes of Argentina  

Technology Transfer Automated Retrieval System (TEKTRAN)

Microsporidia are among the most common and widely distributed microbial pathogens associated with mosquitoes in nature. Since 1980 studies of microsporidia in mosquitoes of Argentina were conducted at the Laboratory of Insect Vectors of CEPAVE. Eleven morphologically unique species of microsporidia...

241

Novel Methods for Mosquito Control using RNAi.  

Technology Transfer Automated Retrieval System (TEKTRAN)

The discovery and development of novel insecticides for vector control is a primary focus of toxicology research conducted at the Mosquito and Fly Research Unit, Gainesville, FL. Targeting critical genes/proteins in mosquitoes using RNA interference (RNAi) is being investigated as a method to devel...

242

Molecular Epidemiology of Japanese Encephalitis Virus in Mosquitoes in Taiwan during 2005–2012  

PubMed Central

Japanese encephalitis (JE) is a mosquito-borne zoonotic disease caused by the Japanese encephalitis virus (JEV). Pigs and water birds are the main amplifying and maintenance hosts of the virus. In this study, we conducted a JEV survey in mosquitoes captured in pig farms and water bird wetland habitats in Taiwan during 2005 to 2012. A total of 102,633 mosquitoes were collected. Culex tritaeniorhynchus was the most common mosquito species found in the pig farms and wetlands. Among the 26 mosquito species collected, 11 tested positive for JEV by RT-PCR, including Cx. tritaeniorhynchus, Cx. annulus, Anopheles sinensis, Armigeres subalbatus, and Cx. fuscocephala. Among those testing positive, Cx. tritaeniorhynchus was the predominant vector species for the transmission of JEV genotypes I and III in Taiwan. The JEV infection rate was significantly higher in the mosquitoes from the pig farms than those from the wetlands. A phylogenetic analysis of the JEV envelope gene sequences isolated from the captured mosquitoes demonstrated that the predominant JEV genotype has shifted from genotype III to genotype I (GI), providing evidence for transmission cycle maintenance and multiple introductions of the GI strains in Taiwan during 2008 to 2012. This study demonstrates the intense JEV transmission activity in Taiwan, highlights the importance of JE vaccination for controlling the epidemic, and provides valuable information for the assessment of the vaccine's efficacy. PMID:25275652

Su, Chien-Ling; Yang, Cheng-Fen; Teng, Hwa-Jen; Lu, Liang-Chen; Lin, Cheo; Tsai, Kun-Hsien; Chen, Yu-Yu; Chen, Li-Yu; Chang, Shu-Fen; Shu, Pei-Yun

2014-01-01

243

Lutzomyia umbratilis, the Main Vector of Leishmania guyanensis, Represents a Novel Species Complex?  

Microsoft Academic Search

BackgroundLutzomyia umbratilis is an important Leishmania guyanensis vector in South America. Previous studies have suggested differences in the vector competence between L. umbratilis populations situated on opposite banks of the Amazonas and Negro Rivers in the central Amazonian Brazil region, likely indicating a species complex. However, few studies have been performed on these populations and the taxonomic status of L.

Vera Margarete Scarpassa; Ronildo Baiatone Alencar

2012-01-01

244

Hidden Sylvatic Foci of the Main Vector of Chagas Disease Triatoma infestans: Threats to the Vector Elimination Campaign?  

PubMed Central

Background Establishing the sources of reinfestation after residual insecticide spraying is crucial for vector elimination programs. Triatoma infestans, traditionally considered to be limited to domestic or peridomestic (abbreviated as D/PD) habitats throughout most of its range, is the target of an elimination program that has achieved limited success in the Gran Chaco region in South America. Methodology/Principal Findings During a two-year period we conducted semi-annual searches for triatomine bugs in every D/PD site and surrounding sylvatic habitats after full-coverage spraying of pyrethroid insecticides of all houses in a well-defined rural area in northwestern Argentina. We found six low-density sylvatic foci with 24 T. infestans in fallen or standing trees located 110–2,300 m from the nearest house or infested D/PD site detected after insecticide spraying, when house infestations were rare. Analysis of two mitochondrial gene fragments of 20 sylvatic specimens confirmed their species identity as T. infestans and showed that their composite haplotypes were the same as or closely related to D/PD haplotypes. Population studies with 10 polymorphic microsatellite loci and wing geometric morphometry consistently indicated the occurrence of unrestricted gene flow between local D/PD and sylvatic populations. Mitochondrial DNA and microsatellite sibship analyses in the most abundant sylvatic colony revealed descendents from five different females. Spatial analysis showed a significant association between two sylvatic foci and the nearest D/PD bug population found before insecticide spraying. Conclusions Our study shows that, despite of its high degree of domesticity, T. infestans has sylvatic colonies with normal chromatic characters (not melanic morphs) highly connected to D/PD conspecifics in the Argentinean Chaco. Sylvatic habitats may provide a transient or permanent refuge after control interventions, and function as sources for D/PD reinfestation. The occurrence of sylvatic foci of T. infestans in the Gran Chaco may pose additional threats to ongoing vector elimination efforts. PMID:22039559

Schachter-Broide, Judith; Dujardin, Jean-Pierre; Dotson, Ellen M.; Kitron, Uriel; Gürtler, Ricardo E.

2011-01-01

245

Identification of Wolbachia Strains in Mosquito Disease Jewelna Osei-Poku1  

E-print Network

Identification of Wolbachia Strains in Mosquito Disease Vectors Jewelna Osei-Poku1 *, Calvin Han1 Wolbachia-infected mosquitoes could prevent the transmission of arboviruses and other human parasites. We disease transmission rates of infected mosquito species, and could be transferred into other mosquito

Jiggins, Francis

246

Mosquitoes established in Lhasa city, Tibet, China  

PubMed Central

Background In 2009, residents of Lhasa city, Tibet Autonomous Region (TAR), China reported large numbers of mosquitoes and bites from these insects. It is unclear whether this was a new phenomenon, which species were involved, and whether these mosquitoes had established themselves in the local circumstances. Methods The present study was undertaken in six urban sites of Chengguan district Lhasa city, Tibet. Adult mosquitoes were collected by bed net trap, labor hour method and light trap in August 2009 and August 2012. The trapped adult mosquitoes were initially counted and identified according to morphological criteria, and a proportion of mosquitoes were examined more closely using a multiplex PCR assay. Results 907 mosquitoes of the Culex pipiens complex were collected in this study. Among them, 595 were females and 312 were males. There was no significant difference in mosquito density monitored by bed net trap and labor hour method in 2009 and 2012. Of 105 mosquitoes identified by multiplex PCR, 36 were pure mosquitoes (34.29%) while 69 were hybrids (65.71%). The same subspecies of Culex pipiens complex were observed by bed net trap, labor hour method and light trap in 2009 and 2012. Conclusion The local Culex pipiens complex comprises the subspecies Cx. pipiens pipiens, Cx. pipiens pallens, Cx. pipiens quinquefasciatus and its hybrids. Mosquitoes in the Cx. pipiens complex, known to be, potentially, vectors of periodic filariasis and encephalitis, are now present from one season to the next, and appear to be established in Lhasa City, TAR. PMID:24060238

2013-01-01

247

Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites  

Microsoft Academic Search

The repellent activity of the essential oil of the catmint plant, Nepeta cataria (Lamiaceae), and the main iridoid compounds (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone, was assessed against (i) major Afro-tropical pathogen vector mosquitoes, i.e. the malaria mosquito, Anopheles gambiae s.s. and the Southern house mosquito, Culex quinquefasciatus, using a World Health Organisation (WHO)-approved topical application bioassay (ii) the brown ear tick, Rhipicephalus

Michael A. Birkett; Ahmed Hassanali; Solveig Hoglund; Jan Pettersson; John A. Pickett

2011-01-01

248

Mosquito immune defenses against Plasmodium infection  

PubMed Central

The causative agent of malaria, Plasmodium, has to undergo complex developmental transitions and survive attacks from the mosquito's innate immune system to achieve transmission from one host to another through the vector. Here we discuss recent findings on the role of the mosquito's innate immune signaling pathways in preventing infection by the Plasmodium parasite, the identification and mechanistic description of novel anti-parasite molecules, the role that natural bacteria harbored in the mosquito midgut might play in this immune defense, and the crucial parasite and vector molecules that mediate midgut infection. PMID:20026176

Cirimotich, Chris M.; Dong, Yuemei; Garver, Lindsey S.; Sim, Shuzhen

2012-01-01

249

Understanding the effect of vector dynamics in epidemic models using center manifold analysis  

NASA Astrophysics Data System (ADS)

In vector borne diseases the human hosts' epidemiology often acts on a much slower time scales than the one of the mosquitos which transmit the disease as a vector from human to human, due to their vastly different life cycles. We investigate in a model with susceptible (S), infected (I) and recovered (R) humans and susceptible (U) and infected (V) mosquitoes in how far the fast time scale of the mosquito epidemiology can be slaved by the slower human epidemiology, so that for the understanding of human disease data mainly the dynamics of the human time scale is essential and only slightly perturbed by the mosquito dynamics. This analysis of the SIRUV model is qualitatively in agreement with a previously investigated simpler SISUV model, hence a feature of vector-borne diseases in general.

Rocha, Filipe; Aguiar, Maíra; Souza, Max; Stollenwerk, Nico

2012-09-01

250

Mosquitos and You! Mosquito Control and Prevention  

E-print Network

Mosquitos and You! Mosquito Control and Prevention Kindergarten, First, and Second Sunshine State Standards Grades PreK ­ 2 Produced by Volusia County Health Department #12;Mosquitos and You! Mosquito Control and Prevention Produced and Created by: Volusia County Health Department

251

Evidence of Simultaneous Circulation of West Nile and Usutu Viruses in Mosquitoes Sampled in Emilia-Romagna Region (Italy) in 2009  

PubMed Central

Background In recent years human diseases due to mosquito-borne viruses were increasingly reported in Emilia-Romagna region (Italy), from the chikungunya virus in 2007 to the West Nile virus (WNV) in 2008. An extensive entomological survey was performed in 2009 to establish the presence and distribution of mosquito arboviruses in this region, with particular reference to flaviviruses. Methodology/Principal Findings From May 6 to October 31, a total of 190,516 mosquitoes were sampled in georeferenced stations, grouped in 1,789 pools according date of collection, location, and species, and analyzed by reverse transcription polymerase chain reaction (RT-PCR) to detect the presence of RNA belong to Flavivirus genus. WNV was detected in 27 mosquito pools, producing sequences similar to those of birds and human strains obtained in 2008 outbreak, pointed out the probable virus overwintering. Isolation of WNV was achieved from one of these pools. Moreover 56 pools of mosquitoes tested positive for Usutu virus (USUV). Most PCR positive pools consisted of Culex pipiens, which also was the most analyzed mosquito species (81.4% of specimens); interestingly, USUV RNA was also found in two Aedes albopictus mosquito pools. Simultaneous circulation of WNV and USUV in the survey area was highlighted by occurrence of 8 mosquito WNV- and USUV-positive pools and by the overlaying of the viruses “hot spots”, obtained by kernel density estimation (KDE) analysis. Land use of sampled stations pointed out a higher proportion of WNV-positive Cx. pipiens pool in rural environments respect the provenience of total sampled pool, while the USUV-positive pools were uniformly captured in the different environments. Conclusions/Significance Obtained data highlighting the possible role of Cx. pipiens mosquito as the main vector for WNV and USUV in Northern Italy, and the possible involvement of Ae. albopictus mosquito in USUV cycle. The described mosquito-based surveillance could constitute the foundation for a public health alert system targeting mosquito borne arboviruses. PMID:21179462

Calzolari, Mattia; Bonilauri, Paolo; Bellini, Romeo; Albieri, Alessandro; Defilippo, Francesco; Maioli, Giulia; Galletti, Giorgio; Gelati, Antoni; Barbieri, Ilaria; Tamba, Marco; Lelli, Davide; Carra, Elena; Cordioli, Paolo; Angelini, Paola; Dottori, Michele

2010-01-01

252

Finding the Right Plugin: Mosquitoes Have the Answer Tracey Chapman*  

E-print Network

on the identification of seminal fluid proteins in the mosquito vectors of dengue/yellow fever and of malaria [15 injection in the yellow fever vector Aedes aegypti is also reported to affect flight (e.g., [23]), responses

Nachman, Michael

253

Insect Repellents: Modulators of mosquito odorant receptor activity  

Technology Transfer Automated Retrieval System (TEKTRAN)

Mosquitoes vector numerous pathogens that cause diseases including malaria, yellow fever, dengue fever and chikungunya. DEET, IR3535, Picaridin and 2-undecanone are insect repellents that are used to prevent interactions between humans and a broad array of disease vectors including mosquitoes. While...

254

Vector-Host Interactions Governing Epidemiology of West Nile Virus in Southern California  

PubMed Central

Southern California remains an important focus of West Nile virus (WNV) activity, with persistently elevated incidence after invasion by the virus in 2003 and subsequent amplification to epidemic levels in 2004. Eco-epidemiological studies of vectors-hosts-pathogen interactions are of paramount importance for better understanding of the transmission dynamics of WNV and other emerging mosquito-borne arboviruses. We investigated vector-host interactions and host-feeding patterns of 531 blood-engorged mosquitoes in four competent mosquito vectors by using a polymerase chain reaction (PCR) method targeting mitochondrial DNA to identify vertebrate hosts of blood-fed mosquitoes. Diagnostic testing by cell culture, real-time reverse transcriptase-PCR, and immunoassays were used to examine WNV infection in blood-fed mosquitoes, mosquito pools, dead birds, and mammals. Prevalence of WNV antibodies among wild birds was estimated by using a blocking enzyme-linked immunosorbent assay. Analyses of engorged Culex quinquefasciatus revealed that this mosquito species acquired 88.4% of the blood meals from avian and 11.6% from mammalian hosts, including humans. Similarly, Culex tarsalis fed 82% on birds and 18% on mammals. Culex erythrothorax fed on both birds (59%) and mammals (41%). In contrast, Culex stigmatosoma acquired all blood meals from avian hosts. House finches and a few other mostly passeriform birds served as the main hosts for the blood-seeking mosquitoes. Evidence of WNV infection was detected in mosquito pools, wild birds, dead birds, and mammals, including human fatalities during the study period. Our results emphasize the important role of house finches and several other passeriform birds in the maintenance and amplification of WNV in southern California, with Cx. quinquefasciatus acting as both the principal enzootic and “bridge vector” responsible for the spillover of WNV to humans. Other mosquito species, such as Cx. tarsalis and Cx. stigmatosoma, are important but less widely distributed, and also contribute to spatial and temporal transmission of WNV in southern California. PMID:21118934

Molaei, Goudarz; Cummings, Robert F.; Su, Tianyun; Armstrong, Philip M.; Williams, Greg A.; Cheng, Min-Lee; Webb, James P.; Andreadis, Theodore G.

2010-01-01

255

Vector-host interactions governing epidemiology of West Nile virus in Southern California.  

PubMed

Southern California remains an important focus of West Nile virus (WNV) activity, with persistently elevated incidence after invasion by the virus in 2003 and subsequent amplification to epidemic levels in 2004. Eco-epidemiological studies of vectors-hosts-pathogen interactions are of paramount importance for better understanding of the transmission dynamics of WNV and other emerging mosquito-borne arboviruses. We investigated vector-host interactions and host-feeding patterns of 531 blood-engorged mosquitoes in four competent mosquito vectors by using a polymerase chain reaction (PCR) method targeting mitochondrial DNA to identify vertebrate hosts of blood-fed mosquitoes. Diagnostic testing by cell culture, real-time reverse transcriptase-PCR, and immunoassays were used to examine WNV infection in blood-fed mosquitoes, mosquito pools, dead birds, and mammals. Prevalence of WNV antibodies among wild birds was estimated by using a blocking enzyme-linked immunosorbent assay. Analyses of engorged Culex quinquefasciatus revealed that this mosquito species acquired 88.4% of the blood meals from avian and 11.6% from mammalian hosts, including humans. Similarly, Culex tarsalis fed 82% on birds and 18% on mammals. Culex erythrothorax fed on both birds (59%) and mammals (41%). In contrast, Culex stigmatosoma acquired all blood meals from avian hosts. House finches and a few other mostly passeriform birds served as the main hosts for the blood-seeking mosquitoes. Evidence of WNV infection was detected in mosquito pools, wild birds, dead birds, and mammals, including human fatalities during the study period. Our results emphasize the important role of house finches and several other passeriform birds in the maintenance and amplification of WNV in southern California, with Cx. quinquefasciatus acting as both the principal enzootic and "bridge vector" responsible for the spillover of WNV to humans. Other mosquito species, such as Cx. tarsalis and Cx. stigmatosoma, are important but less widely distributed, and also contribute to spatial and temporal transmission of WNV in southern California. PMID:21118934

Molaei, Goudarz; Cummings, Robert F; Su, Tianyun; Armstrong, Philip M; Williams, Greg A; Cheng, Min-Lee; Webb, James P; Andreadis, Theodore G

2010-12-01

256

Perspectives of people in Mali toward genetically-modified mosquitoes for malaria control  

Microsoft Academic Search

BACKGROUND: Genetically-modified (GM) mosquitoes have been proposed as part of an integrated vector control strategy for malaria control. Public acceptance is essential prior to field trials, particularly since mosquitoes are a vector of human disease and genetically modified organisms (GMOs) face strong scepticism in developed and developing nations. Despite this, in sub-Saharan Africa, where the GM mosquito effort is primarily

John M Marshall; Mahamoudou B Touré; Mohamed M Traore; Shannon Famenini; Charles E Taylor

2010-01-01

257

Larvicidal activities of some Iranian native plants against the main malaria vector, Anopheles stephensi.  

PubMed

Malaria is considered a major health problem in Iran. There are different methods for vector control. In this study we tested the larvicidal effects of some Iranian plants. The methanolic extracts of 11 plants were prepared with percolation method. The larvicidal activities of them against malaria vector, Anopheles stephensi were studied using World Health Organization standard method. All LC50 values of methanolic extracts of plants that we screened were lower than 300 ppm. The methanolic extract of aerial parts of Lawsonia inermis and Stachys byzantina showed high larvicidal activity with LC50 values 69.40 ppm and 103.28 ppm respectively. The results obtained from this study suggest that the methanolic extracts of these plants have larvicidal effects against Anopheles stephensi larvae and could be useful in the search for new natural larvicidal compounds. PMID:23605596

Khanavi, Mahnaz; Vatandoost, Hassan; Khosravi Dehaghi, Nafiseh; Sanei Dehkordi, Alireza; Sedaghat, Mohammad Mehdi; Hadjiakhoondi, Abbas; Hadjiakhoondi, Farzaneh

2013-01-01

258

Evaluation of attractive toxic sugar bait (ATSB)—barrier for control of vector and nuisance mosquitoes and its effect on non-target organisms in sub-tropical environments in Florida  

PubMed Central

The efficacy of attractive toxic sugar baits (ATSB) with the active ingredient eugenol, an Environmental Protection Agency exempt compound, was evaluated against vector and nuisance mosquitoes in both laboratory and field studies. In the laboratory, eugenol combined in attractive sugar bait (ASB) solution provided high levels of mortality for Aedes aegypti, Culex quinquefasciatus, and Anopheles quadrimaculatus. Field studies demonstrated significant control: > 70% reduction for Aedes atlanticus, Ae. infirmatus, and Culex nigripalpus and > 50% reduction for An. crucians, Uranotaenia sapphirina, Culiseta melanura, and Cx. erraticus three weeks post ATSB application. Furthermore, non-target feeding of six insect orders, Hymenoptera, Lepidoptera, Coleoptera, Diptera, Hemiptera, and Orthoptera, was evaluated in the field after application of a dyed-ASB to flowering and non-flowering vegetation. ASB feeding (staining) was determined by dissecting the guts and searching for food dye with a dissecting microscope. The potential impact of ATSB on non-targets, applied on green non-flowering vegetation was low for all non-target groups (0.9%). However, application of the ASB to flowering vegetation resulted in significant staining of the non-target insect orders. This highlights the need for application guidelines to reduce non-target effects. No mortality was observed in laboratory studies with predatory non-targets, spiders, praying mantis, or ground beetles, after feeding for three days on mosquitoes engorged on ATSB. Overall, our laboratory and field studies support the use of eugenol as an active ingredient for controlling important vector and nuisance mosquitoes when used as an ATSB toxin. This is the first study demonstrating effective control of anophelines in non-arid environments which suggest that even in highly competitive sugar rich environments this method could be used for control of malaria in Latin American countries. PMID:24361724

Qualls, Whitney A.; Müller, Günter C.; Revay, Edita E.; Allan, Sandra A.; Arheart, Kristopher L.; Beier, John C.; Smith, Michal L.; Scott, Jodi M.; Kravchenko, Vasiliy D.; Hausmann, Axel; Yefremova, Zoya A.; Xue, Rui-De

2014-01-01

259

Plant extracts as potential mosquito larvicides  

PubMed Central

Mosquitoes act as a vector for most of the life threatening diseases like malaria, yellow fever, dengue fever, chikungunya ferver, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management (IMM), emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain and adverse effects on environmental quality and non target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are non-toxic, easily available at affordable prices, biodegradable and show broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on phytochemical sources and mosquitocidal activity, their mechanism of action on target population, variation of their larvicidal activity according to mosquito species, instar specificity, polarity of solvents used during extraction, nature of active ingredient and promising advances made in biological control of mosquitoes by plant derived secondary metabolites have been reviewed. PMID:22771587

Ghosh, Anupam; Chowdhury, Nandita; Chandra, Goutam

2012-01-01

260

An automated GIS/remotely sensed early warning system to detect elevated populations of vectors of Rift Valley fever, a mosquito-borne emerging virus threat  

Technology Transfer Automated Retrieval System (TEKTRAN)

Mosquito transmitted infectious diseases, like eastern equine encephalitis (EEE), Rift Valley fever (RVF), and West Nile virus (WNV), pose an international threat to animal and human health. An introduction of RVF into the U.S. would severely impact wild ungulate populations and the beef and dairy ...

261

PREPARING FOR RIFT VALLEY FEVER IN THE U.S.: IMPLEMENTING GIS AND REMOTE SENSING TO DETECT ELEVATED POPULATIONS OF MOSQUITO VECTORS  

Technology Transfer Automated Retrieval System (TEKTRAN)

New and emerging mosquito-borne viruses such as Rift Valley fever (RVF) virus pose a global threat to animal and human health. An introduction of RVF into the U.S. could severely impact livestock industries and wild ungulates, and cause significantly more human illness than West Nile virus (WNV). ...

262

Potential for Lyme disease in Maine: deer survey of distribution of Ixodes dammini, the tick vector.  

PubMed

A survey of deer brought to tagging stations at 24 sites in Main revealed the presence of the deer tick, Ixodes dammini, on 5.1 percent of deer. Ticks were found almost exclusively on deer from southwest coastal sites in the state. The potential for endemic Lyme disease in coastal Maine merits further study. PMID:2305920

Smith, R P; Rand, P W; Lacombe, E H

1990-03-01

263

Potential for Lyme disease in Maine: deer survey of distribution of Ixodes dammini, the tick vector.  

PubMed Central

A survey of deer brought to tagging stations at 24 sites in Main revealed the presence of the deer tick, Ixodes dammini, on 5.1 percent of deer. Ticks were found almost exclusively on deer from southwest coastal sites in the state. The potential for endemic Lyme disease in coastal Maine merits further study. PMID:2305920

Smith, R P; Rand, P W; Lacombe, E H

1990-01-01

264

North American Wetlands and Mosquito Control  

PubMed Central

Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems. Mosquito control in wetlands is a complex issue influenced by numerous factors, including many hard to quantify elements such as human perceptions, cultural predispositions, and political climate. In spite of considerable progress during the last decades, habitat protection and environmentally sound habitat management still remain inextricably tied to politics and economics. Furthermore, the connections are often complex, and occur at several levels, ranging from local businesses and politicians, to national governments and multinational institutions. Education is the key to lasting wetlands conservation. Integrated mosquito abatement strategies incorporate many approaches and practicable options, as described herein, and need to be well-defined, effective, and ecologically and economically sound for the wetland type and for the mosquito species of concern. The approach will certainly differ in response to disease outbreaks caused by mosquito-vectored pathogens versus quality of life issues caused by nuisance-biting mosquitoes. In this contribution, we provide an overview of the ecological setting and context for mosquito control in wetlands, present pertinent information on wetlands mosquitoes, review the mosquito abatement options available for current wetlands managers and mosquito control professionals, and outline some necessary considerations when devising mosquito control strategies. Although the emphasis is on North American wetlands, most of the material is applicable to wetlands everywhere. PMID:23222252

Rey, Jorge R.; Walton, William E.; Wolfe, Roger J.; Connelly, Roxanne; O’Connell, Sheila M.; Berg, Joe; Sakolsky-Hoopes, Gabrielle E.; Laderman, Aimlee D.

2012-01-01

265

North American wetlands and mosquito control.  

PubMed

Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems. Mosquito control in wetlands is a complex issue influenced by numerous factors, including many hard to quantify elements such as human perceptions, cultural predispositions, and political climate. In spite of considerable progress during the last decades, habitat protection and environmentally sound habitat management still remain inextricably tied to politics and economics. Furthermore, the connections are often complex, and occur at several levels, ranging from local businesses and politicians, to national governments and multinational institutions. Education is the key to lasting wetlands conservation. Integrated mosquito abatement strategies incorporate many approaches and practicable options, as described herein, and need to be well-defined, effective, and ecologically and economically sound for the wetland type and for the mosquito species of concern. The approach will certainly differ in response to disease outbreaks caused by mosquito-vectored pathogens versus quality of life issues caused by nuisance-biting mosquitoes. In this contribution, we provide an overview of the ecological setting and context for mosquito control in wetlands, present pertinent information on wetlands mosquitoes, review the mosquito abatement options available for current wetlands managers and mosquito control professionals, and outline some necessary considerations when devising mosquito control strategies. Although the emphasis is on North American wetlands, most of the material is applicable to wetlands everywhere. PMID:23222252

Rey, Jorge R; Walton, William E; Wolfe, Roger J; Connelly, C Roxanne; O'Connell, Sheila M; Berg, Joe; Sakolsky-Hoopes, Gabrielle E; Laderman, Aimlee D

2012-12-01

266

The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions - A comprehensive review.  

PubMed

This review deals with transmission of Trypanosoma cruzi by the most important domestic vectors, blood transfusion and oral intake. Among the vectors, Triatoma infestans, Panstrongylus megistus, Rhodnius prolixus, Triatoma dimidiata, Triatoma brasiliensis, Triatoma pseudomaculata, Triatoma sordida, Triatoma maculata, Panstrongylus geniculatus, Rhodnius ecuadoriensis and Rhodnius pallescens can be highlighted. Transmission of Chagas infection, which has been brought under control in some countries in South and Central America, remains a great challenge, particularly considering that many endemic countries do not have control over blood donors. Even more concerning is the case of non-endemic countries that receive thousands of migrants from endemic areas that carry Chagas disease, such as the United States of America, in North America, Spain, in Europe, Japan, in Asia, and Australia, in Oceania. In the Brazilian Amazon Region, since Shaw et al. (1969) described the first acute cases of the disease caused by oral transmission, hundreds of acute cases of the disease due to oral transmission have been described in that region, which is today considered to be endemic for oral transmission. Several other outbreaks of acute Chagas disease by oral transmission have been described in different states of Brazil and in other South American countries. PMID:25466622

Coura, José Rodrigues

2014-12-01

267

Spatial modelling of the potential temperature-dependent transmission of vector-associated diseases in the face of climate change: main results and recommendations from a pilot study in Lower Saxony (Germany)  

Microsoft Academic Search

The sustained climate change is going to modify the geographic distribution, the seasonal transmission gate and the intensity\\u000a of the transmission of vector-borne diseases such as malaria or the bluetongue disease. These diseases occur nowadays at higher\\u000a latitudes or altitudes. A further rise in ambient temperature and rainfall will extend the duration of the season in which\\u000a mosquito vectors are

Winfried Schröder; Gunther Schmidt

2008-01-01

268

History of Aedes mosquitoes in Hawaii.  

PubMed

As a geographically isolated island chain with no native mosquitoes, Hawaii is a model for examining the mechanisms behind insect vector invasions and their subsequent interactions with each other and with human populations. The yellow fever mosquito, Aedes aegypti, and the Asian tiger mosquito, Ae. albopictus, have been responsible for epidemics of dengue in Hawaii. As one of the world's earliest locations to be invaded by both species, Hawaii's history is particularly relevant because both species are currently invading new areas worldwide and are implicated in outbreaks of emergent or reemergent pathogens such as dengue, chikungunya, and yellow fever. Here we analyze the historical records of mosquito introductions in order to understand the factors that have led to the current distribution of these 2 mosquitoes in the Hawaiian Islands. PMID:23923330

Winchester, Jonathan C; Kapan, Durrell D

2013-06-01

269

Vectors  

NSDL National Science Digital Library

This web page, authored and curated by David P. Stern, introduces vectors as an extension of numbers having both magnitude and direction. The initial motivation is to describe velocity but the material includes a general discussion of vector algebra and an application to forces for the inclined plane. The page contains links to a related lesson plan and further opportunities to explore vectors. This is part of the extensive web site "From Stargazers to Starships", that uses space exploration and space science to introduce topics in physics and astronomy. Translations in Spanish and French are available.

Stern, David P. (David Peter), 1931-

270

Hydrology and Mosquito Population Dynamics around a Hydropower Reservoir in Africa  

NASA Astrophysics Data System (ADS)

Malaria is associated with dams because their reservoirs provide mosquitoes, the vector of malaria, with permanent breeding sites. The risk of contracting malaria is likely to be enhanced following the increasing trend of hydropower dam construction to satisfy the expanding energy needs in developing countries. A close examination of its adverse health impacts is critical in the design, construction, and operation phases. We will present results of extensive field studies in 2012 and 2013 around the Koka Reservoir, Ethiopia. The results uncover the importance of reservoir management especially after the rainy seasons. Furthermore, we show the capability of a newly modified hydrology, entomology and malaria transmission simulator, HYDREMATS (Bomblies et al, 2008), and its potential as a tool for evaluating environmental management strategies to control malaria. HYDREMATS was developed to represent how the hydrology in nearby villages is impacted by the reservoir system, and the role of different types of vector ecologies associated with different Anopheles mosquito species. The hydrology component of HYDREMATS simulates three different mosquito breeding habitats: rain-fed pools, groundwater pools, and shoreline water. The entomology component simulates the life cycles of An. funestus and An. arabiensis, the two main vectors around the reservoir. The model was calibrated over the 2012-2013 period. The impact of reservoir water level management on the mosquito population is explored based on numerical model simulations and field experiments.

Endo, N.; Eltahir, E. A.

2013-12-01

271

Evolution of mosquito preference for humans linked to an odorant receptor.  

PubMed

Female mosquitoes are major vectors of human disease and the most dangerous are those that preferentially bite humans. A 'domestic' form of the mosquito Aedes aegypti has evolved to specialize in biting humans and is the main worldwide vector of dengue, yellow fever, and chikungunya viruses. The domestic form coexists with an ancestral, 'forest' form that prefers to bite non-human animals and is found along the coast of Kenya. We collected the two forms, established laboratory colonies, and document striking divergence in preference for human versus non-human animal odour. We further show that the evolution of preference for human odour in domestic mosquitoes is tightly linked to increases in the expression and ligand-sensitivity of the odorant receptor AaegOr4, which we found recognizes a compound present at high levels in human odour. Our results provide a rare example of a gene contributing to behavioural evolution and provide insight into how disease-vectoring mosquitoes came to specialize on humans. PMID:25391959

McBride, Carolyn S; Baier, Felix; Omondi, Aman B; Spitzer, Sarabeth A; Lutomiah, Joel; Sang, Rosemary; Ignell, Rickard; Vosshall, Leslie B

2014-11-13

272

Mosquito development and biological control in a macrophyte-based wastewater treatment plant.  

PubMed

A one-year study of the proliferation of mosquito in a Pistia stratiotes-based waste stabilization ponds in Cameroon revealed that Mansonia and Culex were the main breeding genera with about 55% and 42% of the total imagoes respectively. Though the ponds represent a favorable breeding ground for mosquitoes, only 0.02% of captured imagoes was Anopheles gambiae, suggesting that this wastewater treatment plant does not significantly contribute to the development of the malaria vector in the area. Gambusia sp. introduced to control mosquito population in the ponds acclimatized relatively well in most of the ponds (B3-B7) and their feeding rate without any diet ranged from 15.0 to 50.2 larvae/day for a single fish. PMID:16114683

Kengne Noumsi, I M; Akoa, A; Atangana Eteme, R; Nya, J; Ngniado, P; Fonkou, T; Brissaud, F

2005-01-01

273

Mosquitos and You! Mosquito Control and Prevention  

E-print Network

in the Mosquito Life Cycle. Stage 1 Stage 2 Stage 4 Stage 3 Adult Pupa Larva Egg Raft 4 #12;Mosquito Search HIDDEN WORDS MALARIA LARVA EGGRAFT MOSQUITO AFRICA WESTNILE PUPA DENGUE 5 #12;Can you o s o s b i p u a p p ADULT ABDOMEN LARVA PUPA HEAD PROBOSCIS EGG RAFT THORAX 8 #12;Show What You

274

The influence of diet on the use of near-infrared spectroscopy to determine the age of female Aedes aegypti mosquitoes  

Technology Transfer Automated Retrieval System (TEKTRAN)

Interventions targeting adult mosquitoes are used to combat transmission of vector-borne diseases, including dengue. Without available vaccines, targeting the primary vector, Aedes aegypti, is essential to prevent transmission. Older mosquitoes (>/='7 days) are of greatest epidemiological significan...

275

Glytube: A Conical Tube and Parafilm M-Based Method as a Simplified Device to Artificially Blood-Feed the Dengue Vector Mosquito, Aedes aegypti  

PubMed Central

Aedes aegypti, the main vector of dengue virus, requires a blood meal to produce eggs. Although live animals are still the main blood source for laboratory colonies, many artificial feeders are available. These feeders are also the best method for experimental oral infection of Ae. aegypti with Dengue viruses. However, most of them are expensive or laborious to construct. Based on principle of Rutledge-type feeder, a conventional conical tube, glycerol and Parafilm-M were used to develop a simple in-house feeder device. The blood feeding efficiency of this apparatus was compared to a live blood source, mice, and no significant differences (p?=?0.1189) were observed between artificial-fed (51.3% of engorgement) and mice-fed groups (40.6%). Thus, an easy to assemble and cost-effective artificial feeder, designated “Glytube” was developed in this report. This simple and efficient feeding device can be built with common laboratory materials for research on Ae. aegypti. PMID:23342010

Costa-da-Silva, André Luis; Navarrete, Flávia Rosa; Salvador, Felipe Scassi; Karina-Costa, Maria; Ioshino, Rafaella Sayuri; Azevedo, Diego Soares; Rocha, Desirée Rafaela; Romano, Camila Malta; Capurro, Margareth Lara

2013-01-01

276

Physico-chemical and biological characterization of anopheline mosquito larval habitats (Diptera: Culicidae): implications for malaria control  

PubMed Central

Background A fundamental understanding of the spatial distribution and ecology of mosquito larvae is essential for effective vector control intervention strategies. In this study, data-driven decision tree models, generalized linear models and ordination analysis were used to identify the most important biotic and abiotic factors that affect the occurrence and abundance of mosquito larvae in Southwest Ethiopia. Methods In total, 220 samples were taken at 180 sampling locations during the years 2010 and 2012. Sampling sites were characterized based on physical, chemical and biological attributes. The predictive performance of decision tree models was evaluated based on correctly classified instances (CCI), Cohen’s kappa statistic (?) and the determination coefficient (R2). A conditional analysis was performed on the regression tree models to test the relation between key environmental and biological parameters and the abundance of mosquito larvae. Results The decision tree model developed for anopheline larvae showed a good model performance (CCI?=?84?±?2%, and ??=?0.66?±?0.04), indicating that the genus has clear habitat requirements. Anopheline mosquito larvae showed a widespread distribution and especially occurred in small human-made aquatic habitats. Water temperature, canopy cover, emergent vegetation cover, and presence of predators and competitors were found to be the main variables determining the abundance and distribution of anopheline larvae. In contrast, anopheline mosquito larvae were found to be less prominently present in permanent larval habitats. This could be attributed to the high abundance and diversity of natural predators and competitors suppressing the mosquito population densities. Conclusions The findings of this study suggest that targeting smaller human-made aquatic habitats could result in effective larval control of anopheline mosquitoes in the study area. Controlling the occurrence of mosquito larvae via drainage of permanent wetlands may not be a good management strategy as it negatively affects the occurrence and abundance of mosquito predators and competitors and promotes an increase in anopheline population densities. PMID:24499518

2013-01-01

277

Laboratory observations on the larvicidal efficacy of three plant species against mosquito vectors of malaria, dengue/dengue hemorrhagic fever (DF/DHF) and lymphatic filariasis in the semi-arid desert.  

PubMed

Comparative larvicidal efficacy of aqueous and organic solvent extracts from seeds, leaves and flowers of three desert plants viz. Calotropis procera (Aiton), Tephrosia purpurea (L.) Pers. and Prosopis juliflora (Sw.) DC. was evaluated against Anopheles stephensi (Liston), Aedes aegypti (Linnaeus) and Culex quinquefasciatus (Say). For this purpose larvae of all the three mosquito species were reared in the laboratory and studies carried out on late 3rd or early 4th instars using standard WHO technique. Based on concentration mortality data 24 and 48 hr LC50and LC90 values along with their 95% fiducial limits, regression equation, chi-square (chi2)/ heterogeneity of the response were determined by log probit regression analysis. Experiments were carried out with different solvent extracts of seeds of C. procera which revealed that methanol (24 hr LC50: 127.2, 194.8, 361.0) and acetone (229.9, 368.1,193.0 mg l(-1)) extracts were more effective with the three mosquito species, respectively. Petroleum ether extract was effective only on An. stephensi while aqueous extracts were not effective at all with any of the mosquito species (mortality < 10-30%). Tests carried out with methanol extracts of fresh leaves (24 hr LC50: 89.2, 171.2, 369.7) and flowers (24 hr LC50: 94.7,617.3, 1384.0 mg l-(-1)) of Calotropis showed that preparations from fresh parts were 2-3 times more effective as compared to the stored plant parts. Efficacy was less than 10-30% with both An. aegypti and Cx. quinquefasciatus while An. stephensi was still susceptible to extracts from both leaves and flowers even after two years of storage. The 24 hr LC50 values as observed for methanol extracts of seeds of T. purpurea and leaves of P. juliflora were 74.9, 63.2 and 47.0 and 96.2,128.1 and 118.8 mg l(-1) for the above three mosquito species, respectively. Experiments carried out up to 500 mg l-(1) with leaves (T. purpurea) and seeds (P. juliflora) extracts show only up to 10-30% mortality indicating that active larvicidal principle may be present only in the seeds of Tephrosia and leaves of Prosopis. In general, anophelines were found more susceptible than the culicines to the plant derived derivatives. More studies are being carried outon some other desert plants found in this arid region. The study would be of great importance while formulating vector control strategy based on alternative plant based insecticides in this semi-arid region. PMID:23029912

Bansal, S K; Singh, Karam V; Sharma, Sapna; Sherwani, M R K

2012-05-01

278

Mosquito cytogenetics  

PubMed Central

Although an intensified interest in mosquito cytogenetics in the past decade has produced a number of contributions to knowledge on this subject, the available information is still superficial and limited to a few mosquito species only. The author of this review summarizes the research done in this field between 1953 and 1962. The following are some of the achievements and some of the gaps that remain to be filled. Karyotypes of several species of Anopheles, Aedes and Culex conform to the general pattern 2n=6, with heterosomes distinguishable only in Anopheles. At least three different karyotypes are present in Anopheles. Salivary gland chromosome maps are now available for several anopheline species, but are still lacking for Culex and Aedes. No precise correlation may yet be made between the frequency of chromosomal aberrations and the degree of insecticide-resistance. Sexual differences in the salivary X-chromosomes have been reported for several species of Anopheles. Chromosomal polymorphism is common in some anophelines, but rare in others. Chromosomal mutation has been induced by means of X-rays. In his conclusions, the author stresses that prospects are especially good for evolutionary and genetic studies involving chromosomal polymorphism. PMID:14058227

Kitzmiller, James B.

1963-01-01

279

Exploiting mosquito sugar feeding to detect mosquito-borne pathogens  

PubMed Central

Arthropod-borne viruses (arboviruses) represent a global public health problem, with dengue viruses causing millions of infections annually, while emerging arboviruses, such as West Nile, Japanese encephalitis, and chikungunya viruses have dramatically expanded their geographical ranges. Surveillance of arboviruses provides vital data regarding their prevalence and distribution that may be utilized for biosecurity measures and the implementation of disease control strategies. However, current surveillance methods that involve detection of virus in mosquito populations or sero-conversion in vertebrate hosts are laborious, expensive, and logistically problematic. We report a unique arbovirus surveillance system to detect arboviruses that exploits the process whereby mosquitoes expectorate virus in their saliva during sugar feeding. In this system, infected mosquitoes captured by CO2-baited updraft box traps are allowed to feed on honey-soaked nucleic acid preservation cards within the trap. The cards are then analyzed for expectorated virus using real-time reverse transcription-PCR. In field trials, this system detected the presence of Ross River and Barmah Forest viruses in multiple traps deployed at two locations in Australia. Viral RNA was preserved for at least seven days on the cards, allowing for long-term placement of traps and continuous collection of data documenting virus presence in mosquito populations. Furthermore no mosquito handling or processing was required and cards were conveniently shipped to the laboratory overnight. The simplicity and efficacy of this approach has the potential to transform current approaches to vector-borne disease surveillance by streamlining the monitoring of pathogens in vector populations. PMID:20534559

Hall-Mendelin, Sonja; Ritchie, Scott A.; Johansen, Cheryl A.; Zborowski, Paul; Cortis, Giles; Dandridge, Scott; Hall, Roy A.; van den Hurk, Andrew F.

2010-01-01

280

Molecular identification of bloodmeals from sand flies and mosquitoes collected in Israel.  

PubMed

In Israel, sand flies are the vectors of Leishmania Ross and mosquitoes are the vectors of West Nile Virus. In the Judean Desert and Tiberias, the sand fly Phlebotomus sergenti Parrot is the vector of Leishmania tropica (Wright) and the rock hyrax (Procavia capensis Pallas) is considered the main reservoir animal. The main vectors of West Nile Virus are Culex pipiens L. and Culex perexiguus Theobald. Bloodmeals of engorged field-caught female sand flies and mosquitoes are an important source for defining host preferences. Recent progress in DNA molecular techniques has enabled the accurate identification of blood sources within the arthropod gut. In this study, we applied molecular approach for species-specific identification based on polymerase chain reaction and nucleotide sequence analysis of polymorphic regions along two mitochondrial genes, 12S and 16S rRNA. The research was carried out on 261 engorged female sand flies collected in the Judean Desert and Tiberias and 50 engorged female mosquitoes collected in Tel-Aviv and Arava. Species identification of bloodmeals was successful in 92% of the samples. Rock hyrax was the most abundant host in bloodmeals of P. sergenti, while human blood was found in only seven (3%) females. L. tropica DNA was detected in three P. sergenti females from Tiberias that contained rock hyrax blood. Avian sequences were detected in 67% (10 of 15) of the identified bloodmeals from Cx. perexiguus and in 10% (3 of 29) of the identified meals from Cx. pipiens. Human sequences were found in 14% of the identified bloodmeals from Cx. pipiens. The successful analysis of the majority of the bloodmeals performed on wild sand flies and mosquitoes suggests that bloodmeal identification can be applied as one of the routine procedures in vector surveillance programs. PMID:24897862

Valinsky, Lea; Ettinger, Gonen; Bar-Gal, Gila Kahila; Orshan, Laor

2014-05-01

281

Salinity-tolerant larvae of mosquito vectors in the tropical coast of Jaffna, Sri Lanka and the effect of salinity on the toxicity of Bacillus thuringiensis to Aedes aegypti larvae  

PubMed Central

Background Dengue, chikungunya, malaria, filariasis and Japanese encephalitis are common mosquito-borne diseases endemic to Sri Lanka. Aedes aegypti and Aedes albopictus, the major vectors of dengue, were recently shown to undergo pre-imaginal development in brackish water bodies in the island. A limited survey of selected coastal localities of the Jaffna district in northern Sri Lanka was carried out to identify mosquito species undergoing pre-imaginal development in brackish and saline waters. The effect of salinity on the toxicity of Bacillus thuringiensis israelensis larvicide to Ae. aegypti larvae at salinity levels naturally tolerated by Ae. aegypti was examined. Methods Larvae collected at the selected sites along the Jaffna coast were identified and salinity of habitat water determined in the laboratory. The LC50 and LC90 of B. thuringiensis toxin, the active ingredient of a commercial formulation of the larvicide BACTIVEC®, were determined with Ae. aegypti larvae. Bioassays were also carried out at salinities varying from 0 to18 ppt to determine the toxicity of Bacillus thuringiensis to fresh and brackish water-derived larvae of Ae. aegypti. Results Larvae of four Anopheles, two Aedes, one Culex and one Lutzia species were collected from brackish and saline sites with salinity in the range 2 to 68 ppt. The LC50 and LC90 of B. thuringiensis toxin for the second instar larvae of Ae. aegypti in fresh water were 0.006 ppm and 0.013 ppm respectively, with corresponding values for brackish water populations of 0.008 and 0.012 ppm respectively. One hundred percent survival of second instar fresh water and brackish water-derived Ae. aegypti larvae was recorded at salinity up to 10 and 12 ppt and 100% mortality at 16 and 18 ppt, yielding an LC 50 for salinity of 13.9 ppt and 15.4 ppt at 24 h post-treatment respectively for the two populations. Statistical analysis showed significantly reduced toxicity of B. thuringiensis to fresh and brackish water-derived Ae. aegypti larvae at high salinities. Conclusion A variety of mosquito vectors of human diseases undergo pre-imaginal development in brackish or saline waters in coastal areas of the Jaffna district in northern Sri Lanka. Salinity has a small but significant negative impact on the toxicity of B. thuringiensis toxin to Ae. aegypti larvae at salinity levels where Ae. aegypti larvae are found in the environment. This has implications for the use of B. thuringiensis toxin as a larvicide in brackish waters. PMID:23174003

2012-01-01

282

Larval ecology of mosquitoes in sylvatic arbovirus foci in southeastern Senegal  

PubMed Central

Background Although adult mosquito vectors of sylvatic arbovirus [yellow fever (YFV), dengue-2 (DENV-2) and chikungunya (CHIKV)] have been studied for the past 40 years in southeastern Senegal, data are still lacking on the ecology of larval mosquitoes in this area. In this study, we investigated the larval habitats of mosquitoes and characterized their seasonal and spatial dynamics in arbovirus foci. Methods We searched for wet microhabitats, classified in 9 categories, in five land cover classes (agriculture, forest, savannah, barren and village) from June, 2010 to January, 2011. Mosquito immatures were sampled monthly in up to 30 microhabitats of each category per land cover and bred until adult stage for determination. Results No wet microhabitats were found in the agricultural sites; in the remaining land covers immature stages of 35 mosquito species in 7 genera were sampled from 9 microhabitats (tree holes, fresh fruit husks, decaying fruit husks, puddles, bamboo holes, discarded containers, tires, rock holes and storage containers). The most abundant species was Aedes aegypti formosus, representing 30.2% of the collections, followed by 12 species, representing each more than 1% of the total, among them the arbovirus vectors Ae. vittatus (7.9%), Ae. luteocephalus (5.7%), Ae. taylori (5.0%), and Ae. furcifer (1.3%). Aedes aegypti, Cx. nebulosus, Cx. perfuscus, Cx. tritaeniorhynchus, Er. chrysogster and Ae. vittatus were the only common species collected from all land covers. Aedes furcifer and Ae. taylori were collected in fresh fruit husks and tree holes. Species richness and dominance varied significantly in land covers and microhabitats. Positive associations were found mainly between Ae. furcifer, Ae. taylori and Ae. luteocephalus. A high proportion of potential enzootic vectors that are not anthropophilic were found in the larval mosquito fauna. Conclusions In southeastern Senegal, Ae. furcifer and Ae. taylori larvae showed a more limited distribution among both land cover and microhabitat types than the other common species. Uniquely among vector species, Ae. aegypti formosus larvae occurred at the highest frequency in villages. Finally, a high proportion of the potential non-anthropophilic vectors were represented in the larval mosquito fauna, suggesting the existence of unidentified sylvatic arbovirus cycles in southeastern Senegal. PMID:23216815

2012-01-01

283

Ecological niche model of Phlebotomus perniciosus, the main vector of canine leishmaniasis in north-eastern Italy.  

PubMed

With respect to the epidemiology of leishmaniasis, it is crucial to take into account the ecoclimatic and environmental characteristics that influence the distribution patterns of the vector sand fly species. It is also important to consider the possible impact of on-going climate changes on the emergence of this disease. In order to map the potential distribution of Phlebotomus perniciosus, the main vector species of canine leishmaniasis in north-eastern Italy, geographical information systems tools, ecological niche models (ENM) and remotely sensed environmental data were applied for a retrospective analysis of an entomological survey conducted in north-eastern Italy over 12 years. Sand fly trapping was conducted from 2001 to 2012 in 175 sites in the provinces of Veneto, Friuli-Venezia Giulia and Trentino-Alto Adige. We developed a predictive model of potential distribution of P. perniciosus using the maximum entropy algorithm software, based on seasonal normalized difference vegetation index, day and night land surface temperature, the Corine land cover 2006, a digital elevation model (GTOPO30) and climate layers obtained from the WorldClim database. The MaxEnt prediction found the more suitable habitat for P. perniciosus to be hilly areas (100-300 m above the mean sea level) characterised by temperate climate during the winter and summer seasons, high winter vegetation cover and moderate rainfall during the activity season of vector sand fly. ENM provided a greater understanding of the geographical distribution and ecological requirements of P. perniciosus in the study area, which can be applied for the development of future surveillance strategies. PMID:25545936

Signorini, Manuela; Cassini, Rudi; Drigo, Michele; Frangipane di Regalbono, Antonio; Pietrobelli, Mario; Montarsi, Fabrizio; Stensgaard, Anna-Sofie

2014-11-01

284

Sampling host-seeking anthropophilic mosquito vectors in west Africa: comparisons of an active human-baited tent-trap against gold standard methods.  

PubMed

In this study, we characterize the ability of the previously described Infoscitex tent (IST) to capture mosquitoes in comparison to either the Centers for Disease Control Light Trap hung next to individuals under a bed net (LTC) or to human landing catches (HLC). In Senegal, the IST caught 6.14 times the number of Anopheles gambiae sensu lato (s.l.), and 8.78 times the Culex group V mosquitoes as LTC. In one of two locations in Burkina Faso, the IST caught An. gambiae at a rate not significantly different than HLC. Of importance, 9.1-36.1% of HLC caught An. gambiae were blood fed, mostly with fresh blood, suggesting they fed upon the collector, whereas only 0.5-5.0% from the IST had partial or old blood. The IST also caught outdoor biting species in proportions comparable to HLC. The results show this tent provides a safer and effective alternative to the skill-dependent, risky, and laborious HLC method. PMID:25422393

Krajacich, Benjamin J; Slade, Jeremiah R; Mulligan, Robert F; LaBrecque, Brendan; Alout, Haoues; Grubaugh, Nathan D; Meyers, Jacob I; Fakoli, Lawrence S; Bolay, Fatorma K; Brackney, Doug E; Burton, Timothy A; Seaman, Jonathan A; Diclaro, Joseph W; Dabiré, Roch K; Foy, Brian D

2015-02-01

285

Mapping the main Leishmania phlebotomine vector in the endemic focus of the Mt. Vesuvius in southern Italy.  

PubMed

Geographical information systems and remote sensing were used to analyze the distribution of the Leishmania infantum-Phlebotomus perniciosus parasite-vector system in relation to environmental features of two opposite sides (coastal and Apennine) of Mt. Vesuvius, an area of intense transmission of human and canine leishmaniasis in southern Italy. Weekly phlebotomine collections were carried out during two consecutive warm seasons (2004- 2005) in 24 and 25 sites of the coastal and Apennine sides, respectively. Sandflies were caught using over one-thousand and seven hundred 20 x 20 cm-sticky traps placed in different environments. A total of 873 sandflies were collected, of which 284 (32.5%) were identified as P. perniciosus. The cumulative density (number of specimens/m2 of sticky trap/two nights) of this vector species was 3.9. P. perniciosus was significantly more abundant in the coastal side (5.8) as compared to the Apennine side (1.4). The main environmental differences between the two sides were the aspect (south-west for the coastal and north-east for the Apennine side) and land use. The predominance of green vegetated environments (forest, semi-natural and agricultural areas) in the coastal side, in contrast with the predominance of artificial surfaces (namely urban environment) in the Apennine side, could be responsible for the different P. perniciosus densities between the two surveyed areas. PMID:18686244

Rossi, Erika; Rinaldi, Laura; Musella, Vincenzo; Veneziano, Vincenzo; Carbone, Sabrina; Gradoni, Luigi; Cringoli, Giuseppe; Maroli, Michele

2007-05-01

286

The Role of Innate Immunity in Conditioning Mosquito Susceptibility to West Nile Virus  

PubMed Central

Arthropod-borne viruses (arboviruses) represent an emerging threat to human and livestock health globally. In particular, those transmitted by mosquitoes present the greatest challenges to disease control efforts. An understanding of the molecular basis for mosquito innate immunity to arbovirus infection is therefore critical to investigations regarding arbovirus evolution, virus-vector ecology, and mosquito vector competence. In this review, we discuss the current state of understanding regarding mosquito innate immunity to West Nile virus. We draw from the literature with respect to other virus-vector pairings to attempt to draw inferences to gaps in our knowledge about West Nile virus and relevant vectors. PMID:24351797

Prasad, Abhishek N.; Brackney, Doug. E.; Ebel, Gregory D.

2013-01-01

287

The role of innate immunity in conditioning mosquito susceptibility to West Nile virus.  

PubMed

Arthropod-borne viruses (arboviruses) represent an emerging threat to human and livestock health globally. In particular, those transmitted by mosquitoes present the greatest challenges to disease control efforts. An understanding of the molecular basis for mosquito innate immunity to arbovirus infection is therefore critical to investigations regarding arbovirus evolution, virus-vector ecology, and mosquito vector competence. In this review, we discuss the current state of understanding regarding mosquito innate immunity to West Nile virus. We draw from the literature with respect to other virus-vector pairings to attempt to draw inferences to gaps in our knowledge about West Nile virus and relevant vectors. PMID:24351797

Prasad, Abhishek N; Brackney, Doug E; Ebel, Gregory D

2013-12-01

288

Genetic control of Aedes mosquitoes  

PubMed Central

Aedes mosquitoes include important vector species such as Aedes aegypti, the major vector of dengue. Genetic control methods are being developed for several of these species, stimulated by an urgent need owing to the poor effectiveness of current methods combined with an increase in chemical pesticide resistance. In this review we discuss the various genetic strategies that have been proposed, their present status, and future prospects. We focus particularly on those methods that are already being tested in the field, including RIDL and Wolbachia-based approaches. PMID:23816508

Alphey, Luke; McKemey, Andrew; Nimmo, Derric; Neira Oviedo, Marco; Lacroix, Renaud; Matzen, Kelly; Beech, Camilla

2013-01-01

289

Drought-induced mosquito outbreaks in wetlands Jonathan M. Chase1  

E-print Network

REPORT Drought-induced mosquito outbreaks in wetlands Jonathan M. Chase1 * and Tiffany M. Knight2 1 Mosquitoes are not only a nuisance, but also vector many important human and animal diseases. Here, in opposition with the dogma that increased precipitation predicts mosquito abundance, we hypothesize

290

Feasible Introgression of an Anti-pathogen Transgene into an Urban Mosquito Population without Using  

E-print Network

Feasible Introgression of an Anti-pathogen Transgene into an Urban Mosquito Population without, much attention now focuses instead on transgenic strategies aimed at mosquito population suppression, an approach generally perceived to be practical. By contrast, aiming to replace vector competent mosquito

Lloyd, Alun

291

The Major Yolk Protein Vitellogenin Interferes with the Anti-Plasmodium Response in the Malaria Mosquito  

E-print Network

Mosquito Anopheles gambiae Martin K. Rono1,2,3¤a , Miranda M. A. Whitten1,2,3¤b , Mustapha Oulad on a person infected with malaria, female Anopheles gambiae mosquitoes, the major vector of human malaria, they infect themselves with the malaria parasite. On traversing the mosquito midgut epithelium, invading

Paris-Sud XI, Université de

292

Countering a Bioterrorist Introduction of Pathogen-Infected Mosquitoes through Mosquito Control  

Technology Transfer Automated Retrieval System (TEKTRAN)

A workshop titled “Counteracting Bioterrorist Introduction of Pathogen-Infected Vector Mosquitoes” was held in Gainesville, Florida on May 20-22, 2010 to discuss (1) disease and vector surveillance, (2) pre-bioterrorist attack preparations, (3) actions during an ongoing bioterrorist attack, and (4) ...

293

Multi-function oxidases are responsible for the synergistic interactions occurring between repellents and insecticides in mosquitoes  

PubMed Central

Background With the spread of pyrethroid resistance in mosquitoes, the combination of an insecticide (carbamate or organophosphate) with a repellent (DEET) is considered as a promising alternative strategy for the treatment of mosquito nets and other relevant materials. The efficacy of these mixtures comes from the fact that they reproduce pyrethroid features and that positive interactions occur between insecticides and repellent. To better understand the mechanisms involved and assess the impact of detoxifying enzymes (oxidases and esterases) in these interactions, bioassays were carried out in the laboratory against the main dengue vector Aedes aegypti. Methods Topical applications of DEET and propoxur (carbamate), used alone or as a mixture, were carried out on female mosquitoes, using inhibitors of the two main detoxification pathways in the insect. PBO, an inhibitor of multi-function oxidases, and DEF, an inhibitor of esterases, were applied one hour prior to the main treatment. Results Results showed that synergism between DEET and propoxur disappeared in the presence of PBO but not with DEF. This suggests that oxidases, contrary to esterases, play a key role in the interactions occurring between DEET and cholinesterase inhibitors in mosquitoes. Conclusion These findings are of great interest for the implementation of "combination nets" in the field. They support the need to combine insecticide with repellent to overcome insecticide resistance in mosquitoes of public health importance. PMID:19371420

Bonnet, Julien; Pennetier, Cédric; Duchon, Stéphane; Lapied, Bruno; Corbel, Vincent

2009-01-01

294

Mosquito control by larvivorous fish.  

PubMed

There is growing of the effects of insecticide used controlling the vectors of human diseases. Manipulating or introducing an auto-reproducing predator into the ecosystem may provide sustained biological control of pest populations. The selection of a biological agent should be based on its self-replicating capacity, preference for the target pest population in the presence of alternate natural prey, adaptability to the introduced environment, and overall interaction with indigenous organisms. In order to achieve an acceptable range of control, a sound knowledge of various attributes of interactions between the pest population and the predator to be introduced is desirable. Biological larviciding for the control of mosquito borne diseases is feasible and effective only when breeding sites are relatively few or are easily identified and treated. Larval control appears to be promising in urban areas, given that the density of humans needing protection is higher than the limited number of breeding sites. Since 1937, fish have been employed for controlling mosquito larvae. Different types of fish have been used so far in this operational technique. However, use of fish of indigenous origin is found to be more appropriate in this operation. This review presents information on different larvivorous fish species and the present status of their use in mosquito control and provides a ready reference for workers involved and interested in mosquito research. PMID:18316849

Chandra, G; Bhattacharjee, I; Chatterjee, S N; Ghosh, A

2008-01-01

295

Plant based products: use and development as repellents against mosquitoes: A review.  

PubMed

Global warming and deforestation have resulted in the relocation of many living creatures including insects during the recent years. This has affected the population balance of disease vectors including mosquitoes resulting in outbreaks. Traditionally, mankind has been using plants as means of protection from the mosquitoes which are considered to be environment friendly unlike the synthetic chemicals that cause major risk to human health and the ecosystem. Researchers explored mainly, essential oils and traditional plants using different testing methodologies to find out repellent molecules effective against mosquitoes which is the main focus of this review. Among the promising plant species, Eucalyptus spp., Ocimum spp. and Cymbopogon spp. are the most cited. Data of repellency produced from the bioassay systems is difficult to quantify because of different parameters, testing system and standards of material used against mosquitoes. Mainly, the human forearm based bioassays have been used with different sizes of treatment area in the laboratory and the results have not been tested in the field conditions for residual activity. In addition, effectiveness of essential oils and their protection time can be increased by using vanillin as synergist and formulation techniques like microencapsulation and nanoemulsion. There is a need to develop an alternate in vitro bioassay system that can address the problems of uniformity of the results. PMID:24631763

Rehman, Junaid U; Ali, Abbas; Khan, Ikhlas A

2014-06-01

296

The fate of Hepatozoon species naturally infecting Florida black racers and watersnakes in potential mosquito and soft tick vectors, and histological evidence of pathogenicity in unnatural host species.  

PubMed

Haemogregarine parasites, derived from the Florida snakes Coluber constrictor and Nerodia fasciata and ingested by Aedes aegypti, completed sporogony within the hemocoeles of nearly all fed mosquitoes in 14-18 days, and produced oocysts typical of Hepatozoon. However, mortalities and morbidity were high in the Culex which had fed on the Coluber. Oocysts were not found in any Ornithodoros turicata (Argasidae) which fed upon either snake host, but many sections of fed ticks had gametocyte-like cells within the gut lumen. Most lizards, Anolis carolinensis and Anolis sagrei, infected per os with oocysts derived from both snake species developed infections. Infections in the lizards were largely confined to hepatic schizonts with few parasites found in erythrocytes. Unlike naturally infected snake hosts, Hepatozoon schizonts in livers of lizards were often either surrounded by an unidentified dark pigment or heavily infiltrated with mononuclear inflammatory cells. PMID:1683862

Wozniak, E J; Telford, S R

1991-09-01

297

Mosquito, Bird and Human Surveillance of West Nile and Usutu Viruses in Emilia-Romagna Region (Italy) in 2010  

PubMed Central

Background In 2008, after the first West Nile virus (WNV) detection in the Emilia-Romagna region, a surveillance system, including mosquito- and bird-based surveillance, was established to evaluate the virus presence. Surveillance was improved in following years by extending the monitoring to larger areas and increasing the numbers of mosquitoes and birds tested. Methodology/Principal Findings A network of mosquito traps, evenly distributed and regularly activated, was set up within the surveyed area. A total of 438,558 mosquitoes, grouped in 3,111 pools and 1,276 birds (1,130 actively sampled and 146 from passive surveillance), were tested by biomolecular analysis. The survey detected WNV in 3 Culex pipiens pools while Usutu virus (USUV) was found in 89 Cx. pipiens pools and in 2 Aedes albopictus pools. Two birds were WNV-positive and 12 were USUV-positive. Furthermore, 30 human cases of acute meningoencephalitis, possibly caused by WNV or USUV, were evaluated for both viruses and 1,053 blood bags were tested for WNV, without any positive result. Conclusions/Significance Despite not finding symptomatic human WNV infections during 2010, the persistence of the virus, probably due to overwintering, was confirmed through viral circulation in mosquitoes and birds, as well as for USUV. In 2010, circulation of the two viruses was lower and more delayed than in 2009, but this decrease was not explained by the relative abundance of Cx. pipiens mosquito, which was greater in 2010. The USUV detection in mosquito species confirms the role of Cx. pipiens as the main vector and the possible involvement of Ae. albopictus in the virus cycle. The effects of meteorological conditions on the presence of USUV-positive mosquito pools were considered finding an association with drought conditions and a wide temperature range. The output produced by the surveillance system demonstrated its usefulness and reliability in terms of planning public health policies. PMID:22666446

Calzolari, Mattia; Gaibani, Paolo; Bellini, Romeo; Defilippo, Francesco; Pierro, Anna; Albieri, Alessandro; Maioli, Giulia; Luppi, Andrea; Rossini, Giada; Balzani, Agnese; Tamba, Marco; Galletti, Giorgio; Gelati, Antonio; Carrieri, Marco; Poglayen, Giovanni; Cavrini, Francesca; Natalini, Silvano; Dottori, Michele; Sambri, Vittorio; Angelini, Paola; Bonilauri, Paolo

2012-01-01

298

Comparative Genome Analysis of the Yellow Fever Mosquito Aedes aegypti  

E-print Network

Comparative Genome Analysis of the Yellow Fever Mosquito Aedes aegypti with Drosophila melanogaster aegypti, and Culex pipiens, the primary vectors for malaria, yellow fever and dengue, and lymphatic 103

Severson, David

299

Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases.  

PubMed

Mosquitoes (Diptera: Culicidae) represent an important threat to millions of people worldwide, since they act as vectors for important pathogens, such as malaria, yellow fever, dengue and West Nile. Control programmes mainly rely on chemical treatments against larvae, indoor residual spraying and insecticide-treated bed nets. In recent years, huge efforts have been carried out to propose new eco-friendly alternatives, with a special focus on the evaluation of plant-borne mosquitocidal compounds. Major examples are neem-based products (Azadirachta indica A. Juss, Meliaceae) that have been proven as really effective against a huge range of pests of medical and veterinary importance, including mosquitoes. Recent research highlighted that neem cake, a cheap by-product from neem oil extraction, is an important source of mosquitocidal metabolites. In this review, we examined (i) the latest achievements about neem cake metabolomics with special reference to nor-terpenoid and related content; (ii) the neem cake ovicidal, larvicidal and pupicidal toxicity against Aedes, Anopheles and Culex mosquito vectors; (iii) its non-target effects against vertebrates; and (iv) its oviposition deterrence effects on mosquito females. Overall, neem cake can be proposed as an eco-friendly and low-cost source of chemicals to build newer and safer control tools against mosquito vectors. PMID:25563612

Benelli, Giovanni; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Madhiyazhagan, Pari; Conti, Barbara; Nicoletti, Marcello

2015-02-01

300

Virtual mosquito  

NSDL National Science Digital Library

3D virtual image of a mosquito (Family Culicidae). This movie is also available as a Virtual Reality Modeling Language (VRML) model. The VRML models are more interactive than the QuickTime versions, but special software may need to be downloaded to open them (read the Â?HelpÂ? page for details). Those people using public computers may be limited from fully accessing the resource. Mozilla Firefox users can view the VRML files directly in their browsers by downloading the Cortona extension (http://www.parallelgraphics.com/products/cortona/download/netscape/). This website is an excellent educational resource for all ages. The Virtual Insects home page (http://www.ento.vt.edu/~sharov/3d/3dinsect.html) has a basic explanation of how virtual reality works, including the Virtual Reality Modeling Language. The "Virtual Images" link takes you to a list of insects that can be viewed as 3D digital reconstructions. The image files would make excellent additions to teaching lectures for introductory classes. Visit the "How to Build Virtual Insects" page to read about how the images were created and how the original models were made more biologically accurate. Also be sure to read the page on how to view the cyber-insects inside a virtual reality "cave".

0000-00-00

301

Malaria Situation and Anopheline Mosquitoes in Qom Province, Central Iran  

PubMed Central

Background: The aims of this study was to analysis the current situation of malaria and to find the distribution of anopheline mosquitoes, as probable vectors of the disease, in Qom Province, central Iran. Methods: This study was carried out in two parts. First stage was data collection about malaria cases using recorded documents of patients in the Province health center, during 2001–2008. The second stage was entomological survey conducted by mosquito larval collection method in 4 villages with different geographical positions in 2008. Data were analyzed using Excel software. Results: Of 4456 blood slides, 10.9% out were positive. Most of cases were imported from other countries (90.4%), mainly from Afghanistan (56.5%) and Pakistan (16.3%). Slide positive rate showed a maximum of 16.9% and a minimum of 2.9% in 2008 and 2007, respectively. Plasmodium vivax was causative agent of 93.75% of cases, followed by P. falciparum (6.25%). More than 15 years old age group contained the most malaria reported cases (66.7%). Two Anopheles species, An. superpictus and An. claviger were collected and identified. This is the first report of Anopheles claviger in Qom Province. Conclusion: Malaria is in the control stage in Qom Province. The rate of local transmission is very low (only 1 case), shows Anopheles superpictus, as the main malaria vector of central part of Iran, can play its role in malaria transmission in the area. PMID:22808402

Farzinnia, B; Saghafipour, A; Abai, MR

2010-01-01

302

The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide-resistant Culex quinquefasciatus mosquitoes in Benin, West Africa  

PubMed Central

Background Mosquito-borne diseases are still a major health risk in many developing countries, and the emergence of multi-insecticide-resistant mosquitoes is threatening the future of vector control. Therefore, new tools that can manage resistant mosquitoes are required. Laboratory studies show that entomopathogenic fungi can kill insecticide-resistant malaria vectors but this needs to be verified in the field. Methods The present study investigated whether these fungi will be effective at infecting, killing and/or modifying the behaviour of wild multi-insecticide-resistant West African mosquitoes. The entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were separately applied to white polyester window netting and used in combination with either a permethrin-treated or untreated bednet in an experimental hut trial. Untreated nets were used because we wanted to test the effect of fungus alone and in combination with an insecticide to examine any potential additive or synergistic effects. Results In total, 1125 female mosquitoes were collected during the hut trial, mainly Culex quinquefasciatus Say. Unfortunately, not enough wild Anopheles gambiae Giles were collected to allow the effect the fungi may have on this malaria vector to be analysed. None of the treatment combinations caused significantly increased mortality of Cx. quinquefasciatus when compared to the control hut. The only significant behaviour modification found was a reduction in blood feeding by Cx. quinquefasciatus, caused by the permethrin and B. bassiana treatments, although no additive effect was seen in the B. bassiana and permethrin combination treatment. Beauveria bassiana did not repel blood foraging mosquitoes either in the laboratory or field. Conclusions This is the first time that an entomopathogenic fungus has been shown to reduce blood feeding of wild mosquitoes. This behaviour modification indicates that B. bassiana could potentially be a new mosquito control tool effective at reducing disease transmission, although further field work in areas with filariasis transmission should be carried out to verify this. In addition, work targeting malaria vector mosquitoes should be carried out to see if these mosquitoes manifest the same behaviour modification after infection with B. bassiana conidia. PMID:20843321

2010-01-01

303

Symbiotic control of mosquito borne disease  

PubMed Central

It is well accepted that the symbiotic relationships insects have established with several microorganisms have had a key role in their evolutionary success. Bacterial symbiosis is also prevalent in insects that are efficient disease vectors, and numerous studies have sought to decrypt the basic mechanisms of the host–symbiont relationships and develop ways to control vector borne diseases. ‘Symbiotic control’, a new multifaceted approach that uses symbiotic microorganisms to control insect pests or reduce vector competence, seems particularly promising. Three such approaches currently at the cutting edge are: (1) the disruption of microbial symbionts required by insect pests; (2) the manipulation of symbionts that can express anti-pathogen molecules within the host; and (3) the introduction of endogenous microbes that affect life-span and vector capacity of the new hosts in insect populations. This work reviews current knowledge on microbial symbiosis in mosquitoes that holds promise for development of symbiotic control for mosquito borne diseases. PMID:23265608

Ricci, Irene; Valzano, Matteo; Ulissi, Ulisse; Epis, Sara; Cappelli, Alessia; Favia, Guido

2012-01-01

304

PROSPECTS OF CUNINPV FOR MOSQUITO CONTROL  

Technology Transfer Automated Retrieval System (TEKTRAN)

Baculoviruses have been intensively investigated due to their potential as biological control agents for insects and because of their importance as gene expression vectors. Mosquito baculoviruses have been difficult if not impossible to transmit and therefore basic biological studies have been hind...

305

Novel flaviviruses from mosquitoes: mosquito-specific evolutionary lineages within the phylogenetic group of mosquito-borne flaviviruses.  

PubMed

Novel flaviviruses that are genetically related to pathogenic mosquito-borne flaviviruses (MBFV) have been isolated from mosquitoes in various geographical locations, including Finland. We isolated and characterized another novel virus of this group from Finnish mosquitoes collected in 2007, designated as Ilomantsi virus (ILOV). Unlike the MBFV that infect both vertebrates and mosquitoes, the MBFV-related viruses appear to be specific to mosquitoes similar to the insect-specific flaviviruses (ISFs). In this overview of MBFV-related viruses we conclude that they differ from the ISFs genetically and antigenically. Phylogenetic analyses separated the MBFV-related viruses isolated in Africa, the Middle East and South America from those isolated in Europe and Asia. Serological cross-reactions of MBFV-related viruses with other flaviviruses and their potential for vector-borne transmission require further characterization. The divergent MBFV-related viruses are probably significantly under sampled to date and provide new information on the variety, properties and evolution of vector-borne flaviviruses. PMID:25108382

Huhtamo, Eili; Cook, Shelley; Moureau, Gregory; Uzcátegui, Nathalie Y; Sironen, Tarja; Kuivanen, Suvi; Putkuri, Niina; Kurkela, Satu; Harbach, Ralph E; Firth, Andrew E; Vapalahti, Olli; Gould, Ernest A; de Lamballerie, Xavier

2014-09-01

306

Novel flaviviruses from mosquitoes: Mosquito-specific evolutionary lineages within the phylogenetic group of mosquito-borne flaviviruses  

PubMed Central

Novel flaviviruses that are genetically related to pathogenic mosquito-borne flaviviruses (MBFV) have been isolated from mosquitoes in various geographical locations, including Finland. We isolated and characterized another novel virus of this group from Finnish mosquitoes collected in 2007, designated as Ilomantsi virus (ILOV). Unlike the MBFV that infect both vertebrates and mosquitoes, the MBFV-related viruses appear to be specific to mosquitoes similar to the insect-specific flaviviruses (ISFs). In this overview of MBFV-related viruses we conclude that they differ from the ISFs genetically and antigenically. Phylogenetic analyses separated the MBFV-related viruses isolated in Africa, the Middle East and South America from those isolated in Europe and Asia. Serological cross-reactions of MBFV-related viruses with other flaviviruses and their potential for vector-borne transmission require further characterization. The divergent MBFV-related viruses are probably significantly under sampled to date and provide new information on the variety, properties and evolution of vector-borne flaviviruses. PMID:25108382

Huhtamo, Eili; Cook, Shelley; Moureau, Gregory; Uzcátegui, Nathalie Y.; Sironen, Tarja; Kuivanen, Suvi; Putkuri, Niina; Kurkela, Satu; Harbach, Ralph E.; Firth, Andrew E.; Vapalahti, Olli; Gould, Ernest A.; de Lamballerie, Xavier

2014-01-01

307

RIFT VALLEY FEVER: PREPARING FOR POTENTIAL NEW MOSQUITO-BORNE DISEASES IN THE U.S. WITH A VECTOR SURVEILLANCE SYSTEM  

Technology Transfer Automated Retrieval System (TEKTRAN)

In this symposium we have discussed four diseases that are emerging threats in the U.S., and it may be concluded that in our best defense knowing the vector is as important as knowing the disease. Rift Valley fever, Dengue, and JEE are but a few of the many emerging diseases that we can prepare for...

308

Nationwide inventory of mosquito biodiversity (Diptera: Culicidae) in Belgium, Europe.  

PubMed

To advance our restricted knowledge on mosquito biodiversity and distribution in Belgium, a national inventory started in 2007 (MODIRISK) based on a random selection of 936 collection points in three main environmental types: urban, rural and natural areas. Additionally, 64 sites were selected because of the risk of importing a vector or pathogen in these sites. Each site was sampled once between May and October 2007 and once in 2008 using Mosquito Magnet Liberty Plus traps. Diversity in pre-defined habitat types was calculated using three indices. The association between species and environmental types was assessed using a correspondence analysis. Twenty-three mosquito species belonging to traditionally recognized genera were found, including 21 indigenous and two exotic species. Highest species diversity (Simpson 0.765) and species richness (20 species) was observed in natural areas, although urban sites scored also well (Simpson 0.476, 16 species). Four clusters could be distinguished based on the correspondence analysis. The first one is related to human modified landscapes (such as urban, rural and industrial sites). A second is composed of species not associated with a specific habitat type, including the now widely distributed Anopheles plumbeus. A third group includes species commonly found in restored natural or bird migration areas, and a fourth cluster is composed of forest species. Outcomes of this study demonstrate the effectiveness of the designed sampling scheme and support the choice of the trap type. Obtained results of this first country-wide inventory of the Culicidae in Belgium may serve as a basis for risk assessment of emerging mosquito-borne diseases. PMID:22971463

Versteirt, V; Boyer, S; Damiens, D; De Clercq, E M; Dekoninck, W; Ducheyne, E; Grootaert, P; Garros, C; Hance, T; Hendrickx, G; Coosemans, M; Van Bortel, W

2013-04-01

309

Anopheles plumbeus (Diptera: Culicidae) in Europe: a mere nuisance mosquito or potential malaria  

E-print Network

Anopheles plumbeus (Diptera: Culicidae) in Europe: a mere nuisance mosquito or potential malaria vector? Schaffner et al. Schaffner et al. Malaria Journal 2012, 11:393 http mosquito or potential malaria vector? Francis Schaffner1* , Isabelle Thiéry2 , Christian Kaufmann1 , Agnès

Boyer, Edmond

310

Insecticide resistance in Culex pipiens quinquefasciatus and Aedes albopictus mosquitoes from La Réunion Island  

Microsoft Academic Search

Resistance to insecticides was monitored on Culex pipiens quinquefasciatus mosquitoes collected in twelve localities of La Réunion, a geographically isolated island of the Indian Ocean. This mosquito is of medical concern in the region as a known vector for filariasis and a potential vector for West Nile and Rift Valley Fever viruses. Our bioassays indicated the presence of resistance to

Michaël Luciano Tantely; Pablo Tortosa; Haoues Alout; Claire Berticat; Arnaud Berthomieu; Abdoul Rutee; Jean-Sébastien Dehecq; Patrick Makoundou; Pierrick Labbé; Nicole Pasteur; Mylène Weill

2010-01-01

311

Use of geographic information systems to depict and analyze mosquito population trends.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Mosquitoes transmit (vector) disease agents that cause malaria, yellow fever, dengue, West Nile fever, and encephalitis. Spread of these diseases is controlled by the management of mosquito population levels, changes in which are monitored in vector surveillance programs by the use of mechanical tr...

312

Differential gene expression in abdomens of the malaria vector mosquito, Anopheles gambiae, after sugar feeding, blood feeding and Plasmodium berghei infection  

PubMed Central

Background Large scale sequencing of cDNA libraries can provide profiles of genes expressed in an organism under defined biological and environmental circumstances. We have analyzed sequences of 4541 Expressed Sequence Tags (ESTs) from 3 different cDNA libraries created from abdomens from Plasmodium infection-susceptible adult female Anopheles gambiae. These libraries were made from sugar fed (S), rat blood fed (RB), and P. berghei-infected (IRB) mosquitoes at 30 hours after the blood meal, when most parasites would be transforming ookinetes or very early oocysts. Results The S, RB and IRB libraries contained 1727, 1145 and 1669 high quality ESTs, respectively, averaging 455 nucleotides (nt) in length. They assembled into 1975 consensus sequences – 567 contigs and 1408 singletons. Functional annotation was performed to annotate probable molecular functions of the gene products and the biological processes in which they function. Genes represented at high frequency in one or more of the libraries were subjected to digital Northern analysis and results on expression of 5 verified by qRT-PCR. Conclusion 13% of the 1965 ESTs showing identity to the A. gambiae genome sequence represent novel genes. These, together with untranslated regions (UTR) present on many of the ESTs, will inform further genome annotation. We have identified 23 genes encoding products likely to be involved in regulating the cellular oxidative environment and 25 insect immunity genes. We also identified 25 genes as being up or down regulated following blood feeding and/or feeding with P. berghei infected blood relative to their expression levels in sugar fed females. PMID:16712725

Dana, Ali N; Hillenmeyer, Maureen E; Lobo, Neil F; Kern, Marcia K; Romans, Patricia A; Collins, Frank H

2006-01-01

313

The Mosquito Melanization Response Is Implicated in Defense against the Entomopathogenic Fungus Beauveria bassiana  

PubMed Central

Mosquito immunity studies have focused mainly on characterizing immune effector mechanisms elicited against parasites, bacteria and more recently, viruses. However, those elicited against entomopathogenic fungi remain poorly understood, despite the ubiquitous nature of these microorganisms and their unique invasion route that bypasses the midgut epithelium, an important immune tissue and physical barrier. Here, we used the malaria vector Anopheles gambiae as a model to investigate the role of melanization, a potent immune effector mechanism of arthropods, in mosquito defense against the entomopathogenic fungus Beauveria bassiana, using in vivo functional genetic analysis and confocal microscopy. The temporal monitoring of fungal growth in mosquitoes injected with B. bassiana conidia showed that melanin eventually formed on all stages, including conidia, germ tubes and hyphae, except the single cell hyphal bodies. Nevertheless, melanin rarely aborted the growth of any of these stages and the mycelium continued growing despite being melanized. Silencing TEP1 and CLIPA8, key positive regulators of Plasmodium and bacterial melanization in A. gambiae, abolished completely melanin formation on hyphae but not on germinating conidia or germ tubes. The detection of a layer of hemocytes surrounding germinating conidia but not hyphae suggested that melanization of early fungal stages is cell-mediated while that of late stages is a humoral response dependent on TEP1 and CLIPA8. Microscopic analysis revealed specific association of TEP1 with surfaces of hyphae and the requirement of both, TEP1 and CLIPA8, for recruiting phenoloxidase to these surfaces. Finally, fungal proliferation was more rapid in TEP1 and CLIPA8 knockdown mosquitoes which exhibited increased sensitivity to natural B. bassiana infections than controls. In sum, the mosquito melanization response retards significantly B. bassiana growth and dissemination, a finding that may be exploited to design transgenic fungi with more potent bio-control activities against mosquitoes. PMID:23166497

Osta, Mike A.

2012-01-01

314

Differential Expression of Salivary Proteins between Susceptible and Insecticide-Resistant Mosquitoes of Culex quinquefasciatus  

PubMed Central

Background The Culex quinquefasciatus mosquito, a major pest and vector of filariasis and arboviruses in the tropics, has developed multiple resistance mechanisms to the main insecticide classes currently available in public health. Among them, the insensitive acetylcholinesterase (ace-1R allele) is widespread worldwide and confers cross-resistance to organophosphates and carbamates. Fortunately, in an insecticide-free environment, this mutation is associated with a severe genetic cost that can affect various life history traits. Salivary proteins are directly involved in human-vector contact during biting and therefore play a key role in pathogen transmission. Methods and Results An original proteomic approach combining 2D-electrophoresis and mass spectrometry was adopted to compare the salivary expression profiles of two strains of C. quinquefasciatus with the same genetic background but carrying either the ace-1R resistance allele or not (wild type). Four salivary proteins were differentially expressed (>2 fold, P<0.05) in susceptible (SLAB) and resistant (SR) mosquito strains. Protein identification indicated that the D7 long form, a major salivary protein involved in blood feeding success, presented lower expression in the resistant strain than the susceptible strain. In contrast, three other proteins, including metabolic enzymes (endoplasmin, triosephosphate isomerase) were significantly over-expressed in the salivary gland of ace-1R resistant mosquitoes. A catalogue of 67 salivary proteins of C. quinquefasciatus sialotranscriptome was also identified and described. Conclusion The “resistance”-dependent expression of salivary proteins in mosquitoes may have considerable impact on biting behaviour and hence on the capacity to transmit parasites/viruses to humans. The behaviour of susceptible and insecticide-resistant mosquitoes in the presence of vertebrate hosts and its impact on pathogen transmission urgently requires further investigation. Data Deposition All proteomic data will be deposited at PRIDE (http://www.ebi.ac.uk/pride/). PMID:21448269

Rossignol, Marie; Demettre, Edith; Seveno, Martial; Remoue, Franck; Corbel, Vincent

2011-01-01

315

Mosquito-Disseminated Pyriproxyfen Yields High Breeding-Site Coverage and Boosts Juvenile Mosquito Mortality at the Neighborhood Scale  

PubMed Central

Background Mosquito-borne pathogens pose major public health challenges worldwide. With vaccines or effective drugs still unavailable for most such pathogens, disease prevention heavily relies on vector control. To date, however, mosquito control has proven difficult, with low breeding-site coverage during control campaigns identified as a major drawback. A novel tactic exploits the egg-laying behavior of mosquitoes to have them disseminate tiny particles of a potent larvicide, pyriproxyfen (PPF), from resting to breeding sites, thus improving coverage. This approach has yielded promising results at small spatial scales, but its wider applicability remains unclear. Methodology/Principal Findings We conducted a four-month trial within a 20-month study to investigate mosquito-driven dissemination of PPF dust-particles from 100 ‘dissemination stations’ (DSs) deployed in a 7-ha sub-area to surveillance dwellings and sentinel breeding sites (SBSs) distributed over an urban neighborhood of about 50 ha. We assessed the impact of the trial by measuring juvenile mosquito mortality and adult mosquito emergence in each SBS-month. Using data from 1,075 dwelling-months, 2,988 SBS-months, and 29,922 individual mosquitoes, we show that mosquito-disseminated PPF yielded high coverage of dwellings (up to 100%) and SBSs (up to 94.3%). Juvenile mosquito mortality in SBSs (about 4% at baseline) increased by over one order of magnitude during PPF dissemination (about 75%). This led to a >10-fold decrease of adult mosquito emergence from SBSs, from approximately 1,000–3,000 adults/month before to about 100 adults/month during PPF dissemination. Conclusions/Significance By expanding breeding-site coverage and boosting juvenile mosquito mortality, a strategy based on mosquito-disseminated PPF has potential to substantially enhance mosquito control. Sharp declines in adult mosquito emergence can lower vector/host ratios, reducing the risk of disease outbreaks. This approach is a very promising complement to current and novel mosquito control strategies; it will probably be especially relevant for the control of urban disease vectors, such as Aedes and Culex species, that often cause large epidemics. PMID:25849040

Abad-Franch, Fernando; Zamora-Perea, Elvira; Ferraz, Gonçalo; Padilla-Torres, Samael D.; Luz, Sérgio L. B.

2015-01-01

316

Malaria Mosquitoes Attracted by Fatal Fungus  

PubMed Central

Insect-killing fungi such as Beauveria bassiana are being evaluated as possible active ingredients for use in novel biopesticides against mosquito vectors that transmit malaria. Fungal pathogens infect through contact and so applications of spores to surfaces such as walls, nets, or other resting sites provide possible routes to infect mosquitoes in and around domestic dwellings. However, some insects can detect and actively avoid fungal spores to reduce infection risk. If true for mosquitoes, such behavior could render the biopesticide approach ineffective. Here we find that the spores of B. bassiana are highly attractive to females of Anopheles stephensi, a major anopheline mosquito vector of human malaria in Asia. We further find that An. stephensi females are preferentially attracted to dead and dying caterpillars infected with B. bassiana, landing on them and subsequently becoming infected with the fungus. Females are also preferentially attracted to cloth sprayed with oil-formulated B. bassiana spores, with 95% of the attracted females becoming infected after a one-minute visit on the cloth. This is the first report of an insect being attracted to a lethal fungal pathogen. The exact mechanisms involved in this behavior remain unclear. Nonetheless, our results indicate that biopesticidal formulations comprising B. bassiana spores will be conducive to attraction and on-source visitation by malaria vectors. PMID:23658757

George, Justin; Jenkins, Nina E.; Blanford, Simon; Thomas, Matthew B.; Baker, Thomas C.

2013-01-01

317

Resistance Status of the Malaria Vector Mosquitoes, Anopheles stephensi and Anopheles subpictus Towards Adulticides and Larvicides in Arid and Semi-Arid Areas of India  

PubMed Central

Susceptibility studies of malaria vectors Anopheles stephensi Liston (Diptera: Culicidae) and An. subpictus Grassi collected during 2004–2007 from various locations of Arid and Semi-Arid Zone of India were conducted by adulticide bioassay of DDT, malathion, deltamethrin and larvicide bioassay of fenthion, temephos, chlorpyriphos and malathion using diagnostic doses. Both species from all locations exhibited variable resistance to DDT and malathion from majority of location. Adults of both the species were susceptible to Deltamethrin. Larvae of both the Anopheline species showed some evidence of resistance to chlorpyriphos followed by fenthion whereas susceptible to temephos and malathion. PMID:21870971

Tikar, S. N.; Mendki, M.J.; Sharma, A. K.; Sukumaran, D.; Veer, Vijay; Prakash, Shri; Parashar, B. D.

2011-01-01

318

Ecology of Larval Mosquitoes, with Special Reference to Anopheles arabiensis (Diptera: Culcidae) in Market-Garden Wells in  

E-print Network

Ecology of Larval Mosquitoes, with Special Reference to Anopheles arabiensis (Diptera: Culcidae-garden wells that provide permanent sites for mosquito larvae, in particular Anopheles arabiensis Patton, the major vector of malaria. A study of the bioecology of mosquito larvae was conducted over 1 yr

Thioulouse, Jean

319

The Fat Body Transcriptomes of the Yellow Fever Mosquito Aedes aegypti, Pre-and Post-Blood Meal  

E-print Network

The Fat Body Transcriptomes of the Yellow Fever Mosquito Aedes aegypti, Pre- and Post- Blood Meal Transcriptomes of the Yellow Fever Mosquito Aedes aegypti, Pre- and Post- Blood Meal. PLoS ONE 6(7): e22573. doi@nmsu.edu Introduction The yellow fever mosquito, Aedes aegypti, is the primary vector for dengue fever, several

Houde, Peter

320

Host feeding patterns of mosquitoes in a rural malaria-endemic region in hainan island, china.  

PubMed

Malaria is endemic in Wangxia Village of Hainan Island. In this area little is known about the host seeking behavior and feeding habit of mosquitoes. Three sites representing the most common habitat types in the village were selected to study the host seeking behavior and feeding habit of mosquitoes. Of the total 9 species belonging to 4 genera (Armigeres, Culex, Aedes, and Anopheles) collected in Wangxia Village, Culex tritaeniorhynchus and Cx. pipiens quinquefasciatus were the most commonly collected species. Armigeres subalbatus and Anopheles sinensis were moderately common species. Blood meal analysis confirmed that Cx. tritaeniorhynchus and Cx. p. quinquefasciatus fed on multiple hosts, mainly poultry but occasionally other animals. Anopheles sinensis, a vector of malaria, fed predominately on cattle hosts, followed by humans. Anopheles maculatus and An. barbirostris fed on both humans and domestic animals. Our results indicate that most mosquitoes in this area preferred domestic animals over humans and showed a tendency to feed on multiple hosts within the same gonotrophic cycle. Therefore, the potential role of domestic animals in arbovirus transmission should be evaluated as part of a strategy for controlling mosquito-borne diseases in this region. PMID:25843138

Guo, Xiao-Xia; Li, Chun-Xiao; Wang, Gang; Zheng, Zhong; Dong, Yan-De; Zhang, Ying-Mei; Xing, Dan; Zhao, Tong-Yan

2014-12-01

321

Toxicity of saponin isolated from Gymnema sylvestre R. Br. (Asclepiadaceae) against Culex tritaeniorhynchus Giles (Diptera: Culicidae) Japanese encephalitis vector mosquito in India.  

PubMed

To determine the larvicidal activity of various extracts of Gymnema sylvestre against the Japanese Encephalitis vector, Culex tritaeniorynchus in Tamilnadu, India. To identify the active principle present in the promising fraction obtained in Chlorofom:Methanol extract of Fraction 2. The G. sylvestre leaf extracts were tested, employing WHO procedure against fourth instar larvae of C. tritaeniorhynchus and the larval mortalities were recorded at various concentrations (6.25, 12.5, 25.0, 50 and 100 µg/mL); the 24h LC50 values of the G. Sylvestre leaf extracts were determined following Probit analysis. It was noteworthy that treatment level 100 µg/mL exhibited highest mortality rates for the three different crude extracts and was significantly different from the mean mortalities recorded for the other concentrations. The LC50 values of 34.756 µg/mL (24.475-51.41), 31.351 µg/mL (20.634-47.043) and 28.577 µg/mL (25.159-32.308) were calculated for acetone, chloroform and methanol extract with the chi-square values of 10.301, 31.351 and 4.093 respectively. The present investigation proved that G. Sylvestre could be possibly utilized as an important component in the Vector Control Program. PMID:23152320

Elumalai, Kupppusamy; Dhanasekaran, Shanmugan; Krishnappa, Kaliamoorthy

2012-12-01

322

Dengue Vectors and their Spatial Distribution  

PubMed Central

The distribution of dengue vectors, Ae. aegypti and Ae. albopictus, is affected by climatic factors. In addition, since their life cycles are well adapted to the human environment, environmental changes resulting from human activity such as urbanization exert a great impact on vector distribution. The different responses of Ae. aegypti and Ae albopictus to various environments result in a difference in spatial distribution along north-south and urban-rural gradients, and between the indoors and outdoors. In the north-south gradient, climate associated with survival is an important factor in spatial distribution. In the urban-rural gradient, different distribution reflects a difference in adult niches and is modified by geographic and human factors. The direct response of the two species to the environment around houses is related to different spatial distribution indoors and outdoors. Dengue viruses circulate mainly between human and vector mosquitoes, and the vector presence is a limiting factor of transmission. Therefore, spatial distribution of dengue vectors is a significant concern in the epidemiology of the disease. Current technologies such as GIS, satellite imagery and statistical models allow researchers to predict the spatial distribution of vectors in the changing environment. Although it is difficult to confirm the actual effect of environmental and climate changes on vector abundance and vector-borne diseases, environmental changes caused by humans and human behavioral changes due to climate change can be expected to exert an impact on dengue vectors. Longitudinal monitoring of dengue vectors and viruses is therefore necessary. PMID:22500133

Higa, Yukiko

2011-01-01

323

In silico models for predicting vector control chemicals targeting Aedes aegypti  

PubMed Central

Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the ‘low profitability’ of the vector control market. Fortunately, the use of quantitative structure–activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances. PMID:25275884

Devillers, J.; Lagneau, C.; Lattes, A.; Garrigues, J.C.; Clémenté, M.M.; Yébakima, A.

2014-01-01

324

In silico models for predicting vector control chemicals targeting Aedes aegypti.  

PubMed

Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the 'low profitability' of the vector control market. Fortunately, the use of quantitative structure-activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances. PMID:25275884

Devillers, J; Lagneau, C; Lattes, A; Garrigues, J C; Clémenté, M M; Yébakima, A

2014-01-01

325

Mosquito infection responses to developing filarial worms.  

PubMed

Human lymphatic filariasis is a mosquito-vectored disease caused by the nematode parasites Wuchereria bancrofti, Brugia malayi and Brugia timori. These are relatively large roundworms that can cause considerable damage in compatible mosquito vectors. In order to assess how mosquitoes respond to infection in compatible mosquito-filarial worm associations, microarray analysis was used to evaluate transcriptome changes in Aedes aegypti at various times during B. malayi development. Changes in transcript abundance in response to the different stages of B. malayi infection were diverse. At the early stages of midgut and thoracic muscle cell penetration, a greater number of genes were repressed compared to those that were induced (20 vs. 8). The non-feeding, intracellular first-stage larvae elicited few differences, with 4 transcripts showing an increased and 9 a decreased abundance relative to controls. Several cecropin transcripts increased in abundance after parasites molted to second-stage larvae. However, the greatest number of transcripts changed in abundance after larvae molted to third-stage larvae and migrated to the head and proboscis (120 induced, 38 repressed), including a large number of putative, immunity-related genes (approximately 13% of genes with predicted functions). To test whether the innate immune system of mosquitoes was capable of modulating permissiveness to the parasite, we activated the Toll and Imd pathway controlled rel family transcription factors Rel1 and Rel2 (by RNA interference knockdown of the pathway's negative regulators Cactus and Caspar) during the early stages of infection with B. malayi. The activation of either of these immune signaling pathways, or knockdown of the Toll pathway, did not affect B. malayi in Ae. aegypti. The possibility of LF parasites evading mosquito immune responses during successful development is discussed. PMID:19823571

Erickson, Sara M; Xi, Zhiyong; Mayhew, George F; Ramirez, Jose L; Aliota, Matthew T; Christensen, Bruce M; Dimopoulos, George

2009-01-01

326

Green Nanoparticles for Mosquito Control  

PubMed Central

Here, we have used the green method for synthesis of silver and gold nanoparticles. In the present study the silver (Ag) and gold (Au) nanoparticles (NPs) were synthesized by using the aqueous bark extract of Indian spice dalchini (Cinnamomum zeylanicum) (C. zyelanicum or C. verum J. Presl). Additionally, we have used these synthesized nanoparticles for mosquito control. The larvicidal activity has been tested against the malaria vector Anopheles stephensi and filariasis vector Culex quinquefasciatus. The results were obtained using UV-visible spectrophotometer and the images were recorded with a transmission electron microscope (TEM). The efficacy tests were then performed at different concentrations and varying numbers of hours by probit analysis. The synthesized AgNPs were in spherical shape and average sizes (11.77?nm AgNPs and 46.48?nm AuNPs). The larvae of An. stephensi were found highly susceptible to the synthesized AgNPs and AuNPs than the Cx. quinquefasciatus. These results suggest that the C. zeylanicum synthesized silver and gold nanoparticles have the potential to be used as an ideal ecofriendly approach for the control of mosquito. PMID:25243210

Soni, Namita; Prakash, Soam

2014-01-01

327

The roles of serpins in mosquito immunology and physiology  

PubMed Central

In vector-borne diseases, the complex interplay between pathogen and its vector’s immune system determines the outcome of infection and therefore disease transmission. Serpins have been shown in many animals to be key regulators of innate immune reactions. Their control over regulatory proteolytic cascades ultimately decides whether the recognition of a pathogen will lead to an appropriate immune response. In mosquitoes, serpins (SRPNs) regulate the activation of prophenoloxidase and thus melanization, contribute to malaria parasite lysis, and likely Toll pathway activation. Additionally, in culicine mosquitoes, SRPNs are able to regulate hemostasis in the vertebrate host, suggesting a crucial role during bloodfeeding. This review summarizes the annotation, transcriptional regulation, and current knowledge of SRPN function in the three mosquito species for which the complete genome sequence is available. Additionally, we give a brief overview of how SRPNs may be used to prevent transmission of vector-borne diseases. PMID:22960307

Gulley, Melissa M.; Zhang, Xin; Michel, Kristin

2012-01-01

328

Insecticide exposure impacts vector-parasite interactions in insecticide-resistant malaria vectors.  

PubMed

Currently, there is a strong trend towards increasing insecticide-based vector control coverage in malaria endemic countries. The ecological consequence of insecticide applications has been mainly studied regarding the selection of resistance mechanisms; however, little is known about their impact on vector competence in mosquitoes responsible for malaria transmission. As they have limited toxicity to mosquitoes owing to the selection of resistance mechanisms, insecticides may also interact with pathogens developing in mosquitoes. In this study, we explored the impact of insecticide exposure on Plasmodium falciparum development in insecticide-resistant colonies of Anopheles gambiae s.s., homozygous for the ace-1 G119S mutation (Acerkis) or the kdr L1014F mutation (Kdrkis). Exposure to bendiocarb insecticide reduced the prevalence and intensity of P. falciparum oocysts developing in the infected midgut of the Acerkis strain, whereas exposure to dichlorodiphenyltrichloroethane reduced only the prevalence of P. falciparum infection in the Kdrkis strain. Thus, insecticide resistance leads to a selective pressure of insecticides on Plasmodium parasites, providing, to our knowledge, the first evidence of genotype by environment interactions on vector competence in a natural Anopheles-Plasmodium combination. Insecticide applications would affect the transmission of malaria in spite of resistance and would reduce to some degree the impact of insecticide resistance on malaria control interventions. PMID:24850924

Alout, Haoues; Djègbè, Innocent; Chandre, Fabrice; Djogbénou, Luc Salako; Dabiré, Roch Kounbobr; Corbel, Vincent; Cohuet, Anna

2014-07-01

329

Amazonian malaria: Asymptomatic human reservoirs, diagnostic challenges, environmentally-driven changes in mosquito vector populations, and the mandate for sustainable control strategies  

PubMed Central

Across the Americas and the Caribbean, nearly 561,000 slide-confirmed malaria infections were reported officially in 2008. The nine Amazonian countries accounted for 89% of these infections; Brazil and Peru alone contributed 56% and 7% of them, respectively. Local populations of the relatively neglected parasite P. vivax, which currently accounts for 77% of the regional malaria burden, are extremely diverse genetically and geographically structured. At a time when malaria elimination is placed on the public health agenda of several endemic countries, it remains unclear why malaria proved so difficult to control in areas of relatively low levels of transmission such as the Amazon Basin. We hypothesize that asymptomatic parasite carriage and massive environmental changes that affect vector abundance and behavior are major contributors to malaria transmission in epidemiologically diverse areas across the Amazon Basin. Here we review available data supporting this hypothesis and discuss their implications for current and future malaria intervention policies in the region. Given that locally generated scientific evidence is urgently required to support malaria control interventions in Amazonia, we briefly describe the aims of our current field-oriented malaria research in rural villages and gold-mining enclaves in Peru and a recently opened agricultural settlement in Brazil. PMID:22015425

da Silva-Nunes, Mônica; Moreno, Marta; Conn, Jan E.; Gamboa, Dionicia; Abeles, Shira; Vinetz, Joseph M.; Ferreira, Marcelo U.

2012-01-01

330

Vector competence of geographic strains of Aedes albopictus and Aedes polynesiensis and certain other Aedes (Stegomyia) mosquitoes for Ross River virus.  

PubMed

The vector competence of geographic strains of Aedes albopictus and Ae. polynesiensis and Fiji strains of Ae. pseudoscutellaris and Ae. aegypti was assessed for Ross River (RR) virus, the etiologic agent of epidemic polyarthritis. Strains of Ae. polynesiensis from Fiji, Rarotonga, Somoa and Tahiti were the most susceptible to infection per os (MID50 less than or equal to 10(1.2) Vero cell plaque-forming units [PFU]/blood meal). Virus transmission data were variable, but all strains except the one from Fiji transmitted virus at 14 to 21 days postinfection. Shanghai and Hawaii Ae. albopictus and Fiji Ae. pseudoscutellaris were also highly susceptible to per os infection with RR virus (MID50 10(2.0) to 10(2.6) PFU). Singapore and Sri Lanka Ae. albopictus and Fiji Ae. aegypti were the least susceptible (MID50 10(4.0) to 10(4.2) PFU). With one exception, virus transmission rates for Ae. pseudoscutellaris and Ae. aegypti and the four strains of Ae. albopictus ranged from 52 to 100%. A total of 4,718 third- and fourth-instar larvae from the second gonotrophic cycle of potentially infected females were tested for RR virus in 39 pools. Infection rates in parental females ranged from 87 to 100% in Ae. albopictus, Ae. pseudoscutellaris and Ae. polynesiensis and 40 to 48% in Ae. aegypti. Virus was not isolated from larval progeny. PMID:2849637

Mitchell, C J; Gubler, D J

1987-06-01

331

Complex effects of temperature on mosquito immune function  

PubMed Central

Over the last 20 years, ecological immunology has provided much insight into how environmental factors shape host immunity and host–parasite interactions. Currently, the application of this thinking to the study of mosquito immunology has been limited. Mechanistic investigations are nearly always conducted under one set of conditions, yet vectors and parasites associate in a variable world. We highlight how environmental temperature shapes cellular and humoral immune responses (melanization, phagocytosis and transcription of immune genes) in the malaria vector, Anopheles stephensi. Nitric oxide synthase expression peaked at 30°C, cecropin expression showed no main effect of temperature and humoral melanization, and phagocytosis and defensin expression peaked around 18°C. Further, immune responses did not simply scale with temperature, but showed complex interactions between temperature, time and nature of immune challenge. Thus, immune patterns observed under one set of conditions provide little basis for predicting patterns under even marginally different conditions. These quantitative and qualitative effects of temperature have largely been overlooked in vector biology but have significant implications for extrapolating natural/transgenic resistance mechanisms from laboratory to field and for the efficacy of various vector control tools. PMID:22593107

Murdock, C. C.; Paaijmans, Krijn P.; Bell, Andrew S.; King, Jonas G.; Hillyer, Julián F.; Read, Andrew F.; Thomas, Matthew B.

2012-01-01

332

Title: Exploring Mosquito Larval Immunity upon Exposure to Larvicidal Bacillus Sphaericus  

E-print Network

1 of 2 Title: Exploring Mosquito Larval Immunity upon Exposure to Larvicidal Bacillus Sphaericus interactions among mosquito gut microbiota, Plasmodium, and host immunity in the context of gut microenvironment. Mosquito immunity studies have been mainly focusing on the adults. Larva-pathogen interaction

Johnson, Eric E.

333

US Green Building Council Keys Branch Presents: Designing Mosquito Free Cisterns  

E-print Network

US Green Building Council Keys Branch Presents: Designing Mosquito Free Cisterns For Contractors from mosquito development, and the history of cisterns in the City of Key West and facts about, FGBC Certifying Agent, LEED BD+C **MAIN PRESENTATION ­ CISTERN MOSQUITO MITIGATION** By Michael Doyle

Watson, Craig A.

334

Immature mosquitoes associated with urban parklands: implications for water and mosquito management.  

PubMed

The aim of the present study was to compare 2 urban habitat types: pools artificially filled with water from damaged or leaking water pipes (AF) and pools naturally filled by rainwater (NF), with regard to their favorability as breeding sites for mosquitoes. Two study areas were analyzed, 1 for 5 months and the other for 9 months, covering the whole period when AF pools contained water. The AF pools held water during the entire study, and showed lower fluctuations in surface area than NF pools. The AF pools showed higher levels of total mosquitoes and of stagnant-water mosquitoes. The floodwater mosquitoes were numerically (but not significantly) more abundant in NF pools. Nine mosquito species were identified. Habitat type, temperature, and season were significant in explaining the variability in species composition according to the canonical correspondence analysis. The most abundant species were Ochlerotatus albifasciatus (= Aedes albifasciatus, predominantly in NF pools), Culex dolosus, and Cx. pipiens (mainly in AF pools). The latter 2 species differed in their temporal dynamics, with Cx. dolosus associated with lower temperatures and Cx. pipiens with higher temperatures. Overall, the results indicate that although both habitat types harbored immature mosquitoes, the AF pools were more favorable than co-occurring rain pools. Easy-to-implement management actions such as the design of adequate drainage systems and the fast repair of broken pipes will be helpful to reduce the risk of human illness associated with mosquitoes in urban green areas. PMID:23687852

Quiroga, Laura; Fischer, Sylvia; Schweigmann, Nicolás

2013-03-01

335

Landing response of Aedes (Stegomyia) polynesiensis mosquitoes to coloured targets.  

PubMed

Aedes polynesiensis Marks (Diptera: Culicidae) is the primary vector of lymphatic filariasis (LF) in the island countries and territories of the South Pacific. In the development of a novel control tool, the response of Ae. polynesiensis to six different colours (three solid fabrics, two patterned fabrics and a plastic tarp) was measured using a digital photographic system. Adult mosquitoes were placed into an environmental chamber and allowed to choose between a white target and one of six experimental targets. Mosquito landing frequency and landing duration were calculated. Adult female Ae. polynesiensis preferred all of the experimental targets to the white control target. Mosquito landing frequency was highest for the solid targets (black, navy blue and red) followed in turn by the two colour pattern targets and the polyethylene target. Mosquito landing duration was greater for experimental targets when compared with white control targets. Mosquito landing frequencies did not change over time during the course of the assay. The response of male Ae. polynesiensis was also measured when exposed to a 100% cotton black target. Male mosquitoes preferred the black target to the white control target, although at levels lower than that observed in female mosquitoes. The results suggest that future investigations evaluating the visual responses of Ae. polynesiensis mosquitoes are warranted, with a special emphasis on semi-field and field-based experiments. PMID:23336712

Chambers, E W; Bossin, H C; Ritchie, S A; Russell, R C; Dobson, S L

2013-09-01

336

Non-Genetic Determinants of Mosquito Competence for Malaria Parasites  

PubMed Central

Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies. PMID:23818841

Lefèvre, Thierry; Vantaux, Amélie; Dabiré, Kounbobr R.; Mouline, Karine; Cohuet, Anna

2013-01-01

337

Non-genetic determinants of mosquito competence for malaria parasites.  

PubMed

Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies. PMID:23818841

Lefèvre, Thierry; Vantaux, Amélie; Dabiré, Kounbobr R; Mouline, Karine; Cohuet, Anna

2013-01-01

338

Dry season refugia for anopheline larvae and mapping of the seasonal distribution in mosquito larval habitats in Kandi, northeastern Benin  

PubMed Central

Background The dynamics of mosquito populations depends on availability of suitable surface water for oviposition. It is well known that suitable management of mosquito larval habitats in the sub-Saharan countries, particularly during droughts, could help to suppress vector densities and malaria transmission. We conducted a field survey to investigate the spatial and seasonal distribution of mosquito larval habitats and identify drought-refugia for anopheline larvae. Methods A GIS approach was used to identify, geo-reference and follow up longitudinally from May 2012 to May 2013, all mosquito breeding sites in two rural sites (Yondarou and Thui), one urban (Kossarou), and one peri-urban (Pèdè) site at Kandi, a municipality in northeastern Benin. In Kandi, droughts are excessive with no rain for nearly six months and a lot of sunshine. A comprehensive record of mosquito larval habitats was conducted periodically in all sites for the identification of drought-refugia of anopheline larval stages. With geospatialisation data, seasonal larval distribution maps were generated for each study site with the software ArcGIS version 10.2. Results Overall, 187 mosquito breeding sites were identified of which 29.95% were recorded during drought. In rural, peri-urban and urban sites, most of the drought-refugia of anopheline larvae were domestic in nature (61.54%). Moreover, in rural settings, anopheline larvae were also sampled in cisterns and wells (25% of larval habitats sampled during drought in Yondarou and 20% in Thui). The mapping showed a significant decrease in the spatial distribution of mosquito larval habitats in rural, peri-urban and urban sites during drought, except in Yondarou (rural) where the aridity did not seem to influence the distribution of larval habitats. Conclusion Our data showed that the main drought-refugia of anopheline larvae were of a domestic nature as well as wells and cisterns. A suitable management of mosquito larvae in sub-Saharan countries, particularly during droughts, should target such larval habitats for a meaningful impact on the dynamics of mosquito populations and malaria transmission. PMID:24684886

2014-01-01

339

Using remote sensing to map larval and adult populations of Anopheles hyrcanus (Diptera: Culicidae) a potential malaria vector in Southern France  

Microsoft Academic Search

BACKGROUND: Although malaria disappeared from southern France more than 60 years ago, suspicions of recent autochthonous transmission in the French Mediterranean coast support the idea that the area could still be subject to malaria transmission. The main potential vector of malaria in the Camargue area, the largest river delta in southern France, is the mosquito Anopheles hyrcanus (Diptera: Culicidae). In

Annelise Tran; Nicolas Ponçon; Céline Toty; Catherine Linard; Hélène Guis; Jean-Baptiste Ferré; Danny Lo Seen; François Roger; Stéphane de la Rocque; Didier Fontenille; Thierry Baldet

2008-01-01

340

Biological Control of Mosquitoes with Mermithids  

PubMed Central

Mermithid nematodes parasitizing mosquitoes have substantial potential for vector control. Studies on the physiological ecology of Romanomermis culicivorax have defined some of the general requirements of mermithid nematodes and produced general guidelines for the experimental release of mermithids in biological control. Experimental field studies have established the biological control potential of R. culicivorax, but further development and ulilization of this parasite will require a substantial commitlnent of scientific man-years and ftmds. PMID:19300759

Platzer, E. G.

1981-01-01

341

Odorant-Binding Proteins of the Malaria Mosquito Anopheles funestus sensu stricto  

Microsoft Academic Search

BackgroundThe mosquito Anopheles funestus is one of the major malaria vector species in sub-Saharan Africa. Olfaction is essential in guiding mosquito behaviors. Odorant-binding proteins (OBPs) are highly expressed in insect olfactory tissues and involved in the first step of odorant reception. An improved understanding of the function of malaria mosquito OBPs may contribute to identifying new attractants\\/repellents and assist in

Wei Xu; Anthony J. Cornel; Walter S. Leal; Andreas Hofmann

2010-01-01

342

Mosquitoes and mosquito repellents: a clinician's guide.  

PubMed

This paper is intended to provide the clinician with the detailed and scientific information needed to advise patients who seek safe and effective ways of preventing mosquito bites. For this review, clinical and analytical data were selected from peer-reviewed research studies and review articles, case reports, entomology texts and journals, and government and industry publications. Relevant information was identified through a search of the MEDLINE database, the World Wide Web, the Mosquito-L electronic mailing list, and the Extension Toxicology Network database; selected U.S. Army, U.S. Environmental Protection Agency, and U.S. Department of Agriculture publications were also reviewed. N,N-diethyl-3-methylbenzamide (DEET) is the most effective, and best studied, insect repellent currently on the market. This substance has a remarkable safety profile after 40 years of worldwide use, but toxic reactions can occur (usually when the product is misused). When DEET-based repellents are applied in combination with permethrin-treated clothing, protection against bites of nearly 100% can be achieved. Plant-based repellents are generally less effective than DEET-based products. Ultrasonic devices, outdoor bug "zappers," and bat houses are not effective against mosquitoes. Highly sensitive persons may want to take oral antihistamines to minimize cutaneous reactions to mosquito bites. PMID:9634433

Fradin, M S

1998-06-01

343

Radiation biology of mosquitoes  

PubMed Central

There is currently renewed interest in assessing the feasibility of the sterile insect technique (SIT) to control African malaria vectors in designated areas. The SIT relies on the sterilization of males before mass release, with sterilization currently being achieved through the use of ionizing radiation. This paper reviews previous work on radiation sterilization of Anopheles mosquitoes. In general, the pupal stage was irradiated due to ease of handling compared to the adult stage. The dose-response curve between the induced sterility and log (dose) was shown to be sigmoid, and there was a marked species difference in radiation sensitivity. Mating competitiveness studies have generally been performed under laboratory conditions. The competitiveness of males irradiated at high doses was relatively poor, but with increasing ratios of sterile males, egg hatch could be lowered effectively. Males irradiated as pupae had a lower competitiveness compared to males irradiated as adults, but the use of partially-sterilizing doses has not been studied extensively. Methods to reduce somatic damage during the irradiation process as well as the use of other agents or techniques to induce sterility are discussed. It is concluded that the optimal radiation dose chosen for insects that are to be released during an SIT programme should ensure a balance between induced sterility of males and their field competitiveness, with competitiveness being determined under (semi-) field conditions. Self-contained 60Co research irradiators remain the most practical irradiators but these are likely to be replaced in the future by a new generation of high output X ray irradiators. PMID:19917076

Helinski, Michelle EH; Parker, Andrew G; Knols, Bart GJ

2009-01-01

344

Mosquito-Host Interactions during and after an Outbreak of Equine Viral Encephalitis in Eastern Panama  

PubMed Central

Mosquito blood meals provide information about the feeding habits and host preference of potential arthropod-borne disease vectors. Although mosquito-borne diseases are ubiquitous in the Neotropics, few studies in this region have assessed patterns of mosquito-host interactions, especially during actual disease outbreaks. Based on collections made during and after an outbreak of equine viral encephalitis, we identified the source of 338 blood meals from 10 species of mosquitoes from Aruza Abajo, a location in Darien province in eastern Panama. A PCR based method targeting three distinct mitochondrial targets and subsequent DNA sequencing was used in an effort to delineate vector-host relationships. At Aruza Abajo, large domesticated mammals dominated the assemblage of mosquito blood meals while wild bird and mammal species represented only a small portion of the blood meal pool. Most mosquito species fed on a variety of hosts; foraging index analysis indicates that eight of nine mosquito species utilize hosts at similar proportions while a stochastic model suggests dietary overlap among species was greater than would be expected by chance. The results from our null-model analysis of mosquito diet overlap are consistent with the hypothesis that in landscapes where large domestic animals dominate the local biomass, many mosquito species show little host specificity, and feed upon hosts in proportion to their biomass, which may have implications for the role of livestocking patterns in vector-borne disease ecology. PMID:24339965

Navia-Gine, Wayra G.; Loaiza, Jose R.; Miller, Matthew J.

2013-01-01

345

Malaria-induced changes in host odors enhance mosquito attraction  

PubMed Central

Vector-borne pathogens may alter traits of their primary hosts in ways that influence the frequency and nature of interactions between hosts and vectors. Previous work has reported enhanced mosquito attraction to host organisms infected with malaria parasites but did not address the mechanisms underlying such effects. Here we document malaria-induced changes in the odor profiles of infected mice (relative to healthy individuals) over the course of infection, as well as effects on the attractiveness of infected hosts to mosquito vectors. We observed enhanced mosquito attraction to infected mice during a key period after the subsidence of acute malaria symptoms, but during which mice remained highly infectious. This attraction corresponded to an overall elevation in the volatile emissions of infected mice observed during this period. Furthermore, data analyses—using discriminant analysis of principal components and random forest approaches—revealed clear differences in the composition of the volatile blends of infected and healthy individuals. Experimental manipulation of individual compounds that exhibited altered emission levels during the period when differential vector attraction was observed also elicited enhanced mosquito attraction, indicating that compounds being influenced by malaria infection status also mediate vector host-seeking behavior. These findings provide important insights into the cues that mediate vector attraction to hosts infected with transmissible stages of malaria parasites, as well as documenting characteristic changes in the odors of infected individuals that may have potential value as diagnostic biomarkers of infection. PMID:24982164

De Moraes, Consuelo M.; Stanczyk, Nina M.; Betz, Heike S.; Pulido, Hannier; Sim, Derek G.; Read, Andrew F.; Mescher, Mark C.

2014-01-01

346

A video clip of the biting midge Culicoides anophelis ingesting blood from an engorged Anopheles mosquito in Hainan, China  

PubMed Central

Background Biting midges are hematophagus ectoparasites of insects, humans and other animals. Culicoides (Trithicoides) anophelis Edwards1922 is a predator of engorged mosquitoes. Findings In a field trip of wild mosquito collections, C. anophelis was found on two Anopheles mosquitoes. One mosquito with a midge clinging onto its abdomen was caught on video demonstrating the act of the midge taking blood from the engorged mosquito Anopheles vagus. The midge C. anophelis has a broad host range. Documented in the literature, the midge has been found in various mosquito species in the genera Anopheles, Culex, Aedes and Armigeres. Conclusions A video clip was presented demonstrating a midge taking blood from an engorged mosquito. The host promiscuity of C. anophelis raises a concern about its potential as a mechanic or biological vector to spread viruses among mosquito populations. PMID:24499575

2013-01-01

347

16S rRNA Gene-Based Identification of Midgut Bacteria from Field-Caught Anopheles gambiae Sensu Lato and A. funestus Mosquitoes Reveals New Species Related to Known Insect Symbionts  

PubMed Central

Field-collected mosquitoes of the two main malaria vectors in Africa, Anopheles gambiae sensu lato and Anopheles funestus, were screened for their midgut bacterial contents. The midgut from each blood-fed mosquito was screened with two different detection pathways, one culture independent and one culture dependent. Bacterial species determination was achieved by sequence analysis of 16S rRNA genes. Altogether, 16 species from 14 genera were identified, 8 by each method. Interestingly, several of the bacteria identified are related to bacteria known to be symbionts in other insects. One isolate, Nocardia corynebacterioides, is a relative of the symbiont found in the vector for Chagas' disease that has been proven useful as a paratransgenic bacterium. Another isolate is a novel species within the ?-proteobacteria that could not be phylogenetically placed within any of the known orders in the class but is close to a group of insect symbionts. Bacteria representing three intracellular genera were identified, among them the first identifications of Anaplasma species from mosquitoes and a new mosquito-Spiroplasma association. The isolates will be further investigated for their suitability for a paratransgenic Anopheles mosquito. PMID:16269761

Lindh, Jenny M.; Terenius, Olle; Faye, Ingrid

2005-01-01

348

Cold storage of the northern house mosquito, Culex pipiens, in the absence of diapause  

Technology Transfer Automated Retrieval System (TEKTRAN)

One major obstacle in vector biology experimentation is the rearing of mosquitoes. Most mosquito colonies require substantial effort to maintain, including a blood meal at least once a month for optimal performance. While the induction of diapause can be used to reduce the amount of work required ...

349

Impact and joint action of decamethrin and permethrin and freshwater fishes on mosquitoes  

Microsoft Academic Search

To facilitate registration of some of these promising pyrethroids for vector control programs, studies are needed to gather information on their impact on the macroinvertebrates which coexist with the immature stages of mosquitoes. In addition, the toxic hazards of these materials have to be assessed on predatory and food fish species which may prevail in mosquito-breeding sources or found in

M. S. Mulla; H. A. Darwazeh; M. S. Dhillon

1981-01-01

350

Influence of biofuel crops on mosquito production and oviposition site selection  

E-print Network

Influence of biofuel crops on mosquito production and oviposition site selection E P H A N T U S J of biofuels production may cause unintended land-use changes and potentially alter ecosystem services and Miscanthus) biofuel crops on production and oviposition site selection by two vector mosquitoes, the yellow

Allan, Brian

351

The influence of malaria parasite genetic diversity and anaemia on mosquito feeding and fecundity  

E-print Network

The influence of malaria parasite genetic diversity and anaemia on mosquito feeding and fecundity H genetics and infection genetic diversity on the fecundity of mosquitoes carrying malaria parasites. The malaria vector Anopheles stephensi was infected with either of 2 different genotypes of the rodent malaria

Rivero, Ana

352

Application of Bifenthrin as a Barrier Spray for protection against mosquitoes near Arkansas rice fields.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Barrier spraying is an emerging practice used to control mosquito populations and vector-borne diseases. Talstar (a.i. bifenthrin), a pyrethroid, was the pesticide chosen for this study, because of its environmental persistence and efficacy against mosquitoes. In two separate test plots near Stutt...

353

Relative potency of various insecticides for use in ATSBs against mosquitoes and sand flies  

Technology Transfer Automated Retrieval System (TEKTRAN)

Mosquitoes and sand flies are important throughout the world as nuisance pests and vectors of a variety of human and livestock diseases. Control efforts are limited often to adulticide sprays and larvicides, however, environmental concerns restrict their use. Both mosquitoes and sand flies need to...

354

CULEX NIGRIPALPUS NUCLEOPOLYHEDROVIRUS (CUNINPV) INFECTIONS IN ADULT MOSQUITOES AND POSSIBLE MECHANISMS FOR DISPERSAL  

Technology Transfer Automated Retrieval System (TEKTRAN)

This report documents the first evidence for baculovirus infections (termed CuniNPV) in adult mosquitoes of Culex nigripalpus and Culex quinquefasciatus . These mosquito species are important vectors of St. Louis Encephalitis, Eastern Equine Encephalitis and West Nile Virus in the United States. ...

355

Species Composition of Bacterial Communities Influences Attraction of Mosquitoes to Experimental Plant Infusions  

Microsoft Academic Search

In the container habitats of immature mosquitoes, catabolism of plant matter and other organic detritus by microbial organisms produces metabolites that mediate the oviposition behavior of Aedes aegypti and Aedes albopictus. Public health agencies commonly use oviposition traps containing plant infusions for monitoring populations of these mosquito species, which are global vectors of dengue viruses. In laboratory experiments, gravid females

Loganathan Ponnusamy; Dawn M. Wesson; Consuelo Arellano; Coby Schal; Charles S. Apperson

2009-01-01

356

Composition of Human Skin Microbiota Affects Attractiveness to Malaria Mosquitoes  

PubMed Central

The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases. PMID:22216154

Verhulst, Niels O.; Qiu, Yu Tong; Beijleveld, Hans; Maliepaard, Chris; Knights, Dan; Schulz, Stefan; Berg-Lyons, Donna; Lauber, Christian L.; Verduijn, Willem; Haasnoot, Geert W.; Mumm, Roland; Bouwmeester, Harro J.; Claas, Frans H. J.; Dicke, Marcel; van Loon, Joop J. A.; Takken, Willem; Knight, Rob; Smallegange, Renate C.

2011-01-01

357

Unforeseen costs of cutting mosquito surveillance budgets.  

PubMed

A budget proposal to stop the U.S. Centers for Disease Control and Prevention (CDC) funding in surveillance and research for mosquito-borne diseases such as dengue and West Nile virus has the potential to leave the country ill-prepared to handle new emerging diseases and manage existing ones. In order to demonstrate the consequences of such a measure, if implemented, we evaluated the impact of delayed control responses to dengue epidemics (a likely scenario emerging from the proposed CDC budget cut) in an economically developed urban environment. We used a mathematical model to generate hypothetical scenarios of delayed response to a dengue introduction (a consequence of halted mosquito surveillance) in the City of Cairns, Queensland, Australia. We then coupled the results of such a model with mosquito surveillance and case management costs to estimate the cumulative costs of each response scenario. Our study shows that halting mosquito surveillance can increase the management costs of epidemics by up to an order of magnitude in comparison to a strategy with sustained surveillance and early case detection. Our analysis shows that the total costs of preparedness through surveillance are far lower than the ones needed to respond to the introduction of vector-borne pathogens, even without consideration of the cost in human lives and well-being. More specifically, our findings provide a science-based justification for the re-assessment of the current proposal to slash the budget of the CDC vector-borne diseases program, and emphasize the need for improved and sustainable systems for vector-borne disease surveillance. PMID:21049010

Vazquez-Prokopec, Gonzalo M; Chaves, Luis F; Ritchie, Scott A; Davis, Joe; Kitron, Uriel

2010-01-01

358

Host-feeding habits of Culex and other mosquitoes (Diptera: Culicidae) in the Borough of Queens in New York City, with characters and techniques for identification of Culex mosquitoes.  

PubMed

The host-feeding patterns of mosquitoes (n = 247) collected in the Borough of Queens in New York City in July and August 2000 were investigated using an indirect ELISA and a polymerase chain reaction (PCR)-heteroduplex assay. Culex pipiens L. and Cx. restuans Theobald fed primarily on birds, and their feeding habits support their implication as enzootic vectors of West Nile virus. Culex salinarius Coquillett and Coquillettidia perturbans (Walker) fed mainly on mammals, with fewer blood meals taken from birds, and these two species are potential bridge vectors of West Nile virus. Culex mosquitoes took blood meals (n = 54) from 11 different avian species. Only the northern cardinal (Cardinalis cardinalis), American robin (Turdus migratorius), and Brown-headed cow bird (MolIothrus ater) were fed upon by all three Culex species. Multiple blood feedings on avian hosts were detected in Cx. pipiens and Cx. restuans. Species identifications of Culex mosquitoes made using morphological characteristics were confirmed with a PCR assay that employed species-specific primers. All Cx. pipiens (n = 20) and Cx. salinarius (n = 10) specimens were correctly identified, but three (20%) of 15 Cx. restuans were misidentified as Cx. pipiens. PMID:12349862

Apperson, Charles S; Harrison, Bruce A; Unnasch, Thomas R; Hassan, Hassan K; Irby, William S; Savage, Harry M; Aspen, Stephen E; Watson, D Wesley; Rueda, Leopoldo M; Engber, Barry R; Nasci, Roger S

2002-09-01

359

Mosquito Control Around the Home  

E-print Network

. Mosquito fish can be found in other ponds, pet shops or bait stores. ? Use Bacillus thuringiensis israeliensis products such as Mosquito Dunks? to treat permanent water bodies to eliminate larvae. ? You can use oil treatments on the surface of standing...

Jackman, John A.; Olson, Jimmy K.

2003-03-17

360

Mosquito Problems after a Storm  

E-print Network

a flood. The first to arrive are the flood water mos- quitoes, which include the salt marsh (Aedes taeniorhynchus, Aedes sol- licitans) and pastureland mosquitoes (Psorophora columbiae, Psorophora cyanescens, Aedes vexans). These mosquito species...

Johnsen, Mark

2008-08-05

361

Aedes Mosquito Saliva Modulates Rift Valley Fever Virus Pathogenicity  

PubMed Central

Background Rift Valley fever (RVF) is a severe mosquito-borne disease affecting humans and domestic ruminants. Mosquito saliva contains compounds that counteract the hemostatic, inflammatory, and immune responses of the host. Modulation of these defensive responses may facilitate virus infection. Indeed, Aedes mosquito saliva played a crucial role in the vector's capacity to effectively transfer arboviruses such as the Cache Valley and West Nile viruses. The role of mosquito saliva in the transmission of Rift Valley fever virus (RVFV) has not been investigated. Objective Using a murine model, we explored the potential for mosquitoes to impact the course of RVF disease by determining whether differences in pathogenesis occurred in the presence or absence of mosquito saliva and salivary gland extract. Methods C57BL/6NRJ male mice were infected with the ZH548 strain of RVFV via intraperitoneal or intradermal route, or via bites from RVFV-exposed mosquitoes. The virus titers in mosquitoes and mouse organs were determined by plaque assays. Findings After intraperitoneal injection, RVFV infection primarily resulted in liver damage. In contrast, RVFV infection via intradermal injection caused both liver and neurological symptoms and this route best mimicked the natural infection by mosquitoes. Co-injections of RVFV with salivary gland extract or saliva via intradermal route increased the mortality rates of mice, as well as the virus titers measured in several organs and in the blood. Furthermore, the blood cell counts of infected mice were altered compared to those of uninfected mice. Interpretation Different routes of infection determine the pattern in which the virus spreads and the organs it targets. Aedes saliva significantly increases the pathogenicity of RVFV. PMID:23785528

Le Coupanec, Alain; Babin, Divya; Fiette, Laurence; Jouvion, Grégory; Ave, Patrick; Misse, Dorothee; Bouloy, Michèle; Choumet, Valerie

2013-01-01

362

UV light and urban pollution: bad cocktail for mosquitoes?  

PubMed

Mosquito breeding sites consist of water pools, which can either be large open areas or highly covered ponds with vegetation, thus with different light exposures combined with the presence in water of xenobiotics including polycyclic aromatic hydrocarbons (PAHs) generated by urban pollution. UV light and PAHs are abiotic factors known to both affect the mosquito insecticide resistance status. Nonetheless, their potential combined effects on the mosquito physiology have never been investigated. The present article aims at describing the effects of UV exposure alongside water contamination with two major PAH pollutants (fluoranthene and benzo[a]pyrene) on a laboratory population of the yellow fever mosquito Aedes aegypti. To evaluate the effects of PAH exposure and low energetic UV (UV-A) irradiation on mosquitoes, different parameters were measured including: (1) The PAH localization and its impact on cell mortality by fluorescent microscopy; (2) The detoxification capacities (cytochrome P450, glutathione-S-transferase, esterase); (3) The responses to oxidative stress (Reactive Oxygen Species-ROS) and (4) The tolerance of mosquito larvae to a bioinsecticide (Bacillus thuringiensis subsp. israelensis-Bti) and to five chemical insecticides (DDT, imidacloprid, permethrin, propoxur and temephos). Contrasting effects regarding mosquito cell mortality, detoxification and oxidative stress were observed as being dependent on the pollutant considered, despite the fact that the two PAHs belong to the same family. Moreover, UV is able to modify pollutant effects on mosquitoes, including tolerance to three insecticides (imidacloprid, propoxur and temephos), cell damage and response to oxidative stress. Taken together, our results suggest that UV and pollution, individually or in combination, are abiotic parameters that can affect the physiology and insecticide tolerance of mosquitoes; but the complexity of their direct effect and of their interaction will require further investigation to know in which condition they can affect the efficacy of insecticide-based vector control strategies in the field. PMID:24275062

Tetreau, Guillaume; Chandor-Proust, Alexia; Faucon, Frédéric; Stalinski, Renaud; Akhouayri, Idir; Prud'homme, Sophie M; Régent-Kloeckner, Myriam; Raveton, Muriel; Reynaud, Stéphane

2014-01-01

363

Climatic effects on mosquito abundance in Mediterranean wetlands  

PubMed Central

Background The impact of climate change on vector-borne diseases is highly controversial. One of the principal points of debate is whether or not climate influences mosquito abundance, a key factor in disease transmission. Methods To test this hypothesis, we analysed ten years of data (2003–2012) from biweekly surveys to assess inter-annual and seasonal relationships between the abundance of seven mosquito species known to be pathogen vectors (West Nile virus, Usutu virus, dirofilariasis and Plasmodium sp.) and several climatic variables in two wetlands in SW Spain. Results Within-season abundance patterns were related to climatic variables (i.e. temperature, rainfall, tide heights, relative humidity and photoperiod) that varied according to the mosquito species in question. Rainfall during winter months was positively related to Culex pipiens and Ochlerotatus detritus annual abundances. Annual maximum temperatures were non-linearly related to annual Cx. pipiens abundance, while annual mean temperatures were positively related to annual Ochlerotatus caspius abundance. Finally, we modelled shifts in mosquito abundances using the A2 and B2 temperature and rainfall climate change scenarios for the period 2011–2100. While Oc. caspius, an important anthropophilic species, may increase in abundance, no changes are expected for Cx. pipiens or the salt-marsh mosquito Oc. detritus. Conclusions Our results highlight that the effects of climate are species-specific, place-specific and non-linear and that linear approaches will therefore overestimate the effect of climate change on mosquito abundances at high temperatures. Climate warming does not necessarily lead to an increase in mosquito abundance in natural Mediterranean wetlands and will affect, above all, species such as Oc. caspius whose numbers are not closely linked to rainfall and are influenced, rather, by local tidal patterns and temperatures. The final impact of changes in vector abundance on disease frequency will depend on the direct and indirect effects of climate and other parameters related to pathogen amplification and spillover on humans and other vertebrates. PMID:25030527

2014-01-01

364

An overview of malaria transmission from the perspective of Amazon Anopheles vectors  

PubMed Central

In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence. PMID:25742262

Pimenta, Paulo FP; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana PM; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe AC; Oliveira, Giselle A; Campos, Keillen MM; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José BP; Barbosa, Maria GV; Lacerda, Marcus VG; Tadei, Wanderli P; Secundino, Nágila FC

2015-01-01

365

Malaria Parasite Development in the Mosquito and Infection of the Mammalian Host  

PubMed Central

Plasmodium sporozoites are the product of a complex developmental process in the mosquito vector and are destined to infect the mammalian liver. Attention has been drawn to the mosquito stages and preerythrocytic stages owing to recognition that these are bottlenecks in the parasite life cycle and that intervention at these stages can block transmission and prevent infection. Parasite progression in the Anopheles mosquito, sporozoite transmission to the mammalian host by mosquito bite, and subsequent infection of the liver are characterized by extensive migration of invasive stages, cell invasion, and developmental changes. Preparation for the liver phase in the mammalian host begins in the mosquito with an extensive reprogramming of the sporozoite to support efficient infection and survival. Here, we discuss what is known about the molecular and cellular basis of the developmental progression of parasites and their interactions with host tissues in the mosquito and during the early phase of mammalian infection. PMID:19575563

Aly, Ahmed S.I.; Vaughan, Ashley M.; Kappe, Stefan H.I.

2010-01-01

366

The cell biology of malaria infection of mosquito: advances and opportunities.  

PubMed

Recent reviews (Feachem et?al.; Alonso et?al.) have concluded that in order to have a sustainable impact on the global burden of malaria, it is essential that we knowingly reduce the global incidence of infected persons. To achieve this we must reduce the basic reproductive rate of the parasites to mosquitoes relative to the number of persons, the mosquito/human biting rate, the proportion of mosquitoes carrying infectious sporozoites, the daily survival rate of the infectious mosquito and the ability of malaria-infected persons to infect mosquito vectors. This paper focuses on our understanding of parasite biology underpinning the last of these terms: infection of the mosquito. The article attempts to highlight central issues that require further study to assist in the discovery of useful transmission-blocking measures. PMID:25557077

Sinden, R E

2015-04-01

367

Species composition and temporal distribution of mosquito populations in Ibadan, Southwestern Nigeria  

PubMed Central

Nigeria has a high burden of vector borne diseases such as malaria and lymphatic filariasis (LF). This study aimed to determine the species composition of mosquitoes in Ibadan, Southwest Nigeria as well as determine their role in malaria and LF transmission. Adult mosquitoes were collected by Pyrethrum Spray Catch (PSC) and identified and graded according to their abdominal conditions. The mosquitoes were dissected to determine the parity status and to check for microfilariae of Wuchereria bancrofti. The presence of circumsporozoite protein of Plasmodium falciparum was examined using ELISA. A total of 1600 mosquitoes were collected of which 31 (1.9%) were Anopheles gambiae s.l. while 1756 (98%) were Culex sp. None of the mosquitoes examined was positive for Plasmodium falciparum and Wuchereria bancrofti. The lack of adequate sanitary conditions in the area could be responsible for the large number of mosquitoes collected. Health education could help in sensitizing the inhabitants. PMID:25520960

Okorie, Patricia N.; Popoola, K.O.K.; Awobifa, Olayemi M.; Ibrahim, Kolade T.; Ademowo, George O.

2014-01-01

368

The Effect of Temperature on Anopheles Mosquito Population Dynamics and the Potential for Malaria Transmission  

PubMed Central

The parasites that cause malaria depend on Anopheles mosquitoes for transmission; because of this, mosquito population dynamics are a key determinant of malaria risk. Development and survival rates of both the Anopheles mosquitoes and the Plasmodium parasites that cause malaria depend on temperature, making this a potential driver of mosquito population dynamics and malaria transmission. We developed a temperature-dependent, stage-structured delayed differential equation model to better understand how climate determines risk. Including the full mosquito life cycle in the model reveals that the mosquito population abundance is more sensitive to temperature than previously thought because it is strongly influenced by the dynamics of the juvenile mosquito stages whose vital rates are also temperature-dependent. Additionally, the model predicts a peak in abundance of mosquitoes old enough to vector malaria at more accurate temperatures than previous models. Our results point to the importance of incorporating detailed vector biology into models for predicting the risk for vector borne diseases. PMID:24244467

Beck-Johnson, Lindsay M.; Nelson, William A.; Paaijmans, Krijn P.; Read, Andrew F.; Thomas, Matthew B.; Bjørnstad, Ottar N.

2013-01-01

369

British container breeding mosquitoes: the impact of urbanisation and climate change on community composition and phenology.  

PubMed

The proliferation of artificial container habitats in urban areas has benefitted urban adaptable mosquito species globally. In areas where mosquitoes transmit viruses and parasites, it can promote vector population productivity and fuel mosquito-borne disease outbreaks. In Britain, storage of water in garden water butts is increasing, potentially expanding mosquito larval habitats and influencing population dynamics and mosquito-human contact. Here we show that the community composition, abundance and phenology of mosquitoes breeding in experimental water butt containers were influenced by urbanisation. Mosquitoes in urban containers were less species-rich but present in significantly higher densities (100.4±21.3) per container than those in rural containers (77.7±15.1). Urban containers were dominated by Culex pipiens (a potential vector of West Nile Virus [WNV]) and appear to be increasingly exploited by Anopheles plumbeus (a human-biting potential WNV and malaria vector). Culex phenology was influenced by urban land use type, with peaks in larval abundances occurring earlier in urban than rural containers. Among other factors, this was associated with an urban heat island effect which raised urban air and water temperatures by 0.9°C and 1.2°C respectively. Further increases in domestic water storage, particularly in urban areas, in combination with climate changes will likely alter mosquito population dynamics in the UK. PMID:24759617

Townroe, Susannah; Callaghan, Amanda

2014-01-01

370

Constituents of the Essential Oil of Suregada zanzibariensis Leaves are Repellent to the Mosquito, Anopheles gambiae s.s.  

PubMed Central

In traditional African communities, repellent volatiles from certain plants generated by direct burning or by thermal expulsion have played an important role in protecting households against vectors of malaria and other diseases. Previous research on volatile constituents of plants has shown that some are good sources of potent mosquito repellents. In this bioprospecting initiative, the essential oil of leaves of the tree, Suregada zanzibariensis Verdc. (Angiospermae: Euphobiaceae) was tested against the mosquito, Anopheles gambiae s.s. Giles (Diptera: Culicidae) and found to be repellent. Gas chromatography (GC), GC-linked mass spectrometry (GC-MS) and, where possible, GC-co-injections with authentic compounds, led to the identification of about 34 compounds in the essential oil. About 56% of the constituents were terpenoid ketones, mostly methyl ketones. Phenylacetaldehyde (14.4%), artemisia ketone (10.1%), (1S)-(-)-verbenone (12.1%) and geranyl acetone (9.4%) were the main constituents. Apart from phenylacetaldehyde, repellent activities of the other main constituents were higher than that of the essential oil. The blends of the main constituents in proportions found in the essential oil were more repellent to An. gambiae s.s. than was the parent oil (p < 0.05), and the presence of artemisia ketone in the blend caused a significant increase in the repellency of the resulting blend. These results suggested that blends of some terpenoid ketones can serve as effective An. gambiae s.s. mosquito repellents. PMID:20569134

Innocent, Ester; Joseph, Cosam C.; Gikonyo, Nicholas K.; Nkunya, Mayunga H.H.; Hassanali, Ahmed

2010-01-01

371

Post Flood Alternatives Mosquito Flats  

E-print Network

Post Flood Alternatives for Mosquito Flats (an entirely amateur perspective) Douglas Jones 816 Park of problems in Mosquito Flats: ! As developed, this is a single-exit neighborhood. This never should have been the Normandy ­ Park Road intersection approached gridlock. ! The storm drains serving Mosquito flats are very

Jones, Douglas W.

372

Francisella tularensis subspecies holarctica occurs in Swedish mosquitoes, persists through the developmental stages of laboratory-infected mosquitoes and is transmissible during blood feeding.  

PubMed

In Sweden, mosquitoes are considered the major vectors of the bacterium Francisella tularensis subsp. holarctica, which causes tularaemia. The aim of this study was to investigate whether mosquitoes acquire the bacterium as aquatic larvae and transmit the disease as adults. Mosquitoes sampled in a Swedish area where tularaemia is endemic (Örebro) were positive for the presence of F. tularensis deoxyribonucleic acid throughout the summer. Presence of the clinically relevant F. tularensis subsp. holarctica was confirmed in 11 out of the 14 mosquito species sampled. Experiments performed using laboratory-reared Aedes aegypti confirmed that F. tularensis subsp. holarctica was transstadially maintained from orally infected larvae to adult mosquitoes and that 25% of the adults exposed as larvae were positive for the presence of F. tularensis-specific sequences for at least 2 weeks. In addition, we found that F. tularensis subsp. holarctica was transmitted to 58% of the adult mosquitoes feeding on diseased mice. In a small-scale in vivo transmission experiment with F. tularensis subsp. holarctica-positive adult mosquitoes and susceptible mice, none of the animals developed tularaemia. However, we confirmed that there was transmission of the bacterium to blood vials by mosquitoes that had been exposed to the bacterium in the larval stage. Taken together, these results provide evidence that mosquitoes play a role in disease transmission in part of Sweden where tularaemia recurs. PMID:24057273

Thelaus, J; Andersson, A; Broman, T; Bäckman, S; Granberg, M; Karlsson, L; Kuoppa, K; Larsson, E; Lundmark, E; Lundström, J O; Mathisen, P; Näslund, J; Schäfer, M; Wahab, T; Forsman, M

2014-01-01

373

Trapping of Rift Valley Fever (RVF) vectors using Light Emitting Diode (LED) CDC traps in two arboviral disease hot spots in Kenya  

Technology Transfer Automated Retrieval System (TEKTRAN)

Background: Mosquitoes’ response to artificial lights including color has been exploited in trap designs for improved sampling of mosquito vectors. Earlier studies suggest that mosquitoes are attracted to specific wavelengths of light and thus the need to refine techniques to increase mosquito captu...

374

Flavivirus-mosquito interactions.  

PubMed

The Flavivirus genus is in the family Flaviviridae and is comprised of more than 70 viruses. These viruses have a broad geographic range, circulating on every continent except Antarctica. Mosquito-borne flaviviruses, such as yellow fever virus, dengue virus serotypes 1-4, Japanese encephalitis virus, and West Nile virus are responsible for significant human morbidity and mortality in affected regions. This review focuses on what is known about flavivirus-mosquito interactions and presents key data collected from the field and laboratory-based molecular and ultrastructural evaluations. PMID:25421894

Huang, Yan-Jang S; Higgs, Stephen; Horne, Kate McElroy; Vanlandingham, Dana L

2014-11-01

375

Flavivirus-Mosquito Interactions  

PubMed Central

The Flavivirus genus is in the family Flaviviridae and is comprised of more than 70 viruses. These viruses have a broad geographic range, circulating on every continent except Antarctica. Mosquito-borne flaviviruses, such as yellow fever virus, dengue virus serotypes 1–4, Japanese encephalitis virus, and West Nile virus are responsible for significant human morbidity and mortality in affected regions. This review focuses on what is known about flavivirus-mosquito interactions and presents key data collected from the field and laboratory-based molecular and ultrastructural evaluations. PMID:25421894

Huang, Yan-Jang S.; Higgs, Stephen; Horne, Kate McElroy; Vanlandingham, Dana L.

2014-01-01

376

La Crosse virus in Aedes albopictus mosquitoes, Texas, USA, 2009.  

PubMed

We report the arthropod-borne pediatric encephalitic agent La Crosse virus in Aedes albopictus mosquitoes collected in Dallas County, Texas, USA, in August 2009. The presence of this virus in an invasive vector species within a region that lies outside the virus's historically recognized geographic range is of public health concern. PMID:20409384

Lambert, Amy J; Blair, Carol D; D'Anton, Mary; Ewing, Winnann; Harborth, Michelle; Seiferth, Robyn; Xiang, Jeannie; Lanciotti, Robert S

2010-05-01

377

Spectral sensitivity of the nocturnal mosquito, Culex quinquefasciatus  

Technology Transfer Automated Retrieval System (TEKTRAN)

The nocturnal mosquito, Culex quinquefasciatus,as a vector of West Nile virus is the target of many surveillance and control efforts. Surveillance of this species primarily consists of light traps baited with a variety of chemical lures. While much research has focused on optimization of the olfa...

378

Fauna of mosquito larvae (Diptera: Culicida) in Asir Provence, Kingdom of Saudi Arabia.  

PubMed

An entomological survey was undertaken for one year to update the mosquito fauna of Asir Region, Kingdom of Saudi Arabia. A total of 31 species of 8 genera were reported of which genus Culex (55%) was the most common. Most of collected larvae (59%) belonged to genus Culex (+ Lutzia) followed by Culiseta (26%), Anopheles (13%) and Aedine spp. (2%). Cx. pipiens (39%) and Cs. longiareolata (26.%) were generally the most abundant of all collected larvae. Of the Anopheles spp., An. dthali was common (40%), of Culex spp., Cx. pipiens was predominating (66%) and of Aedine spp., St. aegypti was predominating (71%). Four species: An. fluviatilis, Cx. mattinglyi, Cx. arbieeni and Cx. mimeticus were new reports in Asir Region and Cx. wigglesworthi recorded for the first time from the kingdom. Larvae were more common in low- and highlands than in the moderately altitude areas. In general all species prefer stagnant water but with the exception of Aedine larvae (altogether), the other species prefer presence of algae, vegetation and shade and absence of turbidity (except Culex spp.). A total of 98 different forms of association were reported of which 9 forms were common. All genera breed year round with peaks of abundance during spring for Anopheles spp. and Culex spp. and during winter for Aedine spp. and Cs. longiareolata. A complete list of mosquito fauna of Asir Region comprising 45 spp. was presented based on the present and previous surveys. The study concluded that the occurrence and prevalence of mosquito species mainly the disease vectors in Asir carry the thread of maintaining and transmission of several mosquito-borne diseases. PMID:24961023

Al Ashry, Hamdy A; Kenawy, Mohamed A; Shobrak, Mohammed

2014-04-01

379

Avian malaria prevalence and mosquito abundance in the Western Cape, South Africa  

PubMed Central

Background The close relationship between vector-borne diseases and their environment is well documented, especially for diseases with water-dependent vectors such as avian malaria. Mosquitoes are the primary vectors of avian malaria and also the definitive hosts in the disease life cycle. Factors pertinent to mosquito ecology are likely to be influential to observed infection patterns; such factors include rainfall, season, temperature, and water quality. Methods The influence of mosquito abundance and occurrence on the prevalence of Plasmodium spp. in the Ploceidae family (weavers) was examined, taking into account factors with an indirect influence upon mosquito ecology. Mosquitoes and weaver blood samples were simultaneously collected in the Western Cape, South Africa over a two-year period, and patterns of vector abundance and infection prevalence were compared. Dissolved oxygen, pH, temperature and salinity measurements were taken at 20 permanent waterbodies. Rainfall during this period was also quantified using remotely sensed data from up to 6 months prior to sampling months. Results Sixteen wetlands had weavers infected with avian malaria. More than half of the mosquitoes caught were trapped at one site; when this site was excluded, the number of mosquitoes trapped did not vary significantly between sites. The majority of mosquitoes collected belonged to the predominant vector species group for avian malaria (Culex culex species complex). Seasonal variation occurred in infection and mosquito prevalence, water pH and water temperature, with greater variability observed in summer than in winter. There was a significant correlation of infection prevalence with rainfall two months prior to sampling months. Mosquito prevalence patterns across the landscape also showed a close relationship to patterns of rainfall. Contrary to predictions, a pattern of asynchronous co-variation occurred between mosquito prevalence and infection prevalence. Conclusion Overall, salinity, rainfall, and mosquito prevalence and season were the most influential vector-related factors on infection prevalence. After comparison with related studies, the tentative conclusion drawn was that patterns of asynchronous variation between malaria prevalence and mosquito abundance were concurrent with those reported in lag response patterns. PMID:24160170

2013-01-01

380

An insight into the sialome of Simulium guianense (DIPTERA:SIMulIIDAE), the main vector of River Blindness Disease in Brazil  

PubMed Central

Background Little is known about the composition and function of the saliva in black flies such as Simulium guianense, the main vector of river blindness disease in Brazil. The complex salivary potion of hematophagous arthropods counteracts their host's hemostasis, inflammation, and immunity. Results Transcriptome analysis revealed ubiquitous salivary protein families--such as the Antigen-5, Yellow, Kunitz domain, and serine proteases--in the S. guianense sialotranscriptome. Insect-specific families were also found. About 63.4% of all secreted products revealed protein families found only in Simulium. Additionally, we found a novel peptide similar to kunitoxin with a structure distantly related to serine protease inhibitors. This study revealed a relative increase of transcripts of the SVEP protein family when compared with Simulium vittatum and S. nigrimanum sialotranscriptomes. We were able to extract coding sequences from 164 proteins associated with blood and sugar feeding, the majority of which were confirmed by proteome analysis. Conclusions Our results contribute to understanding the role of Simulium saliva in transmission of Onchocerca volvulus and evolution of salivary proteins in black flies. It also consists of a platform for mining novel anti-hemostatic compounds, vaccine candidates against filariasis, and immuno-epidemiologic markers of vector exposure. PMID:22182526

2011-01-01

381

The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide-resistant Culex quinquefasciatus mosquitoes in Benin, West Africa  

Microsoft Academic Search

BACKGROUND: Mosquito-borne diseases are still a major health risk in many developing countries, and the emergence of multi-insecticide-resistant mosquitoes is threatening the future of vector control. Therefore, new tools that can manage resistant mosquitoes are required. Laboratory studies show that entomopathogenic fungi can kill insecticide-resistant malaria vectors but this needs to be verified in the field. METHODS: The present study

Annabel FV Howard; Raphael N'Guessan; Constantianus JM Koenraadt; Alex Asidi; Marit Farenhorst; Martin Akogbéto; Matthew B Thomas; Bart GJ Knols; Willem Takken

2010-01-01

382

Mosquito (Diptera: Culicidae) Fauna of Qom Province, Iran  

PubMed Central

Background There is very little information about the mosquito fauna of Qom Province, central Iran. By now only three species; Anopheles claviger, An. multicolor, and An. superpictus have been reported in the province. To study mosquito fauna and providing a primary checklist, an investigation was carried out on a collection of mosquitoes in this province. Methods: To study the mosquito (Diptera: Culicidae) fauna, larval collections were carried out from different habitats on 19 occasions using the standard dipping technique during spring and summer 2008 and 2009. Results: In total, 371 mosquito larvae were collected and morphologically identified including 14 species representing four genera: Anopheles claviger, An. marteri, An. turkhudi, An. superpictus, Culex arbieeni, Cx. hortensis, Cx. mimeticus, Cx. modestus, Cx. pipiens, Cx. territans, Cx. theileri, Culiseta longiareolata, Cs. subochrea, and Ochlerotatus caspius s.l. All species except for An. claviger and An. superpictus were collected for the first time in the province. All larvae were found in natural habitats. The association occasions and percentages of the mosquito larvae in Qom Province were discussed. Conclusion: There are some potential or proven vectors of different human and domesticated animal pathogens in Qom Province. The ecology of these species and the unstudied areas of Qom Province need to be investigated extensively. PMID:23293779

Saghafipour, A; Abai, MR; Farzinnia, B; Nafar, R; Ladonni, H; Azari-Hamidian, S

2012-01-01

383

Incorporation of body components of diverse microorganisms by larval mosquitoes.  

PubMed

A pulse-purge schedule of exposure to labeled microorganisms was used to compare their digestibility by larval mosquitoes. Larvae were placed for an hour in suspensions of diverse axenically grown microorganisms that had been labeled with radioactive carbon (in the form of glucose or glycine). The guts of these mosquitoes were then purged with nonlabeled Sephadex particles for 30 min, and retained radioactivity was measured. Larvae imbibed no dissolved material. Larval mosquitoes differ in their capacity to derive label from algae (sensu lato), and certain algae contribute more label to these mosquitoes than do others. The nature of any algal food, as well as the feeding habits and developmental stage of the larva, influence its capacity to derive label from algae. This pulse-purge method of analysis can assist in the selection of algal "vectors" suitable as vehicles for transgenic larvicide. Although larval mosquitoes fail to assimilate the contents of Palmellacoccus cells with which they are confined, as much as 1/3 of the body contents of a Euglena gracilis cells become incorporated into their bodies. Because larval mosquitoes internalize more material from Euglena than they do from various other algae, these microorganisms provide a promising candidate vehicle for transgenic Bacillus thuringiensis israelensis. PMID:7912260

Avissar, Y J; Margalit, J; Spielman, A

1994-03-01

384

Fungal infection counters insecticide resistance in African malaria mosquitoes  

PubMed Central

The evolution of insecticide resistance in mosquitoes is threatening the effectiveness and sustainability of malaria control programs in various parts of the world. Through their unique mode of action, entomopathogenic fungi provide promising alternatives to chemical control. However, potential interactions between fungal infection and insecticide resistance, such as cross-resistance, have not been investigated. We show that insecticide-resistant Anopheles mosquitoes remain susceptible to infection with the fungus Beauveria bassiana. Four different mosquito strains with high resistance levels against pyrethroids, organochlorines, or carbamates were equally susceptible to B. bassiana infection as their baseline counterparts, showing significantly reduced mosquito survival. Moreover, fungal infection reduced the expression of resistance to the key public health insecticides permethrin and dichlorodiphenyltrichloroethane. Mosquitoes preinfected with B. bassiana or Metarhizium anisopliae showed a significant increase in mortality after insecticide exposure compared with uninfected control mosquitoes. Our results show a high potential utility of fungal biopesticides for complementing existing vector control measures and provide products for use in resistance management strategies. PMID:19805146

Farenhorst, Marit; Mouatcho, Joel C.; Kikankie, Christophe K.; Brooke, Basil D.; Hunt, Richard H.; Thomas, Matthew B.; Koekemoer, Lizette L.; Knols, Bart G. J.; Coetzee, Maureen

2009-01-01

385

Higher Mosquito Production in Low-Income Neighborhoods of Baltimore and Washington, DC: Understanding Ecological Drivers and Mosquito-Borne Disease Risk in Temperate Cities  

PubMed Central

Mosquito-vectored pathogens are responsible for devastating human diseases and are (re)emerging in many urban environments. Effective mosquito control in urban landscapes relies on improved understanding of the complex interactions between the ecological and social factors that define where mosquito populations can grow. We compared the density of mosquito habitat and pupae production across economically varying neighborhoods in two temperate U.S. cities (Baltimore, MD and Washington, DC). Seven species of mosquito larvae were recorded. The invasive Aedes albopictus was the only species found in all neighborhoods. Culex pipiens, a primary vector of West Nile virus (WNV), was most abundant in Baltimore, which also had more tire habitats. Both Culex and Aedes pupae were more likely to be sampled in neighborhoods categorized as being below median income level in each city and Aedes pupae density was also greater in container habitats found in these lower income neighborhoods. We infer that lower income residents may experience greater exposure to potential disease vectors and Baltimore residents specifically, were at greater risk of exposure to the predominant WNV vector. However, we also found that resident-reported mosquito nuisance was not correlated with our measured risk index, indicating a potentially important mismatch between motivation needed to engage participation in control efforts and the relative importance of control among neighborhoods. PMID:23583963

LaDeau, Shannon L.; Leisnham, Paul T.; Biehler, Dawn; Bodner, Danielle

2013-01-01

386

Higher mosquito production in low-income neighborhoods of Baltimore and Washington, DC: understanding ecological drivers and mosquito-borne disease risk in temperate cities.  

PubMed

Mosquito-vectored pathogens are responsible for devastating human diseases and are (re)emerging in many urban environments. Effective mosquito control in urban landscapes relies on improved understanding of the complex interactions between the ecological and social factors that define where mosquito populations can grow. We compared the density of mosquito habitat and pupae production across economically varying neighborhoods in two temperate U.S. cities (Baltimore, MD and Washington, DC). Seven species of mosquito larvae were recorded. The invasive Aedes albopictus was the only species found in all neighborhoods. Culex pipiens, a primary vector of West Nile virus (WNV), was most abundant in Baltimore, which also had more tire habitats. Both Culex and Aedes pupae were more likely to be sampled in neighborhoods categorized as being below median income level in each city and Aedes pupae density was also greater in container habitats found in these lower income neighborhoods. We infer that lower income residents may experience greater exposure to potential disease vectors and Baltimore residents specifically, were at greater risk of exposure to the predominant WNV vector. However, we also found that resident-reported mosquito nuisance was not correlated with our measured risk index, indicating a potentially important mismatch between motivation needed to engage participation in control efforts and the relative importance of control among neighborhoods. PMID:23583963

LaDeau, Shannon L; Leisnham, Paul T; Biehler, Dawn; Bodner, Danielle

2013-04-01

387

Play the Mosquito Game  

MedlinePLUS

... and Work Teachers' Questionnaire Malaria Play the Mosquito Game Play the Parasite Game About the games Malaria is one of the world's most common ... last will in Paris. Play the Blood Typing Game Try to save some patients and learn about ...

388

Taxis assays measure directional movement of mosquitoes to olfactory cues  

PubMed Central

Background Malaria control methods targeting indoor-biting mosquitoes have limited impact on vectors that feed and rest outdoors. Exploiting mosquito olfactory behaviour to reduce blood-feeding outdoors might be a sustainable approach to complement existing control strategies. Methodologies that can objectively quantify responses to odour under realistic field conditions and allow high-throughput screening of many compounds are required for development of effective odour-based control strategies. Methods The olfactory responses of laboratory-reared Anopheles gambiae in a semi-field tunnel and A. arabiensis females in an outdoor field setting to three stimuli, namely whole human odour, a synthetic blend of carboxylic acids plus carbon dioxide and CO2 alone at four distances up to 100 metres were measured in two experiments using three-chambered taxis boxes that allow mosquito responses to natural or experimentally-introduced odour cues to be quantified. Results Taxis box assays could detect both activation of flight and directional mosquito movement. Significantly more (6-18%) A. arabiensis mosquitoes w