Science.gov

Sample records for major ampullate silk

  1. Plasticity in major ampullate silk production in relation to spider phylogeny and ecology.

    PubMed

    Boutry, Cecilia; Řezáč, Milan; Blackledge, Todd Alan

    2011-01-01

    Spider major ampullate silk is a high-performance biomaterial that has received much attention. However, most studies ignore plasticity in silk properties. A better understanding of silk plasticity could clarify the relative importance of chemical composition versus processing of silk dope for silk properties. It could also provide insight into how control of silk properties relates to spider ecology and silk uses. We compared silk plasticity (defined as variation in the properties of silk spun by a spider under different conditions) between three spider clades in relation to their anatomy and silk biochemistry. We found that silk plasticity exists in RTA clade and orbicularian spiders, two clades that differ in their silk biochemistry. Orbiculariae seem less dependent on external spinning conditions. They probably use a valve in their spinning duct to control friction forces and speed during spinning. Our results suggest that plasticity results from different processing of the silk dope in the spinning duct. Orbicularian spiders seem to display better control of silk properties, perhaps in relation to their more complex spinning duct valve. PMID:21818328

  2. Structural characterization of the major ampullate silk spidroin-2 protein produced by the spider Nephila clavipes.

    PubMed

    Santos-Pinto, José Roberto Aparecido Dos; Arcuri, Helen Andrade; Lubec, Gert; Palma, Mario Sergio

    2016-10-01

    Major ampullate spidroin-2 (MaSp2) is one of the most important spider silk protein, but up to now no information is available regarding the post-translational modifications (PTMs) of this protein. A gel-based mass spectrometry strategy using collision-induced dissociation (CID) and electron-transfer dissociation (ETD) fragmentation methods was used to sequence Nephila clavipes MaSp2 (including the N- and C-terminal non-repetitive domains, and the great part of the central core), and to assign a series of post-translational modifications (PTMs) on to the MaSp2 sequence. Two forms of this protein were identified, with different levels of phosphorylation along their sequences. These findings provide a basis for understanding mechanoelastic properties and can support the future design of recombinant spider silk proteins for biotechnological applications. PMID:27208434

  3. Major Ampullate Spider Silk with Indistinguishable Spidroin Dope Conformations Leads to Different Fiber Molecular Structures.

    PubMed

    Dionne, Justine; Lefèvre, Thierry; Auger, Michèle

    2016-01-01

    To plentifully benefit from its properties (mechanical, optical, biological) and its potential to manufacture green materials, the structure of spider silk has to be known accurately. To this aim, the major ampullate (MA) silk of Araneus diadematus (AD) and Nephila clavipes (NC) has been compared quantitatively in the liquid and fiber states using Raman spectromicroscopy. The data show that the spidroin conformations of the two dopes are indistinguishable despite their specific amino acid composition. This result suggests that GlyGlyX and GlyProGlyXX amino acid motifs (X = Leu, Glu, Tyr, Ser, etc.) are conformationally equivalent due to the chain flexibility in the aqueous environment. Species-related sequence specificity is expressed more extensively in the fiber: the β-sheet content is lower and width of the orientation distribution of the carbonyl groups is broader for AD (29% and 58°, respectively) as compared to NC (37% and 51°, respectively). β-Sheet content values are close to the proportion of polyalanine segments, suggesting that β-sheet formation is mainly dictated by the spidroin sequence. The extent of molecular alignment seems to be related to the presence of proline (Pro) that may decrease conformational flexibility and inhibit chain extension and alignment upon drawing. It appears that besides the presence of Pro, secondary structure and molecular orientation contribute to the different mechanical properties of MA threads. PMID:27548146

  4. Major Ampullate Spider Silk with Indistinguishable Spidroin Dope Conformations Leads to Different Fiber Molecular Structures

    PubMed Central

    Dionne, Justine; Lefèvre, Thierry; Auger, Michèle

    2016-01-01

    To plentifully benefit from its properties (mechanical, optical, biological) and its potential to manufacture green materials, the structure of spider silk has to be known accurately. To this aim, the major ampullate (MA) silk of Araneus diadematus (AD) and Nephila clavipes (NC) has been compared quantitatively in the liquid and fiber states using Raman spectromicroscopy. The data show that the spidroin conformations of the two dopes are indistinguishable despite their specific amino acid composition. This result suggests that GlyGlyX and GlyProGlyXX amino acid motifs (X = Leu, Glu, Tyr, Ser, etc.) are conformationally equivalent due to the chain flexibility in the aqueous environment. Species-related sequence specificity is expressed more extensively in the fiber: the β-sheet content is lower and width of the orientation distribution of the carbonyl groups is broader for AD (29% and 58°, respectively) as compared to NC (37% and 51°, respectively). β-Sheet content values are close to the proportion of polyalanine segments, suggesting that β-sheet formation is mainly dictated by the spidroin sequence. The extent of molecular alignment seems to be related to the presence of proline (Pro) that may decrease conformational flexibility and inhibit chain extension and alignment upon drawing. It appears that besides the presence of Pro, secondary structure and molecular orientation contribute to the different mechanical properties of MA threads. PMID:27548146

  5. The molecular structures of major ampullate silk proteins of the wasp spider, Argiope bruennichi: a second blueprint for synthesizing de novo silk.

    PubMed

    Zhang, Yang; Zhao, Ai-Chun; Sima, Yang-Hu; Lu, Cheng; Xiang, Zhong-Huai; Nakagaki, Masao

    2013-03-01

    The dragline silk of orb-weaving spiders possesses extremely high tensile strength and elasticity. To date, full-length sequences of only two genes encoding major ampullate silk protein (MaSp) in Latrodectus hesperus have been determined. In order to further understand this gene family, we utilized in this study a variety of strategies to isolate full-length MaSp1 and MaSp2 cDNAs in the wasp spider Argiope bruennichi. A. bruennichi MaSp1 and MaSp2 are primarily composed of remarkably homogeneous ensemble repeats containing several complex motifs, and both have highly conserved C-termini and N-termini. Two novel amino acid motifs, GGF and SGR, were found in MaSp1 and MaSp2, respectively. Amino acid composition analysis of silk, luminal contents and predicted sequences indicates that MaSp1 and MaSp2 are two major components of major ampullate glands and that the ratio of MaSp1 to MaSp2 is approximately 3:2 in dragline silk. Furthermore, both the MaSp1:MaSp2 ratio and the conserved termini are closely linked with the production of high quality synthetic fibers. Our results make an important contribution to our understanding of major ampullate silk protein structure and provide a second blueprint for creating new composite silk which mimics natural spider dragline silk. PMID:23262065

  6. X-ray diffraction study of nanocrystalline and amorphous structure within major and minor ampullate dragline spider silks

    SciTech Connect

    Sampath, Sujatha; Isdebski, Thomas; Jenkins, Janelle E.; Ayon, Joel V.; Henning, Robert W.; Orgel, Joseph P.R.O.; Antipoa, Olga; Yarger, Jeffery L.

    2012-07-25

    Synchrotron X-ray micro-diffraction experiments were carried out on Nephila clavipes (NC) and Argiope aurantia (AA) major (MA) and minor ampullate (MiA) fibers that make up dragline spider silk. The diffraction patterns show a semi-crystalline structure with {beta}-poly(L-alanine) nanocrystallites embedded in a partially oriented amorphous matrix. A superlattice reflection 'S' diffraction ring is observed, which corresponds to a crystalline component larger in size and is poorly oriented, when compared to the {beta}-poly(L-alanine) nanocrystallites that are commonly observed in dragline spider silks. Crystallite size, crystallinity and orientation about the fiber axis have been determined from the wide-angle X-ray diffraction (WAXD) patterns. In both NC and AA, the MiA silks are found to be more highly crystalline, when compared with the corresponding MA silks. Detailed analysis on the amorphous matrix shows considerable differences in the degree of order of the oriented amorphous component between the different silks studied and may play a crucial role in determining the mechanical properties of the silks.

  7. Conserved C-termini of Spidroins are secreted by the major ampullate glands and retained in the silk thread.

    PubMed

    Sponner, Alexander; Unger, Eberhard; Grosse, Frank; Weisshart, Klaus

    2004-01-01

    The C-termini of Spidroins produced in the major and minor ampullate glands of spiders are highly conserved. Despite this conservation, no corresponding peptides have been identified in the spinning dopes or the silk filaments so far. To prove their presence or absence, polyclonal antibodies derived against fusion proteins containing the conserved C-terminal regions of both Spidroin 1 and 2 from the spider Nephila clavipes were generated. The antibodies reacted with high molecular weight polypeptides of the corresponding gland extracts and solubilized major ampullate filament and in addition to filament cross-sections. This demonstrates the existence of C-terminal specific peptides in the spinning dope and the mature Spidroins. Both the fusion proteins as well as the proteins contained within the gland lumen showed a reduction in their size under reducing conditions indicating the presence of disulfide bonds. Their high conservation and the biochemical data suggest crucial roles the C-termini play in the formation and/or structure of the corresponding silk filaments. PMID:15132670

  8. Resonance assignment of an engineered amino-terminal domain of a major ampullate spider silk with neutralized charge cluster.

    PubMed

    Schaal, Daniel; Bauer, Joschka; Schweimer, Kristian; Scheibel, Thomas; Rösch, Paul; Schwarzinger, Stephan

    2016-04-01

    Spider dragline fibers are predominantly made out of the major ampullate spidroins (MaSp) 1 and 2. The assembly of dissolved spidroin into a stable fiber is highly controlled for example by dimerization of its amino-terminal domain (NRN) upon acidification, as well as removal of sodium chloride along the spinning duct. Clustered residues D39, E76 and E81 are the most highly conserved residues of the five-helix bundle, and they are hypothesized to be key residues for switching between a monomeric and a dimeric conformation. Simultaneous replacement of these residues by their non-titratable analogues results in variant D39N/E76Q/E81Q, which is supposed to fold into an intermediate conformation between that of the monomeric and the dimeric state at neutral pH. Here we report the resonance assignment of Latrodectus hesperus NRN variant D39N/E76Q/E81Q at pH 7.2 obtained by high-resolution triple resonance NMR spectroscopy. PMID:26892754

  9. The embryonic origin of the ampullate silk glands of the spider Cupiennius salei.

    PubMed

    Hilbrant, Maarten; Damen, Wim G M

    2015-05-01

    Silk production in spiders is considered a key innovation, and to have been vital for the diversification of the clade. The evolutionary origin of the organs involved in spider silk production, however, and in particular of the silk glands, is poorly understood. Homologies have been proposed between these and other glands found in arachnids, but lacking knowledge of the embryonic development of spider silk glands hampers an evaluation of hypotheses. This study focuses on the embryonic origin of the largest silk glands of the spider Cupiennius salei, the major and minor ampullate glands. We show how the ampullate glands originate from ectodermal invaginations on the embryonic spinneret limb buds, in relation to morphogenesis of these buds. Moreover, we visualize the subsequent growth of the ampullate glands in sections of the early postembryonic stages. The invaginations are shown to correlate with expression of the proneural gene CsASH2, which is remarkable since it has been proposed that spider silk glands and their nozzles originate from sensory bristles. Hence, by confirming the ectodermal origin of spider silk glands, and by describing the (post-)embryonic morphogenesis of the ampullate glands, this work provides a starting point for further investigating into the genetic program that underlies their development. PMID:25882741

  10. Proteomic Evidence for Components of Spider Silk Synthesis from Black Widow Silk Glands and Fibers.

    PubMed

    Chaw, Ro Crystal; Correa-Garhwal, Sandra M; Clarke, Thomas H; Ayoub, Nadia A; Hayashi, Cheryl Y

    2015-10-01

    Spider silk research has largely focused on spidroins, proteins that are the primary components of spider silk fibers. Although a number of spidroins have been characterized, other types of proteins associated with silk synthesis are virtually unknown. Previous analyses of tissue-specific RNA-seq libraries identified 647 predicted genes that were differentially expressed in silk glands of the Western black widow, Latrodectus hesperus. Only ∼5% of these silk-gland specific transcripts (SSTs) encode spidroins; although the remaining predicted genes presumably encode other proteins associated with silk production, this is mostly unverified. Here, we used proteomic analysis of multiple silk glands and dragline silk fiber to investigate the translation of the differentially expressed genes. We find 48 proteins encoded by the differentially expressed transcripts in L. hesperus major ampullate, minor ampullate, and tubuliform silk glands and detect 17 SST encoded proteins in major ampullate silk fibers. The observed proteins include known silk-related proteins, but most are uncharacterized, with no annotation. These unannotated proteins likely include novel silk-associated proteins. Major and minor ampullate glands have the highest overlap of identified proteins, consistent with their shared, distinctive ampullate shape and the overlapping functions of major and minor ampullate silks. Our study substantiates and prioritizes predictions from differential expression analysis of spider silk gland transcriptomes. PMID:26302244

  11. Crystal Structure of the Nephila clavipes Major Ampullate Spidroin 1A N-terminal Domain Reveals Plasticity at the Dimer Interface.

    PubMed

    Atkison, James H; Parnham, Stuart; Marcotte, William R; Olsen, Shaun K

    2016-09-01

    Spider dragline silk is a natural polymer harboring unique physical and biochemical properties that make it an ideal biomaterial. Artificial silk production requires an understanding of the in vivo mechanisms spiders use to convert soluble proteins, called spidroins, into insoluble fibers. Controlled dimerization of the spidroin N-terminal domain (NTD) is crucial to this process. Here, we report the crystal structure of the Nephila clavipes major ampullate spidroin NTD dimer. Comparison of our N. clavipes NTD structure with previously determined Euprosthenops australis NTD structures reveals subtle conformational alterations that lead to differences in how the subunits are arranged at the dimer interface. We observe a subset of contacts that are specific to each ortholog, as well as a substantial increase in asymmetry in the interactions observed at the N. clavipes NTD dimer interface. These asymmetric interactions include novel intermolecular salt bridges that provide new insights into the mechanism of NTD dimerization. We also observe a unique intramolecular "handshake" interaction between two conserved acidic residues that our data suggest adds an additional layer of complexity to the pH-sensitive relay mechanism for NTD dimerization. The results of a panel of tryptophan fluorescence dimerization assays probing the importance of these interactions support our structural observations. Based on our findings, we propose that conformational selectivity and plasticity at the NTD dimer interface play a role in the pH-dependent transition of the NTD from monomer to stably associated dimer as the spidroin progresses through the silk extrusion duct. PMID:27445329

  12. Electrostatics analysis of the mutational and pH effects of the N-terminal domain self-association of the major ampullate spidroin.

    PubMed

    Barroso da Silva, Fernando Luís; Pasquali, Samuela; Derreumaux, Philippe; Dias, Luis Gustavo

    2016-07-01

    Spider silk is a fascinating material combining mechanical properties such as maximum strength and high toughness comparable or better than man-made materials, with biocompatible degradability characteristics. Experimental measurements have shown that pH triggers the dimer formation of the N-terminal domain (NTD) of the major ampullate spidroin 1 (MaSp 1). A coarse-grained model accounting for electrostatics, van der Waals and pH-dependent charge-fluctuation interactions, by means of Monte Carlo simulations, gave us a more comprehensive view of the NTD dimerization process. A detailed analysis of the electrostatic properties and free energy derivatives for the NTD homoassociation was carried out at different pH values and salt concentrations for the protein wild type and for several mutants. We observed an enhancement of dipole-dipole interactions at pH 6 due to the ionization of key amino acids, a process identified as the main driving force for dimerization. Analytical estimates based on the DVLO theory framework corroborate our findings. Molecular dynamics simulations using the OPEP coarse-grained force field for proteins show that the mutant E17Q is subject to larger structural fluctuations when compared to the wild type. Estimates of the association rate constants for this mutant were evaluated by the Debye-Smoluchowski theory and are in agreement with the experimental data when thermally relaxed structures are used instead of the crystallographic data. Our results can contribute to the design of new mutants with specific association properties. PMID:27250106

  13. Diverse formulas for spider dragline fibers demonstrated by molecular and mechanical characterization of spitting spider silk.

    PubMed

    Correa-Garhwal, Sandra M; Garb, Jessica E

    2014-12-01

    Spider silks have outstanding mechanical properties. Most research has focused on dragline silk proteins (major ampullate spidroins, MaSps) from orb-weaving spiders. Using silk gland expression libraries from the haplogyne spider Scytodes thoracica, we discovered two novel spidroins (S. thoracica fibroin 1 and 2). The amino acid composition of S. thoracica silk glands and dragline fibers suggest that fibroin 1 is the major component of S. thoracica dragline silk. Fibroin 1 is dominated by glycine-alanine motifs, and lacks sequence motifs associated with orb-weaver MaSps. We hypothesize fibroin 2 is a piriform or aciniform silk protein, based on amino acid composition, spigot morphology, and phylogenetic analyses. S. thoracica's dragline silk is less tough than previously reported, but is still comparable to other dragline silks. Our analyses suggest that dragline silk proteins evolved multiple times. This demonstrates that spider dragline silk is more diverse than previously understood, providing alternative high performance silk designs. PMID:25340514

  14. Regenerated Spider Silk Possess Mechanical Properties of Super- and Cyclic Contraction in Response to Environmental Humidity

    NASA Astrophysics Data System (ADS)

    Lu, Shan; Swaminathan, Ganesh; Evans, Samuel; Blackledge, Todd

    2013-06-01

    Major Ampullate (MA) spider silk is among the most impressive biomaterials due to its unparalleled mechanical properties, such as super-contraction and cyclic response to changes in humidity. Electro-spinning enables the generation of engineered silk fibers with controlled parameters and dimentions for various medical and commercial applications. However, their applications hinge on the ability to reproduce the mechanical properties such as a precise expansion-contraction response existed in natural silk fibers. Here, we successfully reproduced MA spider-silk fibers from solutions of natural MA silk proteins via electrospinning, which exhibit the super-contraction and cyclic response to humidity change in a manner mirroring the natural fibers.

  15. Structural hysteresis in dragline spider silks induced by supercontraction: an X-ray fiber micro-diffraction study

    SciTech Connect

    Sampath, Sujatha; Yarger, Jeffery L.

    2014-11-27

    Interaction with water causes shrinkage and significant changes in the structure of spider dragline silks, which has been referred to as supercontraction in the literature. Preferred orientation or alignment of protein chains with respect to the fiber axis is extensively changed during this supercontraction process. Synchrotron X-ray micro-fiber diffraction experiments have been performed on Nephila clavipes and Argiope aurantia major and minor ampullate dragline spider fibers in the native dry, contracted (by immersion in water) and restretched (from contracted) states. Changes in the orientation of β-sheet nanocrystallites and the oriented component of the amorphous network have been determined from wide-angle X-ray diffraction patterns. While both the crystalline and amorphous components lose preferred orientation on wetting with water, the nano-crystallites regain their orientation on wet-restretching, whereas the oriented amorphous components only partially regain their orientation. Dragline major ampullate silks in both the species contract more than their minor ampullate silks.

  16. Blueprint for a High-Performance Biomaterial: Full-Length Spider Dragline Silk Genes

    PubMed Central

    Ayoub, Nadia A.; Garb, Jessica E.; Tinghitella, Robin M.; Collin, Matthew A.; Hayashi, Cheryl Y.

    2007-01-01

    Spider dragline (major ampullate) silk outperforms virtually all other natural and manmade materials in terms of tensile strength and toughness. For this reason, the mass-production of artificial spider silks through transgenic technologies has been a major goal of biomimetics research. Although all known arthropod silk proteins are extremely large (>200 kiloDaltons), recombinant spider silks have been designed from short and incomplete cDNAs, the only available sequences. Here we describe the first full-length spider silk gene sequences and their flanking regions. These genes encode the MaSp1 and MaSp2 proteins that compose the black widow's high-performance dragline silk. Each gene includes a single enormous exon (>9000 base pairs) that translates into a highly repetitive polypeptide. Patterns of variation among sequence repeats at the amino acid and nucleotide levels indicate that the interaction of selection, intergenic recombination, and intragenic recombination governs the evolution of these highly unusual, modular proteins. Phylogenetic footprinting revealed putative regulatory elements in non-coding flanking sequences. Conservation of both upstream and downstream flanking sequences was especially striking between the two paralogous black widow major ampullate silk genes. Because these genes are co-expressed within the same silk gland, there may have been selection for similarity in regulatory regions. Our new data provide complete templates for synthesis of recombinant silk proteins that significantly improve the degree to which artificial silks mimic natural spider dragline fibers. PMID:17565367

  17. Sequential origin in the high performance properties of orb spider dragline silk

    NASA Astrophysics Data System (ADS)

    Blackledge, Todd A.; Pérez-Rigueiro, José; Plaza, Gustavo R.; Perea, Belén; Navarro, Andrés; Guinea, Gustavo V.; Elices, Manuel

    2012-10-01

    Major ampullate (MA) dragline silk supports spider orb webs, combining strength and extensibility in the toughest biomaterial. MA silk evolved ~376 MYA and identifying how evolutionary changes in proteins influenced silk mechanics is crucial for biomimetics, but is hindered by high spinning plasticity. We use supercontraction to remove that variation and characterize MA silk across the spider phylogeny. We show that mechanical performance is conserved within, but divergent among, major lineages, evolving in correlation with discrete changes in proteins. Early MA silk tensile strength improved rapidly with the origin of GGX amino acid motifs and increased repetitiveness. Tensile strength then maximized in basal entelegyne spiders, ~230 MYA. Toughness subsequently improved through increased extensibility within orb spiders, coupled with the origin of a novel protein (MaSp2). Key changes in MA silk proteins therefore correlate with the sequential evolution high performance orb spider silk and could aid design of biomimetic fibers.

  18. Sequential origin in the high performance properties of orb spider dragline silk

    PubMed Central

    Blackledge, Todd A.; Pérez-Rigueiro, José; Plaza, Gustavo R.; Perea, Belén; Navarro, Andrés; Guinea, Gustavo V.; Elices, Manuel

    2012-01-01

    Major ampullate (MA) dragline silk supports spider orb webs, combining strength and extensibility in the toughest biomaterial. MA silk evolved ~376 MYA and identifying how evolutionary changes in proteins influenced silk mechanics is crucial for biomimetics, but is hindered by high spinning plasticity. We use supercontraction to remove that variation and characterize MA silk across the spider phylogeny. We show that mechanical performance is conserved within, but divergent among, major lineages, evolving in correlation with discrete changes in proteins. Early MA silk tensile strength improved rapidly with the origin of GGX amino acid motifs and increased repetitiveness. Tensile strength then maximized in basal entelegyne spiders, ~230 MYA. Toughness subsequently improved through increased extensibility within orb spiders, coupled with the origin of a novel protein (MaSp2). Key changes in MA silk proteins therefore correlate with the sequential evolution high performance orb spider silk and could aid design of biomimetic fibers. PMID:23110251

  19. Post-secretion processing influences spider silk performance.

    PubMed

    Blamires, Sean J; Wu, Chung-Lin; Blackledge, Todd A; Tso, I-Min

    2012-10-01

    Phenotypic variation facilitates adaptations to novel environments. Silk is an example of a highly variable biomaterial. The two-spidroin (MaSp) model suggests that spider major ampullate (MA) silk is composed of two proteins-MaSp1 predominately contains alanine and glycine and forms strength enhancing β-sheet crystals, while MaSp2 contains proline and forms elastic spirals. Nonetheless, mechanical properties can vary in spider silks without congruent amino acid compositional changes. We predicted that post-secretion processing causes variation in the mechanical performance of wild MA silk independent of protein composition or spinning speed across 10 species of spider. We used supercontraction to remove post-secretion effects and compared the mechanics of silk in this 'ground state' with wild native silks. Native silk mechanics varied less among species compared with 'ground state' silks. Variability in the mechanics of 'ground state' silks was associated with proline composition. However, variability in native silks did not. We attribute interspecific similarities in the mechanical properties of native silks, regardless of amino acid compositions, to glandular processes altering molecular alignment of the proteins prior to extrusion. Such post-secretion processing may enable MA silk to maintain functionality across environments, facilitating its function as a component of an insect-catching web. PMID:22628213

  20. Post-secretion processing influences spider silk performance

    PubMed Central

    Blamires, Sean J.; Wu, Chung-Lin; Blackledge, Todd A.; Tso, I-Min

    2012-01-01

    Phenotypic variation facilitates adaptations to novel environments. Silk is an example of a highly variable biomaterial. The two-spidroin (MaSp) model suggests that spider major ampullate (MA) silk is composed of two proteins—MaSp1 predominately contains alanine and glycine and forms strength enhancing β-sheet crystals, while MaSp2 contains proline and forms elastic spirals. Nonetheless, mechanical properties can vary in spider silks without congruent amino acid compositional changes. We predicted that post-secretion processing causes variation in the mechanical performance of wild MA silk independent of protein composition or spinning speed across 10 species of spider. We used supercontraction to remove post-secretion effects and compared the mechanics of silk in this ‘ground state’ with wild native silks. Native silk mechanics varied less among species compared with ‘ground state’ silks. Variability in the mechanics of ‘ground state’ silks was associated with proline composition. However, variability in native silks did not. We attribute interspecific similarities in the mechanical properties of native silks, regardless of amino acid compositions, to glandular processes altering molecular alignment of the proteins prior to extrusion. Such post-secretion processing may enable MA silk to maintain functionality across environments, facilitating its function as a component of an insect-catching web. PMID:22628213

  1. Dynamic behaviour of silks: Nature's precision nanocomposites

    NASA Astrophysics Data System (ADS)

    Drodge, D. R.; Mortimer, B.; Siviour, C. R.; Holland, C.

    2012-08-01

    Silk is often cited as a material worth imitating, due to its high strength and toughness. In order to produce a synthetic analogue, or enhanced natural version, the microstructural basis of these properties must be understood. Current understanding is that silk deforms through the detachment of nano-scale crystallites, in the manner of a damaged composite. This picture forms the basis for constitutive models, but validation data is limited to low strain-rates. Here we present a programme of research in which high-rate behaviour is studied through ballistic impact experiments. These have been applied to the silk of the Bombyx mori moth, as harvested from cocoons, and to the major ampullate thread of the golden orb weaver spider Nephila edulis. Longitudinal wave-speeds, and air drag coefficients, have been calculated for selected cases. Differences between the response of various silks and a similar synthetic fibre, nylon, are discussed, and future plans are presented.

  2. Material properties of evolutionary diverse spider silks described by variation in a single structural parameter.

    PubMed

    Madurga, Rodrigo; Plaza, Gustavo R; Blackledge, Todd A; Guinea, Gustavo V; Elices, Manuel; Pérez-Rigueiro, José

    2016-01-01

    Spider major ampullate gland silks (MAS) vary greatly in material properties among species but, this variation is shown here to be confined to evolutionary shifts along a single universal performance trajectory. This reveals an underlying design principle that is maintained across large changes in both spider ecology and silk chemistry. Persistence of this design principle becomes apparent after the material properties are defined relative to the true alignment parameter, which describes the orientation and stretching of the protein chains in the silk fiber. Our results show that the mechanical behavior of all Entelegynae major ampullate silk fibers, under any conditions, are described by this single parameter that connects the sequential action of three deformation micromechanisms during stretching: stressing of protein-protein hydrogen bonds, rotation of the β-nanocrystals and growth of the ordered fraction. Conservation of these traits for over 230 million years is an indication of the optimal design of the material and gives valuable clues for the production of biomimetic counterparts based on major ampullate spider silk. PMID:26755434

  3. Material properties of evolutionary diverse spider silks described by variation in a single structural parameter

    PubMed Central

    Madurga, Rodrigo; Plaza, Gustavo R.; Blackledge, Todd A.; Guinea, Gustavo.V.; Elices, Manuel; Pérez-Rigueiro, José

    2016-01-01

    Spider major ampullate gland silks (MAS) vary greatly in material properties among species but, this variation is shown here to be confined to evolutionary shifts along a single universal performance trajectory. This reveals an underlying design principle that is maintained across large changes in both spider ecology and silk chemistry. Persistence of this design principle becomes apparent after the material properties are defined relative to the true alignment parameter, which describes the orientation and stretching of the protein chains in the silk fiber. Our results show that the mechanical behavior of all Entelegynae major ampullate silk fibers, under any conditions, are described by this single parameter that connects the sequential action of three deformation micromechanisms during stretching: stressing of protein-protein hydrogen bonds, rotation of the β-nanocrystals and growth of the ordered fraction. Conservation of these traits for over 230 million years is an indication of the optimal design of the material and gives valuable clues for the production of biomimetic counterparts based on major ampullate spider silk. PMID:26755434

  4. Material properties of evolutionary diverse spider silks described by variation in a single structural parameter

    NASA Astrophysics Data System (ADS)

    Madurga, Rodrigo; Plaza, Gustavo R.; Blackledge, Todd A.; Guinea, Gustavo. V.; Elices, Manuel; Pérez-Rigueiro, José

    2016-01-01

    Spider major ampullate gland silks (MAS) vary greatly in material properties among species but, this variation is shown here to be confined to evolutionary shifts along a single universal performance trajectory. This reveals an underlying design principle that is maintained across large changes in both spider ecology and silk chemistry. Persistence of this design principle becomes apparent after the material properties are defined relative to the true alignment parameter, which describes the orientation and stretching of the protein chains in the silk fiber. Our results show that the mechanical behavior of all Entelegynae major ampullate silk fibers, under any conditions, are described by this single parameter that connects the sequential action of three deformation micromechanisms during stretching: stressing of protein-protein hydrogen bonds, rotation of the β-nanocrystals and growth of the ordered fraction. Conservation of these traits for over 230 million years is an indication of the optimal design of the material and gives valuable clues for the production of biomimetic counterparts based on major ampullate spider silk.

  5. Environmental conditions impinge on dragline silk protein composition.

    PubMed

    Guehrs, K-H; Schlott, B; Grosse, F; Weisshart, K

    2008-09-01

    The silk formed in the major ampullate (MA) gland of the orb weaving spider Nephila clavipes is composed of two silk fibroins, which are called major ampullate spidroins 1 (MaSp1) and 2 (MaSp2). Analysis of proteolytic peptides and reactivity to spidroin type specific antibodies indicated that MaSp2 constituted only a minor part in the spinning dope as well as in the spun filaments. Upon starvation, a change in the silk's characteristic features was observed that was concomitant of a decrease in the contribution of MaSp2. The silk became less elastic and stiffer, which will better tailor its usability for the safety line, albeit at the expense of its employment as the web frame threads. In addition, since MaSp2 production requires greater ATP consumption, such a shift in the protein ratio cuts down on the energy costs to produce the silk. From this change in protein composition the spider might therefore benefit twice, by synthesizing 'cheaper' silk that into the bargain has properties that potentially can better support foraging in times of food shortage. PMID:18828841

  6. Silkomics: Insight into the Silk Spinning Process of Spiders.

    PubMed

    Dos Santos-Pinto, José Roberto Aparecido; Garcia, Ana Maria Caviquioli; Arcuri, Helen Andrade; Esteves, Franciele Grego; Salles, Heliana Clara; Lubec, Gert; Palma, Mario Sergio

    2016-04-01

    The proteins from the silk-producing glands were identified using both a bottom-up gel-based proteomic approach as well as from a shotgun proteomic approach. Additionally, the relationship between the functions of identified proteins and the spinning process was studied. A total of 125 proteins were identified in the major ampullate, 101 in the flagelliform, 77 in the aggregate, 75 in the tubuliform, 68 in the minor ampullate, and 23 in aciniform glands. On the basis of the functional classification using Gene Ontology, these proteins were organized into seven different groups according to their general function: (i) web silk proteins-spidroins, (ii) proteins related to the folding/conformation of spidroins, (iii) proteins that protect silk proteins from oxidative stress, (iv) proteins involved in fibrillar preservation of silks in the web, (v) proteins related to ion transport into and out of the glands during silk fiber spinning, (vi) proteins involved in prey capture and pre-digestion, and (vii) housekeeping proteins from all of the glands. Thus, a general mechanism of action for the identified proteins in the silk-producing glands from the Nephila clavipes spider was proposed; the current results also indicate that the webs play an active role in prey capture. PMID:26923066

  7. Shear-induced rigidity in spider silk glands

    NASA Astrophysics Data System (ADS)

    Koski, Kristie J.; McKiernan, Keri; Akhenblit, Paul; Yarger, Jeffery L.

    2012-09-01

    We measure the elastic stiffnesses of the concentrated viscous protein solution of the dehydrated Nephila clavipes major ampullate gland with Brillouin light scattering. The glandular material shows no rigidity but possesses a tensile stiffness similar to that of spider silk. We show, however, that with application of a simple static shear, the mechanical properties of the spider gland protein mixture can be altered irreversibly, lowering symmetry and enabling shear waves to be supported, thus, giving rise to rigidity and yielding elastic properties similar to those of the naturally spun (i.e., dynamically sheared) silk.

  8. Reproducing Natural Spider Silks' Copolymer Behavior in Synthetic Silk Mimics

    SciTech Connect

    An, Bo; Jenkins, Janelle E; Sampath, Sujatha; Holland, Gregory P; Hinman, Mike; Yarger, Jeffery L; Lewis, Randolph

    2012-10-30

    Dragline silk from orb-weaving spiders is a copolymer of two large proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2). The ratio of these proteins is known to have a large variation across different species of orb-weaving spiders. NMR results from gland material of two different species of spiders, N. clavipes and A. aurantia, indicates that MaSp1 proteins are more easily formed into β-sheet nanostructures, while MaSp2 proteins form random coil and helical structures. To test if this behavior of natural silk proteins could be reproduced by recombinantly produced spider silk mimic protein, recombinant MaSp1/MaSp2 mixed fibers as well as chimeric silk fibers from MaSp1 and MaSp2 sequences in a single protein were produced based on the variable ratio and conserved motifs of MaSp1 and MaSp2 in native silk fiber. Mechanical properties, solid-state NMR, and XRD results of tested synthetic fibers indicate the differing roles of MaSp1 and MaSp2 in the fiber and verify the importance of postspin stretching treatment in helping the fiber to form the proper spatial structure.

  9. Microdissection of Black Widow Spider Silk-producing Glands

    PubMed Central

    Hsia, Yang; Gnesa, Eric; Zhao, Liang; Franz, Andreas; Vierra, Craig

    2011-01-01

    Modern spiders spin high-performance silk fibers with a broad range of biological functions, including locomotion, prey capture and protection of developing offspring 1,2. Spiders accomplish these tasks by spinning several distinct fiber types that have diverse mechanical properties. Such specialization of fiber types has occurred through the evolution of different silk-producing glands, which function as small biofactories. These biofactories manufacture and store large quantities of silk proteins for fiber production. Through a complex series of biochemical events, these silk proteins are converted from a liquid into a solid material upon extrusion. Mechanical studies have demonstrated that spider silks are stronger than high-tensile steel 3. Analyses to understand the relationship between the structure and function of spider silk threads have revealed that spider silk consists largely of proteins, or fibroins, that have block repeats within their protein sequences 4. Common molecular signatures that contribute to the incredible tensile strength and extensibility of spider silks are being unraveled through the analyses of translated silk cDNAs. Given the extraordinary material properties of spider silks, research labs across the globe are racing to understand and mimic the spinning process to produce synthetic silk fibers for commercial, military and industrial applications. One of the main challenges to spinning artificial spider silk in the research lab involves a complete understanding of the biochemical processes that occur during extrusion of the fibers from the silk-producing glands. Here we present a method for the isolation of the seven different silk-producing glands from the cobweaving black widow spider, which includes the major and minor ampullate glands [manufactures dragline and scaffolding silk] 5,6, tubuliform [synthesizes egg case silk] 7,8, flagelliform [unknown function in cob-weavers], aggregate [makes glue silk], aciniform [synthesizes prey

  10. Full-length minor ampullate spidroin gene sequence.

    PubMed

    Chen, Gefei; Liu, Xiangqin; Zhang, Yunlong; Lin, Senzhu; Yang, Zijiang; Johansson, Jan; Rising, Anna; Meng, Qing

    2012-01-01

    Spider silk includes seven protein based fibers and glue-like substances produced by glands in the spider's abdomen. Minor ampullate silk is used to make the auxiliary spiral of the orb-web and also for wrapping prey, has a high tensile strength and does not supercontract in water. So far, only partial cDNA sequences have been obtained for minor ampullate spidroins (MiSps). Here we describe the first MiSp full-length gene sequence from the spider species Araneus ventricosus, using a multidimensional PCR approach. Comparative analysis of the sequence reveals regulatory elements, as well as unique spidroin gene and protein architecture including the presence of an unusually large intron. The spliced full-length transcript of MiSp gene is 5440 bp in size and encodes 1766 amino acid residues organized into conserved nonrepetitive N- and C-terminal domains and a central predominantly repetitive region composed of four units that are iterated in a non regular manner. The repeats are more conserved within A. ventricosus MiSp than compared to repeats from homologous proteins, and are interrupted by two nonrepetitive spacer regions, which have 100% identity even at the nucleotide level. PMID:23251707

  11. Full-Length Minor Ampullate Spidroin Gene Sequence

    PubMed Central

    Chen, Gefei; Liu, Xiangqin; Zhang, Yunlong; Lin, Senzhu; Yang, Zijiang; Johansson, Jan; Rising, Anna; Meng, Qing

    2012-01-01

    Spider silk includes seven protein based fibers and glue-like substances produced by glands in the spider's abdomen. Minor ampullate silk is used to make the auxiliary spiral of the orb-web and also for wrapping prey, has a high tensile strength and does not supercontract in water. So far, only partial cDNA sequences have been obtained for minor ampullate spidroins (MiSps). Here we describe the first MiSp full-length gene sequence from the spider species Araneus ventricosus, using a multidimensional PCR approach. Comparative analysis of the sequence reveals regulatory elements, as well as unique spidroin gene and protein architecture including the presence of an unusually large intron. The spliced full-length transcript of MiSp gene is 5440 bp in size and encodes 1766 amino acid residues organized into conserved nonrepetitive N- and C-terminal domains and a central predominantly repetitive region composed of four units that are iterated in a non regular manner. The repeats are more conserved within A. ventricosus MiSp than compared to repeats from homologous proteins, and are interrupted by two nonrepetitive spacer regions, which have 100% identity even at the nucleotide level. PMID:23251707

  12. Probing the Impact of Acidification on Spider Silk Assembly Kinetics.

    PubMed

    Xu, Dian; Guo, Chengchen; Holland, Gregory P

    2015-07-13

    Spiders utilize fine adjustment of the physicochemical conditions within its silk spinning system to regulate spidroin assembly into solid silk fibers with outstanding mechanical properties. However, the exact mechanism about which this occurs remains elusive and is still hotly debated. In this study, the effect of acidification on spider silk assembly was investigated on native spidroins from the major ampullate (MA) gland fluid excised from Latrodectus hesperus (Black Widow) spiders. Incubating the protein-rich MA silk gland fluid at acidic pH conditions results in the formation of silk fibers that are 10-100 μm in length and ∼2 μm in diameter as judged by optical and electron microscope methods. The in vitro spider silk assembly kinetics were monitored as a function of pH with a (13)C solid-state MAS NMR approach. The results confirm the importance of acidic pH in the spider silk self-assembly process with observation of a sigmoidal nucleation-elongation kinetic profile. The rates of nucleation and elongation as well as the percentage of β-sheet structure in the grown fibers depend on the pH. These results confirm the importance of an acidic pH gradient along the spinning duct for spider silk formation and provide a powerful spectroscopic approach to probe the kinetics of spider silk formation under various biochemical conditions. PMID:26030517

  13. Identification and dynamics of polyglycine II nanocrystals in Argiope trifasciata flagelliform silk

    NASA Astrophysics Data System (ADS)

    Perea, G. B.; Riekel, C.; Guinea, G. V.; Madurga, R.; Daza, R.; Burghammer, M.; Hayashi, C.; Elices, M.; Plaza, G. R.; Pérez-Rigueiro, J.

    2013-10-01

    Spider silks combine a significant number of desirable characteristics in one material, including large tensile strength and strain at breaking, biocompatibility, and the possibility of tailoring their properties. Major ampullate gland silk (MAS) is the most studied silk and their properties are explained by a double lattice of hydrogen bonds and elastomeric protein chains linked to polyalanine β-nanocrystals. However, many basic details regarding the relationship between composition, microstructure and properties in silks are still lacking. Here we show that this relationship can be traced in flagelliform silk (Flag) spun by Argiope trifasciata spiders after identifying a phase consisting of polyglycine II nanocrystals. The presence of this phase is consistent with the dominant presence of the -GGX- and -GPG- motifs in its sequence. In contrast to the passive role assigned to polyalanine nanocrystals in MAS, polyglycine II nanocrystals can undergo growing/collapse processes that contribute to increase toughness and justify the ability of Flag to supercontract.

  14. Spinning an elastic ribbon of spider silk.

    PubMed

    Knight, David P; Vollrath, Fritz

    2002-02-28

    The Sicarid spider Loxosceles laeta spins broad but very thin ribbons of elastic silk that it uses to form a retreat and to capture prey. A structural investigation into this spider's silk and spinning apparatus shows that these ribbons are spun from a gland homologous to the major ampullate gland of orb web spiders. The Loxosceles gland is constructed from the same basic parts (separate transverse zones in the gland, a duct and spigot) as other spider silk glands but construction details are highly specialized. These differences are thought to relate to different ways of spinning silk in the two groups of spiders. Loxosceles uses conventional die extrusion, feeding a liquid dope (spinning solution) to the slit-like die to form a flat ribbon, while orb web spiders use an extrusion process in which the silk dope is processed in an elongated duct to produce a cylindrical thread. This is achieved by the combination of an initial internal draw down, well inside the duct, and a final draw down, after the silk has left the spigot. The spinning mechanism in Loxosceles may be more ancestral. PMID:11911779

  15. Structure and post-translational modifications of the web silk protein spidroin-1 from Nephila spiders.

    PubMed

    dos Santos-Pinto, José Roberto Aparecido; Lamprecht, Günther; Chen, Wei-Qiang; Heo, Seok; Hardy, John George; Priewalder, Helga; Scheibel, Thomas Rainer; Palma, Mario Sergio; Lubec, Gert

    2014-06-13

    Spidroin-1 is one of the major ampullate silk proteins produced by spiders for use in the construction of the frame and radii of orb webs, and as a dragline to escape from predators. Only partial sequences of spidroin-1 produced by Nephila clavipes have been reported up to now, and there is no information on post-translational modifications (PTMs). A gel-based mass spectrometry strategy with ETD and CID fragmentation methods were used to sequence and determine the presence/location of any PTMs on the spidroin-1. Sequence coverage of 98.06%, 95.05%, and 98.37% were obtained for N. clavipes, Nephila edulis and for Nephila madagascariensis, respectively. Phosphorylation was the major PTM observed with 8 phosphorylation sites considered reliable on spidroin-1 produced by N. clavipes, 4 in N. madagascariensis and 2 for N. edulis. Dityrosine and 3,4-dihydroxyphenylalanine (formed by oxidation of the spidroin-1) were observed, although the mechanism by which they are formed (i.e. exposure to UV radiation or to peroxidases in the major ampullate silk gland) is uncertain. Herein we present structural information on the spidroin-1 produced by three different Nephila species; these findings may be valuable for understanding the physicochemical properties of the silk proteins and moreover, future designs of recombinantly produced spider silk proteins. Biotechnological significance The present investigation shows for the first time spidroin structure and post-translational modifications observed on the major ampullate silk spidroin-1. The many site specific phosphorylations (localized within the structural motifs) along with the probably photoinduction of hydroxylations may be relevant for scientists in material science, biology, biochemistry and environmental scientists. Up to now all the mechanical properties of the spidroin have been characterized without any consideration about the existence of PTMs in the sequence of spidroins. Thus, these findings for major ampullate silk

  16. Evidence of Decoupling Protein Structure from Spidroin Expression in Spider Dragline Silks.

    PubMed

    Blamires, Sean J; Kasumovic, Michael M; Tso, I-Min; Martens, Penny J; Hook, James M; Rawal, Aditya

    2016-01-01

    The exceptional strength and extensibility of spider dragline silk have been thought to be facilitated by two spidroins, major ampullate spidroin 1 (MaSp1) and major ampullate spidroin 2 (MaSp2), under the assumption that protein secondary structures are coupled with the expressed spidroins. We tested this assumption for the dragline silk of three co-existing Australian spiders, Argiope keyserlingi, Latrodectus hasselti and Nephila plumipes. We found that silk amino acid compositions did not differ among spiders collected in May. We extended these analyses temporally and found the amino acid compositions of A. keyserlingi silks to differ when collected in May compared to November, while those of L. hasselti did not. To ascertain whether their secondary structures were decoupled from spidroin expression, we performed solid-state nuclear magnetic resonance spectroscopy (NMR) analysis on the silks of all spiders collected in May. We found the distribution of alanine toward β-sheet and 3,10helix/random coil conformations differed between species, as did their relative crystallinities, with A. keyserlingi having the greatest 3,10helix/random coil composition and N. plumipes the greatest crystallinity. The protein secondary structures correlated with the mechanical properties for each of the silks better than the amino acid compositions. Our findings suggested that a differential distribution of alanine during spinning could decouple secondary structures from spidroin expression ensuring that silks of desirable mechanical properties are consistently produced. Alternative explanations include the possibility that other spidroins were incorporated into some silks. PMID:27517909

  17. Evidence of Decoupling Protein Structure from Spidroin Expression in Spider Dragline Silks

    PubMed Central

    Blamires, Sean J.; Kasumovic, Michael M.; Tso, I-Min; Martens, Penny J.; Hook, James M.; Rawal, Aditya

    2016-01-01

    The exceptional strength and extensibility of spider dragline silk have been thought to be facilitated by two spidroins, major ampullate spidroin 1 (MaSp1) and major ampullate spidroin 2 (MaSp2), under the assumption that protein secondary structures are coupled with the expressed spidroins. We tested this assumption for the dragline silk of three co-existing Australian spiders, Argiope keyserlingi, Latrodectus hasselti and Nephila plumipes. We found that silk amino acid compositions did not differ among spiders collected in May. We extended these analyses temporally and found the amino acid compositions of A. keyserlingi silks to differ when collected in May compared to November, while those of L. hasselti did not. To ascertain whether their secondary structures were decoupled from spidroin expression, we performed solid-state nuclear magnetic resonance spectroscopy (NMR) analysis on the silks of all spiders collected in May. We found the distribution of alanine toward β-sheet and 3,10helix/random coil conformations differed between species, as did their relative crystallinities, with A. keyserlingi having the greatest 3,10helix/random coil composition and N. plumipes the greatest crystallinity. The protein secondary structures correlated with the mechanical properties for each of the silks better than the amino acid compositions. Our findings suggested that a differential distribution of alanine during spinning could decouple secondary structures from spidroin expression ensuring that silks of desirable mechanical properties are consistently produced. Alternative explanations include the possibility that other spidroins were incorporated into some silks. PMID:27517909

  18. Structural hysteresis in dragline spider silks induced by supercontraction: an X-ray fiber micro-diffraction study

    DOE PAGESBeta

    Sampath, Sujatha; Yarger, Jeffery L.

    2014-11-27

    Interaction with water causes shrinkage and significant changes in the structure of spider dragline silks, which has been referred to as supercontraction in the literature. Preferred orientation or alignment of protein chains with respect to the fiber axis is extensively changed during this supercontraction process. Synchrotron X-ray micro-fiber diffraction experiments have been performed on Nephila clavipes and Argiope aurantia major and minor ampullate dragline spider fibers in the native dry, contracted (by immersion in water) and restretched (from contracted) states. Changes in the orientation of β-sheet nanocrystallites and the oriented component of the amorphous network have been determined from wide-anglemore » X-ray diffraction patterns. While both the crystalline and amorphous components lose preferred orientation on wetting with water, the nano-crystallites regain their orientation on wet-restretching, whereas the oriented amorphous components only partially regain their orientation. Dragline major ampullate silks in both the species contract more than their minor ampullate silks.« less

  19. Structural hysteresis in dragline spider silks induced by supercontraction: An x-ray fiber micro-diffraction study

    PubMed Central

    Yarger, Jeffery. L.

    2014-01-01

    Interaction with water causes shrinkage and significant changes in the structure of spider dragline silks, which has been referred to as supercontraction in the literature. Preferred orientation or alignment of protein chains with respect to the fiber axis is extensively changed during this supercontraction process. Synchrotron x-ray micro-fiber diffraction experiments have been performed on Nephila clavipes and Argiope aurantia major and minor ampullate dragline spider fibers in the native dry, contracted (by immersion in water) and restretched (from contracted) states. Changes in the orientation of β-sheet nanocrystallites and the oriented component of the amorphous network have been determined from wide-angle x-ray diffraction patterns. While both the crystalline and amorphous components lose preferred orientation on wetting with water, the nano-crystallites regain their orientation on wet-restretching, whereas the oriented amorphous components only partially regain their orientation. Dragline major ampullate silks in both the species contract more than their minor ampullate silks. PMID:25621168

  20. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    PubMed

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes. PMID:26814126

  1. Uncovering spider silk nanocrystalline variations that facilitate wind-induced mechanical property changes.

    PubMed

    Blamires, Sean J; Wu, Chao-Chia; Wu, Chung-Lin; Sheu, Hwo-Shuenn; Tso, I-Min

    2013-10-14

    Spider major ampullate (MA) silk varies in mechanical properties when spun in different environments. Amino acid compositional changes induced by variations in MaSp1 and MaSp2 expression, and various biochemical and physiological glandular processes induce silk property variability. Quantifying the contributions of these mechanisms on silk variability may facilitate the development of silk biomimetics. Wind is a medium that induces variations in MA silk mechanics. We exposed the spider Cyclosa mulmeinensis to wind and measured the amino acid composition, tensile mechanics, and crystalline structure of its MA silk using HPLC, tensile tests, and X-ray diffraction. We found the mechanical properties of MA silks from spiders exposed to wind to differ from unexposed spiders. The amino acid compositions did not differ, but X-ray diffraction found a lower crystal density and greater β-sheet alignment relative to the fiber axis in the silks of spiders exposed to wind. We found no evidence that the mechanical property variations were a product of profound changes to the alignment of the protein within the amorphous region. We conclude that variations in the density and alignment of the crystalline β-sheets, probably accompanied by some alignment change in the amorphous region as a result of "stretching" during spinning of the silk, probably explains the mechanical property variations that we found across treatment subgroups. As C. mulmeinensis MA silk increases both in strength and elasticity when the spiders are exposed to wind, bioengineers may consider it as a model for the development of high-performance silk biomimetics. PMID:23947397

  2. Non-invasive determination of the complete elastic moduli of spider silks

    NASA Astrophysics Data System (ADS)

    Koski, Kristie J.; Akhenblit, Paul; McKiernan, Keri; Yarger, Jeffery L.

    2013-03-01

    Spider silks possess nature’s most exceptional mechanical properties, with unrivalled extensibility and high tensile strength. Unfortunately, our understanding of silks is limited because the complete elastic response has never been measured—leaving a stark lack of essential fundamental information. Using non-invasive, non-destructive Brillouin light scattering, we obtain the entire stiffness tensors (revealing negative Poisson’s ratios), refractive indices, and longitudinal and transverse sound velocities for major and minor ampullate spider silks: Argiope aurantia, Latrodectus hesperus, Nephila clavipes, Peucetia viridans. These results completely quantify the linear elastic response for all possible deformation modes, information unobtainable with traditional stress-strain tests. For completeness, we apply the principles of Brillouin imaging to spatially map the elastic stiffnesses on a spider web without deforming or disrupting the web in a non-invasive, non-contact measurement, finding variation among discrete fibres, junctions and glue spots. Finally, we provide the stiffness changes that occur with supercontraction.

  3. Non-invasive determination of the complete elastic moduli of spider silks.

    PubMed

    Koski, Kristie J; Akhenblit, Paul; McKiernan, Keri; Yarger, Jeffery L

    2013-03-01

    Spider silks possess nature's most exceptional mechanical properties, with unrivalled extensibility and high tensile strength. Unfortunately, our understanding of silks is limited because the complete elastic response has never been measured-leaving a stark lack of essential fundamental information. Using non-invasive, non-destructive Brillouin light scattering, we obtain the entire stiffness tensors (revealing negative Poisson's ratios), refractive indices, and longitudinal and transverse sound velocities for major and minor ampullate spider silks: Argiope aurantia, Latrodectus hesperus, Nephila clavipes, Peucetia viridans. These results completely quantify the linear elastic response for all possible deformation modes, information unobtainable with traditional stress-strain tests. For completeness, we apply the principles of Brillouin imaging to spatially map the elastic stiffnesses on a spider web without deforming or disrupting the web in a non-invasive, non-contact measurement, finding variation among discrete fibres, junctions and glue spots. Finally, we provide the stiffness changes that occur with supercontraction. PMID:23353627

  4. Dragline silk: a fiber assembled with low-molecular-weight cysteine-rich proteins.

    PubMed

    Pham, Thanh; Chuang, Tyler; Lin, Albert; Joo, Hyun; Tsai, Jerry; Crawford, Taylor; Zhao, Liang; Williams, Caroline; Hsia, Yang; Vierra, Craig

    2014-11-10

    Dragline silk has been proposed to contain two main protein constituents, MaSp1 and MaSp2. However, the mechanical properties of synthetic spider silks spun from recombinant MaSp1 and MaSp2 proteins have yet to approach natural fibers, implying the natural spinning dope is missing critical factors. Here we report the discovery of novel molecular constituents within the spinning dope that are extruded into dragline silk. Protein studies of the liquid spinning dope from the major ampullate gland, coupled with the analysis of dragline silk fibers using mass spectrometry, demonstrate the presence of a new family of low-molecular-weight cysteine-rich proteins (CRPs) that colocalize with the MA fibroins. Expression of the CRP family members is linked to dragline silk production, specifically MaSp1 and MaSp2 mRNA synthesis. Biochemical data support that CRP molecules are secreted into the spinning dope and assembled into macromolecular complexes via disulfide bond linkages. Sequence analysis supports that CRP molecules share similarities to members that belong to the cystine slipknot superfamily, suggesting that these factors may have evolved to increase fiber toughness by serving as molecular hubs that dissipate large amounts of energy under stress. Collectively, our findings provide molecular details about the components of dragline silk, providing new insight that will advance materials development of synthetic spider silk for industrial applications. PMID:25259849

  5. Reproducing Natural Spider Silks’ Copolymer Behavior in Synthetic Silk Mimics

    PubMed Central

    An, Bo; Jenkins, Janelle E.; Sampath, Sujatha; Holland, Gregory P.; Hinman, Mike; Yarger, Jeffery L.; Lewis, Randolph

    2012-01-01

    Dragline silk from orb-weaving spiders is a copolymer of two large proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2). The ratio of these proteins is known to have a large variation across different species of orb-weaving spiders. NMR results from gland material of two different species of spiders, N. clavipes and A. aurantia, indicates that MaSp1 proteins are more easily formed into β-sheet nanostructures, while MaSp2 proteins form random coil and helical structures. To test if this behavior of natural silk proteins could be reproduced by recombinantly produced spider silk mimic protein, recombinant MaSp1/MaSp2 mixed fibers as well as chimeric silk fibers from MaSp1 and MaSp2 sequences in a single protein were produced based on the variable ratio and conserved motifs of MaSp1 and MaSp2 in native silk fiber. Mechanical properties, solid-state NMR, and XRD results of tested synthetic fibers indicate the differing roles of MaSp1 and MaSp2 in the fiber and verify the importance of postspin stretching treatment in helping the fiber to form the proper spatial structure. PMID:23110450

  6. Characterization of the protein components of Nephila clavipes dragline silk.

    PubMed

    Sponner, Alexander; Schlott, Bernhard; Vollrath, Fritz; Unger, Eberhard; Grosse, Frank; Weisshart, Klaus

    2005-03-29

    Spider silk is predominantly composed of structural proteins called spider fibroins or spidroins. The major ampullate silk that forms the dragline and the cobweb's frame threads of Nephila clavipes is believed to be a composite of two spidroins, designated as Masp 1 and 2. Specific antibodies indeed revealed the presence of Masp 1 and 2 specific epitopes in the spinning dope and solubilized threads. In contrast, sequencing of specific peptides obtained from solubilized threads or gland urea extracts were exclusively homologous to segments of Masp 1, suggesting that this protein is more abundantly expressed in silk than Masp 2. The strength of immunoreactivities corroborated this finding. Polypeptides reactive against both Masp 1 and 2 specific antibodies were found to be expressed in the epithelia of the tail and different gland zones and accumulated in the gland secreted material. Both extracts of gland secretion and solubilized threads showed a ladder of polypeptides in the size range of 260-320 kDa in gel electrophoresis under reducing conditions, whereas gel filtration chromatography yielded molecular masses of the proteins of approximately 300-350 kDa. In the absence of a reducing agent, dimeric forms of the spidroins were observed with estimated molecular masses of 420-480 kDa according to gel electrophoresis and 550-650 kDa as determined by gel filtration chromatography. Depending on the preparation, some silk material readily underwent degradation, and polypeptides down to 20 kDa in size and less were detectable. PMID:15779899

  7. Physical and Biological Regulation of Neuron Regenerative Growth and Network Formation on Recombinant Dragline Silks

    PubMed Central

    Huang, Wenwen; He, Jiuyang; Jones, Justin; Lewis, Randolph V.; Kaplan, David L.

    2015-01-01

    Recombinant spider silks produced in transgenic goat milk were studied as cell culture matrices for neuronal growth. Major ampullate spidroin 1 (MaSp1) supported neuronal growth, axon extension and network connectivity, with cell morphology comparable to the gold standard poly-lysine. In addition, neurons growing on MaSp1 films had increased neural cell adhesion molecule (NCAM) expression at both mRNA and protein levels. The results indicate that MaSp1 films present useful surface charge and substrate stiffness to support the growth of primary rat cortical neurons. Moreover, a putative neuron-specific surface binding sequence GRGGL within MaSp1 may contribute to the biological regulation of neuron growth. These findings indicate that MaSp1 could regulate neuron growth through its physical and biological features. This dual regulation mode of MaSp1 could provide an alternative strategy for generating functional silk materials for neural tissue engineering. PMID:25701039

  8. Identification and dynamics of polyglycine II nanocrystals in Argiope trifasciata flagelliform silk

    PubMed Central

    Perea, G. B.; Riekel, C.; Guinea, G. V.; Madurga, R.; Daza, R.; Burghammer, M.; Hayashi, C.; Elices, M.; Plaza, G. R.; Pérez-Rigueiro, J.

    2013-01-01

    Spider silks combine a significant number of desirable characteristics in one material, including large tensile strength and strain at breaking, biocompatibility, and the possibility of tailoring their properties. Major ampullate gland silk (MAS) is the most studied silk and their properties are explained by a double lattice of hydrogen bonds and elastomeric protein chains linked to polyalanine β-nanocrystals. However, many basic details regarding the relationship between composition, microstructure and properties in silks are still lacking. Here we show that this relationship can be traced in flagelliform silk (Flag) spun by Argiope trifasciata spiders after identifying a phase consisting of polyglycine II nanocrystals. The presence of this phase is consistent with the dominant presence of the –GGX– and –GPG– motifs in its sequence. In contrast to the passive role assigned to polyalanine nanocrystals in MAS, polyglycine II nanocrystals can undergo growing/collapse processes that contribute to increase toughness and justify the ability of Flag to supercontract. PMID:24162473

  9. In Vitro Evaluation of Spider Silk Meshes as a Potential Biomaterial for Bladder Reconstruction

    PubMed Central

    Steins, Anne; Dik, Pieter; Müller, Wally H.; Vervoort, Stephin J.; Reimers, Kerstin; Kuhbier, Jörn W.; Vogt, Peter M.; van Apeldoorn, Aart A.; Coffer, Paul J.; Schepers, Koen

    2015-01-01

    Reconstruction of the bladder by means of both natural and synthetic materials remains a challenge due to severe adverse effects such as mechanical failure. Here we investigate the application of spider major ampullate gland-derived dragline silk from the Nephila edulis spider, a natural biomaterial with outstanding mechanical properties and a slow degradation rate, as a potential scaffold for bladder reconstruction by studying the cellular response of primary bladder cells to this biomaterial. We demonstrate that spider silk without any additional biological coating supports adhesion and growth of primary human urothelial cells (HUCs), which are multipotent bladder cells able to differentiate into the various epithelial layers of the bladder. HUCs cultured on spider silk did not show significant changes in the expression of various epithelial-to-mesenchymal transition and fibrosis associated genes, and demonstrated only slight reduction in the expression of adhesion and cellular differentiation genes. Furthermore, flow cytometric analysis showed that most of the silk-exposed HUCs maintain an undifferentiated immunophenotype. These results demonstrate that spider silk from the Nephila edulis spider supports adhesion, survival and growth of HUCs without significantly altering their cellular properties making this type of material a suitable candidate for being tested in pre-clinical models for bladder reconstruction. PMID:26689371

  10. Structure and pH-induced alterations of recombinant and natural spider silk proteins in solution.

    PubMed

    Leclerc, Jérémie; Lefèvre, Thierry; Pottier, Fabien; Morency, Louis-Philippe; Lapointe-Verreault, Camille; Gagné, Stéphane M; Auger, Michèle

    2012-06-01

    The spinning process of spiders can modulate the mechanical properties of their silk fibers. It is therefore of primary importance to understand what are the key elements of the spider spinning process to develop efficient industrial spinning processes. We have exhaustively investigated the native conformation of major ampullate silk (MaS) proteins by comparing the content of the major ampullate gland of Nephila clavipes, solubilized MaS (SolMaS) fibers and the recombinant proteins rMaSpI and rMaSpII using (1) H solution NMR spectroscopy. The results indicate that the protein secondary structure is basically identical for the recombinant protein rMaSpI, SolMaS proteins, and the proteins in the dope, and corresponds to a disordered protein rich in 3(1) -helices. The data also show that glycine proton chemical shifts of rMaSpI and SolMaS are affected by pH, but that this change is not due to a modification of the secondary structure. Using a combination of NMR and dynamic light scattering, we have found that the spectral alteration of glycine is concomitant to a modification of the hydrodynamical diameter of recombinant and solubilized MaS. This led us to suggest new potential roles for the pH acidification in the spinning process of MaS proteins. PMID:21898365

  11. Ex vivo rheology of spider silk.

    PubMed

    Kojić, N; Bico, J; Clasen, C; McKinley, G H

    2006-11-01

    We investigate the rheological properties of microliter quantities of the spinning material extracted ex vivo from the major ampullate gland of a Nephila clavipes spider using two new micro-rheometric devices. A sliding plate micro-rheometer is employed to measure the steady-state shear viscosity of approximately 1 microl samples of silk dope from individual biological specimens. The steady shear viscosity of the spinning solution is found to be highly shear-thinning, with a power-law index consistent with values expected for liquid crystalline solutions. Calculations show that the viscosity of the fluid decreases 10-fold as it flows through the narrow spinning canals of the spider. By contrast, measurements in a microcapillary extensional rheometer show that the transient extensional viscosity (i.e. the viscoelastic resistance to stretching) of the spinning fluid increases more than 100-fold during the spinning process. Quantifying the properties of native spinning solutions provides new guidance for adjusting the spinning processes of synthetic or genetically engineered silks to match those of the spider. PMID:17050850

  12. Complex gene expression in the dragline silk producing glands of the Western black widow (Latrodectus hesperus)

    PubMed Central

    2013-01-01

    Background Orb-web and cob-web weaving spiders spin dragline silk fibers that are among the strongest materials known. Draglines are primarily composed of MaSp1 and MaSp2, two spidroins (spider fibrous proteins) expressed in the major ampullate (MA) silk glands. Prior genetic studies of dragline silk have focused mostly on determining the sequence of these spidroins, leaving other genetic aspects of silk synthesis largely uncharacterized. Results Here, we used deep sequencing to profile gene expression patterns in the Western black widow, Latrodectus hesperus. We sequenced millions of 3′-anchored “tags” of cDNAs derived either from MA glands or control tissue (cephalothorax) mRNAs, then associated the tags with genes by compiling a reference database from our newly constructed normalized L. hesperus cDNA library and published L. hesperus sequences. We were able to determine transcript abundance and alternative polyadenylation of each of three loci encoding MaSp1. The ratio of MaSp1:MaSp2 transcripts varied between individuals, but on average was similar to the estimated ratio of MaSp1:MaSp2 in dragline fibers. We also identified transcription of TuSp1 in MA glands, another spidroin family member that encodes the primary component of egg-sac silk, synthesized in tubuliform glands. In addition to the spidroin paralogs, we identified 30 genes that are more abundantly represented in MA glands than cephalothoraxes and represent new candidates for involvement in spider silk synthesis. Conclusions Modulating expression rates of MaSp1 variants as well as MaSp2 and TuSp1 could lead to differences in mechanical properties of dragline fibers. Many of the newly identified candidate genes likely encode secreted proteins, suggesting they could be incorporated into dragline fibers or assist in protein processing and fiber assembly. Our results demonstrate previously unrecognized transcript complexity in spider silk glands. PMID:24295234

  13. Diversified Structural Basis of a Conserved Molecular Mechanism for pH-Dependent Dimerization in Spider Silk N-Terminal Domains.

    PubMed

    Otikovs, Martins; Chen, Gefei; Nordling, Kerstin; Landreh, Michael; Meng, Qing; Jörnvall, Hans; Kronqvist, Nina; Rising, Anna; Johansson, Jan; Jaudzems, Kristaps

    2015-08-17

    Conversion of spider silk proteins from soluble dope to insoluble fibers involves pH-dependent dimerization of the N-terminal domain (NT). This conversion is tightly regulated to prevent premature precipitation and enable rapid silk formation at the end of the duct. Three glutamic acid residues that mediate this process in the NT from Euprosthenops australis major ampullate spidroin 1 are well conserved among spidroins. However, NTs of minor ampullate spidroins from several species, including Araneus ventricosus ((Av)MiSp NT), lack one of the glutamic acids. Here we investigate the pH-dependent structural changes of (Av)MiSp NT, revealing that it uses the same mechanism but involves a non-conserved glutamic acid residue instead. Homology modeling of the structures of other MiSp NTs suggests that these harbor different compensatory residues. This indicates that, despite sequence variations, the molecular mechanism underlying pH-dependent dimerization of NT is conserved among different silk types. PMID:26033527

  14. Untangling spider silk evolution with spidroin terminal domains

    PubMed Central

    2010-01-01

    Background Spidroins are a unique family of large, structural proteins that make up the bulk of spider silk fibers. Due to the highly variable nature of their repetitive sequences, spidroin evolutionary relationships have principally been determined from their non-repetitive carboxy (C)-terminal domains, though they offer limited character data. The few known spidroin amino (N)-terminal domains have been difficult to obtain, but potentially contain critical phylogenetic information for reconstructing the diversification of spider silks. Here we used silk gland expression data (ESTs) from highly divergent species to evaluate the functional significance and phylogenetic utility of spidroin N-terminal domains. Results We report 11 additional spidroin N-termini found by sequencing ~1,900 silk gland cDNAs from nine spider species that shared a common ancestor > 240 million years ago. In contrast to their hyper-variable repetitive regions, spidroin N-terminal domains have retained striking similarities in sequence identity, predicted secondary structure, and hydrophobicity. Through separate and combined phylogenetic analyses of N-terminal domains and their corresponding C-termini, we find that combined analysis produces the most resolved trees and that N-termini contribute more support and less conflict than the C-termini. These analyses show that paralogs largely group by silk gland type, except for the major ampullate spidroins. Moreover, spidroin structural motifs associated with superior tensile strength arose early in the history of this gene family, whereas a motif conferring greater extensibility convergently evolved in two distantly related paralogs. Conclusions A non-repetitive N-terminal domain appears to be a universal attribute of spidroin proteins, likely retained from the origin of spider silk production. Since this time, spidroin N-termini have maintained several features, consistent with this domain playing a key role in silk assembly. Phylogenetic

  15. Influence of silk-silica fusion protein design on silica condensation in vitro and cellular calcification

    PubMed Central

    Plowright, Robyn; Dinjaski, Nina; Zhou, Shun; Belton, David J.; Kaplan, David L.; Perry, Carole C.

    2016-01-01

    Biomaterial design via genetic engineering can be utilized for the rational functionalization of proteins to promote biomaterial integration and tissue regeneration. Spider silk has been extensively studied for its biocompatibility, biodegradability and extraordinary material properties. As a protein-based biomaterial, recombinant DNA derived derivatives of spider silks have been modified with biomineralization domains which lead to silica deposition and potentially accelerated bone regeneration. However, the influence of the location of the R5 (SSKKSGSYSGSKGSKRRIL) silicifying domain fused with the spider silk protein sequence on the biosilicification process remains to be determined. Here we designed two silk-R5 fusion proteins that differed in the location of the R5 peptide, C- vs. N-terminus, where the spider silk domain consisted of a 15mer repeat of a 33 amino acid consensus sequence of the major ampullate dragline Spidroin 1 from Nephila clavipes (SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQGT). The chemical, physical and silica deposition properties of these recombinant proteins were assessed and compared to a silk 15mer control without the R5 present. The location of the R5 peptide did not have a significant effect on wettability and surface energies, while the C-terminal location of the R5 promoted more controlled silica precipitation, suggesting differences in protein folding and possibly different access to charged amino acids that drive the silicification process. Further, cell compatibility in vitro, as well as the ability to promote human bone marrow derived mesenchymal stem cell (hMSC) differentiation were demonstrated for both variants of the fusion proteins. PMID:26989487

  16. Spider silk-like proteins derived from transgenic Nicotiana tabacum.

    PubMed

    Peng, Congyue Annie; Russo, Julia; Gravgaard, Charlene; McCartney, Heather; Gaines, William; Marcotte, William R

    2016-08-01

    The high tensile strength and biocompatibility of spider dragline silk makes it a desirable material in many engineering and tissue regeneration applications. Here, we present the feasibility to produce recombinant proteins in transgenic tobacco Nicotiana tabacum with sequences representing spider silk protein building blocks . Recombinant mini-spidroins contain native N- and C-terminal domains of major ampullate spidroin 1 (rMaSp1) or rMaSp2 flanking an abbreviated number (8, 16 or 32) of consensus repeat domains. Two different expression plasmid vectors were tested and a downstream chitin binding domain and self-cleavable intein were included to facilitate protein purification. We confirmed gene insertion and RNA transcription by PCR and reverse-transcriptase PCR, respectively. Mini-spidroin production was detected by N-terminus specific antibodies. Purification of mini-spidroins was performed through chitin affinity chromatography and subsequent intein activation with reducing reagent. Mini-spidroins, when dialyzed and freeze-dried, formed viscous gelatin-like fluids. PMID:27026165

  17. Differential polymerization of the two main protein components of dragline silk during fibre spinning.

    PubMed

    Sponner, Alexander; Unger, Eberhard; Grosse, Frank; Weisshart, Klaus

    2005-10-01

    Spider silks are some of the strongest materials found in nature. Achieving the high tensile strength and elasticity of the dragline of orb-weaving spiders, such as Nephila clavipes, is a principal goal in biomimetics research. The dragline has a composite nature and is predominantly made up by two proteins, the major ampullate spidroins 1 and 2 (refs 3, 6, 7), which can be considered natural block copolymers. On the basis of their molecular structures both spidroins are thought to contribute, in different ways, to the mechanical properties of dragline silk. The spinning process itself is also considered important for determining the observed features by shaping the hierarchical structure of the fibre. Here we study the heterogeneous distribution of proteins along the radial axis of the fibre. This heterogeneity is generated during the conversion of the liquid spinning dope into solid fibre. Whereas spidroin 1 is distributed almost uniformly within the fibre core, spidroin 2 is missing in the periphery and is tightly packed in certain core areas. Our findings suggest that the role of spidroin 2 in the spinning process could be to facilitate the formation of fibrils and contribute directly to the elasticity of the silk. PMID:16184170

  18. Self-assembly of spider silk proteins is controlled by a pH-sensitive relay.

    PubMed

    Askarieh, Glareh; Hedhammar, My; Nordling, Kerstin; Saenz, Alejandra; Casals, Cristina; Rising, Anna; Johansson, Jan; Knight, Stefan D

    2010-05-13

    Nature's high-performance polymer, spider silk, consists of specific proteins, spidroins, with repetitive segments flanked by conserved non-repetitive domains. Spidroins are stored as a highly concentrated fluid dope. On silk formation, intermolecular interactions between repeat regions are established that provide strength and elasticity. How spiders manage to avoid premature spidroin aggregation before self-assembly is not yet established. A pH drop to 6.3 along the spider's spinning apparatus, altered salt composition and shear forces are believed to trigger the conversion to solid silk, but no molecular details are known. Miniature spidroins consisting of a few repetitive spidroin segments capped by the carboxy-terminal domain form metre-long silk-like fibres irrespective of pH. We discovered that incorporation of the amino-terminal domain of major ampullate spidroin 1 from the dragline of the nursery web spider Euprosthenops australis (NT) into mini-spidroins enables immediate, charge-dependent self-assembly at pH values around 6.3, but delays aggregation above pH 7. The X-ray structure of NT, determined to 1.7 A resolution, shows a homodimer of dipolar, antiparallel five-helix bundle subunits that lack homologues. The overall dimeric structure and observed charge distribution of NT is expected to be conserved through spider evolution and in all types of spidroins. Our results indicate a relay-like mechanism through which the N-terminal domain regulates spidroin assembly by inhibiting precocious aggregation during storage, and accelerating and directing self-assembly as the pH is lowered along the spider's silk extrusion duct. PMID:20463740

  19. Silk-silica composites from genetically engineered chimeric proteins: materials properties correlate with silica condensation rate and colloidal stability of the proteins in aqueous solution

    PubMed Central

    Belton, David J.; Mieszawska, Aneta J.; Currie, Heather A.; Kaplan, David L.; Perry, Carole C.

    2012-01-01

    The aim of the study was to determine the extent and mechanism of influence on silica condensation that is presented by a range of known silicifying recombinant chimeras (R5- SSKKSGSYSGSKGSKRRIL; A1- SGSKGSKRRIL; and Si4-1- MSPHPHPRHHHT and repeats thereof) attached at the N-terminus end of a 15 mer repeat of the 32 amino acid consensus sequence of the major ampullate dragline Spindroin 1 (Masp1) Nephila clavipes spider silk sequence ([SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQG]15X). The influence of the silk/chimera ratio was explored through the adjustment of the type and number of silicifying domains, (denoted X above), and the results were compared with their non chimeric counterparts and the silk from Bombyx mori. The effect of pH (3–9) on reactivity was also explored. Optimum conditions for rate and control of silica deposition were determined and the solution properties of the silks were explored to determine their mode(s) of action. For the silica-silk-chimera materials formed there is a relationship between the solution properties of the chimeric proteins (ability to carry charge), the pH of reaction and the solid state materials that are generated. The region of colloidal instability correlates with the pH range observed for morphological control and coincides with the pH range for the highest silica condensation rates. With this information it should be possible to predict how chimeric or chemically modified proteins will affect structure and morphology of materials produced under controlled conditions and extend the range of composite materials for a wide spectrum of uses in the biomedical and technology fields. PMID:22313382

  20. Effects of different post-spin stretching conditions on the mechanical properties of synthetic spider silk fibers

    PubMed Central

    Albertson, Amy E.; Teulé, Florence; Weber, Warner; Yarger, Jeffery L.; Lewis, Randolph V.

    2014-01-01

    Spider silk is a biomaterial with impressive mechanical properties, resulting in various potential applications. Recent research has focused on producing synthetic spider silk fibers with the same mechanical properties as the native fibers. For this study, three proteins based on the Argiope aurantia Major ampullate Spidroin 2 consensus repeat sequence were expressed, purified and spun into fibers. A number of post-spin draw conditions were tested to determine the effect of each condition on the mechanical properties of the fiber. In all cases, post-spin stretching improved the mechanical properties of the fibers. Aqueous isopropanol was the most effective solution for increasing extensibility, while other solutions worked best for each fiber type for increasing tensile strength. The strain values of the stretched fibers correlated with the length of the proline-rich protein sequence. Structural analysis, including X-ray diffraction and Raman spectroscopy, showed surprisingly little change in the initial as-spun fibers compared with the post-spin stretched fibers. PMID:24113297

  1. Protein secondary structure of Green Lynx spider dragline silk investigated by solid-state NMR and X-ray diffraction.

    PubMed

    Xu, Dian; Shi, Xiangyan; Thompson, Forrest; Weber, Warner S; Mou, Qiushi; Yarger, Jeffery L

    2015-11-01

    In this study, the secondary structure of the major ampullate silk from Peucetia viridans (Green Lynx) spiders is characterized by X-ray diffraction and solid-state NMR spectroscopy. From X-ray diffraction measurement, β-sheet nanocrystallites were observed and found to be highly oriented along the fiber axis, with an orientational order, fc≈0.98. The size of the nanocrystallites was determined to be on average 2.5nm×3.3nm×3.8nm. Besides a prominent nanocrystalline region, a partially oriented amorphous region was also observed with an fa≈0.89. Two-dimensional (13)C-(13)C through-space and through-bond solid-state NMR experiments were employed to elucidate structure details of P. viridans silk proteins. It reveals that β-sheet nanocrystallites constitutes 40.0±1.2% of the protein and are dominated by alanine-rich repetitive motifs. Furthermore, based upon the NMR data, 18±1% of alanine, 60±2% glycine and 54±2% serine are incorporated into helical conformations. PMID:26226457

  2. Protein secondary structure of Green Lynx spider dragline silk investigated by solid-state NMR and X-ray diffraction

    PubMed Central

    Xu, Dian; Shi, Xiangyan; Thompson, Forrest; Weber, Warner S.; Mou, Qiushi; Yarger, Jeffery L

    2016-01-01

    In this study, the secondary structure of the major ampullate silk from Peucetia viridans (Green Lynx) spiders is characterized by X-ray diffraction and solid-state NMR spectroscopy. From X-ray diffraction measurement, β-sheet nanocrystallites were observed and found to be highly oriented along the fiber axis, with an orientational order, fc ≈ 0.98. The size of the nanocrystallites was determined to be on average 2.5 nm × 3.3 nm × 3.8 nm. Besides a prominent nanocrystalline region, a partially oriented amorphous region was also observed with an fa ≈ 0.89. Two-dimensional 13C–13C through-space and through-bond solid-state NMR experiments were employed to elucidate structure details of P. viridans silk proteins. It reveals that β-sheet nanocrystallites constitutes 40.0 ± 1.2% of the protein and are dominated by alanine-rich repetitive motifs. Furthermore, based upon the NMR data, 18 ± 1% of alanine, 60 ± 2% glycine and 54 ± 2% serine are incorporated into helical conformations. PMID:26226457

  3. Dual Thermosensitive Hydrogels Assembled from the Conserved C-Terminal Domain of Spider Dragline Silk.

    PubMed

    Qian, Zhi-Gang; Zhou, Ming-Liang; Song, Wen-Wen; Xia, Xiao-Xia

    2015-11-01

    Stimuli-responsive hydrogels have great potentials in biomedical and biotechnological applications. Due to the advantages of precise control over molecular weight and being biodegradable, protein-based hydrogels and their applications have been extensively studied. However, protein hydrogels with dual thermosensitive properties are rarely reported. Here we present the first report of dual thermosensitive hydrogels assembled from the conserved C-terminal domain of spider dragline silk. First, we found that recombinant C-terminal domain of major ampullate spidroin 1 (MaSp1) of the spider Nephila clavipes formed hydrogels when cooled to approximately 2 °C or heated to 65 °C. The conformational changes and self-assembly of the recombinant protein were studied to understand the mechanism of the gelation processes using multiple methods. It was proposed that the gelation in the low-temperature regime was dominated by hydrogen bonding and hydrophobic interaction between folded protein molecules, whereas the gelation in the high-temperature regime was due to cross-linking of the exposed hydrophobic patches resulting from partial unfolding of the protein upon heating. More interestingly, genetic fusion of the C-terminal domain to a short repetitive region of N. clavipes MaSp1 resulted in a chimeric protein that formed a hydrogel with significantly improved mechanical properties at low temperatures between 2 and 10 °C. Furthermore, the formation of similar hydrogels was observed for the recombinant C-terminal domains of dragline silk of different spider species, thus demonstrating the conserved ability to form dual thermosensitive hydrogels. These findings may be useful in the design and construction of novel protein hydrogels with tunable multiple thermosensitivity for applications in the future. PMID:26457360

  4. Spider Webs and Silks.

    ERIC Educational Resources Information Center

    Vollrath, Fritz

    1992-01-01

    Compares the attributes of the silk from spiders with those of the commercially harvested silk from silkworms. Discusses the evolution, design, and effectiveness of spider webs; the functional mechanics of the varieties of silk that can be produced by the same spider; and the composite, as well as molecular, structure of spider silk thread. (JJK)

  5. Reinforcing Silk Scaffolds with Silk Particles

    PubMed Central

    Rajkhowa, Rangam; Gil, Eun Seok; Kluge, Jonathan; Numata, Keiji; Wang, Lijing; Kaplan, David L.

    2014-01-01

    Silk fibroin is a useful protein polymer for biomaterials and tissue engineering. In this work, porogen leached scaffolds prepared from aqueous and HFIP silk solutions were reinforced through the addition of silk particles. This led to about 40 times increase in the specific compressive modulus and the yield strength of HFIP-based scaffolds. This increase in mechanical properties resulted from the high interfacial cohesion between the silk matrix and the reinforcing silk particles, due to partial solubility of the silk particles in HFIP. The porosity of scaffolds was reduced from ≈90% (control) to ≈75% for the HFIP systems containing 200% particle reinforcement, while maintaining pore interconnectivity. The presence of the particles slowed the enzymatic degradation of silk scaffolds. PMID:20166230

  6. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair

    PubMed Central

    Yodmuang, Supansa; McNamara, Stephanie L.; Nover, Adam B.; Mandal, Biman B.; Agarwal, Monica; Kelly, Terri-Ann N.; Chao, Pen-hsiu Grace; Hung, Clark; Kaplan, David L.; Vunjak-Novakovic, Gordana

    2014-01-01

    Cartilage tissue lacks an intrinsic capacity for self-regeneration due to slow matrix turnover, a limited supply of mature chondrocytes and insufficient vasculature. Although cartilage tissue engineering has achieved some success using agarose as a scaffolding material, major challenges of agarose-based cartilage repair, including non-degradability, poor tissue–scaffold integration and limited processing capability, have prompted the search for an alternative biomaterial. In this study, silk fiber–hydrogel composites (SF–silk hydrogels) made from silk microfibers and silk hydrogels were investigated for their potential use as a support material for engineered cartilage. We demonstrated the use of 100% silk-based fiber–hydrogel composite scaffolds for the development of cartilage constructs with properties comparable to those made with agarose. Cartilage constructs with an equilibrium modulus in the native tissue range were fabricated by mimicking the collagen fiber and proteoglycan composite architecture of native cartilage using biocompatible, biodegradable silk fibroin from Bombyx mori. Excellent chondrocyte response was observed on SF–silk hydrogels, and fiber reinforcement resulted in the development of more mechanically robust constructs after 42 days in culture compared to silk hydrogels alone. Thus, we demonstrate the versatility of silk fibroin as a composite scaffolding material for use in cartilage tissue repair to create functional cartilage constructs that overcome the limitations of agarose biomaterials, and provide a much-needed alternative to the agarose standard. PMID:25281788

  7. Stylized Silk Painting.

    ERIC Educational Resources Information Center

    Skophammer, Karen

    1998-01-01

    Presents an art activity inspired by a workshop "Surrounded by Silk" given by Susan Skvoe in which the students create silk paintings. Explains that the students first sketch their floral design on paper, trace the design on the silk's surface, and apply liquid dye for color. Provides an easier activity for younger students. (CMK)

  8. Evaluation of high-temperature and short-time sterilization of injection ampules by microwave heating.

    PubMed

    Sasaki, K; Honda, W; Miyake, Y

    1998-01-01

    The high-temperature and short-time sterilization by microwave heating with a continuous microwave sterilizer (MWS) was evaluated. The evaluation were performed with respect to: [1] lethal effect against microorganisms corresponding to F-value, and [2] reliability of MWS sterilization process. Bacillus stearothermophilus ATCC 7953 spores were used as the biological indicator and the heat-resistance of spores was evaluated with conventional heating method (121-129 degrees C). In MWS sterilization (125-135 degrees C), the actual lethal effect against B. stearothermophilus spores was almost in agreement with the F-value and the survival curve against the F-value was quite consistent with that for the autoclave. These results suggest that the actual lethal effect could be estimated by the F-value with heat-resistance parameters of spores from lower than actual temperatures and that there was no nonthermal effect of the microwave on B. stearothermophilus spores. The reliability of sterilization with the MWS was confirmed using more than 25,000 test ampules containing biological indicators. All biological indicators were killed, thus the present study shows that the MWS was completely reliable for all ampules. PMID:9542408

  9. Silk structure and degradation.

    PubMed

    Liu, Bin; Song, Yu-wei; Jin, Li; Wang, Zhi-jian; Pu, De-yong; Lin, Shao-qiang; Zhou, Chan; You, Hua-jian; Ma, Yan; Li, Jin-min; Yang, Li; Sung, K L Paul; Zhang, Yao-guang

    2015-07-01

    To investigate the structure of silk and its degradation properties, we have monitored the structure of silk using scanning electron microscopy and frozen sections. Raw silk and degummed raw silk were immersed in four types of degradation solutions for 156 d to observe their degradation properties. The subcutaneous implants in rats were removed after 7, 14, 56, 84, 129, and 145 d for frozen sectioning and subsequent staining with hematoxylin and eosin (H.E.), DAPI, Beta-actin and Collagen I immunofluorescence staining. The in vitro weight loss ratio of raw silk and degummed raw silk in water, PBS, DMEM and DMEM containing 10% FBS (F-DMEM) were, respectively, 14%/11%, 12.5%/12.9%, 11.1%/14.3%, 8.8%/11.6%. Silk began to degrade after 7 d subcutaneous implantation and after 145 d non-degraded silk was still observed. These findings suggest the immunogenicity of fibroin and sericin had no essential difference. In the process of in vitro degradation of silk, the role of the enzyme is not significant. The in vivo degradation of silk is related to phagocytotic activity and fibroblasts may be involved in this process to secrete collagen. This study also shows the developing process of cocoons and raw silk. PMID:25982316

  10. Antibiotic-Releasing Silk Biomaterials for Infection Prevention and Treatment.

    PubMed

    Pritchard, Eleanor M; Valentin, Thomas; Panilaitis, Bruce; Omenetto, Fiorenzo; Kaplan, David L

    2013-02-18

    Effective treatment of infections in avascular and necrotic tissues can be challenging due to limited penetration into the target tissue and systemic toxicities. Controlled release polymer implants have the potential to achieve the high local concentrations needed while also minimizing systemic exposure. Silk biomaterials possess unique characteristics for antibiotic delivery including biocompatibility, tunable biodegradation, stabilizing effects, water-based processing and diverse material formats. We report on functional release of antibiotics spanning a range of chemical properties from different material formats of silk (films, microspheres, hydrogels, coatings). The release of penicillin and ampicillin from bulk-loaded silk films, drug-loaded silk microspheres suspended in silk hydrogels and bulk-loaded silk hydrogels was investigated and in vivo efficacy of ampicillin-releasing silk hydrogels was demonstrated in a murine infected wound model. Silk sponges with nanofilm coatings were loaded with gentamicin and cefazolin and release was sustained for 5 and 3 days, respectively. The capability of silk antibiotic carriers to sequester, stabilize and then release bioactive antibiotics represents a major advantage over implants and pumps based on liquid drug reservoirs where instability at room or body temperature is limiting. The present studies demonstrate that silk biomaterials represent a novel, customizable antibiotic platform for focal delivery of antibiotics using a range of material formats (injectable to implantable). PMID:23483738

  11. Silk as a Biomaterial

    PubMed Central

    Vepari, Charu

    2009-01-01

    Silks are fibrous proteins with remarkable mechanical properties produced in fiber form by silkworms and spiders. Silk fibers in the form of sutures have been used for centuries. Recently regenerated silk solutions have been used to form a variety of biomaterials, such as gels, sponges and films, for medical applications. Silks can be chemically modified through amino acid side chains to alter surface properties or to immobilize cellular growth factors. Molecular engineering of silk sequences has been used to modify silks with specific features, such as cell recognition or mineralization. The degradability of silk biomaterials can be related to the mode of processing and the corresponding content of beta sheet crystallinity. Several primary cells and cell lines have been successfully grown on different silk biomaterials to demonstrate a range of biological outcomes. Silk biomaterials are biocompatible when studied in vitro and in vivo. Silk scaffolds have been successfully used in wound healing and in tissue engineering of bone, cartilage, tendon and ligament tissues. PMID:19543442

  12. A novel marine silk

    NASA Astrophysics Data System (ADS)

    Kronenberger, Katrin; Dicko, Cedric; Vollrath, Fritz

    2012-01-01

    The discovery of a novel silk production system in a marine amphipod provides insights into the wider potential of natural silks. The tube-building corophioid amphipod Crassicorophium bonellii produces from its legs fibrous, adhesive underwater threads that combine barnacle cement biology with aspects of spider silk thread extrusion spinning. We characterised the filamentous silk as a mixture of mucopolysaccharides and protein deriving from glands representing two distinct types. The carbohydrate and protein silk secretion is dominated by complex β-sheet structures and a high content of charged amino acid residues. The filamentous secretion product exits the gland through a pore near the tip of the secretory leg after having moved through a duct, which subdivides into several small ductules all terminating in a spindle-shaped chamber. This chamber communicates with the exterior and may be considered the silk reservoir and processing/mixing space, in which the silk is mechanically and potentially chemically altered and becomes fibrous. We assert that further study of this probably independently evolved, marine arthropod silk processing and secretion system can provide not only important insights into the more complex arachnid and insect silks but also into crustacean adhesion cements.

  13. A novel marine silk.

    PubMed

    Kronenberger, Katrin; Dicko, Cedric; Vollrath, Fritz

    2012-01-01

    The discovery of a novel silk production system in a marine amphipod provides insights into the wider potential of natural silks. The tube-building corophioid amphipod Crassicorophium bonellii produces from its legs fibrous, adhesive underwater threads that combine barnacle cement biology with aspects of spider silk thread extrusion spinning. We characterised the filamentous silk as a mixture of mucopolysaccharides and protein deriving from glands representing two distinct types. The carbohydrate and protein silk secretion is dominated by complex β-sheet structures and a high content of charged amino acid residues. The filamentous secretion product exits the gland through a pore near the tip of the secretory leg after having moved through a duct, which subdivides into several small ductules all terminating in a spindle-shaped chamber. This chamber communicates with the exterior and may be considered the silk reservoir and processing/mixing space, in which the silk is mechanically and potentially chemically altered and becomes fibrous. We assert that further study of this probably independently evolved, marine arthropod silk processing and secretion system can provide not only important insights into the more complex arachnid and insect silks but also into crustacean adhesion cements. PMID:22057952

  14. Water-insoluble Silk Films with Silk I Structure

    SciTech Connect

    Lu, Q.; Hu, X; Wang, X; Kluge, J; Lu, S; Cebe, P; Kaplan, D

    2010-01-01

    Water-insoluble regenerated silk materials are normally produced by increasing the {beta}-sheet content (silk II). In the present study water-insoluble silk films were prepared by controlling the very slow drying of Bombyx mori silk solutions, resulting in the formation of stable films with a predominant silk I instead of silk II structure. Wide angle X-ray scattering indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared by slow drying had a globule-like structure at the core surrounded by nano-filaments. The core region was composed of silk I and silk II, surrounded by hydrophilic nano-filaments containing random turns and {alpha}-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. Differential scanning calorimetry results revealed that silk I crystals had stable thermal properties up to 250 C, without crystallization above the T{sub g}, but degraded at lower temperatures than silk II structure. Compared with water- and methanol-annealed films the films prepared by slow drying had better mechanical ductility and were more rapidly enzymatically degraded, reflecting the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated by the present approach of very slow drying, mimicking the natural process. The results also point to a new mode of generating new types of silk biomaterials with enhanced mechanical properties and increased degradation rates, while maintaining water insolubility, along with a low {beta}-sheet content.

  15. Water-Insoluble Silk Films with Silk I Structure

    PubMed Central

    Lu, Qiang; Hu, Xiao; Wang, Xiaoqin; Kluge, Jonathan A.; Lu, Shenzhou; Cebe, Peggy; Kaplan, David L.

    2009-01-01

    Water-insoluble regenerated silk materials are normally achieved by increasing β-sheet content (silk II). In the present study, water-insoluble silk films were prepared by controlling very slow drying of B. mori silk solutions, resulting in the formation of stable films with dominating silk I instead of silk II structure. Wide angle x-ray scattering (WAXS) indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared through slow drying had a globule-like structure in the core with nano-filaments. The core region was composed of silk I and silk II, and these regions are surrounded by hydrophilic nano-filaments containing random, turns, and α-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. DSC results revealed that silk I crystals had stable thermal properties up to 250°C, without crystallization above the Tg, but degraded in lower temperature than silk II structure. Compared with water- and methanol-annealed films, the films prepared through slow drying achieved better mechanical ductility and more rapid enzymatic degradation, reflective of the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated in the present approach of very slow drying, mimicking the natural process. The results also point to a new mode to generate new types of silk biomaterials, where mechanical properties can be enhanced, and degradation rates increased, yet water insolubility is maintained along with low beta sheet content. PMID:19874919

  16. Visual Literacy with Picture Books: The Silk Road

    ERIC Educational Resources Information Center

    Bisland, Beverly Milner Lee

    2007-01-01

    The ancient Silk Routes connecting China to Europe across the rugged mountains and deserts of central Asia are one of the primary examples of transculturation in world history. Traders on these routes dealt not only in goods such as silk and horses but also made possible the spread of art forms as well as two major religions, Buddhism and Islam. …

  17. Art on Silk Hoops

    ERIC Educational Resources Information Center

    Padrick, Deborah

    2012-01-01

    Painting on silk has a magic all its own. Versions of painting on silk can be found throughout the world from Japan and Europe to the United States. Themes for the paintings can be most any type of design or imagery. Applying the liquid dyes is exciting, as the vivid liquid colors flow and blend into the fabric. The process captures students'…

  18. Silk Batik using Cochineal Dye

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The history of silk, including sericulture (the production of raw silk, which requires the raising of silkworms on their natural diet, mulberry leaves) and silk manufacturing, is rich and extensive. It encompasses several famous “silk roads” (trade routes), various cultures and technologies, ideas,...

  19. Photoprotection by silk cocoons.

    PubMed

    Kaur, Jasjeet; Rajkhowa, Rangam; Tsuzuki, Takuya; Millington, Keith; Zhang, Jin; Wang, Xungai

    2013-10-14

    A silk cocoon protects a silkworm during its pupal stage from various threats. We systematically investigated the role of fiber, sericin, and embedded crystals in the UV protection of a silk cocoon. Diffuse reflectance and UV absorbance were measured and free radicals generated during exposure to UV radiation were quantified using photoinduced chemiluminescence (PICL). We identified the response to both UV-A and UV-B radiations by silk materials and found that sericin was primarily responsible for UV-A absorption. When sericin was removed, the photoinduced chemiluminescence intensity increased significantly, indicating higher UV-A-induced reactions of cocoons in the absence of sericin. There is progressively higher sericin content toward the outer part of the cocoon shell that allows an effective shield to pupae from UV radiation and resists photodegradation of silk fibers. The study will inspire development of advanced organic photoprotective materials and designing silk-based, free-radical-scavenging antioxidants. PMID:24000973

  20. From silk spinning in insects and spiders to advanced silk fibroin drug delivery systems.

    PubMed

    Werner, Vera; Meinel, Lorenz

    2015-11-01

    The natural process of silk spinning covers a fascinating versatility of aggregate states, ranging from colloidal solutions through hydrogels to solid systems. The transition among these states is controlled by a carefully orchestrated process in vivo. Major players within the natural process include the control of spatial pH throughout passage of the silk dope, the composition and type of ions, and fluid flow mechanics within the duct, respectively. The function of these input parameters on the spinning process is reviewed before detailing their impact on the design and manufacture of silk based drug delivery systems (DDS). Examples are reported including the control of hydrogel formation during storage or significant parameters controlling precipitation in the presence of appropriate salts, respectively. The review details the use of silk fibroin (SF) to develop liquid, semiliquid or solid DDS with a focus on the control of SF crystallization, particle formation, and drug-SF interaction for tailored drug load. PMID:25801494

  1. Silk inverse opals

    NASA Astrophysics Data System (ADS)

    Kim, Sunghwan; Mitropoulos, Alexander N.; Spitzberg, Joshua D.; Tao, Hu; Kaplan, David L.; Omenetto, Fiorenzo G.

    2012-12-01

    Periodic nanostructures provide the facility to control and manipulate the flow of light through their lattices. Three-dimensional photonic crystals enable the controlled design of structural colour, which can be varied by infiltrating the structure with different (typically liquid) fillers. Here, we report three-dimensional photonic crystals composed entirely of a purified natural protein (silk fibroin). The biocompatibility of this protein, as well as its favourable material properties and ease of biological functionalization, present opportunities for otherwise unattainable device applications such as bioresorbable integration of structural colour within living tissue or lattice functionalization by means of organic and inorganic material doping. We present a silk inverse opal that demonstrates a pseudo-photonic bandgap in the visible spectrum and show its associated structural colour beneath biological tissue. We also leverage silk's facile dopability to manufacture a gold nanoparticle silk inverse opal and demonstrate patterned heating mediated by enhancement of nanoparticle absorption at the band-edge frequency of the photonic crystal.

  2. Recent investigations of silk fibers utilizing x-ray scattering and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Miller, Lance D.

    1998-12-01

    Silks from the mulberry silkworm, Bombyx mori, and the golden-orb spider, Nephila clavipes, are materials that possess respectable properties. Even pitted against the high performance fibers of Kevlar, polyethylene, and carbon, the advantages of some of nature's fibers are clear. The tensile strength of the golden-orb spider dragline is of the same order of magnitude as many synthetic fibers, yet the dragline's compressive strength as a percentage of its tensile strength is greater. The spider's ampullate glands, responsible for the manufacture of the dragline, also excel. The spider spins its fiber from a liquid crystalline solution that is water based versus the solutions at high temperatures containing volatile solvents that are required for current synthetic fibers. Understanding the morphology of silks will provide the basis for improved manufacturing and better performing synthetic fibers. The studies presented here have centered on the use of small-angle x-ray scattering, SAXS, to describe the large-scale morphology of silk fibers. We have determined minimum scattering dimensions on the order of 150-300 nm. A detailed analysis of the Porod scattering region has revealed correlation lengths of the same magnitude. Both of these dimensions are similar to with direct atomic force microscopy, AFM, measurements of nanofibers found in samples of abraded or peeled silk. The incorporation of discrete Fourier transform theory and AFM topographic information has yielded results in general agreement with measured SAXS patterns. This incorporation allows the materials scientist a way of visualizing the relationship between a material and its resulting scattering function. We have also found that x-ray scattering gives insight to new periodic distances of the morphology of golden-orb dragline. All of these studies yield a more complete view of the silk morphology and give a new method of model building from scattering experiments.

  3. More than one way to spin a crystallite: multiple trajectories through liquid crystallinity to solid silk.

    PubMed

    Walker, Andrew A; Holland, Chris; Sutherland, Tara D

    2015-06-22

    Arthropods face several key challenges in processing concentrated feedstocks of proteins (silk dope) into solid, semi-crystalline silk fibres. Strikingly, independently evolved lineages of silk-producing organisms have converged on the use of liquid crystal intermediates (mesophases) to reduce the viscosity of silk dope and assist the formation of supramolecular structure. However, the exact nature of the liquid-crystal-forming-units (mesogens) in silk dope, and the relationship between liquid crystallinity, protein structure and silk processing is yet to be fully elucidated. In this review, we focus on emerging differences in this area between the canonical silks containing extended-β-sheets made by silkworms and spiders, and 'non-canonical' silks made by other insect taxa in which the final crystallites are coiled-coils, collagen helices or cross-β-sheets. We compared the amino acid sequences and processing of natural, regenerated and recombinant silk proteins, finding that canonical and non-canonical silk proteins show marked differences in length, architecture, amino acid content and protein folding. Canonical silk proteins are long, flexible in solution and amphipathic; these features allow them both to form large, micelle-like mesogens in solution, and to transition to a crystallite-containing form due to mechanical deformation near the liquid-solid transition. By contrast, non-canonical silk proteins are short and have rod or lath-like structures that are well suited to act both as mesogens and as crystallites without a major intervening phase transition. Given many non-canonical silk proteins can be produced at high yield in E. coli, and that mesophase formation is a versatile way to direct numerous kinds of supramolecular structure, further elucidation of the natural processing of non-canonical silk proteins may to lead to new developments in the production of advanced protein materials. PMID:26041350

  4. More than one way to spin a crystallite: multiple trajectories through liquid crystallinity to solid silk

    PubMed Central

    Walker, Andrew A.; Holland, Chris; Sutherland, Tara D.

    2015-01-01

    Arthropods face several key challenges in processing concentrated feedstocks of proteins (silk dope) into solid, semi-crystalline silk fibres. Strikingly, independently evolved lineages of silk-producing organisms have converged on the use of liquid crystal intermediates (mesophases) to reduce the viscosity of silk dope and assist the formation of supramolecular structure. However, the exact nature of the liquid-crystal-forming-units (mesogens) in silk dope, and the relationship between liquid crystallinity, protein structure and silk processing is yet to be fully elucidated. In this review, we focus on emerging differences in this area between the canonical silks containing extended-β-sheets made by silkworms and spiders, and ‘non-canonical’ silks made by other insect taxa in which the final crystallites are coiled-coils, collagen helices or cross-β-sheets. We compared the amino acid sequences and processing of natural, regenerated and recombinant silk proteins, finding that canonical and non-canonical silk proteins show marked differences in length, architecture, amino acid content and protein folding. Canonical silk proteins are long, flexible in solution and amphipathic; these features allow them both to form large, micelle-like mesogens in solution, and to transition to a crystallite-containing form due to mechanical deformation near the liquid–solid transition. By contrast, non-canonical silk proteins are short and have rod or lath-like structures that are well suited to act both as mesogens and as crystallites without a major intervening phase transition. Given many non-canonical silk proteins can be produced at high yield in E. coli, and that mesophase formation is a versatile way to direct numerous kinds of supramolecular structure, further elucidation of the natural processing of non-canonical silk proteins may to lead to new developments in the production of advanced protein materials. PMID:26041350

  5. An Unlikely Silk: The Composite Material of Green Lacewing Cocoons

    SciTech Connect

    Weisman, Sarah; Trueman, Holly E.; Mudie, Stephen T.; Church, Jeffrey S.; Sutherland, Tara D.; Haritos, Victoria S.

    2009-01-15

    Spiders routinely produce multiple types of silk; however, common wisdom has held that insect species produce one type of silk each. This work reports that the green lacewing (Mallada signata, Neuroptera) produces two distinct classes of silk. We identified and sequenced the gene that encodes the major protein component of the larval lacewing cocoon silk and demonstrated that it is unrelated to the adult lacewing egg-stalk silk. The cocoon silk protein is 49 kDa in size and is alanine rich (>40%), and it contains an {alpha}-helical secondary structure. The final instar lacewing larvae spin protein fibers of {approx}2 {mu}m diameter to construct a loosely woven cocoon. In a second stage of cocoon construction, the insects lay down an inner wall of lipids that uses the fibers as a scaffold. We propose that the silk protein fibers provide the mechanical strength of the composite lacewing cocoon whereas the lipid layer provides a barrier to water loss during pupation.

  6. Toward spinning artificial spider silk.

    PubMed

    Rising, Anna; Johansson, Jan

    2015-05-01

    Spider silk is strong and extensible but still biodegradable and well tolerated when implanted, making it the ultimate biomaterial. Shortcomings that arise in replicating spider silk are due to the use of recombinant spider silk proteins (spidroins) that lack native domains, the use of denaturing conditions under purification and spinning and the fact that the understanding of how spiders control silk formation is incomplete. Recent progress has unraveled the molecular mechanisms of the spidroin N- and C-terminal nonrepetitive domains (NTs and CTs) and revealed the pH and ion gradients in spiders' silk glands, clarifying how spidroin solubility is maintained and how silk is formed in a fraction of a second. Protons and CO2, generated by carbonic anhydrase, affect the stability and structures of the NT and CT in different ways. These insights should allow the design of conditions and devices for the spinning of recombinant spidroins into native-like silk. PMID:25885958

  7. Analysis of proteome dynamics inside the silk gland lumen of Bombyx mori

    PubMed Central

    Dong, Zhaoming; Zhao, Ping; Zhang, Yan; Song, Qianru; Zhang, Xiaolu; Guo, Pengchao; Wang, Dandan; Xia, Qingyou

    2016-01-01

    The silk gland is the only organ where silk proteins are synthesized and secreted in the silkworm, Bombyx mori. Silk proteins are stored in the lumen of the silk gland for around eight days during the fifth instar. Determining their dynamic changes is helpful for clarifying the secretion mechanism of silk proteins. Here, we identified the proteome in the silk gland lumen using liquid chromatography–tandem mass spectrometry, and demonstrated its changes during two key stages. From day 5 of the fifth instar to day 1 of wandering, the abundances of fibroins, sericins, seroins, and proteins of unknown functions increased significantly in different compartments of the silk gland lumen. As a result, these accumulated proteins constituted the major cocoon components. In contrast, the abundances of enzymes and extracellular matrix proteins decreased in the silk gland lumen, suggesting that they were not the structural constituents of silk. Twenty-five enzymes may be involved in the regulation of hormone metabolism for proper silk gland function. In addition, the metabolism of other non-proteinous components such as chitin and pigment were also discussed in this study. PMID:27102218

  8. Analysis of proteome dynamics inside the silk gland lumen of Bombyx mori.

    PubMed

    Dong, Zhaoming; Zhao, Ping; Zhang, Yan; Song, Qianru; Zhang, Xiaolu; Guo, Pengchao; Wang, Dandan; Xia, Qingyou

    2016-01-01

    The silk gland is the only organ where silk proteins are synthesized and secreted in the silkworm, Bombyx mori. Silk proteins are stored in the lumen of the silk gland for around eight days during the fifth instar. Determining their dynamic changes is helpful for clarifying the secretion mechanism of silk proteins. Here, we identified the proteome in the silk gland lumen using liquid chromatography-tandem mass spectrometry, and demonstrated its changes during two key stages. From day 5 of the fifth instar to day 1 of wandering, the abundances of fibroins, sericins, seroins, and proteins of unknown functions increased significantly in different compartments of the silk gland lumen. As a result, these accumulated proteins constituted the major cocoon components. In contrast, the abundances of enzymes and extracellular matrix proteins decreased in the silk gland lumen, suggesting that they were not the structural constituents of silk. Twenty-five enzymes may be involved in the regulation of hormone metabolism for proper silk gland function. In addition, the metabolism of other non-proteinous components such as chitin and pigment were also discussed in this study. PMID:27102218

  9. Optically switchable natural silk

    NASA Astrophysics Data System (ADS)

    Krasnov, Igor; Krekiehn, Nicolai R.; Krywka, Christina; Jung, Ulrich; Zillohu, Ahnaf U.; Strunskus, Thomas; Elbahri, Mady; Magnussen, Olaf M.; Müller, Martin

    2015-03-01

    An optically active bio-material is created by blending natural silk fibers with photoisomerizable chromophore molecules—azobenzenebromide (AzBr). The material converts the energy of unpolarized light directly into mechanical work with a well-defined direction of action. The feasibility of the idea to produce optically driven microsized actuators on the basis of bio-material (silk) is proven. The switching behavior of the embedded AzBr molecules was studied in terms of UV/Vis spectroscopy. To test the opto-mechanical properties of the modified fibers and the structural changes they undergo upon optically induced switching, single fiber X-ray diffraction with a micron-sized synchrotron radiation beam was combined in situ with optical switching as well as with mechanical testing and monitoring. The crystalline regions of silk are not modified by the presence of the guest molecules, hence occupy only the amorphous part of the fibers. It is shown that chromophore molecules embedded into fibers can be reversibly switched between the trans and cis conformation by illumination with light of defined wavelengths. The host fibers respond to this switching with a variation of the internal stress. The amplitude of the mechanical response is independent of the applied external stress and its characteristic time is shorter than the relaxation time of the usual mechanical response of silk.

  10. Optically switchable natural silk

    SciTech Connect

    Krasnov, Igor Müller, Martin; Krekiehn, Nicolai R.; Jung, Ulrich; Magnussen, Olaf M.; Krywka, Christina; Zillohu, Ahnaf U.; Strunskus, Thomas; Elbahri, Mady

    2015-03-02

    An optically active bio-material is created by blending natural silk fibers with photoisomerizable chromophore molecules—azobenzenebromide (AzBr). The material converts the energy of unpolarized light directly into mechanical work with a well-defined direction of action. The feasibility of the idea to produce optically driven microsized actuators on the basis of bio-material (silk) is proven. The switching behavior of the embedded AzBr molecules was studied in terms of UV/Vis spectroscopy. To test the opto-mechanical properties of the modified fibers and the structural changes they undergo upon optically induced switching, single fiber X-ray diffraction with a micron-sized synchrotron radiation beam was combined in situ with optical switching as well as with mechanical testing and monitoring. The crystalline regions of silk are not modified by the presence of the guest molecules, hence occupy only the amorphous part of the fibers. It is shown that chromophore molecules embedded into fibers can be reversibly switched between the trans and cis conformation by illumination with light of defined wavelengths. The host fibers respond to this switching with a variation of the internal stress. The amplitude of the mechanical response is independent of the applied external stress and its characteristic time is shorter than the relaxation time of the usual mechanical response of silk.

  11. Functional silk: colored and luminescent.

    PubMed

    Tansil, Natalia C; Koh, Leng Duei; Han, Ming-Yong

    2012-03-15

    Silkworm silk is among the most widely used natural fibers for textile and biomedical applications due to its extraordinary mechanical properties and superior biocompatibility. A number of physical and chemical processes have also been developed to reconstruct silk into various forms or to artificially produce silk-like materials. In addition to the direct use and the delicate replication of silk's natural structure and properties, there is a growing interest to introduce more new functionalities into silk while maintaining its advantageous intrinsic properties. In this review we assess various methods and their merits to produce functional silk, specifically those with color and luminescence, through post-processing steps as well as biological approaches. There is a highlight on intrinsically colored and luminescent silk produced directly from silkworms for a wide range of applications, and a discussion on the suitable molecular properties for being incorporated effectively into silk while it is being produced in the silk gland. With these understanding, a new generation of silk containing various functional materials (e.g., drugs, antibiotics and stimuli-sensitive dyes) would be produced for novel applications such as cancer therapy with controlled release feature, wound dressing with monitoring/sensing feature, tissue engineering scaffolds with antibacterial, anticoagulant or anti-inflammatory feature, and many others. PMID:22302383

  12. Spider genomes provide insight into composition and evolution of venom and silk.

    PubMed

    Sanggaard, Kristian W; Bechsgaard, Jesper S; Fang, Xiaodong; Duan, Jinjie; Dyrlund, Thomas F; Gupta, Vikas; Jiang, Xuanting; Cheng, Ling; Fan, Dingding; Feng, Yue; Han, Lijuan; Huang, Zhiyong; Wu, Zongze; Liao, Li; Settepani, Virginia; Thøgersen, Ida B; Vanthournout, Bram; Wang, Tobias; Zhu, Yabing; Funch, Peter; Enghild, Jan J; Schauser, Leif; Andersen, Stig U; Villesen, Palle; Schierup, Mikkel H; Bilde, Trine; Wang, Jun

    2014-01-01

    Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk. PMID:24801114

  13. Spider genomes provide insight into composition and evolution of venom and silk

    PubMed Central

    Sanggaard, Kristian W.; Bechsgaard, Jesper S.; Fang, Xiaodong; Duan, Jinjie; Dyrlund, Thomas F.; Gupta, Vikas; Jiang, Xuanting; Cheng, Ling; Fan, Dingding; Feng, Yue; Han, Lijuan; Huang, Zhiyong; Wu, Zongze; Liao, Li; Settepani, Virginia; Thøgersen, Ida B.; Vanthournout, Bram; Wang, Tobias; Zhu, Yabing; Funch, Peter; Enghild, Jan J.; Schauser, Leif; Andersen, Stig U.; Villesen, Palle; Schierup, Mikkel H; Bilde, Trine; Wang, Jun

    2014-01-01

    Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk. PMID:24801114

  14. 21 CFR 184.1262 - Corn silk and corn silk extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Corn silk and corn silk extract. 184.1262 Section... Affirmed as GRAS § 184.1262 Corn silk and corn silk extract. (a) Corn silk is the fresh styles and stigmas of Zea mays L. collected when the corn is in milk. The filaments are extracted with dilute ethanol...

  15. The Secretion Process of Liquid Silk with Nanopillar Structures from Stenopsyche marmorata (Trichoptera: Stenopsychidae)

    PubMed Central

    Hatano, Tomohiro; Nagashima, Takayuki

    2015-01-01

    Stenopsyche marmorata larvae spin underwater adhesive silk for constructing nests and capture nets. The silk can be divided into fiber and adhesive regions, according to their function. The silk fiber region has a two-layer structure: a core layer situated at the center of the fiber and S. marmorata fibroin, the major component of the silk. In the anterior part of the anterior silk gland, the morphological characteristics suggest that the silk insolubilization leading to fibrillation occurs by luminal pH neutralization. The adhesive region is composed of three layers: the outermost (OM), B, and C layers. On the B layer, coated with the OM layer, numerous nano-order pillar structures (nanopillar structures) are located at regular intervals. A nanopillar structure is approximately 40 nm in diameter and 125 nm in length. The precursor materials of the nanopillar structure are electron-dense globules of approximately 25 nm in diameter that are located in the A layer of the lumen of the middle silk gland. The precursor globules autonomously connect to one another on the B layer when the liquid silk is transported to the lumen of the bulbous region. The nanopillar structures probably contribute to the strong underwater adhesion of S. marmorata silk. PMID:25783626

  16. Recombinant DNA production of spider silk proteins

    PubMed Central

    Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L

    2013-01-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. PMID:24119078

  17. Biobased silver nanocolloid coating on silk fibers for prevention of post-surgical wound infections

    PubMed Central

    Dhas, Sindhu Priya; Anbarasan, Suruthi; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-01-01

    Bombyx mori silk fibers are an important biomaterial and are used in surgical sutures due to their remarkable biocompatibility. The major drawback to the application of biomaterials is the risk of bacterial invasion, leading to clinical complications. We have developed an easy and cost-effective method for fabrication of antibacterial silk fibers loaded with silver nanoparticles (AgNPs) by an in situ and ex situ process using an aqueous extract of Rhizophora apiculata leaf. Scanning electron microscopy revealed that well dispersed nanoparticles impregnated the silk fibers both in situ and ex situ. The crystalline nature of the AgNPs in the silk fibers was demonstrated by X-ray diffraction. The thermal and mechanical properties of the silk fibers were enhanced after they were impregnated with AgNPs. The silver-coated silk fibers fabricated by the in situ and ex situ method exhibited more than 90% inhibition against Pseudomonas aeruginosa and Staphylococcus aureus. Silk fibers doped with AgNPs were found to be biocompatible with 3T3 fibroblasts. The results obtained represent an important advance towards the clinical application of biocompatible AgNP-loaded silk fibers for prevention of surgical wound infections. PMID:26491317

  18. Carbon nanotubes on a spider silk scaffold

    PubMed Central

    Steven, Eden; Saleh, Wasan R.; Lebedev, Victor; Acquah, Steve F. A.; Laukhin, Vladimir; Alamo, Rufina G.; Brooks, James S.

    2013-01-01

    Understanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications. Spider silk is tough, but becomes soft when exposed to water. Here we report a strong affinity of amine-functionalised multi-walled carbon nanotubes for spider silk, with coating assisted by a water and mechanical shear method. The nanotubes adhere uniformly and bond to the silk fibre surface to produce tough, custom-shaped, flexible and electrically conducting fibres after drying and contraction. The conductivity of coated silk fibres is reversibly sensitive to strain and humidity, leading to proof-of-concept sensor and actuator demonstrations. PMID:24022336

  19. Carbon nanotubes on a spider silk scaffold

    NASA Astrophysics Data System (ADS)

    Steven, Eden; Saleh, Wasan R.; Lebedev, Victor; Acquah, Steve F. A.; Laukhin, Vladimir; Alamo, Rufina G.; Brooks, James S.

    2013-09-01

    Understanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications. Spider silk is tough, but becomes soft when exposed to water. Here we report a strong affinity of amine-functionalised multi-walled carbon nanotubes for spider silk, with coating assisted by a water and mechanical shear method. The nanotubes adhere uniformly and bond to the silk fibre surface to produce tough, custom-shaped, flexible and electrically conducting fibres after drying and contraction. The conductivity of coated silk fibres is reversibly sensitive to strain and humidity, leading to proof-of-concept sensor and actuator demonstrations.

  20. Carbon nanotubes on a spider silk scaffold.

    PubMed

    Steven, Eden; Saleh, Wasan R; Lebedev, Victor; Acquah, Steve F A; Laukhin, Vladimir; Alamo, Rufina G; Brooks, James S

    2013-01-01

    Understanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications. Spider silk is tough, but becomes soft when exposed to water. Here we report a strong affinity of amine-functionalised multi-walled carbon nanotubes for spider silk, with coating assisted by a water and mechanical shear method. The nanotubes adhere uniformly and bond to the silk fibre surface to produce tough, custom-shaped, flexible and electrically conducting fibres after drying and contraction. The conductivity of coated silk fibres is reversibly sensitive to strain and humidity, leading to proof-of-concept sensor and actuator demonstrations. PMID:24022336

  1. Mechanical Improvements to Reinforced Porous Silk Scaffolds

    PubMed Central

    Gil, Eun Seok; Kluge, Jonathan A.; Rockwood, Danielle N.; Rajkhowa, Rangam; Wang, Lijing; Wang, Xungai; Kaplan, David L

    2012-01-01

    Load bearing porous biodegradable scaffolds are required to engineer functional tissues such as bone. Mechanical improvements to porogen leached scaffolds prepared from silk proteins were systematically studied through the addition of silk particles in combination with silk solution concentration, exploiting interfacial compatibility between the two components. Solvent solutions of silk up to 32 w/v% were successfully prepared in hexafluoroisopropanaol (HFIP) for the study. The mechanical properties of the reinforced silk scaffolds correlated to the material density and matched by a power law relationship, independent of the ratio of silk particles to matrix. These results were similar to the relationships previously shown for cancellous bone. The mechanism behind the increased mechanical properties was a densification effect, and not the effect of including stiffer silk particles into the softer silk continuous matrix. A continuous interface between the silk matrix and the silk particles, as well as homogeneous distribution of the silk particles within the matrix were observed. Furthermore, we note that the roughness of the pore walls was controllable by varying the ratio of particles matrix, providing a route to control topography. The rate of proteolytic hydrolysis of the scaffolds decreased with increase in mass of silk used in the matrix and with increasing silk particle content. PMID:21793193

  2. Visual responses of corn silk flies (Diptera: Ulidiidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn silk flies are major pests impacting fresh market sweet corn production in Florida and Georgia. Control depends solely on well-times applications of insecticides to protect corn ear development. Surveillance depends on visual inspection of ears with no effective trapping methods currently ava...

  3. Optically probing torsional superelasticity in spider silks

    NASA Astrophysics Data System (ADS)

    Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit; Singh, Kamal P.

    2013-11-01

    We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 102-3 rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-based materials and devices.

  4. Optically probing torsional superelasticity in spider silks

    SciTech Connect

    Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit; Singh, Kamal P.

    2013-11-11

    We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 10{sup 2−3} rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-based materials and devices.

  5. In vitro phosphorylation as tool for modification of silk and keratin fibrous materials.

    PubMed

    Volkov, Vadim; Cavaco-Paulo, Artur

    2016-05-01

    An overview is given of the recent work on in vitro enzymatic phosphorylation of silk fibroin and human hair keratin. Opposing to many chemical "conventional" approaches, enzymatic phosphorylation is in fact a mild reaction and the treatment falls within "green chemistry" approach. Silk and keratin are not phosphorylated in vivo, but in vitro. This enzyme-driven modification is a major technological breakthrough. Harsh chemical chemicals are avoided, and mild conditions make enzymatic phosphorylation a real "green chemistry" approach. The current communication presents a novel approach stating that enzyme phosphorylation may be used as a tool to modify the surface charge of biocompatible materials such as keratin and silk. PMID:27075736

  6. Biocompatible silk step-index optical waveguides

    PubMed Central

    Applegate, Matthew B.; Perotto, Giovanni; Kaplan, David L.; Omenetto, Fiorenzo G.

    2015-01-01

    Biocompatible optical waveguides were constructed entirely of silk fibroin. A silk film (n=1.54) was encapsulated within a silk hydrogel (n=1.34) to form a robust and biocompatible waveguide. Such waveguides were made using only biologically and environmentally friendly materials without the use of harsh solvents. Light was coupled into the silk waveguides by direct incorporation of a glass optical fiber. These waveguides are extremely flexible, and strong enough to survive handling and manipulation. Cutback measurements showed propagation losses of approximately 2 dB/cm. The silk waveguides were found to be capable of guiding light through biological tissue. PMID:26600988

  7. Effect of silk protein processing on drug delivery from silk films.

    PubMed

    Pritchard, Eleanor M; Hu, Xiao; Finley, Violet; Kuo, Catherine K; Kaplan, David L

    2013-03-01

    Sericin removal from the core fibroin protein of silkworm silk is a critical first step in the use of silk for biomaterial-related applications, but degumming can affect silk biomaterial properties, including molecular weight, viscosity, diffusivity and degradation behavior. Increasing the degumming time (10, 30, 60, and 90 min) decreases the average molecular weight of silk protein in solution, silk solution viscosity, and silk film glass-transition temperature, and increases the rate of degradation of a silk film by protease. Model compounds spanning a range of physical-chemical properties generally show an inverse relationship between degumming time and release rate through a varied degumming time silk coating. Degumming provides a useful control point to manipulate silk's material properties. PMID:23349062

  8. Modifying the Mechanical Properties of Silk Fiber by Genetically Disrupting the Ionic Environment for Silk Formation.

    PubMed

    Wang, Xin; Zhao, Ping; Li, Yi; Yi, Qiying; Ma, Sanyuan; Xie, Kang; Chen, Huifang; Xia, Qingyou

    2015-10-12

    Silks are widely used biomaterials, but there are still weaknesses in their mechanical properties. Here we report a method for improving the silk fiber mechanical properties by genetic disruption of the ionic environment for silk fiber formation. An anterior silk gland (ASG) specific promoter was identified and used for overexpressing ion-transporting protein in the ASG of silkworm. After isolation of the transgenic silkworms, we found that the metal ion content, conformation and mechanical properties of transgenic silk fibers changed accordingly. Notably, overexpressing endoplasmic reticulum Ca2+-ATPase in ASG decreased the calcium content of silks. As a consequence, silk fibers had more α-helix and β-sheet conformations, and their tenacity and extension increased significantly. These findings represent the in vivo demonstration of a correlation between metal ion content in the spinning duct and the mechanical properties of silk fibers, thus providing a novel method for modifying silk fiber properties. PMID:26302212

  9. Analytical markers for silk degradation: comparing historic silk and silk artificially aged in different environments.

    PubMed

    Vilaplana, Francisco; Nilsson, Johanna; Sommer, Dorte V P; Karlsson, Sigbritt

    2015-02-01

    Suitable analytical markers to assess the degree of degradation of historic silk textiles at molecular and macroscopic levels have been identified and compared with silk textiles aged artificially in different environments, namely (i) ultraviolet (UV) exposure, (ii) thermo-oxidation, (iii) controlled humidity and (iv) pH. The changes at the molecular level in the amino acid composition, the formation of oxidative moieties, crystallinity and molecular weight correlate well with the changes in the macroscopic properties such as brightness, pH and mechanical properties. These analytical markers are useful to understand the degradation mechanisms that silk textiles undergo under different degradation environments, involving oxidation processes, hydrolysis, chain scission and physical arrangements. Thermo-oxidation at high temperatures proves to be the accelerated ageing procedure producing silk samples that most resembled the degree of degradation of early seventeenth-century silk. These analytical markers will be valuable to support the textile conservation tasks currently being performed in museums to preserve our heritage. PMID:25492090

  10. Silks produced by insect labial glands.

    PubMed

    Sehnal, Frantisek; Sutherland, Tara

    2008-01-01

    Insect silks are secreted from diverse gland types; this chapter deals with the silks produced by labial glands of Holometabola (insects with pupa in their life cycle). Labial silk glands are composed of a few tens or hundreds of large polyploid cells that secrete polymerizing proteins which are stored in the gland lumen as a semi-liquid gel. Polymerization is based on weak molecular interactions between repetitive amino acid motifs present in one or more silk proteins; cross-linking by disulfide bonds may be important in the silks spun under water. The mechanism of long-term storage of the silk dope inside the glands and its conversion into the silk fiber during spinning is not fully understood. The conversion occurs within seconds at ambient temperature and pressure, under minimal drawing force and in some cases under water. The silk filament is largely built of proteins called fibroins and in Lepidoptera and Trichoptera coated by glue-type proteins known as sericins. Silks often contain small amounts of additional proteins of poorly known function. The silk components controlling dope storage and filament formation seem to be conserved at the level of orders, while the nature of polymerizing motifs in the fibroins, which determine the physical properties of silk, differ at the level of family and even genus. Most silks are based on fibroin beta-sheets interrupted with other structures such as alpha-helices but the silk proteins of certain sawflies have predominantly a collagen-like or polyglycine II arrangement and the silks of social Hymenoptera are formed from proteins in a coiled coil arrangement. PMID:19221523

  11. Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm

    NASA Astrophysics Data System (ADS)

    Junghans, F.; Morawietz, M.; Conrad, U.; Scheibel, T.; Heilmann, A.; Spohn, U.

    2006-02-01

    Layers of recombinant spider silks and native silks from silk worms were prepared by spin-coating and casting of various solutions. FT-IR spectra were recorded to investigate the influence of the different mechanical stress occurring during the preparation of the silk layers. The solubility of the recombinant spider silk proteins SO1-ELP, C16, AQ24NR3, and of the silk fibroin from Bombyx mori were investigated in hexafluorisopropanol, ionic liquids and concentrated salt solutions. The morphology and thickness of the layers were determined by Atomic Force Microscopy (AFM) or with a profilometer. The mechanical behaviour was investigated by acoustic impedance analysis by using a quartz crystal microbalance (QCMB) as well as by microindentation. The density of silk layers (d<300 nm) was determined based on AFM and QCMB measurements. At silk layers thicker than 300 nm significant changes of the half-band-half width can be correlated with increasing energy dissipation. Microhardness measurements demonstrate that recombinant spider silk and sericine-free Bombyx mori silk layers achieve higher elastic penetration modules EEP and Martens hardness values HM than those of polyethylenterephthalate (PET) and polyetherimide (PEI) foils.

  12. Viscous Friction between Crystalline and Amorphous Phase of Dragline Silk

    PubMed Central

    Patil, Sandeep P.; Xiao, Senbo; Gkagkas, Konstantinos; Markert, Bernd; Gräter, Frauke

    2014-01-01

    The hierarchical structure of spider dragline silk is composed of two major constituents, the amorphous phase and crystalline units, and its mechanical response has been attributed to these prime constituents. Silk mechanics, however, might also be influenced by the resistance against sliding of these two phases relative to each other under load. We here used atomistic molecular dynamics (MD) simulations to obtain friction forces for the relative sliding of the amorphous phase and crystalline units of Araneus diadematus spider silk. We computed the coefficient of viscosity of this interface to be in the order of 102 Ns/m2 by extrapolating our simulation data to the viscous limit. Interestingly, this value is two orders of magnitude smaller than the coefficient of viscosity within the amorphous phase. This suggests that sliding along a planar and homogeneous surface of straight polyalanine chains is much less hindered than within entangled disordered chains. Finally, in a simple finite element model, which is based on parameters determined from MD simulations including the newly deduced coefficient of viscosity, we assessed the frictional behavior between these two components for the experimental range of relative pulling velocities. We found that a perfectly relative horizontal motion has no significant resistance against sliding, however, slightly inclined loading causes measurable resistance. Our analysis paves the way towards a finite element model of silk fibers in which crystalline units can slide, move and rearrange themselves in the fiber during loading. PMID:25119288

  13. Judaism and the Silk Route.

    ERIC Educational Resources Information Center

    Foltz, Richard

    1998-01-01

    Demonstrates that the Judeans traveled along the Ancient Silk Route. Discusses the Iranian influence on the formation of Jewish religious ideas. Considers the development of Jewish trade networks, focusing on the Radanites (Jewish traders), the Jewish presence in the Far East, and the survival of Judaism in central Asia. (CMK)

  14. Lithium-free processing of silk fibroin.

    PubMed

    Zheng, Zhaozhu; Guo, Shaozhe; Liu, Yawen; Wu, Jianbing; Li, Gang; Liu, Meng; Wang, Xiaoqin; Kaplan, David

    2016-09-01

    Silk fibroin protein was purified from Bombyx mori silkworm cocoons using a novel dialysis strategy to avoid fibroin aggregation and pre-mature formation of β-sheets. The degummed silk fibers were dissolved in Ajisawa's reagent, a mixture of CaCl2-EtOH-H2O, that is less expensive than lithium bromide. The dissolved solutions were dialyzed against either water or urea solution with a stepwise decrease in concentration. When the steps of 4 M-2 M-1 M-0 M urea (referred to as silk-TS-4210) were adopted, the purified silk fibroin had smaller aggregates (<10 nm), similar average molecular weight (225 kDa) and a lower content of β-sheet (∼15%) compared to the sample processing methods (silk-TS-210, 10, 0) studied here. This outcome was close to the fibroin purified by the lithium bromide (silk-Li-0) method. Polyvinyl alcohol-emulsified silk microspheres generated using the purified solution had a similar size distribution and morphology when compared to lithium bromide dissolved solutions, while glycerol-blended silk films showed different mechanical properties. The silk-Li-0 generated films with the highest breaking strength (5.7 MPa ± 0.3) while the silk-TS-4210 had the highest extension at break (215.1% ± 12.5). The films prepared from silk-TS-4210 were cytocompatible to support the adhesion and proliferation of human mesenchymal stem cells, with improvements compared to the other samples likely due to the porous morphology of these films. PMID:27298185

  15. Formulation of Biologically-Inspired Silk-Based Drug Carriers for Pulmonary Delivery Targeted for Lung Cancer.

    PubMed

    Kim, Sally Yunsun; Naskar, Deboki; Kundu, Subhas C; Bishop, David P; Doble, Philip A; Boddy, Alan V; Chan, Hak-Kim; Wall, Ivan B; Chrzanowski, Wojciech

    2015-01-01

    The benefits of using silk fibroin, a major protein in silk, are widely established in many biomedical applications including tissue regeneration, bioactive coating and in vitro tissue models. The properties of silk such as biocompatibility and controlled degradation are utilized in this study to formulate for the first time as carriers for pulmonary drug delivery. Silk fibroin particles are spray dried or spray-freeze-dried to enable the delivery to the airways via dry powder inhalers. The addition of excipients such as mannitol is optimized for both the stabilization of protein during the spray-freezing process as well as for efficient dispersion using an in vitro aerosolisation impactor. Cisplatin is incorporated into the silk-based formulations with or without cross-linking, which show different release profiles. The particles show high aerosolisation performance through the measurement of in vitro lung deposition, which is at the level of commercially available dry powder inhalers. The silk-based particles are shown to be cytocompatible with A549 human lung epithelial cell line. The cytotoxicity of cisplatin is demonstrated to be enhanced when delivered using the cross-linked silk-based particles. These novel inhalable silk-based drug carriers have the potential to be used as anti-cancer drug delivery systems targeted for the lungs. PMID:26234773

  16. Genetic fusion of single-chain variable fragments to partial spider silk improves target detection in micro- and nanoarrays.

    PubMed

    Thatikonda, Naresh; Delfani, Payam; Jansson, Ronnie; Petersson, Linn; Lindberg, Diana; Wingren, Christer; Hedhammar, My

    2016-03-01

    Immobilizing biomolecules with retained functionality and stability on solid supports is crucial for generation of sensitive immunoassays. However, upon use of conventional immobilization strategies, a major portion of the biomolecules (e.g. antibodies) frequently tends to lose their bioactivity. In this study, we describe a procedure to immobilize human single-chain variable fragment (scFv) via genetic fusion to partial spider silk, which have a high tendency to adhere to solid supports. Two scFvs, directed towards serum proteins, were genetically fused to partial spider silk proteins and expressed as silk fusion proteins in E. coli. Antigen binding ability of scFvs attached to a partial silk protein denoted RC was investigated using microarray analysis, whereas scFvs fused to the NC silk variant were examined using nanoarrays. Results from micro- and nanoarrays confirmed the functionality of scFvs attached to both RC and NC silk, and also for binding of targets in crude serum. Furthermore, the same amount of added scFv gives higher signal intensity when immobilized via partial spider silk compared to when immobilized alone. Together, the results suggest that usage of scFv-silk fusion proteins in immunoassays could improve target detection, in the long run enabling novel biomarkers to be detected in crude serum proteomes. PMID:26470853

  17. Formulation of Biologically-Inspired Silk-Based Drug Carriers for Pulmonary Delivery Targeted for Lung Cancer

    PubMed Central

    Kim, Sally Yunsun; Naskar, Deboki; Kundu, Subhas C.; Bishop, David P.; Doble, Philip A.; Boddy, Alan V.; Chan, Hak-Kim; Wall, Ivan B.; Chrzanowski, Wojciech

    2015-01-01

    The benefits of using silk fibroin, a major protein in silk, are widely established in many biomedical applications including tissue regeneration, bioactive coating and in vitro tissue models. The properties of silk such as biocompatibility and controlled degradation are utilized in this study to formulate for the first time as carriers for pulmonary drug delivery. Silk fibroin particles are spray dried or spray-freeze-dried to enable the delivery to the airways via dry powder inhalers. The addition of excipients such as mannitol is optimized for both the stabilization of protein during the spray-freezing process as well as for efficient dispersion using an in vitro aerosolisation impactor. Cisplatin is incorporated into the silk-based formulations with or without cross-linking, which show different release profiles. The particles show high aerosolisation performance through the measurement of in vitro lung deposition, which is at the level of commercially available dry powder inhalers. The silk-based particles are shown to be cytocompatible with A549 human lung epithelial cell line. The cytotoxicity of cisplatin is demonstrated to be enhanced when delivered using the cross-linked silk-based particles. These novel inhalable silk-based drug carriers have the potential to be used as anti-cancer drug delivery systems targeted for the lungs. PMID:26234773

  18. Thromboelastometric and platelet responses to silk biomaterials

    PubMed Central

    Kundu, Banani; Schlimp, Christoph J.; Nürnberger, Sylvia; Redl, Heinz; Kundu, S. C.

    2014-01-01

    Silkworm's silk is natural biopolymer with unique properties including mechanical robustness, all aqueous base processing and ease in fabrication into different multifunctional templates. Additionally, the nonmulberry silks have cell adhesion promoting tri-peptide (RGD) sequences, which make it an immensely potential platform for regenerative medicine. The compatibility of nonmulberry silk with human blood is still elusive; thereby, restricts its further application as implants. The present study, therefore, evaluate the haematocompatibility of silk biomaterials in terms of platelet interaction after exposure to nonmulberry silk of Antheraea mylitta using thromboelastometry (ROTEM). The mulberry silk of Bombyx mori and clinically used Uni-Graft W biomaterial serve as references. Shortened clotting time, clot formation times as well as enhanced clot strength indicate the platelet mediated activation of blood coagulation cascade by tested biomaterials; which is comparable to controls. PMID:24824624

  19. Sunlight-Induced Coloration of Silk.

    PubMed

    Yao, Ya; Tang, Bin; Chen, Wu; Sun, Lu; Wang, Xungai

    2016-12-01

    Silk fabrics were colored by gold nanoparticles (NPs) that were in situ synthesized through the induction of sunlight. Owing to the localized surface plasmon resonance (LSPR) of gold NPs, the treated silk fabrics presented vivid colors. The photo-induced synthesis of gold NPs was also realized on wet silk through adsorbing gold ions out of solution, which provides a water-saving coloration method for textiles. Besides, the patterning of silk was feasible using this simple sunlight-induced coloration approach. The key factors of coloration including gold ion concentration, pH value, and irradiation time were investigated. Moreover, it was demonstrated that either ultraviolet (UV) light or visible light could induce the generation of gold NPs on silk fabrics. The silk fabrics with gold NPs exhibited high light resistance including great UV-blocking property and excellent fastness to sunlight. PMID:27297220

  20. Sunlight-Induced Coloration of Silk

    NASA Astrophysics Data System (ADS)

    Yao, Ya; Tang, Bin; Chen, Wu; Sun, Lu; Wang, Xungai

    2016-06-01

    Silk fabrics were colored by gold nanoparticles (NPs) that were in situ synthesized through the induction of sunlight. Owing to the localized surface plasmon resonance (LSPR) of gold NPs, the treated silk fabrics presented vivid colors. The photo-induced synthesis of gold NPs was also realized on wet silk through adsorbing gold ions out of solution, which provides a water-saving coloration method for textiles. Besides, the patterning of silk was feasible using this simple sunlight-induced coloration approach. The key factors of coloration including gold ion concentration, pH value, and irradiation time were investigated. Moreover, it was demonstrated that either ultraviolet (UV) light or visible light could induce the generation of gold NPs on silk fabrics. The silk fabrics with gold NPs exhibited high light resistance including great UV-blocking property and excellent fastness to sunlight.

  1. The elaborate structure of spider silk

    PubMed Central

    Römer, Lin

    2008-01-01

    Biomaterials, having evolved over millions of years, often exceed man-made materials in their properties. Spider silk is one outstanding fibrous biomaterial which consists almost entirely of large proteins. Silk fibers have tensile strengths comparable to steel and some silks are nearly as elastic as rubber on a weight to weight basis. In combining these two properties, silks reveal a toughness that is two to three times that of synthetic fibers like Nylon or Kevlar. Spider silk is also antimicrobial, hypoallergenic and completely biodegradable. This article focuses on the structure-function relationship of the characterized highly repetitive spider silk spidroins and their conformational conversion from solution into fibers. Such knowedge is of crucial importance to understanding the intrinsic properties of spider silk and to get insight into the sophisticated assembly processes of silk proteins. This review further outlines recent progress in recombinant production of spider silk proteins and their assembly into distinct polymer materials as a basis for novel products. PMID:19221522

  2. Strength and structure of spiders' silks.

    PubMed

    Vollrath, F

    2000-08-01

    Spider silks are composite materials with often complex microstructures. They are spun from liquid crystalline dope using a complicated spinning mechanism which gives the animal considerable control. The material properties of finished silk are modified by the effects of water and other solvents, and spiders make use of this to produce fibres with specific qualities. The surprising sophistication of spider silks and spinning technologies makes it imperative for us to understand both material and manufacturing in nature before embarking on the commercialization of biotechnologically modified silk dope. PMID:11763504

  3. Functionalized silk biomaterials for wound healing.

    PubMed

    Gil, Eun Seok; Panilaitis, Bruce; Bellas, Evangelia; Kaplan, David L

    2013-01-01

    Silk protein-biomaterial wound dressings with epidermal growth factor (EGF) and silver sulfadiazine were studied with a cutaneous excisional mouse wound model. Three different material designs and two different drug incorporation techniques were studied to compare wound healing responses. Material formats included silk films, lamellar porous silk films and electrospun silk nanofibers, each studied with the silk matrix alone and with drug loading or drug coatings on the silk matrices. Changes in wound size and histological assessments of wound tissues showed that the functionalized silk biomaterial wound dressings increased wound healing rate, including reepithelialization, dermis proliferation, collagen synthesis and reduced scar formation, when compared to air-permeable Tegaderm tape (3M) (- control) and a commercial wound dressing, Tegaderm Hydrocolloid dressing (3M) (+ control). All silk biomaterials were effective for wound healing, while the lamellar porous films and electrospun nanofibers and the incorporation of EGF/silver sulfadiazine, via drug loading or coating, provided the most rapid wound healing responses. This systematic approach to evaluating functionalized silk biomaterial wound dressings demonstrates a useful strategy to select formulations for further study towards new treatment options for chronic wounds. PMID:23184644

  4. Mechanical properties of regenerated Bombyx mori silk fibers and recombinant silk fibers produced by transgenic silkworms.

    PubMed

    Zhu, Zhenghua; Kikuchi, Yuka; Kojima, Katsura; Tamura, Toshiki; Kuwabara, Nobuo; Nakamura, Takashi; Asakura, Tetsuo

    2010-01-01

    Regenerated silk fibroin fibers from the cocoons of silkworm, Bombyx mori, were prepared with hexafluoro solvents, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) or hexafluoroacetone-trihydrate (HFA), as dope solvents and methanol as coagulation solvent. The regenerated fiber prepared from the HFIP solution showed slightly larger tensile strength when the draw ratio is 1:3 than that of native silk fiber, but the strength of the regenerated fiber with draw ratio 1:3 from the HFA solution is much lower than that of native silk fiber. This difference in the tensile strength of the regenerated silk fibers between two dope solvents comes from the difference in the long-range orientation of the crystalline region rather than that of short-range structural environment such as the fraction of beta-sheet structure. The increase in the biodegradation was observed for the regenerated silk fiber compared with native silk fiber. Preparations of regenerated silk fibroin fibers containing spider silk sequences were obtained by mixing silk fibroins and silk-like proteins with characteristic sequences from a spider, Naphila clavipes, to produce drag-line silk in E. coli in the fluoro solvents. A small increase in the tensile strength was obtained by adding 5% (w/w) of the silk-like protein to the silk fibroin. The production of silk fibroin fibers with these spider silk sequences was also performed with transgenic silkworms. Small increase in the tensile strength of the fibers was obtained without significant change in the elongation-at-break. PMID:20178693

  5. Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi.

    PubMed

    Zhao, Ai-Chun; Zhao, Tian-Fu; Nakagaki, Koichi; Zhang, Yuan-Song; Sima, Yang-Hu; Miao, Yun-Gen; Shiomi, Kunihiro; Kajiura, Zenta; Nagata, Yoko; Takadera, Masayuki; Nakagaki, Masao

    2006-03-14

    Araneoid spiders use specialized abdominal glands to produce up to seven different protein-based silks/glues that have various mechanical properties. To date, the fibroin sequences encoding egg case fibers have not been fully determined. To gain further understanding of a recently reported spider silk protein gene family, several novel strategies were utilized in this study to isolate two full-length cDNAs of egg case silk proteins, cylindrical silk protein 1 (CySp1, 9.1 kb) and cylindrical silk protein 2 (CySp2, 9.8 kb), from the wasp spider, Argiope bruennichi. Northern blotting analysis demonstrated that CySp1 and CySp2 are selectively expressed in the cylindrical glands. The amino acid composition of raw egg case silk was closely consistent with the deduced amino acid composition based on the sequences of CySp1 and CySp2, which supports the assertion that CySp1 and CySp2 represent two major components of egg case silk. CySp1 and CySp2 are primarily composed of remarkable homogeneous assemble repeats that are 180 residues in length and consist of several complex subrepeats, and they contain highly homologous C-termini and markedly different N-termini. Our results suggest a possible link between CySp1 and CySp2. In addition, comparisons of stress/strain curves for dragline and egg case silk from Argiope bruennichi showed obvious differences in ultimate strength and extensibility, and similarities in toughness. PMID:16519529

  6. Luminescent golden silk and fabric through in situ chemically coating pristine-silk with gold nanoclusters.

    PubMed

    Zhang, Pu; Lan, Jing; Wang, Yi; Xiong, Zu Hong; Huang, Cheng Zhi

    2015-01-01

    Silk is an excellent natural material and has been used for a variety of applications. Modification of the pristine silk is usually needed depending on the intended purpose. The technical treatments involved in the modification not only should be easy, rapid, environmentally friendly, and cheap but should also retain the features of the pristine silk. Herein, we demonstrate that luminescent silk and fabric can be produced through nanotechnology. The surface of the natural silk fiber is chemically coated with luminescent gold nanoclusters (AuNCs) composed of tens to hundreds of Au atoms through a redox reaction between the protein-based silk and an Au salt precursor. The luminescent silk coated with AuNCs (called golden silk) possesses good optical properties, including a relatively long wavelength emission, high quantum yields, a long fluorescent lifetime, and photostability. Moreover, golden silk prepared this way has better mechanical properties than pristine silk, is better able to inhibit UV, and has lower toxicity in vitro. This work not only provides an effective strategy for in situ preparation of luminescent metal nanoclusters on a solid substrate but also paves the way for large-scale and industrialized production of novel silk-based materials or fabrics through nanotechnology. PMID:25308521

  7. Effect of silk protein surfactant on silk degumming and its properties.

    PubMed

    Wang, Fei; Cao, Ting-Ting; Zhang, Yu-Qing

    2015-10-01

    The silk protein surfactant (SPS) first used as a silk degumming agent in this study is an amino acid-type anionic surfactant that was synthesized using silk fibroin amino acids and lauroyl chloride. We studied it systematically in comparison with the traditional degumming methods such as sodium carbonate (Na2CO3) and neutral soap (NS). The experimental results showed that the sericin can be completely removed from the silk fibroin fiber after boiling the fibers three times for 30 min and using a bath ratio of 1:80 (g/mL) and a concentration of 0.2% SPS in an aqueous solution. The results of the tensile properties, thermal analysis, and SEM all show that SPS is similar to the NS, far superior to Na2CO3. In short, SPS may be used as an environmentally friendly silk degumming/refining agent in the silk textile industry and in the manufacture of silk floss quilts. PMID:26117747

  8. Tissue Regeneration: A Silk Road.

    PubMed

    Jao, Dave; Mou, Xiaoyang; Hu, Xiao

    2016-01-01

    Silk proteins are natural biopolymers that have extensive structural possibilities for chemical and mechanical modifications to facilitate novel properties, functions, and applications in the biomedical field. The versatile processability of silk fibroins (SF) into different forms such as gels, films, foams, membranes, scaffolds, and nanofibers makes it appealing in a variety of applications that require mechanically superior, biocompatible, biodegradable, and functionalizable biomaterials. There is no doubt that nature is the world's best biological engineer, with simple, exquisite but powerful designs that have inspired novel technologies. By understanding the surface interaction of silk materials with living cells, unique characteristics can be implemented through structural modifications, such as controllable wettability, high-strength adhesiveness, and reflectivity properties, suggesting its potential suitability for surgical, optical, and other biomedical applications. All of the interesting features of SF, such as tunable biodegradation, anti-bacterial properties, and mechanical properties combined with potential self-healing modifications, make it ideal for future tissue engineering applications. In this review, we first demonstrate the current understanding of the structures and mechanical properties of SF and the various functionalizations of SF matrices through chemical and physical manipulations. Then the diverse applications of SF architectures and scaffolds for different regenerative medicine will be discussed in detail, including their current applications in bone, eye, nerve, skin, tendon, ligament, and cartilage regeneration. PMID:27527229

  9. Silk film biomaterials for ocular surface repair

    NASA Astrophysics Data System (ADS)

    Lawrence, Brian David

    Current biomaterial approaches for repairing the cornea's ocular surface upon injury are partially effective due to inherent material limitations. As a result there is a need to expand the biomaterial options available for use in the eye, which in turn will help to expand new clinical innovations and technology development. The studies illustrated here are a collection of work to further characterize silk film biomaterials for use on the ocular surface. Silk films were produced from regenerated fibroin protein solution derived from the Bombyx mori silkworm cocoon. Methods of silk film processing and production were developed to produce consistent biomaterials for in vitro and in vivo evaluation. A wide range of experiments was undertaken that spanned from in vitro silk film material characterization to in vivo evaluation. It was found that a variety of silk film properties could be controlled through a water-annealing process. Silk films were then generated that could be use in vitro to produce stratified corneal epithelial cell sheets comparable to tissue grown on the clinical standard substrate of amniotic membrane. This understanding was translated to produce a silk film design that enhanced corneal healing in vivo on a rabbit injury model. Further work produced silk films with varying surface topographies that were used as a simplified analog to the corneal basement membrane surface in vitro. These studies demonstrated that silk film surface topography is capable of directing corneal epithelial cell attachment, growth, and migration response. Most notably epithelial tissue development was controllably directed by the presence of the silk surface topography through increasing cell sheet migration efficiency at the individual cellular level. Taken together, the presented findings represent a comprehensive characterization of silk film biomaterials for use in ocular surface reconstruction, and indicate their utility as a potential material choice in the

  10. Ovary Apical Abortion under Water Deficit Is Caused by Changes in Sequential Development of Ovaries and in Silk Growth Rate in Maize.

    PubMed

    Oury, Vincent; Tardieu, François; Turc, Olivier

    2016-06-01

    Grain abortion allows the production of at least a few viable seeds under water deficit but causes major yield loss. It is maximum for water deficits occurring during flowering in maize (Zea mays). We have tested the hypothesis that abortion is linked to the differential development of ovary cohorts along the ear and to the timing of silk emergence. Ovary volume and silk growth were followed over 25 to 30 d under four levels of water deficit and in four hybrids in two experiments. A position-time model allowed characterizing the development of ovary cohorts and their silk emergence. Silk growth rate decreased in water deficit and stopped 2 to 3 d after first silk emergence, simultaneously for all ovary cohorts, versus 7 to 8 d in well-watered plants. Abortion rate in different treatments and positions on the ear was not associated with ovary growth rate. It was accounted for by the superposition of (1) the sequential emergence of silks originating from ovaries of different cohorts along the ear with (2) one event occurring on a single day, the simultaneous silk growth arrest. Abortion occurred in the youngest ovaries whose silks did not emerge 2 d before silk arrest. This mechanism accounted for more than 90% of drought-related abortion in our experiments. It resembles the control of abortion in a large range of species and inflorescence architectures. This finding has large consequences for breeding drought-tolerant maize and for modeling grain yields in water deficit. PMID:26598464

  11. Ovary Apical Abortion under Water Deficit Is Caused by Changes in Sequential Development of Ovaries and in Silk Growth Rate in Maize1[OPEN

    PubMed Central

    Tardieu, François

    2016-01-01

    Grain abortion allows the production of at least a few viable seeds under water deficit but causes major yield loss. It is maximum for water deficits occurring during flowering in maize (Zea mays). We have tested the hypothesis that abortion is linked to the differential development of ovary cohorts along the ear and to the timing of silk emergence. Ovary volume and silk growth were followed over 25 to 30 d under four levels of water deficit and in four hybrids in two experiments. A position-time model allowed characterizing the development of ovary cohorts and their silk emergence. Silk growth rate decreased in water deficit and stopped 2 to 3 d after first silk emergence, simultaneously for all ovary cohorts, versus 7 to 8 d in well-watered plants. Abortion rate in different treatments and positions on the ear was not associated with ovary growth rate. It was accounted for by the superposition of (1) the sequential emergence of silks originating from ovaries of different cohorts along the ear with (2) one event occurring on a single day, the simultaneous silk growth arrest. Abortion occurred in the youngest ovaries whose silks did not emerge 2 d before silk arrest. This mechanism accounted for more than 90% of drought-related abortion in our experiments. It resembles the control of abortion in a large range of species and inflorescence architectures. This finding has large consequences for breeding drought-tolerant maize and for modeling grain yields in water deficit. PMID:26598464

  12. Stability of silk and collagen protein materials in space.

    PubMed

    Hu, Xiao; Raja, Waseem K; An, Bo; Tokareva, Olena; Cebe, Peggy; Kaplan, David L

    2013-01-01

    Collagen and silk materials, in neat forms and as silica composites, were flown for 18 months on the International Space Station [Materials International Space Station Experiment (MISSE)-6] to assess the impact of space radiation on structure and function. As natural biomaterials, the impact of the space environment on films of these proteins was investigated to understand fundamental changes in structure and function related to the future utility in materials and medicine in space environments. About 15% of the film surfaces were etched by heavy ionizing particles such as atomic oxygen, the major component of the low-Earth orbit space environment. Unexpectedly, more than 80% of the silk and collagen materials were chemically crosslinked by space radiation. These findings are critical for designing next-generation biocompatible materials for contact with living systems in space environments, where the effects of heavy ionizing particles and other cosmic radiation need to be considered. PMID:24305951

  13. Stability of Silk and Collagen Protein Materials in Space

    PubMed Central

    Hu, Xiao; Raja, Waseem K.; An, Bo; Tokareva, Olena; Cebe, Peggy; Kaplan, David L.

    2013-01-01

    Collagen and silk materials, in neat forms and as silica composites, were flown for 18 months on the International Space Station [Materials International Space Station Experiment (MISSE)-6] to assess the impact of space radiation on structure and function. As natural biomaterials, the impact of the space environment on films of these proteins was investigated to understand fundamental changes in structure and function related to the future utility in materials and medicine in space environments. About 15% of the film surfaces were etched by heavy ionizing particles such as atomic oxygen, the major component of the low-Earth orbit space environment. Unexpectedly, more than 80% of the silk and collagen materials were chemically crosslinked by space radiation. These findings are critical for designing next-generation biocompatible materials for contact with living systems in space environments, where the effects of heavy ionizing particles and other cosmic radiation need to be considered. PMID:24305951

  14. 21 CFR 878.5030 - Natural nonabsorbable silk surgical suture.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Natural nonabsorbable silk surgical suture. 878... Natural nonabsorbable silk surgical suture. (a) Identification. Natural nonabsorbable silk surgical suture... Bombycidae. Natural nonabsorbable silk surgical suture is indicated for use in soft tissue...

  15. 21 CFR 878.5030 - Natural nonabsorbable silk surgical suture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Natural nonabsorbable silk surgical suture. 878... Natural nonabsorbable silk surgical suture. (a) Identification. Natural nonabsorbable silk surgical suture... Bombycidae. Natural nonabsorbable silk surgical suture is indicated for use in soft tissue...

  16. Phosphorylated silk fibroin matrix for methotrexate release.

    PubMed

    Volkov, Vadim; Sárria, Marisa P; Gomes, Andreia C; Cavaco-Paulo, Artur

    2015-01-01

    Silk-based matrix was produced for delivery of a model anticancer drug, methotrexate (MTX). The calculation of net charge of silk fibroin and MTX was performed to better understand the electrostatic interactions during matrix formation upon casting. Silk fibroin films were cast at pH 7.2 and pH 3.5. Protein kinase A was used to prepare phosphorylated silk fibroin. The phosphorylation content of matrix was controlled by mixing at specific ratios the phosphorylated and unphosphorylated solutions. In vitro release profiling data suggest that the observed interactions are mainly structural and not electrostatical. The release of MTX is facilitated by use of proteolytic enzymes and higher pHs. The elevated β-sheet content and crystallinity of the acidified-cast fibroin solution seem not to favor drug retention. All the acquired data underline the prevalence of structural interactions over electrostatical interactions between methotrexate and silk fibroin. PMID:25435334

  17. Thermal crystallization mechanism of silk fibroin protein

    NASA Astrophysics Data System (ADS)

    Hu, Xiao

    In this thesis, the thermal crystallization mechanism of silk fibroin protein from Bombyx mori silkworm, was treated as a model for the general study of protein based materials, combining theories from both biophysics and polymer physics fields. A systematic and scientific path way to model the dynamic beta-sheet crystallization process of silk fibroin protein was presented in the following sequence: (1) The crystallinity, fractions of secondary structures, and phase compositions in silk fibroin proteins at any transition stage were determined. Two experimental methods, Fourier transform infrared spectroscopy (FTIR) with Fourier self-deconvolution, and specific reversing heat capacity, were used together for the first time for modeling the static structures and phases in the silk fibroin proteins. The protein secondary structure fractions during the crystallization were quantitatively determined. The possibility of existence of a "rigid amorphous phase" in silk protein was also discussed. (2) The function of bound water during the crystallization process of silk fibroin was studied using heat capacity, and used to build a silk-water dynamic crystallization model. The fundamental concepts and thermal properties of silk fibroin with/without bound water were discussed. Results show that intermolecular bound water molecules, acting as a plasticizer, will cause silk to display a water-induced glass transition around 80°C. During heating, water is lost, and the change of the microenvironment in the silk fibroin chains induces a mesophase prior to thermal crystallization. Real time FTIR during heating and isothermal holding above Tg show the tyrosine side chain changes only during the former process, while beta sheet crystallization occurs only during the latter process. Analogy is made between the crystallization of synthetic polymers according to the four-state scheme of Strobl, and the crystallization process of silk fibroin, which includes an intermediate precursor

  18. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of a spider silk manufacturing process is of great interest. piggyBac vectors were used to create transgenic silkworms encoding chimeric silkworm/spider silk proteins. The silk fibers produced by these animals were composite materials that included chimeric silkworm/spider silk prote...

  19. Unraveled mechanism in silk engineering: Fast reeling induced silk toughening

    NASA Astrophysics Data System (ADS)

    Wu, Xiang; Liu, Xiang-Yang; Du, Ning; Xu, Gangqin; Li, Baowen

    2009-08-01

    We theoretically and experimentally study the mechanical response of silkworm and spider silks against stretching and the relationship with the underlying structural factors. It is found that the typical stress-strain profiles are predicted in good agreement with experimental measurements by implementing the "β-sheet splitting" mechanism we discovered and verified, primarily varying the secondary structure of protein macromolecules. The functions of experimentally observed structural factors responding to the external stress have been clearly addressed, and optimization of the microscopic structures to enhance the mechanical strength will be pointed out, beneficial to their biomedical and textile applications.

  20. Production of silk sericin/silk fibroin blend nanofibers

    PubMed Central

    2011-01-01

    Silk sericin (SS)/silk fibroin (SF) blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA) solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75) blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50) blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100) blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure. PMID:21867508

  1. Designing Silk-silk Protein Alloy Materials for Biomedical Applications

    PubMed Central

    Hu, Xiao; Duki, Solomon; Forys, Joseph; Hettinger, Jeffrey; Buchicchio, Justin; Dobbins, Tabbetha; Yang, Catherine

    2014-01-01

    Fibrous proteins display different sequences and structures that have been used for various applications in biomedical fields such as biosensors, nanomedicine, tissue regeneration, and drug delivery. Designing materials based on the molecular-scale interactions between these proteins will help generate new multifunctional protein alloy biomaterials with tunable properties. Such alloy material systems also provide advantages in comparison to traditional synthetic polymers due to the materials biodegradability, biocompatibility, and tenability in the body. This article used the protein blends of wild tussah silk (Antheraea pernyi) and domestic mulberry silk (Bombyx mori) as an example to provide useful protocols regarding these topics, including how to predict protein-protein interactions by computational methods, how to produce protein alloy solutions, how to verify alloy systems by thermal analysis, and how to fabricate variable alloy materials including optical materials with diffraction gratings, electric materials with circuits coatings, and pharmaceutical materials for drug release and delivery. These methods can provide important information for designing the next generation multifunctional biomaterials based on different protein alloys. PMID:25145602

  2. Production of silk sericin/silk fibroin blend nanofibers

    NASA Astrophysics Data System (ADS)

    Zhang, Xianhua; Tsukada, Masuhiro; Morikawa, Hideaki; Aojima, Kazuki; Zhang, Guangyu; Miura, Mikihiko

    2011-08-01

    Silk sericin (SS)/silk fibroin (SF) blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA) solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75) blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50) blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100) blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure.

  3. Spider silk gut: Development and characterization of a novel strong spider silk fiber

    NASA Astrophysics Data System (ADS)

    Jiang, Ping; Marí-Buyé, Núria; Madurga, Rodrigo; Arroyo-Hernández, María; Solanas, Concepción; Gañán, Alfonso; Daza, Rafael; Plaza, Gustavo R.; Guinea, Gustavo V.; Elices, Manuel; Cenis, José Luis; Pérez-Rigueiro, José

    2014-12-01

    Spider silk fibers were produced through an alternative processing route that differs widely from natural spinning. The process follows a procedure traditionally used to obtain fibers directly from the glands of silkworms and requires exposure to an acid environment and subsequent stretching. The microstructure and mechanical behavior of the so-called spider silk gut fibers can be tailored to concur with those observed in naturally spun spider silk, except for effects related with the much larger cross-sectional area of the former. In particular spider silk gut has a proper ground state to which the material can revert independently from its previous loading history by supercontraction. A larger cross-sectional area implies that spider silk gut outperforms the natural material in terms of the loads that the fiber can sustain. This property suggests that it could substitute conventional spider silk fibers in some intended uses, such as sutures and scaffolds in tissue engineering.

  4. Spider silk gut: Development and characterization of a novel strong spider silk fiber

    PubMed Central

    Jiang, Ping; Marí-Buyé, Núria; Madurga, Rodrigo; Arroyo-Hernández, María; Solanas, Concepción; Gañán, Alfonso; Daza, Rafael; Plaza, Gustavo R.; Guinea, Gustavo V.; Elices, Manuel; Cenis, José Luis; Pérez-Rigueiro, José

    2014-01-01

    Spider silk fibers were produced through an alternative processing route that differs widely from natural spinning. The process follows a procedure traditionally used to obtain fibers directly from the glands of silkworms and requires exposure to an acid environment and subsequent stretching. The microstructure and mechanical behavior of the so-called spider silk gut fibers can be tailored to concur with those observed in naturally spun spider silk, except for effects related with the much larger cross-sectional area of the former. In particular spider silk gut has a proper ground state to which the material can revert independently from its previous loading history by supercontraction. A larger cross-sectional area implies that spider silk gut outperforms the natural material in terms of the loads that the fiber can sustain. This property suggests that it could substitute conventional spider silk fibers in some intended uses, such as sutures and scaffolds in tissue engineering. PMID:25475975

  5. Characteristics of platelet gels combined with silk

    PubMed Central

    Pallotta, Isabella; Kluge, Jonathan A.; Moreau, Jodie; Calabrese, Rossella

    2014-01-01

    Platelet gel, a fibrin network containing activated platelets, is widely used in regenerative medicine due the capacity of platelet-derived growth factors to accelerate and direct healing processes. However, limitations to this approach include poor mechanical properties, relatively rapid degradation, and the lack of control of release of growth factors at the site of injection. These issues compromise the ability of platelet gels for sustained function in regenerative medicine. In the present study, a combination of platelet gels with silk fibroin gel was studied to address the above limitations. Mixing sonicated silk gels with platelet gels extended the release of growth factors without inhibiting gel forming ability. The released growth factors were biologically active and their delivery was modified further by manipulation of the charge of the silk protein. Moreover, the silk gel augmented both the rheological properties and compressive stiffness of the platelet gel, tuned by the silk concentration and/or silk/platelet gel ratio. Silk-platelet gel injections in nude rats supported enhanced cell infiltration and blood vessel formation representing a step towards new platelet gel formulations with enhanced therapeutic impact. PMID:24480538

  6. Silk Electrogel Based Gastroretentive Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Wang, Qianrui

    Gastric cancer has become a global pandemic and there is imperative to develop efficient therapies. Oral dosing strategy is the preferred route to deliver drugs for treating the disease. Recent studies suggested silk electro hydrogel, which is pH sensitive and reversible, has potential as a vehicle to deliver the drug in the stomach environment. The aim of this study is to establish in vitro electrogelation e-gel based silk gel as a gastroretentive drug delivery system. We successfully extended the duration of silk e-gel in artificial gastric juice by mixing silk solution with glycerol at different ratios before the electrogelation. Structural analysis indicated the extended duration was due to the change of beta sheet content. The glycerol mixed silk e-gel had good doxorubicin loading capability and could release doxorubicin in a sustained-release profile. Doxorubicin loaded silk e-gels were applied to human gastric cancer cells. Significant cell viability decrease was observed. We believe that with further characterization as well as functional analysis, the silk e-gel system has the potential to become an effective vehicle for gastric drug delivery applications.

  7. Characteristics of platelet gels combined with silk.

    PubMed

    Pallotta, Isabella; Kluge, Jonathan A; Moreau, Jodie; Calabrese, Rossella; Kaplan, David L; Balduini, Alessandra

    2014-04-01

    Platelet gel, a fibrin network containing activated platelets, is widely used in regenerative medicine due the capacity of platelet-derived growth factors to accelerate and direct healing processes. However, limitations to this approach include poor mechanical properties, relatively rapid degradation, and the lack of control of release of growth factors at the site of injection. These issues compromise the ability of platelet gels for sustained function in regenerative medicine. In the present study, a combination of platelet gels with silk fibroin gel was studied to address the above limitations. Mixing sonicated silk gels with platelet gels extended the release of growth factors without inhibiting gel-forming ability. The released growth factors were biologically active and their delivery was modified further by manipulation of the charge of the silk protein. Moreover, the silk gel augmented both the rheological properties and compressive stiffness of the platelet gel, tuned by the silk concentration and/or silk/platelet gel ratio. Silk-platelet gel injections in nude rats supported enhanced cell infiltration and blood vessel formation representing a step towards new platelet gel formulations with enhanced therapeutic impact. PMID:24480538

  8. Silk Spinning in Silkworms and Spiders.

    PubMed

    Andersson, Marlene; Johansson, Jan; Rising, Anna

    2016-01-01

    Spiders and silkworms spin silks that outcompete the toughness of all natural and manmade fibers. Herein, we compare and contrast the spinning of silk in silkworms and spiders, with the aim of identifying features that are important for fiber formation. Although spiders and silkworms are very distantly related, some features of spinning silk seem to be universal. Both spiders and silkworms produce large silk proteins that are highly repetitive and extremely soluble at high pH, likely due to the globular terminal domains that flank an intermediate repetitive region. The silk proteins are produced and stored at a very high concentration in glands, and then transported along a narrowing tube in which they change conformation in response primarily to a pH gradient generated by carbonic anhydrase and proton pumps, as well as to ions and shear forces. The silk proteins thereby convert from random coil and alpha helical soluble conformations to beta sheet fibers. We suggest that factors that need to be optimized for successful production of artificial silk proteins capable of forming tough fibers include protein solubility, pH sensitivity, and preservation of natively folded proteins throughout the purification and initial spinning processes. PMID:27517908

  9. Silk Spinning in Silkworms and Spiders

    PubMed Central

    Andersson, Marlene; Johansson, Jan; Rising, Anna

    2016-01-01

    Spiders and silkworms spin silks that outcompete the toughness of all natural and manmade fibers. Herein, we compare and contrast the spinning of silk in silkworms and spiders, with the aim of identifying features that are important for fiber formation. Although spiders and silkworms are very distantly related, some features of spinning silk seem to be universal. Both spiders and silkworms produce large silk proteins that are highly repetitive and extremely soluble at high pH, likely due to the globular terminal domains that flank an intermediate repetitive region. The silk proteins are produced and stored at a very high concentration in glands, and then transported along a narrowing tube in which they change conformation in response primarily to a pH gradient generated by carbonic anhydrase and proton pumps, as well as to ions and shear forces. The silk proteins thereby convert from random coil and alpha helical soluble conformations to beta sheet fibers. We suggest that factors that need to be optimized for successful production of artificial silk proteins capable of forming tough fibers include protein solubility, pH sensitivity, and preservation of natively folded proteins throughout the purification and initial spinning processes. PMID:27517908

  10. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.

    PubMed

    Lazaris, Anthoula; Arcidiacono, Steven; Huang, Yue; Zhou, Jiang-Feng; Duguay, Francois; Chretien, Nathalie; Welsh, Elizabeth A; Soares, Jason W; Karatzas, Costas N

    2002-01-18

    Spider silks are protein-based "biopolymer" filaments or threads secreted by specialized epithelial cells as concentrated soluble precursors of highly repetitive primary sequences. Spider dragline silk is a flexible, lightweight fiber of extraordinary strength and toughness comparable to that of synthetic high-performance fibers. We sought to "biomimic" the process of spider silk production by expressing in mammalian cells the dragline silk genes (ADF-3/MaSpII and MaSpI) of two spider species. We produced soluble recombinant (rc)-dragline silk proteins with molecular masses of 60 to 140 kilodaltons. We demonstrated the wet spinning of silk monofilaments spun from a concentrated aqueous solution of soluble rc-spider silk protein (ADF-3; 60 kilodaltons) under modest shear and coagulation conditions. The spun fibers were water insoluble with a fine diameter (10 to 40 micrometers) and exhibited toughness and modulus values comparable to those of native dragline silks but with lower tenacity. Dope solutions with rc-silk protein concentrations >20% and postspinning draw were necessary to achieve improved mechanical properties of the spun fibers. Fiber properties correlated with finer fiber diameter and increased birefringence. PMID:11799236

  11. High-Toughness Silk Produced by a Transgenic Silkworm Expressing Spider (Araneus ventricosus) Dragline Silk Protein

    PubMed Central

    Kuwana, Yoshihiko; Sezutsu, Hideki; Nakajima, Ken-ichi; Tamada, Yasushi; Kojima, Katsura

    2014-01-01

    Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4–2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms. PMID:25162624

  12. Highly tunable elastomeric silk biomaterials

    PubMed Central

    Partlow, Benjamin P.; Hanna, Craig W.; Rnjak-Kovacina, Jelena; Moreau, Jodie E.; Applegate, Matthew B.; Burke, Kelly A.; Marelli, Benedetto; Mitropoulos, Alexander N.; Omenetto, Fiorenzo G.

    2014-01-01

    Elastomeric, fully degradable and biocompatible biomaterials are rare, with current options presenting significant limitations in terms of ease of functionalization and tunable mechanical and degradation properties. We report a new method for covalently crosslinking tyrosine residues in silk proteins, via horseradish peroxidase and hydrogen peroxide, to generate highly elastic hydrogels with tunable properties. The tunable mechanical properties, gelation kinetics and swelling properties of these new protein polymers, in addition to their ability to withstand shear strains on the order of 100%, compressive strains greater than 70% and display stiffness between 200 – 10,000 Pa, covering a significant portion of the properties of native soft tissues. Molecular weight and solvent composition allowed control of material mechanical properties over several orders of magnitude while maintaining high resilience and resistance to fatigue. Encapsulation of human bone marrow derived mesenchymal stem cells (hMSC) showed long term survival and exhibited cell-matrix interactions reflective of both silk concentration and gelation conditions. Further biocompatibility of these materials were demonstrated with in vivo evaluation. These new protein-based elastomeric and degradable hydrogels represent an exciting new biomaterials option, with a unique combination of properties, for tissue engineering and regenerative medicine. PMID:25395921

  13. Silk as an innovative biomaterial for cancer therapy

    PubMed Central

    Jastrzebska, Katarzyna; Kucharczyk, Kamil; Florczak, Anna; Dondajewska, Ewelina; Mackiewicz, Andrzej; Dams-Kozlowska, Hanna

    2014-01-01

    Silk has been used for centuries in the textile industry and as surgical sutures. In addition to its unique mechanical properties, silk possesses other properties, such as biocompatibility, biodegradability and ability to self-assemble, which make it an interesting material for biomedical applications. Although silk forms only fibers in nature, synthetic techniques can be used to control the processing of silk into different morphologies, such as scaffolds, films, hydrogels, microcapsules, and micro- and nanospheres. Moreover, the biotechnological production of silk proteins broadens the potential applications of silk. Synthetic silk genes have been designed. Genetic engineering enables modification of silk properties or the construction of a hybrid silk. Bioengineered hybrid silks consist of a silk sequence that self-assembles into the desired morphological structure and the sequence of a polypeptide that confers a function to the silk biomaterial. The functional domains can comprise binding sites for receptors, enzymes, drugs, metals or sugars, among others. Here, we review the current status of potential applications of silk biomaterials in the field of oncology with a focus on the generation of implantable, injectable and targeted drug delivery systems and the three-dimensional cancer models based on silk scaffolds for cancer research. However, the systems described could be applied in many biomedical fields. PMID:25859397

  14. Silk as an innovative biomaterial for cancer therapy.

    PubMed

    Jastrzebska, Katarzyna; Kucharczyk, Kamil; Florczak, Anna; Dondajewska, Ewelina; Mackiewicz, Andrzej; Dams-Kozlowska, Hanna

    2015-01-01

    Silk has been used for centuries in the textile industry and as surgical sutures. In addition to its unique mechanical properties, silk possesses other properties, such as biocompatibility, biodegradability and ability to self-assemble, which make it an interesting material for biomedical applications. Although silk forms only fibers in nature, synthetic techniques can be used to control the processing of silk into different morphologies, such as scaffolds, films, hydrogels, microcapsules, and micro- and nanospheres. Moreover, the biotechnological production of silk proteins broadens the potential applications of silk. Synthetic silk genes have been designed. Genetic engineering enables modification of silk properties or the construction of a hybrid silk. Bioengineered hybrid silks consist of a silk sequence that self-assembles into the desired morphological structure and the sequence of a polypeptide that confers a function to the silk biomaterial. The functional domains can comprise binding sites for receptors, enzymes, drugs, metals or sugars, among others. Here, we review the current status of potential applications of silk biomaterials in the field of oncology with a focus on the generation of implantable, injectable and targeted drug delivery systems and the three-dimensional cancer models based on silk scaffolds for cancer research. However, the systems described could be applied in many biomedical fields. PMID:25859397

  15. Materials Fabrication from Bombyx mori Silk Fibroin

    PubMed Central

    Rockwood, Danielle N.; Preda, Rucsanda C.; Yücel, Tuna; Wang, Xiaoqin; Lovett, Michael L.; Kaplan, David L.

    2013-01-01

    Silk fibroin, derived from Bombyx mori cocoons, is a widely used and studied protein polymer for biomaterial applications. Silk fibroin has remarkable mechanical properties when formed into different materials, demonstrates biocompatibility, has controllable degradation rates from hours to years, and it can be chemically modified to alter surface properties or to immobilize growth factors. A variety of aqueous or organic solvent processing methods can be used to generate silk biomaterials for a range of applications. In this protocol we include methods to extract silk from B. mori cocoons in order to fabricate hydrogels, tubes, sponges, composites, fibers, microspheres and thin films. These materials can be used directly as biomaterials for implants, as scaffolding in tissue engineering and in vitro disease models, and for drug delivery. PMID:21959241

  16. In vivo bioresponses to silk proteins.

    PubMed

    Thurber, Amy E; Omenetto, Fiorenzo G; Kaplan, David L

    2015-12-01

    Silks are appealing materials for numerous biomedical applications involving drug delivery, tissue engineering, or implantable devices, because of their tunable mechanical properties and wide range of physical structures. In addition to the functionalities needed for specific clinical applications, a key factor necessary for clinical success for any implanted material is appropriate interactions with the body in vivo. This review summarizes our current understanding of the in vivo biological responses to silks, including degradation, the immune and inflammatory response, and tissue remodeling with particular attention to vascularization. While we focus in this review on silkworm silk fibroin protein due to the large quantity of in vivo data thanks to its widespread use in medical materials and consumer products, spider silk information is also included if available. Silk proteins are degraded in the body on a time course that is dependent on the method of silk fabrication and can range from hours to years. Silk protein typically induces a mild inflammatory response that decreases within a few weeks of implantation. The response involves recruitment and activation of macrophages and may include activation of a mild foreign body response with the formation of multinuclear giant cells, depending on the material format and location of implantation. The number of immune cells present decreases with time and granulation tissue, if formed, is replaced by endogenous, not fibrous, tissue. Importantly, silk materials have not been demonstrated to induce mineralization, except when used in calcified tissues. Due to its ability to be degraded, silk can be remodeled in the body allowing for vascularization and tissue ingrowth with eventual complete replacement by native tissue. The degree of remodeling, tissue ingrowth, or other specific cell behaviors can be modulated with addition of growth or other signaling factors. Silk can also be combined with numerous other materials

  17. Soft Tissue Augmentation with Silk Composite Graft

    PubMed Central

    Park, Yong-Tae; Kweon, Hae Yong; Kim, Seong-Gon

    2014-01-01

    Purpose: The objective of this study was to evaluate the interaction between 4-hexylresorcinol (4HR) and antibody as that affects the performance of a silk-4HR combination graft for soft tissue augmentation in an animal model. Methods: The silk graft materials consisted of four types: silk+10% tricalcium phosphate (TCP) (ST0), silk+10% TCP+1% 4HR (ST1), silk+10% TCP+3% 4HR (ST3), and silk+10% TCP+6% 4-HR (ST6). The antibody binding assay tested the 4HR effect and scanning electron microscopic (SEM) exam was done for silk grafts. The animal experiment used a subcutaneous pocket mouse model. The graft – SH0 or SH1 or SH3 or SH6 – was placed in a subcutaneous pocket. The animals were killed at one, two, and four weeks, postoperatively. The specimens were subjected to histological analysis and lysozyme assay. Results: Groups with 4HR applied showed lower antibody binding affinity to antigen compared to groups without 4HR. In the SEM examination, there was no significant difference among groups. Histological examinations revealed many foreign body giant cells in ST0 and ST1 group at four weeks postoperatively. Both ST3 and ST6 groups developed significantly lower levels of giant cell values compared to ST0 and ST1 groups (P <0.001) at four weeks postoperatively. In the lysozyme assay, the ST1 and ST3 groups showed denser signals than the other groups. Conclusion: 4HR combined silk implants resulted in high levels of vascular and connective tissue regeneration. PMID:27489833

  18. Fluorescent silk cocoon creating fluorescent diatom using a “Water glass-fluorophore ferry”

    NASA Astrophysics Data System (ADS)

    Kusurkar, Tejas S.; Tandon, Ishita; Sethy, Niroj Kumar; Bhargava, Kalpana; Sarkar, Sabyasachi; Singh, Sushil Kumar; Das, Mainak

    2013-11-01

    Fluorophores are ubiquitous in nature. Naturally occurring fluorophores are exceptionally stable and have high quantum yield. Several natural systems have acquired fluorescent signature due to the presence of these fluorophores. Systematic attempt to harvest these fluorophores from natural systems could reap rich commercial benefit to bio-imaging industry. Silk cocoon biomaterial is one such example of natural system, which has acquired a fluorescent signature. The objective of this study is to develop simple, rapid, commercially viable technique to isolate silk cocoon membrane fluorophores and exploring the possibility of using them as fluorescent dye in bio-imaging. Here, we report an innovative water glass (Na2SiO3) based strategy to isolate the silk cocoon fluorophores. Isolated fluorophore is majorly quercetin derivatives and exhibited remarkable photo- and heat stability. Fluorescence and mass spectrometric analysis confirmed presence of a quercetin derivative. We further used this fluorophore to successfully label the silicate shell of diatom species Nitzschia palea.

  19. Fluorescent silk cocoon creating fluorescent diatom using a “Water glass-fluorophore ferry”

    PubMed Central

    Kusurkar, Tejas S.; Tandon, Ishita; Sethy, Niroj Kumar; Bhargava, Kalpana; Sarkar, Sabyasachi; Singh, Sushil Kumar; Das, Mainak

    2013-01-01

    Fluorophores are ubiquitous in nature. Naturally occurring fluorophores are exceptionally stable and have high quantum yield. Several natural systems have acquired fluorescent signature due to the presence of these fluorophores. Systematic attempt to harvest these fluorophores from natural systems could reap rich commercial benefit to bio-imaging industry. Silk cocoon biomaterial is one such example of natural system, which has acquired a fluorescent signature. The objective of this study is to develop simple, rapid, commercially viable technique to isolate silk cocoon membrane fluorophores and exploring the possibility of using them as fluorescent dye in bio-imaging. Here, we report an innovative water glass (Na2SiO3) based strategy to isolate the silk cocoon fluorophores. Isolated fluorophore is majorly quercetin derivatives and exhibited remarkable photo- and heat stability. Fluorescence and mass spectrometric analysis confirmed presence of a quercetin derivative. We further used this fluorophore to successfully label the silicate shell of diatom species Nitzschia palea. PMID:24256845

  20. Silks as scaffolds for skin reconstruction.

    PubMed

    Reimers, Kerstin; Liebsch, Christina; Radtke, Christine; Kuhbier, Jörn W; Vogt, Peter M

    2015-11-01

    In this short review, we describe the use of high molecular weight proteins produced in the glands of several arthropods-commonly called silks-for the purpose to enhance human skin wound healing. To this end an extensive literature search has been performed, the publications have been categorized concerning silk preparation and application and summarized accordingly: Scaffolds to promote wound healing were prepared by processing the silks in different ways including solubilization of the protein fibers followed by casting or electrospinning. The silk scaffolds were additionally modified by coating or blending with the intention of further functionalization. In several approaches, the scaffolds were also vitalized with skin cells or stem cells. In vitro and in vivo models were implied to test for safety and efficiency. We conclude that silk scaffolds are characterized by an advantageous biocompatibility as well as an impressive versatility rendering them ideally suited for application in wounds. Nevertheless, further investigation is needed to exploit the full capacity of silk in different wound models and to achieve clinical transfer in time. PMID:25995140

  1. Encapsulation of Volatile Compounds in Silk Microparticles

    PubMed Central

    Elia, Roberto; Guo, Jin; Budijono, Stephanie; Normand, Valery; Benczédi, Daniel; Omenetto, Fiorenzo

    2015-01-01

    Various techniques have been employed to entrap fragrant oils within microcapsules or microparticles in the food, pharmaceutical, and chemical industries for improved stability and delivery. In the present work we describe the use of silk protein microparticles for encapsulating fragrant oils using ambient processing conditions to form an all-natural biocompatible matrix. These microparticles are stabilized via physical crosslinking, requiring no chemical agents, and are prepared with aqueous and ambient processing conditions using polyvinyl alcohol-silk emulsions. The particles were loaded with fragrant oils via direct immersion of the silk particles within an oil bath. The oil-containing microparticles were coated using alternating silk and polyethylene oxide layers to control the release of the oil from the microspheres. Particle morphology and size, oil loading capacity, release rates as well as silk-oil interactions and coating treatments were characterized. Thermal analysis demonstrated that the silk coatings can be tuned to alter both retention and release profiles of the encapsulated fragrance. These oil containing particles demonstrate the ability to adsorb and controllably release oils, suggesting a range of potential applications including cosmetic and fragrance utility. PMID:26568787

  2. Electrodeposited silk coatings for bone implants.

    PubMed

    Elia, Roberto; Michelson, Courtney D; Perera, Austin L; Brunner, Teresa F; Harsono, Masly; Leisk, Gray G; Kugel, Gerard; Kaplan, David L

    2015-11-01

    The aim of this study was to characterize the mechanical properties and drug elution features of silk protein-based electrodeposited dental implant coatings. Silk processing conditions were modified to obtain coatings with a range of mechanical properties on titanium studs. These coatings were assessed for adhesive strength and dissolution, with properties tuned using water vapor annealing or glycerol incorporation to modulate crystalline content. Coating reproducibility was demonstrated over a range of silk concentrations from 1% to 10%. Surface roughness of titanium substrates was altered using industry relevant acid etching and grit blasting, and the effect of surface topography on silk coating adhesion was assessed. Florescent compounds were incorporated into the silk coatings, which were modulated for crystalline content, to achieve four days of sustained release of the compounds. This silk electrogelation technique offers a safe and relatively simple approach to generate mechanically robust, biocompatible, and degradable implant coatings that can also be functionalized with bioactive compounds to modulate the local regenerative tissue environment. PMID:25545462

  3. Silk Fibroin: Photocrosslinking of Silk Fibroin Using Riboflavin for Ocular Prostheses (Adv. Mater. 12/2016).

    PubMed

    Applegate, Matthew B; Partlow, Benjamin P; Coburn, Jeannine; Marelli, Benedetto; Pirie, Christopher; Pineda, Roberto; Kaplan, David L; Omenetto, Fiorenzo G

    2016-03-01

    Dissolved silk protein mixed with riboflavin can be crosslinked to form an elastic hydrogel in the presence of blue/violet light. Here, a photomask is used by F. G. Omenetto and co-workers, as described on page 2417, to illuminate the solution, and the unpolymerized silk is rinsed away. These gels have tremendous potential to be used as corneal prostheses. PMID:27001701

  4. Silk Roads or Steppe Roads? The Silk Roads in World History.

    ERIC Educational Resources Information Center

    Christian, David

    2000-01-01

    Explores the prehistory of the Silk Roads, reexamines their structure and history in the classical era, and explores shifts in their geography in the last one thousand years. Explains that a revised understanding of the Silk Roads demonstrates how the Afro-Eurasian land mass has been linked by networks of exchange since the Bronze Age. (CMK)

  5. Silk Nanospheres and Microspheres from Silk/PVA Blend Films for Drug Delivery

    PubMed Central

    Wang, Xiaoqin; Yucel, Tuna; Lu, Qiang; Hu, Xiao; Kaplan, David L.

    2009-01-01

    Silk fibroin protein-based micro- and nanospheres provide new options for drug delivery due to their biocompatibility, biodegradability and their tunable drug loading and release properties. In the present study, we report a new aqueous-based preparation method for silk spheres with controllable sphere size and shape. The preparation was based on phase separation between silk fibroin and polyvinyl alcohol (PVA) at a weight ratio of 1/1 and 1/4. Water-insoluble silk spheres were easily obtained from the blend in a three step process: (1) air-drying the blend solution into a film, (2) film dissolution in water and (3) removal of residual PVA by subsequent centrifugation. In both cases, the spheres had approximately 30% beta-sheet content and less than 5% residual PVA. Spindle-shaped silk particles, as opposed to the spherical particles formed above, were obtained by stretching the blend films before dissolving in water. Compared to the 1/1 ratio sample, the silk spheres prepared from the 1/4 ratio sample showed a more homogeneous size distribution ranging from 300 nm up to 20 μm. Further studies showed that sphere size and polydispersity could be controlled either by changing the concentration of silk and PVA or by applying ultrasonication on the blend solution. Drug loading was achieved by mixing model drugs in the original silk solution. The distribution and loading efficiency of the drug molecules in silk spheres depended on their hydrophobicity and charge, resulting in different drug release profiles. The entire fabrication procedure could be completed within one day. The only chemical used in the preparation except water was PVA, an FDA-approved ingredient in drug formulations. Silk micro- and nanospheres reported have potential as drug delivery carriers in a variety of biomedical applications. PMID:19945157

  6. Silk protein aggregation kinetics revealed by Rheo-IR.

    PubMed

    Boulet-Audet, Maxime; Terry, Ann E; Vollrath, Fritz; Holland, Chris

    2014-02-01

    The remarkable mechanical properties of silk fibres stem from a multi-scale hierarchical structure created when an aqueous protein "melt" is converted to an insoluble solid via flow. To directly relate a silk protein's structure and function in response to flow, we present the first application of a Rheo-IR platform, which couples cone and plate rheology with attenuated total reflectance infrared spectroscopy. This technique provides a new window into silk processing by linking shear thinning to an increase in molecular alignment, with shear thickening affecting changes in the silk protein's secondary structure. Additionally, compared to other static characterization methods for silk, Rheo-IR proved particularly useful at revealing the intrinsic difference between natural (native) and reconstituted silk feedstocks. Hence Rheo-IR offers important novel insights into natural silk processing. This has intrinsic academic merit, but it might also be useful when designing reconstituted silk analogues alongside other polymeric systems, whether natural or synthetic. PMID:24200713

  7. Facts and myths of antibacterial properties of silk.

    PubMed

    Kaur, Jasjeet; Rajkhowa, Rangam; Afrin, Tarannum; Tsuzuki, Takuya; Wang, Xungai

    2014-03-01

    Silk cocoons provide protection to silkworm from biotic and abiotic hazards during the immobile pupal phase of the lifecycle of silkworms. Protection is particularly important for the wild silk cocoons reared in an open and harsh environment. To understand whether some of the cocoon components resist growth of microorganisms, in vitro studies were performed using gram negative bacteria Escherichia coli (E. coli) to investigate antibacterial properties of silk fiber, silk gum, and calcium oxalate crystals embedded inside some cocoons. The results show that the previously reported antibacterial properties of silk cocoons are actually due to residues of chemicals used to isolate/purify cocoon elements, and properly isolated silk fiber, gum, and embedded crystals free from such residues do not have inherent resistance to E. coli. This study removes the uncertainty created by previous studies over the presence of antibacterial properties of silk cocoons, particularly the silk gum and sericin. PMID:23784754

  8. Silk from Crickets: A New Twist on Spinning

    PubMed Central

    Walker, Andrew A.; Weisman, Sarah; Church, Jeffrey S.; Merritt, David J.; Mudie, Stephen T.; Sutherland, Tara D.

    2012-01-01

    Raspy crickets (Orthoptera: Gryllacrididae) are unique among the orthopterans in producing silk, which is used to build shelters. This work studied the material composition and the fabrication of cricket silk for the first time. We examined silk-webs produced in captivity, which comprised cylindrical fibers and flat films. Spectra obtained from micro-Raman experiments indicated that the silk is composed of protein, primarily in a beta-sheet conformation, and that fibers and films are almost identical in terms of amino acid composition and secondary structure. The primary sequences of four silk proteins were identified through a mass spectrometry/cDNA library approach. The most abundant silk protein was large in size (300 and 220 kDa variants), rich in alanine, glycine and serine, and contained repetitive sequence motifs; these are features which are shared with several known beta-sheet forming silk proteins. Convergent evolution at the molecular level contrasts with development by crickets of a novel mechanism for silk fabrication. After secretion of cricket silk proteins by the labial glands they are fabricated into mature silk by the labium-hypopharynx, which is modified to allow the controlled formation of either fibers or films. Protein folding into beta-sheet structure during silk fabrication is not driven by shear forces, as is reported for other silks. PMID:22355311

  9. Influence factors analysis on the formation of silk I structure.

    PubMed

    Ming, Jinfa; Pan, Fukui; Zuo, Baoqi

    2015-04-01

    Regenerated silk fibroin aqueous solution was used to study the crystalline structure of Bombyx mori silk fibroin in vitro. By controlling environmental conditions and concentration of silk fibroin solution, it provided a means for the direct preparing silk I structure and understanding the details of silk fibroin molecules interactions in formation process. In this study, silk fibroin molecules were assembled to form random coil at low concentration of solution and then, as the concentration increases, were converted to silk I at 55% relative humidity (RH). At the same time, the structure of silk fibroin forming below 45 °C was mostly in silk I. A partial ternary phase diagram of temperature-humidity-concentration was constructed based on the results. The results showed silk I structure could be controlled by adjusting the external environmental conditions. The enhanced control over silk I structure, as embodied in phase diagram, could potentially be utilized to understand the molecular chain conformation of silk I in further research work. PMID:25677178

  10. Treatment of Intracranial Aneurysms Using Flow-Diverting Silk Stents (BALT): a Single Centre Experience

    PubMed Central

    Leonardi, M.; Cirillo, L.; Toni, F.; Dall’Olio, M.; Princiotta, C.; Stafa, A.; Simonetti, L.; Agati, R.

    2011-01-01

    Summary The Silk stent (Balt, Montmorency, France) is a retractable device designed to achieve curative reconstruction of the parent artery associated with an intracranial aneurysm. We present our initial experience with the Silk flow-diverting stent in the management and follow-up of 25 patients presenting with intracranial aneurysms. Twenty-five patients (age range, 34-81 years; 24 female) were treated with the Silk flow-diverting device. Aneurysms ranged in size from small (5), large (10) and giant (10) and included wide-necked aneurysms, multiple, nonsaccular, and recurrent intracranial aneurysms. Nine aneurysms were treated for headache, 14 for mass effect. None presented with haemorrhage. All patients were pretreated with dual antiplatelet medications for at least 72 hours before surgery and continued taking both agents for at least three months after treatment. A total of 25 Silk stents were used. Control MR angiography and/or CT angiography was typically performed prior to discharge and at one, three, six and 12 months post treatment. A follow-up digital subtraction angiogram was performed between six and 19 months post treatment. Complete angiographic occlusion or subtotal occlusion was achieved in 15 patients in a time frame from three days to 12 months. Three deaths and one major complication were encountered during the study period. Two patients, all with cavernous giant aneurysms, experienced transient exacerbations of preexisting cranial neuropathies and headache after the Silk treatment. Both were treated with corticosteroids, and symptoms resolved completely within a month. In our experience the Silk stent has proven to be a valuable tool in the endovascular treatment of intracranial giant partially thrombosed aneurysms and aneurysms of the internal carotid artery cavernous segment presenting with mass effect. The time of complete occlusion of the aneurysms and the risk of the bleeding is currently not predictable. PMID:22005692

  11. Woven silk fabric-reinforced silk nanofibrous scaffolds for regenerating load-bearing soft tissues.

    PubMed

    Han, F; Liu, S; Liu, X; Pei, Y; Bai, S; Zhao, H; Lu, Q; Ma, F; Kaplan, D L; Zhu, H

    2014-02-01

    Although three-dimensional (3-D) porous regenerated silk scaffolds with outstanding biocompatibility, biodegradability and low inflammatory reactions have promising application in different tissue regeneration, the mechanical properties of regenerated scaffolds, especially suture retention strength, must be further improved to satisfy the requirements of clinical applications. This study presents woven silk fabric-reinforced silk nanofibrous scaffolds aimed at dermal tissue engineering. To improve the mechanical properties, silk scaffolds prepared by lyophilization were reinforced with degummed woven silk fabrics. The ultimate tensile strength, elongation at break and suture retention strength of the scaffolds were significantly improved, providing suitable mechanical properties strong enough for clinical applications. The stiffness and degradation behaviors were then further regulated by different after-treatment processes, making the scaffolds more suitable for dermal tissue regeneration. The in vitro cell culture results indicated that these scaffolds maintained their excellent biocompatibility after being reinforced with woven silk fabrics. Without sacrifice of porous structure and biocompatibility, the fabric-reinforced scaffolds with better mechanical properties could facilitate future clinical applications of silk as matrices in skin repair. PMID:24090985

  12. Hybrid Silk Fibers Dry-Spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions.

    PubMed

    Zhang, Chao; Zhang, Yaopeng; Shao, Huili; Hu, Xuechao

    2016-02-10

    Regenerated silk fibroin (RSF)/graphene oxide (GO) hybrid silk fibers were dry-spun from a mixed dope of GO suspension and RSF aqueous solution. It was observed that the presence of GO greatly affect the viscosity of RSF solution. The RSF/GO hybrid fibers showed from FTIR result lower β-sheet content compared to that of pure RSF fibers. The result of synchrotron radiation wide-angle X-ray diffraction showed that the addition of GO confined the crystallization of silk fibroin (SF) leading to the decrease of crystallinity, smaller crystallite size, and new formation of interphase zones in the artificial silks. Synchrotron radiation small-angle X-ray scattering also proved that GO sheets in the hybrid silks and blended solutions were coated with a certain thickness of interphase zones due to the complex interaction between the two components. A low addition of GO, together with the mesophase zones formed between GO and RSF, enhanced the mechanical properties of hybrid fibers. The highest breaking stress of the hybrid fibers reached 435.5 ± 71.6 MPa, 23% improvement in comparison to that of degummed silk and 72% larger than that of pure RSF silk fiber. The hybrid RSF/GO materials with good biocompatibility and enhanced mechanical properties may have potential applications in tissue engineering, bioelectronic devices, or energy storage. PMID:26784289

  13. Bio-functionalized silk hydrogel microfluidic systems.

    PubMed

    Zhao, Siwei; Chen, Ying; Partlow, Benjamin P; Golding, Anne S; Tseng, Peter; Coburn, Jeannine; Applegate, Matthew B; Moreau, Jodie E; Omenetto, Fiorenzo G; Kaplan, David L

    2016-07-01

    Bio-functionalized microfluidic systems were developed based on a silk protein hydrogel elastomeric materials. A facile multilayer fabrication method using gelatin sacrificial molding and layer-by-layer assembly was implemented to construct interconnected, three dimensional (3D) microchannel networks in silk hydrogels at 100 μm minimum feature resolution. Mechanically activated valves were implemented to demonstrate pneumatic control of microflow. The silk hydrogel microfluidics exhibit controllable mechanical properties, long-term stability in various environmental conditions, tunable in vitro and in vivo degradability in addition to optical transparency, providing unique features for cell/tissue-related applications than conventional polydimethylsiloxane (PDMS) and existing hydrogel-based microfluidic options. As demonstrated in the work here, the all aqueous-based fabrication process at ambient conditions enabled the incorporation of active biological substances in the bulk phase of these new silk microfluidic systems during device fabrication, including enzymes and living cells, which are able to interact with the fluid flow in the microchannels. These silk hydrogel-based microfluidic systems offer new opportunities in engineering active diagnostic devices, tissues and organs that could be integrated in vivo, and for on-chip cell sensing systems. PMID:27077566

  14. Structural Transition of Bombyx mori Liquid Silk Studied with Vibrational Circular Dichroism Spectroscopy.

    PubMed

    Morisaku, Toshinori; Arai, Sho; Konno, Kohzo; Suzuki, Yu; Asakura, Tetsuo; Yui, Hiroharu

    2015-01-01

    We investigated the structural transition from liquid silk to silk fibers with vibrational circular dichroism spectroscopy. Liquid silk showed a major right-handed optically active band at around 1650 cm(-1) and a minor one at around 1680 cm(-1). The former disappeared over time, while the intensity in the latter increased. With the former wavenumber, liquid silk mainly adopted a random-coil structure. In contrast, the latter may reflect an intermediate structure in the transition. Furthermore, two right-handed bands at around 1630 and 1660 cm(-1) appeared with the disappearance of the major band, and then the wavenumber of the former shifted to around 1620 cm(-1). The shift results from the decrease in the frequency of the CO stretching mode due to the stacking of the β-sheet that comprises fibers. The band at 1660 cm(-1) may reflect another intermediate structure due to its strong correlation with that at 1620 cm(-1) in terms of their temporal change in intensity. PMID:26256598

  15. Native spider silk as a biological optical fiber

    NASA Astrophysics Data System (ADS)

    Huby, N.; Vié, V.; Renault, A.; Beaufils, S.; Lefèvre, T.; Paquet-Mercier, F.; Pézolet, M.; Bêche, B.

    2013-03-01

    In this study, we demonstrate the use of eco-friendly native spider silk as an efficient optical fiber in air, highly bent fibers, and physiological liquid. We also integrated the silk filament in a photonic chip made of polymer microstructures fabricated by UV lithography. The molding process is non-destructive for silk and leads to an efficient micro-optical coupling between silk and synthetic optical structures. These optical performances combined with the unique biocompatibility, bioresorbability, flexibility, and tensile strength of silk filaments pave the way for new applications in biological media and for original biophotonic purposes.

  16. Biomedical Applications of Mulberry Silk and its Proteins: A Review

    NASA Astrophysics Data System (ADS)

    Nivedita, S.; Sivaprasad, V.

    2014-04-01

    Silk is a natural fibre used mainly for aesthetic purposes. It has also been used for making surgical sutures for centuries. The recent rediscovery of silk's biological properties have led to new areas of research and utilization in cosmetic, health and medical fields. The silk proteins, fibroin and sericin are processed into biomaterials because of bio-compatibility, bio-degradability, excellent mechanical properties, thermo tolerance and UV protective properties. Silk proteins could be obtained as pure liquids and regenerated in different forms suitable for tissue engineering applications. This paper presents some of the biomedical products and biomaterials made from native, degraded and regenerated silk and their fabrication techniques.

  17. Liquid crystalline spinning of spider silk.

    PubMed

    Vollrath, F; Knight, D P

    2001-03-29

    Spider silk has outstanding mechanical properties despite being spun at close to ambient temperatures and pressures using water as the solvent. The spider achieves this feat of benign fibre processing by judiciously controlling the folding and crystallization of the main protein constituents, and by adding auxiliary compounds, to create a composite material of defined hierarchical structure. Because the 'spinning dope' (the material from which silk is spun) is liquid crystalline, spiders can draw it during extrusion into a hardened fibre using minimal forces. This process involves an unusual internal drawdown within the spider's spinneret that is not seen in industrial fibre processing, followed by a conventional external drawdown after the dope has left the spinneret. Successful copying of the spider's internal processing and precise control over protein folding, combined with knowledge of the gene sequences of its spinning dopes, could permit industrial production of silk-based fibres with unique properties under benign conditions. PMID:11279484

  18. Cell proliferation by silk gut incorporating FGF-2 protein microcrystals

    PubMed Central

    Kotani, Eiji; Yamamoto, Naoto; Kobayashi, Isao; Uchino, Keiro; Muto, Sayaka; Ijiri, Hiroshi; Shimabukuro, Junji; Tamura, Toshiki; Sezutsu, Hideki; Mori, Hajime

    2015-01-01

    Silk gut processed from the silk glands of the silkworm could be an ideal biodegradable carrier for cell growth factors. We previously demonstrated that polyhedra, microcrystals of Cypovirus 1 polyhedrin, can serve as versatile carrier proteins. Here, we report the generation of a transgenic silkworm that expresses polyhedrin together with human basic fibroblast growth factor (FGF-2) in its posterior silk glands to utilize silk gut as a proteinaceous carrier to protect and slowly release active cell growth factors. In the posterior silk glands, polyhedrin formed polyhedral microcrystals, and FGF-2 became encapsulated within the polyhedra due to a polyhedron-immobilization signal. Silk gut powder prepared from posterior silk glands containing polyhedron-encapsulated FGF-2 stimulated the phosphorylation of p44/p42 MAP kinase and induced the proliferation of serum-starved NIH3T3 cells by releasing bioactive FGF-2. Even after a one-week incubation at 25 °C, significantly higher biological activity of FGF-2 was observed for silk gut powder incorporating polyhedron-encapsulated FGF-2 relative to silk gut powder with non-encapsulated FGF-2. Our results demonstrate that posterior silk glands incorporating polyhedron-encapsulated FGF-2 are applicable to the preparation of biodegradable silk gut, which can protect and release FGF-2 that is produced in a virus- and serum-free expression system with significant application potential. PMID:26053044

  19. Multifunctional silk-heparin biomaterials for vascular tissue engineering applications

    PubMed Central

    Seib, F. Philipp; Herklotz, Manuela; Burke, Kelly A.; Maitz, Manfred F.; Werner, Carsten; Kaplan, David L.

    2013-01-01

    Over the past 30 years, silk has been proposed for numerous biomedical applications that go beyond its traditional use as a suture material. Silk sutures are well tolerated in humans, but the use of silk for vascular engineering applications still requires extensive biocompatibility testing. Some studies have indicated a need to modify silk to yield a hemocompatible surface. This study examined the potential of low molecular weight heparin as a material for refining silk properties by acting as a carrier for vascular endothelial growth factor (VEGF) and improving silk hemocompatibility. Heparinized silk showed a controlled VEGF release over 6 days; the released VEGF was bioactive and supported the growth of human endothelial cells. Silk samples were then assessed using a humanized hemocompatibility system that employs whole blood and endothelial cells. The overall thrombogenic response for silk was very low and similar to the clinical reference material polytetrafluoroethylene. Despite an initial inflammatory response to silk, apparent as complement and leukocyte activation, the endothelium was maintained in a resting, anticoagulant state. The low thrombogenic response and the ability to control VEGF release support the further development of silk for vascular applications. PMID:24099708

  20. Cell proliferation by silk gut incorporating FGF-2 protein microcrystals.

    PubMed

    Kotani, Eiji; Yamamoto, Naoto; Kobayashi, Isao; Uchino, Keiro; Muto, Sayaka; Ijiri, Hiroshi; Shimabukuro, Junji; Tamura, Toshiki; Sezutsu, Hideki; Mori, Hajime

    2015-01-01

    Silk gut processed from the silk glands of the silkworm could be an ideal biodegradable carrier for cell growth factors. We previously demonstrated that polyhedra, microcrystals of Cypovirus 1 polyhedrin, can serve as versatile carrier proteins. Here, we report the generation of a transgenic silkworm that expresses polyhedrin together with human basic fibroblast growth factor (FGF-2) in its posterior silk glands to utilize silk gut as a proteinaceous carrier to protect and slowly release active cell growth factors. In the posterior silk glands, polyhedrin formed polyhedral microcrystals, and FGF-2 became encapsulated within the polyhedra due to a polyhedron-immobilization signal. Silk gut powder prepared from posterior silk glands containing polyhedron-encapsulated FGF-2 stimulated the phosphorylation of p44/p42 MAP kinase and induced the proliferation of serum-starved NIH3T3 cells by releasing bioactive FGF-2. Even after a one-week incubation at 25 °C, significantly higher biological activity of FGF-2 was observed for silk gut powder incorporating polyhedron-encapsulated FGF-2 relative to silk gut powder with non-encapsulated FGF-2. Our results demonstrate that posterior silk glands incorporating polyhedron-encapsulated FGF-2 are applicable to the preparation of biodegradable silk gut, which can protect and release FGF-2 that is produced in a virus- and serum-free expression system with significant application potential. PMID:26053044

  1. Silk-microfluidics for advanced biotechnological applications: A progressive review.

    PubMed

    Konwarh, Rocktotpal; Gupta, Prerak; Mandal, Biman B

    2016-01-01

    Silk based biomaterials have not only carved a unique niche in the domain of regenerative medicine but new avenues are also being explored for lab-on-a-chip applications. It is pertinent to note that biospinning of silk represents nature's signature microfluidic-maneuver. Elucidation of non-Newtonian flow of silk in the glands of spiders and silkworms has inspired researchers to fabricate devices for continuous extrusion and concentration of silk. Microfluidic channel networks within porous silk scaffolds ensure optimal nutrient and oxygen supply apart from serving as precursors for vascularization in tissue engineering applications. On the other hand, unique topographical features and surface wettability of natural silk fibers have inspired development of a number of simple and cost-effective devices for applications like blood typing and chemical sensing. This review mirrors the recent progress and challenges in the domain of silk-microfluidics for prospective avant-garde applications in the realm of biotechnology. PMID:27165254

  2. Sensitization to silk allergen among workers of silk filatures in India: a comparative study

    PubMed Central

    Gowda, Giriyanna; Vijayeendra, Anagha Manakari; Sarkar, Nivedita; Nagaraj, Chitra; Masthi, Nugehally Raju Ramesh

    2016-01-01

    Background Sericulture plays an eminent role in development of rural economy in India. Silk filature is a unit where silk is unwound from the cocoons and the strands are collected into skeins. During the process workers are exposed to the high molecular weight proteins like Sericin and Fibroin which are potent allergens leading to sensitization over a period of time and subsequently occupational related health disorders. Objective To identify and compare the magnitude of silk allergen sensitization in workers of silk filatures. Methods A community based comparative descriptive study was conducted for a period of 1 year at Ramanagara in south India. One hundred twenty subjects working in the silk filatures formed the study group. For comparison, 2 types of controls were selected viz.120 subjects who were not working in the silk filatures but resided in the same geographical area (control A) and 360 subjects who were not working in silk filatures as well not residing in the same geographical area (control B). Skin prick test was used to identify the silk allergen sensitization. Results Mean age was 34.14 ± 2.84 years in the study group. Mean age was 40.59 ± 14.40 years and 38.54 ± 12.20 years in control A and control B, respectively. There were 35 males (29.16%) and 85 females (70.84%) in the study group. There were 58 (48.34%) males and 62 (51.66%) females and 152 (42.2%) males and 208 females (57.8%) in control A and control B, respectively. Sensitization to silk allergen was 35.83% in the study group and 20.83% in the control group A and 11.11% in control group B. There was difference in the allergen sensitivity between the study group and control groups and it was statistically significant (chi-square = 38.08; p < 0.001). Conclusion There is high burden of silk allergen sensitization among silk filature workers. PMID:27141481

  3. Mechanisms of monoclonal antibody stabilization and release from silk biomaterials

    PubMed Central

    Guziewicz, Nicholas A.; Massetti, Andrew J.; Perez-Ramirez, Bernardo J.; Kaplan, David L.

    2013-01-01

    The availability of stabilization and sustained delivery systems for antibody therapeutics remains a major clinical challenge, despite the growing development of antibodies for a wide range of therapeutic applications due to their specificity and efficacy. A mechanistic understanding of protein-matrix interactions is critical for the development of such systems and is currently lacking as a mode to guide the field. We report mechanistic insight to address this need by using well-defined matrices based on silk gels, in combination with a monoclonal antibody. Variables including antibody loading, matrix density, charge interactions, hydrophobicity and water access were assessed to clarify mechanisms involved in the release of antibody from the biomaterial matrix. The results indicate that antibody release is primarily governed by hydrophobic interactions and hydration resistance, which are controlled by silk matrix chemistry, peptide domain distribution and protein density. Secondary ionic repulsions are also critical in antibody stabilization and release. Matrix modification by free methionine incorporation was found to be an effective strategy for mitigating encapsulation induced antibody oxidation. Additionally, these studies highlight a characterization approach to improve the understanding and development of other protein sustained delivery systems, with broad applicability to the rapidly developing monoclonal antibody field. PMID:23859659

  4. Antimicrobial functionalized genetically engineered spider silk

    PubMed Central

    Gomes, Sílvia; Leonor, Isabel B.; Mano, João F.; Reis, Rui L.; Kaplan, David L.

    2011-01-01

    Genetically engineered fusion proteins offer potential as multifunctional biomaterials for medical use. Fusion or chimeric proteins can be formed using recombinant DNA technology by combining nucleotide sequences encoding different peptides or proteins that are otherwise not found together in nature. In the present study, three new fusion proteins were designed, cloned and expressed and assessed for function, by combining the consensus sequence of dragline spider silk with three different antimicrobial peptides. The human antimicrobial peptides human neutrophil defensin 2 (HNP-2), human neutrophil defensins 4 (HNP-4) and hepcidin were fused to spider silk through bioengineering. The spider silk domain maintained its self-assembly features, a key aspect of these new polymeric protein biomaterials, allowing the formation of β-sheets to lock in structures via physical interactions without the need for chemical cross-linking. These new functional silk proteins were assessed for antimicrobial activity against Gram - Escherichia coli and Gram + Staphylococcus aureus and microbicidal activity was demonstrated. Dynamic light scattering was used to assess protein aggregation to clarify the antimicrobial patterns observed. Attenuated-total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and circular dichroism (CD) were used to assess the secondary structure of the new recombinant proteins. In vitro cell studies with a human osteosarcoma cell line (SaOs-2) demonstrated the compatibility of these new proteins with mammalian cells. PMID:21458065

  5. Silk Fibroin for Flexible Electronic Devices.

    PubMed

    Zhu, Bowen; Wang, Hong; Leow, Wan Ru; Cai, Yurong; Loh, Xian Jun; Han, Ming-Yong; Chen, Xiaodong

    2016-06-01

    Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon-based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices by virtue of their biocompatibility, environmental benignity, and sustainability, as well as low cost. As an intriguing and abundant biomaterial, silk offers exquisite mechanical, optical, and electrical properties that are advantageous toward the development of next-generation biocompatible electronic devices. The utilization of silk fibroin is emphasized as both passive and active components in flexible electronic devices. The employment of biocompatible and biosustainable silk materials revolutionizes state-of-the-art electronic devices and systems that currently rely on conventional semiconductor technologies. Advances in silk-based electronic devices would open new avenues for employing biomaterials in the design and integration of high-performance biointegrated electronics for future applications in consumer electronics, computing technologies, and biomedical diagnosis, as well as human-machine interfaces. PMID:26684370

  6. Greatly increased toughness of infiltrated spider silk.

    PubMed

    Lee, Seung-Mo; Pippel, Eckhard; Gösele, Ulrich; Dresbach, Christian; Qin, Yong; Chandran, C Vinod; Bräuniger, Thomas; Hause, Gerd; Knez, Mato

    2009-04-24

    In nature, tiny amounts of inorganic impurities, such as metals, are incorporated in the protein structures of some biomaterials and lead to unusual mechanical properties of those materials. A desire to produce these biomimicking new materials has stimulated materials scientists, and diverse approaches have been attempted. In contrast, research to improve the mechanical properties of biomaterials themselves by direct metal incorporation into inner protein structures has rarely been tried because of the difficulty of developing a method that can infiltrate metals into biomaterials, resulting in a metal-incorporated protein matrix. We demonstrated that metals can be intentionally infiltrated into inner protein structures of biomaterials through multiple pulsed vapor-phase infiltration performed with equipment conventionally used for atomic layer deposition (ALD). We infiltrated zinc (Zn), titanium (Ti), or aluminum (Al), combined with water from corresponding ALD precursors, into spider dragline silks and observed greatly improved toughness of the resulting silks. The presence of the infiltrated metals such as Al or Ti was verified by energy-dispersive x-ray (EDX) and nuclear magnetic resonance spectra measured inside the treated silks. This result of enhanced toughness of spider silk could potentially serve as a model for a more general approach to enhance the strength and toughness of other biomaterials. PMID:19390040

  7. Silk-Screening a la Andy.

    ERIC Educational Resources Information Center

    Mathes, Len

    2000-01-01

    Describes a project that was used with advanced 11th and 12th grade art students in which they created silk-screen self-portraits in the style of Andy Warhol. Discusses the process of creating the portraits and the activities that concluded the project. Lists the needed materials. (CMK)

  8. Cytocompatibility of a silk fibroin tubular scaffold.

    PubMed

    Wang, Jiannan; Wei, Yali; Yi, Honggen; Liu, Zhiwu; Sun, Dan; Zhao, Huanrong

    2014-01-01

    Regenerated silk fibroin (SF) materials are increasingly used for tissue engineering applications. In order to explore the feasibility of a novel biomimetic silk fibroin tubular scaffold (SFTS) crosslinked by poly(ethylene glycol) diglycidyl ether (PEG-DE), biocompatibility with cells was evaluated. The novel biomimetic design of the SFTS consisted of three distinct layers: a regenerated SF intima, a silk braided media and a regenerated SF adventitia. The SFTS exhibited even silk fibroin penetration throughout the braid, forming a porous layered tube with superior mechanical, permeable and cell adhesion properties that are beneficial to vascular regeneration. Cytotoxicity and cell compatibility were tested on L929 cells and human umbilical vein endothelial cells (EA.hy926). DNA content analysis, scanning electron and confocal microscopies and MTT assay showed no inhibitory effects on DNA replication. Cell morphology, viability and proliferation were good for L929 cells, and satisfactory for EA.hy926 cells. Furthermore, the suture retention strength of the SFTS was about 23N and the Young's modulus was 0.2-0.3MPa. Collectively, these data demonstrate that PEG-DE crosslinked SFTS possesses the appropriate cytocompatibility and mechanical properties for use as vascular scaffolds as an alternative to vascular autografts. PMID:24268279

  9. Silk fibroin microtubes for blood vessel engineering.

    PubMed

    Lovett, Michael; Cannizzaro, Christopher; Daheron, Laurence; Messmer, Brady; Vunjak-Novakovic, Gordana; Kaplan, David L

    2007-12-01

    Currently available synthetic grafts demonstrate moderate success at the macrovascular level, but fail at the microvascular scale (<6mm inner diameter). We report on the development of silk fibroin microtubes for blood vessel repair with several advantages over existing scaffold materials/designs. These microtubes were prepared by dipping straight lengths of stainless steel wire into aqueous silk fibroin, where the addition of poly(ethylene oxide) (PEO) enabled control of microtube porosity. The microtube properties were characterized in terms of pore size, burst strength, protein permeability, enzymatic degradation, and cell migration. Low porosity microtubes demonstrated superior mechanical properties in terms of higher burst pressures, but displayed poor protein permeability; whereas higher porosity tubes had lower burst strengths but increased permeability and enhanced protein transport. The microtubes also exhibited cellular barrier functions as low porosity tubes prevented outward migration of GFP-transduced HUVECs, while the high porosity microtubes allowed a few cells per tube to migrate outward during perfusion. When combined with the biocompatible and suturability features of silk fibroin, these results suggest that silk microtubes, either implanted directly or preseeded with cells, are an attractive biomaterial for microvascular grafts. PMID:17727944

  10. The Ancient Art of Silk Painting

    ERIC Educational Resources Information Center

    Yonker, Kim

    2010-01-01

    In this article, the author describes a silk-painting project with a sea-creature theme for eighth-grade students. Other themes can be used such as geometric quilt designs, tropical rain forest, large flowers, Art Nouveau motifs, portraits and more. (Contains 2 resources.)

  11. Constructing Knowledge with Silk Road Visuals

    ERIC Educational Resources Information Center

    Bisland, Beverly Milner

    2008-01-01

    In this study a group of elementary teachers use illustrations, rather than written text, to introduce their students to the peoples and places of the ancient silk routes. The illustrations are from two picture books; "Marco Polo," written by Gian Paolo Cesaerani and illustrated by Piero Ventura (1977), and "We're Riding on a Caravan: An Adventure…

  12. Stem cell-based tissue engineering with silk biomaterials.

    PubMed

    Wang, Yongzhong; Kim, Hyeon-Joo; Vunjak-Novakovic, Gordana; Kaplan, David L

    2006-12-01

    Silks are naturally occurring polymers that have been used clinically as sutures for centuries. When naturally extruded from insects or worms, silk is composed of a filament core protein, termed fibroin, and a glue-like coating consisting of sericin proteins. In recent years, silk fibroin has been increasingly studied for new biomedical applications due to the biocompatibility, slow degradability and remarkable mechanical properties of the material. In addition, the ability to now control molecular structure and morphology through versatile processability and surface modification options have expanded the utility for this protein in a range of biomaterial and tissue-engineering applications. Silk fibroin in various formats (films, fibers, nets, meshes, membranes, yarns, and sponges) has been shown to support stem cell adhesion, proliferation, and differentiation in vitro and promote tissue repair in vivo. In particular, stem cell-based tissue engineering using 3D silk fibroin scaffolds has expanded the use of silk-based biomaterials as promising scaffolds for engineering a range of skeletal tissues like bone, ligament, and cartilage, as well as connective tissues like skin. To date fibroin from Bombyx mori silkworm has been the dominant source for silk-based biomaterials studied. However, silk fibroins from spiders and those formed via genetic engineering or the modification of native silk fibroin sequence chemistries are beginning to provide new options to further expand the utility of silk fibroin-based materials for medical applications. PMID:16890988

  13. The effect of sterilization on silk fibroin biomaterial properties.

    PubMed

    Rnjak-Kovacina, Jelena; DesRochers, Teresa M; Burke, Kelly A; Kaplan, David L

    2015-06-01

    The effects of common sterilization techniques on the physical and biological properties of lyophilized silk fibroin sponges are described. Sterile silk fibroin sponges were cast using a pre-sterilized silk fibroin solution under aseptic conditions or post-sterilized via autoclaving, γ radiation, dry heat, exposure to ethylene oxide, or hydrogen peroxide gas plasma. Low average molecular weight and low concentration silk fibroin solutions could be sterilized via autoclaving or filtration without significant loses of protein. However, autoclaving reduced the molecular weight distribution of the silk fibroin protein solution, and silk fibroin sponges cast from autoclaved silk fibroin were significantly stiffer compared to sponges cast from unsterilized or filtered silk fibroin. When silk fibroin sponges were sterilized post-casting, autoclaving increased scaffold stiffness, while decreasing scaffold degradation rate in vitro. In contrast, γ irradiation accelerated scaffold degradation rate. Exposure to ethylene oxide significantly decreased cell proliferation rate on silk fibroin sponges, which was rescued by leaching ethylene oxide into PBS prior to cell seeding. PMID:25761231

  14. Structural and optical studies on selected web spinning spider silks.

    PubMed

    Karthikeyani, R; Divya, A; Mathavan, T; Asath, R Mohamed; Benial, A Milton Franklin; Muthuchelian, K

    2017-01-01

    This study investigates the structural and optical properties in the cribellate silk of the sheet web spider Stegodyphus sarasinorum Karsch (Eresidae) and the combined dragline, viscid silk of the orb-web spiders Argiope pulchella Thorell (Araneidae) and Nephila pilipes Fabricius (Nephilidae). X-ray diffraction (XRD), Fourier transform infra-red (FTIR), Ultraviolet-visible (UV-Vis) and fluorescence spectroscopic techniques were used to study these three spider silk species. X-ray diffraction data are consistent with the amorphous polymer network which is arising from the interaction of larger side chain amino acid contributions due to the poly-glycine rich sequences known to be present in the proteins of cribellate silk. The same amorphous polymer networks have been determined from the combined dragline and viscid silk of orb-web spiders. From FTIR spectra the results demonstrate that, cribellate silk of Stegodyphus sarasinorum, combined dragline viscid silk of Argiope pulchella and Nephila pilipes spider silks are showing protein peaks in the amide I, II and III regions. Further they proved that the functional groups present in the protein moieties are attributed to α-helical and side chain amino acid contributions. The optical properties of the obtained spider silks such as extinction coefficients, refractive index, real and imaginary dielectric constants and optical conductance were studied extensively from UV-Vis analysis. The important fluorescent amino acid tyrosine is present in the protein folding was investigated by using fluorescence spectroscopy. This research would explore the protein moieties present in the spider silks which were found to be associated with α-helix and side chain amino acid contributions than with β-sheet secondary structure and also the optical relationship between the three different spider silks are investigated. Successful spectroscopic knowledge of the internal protein structure and optical properties of the spider silks could

  15. Multiple silk coatings on biphasic calcium phosphate scaffolds: Effect on physical and mechanical properties, and in vitro osteogenic response of human mesenchymal stem cells

    PubMed Central

    Li, Jiao Jiao; Gil, Eun Seok; Hayden, Rebecca S.; Li, Chunmei; Roohani-Esfahani, Seyed-Iman; Kaplan, David L.; Zreiqat, Hala

    2013-01-01

    Ceramic scaffolds such as biphasic calcium phosphate (BCP) have been widely studied and used for bone regeneration, but their brittleness and low mechanical strength are major drawbacks. We report the first systematic study on the effect of silk coating in improving the mechanical and biological properties of BCP scaffolds, including 1) optimisation of the silk coating process by investigating multiple coatings, and 2) in vitro evaluation of the osteogenic response of human mesenchymal stem cells (hMSCs) on the coated scaffolds. Our results show that multiple silk coatings on BCP ceramic scaffolds can achieve a significant coating effect to approach the mechanical properties of native bone tissue and positively influence osteogenesis by hMSCs over an extended period. The silk coating method developed in this study represents a simple yet effective means of reinforcement that can be applied to other types of ceramic scaffolds with similar microstructure to improve osteogenic outcomes. PMID:23745709

  16. Electrodeposited silk coatings for functionalized implant applications

    NASA Astrophysics Data System (ADS)

    Elia, Roberto

    The mechanical and morphological properties of titanium as well as its biocompatibility and osteoinductive characteristics have made it the material of choice for dental implant systems. Although the success rate of titanium implants exceeds 90% in healthy individuals, a large subset of the population has one or more risk factors that inhibit implant integration. Treatments and coatings have been developed to improve clinical outcomes via introduction of appropriate surface topography, texture and roughness or incorporation of bioactive molecules. It is essential that the coatings and associated deposition techniques are controllable and reproducible. Currently, methods of depositing functional coatings are dictated by numerous parameters (temperature, particle size distribution, pH and voltage), which result in variable coating thickness, strength, porosity and weight, and hinder or preclude biomolecule incorporation. Silk is a highly versatile protein with a unique combination of mechanical and physical properties, including tunable degradation, biocompatibility, drug stabilizing capabilities and mechanical properties. Most recently an electrogelation technique was developed which allows for the deposition of gels which dry seamlessly over the contoured topography of the conductive substrate. In this work we examine the potential use of silk electrogels as mechanically robust implant coatings capable of sequestering and releasing therapeutic agents. Electrodeposition of silk electrogels formed in uniform electric fields was characterized with respect to field intensity and deposition time. Gel formation kinetics were used to derive functions which allowed for the prediction of coating deposition over a range of process and solution parameters. Silk electrogel growth orientation was shown to be influenced by the applied electric field. Coatings were reproducible and tunable via intrinsic silk solution properties and extrinsic process parameters. Adhesion was

  17. Intragenic homogenization and multiple copies of prey-wrapping silk genes in Argiope garden spiders

    PubMed Central

    2014-01-01

    Background Spider silks are spectacular examples of phenotypic diversity arising from adaptive molecular evolution. An individual spider can produce an array of specialized silks, with the majority of constituent silk proteins encoded by members of the spidroin gene family. Spidroins are dominated by tandem repeats flanked by short, non-repetitive N- and C-terminal coding regions. The remarkable mechanical properties of spider silks have been largely attributed to the repeat sequences. However, the molecular evolutionary processes acting on spidroin terminal and repetitive regions remain unclear due to a paucity of complete gene sequences and sampling of genetic variation among individuals. To better understand spider silk evolution, we characterize a complete aciniform spidroin gene from an Argiope orb-weaving spider and survey aciniform gene fragments from congeneric individuals. Results We present the complete aciniform spidroin (AcSp1) gene from the silver garden spider Argiope argentata (Aar_AcSp1), and document multiple AcSp1 loci in individual genomes of A. argentata and the congeneric A. trifasciata and A. aurantia. We find that Aar_AcSp1 repeats have >98% pairwise nucleotide identity. By comparing AcSp1 repeat amino acid sequences between Argiope species and with other genera, we identify regions of conservation over vast amounts of evolutionary time. Through a PCR survey of individual A. argentata, A. trifasciata, and A. aurantia genomes, we ascertain that AcSp1 repeats show limited variation between species whereas terminal regions are more divergent. We also find that average dN/dS across codons in the N-terminal, repetitive, and C-terminal encoding regions indicate purifying selection that is strongest in the N-terminal region. Conclusions Using the complete A. argentata AcSp1 gene and spidroin genetic variation between individuals, this study clarifies some of the molecular evolutionary processes underlying the spectacular mechanical attributes of

  18. Solution structure of eggcase silk protein and its implications for silk fiber formation

    PubMed Central

    Lin, Zhi; Huang, Weidong; Zhang, Jingfeng; Fan, Jing-Song; Yang, Daiwen

    2009-01-01

    Spider silks are renowned for their excellent mechanical properties and biomimetic and industrial potentials. They are formed from the natural refolding of water-soluble fibroins with α-helical and random coil structures in silk glands into insoluble fibers with mainly β-structures. The structures of the fibroins at atomic resolution and silk formation mechanism remain largely unknown. Here, we report the 3D structures of individual domains of a ≈366-kDa eggcase silk protein that consists of 20 identical type 1 repetitive domains, one type 2 repetitive domain, and conserved nonrepetitive N- and C-terminal domains. The structures of the individual domains in solution were determined by using NMR techniques. The domain interactions were investigated by NMR and dynamic light-scattering techniques. The formation of micelles and macroscopic fibers from the domains was examined by electron microscopy. We find that either of the terminal domains covalently linked with at least one repetitive domain spontaneously forms micelle-like structures and can be further transformed into fibers at ≥37 °C and a protein concentration of >0.1 wt%. Our biophysical and biochemical experiments indicate that the less hydrophilic terminal domains initiate the assembly of the proteins and form the outer layer of the micelles whereas the more hydrophilic repetitive domains are embedded inside to ensure the formation of the micelle-like structures that are the essential intermediates in silk formation. Our results establish the roles of individual silk protein domains in fiber formation and provide the basis for designing miniature fibroins for producing artificial silks. PMID:19458259

  19. Bioengineered silk proteins to control cell and tissue functions.

    PubMed

    Preda, Rucsanda C; Leisk, Gary; Omenetto, Fiorenzo; Kaplan, David L

    2013-01-01

    Silks are defined as protein polymers that are spun into fibers by some lepidoptera larvae such as silkworms, spiders, scorpions, mites, and flies. Silk proteins are usually produced within specialized glands in these animals after biosynthesis in epithelial cells that line the glands, followed by secretion into the lumen of the gland prior to spinning into fibers.The most comprehensively characterized silks are from the domesticated silkworm (Bombyx mori) and from some spiders (Nephila clavipes and Araneus diadematus). Silkworm silk has been used commercially as biomedical sutures for decades and in textile production for centuries. Because of their impressive mechanical properties, silk proteins provide an important set of material options in the fields of controlled drug release, and for biomaterials and scaffolds for tissue engineering. Silkworm silk from B. mori consists primarily of two protein components, fibroin, the structural protein of silk fibers, and sericins, the water-soluble glue-like proteins that bind the fibroin fibers together. Silk fibroin consists of heavy and light chain polypeptides linked by a disulfide bond. Fibroin is the protein of interest for biomedical materials and it has to be purified/extracted from the silkworm cocoon by removal of the sericin. Characteristics of silks, including biodegradability, biocompatibility, controllable degradation rates, and versatility to generate different material formats from gels to fibers and sponges, have attracted interest in the field of biomaterials. Cell culture and tissue formation using silk-based biomaterials have been pursued, where appropriate cell adhesion, proliferation, and differentiation on or in silk biomaterials support the regeneration of tissues. The relative ease with which silk proteins can be processed into a variety of material morphologies, versatile chemical functionalization options, processing in water or solvent, and the related biological features of biocompatibility and

  20. Brown recluse spider's nanometer scale ribbons of stiff extensible silk.

    PubMed

    Schniepp, Hannes C; Koebley, Sean R; Vollrath, Fritz

    2013-12-23

    The silk of the recluse spider features a ribbon-like morphology unlike any other spider silk or synthetically spun polymer fiber. These protein ribbons represent free-standing polymer films with a thickness of about 50 nm. Stress-strain characterization of individual fibers via atomic force microscopy reveals that these ribbons, only a few molecular layers of protein thin, rival the mechanical performance of the best silks. PMID:24352987

  1. Surface and Wetting Properties of Embiopteran (Webspinner) Nanofiber Silk.

    PubMed

    Osborn Popp, Thomas M; Addison, J Bennett; Jordan, Jacob S; Damle, Viraj G; Rykaczewski, Konrad; Chang, Shery L Y; Stokes, Grace Y; Edgerly, Janice S; Yarger, Jeffery L

    2016-05-10

    Insects of the order Embioptera, known as embiopterans, embiids, or webspinners, weave silk fibers together into sheets to make shelters called galleries. In this study, we show that silk galleries produced by the embiopteran Antipaluria urichi exhibit a highly hydrophobic wetting state with high water adhesion macroscopically equivalent to the rose petal effect. Specifically, the silk sheets have advancing contact angles above 150°, but receding contact angle approaching 0°. The silk sheets consist of layered fiber bundles with single strands spaced by microscale gaps. Scanning and transmission electron microscopy (SEM, TEM) images of silk treated with organic solvent and gas chromatography mass spectrometry (GC-MS) of the organic extract support the presence of a lipid outer layer on the silk fibers. We use cryogenic SEM to demonstrate that water drops reside on only the first layer of the silk fibers. The area fraction of this sparse outer silk layers is 0.1 to 0.3, which according to the Cassie-Baxter equation yields an effective static contact angle of ∼130° even for a mildly hydrophobic lipid coating. Using high magnification optical imaging of the three phase contact line of a water droplet receding from the silk sheet, we show that the high adhesion of the drop stems from water pinning along bundles of multiple silk fibers. The bundles likely form when the drop contact line is pinned on individual fibers and pulls them together as it recedes. The dynamic reorganization of the silk sheets during the droplet movement leads to formation of "super-pinning sites" that give embiopteran silk one of the strongest adhesions to water of any natural hydrophobic surface. PMID:27062909

  2. Spider silk: a novel optical fibre for biochemical sensing

    NASA Astrophysics Data System (ADS)

    Hey Tow, Kenny; Chow, Desmond M.; Vollrath, Fritz; Dicaire, Isabelle; Gheysens, Tom; Thévenaz, Luc

    2015-09-01

    Whilst being thoroughly used in the textile industry and biomedical sector, silk has not yet been exploited for fibre optics-based sensing although silk fibres directly obtained from spiders can guide light and have shown early promises to being sensitive to some solvents. In this communication, a pioneering optical fibre sensor based on spider silk is reported, demonstrating for the first time the use of spider silk as an optical fibre sensor to detect polar solvents such as water, ammonia and acetic acid.

  3. Silk-based biomaterials for sustained drug delivery.

    PubMed

    Yucel, Tuna; Lovett, Michael L; Kaplan, David L

    2014-09-28

    Silk presents a rare combination of desirable properties for sustained drug delivery, including aqueous-based purification and processing options without chemical cross-linkers, compatibility with common sterilization methods, controllable and surface-mediated biodegradation into non-inflammatory by-products, biocompatibility, utility in drug stabilization, and robust mechanical properties. A versatile silk-based toolkit is currently available for sustained drug delivery formulations of small molecule through macromolecular drugs, with a promise to mitigate several drawbacks associated with other degradable sustained delivery technologies in the market. Silk-based formulations utilize silk's well-defined nano- through microscale structural hierarchy, stimuli-responsive self-assembly pathways and crystal polymorphism, as well as sequence and genetic modification options towards targeted pharmaceutical outcomes. Furthermore, by manipulating the interactions between silk and drug molecules, near-zero order sustained release may be achieved through diffusion- and degradation-based release mechanisms. Because of these desirable properties, there has been increasing industrial interest in silk-based drug delivery systems currently at various stages of the developmental pipeline from pre-clinical to FDA-approved products. Here, we discuss the unique aspects of silk technology as a sustained drug delivery platform and highlight the current state of the art in silk-based drug delivery. We also offer a potential early development pathway for silk-based sustained delivery products. PMID:24910193

  4. Structure-Function-Property-Design Interplay in Biopolymers: Spider Silk

    PubMed Central

    Tokareva, Olena; Jacobsen, Matthew; Buehler, Markus; Wong, Joyce; Kaplan, David L.

    2013-01-01

    Spider silks have been a focus of research for almost two decades due to their outstanding mechanical and biophysical properties. Recent advances in genetic engineering have led to the synthesis of recombinant spider silks, thus helping to unravel a fundamental understanding of structure-function-property relationships. The relationships between molecular composition, secondary structures, and mechanical properties found in different types of spider silks are described, along with a discussion of artificial spinning of these proteins and their bioapplications, including the role of silks in biomineralization and fabrication of biomaterials with controlled properties. PMID:23962644

  5. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels

    NASA Astrophysics Data System (ADS)

    Gogurla, Narendar; Sinha, Arun K.; Naskar, Deboki; Kundu, Subhas C.; Ray, Samit K.

    2016-03-01

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.

  6. Total X-Ray Scattering of Spider Dragline Silk

    NASA Astrophysics Data System (ADS)

    Benmore, C. J.; Izdebski, T.; Yarger, J. L.

    2012-04-01

    Total x-ray scattering measurements of spider dragline silk fibers from Nephila clavipes, Argiope aurantia, and Latrodectus hesperus all yield similar structure factors, with only small variations between the different species. Wide-angle x-ray scattering from fibers orientated perpendicular to the beam shows a high degree of anisotropy, and differential pair distribution functions obtained by integrating over wedges of the equatorial and meridian planes indicate that, on average, the majority (95%) of the atom-atom correlations do not extend beyond 1 nm. Futhermore, the atom-atom correlations between 1 and 3 nm are not associated with the most intense diffraction peaks at Q=1-2Å-1. Disordered molecular orientations along the fiber axis are consistent with proteins in similar structural arrangements to those in the equatorial plane, which may be associated with the silk’s greater flexibility in this direction.

  7. Electrospun Silk Biomaterial Scaffolds for Regenerative Medicine

    PubMed Central

    Zhang, Xiaohui; Reagan, Michaela R; Kaplan, David L.

    2009-01-01

    Electrospinning is a versatile technique that enables the development of nanofiber-based biomaterial scaffolds. Scaffolds can be generated that are useful for tissue engineering and regenerative medicine since they mimic the nanoscale properties of certain fibrous components of the native extracellular matrix in tissues. Silk is a natural protein with excellent biocompatibility, remarkable mechanical properties as well as tailorable degradability. Integrating these protein polymer advantages with electrospinning results in scaffolds with combined biochemical, topographical and mechanical cues with versatility for a range of biomaterial, cell and tissue studies and applications. This review covers research related to electrospinning of silk, including process parameters, post treatment of the spun fibers, functionalization of nanofibers, and the potential applications for these material systems in regenerative medicine. Research challenges and future trends are also discussed. PMID:19643154

  8. Silk scaffolds for musculoskeletal tissue engineering.

    PubMed

    Yao, Danyu; Liu, Haifeng; Fan, Yubo

    2016-02-01

    The musculoskeletal system, which includes bone, cartilage, tendon/ligament, and skeletal muscle, is becoming the targets for tissue engineering because of the high need for their repair and regeneration. Numerous factors would affect the use of musculoskeletal tissue engineering for tissue regeneration ranging from cells used for scaffold seeding to the manufacture and structures of materials. The essential function of the scaffolds is to convey growth factors as well as cells to the target site to aid the regeneration of the injury. Among the variety of biomaterials used in scaffold engineering, silk fibroin is recognized as an ideal material for its impressive cytocompatibility, slow biodegradability, and excellent mechanical properties. The current review describes the advances made in the fabrication of silk fibroin scaffolds with different forms such as films, particles, electrospun fibers, hydrogels, three-dimensional porous scaffolds, and their applications in the regeneration of musculoskeletal tissues. PMID:26445979

  9. Silk constructs for delivery of muskuloskeletal therapeutics

    PubMed Central

    Meinel, Lorenz; Kaplan, David L.

    2012-01-01

    Silk fibroin (SF) is a biopolymer with distinguishing features from many other bio- as well as synthetic polymers. From a biomechanical and drug delivery perspective, SF combines remarkable versatility for scaffolding (solid implants, hydrogels, threads, solutions), with advanced mechanical properties and good stabilization and controlled delivery of entrapped protein and small molecule drugs, respectively. It is this combination of mechanical and pharmaceutical features which render SF so exciting for biomedical applications. his pattern along with the versatility of this biopolymer have been translated into progress for musculoskeletal applications. We review the use and potential of silk fibroin for systemic and localized delivery of therapeutics in diseases affecting the musculoskeletal system. We also present future directions for this biopolymer as well as the necessary research and development steps for their achievement. PMID:22522139

  10. Silk microgels formed by proteolytic enzyme activity.

    PubMed

    Samal, Sangram K; Dash, Mamoni; Chiellini, Federica; Kaplan, David L; Chiellini, Emo

    2013-09-01

    The proteolytic enzyme α-chymotrypsin selectively cleaves the amorphous regions of silk fibroin protein (SFP) and allows the crystalline regions to self-assemble into silk microgels (SMGs) at physiological temperature. These microgels consist of lamellar crystals in the micrometer scale, in contrast to the nanometer-scaled crystals in native silkworm fibers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zeta potential results demonstrated that α-chymotrypsin utilized only the non-amorphous domains or segments of the heavy chain of SFP to form negatively charged SMGs. The SMGs were characterized in terms of size, charge, structure, morphology, crystallinity, swelling kinetics, water content and thermal properties. The results suggest that the present technique of preparing SMGs by α-chymotrypsin is simple and efficient, and that the prepared SMGs have useful features for studies related to biomaterial and pharmaceutical needs. This process is also an easy way to obtain the amorphous peptide chains for further study. PMID:23756227

  11. Silk fibroin nanostructured materials for biomedical applications

    NASA Astrophysics Data System (ADS)

    Mitropoulos, Alexander N.

    Nanostructured biopolymers have proven to be promising to develop novel biomedical applications where forming structures at the nanoscale normally occurs by self-assembly. However, synthesizing these structures can also occur by inducing materials to transition into other forms by adding chemical cross-linkers, changing pH, or changing ionic composition. Understanding the generation of nanostructures in fluid environments, such as liquid organic solvents or supercritical fluids, has not been thoroughly examined, particularly those that are based on protein-based block-copolymers. Here, we examine the transformation of reconstituted silk fibroin, which has emerged as a promising biopolymer due to its biocompatibility, biodegradability, and ease of functionalization, into submicron spheres and gel networks which offer applications in tissue engineering and advanced sensors. Two types of gel networks, hydrogels and aerogels, have small pores and large surface areas that are defined by their structure. We design and analyze silk nanoparticle formation using a microfluidic device while offering an application for drug delivery. Additionally, we provide a model and characterize hydrogel formation from micelles to nanoparticles, while investigating cellular response to the hydrogel in an in vitro cell culture model. Lastly, we provide a second model of nanofiber formation during near-critical and supercritical drying and characterize the silk fibroin properties at different drying pressures which, when acting as a stabilizing matrix, shows to improve the activity of entrapped enzymes dried at different pressures. This work has created new nanostructured silk fibroin forms to benefit biomedical applications that could be applied to other fibrous proteins.

  12. Osteogenic signaling on silk-based matrices.

    PubMed

    Midha, Swati; Murab, Sumit; Ghosh, Sourabh

    2016-08-01

    Bone tissue engineering has mainly focused on generating 3D grafts to repair bone defects. However, the underlying signaling mechanisms responsible for development of such 3D bone equivalents have largely been ignored. Here we describe the crucial aspects of embryonic osteogenesis and bone development including cell sources and general signaling cascades that guide mesenchymal progenitors towards osteogenic lineage. Drawing from the knowledge of developmental biology, we then review how silk biomaterial can regulate osteogenic signaling by focusing on the expression of cell surface markers, functional genomic information (mRNA) of stem cells cultured on silk matrices. In an attempt to recapitulate exact in vivo microenvironment of osteogenesis, role of scaffold architecture and material chemistry in regulating cellular differentiation is elaborated. The generated knowledge will not only improve our understanding of cell-material interactions but reveal newer strategies beyond a conventional tissue engineering paradigm and open new prospects for developing silk-based therapies against clinically relevant bone disorders. PMID:27163625

  13. Silk film biomaterials for cornea tissue engineering

    PubMed Central

    Lawrence, Brian D.; Marchant, Jeffrey K.; Pindrus, Mariya; Omenetto, Fiorenzo; Kaplan, David L.

    2009-01-01

    Biomaterials for corneal tissue engineering must demonstrate several critical features for potential utility in vivo, including transparency, mechanical integrity, biocompatibility and slow biodegradation. Silk film biomaterials were designed and characterized to meet these functional requirements. Silk protein films were used in a biomimetic approach to replicate corneal stromal tissue architecture. The films were 2 μm thick to emulate corneal collagen lamellae dimensions, and were surface patterned to guide cell alignment. To enhance trans-lamellar diffusion of nutrients and to promote cell-cell interaction, pores with 0.5 to 5.0 μm diameters were introduced into the silk films. Human and rabbit corneal fibroblast proliferation, alignment and corneal extracellular matrix expression on these films in both 2D and 3D cultures was demonstrated. The mechanical properties, optical clarity and surface patterned features of these films, combined with their ability to support corneal cell functions suggest this new biomaterial system offers important potential benefits for corneal tissue regeneration. PMID:19059642

  14. Silk-based blood stabilization for diagnostics.

    PubMed

    Kluge, Jonathan A; Li, Adrian B; Kahn, Brooke T; Michaud, Dominique S; Omenetto, Fiorenzo G; Kaplan, David L

    2016-05-24

    Advanced personalized medical diagnostics depend on the availability of high-quality biological samples. These are typically biofluids, such as blood, saliva, or urine; and their collection and storage is critical to obtain reliable results. Without proper temperature regulation, protein biomarkers in particular can degrade rapidly in blood samples, an effect that ultimately compromises the quality and reliability of laboratory tests. Here, we present the use of silk fibroin as a solid matrix to encapsulate blood analytes, protecting them from thermally induced damage that could be encountered during nonrefrigerated transportation or freeze-thaw cycles. Blood samples are recovered by simple dissolution of the silk matrix in water. This process is demonstrated to be compatible with a number of immunoassays and provides enhanced sample preservation in comparison with traditional air-drying paper approaches. Additional processing can remediate interactions with conformational structures of the silk protein to further enhance blood stabilization and recovery. This approach can provide expanded utility for remote collection of blood and other biospecimens empowering new modalities of temperature-independent remote diagnostics. PMID:27162330

  15. Recombinant protein blends: silk beyond natural design.

    PubMed

    Dinjaski, Nina; Kaplan, David L

    2016-06-01

    Recombinant DNA technology and new material concepts are shaping future directions in biomaterial science for the design and production of the next-generation biomaterial platforms. Aside from conventionally used synthetic polymers, numerous natural biopolymers (e.g., silk, elastin, collagen, gelatin, alginate, cellulose, keratin, chitin, polyhydroxyalkanoates) have been investigated for properties and manipulation via bioengineering. Genetic engineering provides a path to increase structural and functional complexity of these biopolymers, and thereby expand the catalog of available biomaterials beyond that which exists in nature. In addition, the integration of experimental approaches with computational modeling to analyze sequence-structure-function relationships is starting to have an impact in the field by establishing predictive frameworks for determining material properties. Herein, we review advances in recombinant DNA-mediated protein production and functionalization approaches, with a focus on hybrids or combinations of proteins; recombinant protein blends or 'recombinamers'. We highlight the potential biomedical applications of fibrous protein recombinamers, such as Silk-Elastin Like Polypeptides (SELPs) and Silk-Bacterial Collagens (SBCs). We also discuss the possibility for the rationale design of fibrous proteins to build smart, stimuli-responsive biomaterials for diverse applications. We underline current limitations with production systems for these proteins and discuss the main trends in systems/synthetic biology that may improve recombinant fibrous protein design and production. PMID:26686863

  16. Silk Reconstitution Disrupts Fibroin Self-Assembly.

    PubMed

    Koebley, Sean R; Thorpe, Daniel; Pang, Pei; Chrisochoides, Panos; Greving, Imke; Vollrath, Fritz; Schniepp, Hannes C

    2015-09-14

    Using atomic force microscopy, we present the first molecular-scale comparison of two of the most important silk dopes, native (NSF) and reconstituted (RSF) silkworm fibroin. We found that both systems depended on shear to show self-assembly. Significant differences in the nature of self-assembly between NSF and RSF were shown. In the highest studied concentration of 1000 mg/L, NSF exhibited assembly into 20-30 nm-wide nanofibrils closely resembling the surface structures found in natural silk fibers. RSF, in contrast, showed no self-assembly whatsoever at the same concentration, which suggests that the reconstitution process significantly disrupts silk's inherent self-assembly capability. At lower concentrations, both RSF and NSF formed fibrils under shear, apparently denatured by the substrate. Using image analysis, we quantified the properties of these self-assembled fibrils as a function of concentration and found low-concentration fibrils of NSF to form larger continuous structures than those of RSF, further supporting NSF's superior self-assembly capabilities. PMID:26284914

  17. Vibrational spectroscopic study of sulphated silk proteins

    NASA Astrophysics Data System (ADS)

    Monti, P.; Freddi, G.; Arosio, C.; Tsukada, M.; Arai, T.; Taddei, P.

    2007-05-01

    Degummed Bombyx mori ( B. m.) silk fibroin fabric and mutant naked pupa cocoons (Nd-s) consisting of almost pure silk sericin were treated with chlorosulphonic acid in pyridine and investigated by FT-IR and FT-Raman spectroscopies. Untreated silk fibroin and sericin displayed typical spectral features due to characteristic amino acid composition and molecular conformation (prevailing β-sheet with a less ordered structure in sericin). Upon sulphation, the degree of molecular disorder increased in both proteins and new bands appeared. The IR bands at 1049 and 1014 cm -1 were attributed to vibrations of sulphate salts and that at 1385 cm -1 to the νasSO 2 mode of organic covalent sulphates. In the 1300-1180 cm -1 range various contributions of alkyl and aryl sulphate salts, sulphonamides, sulphoamines and organic covalent sulphates, fell. Fibroin covalently bound sulphate groups through the hydroxyl groups of tyrosine and serine, while sericin through the hydroxyl groups of serine, since the δOH vibrations at 1399 cm -1 in IR and at 1408 cm -1 in Raman disappeared almost completely. Finally, the increase of the I850/ I830 intensity ratio of Raman tyrosine doublet in fibroin suggested a change towards a more exposed state of tyrosine residues, in good agreement with the more disordered conformation taken upon sulphation.

  18. Silk electrogel coatings for titanium dental implants.

    PubMed

    Elia, Roberto; Michelson, Courtney D; Perera, Austin L; Harsono, Masly; Leisk, Gray G; Kugel, Gerard; Kaplan, David L

    2015-04-01

    The aim of this study was to develop biocompatible, biodegradable dental implant coatings capable of withstanding the mechanical stresses imparted during implant placement. Two techniques were developed to deposit uniform silk fibroin protein coatings onto dental implants. Two novel coating techniques were implemented to coat titanium shims, studs, and implants. One technique involved electrodeposition of the silk directly onto the titanium substrates. The second technique consisted of melting electrogels and dispensing the melted gels onto the titanium to form the coatings. Both techniques were tested for coating reproducibility using a stylus profilometer and a dial thickness gauge. The mechanical strength of adhered titanium studs was assessed using a universal mechanical testing machine. Uniform, controllable coatings were obtained from both the electrodeposition and melted electrogel coating techniques, tunable from 35 to 1654 µm thick under the conditions studied, and able to withstand delamination during implantation into implant socket mimics. Mechanical testing revealed that the adhesive strength of electrogel coatings, 0.369 ± 0.09 MPa, rivaled other biologically derived coating systems such as collagen, hydroxyapatite, and chitosan (0.07-4.83 MPa). These novel silk-based techniques offer a unique approach to the deposition of safe, simple, mechanically robust, biocompatible, and degradable implant coatings. PMID:25425563

  19. Early events in the evolution of spider silk genes.

    PubMed

    Starrett, James; Garb, Jessica E; Kuelbs, Amanda; Azubuike, Ugochi O; Hayashi, Cheryl Y

    2012-01-01

    Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers), from the suborder Araneomorphae ('true spiders'). Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs), is known only from the orbicularian species, Lactrodectus hesperus (Western black widow). In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders), which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders) and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae). We use the spidroin gene tree to reconstruct the evolution of amino acid compositions of

  20. Early Events in the Evolution of Spider Silk Genes

    PubMed Central

    Starrett, James; Garb, Jessica E.; Kuelbs, Amanda; Azubuike, Ugochi O.; Hayashi, Cheryl Y.

    2012-01-01

    Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers), from the suborder Araneomorphae (‘true spiders’). Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs), is known only from the orbicularian species, Lactrodectus hesperus (Western black widow). In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders), which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders) and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae). We use the spidroin gene tree to reconstruct the evolution of amino acid compositions

  1. Transgenic phenolic production in corn silks moderately enhances insect resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some phenolic compounds produced in corn silks, such as maysin, can promote resistance to caterpillar pests. We evaluated transgenic maize engineered to express a maize cDNA controlled by a putative silk specific promoter for secondary metabolite production and corn earworm resistance. Transgene e...

  2. Silk-Based Biomaterials for Sustained Drug Delivery

    PubMed Central

    Yucel, Tuna; Lovett, Michael L.; Kaplan, David L.

    2014-01-01

    Silk presents a rare combination of desirable properties for sustained drug delivery, including aqueous-based purification and processing options without chemical cross-linkers, compatibility with common sterilization methods, controllable and surface-mediated biodegradation into non-inflammatory by-products, biocompatibility, utility in drug stabilization, and robust mechanical properties. A versatile silk-based toolkit is currently available for sustained drug delivery formulations of small molecule through macromolecular drugs, with a promise to mitigate several drawbacks associated with other degradable sustained delivery technologies in the market. Silk-based formulations utilize silk’s well-defined nano- through microscale structural hierarchy, stimuli-responsive self-assembly pathways and crystal polymorphism, as well as sequence and genetic modification options towards targeted pharmaceutical outcomes. Furthermore, by manipulating the interactions between silk and drug molecules, near-zero order sustained release may be achieved through diffusion- and degradation-based release mechanisms. Because of these desirable properties, there has been increasing industrial interest in silk-based drug delivery systems currently at various stages of the developmental pipeline from pre-clinical to FDA-approved products. Here, we discuss the unique aspects of silk technology as a sustained drug delivery platform and highlight the current state of the art in silk-based drug delivery. We also offer a potential early development pathway for silk-based sustained delivery products. PMID:24910193

  3. Photocrosslinking of Silk Fibroin Using Riboflavin for Ocular Prostheses.

    PubMed

    Applegate, Matthew B; Partlow, Benjamin P; Coburn, Jeannine; Marelli, Benedetto; Pirie, Christopher; Pineda, Roberto; Kaplan, David L; Omenetto, Fiorenzo G

    2016-03-23

    A novel method to photocrosslink silk fibroin protein is reported, using riboflavin (vitamin B2) as a photoinitiator and the mechanism of crosslinking is determined. Exposure of riboflavin-doped liquid silk solution to light results in the formation of a transparent, elastic hydrogel. Several applications for this new material are investigated including corneal reshaping to restore visual acuity and photolithography. PMID:26821561

  4. Geographic Perspectives with Elementary Students: The Silk Road

    ERIC Educational Resources Information Center

    Bisland, Beverly Milner

    2006-01-01

    The purpose of this study is to investigate elementary students' explanations of how physical features of the land influence the location of humanly defined structures including trade routes, such as the silk routes. The silk routes were a series of caravan trade routes that extended from Turkey to China and were located as far south as India and…

  5. The failure mode of natural silk epoxy triggered composite tubes

    NASA Astrophysics Data System (ADS)

    Eshkour, R. A.; Ariffin, A. K.; Zulkifli, R.; Sulong, A. B.; Azhari, C. H.

    2012-09-01

    In this study the quasi static compression test over natural silk epoxy triggered composite tubes has been carried out, the natural silk epoxy composite tubes consist of 24 layer of woven natural silk as reinforcement and thermoset epoxy resin as matrix which both of them i e natural silk and epoxy have excellent mechanical properties More over the natural silk have better moisture resistance in comparison with other natural reinforcements, the length of tubes are 50, 80 and 120 mm The natural silk epoxy composite tubes are associated with an external trigger which includes 4 steel pieces welded on downside flat plate fixture The hand lay up fabrication method has been used to make the natural silk epoxy composite tubes Instron universal testing machine with 250 KN load capacity has been employed to accomplish this investigation The failure modes of natural silk epoxy triggered composite tubes has been investigated by representative photographs which has been taken by a high resolution camera(12 2 Mp) during the quasi static compression test, from the photographs is observed the failure modes is progressive local buckling

  6. Self-assembly of silk fibroin under osmotic stress

    NASA Astrophysics Data System (ADS)

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  7. [Processing and Modification of Recombinant Spider Silk Proteins].

    PubMed

    Liu, Bin; Wang, Tao; Liu, Xiaobing; Luo, Yongen

    2015-08-01

    Due to its special sequence structure, spider silk protein has unique physical and chemical properties, mechanical properties and excellent biological properties. With the expansion of the application value of spider silk in many fields as a functional material, progress has been made in the studies on the expression of recombinant spider silk proteins through many host systems by gene recombinant techniques. Recombinant spider silk proteins can be processed into high performance fibers, and a wide range of nonfibrous morphologies. Moreover, for their excellent biocompatibility and low immune response they are ideal for biomedical applications. Here we review the process and mechanism of preparation in vitro, chemistry and genetic engineering modification on recombinant spider silk protein. PMID:26710473

  8. Silk-based delivery systems of bioactive molecules

    PubMed Central

    Numata, Keiji; Kaplan, David L

    2010-01-01

    Silks are biodegradable, biocompatible, self-assemblying proteins that can also be tailored via genetic engineering to contain specific chemical features, offering utility for drug and gene delivery. Silkworm silk has been used in biomedical sutures for decades and has recently achieved Food and Drug Administration approval for expanded biomaterials device utility. With the diversity and control of size, structure and chemistry, modified or recombinant silk proteins can be designed and utilized in various biomedical application, such as for the delivery of bioactive molecules. This review focuses on the biosynthesis and applications of silk-based multi-block copolymer systems and related silk protein drug delivery systems. The utility of these systems for the delivery of small molecule drugs, proteins and genes are reviewed. PMID:20298729

  9. Investigation of Natural Bombyx mori Silk Fibroin Proteins Using INS

    NASA Astrophysics Data System (ADS)

    Crain, Christopher; Strange, Nicholas; Larese, J. Z.

    The mechanical properties of many protein comprised biomaterials are a direct reflection of non-covalent (i.e. weak) interacting ions such as F-actin in muscles, tubulin in the cytoskeleton of cells, viral capsids, and silk. Porter and Vollrath underscored the two main factors that are critical for understanding the high mechanical strength of silks: the nanoscale semi-crystalline folding structure, which gives it exceptional toughness and strength, and the degree of hydration of the disordered fraction, which acts to modify these properties. Understanding and controlling these two principal factors are the key to the functionality of protein elastomers, and render silk an ideal model protein for (bio)material design. We will describe our investigation of electrospun silk of the Bombyx mori (silk worm), using Inelastic Neutron Scattering (INS). These techniques were used to investigate the microscopic dynamics of the dry and hydrated protein.

  10. The complexity of silk under the spotlight of synthetic biology.

    PubMed

    Vollrath, Fritz

    2016-08-15

    For centuries silkworm filaments have been the focus of R&D innovation centred on textile manufacture with high added value. Most recently, silk research has focused on more fundamental issues concerning bio-polymer structure-property-function relationships. This essay outlines the complexity and fundamentals of silk spinning, and presents arguments for establishing this substance as an interesting and important subject at the interface of systems biology (discovery) and synthetic biology (translation). It is argued that silk is a generic class of materials where each type of silk presents a different embodiment of emergent properties that combine genetically determined (anticipatory) and environmentally responsive components. In spiders' webs the various silks have evolved to form the interactive components of an intricate fabric that provides an extended phenotype to the spider's body morphology. PMID:27528763

  11. Increased molecular mobility in humid silk fibers under tensile stress

    NASA Astrophysics Data System (ADS)

    Seydel, Tilo; Knoll, Wiebke; Greving, Imke; Dicko, Cedric; Koza, Michael M.; Krasnov, Igor; Müller, Martin

    2011-01-01

    Silk fibers are semicrystalline nanocomposite protein fibers with an extraordinary mechanical toughness that changes with humidity. Diffusive or overdamped motion on a molecular level is absent in dry silkworm silk, but present in humid silk at ambient temperature. This microscopic diffusion distinctly depends on the externally applied macroscopic tensile force. Quasielastic and inelastic neutron-scattering data as a function of humidity and of tensile strain on humid silk fibers support the model that both the adsorbed water and parts of the amorphous polymers participate in diffusive motion and are affected by the tensile force. It is notable that the quasielastic linewidth of humid silk at 100% relative humidity increases significantly with the applied force. The effect of the tensile force is discussed in terms of an increasing alignment of the polymer chains in the amorphous fraction with increasing tensile stress which changes the geometrical restrictions of the diffusive motions.

  12. Alleged silk spigots on tarantula feet: electron microscopy reveals sensory innervation, no silk.

    PubMed

    Foelix, Rainer; Erb, Bruno; Rast, Bastian

    2013-05-01

    Several studies on tarantulas have claimed that their tarsi could secrete fine silk threads which would provide additional safety lines for maintaining a secure foot-hold on smooth vertical surfaces. This interpretation was seriously questioned by behavioral experiments, and more recently morphological evidence indicated that the alleged spigots ("ribbed hairs") were not secretory but most likely sensory hairs (chemoreceptors). However, since fine structural studies were lacking, the sensory nature was not proven convincingly. By using transmission electron microscopy we here present clear evidence that these "ribbed hairs" contain many dendrites inside the hair lumen - as is the case in the well-known contact chemoreceptors of spiders and insects. For comparison, we also studied the fine structure of regular silk spigots on the spinnerets and found them distinctly different from sensory hairs. Finally, histological studies of a tarantula tarsus did not reveal any silk glands, which, by contrast, are easily found within the spinnerets. In conclusion, the alleged presence of silk spigots on tarantula feet is refuted. PMID:23474440

  13. The effect of residual silk sericin on the structure and mechanical property of regenerated silk filament.

    PubMed

    Ki, Chang Seok; Kim, Jong Wook; Oh, Han Jin; Lee, Ki Hoon; Park, Young Hwan

    2007-08-01

    In this study, we elucidated the effect of residual silk sericin (SS) on structure and mechanical properties of regenerated silk filament as well as on fiber formation. The dope viscosity markedly increased with increasing residual SS content in dope solution which was prepared by dissolving the silk protein in formic acid. As a result of FTIR, (13)C NMR, and XRD, a small amount of SS (9.6%) contained in the filament showed highest content of beta-sheet conformation and maximum crystallinity. It seems that the SS affects the structural change of SF up to a certain level by inducing the beta-transition easily. The tenacity of the filaments, containing 9.6-18.9% SS, was in the range of 2.1-2.4 gf/d, which was about 50% higher than the filament without SS (pure SF). Consequently, with the enhancement of spinnability in wet spinning process, the SS can play an important role for developing the crystalline structure of SF as well as for improving mechanical properties of the regenerated silk fiber. PMID:17573107

  14. The method of purifying bioengineered spider silk determines the silk sphere properties.

    PubMed

    Jastrzebska, Katarzyna; Felcyn, Edyta; Kozak, Maciej; Szybowicz, Miroslaw; Buchwald, Tomasz; Pietralik, Zuzanna; Jesionowski, Teofil; Mackiewicz, Andrzej; Dams-Kozlowska, Hanna

    2016-01-01

    Bioengineered spider silks are a biomaterial with great potential for applications in biomedicine. They are biocompatible,biodegradable and can self-assemble into films, hydrogels, scaffolds, fibers, capsules and spheres. A novel, tag-free, bioengineered spider silk named MS2(9x) was constructed. It is a 9-mer of the consensus motif derived from MaSp2-the spidroin of Nephila clavipes dragline silk. Thermal and acidic extraction methods were used to purify MS2(9x). Both purification protocols gave a similar quantity and quality of soluble silk; however, they differed in the secondary structure and zeta potential value. Spheres made of these purified variants differed with regard to critical features such as particle size, morphology, zeta potential and drug loading. Independent of the purification method, neither variant of the MS2(9x) spheres was cytotoxic, which confirmed that both methods can be used for biomedical applications. However, this study highlights the impact that the applied purification method has on the further biomaterial properties. PMID:27312998

  15. The method of purifying bioengineered spider silk determines the silk sphere properties

    PubMed Central

    Jastrzebska, Katarzyna; Felcyn, Edyta; Kozak, Maciej; Szybowicz, Miroslaw; Buchwald, Tomasz; Pietralik, Zuzanna; Jesionowski, Teofil; Mackiewicz, Andrzej; Dams-Kozlowska, Hanna

    2016-01-01

    Bioengineered spider silks are a biomaterial with great potential for applications in biomedicine. They are biocompatible,biodegradable and can self-assemble into films, hydrogels, scaffolds, fibers, capsules and spheres. A novel, tag-free, bioengineered spider silk named MS2(9x) was constructed. It is a 9-mer of the consensus motif derived from MaSp2–the spidroin of Nephila clavipes dragline silk. Thermal and acidic extraction methods were used to purify MS2(9x). Both purification protocols gave a similar quantity and quality of soluble silk; however, they differed in the secondary structure and zeta potential value. Spheres made of these purified variants differed with regard to critical features such as particle size, morphology, zeta potential and drug loading. Independent of the purification method, neither variant of the MS2(9x) spheres was cytotoxic, which confirmed that both methods can be used for biomedical applications. However, this study highlights the impact that the applied purification method has on the further biomaterial properties. PMID:27312998

  16. Chimeric spider silk proteins mediated by intein result in artificial hybrid silks.

    PubMed

    Lin, Senzhu; Chen, Gefei; Liu, Xiangqin; Meng, Qing

    2016-07-01

    Hybrid silks hold a great potential as specific biomaterials due to its controlled mechanical properties. To produce fibers with tunable properties, here we firstly made chimeric proteins in vitro, called W2C4CT and W2C8CT, with ligation of MaSp repetitive modules (C) with AcSp modules (W) by intein trans splicing technology from smaller precursors without final yield reduction. Intein mediated chimeric proteins form fibers at a low concentration of 0.4 mg/mL in 50 mM K3 PO4 pH 7.5 just drawn by hand. Hybrid fibers show smoother surface, and also have stronger chemical resistance as compared with fibers from W2CT (W fibers) and mixture of W2CT/C8CT (MHF8 fibers). Fibers from chimeric protein W2C4CT (HFH4) have improved mechanical properties than W fibers; however, with more C modules W2C8CT fibers (HFH8) properties decreased, indicates the length proportion of various modules is very important and should be optimized for fibers with specific properties. Generally, hybrid silks generated via chimeric proteins, which can be simplified by intein trans splicing, has greater potential to produce fibers with tunable properties. Our research shows that intein mediated directional protein ligation is a novel way to make large chimeric spider silk proteins and hybrid silks. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 385-392, 2016. PMID:26948769

  17. Characterization of silk gland ribosomes from a bivoltine caddisfly, Stenopsyche marmorata: translational suppression of a silk protein in cold conditions.

    PubMed

    Nomura, Takaomi; Ito, Miho; Kanamori, Mai; Shigeno, Yuta; Uchiumi, Toshio; Arai, Ryoichi; Tsukada, Masuhiro; Hirabayashi, Kimio; Ohkawa, Kousaku

    2016-01-01

    Larval Stenopsyche marmorata constructs food capture nets and fixed retreats underwater using self-produced proteinaceous silk fibers. In the Chikuma River (Nagano Prefecture, Japan) S. marmorata has a bivoltine life cycle; overwintering larvae grow slowly with reduced net spinning activity in winter. We recently reported constant transcript abundance of S. marmorata silk protein 1 (Smsp-1), a core S. marmorata silk fiber component, in all seasons, implying translational suppression in the silk gland during winter. Herein, we prepared and characterized silk gland ribosomes from seasonally collected S. marmorata larvae. Ribosomes from silk glands immediately frozen in liquid nitrogen (LN2) after dissection exhibited comparable translation elongation activity in spring, summer, and autumn. Conversely, silk glands obtained in winter did not contain active ribosomes and Smsp-1. Ribosomes from silk glands immersed in ice-cold physiological saline solution for approximately 4 h were translationally inactive, despite summer collection and Smsp-1 expression. The ribosomal inactivation occurs because of defects in the formation of 80S ribosomes, presumably due to splitting of 60S subunits containing 28S rRNA with central hidden break, in response to cold stress. These results suggest a novel-type ribosome-regulated translation control mechanism. PMID:26646291

  18. A tunable silk-alginate hydrogel scaffold for stem cell culture and transplantation

    PubMed Central

    Ziv, Keren; Nuhn, Harald; Ben-Haim, Yael; Sasportas, Laura S.; Kempen, Paul J.; Niedringhaus, Thomas P.; Hrynyk, Michael; Sinclair, Robert; Barron, Annelise E.; Gambhir, Sanjiv S.

    2014-01-01

    One of the major challenges in regenerative medicine is the ability to recreate the stem cell niche, which is defined by its signaling molecules, the creation of cytokine gradients, and the modulation of matrix stiffness. A wide range of scaffolds has been developed in order to recapitulate the stem cell niche, among them hydrogels. This paper reports the development of a new silk-alginate based hydrogel with a focus on stem cell culture. This biocomposite allows to fine tune its elasticity during cell culture, addressing the importance of mechanotransduction during stem cell differentiation. The silk-alginate scaffold promotes adherence of mouse embryonic stem cells and cell survival upon transplantation. In addition, it has tunable stiffness as function of the silk-alginte ratio and the concentration of crosslinker - a characteristic that is very hard to accomplish in current hydrogels. The hydrogel and the presented results represents key steps on the way of creating artificial stem cell niche, opening up new paths in regenerative medicine. PMID:24484675

  19. Electricity from the Silk Cocoon Membrane

    NASA Astrophysics Data System (ADS)

    Tulachan, Brindan; Meena, Sunil Kumar; Rai, Ratan Kumar; Mallick, Chandrakant; Kusurkar, Tejas Sanjeev; Teotia, Arun Kumar; Sethy, Niroj Kumar; Bhargava, Kalpana; Bhattacharya, Shantanu; Kumar, Ashok; Sharma, Raj Kishore; Sinha, Neeraj; Singh, Sushil Kumar; Das, Mainak

    2014-06-01

    Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management.

  20. New Silk Fibroin-Based Bioresorbable Microcarriers.

    PubMed

    Arkhipova, A Yu; Kotlyarova, M C; Novichkova, S G; Agapova, O I; Kulikov, D A; Kulikov, A V; Drutskaya, M S; Agapov, I I; Moisenovich, M M

    2016-02-01

    We fabricated bioresorbable microcarriers from water solution of Bombyx mori silk fi broin. The microcarriers are 3D structures with intricate surface and pores allowing penetration of culture medium, gas exchange, and cell adhesion. Fibroin molecules form hydrophobic structures and normally have a negative charge, which stimulates migration, but inhibits cell adhesion and makes it less effective. In order to improve adhesion efficiency and velocity, gelatin (hydrophilic biopolymer with integrin-recognizing RGD sequence) was added to the microcarrier composition. The resultant bioresorbable microcarriers support adhesion and proliferation of 3T3 murine fibroblasts. PMID:26899838

  1. Silk scaffolds with tunable mechanical capability for cell differentiation

    PubMed Central

    Bai, Shumeng; Han, Hongyan; Huang, Xiaowei; Xu, Weian; Kaplan, David L.; Zhu, Hesun; Lu, Qiang

    2015-01-01

    Bombyx mori silk fibroin is a promising biomaterial for tissue regeneration and is usually considered an “inert” material with respect to actively regulating cell differentiation due to few specific cell signaling peptide domains in the primary sequence and the generally stiffer mechanical properties due to crystalline content formed in processing. In the present study, silk fibroin porous 3D scaffolds with nanostructures and tunable stiffness were generated via a silk fibroin nanofiber-assisted lyophilization process. The silk fibroin nanofibers with high β-sheet content were added into the silk fibroin solutions to modulate the self-assembly, and to directly induce water-insoluble scaffold formation after lyophilization. Unlike previously reported silk fibroin scaffold formation processes, these new scaffolds had lower overall β-sheet content and softer mechanical properties for improved cell compatibility. The scaffold stiffness could be further tuned to match soft tissue mechanical properties, which resulted in different differentiation outcomes with rat bone marrow-derived mesenchymal stem cells towards myogenic and endothelial cells, respectively. Therefore, these silk fibroin scaffolds regulate cell differentiation outcomes due to their mechanical features. PMID:25858557

  2. Inhibitory effect of corn silk on skin pigmentation.

    PubMed

    Choi, Sang Yoon; Lee, Yeonmi; Kim, Sung Soo; Ju, Hyun Min; Baek, Ji Hwoon; Park, Chul-Soo; Lee, Dong-Hyuk

    2014-01-01

    In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin production inhibitory effect at the same concentration. The corn silk extract did not suppress tyrosinase activity but greatly reduced the expression of tyrosinase in Melan-A cells. In addition, corn silk extract was applied to the human face with hyperpigmentation, and skin color was measured to examine the degree of skin pigment reduction. The application of corn silk extract on faces with hyperpigmentation significantly reduced skin pigmentation without abnormal reactions. Based on the results above, corn silk has good prospects for use as a material for suppressing skin pigmentation. PMID:24595276

  3. Silk scaffolds with tunable mechanical capability for cell differentiation.

    PubMed

    Bai, Shumeng; Han, Hongyan; Huang, Xiaowei; Xu, Weian; Kaplan, David L; Zhu, Hesun; Lu, Qiang

    2015-07-01

    Bombyx mori silk fibroin is a promising biomaterial for tissue regeneration and is usually considered an "inert" material with respect to actively regulating cell differentiation due to few specific cell signaling peptide domains in the primary sequence and the generally stiffer mechanical properties due to crystalline content formed in processing. In the present study, silk fibroin porous 3D scaffolds with nanostructures and tunable stiffness were generated via a silk fibroin nanofiber-assisted lyophilization process. The silk fibroin nanofibers with high β-sheet content were added into the silk fibroin solutions to modulate the self-assembly, and to directly induce water-insoluble scaffold formation after lyophilization. Unlike previously reported silk fibroin scaffold formation processes, these new scaffolds had lower overall β-sheet content and softer mechanical properties for improved cell compatibility. The scaffold stiffness could be further tuned to match soft tissue mechanical properties, which resulted in different differentiation outcomes with rat bone marrow-derived mesenchymal stem cells toward myogenic and endothelial cells, respectively. Therefore, these silk fibroin scaffolds regulate cell differentiation outcomes due to their mechanical features. PMID:25858557

  4. Some autophagic and apoptotic features of programmed cell death in the anterior silk glands of the silkworm, Bombyx mori.

    PubMed

    Goncu, Ebru; Parlak, Osman

    2008-11-01

    Programmed cell death has been subdivided into two major groups: apoptosis and autophagic cell death. The anterior silk gland of Bombyx mori degenerates during larval-pupal metamorphosis. Our findings indicate that two types of programmed cell death features are observed during this physiological process. During the prepupal period, pyknosis of the nucleus, cell detachment,and membrane blebbing occur and they are the first signs of programmed cell death in the anterior silk glands. According to previous studies, all of these morphological appearances are common for both cell-death types. Autophagy features are also exhibited during the prepupal period. Levels of one of the lysosomal marker enzymes-acid phosphatase-are high during this period then decrease gradually. Vacuole formation begins to appear first at the basal surface of the cell, then expands to the apical surface just before the larval pupal ecdysis. After larval-pupal ecdysis, DNA fragmentation, which is the obvious biochemical marker of apoptosis, is detected in agarose gel electrophoresis, which also shows that caspase-like enzyme activities occur during the programmed cell death process of the anterior silk glands. Apoptosis and autophagic cell death interact with each other during the degeneration process of the anterior silk gland in Bombyx mori and this interaction occurs at a late phase of cell death. We suggest that apoptotic cell death only is not enough for whole gland degeneration and that more effective degeneration occurs with this cooperation. PMID:18838861

  5. Bioengineered Chimeric Spider Silk-Uranium Binding Proteins

    PubMed Central

    Krishnaji, Sreevidhya Tarakkad; Kaplan, David L.

    2014-01-01

    Heavy metals constitute a source of environmental pollution. Here, novel functional hybrid biomaterials for specific interactions with heavy metals are designed by bioengineering consensus sequence repeats from spider silk of Nephila clavipes with repeats of a uranium peptide recognition motif from a mutated 33-residue of calmodulin protein from Paramecium tetraurelia. The self-assembly features of the silk to control nanoscale organic/inorganic material interfaces provides new biomaterials for uranium recovery. With subsequent enzymatic digestion of the silk to concentrate the sequestered metals, options can be envisaged to use these new chimeric protein systems in environmental engineering, including to remediate environments contaminated by uranium. PMID:23212989

  6. High-Q silk fibroin whispering gallery microresonator.

    PubMed

    Xu, Linhua; Jiang, Xuefeng; Zhao, Guangming; Ma, Ding; Tao, Hu; Liu, Zhiwen; Omenetto, Fiorenzo G; Yang, Lan

    2016-09-01

    We have experimentally demonstrated an on-chip all-silk fibroin whispering gallery mode microresonator by using a simple molding and solution-casting technique. The quality factors of the fabricated silk protein microresonators are on the order of 105. A high-sensitivity thermal sensor was realized in this silk fibroin microtoroid with a sensitivity of -1.17 nm/K, that is 8 times higher than previous WGM resonator-based thermal sensors. This opens the way to fabricate biodegradable and biocompatible protein based microresonators on a flexible chip for biophotonics applications. PMID:27607686

  7. Spermidine enhances the silk production by mulberry silkworm.

    PubMed

    Lattala, Gayatri Manogna; Kandukuru, Kasturaiah; Gangupantula, Shamitha; Mamillapalli, Anitha

    2014-01-01

    Polyamines are ubiquitous low molecular weight polycationic aliphatic amines involved in diverse cellular processes. Spermidine (Spd), a polyamine, has been proved to be crucial for cell survival in various organisms. Our study reports the effect of Spd on the growth of Bombyx mori. Silkworms showed improved silk gland weight and economic parameters in the fifth instar larval stage when treated with different concentrations of Spd, in the range of 25-75 µM. The worms treated with Spd produced 31% more silk when compared with the control worms. Altogether, this study establishes that Spd-treated leaves can be fed into the larvae for better silk production. PMID:25502041

  8. Injectable Silk Foams for Soft Tissue Regeneration

    PubMed Central

    Bellas, E.; Lo, T.J.; Fournier, E.P.; Brown, J.E.; Abbott, R.D.; Gil, E.S.; Marra, K.G.; Rubin, J.P.; Leisk, G.G.; Kaplan, D.L.

    2015-01-01

    Soft tissue fillers are needed for restoration of a defect or augmentation of existing tissues. Autografts and lipotransfer have been under study for soft tissue reconstruction but yield inconsistent results, often with considerable resorption of the grafted tissue. A minimally invasive procedure would reduce scarring and recovery time as well as allow for the implant and/or grafted tissue to be placed closer to existing vasculature. Here, we demonstrate the feasibility of an injectable silk foam for soft tissue regeneration. Adipose derived stem cells survive and migrate through the foam over a 10 day period in vitro. The silk foams are also successfully injected into the subcutaneous space in a rat and over a 3 month period integrating with the surrounding native tissue. The injected foams are palpable and soft to the touch through the skin and returning to their original dimensions after pressure was applied and then released. The foams readily absorb lipoaspirate making the foams useful as a scaffold or template for existing soft tissue filler technologies, useful either as a biomaterial alone or in combination with the lipoaspirate. PMID:25323438

  9. Effects of Microwave Radiation on Selected Mechanical Properties of Silk

    NASA Astrophysics Data System (ADS)

    Reed, Emily Jane

    Impressive mechanical properties have served to peak interest in silk as an engineering material. In addition, the ease with which silk can be altered through processing has led to its use in various biomaterial applications. As the uses of silk branch into new territory, it is imperative (and inevitable) to discover the boundary conditions beyond which silk no longer performs as expected. These boundary conditions include factors as familiar as temperature and humidity, but may also include other less familiar contributions, such as exposure to different types of radiation. The inherent variations in mechanical properties of silk, as well as its sensitivity to moisture, suggest that in an engineering context silk is best suited for use in composite materials; that way, silk can be shielded from ambient moisture fluctuations, and the surrounding matrix allows efficient load transfer from weaker fibers to stronger ones. One such application is to use silk as a reinforcing fiber in epoxy composites. When used in this way, there are several instances in which exposure to microwave radiation is likely (for example, as a means of speeding epoxy cure rates), the effects of which remain mostly unstudied. It will be the purpose of this dissertation to determine whether selected mechanical properties of B. mori cocoon silk are affected by exposure to microwave radiation, under specified temperature and humidity conditions. Results of our analyses are directly applicable wherever exposure of silk to microwave radiation is possible, including in fiber reinforced epoxy composites (the entire composite may be microwaved to speed epoxy cure time), or when silk is used as a component in the material used to construct the radome of an aircraft (RADAR units use frequencies in the microwave range of the electromagnetic spectrum), or when microwave energy is used to sterilize biomaterials (such as cell scaffolds) made of silk. In general, we find that microwave exposure does not

  10. Wet-spinning of regenerated silk fiber from aqueous silk fibroin solution: discussion of spinning parameters.

    PubMed

    Yan, Jiaping; Zhou, Guanqiang; Knight, David P; Shao, Zhengzhong; Chen, Xin

    2010-01-11

    Regenerated silk fibroin (RSF) fibers were obtained by extruding a concentrated aqueous silk fibroin solution into an ammonium sulfate coagulation bath. A custom-made simplified industrial-type wet-spinning device with continuous mechanical postdraw was used. The effect of dope concentration, coagulation bath, extrusion rate, and postdraw treatment on the morphology of RSF fiber was examined. The results showed that although RSF fiber could be formed with dope concentration between 13 and 19% (w/w), the ones spun from 15% RSF solution showed the most regular morphology being dense and homogeneous in cross-section with a smooth surface and a uniform cylindrical shape. Though it had little effect on morphology, postdraw treatment especially under steam, significantly improved the mechanical properties of the RSF fibers. PMID:19860400

  11. Preparation of regenerated silk fibroin/silk sericin fibers by coaxial electrospinning.

    PubMed

    Hang, Yichun; Zhang, Yaopeng; Jin, Yuan; Shao, Huili; Hu, Xuechao

    2012-12-01

    The coaxial electrospinning using the regenerated silk fibroin (SF) and silk sericin (SS) aqueous solutions as the core and shell spinning dopes, respectively, was carried out to prepare regenerated SF/SS composite fibers with components and core-shell structure similar to the natural silkworm silks. It was found from the scanning electron microscope (SEM) and transmission electron microscope (TEM) results that the core dope (SF aqueous solution) flow rate (Q(c)) and the applied voltage (V) had some effects on the morphology of the composite fiber. With an increase in Q(c), the diameter nonuniformity and eccentricity of the core fiber became serious, while the increasing V played an inverse role. In this work, the suitable Q(c) for the fiber formation with better electrospinnability was about 6 μL/min, and the corresponding optimum V was 40 kV. Moreover, the results from Raman spectra analysis, modulated differential scanning calorimetry (MDSC), thermogravimetry (TG) measurement and mechanical property test showed that, compared with the pure SF fiber, the coaxially electrospun SF/SS fiber had more β-sheet conformation, better thermostability and mechanical properties. This was probably because that SS played significant roles in dehydrating SF molecules and inducing the conformational transition of SF to β-sheet structure. PMID:22935694

  12. Unravelling the biodiversity of nanoscale signatures of spider silk fibres

    NASA Astrophysics Data System (ADS)

    Silva, Luciano P.; Rech, Elibio L.

    2013-12-01

    Living organisms are masters at designing outstanding self-assembled nanostructures through a hierarchical organization of modular proteins. Protein-based biopolymers improved and selected by the driving forces of molecular evolution are among the most impressive archetypes of nanomaterials. One of these biomacromolecules is the myriad of compound fibroins of spider silks, which combine surprisingly high tensile strength with great elasticity. However, no consensus on the nano-organization of spider silk fibres has been reached. Here we explore the biodiversity of spider silk fibres, focusing on nanoscale characterization with high-resolution atomic force microscopy. Our results reveal an evolution of the nanoroughness, nanostiffness, nanoviscoelastic, nanotribological and nanoelectric organization of microfibres, even when they share similar sizes and shapes. These features are related to unique aspects of their molecular structures. The results show that combined nanoscale analyses of spider silks may enable the screening of appropriate motifs for bioengineering synthetic fibres from recombinant proteins.

  13. Synthetic Adhesive Attachment Discs based on Spider Pyriform Silk Architecture

    NASA Astrophysics Data System (ADS)

    Jain, Dharamdeep; Sahni, Vasav; Dhinojwala, Ali

    2014-03-01

    Among the variety of silks produced by spiders, pyriform silk is used in conjunction with the dragline silk to attach webs to different surfaces. Cob weaver spiders employ different architectural patterns to utilize the pyriform silk and form attachment joints with each pattern having a characteristic adhesive performance. The staple pin architecture is a one of the strongest attachment designs employed by spiders to attach their webs. Here we use a synthetic approach to create the a similar patterned architecture attachment discs on aluminum substrate using thermoplastic polyurethane. Measurable pull off forces are generated when the synthetic discs are peeled off a surface. This innovative adhesive strategy can be a source of design in various biomedical applications. Financial Support from National Science Foundation.

  14. Biopatterning of Silk Proteins for Soft Micro-optics.

    PubMed

    Pal, Ramendra K; Kurland, Nicholas E; Wang, Congzhou; Kundu, Subhas C; Yadavalli, Vamsi K

    2015-04-29

    Silk proteins from spiders and silkworms have been proposed as outstanding candidates for soft micro-optic and photonic applications because of their optical transparency, unique biological properties, and mechanical robustness. Here, we present a method to form microstructures of the two constituent silk proteins, fibroin and sericin for use as an optical biomaterial. Using photolithography, chemically modified silk protein photoresists are patterned in 2D arrays of periodic patterns and Fresnel zone plates. Angle-dependent iridescent colors are produced in these periodic micropatterns because of the Bragg diffraction. Silk protein photolithography can used to form patterns on different substrates including flexible sheets with features of any shape with high fidelity and resolution over large areas. Finally, we show that these mechanically stable and transparent iridescent architectures are also completely biodegradable. This versatile and scalable technique can therefore be used to develop biocompatible, soft micro-optic devices that can be degraded in a controlled manner. PMID:25853731

  15. [Research on the infrared spectrometry of aging silk fabrics].

    PubMed

    Zhang, Xiao-mei; Yuan, Si-xun

    2004-12-01

    The detection of deterioration degree of ancient silk fabrics will be helpful to the selection and developing of conservation methods. This paper carried out some research on the deterioration extent and mechanism of silk fabrics by means of infrared spectrometry. The samples artificially aged and excavated from Hubei, Innermongolia and Qinghai province, were analyzed. The artificially aging was done by simulating three main natural aging factors: light, heat and hydrolysis. The infrared spectrometric analysis results show that although the infrared spectrometry is a half-quantitative analysis method, for the hydrolysis-aged silk fabrics, it can give good qualitative and better half-quantitative analysis results because of the increase of carboxyl. So the infrared spectrometric analysis is of practical value for the conservation state and aging mechanism studies of ancient silk. PMID:15828318

  16. Native Silk Feedstock as a Model Biopolymer: A Rheological Perspective.

    PubMed

    Laity, Peter R; Holland, Chris

    2016-08-01

    Variability in silk's rheology is often regarded as an impediment to understanding or successfully copying the natural spinning process. We have previously reported such variability in unspun native silk extracted straight from the gland of the domesticated silkworm Bombyx mori and discounted classical explanations such as differences in molecular weight and concentration. We now report that variability in oscillatory measurements can be reduced onto a simple master-curve through normalizing with respect to the crossover. This remarkable result suggests that differences between silk feedstocks are rheologically simple and not as complex as originally thought. By comparison, solutions of poly(ethylene-oxide) and hydroxypropyl-methyl-cellulose showed similar normalization behavior; however, the resulting curves were broader than for silk, suggesting greater polydispersity in the (semi)synthetic materials. Thus, we conclude Nature may in fact produce polymer feedstocks that are more consistent than typical man-made counterparts as a model for future rheological investigations. PMID:27315508

  17. Studies on Application of Aroma Finish on Silk Fabric

    NASA Astrophysics Data System (ADS)

    Hipparagi, Sanganna Aminappa; Srinivasa, Thirumalappa; Das, Brojeswari; Naik, Subhas Venkatappa; Purushotham, Serampur Parappa

    2016-06-01

    Aromatic treatments on textiles have gained importance in the recent years. In the present article work has been done on fragrance finish application on silk material. Silk is an expensive natural fibre used for apparel purpose and known for its feel and appeal. Incorporation of fragrance material in silk product, will add more value to it. Present work focuses to impart durable aroma finish for silk products to be home washed or subjected to dry cleaning. Microencapsulated aroma chemical has been used for the treatment. Impregnation method, Exhaust method, Dip-Pad-Dry method and Spray method have been used to see the influence of application method on the uptake and performance. Evaluation of the aroma treated material has been done through subjective evaluation as per Odor Intensity Reference Scaling (OIRS). Effect of the aroma finishing on the physical properties of the fabric has also been studied. No adverse effect has been observed on the stiffness of the fabric after the aroma treatment.

  18. Unravelling the biodiversity of nanoscale signatures of spider silk fibres.

    PubMed

    Silva, Luciano P; Rech, Elibio L

    2013-01-01

    Living organisms are masters at designing outstanding self-assembled nanostructures through a hierarchical organization of modular proteins. Protein-based biopolymers improved and selected by the driving forces of molecular evolution are among the most impressive archetypes of nanomaterials. One of these biomacromolecules is the myriad of compound fibroins of spider silks, which combine surprisingly high tensile strength with great elasticity. However, no consensus on the nano-organization of spider silk fibres has been reached. Here we explore the biodiversity of spider silk fibres, focusing on nanoscale characterization with high-resolution atomic force microscopy. Our results reveal an evolution of the nanoroughness, nanostiffness, nanoviscoelastic, nanotribological and nanoelectric organization of microfibres, even when they share similar sizes and shapes. These features are related to unique aspects of their molecular structures. The results show that combined nanoscale analyses of spider silks may enable the screening of appropriate motifs for bioengineering synthetic fibres from recombinant proteins. PMID:24345771

  19. Nanostructure and molecular mechanics of spider dragline silk protein assemblies

    PubMed Central

    Keten, Sinan; Buehler, Markus J.

    2010-01-01

    Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 31-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre. PMID:20519206

  20. Injectable silk foams for the treatment of cervical insufficiency

    NASA Astrophysics Data System (ADS)

    Fournier, Eric P.

    Preterm birth is the leading cause of neonatal mortality, resulting in over 4,000 deaths each year. A significant risk factor for preterm birth is cervical insufficiency, the weakening and subsequent deformation of cervical tissue. Cervical insufficiency is both detectable and treatable but current treatments are lacking. The most common approach requires multiple invasive procedures. This work investigates the injection of silk foams, a minimally-invasive method for supporting cervical tissue. Silk offers many advantages for use as a biomaterial including strength, versatility, and biocompatibility. Injectable silk foams will minimize patient discomfort while also providing more targeted and personalized treatment. A battery of mechanical testing was undertaken to determine silk foam response under physiologically relevant loading and environmental conditions. Mechanical testing was paired with analysis of foam morphology and structure that illustrated the effects of injection on pore geometry and size. Biological response to silk foams was evaluated using an in vitro degradation study and subcutaneous in vivo implantation in a mouse model. Results showed that foams exceeded the mechanical requirements for stiffening cervical tissue, although the current injection process limits foam size. Injection was shown to cause measurable but localized foam deformation. This work indicates that silk foams are a feasible treatment option for cervical insufficiency but challenges remain with foam delivery.

  1. Silk Fiber Mechanics from Multiscale Force Distribution Analysis

    PubMed Central

    Cetinkaya, Murat; Xiao, Senbo; Markert, Bernd; Stacklies, Wolfram; Gräter, Frauke

    2011-01-01

    Here we decipher the molecular determinants for the extreme toughness of spider silk fibers. Our bottom-up computational approach incorporates molecular dynamics and finite element simulations. Therefore, the approach allows the analysis of the internal strain distribution and load-carrying motifs in silk fibers on scales of both molecular and continuum mechanics. We thereby dissect the contributions from the nanoscale building blocks, the soft amorphous and the strong crystalline subunits, to silk fiber mechanics. We identify the amorphous subunits not only to give rise to high elasticity, but to also ensure efficient stress homogenization through the friction between entangled chains, which also allows the crystals to withstand stresses as high as 2 GPa in the context of the amorphous matrix. We show that the maximal toughness of silk is achieved at 10–40% crystallinity depending on the distribution of crystals in the fiber. We also determined a serial arrangement of the crystalline and amorphous subunits in lamellae to outperform a random or a parallel arrangement, putting forward what we believe to be a new structural model for silk and other semicrystalline materials. The multiscale approach, not requiring any empirical parameters, is applicable to other partially ordered polymeric systems. Hence, it is an efficient tool for the design of artificial silk fibers. PMID:21354403

  2. Clinical Outcomes of Silk Patch in Acute Tympanic Membrane Perforation

    PubMed Central

    Lee, Jun Ho; Lee, Joong Seob; Kim, Dong-Kyu

    2015-01-01

    Objectives The silk patch is a thin transparent patch that is produced from silk fibroin. In this study, we investigated the treatment effects of the silk patch in patients with traumatic tympanic membrane perforation (TTMP). Methods The closure rate, otorrhea rate, and closure time in all patients and the closure time in successful patients were compared between the paper patch and silk patch groups. Results Demographic data (gender, site, age, traumatic duration, preoperative air-bone gap, and perforation size and location) were not significantly different between the two groups. The closure rate and otorrhea rate were not significantly different between the two groups. However, the closure time was different between the two groups (closure time of all patients, P=0.031; closure time of successful patients, P=0.037). Conclusion The silk patch which has transparent, elastic, adhesive, and hyper-keratinizing properties results in a more efficient closure time than the paper patch in the treatment of TTMP patients. We therefore believe that the silk patch should be recommended for the treatment of acute tympanic membrane perforation. PMID:26045909

  3. Formation of different gold nanostructures by silk nanofibrils.

    PubMed

    Fang, Guangqiang; Yang, Yuhong; Yao, Jinrong; Shao, Zhengzhong; Chen, Xin

    2016-07-01

    Metal nanostructures that have unique size- and shape-dependent electronic, optical and chemical properties gain more and more attention in modern science and technology. In this article, we show the possibility that we are able to obtain different gold nanostructures simply with the help of silk nanofibrils. We demonstrate that only by varying the pH of the reaction solution, we get gold nanoparticles, nano-icosahedrons, nanocubes, and even microplates. Particularly, we develop a practical method for the preparation of gold microplates in acid condition in the presence of silk nanofibrils, which is impossible by using other forms of silk protein. We attribute the role of silk nanofibrils in the formation of gold nanostructure to their reduction ability from several specific amino acid residues, and the suitable structural anisotropic features to sustain the crystal growth after the reduction process. Although the main purpose of this article is to demonstrate that silk nanofibrils are able to mediate the formation of different gold nanostructure, we show the potential applications of these resulting gold nanostructures, such as surface-enhanced Raman scattering (SERS) and photothermal transformation effect, as same as those produced by other methods. In conclusion, we present in this communication a facile and green synthesis route to prepare various gold nanostructures with silk nanofibrils by simply varying pH in the reaction system, which has remarkable advantages in future biomedical applications. PMID:27127067

  4. Silk Fibroin as Edible Coating for Perishable Food Preservation.

    PubMed

    Marelli, B; Brenckle, M A; Kaplan, D L; Omenetto, F G

    2016-01-01

    The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits' shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material. PMID:27151492

  5. Transdermal Delivery Devices: Fabrication, Mechanics and Drug Release from Silk**

    PubMed Central

    Raja, Waseem K.; MacCorkle, Scott; Diwan, Izzuddin M.; Abdurrob, Abdurrahman; Lu, Jessica; Omenetto, Fiorenzo G.; Kaplan, David L.

    2013-01-01

    Microneedles are a relatively simple, minimally invasive and painless approach to deliver drugs across the skin. However, there remain limitations with this approach because of the materials most commonly utilized for such systems. Silk protein, with tunable and biocompatibility properties, is a useful biomaterial to overcome the current limitations with microneedles. Silk devices preserve drug activity, offer superior mechanical properties and biocompatibility, can be tuned for biodegradability, and can be processed under aqueous, benign conditions. In the present work, we report the fabrication of dense microneedle arrays from silk with different drug release kinetics. The mechanical properties of the microneedle patches are tuned by post-fabrication treatments or by loading the needles with silk microparticles to increase capacity and mechanical strength. Drug release is further enhanced by the encapsulation of the drugs in the silk matrix and coating with a thin dissolvable drug layer. The microneedles are used on human cadaver skin and drugs were delivered successfully. The various attributes demonstrated suggest that silk-based microneedle devices can provide significant benefit as a platform material for transdermal drug delivery. PMID:23653252

  6. Silk Fibroin as Edible Coating for Perishable Food Preservation

    NASA Astrophysics Data System (ADS)

    Marelli, B.; Brenckle, M. A.; Kaplan, D. L.; Omenetto, F. G.

    2016-05-01

    The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits’ shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material.

  7. Transmission Electron Microscopy of Bombyx Mori Silk Fibers

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Martin, D. C.

    1997-03-01

    The microstructure of B. Mori silk fibers before and after degumming was examined by TEM, selected area electron diffraction (SAED), WAXS and low voltage SEM. SEM micrographs of the neat cocoon revealed a network of pairs of twisting filaments. After degumming, there were only individual filaments showing a surface texture consistent with an oriented fibrillar structure in the fiber interior. WAXS patterns confirmed the oriented beta-sheet crystal structure common to silkworm and spider silks. Low dose SAED results were fully consistent with the WAXS data, and revealed that the crystallographic texture did not vary significantly across the fiber diameter. TEM observations of microtomed fiber cross sections indicated a somewhat irregular shape, and also revealed a 0.5-2 micron sericin coating which was removed by the degumming process. TEM observations of the degummed silk fiber showed banded features with a characteristic spacing of nominally 600 nm along the fiber axis. These bands were oriented in a roughly parabolic or V-shape pointing along one axis within a given fiber. We hypothesize that this orientation is induced by the extrusion during the spinning process. Equatorial DF images revealed that axial and lateral sizes of the β-sheet crystallites in silk fibroin ranged from 20 to 170 nm and from 1 to 24 nm, respectively. Crazes developed in the degummed silk fiber parallel to the fiber direction. The formation of these crazes suggests that there are significant lateral interactions between fibrils in silk fibers.

  8. Compliant threads maximize spider silk connection strength and toughness

    PubMed Central

    Meyer, Avery; Pugno, Nicola M.; Cranford, Steven W.

    2014-01-01

    Millions of years of evolution have adapted spider webs to achieve a range of functionalities, including the well-known capture of prey, with efficient use of material. One feature that has escaped extensive investigation is the silk-on-silk connection joints within spider webs, particularly from a structural mechanics perspective. We report a joint theoretical and computational analysis of an idealized silk-on-silk fibre junction. By modifying the theory of multiple peeling, we quantitatively compare the performance of the system while systematically increasing the rigidity of the anchor thread, by both scaling the stress–strain response and the introduction of an applied pre-strain. The results of our study indicate that compliance is a virtue—the more extensible the anchorage, the tougher and stronger the connection becomes. In consideration of the theoretical model, in comparison with rigid substrates, a compliant anchorage enormously increases the effective adhesion strength (work required to detach), independent of the adhered thread itself, attributed to a nonlinear alignment between thread and anchor (contact peeling angle). The results can direct novel engineering design principles to achieve possible load transfer from compliant fibre-to-fibre anchorages, be they silk-on-silk or another, as-yet undeveloped, system. PMID:25008083

  9. Silk fabrics in the management of atopic dermatitis.

    PubMed

    Ricci, Giampaolo; Neri, Iria; Ricci, Lorenza; Patrizi, Annalisa

    2012-03-01

    Many factors may worsen atopic dermatitis (AD) including sweating, skin infections, food, inhalant allergens, climatic conditions, stress, and chemical or physical irritants. Especially in children, clothing can be an effective barrier against flare-inducing factors and persistent scratching, allowing more rapid improvement of the eczematous lesions. On the contrary, some fabrics used for clothing may exacerbate skin conditions due to their rough fibers, such as wool and nylon. Conventional silk has smooth fibers that are generally woven for textiles in the manufacturing of clothes, but this material is not particularly useful in the management of children with AD since it reduces transpiration and may cause discomfort. Herein, we evaluate the data concerning a special silk fabric (MICROAIR DermaSilk®) shown to be suitable for patients with AD. The unique properties of this knitted silk allow the skin to breathe and lack irritative potential. Moreover, this fabric is treated with a water-resistant antimicrobial finish known as AEGIS AEM 5772/5. This novel knitted silk fabric appears to be useful in managing children with AD due to its non-irritating and antibacterial features. Additionally, a synthetic silk-like fabric (DermaTherapy®) has received US FDA clearance as a Class I medical device and is commercially available as bedding; their use by AD patients has shown interesting results. PMID:22446819

  10. Piriform Spider Silk Sequences Reveal Unique Repetitive Elements

    PubMed Central

    Perry, David J.; Bittencourt, Daniela; Siltberg-Liberles, Jessica; Rech, Elibio L.; Lewis, Randolph V.

    2010-01-01

    Orb-weaving spider silk fibers are assembled from very large, highly repetitive proteins. The repeated segments contain, in turn, short, simple repetitive amino acid motifs that account for the physical and mechanical properties of the assembled fiber. Of the six orb-weaver silk fibroins, the piriform silk that makes the attachment discs, which lashes the joints of the web and attaches dragline silk to surfaces has not been previously characterized. Piriform silk protein cDNAs were isolated from phage libraries of three species, A. trifasciata, N. clavipes, and N. cruentata. The deduced amino acid sequences from these genes revealed two new repetitive motifs: an alternating proline motif where every other amino acid is proline, and a glutamine-rich motif of 6 to 8 amino acids. Similar to other spider silk proteins, the repeated segments are large (>200 amino acids) and highly homogenized within a species. There is also substantial sequence similarity across the genes from the three species with particular conservation of the repetitive motifs. Northern blot analysis revealed that the messenger RNA is larger than 11kb and is expressed exclusively in the piriform glands of the spider. Phylogenetic analysis of the C-terminal regions of the new proteins with published spidroins robustly shows that the pirifom sequences form an ortholog group. PMID:20954740

  11. Amorphous Silk Fibroin Membranes for Separation of CO2

    NASA Technical Reports Server (NTRS)

    Aberg, Christopher M.; Patel, Anand K.; Gil, Eun Seok; Spontak, Richard J.; Hagg, May-Britt

    2009-01-01

    Amorphous silk fibroin has shown promise as a polymeric material derivable from natural sources for making membranes for use in removing CO2 from mixed-gas streams. For most applications of silk fibroin, for purposes other than gas separation, this material is used in its highly crystalline, nearly natural form because this form has uncommonly high tensile strength. However, the crystalline phase of silk fibroin is impermeable, making it necessary to convert the material to amorphous form to obtain the high permeability needed for gas separation. Accordingly, one aspect of the present development is a process for generating amorphous silk fibroin by treating native silk fibroin in an aqueous methanol/salt solution. The resulting material remains self-standing and can be prepared as thin film suitable for permeation testing. The permeability of this material by pure CO2 has been found to be highly improved, and its mixed-gas permeability has been found to exceed the mixed-gas permeabilities of several ultrahigh-CO2-permeable synthetic polymers. Only one of the synthetic polymers poly(trimethylsilylpropyne) [PTMSP] may be more highly permeable by CO2. PTMSP becomes unstable with time, whereas amorphous silk should not, although at the time of this reporting this has not been conclusively proven.

  12. Silk Fibroin as Edible Coating for Perishable Food Preservation

    PubMed Central

    Marelli, B.; Brenckle, M. A.; Kaplan, D. L.; Omenetto, F. G.

    2016-01-01

    The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits’ shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material. PMID:27151492

  13. Inkjet printing of silk nest arrays for cell hosting.

    PubMed

    Suntivich, Rattanon; Drachuk, Irina; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V

    2014-04-14

    An inkjet printing approach is presented for the facile fabrication of microscopic arrays of biocompatible silk "nests" capable of hosting live cells for prospective biosensors. The patterning of silk fibroin nests were constructed by the layer-by-layer (LbL) assembly of silk polyelectrolytes chemically modified with poly-(l-lysine) and poly-(l-glutamic acid) side chains. The inkjet-printed silk circular regions with a characteristic "nest" shape had diameters of 70-100 μm and a thickness several hundred nanometers were stabilized by ionic pairing and by the formation of the silk II crystalline secondary structure. These "locked-in" silk nests remained anchored to the substrate during incubation in cell growth media to provide a biotemplated platform for printing-in, immobilization, encapsulation and growth of cells. The process of inkjet-assisted printing is versatile and can be applied on any type of substrate, including rigid and flexible, with scalability and facile formation. PMID:24605757

  14. Effects of degumming conditions on electro-spinning rate of regenerated silk.

    PubMed

    Yoon, Kyunghwan; Lee, Ha Ni; Ki, Chang Seok; Fang, Dufei; Hsiao, Benjamin S; Chu, Benjamin; Um, In Chul

    2013-10-01

    Electro-spun silk webs are potentially good candidates as tissue engineering scaffolds owing to their good bio- and cyto-compatibility. However, the low fabrication rate of electro-spun silk mats has been one of the obstacles in the mass production of such nanofibrous silk mats in applications to the biomedical field. In this study, the effects of degumming ratio and silk concentration on the electro-spinning process were investigated by using regenerated silk with different residual sericin contents and different silk concentrations in terms of the morphology and structure of the electro-spun silk web. The rate of production of electro-spun silk mats could be increased by approximately 5 fold at a degumming ratio of 19.5%. The electro-spinning rate of silk was affected by two main factors: (1) dope solution viscosity and (2) degumming ratio of silk. The conductivity of the silk dope solution, however, had little effects on the electro-spinning of regenerated silk. A constant spun fiber morphology was observed within the electro-spinning rate range (0.3-1.4 ml/h). Fourier transform infrared spectroscopy showed that partial β-sheet crystallization occurred during electro-spinning. The molecular conformation was relatively unaffected by the electro-spinning rate of silk. PMID:23817099

  15. Identification of multiple ear-colonizing insect and disease resistance in CIMMYT maize inbred lines with varying levels of silk maysin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ninety four corn inbred lines selected from International Center for the Improvement of Maize and Wheat (CIMMYT) in Mexico were evaluated for levels of silk maysin in 2001 and 2002. Damage by major ear-feeding insects [i.e., the corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), the m...

  16. Electricity from the Silk Cocoon Membrane

    PubMed Central

    Tulachan, Brindan; Meena, Sunil Kumar; Rai, Ratan Kumar; Mallick, Chandrakant; Kusurkar, Tejas Sanjeev; Teotia, Arun Kumar; Sethy, Niroj Kumar; Bhargava, Kalpana; Bhattacharya, Shantanu; Kumar, Ashok; Sharma, Raj Kishore; Sinha, Neeraj; Singh, Sushil Kumar; Das, Mainak

    2014-01-01

    Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management. PMID:24961354

  17. Laminar silk scaffolds for aligned tissue fabrication

    PubMed Central

    Mandal, Biman B.; Gil, Eun Seok; Panilaitis, Bruce; Kaplan, David L.

    2013-01-01

    3D biomaterial scaffolds with aligned architecture are of vital importance in tissue regeneration to mimic native tissue hierarchy and hence function. We demonstrate a generic method to produce aligned biomaterial scaffolds using the physics of directional ice freezing. Homogeneously aligned 3D silk scaffold with high porosity and alignment was demonstrated. The method can be adapted to a wide range of polymers and is devoid of any chemical reactions, thus avoiding potential complications associated with by-products and purification procedures. Subsequently, the 3D aligned system was tested for mechanical properties and cellular responses with chondrocytes and bone marrow derived human mesenchymal stem cells, assessing survival, proliferation and differentiation. In vivo tests suggested biocompatibility of the matrices for future tissue engineering applications, specifically in areas where high cellular alignment is needed. PMID:23161731

  18. Electricity from the silk cocoon membrane.

    PubMed

    Tulachan, Brindan; Meena, Sunil Kumar; Rai, Ratan Kumar; Mallick, Chandrakant; Kusurkar, Tejas Sanjeev; Teotia, Arun Kumar; Sethy, Niroj Kumar; Bhargava, Kalpana; Bhattacharya, Shantanu; Kumar, Ashok; Sharma, Raj Kishore; Sinha, Neeraj; Singh, Sushil Kumar; Das, Mainak

    2014-01-01

    Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management. PMID:24961354

  19. Multifunctional Silk Nerve Guides for Axon Outgrowth

    NASA Astrophysics Data System (ADS)

    Tupaj, Marie C.

    Peripheral nerve regeneration is a critical issue as 2.8% of trauma patients present with this type of injury, estimating a total of 200,000 nerve repair procedures yearly in the United States. While the peripheral nervous system exhibits slow regeneration, at a rate of 0.5 mm -- 9 mm/day following trauma, this regenerative ability is only possible under certain conditions. Clinical repairs have changed slightly in the last 30 years and standard methods of treatment include suturing damaged nerve ends, allografting, and autografting, with the autograft the gold standard of these approaches. Unfortunately, the use of autografts requires a second surgery and there is a shortage of nerves available for grafting. Allografts are a second option however allografts have lower success rates and are accompanied by the need of immunosuppressant drugs. Recently there has been a focus on developing nerve guides as an "off the shelf" approach. Although some natural and synthetic guidance channels have been approved by the FDA, these nerve guides are unfunctionalized and repair only short gaps, less than 3 cm in length. The goal of this project was to identify strategies for functionalizing peripheral nerve conduits for the outgrowth of neuron axons in vitro . To accomplish this, two strategies (bioelectrical and biophysical) were indentified for increasing axon outgrowth and promoting axon guidance. Bioelectrical strategies exploited electrical stimulation for increasing neurite outgrowth. Biophysical strategies tested a range of surface topographies for axon guidance. Novel methods were developed for integrating electrical and biophysical strategies into silk films in 2D. Finally, a functionalized nerve conduit system was developed that integrated all strategies for the purpose of attaching, elongating, and guiding nervous tissue in vitro. Future directions of this work include silk conduit translation into a rat sciatic nerve model in vivo for the purpose of repairing long

  20. The Potential of Silk and Silk-Like Proteins as Natural Mucoadhesive Biopolymers for Controlled Drug Delivery

    PubMed Central

    Brooks, Amanda E.

    2015-01-01

    Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1) deliver sensitive biologic molecules, (2) promote intimate contact between the mucosa and the drug, and (3) prolong the drug's local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery. PMID:26636069

  1. The Potential of Silk and Silk-Like Proteins as Natural Mucoadhesive Biopolymers for Controlled Drug Delivery.

    PubMed

    Brooks, Amanda E

    2015-01-01

    Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1) deliver sensitive biologic molecules, (2) promote intimate contact between the mucosa and the drug, and (3) prolong the drug's local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery. PMID:26636069

  2. Comparative proteomic analysis of the silkworm middle silk gland reveals the importance of ribosome biogenesis in silk protein production.

    PubMed

    Li, Jian-ying; Ye, Lu-peng; Che, Jia-qian; Song, Jia; You, Zheng-ying; Yun, Ki-chan; Wang, Shao-hua; Zhong, Bo-xiong

    2015-08-01

    The silkworm middle silk gland (MSG) is the sericin synthesis and secretion unique sub-organ. The molecular mechanisms of regulating MSG protein synthesis are largely unknown. Here, we performed shotgun proteomic analysis on the three MSG subsections: the anterior (MSG-A), middle (MSG-M), and posterior (MSG-P) regions. The results showed that more strongly expressed proteins in the MSG-A were involved in multiple processes, such as silk gland development and silk protein protection. The proteins that were highly expressed in the MSG-M were enriched in the ribosome pathway. MSG-P proteins with stronger expression were mainly involved in the oxidative phosphorylation and citrate cycle pathways. These results suggest that the MSG-M is the most active region in the sericin synthesis. Furthermore, comparing the proteome of the MSG with the posterior silk gland (PSG) revealed that the specific and highly expressed proteins in the MSG were primarily involved in the ribosome and aminoacyl-tRNA biosynthesis pathways. These results indicate that silk protein synthesis is much more active as a result of the enhancement of translation-related pathways in the MSG. These results also suggest that enhancing ribosome biogenesis is important to the efficient synthesis of silk proteins. PMID:26051239

  3. The potential of silk and silk-like proteins as natural mucoadhesive biopolymers for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Brooks, Amanda

    2015-11-01

    Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1) deliver sensitive biologic molecules, (2) promote intimate contact between the mucosa and the drug, and (3) prolong the drug’s local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery.

  4. Synthetic spider silk production on a laboratory scale.

    PubMed

    Hsia, Yang; Gnesa, Eric; Pacheco, Ryan; Kohler, Kristin; Jeffery, Felicia; Vierra, Craig

    2012-01-01

    As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks. PMID:22847722

  5. Conformation transition kinetics of Bombyx mori silk protein.

    PubMed

    Chen, Xin; Shao, Zhengzhong; Knight, David P; Vollrath, Fritz

    2007-07-01

    Time-resolved FTIR analysis was used to monitor the conformation transition induced by treating regenerated Bombyx mori silk fibroin films and solutions with different concentrations of ethanol. The resulting curves showing the kinetics of the transition for both films and fibroin solutions were influenced by the ethanol concentration. In addition, for silk fibroin solutions the protein concentration also had an effect on the kinetics. At low ethanol concentrations (for example, less than 40% v/v in the case of film), films and fibroin solutions showed a phase in which beta-sheets slowly formed at a rate dependent on the ethanol concentration. Reducing the concentration of the fibroin in solutions also slowed the formation of beta-sheets. These observations suggest that this phase represents a nucleation step. Such a nucleation phase was not seen in the conformation transition at ethanol concentrations > 40% in films or > 50% in silk fibroin solutions. Our results indicate that the ethanol-induced conformation transition of silk fibroin in films and solutions is a three-phase process. The first phase is the initiation of beta-sheet structure (nucleation), the second is a fast phase of beta-sheet growth while the third phase represents a slow perfection of previously formed beta-sheet structure. The nucleation step can be very fast or relatively slow, depending on factors that influence protein chain mobility and intermolecular hydrogen bond formation. The findings give support to the previous evidence that natural silk spinning in silkworms is nucleation-dependent, and that silkworms (like spiders) use concentrated silk protein solutions, and careful control of the pH value and metallic ion content of the processing environment to speed up the nucleation step to produce a rapid conformation transition to convert the water soluble spinning dope to a tough solid silk fiber. PMID:17436322

  6. Correlation between fibroin amino acid sequence and physical silk properties.

    PubMed

    Fedic, Robert; Zurovec, Michal; Sehnal, Frantisek

    2003-09-12

    The fiber properties of lepidopteran silk depend on the amino acid repeats that interact during H-fibroin polymerization. The aim of our research was to relate repeat composition to insect biology and fiber strength. Representative regions of the H-fibroin genes were sequenced and analyzed in three pyralid species: wax moth (Galleria mellonella), European flour moth (Ephestia kuehniella), and Indian meal moth (Plodia interpunctella). The amino acid repeats are species-specific, evidently a diversification of an ancestral region of 43 residues, and include three types of regularly dispersed motifs: modifications of GSSAASAA sequence, stretches of tripeptides GXZ where X and Z represent bulky residues, and sequences similar to PVIVIEE. No concatenations of GX dipeptide or alanine, which are typical for Bombyx silkworms and Antheraea silk moths, respectively, were found. Despite different repeat structure, the silks of G. mellonella and E. kuehniella exhibit similar tensile strength as the Bombyx and Antheraea silks. We suggest that in these latter two species, variations in the repeat length obstruct repeat alignment, but sufficiently long stretches of iterated residues get superposed to interact. In the pyralid H-fibroins, interactions of the widely separated and diverse motifs depend on the precision of repeat matching; silk is strong in G. mellonella and E. kuehniella, with 2-3 types of long homogeneous repeats, and nearly 10 times weaker in P. interpunctella, with seven types of shorter erratic repeats. The high proportion of large amino acids in the H-fibroin of pyralids has probably evolved in connection with the spinning habit of caterpillars that live in protective silk tubes and spin continuously, enlarging the tubes on one end and partly devouring the other one. The silk serves as a depot of energetically rich and essential amino acids that may be scarce in the diet. PMID:12816957

  7. Reversible assembly of β-sheet nanocrystals within caddisfly silk.

    PubMed

    Addison, J Bennett; Weber, Warner S; Mou, Qiushi; Ashton, Nicholas N; Stewart, Russell J; Holland, Gregory P; Yarger, Jeffery L

    2014-04-14

    Nuclear magnetic resonance (NMR) and X-ray diffraction (XRD) experiments reveal the structural importance of divalent cation-phosphate complexes in the formation of β-sheet nanocrystals from phosphorylated serine-rich regions within aquatic silk from caddisfly larvae of the species Hesperophyla consimilis. Wide angle XRD data on native caddisfly silk show that the silk contains a significant crystalline component with a repetitive orthorhombic unit cell aligned along the fiber axis with dimensions of 5.9 Å × 23.2 Å × 17.3 Å. These nanocrystalline domains depend on multivalent cations, which can be removed through chelation with ethylenediaminetetraacetic acid (EDTA). A comparison of wide angle X-ray diffraction data before and after EDTA treatment reveals that the integrated peak area of reflections corresponding to the nanocrystalline regions decreases by 15-25% while that of the amorphous background reflections increases by 20%, indicating a partial loss of crystallinity. (31)P solid-state NMR data on native caddisfly silk also show that the phosphorylated serine-rich motifs transform from a rigid environment to one that is highly mobile and water-solvated after treatment with EDTA. The removal of divalent cations through exchange and chelation has therefore caused a collapse of the β-sheet structure. However, NMR results show that the rigid phosphorus environment is mostly recovered after the silk is re-treated with calcium. The (31)P spin-lattice (T1) relaxation times were measured at 7.6 ± 3.1 and 1 ± 0.5 s for this calcium-recovered sample and the native silk sample, respectively. The shorter (31)P T1 relaxation times measured for the native silk sample are attributed to the presence of paramagnetic iron that is stripped away during EDTA chelation treatment and replaced with diamagnetic calcium. PMID:24576204

  8. Restriction fragment length polymorphism markers associated with silk maysin, antibiosis to corn earworm (Lepidoptera: Noctuidae) larvae, in a dent and sweet corn cross.

    PubMed

    Guo, B Z; Zhang, Z J; Li, R G; Widstrom, N W; Snook, M E; Lynch, R E; Plaisted, D

    2001-04-01

    Maysin, a C-glycosylflavone in maize silk, has insecticidal activity against corn earworm, Helicoverpa zea (Boddie), larvae. Sweet corn, Zea mays L., is a vulnerable crop to ear-feeding insects and requires pesticide protection from ear damage. This study was conducted to identify maize chromosome regions associated with silk maysin concentration and eventually to transfer and develop high silk maysin sweet corn lines with marker-assisted selection (MAS). Using an F2 population derived from SC102 (high maysin dent corn) and B31857 (low maysin sh2 sweet corn), we detected two major quantitative trait loci (QTL). It was estimated that 25.6% of the silk maysin variance was associated with segregation in the genomic region of npi286 (flanking to p1) on chromosome 1S. We also demonstrated that a1 on chromosome 3L had major contribution to silk maysin (accounted for 15.7% of the variance). Locus a1 has a recessive gene action for high maysin with the presence of functional p1 allele. Markers umc66a (near c2) and umc105a on chromosome 9S also were detected in this analysis with minor contribution. A multiple-locus model, which included npi286, a1, csu3 (Bin 1.05), umc245 (Bin 7.05), agrr21 (Bin 8.09), umc105a, and the epistatic interactions npi286 x a1, a1 x agrr21, csu3 x umc245, and umc105a x umc245, accounted for 76.3% of the total silk maysin variance. Tester crosses showed that at the a1 locus, SC102 has functional A1 alleles and B31857 has homozygous recessive a1 alleles. Individuals of (SC102 x B31857) x B31857 were examined with MAS and plants with p1 allele from SC102 and homozygous a1 alleles from B31857 had consistent high silk maysin. Marker-assisted selection seems to be a suitable method to transfer silk maysin to sweet corn lines to reduce pesticide application. PMID:11332855

  9. Effect of degumming ratio on wet spinning and post drawing performance of regenerated silk.

    PubMed

    Kim, Hyun Ju; Um, In Chul

    2014-06-01

    Regenerated silk fiber has attracted considerable attention because of its good blood compatibility and cytocompatibility, and the advantages of regenerated fiber, such as control of structure and properties. In this study, wet spun regenerated silk fibers were fabricated by controlling degumming ratio and silk concentration. Rheometry, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to examine wet spinning and post drawing performance of silk. Dope solution viscosity was found to be a key factor determining the continuous fiber formation of silk and 0.07Pa·s was essential for continuous fiber formation. Maximum draw ratio of the as-spun silk fiber was strongly affected by two factors: (1) crystallinity index from FTIR spectroscopy and (2) degumming ratio of silk. XRD of the wet spun silk fibers was not changed by the degumming ratio, silk concentration, and draw ratio. However, the crystallinity indices from FTIR were changed by these factors. Drawing-induced short-range crystallites of the silk were proposed based on FTIR and XRD. These results also show that XRD and FTIR can be used to characterize the micro-structure of silk complementarily because of their different detection characteristics: XRD and FTIR spectroscopy are sensitive to the detection of long- and short-range ordered crystallites of silk, respectively. PMID:24709013

  10. Advanced silk material spun by a transgenic silkworm promotes cell proliferation for biomedical application.

    PubMed

    Wang, Feng; Xu, Hanfu; Wang, Yuancheng; Wang, Riyuan; Yuan, Lin; Ding, Huan; Song, Chunnuan; Ma, Sanyuan; Peng, Zhixin; Peng, Zhangchuan; Zhao, Ping; Xia, Qingyou

    2014-12-01

    Natural silk fiber spun by the silkworm Bombyx mori is widely used not only for textile materials, but also for biofunctional materials. In the present study, we genetically engineered an advanced silk material, named hSFSV, using a transgenic silkworm, in which the recombinant human acidic fibroblast growth factor (hFGF1) protein was specifically synthesized in the middle silk gland and secreted into the sericin layer to surround the silk fiber using our previously optimized sericin1 expression system. The content of the recombinant hFGF1 in the hSFSV silk was estimated to be approximate 0.07% of the cocoon shell weight. The mechanical properties of hSFSV raw silk fiber were enhanced slightly compared to those of the wild-type raw silk fiber, probably due to the presence of the recombinant of hFGF1 in the sericin layer. Remarkably, the hSFSV raw silk significantly stimulated the cell growth and proliferation of NIH/3T3 mouse embryonic fibroblast cells, suggesting that the mitogenic activity of recombinant hFGF1 was well maintained and functioned in the sericin layer of hSFSV raw silk. These results show that the genetically engineered raw silk hSFSV could be used directly as a fine biomedical material for mass application. In addition, the strategy whereby functional recombinant proteins are expressed in the sericin layer of silk might be used to create more genetically engineered silks with various biofunctions and applications. PMID:24980060

  11. Role of pH and charge on silk protein assembly in insects and spiders

    NASA Astrophysics Data System (ADS)

    Foo, C. Wong Po; Bini, E.; Hensman, J.; Knight, D. P.; Lewis, R. V.; Kaplan, D. L.

    2006-02-01

    Silk fibers possess impressive mechanical properties, dependant, in part, on the crystalline β-sheets silk II conformation. The transition to silk II from soluble silk I-like conformation in silk glands, is thought to originate in the spinning ducts immediately before the silk is drawn down into a fiber. However the assembly process of these silk molecules into fibers, whether in silkworms or spiders, is not well understood. Extensional flow, protein concentration, pH and metal ion concentrations are thought to be most important in in vivo silk processing and in affecting structural conformations. We look at how parameters such as pH, [Ca2+], [K+], and [Cu2+], and water content, interact with the domain structure of silk proteins towards the successful storage and processing of these concentrated hydrophobic silk proteins. Our recent domain mapping studies of all known silk proteins, and 2D Raman spectroscopy, NMR, and DLS studies performed on sections of silkworm gland, suggest that low pH and gradual water removal promote intermolecular over intramolecular hydrogen bonding. This discussion helps to provide the necessary ground rules towards the design of silk protein analogues with specific hydrophobicity and charge profiles to optimize expression, solubility and assembly with implications in structural biology and material science.

  12. Design and Research of Service Platform for Protection and Dissemination of Cultural Heritage Resources of The Silk Road in the Territory of China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Zhang, W.; Zeng, S. J.; Na, W.; Yang, H.; Huang, J.; Tan, X. D.; Sun, Z. J.

    2015-08-01

    The Silk Road, a major traffic route across the Eurasia continent, has been a convergence for the exchange, communication and dissemination of various cultures such as nations, materials, religions and arts for more than two thousand years. And the cultural heritage along the long and complicate route has been also attractive. In recent years, the Silk Road - the Road Network along the Chang'an-Tianshan Mountain has been listed in the Directory of World Cultural Heritage. The rare and rich cultural resources along the Silk Road, especially those in the territory of China, have attracted attentions of the world. This article describes the research ideas, methods, processes and results of the planning design on the internet-based dissemination services platform system for cultural heritage resources. First of all, it has defined the targeting for dissemination services and the research methods applied for the Silk Road heritage resources, based on scientific and objective spatial measurement and research on history and geography, to carry on the excavation of values of cultural resource for the target users. Then, with the front-end art exhibit by means of innovative IT, time and space maps of cultural heritage resources, interactive graphics display, panoramic three-dimensional virtual tour, and the Silk Road topics as the main features, a comprehensive and multi-angle cultural resources dissemination services platform is built. The research core of the platform is a demand-oriented system design on the basis of cultural resources and features as the fundamental, the value of contemporary manifestation as the foundation, and cultural dissemination and service as a starting point. This platform has achieved, temporal context generalization, interest profiles extension, online and offline adaptation, and other prominent innovations. On the basis of routes heritage resource protection and dissemination services with complex relationship between time and space, and the

  13. Ingrowth of Human Mesenchymal Stem Cells into Porous Silk Particle Reinforced Silk Composite Scaffolds: An In Vitro Study

    PubMed Central

    Rockwood, Danielle N.; Gil, Eun Seok; Park, Sang-Hyug; Kluge, Jonathan A.; Grayson, Warren; Bhumiratana, Sarindr; Rajkhowa, Rangam; Wang, Xungai; Kim, Sung Jun; Vunjak-Novakovic, Gordana; Kaplan, David L

    2010-01-01

    Silk fibroin protein is biodegradable and biocompatible, exhibiting excellent mechanical properties for various biomedical applications. However, porous 3D silk fibroin scaffolds, or silk sponges, usually fall short in matching the initial mechanical requirements for bone tissue engineering. In the present study, silk sponge matrices were reinforced with silk microparticles to generate protein-protein composite scaffolds with desirable mechanical properties for in vitro osteogenic tissue formation. It was found that increasing the silk microparticle loading led to a substantial increase in the scaffold compressive modulus from 0.3 MPa (nonreinforced) to 1.9 MPa for 1:2 (matrix:particle) reinforcement loading by dry mass. Biochemical, gene expression, and histological assays were employed to study the possible effects of increasing composite scaffold stiffness, due to microparticle reinforcement, on in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs). Increasing silk microparticle loading increased the osteogenic capability of hMSCs in the presence of bone morphogenic protein-2 (BMP-2) and other osteogenic factors in static culture for up to six weeks. The calcium adsorption increased dramatically with increasing loading, as observed from biochemical assays, histological staining, and microCT (μCT) analysis. Specifically, calcium content in the scaffolds increased by 0.57, 0.71, and 1.27 mg (per μg of DNA) from 3 to 6 weeks for matrix to particle dry mass loading ratios of 1:0, 1:1 and 1:2, respectively. In addition, μCT imaging revealed that at 6 weeks, bone volume fraction increased from 0.78% for nonreinforced to 7.1% and 6.7% for 1:1 and 1:2 loading, respectively. Our results support the hypothesis that scaffold stiffness may strongly influence the 3D in vitro differentiation capabilities of hMSCs, providing a means to improve osteogenic outcomes. PMID:20656075

  14. Silk/nano-material hybrid: properties and functions

    NASA Astrophysics Data System (ADS)

    Steven, Eden; Lebedev, Victor; Laukhina, Elena; Laukhin, Vladimir; Alamo, Rufina G.; Rovira, Concepcio; Veciana, Jaume; Brooks, James S.

    2014-03-01

    Silk continues to emerge as a material of interest in electronics. In this work, the interaction between silk and conducting nano-materials are investigated. Simple fabrication methods, physical, electronic, thermal, and actuation properties are reported for spider silk / carbon nanotube (CNT-SS) and Bombyx mori / (BEDT-TTF)-based organic molecular conductor hybrids (ET-S). The CNT-SS fibers are produced via water and shear assisted method, resulting in fibers that are tough, custom-shapeable, flexible, and electrically conducting. For ET-S bilayer films, a layer transfer technique is developed to deposit linked crystallites of (BEDT-TTF)2I3 molecular conductor onto silk films, generating highly piezoresistive semi-transparent films. In both cases, the hybridization allows us to gain additional functions by harnessing the water-dependent properties of silk materials, for example, as humidity sensor and electrical current- or water-driven actuators. SEM, TEM, FT-IR, and resistance measurements under varying temperature, strain, and relative humidity reveal the synergistic interactions between the bio- and nano-materials. E.S. is supported by NSF-DMR 1005293.

  15. A novel property of spider silk: chemical defence against ants

    PubMed Central

    Zhang, Shichang; Koh, Teck Hui; Seah, Wee Khee; Lai, Yee Hing; Elgar, Mark A.; Li, Daiqin

    2012-01-01

    Spider webs are made of silk, the properties of which ensure remarkable efficiency at capturing prey. However, remaining on, or near, the web exposes the resident spiders to many potential predators, such as ants. Surprisingly, ants are rarely reported foraging on the webs of orb-weaving spiders, despite the formidable capacity of ants to subdue prey and repel enemies, the diversity and abundance of orb-web spiders, and the nutritional value of the web and resident spider. We explain this paradox by reporting a novel property of the silk produced by the orb-web spider Nephila antipodiana (Walckenaer). These spiders deposit on the silk a pyrrolidine alkaloid (2-pyrrolidinone) that provides protection from ant invasion. Furthermore, the ontogenetic change in the production of 2-pyrrolidinone suggests that this compound represents an adaptive response to the threat of natural enemies, rather than a simple by-product of silk synthesis: while 2-pyrrolidinone occurs on the silk threads produced by adult and large juvenile spiders, it is absent on threads produced by small juvenile spiders, whose threads are sufficiently thin to be inaccessible to ants. PMID:22113027

  16. Non-mulberry Silk Fibroin Biomaterial for Corneal Regeneration

    PubMed Central

    Hazra, Sarbani; Nandi, Sudip; Naskar, Deboki; Guha, Rajdeep; Chowdhury, Sushovan; Pradhan, Nirparaj; Kundu, Subhas C.; Konar, Aditya

    2016-01-01

    Purpose: Successful repair of a damaged corneal surface is a great challenge and may require the use of a scaffold that supports cell growth and differentiation. Amniotic membrane is currently used for this purpose, in spite of its limitations. A thin transparent silk fibroin film from non-mulberry Antheraea mylitta (Am) has been developed which offers to be a promising alternative. The silk scaffolds provide sufficient rigidity for easy handling, the scaffolds support the sprouting, migration, attachment and growth of epithelial cells and keratocytes from rat corneal explants; the cells form a cell sheet, preserve their phenotypes, express cytokeratin3 and vimentin respectively. The films also support growth of limbal stem cell evidenced by expression of ABCG2. The cell growth on the silk film and the amniotic membrane is comparable. The implanted film within the rabbit cornea remains transparent, stable. The clinical examination as well as histology shows absence of any inflammatory response or neovascularization. The corneal surface integrity is maintained; tear formation, intraocular pressure and electroretinography of implanted eyes show no adverse changes. The silk fibroin film from non-mulberry silk worms may be a worthy candidate for use as a corneal scaffold. PMID:26908015

  17. Spider web and silk performance landscapes across nutrient space

    PubMed Central

    Blamires, Sean J.; Tseng, Yi-Hsuan; Wu, Chung-Lin; Toft, Søren; Raubenheimer, David; Tso, I.-Min

    2016-01-01

    Predators have been shown to alter their foraging as a regulatory response to recent feeding history, but it remains unknown whether trap building predators modulate their traps similarly as a regulatory strategy. Here we fed the orb web spider Nephila pilipes either live crickets, dead crickets with webs stimulated by flies, or dead crickets without web stimulation, over 21 days to enforce spiders to differentially extract nutrients from a single prey source. In addition to the nutrients extracted we measured web architectures, silk tensile properties, silk amino acid compositions, and web tension after each feeding round. We then plotted web and silk “performance landscapes” across nutrient space. The landscapes had multiple peaks and troughs for each web and silk performance parameter. The findings suggest that N. pilipes plastically adjusts the chemical and physical properties of their web and silk in accordance with its nutritional history. Our study expands the application of the geometric framework foraging model to include a type of predatory trap. Whether it can be applied to other predatory traps requires further testing. PMID:27216252

  18. Protein-protein nanoimprinting of silk fibroin films

    PubMed Central

    Brenckle, Mark A; Tao, Hu; Kim, Sunghwan; Paquette, Mark; Kaplan, David L; Omenetto, Fiorenzo G

    2013-01-01

    Control of the interface between biological tissue and high technology materials is paramount for the development of future applications in biomedicine, especially in the case of implantable integrated devices for signal transduction.[1]-[3] Such work requires careful materials design to develop devices that can efficiently perform technological functions while retaining biocompatibility and biological integration. Silk fibroin protein from the Bombyx mori silkworm has come of considerable interest in this context, owing to its attractive mechanical,[4]-[7] biological, [8][9] and optical properties.[10][11] Recent work has shown adaptation of common micro- and nano-fabrication tools to silk films,[12]-[18] as well as silk protein secondary structure patterning techniques,[19] leading to biocompatible and degradable electronic and photonic devices which can simultaneously act as a carrier and stabilizer for protein pharmaceuticals and other bioactive reagents.[20]-[23] In particular, silk based nanoscale photonic devices face the challenge of sub-wavelength resolution fabrication on a soft polymeric substrate.[15][24] Previous work introduced the possibility of direct, rapid nanoimprinting in silk for the fabrication of photonic structures by leveraging the material properties of this protein.[25] PMID:23483712

  19. Sporicidal/bactericidal textiles via the chlorination of silk.

    PubMed

    Dickerson, Matthew B; Lyon, Wanda; Gruner, William E; Mirau, Peter A; Slocik, Joseph M; Naik, Rajesh R

    2012-03-01

    Bacterial spores, such as those of the Bacillus genus, are extremely resilient, being able to germinate into metabolically active cells after withstanding harsh environmental conditions or aggressive chemical treatments. The toughness of the bacterial spore in combination with the use of spores, such as those of Bacillus anthracis, as a biological warfare agent necessitates the development of new antimicrobial textiles. In this work, a route to the production of fabrics that kill bacterial spores and cells within minutes of exposure is described. Utilizing this facile process, unmodified silk cloth is reacted with a diluted bleach solution, rinsed with water, and dried. The chlorination of silk was explored under basic (pH 11) and slightly acidic (pH 5) conditions. Chloramine-silk textiles prepared in acidified bleach solutions were found to have superior breaking strength and higher oxidative Cl contents than those prepared under caustic conditions. Silk cloth chlorinated for ≥1 h at pH 5 was determined to induce >99.99996% reduction in the colony forming units of Escherichia coli, as well as Bacillus thuringiensis Al Hakam (B. anthracis simulant) spores and cells within 10 min of contact. The processing conditions presented for silk fabric in this study are highly expeditionary, allowing for the on-site production of protein-based antimicrobial materials from a variety of agriculturally produced feed-stocks. PMID:22352921

  20. Supercontraction forces in spider dragline silk depend on hydration rate.

    PubMed

    Agnarsson, Ingi; Boutry, Cecilia; Wong, Shing-Chung; Baji, Avinash; Dhinojwala, Ali; Sensenig, Andrew T; Blackledge, Todd A

    2009-01-01

    Spider dragline silk is a model biological polymer for biomimetic research due to its many desirable and unusual properties. 'Supercontraction' describes the dramatic shrinking of dragline silk fibers when wetted. In restrained silk fibers, supercontraction generates substantial stresses of 40-50 MPa above a critical humidity of approximately 70% relative humidity (RH). This stress may maintain tension in webs under the weight of rain or dew and could be used in industry for robotics, sensor technology, and other applications. Our own findings indicate that supercontraction can generate stress over a much broader range than previously reported, from 10 to 140 MPa. Here we show that this variation in supercontraction stress depends upon the rate at which the environment reaches the critical level of humidity causing supercontraction. Slow humidity increase, over several minutes, leads to relatively low supercontraction stress, while fast humidity increase, over a few seconds, typically results in higher supercontraction stress. Slowly supercontracted fibers take up less water and differ in thermostability from rapidly supercontracted fibers, as shown by thermogravimetric analysis. This suggests that spider silk achieves different molecular configurations depending upon the speed at which supercontraction occurs. Ultimately, rate-dependent supercontraction may provide a mechanism to tailor the properties of silk or biomimetic fibers for various applications. PMID:19477107

  1. Sericin Composition in the Silk of Antheraea yamamai.

    PubMed

    Zurovec, Michal; Yonemura, Naoyuki; Kludkiewicz, Barbara; Sehnal, František; Kodrik, Dalibor; Vieira, Ligia Cota; Kucerova, Lucie; Strnad, Hynek; Konik, Peter; Sehadova, Hana

    2016-05-01

    The silks produced by caterpillars consist of fibroin proteins that form two core filaments, and sericin proteins that seal filaments into a fiber and conglutinate fibers in the cocoon. Sericin genes are well-known in Bombyx mori (Bombycidae) but have received little attention in other insects. This paper shows that Antheraea yamamai (Saturniidae) contains five sericin genes very different from the three sericin genes of B. mori. In spite of differences, all known sericins are characterized by short exons 1 and 2 (out of 3-12 exons), expression in the middle silk gland section, presence of repeats with high contents of Ser and charged amino acid residues, and secretion as a sticky silk component soluble in hot water. The B. mori sericins represent tentative phylogenetic lineages (I) BmSer1 and orthologs in Saturniidae, (II) BmSer2, and (III) BmSer3 and related sericins of Saturniidae and of the pyralid Galleria mellonella. The lineage (IV) seems to be limited to Saturniidae. Concerted evolution of the sericin genes was apparently associated with gene amplifications as well as gene loses. Differences in the silk fiber morphology indicate that the cocktail of sericins linking the filaments and coating the fiber is modified during spinning. Silks are composite biomaterials of conserved function in spite of great diversity of their composition. PMID:27049111

  2. Peroxidase-catalysed interfacial adhesion of aquatic caddisworm silk.

    PubMed

    Wang, Ching-Shuen; Pan, Huaizhong; Weerasekare, G Mahika; Stewart, Russell J

    2015-11-01

    Casemaker caddisfly (Hesperophylax occidentalis) larvae use adhesive silk fibres to construct protective shelters under water. The silk comprises a distinct peripheral coating on a viscoelastic fibre core. Caddisworm silk peroxinectin (csPxt), a haem-peroxidase, was shown to be glycosylated by lectin affinity chromatography and tandem mass spectrometry. Using high-resolution H2O2 and peroxidase-dependent silver ion reduction and nanoparticle deposition, imaged by electron microscopy, csPxt activity was shown to be localized in the peripheral layer of drawn silk fibres. CsPxt catalyses dityrosine cross-linking within the adhesive peripheral layer post-draw, initiated perhaps by H2O2 generated by a silk gland-specific superoxide dismutase 3 (csSOD3) from environmental reactive oxygen species present in natural water. CsSOD3 was also shown to be a glycoprotein and is likely localized in the peripheral layer. Using a synthetic fluorescent phenolic copolymer and confocal microscopy, it was shown that csPxt catalyses oxidative cross-linking to external polyphenolic compounds capable of diffusive interpenetration into the fuzzy peripheral coating, including humic acid, a natural surface-active polyphenol. The results provide evidence of enzyme-mediated covalent cross-linking of a natural bioadhesive to polyphenol conditioned interfaces as a mechanism of permanent adhesion underwater. PMID:26490632

  3. Structural study on methacrylamide-grafted Tussah silk fibroin fibres.

    PubMed

    Pavoni, Eleonora; Tozzi, Silvia; Tsukada, Masuhiro; Taddei, Paola

    2016-07-01

    Tussah silk fibroin fibres were modified by grafting with methacrylamide (MAA), with weight gains ranging between 2.6% and 71.4%. Raman and IR spectroscopic analyses showed that upon grafting the fibres underwent slight conformational changes towards a more unordered state, due to the covalent and hydrogen bonds interactions occurring between the polymer (polyMAA) and the amorphous domains of silk fibres. To test the stability towards alkaline hydrolysis, the untreated and MAA-grafted silk fibres (weight gain of 71.4%) were immersed in NaOH 5% at 50°C for different times; the IR and Raman spectroscopic techniques were utilized to elucidate the degradation mechanism as well as the rearrangements of the fibres induced by the treatment. Upon hydrolysis, both the untreated and grafted fibres underwent an enrichment in β-sheet conformation, due to the preferential removal of the unordered domains. As a result of the covalent interactions with silk fibroin, the polymer increased its stability towards alkaline hydrolysis, since its complete solubilization was avoided and the transformation of its CONH2 groups into COO(-) and COOH was delayed. Vibrational spectroscopy proved to be a valid technique to investigate the mechanism and the effects of the hydrolytic attack, which are both fundamental to design new-generation silk-based materials. PMID:27032490

  4. Spider web and silk performance landscapes across nutrient space.

    PubMed

    Blamires, Sean J; Tseng, Yi-Hsuan; Wu, Chung-Lin; Toft, Søren; Raubenheimer, David; Tso, I-Min

    2016-01-01

    Predators have been shown to alter their foraging as a regulatory response to recent feeding history, but it remains unknown whether trap building predators modulate their traps similarly as a regulatory strategy. Here we fed the orb web spider Nephila pilipes either live crickets, dead crickets with webs stimulated by flies, or dead crickets without web stimulation, over 21 days to enforce spiders to differentially extract nutrients from a single prey source. In addition to the nutrients extracted we measured web architectures, silk tensile properties, silk amino acid compositions, and web tension after each feeding round. We then plotted web and silk "performance landscapes" across nutrient space. The landscapes had multiple peaks and troughs for each web and silk performance parameter. The findings suggest that N. pilipes plastically adjusts the chemical and physical properties of their web and silk in accordance with its nutritional history. Our study expands the application of the geometric framework foraging model to include a type of predatory trap. Whether it can be applied to other predatory traps requires further testing. PMID:27216252

  5. Nonmulberry Silk Fibroin Scaffold Shows Superior Osteoconductivity Than Mulberry Silk Fibroin in Calvarial Bone Regeneration.

    PubMed

    Sahu, Neety; Baligar, Prakash; Midha, Swati; Kundu, Banani; Bhattacharjee, Maumita; Mukherjee, Snehasish; Mukherjee, Souhrid; Maushart, Florian; Das, Sanskrita; Loparic, Marko; Kundu, Subhas C; Ghosh, Sourabh; Mukhopadhyay, Asok

    2015-08-01

    Recent years have witnessed the advancement of silk biomaterials in bone tissue engineering, although clinical application of the same is still in its infancy. In this study, the potential of pure nonmulberry Antheraea mylitta (Am) fibroin scaffold, without preloading with bone precursor cells, to repair calvarial bone defect in a rat model is explored and compared with its mulberry counterpart Bombyx mori (Bm) silk fibroin. After 3 months of implantation, Am scaffold culminates in a completely ossified regeneration with a progressive increase in mineralization at the implanted site. On the other hand, the Bm scaffold fails to repair the damaged bone, presumably due to its low osteoconductivity and early degradation. The deposition of bone matrix on scaffolds is evaluated by scanning electron and atomic force microscopy. These results are corroborated by in vitro studies of enzymatic degradation, colony formation, and secondary conformational features of the scaffold materials. The greater biocompatibility and mineralization in pure nonmulberry fibroin scaffolds warrants the use of these scaffolds as an "ideal bone graft" biomaterial for effective repair of critical size defects. PMID:26084249

  6. Carbonic anhydrase generates a pH gradient in Bombyx mori silk glands.

    PubMed

    Domigan, L J; Andersson, M; Alberti, K A; Chesler, M; Xu, Q; Johansson, J; Rising, A; Kaplan, D L

    2015-10-01

    Silk is a protein of interest to both biological and industrial sciences. The silkworm, Bombyx mori, forms this protein into strong threads starting from soluble silk proteins using a number of biochemical and physical cues to allow the transition from liquid to fibrous silk. A pH gradient has been measured along the gland, but the methodology employed was not able to precisely determine the pH at specific regions of interest in the silk gland. Furthermore, the physiological mechanisms responsible for the generation of this pH gradient are unknown. In this study, concentric ion selective microelectrodes were used to determine the luminal pH of B. mori silk glands. A gradient from pH 8.2 to 7.2 was measured in the posterior silk gland, with a pH 7 throughout the middle silk gland, and a gradient from pH 6.8 to 6.2 in the beginning of the anterior silk gland where silk processing into fibers occurs. The small diameter of the most anterior region of the anterior silk gland prevented microelectrode access in this region. Using a histochemical method, the presence of active carbonic anhydrase was identified in the funnel and anterior silk gland of fifth instar larvae. The observed pH gradient collapsed upon addition of the carbonic anhydrase inhibitor methazolamide, confirming an essential role for this enzyme in pH regulation in the B. mori silk gland. Plastic embedding of whole silk glands allowed clear visualization of the morphology, including the identification of four distinct epithelial cell types in the gland and allowed correlations between silk gland morphology and silk stages of assembly related to the pH gradient. B. mori silk glands have four different epithelial cell types, one of which produces carbonic anhydrase. Carbonic anhydrase is necessary for the mechanism that generates an intraluminal pH gradient, which likely regulates the assembly of silk proteins and then the formation of fibers from soluble silk proteins. These new insights into native silk

  7. Development of new smart materials and spinning systems inspired by natural silks and their applications

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Lee, Sang-Hoon

    2015-12-01

    Silks produced by spiders and silkworms are charming natural biological materials with highly optimized hierarchical structures and outstanding physicomechanical properties. The superior performance of silks relies on the integration of a unique protein sequence, a distinctive spinning process, and complex hierarchical structures. Silks have been prepared to form a variety of morphologies and are widely used in diverse applications, for example, in the textile industry, as drug delivery vehicles, and as tissue engineering scaffolds. This review presents an overview of the organization of natural silks, in which chemical and physical functions are optimized, as well as a range of new materials inspired by the desire to mimic natural silk structure and synthesis.

  8. Impact and dynamic mechanical thermal properties of textile silk reinforced epoxy resin composites

    NASA Astrophysics Data System (ADS)

    Yang, K.; Guan, J.

    2016-07-01

    Silk fabric reinforced epoxy resin composites (SFRPs) were prepared using simple techniques of hand lay-up, hot-press and vacuum treatment, and a series of volume fractions of silk reinforcements were achieved. The impact properties and dynamic mechanical properties of SFRPs were investigated using a pendulum impact testing method and dynamic mechanical thermal analysis (DMTA). The results suggest that silk reinforcement could greatly enhance the mechanical performances of SFRPs. The impact strength reached a maximum of 71 kJ/m2 for 60%-silk SFRP, which demonstrated a potential of silk composites for defence and impact- resistant materials.

  9. Different Types of Peptide Detected by Mass Spectrometry among Fresh Silk and Archaeological Silk Remains for Distinguishing Modern Contamination

    PubMed Central

    Li, Li; Gong, Yuxuan; Yin, Hao; Gong, Decai

    2015-01-01

    Archaeological silk provides abundant information for studying ancient technologies and cultures. However, due to the spontaneous degradation and the damages from burial conditions, most ancient silk fibers which suffered the damages for thousands of years were turned into invisible molecular residues. For the obtained rare samples, extra care needs to be taken to accurately identify the genuine archaeological silk remains from modern contaminations. Although mass spectrometry (MS) is a powerful tool for identifying and analyzing the ancient protein residues, the traditional approach could not directly determine the dating and contamination of each sample. In this paper, a series of samples with a broad range of ages were tested by MS to find an effective and innovative approach to determine whether modern contamination exists, in order to verify the authenticity and reliability of the ancient samples. The new findings highlighted that the detected peptide types of the fibroin light chain can indicate the degradation levels of silk samples and help to distinguish contamination from ancient silk remains. PMID:26186676

  10. Soft magnetic memory of silk cocoon membrane.

    PubMed

    Roy, Manas; Dubey, Amarish; Singh, Sushil Kumar; Bhargava, Kalpana; Sethy, Niroj Kumar; Philip, Deepu; Sarkar, Sabyasachi; Bajpai, Alok; Das, Mainak

    2016-01-01

    Silk cocoon membrane (SCM), a solid matrix of protein fiber, responds to light, heat and moisture and converts these energies to electrical signals. Essentially it exhibits photo-electric and thermo-electric properties; making it a natural electro-magnetic sensor, which may influence the pupal development. This raises the question: 'is it only electricity?', or 'it also posses some kind of magnetic memory?' This work attempted to explore the magnetic memory of SCM and confirm its soft magnetism. Fe, Co, Ni, Mn, Gd were found in SCM, in traces, through energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS). Presence of iron was ascertained by electron paramagnetic resonance (EPR). In addition, EPR-spectra showed the presence of a stable pool of carbon-centric free radical in the cocoon structure. Carbon-centric free radicals behaves as a soft magnet inherently. Magnetic-Hysteresis (M-H) of SCM confirmed its soft magnetism. It can be concluded that the soft bio-magnetic feature of SCM is due to the entrapment of ferromagnetic elements in a stable pool of carbon centric radicals occurring on the super-coiled protein structure. Natural soft magnets like SCM provide us with models for developing eco-friendly, protein-based biological soft magnets. PMID:27374752

  11. The consolidation behavior of silk hydrogels.

    PubMed

    Kluge, Jonathan A; Rosiello, Nicholas C; Leisk, Gary G; Kaplan, David L; Dorfmann, A Luis

    2010-04-01

    Hydrogels have mechanical properties and structural features that are similar to load-bearing soft tissues including intervertebral disc and articular cartilage, and can be implanted for tissue restoration or for local release of therapeutic factors. To help predict their performance, mechanical characterization and mathematical modeling are the available methods for use in tissue engineering and drug delivery settings. In this study, confined compression creep tests were performed on silk hydrogels, over a range of concentrations, to examine the phenomenological behavior of the gels under a physiological loading scenario. Based on the observed behavior, we show that the time-dependent response can be explained by a consolidation mechanism, and modeled using Biot's poroelasticity theory. Two observations are in strong support of this modeling framework, namely, the excellent numerical agreement between increasing load step creep data and the linear Terzaghi theory, and the similar values obtained from numerical simulations and direct measurements of the permeability coefficient. The higher concentration gels (8% and 12% w/v) clearly show a strain-stiffening response to creep loading with increasing loads, while the lower concentration gel (4% w/v) does not. A nonlinear elastic constitutive formulation is employed to account for the stiffening. Furthermore, an empirical formulation is used to represent the deformation-dependent permeability. PMID:20142112

  12. Soft magnetic memory of silk cocoon membrane

    NASA Astrophysics Data System (ADS)

    Roy, Manas; Dubey, Amarish; Singh, Sushil Kumar; Bhargava, Kalpana; Sethy, Niroj Kumar; Philip, Deepu; Sarkar, Sabyasachi; Bajpai, Alok; Das, Mainak

    2016-07-01

    Silk cocoon membrane (SCM), a solid matrix of protein fiber, responds to light, heat and moisture and converts these energies to electrical signals. Essentially it exhibits photo-electric and thermo-electric properties; making it a natural electro-magnetic sensor, which may influence the pupal development. This raises the question: ‘is it only electricity?’, or ‘it also posses some kind of magnetic memory?’ This work attempted to explore the magnetic memory of SCM and confirm its soft magnetism. Fe, Co, Ni, Mn, Gd were found in SCM, in traces, through energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS). Presence of iron was ascertained by electron paramagnetic resonance (EPR). In addition, EPR-spectra showed the presence of a stable pool of carbon-centric free radical in the cocoon structure. Carbon-centric free radicals behaves as a soft magnet inherently. Magnetic-Hysteresis (M-H) of SCM confirmed its soft magnetism. It can be concluded that the soft bio-magnetic feature of SCM is due to the entrapment of ferromagnetic elements in a stable pool of carbon centric radicals occurring on the super-coiled protein structure. Natural soft magnets like SCM provide us with models for developing eco-friendly, protein-based biological soft magnets.

  13. Novel silk fibroin/elastin wound dressings.

    PubMed

    Vasconcelos, Andreia; Gomes, Andreia C; Cavaco-Paulo, Artur

    2012-08-01

    Silk fibroin (SF) and elastin (EL) scaffolds were successfully produced for the first time for the treatment of burn wounds. The self-assembly properties of SF, together with the excellent chemical and mechanical stability and biocompatibility, were combined with elastin protein to produce scaffolds with the ability to mimic the extracellular matrix (ECM). Porous scaffolds were obtained by lyophilization and were further crosslinked with genipin (GE). Genipin crosslinking induces the conformational transition from random coil to β-sheet of SF chains, yielding scaffolds with smaller pore size and reduced swelling ratios, degradation and release rates. All results indicated that the composition of the scaffolds had a significant effect on their physical properties, and that can easily be tuned to obtain scaffolds suitable for biological applications. Wound healing was assessed through the use of human full-thickness skin equivalents (EpidermFT). Standardized burn wounds were induced by a cautery and the best re-epithelialization and the fastest wound closure was obtained in wounds treated with 50SF scaffolds; these contain the highest amount of elastin after 6 days of healing in comparison with other dressings and controls. The cytocompatibility demonstrated with human skin fibroblasts together with the healing improvement make these SF/EL scaffolds suitable for wound dressing applications. PMID:22546517

  14. Soft magnetic memory of silk cocoon membrane

    PubMed Central

    Roy, Manas; Dubey, Amarish; Singh, Sushil Kumar; Bhargava, Kalpana; Sethy, Niroj Kumar; Philip, Deepu; Sarkar, Sabyasachi; Bajpai, Alok; Das, Mainak

    2016-01-01

    Silk cocoon membrane (SCM), a solid matrix of protein fiber, responds to light, heat and moisture and converts these energies to electrical signals. Essentially it exhibits photo-electric and thermo-electric properties; making it a natural electro-magnetic sensor, which may influence the pupal development. This raises the question: ‘is it only electricity?’, or ‘it also posses some kind of magnetic memory?’ This work attempted to explore the magnetic memory of SCM and confirm its soft magnetism. Fe, Co, Ni, Mn, Gd were found in SCM, in traces, through energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS). Presence of iron was ascertained by electron paramagnetic resonance (EPR). In addition, EPR-spectra showed the presence of a stable pool of carbon-centric free radical in the cocoon structure. Carbon-centric free radicals behaves as a soft magnet inherently. Magnetic-Hysteresis (M-H) of SCM confirmed its soft magnetism. It can be concluded that the soft bio-magnetic feature of SCM is due to the entrapment of ferromagnetic elements in a stable pool of carbon centric radicals occurring on the super-coiled protein structure. Natural soft magnets like SCM provide us with models for developing eco-friendly, protein-based biological soft magnets. PMID:27374752

  15. Hexagonal columnar liquid crystal in the cells secreting spider silk.

    PubMed

    Knight, D; Vollrath, F

    1999-12-01

    The liquid crystallinity of spider dragline silk dope is thought to be important for both the spinning process and the extreme mechanical properties of the final thread. Although the formation of the liquid crystalline units is poorly understood, it has been suggested that spider silk proteins are secreted in a random coil and then aggregate end-to-end into rod-shaped units to form supramolecular liquid crystals. However, evidence presented here from transmission electron microscopy indicates that coat protein of the dragline silk of a Nephila spider is stored as hexagonal columnar liquid crystals within the intracellular secretory vesicles. This implies that this component is already folded into short rods within the gland cells and forms molecular rather than supramolecular liquid crystals. PMID:18627876

  16. A simple model of multiphoton micromachining in silk hydrogels

    NASA Astrophysics Data System (ADS)

    Applegate, Matthew B.; Alonzo, Carlo; Georgakoudi, Irene; Kaplan, David L.; Omenetto, Fiorenzo G.

    2016-06-01

    High resolution three-dimensional voids can be directly written into transparent silk fibroin hydrogels using ultrashort pulses of near-infrared (NIR) light. Here, we propose a simple finite-element model that can be used to predict the size and shape of individual features under various exposure conditions. We compare predicted and measured feature volumes for a wide range of parameters and use the model to determine optimum conditions for maximum material removal. The simplicity of the model implies that the mechanism of multiphoton induced void creation in silk is due to direct absorption of light energy rather than diffusion of heat or other photoproducts, and confirms that multiphoton absorption of NIR light in silk is purely a 3-photon process.

  17. The use of silk-based devices for fracture fixation

    NASA Astrophysics Data System (ADS)

    Perrone, Gabriel S.; Leisk, Gary G.; Lo, Tim J.; Moreau, Jodie E.; Haas, Dylan S.; Papenburg, Bernke J.; Golden, Ethan B.; Partlow, Benjamin P.; Fox, Sharon E.; Ibrahim, Ahmed M. S.; Lin, Samuel J.; Kaplan, David L.

    2014-03-01

    Metallic fixation systems are currently the gold standard for fracture fixation but have problems including stress shielding, palpability and temperature sensitivity. Recently, resorbable systems have gained interest because they avoid removal and may improve bone remodelling due to the lack of stress shielding. However, their use is limited to paediatric craniofacial procedures mainly due to the laborious implantation requirements. Here we prepare and characterize a new family of resorbable screws prepared from silk fibroin for craniofacial fracture repair. In vivo assessment in rat femurs shows the screws to be self-tapping, remain fixed in the bone for 4 and 8 weeks, exhibit biocompatibility and promote bone remodelling. The silk-based devices compare favourably with current poly-lactic-co-glycolic acid fixation systems, however, silk-based devices offer numerous advantages including ease of implantation, conformal fit to the repair site, sterilization by autoclaving and minimal inflammatory response.

  18. Use of extension-deformation-based crystallisation of silk fibres to differentiate their functions in nature.

    PubMed

    Numata, Keiji; Masunaga, Hiroyasu; Hikima, Takaaki; Sasaki, Sono; Sekiyama, Kazuhide; Takata, Masaki

    2015-08-21

    β-Sheet crystals play an important role in determining the stiffness, strength, and optical properties of silk and in the exhibition of silk-type-specific functions. It is important to elucidate the structural changes that occur during the stretching of silk fibres to understand the functions of different types of fibres. Herein, we elucidate the initial crystallisation behaviour of silk molecules during the stretching of three types of silk fibres using synchrotron radiation X-ray analysis. When spider dragline silk was stretched, it underwent crystallisation and the alignment of the β-sheet crystals became disordered initially but was later recovered. On the other hand, silkworm cocoon silk did not exhibit further crystallisation, whereas capture spiral silk was predominantly amorphous. Structural analyses showed that the crystallisation of silks following extension deformation has a critical effect on their mechanical and optical properties. These findings should aid the production of artificial silk fibres and facilitate the development of silk-inspired functional materials. PMID:26166211

  19. Peroxinectin catalyzed dityrosine crosslinking in the adhesive underwater silk of a casemaker caddisfly larvae, Hysperophylax occidentalis.

    PubMed

    Wang, Ching-Shuen; Ashton, Nicholas N; Weiss, Robert B; Stewart, Russell J

    2014-11-01

    Aquatic caddisfly larvae use sticky silk fibers as an adhesive tape to construct protective composite structures under water. Three new silk fiber components were identified by transcriptome and proteome analysis of the silk gland: a heme-peroxidase in the peroxinectin (Pxt) sub-family, a superoxide dismutase 3 (SOD3) that generates the H2O2 substrate of the silk fiber Pxt from environmental reactive oxygen species (eROS), and a novel structural component with sequence similarity to the elastic PEVK region of the muscle protein, titin. All three proteins are co-drawn with fibroins to form silk fibers. The Pxt and SOD3 enzymes retain activity in drawn fibers. In native fibers, Pxt activity and dityrosine crosslinks are co-localized at the boundary of a peripheral layer and the silk fiber core. To our knowledge, dityrosine crosslinks, heme peroxidase, and SOD3 activities have not been previously reported in an insect silk. The PEVK-like protein is homogeneously distributed throughout the fiber core. The results are consolidated into a model in which caddisfly silk Pxt-catalyzed dityrosine crosslinking occurs post-draw using H2O2 generated within the silk fibers by SOD3. The ROS substrate of caddisfly silk SOD3 occurs naturally in aquatic environments, from biotic and abiotic sources. The radially inhomogeneous dityrosine crosslinking and a potential titin-like PEVK protein network have important implications for the mechanical properties of caddifly silk fibers. PMID:25220661

  20. Environmentally friendly surface modification of silk fiber: Chitosan grafting and dyeing

    NASA Astrophysics Data System (ADS)

    Davarpanah, Saideh; Mahmoodi, Niyaz Mohammad; Arami, Mokhtar; Bahrami, Hajir; Mazaheri, Firoozmehr

    2009-01-01

    In this paper, the surface modification of silk fiber using anhydrides to graft the polysaccharide chitosan and dyeing ability of the grafted silk were studied. Silk fiber was degummed and acylated with two anhydrides, succinic anhydride (SA) and phthalic anhydride (PA), in different solvents (dimethyl sulfoxide (DMSO) and N, N-dimethyl formamide (DMF)). The effects of anhydrides, solvents, anhydride concentration, liquor ratio (L:R) and reaction time on acylation of silk were studied. The polysaccharide chitosan was grafted to the acylated silk fiber and dyed by acid dye (Acid Black NB.B). The effects of pH, chitosan concentration, and reaction time on chitosan grafting of acylated silk were investigated. The physical properties show sensible changes regardless of weight gain. Scanning electron microscopy (SEM) analysis showed the presence of foreign materials firmly attached to the surface of silk. FTIR spectroscopy provided evidence that chitosan was grafted onto the acylated silk through the formation of new covalent bonds. The dyeing of the chitosan grafted-acylated silk fiber indicated the higher dye ability in comparison to the acylated and degummed silk samples. The mechanism of chitosan grafting over degummed silk through anhydride linkage was proposed. The findings of this research support the potential production of new environmentally friendly textile fibers. It is worthwhile to mention that the grafted samples have antibacterial potential due to the antibacterial property of chitosan molecules.

  1. Effect of degumming condition on the solution properties and electrospinnablity of regenerated silk solution.

    PubMed

    Ko, Jae Sang; Yoon, Kyunghwan; Ki, Chang Seok; Kim, Hyun Ju; Bae, Do Gyu; Lee, Ki Hoon; Park, Young Hwan; Um, In Chul

    2013-04-01

    The application of silk on tissue engineering scaffolds has been studied intensively because silk has an electrospinning technique using a good blood compatibility, excellent cytocompatibility and biodegradability. Silk consists of two polymers, fibroin and sericin. In spite of importance of sericin, most studies were focused on the fibroin only and the effect of residual sericin on the electrospinning performance of silk has not been considered. In this study, regenerated silk with different residual sericin contents was prepared by controlling the degumming conditions. The effects of the degumming conditions on the solution properties and electrospinning performance of silk were examined. The fast protein liquid chromatography (FPLC) measurements confirmed that the molecular weight of the regenerated silk decreased slightly with increasing residual sericin content. More molecular aggregation of silk occurred with increasing sericin content, resulting in an increase in the solution turbidity of formic acid. All silk formic acid solutions exhibited almost Newtonian fluid behavior and the viscosity increased with increasing sericin content. Interestingly, the dope solution viscosity of silk increased remarkably at sericin contents <1% (or degumming ratio >25%) leading to significant improvements in electrospinnability and an increase in the fiber diameter of the silk web. PMID:23295206

  2. Increasing silk fibre strength through heterogeneity of bundled fibrils

    PubMed Central

    Cranford, Steven W.

    2013-01-01

    Can naturally arising disorder in biological materials be beneficial? Materials scientists are continuously attempting to replicate the exemplary performance of materials such as spider silk, with detailed techniques and assembly procedures. At the same time, a spider does not precisely machine silk—imaging indicates that its fibrils are heterogeneous and irregular in cross section. While past investigations either focused on the building material (e.g. the molecular scale protein sequence and behaviour) or on the ultimate structural component (e.g. silk threads and spider webs), the bundled structure of fibrils that compose spider threads has been frequently overlooked. Herein, I exploit a molecular dynamics-based coarse-grain model to construct a fully three-dimensional fibril bundle, with a length on the order of micrometres. I probe the mechanical behaviour of bundled silk fibrils with variable density of heterogenic protrusions or globules, ranging from ideally homogeneous to a saturated distribution. Subject to stretching, the model indicates that cooperativity is enhanced by contact through low-force deformation and shear ‘locking’ between globules, increasing shear stress transfer by up to 200 per cent. In effect, introduction of a random and disordered structure can serve to improve mechanical performance. Moreover, addition of globules allows a tuning of free volume, and thus the wettability of silk (with implications for supercontraction). These findings support the ability of silk to maintain near-molecular-level strength at the scale of silk threads, and the mechanism could be easily adopted as a strategy for synthetic fibres. PMID:23486175

  3. Design and Optimization of Resorbable Silk Internal Fixation Devices

    NASA Astrophysics Data System (ADS)

    Haas, Dylan S.

    Limitations of current material options for internal fracture fixation devices have resulted in a large gap between user needs and hardware function. Metal systems offer robust mechanical strength and ease of implantation but require secondary surgery for removal and/or result in long-term complications (infection, palpability, sensitivity, etc.). Current resorbable devices eliminate the need for second surgery and long-term complications but are still associated with negative host response as well as limited functionality and more difficult implantation. There is a definitive need for orthopedic hardware that is mechanically capable of immediate fracture stabilization and fracture fixation during healing, can safely biodegrade while allowing complete bone remodeling, can be resterilized for reuse, and is easily implantable (self-tapping). Previous work investigated the use of silk protein to produce resorbable orthopedic hardware for non- load bearing fracture fixation. In this study, silk orthopedic hardware was further investigated and optimized in order to better understand the ability of silk as a fracture fixation system and more closely meet the unfulfilled market needs. Solvent-based and aqueous-based silk processing formulations were cross-linked with methanol to induce beta sheet structure, dried, autoclaved and then machined to the desired device/geometry. Silk hardware was evaluated for dry, hydrated and fatigued (cyclic) mechanical properties, in vitro degradation, resterilization, functionalization with osteoinductive molecules and implantation technique for fracture fixation. Mechanical strength showed minor improvements from previous results, but remains comparable to current resorbable fixation systems with the advantages of self-tapping ability for ease of implantation, full degradation in 10 months, ability to be resterilized and reused, and ability to release molecules for osteoinudction. In vivo assessment confirmed biocompatibility, showed

  4. Surface Modification and Characterisation of Silk Fibroin Fabric Produced by the Layer-by-Layer Self-Assembly of Multilayer Alginate/Regenerated Silk Fibroin

    PubMed Central

    Shen, Gaotian; Hu, Xingyou; Guan, Guoping; Wang, Lu

    2015-01-01

    Silk-based medical products have a long history of use as a material for surgical sutures because of their desirable mechanical properties. However, silk fibroin fabric has been reported to be haemolytic when in direct contact with blood. The layer-by-layer self-assembly technique provides a method for surface modification to improve the biocompatibility of silk fibroin fabrics. Regenerated silk fibroin and alginate, which have excellent biocompatibility and low immunogenicity, are outstanding candidates for polyelectrolyte deposition. In this study, silk fabric was degummed and positively charged to create a silk fibroin fabric that could undergo self-assembly. The multilayer self-assembly of the silk fibroin fabric was achieved by alternating the polyelectrolyte deposition of a negatively charged alginate solution (pH = 8) and a positively charged regenerated silk fibroin solution (pH = 2). Finally, the negatively charged regenerated silk fibroin solution (pH = 8) was used to assemble the outermost layer of the fabric so that the surface would be negatively charged. A stable structural transition was induced using 75% ethanol. The thickness and morphology were characterised using atomic force microscopy. The properties of the self-assembled silk fibroin fabric, such as the bursting strength, thermal stability and flushing stability, indicated that the fabric was stable. In addition, the cytocompatibility and haemocompatibility of the self-assembled silk fibroin fabrics were evaluated. The results indicated that the biocompatibility of the self-assembled multilayers was acceptable and that it improved markedly. In particular, after the self-assembly, the fabric was able to prevent platelet adhesion. Furthermore, other non-haemolytic biomaterials can be created through self-assembly of more than 1.5 bilayers, and we propose that self-assembled silk fibroin fabric may be an attractive candidate for anticoagulation applications and for promoting endothelial cell

  5. The Osteogenic Potential of Mesoporous Bioglasses/Silk and Non-Mesoporous Bioglasses/Silk Scaffolds in Ovariectomized Rats: In vitro and In vivo Evaluation

    PubMed Central

    Zhang, Yufeng; Shi, Bin

    2013-01-01

    Silk-based scaffolds have been introduced to bone tissue regeneration for years, however, their local therapeutic efficency in bone metabolic disease condition has been seldom reported. According to our previous report, mesoporous bioactive glass (MBG)/silk scaffolds exhibits superior in vitro bioactivity and in vivo osteogenic properties compared to non-mesoporous bioactive glass (BG)/silk scaffolds, but no information could be found about their efficiency in osteoporotic (OVX) environment. This study investigated a biomaterial-based approach for improving MSCs behavior in vitro, and accelerating OVX defect healing by using 3D BG/silk and MBG/silk scaffolds, and pure silk scaffolds as control. The results of SEM, CCK-8 assay and quantitative ALP activity showed that MBG/silk scaffolds can improve attachment, proliferation and osteogenic differentiation of both O-MSCs and sham control. In vivo therapeutic efficiency was evaluated by μCT analysis, hematoxylin and eosin staining, safranin O staining and tartrate-resistant acid phosphatase, indicating accelerated bone formation with compatible scaffold degradation and reduced osteoclastic response of defect healing in OVX rats after 2 and 4 weeks treatment, with a rank order of MBG/silk > BG/silk > silk group. Immunohistochemical markers of COL I, OPN, BSP and OCN also revealed that MBG/silk scaffolds can better induce accelerated collagen and non-collagen matrix production. The findings of this study suggest that MBG/silk scaffolds provide a better environment for cell attachment, proliferation and differentiation, and act as potential substitute for treating local osteoporotic defects. PMID:24265840

  6. Lyophilized Silk Sponges: A Versatile Biomaterial Platform for Soft Tissue Engineering

    PubMed Central

    2015-01-01

    We present a silk biomaterial platform with highly tunable mechanical and degradation properties for engineering and regeneration of soft tissues such as, skin, adipose, and neural tissue, with elasticity properties in the kilopascal range. Lyophilized silk sponges were prepared under different process conditions and the effect of silk molecular weight, concentration and crystallinity on 3D scaffold formation, structural integrity, morphology, mechanical and degradation properties, and cell interactions in vitro and in vivo were studied. Tuning the molecular weight distribution (via degumming time) of silk allowed the formation of stable, highly porous, 3D scaffolds that held form with silk concentrations as low as 0.5% wt/v. Mechanical properties were a function of silk concentration and scaffold degradation was driven by beta-sheet content. Lyophilized silk sponges supported the adhesion of mesenchymal stem cells throughout 3D scaffolds, cell proliferation in vitro, and cell infiltration and scaffold remodeling when implanted subcutaneously in vivo. PMID:25984573

  7. Differential Scanning Fluorimetry provides high throughput data on silk protein transitions.

    PubMed Central

    Vollrath, Fritz; Hawkins, Nick; Porter, David; Holland, Chris; Boulet-Audet, Maxime

    2014-01-01

    Here we present a set of measurements using Differential Scanning Fluorimetry (DSF) as an inexpensive, high throughput screening method to investigate the folding of silk protein molecules as they abandon their first native melt conformation, dehydrate and denature into their final solid filament conformation. Our first data and analyses comparing silks from spiders, mulberry and wild silkworms as well as reconstituted ‘silk' fibroin show that DSF can provide valuable insights into details of silk denaturation processes that might be active during spinning. We conclude that this technique and technology offers a powerful and novel tool to analyse silk protein transitions in detail by allowing many changes to the silk solutions to be tested rapidly with microliter scale sample sizes. Such transition mechanisms will lead to important generic insights into the folding patterns not only of silks but also of other fibrous protein (bio)polymers. PMID:25004800

  8. Differential Scanning Fluorimetry provides high throughput data on silk protein transitions.

    NASA Astrophysics Data System (ADS)

    Vollrath, Fritz; Hawkins, Nick; Porter, David; Holland, Chris; Boulet-Audet, Maxime

    2014-07-01

    Here we present a set of measurements using Differential Scanning Fluorimetry (DSF) as an inexpensive, high throughput screening method to investigate the folding of silk protein molecules as they abandon their first native melt conformation, dehydrate and denature into their final solid filament conformation. Our first data and analyses comparing silks from spiders, mulberry and wild silkworms as well as reconstituted `silk' fibroin show that DSF can provide valuable insights into details of silk denaturation processes that might be active during spinning. We conclude that this technique and technology offers a powerful and novel tool to analyse silk protein transitions in detail by allowing many changes to the silk solutions to be tested rapidly with microliter scale sample sizes. Such transition mechanisms will lead to important generic insights into the folding patterns not only of silks but also of other fibrous protein (bio)polymers.

  9. Composition and Humidity Response of the Black Widow Spider's Gumfoot Silk and its Implications on Adhesion

    NASA Astrophysics Data System (ADS)

    Jain, Dharamdeep; Zhang, Ci; Cool, Lydia Rose; Blackledge, Todd. A.; Wesdemiotis, Chrys; Miyoshi, Toshikazu; Dhinojwala, Ali

    Humidity plays an important part in the performance of biomaterials such as pollen, gecko toe, wheat awns, bird feathers and dragline silk. Capture silk produced by web building spiders form an interesting class of humidity responsive biological glues. The adhesive properties of the widely studied `viscid silk' produced by orbweb-weaving spiders is highly humidity sensitive. On the other hand, relatively less is known about the dependence of composition and humidity response towards adhesion for `gumfoot' silk produced by cobweb-weaving spiders. In the present study, we investigate the gumfoot silk produced by Black Widow using adhesion mechanics, microscopy and spectroscopic methods. The results show the presence of hygroscopic salts, glycoproteins and previously known spider coating peptides in silk and their importance in the humidity response and adhesion. The current study elucidates the role of constituents of capture silk in its adhesion mechanism and offers insights to novel ways for fabricating bio-inspired adhesives.

  10. The advances and perspectives of recombinant protein production in the silk gland of silkworm Bombyx mori.

    PubMed

    Xu, Hanfu

    2014-10-01

    The silk gland of silkworm Bombyx mori, is one of the most important organs that has been fully studied and utilized so far. It contributes finest silk fibers to humankind. The silk gland has excellent ability of synthesizing silk proteins and is a kind tool to produce some useful recombinant proteins, which can be widely used in the biological, biotechnical and pharmaceutical application fields. It's a very active area to express recombinant proteins using the silk gland as a bioreactor, and great progress has been achieved recently. This review recapitulates the progress of producing recombinant proteins and silk-based biomaterials in the silk gland of silkworm in addition to the construction of expression systems. Current challenges and future trends in the production of valuable recombinant proteins using transgenic silkworms are also discussed. PMID:25113390

  11. Human bone marrow stromal cell responses on electrospun silk fibroin mats.

    PubMed

    Jin, Hyoung-Joon; Chen, Jingsong; Karageorgiou, Vassilis; Altman, Gregory H; Kaplan, David L

    2004-03-01

    Fibers with nanoscale diameters provide benefits due to high surface area for biomaterial scaffolds. In this study electrospun silk fibroin-based fibers with average diameter 700+/-50 nm were prepared from aqueous regenerated silkworm silk solutions. Adhesion, spreading and proliferation of human bone marrow stromal cells (BMSCs) on these silk matrices was studied. Scanning electron microscopy (SEM) and MTT analyses demonstrated that the electrospun silk matrices supported BMSC attachment and proliferation over 14 days in culture similar to native silk fibroin (approximately 15 microm fiber diameter) matrices. The ability of electrospun silk matrices to support BMSC attachment, spreading and growth in vitro, combined with a biocompatibility and biodegradable properties of the silk protein matrix, suggest potential use of these biomaterial matrices as scaffolds for tissue engineering. PMID:14615169

  12. Differential scanning fluorimetry illuminates silk feedstock stability and processability.

    PubMed

    Dicko, C; Kasoju, N; Hawkins, N; Vollrath, F

    2016-01-01

    The ability to design and implement silk feedstock formulations for tailored spinning has so far eluded the bioengineers. Recently, the high throughput screening technique of differential scanning fluorimetry (DSF) demonstrated the link between the instability transition temperature (Ti) and the processability of the silk feedstock. Using DSF we screened a large set of chemicals known to affect solvent quality. A multivariate analysis of the results shows that, regardless of the diversity of chemicals, three groupings are significantly distinguishable: G1 = similar to native silk; G2 = largely dominated by electrostatic interactions; and G3 = dominated by chelating interactions. We propose a thermodynamic analysis based on a pre- and post-transition fit to estimate the van't Hoff enthalpies (ΔHv) and the instability temperature (Ti). Our analysis shows that the ΔTi and ΔHv values were distinct: G1 (ΔTi = 0.23 ± 0.2; ΔHv = -159.1 ± 5.6 kcal mol(-1)), G2 (ΔTi = -7.3 ± 0.7; ΔHv = -191.4 ± 5.5 kcal mol(-1)), and G3 (ΔTi = -19.9 ± 3.3; ΔHv = -68.8 ± 6.0 kcal mol(-1)). Our analysis further combined the ΔTi value and the ΔHv value using stability ΔΔG to find that G1 only marginally stabilizes native silks (ΔΔG = -0.15 ± 0.04 kcal mol(-1)), whereas G2 and G3 destabilize native silk (ΔΔG = 3.8 ± 0.11 and ΔΔG = 3.8 ± 0.3 kcal mol(-1), respectively). Here our analysis shows that native silk has a complex multistep transition that is possibly non-cooperative. However, all three groupings also show a direct and cooperative transition with varied stabilization effects. This analysis suggests that native silks are able to sample multiple substates prior to undergoing (or to delay) the final transition. We conclude by hypothesizing that the observed energetic plasticity may be mediated by a fragile packaging of the silk tertiary structure that is readily lost when the solvent quality changes. PMID:26457973

  13. More than just fibers: an aqueous method for the production of innovative recombinant spider silk protein materials.

    PubMed

    Jones, Justin A; Harris, Thomas I; Tucker, Chauncey L; Berg, Kyle R; Christy, Stacia Y; Day, Breton A; Gaztambide, Danielle A; Needham, Nate J C; Ruben, Ashley L; Oliveira, Paula F; Decker, Richard E; Lewis, Randolph V

    2015-04-13

    Spider silk is a striking and robust natural material that has an unrivaled combination of strength and elasticity. There are two major problems in creating materials from recombinant spider silk proteins (rSSps): expressing sufficient quantities of the large, highly repetitive proteins and solvating the naturally self-assembling proteins once produced. To address the second problem, we have developed a method to rapidly dissolve rSSps in water in lieu of traditional organic solvents and accomplish nearly 100% solvation and recovery of the protein. Our method involves generating pressure and temperature in a sealed vial by using short, repetitive bursts from a conventional microwave. The method is scalable and has been successful with all rSSps used to date. From these easily generated aqueous solutions of rSSps, a wide variety of materials have been produced. Production of fibers, films, hydrogels, lyogels, sponges, and adhesives and studies of their mechanical and structural properties are reported. To our knowledge, ours is the only method that is cost-effective and scalable for mass production. This solvation method allows a choice of the physical form of product to take advantage of spider silks' mechanical properties without using costly and problematic organic solvents. PMID:25789668

  14. Structure to function: Spider silk and human collagen

    NASA Astrophysics Data System (ADS)

    Rabotyagova, Olena S.

    Nature has the ability to assemble a variety of simple molecules into complex functional structures with diverse properties. Collagens, silks and muscles fibers are some examples of fibrous proteins with self-assembling properties. One of the great challenges facing Science is to mimic these designs in Nature to find a way to construct molecules that are capable of organizing into functional supra-structures by self-assembly. In order to do so, a construction kit consisting of molecular building blocks along with a complete understanding on how to form functional materials is required. In this current research, the focus is on spider silk and collagen as fibrous protein-based biopolymers that can shed light on how to generate nanostructures through the complex process of self-assembly. Spider silk in fiber form offers a unique combination of high elasticity, toughness, and mechanical strength, along with biological compatibility and biodegrability. Spider silk is an example of a natural block copolymer, in which hydrophobic and hydrophilic blocks are linked together generating polymers that organize into functional materials with extraordinary properties. Since silks resemble synthetic block copolymer systems, we adopted the principles of block copolymer design from the synthetic polymer literature to build block copolymers based on spider silk sequences. Moreover, we consider spider silk to be an important model with which to study the relationships between structure and properties in our system. Thus, the first part of this work was dedicated to a novel family of spider silk block copolymers, where we generated a new family of functional spider silk-like block copolymers through recombinant DNA technology. To provide fundamental insight into relationships between peptide primary sequence, block composition, and block length and observed morphological and structural features, we used these bioengineered spider silk block copolymers to study secondary structure

  15. Incorporation of Methionine Analogues Into Bombyx mori Silk Fibroin for Click Modifications.

    PubMed

    Teramoto, Hidetoshi; Kojima, Katsura

    2015-05-01

    Bombyx mori silk fibroin incorporating three methionine (Met) analogues-homopropargylglycine (Hpg), azidohomoalanine (Aha), and homoallylglycine (Hag)-can be produced simply by adding them to the diet of B. mori larvae. The Met analogues are recognized by methionyl-tRNA synthetase, bound to tRNA(Met), and used for the translation of adenine-uracil-guanine (AUG) codons competitively with Met. In the presence of the standard amount of Met in the diet, incorporation of these analogues remains low. Lowering the amount of Met in the diet drastically improves incorporation efficiencies. Alkyne and azide groups in Hpg and Aha incorporated into silk fibroin can be selectively modified with Cu-catalyzed azide-alkyne cycloaddition reactions (click chemistry). Since Met residues exist only at the N-terminal domain of the fibroin heavy chain and in the fibroin light chain, good access to the reactive sites is expected and domain-selective modifications are possible without perturbing other major domains, including repetitive domains. PMID:25644632

  16. Research on the Ancient Mongolian Place-Name Along the Silk Road

    NASA Astrophysics Data System (ADS)

    Nashunwuritu; Baiyinbateer; Duoxi

    2016-06-01

    "Silk Road" is an ancient commercial trade channel connecting China with Asia, Africa and Europe and a major link of the economy, politics and culture of the East and West as well. In the 13th Century, with the westward expedition of Mongolian, the communication and integration of culture among different countries was accelerated, which led to many Mongolian place-names scattered in the countries along the silk-road, such as Khwarezmia, Armenia, Mesopotamia, Kipchak, Persian, involving today's Russia, Poland, Ukraine, Bulgaria, Hungary, Austria, Italy, Serbia, Syria, Iran, Afghanistan, Iraq, Uzbekistan, Turkmenistan, India and many other countries and regions. The place-name is a kind of important factor that can represent the changes of culture, economic in history. We analyzed the current place-names in different countries or regions with different language to find out ancient Mongolian place-names, and marked the names on the digital map. Through the changes and transition of the place-name, we explored the development of Mongolian language changes itself, Mongolian blends with other languages, and furtherly reveal information of culture exchange.

  17. Transcriptomic Analysis of the Anterior Silk Gland in the Domestic Silkworm (Bombyx mori) – Insight into the Mechanism of Silk Formation and Spinning

    PubMed Central

    Chang, Huaipu; Cheng, Tingcai; Wu, Yuqian; Hu, Wenbo; Long, Renwen; Liu, Chun; Zhao, Ping; Xia, Qingyou

    2015-01-01

    Silk proteins are synthesized in the middle and posterior silk glands of silkworms, then transit into the anterior of the silk gland, where the silk fibers are produced, stored and processed. The mechanism of formation and spinning of the silk fibers has not been fully elucidated, and transcriptome analyses specific to the anterior silk gland have not been reported. In the present study, we explored gene expression profiles in five regions of silk gland samples using the RNA-Seq method. As a result, there were 959,979,570 raw reads obtained, of which 583,068,172 reads were mapped to the silkworm genome. A total of 7419 genes were found to be expressed in terms of reads per kilobase of exon model per million mapped reads ≥ 5 in at least one sample. The gene numbers and expression levels of the expressed genes differed between these regions. The differentially expressed genes were analyzed, and 282 genes were detected as up-regulated in the anterior silk gland, compared with the other parts. Functions of these genes were addressed using the gene ontology and Kyoto Encyclopedia of Genes and Genomes databases, and seven key pathways were enriched. It suggested that the ion transportation, energy metabolism, protease inhibitors and cuticle proteins played essential roles in the process of silk formation and spinning in the anterior silk gland. In addition, 210 genes were found differently expressed between males and females, which should help to elucidate the mechanism of the quality difference in silk fibers from male and female silkworms. PMID:26418001

  18. Thermally induced changes in dynamic mechanical properties of native silks.

    PubMed

    Guan, Juan; Porter, David; Vollrath, Fritz

    2013-03-11

    Dynamic mechanical thermal analysis (DMTA) on individual native silk fibers demonstrates changes in the dynamic mechanical properties of storage modulus and loss tangent as a function of temperature and temperature history ranging from -100 to 250 °C. These property changes are linked quantitatively to two main types of change in the silk structure. First, the evaporation of water with increasing temperature up to 100 °C increases the storage modulus and removes two characteristic loss tangent peaks at -60 and +60 °C. Second, various discrete loss tangent peaks in the range 150-220 °C are associated with specific disordered silk structures that are removed or converted to a limiting high-temperature relaxed structure by the combination of increasing temperature and static load in the DMTA tests. The results identify important origins of silk filament quality based on the analysis of measurements that can be traced back to differences in production and processing history. PMID:23405856

  19. A Materiomics Approach to Spider Silk: Protein Molecules to Webs

    NASA Astrophysics Data System (ADS)

    Tarakanova, Anna; Buehler, Markus J.

    2012-02-01

    The exceptional mechanical properties of hierarchical self-assembling silk biopolymers have been extensively studied experimentally and in computational investigations. A series of recent studies has been conducted to examine structure-function relationships across different length scales in silk, ranging from atomistic models of protein constituents to the spider web architecture. Silk is an exemplary natural material because its superior properties stem intrinsically from the synergistic cooperativity of hierarchically organized components, rather than from the superior properties of the building blocks themselves. It is composed of beta-sheet nanocrystals interspersed within less orderly amorphous domains, where the underlying molecular structure is dominated by weak hydrogen bonding. Protein chains are organized into fibrils, which pack together to form threads of a spider web. In this article we survey multiscale studies spanning length scales from angstroms to centimeters, from the amino acid sequence defining silk components to an atomistically derived spider web model, with the aim to bridge varying levels of hierarchy to elucidate the mechanisms by which structure at each composite level contributes to organization and material phenomena at subsequent levels. The work demonstrates that the web is a highly adapted system where both material and hierarchical structure across all length scales is critical for its functional properties.

  20. Transmission X-ray microscopy of spider dragline silk.

    PubMed

    Glisović, Anja; Thieme, Jürgen; Guttmann, Peter; Salditt, Tim

    2007-01-30

    We have investigated the structure of spider silk fibers from two different Nephila species and three different Araneus species by transmission X-ray microscopy (TXM). Single fibers and double fibers have been imaged. All images are in agreement with a homogenous density on length scales between the fiber diameter and the resolution of the instrument, which is about 25 nm. PMID:16889826

  1. Relationships between physical properties and sequence in silkworm silks

    PubMed Central

    Malay, Ali D.; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B.; Damrongsakkul, Siriporn; Numata, Keiji

    2016-01-01

    Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase. PMID:27279149

  2. Relationships between physical properties and sequence in silkworm silks.

    PubMed

    Malay, Ali D; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B; Damrongsakkul, Siriporn; Numata, Keiji

    2016-01-01

    Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase. PMID:27279149

  3. Acid extraction and purification of recombinant spider silk proteins.

    PubMed

    Mello, Charlene M; Soares, Jason W; Arcidiacono, Steven; Butler, Michelle M

    2004-01-01

    A procedure has been developed for the isolation of recombinant spider silk proteins based upon their unique stability and solubilization characteristics. Three recombinant silk proteins, (SpI)7, NcDS, and [(SpI)4/(SpII)1]4, were purified by extraction with organic acids followed by affinity or ion exchange chromatography resulting in 90-95% pure silk solutions. The protein yield of NcDS (15 mg/L culture) and (SpI)7 (35 mg/L) increased 4- and 5-fold, respectively, from previously reported values presumably due to a more complete solubilization of the expressed recombinant protein. [(SpI)4/(SpII)1]4, a hybrid protein based on the repeat sequences of spidroin I and spidroin II, had a yield of 12.4 mg/L. This method is an effective, reproducible technique that has broad applicability for a variety of silk proteins as well as other acid stable biopolymers. PMID:15360297

  4. Silk fibroin as a non-thrombogenic biomaterial.

    PubMed

    Adalı, Terin; Uncu, Murat

    2016-09-01

    Silk fibroin (SF), is a very attractive protein-polymer, being processed into a variety of formats to match structural and morphological features for specific biomedical applications. The aim of the present work is to investigate blood compatibility of two forms, films and scaffolds, of silk fibroin-N,N' methylene bisacrylamide (MBA) prepared by using blend solutions of the two components. Biofilms were prepared under UV-irradiation while scaffolds were prepared via freeze-drying technique at -30°C and -80°C, respectively. Swelling, biodegradation tests with protease enzyme, FTIR, SEM, XRD analyses were applied to characterize the biomaterials. The results indicated that, the presence of the crosslinker (MBA) in the scaffold and biofilm aids the formation of ordered structure. The pore size and biodegradability can be controllable by the amount of crosslinker. The anticoagulant activity was evaluated using prothrombin time (PT), activated partial thromboplastin time (APTT). The in-vitro coagulation test and platelet adhesion test analyses indicated that the modified scaffolds and biofilms exhibited better hemocompatibility in comparison with pure silk fibroin. These results demostrated that the silk fibrion-N,N' methylene bisacrylamide biofilms and blended scaffolds have potential applications as blood contact device. PMID:26826290

  5. Electroantennography of silk flies, a crucial step for semiochemical investigations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract Electroantennography of silk flies, a crucial step for semiochemical investigations D. Owens1, G. Nuessly1, P. E. Kendra2, D. Seal3, T. Colquhoun4, and D. Hahn4 1University of Florida, Belle Glade, FL 2USDA-ARS, Miami, FL 3University of Florida, Homestead, FL 4University of Florida, Gaines...

  6. Silk fly electroantennography, a crucial step for semiochemical investigations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silk flies (Euxesta and Chaetopsis spp., Diptera: Ulidiidae) are severe pests of sweet corn in Florida, Central, and South America. Identification of attractive semiochemicals may facilitate development of improved monitoring and management strategies for these pests. To this end, an electroantennog...

  7. Identification and classification of silks using infrared spectroscopy.

    PubMed

    Boulet-Audet, Maxime; Vollrath, Fritz; Holland, Chris

    2015-10-01

    Lepidopteran silks number in the thousands and display a vast diversity of structures, properties and industrial potential. To map this remarkable biochemical diversity, we present an identification and screening method based on the infrared spectra of native silk feedstock and cocoons. Multivariate analysis of over 1214 infrared spectra obtained from 35 species allowed us to group silks into distinct hierarchies and a classification that agrees well with current phylogenetic data and taxonomies. This approach also provides information on the relative content of sericin, calcium oxalate, phenolic compounds, poly-alanine and poly(alanine-glycine) β-sheets. It emerged that the domesticated mulberry silkmoth Bombyx mori represents an outlier compared with other silkmoth taxa in terms of spectral properties. Interestingly, Epiphora bauhiniae was found to contain the highest amount of β-sheets reported to date for any wild silkmoth. We conclude that our approach provides a new route to determine cocoon chemical composition and in turn a novel, biological as well as material, classification of silks. PMID:26347557

  8. Identification and classification of silks using infrared spectroscopy

    PubMed Central

    Boulet-Audet, Maxime; Vollrath, Fritz; Holland, Chris

    2015-01-01

    ABSTRACT Lepidopteran silks number in the thousands and display a vast diversity of structures, properties and industrial potential. To map this remarkable biochemical diversity, we present an identification and screening method based on the infrared spectra of native silk feedstock and cocoons. Multivariate analysis of over 1214 infrared spectra obtained from 35 species allowed us to group silks into distinct hierarchies and a classification that agrees well with current phylogenetic data and taxonomies. This approach also provides information on the relative content of sericin, calcium oxalate, phenolic compounds, poly-alanine and poly(alanine-glycine) β-sheets. It emerged that the domesticated mulberry silkmoth Bombyx mori represents an outlier compared with other silkmoth taxa in terms of spectral properties. Interestingly, Epiphora bauhiniae was found to contain the highest amount of β-sheets reported to date for any wild silkmoth. We conclude that our approach provides a new route to determine cocoon chemical composition and in turn a novel, biological as well as material, classification of silks. PMID:26347557

  9. Teaching the Silk Road: A Journey of Pedagogical Discovery.

    ERIC Educational Resources Information Center

    Andrea, A. J.; Mierse, William

    2002-01-01

    Describes a course for first-year college students that focuses on the Silk Road. Discusses the problems that occurs in such a course, types of resources used, basic strategies and tactics taken, and the focus on mapmaking in the beginning of the course. Includes an annotated bibliography. (CMK)

  10. 21 CFR 878.5030 - Natural nonabsorbable silk surgical suture.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Natural nonabsorbable silk surgical suture. 878.5030 Section 878.5030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices §...

  11. 21 CFR 878.5030 - Natural nonabsorbable silk surgical suture.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Natural nonabsorbable silk surgical suture. 878.5030 Section 878.5030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices §...

  12. 21 CFR 878.5030 - Natural nonabsorbable silk surgical suture.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Natural nonabsorbable silk surgical suture. 878.5030 Section 878.5030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices §...

  13. Relationships between physical properties and sequence in silkworm silks

    NASA Astrophysics Data System (ADS)

    Malay, Ali D.; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B.; Damrongsakkul, Siriporn; Numata, Keiji

    2016-06-01

    Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase.

  14. Another Way of Knowing: Visualizing the Ancient Silk Routes

    ERIC Educational Resources Information Center

    Bisland, Beverly Milner

    2010-01-01

    One way that people learn, remember and communicate is visually. We combine past experiences with new visual information to construct meaning. In this study, elementary teachers introduced their students to the peoples and places of the ancient silk routes using illustrations from two children's picture books, "Marco Polo," written by Gian Paolo…

  15. Co-effect of silk and amniotic membrane for tendon repair.

    PubMed

    Seo, Young-Kwon; Kim, Jun-Hyung; Eo, Su-Rak

    2016-08-01

    The objective of the present study was to determine the feasibility and biocompatibility of a silk scaffold and a composite silk scaffold in terms of new tendon generation using a rabbit Achilles tendon model. The silk scaffold was constructed using a weaving machine, then soaked in a 1% collagen-hyaluronan (HA) solution and air-dried, whereas the composite silk scaffold was composed of a silk scaffold containing a lyophilized collagen-HA substrate. Tenocytes were cultured in vitro to compare cell populations in the two groups. The cellular densities on composite silk scaffolds were 40% higher on average than those on silk scaffolds in 30-day tenocyte cultures. The tendon scaffolds had implanted into Achilles tendon defects in 16 white New Zealand rabbits. Rabbits were randomly divided into the following three groups: group I, silk scaffold alone; group II, composite silk scaffold; and group III, composite silk scaffold wrapped by an amniotic membrane. Implants were harvested 2, 8, and 12 weeks post-implantation. Histological examinations were conducted using hematoxylin-eosin (H&E), Masson's trichrome, and by performing immunohistochemical staining for CD34. After 12 weeks, the three groups were distinguishable based on gross examination. The histological examination revealed more organized collagen fibrils in groups III, which showed a dense, parallel, linear organization of collagen bundles. CD34 staining revealed neoangiogenesis in groups III. The results of this research showed that collagen-HA substrates with amniotic membrane accelerate cellular migration and angiogenesis in neotendons. PMID:27188627

  16. Nanoscale control of silica particle formation via silk-silica fusion proteins for bone regeneration.

    PubMed

    Mieszawska, Aneta J; Nadkarni, Lauren D; Perry, Carole C; Kaplan, David L

    2010-10-26

    The biomimetic design of silk/silica fusion proteins was carried out, combining the self assembling domains of spider dragline silk (Nephila clavipes) and silaffin derived R5 peptide of Cylindrotheca fusiformis that is responsible for silica mineralization. Genetic engineering was used to generate the protein-based biomaterials incorporating the physical properties of both components. With genetic control over the nanodomain sizes and chemistry, as well as modification of synthetic conditions for silica formation, controlled mineralized silk films with different silica morphologies and distributions were successfully generated; generating 3D porous networks, clustered silica nanoparticles (SNPs), or single SNPs. Silk serves as the organic scaffolding to control the material stability and multiprocessing makes silk/silica biomaterials suitable for different tissue regenerative applications. The influence of these new silk-silica composite systems on osteogenesis was evaluated with human mesenchymal stem cells (hMSCs) subjected to osteogenic differentiation. hMSCs adhered, proliferated, and differentiated towards osteogenic lineages on the silk/silica films. The presence of the silica in the silk films influenced osteogenic gene expression, with the upregulation of alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col 1) markers. Evidence for early bone formation as calcium deposits was observed on silk films with silica. These results indicate the potential utility of these new silk/silica systems towards bone regeneration. PMID:20976116

  17. Thermal Performance Testing of Cryogenic Multilayer Insulation with Silk Net Spacers

    NASA Astrophysics Data System (ADS)

    Johnson, W. L.; Frank, D. J.; Nast, T. C.; Fesmire, J. E.

    2015-12-01

    Early comprehensive testing of cryogenic multilayer insulation focused on the use of silk netting as a spacer material. Silk netting was used for multiple test campaigns that were designed to provide baseline thermal performance estimates for cryogenic insulation systems. As more focus was put on larger systems, the cost of silk netting became a deterrent and most aerospace insulation firms were using Dacron (or polyester) netting spacers by the early 1970s. In the midst of the switch away from silk netting there was no attempt to understand the difference between silk and polyester netting, though it was widely believed that the silk netting provided slightly better performance. Without any better reference for thermal performance data, the silk netting performance correlations continued to be used. In order to attempt to quantify the difference between the silk netting and polyester netting, a brief test program was developed. The silk netting material was obtained from Lockheed Martin and was tested on the Cryostat-100 instrument in three different configurations, 20 layers with both single and double netting and 10 layers with single netting only. The data show agreement within 15 - 30% with the historical silk netting based correlations and show a substantial performance improvement when compared to previous testing performed using polyester netting and aluminum foil/fiberglass paper multilayer insulation. Additionally, the data further reinforce a recently observed trend that the heat flux is not directly proportional to the number of layers installed on a system.

  18. An Australian webspinner species makes the finest known insect silk fibers

    SciTech Connect

    Okada, Shoko; Weisman, Sarah; Trueman, Holly E.; Mudie, Stephen T.; Haritos, Victoria S.; Sutherland, Tara D.

    2009-01-15

    Aposthonia gurneyi, an Australian webspinner species, is a primitive insect that constructs and lives in a silken tunnel which screens it from the attentions of predators. The insect spins silk threads from many tiny spines on its forelegs to weave a filmy sheet. We found that the webspinner silk fibers have a mean diameter of only 65 nm, an order of magnitude smaller than any previously reported insect silk. The purpose of such fine silk may be to reduce the metabolic cost of building the extensive tunnels. At the molecular level, the A. gurneyi silk has a predominantly beta-sheet protein structure. The most abundant clone in a cDNA library produced from the webspinner silk glands encoded a protein with extensive glycine-serine repeat regions. The GSGSGS repeat motif of the A. gurneyi silk protein is similar to the well-known GAGAGS repeat motif found in the heavy fibroin of silkworm silk, which also has beta-sheet structure. As the webspinner silk gene is unrelated to the silk gene of the phylogenetically distant silkworm, this is a striking example of convergent evolution.

  19. Effects of different Bombyx mori silkworm varieties on the structural characteristics and properties of silk.

    PubMed

    Chung, Da Eun; Kim, Hyung Hwan; Kim, Moo Kon; Lee, Ki Hoon; Park, Young Hwan; Um, In Chul

    2015-08-01

    Silk has attracted the attention of biomedical researchers because of its good biocompatibility. Although various characteristics of silk are needed for its successful application in biomedical fields, the performance of silk material is limited. Although there are many varieties of Bombyx mori silkworm, the effect of different silkworm varieties on regenerated silk has not been considered in detail. That is, the use of a diverse variety of silkworms has not been considered in non-textile applications resulting in limited performance of silk materials. In this study, the effects of different silkworm varieties on the structural characteristics and properties of silk cocoon and regenerated silk fibroin (SF) were examined. Structural characteristics of silk cocoon including color, fiber diameter, and porosity, differed depending on the silkworm variety. Furthermore, molecular weight, solution viscosity, and mechanical properties of regenerated SF were influenced by the variety of silkworm, while the amino acid composition, β-sheet crystallization by formic acid, and cyto-compatibility of regenerated SF did not differ between the samples from different varieties of silkworm. These results imply that diverse performance of silk can be obtained by controlling the silkworm variety, and that the use of different varieties of silkworm might be a good way to strengthen the performance of silk in biomedical fields. PMID:26072984

  20. Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers.

    PubMed

    Boutry, Cecilia; Blackledge, Todd Alan

    2010-10-15

    Spider silk is a promising biomaterial with impressive performance. However, some spider silks also 'supercontract' when exposed to water, shrinking by up to ∼50% in length. Supercontraction may provide a critical mechanism to tailor silk properties, both for future synthetic silk production and by the spiders themselves. Several hypotheses are proposed for the mechanism and function of supercontraction, but they remain largely untested. In particular, supercontraction may result from a rearrangement of the GPGXX motif within the silk proteins, where G represents glycine, P proline and X is one of a small subset of amino acids. Supercontraction may prevent sagging in wet orb-webs or allow spiders to tailor silk properties for different ecological functions. Because both the molecular structures of silk proteins and how dragline is used in webs differ among species, we can test these hypotheses by comparing supercontraction of silk across diverse spider taxa. In this study we measured supercontraction in 28 spider taxa, ranging from tarantulas to orb-weaving spiders. We found that silk from all species supercontracted, except that of most tarantulas. This suggests that supercontraction evolved at least with the origin of the Araneomorphae, over 200 million years ago. We found differences in the pattern of evolution for two components of supercontraction. Stress generated during supercontraction of a restrained fiber is not associated with changes in silk structure and web architecture. By contrast, the shrink of unrestrained supercontracting fibers is higher for Orbiculariae spiders, whose silk contains high ratios of GPGXX motifs. These results support the hypothesis that supercontraction is caused by a rearrangement of GPGXX motifs in silk, and that it functions to tailor silk material properties. PMID:20889831

  1. A study on occupational asthma among workers of silk filatures in South India

    PubMed Central

    Gowda, Giriyanna; Vijayeendra, Anagha Manakari; Sarkar, Nivedita; Shivalingaiah, Anwith Huluvadi; Shah, Ankita; Ashwathnarayana, Abhiram Gopal; Narayanaswamy, Huliraj; Nagaraj, Chitra

    2014-01-01

    Background: The production of silk is a multidimensional and multistep process involving exposure of workers to allergens at work place. The silk allergen has been implicated in the development of bronchial asthma. Objectives: To identify the prevalence of occupational asthma (OA) and to identify sensitization to silk allergen and among workers in silk filature units. Materials and Methods: A community-based cross-sectional study was conducted in silk filature units of Ramanagara (Silk City) in Karnataka, South India, for a period of 6 months. One hundred and twenty workers of silk filature units who met the inclusion and exclusion criteria were recruited into the study group. For comparison, a control group comprising of 120 individuals not working in silk filature units was constituted. All the subjects were interviewed using the standardized International Union against Tuberculosis and Lung Diseases (IUATLD) Questionnaire and subjected to the skin prick test, which used the extracts of silk allergen. Results: The study group comprised of 35 males and 85 females, whereas the control group comprised of 58 males and 62 females. The prevalence of occupational asthma among workers in silk filatures was 20.83%. It was observed that 35.83% of those in the study group and 20.83% of those in the control group were found to be sensitive to silk allergen. This difference was statistically significant (χ2= 6.64; P < 0.05). Conclusion: There is a high burden of sensitization to silk allergen and occupational asthma among silk filature workers in South India. PMID:25568600

  2. Conductive polymer combined silk fiber bundle for bioelectrical signal recording.

    PubMed

    Tsukada, Shingo; Nakashima, Hiroshi; Torimitsu, Keiichi

    2012-01-01

    Electrode materials for recording biomedical signals, such as electrocardiography (ECG), electroencephalography (EEG) and evoked potentials data, are expected to be soft, hydrophilic and electroconductive to minimize the stress imposed on living tissue, especially during long-term monitoring. We have developed and characterized string-shaped electrodes made from conductive polymer with silk fiber bundles (thread), which offer a new biocompatible stress free interface with living tissue in both wet and dry conditions.An electroconductive polyelectrolyte, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was electrochemically combined with silk thread made from natural Bombyx mori. The polymer composite 280 µm thread exhibited a conductivity of 0.00117 S/cm (which corresponds to a DC resistance of 2.62 Mohm/cm). The addition of glycerol to the PEDOT-PSS silk thread improved the conductivity to 0.102 S/cm (20.6 kohm/cm). The wettability of PEDOT-PSS was controlled with glycerol, which improved its durability in water and washing cycles. The glycerol treated PEDOT-PSS silk thread showed a tensile strength of 1000 cN in both wet and dry states. Without using any electrolytes, pastes or solutions, the thread directly collects electrical signals from living tissue and transmits them through metal cables. ECG, EEG, and sensory evoked potential (SEP) signals were recorded from experimental animals by using this thread placed on the skin. PEDOT-PSS silk glycerol composite thread offers a new class of biocompatible electrodes in the field of biomedical and health promotion that does not induce stress in the subjects. PMID:22493670

  3. Conductive Polymer Combined Silk Fiber Bundle for Bioelectrical Signal Recording

    PubMed Central

    Tsukada, Shingo; Nakashima, Hiroshi; Torimitsu, Keiichi

    2012-01-01

    Electrode materials for recording biomedical signals, such as electrocardiography (ECG), electroencephalography (EEG) and evoked potentials data, are expected to be soft, hydrophilic and electroconductive to minimize the stress imposed on living tissue, especially during long-term monitoring. We have developed and characterized string-shaped electrodes made from conductive polymer with silk fiber bundles (thread), which offer a new biocompatible stress free interface with living tissue in both wet and dry conditions. An electroconductive polyelectrolyte, poly(3,4-ethylenedioxythiophene) -poly(styrenesulfonate) (PEDOT-PSS) was electrochemically combined with silk thread made from natural Bombyx mori. The polymer composite 280 µm thread exhibited a conductivity of 0.00117 S/cm (which corresponds to a DC resistance of 2.62 Mohm/cm). The addition of glycerol to the PEDOT-PSS silk thread improved the conductivity to 0.102 S/cm (20.6 kohm/cm). The wettability of PEDOT-PSS was controlled with glycerol, which improved its durability in water and washing cycles. The glycerol treated PEDOT-PSS silk thread showed a tensile strength of 1000 cN in both wet and dry states. Without using any electrolytes, pastes or solutions, the thread directly collects electrical signals from living tissue and transmits them through metal cables. ECG, EEG, and sensory evoked potential (SEP) signals were recorded from experimental animals by using this thread placed on the skin. PEDOT-PSS silk glycerol composite thread offers a new class of biocompatible electrodes in the field of biomedical and health promotion that does not induce stress in the subjects. PMID:22493670

  4. Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance.

    PubMed

    Yan, Le-Ping; Silva-Correia, Joana; Oliveira, Mariana B; Vilela, Carlos; Pereira, Hélder; Sousa, Rui A; Mano, João F; Oliveira, Ana L; Oliveira, Joaquim M; Reis, Rui L

    2015-01-01

    Novel porous bilayered scaffolds, fully integrating a silk fibroin (SF) layer and a silk-nano calcium phosphate (silk-nanoCaP) layer for osteochondral defect (OCD) regeneration, were developed. Homogeneous porosity distribution was achieved in the scaffolds, with calcium phosphate phase only retained in the silk-nanoCaP layer. The scaffold presented compressive moduli of 0.4MPa in the wet state. Rabbit bone marrow mesenchymal stromal cells (RBMSCs) were cultured on the scaffolds, and good adhesion and proliferation were observed. The silk-nanoCaP layer showed a higher alkaline phosphatase level than the silk layer in osteogenic conditions. Subcutaneous implantation in rabbits demonstrated weak inflammation. In a rabbit knee critical size OCD model, the scaffolds firmly integrated into the host tissue. Histological and immunohistochemical analysis showed that collagen II positive cartilage and glycosaminoglycan regeneration presented in the silk layer, and de novo bone ingrowths and vessel formation were observed in the silk-nanoCaP layer. These bilayered scaffolds can therefore be promising candidates for OCD regeneration. PMID:25449920

  5. Effect of residual sericin on the structural characteristics and properties of regenerated silk films.

    PubMed

    Lee, Ji Hye; Song, Dae Woong; Park, Young Hwan; Um, In Chul

    2016-08-01

    Regenerated silk film has been increasingly attracting the research community's attention for biomedical applications due to its good biocompatibility and excellent cyto-compatibility. However, some limitations regarding its mechanical properties, such as brittleness, have restricted the use of silk films for industrial biomedical applications. In this study, regenerated silk films with different residual sericin content were prepared applying controlled degumming conditions to evaluate the effect of sericin content on the structure and properties of the films generated. When the residual sericin content increased to 0.6%, crystallinity index and breaking strength of silk films were increased. Above this value, these parameters then decreased. A 1.5 fold increase of silk film elongation properties was obtained when incorporating 16% sericin. Regardless of sericin content, all regenerated silk films showed excellent cyto-compatibility, comparable to the one obtained with tissue culture plates. PMID:27126168

  6. Injectable and pH-Responsive Silk Nanofiber Hydrogels for Sustained Anticancer Drug Delivery.

    PubMed

    Wu, Hongchun; Liu, Shanshan; Xiao, Liying; Dong, Xiaodan; Lu, Qiang; Kaplan, David L

    2016-07-13

    Silk is useful as a drug carrier due to its biocompatibility, tunable degradation, and outstanding capacity in maintaining the function of drugs. Injectable silk hydrogels could deliver doxorubicin (DOX) for localized chemotherapy for breast cancer. To improve hydrogel properties, thixotropic silk nanofiber hydrogels in an all-aqueous solution were prepared and used to locally deliver DOX. The silk hydrogels displayed thixotropic capacity, allowing for easy injectability followed by solidification in situ. The hydrogels were loaded with DOX and released the drug over eight weeks with pH- and concentration-dependent release kinetics. In vitro and in vivo studies demonstrated that DOX-loaded silk hydrogels had good antitumor response, outperforming the equivalent dose of free DOX administered intravenously. Thixotropic silk hydrogels provide improved injectability to support sustained release, suggesting promising applications for localized chemotherapy. PMID:27315327

  7. Sample selection, preparation methods, and the apparent tensile properties of silkworm (B. mori) cocoon silk.

    PubMed

    Reed, Emily J; Bianchini, Lindsay L; Viney, Christopher

    2012-06-01

    Reported literature values of the tensile properties of natural silk cover a wide range. While much of this inconsistency is the result of variability that is intrinsic to silk, some is also a consequence of differences in the way that silk is prepared for tensile tests. Here we explore how measured mechanical properties of Bombyx mori cocoon silk are affected by two intrinsic factors (the location from which the silk is collected within the cocoon, and the color of the silk), and two extrinsic factors (the storage conditions prior to testing, and different styles of reeling the fiber). We find that extrinsic and therefore controllable factors can affect the properties more than the intrinsic ones studied. Our results suggest that enhanced inter-laboratory collaborations, that lead to standardized sample collection, handling, and storage protocols prior to mechanical testing, would help to decrease unnecessary (and complicating) variation in reported tensile properties. PMID:22057343

  8. Refractive index measurements of double-cylinder structures found in natural spider silks

    NASA Astrophysics Data System (ADS)

    Little, Douglas J.; Kane, Deb M.

    2014-05-01

    The silks of Orb-Weaver spiders (family Araneidae) are emerging as fascinating optical materials due to their biocompatibility, ecological sustainability and mechanical robustness. Natural spider silks are mainly spun as double cylinders, with diameters ranging from 0.05 to 10 μm, depending on the species and maturity of the spider. This small size makes the silks difficult to characterize optically with traditional techniques. Here, we present a technique that is capable of measuring both the real and imaginary refractive index components of spider silks. This technique is also a new capability for characterizing micro-optics more generally. It is based on the measurement and analysis of refracted light through the spider silk, or micro-optic, while it is immersed in a liquid of known refractive index. It can be applied at any visible wavelength. Results at 540 nm are reported. Real refractive indices in the range of 1.54-1.58 were measured, consistent with previous studies of spider silks. Large silk-to-silk variability of the p-polarized refractive index was observed of around 0.015, while variability in the s-polarized refractive index was negligible. No discernible difference in the refractive indices of the two cylinders making up the double cylinder silk structure were observed. Measured imaginary refractive indices corresponded to an optical loss of around 14 dB/mm at 540 nm.

  9. Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana.

    PubMed

    Shi, Jiahai; Lua, Shixiong; Du, Ning; Liu, Xiangyang; Song, Jianxing

    2008-06-01

    Unlike silkworm and spider silks assembled from very large and repetitive fibrous proteins, the bee and ant silks were recently demonstrated to consist of four small and non-repetitive coiled-coil proteins. The design principle for this silk family remains largely unknown and so far no structural study is available on them in solution. The present study aimed to identify, express and characterize the Asiatic honeybee silk proteins using DLS, CD and NMR spectroscopy. Consequently, (1) four silk proteins are identified, with approximately 6, 10, 9 and 8% variations, respectively, from their European honeybee homologs. Strikingly, their recombinant forms can be produced in Escherichia coil with yields of 10-60 mg/l. (2) Despite containing approximately 65% coiled-coil sequences, four proteins have very low alpha-helix (9-27%) but unusually high random coil (45-56%) contents. Surprisingly, beta-sheet is also detected in four silk proteins (26-35%), implying the possible presence of beta-sheet in the bee and ant silks. (3) Four proteins lacking of the tight tertiary packing appear capable of interacting with each other weakly but this interaction triggers no significant formation of the tight tertiary packing. The study not only implies the promising potential to produce recombinant honeybee silk proteins for the development of various biomaterials; but also provides the first structural insight into the molecular mechanism underlying the formation of the coiled-coil silks. PMID:18394700

  10. Bimorph Silk Microsheets with Programmable Actuating Behavior: Experimental Analysis and Computer Simulations.

    PubMed

    Ye, Chunhong; Nikolov, Svetoslav V; Geryak, Ren D; Calabrese, Rossella; Ankner, John F; Alexeev, Alexander; Kaplan, David L; Tsukruk, Vladimir V

    2016-07-13

    Microscaled self-rolling construct sheets from silk protein material have been fabricated, containing a silk bimorph composed of silk ionomers as an active layer and cross-linked silk β-sheet as the passive layer. The programmable morphology was experimentally explored along with a computational simulation to understand the mechanism of shape reconfiguration. The neutron reflectivity shows that the active silk ionomers layer undergoes remarkable swelling (eight times increase in thickness) after deprotonation while the passive silk β-sheet retains constant volume under the same conditions and supports the bimorph construct. This selective swelling within the silk-on-silk bimorph microsheets generates strong interfacial stress between layers and out-of-plane forces, which trigger autonomous self-rolling into various 3D constructs such as cylindrical and helical tubules. The experimental observations and computational modeling confirmed the role of interfacial stresses and allow programming the morphology of the 3D constructs with particular design. We demonstrated that the biaxial stress distribution over the 2D planar films depends upon the lateral dimensions, thickness and the aspect ratio of the microsheets. The results allow the fine-tuning of autonomous shape transformations for the further design of complex micro-origami constructs and the silk based rolling/unrolling structures provide a promising platform for polymer-based biomimetic devices for implant applications. PMID:27308946

  11. Aqueous multiphoton lithography with multifunctional silk-centred bio-resists

    PubMed Central

    Sun, Yun-Lu; Li, Qi; Sun, Si-Ming; Huang, Jing-Chun; Zheng, Bo-Yuan; Chen, Qi-Dai; Shao, Zheng-Zhong; Sun, Hong-Bo

    2015-01-01

    Silk and silk fibroin, the biomaterial from nature, nowadays are being widely utilized in many cutting-edge micro/nanodevices/systems via advanced micro/nanofabrication techniques. Herein, for the first time to our knowledge, we report aqueous multiphoton lithography of diversiform-regenerated-silk-fibroin-centric inks using noncontact and maskless femtosecond laser direct writing (FsLDW). Initially, silk fibroin was FsLDW-crosslinked into arbitrary two/three-dimensional micro/nanostructures with good elastic properties merely using proper photosensitizers. More interestingly, silk/metal composite micro/nanodevices with multidimension-controllable metal content can be FsLDW-customized through laser-induced simultaneous fibroin oxidation/crosslinking and metal photoreduction using the simplest silk/Ag+ or silk/[AuCl4]− aqueous resists. Noticeably, during FsLDW, fibroin functions as biological reductant and matrix, while metal ions act as the oxidant. A FsLDW-fabricated prototyping silk/Ag microelectrode exhibited 104-Ω−1 m−1-scale adjustable electric conductivity. This work not only provides a powerful development to silk micro/nanoprocessing techniques but also creates a novel way to fabricate multifunctional metal/biomacromolecule complex micro/nanodevices for applications such as micro/nanoscale mechanical and electrical bioengineering and biosystems. PMID:26472600

  12. Molecular Architecture and Evolution of a Modular Spider Silk Protein Gene

    NASA Astrophysics Data System (ADS)

    Hayashi, Cheryl Y.; Lewis, Randolph V.

    2000-02-01

    Spider flagelliform silk is one of the most elastic natural materials known. Extensive sequencing of spider silk genes has shown that the exons and introns of the flagelliform gene underwent intragenic concerted evolution. The intron sequences are more homogenized within a species than are the exons. This pattern can be explained by extreme mutation and recombination pressures on the internally repetitive exons. The iterated sequences within exons encode protein structures that are critical to the function of silks. Therefore, attributes that make silks exceptional biomaterials may also hinder the fixation of optimally adapted protein sequences.

  13. Proteomic Analysis of Silk Viability in Maize Inbred Lines and Their Corresponding Hybrids.

    PubMed

    Ma, Zhihui; Qin, Yongtian; Wang, Yafei; Zhao, Xiaofeng; Zhang, Fangfang; Tang, Jihua; Fu, Zhiyuan

    2015-01-01

    A long period of silk viability is critical for a good seed setting rate in maize (Zea mays L.), especially for inbred lines and hybrids with a long interval between anthesis and silking. To explore the molecular mechanism of silk viability and its heterosis, three inbred lines with different silk viability characteristics (Xun928, Lx9801, and Zong3) and their two hybrids (Xun928×Zong3 and Lx9801×Zong3) were analyzed at different developmental stages by a proteomic method. The differentially accumulated proteins were identified by mass spectrometry and classified into metabolism, protein biosynthesis and folding, signal transduction and hormone homeostasis, stress and defense responses, and cellular processes. Proteins involved in nutrient (methionine) and energy (ATP) supply, which support the pollen tube growth in the silk, were important for silk viability and its heterosis. The additive and dominant effects at a single locus, as well as complex epistatic interactions at two or more loci in metabolic pathways, were the primary contributors for mid-parent heterosis of silk viability. Additionally, the proteins involved in the metabolism of anthocyanins, which indirectly negatively regulate local hormone accumulation, were also important for the mid-parent heterosis of silk viability. These results also might imply the developmental dependence of heterosis, because many of the differentially accumulated proteins made distinct contributions to the heterosis of silk viability at specific developmental stages. PMID:26630375

  14. Aqueous multiphoton lithography with multifunctional silk-centred bio-resists

    NASA Astrophysics Data System (ADS)

    Sun, Yun-Lu; Li, Qi; Sun, Si-Ming; Huang, Jing-Chun; Zheng, Bo-Yuan; Chen, Qi-Dai; Shao, Zheng-Zhong; Sun, Hong-Bo

    2015-10-01

    Silk and silk fibroin, the biomaterial from nature, nowadays are being widely utilized in many cutting-edge micro/nanodevices/systems via advanced micro/nanofabrication techniques. Herein, for the first time to our knowledge, we report aqueous multiphoton lithography of diversiform-regenerated-silk-fibroin-centric inks using noncontact and maskless femtosecond laser direct writing (FsLDW). Initially, silk fibroin was FsLDW-crosslinked into arbitrary two/three-dimensional micro/nanostructures with good elastic properties merely using proper photosensitizers. More interestingly, silk/metal composite micro/nanodevices with multidimension-controllable metal content can be FsLDW-customized through laser-induced simultaneous fibroin oxidation/crosslinking and metal photoreduction using the simplest silk/Ag+ or silk/[AuCl4]- aqueous resists. Noticeably, during FsLDW, fibroin functions as biological reductant and matrix, while metal ions act as the oxidant. A FsLDW-fabricated prototyping silk/Ag microelectrode exhibited 104-Ω-1 m-1-scale adjustable electric conductivity. This work not only provides a powerful development to silk micro/nanoprocessing techniques but also creates a novel way to fabricate multifunctional metal/biomacromolecule complex micro/nanodevices for applications such as micro/nanoscale mechanical and electrical bioengineering and biosystems.

  15. Aqueous multiphoton lithography with multifunctional silk-centred bio-resists.

    PubMed

    Sun, Yun-Lu; Li, Qi; Sun, Si-Ming; Huang, Jing-Chun; Zheng, Bo-Yuan; Chen, Qi-Dai; Shao, Zheng-Zhong; Sun, Hong-Bo

    2015-01-01

    Silk and silk fibroin, the biomaterial from nature, nowadays are being widely utilized in many cutting-edge micro/nanodevices/systems via advanced micro/nanofabrication techniques. Herein, for the first time to our knowledge, we report aqueous multiphoton lithography of diversiform-regenerated-silk-fibroin-centric inks using noncontact and maskless femtosecond laser direct writing (FsLDW). Initially, silk fibroin was FsLDW-crosslinked into arbitrary two/three-dimensional micro/nanostructures with good elastic properties merely using proper photosensitizers. More interestingly, silk/metal composite micro/nanodevices with multidimension-controllable metal content can be FsLDW-customized through laser-induced simultaneous fibroin oxidation/crosslinking and metal photoreduction using the simplest silk/Ag(+) or silk/[AuCl4](-) aqueous resists. Noticeably, during FsLDW, fibroin functions as biological reductant and matrix, while metal ions act as the oxidant. A FsLDW-fabricated prototyping silk/Ag microelectrode exhibited 10(4)-Ω(-1 ) m(-1)-scale adjustable electric conductivity. This work not only provides a powerful development to silk micro/nanoprocessing techniques but also creates a novel way to fabricate multifunctional metal/biomacromolecule complex micro/nanodevices for applications such as micro/nanoscale mechanical and electrical bioengineering and biosystems. PMID:26472600

  16. A microporous silk carbon-ionic liquid composite for the electrochemical sensing of dopamine.

    PubMed

    Wang, Min; Bai, Lu; Zhang, Lingling; Sun, Guangping; Zhang, Xiaowei; Dong, Shaojun

    2016-04-21

    Porous silk carbon (Silk C) was obtained through carbonization and KOH activation of natural silk cocoons. The as-prepared Silk C presented the good characteristics of a large surface area (SBET: 2854.53 m(2) g(-1)) and a high volume of pores (1.54 cm(3) g(-1)) with uniform micropores (2.5 nm) and multiple defects. The metal-free silk carbon-ionic liquid (Silk C-IL) composite, synthesized by modifying Silk C with ionic liquid through non-covalent (π-π) interactions under grinding conditions, was prepared for electrochemical determination of dopamine (DA). The detection limit of DA was 79 nM (S/N = 3) with a linear range from 0.6 μM to 140 μM. Meanwhile, the as-made Silk C-IL/GCE presented good selectivity for DA detection from other possible interferences, such as ascorbic acid, glucose and uric acid. Furthermore, the Silk C-IL/GCE was also successfully used for the detection of DA in fetal bovine serum and dopamine hydrochloride injection samples. PMID:26979477

  17. Proteomic Analysis of Silk Viability in Maize Inbred Lines and Their Corresponding Hybrids

    PubMed Central

    Wang, Yafei; Zhao, Xiaofeng; Zhang, Fangfang; Tang, Jihua; Fu, Zhiyuan

    2015-01-01

    A long period of silk viability is critical for a good seed setting rate in maize (Zea mays L.), especially for inbred lines and hybrids with a long interval between anthesis and silking. To explore the molecular mechanism of silk viability and its heterosis, three inbred lines with different silk viability characteristics (Xun928, Lx9801, and Zong3) and their two hybrids (Xun928×Zong3 and Lx9801×Zong3) were analyzed at different developmental stages by a proteomic method. The differentially accumulated proteins were identified by mass spectrometry and classified into metabolism, protein biosynthesis and folding, signal transduction and hormone homeostasis, stress and defense responses, and cellular processes. Proteins involved in nutrient (methionine) and energy (ATP) supply, which support the pollen tube growth in the silk, were important for silk viability and its heterosis. The additive and dominant effects at a single locus, as well as complex epistatic interactions at two or more loci in metabolic pathways, were the primary contributors for mid-parent heterosis of silk viability. Additionally, the proteins involved in the metabolism of anthocyanins, which indirectly negatively regulate local hormone accumulation, were also important for the mid-parent heterosis of silk viability. These results also might imply the developmental dependence of heterosis, because many of the differentially accumulated proteins made distinct contributions to the heterosis of silk viability at specific developmental stages. PMID:26630375

  18. Fabrication of duck's feet collagen-silk hybrid biomaterial for tissue engineering.

    PubMed

    Kim, Soo Hyeon; Park, Hae Sang; Lee, Ok Joo; Chao, Janet Ren; Park, Hyun Jung; Lee, Jung Min; Ju, Hyung Woo; Moon, Bo Mi; Park, Ye Ri; Song, Jeong Eun; Khang, Gilson; Park, Chan Hum

    2016-04-01

    Collagen constituting the extracellular matrix has been widely used as biocompatible material for human use. In this study, we have selected duck's feet for extracting collagen. A simple method not utilizing harsh chemical had been employed to extract collagen from duck's feet. We fabricated duck's feet collagen/silk hybrid scaffold for the purpose of modifying the degradation rate of duck's feet collagen. This study suggests that extracted collagen from duck's feet is biocompatible and resembles collagen extracted from porcine which is commercially used. Duck's feet collagen is also economically feasible and it could therefore be a good candidate as a tissue engineering material. Further, addition of silk to fabricate a duck's feet collagen/silk hybrid scaffold could enhance the biostability of duck's feet collagen scaffold. Duck's feet collagen/silk scaffold increased the cell viability compared to silk alone. Animal studies also showed that duck's feet collagen/silk scaffold was more biocompatible than silk alone and more biostable than duck's feet or porcine collagen alone. Additionally, the results revealed that duck's feet collagen/silk hybrid scaffold had high porosity, cell infiltration and proliferation. We suggest that duck's feet collagen/silk hybrid scaffold could be used as a dermal substitution for full thickness skin defects. PMID:26748068

  19. Complications in the Treatment of Intracranial Aneurysms with Silk Stents: an Analysis of 30 Consecutive Patients

    PubMed Central

    Cirillo, L.; Leonardi, M.; Dall’olio, M.; Princiotta, C.; Stafa, A.; Simonetti, L.; Toni, F.; Agati, R.

    2012-01-01

    Summary Flow-diverting stents (Silk and PED) have radically changed the approach to intracranial aneurysm treatment from the use of endosaccular materials to use of an extraaneurysmal endoluminal device. However, much debate surrounds the most appropriate indications for the use of FD stents and the problems raised by several possible complications. We analysed our technical difficulties and the early (less than ten days after treatment) and late complications encountered in 30 aneurysms treated comprising 13 giant lesions, 12 large, five with maximum diameters <10 mm and one blister-like aneurysm. In our experience the primary indications for the use of FD stents can be the symptomatic intracavernous giant aneurysms. Although the extracavernous carotid siphon aneurysms have major risk of bleeding, FD stents are indicated clearly explaining the risks to the patient in case of severe mass effect. There is a very complex assessment for aneurysms of the vertebrobasilar circulation. PMID:23217636

  20. [On the etiological concept in the literature from unearthed documents of bamboo slips and silk scrolls].

    PubMed

    Ding, Yuan; Zhang, Ruqing

    2014-03-01

    There is a substantial number of medical literature in the unearthed bamboo slips and silk scroll literature, the vast majority of which came into being earlier than medical books handed down from the ancient time, and are the documents of the origin of Chinese medicine dated back to the earliest time known thus far. In these documents, the contents of not a few of them deals with the etiology of disease which, by textual criticism and analysis, can be classified into seven different aspects, namely, six climatic pathogenic factors, emotional factors, injury caused by falling, traumatic damage; frostbite and burns, insect or animal bites, drug poisoning, evil spirit haunting, and constitutional factors, reflecting the contemporary etiological concept truthfully. PMID:24989802

  1. A golden-silk spider spins its web

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the grounds of Kennedy Space Center, a female Golden-Silk Spider repairs its web. The female can be identified by its brownish-green abdomen with a white spotted irregular pattern. The golden-silk spider repairs the webbing each day, replacing half but never the whole web at one time. Its web may measure two to three feet across. The center shares a boundary with the Merritt Island National Wildlife Refuge, a 92,000-acre refuge that is a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  2. Diffraction from the beta-sheet crystallites in spider silk.

    PubMed

    Ulrich, S; Glišović, A; Salditt, T; Zippelius, A

    2008-11-01

    We analyze the wide-angle X-ray scattering from oriented spider silk fibers in terms of a quantitative scattering model, including both structural and statistical parameters of the beta-sheet crystallites of spider silk in the amorphous matrix. The model is based on kinematic scattering theory and allows for rather general correlations of the positional and orientational degrees of freedom, including the crystallite's size, composition and dimension of the unit cell. The model is evaluated numerically and compared to experimental scattering intensities allowing us to extract the geometric and statistical parameters. We show explicitly that for the experimentally found mosaicity (width of the orientational distribution) intercrystallite effects are negligible and the data can be analyzed in terms of single-crystallite scattering, as is usually assumed in the literature. PMID:18843512

  3. Biomimetic spinning of silk fibers and in situ cell encapsulation.

    PubMed

    Cheng, Jie; Park, DoYeun; Jun, Yesl; Lee, JaeSeo; Hyun, Jinho; Lee, Sang-Hoon

    2016-07-01

    In situ embedding of sensitive materials (e.g., cells and proteins) in silk fibers without damage presents a significant challenge due to the lack of mild and efficient methods. Here, we report the development of a microfluidic chip-based method for preparation of meter-long silk fibroin (SF) hydrogel fibers by mimicking the silkworm-spinning process. For the spinning of SF fibers, alginate was used as a sericin-like material to induce SF phase separation and entrap liquid SFs, making it possible to shape the outline of SF-based fibers under mild physicochemical conditions. L929 fibroblasts were encapsulated in the fibric hydrogel and displayed excellent viability. Cell-laden SF fibric hydrogels prepared using our method offer a new type of SF-based biomedical device with potential utility in biomedicine. PMID:27296229

  4. Annulus fibrosus tissue engineering using lamellar silk scaffolds

    PubMed Central

    Park, Sang-Hyug; Gil, Eun Seok; Mandal, Biman B.; Cho, Hong Sik; Kluge, Jonathan A.; Min, Byoung-Hyun; Kaplan, David L.

    2012-01-01

    Degeneration of the intervertebral disc (IVD) represents a significant muscular skeletal disease. Recently, scaffolds composed of synthetic, natural and hybrid biomaterials have been investigated as options to restore the IVD; however, they lack the hallmark lamellar morphological features of annulus fibrosus (AF) tissue. The goal of regenerating disc is to achieve anatomic morphology as well as restoration of mechanical and biological function. In this study, two types of scaffold morphologies formed from silk fibroin were investigated towards the goal of AF tissue restoration. The first design mimics the lamellar features of the IVD that is associated with the AF region. The second is a porous spongy scaffold that serves as a control. Toroidal scaffolds were formed from the lamellar and porous silk material systems to generate structures with an outer diameter of 8 mm, inner diameter of 3.5 mm and a height of 3 mm. The inter-lamellar spacing in the lamellar scaffold was 150~250 μm and the average pore sizes in the porous scaffolds were 100~250 μm. The scaffolds were seeded with porcine AF cells and, after growth over defined time frames in vitro, histology, biochemical assays, mechanical testing and gene expression indicated that the lamellar scaffold generated results that were more favorable in terms of ECM expression and tissue function than the porous scaffold for AF tissue. Further, the seeded porcine AF cells supported the native shape of AF tissue in the lamellar silk scaffolds. The lamellar silk scaffolds were effective in the formation of AF-like tissue in vitro. PMID:22311816

  5. Preparation and characterization of silk fibroin/HPMC blend film

    SciTech Connect

    Shetty, G. Rajesha; Kumar, R. Madhu; Rao, B. Lakshmeesha; Asha, S.; Sangappa

    2015-06-24

    In this work, the structural and mechanical stability of silk fibroin/Hydroxypropylmethyl cellulose (SF-HPMC) blend films were characterized by X-ray diffraction (XRD) and Universal Testing Machine (UTM). The results indicate that with the introduction of HPMC, the interactions between SF and HPMC results in improved crystallite size and increase in mechanical properties. The blend film obtained is more flexible compared to pure SF film.

  6. Preparation and characterization of silk fibroin/HPMC blend film

    NASA Astrophysics Data System (ADS)

    Shetty, G. Rajesha; Kumar, R. Madhu; Rao, B. Lakshmeesha; Asha, S.; Sangappa

    2015-06-01

    In this work, the structural and mechanical stability of silk fibroin/Hydroxypropylmethyl cellulose (SF-HPMC) blend films were characterized by X-ray diffraction (XRD) and Universal Testing Machine (UTM). The results indicate that with the introduction of HPMC, the interactions between SF and HPMC results in improved crystallite size and increase in mechanical properties. The blend film obtained is more flexible compared to pure SF film.

  7. Physically Transient Resistive Switching Memory Based on Silk Protein.

    PubMed

    Wang, Hong; Zhu, Bowen; Ma, Xiaohua; Hao, Yue; Chen, Xiaodong

    2016-05-01

    Physically transient resistive switching devices based on silk protein are successfully demonstrated. The devices can be absolutely dissolved in deionized water or in phosphate-buffered saline in 2 h. At the same time, a reasonable resistance OFF/ON ratio of larger than 10(2) and a retention time of more than 10(4) s are achieved for nonvolatile memory applications. PMID:27028213

  8. Photoresponsive retinal-modified silk-elastin copolymer.

    PubMed

    Sun, Zhongyuan; Qin, Guokui; Xia, Xiaoxia; Cronin-Golomb, Mark; Omenetto, Fiorenzo G; Kaplan, David L

    2013-03-01

    The chimeric proteins, silk-elastin-like protein polymers (SELPs), consist of repeating units of silk and elastin to retain the mechanical strength of silk, while incorporating the dynamic environmental sensitivity of elastin. A retinal-modified SELP was prepared, modified, and studied for photodynamic responses. The protein was designed, cloned, expressed, and purified with lysine present in the elastin repeats. The purified protein was then chemically modified with the biocompatible moiety retinal via the lysine side chains. Structural changes with the polymer were assessed before and after retinal modification using Fourier transform infrared spectroscopy and circular dichroism spectroscopy. Optical studies and spectral analysis were performed before and after retinal modification. The random-coil fraction of the protein increased after retinal modification while the β-sheet fraction significantly decreased. Birefringence of the modified protein was induced when irradiated with a linearly polarized 488 nm laser light. Retinal modification of this protein offers a useful strategy for potential use in biosensors, controlled drug delivery, and other areas of biomedical engineering. PMID:23383965

  9. Structural Analysis of Hand Drawn Bumblebee Bombus terrestris Silk.

    PubMed

    Woodhead, Andrea L; Sutherland, Tara D; Church, Jeffrey S

    2016-01-01

    Bombus terrestris, commonly known as the buff-tailed bumblebee, is native to Europe, parts of Africa and Asia. It is commercially bred for use as a pollinator of greenhouse crops. Larvae pupate within a silken cocoon that they construct from proteins produced in modified salivary glands. The amino acid composition and protein structure of hand drawn B. terrestris, silk fibres was investigated through the use of micro-Raman spectroscopy. Spectra were obtained from single fibres drawn from the larvae salivary gland at a rate of 0.14 cm/s. Raman spectroscopy enabled the identification of poly(alanine), poly(alanine-glycine), phenylalanine, tryptophan, and methionine, which is consistent with the results of amino acid analysis. The dominant protein conformation was found to be coiled coil (73%) while the β-sheet content of 10% is, as expected, lower than those reported for hornets and ants. Polarized Raman spectra revealed that the coiled coils were highly aligned along the fibre axis while the β-sheet and random coil components had their peptide carbonyl groups roughly perpendicular to the fibre axis. The protein orientation distribution is compared to those of other natural and recombinant silks. A structural model for the B. terrestris silk fibre is proposed based on these results. PMID:27447623

  10. Silk polymer-based adenosine release: therapeutic potential for epilepsy.

    PubMed

    Wilz, Andrew; Pritchard, Eleanor M; Li, Tianfu; Lan, Jing-Quan; Kaplan, David L; Boison, Detlev

    2008-09-01

    Adenosine augmentation therapies (AAT) make rational use of the brain's own adenosine-based seizure control system and hold promise for the therapy of refractory epilepsy. In an effort to develop an AAT compatible with future clinical application, we developed a novel silk protein-based release system for adenosine. Adenosine releasing brain implants with target release doses of 0, 40, 200, and 1000ng adenosine per day were prepared by embedding adenosine containing microspheres into nanofilm-coated silk fibroin scaffolds. In vitro, the respective polymers released 0, 33.4, 170.5, and 819.0ng adenosine per day over 14 days. The therapeutic potential of the implants was validated in a dose-response study in the rat model of kindling epileptogenesis. Four days prior to the onset of kindling, adenosine releasing polymers were implanted into the infrahippocampal cleft and progressive acquisition of kindled seizures was monitored over a total of 48 stimulations. We document a dose-dependent retardation of seizure acquisition. In recipients of polymers releasing 819ng adenosine per day, kindling epileptogenesis was delayed by one week corresponding to 18 kindling stimulations. Histological analysis of brain samples confirmed the correct location of implants and electrodes. We conclude that silk-based delivery of around 1000ng adenosine per day is a safe and efficient strategy to suppress seizures. PMID:18514814

  11. Structural Analysis of Hand Drawn Bumblebee Bombus terrestris Silk

    PubMed Central

    Woodhead, Andrea L.; Sutherland, Tara D.; Church, Jeffrey S.

    2016-01-01

    Bombus terrestris, commonly known as the buff-tailed bumblebee, is native to Europe, parts of Africa and Asia. It is commercially bred for use as a pollinator of greenhouse crops. Larvae pupate within a silken cocoon that they construct from proteins produced in modified salivary glands. The amino acid composition and protein structure of hand drawn B. terrestris, silk fibres was investigated through the use of micro-Raman spectroscopy. Spectra were obtained from single fibres drawn from the larvae salivary gland at a rate of 0.14 cm/s. Raman spectroscopy enabled the identification of poly(alanine), poly(alanine-glycine), phenylalanine, tryptophan, and methionine, which is consistent with the results of amino acid analysis. The dominant protein conformation was found to be coiled coil (73%) while the β-sheet content of 10% is, as expected, lower than those reported for hornets and ants. Polarized Raman spectra revealed that the coiled coils were highly aligned along the fibre axis while the β-sheet and random coil components had their peptide carbonyl groups roughly perpendicular to the fibre axis. The protein orientation distribution is compared to those of other natural and recombinant silks. A structural model for the B. terrestris silk fibre is proposed based on these results. PMID:27447623

  12. Biocompatible Silk-Poly(Pyrrole) Composite Trilayer Actuators

    NASA Astrophysics Data System (ADS)

    Fengel, Carly; Bradshaw, Nathan; Severt, Sean; Murphy, Amanda; Leger, Janelle

    Biocompatible materials capable of controlled actuation are in high demand for use in biomedical applications such as dynamic tissue scaffolding, valves, and steerable surgical tools. Conducting polymers (CPs) have some desirable traits for use as an actuator, such as the ability to operate in biologically relevant fluids and responsiveness to low voltages. However CPs alone are limited due to their brittle nature and poor solubility. Recently we have shown that a composite material of silk and the CP poly(pyrrole) (PPy) shows promising characteristics as an actuator; it is mechanically robust as well as fully biocompatible. Initial proof-of-concept experiments demonstrated that these composites bend under an applied voltage (or current) using a simple bilayer device. Here we present trilayer devices composed of two silk-PPy composite layers separated by an insulating silk layer. This configuration results in more charge is passed in comparison to the analogous bilayer system, as well as a more sustainable current response through cycling, resulting in a larger angle of deflection per volt applied. In addition, the motion of the trilayer devices is more symmetric than that of the bilayer analogs, resulting in a more repeatable movement. We will discuss the fabrication and characterization of these devices, as well as their performance and future applications of this technology.

  13. Thermal Properties of Silk Fibroin Using Fast Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Partlow, Benjamin; Kaplan, David; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph

    We performed fast scanning chip-based calorimetry of silk protein using the Mettler Flash DSC1. We suggest the methodology by which to obtain quantitative information on the very first scan to high temperature, including the melting endotherm of the beta pleated sheets. For proteins, this first scan is the most important one, because the crystalline secondary structural features, the beta pleated sheets, melt after the first heating and cannot be thermally reintroduced. To obtain high quality data, the samples must be treated to drying and enthalpy relaxation sequences. The heat flow rates in heating and cooling must be corrected for asymmetric heat loses. We evaluate methods to obtain an estimate of the sample mass, finally choosing internal calibration using the known heat capacity increment at the glass transition. We report that even heating at rates of 2000 K/s, thermal degradation of silk cannot be totally avoided, though it can be minimized. Using a set of nineteen samples, we successfully determine the liquid state heat capacity of silk as: Cpliquid (T) = (1.98 +0.06) J/gK + T (6.82 +1.4) x10-4 J/gK2. Methods for estimation of the sample mass will be presented and compared. National Science Foundation, Polymers Program DMR-1206010; DAAD; Tufts Faculty Supported Leave.

  14. Printing of stretchable silk membranes for strain measurements.

    PubMed

    Ling, Shengjie; Zhang, Qiang; Kaplan, David L; Omenetto, Fiorenzo; Buehler, Markus J; Qin, Zhao

    2016-07-01

    Quantifying the deformation of biological tissues under mechanical loading is crucial to understand its biomechanical response in physiological conditions and important for designing materials and treatments for biomedical applications. However, strain measurements for biological tissues subjected to large deformations and humid environments are challenging for conventional methods due to several limitations such as strain range, boundary conditions, surface bonding and biocompatibility. Here we propose the use of silk solutions and printing to synthesize prototype strain gauges for large strain measurements in biological tissues. The study shows that silk-based strain gauges can be stretched up to 1300% without failure, which is more than two orders of magnitude larger than conventional strain gauges, and the mechanics can be tuned by adjusting ion content. We demonstrate that the printing approach can accurately provide well bonded fluorescent features on the silk membranes using designs which can accurately measure strain in the membrane. The results show that these new strain gauges measure large deformations in the materials by eliminating the effects of sliding from the boundaries, making the measurements more accurate than direct outputs from tensile machines. PMID:27241909

  15. Ultrathin Free-Standing Bombyx mori Silk Nanofibril Membranes.

    PubMed

    Ling, Shengjie; Jin, Kai; Kaplan, David L; Buehler, Markus J

    2016-06-01

    We report a new ultrathin filtration membrane prepared from silk nanofibrils (SNFs), directly exfoliated from natural Bombyx mori silk fibers to retain structure and physical properties. These membranes can be prepared with a thickness down to 40 nm with a narrow distribution of pore sizes ranging from 8 to 12 nm. Typically, 40 nm thick membranes prepared from SNFs have pure water fluxes of 13 000 L h(-1) m(-2) bar(-1), more than 1000 times higher than most commercial ultrathin filtration membranes and comparable with the highest water flux reported previously. The commercial membranes are commonly prepared from polysulfone, poly(ether sulfone), and polyamide. The SNF-based ultrathin membranes exhibit efficient separation for dyes, proteins, and colloids of nanoparticles with at least a 64% rejection of Rhodamine B. This broad-spectrum filtration membrane would have potential utility in applications such as wastewater treatment, nanotechnology, food industry, and life sciences in part due to the protein-based membrane polymer (silk), combined with the robust mechanical and separation performance features. PMID:27076389

  16. Development and characterization of silk fibroin coated quantum dots

    NASA Astrophysics Data System (ADS)

    Nathwani, B. B.; Needham, C.; Mathur, A. B.; Meissner, K. E.

    2008-02-01

    Recent progress in the field of semiconductor nanocrystals or Quantum Dots (QDs) has seen them find wider acceptance as a tool in biomedical research labs. As produced, high quality QDs, synthesized by high temperature organometallic synthesis, are coated with a hydrophobic ligand. Therefore, they must be further processed to be soluble in water and to be made biocompatible. To accomplish this, the QDs are generally coated with a synthetic polymer (eg. block copolymers) or the hydrophobic surface ligands exchanged with hydrophilic material (eg. thiols). Advances in this area have enabled the QDs to experience a smooth transition from being simple inorganic fluorophores to being smart sensors, which can identify specific cell marker proteins and help in diagnosis of diseases such as cancer. In order to improve the biocompatibility and utility of the QDs, we report the development of a procedure to coat QDs with silk fibroin, a fibrous crystalline protein extracted from Bombyx Mori silkworm. Following the coating process, we characterize the size, quantum yield and two-photon absorption cross section of the silk coated QDs. Additionally, the results of biocompatibility studies carried out to compare the properties of these QD-silks with conventional QDs are presented. These natural polymer coatings on QDs could enhance the intracellular delivery and enable the use of these nanocrystals as an imaging tool for studying subcellular machinery at the molecular level.

  17. Silk Fibroin Degradation Related to Rheological and Mechanical Properties.

    PubMed

    Partlow, Benjamin P; Tabatabai, A Pasha; Leisk, Gary G; Cebe, Peggy; Blair, Daniel L; Kaplan, David L

    2016-05-01

    Regenerated silk fibroin has been proposed as a material substrate for biomedical, optical, and electronic applications. Preparation of the silk fibroin solution requires extraction (degumming) to remove contaminants, but results in the degradation of the fibroin protein. Here, a mechanism of fibroin degradation is proposed and the molecular weight and polydispersity is characterized as a function of extraction time. Rheological analysis reveals significant changes in the viscosity of samples while mechanical characterization of cast and drawn films shows increased moduli, extensibility, and strength upon drawing. Fifteen minutes extraction time results in degraded fibroin that generates the strongest films. Structural analysis by wide angle X-ray scattering (WAXS) and Fourier transform infrared spectroscopy (FTIR) indicates molecular alignment in the drawn films and shows that the drawing process converts amorphous films into the crystalline, β-sheet, secondary structure. Most interesting, by using selected extraction times, films with near-native crystallinity, alignment, and molecular weight can be achieved; yet maximal mechanical properties for the films from regenerated silk fibroin solutions are found with solutions subjected to some degree of degradation. These results suggest that the regenerated solutions and the film casting and drawing processes introduce more complexity than native spinning processes. PMID:26756449

  18. Physical properties and structure of aquatic silk fiber from Stenopsyche marmorata.

    PubMed

    Tsukada, Masuhiro; Khan, Md Majibur Rahman; Inoue, Eiso; Kimura, Goro; Hun, Jin Young; Mishima, Mitsuharu; Hirabayashi, Kimio

    2010-01-01

    To study the properties and structure of aquatic silk, nest-spinning hydropsychid caddisfly (Stenopsyche marmorata) larva were collected from a Japanese river and the silk glands were removed from the larva by dissecting and dried on the glass plate at room temperature. The silk fibers were obtained by removing fibrous materials, which the aquatic insects spun at the bottom of glass container and the microstructure and physical properties of aquatic silk protein fibres and their solid silk protein gland were evaluated. Silk fiber produced by the caddisfly larvae is composed of two filament embedded in a layer of glue. The results of Fourier transform infrared spectroscopy and X-ray diffraction measurements suggested the existence of binary structure containing random coil conformation and additional minor beta-molecular structure. Differential scanning calorimetry results are characterized by two broad endothermic transitions, at 230 degrees C and 320 degrees C, which corresponds to the decomposition of silk glue and silk fiber from caddis fly, respectively. The storage modulus (E') remained almost unchanged and nearly constant at above 60 degrees C until about 214 degrees C, where it began to show a sharp drop. A prominent relaxation peak appeared in the imaginary part of the modulus (loss peak at 230 degrees C), in response to the strong motional transitions exhibited by the silk fiber at this temperature. There was significant difference of tensile strength of single solid silk protein gland in dry and wet state. The results obtained are quite promising as a basis for possible future biotechnological and adhesive applications of aquatic silk. PMID:19828120

  19. Molecular dynamics of spider dragline silk fiber investigated by 2H MAS NMR.

    PubMed

    Shi, Xiangyan; Holland, Gregory P; Yarger, Jeffery L

    2015-03-01

    The molecular dynamics of the proteins that comprise spider dragline silk were investigated with solid-state (2)H magic angle spinning (MAS) NMR line shape and spin-lattice relaxation time (T1) analysis. The experiments were performed on (2)H/(13)C/(15)N-enriched N. clavipes dragline silk fibers. The silk protein side-chain and backbone dynamics were probed for Ala-rich regions (β-sheet and 31-helical domains) in both native (dry) and supercontracted (wet) spider silk. In native (dry) silk fibers, the side chains in all Ala containing regions undergo similar fast methyl rotations (>10(9) s(-1)), while the backbone remains essentially static (<10(2) s(-1)). When the silk is wet and supercontracted, the presence of water initiates fast side-chain and backbone motions for a fraction of the β-sheet region and 31-helicies. β-Sheet subregion 1 ascribed to the poly(Ala) core exhibits slower dynamics, while β-sheet subregion 2 present in the interfacial, primarily poly(Gly-Ala) region that links the β-sheets to disordered 31-helical motifs, exhibits faster motions when the silk is supercontracted. Particularly notable is the observation of microsecond backbone motions for β-sheet subregion 2 and 31-helicies. It is proposed that these microsecond backbone motions lead to hydrogen-bond disruption in β-sheet subregion 2 and helps to explain the decrease in silk stiffness when the silk is wet and supercontracted. In addition, water mobilizes and softens 31-helical motifs, contributing to the increased extensibility observed when the silk is in a supercontracted state. The present study provides critical insight into the supercontraction mechanism and corresponding changes in mechanical properties observed for spider dragline silks. PMID:25619304

  20. Linking naturally and unnaturally spun silks through the forced reeling of Bombyx mori.

    PubMed

    Mortimer, Beth; Guan, Juan; Holland, Chris; Porter, David; Vollrath, Fritz

    2015-01-01

    The forced reeling of silkworms offers the potential to produce a spectrum of silk filaments, spun from natural silk dope and subjected to carefully controlled applied processing conditions. Here we demonstrate that the envelope of stress-strain properties for forced reeled silks can encompass both naturally spun cocoon silk and unnaturally processed artificial silk filaments. We use dynamic mechanical thermal analysis (DMTA) to quantify the structural properties of these silks. Using this well-established mechanical spectroscopic technique, we show high variation in the mechanical properties and the associated degree of disordered hydrogen-bonded structures in forced reeled silks. Furthermore, we show that this disorder can be manipulated by a range of processing conditions and even ameliorated under certain parameters, such as annealing under heat and mechanical load. We conclude that the powerful combination of forced reeling silk and DMTA has tied together native/natural and synthetic/unnatural extrusion spinning. The presented techniques therefore have the ability to define the potential of Bombyx-derived proteins for use in fibre-based applications and serve as a roadmap to improve fibre quality via post-processing. PMID:25242653

  1. Physical Characterization of Functionalized Silk Material for Electronic Application and Devices

    NASA Astrophysics Data System (ADS)

    Steven, Eden; Jobiliong, Eric; Park, Jin Gyu; Paravastu, Anant; Davidson, Michael; Baird, Michelle; Alamo, Rufina; Kaner, Papatya; Brooks, James; Siegrist, Theo

    2012-02-01

    Naturally harvested spider silk fibers are investigated for their physical properties under ambient, humidified, iodine-doped, pyrolized, sputtered gold and carbon nanotube coated conditions. The functional properties include: humidity activated conductivity; enhanced flexibility and carbon yield of pyrolized iodized silk fibers; full metallic conductivity and flexibility of micron-sized gold-sputtered silk fibers; and high strain sensitivity of carbon nanotube coated silk fibers. Magic angle spinning nuclear magnetic resonance (MAS-NMR) and Fourier transform infrared spectroscopy (FTIR) are used to explore the nature of ambient and functionalized spider silk fiber, and significant changes in amino acid-protein backbone signature are correlated with gold sputtering, and iodine-doped conditions. The application of gold-sputtered neat spider silk fibers for making four terminal flexible, clean, ohmic contacts to organic superconductor samples and carbon nanotube coated silk fibers for heart pulse monitoring sensor are demonstrated. The role of silk thin film in organic thin film transistor will be briefly discussed.

  2. A fibronectin mimetic motif improves integrin mediated cell biding to recombinant spider silk matrices.

    PubMed

    Widhe, Mona; Shalaly, Nancy Dekki; Hedhammar, My

    2016-01-01

    The cell binding motif RGD is the most widely used peptide to improve cell binding properties of various biomaterials, including recombinant spider silk. In this paper we use genetic engineering to further enhance the cell supportive capacity of spider silk by presenting the RGD motif as a turn loop, similar to the one found in fibronectin (FN), but in the silk stabilized by cysteines, and therefore denoted FNCC. Human primary cells cultured on FNCC-silk showed increased attachment, spreading, stress fiber formation and focal adhesions, not only compared to RGD-silk, but also to silk fused with linear controls of the RGD containing motif from fibronectin. Cell binding to FNCC-silk was shown to involve the α5β1 integrin, and to support proliferation and migration of keratinocytes. The FNCC-silk protein allowed efficient assembly, and could even be transformed into free standing films, on which keratinocytes could readily form a monolayer culture. The results hold promise for future applications within tissue engineering. PMID:26461118

  3. More than a safety line: jump-stabilizing silk of salticids.

    PubMed

    Chen, Yung-Kang; Liao, Chen-Pan; Tsai, Feng-Yueh; Chi, Kai-Jung

    2013-10-01

    Salticids are diurnal hunters known for acute vision, remarkable predatory strategies and jumping ability. Like other jumpers, they strive for stability and smooth landings. Instead of using inertia from swinging appendages or aerodynamic forces by flapping wings as in other organisms, we show that salticids use a different mechanism for in-air stability by using dragline silk, which was previously believed to function solely as a safety line. Analyses from high-speed images of jumps by the salticid Hasarius adansoni demonstrate that despite being subject to rearward pitch at take-off, spiders with dragline silk can change body orientation in the air. Instantaneous drag and silk forces calculated from kinematic data further suggest a comparable contribution to deceleration and energy dissipation, and reveal that adjustments by the spider to the silk force can reverse its body pitch for a predictable and optimal landing. Without silk, upright-landing spiders would slip or even tumble, deferring completion of landing. Thus, for salticids, dragline silk is critical for dynamic stability and prey-capture efficiency. The dynamic functioning of dragline silk revealed in this study can advance the understanding of silk's physiological control over material properties and its significance to spider ecology and evolution, and also provide inspiration for future manoeuvrable robot designs. PMID:23925983

  4. More than a safety line: jump-stabilizing silk of salticids

    PubMed Central

    Chen, Yung-Kang; Liao, Chen-Pan; Tsai, Feng-Yueh; Chi, Kai-Jung

    2013-01-01

    Salticids are diurnal hunters known for acute vision, remarkable predatory strategies and jumping ability. Like other jumpers, they strive for stability and smooth landings. Instead of using inertia from swinging appendages or aerodynamic forces by flapping wings as in other organisms, we show that salticids use a different mechanism for in-air stability by using dragline silk, which was previously believed to function solely as a safety line. Analyses from high-speed images of jumps by the salticid Hasarius adansoni demonstrate that despite being subject to rearward pitch at take-off, spiders with dragline silk can change body orientation in the air. Instantaneous drag and silk forces calculated from kinematic data further suggest a comparable contribution to deceleration and energy dissipation, and reveal that adjustments by the spider to the silk force can reverse its body pitch for a predictable and optimal landing. Without silk, upright-landing spiders would slip or even tumble, deferring completion of landing. Thus, for salticids, dragline silk is critical for dynamic stability and prey-capture efficiency. The dynamic functioning of dragline silk revealed in this study can advance the understanding of silk's physiological control over material properties and its significance to spider ecology and evolution, and also provide inspiration for future manoeuvrable robot designs. PMID:23925983

  5. Tarantulas cling to smooth vertical surfaces by secreting silk from their feet.

    PubMed

    Rind, F Claire; Birkett, Chris Luke; Duncan, Benjamin-James A; Ranken, Alexander J

    2011-06-01

    Like all spiders, tarantulas (family Theraphosidae) synthesize silk in specialized glands and extrude it from spinnerets on their abdomen. In one species of large tarantula, Aphonopelma seemanni, it has been suggested that silk can also be secreted from the tarsi but this claim was later refuted. We provide evidence of silk secretion directly from spigots (nozzles) on the tarsi of three distantly related tarantula species: the Chilean rose, Grammostola rosea; the Indian ornamental, Poecilotheria regalis; and the Mexican flame knee, Brachypelma auratum, suggesting tarsal silk secretion is widespread among tarantulas. We demonstrate that multiple strands of silk are produced as a footprint when the spider begins to slip down a smooth vertical surface. The nozzle-like setae on the tarsi responsible for silk deposition have shanks reinforced by cuticular thickenings, which serve to prevent the shanks' internal collapse while still maintaining their flexibility. This is important as the spigots occur on the ventral surface of the tarsus, projecting beyond the finely divided setae of the dry attachment pads. We also reveal the structure and disposition of the silk-secreting spigots on the abdominal spinnerets of the three tarantula species and find they are very similar to those from the earliest known proto-spider spinneret from the Devonian period, giving another indication that silk secretion in tarantulas is close to the ancestral condition. PMID:21562174

  6. Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness.

    PubMed

    Giesa, Tristan; Arslan, Melis; Pugno, Nicola M; Buehler, Markus J

    2011-11-01

    Silk is an exceptionally strong, extensible, and tough material made from simple protein building blocks. The molecular structure of dragline spider silk repeat units consists of semiamorphous and nanocrystalline β-sheet protein domains. Here we show by a series of computational experiments how the nanoscale properties of silk repeat units are scaled up to create macroscopic silk fibers with outstanding mechanical properties despite the presence of cavities, tears, and cracks. We demonstrate that the geometric confinement of silk fibrils to diameters of 50 ± 30 nm is critical to facilitate a powerful mechanism by which hundreds of thousands of protein domains synergistically resist deformation and failure to provide enhanced strength, extensibility, and toughness at the macroscale, closely matching experimentally measured mechanical properties. Through this mechanism silk fibers exploit the full potential of the nanoscale building blocks, regardless of the details of microscopic loading conditions and despite the presence of large defects. Experimental results confirm that silk fibers are composed of silk fibril bundles with diameters in the range of 20-150 nm, in agreement with our predicted length scale. Our study reveals a general mechanism to map nanoscale properties to the macroscale and provides a potent design strategy toward novel fiber and bulk nanomaterials through hierarchical structures. PMID:21967633

  7. All-water-based electron-beam lithography using silk as a resist

    NASA Astrophysics Data System (ADS)

    Kim, Sunghwan; Marelli, Benedetto; Brenckle, Mark A.; Mitropoulos, Alexander N.; Gil, Eun-Seok; Tsioris, Konstantinos; Tao, Hu; Kaplan, David L.; Omenetto, Fiorenzo G.

    2014-04-01

    Traditional nanofabrication techniques often require complex lithographic steps and the use of toxic chemicals. To move from the laboratory scale to large scales, nanofabrication should be carried out using alternative procedures that are simple, inexpensive and use non-toxic solvents. Recent efforts have focused on nanoimprinting and the use of organic resists (such as quantum dot-polymer hybrids, DNA and poly(ethylene glycol)), which still require, for the most part, noxious chemicals for processing. Significant advances have been achieved using `green' resists that can be developed with water, but so far these approaches have suffered from low electron sensitivity, line edge roughness and scalability constraints. Here, we present the use of silk as a natural and biofunctional resist for electron-beam lithography. The process is entirely water-based, starting with the silk aqueous solution and ending with simple development of the exposed silk film in water. Because of its polymorphic crystalline structure, silk can be used either as a positive or negative resist through interactions with an electron beam. Moreover, silk can be easily modified, thereby enabling a variety of `functional resists', including biologically active versions. As a proof of principle of the viability of all-water-based silk electron-beam lithography (EBL), we fabricate nanoscale photonic lattices using both neat silk and silk doped with quantum dots, green fluorescent proteins (GFPs) or horseradish peroxidase (HRP).

  8. Silk sericin loaded alginate nanoparticles: Preparation and anti-inflammatory efficacy.

    PubMed

    Khampieng, Thitikan; Aramwit, Pornanong; Supaphol, Pitt

    2015-09-01

    In this study, silk sericin loaded alginate nanoparticles were prepared by the emulsification method followed by internal crosslinking. The effects of various silk sericin loading concentration on particle size, shape, thermal properties, and release characteristics were investigated. The initial silk sericin loadings of 20, 40, and 80% w/w to polymer were incorporated into these alginate nanoparticles. SEM images showed a spherical shape and small particles of about 71.30-89.50 nm. TGA analysis showed that thermal stability slightly increased with increasing silk sericin loadings. FTIR analysis suggested interactions between alginate and silk sericin in the nanoparticles. The release study was performed in acetate buffer at normal skin conditions (pH 5.5; 32 °C). The release profiles of silk sericin exhibited initial rapid release, consequently with sustained release. These silk sericin loaded alginate nanoparticles were further incorporated into topical hydrogel and their anti-inflammatory properties were studied using carrageenan-induced paw edema assay. The current study confirms the hypothesis that the application of silk sericin loaded alginate nanoparticle gel can inhibit inflammation induced by carrageenan. PMID:26188300

  9. Non-bioengineered silk gland fibroin micromolded matrices to study cell-surface interactions.

    PubMed

    Mandal, Biman B; Das, Tamal; Kundu, S C

    2009-04-01

    Micropatterning/micromolding of protein molecules has played a significant role in developing biosensors, micro arrays, and tissue engineering devices for cellular investigations. Relevantly, there have been ample scopes for silk to be used as natural biomaterial in tissue engineering applications due to its attractive properties such as slow-controllable degradation, mechanical robustness, and inherent biocompatibility. In this paper, we report the fabrication of micromolded silk fibroin matrices, which have essentially been utilized to study cell-surface interactions. Fibroin protein has been isolated from the silk glands of nonmulberry Indian tropical tasar silkworms, Antheraea mylitta. The surface uniformity has been investigated using atomic force microscopy following the fabrication of silk micromolds. Subsequently, cellular interactions in terms of cell attachment, spreading, mitochondrial activity and proliferation have been studied in vitro using feline fibroblasts. Results have indicated a long term stability of patterns in micromolded silk matrices and negligible swelling. The versatility of described silk dissolution method coupled with ability to process large amount of silk protein into micromolded matrices and controllable surface topology may augment the desirability of silk fibroin as a natural biomaterial for bioengineering and biotechnological applications. PMID:19058012

  10. A highly divergent gene cluster in honey bees encodes a novel silk family

    PubMed Central

    Sutherland, Tara D.; Campbell, Peter M.; Weisman, Sarah; Trueman, Holly E.; Sriskantha, Alagacone; Wanjura, Wolfgang J.; Haritos, Victoria S.

    2006-01-01

    The pupal cocoon of the domesticated silk moth Bombyx mori is the best known and most extensively studied insect silk. It is not widely known that Apis mellifera larvae also produce silk. We have used a combination of genomic and proteomic techniques to identify four honey bee fiber genes (AmelFibroin1–4) and two silk-associated genes (AmelSA1 and 2). The four fiber genes are small, comprise a single exon each, and are clustered on a short genomic region where the open reading frames are GC-rich amid low GC intergenic regions. The genes encode similar proteins that are highly helical and predicted to form unusually tight coiled coils. Despite the similarity in size, structure, and composition of the encoded proteins, the genes have low primary sequence identity. We propose that the four fiber genes have arisen from gene duplication events but have subsequently diverged significantly. The silk-associated genes encode proteins likely to act as a glue (AmelSA1) and involved in silk processing (AmelSA2). Although the silks of honey bees and silkmoths both originate in larval labial glands, the silk proteins are completely different in their primary, secondary, and tertiary structures as well as the genomic arrangement of the genes encoding them. This implies independent evolutionary origins for these functionally related proteins. PMID:17065612

  11. Focal therapy of neuroblastoma using silk films to deliver kinase and chemotherapeutic agents in vivo.

    PubMed

    Seib, F Philipp; Coburn, Jeannine; Konrad, Ilona; Klebanov, Nikolai; Jones, Gregory T; Blackwood, Brian; Charest, Alain; Kaplan, David L; Chiu, Bill

    2015-07-01

    Current methods for treatment of high-risk neuroblastoma patients include surgical intervention, in addition to systemic chemotherapy. However, only limited therapeutic tools are available to pediatric surgeons involved in neuroblastoma care, so the development of intraoperative treatment modalities is highly desirable. This study presents a silk film library generated for focal therapy of neuroblastoma; these films were loaded with either the chemotherapeutic agent doxorubicin or the targeted drug crizotinib. Drug release kinetics from the silk films were fine-tuned by changing the amount and physical crosslinking of silk; doxorubicin loaded films were further refined by applying a gold nanocoating. Doxorubicin-loaded, physically crosslinked silk films showed the best in vitro activity and superior in vivo activity in orthotopic neuroblastoma studies when compared to the doxorubicin-equivalent dose administered intravenously. Silk films were also suitable for delivery of the targeted drug crizotinib, as crizotinib-loaded silk films showed an extended release profile and an improved response both in vitro and in vivo when compared to freely diffusible crizotinib. These findings, when combined with prior in vivo data on silk, support a viable future for silk-based anticancer drug delivery systems. PMID:25861948

  12. Spider Silks-Biomimetics Beyond Silk Fibers: Hydrogels, films & Adhesives from Aqueous Recombinant Spider Silk dopes: A Synchrotron X-Ray Nano-Structural Study

    NASA Astrophysics Data System (ADS)

    Sampath, Sujatha; Jones, Justin; Harris, Thomas; Lewis, Randolph

    2015-03-01

    With a combination of high strength and extensibility, spider silk's (SS) mechanical properties surpass those of any man made fiber. The superior properties are due to the primary protein composition and the complex hierarchical structural organization from nanoscale to macroscopic length scales. Considerable progress has been made to synthetically mimic the production of fibers based on SS proteins. We present synchrotron x-ray micro diffraction (SyXRD) results on new fibers and gels (hydrogels, lyogels) from recombinant SS protein water-soluble dopes. Novelty in these materials is two-fold: water based rather than widely used HFIP acid synthesis, makes them safe in medical applications (replacement for tendons & ligaments). Secondly, hydrogels morphology render them as excellent carriers for targeted drug delivery biomedical applications. SyXRD results reveal semi-crystalline structure with ordered beta-sheets and relatively high degree of axial orientation in the fibers, making them the closest yet to natural spider silks. SyXRD on the gels elucidate the structural transformations during the self-recovery process through mechanical removal and addition of water. Studies correlating the observed structural changes to mechanical properties are underway.

  13. Persistence and variation in microstructural design during the evolution of spider silk

    PubMed Central

    Madurga, R.; Blackledge, T. A.; Perea, B.; Plaza, G. R.; Riekel, C.; Burghammer, M.; Elices, M.; Guinea, G.; Pérez-Rigueiro, J.

    2015-01-01

    The extraordinary mechanical performance of spider dragline silk is explained by its highly ordered microstructure and results from the sequences of its constituent proteins. This optimized microstructural organization simultaneously achieves high tensile strength and strain at breaking by taking advantage of weak molecular interactions. However, elucidating how the original design evolved over the 400 million year history of spider silk, and identifying the basic relationships between microstructural details and performance have proven difficult tasks. Here we show that the analysis of maximum supercontracted single spider silk fibers using X ray diffraction shows a complex picture of silk evolution where some key microstructural features are conserved phylogenetically while others show substantial variation even among closely related species. This new understanding helps elucidate which microstructural features need to be copied in order to produce the next generation of biomimetic silk fibers. PMID:26438975

  14. Persistence and variation in microstructural design during the evolution of spider silk.

    PubMed

    Madurga, R; Blackledge, T A; Perea, B; Plaza, G R; Riekel, C; Burghammer, M; Elices, M; Guinea, G; Pérez-Rigueiro, J

    2015-01-01

    The extraordinary mechanical performance of spider dragline silk is explained by its highly ordered microstructure and results from the sequences of its constituent proteins. This optimized microstructural organization simultaneously achieves high tensile strength and strain at breaking by taking advantage of weak molecular interactions. However, elucidating how the original design evolved over the 400 million year history of spider silk, and identifying the basic relationships between microstructural details and performance have proven difficult tasks. Here we show that the analysis of maximum supercontracted single spider silk fibers using X ray diffraction shows a complex picture of silk evolution where some key microstructural features are conserved phylogenetically while others show substantial variation even among closely related species. This new understanding helps elucidate which microstructural features need to be copied in order to produce the next generation of biomimetic silk fibers. PMID:26438975

  15. Persistence and variation in microstructural design during the evolution of spider silk

    NASA Astrophysics Data System (ADS)

    Madurga, R.; Blackledge, T. A.; Perea, B.; Plaza, G. R.; Riekel, C.; Burghammer, M.; Elices, M.; Guinea, G.; Pérez-Rigueiro, J.

    2015-10-01

    The extraordinary mechanical performance of spider dragline silk is explained by its highly ordered microstructure and results from the sequences of its constituent proteins. This optimized microstructural organization simultaneously achieves high tensile strength and strain at breaking by taking advantage of weak molecular interactions. However, elucidating how the original design evolved over the 400 million year history of spider silk, and identifying the basic relationships between microstructural details and performance have proven difficult tasks. Here we show that the analysis of maximum supercontracted single spider silk fibers using X ray diffraction shows a complex picture of silk evolution where some key microstructural features are conserved phylogenetically while others show substantial variation even among closely related species. This new understanding helps elucidate which microstructural features need to be copied in order to produce the next generation of biomimetic silk fibers.

  16. Effect of Sericin on Mechanical Behavior of Composite Material Reinforced by Silk Woven Fabric

    NASA Astrophysics Data System (ADS)

    Kimura, Teruo; Ino, Haruhiro; Hanada, Koji; Katori, Sigetaka

    Recent, attention has been given to shift from glass fibers and carbon fibers to natural fibers for FRP composites for the goal of protecting the environment. This paper concerned with the application of silk fabric for composite materials. Polypropylene (PP) was used for the matrix material and the silk fabric composites were molded using a compression molding method. Especially, the effect of sericin on mechanical behaviors of composite materials was discussed. Good adhesion between silk and PP was obtained by removing the sericin existing around the fibroin. The tensile modulus of composite decreased with decreasing the sericin because of the flexibility of silk fibers without sericin. In particular, the higher Izod impact value was obtained for the composites containing the silk fibers without sericin.

  17. Preparation of conductive silk fabric with antibacterial properties by electroless silver plating

    NASA Astrophysics Data System (ADS)

    Yu, Dan; Kang, Gengen; Tian, Weicheng; Lin, Lu; Wang, Wei

    2015-12-01

    To obtain an efficient approach to metalize silk fabric, a novel method was explored and silver-plated silk was prepared. In this study, tris (2-carboxyethyl) phosphine (TCEP) was utilized as a reducing agent to generate thiol groups on the silk surface. These thiol groups react with silver ions to form metal complexes, which were used as catalytic seeds and successfully initiated electroless silver plating. A variety of methods, including Raman, XRD, TG, SEM and EDS were used to characterize the intermediates and final products. The results showed that a uniform and smooth metal layer could be obtained when compared with that without TCEP pretreatment. The silver-plated silk fabric exhibited good electrical conductivity and high anti-bacterial properties. These attractive features enable this conductive silk fabric to be a good candidate as a biomedical material.

  18. Addition of Selenium Nanoparticles to Electrospun Silk Scaffold Improves the Mammalian Cell Activity While Reducing Bacterial Growth

    PubMed Central

    Chung, Stanley; Ercan, Batur; Roy, Amit K.; Webster, Thomas J.

    2016-01-01

    Silk possesses many beneficial wound healing properties, and electrospun scaffolds are especially applicable for skin applications, due to their smaller interstices and higher surface areas. However, purified silk promotes microbial growth. Selenium nanoparticles have shown excellent antibacterial properties and are a novel antimicrobial chemistry. Here, electrospun silk scaffolds were doped with selenium nanoparticles to impart antibacterial properties to the silk scaffolds. Results showed significantly improved bacterial inhibition and mild improvement in human dermal fibroblast metabolic activity. These results suggest that the addition of selenium nanoparticles to electrospun silk is a promising approach to improve wound healing with reduced infection, without relying on antibiotics. PMID:27471473

  19. Inner ear delivery of dexamethasone using injectable silk-polyethylene glycol (PEG) hydrogel.

    PubMed

    Yu, Dehong; Sun, Changling; Zheng, Zhaozhu; Wang, Xueling; Chen, Dongye; Wu, Hao; Wang, Xiaoqin; Shi, Fuxin

    2016-04-30

    Minimally invasive delivery and sustained release of therapeutics to the inner ear are of importance to the medical treatment of inner ear disease. In this study, the injectable silk fibroin-polyethylene glycol (Silk-PEG) hydrogel was investigated as a drug delivery carrier to deliver poorly soluble micronized dexamethasone (mDEX) to the inner ear of guinea pigs. Encapsulation of mDEX with a loading up to 5% (w/v) did not significantly change the silk gelation time, and mDEX were evenly distributed in the PEG-Silk hydrogel as visualized by SEM. The loading of mDEX in Silk-PEG hydrogel largely influenced in vitro drug release kinetics. The optimized Silk-PEG-mDEX hydrogel (2.5% w/v loading, in situ-forming,10μl) was administered directly onto the round window membrane of guinea pigs. The DEX concentration in perilymph maintained above 100ng/ml for at least 10 days for the Silk-PEG formulation while less than 12h for the control sample of free mDEX. Minimal systemic exposure was achieved with low DEX concentrations (<0.2μg/ml) in cerebrospinal fluid (CSF) and plasma in the first 2h after the local application of the Silk-PEG-mDEX hydrogel. A transient hearing threshold shift was found but then resolved after 14days as revealed by auditory brainstem response (ABR), showing minimal inflammatory responses on the round window membrane and scala taympani. The Silk-PEG hydrogel completely degraded in 21 days. Thus, the injectable PEG-Silk hydrogel is an effective and safe vehicle for inner ear delivery and sustained release of glucocorticoid. PMID:26972377

  20. Glucosamine loaded injectable silk-in-silk integrated system modulate mechanical properties in bovine ex-vivo degenerated intervertebral disc model.

    PubMed

    Murab, Sumit; Samal, Juhi; Shrivastava, Akshay; Ray, Alok Ranjan; Pandit, Abhay; Ghosh, Sourabh

    2015-07-01

    Injectable hydrogels offer a tremendous potential for treatment of degenerated intervertebral disc due to their ability to withstand complex loading, conforming precisely to the defect spaces and eliminating the need for invasive surgical procedures. We have developed an injectable hydrogel platform of N-acetyl-glucosamine (GlcNAc) loaded silk hollow spheres embedded in silk hydrogel for in situ therapeutic release and enhanced mechanical strength. The assembled silk hydrogel provided adequate structural support to the ex vivo degenerated disc model in a cyclic compression test at par with the native tissue. Spatiotemporal release of GlcNAc in a controlled manner from the silk hollow microspheres trigger enhanced proteoglycan production from ADSCs embedded in the composite system. Role of MAPK and SMAD pathways in increasing proteoglycan production have been explored by immunohistological analysis as a result of the action of GlcNAc on the cells, elucidating the potential of injectable silk microsphere-in-silk hydrogel for the regeneration of degenerated disc tissue. PMID:25934453

  1. Use of immunoblot technique for detection of human IgE and IgG antibodies to individual silk proteins.

    PubMed

    Dewair, M; Baur, X; Ziegler, K

    1985-10-01

    Allergenic proteins were extracted from one silk batch that was imported to be used as filling material for bed mattresses and rugs. IgE and IgG antibodies to the extracted silk proteins were measured by RAST in sera of nine silk-sensitive persons as well as in sera of healthy control donors. Silk proteins were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis into 12 polypeptides of molecular weights between 14 and 70 kilodaltons. By means of the immunoblot technique, IgE and IgG antibodies to the individual silk polypeptides could be detected. Sera of silk-sensitive persons contained high titers of IgE and low titers of IgG antibodies to the separated silk polypeptides. Sera of control donors contained low IgG antibody titers to a limited number of these polypeptides. PMID:4056241

  2. Biomaterial evolution parallels behavioral innovation in the origin of orb-like spider webs

    NASA Astrophysics Data System (ADS)

    Blackledge, Todd A.; Kuntner, Matjaž; Marhabaie, Mohammad; Leeper, Thomas C.; Agnarsson, Ingi

    2012-11-01

    Correlated evolution of traits can act synergistically to facilitate organism function. But, what happens when constraints exist on the evolvability of some traits, but not others? The orb web was a key innovation in the origin of >12,000 species of spiders. Orb evolution hinged upon the origin of novel spinning behaviors and innovations in silk material properties. In particular, a new major ampullate spidroin protein (MaSp2) increased silk extensibility and toughness, playing a critical role in how orb webs stop flying insects. Here, we show convergence between pseudo-orb-weaving Fecenia and true orb spiders. As in the origin of true orbs, Fecenia dragline silk improved significantly compared to relatives. But, Fecenia silk lacks the high compliance and extensibility found in true orb spiders, likely due in part to the absence of MaSp2. Our results suggest how constraints limit convergent evolution and provide insight into the evolution of nature's toughest fibers.

  3. Biomaterial evolution parallels behavioral innovation in the origin of orb-like spider webs

    PubMed Central

    Blackledge, Todd A.; Kuntner, Matjaž; Marhabaie, Mohammad; Leeper, Thomas C.; Agnarsson, Ingi

    2012-01-01

    Correlated evolution of traits can act synergistically to facilitate organism function. But, what happens when constraints exist on the evolvability of some traits, but not others? The orb web was a key innovation in the origin of >12,000 species of spiders. Orb evolution hinged upon the origin of novel spinning behaviors and innovations in silk material properties. In particular, a new major ampullate spidroin protein (MaSp2) increased silk extensibility and toughness, playing a critical role in how orb webs stop flying insects. Here, we show convergence between pseudo-orb-weaving Fecenia and true orb spiders. As in the origin of true orbs, Fecenia dragline silk improved significantly compared to relatives. But, Fecenia silk lacks the high compliance and extensibility found in true orb spiders, likely due in part to the absence of MaSp2. Our results suggest how constraints limit convergent evolution and provide insight into the evolution of nature's toughest fibers. PMID:23150784

  4. Major depression

    MedlinePlus

    Depression - major; Depression - clinical; Clinical depression; Unipolar depression; Major depressive disorder ... Doctors do not know the exact causes of depression. It is believed that chemical changes in the ...

  5. Influence of Water Content on the β-Sheet Formation, Thermal Stability, Water Removal, and Mechanical Properties of Silk Materials.

    PubMed

    Yazawa, Kenjiro; Ishida, Kana; Masunaga, Hiroyasu; Hikima, Takaaki; Numata, Keiji

    2016-03-14

    Silk, which has excellent mechanical toughness and is lightweight, is used as a structural material in nature, for example, in silkworm cocoons and spider draglines. However, the industrial use of silk as a structural material has garnered little attention. For silk to be used as a structural material, its thermal processability and associated properties must be well understood. Although water molecules influence the glass transition of silk, the effects of water content on the other thermal properties of silks are not well understood. In this study, we prepared Bombyx mori cocoon raw fibers, degummed fibers, and films with different water contents and then investigated the effects of water content on crystallization, degradation, and water removal during thermal processing. Thermal gravimetric analyses of the silk materials showed that water content did not affect the thermal degradation temperature but did influence the water removal behavior. By increasing the water content of silk, the water molecules were removed at lower temperatures, indicating that the amount of free water in silk materials increased; additionally, the glass transition temperature decreased with increasing water plasticization. Differential scanning calorimetry and wide-angle X-ray scattering of the silk films also suggested that the water molecules in the amorphous regions of the silk films acted as a plasticizer and induced β-sheet crystallization. The plasticizing effect of water was not detected in silk fibers, owing to their lower amorphous content and mobility. The structural and mechanical characterizations of the silk films demonstrated the silk film prepared at RH 97% realized both crystallinity and ductility simultaneously. Thus, the thermal stability, mechanical, and other properties of silk materials are regulated by their water content and crystallinity. PMID:26835719

  6. Silk fibroin-based scaffolds for tissue engineering

    NASA Astrophysics Data System (ADS)

    Li, Zi-Heng; Ji, Shi-Chen; Wang, Ya-Zhen; Shen, Xing-Can; Liang, Hong

    2013-09-01

    Silk fibroin (SF) from the Bombyx mori silkworm exhibits attractive potential applications as biomechanical materials, due to its unique mechanical and biological properties. This review outlines the structure and properties of SF, including of its biocompatibility and biodegradability. It highlights recent researches on the fabrication of various SF-based composites scaffolds that are promising for tissue engineering applications, and discusses synthetic methods of various SF-based composites scaffolds and valuable approaches for controlling cell behaviors to promote the tissue repair. The function of extracellular matrices and their interaction with cells are also reviewed here.

  7. Electrospinning of silk fibroin and collagen for vascular tissue engineering.

    PubMed

    Zhou, Juan; Cao, Chuanbao; Ma, Xilan; Lin, Jing

    2010-11-01

    Tubular scaffolds of silk fibroin (SF)/collagen (Col) were prepared by electrospinning with the aim to develop a new scaffold for vascular tissue engineering. The effects of the solvent, solution concentration and collagen content on the morphology of the scaffolds were investigated by SEM. FTIR and XRD were used to investigate their structural changes. Although there were morphological and structural differences, the water uptake and the tensile strength of the scaffolds with different collagen content showed no significant difference. This study confirmed the feasibility of the fabrication of SF/Col tubular scaffold by electrospinning from aqueous solution and provided promising tubular scaffold for vascular tissue engineering. PMID:20688101

  8. Silk fibroin/pullulan blend films: Preparation and characterization

    NASA Astrophysics Data System (ADS)

    Shivananda, C. S.; Rao, B. Lakshmeesha; Madhukumar, R.; Sarojini, B. K.; Somashekhar, R.; Asha, S.; Sangappa, Y.

    2016-05-01

    In this work silk fibroin/pullulan blend films have been prepared by solution casting method. The blend films were examined for structural, and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results indicate that with the introduction of pullulan, the interaction between SF and pullulan in the blend films induced the conformation transition of SF films and amorphous phase increases with increasing pullulan ratio. The thermal properties of the blend films were improved significantly in the blend films.

  9. Bioactive and UV protective silk materials containing baicalin - The multifunctional plant extract from Scutellaria baicalensis Georgi.

    PubMed

    Zhou, Yuyang; Yang, Zhi-Yi; Tang, Ren-Cheng

    2016-10-01

    There has been a phenomenal increase in the research and development of new health and hygiene-related textile products. This work reports a novel approach to develop antibacterial, antioxidant and UV-protective silk using an adsorption technique of baicalin (a bioactive ingredient from the root of Scutellaria baicalensis Georgi). Baicalin displayed high adsorption capability at pH2.75, contributing to the sufficient functionalities on silk. The equilibrium adsorption research showed that the Langmuir isotherm was able to describe the behavior of baicalin, indicating the electrostatic interactions between the ionized carboxyl groups in baicalin and the positively charged amino groups in silk. The treated silk with 2% owf (on the weight of fiber) baicalin exhibited excellent antioxidant activity, high antibacterial activities against Escherichia coli and Staphylococcus aureus, and very good ultraviolet protection ability comparable to that of the commercial benzotriazole ultraviolet absorber. The baicalin treatment had no obvious impact on the functional groups, crystal structure and surface morphology of silk. The functionalities of the treated silk obviously declined after first laundering cycle and slowly decreased in the following washing cycles. Encouraging results demonstrate that the baicalin-functionalized silk is a promising material for protective clothing and medical textiles. PMID:27287129

  10. Recombinant production and film properties of full-length hornet silk proteins.

    PubMed

    Kambe, Yusuke; Sutherland, Tara D; Kameda, Tsunenori

    2014-08-01

    Full-length versions of the four main components of silk cocoons of Vespa simillima hornets, Vssilk1-4, were produced as recombinant proteins in Escherichia coli. In shake flasks, the recombinant Vssilk proteins yielded 160-330mg recombinant proteinl(-1). Films generated from solutions of single Vssilk proteins had a secondary structure similar to that of films generated from native hornet silk. The films made from individual recombinant hornet silk proteins had similar or enhanced mechanical performance compared with films generated from native hornet silk, possibly reflecting the homogeneity of the recombinant proteins. The pH-dependent changes in zeta (ζ) potential of each Vssilk film were measured, and isoelectric points (pI) of Vssilk1-4 were determined as 8.9, 9.1, 5.0 and 4.2, respectively. The pI of native hornet silk, a combination of the four Vssilk proteins, was 4.7, a value similar to that of Bombyx mori silkworm silk. Films generated from Vssilk1 and 2 had net positive charge under physiological conditions and showed significantly higher cell adhesion activity. It is proposed that recombinant hornet silk is a valuable new material with potential for cell culture applications. PMID:24862540

  11. Research on possible medical use of silk produced by caddisfly larvae of Hydropsyche angustipennis (Trichoptera, Insecta).

    PubMed

    Tszydel, M; Zabłotni, A; Wojciechowska, D; Michalak, M; Krucińska, I; Szustakiewicz, K; Maj, M; Jaruszewska, A; Strzelecki, J

    2015-05-01

    Silk products are used in medicine as biomaterials, and are particularly promising as scaffolds in tissue engineering. To date only silkworm and spider silk medical potential has been evaluated, whereas the possible application of the material spun by caddisflies in wet environment has not been examined. Biomedical application of every natural material requires biocompatibility testing and evaluation of unique microbiological and mechanical properties. This article focuses on silk fibers formed in caddisflies cocoons of Hydropsyche angustipennis (Insecta, Trichoptera) larvae. Preliminary biological evaluation shows that trichopteran silk is not cytotoxic to human cells. Caddisfly silk itself does not possess antiseptic properties and thus sterilization is indispensable for its application in medicine. Among tested methods of sterilization and disinfection only thermal methods (tyndallization and autoclaving) enabled complete eradication of bacteria and gave fully sterile material. Caddisfly silk appeared to be resistant to high temperature. Fully sterile fibers can be stored without a loss of breaking force and tensile strength. Our work shows that trichopteran silk has a significant potential to be used as a biomaterial. PMID:25723346

  12. Electrophoretic deposition of tetracycline modified silk fibroin coatings for functionalization of titanium surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Qu, Yinying; Li, Xiaoshuang; Zhang, Sheng; Wei, Qingsong; Shi, Yusheng; Chen, Lili

    2014-06-01

    Electrophoretic deposition has been widely used for the fabrication of functional coatings onto metal implant. A characteristic feature of this process is that positively charged materials migrate toward the cathode and can deposit on it. In this study, silk fibroin was decorated with tetracycline in aqueous solution to impart positive charge, and then deposited on negatively titanium cathode under certain electric field. The characterization of the obtained coatings indicated that the intermolecular hydrogen bonds formed between the backbone of silk fibroin and tetracycline molecular. In vitro biological tests demonstrated that osteoblast-like cells achieved acceptable cell affinity on the tetracycline cross-linked silk fibroin coatings, although greater cell viability was seen on pure silk fibroin coatings. The cationic silk fibroin coatings showed remarkable antibacterial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. Therefore, we concluded that electrophoretic deposition was an effective and efficient technique to prepare cationic silk fibroin coatings on the titanium surface and that cationic silk fibroin coatings with acceptable biocompatibility and antibacterial property were promising candidates for further loading of functional agents.

  13. Processing of β-glucosidase-silk fibroin nanoparticle bioconjugates and their characteristics.

    PubMed

    Cao, Ting-Ting; Zhou, Zhen-Zhen; Zhang, Yu-Qing

    2014-05-01

    Silk fibroin derived from Bombyx mori is a biomacromolecular protein with excellent biocompatibility. The aim of this work was to develop silk fibroin nanoparticles (SFNs) derived from the fibrous protein, which is a novel vector for enzyme modification in food processing. Silk fibroin was dissolved in highly concentrated CaCl2 and subjected to lengthy desalting in water. The resulting liquid silk, which contained water-soluble polypeptides with molecular mass ranging from 10 to 200 kDa, and β-glucosidase were added rapidly into acetone. The β-glucosidase molecules were embedded into silk fibroin nanoparticles, forming β-glucosidase-silk fibroin nanoparticles (βG-SFNs) with a diameter of 50-150 nm. The enzyme activity of the βG-SFN bioconjugates was determined with p-nitrophenyl-β-D-glucoside as the substrate, and the optimum conditions for the preparation of βG-SFNs were investigated. The enzyme activity recovery of βG-SFNs was 59.2 % compared to the free enzyme (specific activity was 1 U mg(-1)). The kinetic parameters of the βG-SFNs and the free β-glucosidase were the same. The βG-SFNs had good operational stability and could be used repeatedly. These results confirmed that silk protein nanoparticles were good carriers as bioconjugates for the modification of enzymes with potential value for research and development. The method used in this study has potential applications in food processing and the production of flavour agents. PMID:24671567

  14. Impact of processing parameters on the haemocompatibility of Bombyx mori silk films.

    PubMed

    Seib, F Philipp; Maitz, Manfred F; Hu, Xiao; Werner, Carsten; Kaplan, David L

    2012-02-01

    Silk has traditionally been used for surgical sutures due to its lasting strength and durability; however, the use of purified silk proteins as a scaffold material for vascular tissue engineering goes beyond traditional use and requires application-orientated biocompatibility testing. For this study, a library of Bombyx mori silk films was generated and exposed to various solvents and treatment conditions to reflect current silk processing techniques. The films, along with clinically relevant reference materials, were exposed to human whole blood to determine silk blood compatibility. All substrates showed an initial inflammatory response comparable to polylactide-co-glycolide (PLGA), and a low to moderate haemostasis response similar to polytetrafluoroethylene (PTFE) substrates. In particular, samples that were water annealed at 25 °C for 6 h demonstrated the best blood compatibility based on haemostasis parameters (e.g. platelet decay, thrombin-antithrombin complex, platelet factor 4, granulocytes-platelet conjugates) and inflammatory parameters (e.g. C3b, C5a, CD11b, surface-associated leukocytes). Multiple factors such as treatment temperature and solvent influenced the biological response, though no single physical parameter such as β-sheet content, isoelectric point or contact angle accurately predicted blood compatibility. These findings, when combined with prior in vivo data on silk, support a viable future for silk-based vascular grafts. PMID:22079005

  15. Engineering of fluorescent emission of silk fibroin composite materials by material assembly.

    PubMed

    Lin, Naibo; Meng, Zhaohui; Toh, Guoyang William; Zhen, Yang; Diao, Yingying; Xu, Hongyao; Liu, Xiang Yang

    2015-03-01

    This novel materials assembly technology endows the designated materials with additional/enhanced performance by fixing "functional components" into the materials. Such functional components are molecularly recognized and accommodated by the designated materials. In this regard, two-photon fluorescence (TPF) organic molecules and CdTe quantum dots (QDs) are adopted as functional components to functionalize silk fibers and films. TPF organic molecules, such as, 2,7-bis[2-(4-nitrophenyl) ethenyl]-9,9-dibutylfluorene (NM), exhibit TPF emission quenching because of the molecular stacking that leads to aggregation in the solid form. The specific recognition between -NO2 in the annealed fluorescent molecules and the -NH groups in the silk fibroin molecules decouples the aggregated molecules. This gives rise to a significant increase in the TPF quantum yields of the silk fibers. Similarly, as another type of functional components, CdTe quantum dots (QDs) with different sizes were also adopted in the silk functionalization method. Compared to QDs in solution the fluorescence properties of functionalized silk materials display a long stability at room temperature. As the functional materials are well dispersed at high quantum yields in the biocompatible silk a TPF microscope can be used to pursue 3D high-resolution imaging in real time of the TPF-silk scaffold. PMID:25270616

  16. Nanomechanics of new materials — AFM and computer modelling studies of trichoptera silk

    NASA Astrophysics Data System (ADS)

    Strzelecki, Janusz; Strzelecka, Joanna; Mikulska, Karolina; Tszydel, Mariusz; Balter, Aleksander; Nowak, Wiesław

    2011-04-01

    Caddisfly (Trichopera) can glue diverse material underwater with a silk fiber. This makes it a particularly interesting subject for biomimetcs. Better understanding of silk composition and structure could lead to an adhesive capable to close bleeding wounds or to new biomaterials. However, while spiderweb or silkworm secretion is well researched, caddisfly silk is still poorly understood. Here we report a first nanomechanical analysis of H. Angustipennis caddisfly silk fiber. An Atomic Force Microscope (AFM) imaging shows dense 150 nm bumps on silk surface, which can be identified as one of features responsible for its outstanding adhesive properties. AFM force spectroscopy at the fiber surface showed, among others, characteristic saw like pattern. This pattern is attributed to sacrificial bond stretching and enhances energy dissipation in mechanical deformation. Similarities of some force curves observed on Tegenaria domestica spiderweb and caddisfly silk are also discussed. Steered Molecular Dynamics simulations revealed that the strength of short components of Fib-H HA species molecules, abundant in Trichoptera silk is critically dependent on calcium presence.

  17. Evaluation of the Spectral Response of Functionalized Silk Inverse Opals as Colorimetric Immunosensors.

    PubMed

    Burke, Kelly A; Brenckle, Mark A; Kaplan, David L; Omenetto, Fiorenzo G

    2016-06-29

    Regenerated silk fibroin is a high molecular weight protein obtained by purifying the cocoons of the domesticated silkworm, Bombyx mori. This report exploits the aqueous processing and tunable β sheet secondary structure of regenerated silk to produce nanostructures (i.e., inverse opals) that can be used as colorimetric immunosensors. Such sensors would enable direct detection of antigens by changes in reflectance spectra induced by binding events within the nanostructure. Silk inverse opals were prepared by solution casting and annealing in a humidified atmosphere to render the silk insoluble. Next, antigen sensing capabilities were imparted to silk through a three step synthesis: coupling of avidin to silk surfaces, coupling of biotin to antibodies, and lastly antibody attachment to silk through avidin-biotin interactions. Varying the antibody enables detection of different antigens, as demonstrated using different protein antigens: antibodies, red fluorescent protein, and the beta subunit of cholera toxin. Antigen binding to sensors induces a red shift in the opal reflectance spectra, while sensors not exposed to antigen showed either no shift or a slight blue shift. This work constitutes a first step for the design of biopolymer-based optical systems that could directly detect antigens using commercially available reagents and environmentally friendly chemistries. PMID:27322909

  18. Facile Fabrication of Multifunctional Hybrid Silk Fabrics with Controllable Surface Wettability and Laundering Durability.

    PubMed

    Chen, Fengxiang; Yang, Huiyu; Liu, Xin; Chen, Dongzhi; Xiao, Xingfang; Liu, Keshuai; Li, Jing; Cheng, Fan; Dong, Binhai; Zhou, Yingshan; Guo, Zhiguang; Qin, Yong; Wang, Shimin; Xu, Weilin

    2016-03-01

    To obtain a hydrophobic surface, TiO2 coatings are deposited on the surface of silk fabric using atomic layer deposition (ALD) to realize a hierarchical roughness structure. The surface morphology and topography, structure, and wettability properties of bare silk fabric and TiO2-coated silk fabrics thus prepared are evaluated using scanning electron microscopy (SEM), field-emission scanning electron microscopy (FESEM), scanning probe microscope (SPM), X-ray diffraction (XRD), static water contact angles (WCAs), and roll-off angles, respectively. The surfaces of the silk fabrics with the TiO2 coatings exhibit higher surface roughnesses compared with those of the bare silk fabric. Importantly, the hydrophobic and laundering durability properties of the TiO2-coated silk fabrics are largely improved by increasing the thickness of the ALD TiO2 coating. Meanwhile, the ALD process has a litter effect on the service performance of silk fabric. Overall, TiO2 coating using an ALD process is recognized as a promising approach to produce hydrophobic surfaces for elastic materials. PMID:26835541

  19. Silk secretion from tarantula feet revisited: alleged spigots are probably chemoreceptors.

    PubMed

    Foelix, Rainer F; Rast, Bastian; Peattie, Anne M

    2012-04-01

    Controversial views have been expressed about whether tarantula feet can secrete fine silk threads that could prevent them from falling off smooth vertical surfaces. Two studies have claimed that 'ribbed hairs' on the tarsi of tarantulas produce silk. We examined these ribbed hairs in several tarantula species using light and scanning electron microscopy, and compared them with the silk-producing spigots on the abdominal spinnerets. We found that, morphologically, these ribbed hairs correspond very closely to known chemosensitive hairs in spiders; they have a distinct socket, a bent hair shaft with fine cuticular ridges, an eccentric double lumen within the hair shaft, and a blunt tip with a subterminal pore. Spigots on the spinnerets have a large bulbous base instead of a socket, a long shaft with a scaly surface and a central terminal pore. We never observed any silk threads coming out of these ribbed hairs under the electron microscope. By contrast, silk threads exiting the spigots on the spinnerets were common. Interestingly, ribbed hairs also occur on the spinnerets, often side by side with the silk-producing spigots. Our conclusion is that the ribbed hairs are chemoreceptors, not spigots. Observations of live tarantulas clinging inverted to glass coverslips confirmed that some substance is produced by the ribbed hairs, but it remains unclear whether this secretion is actually silk. In any case, the thousands of adhesive setae on the tarsi of legs and pedipalps almost certainly far outweigh any potential contribution from the sparsely distributed trails secreted by the ribbed hairs. PMID:22399653

  20. Structure modifications induced in silk fibroin by enzymatic treatments. A Raman study

    NASA Astrophysics Data System (ADS)

    Monti, Patrizia; Freddi, Giuliano; Sampaio, Sandra; Tsukada, Masuhiro; Taddei, Paola

    2005-06-01

    Raman spectroscopy was used to investigate various enzyme-catalyzed reactions onto silk fibroin, i.e. the biodegradation of Tussah ( Antheraea pernyi) silk fibroin films by a proteolytic enzyme, the oxidation of domestic ( Bombyx mori) silk fibroin by mushroom tyrosinase and the subsequent grafting of chitosan onto oxidized silk. The spectra of Tussah silk fibroin films exposed to a bacterial protease for different times demonstrated that the cleavage of sensitive peptide bonds in the amorphous glycine-rich domains resulted in the loss of various amino acid residues (Tyr, Trp, Asp, etc.). The bands attributed to the crystalline alanine-rich sequences increased in intensity, and the β-sheet molecular conformation was not affected by biodegradation. Following oxidation with mushroom tyrosinase, the tyrosine bands of Bombyx mori fibroin decreased in intensity but did not disappear. The increase of the I853/ I829 intensity ratio indicated that the Tyr residues not accessible to the enzyme were located in a strongly hydrophobic environment. Raman spectroscopy provided evidence that chitosan was effectively grafted onto oxidized silk, probably via the Schiff-base mechanism, as shown by the behavior of the imine band at about 1646 cm -1. Grafting chitosan onto silk fibroin resulted in a β-sheet→random coil conformational transition of the protein component in the bioconjugated product.

  1. Effects of chondrogenic and osteogenic regulatory factors on composite constructs grown using human mesenchymal stem cells, silk scaffolds and bioreactors.

    PubMed

    Augst, Alexander; Marolt, Darja; Freed, Lisa E; Vepari, Charu; Meinel, Lorenz; Farley, Michelle; Fajardo, Robert; Patel, Nipun; Gray, Martha; Kaplan, David L; Vunjak-Novakovic, Gordana

    2008-08-01

    Human mesenchymal stem cells (hMSCs) isolated from bone marrow aspirates were cultured on silk scaffolds in rotating bioreactors for three weeks with either chondrogenic or osteogenic medium supplements to engineer cartilage- or bone-like tissue constructs. Osteochondral composites formed from these cartilage and bone constructs were cultured for an additional three weeks in culture medium that was supplemented with chondrogenic factors, supplemented with osteogenic factors or unsupplemented. Progression of cartilage and bone formation and the integration between the two regions were assessed by medical imaging (magnetic resonance imaging and micro-computerized tomography imaging), and by biochemical, histological and mechanical assays. During composite culture (three to six weeks), bone-like tissue formation progressed in all three media to a markedly larger extent than cartilage-like tissue formation. The integration of the constructs was most enhanced in composites cultured in chondrogenic medium. The results suggest that tissue composites with well-mineralized regions and substantially less developed cartilage regions can be generated in vitro by culturing hMSCs on silk scaffolds in bioreactors, that hMSCs have markedly higher capacity for producing engineered bone than engineered cartilage, and that chondrogenic factors play major roles at early stages of bone formation by hMSCs and in the integration of the two tissue constructs into a tissue composite. PMID:18230586

  2. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C.; Wang, Lin

    2014-11-01

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine.

  3. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel

    PubMed Central

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C.; Wang, Lin

    2014-01-01

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine. PMID:25412301

  4. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel.

    PubMed

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C; Wang, Lin

    2014-01-01

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine. PMID:25412301

  5. Silk-Based Gene Carriers with Cell Membrane-Destabilizing Peptides

    PubMed Central

    Numata, Keiji; Kaplan, David L

    2010-01-01

    Complexes of recombinant silk-polylysine molecules with ppTG1 peptide, a lysine-rich cell membrane-destabilizing peptide to bind plasmid DNA (pDNA), are designed as less-cytotoxic and highly efficient gene carriers. The peptide destabilizes the cell membrane and promotes gene transfer. Our particular interest is in how ppTG1 enhances transfection efficiency of the silk-based delivery system into human cells. Genetically engineered silk proteins containing polylysine and the monomeric and dimeric ppTG1 sequences are synthesized in Escherichia coli, followed by transfection experiments. The pDNA complexes of Silk-polylysine-ppTG1 dimer recombinant proteins prepared at an N/P 2 (the ratio of number of amines/ phosphates from pDNA) shows the highest transfection efficiency into human embryonic kidney (HEK) cells, the level of which is comparable to the transfection reagent Lipofectamine 2000. The assemblies show a globular morphology with an average hydrodynamic diameter of 99 nm and almost no beta-sheet structure. Additionally, the silk-based pDNA complexes demonstrate excellent DNase resistance as well as efficient release of the pDNA by enzymes that degrade silk proteins. Also, comparison with beta-sheet induced silk-based pDNA complexes indicates that the beta-sheet structure content of the silk sequence of the pDNA complexes controls the enzymatic degradation rate of the complexes, and hence can regulate the release profile of genes from the complexes. The bioengineered silk-based gene delivery vehicles containing cell membrane-destabilizing peptides are therefore concluded to have potential for a less-toxic and controlled-release gene delivery system. PMID:20942485

  6. Secondary Structure Transition and Critical Stress for a Model of Spider Silk Assembly.

    PubMed

    Giesa, Tristan; Perry, Carole C; Buehler, Markus J

    2016-02-01

    Spiders spin their silk from an aqueous solution to a solid fiber in ambient conditions. However, to date, the assembly mechanism in the spider silk gland has not been satisfactorily explained. In this paper, we use molecular dynamics simulations to model Nephila clavipes MaSp1 dragline silk formation under shear flow and determine the secondary structure transitions leading to the experimentally observed fiber structures. While no experiments are performed on the silk fiber itself, insights from this polypeptide model can be transferred to the fiber scale. The novelty of this study lies in the calculation of the shear stress (300-700 MPa) required for fiber formation and identification of the amino acid residues involved in the transition. This is the first time that the shear stress has been quantified in connection with a secondary structure transition. By study of molecules containing varying numbers of contiguous MaSp1 repeats, we determine that the smallest molecule size giving rise to a "silk-like" structure contains six polyalanine repeats. Through a probability analysis of the secondary structure, we identify specific amino acids that transition from α-helix to β-sheet. In addition to portions of the polyalanine section, these amino acids include glycine, leucine, and glutamine. The stability of β-sheet structures appears to arise from a close proximity in space of helices in the initial spidroin state. Our results are in agreement with the forces exerted by spiders in the silking process and the experimentally determined global secondary structure of spidroin and pulled MaSp1 silk. Our study emphasizes the role of shear in the assembly process of silk and can guide the design of microfluidic devices that attempt to mimic the natural spinning process and predict molecular requirements for the next generation of silk-based functional materials. PMID:26669270

  7. Consequences of Ultra-Violet Irradiation on the Mechanical Properties of Spider Silk.

    PubMed

    Lai, Wee Loong; Goh, Kheng Lim

    2015-01-01

    The outstanding combination of high tensile strength and extensibility of spider silk is believed to contribute to the material's toughness. Thus, there is great interest in engineering silk for biomedical products such as suture or implants. Additionally, over the years, many studies have also sought to enhance the mechanical properties of spider silk for wider applicability, e.g., by irradiating the material using ultra-violet radiation. However, the limitations surrounding the use of ultra-violet radiation for enhancing the mechanical properties of spider silk are not well-understood. Here, we have analyzed the mechanical properties of spider silk at short ultra-violet irradiation duration. Specimens of spider silk were subjected to ultra-violet irradiation (254-nm wavelength, i.e. UVC) for 10, 20, and 30 min, respectively, followed by tensile test to rupture to determine the strength (maximum stress), extensibility (rupture strain), and toughness (strain energy density to rupture). Controls, i.e., specimens that did not received UVC, were also subjected to tensile test to rupture to determine the respective mechanical properties. One-way analysis of variance reveals that these properties decrease significantly (p < 0.05) with increasing irradiation duration. Among the three mechanical parameters, the strength of the spider silk degrades most rapidly; the extensibility of the spider silk degrades the slowest. Overall, these changes correspond to the observed surface modifications as well as the bond rupture between the peptide chains of the treated silk. Altogether, this simple but comprehensive study provides some key insights into the dependence of the mechanical properties on ultra-violet irradiation duration. PMID:26378587

  8. TRANSCRIPTION FACTOR Bmsage PLAYS A CRUCIAL ROLE IN SILK GLAND GENERATION IN SILKWORM, Bombyx mori.

    PubMed

    Xin, Hu-hu; Zhang, Deng-pan; Chen, Rui-ting; Cai, Zi-zheng; Lu, Yan; Liang, Shuang; Miao, Yun-gen

    2015-10-01

    Salivary gland secretion is altered in Drosophila embryos with loss of function of the sage gene. Saliva has a reduced volume and an increased electron density according to transmission electron microscopy, resulting in regions of tube dilation and constriction with intermittent tube closure. However, the precise functions of Bmsage in silkworm (Bombyx mori) are unknown, although its sequence had been deposited in SilkDB. From this, Bmsage is inferred to be a transcription factor that regulates the synthesis of silk fibroin and interacts with another silk gland-specific transcription factor, namely, silk gland factor-1. In this study, we introduced a germline mutation of Bmsage using the Cas9/sgRNA system, a genome-editing technology, resulting in deletion of Bmsage from the genome of B. mori. Of the 15 tested samples, seven displayed alterations at the target site. The mutagenesis efficiency was about 46.7% and there were no obvious off-target effects. In the screened homozygous mutants, silk glands developed poorly and the middle and posterior silk glands (MSG and PSG) were absent, which was significantly different from the wild type. The offspring of G0 mosaic silkworms had indel mutations causing 2- or 9-bp deletions at the target site, but exhibited the same abnormal silk gland structure. Mutant larvae containing different open-reading frames of Bmsage had the same silk gland phenotype. This illustrated that the mutant phenotype was due to Bmsage knockout. We conclude that Bmsage participates in embryonic development of the silk gland. PMID:25917878

  9. Consequences of Ultra-Violet Irradiation on the Mechanical Properties of Spider Silk

    PubMed Central

    Lai, Wee Loong; Goh, Kheng Lim

    2015-01-01

    The outstanding combination of high tensile strength and extensibility of spider silk is believed to contribute to the material’s toughness. Thus, there is great interest in engineering silk for biomedical products such as suture or implants. Additionally, over the years, many studies have also sought to enhance the mechanical properties of spider silk for wider applicability, e.g., by irradiating the material using ultra-violet radiation. However, the limitations surrounding the use of ultra-violet radiation for enhancing the mechanical properties of spider silk are not well-understood. Here, we have analyzed the mechanical properties of spider silk at short ultra-violet irradiation duration. Specimens of spider silk were subjected to ultra-violet irradiation (254-nm wavelength, i.e. UVC) for 10, 20, and 30 min, respectively, followed by tensile test to rupture to determine the strength (maximum stress), extensibility (rupture strain), and toughness (strain energy density to rupture). Controls, i.e., specimens that did not received UVC, were also subjected to tensile test to rupture to determine the respective mechanical properties. One-way analysis of variance reveals that these properties decrease significantly (p < 0.05) with increasing irradiation duration. Among the three mechanical parameters, the strength of the spider silk degrades most rapidly; the extensibility of the spider silk degrades the slowest. Overall, these changes correspond to the observed surface modifications as well as the bond rupture between the peptide chains of the treated silk. Altogether, this simple but comprehensive study provides some key insights into the dependence of the mechanical properties on ultra-violet irradiation duration. PMID:26378587

  10. Silk fibroin diaphragm-based fiber-tip Fabry-Perot pressure sensor.

    PubMed

    Cheng, Linghao; Wang, Cengzhong; Huang, Yunyun; Liang, Hao; Guan, Bai-Ou

    2016-08-22

    A miniature fiber-optic Fabry-Perot is built on the tip of a single mode fiber with a thin silk fibroin film as the diaphragm for pressure measurement. The silk fibroin film is regenerated from aqueous silk fibroin solution obtained by an environmentally benign fabrication process, which exhibits excellent optical and physicochemical properties, such as transparency in visible and near infrared region, membrane-forming ability, good adhesion, and high mechanical strength. The resulted Fabry-Perot pressure sensor is therefore highly biocompatible and shows good airtightness with a response of 12.3 nm/kPa in terms of cavity length change. PMID:27557238

  11. Pigmented Silk Nanofibrous Composite for Skeletal Muscle Tissue Engineering.

    PubMed

    Manchineella, Shivaprasad; Thrivikraman, Greeshma; Khanum, Khadija K; Ramamurthy, Praveen C; Basu, Bikramjit; Govindaraju, T

    2016-05-01

    Skeletal muscle tissue engineering (SMTE) employs designed biomaterial scaffolds for promoting myogenic differentiation of myoblasts to functional myotubes. Oxidative stress plays a significant role in the biocompatibility of biomaterials as well as in the fate of myoblasts during myogenesis and is also associated with pathological conditions such as myotonic dystrophy. The inherent electrical excitability of muscle cells inspired the use of electroactive scaffolds for SMTE. Conducting polymers attracted the attention of researchers for their use in muscle tissue engineering. However, poor biocompatibility, biodegradability and development of oxidative stress associated immunogenic response limits the extensive use of synthetic conducting polymers for SMTE. In order to address the limitations of synthetic polymers, intrinsically electroactive and antioxidant silk fibroin/melanin composite films and electrospun fiber mats were fabricated and evaluated as scaffolds for promoting myogenesis in vitro. Melanin incorporation modulated the thermal stability, electrical conductivity of scaffolds, fiber alignment in electrospun mats and imparted good antioxidant properties to the scaffolds. The composite electrospun scaffolds promoted myoblast assembly and differentiation into uniformly aligned high aspect ratio myotubes. The results highlight the significance of scaffold topography along with conductivity in promoting myogenesis and the potential application of silk nanofibrous composite as electoractive platform for SMTE. PMID:27226037

  12. Structural Model for the Spider Silk Protein Spidroin-1.

    PubMed

    dos Santos-Pinto, José Roberto Aparecido; Arcuri, Helen Andrade; Priewalder, Helga; Salles, Heliana Clara; Palma, Mario Sergio; Lubec, Gert

    2015-09-01

    Most reports about the 3-D structure of spidroin-1 have been proposed for the protein in solid state or for individual domains of these proteins. A gel-based mass spectrometry strategy using collision-induced dissociation (CID) and electron-transfer dissociation (ETD) fragmentation methods was used to completely sequence spidroins-1A and -1B and to assign a series of post-translational modifications (PTMs) on to the spidroin sequences. A total of 15 and 16 phosphorylation sites were detected on spidroin-1A and -1B, respectively. In this work, we present the nearly complete amino acid sequence of spidroin-1A and -1B, including the nonrepetitive N- and C-terminal domains and a highly repetitive central core. We also described a fatty acid layer surrounding the protein fibers and PTMs in the sequences of spidroin-1A and -1B, including phosphorylation. Thus, molecular models for phosphorylated spidroins were proposed in the presence of a mixture fatty acids/water (1:1) and submitted to molecular dynamics simulation. The resulting models presented high content of coils, a higher percentage of α-helix, and an almost neglected content of 310-helix than the previous models. Knowledge of the complete structure of spidroins-1A and -1B would help to explain the mechanical features of silk fibers. The results of the current investigation provide a foundation for biophysical studies of the mechanoelastic properties of web-silk proteins. PMID:26211688

  13. Biocompatible Silk-Poly(Pyrrole) Composite Trilayer Electromechanical Actuators

    NASA Astrophysics Data System (ADS)

    Klemke, Carly; Bradshaw, Nathan; Larson, Jesse; Severt, Sean; Ostrovsky-Snider, Nicholas; Murphy, Amanda; Leger, Janelle

    2015-03-01

    Biocompatible materials capable of controlled actuation are in high demand for use in biomedical applications such as dynamic tissue scaffolding, valves, and steerable surgical tools. Conducting polymers (CPs) have some desirable traits for use as an actuator, such as the ability to operate in biologically relevant fluids and responsiveness to low voltages. However CPs alone are limited due to their brittle nature and poor solubility. Recently we have shown that a composite material of silk and the CP poly(pyrrole) (PPy) shows promising characteristics as an actuator; it is mechanically robust as well as fully biocompatible. Initial proof-of-concept experiments demonstrated that these composites bend under an applied voltage (or current) using a simple bilayer device. Here we present the development of a trilayer device, composed of two conductive layers separated by an insulating silk layer. This configuration has twice the active surface area as a bilayer, potentially increasing the amount of mechanical motion per volt applied. We will discuss the fabrication and characterization of these devices, as well as their performance and future applications of this technology.

  14. Damage, self-healing, and hysteresis in spider silks.

    PubMed

    De Tommasi, D; Puglisi, G; Saccomandi, G

    2010-05-19

    In this article, we propose a microstructure-based continuum model to describe the material behavior of spider silks. We suppose that the material is composed of a soft fraction with entropic elasticity and a hard, damageable fraction. The hard fraction models the presence of stiffer, crystal-rich, oriented regions and accounts for the effect of softening induced by the breaking of hydrogen bonds. To describe the observed presence of crystals with different size, composition, and orientation, this hard fraction is modeled as a distribution of materials with variable properties. The soft fraction describes the remaining regions of amorphous material and is here modeled as a wormlike chain. During stretching, we consider the effect of bond-breaking as a transition from the hard- to the soft-material phase. As we demonstrate, a crucial effect of bond-breaking that accompanies the softening of the material is an increase in contour length associated with chains unraveling. The model describes also the self-healing properties of the material by assuming partial bond reconnection upon unloading. Despite its simplicity, the proposed mechanical system reproduces the main experimental effects observed in cyclic loading of spider silks. Moreover, our approach is amenable to two- or three-dimensional extensions and may prove to be a useful tool in the field of microstructure optimization for bioinspired materials. PMID:20441758

  15. Preparation and hemostatic property of low molecular weight silk fibroin.

    PubMed

    Lei, Caihong; Zhu, Hailin; Li, Jingjing; Feng, Xinxing; Chen, Jianyong

    2016-04-01

    Effective hemorrhage control becomes increasingly significant in today's military and civilian trauma, while the topical hemostats currently available in market still have various disadvantages. In this study, three low molecular weight silk fibroins (LMSF) were prepared through hydrolysis of silk fibroin in a ternary solvent system of CaCl2/H2O/EtOH solution at different hydrolysis temperatures. Fourier transform infrared spectroscopy analysis showed that the content of β sheet structure in the LMSF decreased with the increase in hydrolysis temperature. The results of thromboelastographic and activated partial thromboplastin time methods showed that the LMSF hydrolyzed at 50 °C can significantly strengthen the coagulation in blood and activate the intrinsic pathway of coagulation cascade. In the murine hepatic injury model, the LMSF hydrolyzed at 50 °C can promote the blood clotting and decrease the blood loss and bleeding time. Based on these results, it can be suggested that the developed LMSF has the excellent hemostatic effect and may be a promising material in clinical hemostatic application. PMID:26732018

  16. Gender inequality and entrepreneurship: the Indian silk industry.

    PubMed

    Mayoux, L

    1993-12-01

    The production of raw silk yarns from cocoons (reeling) is a crucial middle stage in the silk industry. The author reviews the experience of attempts to encourage women's entrepreneurship in this industry in Karnataka, South India. Reeling is a potentially lucrative field with possibilities for upward mobility from small-scale to large-scale production if credit is readily available. The industry in India employs large numbers of skilled female workers from all communities and is one of few in which a sectoral gender policy is being implemented. While these factors may be thought to be conducive to the development of women entrepreneurs, none were in the areas studied at the time of research. No women were involved in marketing through the official marketing system and no women's co-operatives were operating. While women were listed among registered reelers, men controlled the businesses. Men simply used women to obtain supplementary bank loans or funds through other avenues otherwise open to only women. Policies for women in reeling have therefore proved to be overwhelmingly unsuccessful. The author considers gender inequality and gender policy at length in this context and concludes that the problem is systemic and structural in nature. Policy implications are considered. PMID:12318601

  17. Beating the Heat - Fast Scanning Melts Silk Beta Sheet Crystals

    PubMed Central

    Cebe, Peggy; Hu, Xiao; Kaplan, David L.; Zhuravlev, Evgeny; Wurm, Andreas; Arbeiter, Daniela; Schick, Christoph

    2013-01-01

    Beta-pleated-sheet crystals are among the most stable of protein secondary structures, and are responsible for the remarkable physical properties of many fibrous proteins, such as silk, or proteins forming plaques as in Alzheimer's disease. Previous thinking, and the accepted paradigm, was that beta-pleated-sheet crystals in the dry solid state were so stable they would not melt upon input of heat energy alone. Here we overturn that assumption and demonstrate that beta-pleated-sheet crystals melt directly from the solid state to become random coils, helices, and turns. We use fast scanning chip calorimetry at 2,000 K/s and report the first reversible thermal melting of protein beta-pleated-sheet crystals, exemplified by silk fibroin. The similarity between thermal melting behavior of lamellar crystals of synthetic polymers and beta-pleated-sheet crystals is confirmed. Significance for controlling beta-pleated-sheet content during thermal processing of biomaterials, as well as towards disease therapies, is envisioned based on these new findings. PMID:23350037

  18. Kenneth R. Silk (May 1944-April 2016).

    PubMed

    2016-08-01

    Ken was a founding editor of Personality and Mental Health. He thoroughly enjoyed this role and played a major part in getting the journal off to a flying start, so that it was well received in the area of personality disorder and had an impact factor within 2 years of publication. Editorial strategy was mainly carried out by international teleconference, not easy to time with editors in Scotland, New Zealand and the United States, but these, well-organised with Eddie Kane's help, were good-natured, jolly and remarkably productive, with Ken's wit and wisdom adding to their value. Ken maintained his enthusiasm for the journal to the end of his life and despite his illness was able to complete the overview of the 2016 special issue published in May, accompanied by a short and pithy editorial pointing to the importance of empirical studies in a subject where opinion alone has ruled for far too long. PMID:27461147

  19. Moisture sorption as a potential condition marker for historic silks: noninvasive determination by near-infrared spectroscopy.

    PubMed

    Zhang, Xiaomei; Wyeth, Paul

    2007-02-01

    Given their ephemeral nature, the preservation of historic silks can be problematic. Rapid, on-site condition monitoring would offer significant benefits to conservators and museum curators concerned with continued access to collections. In this paper, near-infrared spectroscopy (NIR) is investigated as a noninvasive approach to the characterization of silk fabrics and particularly for determining the moisture content of silks as a potential age-related marker. Bands within the NIR spectrum of silk are assigned to contributions from water and the silk fibroin polymer. The water bands may be deconvolved to show separate contributions from bound and structural water. When silk is exposed to deuterium oxide, the water OH NIR bands are rapidly lost. The accompanying changes in the amide-related NIR absorptions reflect differential accessibility of regions within the semi-crystalline fibroin aggregate. NIR spectra were recorded while silk was maintained at a range of relative humidity; complementary gravimetry provided absolute reference data for moisture sorption. A single spectral parameter, the intensity of the water combination band, is sufficient to indicate the relative moisture content of silk and allows distinction of unaged and heat, light, and humidity aged silks. The results confirm that NIR has significant potential for on-site studies at collections in support of the preservation and access of our silk heritage. PMID:17331315

  20. Electromechanical response of silk fibroin hydrogel and conductive polycarbazole/silk fibroin hydrogel composites as actuator material.

    PubMed

    Srisawasdi, Thanida; Petcharoen, Karat; Sirivat, Anuvat; Jamieson, Alexander M

    2015-11-01

    Pure silk fibroin (SF) hydrogel and polycarbazole/silk fibroin (SF/PCZ) hydrogels were fabricated by solvent casting technique to evaluate electromechanical responses, dielectric properties, and cantilever deflection properties as functions of electric field strength, SF concentration, glutaraldehyde concentration, and PCZ concentration in the blends. Electromechanical properties were characterized in oscillatory shear mode at electric field strengths ranging from 0 to 600V/mm and at a temperature of 27°C. For both the pristine SF and SF/PCZ hydrogels, the storage modulus response (ΔG') and the storage modulus sensitivity (ΔG'/G'0) increased dramatically with increasing electric field strength. The pristine hydrogel possessed the highest storage modulus sensitivity value of 5.87, a relatively high value when compared with other previously studied electroactive polymers. With the addition of conductive PCZ in SF hydrogel, the storage modulus sensitivity and the relative dielectric constant decreased; the conductive polymer thus provided the softening effect under electric field. In the deflection response, the dielectrophoresis force and deflection distance increased monotonically with electric field strength, where the pure SF hydrogel showed the highest deflection distance and dielectrophoresis force. PMID:26249559

  1. Functionalized silk assembled from a recombinant spider silk fusion protein (Z-4RepCT) produced in the methylotrophic yeast Pichia pastoris.

    PubMed

    Jansson, Ronnie; Lau, Cheuk H; Ishida, Takuya; Ramström, Margareta; Sandgren, Mats; Hedhammar, My

    2016-05-01

    Functional biological materials are a growing research area with potential applicability in medicine and biotechnology. Using genetic engineering, the possibility to introduce additional functions into spider silk-based materials has been realized. Recently, a recombinant spider silk fusion protein, Z-4RepCT, was produced intracellularly in Escherichia coli and could after purification self-assemble into silk-like fibers with ability to bind antibodies via the IgG-binding Z domain. In this study, the use of the methylotrophic yeast Pichia pastoris for production of Z-4RepCT has been investigated. Temperature, pH and production time were influencing the amount of soluble Z-4RepCT retrieved from the extracellular fraction. Purification of secreted Z-4RepCT resulted in a mixture of full-length and degraded silk proteins that failed to self-assemble into fibers. A position in the C-terminal domain of 4RepCT was identified as being subjected to proteolytic cleavage by proteases in the Pichia culture supernatant. Moreover, the C-terminal domain was subjected to glycosylation during production in P. pastoris. These observed alterations of the CT domain are suggested to contribute to the failure in fiber assembly. As alternative approach, Z-4RepCT retrieved from the intracellular fraction, which was less degraded, was used and shown to retain ability to assemble into silk-like fibers after enzymatic deglycosylation. PMID:26814048

  2. Nephila clavipes Flagelliform silk-like GGX motifs contribute to extensibility and spacer motifs contribute to strength in synthetic spider silk fibers.

    PubMed

    Adrianos, Sherry L; Teulé, Florence; Hinman, Michael B; Jones, Justin A; Weber, Warner S; Yarger, Jeffery L; Lewis, Randolph V

    2013-06-10

    Flagelliform spider silk is the most extensible silk fiber produced by orb weaver spiders, though not as strong as the dragline silk of the spider. The motifs found in the core of the Nephila clavipes flagelliform Flag protein are GGX, spacer, and GPGGX. Flag does not contain the polyalanine motif known to provide the strength of dragline silk. To investigate the source of flagelliform fiber strength, four recombinant proteins were produced containing variations of the three core motifs of the Nephila clavipes flagelliform Flag protein that produces this type of fiber. The as-spun fibers were processed in 80% aqueous isopropanol using a standardized process for all four fiber types, which produced improved mechanical properties. Mechanical testing of the recombinant proteins determined that the GGX motif contributes extensibility and the spacer motif contributes strength to the recombinant fibers. Recombinant protein fibers containing the spacer motif were stronger than the proteins constructed without the spacer that contained only the GGX motif or the combination of the GGX and GPGGX motifs. The mechanical and structural X-ray diffraction analysis of the recombinant fibers provide data that suggests a functional role of the spacer motif that produces tensile strength, though the spacer motif is not clearly defined structurally. These results indicate that the spacer is likely a primary contributor of strength, with the GGX motif supplying mobility to the protein network of native N. clavipes flagelliform silk fibers. PMID:23646825

  3. Spider-silk-like shape memory polymer fiber for vibration damping

    NASA Astrophysics Data System (ADS)

    Yang, Qianxi; Li, Guoqiang

    2014-10-01

    In this study, the static and dynamic properties of shape memory polyurethane (SMPU) fiber are reported and compared to those of spider dragline silk. Although the polymeric fiber has a lower strength compared to spider dragline silks (0.2-0.3 GPa versus 1.1 GPa), it possesses much higher toughness (276-289 MJ m-3 versus 160 MJ m-3), due to its excellent extensibility. The dynamic mechanical tests reveal that SMPU fiber has a high damping capacity (tan δ = 0.10-0.35) which is comparable to or even higher than that of spider silks (tan δ = 0.15). In addition, we found that, different programming methods change the shape memory and damping properties of the fiber in different ways and cold-drawing programming is more advocated in structural applications. These results suggest that the SMPU fiber has similar vibration damping and mechanical properties as spider silk, and may find applications in lightweight engineering structures.

  4. Modulated Degradation of Transient Electronic Devices through Multilayer Silk Fibroin Pockets.

    PubMed

    Brenckle, Mark A; Cheng, Huanyu; Hwang, Sukwon; Tao, Hu; Paquette, Mark; Kaplan, David L; Rogers, John A; Huang, Yonggang; Omenetto, Fiorenzo G

    2015-09-16

    The recent introduction of transient, bioresorbable electronics into the field of electronic device design offers promise for the areas of medical implants and environmental monitors, where programmed loss of function and environmental resorption are advantageous characteristics. Materials challenges remain, however, in protecting the labile device components from degradation at faster than desirable rates. Here we introduce an indirect passivation strategy for transient electronic devices that consists of encapsulation in multiple air pockets fabricated from silk fibroin. This approach is investigated through the properties of silk as a diffusional barrier to water penetration, coupled with the degradation of magnesium-based devices in humid air. Finally, silk pockets are demonstrated to be useful for controlled modulation of device lifetime. This approach may provide additional future opportunities for silk utility due to the low immunogenicity of the material and its ability to stabilize labile biotherapeutic dopants. PMID:26305434

  5. Crystal growth of calcium carbonate in silk fibroin/sodium alginate hydrogel

    NASA Astrophysics Data System (ADS)

    Ming, Jinfa; Zuo, Baoqi

    2014-01-01

    As known, silk fibroin-like protein plays a pivotal role during the formation of calcium carbonate (CaCO3) crystals in the nacre sheets. Here, we have prepared silk fibroin/sodium alginate nanofiber hydrogels to serve as templates for calcium carbonate mineralization. In this experiment, we report an interesting finding of calcium carbonate crystal growth in the silk fibroin/sodium alginate nanofiber hydrogels by the vapor diffusion method. The experimental results indicate calcium carbonate crystals obtained from nanofiber hydrogels with different proportions of silk fibroin/sodium alginate are mixture of calcite and vaterite with unusual morphologies. Time-dependent growth study was carried out to investigate the crystallization process. It is believed that nanofiber hydrogels play an important role in the process of crystallization. This study would help in understanding the function of organic polymers in natural mineralization, and provide a novel pathway in the design and synthesis of new materials related unique morphology and structure.

  6. Influence of variety and harvest maturity on phytochemical content in corn silk.

    PubMed

    Sarepoua, Eakrin; Tangwongchai, Ratchada; Suriharn, Bhalang; Lertrat, Kamol

    2015-02-15

    Corn silk has been used as a traditional herb in Asia. The objective of this study was to evaluate variability in phytochemicals in corn varieties at three maturity stages of corn silk. Ten vegetable corn varieties were evaluated in a completely randomized design with three replications. Data were recorded for total phenolic (TPC), total flavonoids (TFC), total anthocyanin (TAC) and antioxidant activity (AA) by DPPH free-radical-scavenging assays. Differences among corn varieties were observed for all parameters at all maturity stages, and the interactions between maturity stage and corn variety were significant. TPC and TAC were highest at the milky stage, whereas TFC and AA were highest at the silking stage. TPC, TFC and AA were highest in super sweet corn and white corn at the silking stage. PWC5 variety of purple waxy corn at the milky stage had the highest values for all parameters, and it is useful for further development of functional food products. PMID:25236247

  7. Effect of silk sericin on morphology and structure of calcium carbonate crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Rui-Bo; Han, Hua-Feng; Ding, Shao; Li, Ze-Hao; Kong, Xiang-Dong

    2013-06-01

    In this paper, silk sericin was employed to regulate the mineralization of calcium carbonate (CaCO3). CaCO3 composite particles were prepared by the precipitation reaction of sodium carbonate with calcium chloride solution in the presence of silk sericin. The as-prepared samples were collected at different reaction time to study the crystallization process of CaCO3 by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that silk sericin significantly affected the morphology and crystallographic polymorph of CaCO3. With increasing the reaction time, the crystal phase of CaCO3 transferred from calcite dominated to vaterite dominated mixtures, while the morphology of CaCO3 changed from disk-like calcite crystal to spherical vaterite crystal. These studies showed the potential of silk sericin used as a template molecule to control the growth of inorganic crystal.

  8. [Research on the silk aging with x-ray diffraction spectra].

    PubMed

    Zhang, Xiao-mei; Yuan, Si-xun

    2010-01-01

    The present paper did some researches on the deterioration mechanism and the changes in crystallinity of silk fabrics by means of the X-ray diffraction analysis. The samples artificially aged and excavated from Hubei, Innermongolia, Shaanxi and Qinghai provinces were analyzed. The artificial aging was done by simulating three main natural aging factors: light, heat and hydrolysis. The analytical results show that X-ray diffraction analysis could reveal the aging process and characteristic of silk, as well as the changes in crystallinity during silk aging. The X-ray diffraction analysis is of practical value for the conservation state and aging mechanism studies of ancient silk. In addition, X-ray diffraction analysis could also provide important information on ancient technology of textile and apparel. PMID:20302128

  9. Hierarchical charge distribution controls self-assembly process of silk in vitro

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Zhang, Cencen; Liu, Lijie; Kaplan, David L.; Zhu, Hesun; Lu, Qiang

    2015-12-01

    Silk materials with different nanostructures have been developed without the understanding of the inherent transformation mechanism. Here we attempt to reveal the conversion road of the various nanostructures and determine the critical regulating factors. The regulating conversion processes influenced by a hierarchical charge distribution were investigated, showing different transformations between molecules, nanoparticles and nanofibers. Various repulsion and compressive forces existed among silk fibroin molecules and aggregates due to the exterior and interior distribution of charge, which further controlled their aggregating and deaggregating behaviors and finally formed nanofibers with different sizes. Synergistic action derived from molecular mobility and concentrations could also tune the assembly process and final nanostructures. It is suggested that the complicated silk fibroin assembly processes comply a same rule based on charge distribution, offering a promising way to develop silk-based materials with designed nanostructures.

  10. Impact of Protein-Metal Ion Interactions on the Crystallization of Silk Fibroin Protein

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Lu, Qiang; Kaplan, David; Cebe, Peggy

    2009-03-01

    Proteins can easily form bonds with a variety of metal ions, which provides many unique biological functions for the protein structures, and therefore controls the overall structural transformation of proteins. We use advanced thermal analysis methods such as temperature modulated differential scanning calorimetry and quasi-isothermal TMDSC, combined with Fourier transform infrared spectroscopy, and scanning electron microscopy, to investigate the protein-metallic ion interactions in Bombyx mori silk fibroin proteins. Silk samples were mixed with different metal ions (Ca^2+, K^+, Ma^2+, Na^+, Cu^2+, Mn^2+) with different mass ratios, and compared with the physical conditions in the silkworm gland. Results show that all metallic ions can directly affect the crystallization behavior and glass transition of silk fibroin. However, different ions tend to have different structural impact, including their role as plasticizer or anti-plasticizer. Detailed studies reveal important information allowing us better to understand the natural silk spinning and crystallization process.

  11. Fabrication and photocatalytic performance of electrospun PVA/silk/TiO2 nanocomposite textile

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Chan, Shun-Hsiang; Lin, Ting-Han

    2015-02-01

    Many organic/inorganic nanocomposites have been fabricated into fibrous materials using electrospinning techniques, because electrospinning processes have many attractive advantages and the ability to produce relatively large-scale continuous films. In this study, the polyvinyl alcohol (PVA)/silk/titanium dioxide (TiO2) nanocomposite self-cleaning textiles were successfully produced using electrospinning technique. After optimizing electrospinning conditions, we successfully obtained the PVA/silk/TiO2 nanocomposite fibers with average diameter of ˜220 nm and TiO2 concentration can be as high as 18.0 wt.%. For the case of the PVA/silk/TiO2 nanocomposite textile, the color of brilliant green coated on the textile surface changed from the initial green color to colorless after ultraviolet (UV) irradiation. Because of its worthy photocatalytic performance, the developed PVA/silk/TiO2 nanocomposite materials in this study will be beneficial for the design and fabrication of multifunctional fibers and textiles.

  12. Inkjet Printing of Regenerated Silk Fibroin: From Printable Forms to Printable Functions.

    PubMed

    Tao, Hu; Marelli, Benedetto; Yang, Miaomiao; An, Bo; Onses, M Serdar; Rogers, John A; Kaplan, David L; Omenetto, Fiorenzo G

    2015-08-01

    A formulation of regenerated silk fibroin solution that can be easily functionalized and inkjet printed on numerous surfaces is developed. As an example, the inks can be printed on laboratory gloves that change color when exposed to bacteria. PMID:26079217

  13. Reversible Hydrogel–Solution System of Silk with High Beta-Sheet Content

    PubMed Central

    2015-01-01

    Silkworm silk has been widely used as a textile fiber, as biomaterials and in optically functional materials due to its extraordinary properties. The β-sheet-rich natural nanofiber units of about 10–50 nm in diameter are often considered the origin of these properties, yet it remains unclear how silk self-assembles into these hierarchical structures. A new system composed of β-sheet-rich silk nanofibers about 10–20 nm in diameter is reported here, where these nanofibers formed into “flowing hydrogels” at 0.5–2% solutions and could be transformed back into the solution state at lower concentrations, even with a high β-sheet content. This is in contrast with other silk processed materials, where significant β-sheet content negates reversibility between solution and solid states. These fibers are formed by regulating the self-assembly process of silk in aqueous solution, which changes the distribution of negative charges while still supporting β-sheet formation in the structures. Mechanistically, there appears to be a shift toward negative charges along the outside of the silk nanofibers in our present study, resulting in a higher zeta potential (above −50 mV) than previous silk materials which tend to be below −30 mV. The higher negative charge on silk nanofibers resulted in electrostatic repulsion strong enough to negate further assembly of the nanofibers. Changing silk concentration changed the balance between hydrophobic interactions and electrostatic repulsion of β-sheet-rich silk nanofibers, resulting in reversible hydrogel–solution transitions. Furthermore, the silk nanofibers could be disassembled into shorter fibers and even nanoparticles upon ultrasonic treatment following the transition from hydrogel to solution due to the increased dispersion of hydrophobic smaller particles, without the loss of β-sheet content, and with retention of the ability to transition between hydrogel and solution states through reversion to longer nanofibers

  14. Reversible hydrogel-solution system of silk with high beta-sheet content.

    PubMed

    Bai, Shumeng; Zhang, Xiuli; Lu, Qiang; Sheng, Weiqin; Liu, Lijie; Dong, Boju; Kaplan, David L; Zhu, Hesun

    2014-08-11

    Silkworm silk has been widely used as a textile fiber, as biomaterials and in optically functional materials due to its extraordinary properties. The β-sheet-rich natural nanofiber units of about 10-50 nm in diameter are often considered the origin of these properties, yet it remains unclear how silk self-assembles into these hierarchical structures. A new system composed of β-sheet-rich silk nanofibers about 10-20 nm in diameter is reported here, where these nanofibers formed into "flowing hydrogels" at 0.5-2% solutions and could be transformed back into the solution state at lower concentrations, even with a high β-sheet content. This is in contrast with other silk processed materials, where significant β-sheet content negates reversibility between solution and solid states. These fibers are formed by regulating the self-assembly process of silk in aqueous solution, which changes the distribution of negative charges while still supporting β-sheet formation in the structures. Mechanistically, there appears to be a shift toward negative charges along the outside of the silk nanofibers in our present study, resulting in a higher zeta potential (above -50 mV) than previous silk materials which tend to be below -30 mV. The higher negative charge on silk nanofibers resulted in electrostatic repulsion strong enough to negate further assembly of the nanofibers. Changing silk concentration changed the balance between hydrophobic interactions and electrostatic repulsion of β-sheet-rich silk nanofibers, resulting in reversible hydrogel-solution transitions. Furthermore, the silk nanofibers could be disassembled into shorter fibers and even nanoparticles upon ultrasonic treatment following the transition from hydrogel to solution due to the increased dispersion of hydrophobic smaller particles, without the loss of β-sheet content, and with retention of the ability to transition between hydrogel and solution states through reversion to longer nanofibers during self

  15. Defense role of the cocoon in the silk worm Bombyx mori L.

    PubMed

    Pandiarajan, Jeyaraj; Cathrin, Britto P; Pratheep, Thangaraj; Krishnan, Muthukalingan

    2011-11-15

    Silk from the domesticated silk worm Bombyx mori procures foreign body response naturally, so it has been utilized as a biomaterial for decades. In India the prime focus of the sericulture industry is to improve silk production with high quality silk. Naturally, the silk worm builds its cocoon not only with silk proteins, but also with antimicrobial proteins to avoid infection since the cocoon is non-motile and non-feeding. The aim of the present study is to elucidate the antimicrobial proteins that persist in the cocoon of the silk worm Bombyx mori. At the pupal stage, the silk worm cocoon shell extract was prepared from the day of pupation (P0) to the day of natural rupture of the cocoon for the eclosion of moth (NR). Using the cocoon shell extract a microbial susceptibility test was performed by the disc diffusion method against the microbes Escherchia coli, Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. The development of a zone of inhibition against the microbes confirmed the presence of antimicrobial/immunogenic activity of the cocoon shell extract. For further analysis, the cocoon shell extract was subjected to 7-15% sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE). The protein profile of the cocoon extract revealed the coomassie blue stained bands resolved from the 150-15 kDa molecular range. Interestingly, a polypeptide localized at around 29 kDa showed remarkable expressional changes during the development of pupa. To characterize the 29 kDa protein, it was eluted from the gel, digested with trypsin and analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The trypsin-digested peptide peaks were analyzed through MASCOT and peptides were matched with the NCBI nr database. The peptides were very well matched with the 18 wheeler protein, which is reported to be responsible for innate immunity, belonging to the Toll family in insects and responsible for cellular

  16. Functional Material Features of Bombyx mori Silk Light vs. Heavy Chain Proteins

    PubMed Central

    Zafar, Muhammad S.; Belton, David J.; Hanby, Benjamin; Kaplan, David L.; Perry, Carole C.

    2016-01-01

    Bombyx mori (BM) silk fibroin is composed of two different subunits; heavy chain and light chain fibroin linked by a covalent disulphide bond. Current methods of separating the two silk fractions is complicated and produces inadequate quantities of the isolated components for the study of the individual light and heavy chain silks with respect to new materials. We report a simple method of separating silk fractions using formic acid. The formic acid treatment partially releases predominately the light chain fragment (soluble fraction) and then the soluble fraction and insoluble fractions can be converted into new materials. The regenerated original (total) silk fibroin and the separated fractions (soluble vs. insoluble) had different molecular weights and showed distinctive pH stabilities against aggregation/precipitation based on particle charging. All silk fractions could be electrospun to give fibre mats with viscosity of the regenerated fractions being the controlling factor for successful electrospinning. The silk fractions could be mixed to give blends with different proportions of the two fractions to modify the diameter and uniformity of the electrospun fibres formed. The soluble fraction containing the light chain was able to modify the viscosity by thinning the insoluble fraction containing heavy chain fragments, perhaps analogous to its role in natural fibre formation where the light chain provides increased mobility and the heavy chain producing shear thickening effects. The simplicity of this new separation method should enable access to these different silk protein fractions and accelerate the identification of methods, modifications and potential applications of these materials in biomedical and industrial applications. PMID:25565556

  17. Beta transition and stress-induced phase separation in the spinning of spider dragline silk.

    PubMed

    Knight, D P; Knight, M M; Vollrath, F

    2000-06-13

    Spider dragline silk is formed as the result of a remarkable transformation in which an aqueous dope solution is rapidly converted into an insoluble protein filament with outstanding mechanical properties. Microscopy on the spinning duct in Nephila edulis spiders suggests that this transformation involves a stress-induced formation of anti-parallel beta-sheets induced by extensional flow. Measurements of draw stress at different draw rates during silking confirm that a stress-induced phase transition occurs. PMID:10828366

  18. Low-temperature Electrospun Silk Scaffold for In Vitro Mucosal Modeling

    PubMed Central

    Bulysheva, Anna A.; Bowlin, Gary L.; Klingelhutz, Aloysius J.; Yeudall, W. Andrew

    2011-01-01

    Electrospinning is often used to create scaffolding as a biomimetic of the extracellular matrix of tissues. A frequent limitation of this technique for three-dimensional tissue modeling is poor cell infiltration throughout the void volume of scaffolds. Here, we generated low-temperature electrospun silk scaffolds and compared these to conventional electrospun silk scaffolds in terms of mechanical properties, void volume, cell infiltration, cell viability and potential to support mucosal models under three-dimensional culture conditions. Low-temperature electrospun silk scaffolds supported fibroblast attachment and infiltration throughout the volume of the scaffolds, while conventional electrospun scaffolds exhibited limited cell infiltration with fibroblasts attaching exclusively to the seeding surface of the scaffolds. The porosity of low-temperature electrospun scaffolds was 93% compared to 88% of conventional electrospun silk scaffolds. Uniaxial tensile testing showed a 3.5 fold reduction in strength of low-temperature electrospun silk compared to the conventional in terms of peak stress and modulus, but no significant change in strain at break. Mucosal modeling with fibroblast-keratinocyte or fibroblast-carcinoma co-cultures showed similar results, with cell infiltration occurring only in low-temperature electrospun scaffolds. Cell viability was confirmed using live/dead staining after 21 days in culture. Furthermore, low-temperature electrospun silk scaffolds were able to support keratinocyte differentiation, as judged by involucrin immunoreactivity. The low-temperature electrospun silk scaffold that we have developed eliminates the limitation of electrospun silk scaffolds in terms of cell infiltration and, therefore, can potentially be used for a wide range of tissue engineering purposes ranging from in vitro tissue modeling to in vivo tissue regeneration purposes. PMID:22238242

  19. Pancreatic Islet Survival and Engraftment Is Promoted by Culture on Functionalized Spider Silk Matrices

    PubMed Central

    Johansson, Ulrika; Dekki Shalaly, Nancy; Zaitsev, Sergei V.; Berggren, Per-Olof; Hedhammar, My

    2015-01-01

    Transplantation of pancreatic islets is one approach for treatment of diabetes, however, hampered by the low availability of viable islets. Islet isolation leads to disruption of the environment surrounding the endocrine cells, which contributes to eventual cell death. The reestablishment of this environment is vital, why we herein investigated the possibility of using recombinant spider silk to support islets in vitro after isolation. The spider silk protein 4RepCT was formulated into three different formats; 2D-film, fiber mesh and 3D-foam, in order to provide a matrix that can give the islets physical support in vitro. Moreover, cell-binding motifs from laminin were incorporated into the silk protein in order to create matrices that mimic the natural cell environment. Pancreatic mouse islets were thoroughly analyzed for adherence, necrosis and function after in vitro maintenance on the silk matrices. To investigate their suitability for transplantation, we utilized an eye model which allows in vivo imaging of engraftment. Interestingly, islets that had been maintained on silk foam during in vitro culture showed improved revascularization. This coincided with the observation of preserved islet architecture with endothelial cells present after in vitro culture on silk foam. Selected matrices were further evaluated for long-term preservation of human islets. Matrices with the cell-binding motif RGD improved human islet maintenance (from 36% to 79%) with preserved islets architecture and function for over 3 months in vitro. The islets established cell-matrix contacts and formed vessel-like structures along the silk. Moreover, RGD matrices promoted formation of new, insulin-positive islet-like clusters that were connected to the original islets via endothelial cells. On silk matrices with islets from younger donors (<35 year), the amount of newly formed islet-like clusters found after 1 month in culture were almost double compared to the initial number of islets

  20. Quantification of Changes in Mulberry Silk Fabrics due to Different Laundering: Using WAXS Technique

    NASA Astrophysics Data System (ADS)

    Parameswara, P.; Nivedita, S.; Somashekar, R.

    2011-07-01

    Loom finished mulberry silk fabrics (Taffeta) were machine laundered and hand laundered several times. X-ray diffractograms of pure and laundered fabrics were used to calculate microstructural parameters like average crystallite size (D) and lattice strain (Vegr) employing Williamson-Hall plot. Microstructural parameters were compared with measured mechanical properties like breaking load, tenacity, and elongation of warp yarns unraveled from fabrics. Surface morphology and texture of silk fabrics changed upon washing is evident from SEM images.

  1. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.

    PubMed

    Burke, Kelly A; Roberts, Dane C; Kaplan, David L

    2016-01-11

    Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in L-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form β-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants. PMID:26674175

  2. Effect of degumming time on silkworm silk fibre for biodegradable polymer composites

    NASA Astrophysics Data System (ADS)

    Ho, Mei-po; Wang, Hao; Lau, Kin-tak

    2012-02-01

    Recently, many studies have been conducted on exploitation of natural materials for modern product development and bioengineering applications. Apart from plant-based materials (such as sisal, hemp, jute, bamboo and palm fibre), animal-based fibre is a kind of sustainable natural materials for making novel composites. Silkworm silk fibre extracted from cocoon has been well recognized as a promising material for bio-medical engineering applications because of its superior mechanical and bioresorbable properties. However, when producing silk fibre reinforced biodegradable/bioresorbable polymer composites, hydrophilic sericin has been found to cause poor interfacial bonding with most polymers and thus, it results in affecting the resultant properties of the composites. Besides, sericin layers on fibroin surface may also cause an adverse effect towards biocompatibility and hypersensitivity to silk for implant applications. Therefore, a proper pre-treatment should be done for sericin removal. Degumming is a surface modification process which allows a wide control of the silk fibre's properties, making the silk fibre possible to be used for the development and production of novel bio-composites with unique/specific mechanical and biodegradable properties. In this paper, a cleaner and environmentally friendly surface modification technique for tussah silk in polymer based composites is proposed. The effectiveness of different degumming parameters including degumming time and temperature on tussah silk is discussed through the analyses of their mechanical and morphological properties. Based on results obtained, it was found that the mechanical properties of tussah silk are affected by the degumming time due to the change of the fibre structure and fibroin alignment.

  3. Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Micro-Rockets.

    PubMed

    Gregory, David A; Zhang, Yu; Smith, Patrick J; Zhao, Xiubo; Ebbens, Stephen J

    2016-08-01

    Inkjet-printed enzyme-powered silk-based micro-rockets are able to undergo autonomous motion in a vast variety of fluidic environments including complex media such as human serum. By means of digital inkjet printing it is possible to alter the catalyst distribution simply and generate varying trajectory behavior of these micro-rockets. Made of silk scaffolds containing enzymes these micro-rockets are highly biocompatible and non-biofouling. PMID:27345008

  4. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties

    PubMed Central

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-01-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on the average 2.8 dB mm−1. The waveguide losses of degummed silk are to a large extent due to scattering from debris on fiber surface and helical twisting of the fiber. Nonlinear optical microscopy reveals both configurational defects such as torsional twisting, and strong symmetry breaking at the center of the fiber, which provides potential for various nonlinear applications. Our results show that nonregenerated B. mori silk can be used for delivering optical power over short distances, when the waveguide needs to be biocompatible and bioresorbable, such as embedding the waveguide inside living tissue. PMID:26926272

  5. Effect of metallic ions on silk formation in the Mulberry silkworm, Bombyx mori.

    PubMed

    Zhou, Li; Chen, Xin; Shao, Zhengzhong; Huang, Yufang; Knight, David P

    2005-09-01

    A protein conformation transition from random coil and/or helical conformation to beta-sheet is known to be central to the process used by silk-spinning spiders and insects to convert concentrated protein solutions to tough insoluble threads. Several factors including pH, metallic ions, shear force, and/or elongational flow can initiate this transition in both spiders and silkworms. Here, we report the use of proton induced X-ray emission (PIXE), inductively coupled plasma mass spectroscopy (ICP-MS) and atomic adsorption spectroscopy (AAS) to investigate the concentrations of six metal elements (Na, K, Mg, Ca, Cu, and Zn) at different stages in the silk secretory pathway in the Bombyx mori silkworm. We also report the use of Raman spectra to monitor the effects of these six metallic ions on the conformation transition of natural silk fibroin dope and concentrated regenerated silk fibroin solution at concentrations similar to the natural dope. The results showed that the metal element contents increased from the posterior part to the anterior part of silk gland with the exception of Ca which decreased significantly in the anterior part. We show that these changes in composition can be correlated with (i) the ability of Mg2+, Cu2+, and Zn2+ to induce the conformation transition of silk fibroin to beta-sheet, (ii) the effect of Ca2+ in forming a stable protein network (gel), and (iii) the ability of Na+ and K+ to break down the protein network. PMID:16853155

  6. Review structure of silk by raman spectromicroscopy: from the spinning glands to the fibers.

    PubMed

    Lefèvre, Thierry; Paquet-Mercier, François; Rioux-Dubé, Jean-François; Pézolet, Michel

    2012-06-01

    Raman spectroscopy has long been proved to be a useful tool to study the conformation of protein-based materials such as silk. Thanks to recent developments, linearly polarized Raman spectromicroscopy has appeared very efficient to characterize the molecular structure of native single silk fibers and spinning dopes because it can provide information relative to the protein secondary structure, molecular orientation, and amino acid composition. This review will describe recent advances in the study of the structure of silk by Raman spectromicroscopy. A particular emphasis is put on the spider dragline and silkworm cocoon threads, other fibers spun by orb-weaving spiders, the spinning dope contained in their silk glands and the effect of mechanical deformation. Taken together, the results of the literature show that Raman spectromicroscopy is particularly efficient to investigate all aspects of silk structure and production. The data provided can lead to a better understanding of the structure of the silk dope, transformations occurring during the spinning process, and structure and mechanical properties of native fibers. PMID:21882171

  7. Silk wrapping of nuptial gifts as visual signal for female attraction in a crepuscular spider

    NASA Astrophysics Data System (ADS)

    Trillo, Mariana C.; Melo-González, Valentina; Albo, Maria J.

    2014-02-01

    An extensive diversity of nuptial gifts is known in invertebrates, but prey wrapped in silk is a unique type of gift present in few insects and spiders. Females from spider species prefer males offering a gift accepting more and longer matings than when males offered no gift. Silk wrapping of the gift is not essential to obtain a mating, but appears to increase the chance of a mating evidencing a particularly intriguing function of this trait. Consequently, as other secondary sexual traits, silk wrapping may be an important trait under sexual selection, if it is used by females as a signal providing information on male quality. We aimed to understand whether the white color of wrapped gifts is used as visual signal during courtship in the spider Paratrechalea ornata. We studied if a patch of white paint on the males' chelicerae is attractive to females by exposing females to males: with their chelicerae painted white; without paint; and with the sternum painted white (paint control). Females contacted males with white chelicerae more often and those males obtained higher mating success than other males. Thereafter, we explored whether silk wrapping is a condition-dependent trait and drives female visual attraction. We exposed good and poor condition males, carrying a prey, to the female silk. Males in poor condition added less silk to the prey than males in good condition, indicating that gift wrapping is an indicator of male quality and may be used by females to acquire information of the potential mate.

  8. Microstructure elucidation of historic silk (Bombyx mori) by nuclear magnetic resonance.

    PubMed

    Zhu, Zhanyun; Gong, Decai; Liu, Liu; Wang, Yusong

    2014-04-01

    (1)H NMR cryoporometry and solid-state (13)C cross-polarization (CP) magic-angle spinning (MAS) NMR spectroscopy were used to characterize the microstructure of historic and fresh silk samples. Silk is a polymeric bicomponent material composed of fibroin and water located in micropores. According to the (1)H NMR cryoporometry method, the intensity of the water resonance as a function of the temperature was used to obtain the pore size distribution, which was strongly asymmetric with a well-defined maximum at 1.1 nm. Compared with the fresh silk samples, the volume of pores around 1.1 nm decreased distinctly in the historic silk, and more pores larger than 2 nm emerged accordingly. In addition, these results correlated well with solid-state (13)C CP/MAS NMR spectroscopy as the percentage of random coil in the historic silk sample was much less than that in the fresh silk samples. Therefore, it is suggested that the water-filled microvoids grow larger as the random coil conformation fades away in the degradation process. PMID:24535686

  9. In vitro studies on the structure and properties of silk fibroin aqueous solutions in silkworm.

    PubMed

    Jin, Yuan; Hang, Yichun; Luo, Jie; Zhang, Yaopeng; Shao, Huili; Hu, Xuechao

    2013-11-01

    The spinning process of silkworm in vivo attracts great attentions. In this work, the structures and properties of the silk fibroin (SF) aqueous solutions from different divisions of silk glands of silkworms were investigated by using polarized microscope, rotational rheometer, Raman spectrometer and dynamic laser light scattering instrument. It was found that only the anterior (A) division and the anterior part of middle division (MA) of silk gland showed birefringence. With flowing from the posterior part (MP) to the MA part in the middle division of silk gland, the SF aqueous solutions was gradually transformed from random coil/α-helix to β-sheet conformation. Meantime, the elastic and viscous nature of the SF aqueous solution changed, and the mean diameter of SF aggregates increased from 118 nm to 331 nm. It could be concluded that the structures and properties of the SF aqueous solutions were gradually changed along the silk gland and the liquid crystal structure was initially formed in the MA part of silk gland. PMID:23994738

  10. Fifty Years Later: The Sequence, Structure and Function of Lacewing Cross-beta Silk

    SciTech Connect

    Weisman, Sarah; Okada, Shoko; Mudie, Stephen T.; Huson, Mickey G.; Trueman, Holly E.; Sriskantha, Alagacone; Haritos, Victoria S.; Sutherland, Tara D.

    2009-12-01

    Classic studies of protein structure in the 1950s and 1960s demonstrated that green lacewing egg stalk silk possesses a rare native cross-beta sheet conformation. We have identified and sequenced the silk genes expressed by adult females of a green lacewing species. The two encoded silk proteins are 109 and 67 kDa in size and rich in serine, glycine and alanine. Over 70% of each protein sequence consists of highly repetitive regions with 16-residue periodicity. The repetitive sequences can be fitted to an elegant cross-beta sheet structural model with protein chains folded into regular 8-residue long beta strands. This model is supported by wide-angle X-ray scattering data and tensile testing from both our work and the original papers. We suggest that the silk proteins assemble into stacked beta sheet crystallites bound together by a network of cystine cross-links. This hierarchical structure gives the lacewing silk high lateral stiffness nearly threefold that of silkworm silk, enabling the egg stalks to effectively suspend eggs and protect them from predators.

  11. Sericin removal from raw Bombyx mori silk scaffolds of high hierarchical order.

    PubMed

    Teuschl, Andreas Herbert; van Griensven, Martijn; Redl, Heinz

    2014-05-01

    Silk fibroin has previously been described as a promising candidate for ligament tissue engineering (TE) approaches. For biocompatibility reasons, silkworm silk requires removal of sericin, which can elicit adverse immune responses in the human body. One disadvantage of the required degumming process is the alteration of the silk fiber structural properties, which can hinder textile engineering of high order hierarchical structures. Therefore, the aim of this study was to find a way to remove sericin from a compact and highly ordered raw silk fiber matrix. The wire rope design of the test model scaffold comprises several levels of geometric hierarchy. Commonly used degumming solutions fail in removing sericin in this wire rope design. Weight loss measurements, picric acid and carmine staining as well as scanning electron microscopy demonstrated that the removal of sericin from the model scaffold of a wire rope design can be achieved through a borate buffer-based system. Furthermore, the borate buffer degummed silks were shown to be nontoxic and did not alter cell proliferation behavior. The possibility to remove sericin after the textile engineering process has taken place eases the production of highly ordered scaffold structures and may expand the use of silk as scaffold material in further TE and regenerative medicine applications. PMID:24066942

  12. Comparative Transcriptome Analysis Reveals Different Silk Yields of Two Silkworm Strains

    PubMed Central

    Li, Juan; Qin, Sheng; Yu, Huanjun; Zhang, Jing; Liu, Na; Yu, Ye; Hou, Chengxiang; Li, Muwang

    2016-01-01

    Cocoon and silk yields are the most important characteristics of sericulture. However, few studies have examined the genes that modulate these features. Further studies of these genes will be useful for improving the products of sericulture. JingSong (JS) and Lan10 (L10) are two strains having significantly different cocoon and silk yields. In the current study, RNA-Seq and quantitative polymerase chain reaction (qPCR) were performed on both strains in order to determine divergence of the silk gland, which controls silk biosynthesis in silkworms. Compared with L10, JS had 1375 differentially expressed genes (DEGs; 738 up-regulated genes and 673 down-regulated genes). Nine enriched gene ontology (GO) terms were identified by GO enrichment analysis based on these DEGs. KEGG enrichment analysis results showed that the DEGs were enriched in three pathways, which were mainly associated with the processing and biosynthesis of proteins. The representative genes in the enrichment pathways and ten significant DEGs were further verified by qPCR, the results of which were consistent with the RNA-Seq data. Our study has revealed differences in silk glands between the two silkworm strains and provides a perspective for understanding the molecular mechanisms determining silk yield. PMID:27159277

  13. Preparation of antibacterial silk fibroin membranes via tyrosinase-catalyzed coupling of ε-polylysine.

    PubMed

    Wang, Ping; Deng, Chao; Yuan, Jiugang; Yu, Yuanyuan; Cui, Li; Su, Mengting; Wang, Qiang; Fan, Xuerong

    2016-03-01

    Silk fibroins have good biocompatibility and could be used to form a variety of regenerated functional biomaterials. In this study, enzymatic oxidization of silk fibroins with tyrosinase (TYR) was carried out, followed by coupling of ε-polylysine (ε-PLL) for improving antibacterial ability of the fibroin-based biomaterial. Trinitrobenzene sulfonic acid (TNBS) was selectively used to incubate with silk fibroins prior to TYR treatment, aiming at preventing the self-crosslinking of silk fibroins during enzymatic oxidation. The results indicated that tyrosine residues in silk fibroins could be converted to reactive dioxyphenylalanine and o-quinone residues TYR successively. TNBS pretreatment inhibited the self-crosslinks of silk fibroins and promoted the successive coupling of ε-PLL to fibroin proteins with high graft yield. The combined use of TNBS, TYR, and ε-PLL treatments endowed fibroin membrane with satisfactory antibacterial ability against Staphylococcus aureus, and the obtained durability was also acceptable. The changes in surface potential and amine acid composition for the fibroin membranes verified the favorable actions of the combined treatment. The present method could be potentially utilized for enzymatic functionalization of various fibroin-based biomaterials. PMID:25757371

  14. Effect of Thickness of HA-Coating on Microporous Silk Scaffolds Using Alternate Soaking Technology

    PubMed Central

    Zhu, Rui; Xue, Yingsen; Hao, Zhangying; Xie, Zhenghong; Fan, Xiangli; Fan, Hongbin

    2014-01-01

    Hydroxyapatite (HA) can be coated on various materials surface and has the function of osteogenicity. Microporous silk scaffold has excellent biocompatibility. In this study, alternate soaking technology was used to coat HA on microporous silk scaffolds. However, the cell proliferation was found to decrease with the increasing thickness (cycles of soaking) of HA-coating. This study aims to determine the best thickness (cycles of soaking) of HA-coating on microporous silk scaffolds. The SEM observation showed that group with one cycle of alternate soaking (1C-HA) has the most optimal porosity like non-HA-modified microporous silk scaffolds. The proliferation of osteoblasts has no significant difference between noncoated HA (N-HA) and 1C-HA groups, which are both significantly higher than those in two cycles of soaking (2C-HA) and three cycles of soaking (3C-HA) groups. The transcription levels of specific genes (runx2 and osteonectin) in osteoblasts of 1C-HA group were significantly higher than those of N-HA group. Moreover, the levels showed no significant difference among 1C-HA, 2C-HA, and 3C-HA groups. In conclusion, microporous silk scaffold with 1 cycle of HA-coating can combine the biocompatibility of silk and osteogenicity of HA. PMID:25093176

  15. SilkDB v2.0: a platform for silkworm (Bombyx mori ) genome biology.

    PubMed

    Duan, Jun; Li, Ruiqiang; Cheng, Daojun; Fan, Wei; Zha, Xingfu; Cheng, Tingcai; Wu, Yuqian; Wang, Jun; Mita, Kazuei; Xiang, Zhonghuai; Xia, Qingyou

    2010-01-01

    The SilkDB is an open-access database for genome biology of the silkworm (Bombyx mori). Since the draft sequence was completed and the SilkDB was first released 5 years ago, we have collaborated with other groups to make much remarkable progress on silkworm genome research, such as the completion of a new high-quality assembly of the silkworm genome sequence as well as the construction of a genome-wide microarray to survey gene expression profiles. To accommodate these new genomic data and house more comprehensive genomic information, we have reconstructed SilkDB database with new web interfaces. In the new version (v2.0) of SilkDB, we updated the genomic data, including genome assembly, gene annotation, chromosomal mapping, orthologous relationship and experiment data, such as microarray expression data, Expressed Sequence Tags (ESTs) and corresponding references. Several new tools, including SilkMap, Silkworm Chromosome Browser (SCB) and BmArray, are developed to access silkworm genomic data conveniently. SilkDB is publicly available at the new URL of http://www.silkdb.org. PMID:19793867

  16. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties

    NASA Astrophysics Data System (ADS)

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-03-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on the average 2.8 dB mm-1. The waveguide losses of degummed silk are to a large extent due to scattering from debris on fiber surface and helical twisting of the fiber. Nonlinear optical microscopy reveals both configurational defects such as torsional twisting, and strong symmetry breaking at the center of the fiber, which provides potential for various nonlinear applications. Our results show that nonregenerated B. mori silk can be used for delivering optical power over short distances, when the waveguide needs to be biocompatible and bioresorbable, such as embedding the waveguide inside living tissue.

  17. Comparative Transcriptome Analysis Reveals Different Silk Yields of Two Silkworm Strains.

    PubMed

    Li, Juan; Qin, Sheng; Yu, Huanjun; Zhang, Jing; Liu, Na; Yu, Ye; Hou, Chengxiang; Li, Muwang

    2016-01-01

    Cocoon and silk yields are the most important characteristics of sericulture. However, few studies have examined the genes that modulate these features. Further studies of these genes will be useful for improving the products of sericulture. JingSong (JS) and Lan10 (L10) are two strains having significantly different cocoon and silk yields. In the current study, RNA-Seq and quantitative polymerase chain reaction (qPCR) were performed on both strains in order to determine divergence of the silk gland, which controls silk biosynthesis in silkworms. Compared with L10, JS had 1375 differentially expressed genes (DEGs; 738 up-regulated genes and 673 down-regulated genes). Nine enriched gene ontology (GO) terms were identified by GO enrichment analysis based on these DEGs. KEGG enrichment analysis results showed that the DEGs were enriched in three pathways, which were mainly associated with the processing and biosynthesis of proteins. The representative genes in the enrichment pathways and ten significant DEGs were further verified by qPCR, the results of which were consistent with the RNA-Seq data. Our study has revealed differences in silk glands between the two silkworm strains and provides a perspective for understanding the molecular mechanisms determining silk yield. PMID:27159277

  18. Structure and biodegradation mechanism of milled B.mori silk particles

    PubMed Central

    Rajkhowa, Rangam; Hu, Xiao; Tsuzuki, Takuya; Kaplan, David L; Wang, Xungai

    2013-01-01

    Silk particles with a volume median d(0.5) of about 6 μm were prepared using a chemical free and efficient wet milling-spray drying process. Milling reduced the intermolecular stacking forces within the β-sheet crystallites without changing the intramolecular binding energy of the β-sheets. The rough morphology and the ultrafine size of the particles were responsible for significant surface modulated protease XIV degradation, about a three-fold increase compared to silk fibres. Fracture of brittle and porous enzyme hydrolysed particles produced a 72% fall in d(0.5) within the in-vitro experimental conditions. Of note, upon biodegradation, the thermal degradation temperature of silk increased, which was attributed to the formation of tight aggregates by the hydrolysed residual fibroin macromolecules. A model of the biodegradation mechanism of silk particles was developed based on these data. The model explains the process of disintegration of β-sheets within the microstructure, supported by quantitative secondary structural analysis and microscopic images. This study is useful to engineer silk particles for targeted biomedical applications and also in understating structural remodeling of debris if generated from silk-based implants. PMID:22746375

  19. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering.

    PubMed

    Lee, Min Chae; Kim, Dong-Kyu; Lee, Ok Joo; Kim, Jung-Ho; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Kim, Su Hyeon; Park, Chan Hum

    2016-04-01

    Films prepared from silk fibroin have shown potential as biomaterials in tissue engineering applications for the eye. Here, we present a novel process for fabrication of silk fibroin films for corneal application. In this work, fabrication of silk fibroin films was simply achieved by centrifugal force. In contrast to the conventional dry casting method, we carried out the new process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force was imposed on an aluminum tube containing silk fibroin solution. In the present study, we also compared the surface roughness, mechanical properties, transparency, and cell proliferation between centrifugal and dry casting method. In terms of surface morphology, films fabricated by the centrifugal casting have less surface roughness than those by the dry casting. For elasticity and transparency, silk fibroin films obtained from the centrifugal casting had favorable results compared with those prepared by dry casting. Furthermore, primary human corneal keratocytes grew better in films prepared by the centrifugal casting. Therefore, our results suggest that this new fabrication process for silk fibroin films offers important potential benefits for corneal tissue regeneration. PMID:25939800

  20. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties.

    PubMed

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-01-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on the average 2.8 dB mm(-1). The waveguide losses of degummed silk are to a large extent due to scattering from debris on fiber surface and helical twisting of the fiber. Nonlinear optical microscopy reveals both configurational defects such as torsional twisting, and strong symmetry breaking at the center of the fiber, which provides potential for various nonlinear applications. Our results show that nonregenerated B. mori silk can be used for delivering optical power over short distances, when the waveguide needs to be biocompatible and bioresorbable, such as embedding the waveguide inside living tissue. PMID:26926272