Sample records for major flares coronal

  1. Pre-flare coronal dimmings

    NASA Astrophysics Data System (ADS)

    Zhang, Q. M.; Su, Y. N.; Ji, H. S.

    2017-02-01

    Context. Coronal dimmings are regions of decreased extreme-ultravoilet (EUV) and/or X-ray (originally Skylab, then Yohkoh/SXT) intensities, which are often associated with flares and coronal mass ejections (CMEs). The large-scale impulsive dimmings have been thoroughly observed and investigated. The pre-flare dimmings before the flare impulsive phase, however, have rarely been studied in detail. Aims: We focus on the pre-flare coronal dimmings. We report our multiwavelength observations of the GOES X1.6 solar flare and the accompanying halo CME that was produced by the eruption of a sigmoidal magnetic flux rope (MFR) in NOAA active region (AR) 12158 on 2014 September 10. Methods: The eruption was observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO). The photospheric line-of-sight magnetograms were observed by the Helioseismic and Magnetic Imager (HMI) on board SDO. The soft X-ray (SXR) fluxes were recorded by the GOES spacecraft. The halo CME was observed by the white-light coronagraphs of the Large Angle Spectroscopic Coronagraph (LASCO) on board SOHO. Results: About 96 min before the onset of the flare/CME, narrow pre-flare coronal dimmings appeared at the two ends of the twisted MFR. They extended very slowly, with their intensities decreasing with time, while their apparent widths (8-9 Mm) continued to be nearly constant. During the impulsive and decay phases of flare, typical fan-like twin dimmings appeared and expanded, with a much larger extent and lower intensities than the pre-flare dimmings. The percentage of the 171 Å intensity decrease reaches 40%. The pre-flare dimmings are most striking in 171, 193, and 211 Å with formation temperatures of 0.6-2.5 MK. The northern part of the pre-flare dimmings could also be recognized in 131 and 335 Å. Conclusions: To our knowledge, this is the first detailed study of pre-flare coronal dimmings; they can be explained by density depletion as a result of the gradual

  2. FAST CONTRACTION OF CORONAL LOOPS AT THE FLARE PEAK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Rui; Wang Haimin

    On 2005 September 8, a coronal loop overlying the active region NOAA 10808 was observed in TRACE 171 A to contract at {approx}100 km s{sup -1} at the peak of an X5.4-2B flare at 21:05 UT. Prior to the fast contraction, the loop underwent a much slower contraction at {approx}6 km s{sup -1} for about 8 minutes, initiating during the flare preheating phase. The sudden switch to fast contraction is presumably corresponding to the onset of the impulsive phase. The contraction resulted in the oscillation of a group of loops located below, with the period of about 10 minutes. Meanwhile,more » the contracting loop exhibited a similar oscillatory pattern superimposed on the dominant downward motion. We suggest that the fast contraction reflects a suddenly reduced magnetic pressure underneath due either to (1) the eruption of magnetic structures located at lower altitudes or to (2) the rapid conversion of magnetic free energy in the flare core region. Electrons accelerated in the shrinking trap formed by the contracting loop can theoretically contribute to a late-phase hard X-ray burst, which is associated with Type IV radio emission. To complement the X5.4 flare which was probably confined, a similar event observed in SOHO/EIT 195 A on 2004 July 20 in an eruptive, M8.6 flare is briefly described, in which the contraction was followed by the expansion of the same loop leading up to a halo coronal mass ejection. These observations further substantiate the conjecture of coronal implosion and suggest coronal implosion as a new exciter mechanism for coronal loop oscillations.« less

  3. Major Solar Flare

    NASA Image and Video Library

    2017-09-11

    A large sunspot was the source of a powerful solar flare (an X 9.3) and a coronal mass ejection (Sept. 6, 2017). The flare was the largest solar flare of the last decade. For one thing, it created a strong shortwave radio blackout over Europe, Africa and the Atlantic Ocean. Sunspot 2673 has been also the source of several other smaller to medium-sized solar flares over the past few days. Data from the SOHO spacecraft shows the large cloud of particles blasting into space just after the flare. Note: the bright vertical line and the other rays with barred lines are aberrations in our instruments caused by the bright flash of the flare. https://photojournal.jpl.nasa.gov/catalog/PIA21949

  4. Simulations of Flare Reconnection in Breakout Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    DeVore, C. Richard; Karpen, J. T.; Antiochos, S. K.

    2009-05-01

    We report 3D MHD simulations of the flare reconnection in the corona below breakout coronal mass ejections (CMEs). The initial setup is a single bipolar active region imbedded in the global-scale background dipolar field of the Sun, forming a quadrupolar magnetic configuration with a coronal null point. Rotational motions applied to the active-region polarities at the base of the atmosphere introduce shear across the polarity inversion line (PIL). Eventually, the magnetic stress and energy reach the critical threshold for runaway breakout reconnection, at which point the sheared core field erupts outward at high speed. The vertical current sheet formed by the stretching of the departing sheared field suffers reconnection that reforms the initial low-lying arcade across the PIL, i.e., creates the flare loops. Our simulation model, the Adaptively Refined MHD Solver, exploits local grid refinement to resolve the detailed structure and evolution of the highly dynamic current sheet. We are analyzing the numerical experiments to identify and interpret observable signatures of the flare reconnection associated with CMEs, e.g., the flare loops and ribbons, coronal jets and shock waves, and possible origins of solar energetic particles. This research was supported by NASA and ONR.

  5. Solar Eruptions: Coronal Mass Ejections and Flares

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    This lecture introduces the topic of Coronal mass ejections (CMEs) and solar flares, collectively known as solar eruptions. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. Flares can be eruptive or confined. Eruptive flares accompany CMEs, while confined flares hav only electromagnetic signature. CMEs can drive MHD shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. CMEs heading in the direction of Earth arrive in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currnts that can disrupt power grids, railroads, and underground pipelines

  6. Coronal propagation of flare associated electrons and protons

    NASA Technical Reports Server (NTRS)

    Schellert, G.; Wibberenz, G.; Kunow, H.

    1985-01-01

    A statistical study of characteristic times and intensities of 36 solar particle events observed between 1977 and 1979 by the Kiel Cosmic Ray Experiment on board HELIOS-1 and -2 has been carried out. For approx. 0.5 MeV electrons we order the times of maximum and the absolute intensities with respect to angular distance from the parent flare. Discussion of coronal parameters in terms of Reid's model leads to typical time constants for coronal diffusion and escape.

  7. HOW DID A MAJOR CONFINED FLARE OCCUR IN SUPER SOLAR ACTIVE REGION 12192?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Chaowei; Feng, Xueshang; Wu, S. T.

    We study the physical mechanism of a major X-class solar flare that occurred in the super NOAA active region (AR) 12192 using data-driven numerical magnetohydrodynamic (MHD) modeling complemented with observations. With the evolving magnetic fields observed at the solar surface as bottom boundary input, we drive an MHD system to evolve self-consistently in correspondence with the realistic coronal evolution. During a two-day time interval, the modeled coronal field has been slowly stressed by the photospheric field evolution, which gradually created a large-scale coronal current sheet, i.e., a narrow layer with intense current, in the core of the AR. The currentmore » layer was successively enhanced until it became so thin that a tether-cutting reconnection between the sheared magnetic arcades was set in, which led to a flare. The modeled reconnecting field lines and their footpoints match well the observed hot flaring loops and the flare ribbons, respectively, suggesting that the model has successfully “reproduced” the macroscopic magnetic process of the flare. In particular, with simulation, we explained why this event is a confined eruption—the consequence of the reconnection is a shared arcade instead of a newly formed flux rope. We also found a much weaker magnetic implosion effect compared to many other X-class flares.« less

  8. Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng

    2014-08-20

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases stronglymore » suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.« less

  9. TEMPORAL AND SPATIAL RELATIONSHIP OF FLARE SIGNATURES AND THE FORCE-FREE CORONAL MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thalmann, J. K.; Veronig, A.; Su, Y., E-mail: julia.thalmann@uni-graz.at

    We investigate the plasma and magnetic environment of active region NOAA 11261 on 2011 August 2 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at the (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths in order to pin down the intersection of previously reconnected flaring loops in the lower solar atmosphere. These locations are used to calculate field lines from three-dimensional (3D) nonlinear force-free magnetic field models, established on the basis of SDO HMI photosphericmore » vector magnetic field maps. Using this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet’s lower tip during an on-disk observed flare as a few kilometers per second. A comparison to post-flare loops observed later above the limb in STEREO EUVI images supports this velocity estimate. Furthermore, we provide evidence for an implosion of parts of the flaring coronal model magnetic field, and identify the corresponding coronal sub-volumes associated with the loss of magnetic energy. Finally, we spatially relate the build up of magnetic energy in the 3D models to highly sheared fields, established due to the dynamic relative motions of polarity patches within the active region.« less

  10. Numerical simulations of flares on M dwarf stars. I - Hydrodynamics and coronal X-ray emission

    NASA Technical Reports Server (NTRS)

    Cheng, Chung-Chieh; Pallavicini, Roberto

    1991-01-01

    Flare-loop models are utilized to simulate the time evolution and physical characteristics of stellar X-ray flares by varying the values of flare-energy input and loop parameters. The hydrodynamic evolution is studied in terms of changes in the parameters of the mass, energy, and momentum equations within an area bounded by the chromosphere and the corona. The zone supports a magnetically confined loop for which processes are described including the expansion of heated coronal gas, chromospheric evaporation, and plasma compression at loop footpoints. The intensities, time profiles, and average coronal temperatures of X-ray flares are derived from the simulations and compared to observational evidence. Because the amount of evaporated material does not vary linearly with flare-energy input, large loops are required to produce the energy measured from stellar flares.

  11. Spectroscopic Observations of a Solar Flare and the Associated Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Murray, S.; Tian, H.; McKillop, S.

    2013-12-01

    We used data from the EUV Imaging Spectrometer (EIS) on board Hinode to examine a coronal mass ejection and a preceding flare observed on 21 November 2012 between 15:00 and 17:00 UT. Images from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory were used to align the data from EIS with specific events occurring. We analyzed spectra of a few emission lines at three locations on the flare site and one location in the erupting prominence. On the flare site, we found line profiles showing typical characteristics of chromospheric evaporation: downflows at cooler lines and upflows at hotter lines. At one particular location on the flare site, we clearly identified dominant downflows on the order of 100 km/s in lines through Fe VIII to Fe XVI. To the best of our knowledge, this is the first time that such strong high-speed downflows have been spectroscopically observed in the impulsive phase of solar flares. The profile of the Fe VIII 184.54 line reveals two peaks and we were able to use the double Gaussian fit to separate the rapid downflows of dense material from the nearly stationary coronal background emission. For the erupting prominence, we were able to analyze multiple lines, cooler and warmer, of interest using this double Gaussian fit to separate the background emission from the emission of the ejected material. Our results show that the LOS velocities of the ejected material are about 100 km/s in the lower corona. Additionally, in each region of interest, we used the ratio of the density-sensitive line pair FeXII 195/186 to determine the electron density. Our results clearly show that the coronal densities were greatly enhanced during the flare. The density of the ejected material is also much larger than the typical coronal density. This research was supported by the NSF grant for the Solar Physics REU Program at the Smithsonian Astrophysical Observatory (AGS-1263241).

  12. Formation of Magnetic Flux Ropes during a Confined Flaring Well before the Onset of a Pair of Major Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Chintzoglou, Georgios; Patsourakos, Spiros; Vourlidas, Angelos

    2015-08-01

    NOAA active region (AR) 11429 was the source of twin super-fast coronal mass ejections (CMEs). The CMEs took place within an hour from each other, with the onset of the first taking place in the beginning of 2012 March 7. This AR fulfills all the requirements for a “super active region” namely, Hale's law incompatibility and a δ-spot magnetic configuration. One of the biggest storms of Solar Cycle 24 to date ({D}{st}=-143 nT) was associated with one of these events. Magnetic flux ropes (MFRs) are twisted magnetic structures in the corona, best seen in ˜10 MK hot plasma emission and are often considered the core of erupting structures. However, their “dormant” existence in the solar atmosphere (i.e., prior to eruptions), is an open question. Aided by multi-wavelength observations by the Solar Dynamics Observatory (SDO) and by the Solar Terrestrial Relations Observatory (STEREO) and a nonlinear force-free model for the coronal magnetic field, our work uncovers two separate, weakly twisted magnetic flux systems which suggest the existence of pre-eruption MFRs that eventually became the seeds of the two CMEs. The MFRs could have been formed during confined (i.e., not leading to major CMEs) flaring and sub-flaring events which took place the day before the two CMEs in the host AR 11429.

  13. Coronal Structure of a Flaring Region and Associated Coronal Mass Ejection

    NASA Technical Reports Server (NTRS)

    Kundu, Mukul R.; Manoharan, P. K.

    2003-01-01

    We report the multiwavelength investigations of an eruptive flare event that occurred on 2001 April 2 at about 11 UT. The manifestations associated with this flare event have been studied from the near-Sun region to about 0.5 AU. The H-alpha images from the Meudon Spectroheliograph reveal a fast spectacular eruption of plasmoids from the flare site to the west and a Moreton wave disturbance propagating toward the south, A bright, fast, wide coronal mass ejection (CME) associated with this eruptive event was imaged by SOHO/LASCO and the remote-sensing interplanetary scintillation technique. The timings and positions of the Type II radio bursts, H-alpha eruption, and CME onset as well as the magnetic field configuration suggest a release of energy at the null point. The results seem to support the "breakout" scenario proposed by Antiochos and coworkers, and they are also suggestive that the energy release is followed by magnetic reconnection between the low-lying loops near the separatrix and the loop system above them.

  14. Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares

    NASA Astrophysics Data System (ADS)

    Thiemann, E. M. B.; Chamberlin, P. C.; Eparvier, F. G.; Epp, L.

    2018-02-01

    It is generally accepted that densities of quiet-Sun and active region plasma are sufficiently low to justify the optically thin approximation, and this is commonly used in the analysis of line emissions from plasma in the solar corona. However, the densities of solar flare loops are substantially higher, compromising the optically thin approximation. This study begins with a radiative transfer model that uses typical solar flare densities and geometries to show that hot coronal emission lines are not generally optically thin. Furthermore, the model demonstrates that the observed line intensity should exhibit center-to-limb variability (CTLV), with flares observed near the limb being dimmer than those occurring near disk center. The model predictions are validated with an analysis of over 200 flares observed by the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO), which uses six lines, with peak formation temperatures between 8.9 and 15.8 MK, to show that limb flares are systematically dimmer than disk-center flares. The data are then used to show that the electron column density along the line of sight typically increases by 1.76 × 10^{19} cm^{-2} for limb flares over the disk-center flare value. It is shown that the CTLV of hot coronal emissions reduces the amount of ionizing radiation propagating into the solar system, and it changes the relative intensities of lines and bands commonly used for spectral analysis.

  15. “Dandelion” Filament Eruption and Coronal Waves Associated with a Solar Flare on 2011 February 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabezas, Denis P.; Ishitsuka, Mutsumi; Ishitsuka, José K.

    Coronal disturbances associated with solar flares, such as H α Moreton waves, X-ray waves, and extreme ultraviolet (EUV) coronal waves, are discussed herein in relation to magnetohydrodynamic fast-mode waves or shocks in the corona. To understand the mechanism of coronal disturbances, full-disk solar observations with high spatial and temporal resolution over multiple wavelengths are of crucial importance. We observed a filament eruption, whose shape is like a “dandelion,” associated with the M1.6 flare that occurred on 2011 February 16 in H α images taken by the Flare Monitoring Telescope at Ica University, Peru. We derive the three-dimensional velocity field ofmore » the erupting filament. We also identify winking filaments that are located far from the flare site in the H α images, whereas no Moreton wave is observed. By comparing the temporal evolution of the winking filaments with those of the coronal wave seen in the EUV images data taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and by the Extreme Ultraviolet Imager on board the Solar Terrestrial Relations Observatory-Ahead , we confirm that the winking filaments were activated by the EUV coronal wave.« less

  16. The Driving Magnetic Field and Reconnection in CME/Flare Eruptions and Coronal Jets

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.

    2010-01-01

    Signatures of reconnection in major CME (coronal mass ejection)/flare eruptions and in coronal X-ray jets are illustrated and interpreted. The signatures are magnetic field lines and their feet that brighten in flare emission. CME/flare eruptions are magnetic explosions in which: 1. The field that erupts is initially a closed arcade. 2. At eruption onset, most of the free magnetic energy to be released is not stored in field bracketing a current sheet, but in sheared field in the core of the arcade. 3. The sheared core field erupts by a process that from its start or soon after involves fast "tether-cutting" reconnection at an initially small current sheet low in the sheared core field. If the arcade has oppositely-directed field over it, the eruption process from its start or soon after also involves fast "breakout" reconnection at an initially small current sheet between the arcade and the overarching field. These aspects are shown by the small area of the bright field lines and foot-point flare ribbons in the onset of the eruption. 4. At either small current sheet, the fast reconnection progressively unleashes the erupting core field to erupt with progressively greater force. In turn, the erupting core field drives the current sheet to become progressively larger and to undergo progressively greater fast reconnection in the explosive phase of the eruption, and the flare arcade and ribbons grow to become comparable to the pre-eruption arcade in lateral extent. In coronal X-ray jets: 1. The magnetic energy released in the jet is built up by the emergence of a magnetic arcade into surrounding unipolar "open" field. 2. A simple jet is produced when a burst of reconnection occurs at the current sheet between the arcade and the open field. This produces a bright reconnection jet and a bright reconnection arcade that are both much smaller in diameter that the driving arcade. 3. A more complex jet is produced when the arcade has a sheared core field and undergoes an

  17. Small Flare and a Coronal Mass Ejection

    NASA Image and Video Library

    2018-01-31

    The sun shot out a small coronal mass ejection that was also associated with a small flare (Jan. 22, 2018). The video, which covers about 5 hours, shows the burst of plasma as the magnetic loops break apart. Immediately the magnetic fields brighten intensely and begin to reorganize themselves in coils above the active region. The images were taken in a wavelength of extreme ultraviolet light. Videos are available at https://photojournal.jpl.nasa.gov/catalog/PIA22184

  18. Evidence that magnetic energy shedding in solar filament eruptions is the drive in accompanying flares and coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.

    1988-01-01

    The dependence of the magnetic energy on the field expansion and untwisting of the flux tube in which an erupting solar filament is embedded has been determined in order to evaluate the energy decrease in the erupting flux tube. Magnetic energy shedding by the filament-field eruption is found to be the driving mechanism in both filament-eruption flares and coronal mass ejections. Confined filament-eruption flares, filament-eruption flares with sprays and coronal mass ejections, and coronal mass ejections from quiescent filament eruptions are all shown to be similar types of events.

  19. Unambiguous Evidence of Coronal Implosions during Solar Eruptions and Flares

    NASA Astrophysics Data System (ADS)

    Wang, Juntao; Simões, P. J. A.; Fletcher, L.

    2018-05-01

    In the implosion conjecture, coronal loops contract as the result of magnetic energy release in solar eruptions and flares. However, after almost two decades, observations of this phenomenon are still rare and most previous reports are plagued by projection effects so that loop contraction could be either true implosion or just a change in loop inclination. In this paper, to demonstrate the reality of loop contractions in the global coronal dynamics, we present four events with the continuously contracting loops in an almost edge-on geometry from the perspective of SDO/AIA, which are free from the ambiguity caused by the projection effects, also supplemented by contemporary observations from STEREO for examination. In the wider context of observations, simulations and theories, we argue that the implosion conjecture is valid in interpreting these events. Furthermore, distinct properties of the events allow us to identify two physical categories of implosion. One type demonstrates a rapid contraction at the beginning of the flare impulsive phase, as magnetic free energy is removed rapidly by a filament eruption. The other type, which has no visible eruption, shows a continuous loop shrinkage during the entire flare impulsive phase, which we suggest shows the ongoing conversion of magnetic free energy in a coronal volume. Corresponding scenarios are described that can provide reasonable explanations for the observations. We also point out that implosions may be suppressed in cases when a heavily mass-loaded filament is involved, possibly serving as an alternative account for their observational rarity.

  20. Global Energetics in Solar Flares and Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2017-08-01

    We present a statistical study of the energetics of coronal mass ejections (CME) and compare it with the magnetic, thermal, and nonthermal energy dissipated in flares. The physical parameters of CME speeds, mass, and kinetic energies are determined with two different independent methods, i.e., the traditional white-light scattering method using LASCO/SOHO data, and the EUV dimming method using AIA/SDO data. We analyze all 860 GOES M- and X-class flare events observed during the first 7 years (2010-2016) of the SDO mission. The new ingredients of our CME modeling includes: (1) CME geometry in terms of a self-similar adiabatic expansion, (2) DEM analysis of CME mass over entire coronal temperature range, (3) deceleration of CME due to gravity force which controls the kinetic and potentail CME energy as a function of time, (4) the critical speed that controls eruptive and confined CMEs, (5) the relationship between the center-of-mass motion during EUV dimming and the leading edge motion observed in white-light coronagraphs. Novel results are: (1) Physical parameters obtained from both the EUV dimming and white-light method can be reconciled; (2) the equi-partition of CME kinetic and thermal flare energy; (3) the Rosner-Tucker-Vaiana scaling law. We find that the two methods in EUV and white-light wavelengths are highly complementary and yield more complete models than each method alone.

  1. IMPULSIVE PHASE CORONAL HARD X-RAY SOURCES IN AN X3.9 CLASS SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Qingrong; Petrosian, Vahe, E-mail: qrchen@gmail.com, E-mail: vahep@stanford.edu

    2012-03-20

    We present the analysis of a pair of unusually energetic coronal hard X-ray (HXR) sources detected by the Reuven Ramaty High Energy Solar Spectroscopic Imager during the impulsive phase of an X3.9 class solar flare on 2003 November 3, which simultaneously shows two intense footpoint (FP) sources. A distinct loop top (LT) coronal source is detected up to {approx}150 keV and a second (upper) coronal source up to {approx}80 keV. These photon energies, which were not fully investigated in earlier analysis of this flare, are much higher than commonly observed in coronal sources and pose grave modeling challenges. The LTmore » source in general appears higher in altitude with increasing energy and exhibits a more limited motion compared to the expansion of the thermal loop. The high-energy LT source shows an impulsive time profile and its nonthermal power-law spectrum exhibits soft-hard-soft evolution during the impulsive phase, similar to the FP sources. The upper coronal source exhibits an opposite spatial gradient and a similar spectral slope compared to the LT source. These properties are consistent with the model of stochastic acceleration of electrons by plasma waves or turbulence. However, the LT and FP spectral index difference (varying from {approx}0 to 1) is much smaller than commonly measured and than that expected from a simple stochastic acceleration model. Additional confinement or trapping mechanisms of high-energy electrons in the corona are required. Comprehensive modeling including both kinetic effects and the macroscopic flare structure may shed light on this behavior. These results highlight the importance of imaging spectroscopic observations of the LT and FP sources up to high energies in understanding electron acceleration in solar flares. Finally, we show that the electrons producing the upper coronal HXR source may very likely be responsible for the type III radio bursts at the decimetric/metric wavelength observed during the impulsive phase of

  2. Closed coronal structures. V - Gasdynamic models of flaring loops and comparison with SMM observations

    NASA Technical Reports Server (NTRS)

    Peres, G.; Serio, S.; Vaiana, G.; Acton, L.; Leibacher, J.; Rosner, R.; Pallavicini, R.

    1983-01-01

    A time-dependent one-dimensional code incorporating energy, momentum and mass conservation equations, and taking the entire solar atmospheric structure into account, is used to investigate the hydrodynamic response of confined magnetic structures to strong heating perturbations. Model calculation results are compared with flare observations which include the light curves of spectral lines formed over a wide range of coronal flare temperatures, as well as determinations of Doppler shifts for the high temperature plasma. It is shown that the numerical simulation predictions are in good overall agreement with the observed flare coronal plasma evolution, correctly reproducing the temporal profile of X-ray spectral lines and their relative intensities. The predicted upflow velocities support the interpretation of the blueshifts as due to evaporation of chromospheric material.

  3. The size of coronal hard X-ray sources in solar flares: How big are they?

    NASA Astrophysics Data System (ADS)

    Effenberger, F.; Krucker, S.; Rubio da Costa, F.

    2017-12-01

    Coronal hard X-ray sources are considered to be one of the key signatures of non-thermal particle acceleration and heating during the energy release in solar flares. In some cases, X-ray observations reveal multiple components spatially located near and above the loop top and even further up in the corona. Here, we combine a detailed RHESSI imaging analysis of near-limb solar flares with occulted footpoints and a multi-wavelength study of the flare loop evolution in SDO/AIA. We connect our findings to different current sheet formation and magnetic break-out scenarios and relate it to particle acceleration theory. We find that the upper and usually fainter emission regions can be underestimated in their size due to the majority of flux originating from the lower loops.

  4. Faint Coronal Hard X-rays From Accelerated Electrons in Solar Flares

    NASA Astrophysics Data System (ADS)

    Glesener, Lindsay Erin

    Solar flares are huge explosions on the Sun that release a tremendous amount of energy from the coronal magnetic field, up to 1033 ergs, in a short time (100--1000 seconds), with much of the energy going into accelerated electrons and ions. An efficient acceleration mechanism is needed, but the details of this mechanism remain relatively unknown. A fraction of this explosive energy reaches the Earth in the form of energetic particles, producing geomagnetic storms and posing dangers to spaceborne instruments, astronauts, and Earthbound power grids. There are thus practical reasons, as well as intellectual ones, for wishing to understand this extraordinary form of energy release. Through imaging spectroscopy of the hard X-ray (HXR) emission from solar flares, the behavior of flare-accelerated electrons can be studied. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI ) spacecraft launched in 2002 with the goal of better understanding flare particle acceleration. Using rotation modulation collimators, RHESSI is able to cover a wide energy range (3 keV--17 MeV) with fine angular and energy resolutions. RHESSI's success in the last 10 years in investigating the relationship between energetic electrons and ions, the nature of faint sources in the corona, the energy distribution of flares, and several other topics have significantly advanced the understanding of flares. But along with the wealth of information revealed by RHESSI come some clear observational challenges. Very few, if any, RHESSI observations have come close to imaging the electron acceleration region itself. This is undoubtedly due to a lack of both sensitivity (HXRs from electron beams in the tenuous corona are faint) and dynamic range (HXR sources at chromospheric flare footpoints are much brighter and tend to obscure faint coronal sources). Greater sensitivity is also required to investigate the role that small flares in the quiet Sun could play in heating the corona. The Focusing Optics

  5. Post-flare coronal arches observed with the SMM/XRP flat crystal spectrometer

    NASA Technical Reports Server (NTRS)

    Hick, Paul; Svestka, Zdenek; Smith, Kermit L.; Strong, Keith T.

    1987-01-01

    Postflare coronal arch observations made with the SMM Flat Crystal Spectrometer on January 20-23, 1985 are discussed. Results suggest that the arch revival following the dynamic flare of 23:50 UT on January 1 was of the type noted on November 6-8 and June 4, 1980 by the SMM Hard X-ray Imaging Spectrometer (HXIS). Activity different from that of the HXIS observations was found starting at about 23 UT on January 22, with no trigger of the revival being identified, and with the activity being restricted to the coronal regions (without any related disturbance in the chromosphere). The development of the arch enhancement in the corona was shown to be slower than is expected for a flare-associated revival.

  6. Post-flare coronal arches observed with the SMM/XRP flat crystal spectrometer

    NASA Astrophysics Data System (ADS)

    Hick, Paul; Svestka, Zdenek; Smith, Kermit L.; Strong, Keith T.

    1987-09-01

    Postflare coronal arch observations made with the SMM Flat Crystal Spectrometer on January 20-23, 1985 are discussed. Results suggest that the arch revival following the dynamic flare of 23:50 UT on January 1 was of the type noted on November 6-8 and June 4, 1980 by the SMM Hard X-ray Imaging Spectrometer (HXIS). Activity different from that of the HXIS observations was found starting at about 23 UT on January 22, with no trigger of the revival being identified, and with the activity being restricted to the coronal regions (without any related disturbance in the chromosphere). The development of the arch enhancement in the corona was shown to be slower than is expected for a flare-associated revival.

  7. X-ray observations of limb flare loops and post-flare coronal arch

    NASA Technical Reports Server (NTRS)

    Svestka, Zdenek; Smith, Kermit L.; Strong, Keith T.

    1992-01-01

    Postflare arc observations have been obtained following a May 2, 1985 eruptive flare that was detected in X-ray lines above the western solar limb, constituting a rare opportunity for the isolation of pure spectra of the arch without the disturbing effect of X-ray emission from lower and more intense coronal regions. It remains difficult to decide which portion of the observed shift is due to real motion and which is due to cooling, which is faster at lower altitudes.

  8. Effect of coronal flaring on apical extrusion of debris during root canal instrumentation using single-file systems.

    PubMed

    Topçuoğlu, H S; Üstün, Y; Akpek, F; Aktı, A; Topçuoğlu, G

    2016-09-01

    To evaluate the effect of coronal flaring on the amount of debris extruded apically during root canal preparation using the Reciproc, WaveOne (WO) and OneShape (OS) single-file systems. Ninety extracted single-rooted mandibular incisor teeth were randomly assigned to six groups (n = 15 for each group) for canal instrumentation. Endodontic access cavities were prepared in each tooth. In three of the six groups, coronal flaring was not performed; coronal flaring was performed with Gates-Glidden drills on all teeth in the remaining three groups. The canals were then instrumented with one or other of the following single-file instrument systems: Reciproc, WO and OS. Debris extruded apically during instrumentation was collected into pre-weighed Eppendorf tubes. The tubes were then stored in an incubator at 70 °C for 5 days. The weight of the dry extruded debris was established by subtracting the pre-instrumentation and post-instrumentation weight of the Eppendorf tubes for each group. Data were analysed using one-way analysis of variance (anova) and Tukey's post hoc tests (P = 0.05). Reciproc and WO files without coronal flaring produced significantly more debris compared with the other groups (P < 0.05). There was no significant difference in apical extrusion of debris amongst the other groups (P > 0.05). All single-file systems caused apical extrusion of debris. Performing coronal flaring prior to canal preparation reduced the amount of apically extruded debris when using Reciproc or WO systems. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  9. Vortex and Sink Flows in Eruptive Flares as a Model for Coronal Implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuccarello, F. P.; Aulanier, G.; Démoulin, P.

    Eruptive flares are sudden releases of magnetic energy that involve many phenomena, several of which can be explained by the standard 2D flare model and its realizations in 3D. We analyze a 3D magnetohydrodynamics simulation, in the framework of this model, that naturally explains the contraction of coronal loops in the proximity of the flare sites, as well as the inflow toward the region above the cusp-shaped loops. We find that two vorticity arcs located along the flanks of the erupting magnetic flux rope are generated as soon as the eruption begins. The magnetic arcades above the flux rope legsmore » are then subjected to expansion, rotation, or contraction depending on which part of the vortex flow advects them. In addition to the vortices, an inward-directed magnetic pressure gradient exists in the current sheet below the magnetic flux rope. It results in the formation of a sink that is maintained by reconnection. We conclude that coronal loop apparent implosions observed during eruptive flares are the result of hydromagnetic effects related to the generation of vortex and sink flows when a flux rope moves in a magnetized environment.« less

  10. Frequencies of Flare Occurrence: Interaction between Convection and Coronal Loops

    NASA Astrophysics Data System (ADS)

    Mullan, D. J.; Paudel, R. R.

    2018-02-01

    Observations of solar and stellar flares have revealed the presence of power-law dependences between the flare energy and the time interval between flares. Various models have been proposed to explain these dependences and the numerical value of the power-law indices. Here, we propose a model in which convective flows in granules force the footpoints of coronal magnetic loops, which are frozen-in to photospheric gas, to undergo a random walk. In certain conditions, this can lead to a twist in the loop, which drives the loop unstable if the twist exceeds a critical value. The possibility that a solar flare is caused by such a twist-induced instability in a loop has been in the literature for decades. Here, we quantify the process in an approximate way with a view to replicating the power-law index. We find that, for relatively small flares, the random walk twisting model leads to a rather steep power-law slope that agrees very well with the index derived from a sample of 56,000+ solar X-ray flares reported by the GOES satellites. For relatively large flares, we find that the slope of the power law is shallower. The empirical power-law slopes reported for flare stars also have a range that overlaps with the slopes obtained here. We suggest that in the coolest stars, a significant change in slope should occur when the frozen-flux assumption breaks down due to low electrical conductivity.

  11. FLARE ENERGY BUILD-UP IN A DECAYING ACTIVE REGION NEAR A CORONAL HOLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su Yingna; Van Ballegooijen, Adriaan; Golub, Leon

    2009-10-10

    A B1.7 two-ribbon flare occurred in a highly non-potential decaying active region near a coronal hole at 10:00 UT on 2008 May 17. This flare is 'large' in the sense that it involves the entire region, and it is associated with both a filament eruption and a coronal mass ejection. We present multi-wavelength observations from EUV (TRACE, STEREO/EUVI), X-rays (Hinode/XRT), and Halpha (THEMIS, BBSO) prior to, during and after the flare. Prior to the flare, the region contained two filaments. The long J-shaped sheared loops corresponding to the southern filament were evolved from two short loop systems, which happened aroundmore » 22:00 UT after a filament eruption on May 16. Formation of highly sheared loops in the southeastern part of the region was observed by STEREO 8 hr before the flare. We also perform nonlinear force-free field (NLFFF) modeling for the region at two times prior to the flare, using the flux rope insertion method. The models include the non-force-free effect of magnetic buoyancy in the photosphere. The best-fit NLFFF models show good fit to observations both in the corona (X-ray and EUV loops) and chromosphere (Halpha filament). We find that the horizontal fields in the photosphere are relatively insensitive to the present of flux ropes in the corona. The axial flux of the flux rope in the NLFFF model on May 17 is twice that on May 16, and the model on May 17 is only marginally stable. We also find that the quasi-circular flare ribbons are associated with the separatrix between open and closed fields. This observation and NLFFF modeling suggest that this flare may be triggered by the reconnection at the null point on the separatrix surface.« less

  12. Flare Prediction Using Photospheric and Coronal Image Data

    NASA Astrophysics Data System (ADS)

    Jonas, E.; Shankar, V.; Bobra, M.; Recht, B.

    2016-12-01

    We attempt to forecast M-and X-class solar flares using a machine-learning algorithm and five years of image data from both the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) instruments aboard the Solar Dynamics Observatory. HMI is the first instrument to continuously map the full-disk photospheric vector magnetic field from space (Schou et al., 2012). The AIA instrument maps the transition region and corona using various ultraviolet wavelengths (Lemen et al., 2012). HMI and AIA data are taken nearly simultaneously, providing an opportunity to study the entire solar atmosphere at a rapid cadence. Most flare forecasting efforts described in the literature use some parameterization of solar data - typically of the photospheric magnetic field within active regions. These numbers are considered to capture the information in any given image relevant to predicting solar flares. In our approach, we use HMI and AIA images of solar active regions and a deep convolutional kernel network to predict solar flares. This is effectively a series of shallow-but-wide random convolutional neural networks stacked and then trained with a large-scale block-weighted least squares solver. This algorithm automatically determines which patterns in the image data are most correlated with flaring activity and then uses these patterns to predict solar flares. Using the recently-developed KeystoneML machine learning framework, we construct a pipeline to process millions of images in a few hours on commodity cloud computing infrastructure. This is the first time vector magnetic field images have been combined with coronal imagery to forecast solar flares. This is also the first time such a large dataset of solar images, some 8.5 terabytes of images that together capture over 3000 active regions, has been used to forecast solar flares. We evaluate our method using various flare prediction windows defined in the literature (e.g. Ahmed et al., 2013) and a novel per

  13. Over-and-Out Coronal Mass Ejections: Blowouts of Magnetic Arches by Ejective Flares in One Foot

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.

    2006-01-01

    Streamer puffs from compact ejective flares in the foot of an outer loop of the magnetic arcade under a streamer were recently identified as a new variety of coronal mass ejection (CME) (Bemporad, Sterling, Moore, & Poletto 2006, ApJ Letters, in press). In the reported examples, the compact flares produced only weak to moderate soft X-ray bursts having peak intensities no stronger than GOES class C3. Here, we present two examples of this type of CME in which the compact flare in the flank of the steamer base is much stronger (one M-class, the other X-class in GOES X-rays) and the resulting streamer puff is wider and brighter than in the discovery examples. Coronal dimming observed in SOHOBIT Fe XII images in the launching of each of these two CMEs M e r supports the view that these CMEs are produced by a high loop of the steamer arcade being blown out by magnetoplasma ejecta exploding up the leg of the loop from the flare. In addition, we present evidence that this same type of CME occurs on larger scales than in the above examples. We examine a sequence of flare eruptions seated on the north side of AR 8210 as it rotated across the southern hemisphere in late April and early May 1998. Each flare occurs in synchrony with the launching of a large CME centered on the equator. Coronal dimming in EIT Fe XII images shows the trans-equatorial footprints of these CMEs extending north from the flare site. The set of flare-with-CME events includes the trans-equatorial loop eruptions reported by Khan & Hudson (1998, GRL, 27, 1083). Our observations indicate that these CMEs were not driven by the self-eruption of the transequatorial loops, but that these loops were part of a trans-equatorial magnetic arch that was blown open by ejecta from the flares on the north side of AR 8210. Thus, a relatively compact ejective flare can be the driver of a CME that is much larger in lateral extent than the flare and is laterally far offset from the flare. It has previously been thought

  14. Simultaneous Extreme-Ultraviolet Explorer and Optical Observations of Ad Leonis: Evidence for Large Coronal Loops and the Neupert Effect in Stellar Flares

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.; Simon, Theodore; Cully, Scott L.; Deustua, Susana E.; Jablonski, Marek; Johns-Krull, Christopher; Pettersen, Bjorn R.; Smith, Verne; Spiesman, William J.; hide

    1995-01-01

    We report on the first simultaneous Extreme-Ultraviolet Explorer (EUVE) and optical observations of flares on the dMe flare star AD Leonis. The data show the following features: (1) Two flares (one large and one of moderate size) of several hours duration were observed in the EUV wavelength range; (2) Flare emission observed in the optical precedes the emission seen with EUVE; and (3) Several diminutions (DIMs) in the optical continuum were observed during the period of optical flare activity. To interpret these data, we develop a technique for deriving the coronal loop length from the observed rise and decay behavior of the EUV flare. The technique is generally applicable to existing and future coronal observations of stellar flares. We also determine the pressure, column depth, emission measure, loop cross-sectional area, and peak thermal energy during the two EUV flares, and the temperature, area coverage, and energy of the optical continuum emission. When the optical and coronal data are combined, we find convincing evidence of a stellar 'Neupert effect' which is a strong signature of chromospheric evaporation models. We then argue that the known spatial correlation of white-light emission with hard X-ray emission in solar flares, and the identification of the hard X-ray emission with nonthermal bremsstrahlung produced by accelerated electrons, provides evidence that flare heating on dMe stars is produced by the same electron precipitation mechanism that is inferred to occur on the Sun. We provide a thorough picture of the physical processes that are operative during the largest EUV flare, compare and contrast this picture with the canonical solar flare model, and conclude that the coronal loop length may be the most important factor in determining the flare rise time and energetics.

  15. Flare Observations

    NASA Astrophysics Data System (ADS)

    Benz, Arnold O.

    2017-12-01

    Solar flares are observed at all wavelengths from decameter radio waves to gamma-rays beyond 1 GeV. This review focuses on recent observations in EUV, soft and hard X-rays, white light, and radio waves. Space missions such as RHESSI, Yohkoh, TRACE, SOHO, and more recently Hinode and SDO have enlarged widely the observational base. They have revealed a number of surprises: Coronal sources appear before the hard X-ray emission in chromospheric footpoints, major flare acceleration sites appear to be independent of coronal mass ejections, electrons, and ions may be accelerated at different sites, there are at least 3 different magnetic topologies, and basic characteristics vary from small to large flares. Recent progress also includes improved insights into the flare energy partition, on the location(s) of energy release, tests of energy release scenarios and particle acceleration. The interplay of observations with theory is important to deduce the geometry and to disentangle the various processes involved. There is increasing evidence supporting magnetic reconnection as the basic cause. While this process has become generally accepted as the trigger, it is still controversial how it converts a considerable fraction of the energy into non-thermal particles. Flare-like processes may be responsible for large-scale restructuring of the magnetic field in the corona as well as for its heating. Large flares influence interplanetary space and substantially affect the Earth's ionosphere. Flare scenarios have slowly converged over the past decades, but every new observation still reveals major unexpected results, demonstrating that solar flares, after 150 years since their discovery, remain a complex problem of astrophysics including major unsolved questions.

  16. Coronal mass ejection and solar flare initiation processes without appreciable

    NASA Astrophysics Data System (ADS)

    Veselovsky, I.

    TRACE and SOHO/EIT movies clearly show the cases of the coronal mass ejection and solar flare initiations without noticeable large-scale topology modifications in observed features. Instead of this, the appearance of new intermediate scales is often omnipresent in the erupting region structures when the overall configuration is preserved. Examples of this kind are presented and discussed in the light of the existing magnetic field reconnection paradigms. It is demonstrated that spurious large-scale reconnections and detachments are often produced due to the projection effects in poorly resolved images of twisted loops and sheared arcades especially when deformed parts of them are underexposed and not seen in the images only because of this reason. Other parts, which are normally exposed or overexposed, can make the illusion of "islands" or detached elements in these situations though in reality they preserve the initial magnetic connectivity. Spurious "islands" of this kind could be wrongly interpreted as signatures of topological transitions in the large-scale magnetic fields in many instances described in the vast literature in the past based mainly on fuzzy YOHKOH images, which resulted in the myth about universal solar flare models and the scenario of detached magnetic island formations with new null points in the large scale magnetic field. The better visualization with higher resolution and sensitivity limits allowed to clarify this confusion and to avoid this unjustified interpretation. It is concluded that topological changes obviously can happen in the coronal magnetic fields, but these changes are not always necessary ingredients at least of all coronal mass ejections and solar flares. The scenario of the magnetic field opening is not universal for all ejections. Otherwise, expanding ejections with closed magnetic configurations can be produced by the fast E cross B drifts in strong inductive electric fields, which appear due to the emergence of the new

  17. Global Energetics of Solar Flares. V. Energy Closure in Flares and Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Caspi, Amir; Cohen, Christina M. S.; Holman, Gordon; Jing, Ju; Kretzschmar, Matthieu; Kontar, Eduard P.; McTiernan, James M.; Mewaldt, Richard A.; O'Flannagain, Aidan; Richardson, Ian G.; Ryan, Daniel; Warren, Harry P.; Xu, Yan

    2017-02-01

    In this study we synthesize the results of four previous studies on the global energetics of solar flares and associated coronal mass ejections (CMEs), which include magnetic, thermal, nonthermal, and CME energies in 399 solar M- and X-class flare events observed during the first 3.5 yr of the Solar Dynamics Observatory (SDO) mission. Our findings are as follows. (1) The sum of the mean nonthermal energy of flare-accelerated particles ({E}{nt}), the energy of direct heating ({E}{dir}), and the energy in CMEs ({E}{CME}), which are the primary energy dissipation processes in a flare, is found to have a ratio of ({E}{nt}+{E}{dir}+{E}{CME})/{E}{mag}=0.87+/- 0.18, compared with the dissipated magnetic free energy {E}{mag}, which confirms energy closure within the measurement uncertainties and corroborates the magnetic origin of flares and CMEs. (2) The energy partition of the dissipated magnetic free energy is: 0.51 ± 0.17 in nonthermal energy of ≥slant 6 {keV} electrons, 0.17 ± 0.17 in nonthermal ≥slant 1 {MeV} ions, 0.07 ± 0.14 in CMEs, and 0.07 ± 0.17 in direct heating. (3) The thermal energy is almost always less than the nonthermal energy, which is consistent with the thick-target model. (4) The bolometric luminosity in white-light flares is comparable to the thermal energy in soft X-rays (SXR). (5) Solar energetic particle events carry a fraction ≈ 0.03 of the CME energy, which is consistent with CME-driven shock acceleration. (6) The warm-target model predicts a lower limit of the low-energy cutoff at {e}c≈ 6 {keV}, based on the mean peak temperature of the differential emission measure of T e = 8.6 MK during flares. This work represents the first statistical study that establishes energy closure in solar flare/CME events.

  18. Reconstruction of a Large-scale Pre-flare Coronal Current Sheet Associated with a Homologous X-shaped Flare

    NASA Astrophysics Data System (ADS)

    Jiang, Chaowei; Yan, Xiaoli; Feng, Xueshang; Duan, Aiying; Hu, Qiang; Zuo, Pingbing; Wang, Yi

    2017-11-01

    As a fundamental magnetic structure in the solar corona, electric current sheets (CSs) can form either prior to or during a solar flare, and they are essential for magnetic energy dissipation in the solar corona because they enable magnetic reconnection. However, the static reconstruction of a CS is rare, possibly due to limitations that are inherent in the available coronal field extrapolation codes. Here we present the reconstruction of a large-scale pre-flare CS in solar active region 11967 using an MHD-relaxation model constrained by the SDO/HMI vector magnetogram. The CS is associated with a set of peculiar homologous flares that exhibit unique X-shaped ribbons and loops occurring in a quadrupolar magnetic configuration.This is evidenced by an ’X’ shape, formed from the field lines traced from the CS to the photosphere. This nearly reproduces the shape of the observed flare ribbons, suggesting that the flare is a product of the dissipation of the CS via reconnection. The CS forms in a hyperbolic flux tube, which is an intersection of two quasi-separatrix layers. The recurrence of the X-shaped flares might be attributed to the repetitive formation and dissipation of the CS, as driven by the photospheric footpoint motions. These results demonstrate the power of a data-constrained MHD model in reproducing a CS in the corona as well as providing insight into the magnetic mechanism of solar flares.

  19. MAJOR ELECTRON EVENTS AND CORONAL MAGNETIC CONFIGURATIONS OF THE RELATED SOLAR ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C.; Owen, C. J.; Matthews, S. A.

    A statistical survey of 26 major electron events during the period 2002 February through the end of solar cycle 23 is presented. We have obtained electron solar onset times and the peak flux spectra for each event by fitting to a power-law spectrum truncated by an exponential high-energy tail, i.e., f(E){approx}E{sup -{delta}}e{sup -E/E{sub 0}}. We also derived the coronal magnetic configurations of the related solar active regions (ARs) from the potential-field source-surface model. It is found that (1) 10 of the 11 well-connected open field-line events are prompt events whose solar onset times coincide with the maxima of flare emissionmore » and 13 of the 14 closed field-line events are delayed events. (2) A not-well-connected open field-line event and one of the closed field-line events are prompt events, they are both associated with large-scale coronal disturbances or dimming. (3) An averaged harder spectrum is found in open field-line events compared with the closed ones. Specifically, the averaged spectral index {delta} is of 1.6 {+-} 0.3 in open field-line events and of 2.0 {+-} 0.4 in closed ones. The spectra of three closed field-line events show infinite rollover energies E {sub 0}. These correlations clearly establish a significant link between the coronal magnetic field-line topology and the escape of charged particles from the flaring ARs into interplanetary space during the major solar energetic particle events.« less

  20. Flare particle acceleration in the interaction of twisted coronal flux ropes

    NASA Astrophysics Data System (ADS)

    Threlfall, J.; Hood, A. W.; Browning, P. K.

    2018-03-01

    Aim. The aim of this work is to investigate and characterise non-thermal particle behaviour in a three-dimensional (3D) magnetohydrodynamical (MHD) model of unstable multi-threaded flaring coronal loops. Methods: We have used a numerical scheme which solves the relativistic guiding centre approximation to study the motion of electrons and protons. The scheme uses snapshots from high resolution numerical MHD simulations of coronal loops containing two threads, where a single thread becomes unstable and (in one case) destabilises and merges with an additional thread. Results: The particle responses to the reconnection and fragmentation in MHD simulations of two loop threads are examined in detail. We illustrate the role played by uniform background resistivity and distinguish this from the role of anomalous resistivity using orbits in an MHD simulation where only one thread becomes unstable without destabilising further loop threads. We examine the (scalable) orbit energy gains and final positions recovered at different stages of a second MHD simulation wherein a secondary loop thread is destabilised by (and merges with) the first thread. We compare these results with other theoretical particle acceleration models in the context of observed energetic particle populations during solar flares.

  1. The Eruption of a Small-scale Emerging Flux Rope as the Driver of an M-class Flare and of a Coronal Mass Ejection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, X. L.; Xue, Z. K.; Wang, J. C.

    Solar flares and coronal mass ejections are the most powerful explosions in the Sun. They are major sources of potentially destructive space weather conditions. However, the possible causes of their initiation remain controversial. Using high-resolution data observed by the New Solar Telescope of Big Bear Solar Observatory, supplemented by Solar Dynamics Observatory observations, we present unusual observations of a small-scale emerging flux rope near a large sunspot, whose eruption produced an M-class flare and a coronal mass ejection. The presence of the small-scale flux rope was indicated by static nonlinear force-free field extrapolation as well as data-driven magnetohydrodynamics modeling ofmore » the dynamic evolution of the coronal three-dimensional magnetic field. During the emergence of the flux rope, rotation of satellite sunspots at the footpoints of the flux rope was observed. Meanwhile, the Lorentz force, magnetic energy, vertical current, and transverse fields were increasing during this phase. The free energy from the magnetic flux emergence and twisting magnetic fields is sufficient to power the M-class flare. These observations present, for the first time, the complete process, from the emergence of the small-scale flux rope, to the production of solar eruptions.« less

  2. FLARE-GENERATED SHOCK WAVE PROPAGATION THROUGH SOLAR CORONAL ARCADE LOOPS AND AN ASSOCIATED TYPE II RADIO BURST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pankaj; Cho, Kyung-Suk; Innes, D. E., E-mail: pankaj@kasi.re.kr

    2016-09-01

    This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ∼800 km s{sup −1} and it accelerated to ∼1490 km s{supmore » −1} after passing through the arcade loops. A fan–spine magnetic topology was revealed at the flare site. A small, confined filament eruption (∼340 km s{sup −1}) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan–spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.« less

  3. Observations of simultaneous coronal loop shrinkage and expansion during the decay phase of a solar flare

    NASA Astrophysics Data System (ADS)

    Khan, J. I.; Fletcher, L.; Nitta, N. V.

    2006-07-01

    We report what we believe are the first direct and unambiguous observations of simultaneous coronal magnetic flux loop shrinkage and expansion during the decay phase of a solar flare. The retracting and expanding loops were observed nearly face-on (i.e., with the loop major axis approximately orthogonal to the line of sight) in emission in imaging data from the Yohkoh Soft X-ray Telescope (SXT). The retracting loop is observed to shrink with a speed of 118 ± 66 km s-1. The faint outward moving loop-like feature occurred ~200´´ above the shrinking loop during the time of the shrinking loop. We estimate the speed of the outward moving loop was ~129 ± 74 km s-1. We interpret the shrinking loop and simultaneous outward moving loop as direct evidence for reconnected magnetic field lines during a flare.

  4. IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. II. RELATION TO SOFT X-RAY FLARES AND FILAMENT ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.

    2012-08-10

    Using high time cadence images from the STEREO EUVI, COR1, and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 coronal mass ejections (CMEs) in comparison with associated flares and filament eruptions. We found that CMEs associated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights, and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic fieldmore » is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events that were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME acceleration ends after the soft X-ray (SXR) peak time (for 77% of the events). In {approx}60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than {+-}5 minutes, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.« less

  5. Mid-term periodicities and heliospheric modulation of coronal index and solar flare index during solar cycles 22-23

    NASA Astrophysics Data System (ADS)

    Singh, Prithvi Raj; Saxena, A. K.; Tiwari, C. M.

    2018-04-01

    We applied fast Fourier transform techniques and Morlet wavelet transform on the time series data of coronal index, solar flare index, and galactic cosmic ray, for the period 1986-2008, in order to investigate the long- and mid-term periodicities including the Rieger ({˜ }130 to {˜ }190 days), quasi-period ({˜ }200 to {˜ }374 days), and quasi-biennial periodicities ({˜ }1.20 to {˜ }3.27 years) during the combined solar cycles 22-23. We emphasize the fact that a lesser number of periodicities are found in the range of low frequencies, while the higher frequencies show a greater number of periodicities. The rotation rates at the base of convection zone have periods for coronal index of {˜ }1.43 years and for solar flare index of {˜ }1.41 year, and galactic cosmic ray, {˜ }1.35 year, during combined solar cycles 22-23. In relation to these two solar parameters (coronal index and solar flare index), for the solar cycles 22-23, we found that galactic cosmic ray modulation at mid cut-off rigidity (Rc = 2.43GV) is anti-correlated with time-lag of few months.

  6. Statistical study of spatio-temporal distribution of precursor solar flares associated with major flares

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Ballai, I.; Baranyi, T.

    2016-07-01

    The aim of the present investigation is to study the spatio-temporal distribution of precursor flares during the 24 h interval preceding M- and X-class major flares and the evolution of follower flares. Information on associated (precursor and follower) flares is provided by Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Flare list, while the major flares are observed by the Geostationary Operational Environmental Satellite (GOES) system satellites between 2002 and 2014. There are distinct evolutionary differences between the spatio-temporal distributions of associated flares in about one-day period depending on the type of the main flare. The spatial distribution was characterized by the normalized frequency distribution of the quantity δ (the distance between the major flare and its precursor flare normalized by the sunspot group diameter) in four 6 h time intervals before the major event. The precursors of X-class flares have a double-peaked spatial distribution for more than half a day prior to the major flare, but it changes to a lognormal-like distribution roughly 6 h prior to the event. The precursors of M-class flares show lognormal-like distribution in each 6 h subinterval. The most frequent sites of the precursors in the active region are within a distance of about 0.1 diameter of sunspot group from the site of the major flare in each case. Our investigation shows that the build-up of energy is more effective than the release of energy because of precursors.

  7. Quasi-periodic Oscillations in Flares and Coronal Mass Ejections Associated with Magnetic Reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Takuya; Shibata, Kazunari; Qiu, Jiong, E-mail: takahasi@kusastro.kyoto-u.ac.jp

    We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamicsmore » become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.« less

  8. Quasi-periodic Oscillations in Flares and Coronal Mass Ejections Associated with Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Qiu, Jiong; Shibata, Kazunari

    2017-10-01

    We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamics become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.

  9. Spectroscopic Exploration of Solar Flares

    NASA Astrophysics Data System (ADS)

    Sibeck, D. G.; Paxton, L. J.; Woods, T. N.

    2016-12-01

    Professor Eugene Parker has educated and inspired the heliophysics community since the 1950s about the Parker spiral path for the solar wind, magnetic reconnection throughout the heliosphere, and coronal heating by nano-flares. Solar flares, as well as their often eruptive companions called coronal mass ejections (CMEs), have been studied for decades. While most of these studies involve imaging the Sun, observations of the Sun as a star (full-disk irradiance) have also revealed interesting results through exploring the spectral variability during flare events. Some of the new results from such studies include understanding the flare variability over all wavelengths from the energetic X-rays to the visible, discovering and classifying different flare phases, using coronal dimming measurements to predict CME properties of mass and velocity, and exploring the role of Parker's nano-flares in continual heating of active regions.

  10. Solar Flares and Their Prediction

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.

    1999-01-01

    Solar flares and coronal mass ejection's (CMES) can strongly affect the local environment at the Earth. A major challenge for solar physics is to understand the physical mechanisms responsible for the onset of solar flares. Flares, characterized by a sudden release of energy (approx. 10(exp 32) ergs for the largest events) within the solar atmosphere, result in the acceleration of electrons, protons, and heavier ions as well as the production of electromagnetic radiation from hard X-rays to km radio waves (wavelengths approx. = 10(exp -9) cm to 10(exp 6) cm). Observations suggest that solar flares and sunspots are strongly linked. For example, a study of data from 1956-1969, reveals that approx. 93 percent of major flares originate in active regions with spots. Furthermore, the global structure of the sunspot magnetic field can be correlated with flare activity. This talk will review what we know about flare causes and effects and will discuss techniques for quantifying parameters, which may lead to a prediction of solar flares.

  11. Statistical properties of solar flares and coronal mass ejections through the solar cycle

    NASA Astrophysics Data System (ADS)

    Telloni, Daniele; Carbone, Vincenzo; Lepreti, Fabio; Antonucci, Ester

    2016-03-01

    Waiting Time Distributions (WTDs) of solar flares are investigated all through the solar cycle. The same approach applied to Coronal Mass Ejections (CMEs) in a previous work is considered here for flare occurrence. Our analysis reveals that flares and CMEs share some common statistical properties, which result dependent on the level of solar activity. Both flares and CMEs seem to independently occur during minimum solar activity phases, whilst their WTDs significantly deviate from a Poisson function at solar maximum, thus suggesting that these events are correlated. The characteristics of WTDs are constrained by the physical processes generating those eruptions associated with flares and CMEs. A scenario may be drawn in which different mechanisms are actively at work during different phases of the solar cycle. Stochastic processes, most likely related to random magnetic reconnections of the field lines, seem to play a key role during solar minimum periods. On the other hand, persistent processes, like sympathetic eruptions associated to the variability of the photospheric magnetism, are suggested to dominate during periods of high solar activity. Moreover, despite the similar statistical properties shown by flares and CMEs, as it was mentioned above, their WTDs appear different in some aspects. During solar minimum periods, the flare occurrence randomness seems to be more evident than for CMEs. Those persistent mechanisms generating interdependent events during maximum periods of solar activity can be suggested to play a more important role for CMEs than for flares, thus mitigating the competitive action of the random processes, which seem instead strong enough to weaken the correlations among flare event occurrence during solar minimum periods. However, it cannot be excluded that the physical processes at the basis of the origin of the temporal correlation between solar events are different for flares and CMEs, or that, more likely, more sophisticated effects are

  12. Onset of the Magnetic Explosion in Filament-Eruption Flares and Coronal Mass Ejections: Single-Bipole Events

    NASA Technical Reports Server (NTRS)

    Moore, Ron L.; Sterling, Alphonse C.

    2000-01-01

    We present three-dimensional sketches of die magnetic field before and during filament eruptions in flares and coronal mass ejections. Before the eruption, the overall magnetic field is a closed bipole in which the core field (the field rooted along the bipole's neutral line in the photospheric magnetic flux) is strongly sheared and has oppositely curved "elbows" that bulge out from the opposite ends of the neutral line. This core-field sigmoid runs under and is pressed down in the middle by the rest of the field in the bipole, the less-sheared envelope field rooted outside the core field (as in the model of Antiochos, Dahlburg, & Klimchuk. A filament of chromospheric-temperature plasma is often held in the core field over the neutral line. In a filament eruption, the core field undergoes an explosive eruption, the frozen-in filament plasma providing a visible tracer of the erupting field. The core-field explosion may be either confined (as in some flares) or ejective (as in CMEs that begin together with the onset of a long-duration two-ribbon flare). We present examples of each of these two kind of events as observed in sequences of coronal X-ray images from the Yohkoh SXT, and consider (1) how the explosion begins, and (2) whether confined eruptions begin in basically the same way as ejective eruptions.

  13. REVIEWS OF TOPICAL PROBLEMS: Coronal magnetic loops

    NASA Astrophysics Data System (ADS)

    Zaitsev, Valerii V.; Stepanov, Alexander V.

    2008-11-01

    The goal of this review is to outline some new ideas in the physics of coronal magnetic loops, the fundamental structural elements of the atmospheres of the Sun and flaring stars, which are involved in phenomena such as stellar coronal heating, flare energy release, charged particle acceleration, and the modulation of optical, radio, and X-ray emissions. The Alfvén-Carlqvist view of a coronal loop as an equivalent electric circuit allows a good physical understanding of loop processes. Describing coronal loops as MHD-resonators explains various ways in which flaring emissions from the Sun and stars are modulated, whereas modeling them by magnetic mirror traps allows one to describe the dynamics and emission of high-energy particles. Based on these approaches, loop plasma and fast particle parameters are obtained and models for flare energy release and stellar corona heating are developed.

  14. TRIGGER OF A BLOWOUT JET IN A SOLAR CORONAL MASS EJECTION ASSOCIATED WITH A FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaohong; Yang, Shuhong; Chen, Huadong

    2015-11-20

    Using the multi-wavelength images and the photospheric magnetograms from the Solar Dynamics Observatory, we study the flare that was associated with the only coronal mass ejection (CME) in active region (AR) 12192. The eruption of a filament caused a blowout jet, and then an M4.0 class flare occurred. This flare was located at the edge of the AR instead of in the core region. The flare was close to the apparently “open” fields, appearing as extreme-ultraviolet structures that fan out rapidly. Due to the interaction between flare materials and “open” fields, the flare became an eruptive flare, leading to themore » CME. Then, at the same site of the first eruption, another small filament erupted. With the high spatial and temporal resolution Hα data from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we investigate the interaction between the second filament and the nearby “open” lines. The filament reconnected with the “open” lines, forming a new system. To our knowledge, the detailed process of this kind of interaction is reported for the first time. Then the new system rotated due to the untwisting motion of the filament, implying that the twist was transferred from the closed filament system to the “open” system. In addition, the twist seemed to propagate from the lower atmosphere to the upper layers and was eventually spread by the CME to the interplanetary space.« less

  15. Direct observations of a flare related coronal and solar wind disturbance

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Hildner, E.; Macqueen, R. M.; Munro, R. H.; Poland, A. I.; Ross, C. L.

    1975-01-01

    Numerous mass ejections from the sun have been detected with orbiting coronagraphs. Here for the first time we document and discuss the direct association of a coronagraph observed mass ejection, which followed a 2B flare, with a large interplanetary shock wave disturbance observed at 1 AU. Estimates of the mass and energy content of the coronal disturbance are in reasonably good agreement with estimates of the mass and energy content of the solar wind disturbance at 1 AU. The energy estimates as well as the transit time of the disturbance are also in good agreement with numerical models of shock wave propagation in the solar wind.

  16. GLOBAL ENERGETICS OF SOLAR FLARES. IV. CORONAL MASS EJECTION ENERGETICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschwanden, Markus J., E-mail: aschwanden@lmsal.com

    2016-11-01

    This study entails the fourth part of a global flare energetics project, in which the mass m {sub cme}, kinetic energy E {sub kin}, and the gravitational potential energy E {sub grav} of coronal mass ejections (CMEs) is measured in 399 M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission, using a new method based on the EUV dimming effect. EUV dimming is modeled in terms of a radial adiabatic expansion process, which is fitted to the observed evolution of the total emission measure of the CME source region. The modelmore » derives the evolution of the mean electron density, the emission measure, the bulk plasma expansion velocity, the mass, and the energy in the CME source region. The EUV dimming method is truly complementary to the Thomson scattering method in white light, which probes the CME evolution in the heliosphere at r ≳ 2 R {sub ⊙}, while the EUV dimming method tracks the CME launch in the corona. We compare the CME parameters obtained in white light with the LASCO/C2 coronagraph with those obtained from EUV dimming with the Atmospheric Imaging Assembly onboard the SDO for all identical events in both data sets. We investigate correlations between CME parameters, the relative timing with flare parameters, frequency occurrence distributions, and the energy partition between magnetic, thermal, nonthermal, and CME energies. CME energies are found to be systematically lower than the dissipated magnetic energies, which is consistent with a magnetic origin of CMEs.« less

  17. Coronal loop hydrodynamics. The solar flare observed on November 12, 1980 revisited: The UV line emission

    NASA Astrophysics Data System (ADS)

    Betta, R. M.; Peres, G.; Reale, F.; Serio, S.

    2001-12-01

    We revisit a well-studied solar flare whose X-ray emission originating from a simple loop structure was observed by most of the instruments on board SMM on November 12, 1980. The X-ray emission of this flare, as observed with the XRP, was successfully modeled previously. Here we include a detailed modeling of the transition region and we compare the hydrodynamic results with the UVSP observations in two EUV lines, measured in areas smaller than the XRP rasters, covering only some portions of the flaring loop (the top and the foot-points). The single loop hydrodynamic model, which fits well the evolution of coronal lines (those observed with the XRP and the Fe XXI 1354.1 Å line observed with the UVSP) fails to model the flux level and evolution of the O V 1371.3 Åline.

  18. A Tool for Empirical Forecasting of Major Flares, Coronal Mass Ejections, and Solar Particle Events from a Proxy of Active-Region Free Magnetic Energy

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Falconer, D. A.; Adams, J. H., Jr.

    2010-01-01

    This presentation describes a new forecasting tool developed for and is currently being tested by NASA s Space Radiation Analysis Group (SRAG) at JSC, which is responsible for the monitoring and forecasting of radiation exposure levels of astronauts. The new software tool is designed for the empirical forecasting of M and X-class flares, coronal mass ejections, as well as solar energetic particle events. Its algorithm is based on an empirical relationship between the various types of events rates and a proxy of the active region s free magnetic energy, determined from a data set of approx.40,000 active-region magnetograms from approx.1,300 active regions observed by SOHO/MDI that have known histories of flare, coronal mass ejection, and solar energetic particle event production. The new tool automatically extracts each strong-field magnetic areas from an MDI full-disk magnetogram, identifies each as an NOAA active region, and measures a proxy of the active region s free magnetic energy from the extracted magnetogram. For each active region, the empirical relationship is then used to convert the free magnetic energy proxy into an expected event rate. The expected event rate in turn can be readily converted into the probability that the active region will produce such an event in a given forward time window. Descriptions of the datasets, algorithm, and software in addition to sample applications and a validation test are presented. Further development and transition of the new tool in anticipation of SDO/HMI is briefly discussed.

  19. An Explanation of Remarkable Emission-line Profiles in Post-flare Coronal Rain

    NASA Astrophysics Data System (ADS)

    Lacatus, Daniela A.; Judge, Philip G.; Donea, Alina

    2017-06-01

    We study broad redshifted emission in chromospheric and transition region lines that appears to correspond to a form of post-flare coronal rain. Profiles of Mg II, C II, and Si IV lines were obtained using IRIS before, during, and after the X2.1 flare of 2015 March 11 (SOL2015-03-11T16:22). We analyze the profiles of the five transitions of Mg II (the 3p-3s h and k transitions, and three lines belonging to the 3d-3p transitions). We use analytical methods to understand the unusual profiles, together with higher-resolution observational data of similar phenomena observed by Jing et al. The peculiar line ratios indicate anisotropic emission from the strands that have cross-strand line center optical depths (k line) of between 1 and 10. The lines are broadened by unresolved Alfvénic motions whose energy exceeds the radiation losses in the Mg II lines by an order of magnitude. The decay of the line widths is accompanied by a decay in the brightness, suggesting a causal connection. If the plasma is ≲99% ionized, ion-neutral collisions can account for the dissipation; otherwise, a dynamical process seems necessary. Our work implies that the motions are initiated during the impulsive phase, to be dissipated as radiation over a period of an hour, predominantly by strong chromospheric lines. The coronal “rain” we observe is far more turbulent than most earlier reports have indicated, with implications for plasma heating mechanisms.

  20. CORONAL AND CHROMOSPHERIC SIGNATURES OF LARGE-SCALE DISTURBANCES ASSOCIATED WITH A MAJOR SOLAR ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zong, Weiguo; Dai, Yu, E-mail: ydai@nju.edu.cn

    We present both coronal and chromospheric observations of large-scale disturbances associated with a major solar eruption on 2005 September 7. In the Geostationary Operational Environmental Satellites/Solar X-ray Imager (SXI), arclike coronal brightenings are recorded propagating in the southern hemisphere. The SXI front shows an initially constant speed of 730 km s{sup −1} and decelerates later on, and its center is near the central position angle of the associated coronal mass ejection (CME) but away from the flare site. Chromospheric signatures of the disturbances are observed in both Mauna Loa Solar Observatory (MLSO)/Polarimeter for Inner Coronal Studies Hα and MLSO/Chromospheric Helium Imore » Imaging Photometer He i λ10830 and can be divided into two parts. The southern signatures occur in regions where the SXI front sweeps over, with the Hα bright front coincident with the SXI front, while the He i dark front lags the SXI front but shows a similar kinematics. Ahead of the path of the southern signatures, oscillations of a filament are observed. The northern signatures occur near the equator, with the Hα and He i fronts coincident with each other. They first propagate westward and then deflect to the north at the boundary of an equatorial coronal hole. Based on these observational facts, we suggest that the global disturbances are associated with the CME lift-off and show a hybrid nature: a mainly non-wave CME flank nature for the SXI signatures and the corresponding southern chromospheric signatures, and a shocked fast-mode coronal MHD wave nature for the northern chromospheric signatures.« less

  1. Coronal Heating by Magnetic Explosions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.; Suess, Steven T.

    1998-01-01

    We build a case for the persistent strong coronal heating in active regions and the pervasive quasi-steady heating of the corona in quiet regions and coronal holes being driven in basically the same way as the intense transient heating in solar flares: by explosions of sheared magnetic fields in the cores of initially closed bipoles. We begin by summarizing the observational case for exploding sheared core fields being the drivers of a wide variety of flare events, with and without coronal mass ejections. We conclude that the arrangement of an event's flare heating, whether there is a coronal mass ejection, and the time and place of the ejection relative to the flare heating are all largely determined by four elements of the form and action the magnetic field: (1) the arrangement of the impacted, interacting bipoles participating in the event, (2) which of these bipoles are active (have sheared core fields that explode) and which are passive (are heated by injection from impacted active bipoles), (3) which core field explodes first, and (4) which core-field explosions are confined within the closed field of their bipoles and which ejectively open their bipoles.

  2. Do solar decimetric spikes originate in coronal X-ray sources?

    NASA Astrophysics Data System (ADS)

    Battaglia, M.; Benz, A. O.

    2009-06-01

    Context: In the standard solar flare scenario, a large number of particles are accelerated in the corona. Nonthermal electrons emit both X-rays and radio waves. Thus, correlated signatures of the acceleration process are predicted at both wavelengths, coinciding either close to the footpoints of a magnetic loop or near the coronal X-ray source. Aims: We attempt to study the spatial connection between coronal X-ray emission and decimetric radio spikes to determine the site and geometry of the acceleration process. Methods: The positions of radio-spike sources and coronal X-ray sources are determined and analyzed in a well-observed limb event. Radio spikes are identified in observations from the Phoenix-2 spectrometer. Data from the Nançay radioheliograph are used to determine the position of the radio spikes. RHESSI images in soft and hard X-ray wavelengths are used to determine the X-ray flare geometry. Those observations are complemented by images from GOES/SXI. Results: We find that the radio emission originates at altitudes much higher than the coronal X-ray source, having an offset from the coronal X-ray source amounting to 90´´ and to 113´´ and 131´´ from the two footpoints, averaged over time and frequency. Conclusions: Decimetric spikes do not originate from coronal X-ray flare sources contrary to previous expectations. However, the observations suggest a causal link between the coronal X-ray source, related to the major energy release site, and simultaneous activity in the higher corona.

  3. Determining cutting efficiency of nickel-titanium coronal flaring instruments used in lateral action.

    PubMed

    Peters, O A; Morgental, R D; Schulze, K A; Paqué, F; Kopper, P M P; Vier-Pelisser, F V

    2014-06-01

    To develop a method to evaluate the cutting behaviour of nickel-titanium (NiTi) coronal flaring instruments. BioRaCe BR0 (BR), HyFlex CM 1 (HY), ProFile OS No. 2 (PF) and ProTaper Sx (PT) instruments were used in simulated coronal flaring using a lateral action against bovine dentine blocks, at 250 and 500 rpm. Cutting efficiency was assessed by three methods: first, areas of notches produced by instruments were directly measured under a stereomicroscope. Second, dentine specimens were then analysed by surface profilometry to determine the maximum cutting depth and finally by microcomputed tomography to assess the volume of removed dentine. Data were compared using parametric tests with the significance level set at 0.05. For all three methods, HY and PF were the most and the least cutting-efficient instruments, respectively (P < 0.05). Significant differences were detected between 250 and 500 rpm for HY and PT (area); for BR, HY and PT (depth); and for BR and HY (volume). There were strong positive correlations between the results obtained with those three different methods with r-values ranging from 0.81 to 0.92. Measuring the amount of material removed in a specific time under stereomicroscopy is a simple and rational way to assess the cutting behaviour of NiTi rotary instruments in lateral action. HyFlex, manufactured with thermomechanically treated NiTi wire, was the most efficient instrument, and increased rotational speed was associated with increased cutting efficiency. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  4. The solar flare myth

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1993-01-01

    Many years of research have demonstrated that large, nonrecurrent geomagnetic storms, shock wave disturbances in the solar wind, and energetic particle events in interplanetary space often occur in close association with large solar flares. This result has led to a pradigm of cause and effect - that large solar flares are the fundamental cause of these events in the near-Earth space environmemt. This paradigm, which I call 'the solar flare myth,' dominates the popular perception of the relationship between solar activity and interplanetary and geomagnetic events and has provided much of the pragmatic rationale for the study of the solar flare phenomenon. Yet there is good evidence that this paradigm is wrong and that flares do not generally play a central role in producing major transient disturbances in the near-Earth space environment. In this paper I outline a different paradigm of cause and effect that removes solar flares from their central position in the chain of events leading from the Sun to near-Earth space. Instead, this central role is given to events known as coronal mass ejections.

  5. Long Fading Mid-infrared Emission in Transient Coronal Line Emitters: Dust Echo of a Tidal Disruption Flare

    NASA Astrophysics Data System (ADS)

    Dou, Liming; Wang, Ting-gui; Jiang, Ning; Yang, Chenwei; Lyu, Jianwei; Zhou, Hongyan

    2016-12-01

    The sporadic accretion following the tidal disruption of a star by a super-massive black hole (TDE) leads to a bright UV and soft X-ray flare in the galactic nucleus. The gas and dust surrounding the black hole responses to such a flare with an echo in emission lines and infrared emission. In this paper, we report the detection of long fading mid-IR emission lasting up to 14 years after the flare in four TDE candidates with transient coronal lines using the WISE public data release. We estimate that the reprocessed mid-IR luminosities are in the range between 4× {10}42 and 2× {10}43 erg s-1 and dust temperature in the range of 570-800 K when WISE first detected these sources three to five years after the flare. Both luminosity and dust temperature decrease with time. We interpret the mid-IR emission as the infrared echo of the tidal disruption flare. We estimate the UV luminosity at the peak flare to be 1 to 30 times 1044 erg s-1 and that for warm dust masses to be in the range of 0.05-1.3 {M}⊙ within a few parsecs. Our results suggest that the mid-infrared echo is a general signature of TDE in the gas-rich environment.

  6. Determination of the coronal magnetic field from vector magnetograph data

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    1991-01-01

    A new algorithm was developed, tested, and applied to determine coronal magnetic fields above solar active regions. The coronal field above NOAA active region AR5747 was successfully estimated on 20 Oct. 1989 from data taken at the Mees Solar Observatory of the Univ. of Hawaii. It was shown that observational data can be used to obtain realistic estimates of coronal magnetic fields. The model has significantly extended the realism with which the coronal magnetic field can be inferred from observations. The understanding of coronal phenomena will be greatly advanced by a reliable technique, such as the one presented, for deducing the detailed spatial structure of the coronal field. The payoff from major current and proposed NASA observational efforts is heavily dependent on the success with which the coronal field can be inferred from vector magnetograms. In particular, the present inability to reliably obtain the coronal field has been a major obstacle to the theoretical advancement of solar flare theory and prediction. The results have shown that the evolutional algorithm can be used to estimate coronal magnetic fields.

  7. Association of solar flares with coronal mass ejections accompanied by Deca-Hectometric type II radio burst for two solar cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Kharayat, Hema; Prasad, Lalan; Pant, Sumit

    2018-05-01

    The aim of present study is to find the association of solar flares with coronal mass ejections (CMEs) accompanied by Deca-Hectometric (DH) type II radio burst for the period 1997-2014 (solar cycle 23 and ascending phase of solar cycle 24). We have used a statistical analysis and found that 10-20∘ latitudinal belt of northern region and 80-90∘ longitudinal belts of western region of the sun are more effective for flare-CME accompanied by DH type II radio burst events. M-class flares (52%) are in good association with the CMEs accompanied by DH type II radio burst. Further, we have calculated the flare position and found that most frequent flare site is at the center of the CME span. However, the occurrence probability of all flares is maximum outside the CME span. X-class flare associated CMEs have maximum speed than that of M, C, and B-class flare associated CMEs. We have also found a good correlation between flare position and central position angle of CMEs accompanied by DH type II radio burst.

  8. Solar radio bursts of spectral type II, coronal shocks, and optical coronal transients

    NASA Technical Reports Server (NTRS)

    Maxwell, A.; Dryer, M.

    1981-01-01

    An examination is presented of the association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H-alpha, the green coronal line, and white-light coronagraphs. It is suggested that fast-moving optical coronal transients should for the most part be identified with piston-type phenomena well behind the outward-traveling shock waves that generate type II radio bursts. A general model is presented which relates type II radio bursts and coronal shocks to optically observed ejecta and consists of three main velocity regimes: (1) a quasi-hemispherical shock wave moving outward from the flare at speeds of 1000-2000 km/sec and Alfven Mach number of about 1.5; (2) the velocity of the piston driving the shock, on the order of 0.8 that of the shock; and (3) the regime of the slower-moving H-alpha ejecta, with velocities of 300-500 km/sec.

  9. Solar origins of coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Kahler, Stephen

    1987-01-01

    The large scale properties of coronal mass ejections (CMEs), such as morphology, leading edge speed, and angular width and position, have been cataloged for many events observed with coronagraphs on the Skylab, P-78, and SMM spacecraft. While considerable study has been devoted to the characteristics of the SMEs, their solar origins are still only poorly understood. Recent observational work has involved statistical associations of CMEs with flares and filament eruptions, and some evidence exists that the flare and eruptive-filament associated CMEs define two classes of events, with the former being generally more energetic. Nevertheless, it is found that eruptive-filament CMEs can at times be very energetic, giving rise to interplanetary shocks and energetic particle events. The size of the impulsive phase in a flare-associated CME seems to play no significant role in the size or speed of the CME, but the angular sizes of CMEs may correlate with the scale sizes of the 1-8 angstrom x-ray flares. At the present time, He 10830 angstrom observations should be useful in studying the late development of double-ribbon flares and transient coronal holes to yield insights into the CME aftermath. The recently available white-light synoptic maps may also prove fruitful in defining the coronal conditions giving rise to CMEs.

  10. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    NASA Technical Reports Server (NTRS)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some

  11. Coronal Seismology of Flare-Excited Standing Slow-Mode Waves Observed by SDO/AIA

    NASA Astrophysics Data System (ADS)

    Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.

    2016-05-01

    Flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 Å bandpasses. Based on the interpretation in terms of a slow-mode wave, quantitative evidence of thermal conduction suppression in hot (>9 MK) loops has been obtained for the first time from measurements of the polytropic index and phase shift between the temperature and density perturbations (Wang et al. 2015, ApJL, 811, L13). This result has significant implications in two aspects. One is that the thermal conduction suppression suggests the need of greatly enhanced compressive viscosity to interpret the observed strong wave damping. The other is that the conduction suppression provides a reasonable mechanism for explaining the long-duration events where the thermal plasma is sustained well beyond the duration of impulsive hard X-ray bursts in many flares, for a time much longer than expected by the classical Spitzer conductive cooling. In this study, we model the observed standing slow-mode wave in Wang et al. (2015) using a 1D nonlinear MHD code. With the seismology-derived transport coefficients for thermal conduction and compressive viscosity, we successfully simulate the oscillation period and damping time of the observed waves. Based on the parametric study of the effect of thermal conduction suppression and viscosity enhancement on the observables, we discuss the inversion scheme for determining the energy transport coefficients by coronal seismology.

  12. The magnetic connectivity of coronal shocks from behind-the-limb flares to the visible solar surface during γ-ray events

    NASA Astrophysics Data System (ADS)

    Plotnikov, I.; Rouillard, A. P.; Share, G. H.

    2017-12-01

    Context. The observation of >100 MeV γ-rays in the minutes to hours following solar flares suggests that high-energy particles interacting in the solar atmosphere can be stored and/or accelerated for long time periods. The occasions when γ-rays are detected even when the solar eruptions occurred beyond the solar limb as viewed from Earth provide favorable viewing conditions for studying the role of coronal shocks driven by coronal mass ejections (CMEs) in the acceleration of these particles. Aims: In this paper, we investigate the spatial and temporal evolution of the coronal shocks inferred from stereoscopic observations of behind-the-limb flares to determine if they could be the source of the particles producing the γ-rays. Methods: We analyzed the CMEs and early formation of coronal shocks associated with γ-ray events measured by the Fermi-Large Area Telescope (LAT) from three eruptions behind the solar limb as viewed from Earth on 2013 Oct. 11, 2014 Jan. 06 and Sep. 01. We used a 3D triangulation technique, based on remote-sensing observations to model the expansion of the CME shocks from above the solar surface to the upper corona. Coupling the expansion model to various models of the coronal magnetic field allowed us to derive the time-dependent distribution of shock Mach numbers and the magnetic connection of particles produced by the shock to the solar surface visible from Earth. Results: The reconstructed shock fronts for the three events became magnetically connected to the visible solar surface after the start of the flare and just before the onset of the >100 MeV γ-ray emission. The shock surface at these connections also exhibited supercritical Mach numbers required for significant particle energization. The strongest γ-ray emissions occurred when the flanks of the shocks were connected in a quasi-perpendicular geometry to the field lines reaching the visible surface. Multipoint, in situ, measurements of solar energetic particles (SEPs) were

  13. FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ji, Hantao; Bhattacharjee, A.; Prager, S.; Daughton, W.; Bale, Stuart D.; Carter, T.; Crocker, N.; Drake, J.; Egedal, J.; Sarff, J.; Fox, W.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-04-01

    A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE (flare.pppl.gov), is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to heliophysical and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) (mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to magnetospheric, solar wind, and solar coronal plasmas. After a brief summary of recent laboratory results on the topic of magnetic reconnection, the motivating major physics questions, the construction status, and the planned collaborative research especially with heliophysics communities will be discussed.

  14. Mass ejections. [during solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Hildner, E.; Hansen, R. T.; Dryer, M.; Mcclymont, A. N.; Mckenna-Lawlor, S. M. P.; Mclean, D. J.; Schmahl, E. J.; Steinolfson, R. S.; Tandberg-Hanssen, E.

    1980-01-01

    Observations and model simulations of solar mass ejection phenomena are examined in an investigation of flare processes. Consideration is given to Skylab and other observations of flare-associated sprays, eruptive prominences, surges and coronal transients, and to MHD, gas dynamic and magnetic loop models developed to account for them. Magnetic forces are found to confine spray material, which originates in preexisting active-region filaments, within steadily expanding loops, while surges follow unmoving, preexisting magnetic field lines. Simulations of effects of a sudden pressure pulse at the bottom of the corona are found to exhibit many characteristics of coronal transients associated with flares, and impulsive heating low in the chromosphere is found to be able to account for surges. The importance of the magnetic field as the ultimate source of energy which drives eruptive phenomena as well as flares is pointed out.

  15. Major Solar Flare

    NASA Image and Video Library

    2017-09-18

    The Sun erupted with an X8 solar flare, one of the largest of the current solar cycle (Sept. 10, 2017). Its source was the same sunspot region that produced an X9 flare last week. This is shown in two wavelengths of extreme ultraviolet light at the same time and each reveals different features. Both are colorized to identify in which wavelength they were observed. The coils of loops after the flare are the magnetic field lines reorganizing themselves after the eruption. The video clip covers about six hours. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21958

  16. VALIDATION OF THE CORONAL THICK TARGET SOURCE MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleishman, Gregory D.; Xu, Yan; Nita, Gelu N.

    2016-01-10

    We present detailed 3D modeling of a dense, coronal thick-target X-ray flare using the GX Simulator tool, photospheric magnetic measurements, and microwave imaging and spectroscopy data. The developed model offers a remarkable agreement between the synthesized and observed spectra and images in both X-ray and microwave domains, which validates the entire model. The flaring loop parameters are chosen to reproduce the emission measure, temperature, and the nonthermal electron distribution at low energies derived from the X-ray spectral fit, while the remaining parameters, unconstrained by the X-ray data, are selected such as to match the microwave images and total power spectra.more » The modeling suggests that the accelerated electrons are trapped in the coronal part of the flaring loop, but away from where the magnetic field is minimal, and, thus, demonstrates that the data are clearly inconsistent with electron magnetic trapping in the weak diffusion regime mediated by the Coulomb collisions. Thus, the modeling supports the interpretation of the coronal thick-target sources as sites of electron acceleration in flares and supplies us with a realistic 3D model with physical parameters of the acceleration region and flaring loop.« less

  17. Solar activity during Skylab: Its distribution and relation to coronal holes

    NASA Technical Reports Server (NTRS)

    Speich, D. M.; Smith, J. B., Jr.; Wilson, R. M.; Mcintosh, P. S.

    1978-01-01

    Solar active regions observed during the period of Skylab observations (May 1973-February 1974) were examined for properties that varied systematically with location on the sun, particularly with respect to the location of coronal holes. Approximately 90 percent of the optical and X-ray flare activity occurred in one solar hemisphere (136-315 heliographic degrees longitude). Active regions within 20 heliographic degrees of coronal holes were below average in lifetimes, flare production, and magnetic complexity. Histograms of solar flares as a function of solar longitude were aligned with H alpha synoptic charts on which active region serial numbers and coronal hole boundaries were added.

  18. On the Importance of the Flare's Late Phase for the Solar Extreme Ultraviolet Irradiance

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Eparvier, Frank; Jones, Andrew R.; Hock, Rachel; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Bailey, Scott; hide

    2011-01-01

    The new solar extreme ultraviolet (EUV) irradiance observations from NASA Solar Dynamics Observatory (SDO) have revealed a new class of solar flares that are referred to as late phase flares. These flares are characterized by the hot 2-5 MK coronal emissions (e.g., Fe XVI 33.5 nm) showing large secondary peaks that appear many minutes to hours after an eruptive flare event. In contrast, the cool 0.7-1.5 MK coronal emissions (e.g., Fe IX 17.1 nm) usually dim immediately after the flare onset and do not recover until after the delayed second peak of the hot coronal emissions. We refer to this period of 1-5 hours after the fl amrea sin phase as the late phase, and this late phase is uniquely different than long duration flares associated with 2-ribbon flares or large filament eruptions. Our analysis of the late phase flare events indicates that the late phase involves hot coronal loops near the flaring region, not directly related to the original flaring loop system but rather with the higher post-eruption fields. Another finding is that space weather applications concerning Earth s ionosphere and thermosphere need to consider these late phase flares because they can enhance the total EUV irradiance flare variation by a factor of 2 when the late phase contribution is included.

  19. LATERAL OFFSET OF THE CORONAL MASS EJECTIONS FROM THE X-FLARE OF 2006 DECEMBER 13 AND ITS TWO PRECURSOR ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterling, Alphonse C.; Moore, Ronald L.; Harra, Louise K., E-mail: alphonse.sterling@nasa.gov, E-mail: ron.moore@nasa.gov, E-mail: lkh@mssl.ucl.ac.uk

    2011-12-10

    Two GOES sub-C-class precursor eruptions occurred within {approx}10 hr prior to and from the same active region as the 2006 December 13 X4.3-class flare. Each eruption generated a coronal mass ejection (CME) with center laterally far offset ({approx}> 45 Degree-Sign ) from the co-produced bright flare. Explaining such CME-to-flare lateral offsets in terms of the standard model for solar eruptions has been controversial. Using Hinode/X-Ray Telescope (XRT) and EUV Imaging Spectrometer (EIS) data, and Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and Michelson Doppler Imager (MDI) data, we find or infer the following. (1) The first precursormore » was a 'magnetic-arch-blowout' event, where an initial standard-model eruption of the active region's core field blew out a lobe on one side of the active region's field. (2) The second precursor began similarly, but the core-field eruption stalled in the side-lobe field, with the side-lobe field erupting {approx}1 hr later to make the CME either by finally being blown out or by destabilizing and undergoing a standard-model eruption. (3) The third eruption, the X-flare event, blew out side lobes on both sides of the active region and clearly displayed characteristics of the standard model. (4) The two precursors were offset due in part to the CME originating from a side-lobe coronal arcade that was offset from the active region's core. The main eruption (and to some extent probably the precursor eruptions) was offset primarily because it pushed against the field of the large sunspot as it escaped outward. (5) All three CMEs were plausibly produced by a suitable version of the standard model.« less

  20. Global Energetics of Solar Flares. VI. Refined Energetics of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2017-09-01

    In this study, we refine the coronal mass ejection (CME) model that was presented in an earlier study of the global energetics of solar flares and associated CMEs and apply it to all (860) GOES M- and X-class flare events observed during the first seven years (2010-2016) of the Solar Dynamics Observatory (SDO) mission. The model refinements include (1) the CME geometry in terms of a 3D volume undergoing self-similar adiabatic expansion, (2) the solar gravitational deceleration during the propagation of the CME, which discriminates between eruptive and confined CMEs, (3) a self-consistent relationship between the CME center-of-mass motion detected during EUV dimming and the leading-edge motion observed in white-light coronagraphs, (4) the equipartition of the CME’s kinetic and thermal energies, and (5) the Rosner-Tucker-Vaiana scaling law. The refined CME model is entirely based on EUV-dimming observations (using Atmospheric Imager Assembly (AIA)/SDO data) and complements the traditional white-light scattering model (using Large-Angle and Spectrometric Coronagraph Experiment (LASCO)/Solar and Heliospheric Observatory data), and both models are independently capable of determining fundamental CME parameters. Comparing the two methods, we find that (1) LASCO is less sensitive than AIA in detecting CMEs (in 24% of the cases), (2) CME masses below {m}{cme}≲ {10}14 g are underestimated by LASCO, (3) AIA and LASCO masses, speeds, and energies agree closely in the statistical mean after the elimination of outliers, and (4) the CME parameters speed v, emission measure-weighted flare peak temperature T e , and length scale L are consistent with the following scaling laws: v\\propto {T}e1/2, v\\propto {({m}{cme})}1/4, and {m}{cme}\\propto {L}2.

  1. Data-driven Simulations of Magnetic Connectivity in Behind-the-Limb Gamma-ray Flares and Associated Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Jin, M.; Petrosian, V.; Liu, W.; Nitta, N.; Omodei, N.; Rubio da Costa, F.; Effenberger, F.; Li, G.; Pesce-Rollins, M.

    2017-12-01

    Recent Fermi detection of high-energy gamma-ray emission from the behind-the-limb (BTL) solar flares pose a puzzle on the particle acceleration and transport mechanisms in such events. Due to the large separation between the flare site and the location of gamma-ray emission, it is believed that the associated coronal mass ejections (CMEs) play an important role in accelerating and subsequently transporting particles back to the Sun to produce obseved gamma-rays. We explore this scenario by simulating the CME associated with a well-observed flare on 2014 September 1 about 40 degrees behind the east solar limb and by comparing the simulation and observational results. We utilize a data-driven global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model) to track the dynamical evolution of the global magnetic field during the event and investigate the magnetic connectivity between the CME/CME-driven shock and the Fermi emission region. Moreover, we derive the time-varying shock parameters (e.g., compression ratio, Alfven Mach number, and ThetaBN) over the area that is magnetically connected to the visible solar disk where Fermi gamma-ray emission originates. Our simulation shows that the visible solar disk develops connections both to the flare site and to the CME-driven shock during the eruption, which indicate that the CME's interaction with the global solar corona is critical for understanding such Fermi BTL events and gamma-ray flares in general. We discuss the causes and implications of Fermi BTL events, in the framework of a potential shift of paradigm on particle acceleration in solar flares/CMEs.

  2. Solar flare model atmospheres

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.

    1993-01-01

    Solar flare model atmospheres computed under the assumption of energetic equilibrium in the chromosphere are presented. The models use a static, one-dimensional plane parallel geometry and are designed within a physically self-consistent coronal loop. Assumed flare heating mechanisms include collisions from a flux of non-thermal electrons and x-ray heating of the chromosphere by the corona. The heating by energetic electrons accounts explicitly for variations of the ionized fraction with depth in the atmosphere. X-ray heating of the chromosphere by the corona incorporates a flare loop geometry by approximating distant portions of the loop with a series of point sources, while treating the loop leg closest to the chromospheric footpoint in the plane-parallel approximation. Coronal flare heating leads to increased heat conduction, chromospheric evaporation and subsequent changes in coronal pressure; these effects are included self-consistently in the models. Cooling in the chromosphere is computed in detail for the important optically thick HI, CaII and MgII transitions using the non-LTE prescription in the program MULTI. Hydrogen ionization rates from x-ray photo-ionization and collisional ionization by non-thermal electrons are included explicitly in the rate equations. The models are computed in the 'impulsive' and 'equilibrium' limits, and in a set of intermediate 'evolving' states. The impulsive atmospheres have the density distribution frozen in pre-flare configuration, while the equilibrium models assume the entire atmosphere is in hydrostatic and energetic equilibrium. The evolving atmospheres represent intermediate stages where hydrostatic equilibrium has been established in the chromosphere and corona, but the corona is not yet in energetic equilibrium with the flare heating source. Thus, for example, chromospheric evaporation is still in the process of occurring.

  3. The formation flare loops by magnetic reconnection and chromospheric ablation

    NASA Technical Reports Server (NTRS)

    Forbes, T. G.; Malherbe, J. M.; Priest, E. R.

    1989-01-01

    Noncoplanar compressible reconnection theory is combined here with simple scaling arguments for ablation and radiative cooling to predict average properties of hot and cool flare loops as a function of the coronal vector magnetic field. For a coronal field strength of 100 G, the temperature of the hot flare loops decreases from 1.2 x 10 to the 7th K to 4.0 x 10 to the 6th K as the component of the coronal magnetic field perpendicular to the plane of the loops increases from 0 percent to 86 percent of the total field. When the perpendicular component exceeds 86 percent of the total field or when the altitude of the reconnection site exceeds 10 to the 6th km, flare loops no longer occur. Shock-enhanced radiative cooling triggers the formation of cool H-alpha flare loops with predicted densities of roughly 10 to the 13th/cu cm, and a small gap of roughly 1000 km is predicted to exist between the footpoints of the cool flare loops and the inner edges of the flare ribbons.

  4. WHY IS THE GREAT SOLAR ACTIVE REGION 12192 FLARE-RICH BUT CME-POOR?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xudong; Bobra, Monica G.; Hoeksema, J. Todd

    Solar active region (AR) 12192 of 2014 October hosts the largest sunspot group in 24 years. It is the most prolific flaring site of Cycle 24 so far, but surprisingly produced no coronal mass ejection (CME) from the core region during its disk passage. Here, we study the magnetic conditions that prevented eruption and the consequences that ensued. We find AR 12192 to be “big but mild”; its core region exhibits weaker non-potentiality, stronger overlying field, and smaller flare-related field changes compared to two other major flare-CME-productive ARs (11429 and 11158). These differences are present in the intensive-type indices (e.g.,more » means) but generally not the extensive ones (e.g., totals). AR 12192's large amount of magnetic free energy does not translate into CME productivity. The unexpected behavior suggests that AR eruptiveness is limited by some relative measure of magnetic non-potentiality over the restriction of background field, and that confined flares may leave weaker photospheric and coronal imprints compared to their eruptive counterparts.« less

  5. Observations of solar active regions and solar flares by OSO-7

    NASA Technical Reports Server (NTRS)

    Neupert, W. M.

    1977-01-01

    Contributions made to the physics of coronal active regions and flares by the extreme ultraviolet and soft X-ray spectroheliograph on OSO-7 were discussed. Coronal structures above active regions were discussed from the point of view of their morphology and physical properties, including their relationship to photospheric and coronal magnetic fields. OSO-7 also recorded flares with sufficient spatial and temporal resolution to record, in some instances for the first time, the extreme ultraviolet and soft X-ray emission associated with such chromospheric phenomena as filament activation and the emergence of satellite sunspots. Flare phenomena were reviewed in terms of the several stages of evolution typically associated with the event.

  6. Study of magnetic helicity injection in the active region NOAA 9236 producing multiple flare-associated coronal mass ejection events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sung-Hong; Cho, Kyung-Suk; Bong, Su-Chan

    To better understand a preferred magnetic field configuration and its evolution during coronal mass ejection (CME) events, we investigated the spatial and temporal evolution of photospheric magnetic fields in the active region NOAA 9236 that produced eight flare-associated CMEs during the time period of 2000 November 23-26. The time variations of the total magnetic helicity injection rate and the total unsigned magnetic flux are determined and examined not only in the entire active region but also in some local regions such as the main sunspots and the CME-associated flaring regions using SOHO/MDI magnetogram data. As a result, we found thatmore » (1) in the sunspots, a large amount of positive (right-handed) magnetic helicity was injected during most of the examined time period, (2) in the flare region, there was a continuous injection of negative (left-handed) magnetic helicity during the entire period, accompanied by a large increase of the unsigned magnetic flux, and (3) the flaring regions were mainly composed of emerging bipoles of magnetic fragments in which magnetic field lines have substantially favorable conditions for making reconnection with large-scale, overlying, and oppositely directed magnetic field lines connecting the main sunspots. These observational findings can also be well explained by some MHD numerical simulations for CME initiation (e.g., reconnection-favored emerging flux models). We therefore conclude that reconnection-favored magnetic fields in the flaring emerging flux regions play a crucial role in producing the multiple flare-associated CMEs in NOAA 9236.« less

  7. Solar and stellar coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1985-01-01

    Progress made in describing and interpreting coronal plasma processes and the relationship between the solar corona and its stellar counterparts is reported. Topics covered include: stellar X-ray emission, HEAO 2 X-ray survey of the Pleiades, closed coronal structures, X-ray survey of main-sequence stars with shallow convection zones, implications of the 1400 MHz flare emission, and magnetic field stochasticity.

  8. PRE-FLARE CORONAL JET AND EVOLUTIONARY PHASES OF A SOLAR ERUPTIVE PROMINENCE ASSOCIATED WITH THE M1.8 FLARE: SDO AND RHESSI OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Bhuwan; Kushwaha, Upendra; Veronig, Astrid M.

    We investigate the triggering, activation, and ejection of a solar eruptive prominence that occurred in a multi-polar flux system of active region NOAA 11548 on 2012 August 18 by analyzing data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory , the Reuven Ramaty High Energy Solar Spectroscopic Imager , and the Extreme Ultraviolet Imager/Sun Earth Connection Coronal and Heliospheric Investigation on board the Solar Terrestrial Relation Observatory . Prior to the prominence activation, we observed striking coronal activities in the form of a blowout jet, which is associated with the rapid eruption of a cool flux rope. Furthermore, themore » jet-associated flux rope eruption underwent splitting and rotation during its outward expansion. These coronal activities are followed by the prominence activation during which it slowly rises with a speed of ∼12 km s{sup −1} while the region below the prominence emits gradually varying EUV and thermal X-ray emissions. From these observations, we propose that the prominence eruption is a complex, multi-step phenomenon in which a combination of internal (tether-cutting reconnection) and external (i.e., pre-eruption coronal activities) processes are involved. The prominence underwent catastrophic loss of equilibrium with the onset of the impulsive phase of an M1.8 flare, suggesting large-scale energy release by coronal magnetic reconnection. We obtained signatures of particle acceleration in the form of power-law spectra with hard electron spectral index ( δ  ∼ 3) and strong HXR footpoint sources. During the impulsive phase, a hot EUV plasmoid was observed below the apex of the erupting prominence that ejected in the direction of the prominence with a speed of ∼177 km s{sup −1}. The temporal, spatial, and kinematic correlations between the erupting prominence and the plasmoid imply that the magnetic reconnection supported the fast ejection of prominence in the lower corona.« less

  9. Coronal Rain, Solar Storm

    NASA Image and Video Library

    2010-03-19

    Explanation: In this picture, the Sun's surface is quite dark. A frame from a movie recorded on November 9th by the orbiting TRACE telescope, it shows coronal loops lofted over a solar active region. Glowing brightly in extreme ultraviolet light, the hot plasma entrained above the Sun along arching magnetic fields is cooling and raining back down on the solar surface. Hours earlier, on November 8th, astronomers had watched this particular active region produce a not so spectacular solar flare. Still, the M-class flare spewed forth an intense storm of particles, suddenly showering satellites near the Earth with high energy protons. The flare event was also associated with a large coronal mass ejection, a massive cloud of material which impacted our fair planet's magnetic field about 31 hours later. The result ... a strong geomagnetic storm. Credit: NASA/GSFC/TRACE To learn more go to: nasascience.nasa.gov/missions/trace To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  10. MAG4 Versus Alternative Techniques for Forecasting Active-Region Flare Productivity

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2014-01-01

    MAG4 (Magnetogram Forecast), developed originally for NASA/SRAG (Space Radiation Analysis Group), is an automated program that analyzes magnetograms from the HMI (Helioseismic and Magnetic Imager) instrument on NASA SDO (Solar Dynamics Observatory), and automatically converts the rate (or probability) of major flares (M- and X-class), Coronal Mass Ejections (CMEs), and Solar Energetic Particle Events. MAG4 does not forecast that a flare will occur at a particular time in the next 24 or 48 hours; rather the probability of one occurring.

  11. Internal and External Reconnection Series Homologous Solar Flares

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2001-01-01

    Using data from the extreme ultraviolet imaging telescope (EIT) on SOHO and the soft X-ray telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in National Oceanic and Atmospheric Administration (NOAA) active region 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X rays. In EIT each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approx. 20 km/ s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions but are modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a coronal mass ejection (CME). External reconnection, first occurring between the escaping CME and the coronal hole field and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively

  12. LARGE-SCALE CONTRACTION AND SUBSEQUENT DISRUPTION OF CORONAL LOOPS DURING VARIOUS PHASES OF THE M6.2 FLARE ASSOCIATED WITH THE CONFINED FLUX ROPE ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushwaha, Upendra; Joshi, Bhuwan; Moon, Yong-Jae

    We investigate evolutionary phases of an M6.2 flare and the associated confined eruption of a prominence. The pre-flare phase exhibits spectacular large-scale contraction of overlying extreme ultraviolet (EUV) coronal loops during which the loop system was subjected to an altitude decrease of ∼20 Mm (40% of the initial height) for an extended span of ∼30 minutes. This contraction phase is accompanied by sequential EUV brightenings associated with hard X-ray (HXR; up to 25 keV) and microwave (MW) sources from low-lying loops in the core region which together with X-ray spectra indicate strong localized heating in the source region before themore » filament activation. With the onset of the flare’s impulsive phase, we detect HXR and MW sources that exhibit intricate temporal and spatial evolution in relation to the fast rise of the prominence. Following the flare maximum, the filament eruption slowed down and subsequently became confined within the large overlying active region loops. During the confinement process of the erupting prominence, we detect MW emission from the extended coronal region with multiple emission centroids, which likely represent emission from hot blobs of plasma formed after the collapse of the expanding flux rope and entailing prominence material. RHESSI spectroscopy reveals high plasma temperature (∼30 MK) and substantial non-thermal characteristics (δ ∼ 5) during the impulsive phase of the flare. The time evolution of thermal energy exhibits a good correspondence with the variations in cumulative non-thermal energy, which suggests that the energy of accelerated particles is efficiently converted to hot flare plasma, implying an effective validation of the Neupert effect.« less

  13. Flare Prediction Using Photospheric and Coronal Image Data

    NASA Astrophysics Data System (ADS)

    Jonas, Eric; Bobra, Monica; Shankar, Vaishaal; Todd Hoeksema, J.; Recht, Benjamin

    2018-03-01

    The precise physical process that triggers solar flares is not currently understood. Here we attempt to capture the signature of this mechanism in solar-image data of various wavelengths and use these signatures to predict flaring activity. We do this by developing an algorithm that i) automatically generates features in 5.5 TB of image data taken by the Solar Dynamics Observatory of the solar photosphere, chromosphere, transition region, and corona during the time period between May 2010 and May 2014, ii) combines these features with other features based on flaring history and a physical understanding of putative flaring processes, and iii) classifies these features to predict whether a solar active region will flare within a time period of T hours, where T = 2 and 24. Such an approach may be useful since, at the present time, there are no physical models of flares available for real-time prediction. We find that when optimizing for the True Skill Score (TSS), photospheric vector-magnetic-field data combined with flaring history yields the best performance, and when optimizing for the area under the precision-recall curve, all of the data are helpful. Our model performance yields a TSS of 0.84 ±0.03 and 0.81 ±0.03 in the T = 2- and 24-hour cases, respectively, and a value of 0.13 ±0.07 and 0.43 ±0.08 for the area under the precision-recall curve in the T=2- and 24-hour cases, respectively. These relatively high scores are competitive with previous attempts at solar prediction, but our different methodology and extreme care in task design and experimental setup provide an independent confirmation of these results. Given the similar values of algorithm performance across various types of models reported in the literature, we conclude that we can expect a certain baseline predictive capacity using these data. We believe that this is the first attempt to predict solar flares using photospheric vector-magnetic field data as well as multiple wavelengths of image

  14. THE MAGNETIC SYSTEMS TRIGGERING THE M6.6 CLASS SOLAR FLARE IN NOAA ACTIVE REGION 11158

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toriumi, Shin; Iida, Yusuke; Bamba, Yumi

    2013-08-20

    We report a detailed event analysis of the M6.6 class flare in the active region (AR) NOAA 11158 on 2011 February 13. AR 11158, which consisted of two major emerging bipoles, showed prominent activity including one X- and several M-class flares. In order to investigate the magnetic structures related to the M6.6 event, particularly the formation process of a flare-triggering magnetic region, we analyzed multiple spacecraft observations and numerical results of a flare simulation. We observed that, in the center of this quadrupolar AR, a highly sheared polarity inversion line (PIL) was formed through proper motions of the major magneticmore » elements, which built a sheared coronal arcade lying over the PIL. The observations lend support to the interpretation that the target flare was triggered by a localized magnetic region that had an intrusive structure, namely, a positive polarity penetrating into a negative counterpart. The geometrical relationship between the sheared coronal arcade and the triggering region is consistent with the theoretical flare model based on the previous numerical study. We found that the formation of the trigger region was due to the continuous accumulation of small-scale magnetic patches. A few hours before the flare occurred, the series of emerged/advected patches reconnected with a pre-existing field. Finally, the abrupt flare eruption of the M6.6 event started around 17:30 UT. Our analysis suggests that in the process of triggering flare activity, all magnetic systems on multiple scales are included, not only the entire AR evolution but also the fine magnetic elements.« less

  15. Elongation of Flare Ribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Jiong; Longcope, Dana W.; Cassak, Paul A.

    2017-03-20

    We present an analysis of the apparent elongation motion of flare ribbons along the polarity inversion line (PIL), as well as the shear of flare loops in several two-ribbon flares. Flare ribbons and loops spread along the PIL at a speed ranging from a few to a hundred km s{sup −1}. The shear measured from conjugate footpoints is consistent with the measurement from flare loops, and both show the decrease of shear toward a potential field as a flare evolves and ribbons and loops spread along the PIL. Flares exhibiting fast bidirectional elongation appear to have a strong shear, whichmore » may indicate a large magnetic guide field relative to the reconnection field in the coronal current sheet. We discuss how the analysis of ribbon motion could help infer properties in the corona where reconnection takes place.« less

  16. Successive X-class Flares and Coronal Mass Ejections Driven by Shearing Motion and Sunspot Rotation in Active Region NOAA 12673

    NASA Astrophysics Data System (ADS)

    Yan, X. L.; Wang, J. C.; Pan, G. M.; Kong, D. F.; Xue, Z. K.; Yang, L. H.; Li, Q. L.; Feng, X. S.

    2018-03-01

    We present a clear case study on the occurrence of two successive X-class flares, including a decade-class flare (X9.3) and two coronal mass ejections (CMEs) triggered by shearing motion and sunspot rotation in active region NOAA 12673 on 2017 September 6. A shearing motion between the main sunspots with opposite polarities began on September 5 and lasted even after the second X-class flare on September 6. Moreover, the main sunspot with negative polarity rotated around its umbral center, and another main sunspot with positive polarity also exhibited a slow rotation. The sunspot with negative polarity at the northwest of the active region also began to rotate counterclockwise before the onset of the first X-class flare, which is related to the formation of the second S-shaped structure. The successive formation and eruption of two S-shaped structures were closely related to the counterclockwise rotation of the three sunspots. The existence of a flux rope is found prior to the onset of two flares by using nonlinear force-free field extrapolation based on the vector magnetograms observed by Solar Dynamics Observatory/Helioseismic and Magnetic Image. The first flux rope corresponds to the first S-shaped structures mentioned above. The second S-shaped structure was formed after the eruption of the first flux rope. These results suggest that a shearing motion and sunspot rotation play an important role in the buildup of the free energy and the formation of flux ropes in the corona that produces solar flares and CMEs.

  17. Highlights of the study of energy release in flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Batchelor, D. A.

    1987-01-01

    From February 26 to March 1, 1979, 32 solar flare investigators attended a workshop at Cambridge, MA to define objectives and devise a scientific program for the study of energy release in flares (SERF) during the coming solar maximum. Herein, some major results of the ensuing five-year effort to observe and understand the flare energy release process and its effects (energetic particle production, coronal and chromospheric heating, electromagnetic radiations, and mass motions and ejections) are reviewed. The central issue - what processes store and release the energy liberated in flares - remains unresolved except in the most general terms (e.g., it is generally agreed that the energy is stored in sheared or stressed magnetic fields and released by field annihilation during some MHD instability). Resolving that issue is still one of the most important goals in solar physics, but the advances during the SERF program have brought it closer.

  18. Coronal ``Wave'': Magnetic Footprint of a Coronal Mass Ejection?

    NASA Astrophysics Data System (ADS)

    Attrill, Gemma D. R.; Harra, Louise K.; van Driel-Gesztelyi, Lidia; Démoulin, Pascal

    2007-02-01

    We investigate the properties of two ``classical'' EUV Imaging Telescope (EIT) coronal waves. The two source regions of the associated coronal mass ejections (CMEs) possess opposite helicities, and the coronal waves display rotations in opposite senses. We observe deep core dimmings near the flare site and also widespread diffuse dimming, accompanying the expansion of the EIT wave. We also report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions and simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behavior is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME magnetic field and quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings and the widespread diffuse dimming are identified as innate characteristics of this process.

  19. MAGNETOHYDRODYNAMIC SIMULATION OF THE X2.2 SOLAR FLARE ON 2011 FEBRUARY 15. II. DYNAMICS CONNECTING THE SOLAR FLARE AND THE CORONAL MASS EJECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, S.; Magara, T.; Choe, G. S.

    2015-04-20

    We clarify a relationship between the dynamics of a solar flare and a growing coronal mass ejection (CME) by investigating the dynamics of magnetic fields during the X2.2-class flare taking place in the solar active region 11158 on 2011 February 15, based on simulation results obtained from Inoue et al. We found that the strongly twisted lines formed through tether-cutting reconnection in the twisted lines of a nonlinear force-free field can break the force balance within the magnetic field, resulting in their launch from the solar surface. We further discover that a large-scale flux tube is formed during the eruptionmore » as a result of the tether-cutting reconnection between the eruptive strongly twisted lines and these ambient weakly twisted lines. The newly formed large flux tube exceeds the critical height of the torus instability. Tether-cutting reconnection thus plays an important role in the triggering of a CME. Furthermore, we found that the tangential fields at the solar surface illustrate different phases in the formation of the flux tube and its ascending phase over the threshold of the torus instability. We will discuss these dynamics in detail.« less

  20. Dynamical behaviour in coronal loops

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard M.

    1986-01-01

    Rapid variability has been found in two active region coronal loops observed by the X-ray Polychromator (XRP) and the Hard X-ray Imaging Spectrometer (HXIS) onboard the Solar Maximum Mission (SMM). There appear to be surprisingly few observations of the short-time scale behavior of hot loops, and the evidence presented herein lends support to the hypothesis that coronal heating may be impulsive and driven by flaring.

  1. Dynamical behaviour in coronal loops

    NASA Astrophysics Data System (ADS)

    Haisch, Bernhard M.

    Rapid variability has been found in two active region coronal loops observed by the X-ray Polychromator (XRP) and the Hard X-ray Imaging Spectrometer (HXIS) onboard the Solar Maximum Mission (SMM). There appear to be surprisingly few observations of the short-time scale behavior of hot loops, and the evidence presented herein lends support to the hypothesis that coronal heating may be impulsive and driven by flaring.

  2. Microflares and the Statistics of X-Ray Flares

    NASA Technical Reports Server (NTRS)

    Hannah, I. G.; Hudson, H. S.; Battaglia, M.; Christe, S.; Kasparova, J.; Krucker, S.; Kundu, M. R.; Veronig, A.

    2011-01-01

    This review surveys the statistics of solar X-ray flares, emphasising the new views that Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) has given us of the weaker events (the microflares). The new data reveal that these microflares strongly resemble more energetic events in most respects; they occur solely within active regions and exhibit high-temperature/nonthermal emissions in approximately the same proportion as major events. We discuss the distributions of flare parameters (e.g., peak flux) and how these parameters correlate, for instance via the Neupert effect. We also highlight the systematic biases involved in intercomparing data representing many decades of event magnitude. The intermittency of the flare/microflare occurrence, both in space and in time, argues that these discrete events do not explain general coronal heating, either in active regions or in the quiet Sun.

  3. SUNQUAKE GENERATION BY CORONAL MAGNETIC RESTRUCTURING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, A. J. B.; Mooney, M. K.; Leake, J. E.

    2016-11-01

    Sunquakes are the surface signatures of acoustic waves in the Sun’s interior that are produced by some but not all flares and coronal mass ejections (CMEs). This paper explores a mechanism for sunquake generation by the changes in magnetic field that occur during flares and CMEs, using MHD simulations with a semiempirical FAL-C atmosphere to demonstrate the generation of acoustic waves in the interior in response to changing magnetic tilt in the corona. We find that Alfvén–sound resonance combined with the ponderomotive force produces acoustic waves in the interior with sufficient energy to match sunquake observations when the magnetic fieldmore » angle changes of the order of 10° in a region where the coronal field strength is a few hundred gauss or more. The most energetic sunquakes are produced when the coronal field is strong, while the variation of magnetic field strength with height and the timescale of the change in tilt are of secondary importance.« less

  4. An interpretation of flare-induced and decayless coronal-loop oscillations as interference patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindman, Bradley W.; Jain, Rekha, E-mail: hindman@solarz.colorado.edu

    2014-04-01

    We present an alternative model of coronal-loop oscillations, which considers that the waves are trapped in a two-dimensional waveguide formed by the entire arcade of field lines. This differs from the standard one-dimensional model which treats the waves as the resonant oscillations of just the visible bundle of field lines. Within the framework of our two-dimensional model, the two types of oscillations that have been observationally identified, flare-induced waves and 'decayless' oscillations, can both be attributed to MHD fast waves. The two components of the signal differ only because of the duration and spatial extent of the source that createsmore » them. The flare-induced waves are generated by strong localized sources of short duration, while the decayless background can be excited by a continuous, stochastic source. Further, the oscillatory signal arising from a localized, short-duration source can be interpreted as a pattern of interference fringes produced by waves that have traveled diverse routes of various pathlengths through the waveguide. The resulting amplitude of the fringes slowly decays in time with an inverse square root dependence. The details of the interference pattern depend on the shape of the arcade and the spatial variation of the Alfvén speed. The rapid decay of this wave component, which has previously been attributed to physical damping mechanisms that remove energy from resonant oscillations, occurs as a natural consequence of the interference process without the need for local dissipation.« less

  5. Coronal manifestations of preflare activity

    NASA Technical Reports Server (NTRS)

    Schmahl, E. J.; Webb, D. F.; Woodgate, B.; Waggett, P.; Bentley, R.; Hurford, G.; Schadee, A.; Schrijver, J.; Harrison, R.; Martens, P.

    1986-01-01

    A variety of coronal manifestations of precursors or preheating for flares are discussed. Researchers found that almost everyone with a telescope sees something before flares. Whether an all-encompassing scenario will ever be developed is not at all clear at present. The clearest example of preflare activity appears to be activated filaments and their manifestations, which presumably are signatures of a changing magnetic field. But researchers have seen two similar eruptions, one without any evidence of emerging flux (Kundu et al., 1985) and the other with colliding poles (Simon et al., 1984). While the reconnection of flux is generally agreed to be required to energize a flare, the emergence of flux from below (at least on short timescales and in compact regions) does not appear to be a necessary condition. In some cases the cancelling of magnetic flux (Martin, 1984) by horizontal motions instead may provide the trigger (Priest, 1985) Researchers found similarities and some differences between these and previous observations. The similarities, besides the frequent involvement of filaments, include compact, multiple precursors which can occur both at and near (not at) the flare site, and the association between coronal sources and activity lower in the atmosphere (i.e., transition zone and chromosphere).

  6. Steady State Model for Solar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Sugiyama, L.; Asgari-Targhi, M.

    2017-12-01

    Solar coronal loops on the surface of the sun provide background magnetic and plasma structures for the release of a significant amount of the sun's energy, through energetic solar flares and coronal mass ejections and more gradual processes. Understanding their steady states is the first step in understanding loop dynamics. A consistent MHD steady state model, for a curved magnetic flux rope that contains plasma, has been developed[1] for simple coronal loops with both ends anchored in the photosphere. Plasma pressure or current makes the loop unstable to expansion in major radius and must be balanced by external forces, such as the solar gravity. The MHD momentum equation has a well defined small parameter ordering in the loop inverse aspect ratio ɛ=a/Ro (minor/major radius). Different types of common coronal loops fall in different parameter regimes, determined by the relative values of the plasma beta β=po/(Bo2/2μo), the MHD gravity parameter Ĝ≡ga/vA2 (the gravitational acceleration g normalized to the minor radius a and shear Alfvén velocity vA), and ɛ. The largest possible gravity, Ĝ ɛ1β, corresponds to the largest loops because it reduces the plasma density at the top of the loop exponentially compared to its lower ends, reducing the downward gravitational force -ρĜ there. The thin loops that are ubiquitous in solar active regions have ``high'' beta, β ɛ1, for ɛ≃0.02, and fit the predicted model scalings. The thicker loops that can give rise to flares and CMEs have ``low'' beta, β ɛ2. Cool loops, such as solar filaments outside active regions, that have a central pressure lower than that of the surrounding corona would have the strongest stability against radial expansion. The model raises a number of questions about the connection of loops to the photosphere and the force-free nature of the magnetic field there. [1] L. Sugiyama, M. Asgari-Targhi, Phys. Plasmas 24, 022904 (2017).

  7. Implications of RHESSI Observations for Solar Flare Models and Energetics

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2006-01-01

    Observations of solar flares in X-rays and gamma-rays provide the most direct information about the hottest plasma and energetic electrons and ions accelerated in flares. The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) has observed over 18000 solar flares in X-rays and gamma-rays since its launch in February of 2002. RHESSI observes the full Sun at photon energies from as low as 3 keV to as high as 17 MeV with a spectral resolution on the order of 1 keV. It also provides images in arbitrary bands within this energy range with spatial resolution as good as 3 seconds of arc. Full images are typically produced every 4 seconds, although higher time resolution is possible. This unprecedented combination of spatial, spectral, and temporal resolution, spectral range and flexibility has led to fundamental advances in our understanding of flares. I will show RHESSI and coordinated observations that confirm coronal magnetic reconnection models for eruptive flares and coronal mass ejections, but also present new puzzles for these models. I will demonstrate how the analysis of RHESSI spectra has led to a better determination of the energy flux and total energy in accelerated electrons, and of the energy in the hot, thermal flare plasma. I will discuss how these energies compare with each other and with the energy contained in other flare-related phenomena such as interplanetary particles and coronal mass ejections.

  8. Size Distributions of Solar Flares and Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-01-01

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast (much > 1000 km/s) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes (alpha values) of power-law size distributions of the peak 1-8 Angs fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes much > 1 pr/sq cm/s/sr) and (b) fast CMEs were approx 1.3-1.4 compared to approx 1.2 for the peak proton fluxes of >10 MeV SEP events and approx 2 for the peak 1-8 Angs fluxes of all SXR flares. The difference of approx 0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  9. TEMPORAL EVOLUTION OF MULTIPLE EVAPORATING RIBBON SOURCES IN A SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, D. R.; Cauzzi, G., E-mail: dgraham@arcetri.astro.it

    2015-07-10

    We present new results from the Interface Region Imaging Spectrograph (IRIS) showing the dynamic evolution of chromospheric evaporation and condensation in a flare ribbon, with the highest temporal and spatial resolution to date. IRIS observed the entire impulsive phase of the X-class flare SOL2014-09-10T17:45 using a 9.4 s cadence “sit-and-stare” mode. As the ribbon brightened successively at new positions along the slit, a unique impulsive phase evolution was observed for many tens of individual pixels in both coronal and chromospheric lines. Each activation of a new footpoint displays the same initial coronal upflows of up to ∼300 km s{sup −1}more » and chromospheric downflows up to 40 km s{sup −1}. Although the coronal flows can be delayed by over 1 minute with respect to those in the chromosphere, the temporal evolution of flows is strikingly similar between all pixels and consistent with predictions from hydrodynamic flare models. Given the large sample of independent footpoints, we conclude that each flaring pixel can be considered a prototypical, “elementary” flare kernel.« less

  10. Prior Flaring as a Complement to Free Magnetic Energy for Forecasting Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2012-01-01

    From a large database of (1) 40,000 SOHO/MDI line-of-sight magnetograms covering the passage of 1,300 sunspot active regions across the 30 deg radius central disk of the Sun, (2) a proxy of each active region's free magnetic energy measured from each of the active region's central-disk-passage magnetograms, and (3) each active region's full-disk-passage history of production of major flares and fast coronal mass ejections (CMEs), we find new statistical evidence that (1) there are aspects of an active region's magnetic field other than the free energy that are strong determinants of the active region's productivity of major flares and fast CMEs in the coming few days, (2) an active region's recent productivity of major flares, in addition to reflecting the amount of free energy in the active region, also reflects these other determinants of coming productivity of major eruptions, and (3) consequently, the knowledge of whether an active region has recently had a major flare, used in combination with the active region's free-energy proxy measured from a magnetogram, can greatly alter the forecast chance that the active region will have a major eruption in the next few days after the time of the magnetogram. The active-region magnetic conditions that, in addition to the free energy, are reflected by recent major flaring are presumably the complexity and evolution of the field.

  11. Explosive plasma flows in a solar flare

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.; Canfield, Richard C.; Metcalf, Thomas R.; Strong, Keith T.

    1988-01-01

    Solar Maximum Mission soft X-ray data and Sacramento Peak Observatory H-alpha observations are combined in a study of the impulsive phase of a solar flare. A blue asymmetry, indicative of upflows, was observed in the coronal Ca XIX line during the soft X-ray rise phase. A red asymmetry, indicative of downflows, was observed simultaneously in chromospheric H-alpha emitted from bright flare kernels during the period of hard X-ray emission. Combining the velocity data with a measurement of coronal electron density, it is shown that the impulsive phase momentum of upflowing soft X-ray-emitting plasma equalled that of the downflowing H-alpha-emitting plasma to within one order of magnitude. In particular, the momentum of the upflowing plasma was 2 x 10 to the 21st g cm/s while that of the downflowing plasma was 7 x 10 to the 21st g cm/s, with a factor of 2 uncertainty on each value. This equality supports the explosive chromospheric evaporation model of solar flares, in which a sudden pressure increase at the footprint of a coronal loop produces oppositely directed flows in the heated plasma.

  12. A search for the origins of a possible coronal mass ejection in the low corona

    NASA Technical Reports Server (NTRS)

    Neupert, Werner M.

    1988-01-01

    Evidence for coronal and chromospheric precursors of a hypothesized coronal mass ejection is sought in OSO-7 observations of a filament eruption and the subsequent flare. Large-scale changes in the corona above the active region were clearly present for at least several minutes before the flare, culminating in the activation and eruption of two widely separated filaments; the eruption of one of the preexisting filaments initiated magnetic reconnections and energy releases in the low corona, generating the observed chromospheric flare.

  13. Generation Mechanisms of Quasi-parallel and Quasi-circular Flare Ribbons in a Confined Flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Perez, Aaron; Thalmann, Julia K.; Veronig, Astrid M.

    We analyze a confined multiple-ribbon M2.1 flare (SOL2015-01-29T11:42) that originated from a fan-spine coronal magnetic field configuration, within active region NOAA 12268. The observed ribbons form in two steps. First, two primary ribbons form at the main flare site, followed by the formation of secondary ribbons at remote locations. We observe a number of plasma flows at extreme-ultraviolet temperatures during the early phase of the flare (as early as 15 minutes before the onset) propagating toward the formation site of the secondary ribbons. The secondary ribbon formation is co-temporal with the arrival of the pre-flare generated plasma flows. The primarymore » ribbons are co-spatial with Ramaty High Energy Spectroscopic Imager ( RHESSI ) hard X-ray sources, whereas no enhanced X-ray emission is detected at the secondary ribbon sites. The (E)UV emission, associated with the secondary ribbons, peaks ∼1 minute after the last RHESSI hard X-ray enhancement. A nonlinear force-free model of the coronal magnetic field reveals that the secondary flare ribbons are not directly connected to the primary ribbons, but to regions nearby. Detailed analysis suggests that the secondary brightenings are produced due to dissipation of kinetic energy of the plasma flows (heating due to compression), and not due to non-thermal particles accelerated by magnetic reconnection, as is the case for the primary ribbons.« less

  14. A New Variety of CMEs: Streamer Puffs from Compact Ejective Flares

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Bemporad, A.; Moore, R. L.; Poletto, G.

    2005-01-01

    We present SOHO EIT, UVCS and LASCO observations of recurrent (6 --- 8 events per day) narrow (angular widths of about 3 --- 10 degrees) Coronal Mass Ejections (CMEs) which occurred over 2002 November 26--29. The active region where the ejections originate is near the base of a coronal streamer that appears to be unperturbed by the events and keeps stable in time; hence we interpret the observed events as a new class of recursive narrow CMEs that we call "streamer puffs." EIT 304 angstrom (He II) images indicate that the puffs result from compact ejective flares embedded in the streamer, with the ejections from the flares having velocities 100 --- 200 kilometers per second. Most ejections are closely correlated with coronal "jets" seen at 1.7 solar radii in the UVCS data, and a subset of these ejections and jets correspond to streamer puffs observed in LASCO coronagraph images. There are, however, more compact flares and jets than streamer puffs during the observation period, indicating that only a subset of the flare-associated ejections are energetic enough to escape into the heliosphere.

  15. SLIPPING MAGNETIC RECONNECTION, CHROMOSPHERIC EVAPORATION, IMPLOSION, AND PRECURSORS IN THE 2014 SEPTEMBER 10 X1.6-CLASS SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudík, Jaroslav; Karlický, Marian; Dzifčáková, Elena

    2016-05-20

    We investigate the occurrence of slipping magnetic reconnection, chromospheric evaporation, and coronal loop dynamics in the 2014 September 10 X-class flare. Slipping reconnection is found to be present throughout the flare from its early phase. Flare loops are seen to slip in opposite directions toward both ends of the ribbons. Velocities of 20–40 km s{sup −1} are found within time windows where the slipping is well resolved. The warm coronal loops exhibit expanding and contracting motions that are interpreted as displacements due to the growing flux rope that subsequently erupts. This flux rope existed and erupted before the onset ofmore » apparent coronal implosion. This indicates that the energy release proceeds by slipping reconnection and not via coronal implosion. The slipping reconnection leads to changes in the geometry of the observed structures at the Interface Region Imaging Spectrograph slit position, from flare loop top to the footpoints in the ribbons. This results in variations of the observed velocities of chromospheric evaporation in the early flare phase. Finally, it is found that the precursor signatures, including localized EUV brightenings as well as nonthermal X-ray emission, are signatures of the flare itself, progressing from the early phase toward the impulsive phase, with the tether-cutting being provided by the slipping reconnection. The dynamics of both the flare and outlying coronal loops is found to be consistent with the predictions of the standard solar flare model in three dimensions.« less

  16. Constraints on active region coronal heating properties from observations and modeling of chromospheric, transition region, and coronal emission

    NASA Astrophysics Data System (ADS)

    Testa, P.; Polito, V.; De Pontieu, B.; Carlsson, M.; Reale, F.; Allred, J. C.; Hansteen, V. H.

    2017-12-01

    We investigate coronal heating properties in active region cores in non-flaring conditions, using high spatial, spectral, and temporal resolution chromospheric/transition region/coronal observations coupled with detailed modeling. We will focus, in particular, on observations with the Interface Region Imaging Spectrograph (IRIS), joint with observations with Hinode (XRT and EIS) and SDO/AIA. We will discuss how these observations and models (1D HD and 3D MHD, with the RADYN and Bifrost codes) provide useful diagnostics of the coronal heating processes and mechanisms of energy transport.

  17. Two Components in Major Solar Particle Events

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Cane, H. V.; vonRosenvinge, T. T.; Cohen, C. M. S.; Mewaldt, R. A.

    2003-01-01

    A study has been made of 29 intense, solar particle events observed in the energy range 25-100 MeV/nuc near Earth in the years 1997 through 2001. It is found that the majority of the events (19/29) had Fe to O ratios which were reasonably constant with time and energy, and with values above coronal. These all originated on the Sun s western hemisphere and most had intensities that rose rapidly at the time of an associated flare, and coronal mass ejection (CME), and then decayed more gradually. Few interplanetary shocks were observed during these increases. The spectra were mainly power laws. The remaining 10 events had different intensity-time profiles and Fe to O ratios that varied with time and energy with values at or below coronal. Most of these originated near central meridian and 6 had strong interplanetary shocks that were observed near Earth. In general the spectra were not power laws but steepened at high energies, particularly for Fe. There were four events with two peaks in the intensity-time profiles, the first near the time of the associated flare and the other at shock passage. The results, considered in the light of other recent work, suggest that the high energy particles that occur shortly after flares are indeed flare particles. At the highest rigidities considered here shock-accelerated particles are uncommon and are observed only in association with unusually fast shocks.

  18. Understanding Coronal Dimming and its Relation to Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Mason, J. P.; Woods, T. N.; Caspi, A.; Hock, R. A.

    2013-12-01

    When extreme ultraviolet (EUV) emitting material in the corona is lost during a coronal mass ejection (CME), the solar spectral irradiance is impacted and these effects are observed in data from the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) and Atmospheric Imaging Assembly (AIA). This process is one of the physical mechanisms that can lead to the observation of 'coronal dimming,' a phenomenon lasting eight hours on average and rarely persisting longer than one day. Other mechanisms that can cause observed dimming include obscuration of bright material (e.g., flare arcade) by dark material (e.g., filament), temperature evolution (e.g., cool plasma being heated causing transient decreases in characteristic emission lines), and propagation of global waves. Each of these processes has a unique spectral signature, which will be explained and exemplified. In particular, the 7 August 2010 M1.0 flare with associated ~870 km/s CME will be analyzed in detail using both AIA and EVE to demonstrate new techniques for isolating dimming due to the CME ('core dimming'). Further analysis will estimate CME mass and velocity using only parameterization of core dimming and compare these estimates to traditionally calculated CME kinetics.

  19. Force-Free Magnetic Fields Calculated from Automated Tracing of Coronal Loops with AIA/SDO

    NASA Astrophysics Data System (ADS)

    Aschwanden, M. J.

    2013-12-01

    One of the most realistic magnetic field models of the solar corona is a nonlinear force-free field (NLFFF) solution. There exist about a dozen numeric codes that compute NLFFF solutions based on extrapolations of photospheric vector magnetograph data. However, since the photosphere and lower chromosphere is not force-free, a suitable correction has to be applied to the lower boundary condition. Despite of such "pre-processing" corrections, the resulting theoretical magnetic field lines deviate substantially from observed coronal loop geometries. - Here we developed an alternative method that fits an analytical NLFFF approximation to the observed geometry of coronal loops. The 2D coordinates of the geometry of coronal loop structures observed with AIA/SDO are traced with the "Oriented Coronal CUrved Loop Tracing" (OCCULT-2) code, an automated pattern recognition algorithm that has demonstrated the fidelity in loop tracing matching visual perception. A potential magnetic field solution is then derived from a line-of-sight magnetogram observed with HMI/SDO, and an analytical NLFFF approximation is then forward-fitted to the twisted geometry of coronal loops. We demonstrate the performance of this magnetic field modeling method for a number of solar active regions, before and after major flares observed with SDO. The difference of the NLFFF and the potential field energies allows us then to compute the free magnetic energy, which is an upper limit of the energy that is released during a solar flare.

  20. Flares, ejections, proton events

    NASA Astrophysics Data System (ADS)

    Belov, A. V.

    2017-11-01

    Statistical analysis is performed for the relationship of coronal mass ejections (CMEs) and X-ray flares with the fluxes of solar protons with energies >10 and >100 MeV observed near the Earth. The basis for this analysis was the events that took place in 1976-2015, for which there are reliable observations of X-ray flares on GOES satellites and CME observations with SOHO/LASCO coronagraphs. A fairly good correlation has been revealed between the magnitude of proton enhancements and the power and duration of flares, as well as the initial CME speed. The statistics do not give a clear advantage either to CMEs or the flares concerning their relation with proton events, but the characteristics of the flares and ejections complement each other well and are reasonable to use together in the forecast models. Numerical dependences are obtained that allow estimation of the proton fluxes to the Earth expected from solar observations; possibilities for improving the model are discussed.

  1. Solar Coronal and photospheric abundances from solar energetic particle measurements

    NASA Technical Reports Server (NTRS)

    Breneman, H.; Stone, E. C.

    1985-01-01

    Solar energetic particle (SEP) elemental abundance data from the cosmic ray subsystem (CRS) aboard the Voyager 1 and 2 spacecraft are used to derive unfractionated coronal and photospheric abundances for elements with 3 Z or = 30. It is found that the ionic charge-to-mass ratio (Q/M) is the principal organizing parameter for the fractionation of SEPs by acceleration and propagation processes and for flare-to-flare variability, making possible a single-parameter Q/M-dependent correction to the average SEP abundances to obtain unfractionated coronal abundances. A further correction based on first ionization potential allows the determination of unfractionated photospheric abundances.

  2. Solar coronal and photospheric abundances from solar energetic particle measurements

    NASA Technical Reports Server (NTRS)

    Breneman, H. H.; Stone, E. C.

    1985-01-01

    Solar energetic particle (SEP) elemental abundance data from the cosmic ray subsystem (CRS) aboard the Voyager 1 and 2 spacecraft are used to derive unfractionated coronal and photospheric abundances for elements with Z = 6-30. It is found that the ionic charge-to-mass ratio (Q/M) is the principal organizing parameter for the fractionation of SEPs by acceleration and propagation processes and for flare-to-flare variability, making possible a single-parameter Q/M-dependent correction to the average SEP abundances to obtain unfractionated coronal abundances. A further correction based on first ionization potential allows the determination of unfractionated photospheric abundances.

  3. Solar coronal and photospheric abundances from solar energetic particle measurements

    NASA Technical Reports Server (NTRS)

    Breneman, H.; Stone, E. C.

    1985-01-01

    Solar energetic particle (SEP) elemental abundance data from the Cosmic Ray Subsystem (CRS) aboard the Voyager 1 and 2 spacecraft are used to derive unfractionated coronal and photospheric abundances for elements with 3 = or Z or = 30. The ionic charge-to-mass ratio (Q/M) is the principal organizing parameter for the fractionation of SEPs by acceleration and propagation processes and for flare-to-flare variability, making possible a single-parameter Q/M-dependent correction to the average SEP abundances to obtain unfractionated coronal abundances. A further correction based on first ionization potential allows the determination of unfractionated photospheric abundances.

  4. On Heating the Sun's Corona by Magnetic Explosions: Feasibility in Active Regions and prospects for Quiet Regions and Coronal Holes

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.; Suess, Steven T.

    1999-01-01

    We build a case for the persistent strong coronal heating in active regions and the pervasive quasi-steady heating of the corona in quiet regions and coronal holes being driven in basically the same way as the intense transient heating in solar flares: by explosions of sheared magnetic fields in the cores of initially closed bipoles. We begin by summarizing the observational case for exploding sheared core fields being the drivers of a wide variety of flare events, with and without coronal mass ejections. We conclude that the arrangement of an event's flare heating, whether there is a coronal mass ejection, and the time and place of the ejection relative to the flare heating are all largely determined by four elements of the form and action of the magnetic field: (1) the arrangement of the impacted, interacting bipoles participating in the event, (2) which of these bipoles are active (have sheared core fields that explode) and which are passive (are heated by injection from impacted active bipoles), (3) which core field explodes first, and (4) which core-field explosions are confined within the closed field of their bipoles and which ejectively open their bipoles. We then apply this magnetic-configuration framework for flare heating to the strong coronal heating observed by the Yohkoh Soft X-ray Telescope in an active region with strongly sheared core fields observed by the MSFC vector magnetograph. All of the strong coronal heating is in continually microflaring sheared core fields or in extended loops rooted against the active core fields. Thus, the strong heating occurs in field configurations consistent with the heating being driven by frequent core-field explosions that are smaller but similar to those in confined flares and flaring arches. From analysis of the thermal and magnetic energetics of two selected core-field microflares and a bright extended loop, we find that (1) it is energetically feasible for the sheared core fields to drive all of the coronal

  5. Energy conversion in the coronal plasma

    NASA Technical Reports Server (NTRS)

    Martens, P. C. H.

    1986-01-01

    Solar and stellar X-ray emission are the observed waste products of the interplay between magnetic fields and the motion of stellar plasma. Theoretical understanding of the process of coronal heating is of utmost importance, since the high temperature is what defines the corona in the first place. Most of the research described deals with the aspects of the several rivalling theories for coronal heating. The rest of the papers deal with processes of energy conversion related to flares.

  6. Biggest Solar Flare on Record

    NASA Technical Reports Server (NTRS)

    2002-01-01

    View an animation from the Extreme ultraviolet Imaging Telescope (EIT). At 4:51 p.m. EDT, on Monday, April 2, 2001, the sun unleashed the biggest solar flare ever recorded, as observed by the Solar and Heliospheric Observatory (SOHO) satellite. The flare was definitely more powerful than the famous solar flare on March 6, 1989, which was related to the disruption of power grids in Canada. This recent explosion from the active region near the sun's northwest limb hurled a coronal mass ejection into space at a whopping speed of roughly 7.2 million kilometers per hour. Luckily, the flare was not aimed directly towards Earth. Solar flares, among the solar system's mightiest eruptions, are tremendous explosions in the atmosphere of the Sun capable of releasing as much energy as a billion megatons of TNT. Caused by the sudden release of magnetic energy, in just a few seconds flares can accelerate solar particles to very high velocities, almost to the speed of light, and heat solar material to tens of millions of degrees. Solar ejections are often associated with flares and sometimes occur shortly after the flare explosion. Coronal mass ejections are clouds of electrified, magnetic gas weighing billions of tons ejected from the Sun and hurled into space with speeds ranging from 12 to 1,250 miles per second. Depending on the orientation of the magnetic fields carried by the ejection cloud, Earth-directed coronal mass ejections cause magnetic storms by interacting with the Earth's magnetic field, distorting its shape, and accelerating electrically charged particles (electrons and atomic nuclei) trapped within. Severe solar weather is often heralded by dramatic auroral displays, northern and southern lights, and magnetic storms that occasionally affect satellites, radio communications and power systems. The flare and solar ejection has also generated a storm of high-velocity particles, and the number of particles with ten million electron-volts of energy in the space near

  7. A Statistical Study of Rapid Sunspot Structure Change Associated with Flares

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Zhong; Liu, Chang; Song, Hui; Deng, Na; Tan, Chang-Yi; Wang, Hai-Min

    2007-10-01

    We reported recently some rapid changes of sunspot structure in white-light (WL) associated with major flares. We extend the study to smaller events and present here results of a statistical study of this phenomenon. In total, we investigate 403 events from 1998 May 9 to 2004 July 17, including 40 X-class, 174 M-class, and 189 C-class flares. By monitoring the structure of the flaring active regions using the WL observations from the Transition Region and Coronal Explorer (TRACE), we find that segments in the outer sunspot structure decayed rapidly right after many flares; and that, on the other hand, the central part of sunspots near the flare-associated magnetic neutral line became darkened. These rapid and permanent changes are evidenced in the time profiles of WL mean intensity and are not likely resulted from the flare emissions. Our study further shows that the outer sunspot structure decay as well as the central structure darkening are more likely to be detected in larger solar flares. For X-class flares, over 40% events show distinct sunspot structure change. For M- and C-class flares, this percentage drops to 17% and 10%, respectively. The results of this statistical study support our previously proposed reconnection picture, i.e., the flare-related magnetic fields evolve from a highly inclined to a more vertical configuration.

  8. Two-phase Heating in Flaring Loops

    NASA Astrophysics Data System (ADS)

    Zhu, Chunming; Qiu, Jiong; Longcope, Dana W.

    2018-03-01

    We analyze and model a C5.7 two-ribbon solar flare observed by the Solar Dynamics Observatory, Hinode, and GOES on 2011 December 26. The flare is made of many loops formed and heated successively over one and half hours, and their footpoints are brightened in the UV 1600 Å before enhanced soft X-ray and EUV missions are observed in flare loops. Assuming that anchored at each brightened UV pixel is a half flaring loop, we identify more than 6700 half flaring loops, and infer the heating rate of each loop from the UV light curve at the footpoint. In each half loop, the heating rate consists of two phases: intense impulsive heating followed by a low-rate heating that is persistent for more than 20 minutes. Using these heating rates, we simulate the evolution of their coronal temperatures and densities with the model of the “enthalpy-based thermal evolution of loops.” In the model, suppression of thermal conduction is also considered. This model successfully reproduces total soft X-ray and EUV light curves observed in 15 passbands by four instruments GOES, AIA, XRT, and EVE. In this flare, a total energy of 4.9 × 1030 erg is required to heat the corona, around 40% of this energy is in the slow-heating phase. About two-fifths of the total energy used to heat the corona is radiated by the coronal plasmas, and the other three fifth transported to the lower atmosphere by thermal conduction.

  9. Evidence of thermal conduction depression in hot coronal loops

    NASA Astrophysics Data System (ADS)

    Wang, Tongjiang; Ofman, Leon; Sun, Xudong; Provornikova, Elena; Davila, Joseph

    2015-08-01

    Slow magnetoacoustic waves were first detected in hot (>6 MK) flare loops by the SOHO/SUMER spectrometer as Doppler shift oscillations in Fe XIX and Fe XXI lines. These oscillations are identified as standing slow-mode waves because the estimated phase speeds are close to the sound speed in the loop and some cases show a quarter period phase shift between velocity and intensity oscillations. The observed very rapid excitation and damping of standing slow mode waves have been studied by many authors using theories and numerical simulations, however, the exact mechanisms remain not well understood. Recently, flare-induced longitudinal intensity oscillations in hot post-flare loops have been detected by SDO/AIA. These oscillations have the similar physical properties as SUMER loop oscillations, and have been interpreted as the slow-mode waves. The multi-wavelength AIA observations with high spatio-temporal resolution and wide temperature coverage allow us to explore the wave excitation and damping mechanisms with an unprecedented detail to develope new coronal seismology. In this paper, we present accurate measurements of the effective adiabatic index (γeff) in the hot plasma from the electron temperature and density wave signals of a flare-induced longitudinal wave event using SDO/AIA data. Our results strikingly and clearly reveal that thermal conduction is highly depressed in hot (˜10 MK) post-flare loops and suggest that the compressive viscosity is the dominant wave damping mechanism which allows determination of the viscosity coefficient from the observables by coronal seismology. This new finding challenges our current understanding of thermal energy transport in solar and stellar flares, and may provide an alternative explanation of long-duration events and enhance our understand of coronal heating mechanism. We will discuss our results based on non-ideal MHD theory and simulations. We will also discuss the flare trigger mechanism based on magnetic topology

  10. Proton Flares in Solar Activity Complexes: Possible Origins and Consequences

    NASA Astrophysics Data System (ADS)

    Isaeva, E. S.; Tomozov, V. M.; Yazev, S. A.

    2018-03-01

    Solar flares observed during the 24th solar-activity cycle and accompanied by fluxes of particles detected at the Earth's orbit with intensities exceeding 10 particles cm-2 s-1 and energies of more than 10 MeV per particle mainly occurred in activity complexes (82% of cases), with 80% of these occurring no more than 20 heliographic degrees from the nearest coronal holes. The correlation between the X-ray classes of flares and the proton fluxes detected at the Earth's orbit is weak. The work presented here supports the hypothesis that the leakage of particles into the heliosphere is due to the existence of long-lived magnetic channels, which facilitate the transport of flare-accelerated particles into the boundary regions of open magnetic structures of coronal holes. The possible contribution of exchange reconnection in the formation of such channels and the role of exchange reconnection in the generation of flares are discussed.

  11. Principle of Minimum Energy in Magnetic Reconnection in a Self-organized Critical Model for Solar Flares

    NASA Astrophysics Data System (ADS)

    Farhang, Nastaran; Safari, Hossein; Wheatland, Michael S.

    2018-05-01

    Solar flares are an abrupt release of magnetic energy in the Sun’s atmosphere due to reconnection of the coronal magnetic field. This occurs in response to turbulent flows at the photosphere that twist the coronal field. Similar to earthquakes, solar flares represent the behavior of a complex system, and expectedly their energy distribution follows a power law. We present a statistical model based on the principle of minimum energy in a coronal loop undergoing magnetic reconnection, which is described as an avalanche process. We show that the distribution of peaks for the flaring events in this self-organized critical system is scale-free. The obtained power-law index of 1.84 ± 0.02 for the peaks is in good agreement with satellite observations of soft X-ray flares. The principle of minimum energy can be applied for general avalanche models to describe many other phenomena.

  12. Particle propagation, wave growth and energy dissipation in a flaring flux tube

    NASA Technical Reports Server (NTRS)

    White, S. M.; Melrose, D. B.; Dulk, G. A.

    1986-01-01

    Wave amplification by downgoing particles in a common flare model is investigated. The flare is assumed to occur at the top of a coronal magnetic flux loop, and results in the heating of plasma in the flaring region. The hot electrons propagate down the legs of the flux tube towards increasing magnetic field. It is simple to demonstrate that the velocity distributions which result in this model are unstable to both beam instabilities and cyclotron maser action. An explanation is presented for the propagation effects on the distribution, and the properties of the resulting amplified waves are explored, concentrating on cyclotron maser action, which has properties (emission in the z mode below the local gyrofrequency) quite different from maser action by other distributions considered in the context of solar flares. The z mode waves will be damped in the coronal plasma surrounding the flaring flux tube and lead to heating there. This process may be important in the overall energy budget of the flare. The downgoing maser is compared with the loss cone maser, which is more likely to produce observable bursts.

  13. Solar and stellar coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1989-01-01

    Progress in observational, theoretical, and radio studies of coronal plasmas is summarized. Specifically work completed in the area of solar and stellar magnetic fields, related photospheric phenomena and the relationships between magnetism, rotation, coronal and chromospheric emission in solar-like stars is described. Also outlined are theoretical studies carried out in the following areas, among others: (1) neutral beams as the dominant energy transport mechanism in two ribbon-flares; (2) magneto hydrodynamic and circuit models for filament eruptions; and (3) studies of radio emission mechanisms in transient events. Finally, radio observations designed for coronal activity studies of the sun and of solar-type coronae are described. A bibliography of publications and talks is provided along with reprints of selected articles.

  14. TEMPORAL EVOLUTION AND SPATIAL DISTRIBUTION OF WHITE-LIGHT FLARE KERNELS IN A SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawate, T.; Ishii, T. T.; Nakatani, Y.

    2016-12-10

    On 2011 September 6, we observed an X2.1-class flare in continuum and H α with a frame rate of about 30 Hz. After processing images of the event by using a speckle-masking image reconstruction, we identified white-light (WL) flare ribbons on opposite sides of the magnetic neutral line. We derive the light curve decay times of the WL flare kernels at each resolution element by assuming that the kernels consist of one or two components that decay exponentially, starting from the peak time. As a result, 42% of the pixels have two decay-time components with average decay times of 15.6 andmore » 587 s, whereas the average decay time is 254 s for WL kernels with only one decay-time component. The peak intensities of the shorter decay-time component exhibit good spatial correlation with the WL intensity, whereas the peak intensities of the long decay-time components tend to be larger in the early phase of the flare at the inner part of the flare ribbons, close to the magnetic neutral line. The average intensity of the longer decay-time components is 1.78 times higher than that of the shorter decay-time components. If the shorter decay time is determined by either the chromospheric cooling time or the nonthermal ionization timescale and the longer decay time is attributed to the coronal cooling time, this result suggests that WL sources from both regions appear in 42% of the WL kernels and that WL emission of the coronal origin is sometimes stronger than that of chromospheric origin.« less

  15. Some Features of the Variation of the Magnetic Field Characteristics in the Umbra of Sunspots During Flares and Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Zagainova, Yu. S.; Fainshtein, V. G.; Rudenko, G. V.; Obridko, V. N.

    2017-12-01

    The observed variations of the magnetic properties of sunspots during eruptive events (solar flares and coronal mass ejections (CMEs)) are discussed. Variations of the magnetic field characteristics in the umbra of the sunspots of active regions (ARs) recorded during eruptive events on August 2, 2011, March 9, 2012, April 11, 2013, January 7, 2014, and June 18, 2015, are studied. The behavior of the maximum of the total field strength B max, the minimum inclination angle of the field lines to the radial direction from the center of the Sun αmin (i.e., the inclination angle of the axis of the magnetic tube from the sunspot umbra), and values of these parameters B mean and αmean mean within the umbra are analyzed. The main results of our investigation are discussed by the example of the event on August 2, 2011, but, in general, the observed features of the variation of magnetic field properties in AR sunspots are similar for all of the considered eruptive events. It is shown that, after the flare onset in six AR sunspots on August 2, 2011, the behavior of the specified magnetic field parameters changes in comparison with that observed before the flare onset.

  16. Coronal disturbances and their terrestrial effects /Tutorial Lecture/

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1983-01-01

    An assessment is undertaken of recent approaches to the prediction of the interplanetary consequences of coronal disturbances, with attention to the relationships of shocks and energetic particles to coronal transients, of proton events to gamma-ray and microwave bursts, of geomagnetic storms to filament eruptions, and of solar wind increases to the flare site magnetic field direction. A discussion is given concerning the novel phenomenon of transient coronal holes, which appear astride the long decay enhancements of 2-50 A X-ray emission following H-alpha filament eruptions. These voids in the corona are similar to long-lived coronal holes, which are the sources of high speed solar wind streams. The transient coronal holes may also be associated with transient solar wind speed increases.

  17. Internal and External reconnection in a Series of Homologous Solar Flares

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Using data from the Extreme Ultraviolet Telescope (EIT) on SOHO and the Soft X-ray Telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in NOAA AR 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X-rays. In EIT, each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approximately 20 km/s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the. time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions, but modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a CME. External reconnection, first occurring between the escaping CME and the coronal hole field, and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions [Antiochos, 1998], although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively, are released primarily by the internal reconnection.

  18. Flares observed by the normal incidence X-ray telescope on 1989 September 11

    NASA Technical Reports Server (NTRS)

    Herant, M.; Pardo, F.; Spiller, E.; Golub, L.

    1991-01-01

    Two solar flare events have been observed in soft X-rays during a sounding-rocket flight of the Normal-Incidence X-ray Telescope payload on September 11, 1989. The flare in X-rays involves a single bright loop crossing the neutral line, and having its footpoints at the southern ends of the ribbons; this loop accounts for more than 66 percent of the emission. Within the remainder of each of the flare ribbons, a complex coronal structure is also observed to be interacting with the main flare loop. A second event, in an active region at the limb, has a strong correlation with H-alpha images obtained at the same time. This indicates the coexistence, and indeed the close proximity, of coronal and chromospheric temperature material. Interpretations of this phenomenon are discussed.

  19. Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops

    NASA Astrophysics Data System (ADS)

    Duan, Aiying; Jiang, Chaowei; Hu, Qiang; Zhang, Huai; Gary, G. Allen; Wu, S. T.; Cao, Jinbin

    2017-06-01

    Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE-MHD-NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO/AIA. It is found that the CESE-MHD-NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ˜10°. This suggests that the CESE-MHD-NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (˜30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.

  20. Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Aiying; Zhang, Huai; Jiang, Chaowei

    Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE–MHD–NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from themore » region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO /AIA. It is found that the CESE–MHD–NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ∼10°. This suggests that the CESE–MHD–NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (∼30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.« less

  1. Coronal "wave": Magnetic Footprint Of A Cme?

    NASA Astrophysics Data System (ADS)

    Attrill, Gemma; Harra, L. K.; van Driel-Gesztelyi, L.; Demoulin, P.; Wuelser, J.

    2007-05-01

    We propose a new mechanism for the generation of "EUV coronal waves". This work is based on new analysis of data from SOHO/EIT, SOHO/MDI & STEREO/EUVI. Although first observed in 1997, the interpretation of coronal waves as flare-induced or CME-driven remains a debated topic. We investigate the properties of two "classical" SOHO/EIT coronal waves in detail. The source regions of the associated CMEs possess opposite helicities & the coronal waves display rotations in opposite senses. We observe deep dimmings near the flare site & also widespread diffuse dimming, accompanying the expansion of the EIT wave. We report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions & simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behaviour is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME & quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings & widespread diffuse dimming are identified as innate characteristics of this process. In addition we present some of the first analysis of a STEREO/EUVI limb coronal wave. We show how the evolution of the diffuse bright front & dimmings can be understood in terms of the model described above. We show that an apparently stationary part of the bright front can be understood in terms of magnetic interchange reconnections between the expanding CME & the "open" magnetic field of a low-latitude coronal hole. We use both the SOHO/EIT & STEREO/EUVI events to demonstrate that through successive reconnections, this new model provides a natural mechanism via which CMEs can become large-scale in the lower corona.

  2. Ion Acceleration in Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.; Weir, Sue B.

    1996-01-01

    Solar flares are among the most energetic and interesting phenomena in the Solar system, releasing up to 1032 ergs of energy on timescales of several tens of seconds to several tens of minutes. Much of this energy is in the form of suprathermal electrons and ions, which remain trapped at the Sun and produce a wide variety of radiations, as well as escape into interplanetary space, where they can be directly observed. The radiation from trapped particles consists in general of (1) continuum emission; (2) narrow gamma-ray nuclear deexcitation lines; and (3) high-energy neutrons observed in space or by ground-based neutron monitors. The particles that escape into space consist of both electrons and ions, which often have compositions quite different than that of the ambient solar atmosphere. Flares thus present many diagnostics of the particle acceleration mechanism(s), the identification of which is the ultimate goal of flare research. Moreover, flares in fact offer the only opportunity in astrophysics to study the simultaneous energization of both electrons and ions. Hopefully, an understanding of flares with their wealth of diagnostic data will lead to a better understanding of particle acceleration at other sites in the Universe. It is now generally accepted that flares are roughly divided into two classes: impulsive and gradual. Gradual events are large, occur high in the corona, have long-duration soft and hard X-rays and gamma rays, are electron poor, are associated with Type II radio emission and coronal mass ejections (CMEs), and produce energetic ions with coronal abundance ratios. Impulsive events are more compact, occur lower in the corona, produce short-duration radiation, and exhibit dramatic abundance enhancements in the energetic ions. Their He-3/He-4 ratio is - 1, which is a huge increase over the coronal value of about 5 x 10(exp -4), and they also posses smaller but still significant enhancements of Ne, Mg, Si, and Fe relative to He-4, C, N, and O

  3. SLIPPING MAGNETIC RECONNECTIONS WITH MULTIPLE FLARE RIBBONS DURING AN X-CLASS SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing, E-mail: ruishengzheng@sdu.edu.cn

    2016-06-01

    With the observations of the Solar Dynamics Observatory , we present the slipping magnetic reconnections with multiple flare ribbons (FRs) during an X1.2 eruptive flare on 2014 January 7. A center negative polarity was surrounded by several positive ones, and three FRs appeared. The three FRs showed apparent slipping motions, and hook structures formed at their ends. Due to the moving footpoints of the erupting structures, one tight semi-circular hook disappeared after the slippage along its inner and outer edges, and coronal dimmings formed within the hook. The east hook also faded as a result of the magnetic reconnection betweenmore » the arcades of a remote filament and a hot loop that was impulsively heated by the under flare loops. Our results are accordant with the slipping magnetic reconnection regime in three-dimensional standard model for eruptive flares. We suggest that the complex structures of the flare are likely a consequence of the more complex flux distribution in the photosphere, and the eruption involves at least two magnetic reconnections.« less

  4. CONSTRAINING SOLAR FLARE DIFFERENTIAL EMISSION MEASURES WITH EVE AND RHESSI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caspi, Amir; McTiernan, James M.; Warren, Harry P.

    2014-06-20

    Deriving a well-constrained differential emission measure (DEM) distribution for solar flares has historically been difficult, primarily because no single instrument is sensitive to the full range of coronal temperatures observed in flares, from ≲2 to ≳50 MK. We present a new technique, combining extreme ultraviolet (EUV) spectra from the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory with X-ray spectra from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), to derive, for the first time, a self-consistent, well-constrained DEM for jointly observed solar flares. EVE is sensitive to ∼2-25 MK thermal plasma emission, and RHESSI to ≳10 MK; together, the twomore » instruments cover the full range of flare coronal plasma temperatures. We have validated the new technique on artificial test data, and apply it to two X-class flares from solar cycle 24 to determine the flare DEM and its temporal evolution; the constraints on the thermal emission derived from the EVE data also constrain the low energy cutoff of the non-thermal electrons, a crucial parameter for flare energetics. The DEM analysis can also be used to predict the soft X-ray flux in the poorly observed ∼0.4-5 nm range, with important applications for geospace science.« less

  5. The structure of high-temperature solar flare plasma in non-thermal flare models

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1985-01-01

    Analytic differential emission measure distributions have been derived for coronal plasma in flare loops heated both by collisions of high-energy suprathermal electrons with background plasma, and by ohmic heating by the beam-normalizing return current. For low densities, reverse current heating predominates, while for higher densities collisional heating predominates. There is thus a minimum peak temperature in an electron-heated loop. In contrast to previous approximate analyses, it is found that a stable reverse current can dominate the heating rate in a flare loop, especially in the low corona. Two 'scaling laws' are found which relate the peak temperature in the loop to the suprathermal electron flux. These laws are testable observationally and constitute a new diagnostic procedure for examining modes of energy transport in flaring loops.

  6. A Survey of Coronal Dimmings and EIT Wave Transients

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara J.

    2003-01-01

    We present the results of a comprehensive catalog of EIT wave transients and coronal dimmings. We will compiled a set of more than 170 events, and we present strong evidence for the association of the co-development of coronal dimmings and EIT waves. Both limb and disk events are included in this study. We also include the speeds, locations, and associated flare timing in this study.

  7. Coordinated XTE Observations of Coronal Structure and Flares on the Rs CVn Binary Sigma(sup 2) CrB

    NASA Technical Reports Server (NTRS)

    Brown, Alexander

    1999-01-01

    This NASA grant supported my RXTE observing and data analysis during AO2. The research involved a 100 kilosecond observation of the active RS CVn binary sigma(sup 2) CrB obtained on 1997 March 11-13. This observation covered two orbits of the binary (2.5 days elapsed time) as part of a coordinated satellite and ground-based study of coronal structure and flaring within this system. Simultaneous data was obtained from the ASCA X-ray satellite and the Very Large Array radio telescope. The one month of effort funded for the PI was used to calibrate and analyze the RXTE data. Additional research effort on this project to lead to a final publication has been provided from LTSA and GSRP grants. An initial attempt was made to calibrate the RXTE data in May 1997 but the results were disappointing with poor background subtraction leading to a relatively noisy PCA light curve. Subsequently major improvements have been made in the calibration techniques for low count rate PCA data and we returned to Goddard Space Flight Center in February 1999 when we were able to produce vastly better calibrated data. The RXTE results are currently being integrated with the ASCA and VLA data and a paper should be submitted by the end of summer 1999.

  8. Plasma Evolution within an Erupting Coronal Cavity

    NASA Astrophysics Data System (ADS)

    Long, David M.; Harra, Louise K.; Matthews, Sarah A.; Warren, Harry P.; Lee, Kyoung-Sun; Doschek, George A.; Hara, Hirohisa; Jenkins, Jack M.

    2018-03-01

    Coronal cavities have previously been observed to be associated with long-lived quiescent filaments and are thought to correspond to the associated magnetic flux rope. Although the standard flare model predicts a coronal cavity corresponding to the erupting flux rope, these have only been observed using broadband imaging data, restricting an analysis to the plane-of-sky. We present a unique set of spectroscopic observations of an active region filament seen erupting at the solar limb in the extreme ultraviolet. The cavity erupted and expanded rapidly, with the change in rise phase contemporaneous with an increase in nonthermal electron energy flux of the associated flare. Hot and cool filamentary material was observed to rise with the erupting flux rope, disappearing suddenly as the cavity appeared. Although strongly blueshifted plasma continued to be observed flowing from the apex of the erupting flux rope, this outflow soon ceased. These results indicate that the sudden injection of energy from the flare beneath forced the rapid eruption and expansion of the flux rope, driving strong plasma flows, which resulted in the eruption of an under-dense filamentary flux rope.

  9. Investigation of relationships between parameters of solar nano-flares and solar activity

    NASA Astrophysics Data System (ADS)

    Safari, Hossein; Javaherian, Mohsen; Kaki, Bardia

    2016-07-01

    Solar flares are one of the important coronal events which are originated in solar magnetic activity. They release lots of energy during the interstellar medium, right after the trigger. Flare prediction can play main role in avoiding eventual damages on the Earth. Here, to interpret solar large-scale events (e.g., flares), we investigate relationships between small-scale events (nano-flares) and large-scale events (e.g., flares). In our method, by using simulations of nano-flares based on Monte Carlo method, the intensity time series of nano-flares are simulated. Then, the solar full disk images taken at 171 angstrom recorded by SDO/AIA are employed. Some parts of the solar disk (quiet Sun (QS), coronal holes (CHs), and active regions (ARs)) are cropped and the time series of these regions are extracted. To compare the simulated intensity time series of nano-flares with the intensity time series of real data extracted from different parts of the Sun, the artificial neural networks is employed. Therefore, we are able to extract physical parameters of nano-flares like both kick and decay rate lifetime, and the power of their power-law distributions. The procedure of variations in the power value of power-law distributions within QS, CH is similar to AR. Thus, by observing the small part of the Sun, we can follow the procedure of solar activity.

  10. Observation of a reversal of rotation in a sunspot during a solar flare

    PubMed Central

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Li, Haidong; Yang, Bo; Xu, Zhe

    2016-01-01

    The abrupt motion of the photospheric flux during a solar flare is thought to be a back reaction caused by the coronal field reconfiguration. However, the type of motion pattern and the physical mechanism responsible for the back reaction has been uncertain. Here we show that the direction of a sunspot's rotation is reversed during an X1.6 flare using observations from the Helioseismic and Magnetic Imager. A magnetic field extrapolation model shows that the corresponding coronal magnetic field shrinks with increasing magnetic twist density. This suggests that the abrupt reversal of rotation in the sunspot may be driven by a Lorentz torque that is produced by the gradient of twist density from the solar corona to the solar interior. These results support the view that the abrupt reversal in the rotation of the sunspot is a dynamic process responding to shrinkage of the coronal magnetic field during the flare. PMID:27958266

  11. Observational and Model Analysis of a Two-ribbon Flare Possibly Induced by a Neighboring Blowout Jet

    NASA Astrophysics Data System (ADS)

    Joshi, Bhuwan; Thalmann, Julia K.; Mitra, Prabir K.; Chandra, Ramesh; Veronig, Astrid M.

    2017-12-01

    In this paper, we present unique observations of a blowout coronal jet that possibly triggered a two-ribbon confined C1.2 flare in bipolar solar active region NOAA 12615 on 2016 December 5. The jet activity initiates at chromospheric/transition region heights with a small brightening that eventually increases in volume, with well-developed standard morphological jet features, viz., base and spire. The spire widens up with a collimated eruption of cool and hot plasma components, observed in the 304 and 94 Å channels of AIA, respectively. The speed of the plasma ejection, which forms the jet’s spire, was higher for the hot component (˜200 km s-1) than the cooler one (˜130 km s-1). The NLFF model of coronal fields at the pre- and post-jet phases successfully reveals openings of previously closed magnetic field lines with a rather inclined/low-lying jet structure. The peak phase of the jet emission is followed by the development of a two-ribbon flare that shows coronal loop emission in HXRs up to ˜25 keV energy. The coronal magnetic fields rooted at the location of EUV flare ribbons, derived from the NLFF model, demonstrate the pre-flare phase to exhibit an “X-type” configuration, while the magnetic fields at the post-flare phase are more or less oriented parallel. Comparisons of multi-wavelength measurements with the magnetic field extrapolations suggest that the jet activity likely triggered the two-ribbon flare by perturbing the field in the interior of the active region.

  12. The great flare of 1982 June 6

    NASA Technical Reports Server (NTRS)

    Tanaka, K.; Zirin, H.

    1985-01-01

    The great soft X-ray (SXR) flare (X12) of the past solar maximum was observed by Hinotori and by Big Bear Solar Observatory (BBSO) on June 6, 1982. Hinotori data consist of hard X-ray (HXR) and SXR images in the rise and decay of the flare, high-resolution soft X-ray spectra throughout the flare, and HXR and gamma-ray data. The BBSO data include films of H-alpha, H-alpha blue wing, D3 and longitudinal magnetic field, as well as video tapes of continuum. Images in HXR, SXR, H-alpha, D3 and the continuum are compared and SXR spectra analyzed. The flare resulted from extended motion of a large spot shearing the magnetic field. D3 and white-light images exhibit a progression from fast flashes to two ribbons, while both HXR and SXR are centered on the optical kernels. The continuum emission shows the same temporal behavior as the HXR at 160 keV. In its early phases, the Fe XXV line was double-peaked, and a decreasing blueshifted (up to 400 km/sec) component was observed, from which the evaporation rate of chromospheric material was estimated. It is suggested that this upflow is adequate to supply the coronal cloud. Flare energetics are discussed in detail, and it is concluded that a significant amount of energy was deposited in the corona, and that nonthermal electrons are the major energy input.

  13. Non-thermal recombination - a neglected source of flare hard X-rays and fast electron diagnostics (Corrigendum)

    NASA Astrophysics Data System (ADS)

    Brown, J. C.; Mallik, P. C. V.; Badnell, N. R.

    2010-06-01

    Brown and Mallik (BM) recently claimed that non-thermal recombination (NTR) can be a dominant source of flare hard X-rays (HXRs) from hot coronal and chromospheric sources. However, major discrepancies between the thermal continua predicted by BM and by the Chianti database as well as RHESSI flare data, led us to discover substantial errors in the heuristic expression used by BM to extend the Kramers expressions beyond the hydrogenic case. Here we present the relevant corrected expressions and show the key modified results. We conclude that, in most cases, NTR emission was overestimated by a factor of 1-8 by BM but is typically still large enough (as much as 20-30% of the total emission) to be very important for electron spectral inference and detection of electron spectral features such as low energy cut-offs since the recombination spectra contain sharp edges. For extreme temperature regimes and/or if the Fe abundance were as high as some values claimed, NTR could even be the dominant source of flare HXRs, reducing the electron number and energy budget, problems such as in the extreme coronal HXR source cases reported by e.g. Krucker et al.

  14. A multiwavelength study of a double impulsive flare

    NASA Technical Reports Server (NTRS)

    Strong, K. T.; Benz, A. O.; Dennis, B. R.; Poland, A. I.; Leibacher, J. W.; Mewe, R.; Schrijver, J.; Simnett, G.; Smith, J. B., Jr.; Sylwester, J.

    1984-01-01

    Solar Maximum Mission (SMM) and ground-based observations are given for two flares which occurred 3 min apart in the same section of the active region. The physical characteristics of the two flares are derived and compared, and the main difference between them is noted to be in the preflare state of the coronal plasma at the flare site. These data suggest that the plasma filling the flaring loops absorbed most of the energy released during the impulsive phase of the second flare, so that only a fraction of the energy could reach the chromosphere to produce mass motions and turbulence. Since a study of the brightest flares observed by SMM shows that at least 43 percent of them are multiple, the situation presently studied may be quite common, and the difference in initial plasma conditions could explain at least some of the large variations in observed flare parameters.

  15. Evidence for Magnetic Reconnection in Three Homologous Solar Flares Observed by RHESSI

    NASA Technical Reports Server (NTRS)

    Sui, Lin-Hui; Holman, Gordon D.; Dennis, Brian R.

    2004-01-01

    We present RHESSI observF5oss of three homologous flares, which occurred between April 14 and 16, 2002. We find that the RHESSI images of all three flares at energies between 6 and 25 keV had some common features: (1) A. separate coronal source up to approx. 30 deg. above the flare loop appeared in the early impulsive phase and stayed stationary for several minutes. (2) Before the flare loop moved upward; previously reported by others, the flare loop-top centroid moved downward for 2-4 minutes during the early impulsive phase of the Ears: falling by 13 - 30% of its initial height with a speed between 8 and 23 km/s. We conclude that these features are associated with the formation and development of a current sheet between the loop-top and the coronal source. In the April 14-15 flare, we find that the hard X-ray flux (greater than 25 keV) is correlated with the rate at which the flare loop moves upward, indicating that the faster the loop grows, the faster the reconnection rate, and therefore, the greater the flux of accelerated electrons. Subject headings: Sun: L'iaies-Sun: X-1-ay-s -

  16. OBSERVATIONAL EVIDENCE OF BACK REACTION ON THE SOLAR SURFACE ASSOCIATED WITH CORONAL MAGNETIC RESTRUCTURING IN SOLAR ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Haimin; Liu Chang, E-mail: haimin.wang@njit.ed, E-mail: chang.liu@njit.ed

    2010-06-20

    Most models of solar eruptions assume that coronal field lines are anchored in the dense photosphere and thus the photospheric magnetic fields would not have rapid, irreversible changes associated with eruptions resulted from the coronal magnetic reconnection. Motivated by the recent work of Hudson et al. on quantitatively evaluating the back reaction due to energy release from the coronal fields, in this Letter we synthesize our previous studies and present analysis of new events about flare-related changes of photospheric magnetic fields. For the 11 X-class flares where vector magnetograms are available, we always find an increase of transverse field atmore » the polarity inversion line (PIL) although only four events had measurements with 1 minute temporal resolution. We also discuss 18 events with 1 minute cadence line-of-sight magnetogram observation, which all show prominent changes of magnetic flux contained in the flaring {delta} spot region. Except in one case, the observed limbward flux increases while diskward flux decreases rapidly and irreversibly after flares. This observational evidence provides support, either directly or indirectly, for the theory and prediction of Hudson et al. that the photospheric magnetic fields must respond to coronal field restructuring and turn to a more horizontal state near the PIL after eruptions.« less

  17. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ming; Zhao, Lulu, E-mail: mzhang@fit.edu

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injectedmore » on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.« less

  18. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Zhao, Lulu

    2017-09-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (I) the compact solar flare site, (II) the coronal mass ejection (CME) shock, and (III) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  19. Deep Flare Net (DeFN) Model for Solar Flare Prediction

    NASA Astrophysics Data System (ADS)

    Nishizuka, N.; Sugiura, K.; Kubo, Y.; Den, M.; Ishii, M.

    2018-05-01

    We developed a solar flare prediction model using a deep neural network (DNN) named Deep Flare Net (DeFN). This model can calculate the probability of flares occurring in the following 24 hr in each active region, which is used to determine the most likely maximum classes of flares via a binary classification (e.g., ≥M class versus flare occurrence labels of X-, M-, and C-class were attached. We adopted the features used in Nishizuka et al. (2017) and added some features for operational prediction: coronal hot brightening at 131 Å (T ≥ 107 K) and the X-ray and 131 Å intensity data 1 and 2 hr before an image. For operational evaluation, we divided the database into two for training and testing: the data set in 2010–2014 for training, and the one in 2015 for testing. The DeFN model consists of deep multilayer neural networks formed by adapting skip connections and batch normalizations. To statistically predict flares, the DeFN model was trained to optimize the skill score, i.e., the true skill statistic (TSS). As a result, we succeeded in predicting flares with TSS = 0.80 for ≥M-class flares and TSS = 0.63 for ≥C-class flares. Note that in usual DNN models, the prediction process is a black box. However, in the DeFN model, the features are manually selected, and it is possible to analyze which features are effective for prediction after evaluation.

  20. Energetic Particle Estimates for Stellar Flares

    NASA Astrophysics Data System (ADS)

    Youngblood, Allison; Chamberlin, Phil; Woods, Tom

    2018-01-01

    In the heliosphere, energetic particles are accelerated away from the Sun during solar flares and/or coronal mass ejections where they frequently impact the Earth and other solar system bodies. Solar (or stellar) energetic particles (SEPs) not only affect technological assets, but also influence mass loss and chemistry in planetary atmospheres (e.g., depletion of ozone). SEPs are increasingly recognized as an important factor in assessing exoplanet habitability, but we do not yet have constraints on SEP emission from any stars other than the Sun. Until indirect measurements are available, we must assume solar-like particle production and apply correlations between solar flares and SEPs detected near Earth to stellar flares. We present improved scaling relations between solar far-UV flare flux and >10 MeV proton flux near Earth. We apply these solar scaling relations to far-UV flares from exoplanet host stars and discuss the implications for modeling chemistry and mass loss in exoplanet atmospheres.

  1. He-3-rich flares - A possible explanation

    NASA Technical Reports Server (NTRS)

    Fisk, L. A.

    1978-01-01

    A plasma mechanism is proposed to explain the dramatic enhancements in He-3 observed in He-3-rich flares. It is shown that a common current instability in the corona may heat ambient He-3(2+) over any other ion and thus may preferentially inject He-3 into the flare acceleration process. This mechanism operates when the abundance of He-4 and heavier elements is larger than normal in the coronal plasma. It may also preferentially heat and thus inject certain ions of iron. The mechanism thus provides a possible explanation for the observed correlation between He-3 and heavy enhancements in He-3-rich flares.

  2. Understanding extreme quasar optical variability with CRTS - I. Major AGN flares

    NASA Astrophysics Data System (ADS)

    Graham, Matthew J.; Djorgovski, S. G.; Drake, Andrew J.; Stern, Daniel; Mahabal, Ashish A.; Glikman, Eilat; Larson, Steve; Christensen, Eric

    2017-10-01

    There is a large degree of variety in the optical variability of quasars and it is unclear whether this is all attributable to a single (set of) physical mechanism(s). We present the results of a systematic search for major flares in active galactic nucleus (AGN) in the Catalina Real-time Transient Survey as part of a broader study into extreme quasar variability. Such flares are defined in a quantitative manner as being atop of the normal, stochastic variability of quasars. We have identified 51 events from over 900 000 known quasars and high-probability quasar candidates, typically lasting 900 d and with a median peak amplitude of Δm = 1.25 mag. Characterizing the flare profile with a Weibull distribution, we find that nine of the sources are well described by a single-point single-lens model. This supports the proposal by Lawrence et al. that microlensing is a plausible physical mechanism for extreme variability. However, we attribute the majority of our events to explosive stellar-related activity in the accretion disc: superluminous supernovae, tidal disruption events and mergers of stellar mass black holes.

  3. Energy released by the interaction of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.

    1976-01-01

    Comparisons between coronal spectroheliograms and photospheric magnetograms are presented to support the idea that as coronal magnetic fields interact, a process of field-line reconnection usually takes place as a natural way of preventing magnetic stresses from building up in the lower corona. This suggests that the energy which would have been stored in stressed fields is continuously released as kinetic energy of material being driven aside to make way for the reconnecting fields. However, this kinetic energy is negligible compared with the thermal energy of the coronal plasma. Therefore, it appears that these slow adjustments of coronal magnetic fields cannot account for even the normal heating of the corona, much less the energetic events associated with solar flares.

  4. The solar flare iron line to continuum ratio and the coronal abundances of iron and helium

    NASA Technical Reports Server (NTRS)

    Mckenzie, D. L.

    1975-01-01

    Narrow band Ross filter measurements of the Fe 25 line flux around 0.185 nm and simultaneous broadband measurements during a solar flare were used to determine the relationship between the solar coronal abundances of iron and helium. The Fe 25 ion population was also determined as a function of time. The proportional counter and the Ross filter on OSO-7 were utilized. The data were analyzed under the separate assumptions that (1) the electron density was high enough that a single temperature could characterize the continuum spectrum and the ionization equilibrium, and that (2) the electron density was low so that the ion populations trailed the electron temperature in time. It was found that the density was at least 5x10 to the 9th power, and that the high density assumption was valid. It was also found that the iron abundance is 0.000011 for a helium abundance of 0.2, relative to hydrogen.

  5. HOMOLOGOUS JET-DRIVEN CORONAL MASS EJECTIONS FROM SOLAR ACTIVE REGION 12192

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L., E-mail: navdeep.k.panesar@nasa.gov

    We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edgemore » resulted in CMEs. Each jet-driven CME (∼200–300 km s{sup −1}) was slower-moving than most CMEs, with angular widths (20°–50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection.« less

  6. Partial analysis of the flare-prominence of 30 April 1974

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Dryer, M.; Mcintosh, P. S.; Reichmann, E.

    1975-01-01

    A portion of an east limb flare-prominence observed in H-alpha light is analyzed. Following rapid achievement of a maximum mass-ejection velocity of about 375 km/s, the ascending prominence reached a height of at least 200,000 km. A one-dimensional time-dependent hydrodynamic theory is used to compute the total mass and energy ejected during this part of the event. Theoretical aspects of the coronal response are discussed. It is concluded that a moderate temperature and density pulse (factors of ten and two, respectively) for a duration of only 3 min is sufficient for an acceptable simulation of the H-alpha observations and the likely coronal response to the ascending prominence and flare-related ejections.

  7. Determination of Coronal Magnetic Fields from Vector Magnetograms

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    1997-01-01

    During the course of the present contract we developed an 'evolutionary technique' for the determination of force-free coronal magnetic fields from vector magnetograph observations. The method can successfully generate nonlinear force- free fields (with non-constant-a) that match vector magnetograms. We demonstrated that it is possible to determine coronal magnetic fields from photospheric measurements, and we applied it to vector magnetograms of active regions. We have also studied theoretical models of coronal fields that lead to disruptions. Specifically, we have demonstrated that the determination of force-free fields from exact boundary data is a well-posed mathematical problem, by verifying that the computed coronal field agrees with an analytic force-free field when boundary data for the analytic field are used; demonstrated that it is possible to determine active-region coronal magnetic fields from photospheric measurements, by computing the coronal field above active region 5747 on 20 October 1989, AR6919 on 15 November 1991, and AR7260 on 18 August 1992, from data taken with the Stokes Polarimeter at Mees Solar Observatory, University of Hawaii; started to analyze active region 7201 on 19 June 1992 using measurements made with the Advanced Stokes Polarimeter at NSO/Sac Peak; investigated the effects of imperfections in the photospheric data on the computed coronal magnetic field; documented the coronal field structure of AR5747 and compared it to the morphology of footpoint emission in a flare, showing that the 'high- pressure' H-alpha footpoints are connected by coronal field lines; shown that the variation of magnetic field strength along current-carrying field lines is significantly different from the variation in a potential field, and that the resulting near-constant area of elementary flux tubes is consistent with observations; begun to develop realistic models of coronal fields which can be used to study flare trigger mechanisms; demonstrated that

  8. ON THE INJECTION OF HELICITY BY THE SHEARING MOTION OF FLUXES IN RELATION TO FLARES AND CORONAL MASS EJECTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vemareddy, P.; Ambastha, A.; Maurya, R. A.

    An investigation of helicity injection by photospheric shear motions is carried out for two active regions (ARs), NOAA 11158 and 11166, using line-of-sight magnetic field observations obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. We derived the horizontal velocities in the ARs from the differential affine velocity estimator (DAVE) technique. Persistent strong shear motions at maximum velocities in the range of 0.6-0.9 km s{sup -1} along the magnetic polarity inversion line and outward flows from the peripheral regions of the sunspots were observed in the two ARs. The helicities injected in NOAA 11158 and 11166more » during their six-day evolution period were estimated as 14.16 Multiplication-Sign 10{sup 42} Mx{sup 2} and 9.5 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The estimated injection rates decreased up to 13% by increasing the time interval between the magnetograms from 12 minutes to 36 minutes, and increased up to 9% by decreasing the DAVE window size from 21 Multiplication-Sign 18 to 9 Multiplication-Sign 6 pixel{sup 2}, resulting in 10% variation in the accumulated helicity. In both ARs, the flare-prone regions (R2) had inhomogeneous helicity flux distribution with mixed helicities of both signs and coronal mass ejection (CME) prone regions had almost homogeneous distribution of helicity flux dominated by a single sign. The temporal profiles of helicity injection showed impulsive variations during some flares/CMEs due to negative helicity injection into the dominant region of positive helicity flux. A quantitative analysis reveals a marginally significant association of helicity flux with CMEs but not flares in AR 11158, while for the AR 11166, we find a marginally significant association of helicity flux with flares but not CMEs, providing evidence of the role of helicity injection at localized sites of the events. These short-term variations of helicity flux are further discussed in view of

  9. Coronal Shock Waves and Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Cliver, Edward

    Recent evidence supports the view first expressed by Wild, Smerd, and Weiss in 1963 that large solar energetic particle (SEP) events are a consequence of shock waves manifested by radio type II bursts. Following Tylka et al. (ApJ 625, 474, 2005), our picture of SEP acceleration at shocks now includes the effects of variable seed particle population and shock geometry. By taking these factors into account, Tylka and Lee (ApJ 646, 1319, 2006; see also Sandroos Vainio, ApJ 662, L127, 2007; AA 507, L21, 2009) were able to account for the charge-to-mass variability in high-Z ions first reported by Breneman and Stone in 1985. Recent studies of electron-to-proton ratios, both in interplanetary space (Cliver Ling, ApJ 658, 1349, 2007; Dietrich et al., in preparation, 2010) and in gamma-ray-line events (Shih et al., ApJ 698, L152, 2009), also support the view that large SEP events originate in coronal shocks and not in solar flares. Concurrent with the above developments, there is growing evidence that coronal shocks are driven by coronal mass ejections rather than by flare pressure pulses.

  10. Expanding and Contracting Coronal Loops as Evidence of Vortex Flows Induced by Solar Eruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudík, J.; Zuccarello, F. P.; Aulanier, G.

    Eruptive solar flares were predicted to generate large-scale vortex flows at both sides of the erupting magnetic flux rope. This process is analogous to a well-known hydrodynamic process creating vortex rings. The vortices lead to advection of closed coronal loops located at the peripheries of the flaring active region. Outward flows are expected in the upper part and returning flows in the lower part of the vortex. Here, we examine two eruptive solar flares, the X1.1-class flare SOL2012-03-05T03:20 and the C3.5-class SOL2013-06-19T07:29. In both flares, we find that the coronal loops observed by the Atmospheric Imaging Assembly in its 171more » Å, 193 Å, or 211 Å passbands show coexistence of expanding and contracting motions, in accordance with the model prediction. In the X-class flare, multiple expanding and contracting loops coexist for more than 35 minutes, while in the C-class flare, an expanding loop in 193 Å appears to be close by and cotemporal with an apparently imploding loop arcade seen in 171 Å. Later, the 193 Å loop also switches to contraction. These observations are naturally explained by vortex flows present in a model of eruptive solar flares.« less

  11. WHY IS A FLARE-RICH ACTIVE REGION CME-POOR?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lijuan; Wang, Yuming; Shen, Chenglong

    Solar active regions (ARs) are the major sources of two of the most violent solar eruptions, namely flares and coronal mass ejections (CMEs). The largest AR in the past 24 years, NOAA AR 12192, which crossed the visible disk from 2014 October 17 to 30, unusually produced more than one hundred flares, including 32 M-class and 6 X-class ones, but only one small CME. Flares and CMEs are believed to be two phenomena in the same eruptive process. Why is such a flare-rich AR so CME-poor? We compared this AR with other four ARs; two were productive in both andmore » two were inert. The investigation of the photospheric parameters based on the SDO /HMI vector magnetogram reveals that the flare-rich AR 12192, as with the other two productive ARs, has larger magnetic flux, current, and free magnetic energy than the two inert ARs but, in contrast to the two productive ARs, it has no strong, concentrated current helicity along both sides of the flaring neutral line, indicating the absence of a mature magnetic structure consisting of highly sheared or twisted field lines. Furthermore, the decay index above the AR 12192 is relatively low, showing strong constraint. These results suggest that productive ARs are always large and have enough current and free energy to power flares, but whether or not a flare is accompanied by a CME is seemingly related to (1) the presence of a mature sheared or twisted core field serving as the seed of the CME, or (2) a weak enough constraint of the overlying arcades.« less

  12. Simulating Coronal Loop Implosion and Compressible Wave Modes in a Flare Hit Active Region

    NASA Astrophysics Data System (ADS)

    Sarkar, Aveek; Vaidya, Bhargav; Hazra, Soumitra; Bhattacharyya, Jishnu

    2017-12-01

    There is considerable observational evidence of implosion of magnetic loop systems inside solar coronal active regions following high-energy events like solar flares. In this work, we propose that such collapse can be modeled in three dimensions quite accurately within the framework of ideal magnetohydrodynamics. We furthermore argue that the dynamics of loop implosion is only sensitive to the transmitted disturbance of one or more of the system variables, e.g., velocity generated at the event site. This indicates that to understand loop implosion, it is sensible to leave the event site out of the simulated active region. Toward our goal, a velocity pulse is introduced to model the transmitted disturbance generated at the event site. Magnetic field lines inside our simulated active region are traced in real time, and it is demonstrated that the subsequent dynamics of the simulated loops closely resemble observed imploding loops. Our work highlights the role of plasma β in regards to the rigidity of the loop systems and how that might affect the imploding loops’ dynamics. Compressible magnetohydrodynamic modes such as kink and sausage are also shown to be generated during such processes, in accordance with observations.

  13. Effect of Transport Coefficients on Excitation of Flare-induced Standing Slow-mode Waves in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Wang, Tongjiang; Ofman, Leon; Sun, Xudong; Solanki, Sami K.; Davila, Joseph M.

    2018-06-01

    Standing slow-mode waves have been recently observed in flaring loops by the Atmospheric Imaging Assembly of the Solar Dynamics Observatory. By means of the coronal seismology technique, transport coefficients in hot (∼10 MK) plasma were determined by Wang et al., revealing that thermal conductivity is nearly suppressed and compressive viscosity is enhanced by more than an order of magnitude. In this study, we use 1D nonlinear MHD simulations to validate the predicted results from the linear theory and investigate the standing slow-mode wave excitation mechanism. We first explore the wave trigger based on the magnetic field extrapolation and flare emission features. Using a flow pulse driven at one footpoint, we simulate the wave excitation in two types of loop models: Model 1 with the classical transport coefficients and Model 2 with the seismology-determined transport coefficients. We find that Model 2 can form the standing wave pattern (within about one period) from initial propagating disturbances much faster than Model 1, in better agreement with the observations. Simulations of the harmonic waves and the Fourier decomposition analysis show that the scaling law between damping time (τ) and wave period (P) follows τ ∝ P 2 in Model 2, while τ ∝ P in Model 1. This indicates that the largely enhanced viscosity efficiently increases the dissipation of higher harmonic components, favoring the quick formation of the fundamental standing mode. Our study suggests that observational constraints on the transport coefficients are important in understanding both the wave excitation and damping mechanisms.

  14. On the Detection of Coronal Dimmings and the Extraction of Their Characteristic Properties

    NASA Astrophysics Data System (ADS)

    Dissauer, K.; Veronig, A. M.; Temmer, M.; Podladchikova, T.; Vanninathan, K.

    2018-03-01

    Coronal dimmings are distinct phenomena associated with coronal mass ejections (CMEs). The study of coronal dimmings and the extraction of their characteristic parameters help us to obtain additional information regarding CMEs, especially on the initiation and early evolution of Earth-directed CMEs. We present a new approach to detect coronal dimming regions based on a thresholding technique applied on logarithmic base-ratio images. Characteristic dimming parameters describing the dynamics, morphology, magnetic properties, and the brightness of coronal dimming regions are extracted by cumulatively summing newly dimmed pixels over time. It is also demonstrated how core dimming regions are identified as a subset of the overall identified dimming region. We successfully apply our method to two well-observed coronal dimming events. For both events, the core dimming regions are identified and the spatial evolution of the dimming area reveals the expansion of the dimming region around these footpoints. We also show that in the early impulsive phase of the dimming expansion the total unsigned magnetic flux involved in the dimming regions is balanced and that up to 30% of this flux results from the localized core dimming regions. Furthermore, the onset in the profile of the area growth rate is cotemporal with the start of the associated flares and in one case also with the fast rise of the CME, indicating a strong relationship of coronal dimmings with both flares and CMEs.

  15. Spectroscopic observations of a major flare in QSO TXS0917+624.

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, L.; Gromadzki, M.; Kozlowski, Sz.; Mroz, P.; Shahbandeh, M.; Hsiao, E.; Berton, M.; Ciroi, S.; Pastorello, A.; Chen, S.; Reguitti, A.

    2018-01-01

    We report on optical and near-IR spectroscopy of QSO TXS0917+624 (radio and gamma source) which showed a major 2 magnitude flare on 9th of December 2017 (Spiridonova, Moskvitin and Vlasyuk 2017, ATEL #11048).

  16. Relation of large-scale coronal X-ray structure and cosmic rays. II - Coronal control of interplanetary injection of 300 keV protons

    NASA Technical Reports Server (NTRS)

    Roelof, E. C.; Gold, R. E.; Krimigis, S. M.; Krieger, A. S.; Nolte, J. T.; Mcintosh, P. S.; Lazarus, A. J.; Sullivan, J. D.

    1975-01-01

    We report the striking coronal control of low-energy solar particles from the solar flare of September 7, 1973. The flare was at S18, W46 (Carrington longitude 188 deg) in McMath Plage Region 12307. We find strong intensity gradients in heliolongitude (about 10% per deg) that are nearly identical in protons, helium, and medium nuclei at energies about 0.5 MeV/nuc, as well as relativistic electrons and 3 MeV protons. This pervasive gradient occurs at longitudes over bright X-ray emission structures east of the flare site which interconnect large-scale chromospheric polarity regions identifiable in H-alpha filtergrams.

  17. Higher-speed coronal mass ejections and their geoeffectiveness

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Bhargawa, Asheesh; Tonk, Apeksha

    2018-06-01

    We have attempted to examine the ability of coronal mass ejections to cause geoeffectiveness. To that end, we have investigated total 571 cases of higher-speed (> 1000 km/s) coronal mass ejection events observed during the years 1996-2012. On the basis of angular width (W) of observance, events of coronal mass ejection were further classified as front-side or halo coronal mass ejections (W = 360°); back-side halo coronal mass ejections (W = 360°); partial halo (120°< W < 360°) and non-halo (W < 120°). From further analysis, we found that front halo coronal mass ejections were much faster and more geoeffective in comparison of partial halo and non-halo coronal mass ejections. We also inferred that the front-sided halo coronal mass ejections were 67.1% geoeffective while geoeffectiveness of partial halo coronal mass ejections and non-halo coronal mass ejections were found to be 44.2% and 56.6% respectively. During the same period of observation, 43% of back-sided CMEs showed geoeffectiveness. We have also investigated some events of coronal mass ejections having speed > 2500 km/s as a case study. We have concluded that mere speed of coronal mass ejection and their association with solar flares or solar activity were not mere criterion for producing geoeffectiveness but angular width of coronal mass ejections and their originating position also played a key role.

  18. CONFINED FLARES IN SOLAR ACTIVE REGION 12192 FROM 2014 OCTOBER 18 TO 29

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huadong; Zhang, Jun; Yang, Shuhong

    2015-07-20

    Using the observations from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory, we investigate 6 X-class and 29 M-class flares occurring in solar active region (AR) 12192 from October 18 to 29. Among them, 30 (including 6 X- and 24 M-class) flares originated from the AR core, and the other 5 M-flares appeared at the AR periphery. Four of the X-flares exhibited similar flaring structures, indicating they were homologous flares with an analogous triggering mechanism. The possible scenario is that photospheric motions of emerged magnetic fluxes lead to shearing of the associatedmore » coronal magnetic field, which then yields a tether-cutting favorable configuration. Among the five periphery M-flares, four were associated with jet activities. The HMI vertical magnetic field data show that the photospheric fluxes of opposite magnetic polarities emerged, converged, and canceled with each other at the footpoints of the jets before the flares. Only one M-flare from the AR periphery was followed by a coronal mass ejection (CME). From October 20 to 26, the mean decay index of the horizontal background field within the height range of 40–105 Mm is below the typical threshold for torus instability onset. This suggests that a strong confinement from the overlying magnetic field might be responsible for the poor CME production of AR 12192.« less

  19. Working length changes in curved canals after coronal flaring by using rotary files and hand file: An in vitro study.

    PubMed

    Kumar, Rahul; Khambete, Neha; Patil, Suvarna; Hoshing, Upendra; Medha, Ashish; Shetty, Roshan

    2013-09-01

    This in vitro investigation examined the effect of early coronal flaring (CF) and late CF on the working length (WL) in curved root canals. The objective of this study was to determine if canal length is altered as a result of CF in curved canals of molar roots. The conditions compared were combinations of (a) stainless steel hand files using Gates Glidden (G. G.) drills (SS) versus nickel-titanium rotary files (Ni-Ti); and (b) early CF (flaring completed before WL determination) versus late CF (flaring completed after WL determination). Selected were 90 canals of extracted maxillary or mandibular first molars (mesial root of mandibular molars and the mesiobuccal root of the maxillary molars) from three groups. CF was accomplished for the SS group using G. G. drills and for the Ni-Ti group using rotary ProTaper and Hero Shaper files. WL was determined by a digital vernier caliper before CF, immediately after CF, and again after canal preparation. A repeated measures analysis of variance (ANOVA) test and a Tukey's multiple prosthoc test were used for this study. Results indicated that WL decreased for all canals as a result of canal preparation. The mean decrease in WL was significantly greater for the SS group (-0.77 ± 0.42 mm) than for the Ni-Ti groups (-0.33 mm ± 0.44). Less change in WL occurred in all groups when initial WL was determined after CF. WL in curved canals consistently decreases during the course of instrumentation. Clinician should keep this in mind for better treatment outcome.

  20. Hooked Flare Ribbons and Flux-rope-related QSL Footprints

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Gilchrist, Stuart A.; Aulanier, Guillaume; Schmieder, Brigitte; Pariat, Etienne; Li, Hui

    2016-05-01

    We studied the magnetic topology of active region 12158 on 2014 September 10 and compared it with the observations before and early in the flare that begins at 17:21 UT (SOL2014-09-10T17:45:00). Our results show that the sigmoidal structure and flare ribbons of this active region observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly can be well reproduced from a Grad-Rubin nonlinear force-free field extrapolation method. Various inverse-S- and inverse-J-shaped magnetic field lines, which surround a coronal flux rope, coincide with the sigmoid as observed in different extreme-ultraviolet wavelengths, including its multithreaded curved ends. Also, the observed distribution of surface currents in the magnetic polarity where it was not prescribed is well reproduced. This validates our numerical implementation and setup of the Grad-Rubin method. The modeled double inverse-J-shaped quasi-separatrix layer (QSL) footprints match the observed flare ribbons during the rising phase of the flare, including their hooked parts. The spiral-like shape of the latter may be related to a complex pre-eruptive flux rope with more than one turn of twist, as obtained in the model. These ribbon-associated flux-rope QSL footprints are consistent with the new standard flare model in 3D, with the presence of a hyperbolic flux tube located below an inverse-teardrop-shaped coronal QSL. This is a new step forward forecasting the locations of reconnection and ribbons in solar flares and the geometrical properties of eruptive flux ropes.

  1. HOOKED FLARE RIBBONS AND FLUX-ROPE-RELATED QSL FOOTPRINTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jie; Li, Hui; Gilchrist, Stuart A.

    2016-05-20

    We studied the magnetic topology of active region 12158 on 2014 September 10 and compared it with the observations before and early in the flare that begins at 17:21 UT (SOL2014-09-10T17:45:00). Our results show that the sigmoidal structure and flare ribbons of this active region observed by the Solar Dynamics Observatory /Atmospheric Imaging Assembly can be well reproduced from a Grad–Rubin nonlinear force-free field extrapolation method. Various inverse-S- and inverse-J-shaped magnetic field lines, which surround a coronal flux rope, coincide with the sigmoid as observed in different extreme-ultraviolet wavelengths, including its multithreaded curved ends. Also, the observed distribution of surfacemore » currents in the magnetic polarity where it was not prescribed is well reproduced. This validates our numerical implementation and setup of the Grad–Rubin method. The modeled double inverse-J-shaped quasi-separatrix layer (QSL) footprints match the observed flare ribbons during the rising phase of the flare, including their hooked parts. The spiral-like shape of the latter may be related to a complex pre-eruptive flux rope with more than one turn of twist, as obtained in the model. These ribbon-associated flux-rope QSL footprints are consistent with the new standard flare model in 3D, with the presence of a hyperbolic flux tube located below an inverse-teardrop-shaped coronal QSL. This is a new step forward forecasting the locations of reconnection and ribbons in solar flares and the geometrical properties of eruptive flux ropes.« less

  2. Comment on 'The solar flare myth' by J. T. Gosling

    NASA Technical Reports Server (NTRS)

    Hudson, Hugh; Haisch, Bernhard; Strong, Keith T.

    1995-01-01

    In a recent paper Gosling (1993) claims that solar flares are relatively unimportant for understanding the terrestrial consequences of solar activity, and argues that coronal mass ejections (CMEs) produce the most powerful terrestrial disturbances. This opinion conflicts with observation, as it is well known that CMEs and flares are closely associated, and we disagree with Gosling's insistence on a simplistic cause-and-effect description of the interrelated phenomena of a solar flare. In this brief response we present new Yohkoh data and review older results that demonstrate the close relationships among CMEs, flares, filament eruptions, and other forms of energy release such as particle acceleration.

  3. Features of solar wind streams on June 21-28, 2015 as a result of interactions between coronal mass ejections and recurrent streams from coronal holes

    NASA Astrophysics Data System (ADS)

    Shugay, Yu. S.; Slemzin, V. A.; Rod'kin, D. G.

    2017-11-01

    Coronal sources and parameters of solar wind streams during a strong and prolonged geomagnetic disturbance in June 2015 have been considered. Correspondence between coronal sources and solar wind streams at 1 AU has been determined using an analysis of solar images, catalogs of flares and coronal mass ejections, solar wind parameters including the ionic composition. The sources of disturbances in the considered period were a sequence of five coronal mass ejections that propagated along the recurrent solar wind streams from coronal holes. The observed differences from typical in magnetic and kinetic parameters of solar wind streams have been associated with the interactions of different types of solar wind. The ionic composition has proved to be a good additional marker for highlighting components in a mixture of solar wind streams, which can be associated with different coronal sources.

  4. Flare differentially rotates sunspot on Sun's surface

    PubMed Central

    Liu, Chang; Xu, Yan; Cao, Wenda; Deng, Na; Lee, Jeongwoo; Hudson, Hugh S.; Gary, Dale E.; Wang, Jiasheng; Jing, Ju; Wang, Haimin

    2016-01-01

    Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to ∼50° h−1) at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. These results have direct consequences for our understanding of energy and momentum transportation in the flare-related phenomena. PMID:27721463

  5. The Solar Flare: A Strongly Turbulent Particle Accelerator

    NASA Astrophysics Data System (ADS)

    Vlahos, L.; Krucker, S.; Cargill, P.

    The topics of explosive magnetic energy release on a large scale (a solar flare) and particle acceleration during such an event are rarely discussed together in the same article. Many discussions of magnetohydrodynamic (MHD) mod- eling of solar flares and/or CMEs have appeared (see [143] and references therein) and usually address large-scale destabilization of the coronal mag- netic field. Particle acceleration in solar flares has also been discussed exten- sively [74, 164, 116, 166, 87, 168, 95, 122, 35] with the main emphasis being on the actual mechanisms for acceleration (e.g., shocks, turbulence, DC electric fields) rather than the global magnetic context in which the acceleration takes place.

  6. Flare Seismology from SDO Observations

    NASA Astrophysics Data System (ADS)

    Lindsey, Charles; Martinez Oliveros, Juan Carlos; Hudson, Hugh

    2011-10-01

    Some flares release intense seismic transients into the solar interior. These transients are the sole instance we know of in which the Sun's corona exerts a conspicuous influence on the solar interior through flares. The desire to understand this phenomenon has led to ambitious efforts to model the mechanisms by which energy stored in coronal magnetic fields drives acoustic waves that penetrate deep into the Sun's interior. These mechanisms potentially involve the hydrodynamic response of the chromosphere to thick-target heating by high-energy particles, radiative exchange in the chromosphere and photosphere, and Lorentz-force transients to account for acoustic energies estimated up to at 5X10^27 erg and momenta of order 6X10^19 dyne sec. An understanding of these components of flare mechanics promises more than a powerful diagnostic for local helioseismology. It could give us fundamental new insight into flare mechanics themselves. The key is appropriate observations to match the models. Helioseismic observations have identified the compact sources of transient seismic emission at the foot points of flares. The Solar Dynamics Observatory is now giving us high quality continuum-brightness and Doppler observations of acoustically active flares from HMI concurrent with high-resolution EUV observations from AIA. Supported by HXR observations from RHESSI and a broad variety of other observational resources, the SDO promises a leading role in flare research in solar cycle 24.

  7. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

    PubMed Central

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics. PMID:27071459

  8. CME productivity associated with Solar Flare peak X-ray emission flux

    NASA Astrophysics Data System (ADS)

    Suryanarayana, G. S.; Balakrishna, K. M.

    2018-05-01

    It is often noticed that the occurrence rate of Coronal Mass Ejections (CMEs) increases with increase in flare duration where peak flux too increase. However, there is no complete association between the duration and peak flux. Distinct characteristics have been reported for active regions (ARs) where flares and CMEs occur in contrast to ARs where flares alone occur. It is observed that peak flux of flares is higher when associated with CMEs compared to peak flux of flares with which CMEs are not associated. In other words, it is likely that flare duration and peak flux are independently affected by distinct active region dynamics. Hence, we examine the relative ability of flare duration and peak flux in enhancing the CME productivity. We report that CME productivity is distinctly higher in association with the enhancement of flare peak flux in comparison to corresponding enhancement of flare duration.

  9. EUV Coronal Waves: Atmospheric and Heliospheric Connections and Energetics

    NASA Astrophysics Data System (ADS)

    Patsourakos, S.

    2015-12-01

    Since their discovery in late 90's by EIT on SOHO, the study EUV coronal waves has been a fascinating andfrequently strongly debated research area. While it seems as ifan overall consensus has been reached about the nurture and nature of this phenomenon,there are still several important questions regarding EUV waves. By focusing on the most recentobservations, we will hereby present our current understanding about the nurture and nature of EUV waves,discuss their connections with other atmospheric and heliospheric phenomena (e.g.,flares and CMEs, Moreton waves, coronal shocks, coronal oscillations, SEP events) and finallyassess their possible energetic contribution to the overall budget of relatederuptive phenomena.

  10. Multi-wave band SMM-VLA observations of an M2 flare and an associated coronal mass ejection

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.; Lang, Kenneth R.; Schmelz, Joan T.; Gonzalez, Raymond D.; Smith, Kermit L.

    1991-01-01

    Results are presented of observations of an M2 flare and an associated coronal mass ejection CME by instruments on the SMM as well as by the VLA and other ground-based observatories on September 30, 1988. The multiwave band data show a gradual slowly changing event which lasted several hours. The microwave burst emission was found to originate in compact moderately circularly polarized sources located near the sites of bright H-alpha and soft X-ray emission. These data are combined with estimates of an electron temperature of 1.5 x 10 to the 7th K and an emission measure of about 2.0 x 10 to the 49th/cu cm obtained from Ca XIX and Fe XXV spectra to show that the microwave emission can be attributed to thermal gyrosynchrotron radiation in regions where the magnetic field strength is 425-650 G. The CME acceleration at low altitudes is measured on the basis of ground- and space-based coronagraphs.

  11. The Soft X-Ray/Microwave Ratio of Solar and Stellar Flares and Coronae

    NASA Technical Reports Server (NTRS)

    Benz, A. O.; Guedel, M.

    1994-01-01

    We have carried out plasma diagnostics of solar flares using soft X-ray (SXR) and simultaneous microwave observations and have compared the ratio of X-ray to microwave luminosities of solar flares with various active late-type stars available in the published literature. Both the SXR low-level ('quiescent') emission from stellar coronae and the flaring emission from the Sun and stars are generally interpreted as thermal radiations of coronal plasmas. On the other hand, the microwave emission of stars and solar flares is generally attributed to an extremely hot or nonthermal population of electrons. Solar flare SXR are conventionally measured in a narrower and harder passband than the stellar sources. Observations of the GOES-2 satellite in two energy channels have been used to estimate the luminosity of solar flares as it would appear in the ROSAT satellite passband. The solar and stellar flare luminosities fit well at the lower end of the active stellar coronae. The flare SXR/microwave ratio is similar to the ratio for stellar coronae. The average ratio follows a power-law relation L(sub X) varies as L(sub R)(sup 0.73 +/- 0.03) over 10 orders of magnitude from solar microflares to RS CVn and FK Com-type coronae. Dwarf Me and Ke stars, and RS CVn stars are also compatible with a linear SXR/microwave relation, but the ratio is slightly different for each type of star. Considering the differences between solar flares, stellar flares and the various active stellar coronae, the similarity of the SXR/microwave ratios is surprising. It suggests that the energetic electrons in low-level stellar coronae observed in microwaves are related in a similar way to the coronal thermal plasma as flare electrons to the flare thermal plasma, and, consequently, that the heating mechanism of active stellar coronae is a flare-like process.

  12. On the theory of coronal heating mechanisms

    NASA Technical Reports Server (NTRS)

    Kuperus, M.; Ionson, J. A.; Spicer, D. S.

    1980-01-01

    Theoretical models describing solar coronal heating mechanisms are reviewed in some detail. The requirements of chromospheric and coronal heating are discussed in the context of the fundamental constraints encountered in modelling the outer solar atmosphere. Heating by acoustic processes in the 'nonmagnetic' parts of the atmosphere is examined with particular emphasis on the shock wave theory. Also discussed are theories of heating by electrodynamic processes in the magnetic regions of the corona, either magnetohydrodynamic waves or current heating in the regions with large electric current densities (flare type heating). Problems associated with each of the models are addressed.

  13. A solar tornado caused by flares

    NASA Astrophysics Data System (ADS)

    Panesar, N. K.; Innes, D. E.; Tiwari, S. K.; Low, B. C.

    2014-01-01

    An enormous solar tornado was observed by SDO/AIA on 25 September 2011. It was mainly associated with a quiescent prominence with an overlying coronal cavity. We investigate the triggering mechanism of the solar tornado by using the data from two instruments: SDO/AIA and STEREO-A/EUVI, covering the Sun from two directions. The tornado appeared near to the active region NOAA 11303 that produced three flares. The flares directly influenced the prominence-cavity system. The release of free magnetic energy from the active region by flares resulted in the contraction of the active region field. The cavity, owing to its superior magnetic pressure, expanded to fill this vacated space in the corona. We propose that the tornado developed on the top of the prominence due to the expansion of the prominence-cavity system.

  14. ABOVE-THE-LOOP-TOP OSCILLATION AND QUASI-PERIODIC CORONAL WAVE GENERATION IN SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takasao, Shinsuke; Shibata, Kazunari, E-mail: takasao@kwasan.kyoto-u.ac.jp

    Observations revealed that various kinds of oscillations are excited in solar flare regions. Quasi-periodic pulsations (QPPs) in flare emissions are commonly observed in a wide range of wavelengths. Recent observations have found that fast-mode magnetohydrodynamic (MHD) waves are quasi-periodically emitted from some flaring sites (quasi-periodic propagating fast-mode magnetoacoustic waves; QPFs). Both QPPs and QPFs imply a cyclic disturbance originating from the flaring sites. However, the physical mechanisms remain puzzling. By performing a set of two-dimensional MHD simulations of a solar flare, we discovered the local oscillation above the loops filled with evaporated plasma (above-the-loop-top region) and the generation of QPFsmore » from such oscillating regions. Unlike all previous models for QPFs, our model includes essential physics for solar flares such as magnetic reconnection, heat conduction, and chromospheric evaporation. We revealed that QPFs can be spontaneously excited by the above-the-loop-top oscillation. We found that this oscillation is controlled by the backflow of the reconnection outflow. The new model revealed that flare loops and the above-the-loop-top region are full of shocks and waves, which is different from the previous expectations based on a standard flare model and previous simulations. In this paper, we show the QPF generation process based on our new picture of flare loops and will briefly discuss a possible relationship between QPFs and QPPs. Our findings will change the current view of solar flares to a new view in which they are a very dynamic phenomenon full of shocks and waves.« less

  15. Sunspot splitting triggering an eruptive flare

    NASA Astrophysics Data System (ADS)

    Louis, Rohan E.; Puschmann, Klaus G.; Kliem, Bernhard; Balthasar, Horst; Denker, Carsten

    2014-02-01

    Aims: We investigate how the splitting of the leading sunspot and associated flux emergence and cancellation in active region NOAA 11515 caused an eruptive M5.6 flare on 2012 July 2. Methods: Continuum intensity, line-of-sight magnetogram, and dopplergram data of the Helioseismic and Magnetic Imager were employed to analyse the photospheric evolution. Filtergrams in Hα and He I 10830 Å of the Chromospheric Telescope at the Observatorio del Teide, Tenerife, track the evolution of the flare. The corresponding coronal conditions were derived from 171 Å and 304 Å images of the Atmospheric Imaging Assembly. Local correlation tracking was utilized to determine shear flows. Results: Emerging flux formed a neutral line ahead of the leading sunspot and new satellite spots. The sunspot splitting caused a long-lasting flow towards this neutral line, where a filament formed. Further flux emergence, partly of mixed polarity, as well as episodes of flux cancellation occurred repeatedly at the neutral line. Following a nearby C-class precursor flare with signs of interaction with the filament, the filament erupted nearly simultaneously with the onset of the M5.6 flare and evolved into a coronal mass ejection. The sunspot stretched without forming a light bridge, splitting unusually fast (within about a day, complete ≈6 h after the eruption) in two nearly equal parts. The front part separated strongly from the active region to approach the neighbouring active region where all its coronal magnetic connections were rooted. It also rotated rapidly (by 4.9° h-1) and caused significant shear flows at its edge. Conclusions: The eruption resulted from a complex sequence of processes in the (sub-)photosphere and corona. The persistent flows towards the neutral line likely caused the formation of a flux rope that held the filament. These flows, their associated flux cancellation, the emerging flux, and the precursor flare all contributed to the destabilization of the flux rope. We

  16. EVOLUTION OF MAGNETIC FIELD AND ENERGY IN A MAJOR ERUPTIVE ACTIVE REGION BASED ON SDO/HMI OBSERVATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Xudong; Hoeksema, J. Todd; Liu, Yang

    We report the evolution of the magnetic field and its energy in NOAA active region 11158 over five days based on a vector magnetogram series from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). Fast flux emergence and strong shearing motion led to a quadrupolar sunspot complex that produced several major eruptions, including the first X-class flare of Solar Cycle 24. Extrapolated nonlinear force-free coronal fields show substantial electric current and free energy increase during early flux emergence near a low-lying sigmoidal filament with a sheared kilogauss field in the filament channel. The computed magneticmore » free energy reaches a maximum of {approx}2.6 Multiplication-Sign 10{sup 32} erg, about 50% of which is stored below 6 Mm. It decreases by {approx}0.3 Multiplication-Sign 10{sup 32} erg within 1 hr of the X-class flare, which is likely an underestimation of the actual energy loss. During the flare, the photospheric field changed rapidly: the horizontal field was enhanced by 28% in the core region, becoming more inclined and more parallel to the polarity inversion line. Such change is consistent with the conjectured coronal field 'implosion' and is supported by the coronal loop retraction observed by the Atmospheric Imaging Assembly (AIA). The extrapolated field becomes more 'compact' after the flare, with shorter loops in the core region, probably because of reconnection. The coronal field becomes slightly more sheared in the lowest layer, relaxes faster with height, and is overall less energetic.« less

  17. The study of Equatorial coronal hole during maximum phase of Solar Cycle 21, 22, 23 and 24

    NASA Astrophysics Data System (ADS)

    Karna, Mahendra; Karna, Nishu

    2017-08-01

    The 11-year Solar Cycle (SC) is characterized by the periodic change in the solar activity like sunspot numbers, coronal holes, active regions, eruptions such as flares and coronal mass ejections. We study the relationship between equatorial coronal holes (ECH) and the active regions (AR) as coronal whole positions and sizes change with the solar cycle. We made a detailed study of equatorial coronal hole for four solar maximum: Solar Cycle 21 (1979,1980,1981 and 1982), Solar Cycle 22 (1989, 1990, 1991 and 1992), Solar Cycle 23 (1999, 2000, 2001 and 2002) and Solar Cycle 24 (2012, 2013, 2014 and 2015). We used publically available NOAA solar coronal hole data for cycle 21 and 22. We measured the ECH region using the EIT and AIA synoptic map for cycle 23 and 24. We noted that in two complete 22-year cycle of solar activity, the equatorial coronal hole numbers in SC 22 is greater than SC 21 and similarly, SC 24 equatorial coronal hole numbers are greater than SC 23. Moreover, we also compared the position of AR and ECH during SC 23 and 24. We used daily Solar Region Summary (SRS) data from SWPC/NOAA website. Our goal is to examine the correlation between equatorial holes, active regions, and flares.

  18. Fermi -LAT Observations of High-energy Behind-the-limb Solar Flares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Buehler, R.; Allafort, A.

    2017-02-01

    We report on the Fermi -LAT detection of high-energy emission from the behind-the-limb (BTL) solar flares that occurred on 2013 October 11, and 2014 January 6 and September 1. The Fermi -LAT observations are associated with flares from active regions originating behind both the eastern and western limbs, as determined by STEREO . All three flares are associated with very fast coronal mass ejections (CMEs) and strong solar energetic particle events. We present updated localizations of the >100 MeV photon emission, hard X-ray (HXR) and EUV images, and broadband spectra from 10 keV to 10 GeV, as well as microwavemore » spectra. We also provide a comparison of the BTL flares detected by Fermi -LAT with three on-disk flares and present a study of some of the significant quantities of these flares as an attempt to better understand the acceleration mechanisms at work during these occulted flares. We interpret the HXR emission to be due to electron bremsstrahlung from a coronal thin-target loop top with the accelerated electron spectra steepening at semirelativistic energies. The >100 MeV gamma-rays are best described by a pion-decay model resulting from the interaction of protons (and other ions) in a thick-target photospheric source. The protons are believed to have been accelerated (to energies >10 GeV) in the CME environment and precipitate down to the photosphere from the downstream side of the CME shock and landed on the front side of the Sun, away from the original flare site and the HXR emission.« less

  19. Fermi-LAT Observations of High-energy Behind-the-limb Solar Flares

    DOE PAGES

    Ackermann, M.; Allafort, A.; Baldini, L.; ...

    2017-01-31

    In this paper, we report on the Fermi-LAT detection of high-energy emission from the behind-the-limb (BTL) solar flares that occurred on 2013 October 11, and 2014 January 6 and September 1. The Fermi-LAT observations are associated with flares from active regions originating behind both the eastern and western limbs, as determined by STEREO. All three flares are associated with very fast coronal mass ejections (CMEs) and strong solar energetic particle events. We present updated localizations of the >100 MeV photon emission, hard X-ray (HXR) and EUV images, and broadband spectra from 10 keV to 10 GeV, as well as microwavemore » spectra. We also provide a comparison of the BTL flares detected by Fermi-LAT with three on-disk flares and present a study of some of the significant quantities of these flares as an attempt to better understand the acceleration mechanisms at work during these occulted flares. We interpret the HXR emission to be due to electron bremsstrahlung from a coronal thin-target loop top with the accelerated electron spectra steepening at semirelativistic energies. The >100 MeV gamma-rays are best described by a pion-decay model resulting from the interaction of protons (and other ions) in a thick-target photospheric source. In conclusion, the protons are believed to have been accelerated (to energies >10 GeV) in the CME environment and precipitate down to the photosphere from the downstream side of the CME shock and landed on the front side of the Sun, away from the original flare site and the HXR emission.« less

  20. The Prospect for Detecting Stellar Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Osten, Rachel A.; Crosley, Michael Kevin

    2018-06-01

    The astrophysical study of mass loss, both steady-state and transient, on the cool half of the HR diagram has implications bothfor the star itself and the conditions created around the star that can be hospitable or inimical to supporting life. Recent results from exoplanet studies show that planets around M dwarfs are exceedingly common, which together with the commonality of M dwarfs in our galaxy make this the dominant mode of star and planet configurations. The closeness of the exoplanets to the parent M star motivate a comprehensive understanding of habitability for these systems. Radio observations provide the most clear signature of accelerated particles and shocks in stars arising as the result of MHD processes in the stellar outer atmosphere. Stellar coronal mass ejections have not been conclusively detected, despite the ubiquity with which their radiative counterparts in an eruptive event (stellar flares) have. I will review some of the different observational methods which have been used and possibly could be used in the future in the stellar case, emphasizing some of the difficulties inherent in such attempts. I will provide a framework for interpreting potential transient stellar mass loss in light of the properties of flares known to occur on magnetically active stars. This uses a physically motivated way to connect the properties of flares and coronal mass ejections and provides a testable hypothesis for observing or constraining transient stellar mass loss. I will describe recent results using radio observations to detect stellar coronal mass ejections, and what those results imply about transient stellar mass loss. I will provide some motivation for what could be learned in this topic from space-based low frequency radio experiments.

  1. Current Fragmentation and Particle Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.

    2012-11-01

    Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.

  2. Realistic radiative MHD simulation of a solar flare

    NASA Astrophysics Data System (ADS)

    Rempel, Matthias D.; Cheung, Mark; Chintzoglou, Georgios; Chen, Feng; Testa, Paola; Martinez-Sykora, Juan; Sainz Dalda, Alberto; DeRosa, Marc L.; Viktorovna Malanushenko, Anna; Hansteen, Viggo H.; De Pontieu, Bart; Carlsson, Mats; Gudiksen, Boris; McIntosh, Scott W.

    2017-08-01

    We present a recently developed version of the MURaM radiative MHD code that includes coronal physics in terms of optically thin radiative loss and field aligned heat conduction. The code employs the "Boris correction" (semi-relativistic MHD with a reduced speed of light) and a hyperbolic treatment of heat conduction, which allow for efficient simulations of the photosphere/corona system by avoiding the severe time-step constraints arising from Alfven wave propagation and heat conduction. We demonstrate that this approach can be used even in dynamic phases such as a flare. We consider a setup in which a flare is triggered by flux emergence into a pre-existing bipolar active region. After the coronal energy release, efficient transport of energy along field lines leads to the formation of flare ribbons within seconds. In the flare ribbons we find downflows for temperatures lower than ~5 MK and upflows at higher temperatures. The resulting soft X-ray emission shows a fast rise and slow decay, reaching a peak corresponding to a mid C-class flare. The post reconnection energy release in the corona leads to average particle energies reaching 50 keV (500 MK under the assumption of a thermal plasma). We show that hard X-ray emission from the corona computed under the assumption of thermal bremsstrahlung can produce a power-law spectrum due to the multi-thermal nature of the plasma. The electron energy flux into the flare ribbons (classic heat conduction with free streaming limit) is highly inhomogeneous and reaches peak values of about 3x1011 erg/cm2/s in a small fraction of the ribbons, indicating regions that could potentially produce hard X-ray footpoint sources. We demonstrate that these findings are robust by comparing simulations computed with different values of the saturation heat flux as well as the "reduced speed of light".

  3. Time-resolved Spectroscopy of RS CVn Binaries and dMe Flare Stars

    NASA Astrophysics Data System (ADS)

    Brown, Alexander

    One of the most striking feature of the first two years of EUVE spectroscopy is the frequent occurrence of largescale coronal variability, in the form of stellar flares and slower changes in activity level due to rotational modulation and evolution of active regions. We propose EUVE observations of a set of RS CVn and dMe star binaries, most with short (< 2 days) periods, to investigate the coronal conditions and physical processes associated with this variability. EUVE flare outbursts have mostly been long duration events lasting many satellite orbits and been readily studied using time-resolved spectroscopy. Our targets are the dMe binaries YY Gem, CC Eri and Gliese 2123, and the RS CVn systems EI Eri, AR Psc, and TY Pyx. YY Gem and TY Pyx are eclipsing systems and Deep Survey photometry will be used to investigate the size of the coronal emitting regions. Situated 73 arcmin from YY Gem is Castor (Alpha Gem) another X-ray source that can be observed (and spatially resolved) simultaneously. We shall use the DS lightcurve to guide our time resolved spectral analysis. Changes in the coronal emission measure as a function of temperature and possibly changes in coronal density will be used to constrain magnetic loop models.

  4. Working length changes in curved canals after coronal flaring by using rotary files and hand file: An in vitro study

    PubMed Central

    Kumar, Rahul; Khambete, Neha; Patil, Suvarna; Hoshing, Upendra; Medha, Ashish; Shetty, Roshan

    2013-01-01

    Aim: This in vitro investigation examined the effect of early coronal flaring (CF) and late CF on the working length (WL) in curved root canals. Background: The objective of this study was to determine if canal length is altered as a result of CF in curved canals of molar roots. Study Design: The conditions compared were combinations of (a) stainless steel hand files using Gates Glidden (G. G.) drills (SS) versus nickel-titanium rotary files (Ni-Ti); and (b) early CF (flaring completed before WL determination) versus late CF (flaring completed after WL determination). Selected were 90 canals of extracted maxillary or mandibular first molars (mesial root of mandibular molars and the mesiobuccal root of the maxillary molars) from three groups. CF was accomplished for the SS group using G. G. drills and for the Ni-Ti group using rotary ProTaper and Hero Shaper files. WL was determined by a digital vernier caliper before CF, immediately after CF, and again after canal preparation. Statistical Analysis: A repeated measures analysis of variance (ANOVA) test and a Tukey's multiple prosthoc test were used for this study. Results: Results indicated that WL decreased for all canals as a result of canal preparation. The mean decrease in WL was significantly greater for the SS group (−0.77 ± 0.42 mm) than for the Ni-Ti groups (−0.33 mm ± 0.44). Less change in WL occurred in all groups when initial WL was determined after CF. Conclusion: WL in curved canals consistently decreases during the course of instrumentation. Clinician should keep this in mind for better treatment outcome. PMID:24082566

  5. A COLD FLARE WITH DELAYED HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleishman, Gregory D.; Pal'shin, Valentin D.; Lysenko, Alexandra L.

    2016-05-10

    Recently, a number of peculiar flares have been reported that demonstrate significant nonthermal particle signatures with low, if any, thermal emission, which implies a close association of the observed emission with the primary energy release/electron acceleration region. This paper presents a flare that appears “cold” at the impulsive phase, while displaying delayed heating later on. Using hard X-ray data from Konus- Wind , microwave observations by SSRT, RSTN, NoRH, and NoRP, context observations, and three-dimensional modeling, we study the energy release, particle acceleration, and transport, and the relationships between the nonthermal and thermal signatures. The flaring process is found tomore » involve the interaction between a small loop and a big loop with the accelerated particles divided roughly equally between them. Precipitation of the electrons from the small loop produced only a weak thermal response because the loop volume was small, while the electrons trapped in the big loop lost most of their energy in the coronal part of the loop, which resulted in coronal plasma heating but no or only weak chromospheric evaporation, and thus unusually weak soft X-ray emission. The energy losses of the fast electrons in the big tenuous loop were slow, which resulted in the observed delay of the plasma heating. We determined that the impulsively accelerated electron population had a beamed angular distribution in the direction of the electric force along the magnetic field of the small loop. The accelerated particle transport in the big loop was primarily mediated by turbulent waves, which is similar to other reported cold flares.« less

  6. Safety and efficacy of early intervention with pimecrolimus cream 1% combined with corticosteroids for major flares in infants and children with atopic dermatitis.

    PubMed

    Siegfried, Elaine; Korman, Neil; Molina, Carmen; Kianifard, Farid; Abrams, Ken

    2006-01-01

    To assess early intervention with pimecrolimus combined with corticosteroid (CS) for major flares in patients with severe atopic dermatitis (AD). In this 6-month, double-blind, multicenter, randomized, vehicle-controlled, parallel-group in 35 US centers, 275 children aged 3 months to 11 years with mild to severe AD applied the study medication twice daily at first signs/symptoms of AD. For major flares not controlled with study medication, a mid-potency CS cream replaced the evening study drug for up to 3 weeks. The percentage of subjects with no major flares was the main outcome measure. Pimecrolimus reduced the major flare incidence and prolonged flare-free intervals. Significantly more pimecrolimus subjects (52%) had no major flares compared with vehicle subjects (34%; p = 0.007). Pimecrolimus significantly delayed the first flare (median, 53 days vs 13 days; p<0.001), and increased the time between flares (median, 31 days vs 15 days). Additionally, there was earlier pruritus improvement (median, day 3 vs day 6; p = 0.034) in the pimecrolimus group, as well as a reduced need for CS by 37% (p = 0.020) [corrected] Adverse events (AEs) incidence and type were comparable between groups. Combination therapy with pimecrolimus used at half the recommended dose did not shorten the mean flare duration or alter the AE profile. Early treatment of signs/symptoms of AD with pimecrolimus cream 1% provided an effective steroid-sparing option that reduced the incidence of major flares.

  7. Solar flares, proton showers, and the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1982-01-01

    Attention is given the hazards posed to Space Shuttle crews by energetic proton radiation from inherently unpredictable solar flares, such as that of April 10-13, 1981, which was experienced by the Space Shuttle Columbia. The most energetic protons from this flare reached the earth's atmosphere an hour after flare onset, and would have posed a potentially lethal threat to astronauts engaged in extravehicular activity in a polar or geosynchronous orbit rather than the low-latitude, low-altitude orbit of this mission. It is shown that proton-producing flares are associated with energization in shocks, many of which are driven by coronal mass ejections. Insights gained from the Solar Maximum Year programs allow reconsideration of proton shower forecasting, which will be essential in the prediction of the weather that Space Shuttle astronauts will encounter during extravehicular activities.

  8. Detection of the Acceleration Site in a Solar Flare

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Kontar, E. P.; Nita, G. M.; Gary, D. E.

    2011-05-01

    We report the observation of an unusual cold, tenuous solar flare (ApJL, v. 731, p. L19, 2011), which reveals itself via numerous and prominent non-thermal manifestations, while lacking any noticeable thermal emission signature. RHESSI hard X-rays and 0.1-18 GHz radio data from OVSA and Phoenix-2 show copious electron acceleration (1035 electrons per second above 10 keV) typical for GOES M-class flares with electrons energies up to 100 keV, but GOES temperatures not exceeding 6.1 MK. The HXR footpoints and coronal radio sources belong, supposedly, to a single magnetic loop, which departs strongly from the corresponding potential loop (obtained from a photospheric extrapolation) in agreement with the apparent need of a non-potential magnetic field structure to produce a flare. The imaging, temporal, and spectral characteristics of the flare have led us to a firm conclusion that the bulk of the microwave continuum emission from this flare was produced directly in the acceleration region. We found that the electron acceleration efficiency is very high in the flare, so almost all available thermal electrons are eventually accelerated. However, given a relatively small flaring volume and rather low thermal density at the flaring loop, the total energy release turned out to be insufficient for a significant heating of the coronal plasma or for a prominent chromospheric response giving rise to chromospheric evaporation. Some sort of stochastic acceleration process is needed to account for an approximately energy-independent lifetime of about 3 s for the electrons in the acceleration region. This work was supported in part by NSF grants AGS-0961867, AST-0908344, and NASA grants NNX10AF27G and NNX11AB49G to New Jersey Institute of Technology. This work was supported by a UK STFC rolling grant, STFC/PPARC Advanced Fellowship, and the Leverhulme Trust, UK. Financial support by the European Commission through the SOLAIRE and HESPE Networks is gratefully acknowledged.

  9. Post-flare loops embedded in a hot coronal fan-like structure

    NASA Technical Reports Server (NTRS)

    Svestka, Z.; Farnik, F.; Hudson, H. S.; Hick, P.

    1997-01-01

    Limb events were demonstrated on the sun in which rising post-flare loops were embedded in hot structures looking in soft X-rays like fans of rays, formed during the flare and extending high into the corona. One of these structures is analyzed and it is suggested that these fans of rays represent temporary ministreamers, along which mass flows into interplanetary space. This suggestion is supported by maps of solar wind density constructed from scintillation measurements.

  10. A far-ultraviolet flare on a Pleiades G dwarf

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.; Stauffer, J. R.; Simon, Theodore; Stern, R. A.; Antiochos, S. K.; Basri, G. S.; Bookbinder, J. A.; Brown, A.; Doschek, G. A.; Linsky, J. L.

    1994-01-01

    The Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) recorded a remarkable transient brightening in the C IV lambda lambda 1548,50 emissions of the rapidly rotating Pleiades G dwarf H II 314. On the one hand the 'flare' might be a rare event luckily observed; on the other hand it might be a bellwether of the coronal heating in very young solar-mass stars. If the latter, flaring provides a natural spin-down mechanism through associated sporadic magnetospheric mass loss.

  11. Largest Solar Flare on Record

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The largest solar flare ever recorded occurred at 4:51 p.m. EDT, on Monday, April 2, 2001. as Observed by the Solar and Heliospheric Observatory (SOHO) satellite. Solar flares, among the solar systems mightiest eruptions, are tremendous explosions in the atmosphere of the Sun capable of releasing as much energy as a billion megatons of TNT. Caused by the sudden release of magnetic energy, in just a few seconds, solar flares can accelerate solar particles to very high velocities, almost to the speed of light, and heat solar material to tens of millions of degrees. The recent explosion from the active region near the sun's northwest limb hurled a coronal mass ejection into space at a whopping speed of roughly 7.2 million kilometers per hour. Luckily, the flare was not aimed directly towards Earth. Second to the most severe R5 classification of radio blackout, this flare produced an R4 blackout as rated by the NOAA SEC. This classification measures the disruption in radio communications. Launched December 2, 1995 atop an ATLAS-IIAS expendable launch vehicle, the SOHO is a cooperative effort involving NASA and the European Space Agency (ESA). (Image courtesy NASA Goddard SOHO Project office)

  12. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  13. Identification of coronal sources of the solar wind from solar images in the EUV spectral range

    NASA Astrophysics Data System (ADS)

    Slemzin, V. A.; Shugai, Yu. S.

    2015-01-01

    Methods of localizing coronal sources of the solar wind (SW), such as coronal holes, quasi-stationary fluxes from active regions, and transient sources associated with small-scale active phenomena are considered based on vacuum-ultraviolet (EUV) images of the corona at low solar activity during the initial period of the 24th solar cycle (2010). It is shown that a SW velocity profile can be calculated from the relative areas of coronal holes (CH) at the central part of the disk based on the images in the ranges of 193 and 171 Å. The images in the 193 Å describe the geometry of large HCs that represent sources of fast SW well. The images in 171 Å are a better visualization of small CHs, based on which the profile of a slow SW component was calculated to a high accuracy (up to 65 km/s). According to Hinode/EIS data of October 15, 2010, using the Doppler spectroscopy method at the streamer base over the active region 11112, the source of the outgoing plasma flux with the mean velocity of 17 km/s was localized in the magnetic field region with an intensity of less than 200 Gauss. According to the estimate, the density of the plasma flux from this source is an order of magnitude greater than the value required for explaining the distinction between the calculated and measured profiles of a slow SW velocity. For finding the transient SW component based on small-scale flare activity, SW parameters were analyzed for the periods of flares accompanied by coronal mass ejections (CMEs), and for the periods without flares, according to the data obtained in 2010 from the ACE and GOES satellites and by coronagraphs on the STEREO-A and - B spacecraft. The ion ratios C+6/C+5 and O+7/O+6 and the mean charge of Fe ions for periods with flares were shown to be shifted toward large values, suggesting the presence of a hot SW component associated with flare activity. A noticeable correlation between the maximum charge of Fe ions and the peak power of a flare, previously observed for

  14. The Effect of Magnetic Topology on the Escape of Flare Particles

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Masson, S.; DeVore, C. R.

    2012-01-01

    Magnetic reconnection in the solar atmosphere is believed to be the driver of most solar explosive phenomena. Therefore, the topology of the coronal magnetic field is central to understanding the solar drivers of space weather. Of particular importance to space weather are the impulsive Solar Energetic particles that are associated with some CME/eruptive flare events. Observationally, the magnetic configuration of active regions where solar eruptions originate appears to agree with the standard eruptive flare model. According to this model, particles accelerated at the flare reconnection site should remain trapped in the corona and the ejected plasmoid. However, flare-accelerated particles frequently reach the Earth long before the CME does. We present a model that may account for the injection of energetic particles onto open magnetic flux tubes connecting to the Earth. Our model is based on the well-known 2.5D breakout topology, which has a coronal null point (null line) and a four-flux system. A key new addition, however, is that we include an isothermal solar wind with open-flux regions. Depending on the location of the open flux with respect to the null point, we find that the flare reconnection can consist of two distinct phases. At first, the flare reconnection involves only closed field, but if the eruption occurs close to the open field, we find a second phase involving interchange reconnection between open and closed. We argue that this second reconnection episode is responsible for the injection of flare-accelerated particles into the interplanetary medium. We will report on our recent work toward understanding how flare particles escape to the heliosphere. This work uses high-resolution 2.5D MHD numerical simulations performed with the Adaptively Refined MHD Solver (ARMS).

  15. Influence of magnetic field structure on the conduction cooling of flare loops

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Sturrock, P. A.

    1976-01-01

    A simple model facilitates calculation of the influence of magnetic-field configuration on the conduction cooling rate of a hot post-flare coronal plasma. The magnetic field is taken to be that produced by a line dipole or point dipole at an arbitrary depth below the chromosphere. For the high temperatures (at least 10 million K) produced by flares, the plasma may remain static and isobaric. The influence of the field is such as to increase the heat flux (per unit area) into the chromosphere, but to decrease the total conduction cooling of the flare plasma. This leads to a significant enhancement of the total energy radiated by the flare plasma.

  16. A New Method for Coronal Magnetic Field Reconstruction

    NASA Astrophysics Data System (ADS)

    Yi, Sibaek; Choe, Gwang-Son; Cho, Kyung-Suk; Kim, Kap-Sung

    2017-08-01

    A precise way of coronal magnetic field reconstruction (extrapolation) is an indispensable tool for understanding of various solar activities. A variety of reconstruction codes have been developed so far and are available to researchers nowadays, but they more or less bear this and that shortcoming. In this paper, a new efficient method for coronal magnetic field reconstruction is presented. The method imposes only the normal components of magnetic field and current density at the bottom boundary to avoid the overspecification of the reconstruction problem, and employs vector potentials to guarantee the divergence-freeness. In our method, the normal component of current density is imposed, not by adjusting the tangential components of A, but by adjusting its normal component. This allows us to avoid a possible numerical instability that on and off arises in codes using A. In real reconstruction problems, the information for the lateral and top boundaries is absent. The arbitrariness of the boundary conditions imposed there as well as various preprocessing brings about the diversity of resulting solutions. We impose the source surface condition at the top boundary to accommodate flux imbalance, which always shows up in magnetograms. To enhance the convergence rate, we equip our code with a gradient-method type accelerator. Our code is tested on two analytical force-free solutions. When the solution is given only at the bottom boundary, our result surpasses competitors in most figures of merits devised by Schrijver et al. (2006). We have also applied our code to a real active region NOAA 11974, in which two M-class flares and a halo CME took place. The EUV observation shows a sudden appearance of an erupting loop before the first flare. Our numerical solutions show that two entwining flux tubes exist before the flare and their shackling is released after the CME with one of them opened up. We suggest that the erupting loop is created by magnetic reconnection between

  17. Sun Emits a Mid-Level Flare

    NASA Image and Video Library

    2017-12-08

    Caption: A burst of solar material leaps off the left side of the sun in what’s known as a prominence eruption. This image combines three images from NASA’s Solar Dynamics Observatory captured on May 3, 2013, at 1:45 pm EDT, just as an M-class solar flare from the same region was subsiding. The images include light from the 131, 171 and 304 Angstrom wavelengths. Credit: NASA/Goddard/SDO --- The sun emitted a mid-level solar flare, peaking at 1:32 pm EDT on May 3, 2013. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This disrupts the radio signals for as long as the flare is ongoing, and the radio blackout for this flare has already subsided. This flare is classified as an M5.7 class flare. M-class flares are the weakest flares that can still cause some space weather effects near Earth. Increased numbers of flares are quite common at the moment, since the sun's normal 11-year activity cycle is ramping up toward solar maximum, which is expected in late 2013. Updates will be provided as they are available on the flare and whether there was an associated coronal mass ejection (CME), another solar phenomenon that can send solar particles into space and affect electronic systems in satellites and on Earth. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. ROSAT investigation of flaring and activity on Prox Cen

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard

    1993-01-01

    The objective of this program was to investigate with high sensitivity the low-level flare activity which may underlie coronal heating. This was done. The ROSAT observations of Prox Cen were scheduled for 50 ks spread out from 26 Feb. - 10 Mar. 1992. Unfortunately because of spacecraft problems many of these pointings turned out to contain no useful data or extremely truncated valid data sets. Considerable time was spent trying to determine which of the data would be scientifically useful and which would not. Fortunately, several developments took place to augment the original data in such a way that the scientific goal of advancing the study of flaring and variability was able to be achieved after all. These are as follows: (1) a second round of ROSAT observations was carried out in Feb. 1993 which only came to the attention of the PI in Apr. 1993 when a new data tape arrived; (2) simultaneous IUE observations were requested and obtained; (3) data from the UK WFC are available via the collaboration with Dr. G. Bromage; and (4) the 'cleaned-up' original data set was found to include one major flare and 2 moderate flares. Because of the problems with the original data set, the unexpected acquisition of new data only two months ago, and the availability of IUE and WFC data, an article on Prox Cen for publication is not ready at this time. Such an article is being developed and can be completed as part of ongoing ROSAT research efforts on stellar coronae and flaring.

  19. The Magnetic Evolution of Coronal Hole Bright Points

    NASA Astrophysics Data System (ADS)

    He, Y.; Muglach, K.

    2017-12-01

    Space weather refers to the state of the heliosphere and the geospace environment that are caused primarily by solar activity. Coronal mass ejections and flares originate in active regions and filaments close to the solar surface and can cause geomagnetic storms and solar energetic particles events, which can damage both spacecraft and ground-based systems that are critical for society's well-being. Coronal bright points are small-scale magnetic regions on the sun that seem to be similar to active regions, but are about an order of magnitude smaller. Due to their shorter lifetime, the complete evolutionary cycle of these mini active regions can be studied, from the time they appear in extreme-ultraviolet (EUV) images to the time they fade. We are using data from the Solar Dynamics Observatory (SDO) to study both the coronal EUV flux and the photospheric magnetic field and compare them to activities of the coronal bright point.

  20. Solar Flare Aimed at Earth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  1. Transverse Oscillations of Coronal Loops

    NASA Astrophysics Data System (ADS)

    Ruderman, Michael S.; Erdélyi, Robert

    2009-12-01

    On 14 July 1998 TRACE observed transverse oscillations of a coronal loop generated by an external disturbance most probably caused by a solar flare. These oscillations were interpreted as standing fast kink waves in a magnetic flux tube. Firstly, in this review we embark on the discussion of the theory of waves and oscillations in a homogeneous straight magnetic cylinder with the particular emphasis on fast kink waves. Next, we consider the effects of stratification, loop expansion, loop curvature, non-circular cross-section, loop shape and magnetic twist. An important property of observed transverse coronal loop oscillations is their fast damping. We briefly review the different mechanisms suggested for explaining the rapid damping phenomenon. After that we concentrate on damping due to resonant absorption. We describe the latest analytical results obtained with the use of thin transition layer approximation, and then compare these results with numerical findings obtained for arbitrary density variation inside the flux tube. Very often collective oscillations of an array of coronal magnetic loops are observed. It is natural to start studying this phenomenon from the system of two coronal loops. We describe very recent analytical and numerical results of studying collective oscillations of two parallel homogeneous coronal loops. The implication of the theoretical results for coronal seismology is briefly discussed. We describe the estimates of magnetic field magnitude obtained from the observed fundamental frequency of oscillations, and the estimates of the coronal scale height obtained using the simultaneous observations of the fundamental frequency and the frequency of the first overtone of kink oscillations. In the last part of the review we summarise the most outstanding and acute problems in the theory of the coronal loop transverse oscillations.

  2. Coronal O VI emission observed with UVCS/SOHO during solar flares: Comparison with soft X-ray observations

    NASA Astrophysics Data System (ADS)

    Mancuso, S.; Giordano, S.; Raymond, J. C.

    2016-06-01

    In this work, we derive the O VI 1032 Å luminosity profiles of 58 flares, during their impulsive phase, based on off-limb measurements by the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the SOlar and Heliospheric Observatory (SOHO). The O VI luminosities from the transition region plasma (here defined as the region with temperatures 5.0 ≤ log T (K) ≤ 6.0) were inferred from the analysis of the resonantly scattered radiation of the O VI coronal ions. The temperature of maximum ionization for O VI is log Tmax (K) = 5.47. By comparison with simultaneous soft X-ray measurements, we investigate the likely source (chromospheric evaporation, footpoint emission, or heated prominence ejecta) for the transition region emission observed during the impulsive phase. In our study, we find evidence of the main characteristics predicted by the evaporation scenario. Specifically, most O VI flares precede the X-ray peaks typically by several minutes with a mean of 3.2 ± 0.1 min, and clear correlations are found between the soft X-ray and transition region luminosities following power laws with indices ~ 0.7 ± 0.3. Overall, the results are consistent with transition region emission originating from chromospheric evaporation; the thermal X-ray emission peaks after the emission from the evaporation flow as the loops fill with hot plasma. Finally, we were able to infer flow speeds in the range ~20-100 km s-1 for one-third of the events, 14 of which showed speeds between 60 and 80 km s-1. These values are compatible with those found through direct spectroscopic observations at transition region temperatures by the EUV Imaging Spectrometer (EIS) on board Hinode.

  3. Hinode Takes an X-Ray of a Powerful Solar Flare

    NASA Image and Video Library

    2017-09-10

    On Sept. 10, 2017, the Hinode satellite observed an enormous X-class flare burst from an active region on the western edge of the Sun. The video shows the high-energy flare as seen by Hinode's X-Ray Telescope. The emission was so bright that the initial blast caused the detector to saturate. The giant explosion sent a huge cloud of superhot plasma zooming into interplanetary space -- a phenomenon known as a coronal mass ejection. Studying large flares like this one with a variety of instruments is key to understanding exactly what causes these dramatic eruptions, and one day predicting them before they occur.

  4. Self-Organization by Stochastic Reconnection: The Mechanism Underlying CMEs/Flares

    NASA Astrophysics Data System (ADS)

    Antiochos, S. K.; Knizhnik, K. J.; DeVore, C. R.

    2017-12-01

    The largest explosions in the solar system are the giant CMEs/flares that produce the most dangerous space weather at Earth, yet may also have been essential for the origin of life. The root cause of CMEs/flares is that the lowest-lying magnetic field lines in the Sun's corona undergo the continual buildup of stress and free energy that can be released only through explosive ejection. We perform the first MHD simulations of a coronal-photospheric magnetic system that is driven by random photospheric convective flows and has a realistic geometry for the coronal field. Furthermore, our simulations accurately preserve the key constraint of magnetic helicity. We find that even though small-scale stress is injected randomly throughout the corona, the net result of "stochastic" coronal reconnection is a coherent stretching of the lowest-lying field lines. This highly counter-intuitive demonstration of self-organization - magnetic stress builds up locally rather than spreading out to a minimum energy state - is the fundamental mechanism responsible for the Sun's magnetic explosions and is likely to be a mechanism that is ubiquitous throughout space and laboratory plasmas. This work was supported in part by the NASA LWS and SR Programs.

  5. Swift X-ray monitoring of stellar coronal variability

    NASA Astrophysics Data System (ADS)

    Miller, Brendan; Hagen, Cedric; Gallo, Elena; Wright, Jason T.

    2018-01-01

    We used California Planet Search Ca II H and K core emission measurements to identify and characterize chromospheric activity cycles in a sample of main-sequence FGK stars. About a dozen of these with existing ROSAT archival data were targeted with Swift to obtain a current epoch X-ray flux. We find that coronal variability by a factor of several is common on decade-long timescales (we attempt to link to the chromospheric cycle phase) but can also occur on short timescales between Swift visits to a given target, presumably related to stellar rotation and coronal inhomogeneity or to small flares. Additionally, we present new Swift monitoring observations of two M dwarfs with known exoplanets: GJ 15A and GJ 674. GJ 15A b is around 5.3 Earth masses with an 11.4 day orbital period, while GJ 674 is around 11.1 Earth masses with a 4.7 day orbital period. GJ 15A was observed several times in late 2014 and then monitored at approximately weekly intervals for several months in early 2016, for a total exposure of 18 ks. GJ 674 was monitored at approximately weekly intervals for most of 2016, for a total exposure of 40 ks. We provide light curves and hardness ratios for both sources, and also compare to earlier archival X-ray data. Both sources show significant X-ray variability, including between consecutive observations. We quantify the energy distribution for coronal flaring, and compare to optical results for M dwarfs from Kepler. Finally, we discuss the implications of M dwarf coronal activity for exoplanets orbiting within the nominal habitable zone.

  6. Swift X-ray monitoring of stellar coronal variability

    NASA Astrophysics Data System (ADS)

    Miller, Brendan P.; Gallo, Elena; Wright, Jason; Hagen, Cedric

    2017-08-01

    We used California Planet Search Ca II H and K core emission measurements to identify and characterize chromospheric activity cycles in a sample of main-sequence FGK stars. About a dozen of these with existing ROSAT archival data were targeted with Swift to obtain a current epoch X-ray flux. We find that coronal variability by a factor of several is common on decade-long timescales (we attempt to link to the chromospheric cycle phase) but can also occur on short timescales between Swift visits to a given target, presumably related to stellar rotation and coronal inhomogeneity or to small flares.Additionally, we present new Swift monitoring observations of two M dwarfs with known exoplanets: GJ 15A and GJ 674. GJ 15A b is around 5.3 Earth masses with an 11.4 day orbital period, while GJ 674 is around 11.1 Earth masses with a 4.7 day orbital period. GJ 15A was observed several times in late 2014 and then monitored at approximately weekly intervals for several months in early 2016, for a total exposure of 18 ks. GJ 674 was monitored at approximately weekly intervals for most of 2016, for a total exposure of 40 ks. We provide light curves and hardness ratios for both sources, and also compare to earlier archival X-ray data. Both sources show significant X-ray variability, including between consecutive observations. We quantify the energy distribution for coronal flaring, and compare to optical results for M dwarfs from Kepler. Finally, we discuss the implications of M dwarf coronal activity for exoplanets orbiting within the nominal habitable zone.

  7. Turbulent Kinetic Energy in the Energy Balance of a Solar Flare

    NASA Astrophysics Data System (ADS)

    Kontar, E. P.; Perez, J. E.; Harra, L. K.; Kuznetsov, A. A.; Emslie, A. G.; Jeffrey, N. L. S.; Bian, N. H.; Dennis, B. R.

    2017-04-01

    The energy released in solar flares derives from a reconfiguration of magnetic fields to a lower energy state, and is manifested in several forms, including bulk kinetic energy of the coronal mass ejection, acceleration of electrons and ions, and enhanced thermal energy that is ultimately radiated away across the electromagnetic spectrum from optical to x rays. Using an unprecedented set of coordinated observations, from a suite of instruments, we here report on a hitherto largely overlooked energy component—the kinetic energy associated with small-scale turbulent mass motions. We show that the spatial location of, and timing of the peak in, turbulent kinetic energy together provide persuasive evidence that turbulent energy may play a key role in the transfer of energy in solar flares. Although the kinetic energy of turbulent motions accounts, at any given time, for only ˜(0.5 - 1 )% of the energy released, its relatively rapid (˜1 - 10 s ) energization and dissipation causes the associated throughput of energy (i.e., power) to rival that of major components of the released energy in solar flares, and thus presumably in other astrophysical acceleration sites.

  8. Turbulent Kinetic Energy in the Energy Balance of a Solar Flare.

    PubMed

    Kontar, E P; Perez, J E; Harra, L K; Kuznetsov, A A; Emslie, A G; Jeffrey, N L S; Bian, N H; Dennis, B R

    2017-04-14

    The energy released in solar flares derives from a reconfiguration of magnetic fields to a lower energy state, and is manifested in several forms, including bulk kinetic energy of the coronal mass ejection, acceleration of electrons and ions, and enhanced thermal energy that is ultimately radiated away across the electromagnetic spectrum from optical to x rays. Using an unprecedented set of coordinated observations, from a suite of instruments, we here report on a hitherto largely overlooked energy component-the kinetic energy associated with small-scale turbulent mass motions. We show that the spatial location of, and timing of the peak in, turbulent kinetic energy together provide persuasive evidence that turbulent energy may play a key role in the transfer of energy in solar flares. Although the kinetic energy of turbulent motions accounts, at any given time, for only ∼(0.5-1)% of the energy released, its relatively rapid (∼1-10  s) energization and dissipation causes the associated throughput of energy (i.e., power) to rival that of major components of the released energy in solar flares, and thus presumably in other astrophysical acceleration sites.

  9. A New Paradigm for Flare Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Guidoni, Silvina E.; Karpen, Judith T.; DeVore, C. Richard

    2017-08-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission and its spectra in solar flares is not well understood. Here, we propose a first-principle-based model of particle acceleration that produces energy spectra that closely resemble those derived from hard X-ray observations. Our mechanism uses contracting magnetic islands formed during fast reconnection in solar flares to accelerate electrons, as first proposed by Drake et al. (2006) for kinetic-scale plasmoids. We apply these ideas to MHD-scale islands formed during fast reconnection in a simulated eruptive flare. A simple analytic model based on the particles’ adiabatic invariants is used to calculate the energy gain of particles orbiting field lines in our ultrahigh-resolution, 2.5D, MHD numerical simulation of a solar eruption (flare + coronal mass ejection). Then, we analytically model electrons visiting multiple contracting islands to account for the observed high-energy flare emission. Our acceleration mechanism inherently produces sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each macroscopic island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare current sheet is a promising candidate for electron acceleration in solar eruptions. This work was supported in part by the NASA LWS and H-SR programs..

  10. Influence of magnetic field structure on the conduction cooling of flare loops

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Sturrock, P. A.

    1976-01-01

    A simple model facilitates calculation of the influence of magnetic field configuration on the conduction cooling rate of a hot post-flare coronal plasma. The magnetic field is taken to be that produced by a line dipole or point dipole at an arbitrary depth below the chromosphere. For the high temperatures (T greater than or equal to 10 to the 7th power K) produced by flares, the plasma may remain static and isobaric. The influence of the field is such as to increase the heat flux (per unit area) into the chromosphere, but to decrease the total conduction cooling of the flare plasma. This leads to a significant enhancement of the total energy radiated by the flare plasma.

  11. White-Light Observations of Major Flares Compared to Total Solar Irradiance and Short-Wavelength Observations

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Kopp, Greg; Harvey, J. W.

    2014-06-01

    The NSO’s GONG network produces “white light” (WL) continuum intensity images from one-minute integrations averaged across a 0. Å wide band pass centered at 676 Å at one minute cadence using six sites worldwide. Clear WL signatures of solar flares are present in GONG intensity data for only the largest flares because of low spatial resolution (2.5 arcsec pixel size). For six major flares (GOES class X6.5 - X28) observed by GONG, we compare integrated GONG full-disk WL intensity curves with SORCE/TIM total solar irradiance (TSI) measurements. Distinctive p-mode signatures are evident in both GONG and SORCE time series, though the correlation between GONG and SORCE data varies from flare to flare. In some cases a clear TSI peak and an interruption of the GONG p-mode pattern accompany the flare. The flare signature is generally weaker in the GONG data, suggesting that most of the TIM flare signal arises from wavelengths shorter than the GONG band pass. The flare kernels nevertheless are clear and last many minutes in the spatially resolved GONG image time series. We also compare the GONG active region intensity observations with shorter-wavelength data. In one case observed by TRACE, the GONG and TRACE WL curves are very similar and the TRACE 160 Å curve shows a significant precursor and a long tail. In most cases the GONG WL and RHESSI 25-100 keV counts appear well correlated in time. This work utilizes GONG data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation.

  12. Structure and Dynamics of Coronal Plasmas

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1997-01-01

    During the past year this grant has funded research in the interaction between magnetic fields and the hot plasma in the solar outer atmosphere. The following is a brief summary of the published papers, abstracts and talks which have been supported. The paper 'Coronal Structures Observed in X-rays and H-alpha Structures' was published in the Kofu Symposium proceedings. The study analyzes cool and hot behavior of two x-ray events, a small flare and a surge. We find that a large H-alpha surge appears in x-rays as a very weak event, while a weak H-alpha feature corresponds to the brightest x-ray emission on the disk at the time of the observation. Calculations of the heating necessary to produce these signatures, and implications for the driving and heating mechanisms of flares vs. surges are presented. A copy of the paper is appended to this report. The paper 'Differential Magnetic Field Shear in an Active Region' has been published in The Astrophysical Journal. We have compared the 3D extrapolation of magnetic fields with the observed coronal structure in an active region. Based on the fit between observed coronal structure throughout the volume of the region and the calculated magnetic field configurations, we propose a differential magnetic field shear model for this active region. The decreasing field shear in the outer portions of the AR may indicate a continual relaxation of the magnetic field with time, corresponding to a net transport of helicity outward. The paper 'Difficulties in Observing Coronal Structure' has been accepted for publication in the journal Solar Physics. In this paper we discuss the evidence that the temperature and density structure of the corona are far more complicated than had previously been thought. The discussion is based on five studies carried out by our group on coronal plasma properties, showing that any one x-ray instrument does see all of the plasma present in the corona, that hot and cool material may appear to be co

  13. Coronal plasmas on the sun and nearby stars

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1986-01-01

    The current understanding of the quiescent, or non-flaring, microwave emission from solar active regions is summarized. The thermal radiation mechanisms that account for most of the quiescent emission is reviewed, while it is also pointed out that current-amplified magnetic fields or non-thermal radiation may be required in some instances. The 20 cm radiation of coronal loops and the thermal cyclotron lines that accurately specify their magnetic field strength are discussed. The 20 cm and X ray emission of the coronal plasma are then compared. The coronae of nearby stars is next discussed, where coherent radiation processes seem to prevail. Some thoughts toward directions for future exploration are given.

  14. FINE STRUCTURES AND OVERLYING LOOPS OF CONFINED SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Zhang, Jun; Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn

    2014-10-01

    Using the Hα observations from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we focus on the fine structures of three confined flares and the issue why all the three flares are confined instead of eruptive. All the three confined flares take place successively at the same location and have similar morphologies, so can be termed homologous confined flares. In the simultaneous images obtained by the Solar Dynamics Observatory, many large-scale coronal loops above the confined flares are clearly observed in multi-wavelengths. At the pre-flare stage, two dipoles emerge near the negative sunspot, and the dipolar patches aremore » connected by small loops appearing as arch-shaped Hα fibrils. There exists a reconnection between the small loops, and thus the Hα fibrils change their configuration. The reconnection also occurs between a set of emerging Hα fibrils and a set of pre-existing large loops, which are rooted in the negative sunspot, a nearby positive patch, and some remote positive faculae, forming a typical three-legged structure. During the flare processes, the overlying loops, some of which are tracked by activated dark materials, do not break out. These direct observations may illustrate the physical mechanism of confined flares, i.e., magnetic reconnection between the emerging loops and the pre-existing loops triggers flares and the overlying loops prevent the flares from being eruptive.« less

  15. Automatic prediction of solar flares and super geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Song, Hui

    Space weather is the response of our space environment to the constantly changing Sun. As the new technology advances, mankind has become more and more dependent on space system, satellite-based services. A geomagnetic storm, a disturbance in Earth's magnetosphere, may produce many harmful effects on Earth. Solar flares and Coronal Mass Ejections (CMEs) are believed to be the major causes of geomagnetic storms. Thus, establishing a real time forecasting method for them is very important in space weather study. The topics covered in this dissertation are: the relationship between magnetic gradient and magnetic shear of solar active regions; the relationship between solar flare index and magnetic features of solar active regions; based on these relationships a statistical ordinal logistic regression model is developed to predict the probability of solar flare occurrences in the next 24 hours; and finally the relationship between magnetic structures of CME source regions and geomagnetic storms, in particular, the super storms when the D st index decreases below -200 nT is studied and proved to be able to predict those super storms. The results are briefly summarized as follows: (1) There is a significant correlation between magnetic gradient and magnetic shear of active region. Furthermore, compared with magnetic shear, magnetic gradient might be a better proxy to locate where a large flare occurs. It appears to be more accurate in identification of sources of X-class flares than M-class flares; (2) Flare index, defined by weighting the SXR flares, is proved to have positive correlation with three magnetic features of active region; (3) A statistical ordinal logistic regression model is proposed for solar flare prediction. The results are much better than those data published in the NASA/SDAC service, and comparable to the data provided by the NOAA/SEC complicated expert system. To our knowledge, this is the first time that logistic regression model has been applied

  16. Coronal magnetic structure and the latitude and longitude distribution of energetic particles, 1-5 AU

    NASA Technical Reports Server (NTRS)

    Roelof, E. C.; Mitchell, D. G.

    1979-01-01

    The relation of the coronal magnetic field structure to the distribution of approximately 1 MeV protons in interplanetary space between 1 and 5 AU is discussed. After ordering the interplanetary data by its estimated coronal emission source location in heliographic coordinates, the multispacecraft measured proton fluxes are compared with coronal magnetic field structure infrared as observed in soft X-ray photographs and potential field calculations. Evidence for the propagation and possible acceleration of solar flare protons on high magnetic loop structure in the corona is presented. Further, it is shown that corotating proton flux enhancements are associated with regions of low coronal X-ray emission (including coronal holes), usually in association with solar wind stream structure.

  17. A gigantic coronal jet ejected from a compact active region in a coronal hole

    NASA Technical Reports Server (NTRS)

    Shibata, K.; Nitta, N.; Strong, K. T.; Matsumoto, R.; Yokoyama, T.; Hirayama, T.; Hudson, H.; Ogawara, Y.

    1994-01-01

    A gigantic coronal jet greater than 3 x 10(exp 5) km long (nearly half the solar radius) has been found with the soft X-ray telescope (SXT) on board the solar X-ray satellite, Yohkoh. The jet was ejected on 1992 January 11 from an 'anemone-type' active region (AR) appearing in a coronal hole and is one of the largest coronal X-ray jets observed so far by SXT. This gigantic jet is the best observed example of many other smaller X-ray jets, because the spatial structures of both the jet and the AR located at its base are more easily resolved. The range of apparent translational velocities of the bulk of the jet was between 90 and 240 km s(exp -1), with the corresponding kinetic energy estimated to be of order of 10(exp 28) ergs. A detailed analysis reveals that the jet was associated with a loop brightening (a small flare) that occurred in the active region. Several features of this observation suggest and are consistent with a magnetic reconnection mechanism for the production of such a 'jet-loop-brightening' event.

  18. Unusual Emissions at Various Energies Prior to the Impulsive Phase of the Large Solar Flare and Coronal Mass Ejection of 4 November 2003

    NASA Technical Reports Server (NTRS)

    Kaufmann, Pierre; Holman, Gordon D.; Su, Yang; de Castro, C. Guillermo Gimenez; Correia, Emilia; Fernandes, Luis O. T.; de Souza, Rodney V.; Marun, Adolfo; Pereyra, Pablo

    2012-01-01

    The GOES X28 flare of 4 November 2003 was the largest ever recorded in its class. It produced the first evidence for two spectrally separated emission components, one at microwaves and the other in the THz range of frequencies.We analyzed the pre-flare phase of this large flare, twenty minutes before the onset of the major impulsive burst. This periodis characterized by unusual activity in X-rays, sub-THz frequencies, H, and microwaves.The CME onset occurred before the onset of the large burst by about 6 min.

  19. Neutral-Line Magnetic Shear and Enhanced Coronal Heating in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Gary, G. A.; Shimizu, T.

    1997-01-01

    By examining the magnetic structure at sites in the bright coronal interiors of active regions that are not flaring but exhibit persistent strong coronal heating, we establish some new characteristics of the magnetic origins of this heating. We have examined the magnetic structure of these sites in five active regions, each of which was well observed by both the Yohkoh SXT and the Marshall Space Flight Center Vector Magnetograph and showed strong shear in its magnetic field along part of at least one neutral line (polarity inversion). Thus, we can assess whether this form of nonpotential field structure in active regions is a characteristic of the enhanced coronal heating and vice versa. From 27 orbits' worth of Yohkoh SXT images of the five active regions, we have obtained a sample of 94 persistently bright coronal features (bright in all images from a given orbit), 40 long (greater than or approximately equals 20,000 km) neutral-line segments having strong magnetic shear throughout (shear angle greater than 45 deg), and 39 long neutral-line segments having weak magnetic shear throughout (shear angle less than 45 deg). From this sample, we find that: (1) all of our persistently bright coronal features are rooted in magnetic fields that are stronger than 150 G; (2) nearly all (95%) of these enhanced coronal features are rooted near neutral lines (closer than 10,000 km); (3) a great majority (80%) of the bright features are rooted near strong-shear portions of neutral lines; (4) a great majority (85%) of long strong-shear segments of neutral lines have persistently bright coronal features rooted near them; (5) a large minority (40%) of long weak-shear segments of neutral lines have persistently bright coronal features rooted near them; and (6) the brightness of a persistently bright Coronal feature often changes greatly over a few hours. From these results, we conclude that most persistent enhanced heating of coronal loops in active regions: (1) requires the

  20. Sun Emits a Mid-Level Flare

    NASA Image and Video Library

    2017-12-08

    Caption: NASA’s Solar Dynamics Observatory (SDO) captured this image of an M5.7 class flare on May 3, 2013 at 1:30 p.m. EDT. This image shows light in the 131 Angstrom wavelength, a wavelength of light that can show material at the very hot temperatures of a solar flare and that is typically colorized in teal. Caption: NASA’s Solar Dynamics Observatory (SDO) captured this image of an M5.7 class flare on May 3, 2013 at 1:30 p.m. EDT. This image shows light in the 131 Angstrom wavelength, a wavelength of light that can show material at the very hot temperatures of a solar flare and that is typically colorized in teal. Credit: NASA/Goddard/SDO --- The sun emitted a mid-level solar flare, peaking at 1:32 pm EDT on May 3, 2013. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This disrupts the radio signals for as long as the flare is ongoing, and the radio blackout for this flare has already subsided. This flare is classified as an M5.7 class flare. M-class flares are the weakest flares that can still cause some space weather effects near Earth. Increased numbers of flares are quite common at the moment, since the sun's normal 11-year activity cycle is ramping up toward solar maximum, which is expected in late 2013. Updates will be provided as they are available on the flare and whether there was an associated coronal mass ejection (CME), another solar phenomenon that can send solar particles into space and affect electronic systems in satellites and on Earth. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling

  1. Electron acceleration in a flare plasma via coronal circuits. (German Title: Elektronenbeschleunigung im Flareplasma modelliert mit koronalen Schaltkreisen)

    NASA Astrophysics Data System (ADS)

    Önel, Hakan

    2008-08-01

    The Sun is a star, which due to its proximity has a tremendous influence on Earth. Since its very first days mankind tried to "understand the Sun", and especially in the 20th century science has uncovered many of the Sun's secrets by using high resolution observations and describing the Sun by means of models. As an active star the Sun's activity, as expressed in its magnetic cycle, is closely related to the sunspot numbers. Flares play a special role, because they release large energies on very short time scales. They are correlated with enhanced electromagnetic emissions all over the spectrum. Furthermore, flares are sources of energetic particles. Hard X-ray observations (e.g., by NASA's RHESSI spacecraft) reveal that a large fraction of the energy released during a flare is transferred into the kinetic energy of electrons. However the mechanism that accelerates a large number of electrons to high energies (beyond 20 keV) within fractions of a second is not understood yet. The thesis at hand presents a model for the generation of energetic electrons during flares that explains the electron acceleration based on real parameters obtained by real ground and space based observations. According to this model photospheric plasma flows build up electric potentials in the active regions in the photosphere. Usually these electric potentials are associated with electric currents closed within the photosphere. However as a result of magnetic reconnection, a magnetic connection between the regions of different magnetic polarity on the photosphere can establish through the corona. Due to the significantly higher electric conductivity in the corona, the photospheric electric power supply can be closed via the corona. Subsequently a high electric current is formed, which leads to the generation of hard X-ray radiation in the dense chromosphere. The previously described idea is modelled and investigated by means of electric circuits. For this the microscopic plasma parameters

  2. Unusual Emissions at Various Energies and Coronal Mass Ejection Prior to the November 4, 2003 Large Solar Flare

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Holman, G. D.; Su, Y.; Gimenez de Castro, C.; Correia, E.; de Souza, R. V.; Marun, A.; Pereyra, P.

    2010-05-01

    The November 4, 2003 GOES X28 flare was the largest ever recorded in its class. It produced the first evidence of the two spectrally separated radio/far-infrared emission components, one at microwaves and another in the THz range of frequencies (Kaufmann et al. 2004). We analyzed the 20 minutes before the impulsive onset of this event and found unusual activity at X-rays (RHESSI), at sub-THz frequencies (SST), at H-alpha (BBSO) and at microwaves (Itapetinga 7 GHz polarimeter, RSTN and OVSA). SOHO LASCO images have shown a large CME launched well before the large burst onset. The unusual activity began at about 19 27 UT with a slow rise at 6-10 keV and the start of a precursor at 7 GHz. Pulsations at sub-THz became pronounced, exhibiting correlations with RHESSI 25-50 keV pulsations and similar pulsations at 7 GHz. Impulsive bursts were detected with peaks at 19 34 UT at 100-300 keV and 7 GHz. LASCO movie show a large CME which linear extrapolation to the solar surface correspond to the first H-alpha BBSO brightening, suggesting an approximate launch time at about 1934 UT, close to the hard X-ray and microwave impulsive bursts and nearly 8 minutes before the onset of the large flare. These events had different locations within the AR that included the major flare location at the solar west limb, as indicated by SST pulses positions and images obtained by RHESSI and BBSO. The pulsations phenomena and superimposed impulsive events might represent the complex energy buildup mechanisms leading to the CME launch, quite distinct in time and space from the major flare that exploded afterwards.

  3. DESTABILIZATION OF A SOLAR PROMINENCE/FILAMENT FIELD SYSTEM BY A SERIES OF EIGHT HOMOLOGOUS ERUPTIVE FLARES LEADING TO A CME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panesar, Navdeep K.; Moore, Ronald L.; Sterling, Alphonse C.

    2015-09-20

    Homologous flares are flares that occur repetitively in the same active region, with similar structure and morphology. A series of at least eight homologous flares occurred in active region NOAA 11237 over 2011 June 16–17. A nearby prominence/filament was rooted in the active region, and situated near the bottom of a coronal cavity. The active region was on the southeast solar limb as seen from the Solar Dynamics Observatory/Atmospheric Imaging Assembly, and on the disk as viewed from the Solar TErrestrial RElations Observatory/EUVI-B. The dual perspective allows us to study in detail behavior of the prominence/filament material entrained in themore » magnetic field of the repeatedly erupting system. Each of the eruptions were mainly confined, but expelled hot material into the prominence/filament cavity system (PFCS). The field carrying and containing the ejected hot material interacted with the PFCS and caused it to inflate, resulting in a step-wise rise of the PFCS approximately in step with the homologous eruptions. The eighth eruption triggered the PFCS to move outward slowly, accompanied by a weak coronal dimming. As this slow PFCS eruption was underway, a final “ejective” flare occurred in the core of the active region, resulting in strong dimming in the EUVI-B images and expulsion of a coronal mass ejection (CME). A plausible scenario is that the repeated homologous flares could have gradually destabilized the PFCS, and its subsequent eruption removed field above the acitive region and in turn led to the ejective flare, strong dimming, and CME.« less

  4. Disruption of coronal magnetic field arcades

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Linker, Jon A.

    1994-01-01

    The ideal and resistive properties of isolated large-scale coronal magnetic arcades are studied using axisymmetric solutions of the time-dependent magnetohydrodynamic (MHD) equations in spherical geometry. We examine how flares and coronal mass ejections may be initiated by sudden disruptions of the magnetic field. The evolution of coronal arcades in response to applied shearing photospheric flows indicates that disruptive behavior can occur beyond a critical shear. The disruption can be traced to ideal MHD magnetic nonequilibrium. The magnetic field expands outward in a process that opens the field lines and produces a tangential discontinuity in the magnetic field. In the presence of plasma resistivity, the resulting current sheet is the site of rapid reconnection, leading to an impulsive release of magnetic energy, fast flows, and the ejection of a plasmoid. We relate these results to previous studies of force-free fields and to the properties of the open-field configuration. We show that the field lines in an arcade are forced open when the magnetic energy approaches (but is still below) the open-field energy, creating a partially open field in which most of the field lines extend away from the solar surface. Preliminary application of this model to helmet streamers indicates that it is relevant to the initiation of coronal mass ejections.

  5. Singly charged energetic helium emitted in solar flares

    NASA Technical Reports Server (NTRS)

    Hovestadt, D.; Hoefner, H.; Klecker, B.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.; Fan, C. Y.; Fisk, L. A.; Ogallagher, J. J.

    1981-01-01

    First direct charge state measurements of 0.41-1.05 MeV per nucleon helium accelerated at the sun reveal surprisingly large abundances of singly ionized helium, with typical He(+)/He(++) ratios between 0.04 and 0.21. This unexpected overabundance of He(+) was observed in each of the three large solar-flare particle events which occurred between 1978 August and 1979 October. The data were obtained with the Max-Planck-Institut/University of Maryland Experiment on board the ISEE-3 spacecraft. The observations suggest either strong coronal temperature inhomogeneities including cool regions of approximately 100,000 K or injection of 'cold' chromospheric/photospheric material into the flare acceleration region.

  6. Magnetohydrodynamic Simulations for Studying Solar Flare Trigger Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhamad, J.; Kusano, K.; Inoue, S.

    In order to understand the flare trigger mechanism, we conduct three-dimensional magnetohydrodynamic simulations using a coronal magnetic field model derived from data observed by the Hinode satellite. Several types of magnetic bipoles are imposed into the photospheric boundary of the Nonlinear Force-free Field model of Active Region (AR) NOAA 10930 on 2006 December 13, to investigate what kind of magnetic disturbance may trigger the flare. As a result, we confirm that certain small bipole fields, which emerge into the highly sheared global magnetic field of an AR, can effectively trigger a flare. These bipole fields can be classified into twomore » groups based on their orientation relative to the polarity inversion line: the so-called opposite polarity, and reversed shear structures, as suggested by Kusano et al. We also investigate the structure of the footpoints of reconnected field lines. By comparing the distribution of reconstructed field lines and observed flare ribbons, the trigger structure of the flare can be inferred. Our simulation suggests that the data-constrained simulation, taking into account both the large-scale magnetic structure and small-scale magnetic disturbance (such as emerging fluxes), is a good way to discover a flare-producing AR, which can be applied to space weather prediction.« less

  7. Chromospheric-coronal coupling during solar flares: Current systems and particle acceleration

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.; Mckean, M. E.; Dulk, G. A.

    1989-01-01

    Two-dimensional (three velocity) electrostatic particle simulations are used to investigate the particle heating and acceleration associated with the impulsive phase of a solar flare. A crossfield current in the high corona (which is presumably driven by reconnection processes) is used to initiate the flare. Due to the differential motion of the electrons and ions, currents, and associated quasi-static electric fields are generated with the primary current and balancing return current being on adjacent field lines. These currents extend from the corona down into the chromosphere. Electrons can be accelerated to energies exceeding 100 keV on short time scales via the quasi-static fields and wave-particle interactions. The spectra of these electrons has a broken power-law distribution which hardens in time. The spatially separate primary and return currents are closed by the cross-field acceleration of the ambient ions into the primary current regions. These ions are then accelerated upwards into the corona by the same quasi-static electric field accelerating the electrons downwards. This acceleration can account for the broadened stationary and weak blue shifted component seen in soft x ray line emissions and enhancements in heavy ion abundances seen in the solar wind in associations with solar flares.

  8. Can we explain atypical solar flares?

    NASA Astrophysics Data System (ADS)

    Dalmasse, K.; Chandra, R.; Schmieder, B.; Aulanier, G.

    2015-02-01

    Context. We used multiwavelength high-resolution data from ARIES, THEMIS, and SDO instruments to analyze a non-standard, C3.3 class flare produced within the active region NOAA 11589 on 2012 October 16. Magnetic flux emergence and cancellation were continuously detected within the active region, the latter leading to the formation of two filaments. Aims: Our aim is to identify the origins of the flare taking the complex dynamics of its close surroundings into account. Methods: We analyzed the magnetic topology of the active region using a linear force-free field extrapolation to derive its 3D magnetic configuration and the location of quasi-separatrix layers (QSLs), which are preferred sites for flaring activity. Because the active region's magnetic field was nonlinear force-free, we completed a parametric study using different linear force-free field extrapolations to demonstrate the robustness of the derived QSLs. Results: The topological analysis shows that the active region presented a complex magnetic configuration comprising several QSLs. The considered data set suggests that an emerging flux episode played a key role in triggering the flare. The emerging flux probably activated the complex system of QSLs, leading to multiple coronal magnetic reconnections within the QSLs. This scenario accounts for the observed signatures: the two extended flare ribbons developed at locations matched by the photospheric footprints of the QSLs and were accompanied with flare loops that formed above the two filaments, which played no important role in the flare dynamics. Conclusions: This is a typical example of a complex flare that can a priori show standard flare signatures that are nevertheless impossible to interpret with any standard model of eruptive or confined flare. We find that a topological analysis, however, permitted us to unveil the development of such complex sets of flare signatures. Movies associated to Figs. 1, 3, and 9 are only available at the CDS via

  9. Spatial Structure of Multimode Oscillations in a Solar Flare on 14 May 2013 in EUV and Radio Bands

    NASA Astrophysics Data System (ADS)

    Kolotkov, Dmitry; Nakariakov, Valery; Nisticò, Giuseppe; Shibasaki, Kiyoto; Kupriyanova, Elena

    Quasi-periodic pulsations and coronal loop oscillations in an X-class solar flare on 14 May 2013 are considered. Rapidly decaying kink oscillations of coronal loops with periods of several minutes in the flaring active region detected in the EUV band with SDO/AIA after the impulsive phase of the flare. Oscillations of neighbouring loops are excited simultaneously, but get rapidly out of phase. In the impulsive phase, observations in the radio band with the Nobeyama Radioheliograph and Radiopolarimeter show quasi-periodic pulsations that are most pronounced in the 17 GHz band. In the correlation plots and the integrated flux the pulsations have a symmetric triangular shape. The period of pulsations is about 1 min. Analysis of the spatial locations of the radio sources reveal that the triangularity is likely to be caused by superposition of several harmonic modes.

  10. Flare model sensitivity of the Balmer spectrum

    NASA Technical Reports Server (NTRS)

    Falchi, A.; Falciani, R.; Smaldone, L. A.; Tozzi, G. P.

    1989-01-01

    Careful studies of various chromospheric spectral signatures are very important in order to explore their possible sensitivity to the modifications of the thermodynamic quantities produced by the flare occurrence. Pioneer work of Canfield and co-workers have shown how the H alpha behavior is able to indicate different changes in the atmospheric parameters structure associated to the flare event. It was decided to study the behavior of the highest Balmer lines and of the Balmer continuum in different solar flare model atmospheres. These spectral features, originating in the deep photosphere in a quiet area, may have a sensitivity different from H alpha to the modification of a flare atmosphere. The details of the method used to compute the Stark profile of the higher Balmer line (n is greater than or equal to 6) and their merging were extensively given elsewhere (Donati-Falchi et al., 1985; Falchi et al., 1989). The models used were developed by Ricchiazzi in his thesis (1982) evaluating the chromospheric response to both the nonthermal electron flux, for energy greater than 20 kev, (F sub 20) and to the thermal conduction, (F sub c). The effect of the coronal pressure values (P sub O) at the apex of the flare loop is also included.

  11. EVIDENCE FOR COLLAPSING FIELDS IN THE CORONA AND PHOTOSPHERE DURING THE 2011 FEBRUARY 15 X2.2 FLARE: SDO/AIA AND HMI OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosain, S., E-mail: sgosain@nso.edu; Udaipur Solar Observatory, P.O. Box 198, Dewali, Udaipur, Rajasthan 313001

    2012-04-10

    We use high-resolution Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly observations to study the evolution of the coronal loops in a flaring solar active region, NOAA 11158. We identify three distinct phases of the coronal loop dynamics during this event: (1) slow-rise phase: slow rising motion of the loop-tops prior to the flare in response to the slow rise of the underlying flux rope; (2) collapse phase: sudden contraction of the loop-tops, with the lower loops collapsing earlier than the higher loops; and (3) oscillation phase: the loops exhibit global kink oscillations after the collapse phase at different periods, with themore » period decreasing with the decreasing height of the loops. The period of these loop oscillations is used to estimate the field strength in the coronal loops. Furthermore, we also use SDO/Helioseismic and Magnetic Imager (HMI) observations to study the photospheric changes close to the polarity inversion line (PIL). The longitudinal magnetograms show a stepwise permanent decrease in the magnetic flux after the flare over a coherent patch along the PIL. Furthermore, we examine the HMI Stokes I, Q, U, V profiles over this patch and find that the Stokes-V signal systematically decreases while the Stokes-Q and U signals increase after the flare. These observations suggest that close to the PIL the field configuration became more horizontal after the flare. We also use HMI vector magnetic field observations to quantify the changes in the field inclination angle and find an inward collapse of the field lines toward the PIL by {approx}10 Degree-Sign . These observations are consistent with the 'coronal implosion' scenario and its predictions about flare-related photospheric field changes.« less

  12. Automatic recognition of coronal type II radio bursts: The ARBIS 2 method and first observations

    NASA Astrophysics Data System (ADS)

    Lobzin, Vasili; Cairns, Iver; Robinson, Peter; Steward, Graham; Patterson, Garth

    Major space weather events such as solar flares and coronal mass ejections are usually accompa-nied by solar radio bursts, which can potentially be used for real-time space weather forecasts. Type II radio bursts are produced near the local plasma frequency and its harmonic by fast electrons accelerated by a shock wave moving through the corona and solar wind with a typi-cal speed of 1000 km s-1 . The coronal bursts have dynamic spectra with frequency gradually falling with time and durations of several minutes. We present a new method developed to de-tect type II coronal radio bursts automatically and describe its implementation in an extended Automated Radio Burst Identification System (ARBIS 2). Preliminary tests of the method with spectra obtained in 2002 show that the performance of the current implementation is quite high, ˜ 80%, while the probability of false positives is reasonably low, with one false positive per 100-200 hr for high solar activity and less than one false event per 10000 hr for low solar activity periods. The first automatically detected coronal type II radio bursts are also presented. ARBIS 2 is now operational with IPS Radio and Space Services, providing email alerts and event lists internationally.

  13. FOXSI-2 Observations and Coronal Heating

    NASA Astrophysics Data System (ADS)

    Christe, S.; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S. N.; Buitrago Casas, J. C.; Takahashi, T.; Foster, N.

    2015-12-01

    Energy release and particle acceleration on the Sun is a frequent occurrence associated with a number of different solar phenomenon including but not limited to solar flares, coronal mass ejections and nanoflares. The exact mechanism through which particles are accelerated and energy is released is still not well understood. This issue is related to the unsolved coronal heating problem, the mystery of the heating mechanism for the million degree solar corona. One prevalent theory posits the existence of a multitude of small flares, dubbed nanoflares. Recent observations of active region AR11890 by IRIS (Testa et al. 2014) are consistent with numerical simulations of heating by impulsive beams of nonthermal electrons, suggesting that nanoflares may be similar to large flares in that they accelerate particles. Furthermore, observations by the EUNIS sounding rocket (Brosius et al. 2014) of faint Fe XIX (592.2 Angstrom) emission in an active region is indicative of plasma at temperatures of at least 8.9 MK providing further evidence of nanoflare heating. One of the best ways to gain insight into accelerated particles on the Sun and the presence of hot plasma is by observing the Sun in hard X-rays (HXR). We present on observations taken during the second successful flight of the Focusing Optics X-ray Solar Imager (FOXSI-2). FOXSI flew on December 11, 2014 with upgraded optics as well as new CdTe strip detectors. FOXSI-2 observed thermal emission (4-15 keV) from at least three active regions (AR#12234, AR#12233, AR#12235) and observed regions of the Sun without active regions. We present on using FOXSI observations to test the presence of hot temperatures in and outside of active regions.

  14. Repeated Structures Found After the Solar Maximum in the Butterfly Diagrams of Coronal Holes

    NASA Astrophysics Data System (ADS)

    Hofer, M. Y.; Storini, M.

    2003-09-01

    The influence of the solar cycle evolution on the coronal hole space-time distribution is well known, for polar as well as for equatorial isolated sources of high speed solar wind. Among them the long-lived coronal holes occurrence from the sunspot cycle 21 on is investigated, using the coronal hole catalogue based on HeI (1083 nm) observations (Sanchez-Ibarra and Barraza-Paredes). In at least these two solar cycles (n. 21 and n. 22) a similar structure in the latitude-time diagram of coronal holes is found. The area occurs shortly after the solar maximum at around ~35° heliolatitude and consists of over several Carrington Rotations stable coronal holes (>5 Carr. Rot.s). The diagonal disappears 2-3 years later at the helioequator. Furthermore, the analysis results in a close relation between long-lived isolated coronal holes and the soft X-class flares.

  15. A CIRCULAR-RIBBON SOLAR FLARE FOLLOWING AN ASYMMETRIC FILAMENT ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang; Deng, Na; Lee, Jeongwoo

    The dynamic properties of flare ribbons and the often associated filament eruptions can provide crucial information on the flaring coronal magnetic field. This Letter analyzes the GOES-class X1.0 flare on 2014 March 29 (SOL2014-03-29T17:48), in which we found an asymmetric eruption of a sigmoidal filament and an ensuing circular flare ribbon. Initially both EUV images and a preflare nonlinear force-free field model show that the filament is embedded in magnetic fields with a fan-spine-like structure. In the first phase, which is defined by a weak but still increasing X-ray emission, the western portion of the sigmoidal filament arches upward andmore » then remains quasi-static for about five minutes. The western fan-like and the outer spine-like fields display an ascending motion, and several associated ribbons begin to brighten. Also found is a bright EUV flow that streams down along the eastern fan-like field. In the second phase that includes the main peak of hard X-ray (HXR) emission, the filament erupts, leaving behind two major HXR sources formed around its central dip portion and a circular ribbon brightened sequentially. The expanding western fan-like field interacts intensively with the outer spine-like field, as clearly seen in running difference EUV images. We discuss these observations in favor of a scenario where the asymmetric eruption of the sigmoidal filament is initiated due to an MHD instability and further facilitated by reconnection at a quasi-null in corona; the latter is in turn enhanced by the filament eruption and subsequently produces the circular flare ribbon.« less

  16. Subphotospheric current systems and flares

    NASA Technical Reports Server (NTRS)

    Hudson, Hugh S.

    1987-01-01

    Subphotospheric current systems inferred from recent vector magnetograph observations imply the existence of electric currents penetrating the photosphere and thus flowing deep in the solar convection zone. These currents presumably originate in an internal dynamo that supplies the observed photospheric magnetic fields through the buoyant motions of the initially deeply-buried flux tubes. The coronal fields resulting from this process therefore must carry slowly-varying currents driven by emfs remote from the surface. These currents may then drive solar-flare energy release. This paper discusses the consequences of such a deep origin of the coronal parallel currents. Simple estimates for a large active region suggest a mean current-closure depth of not less than 10,000 km, with a subphotospheric inductance of not less than 100 H and a subphotospheric stored energy of not less than 10 to the 33rd ergs.

  17. Structure and Dynamics of Coronal Plasma

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1998-01-01

    Brief summaries of the four published papers produced within the present performance period of NASA Grant NAGW-4081 are presented. The full text of the papers are appended to the report. The first paper titled "Coronal Structures Observed in X-rays and H-alpa Structures" was published in the Kofu Symposium proceedings. The study analyzes cool and hot behavior of two x-ray events, a small flare and a surge. It was found that a large H-alpha surge appears in x-rays as a very weak event, while a weak H-alpha feature corresponds to the brightest x-ray emission on the disk at the time of the observation. Calculations of the heating necessary to produce these signatures, and implications for the driving and heating mechanisms of flares vs. surges are presented. The second paper "Differential Magnetic Field Shear in an Active Region" has been published in The Astrophysical Journal. The study compared the three dimensional extrapolation of magnetic fields with the observed coronal structure in an active region. Based on the fit between observed coronal structure throughout the volume of the region and the calculated magnetic field configurations, the authors propose a differential magnetic field shear model for this active region. The decreasing field shear in the outer portions of the AR may indicate a continual relaxation of the magnetic field with time, corresponding to a net transport of helicity outward. The third paper "Difficulties in Observing Coronal Structure" has been published in the journal Solar Physics. This paper discusses the evidence that the temperature and density structure of the corona are far more complicated than had previously been thought. The discussion is based on five studies carried out by the group on coronal plasma properties, showing that any one x-ray instrument does see all of the plasma present in the corona, that hot and cool material may appear to be co-spatial at a given location in the corona, and that simple magnetic field

  18. The 1991 October 24 flare: A challenge for standard models

    NASA Technical Reports Server (NTRS)

    Beaujardiere, J.-F. De LA; Canfield, R. C.; Hudson, H. S.; Wulser, J.-P.; Acton, L.; Kosugi, T.; Masuda, S.

    1995-01-01

    The M9.8 solar flare of 1991 October 24 22:30 UT presents several interesting characteristics: (1) energy release starts high in the corona; (2) the primary chromospheric ribbons are initially well separated and do not move apart at an observable rate; (3) no evidence is found for an erupting filament or other driver. To explain this flare, we consider several canonical flare models, including a filament eruption, a confined filament eruption, current interruption, and interacting loops. We conclude that none of these scenarios unequivocally explains this flare. Two possibilities which cannot be ruled out are (1) the eruption of a filament unobservable in H-alpha which starts high in the corona and produces no ribbon motions smaller than our detection threshold and no perceptible expansion of the coronal X-ray source, and (2) energy release due to spontaneous, propagating reconnection which allows the system to essentially brighten in place.

  19. Gradient spectral analysis of solar radio flare superevents

    NASA Astrophysics Data System (ADS)

    Rosa, R. R.; Veronese, T. B.; Sych, R. A.; Bolzan, M. A.; Sandri, S. A.; Drummond, I. A.; Becceneri, J. C.; Sawant, H. S.

    2011-12-01

    Some of complex solar active regions exhibit rare and sudden transitions that occur over time intervals that are short compared to the characteristic time scales of their evolution. Usually, extreme radio emission is driven by a latent nonlinear process involving magnetic reconnection among coronal loops and such extreme events (e.g., X-class flares and coronal mass ejections) express the presence of plasma and magnetic activity usually hidden inside the solar convective layer. Recently, the scaling exponent obtained from Detrended Fluctuation Analysis has been used to characterize the formation of solar flare superevents - SFS (integrated flux of radiation greater than 1.5 J/m2) when it is observed in the decimetric range of 1-3 GHz (Veronese et al., 2011). Here, we show a complementary computational analisys of four X-class solar flares observed in 17GHz from Nobeyama Radioheliograph. Our analysis is based on the combination of DFA and Gradient Spectral Analysis (GSA) which can be used to characterize the evolution of SFSs under the condition that the emission threshold is large enough (fmax > 300 S.F.U.) and the solar flux unit variability is greater than 50% of the average taken from the minimum flux to the extreme value. Preliminary studies of the gradient spectra of Nobeyama data in 17 GHz can be found in Sawant et al. (JASTP 73(11), 2011). Future applications of GSA on the images which will be observed from the Brazilian Decimetric Array (BDA) are discusssed.

  20. Evolution of flare ribbons, electric currents, and quasi-separatrix layers during an X-class flare

    NASA Astrophysics Data System (ADS)

    Janvier, M.; Savcheva, A.; Pariat, E.; Tassev, S.; Millholland, S.; Bommier, V.; McCauley, P.; McKillop, S.; Dougan, F.

    2016-07-01

    Context. The standard model for eruptive flares has been extended to three dimensions (3D) in the past few years. This model predicts typical J-shaped photospheric footprints of the coronal current layer, forming at similar locations as the quasi-separatrix layers (QSLs). Such a morphology is also found for flare ribbons observed in the extreme ultraviolet (EUV) band, and in nonlinear force-free field (NLFFF) magnetic field extrapolations and models. Aims: We study the evolution of the photospheric traces of the current density and flare ribbons, both obtained with the Solar Dynamics Observatory instruments. We aim to compare their morphology and their time evolution, before and during the flare, with the topological features found in a NLFFF model. Methods: We investigated the photospheric current evolution during the 06 September 2011 X-class flare (SOL2011-09-06T22:20) occurring in NOAA AR 11283 from observational data of the magnetic field obtained with the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory. We compared this evolution with that of the flare ribbons observed in the EUV filters of the Atmospheric Imager Assembly. We also compared the observed electric current density and the flare ribbon morphology with that of the QSLs computed from the flux rope insertion method-NLFFF model. Results: The NLFFF model shows the presence of a fan-spine configuration of overlying field lines, due to the presence of a parasitic polarity, embedding an elongated flux rope that appears in the observations as two parts of a filament. The QSL signatures of the fan configuration appear as a circular flare ribbon that encircles the J-shaped ribbons related to the filament ejection. The QSLs, evolved via a magnetofrictional method, also show similar morphology and evolution as both the current ribbons and the EUV flare ribbons obtained several times during the flare. Conclusions: For the first time, we propose a combined analysis of the photospheric

  1. Revealing the nature of extreme coronal-line emitter SDSS J095209.56+214313.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaversa, Lovro; Gezari, Suvi; Sesar, Branimir

    Extreme coronal-line emitter (ECLE) SDSS J095209.56+214313.3, known by its strong, fading, high-ionization lines, has been a long-standing candidate for a tidal disruption event; however, a supernova (SN) origin has not yet been ruled out. Here we add several new pieces of information to the puzzle of the nature of the transient that powered its variable coronal lines: (1) an optical light curve from the Lincoln Near Earth Asteroid Research (LINEAR) survey that serendipitously catches the optical flare, and (2) late-time observations of the host galaxy with the Swift Ultraviolet and Optical Telescope (UVOT) and X-ray telescope (XRT) and the ground-basedmore » Mercator telescope. The well-sampled, ~10 yr long, unfiltered LINEAR light curve constrains the onset of the flare to a precision of ±5 days and enables us to place a lower limit on the peak optical magnitude. Difference imaging allows us to estimate the location of the flare in proximity of the host galaxy core. Comparison of the GALEX data (early 2006) with the recently acquired Swift UVOT (2015 June) and Mercator observations (2015 April) demonstrates a decrease in the UV flux over a ~10 yr period, confirming that the flare was UV-bright. The long-lived UV-bright emission, detected 1.8 rest-frame years after the start of the flare, strongly disfavors an SN origin. In conclusion, these new data allow us to conclude that the flare was indeed powered by the tidal disruption of a star by a supermassive black hole and that tidal disruption events are in fact capable of powering the enigmatic class of ECLEs.« less

  2. Revealing the Nature of Extreme Coronal-line Emitter SDSS J095209.56+214313.3

    NASA Astrophysics Data System (ADS)

    Palaversa, Lovro; Gezari, Suvi; Sesar, Branimir; Stuart, J. Scott; Wozniak, Przemyslaw; Holl, Berry; Ivezić, Željko

    2016-03-01

    Extreme coronal-line emitter (ECLE) SDSS J095209.56+214313.3, known by its strong, fading, high-ionization lines, has been a long-standing candidate for a tidal disruption event however, a supernova (SN) origin has not yet been ruled out. Here we add several new pieces of information to the puzzle of the nature of the transient that powered its variable coronal lines: (1) an optical light curve from the Lincoln Near Earth Asteroid Research (LINEAR) survey that serendipitously catches the optical flare, and (2) late-time observations of the host galaxy with the Swift Ultraviolet and Optical Telescope (UVOT) and X-ray telescope (XRT) and the ground-based Mercator telescope. The well-sampled, ˜10 yr long, unfiltered LINEAR light curve constrains the onset of the flare to a precision of ±5 days and enables us to place a lower limit on the peak optical magnitude. Difference imaging allows us to estimate the location of the flare in proximity of the host galaxy core. Comparison of the GALEX data (early 2006) with the recently acquired Swift UVOT (2015 June) and Mercator observations (2015 April) demonstrates a decrease in the UV flux over a ˜10 yr period, confirming that the flare was UV-bright. The long-lived UV-bright emission, detected 1.8 rest-frame years after the start of the flare, strongly disfavors an SN origin. These new data allow us to conclude that the flare was indeed powered by the tidal disruption of a star by a supermassive black hole and that tidal disruption events are in fact capable of powering the enigmatic class of ECLEs.

  3. Revealing the nature of extreme coronal-line emitter SDSS J095209.56+214313.3

    DOE PAGES

    Palaversa, Lovro; Gezari, Suvi; Sesar, Branimir; ...

    2016-03-08

    Extreme coronal-line emitter (ECLE) SDSS J095209.56+214313.3, known by its strong, fading, high-ionization lines, has been a long-standing candidate for a tidal disruption event; however, a supernova (SN) origin has not yet been ruled out. Here we add several new pieces of information to the puzzle of the nature of the transient that powered its variable coronal lines: (1) an optical light curve from the Lincoln Near Earth Asteroid Research (LINEAR) survey that serendipitously catches the optical flare, and (2) late-time observations of the host galaxy with the Swift Ultraviolet and Optical Telescope (UVOT) and X-ray telescope (XRT) and the ground-basedmore » Mercator telescope. The well-sampled, ~10 yr long, unfiltered LINEAR light curve constrains the onset of the flare to a precision of ±5 days and enables us to place a lower limit on the peak optical magnitude. Difference imaging allows us to estimate the location of the flare in proximity of the host galaxy core. Comparison of the GALEX data (early 2006) with the recently acquired Swift UVOT (2015 June) and Mercator observations (2015 April) demonstrates a decrease in the UV flux over a ~10 yr period, confirming that the flare was UV-bright. The long-lived UV-bright emission, detected 1.8 rest-frame years after the start of the flare, strongly disfavors an SN origin. In conclusion, these new data allow us to conclude that the flare was indeed powered by the tidal disruption of a star by a supermassive black hole and that tidal disruption events are in fact capable of powering the enigmatic class of ECLEs.« less

  4. Expansion of chromospheric matter in the gradual phase of solar flares

    NASA Technical Reports Server (NTRS)

    Ohki, K.

    1975-01-01

    Interferometric observations at 17 GHz of several small X-ray flares are presented along with soft X-ray observations of preflare active regions to show that a large mass increase accompanies the formation of an X-ray hot region in the corona. The total amount of energy contained in a hot coronal region is estimated, and a model is proposed in which a significant amount of the hot matter is supplied to the corona from the chromosphere during each flare. According to this model, energy produced by some coronal instability is transported by thermal conduction to the chromosphere, where dense gas is heated and subsequently expands into the corona. It is shown that impulsive heating of the chromosphere by nonthermal electrons cannot be the energy source of this model because the total energy supplied to the hot region during the gradual phase must be much greater than that supplied during the impulsive phase.

  5. Study on Precursor Activity of the X1.6 Flare in the Great AR 12192 with SDO , IRIS , and Hinode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamba, Yumi; Lee, Kyoung-Sun; Imada, Shinsuke

    The physical properties and their contribution to the onset of a solar flare are still uncleare even though chromospheric brightening is considered a precursor phenomenon of a flare. Many studies suggested that photospheric magnetic field changes cause destabilization of large-scale coronal structure. We aim to understand how a small photospheric change contributes to a flare and to reveal how the intermediary chromosphere behaves in the precursor phase. We analyzed the precursor brightening of the X1.6 flare on 2014 October 22 in the AR 12192 using the Interface Region Imaging Spectrograph ( IRIS ) and Hinode /EUV Imaging Spectrometer (EIS) data.more » We investigated a localized jet with the strong precursor brightening, and compared the intensity, Doppler velocity, and line width in C ii, Mg ii k, and Si iv lines by IRIS and He ii, Fe xii, and Fe xv lines by Hinode /EIS. We also analyzed the photospheric magnetic field and chromospheric/coronal structures using the Solar Dynamics Observatory ( SDO )/Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly. We found a significant blueshift (∼100 km s{sup −1}), which is related to the strong precursor brightening over a characteristic magnetic field structure, and the blueshift was observed at all of the temperatures. This might indicate that the flow is accelerated by Lorentz force. Moreover, the large-scale coronal loop that connects the foot points of the flare ribbons was destabilized just after the precursor brightening with the blueshift. It suggests that magnetic reconnection locally occurred in the lower chromosphere and it triggered magnetic reconnection of the X1.6 flare in the corona.« less

  6. Study on Precursor Activity of the X1.6 Flare in the Great AR 12192 with SDO, IRIS, and Hinode

    NASA Astrophysics Data System (ADS)

    Bamba, Yumi; Lee, Kyoung-Sun; Imada, Shinsuke; Kusano, Kanya

    2017-05-01

    The physical properties and their contribution to the onset of a solar flare are still uncleare even though chromospheric brightening is considered a precursor phenomenon of a flare. Many studies suggested that photospheric magnetic field changes cause destabilization of large-scale coronal structure. We aim to understand how a small photospheric change contributes to a flare and to reveal how the intermediary chromosphere behaves in the precursor phase. We analyzed the precursor brightening of the X1.6 flare on 2014 October 22 in the AR 12192 using the Interface Region Imaging Spectrograph (IRIS) and Hinode/EUV Imaging Spectrometer (EIS) data. We investigated a localized jet with the strong precursor brightening, and compared the intensity, Doppler velocity, and line width in C II, Mg II k, and Si IV lines by IRIS and He II, Fe xii, and Fe xv lines by Hinode/EIS. We also analyzed the photospheric magnetic field and chromospheric/coronal structures using the Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly. We found a significant blueshift (˜100 km s-1), which is related to the strong precursor brightening over a characteristic magnetic field structure, and the blueshift was observed at all of the temperatures. This might indicate that the flow is accelerated by Lorentz force. Moreover, the large-scale coronal loop that connects the foot points of the flare ribbons was destabilized just after the precursor brightening with the blueshift. It suggests that magnetic reconnection locally occurred in the lower chromosphere and it triggered magnetic reconnection of the X1.6 flare in the corona.

  7. OBSERVATIONAL EVIDENCE OF ELECTRON-DRIVEN EVAPORATION IN TWO SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, D.; Ning, Z. J.; Zhang, Q. M., E-mail: lidong@pmo.ac.cn

    2015-11-01

    We have explored the relationship between hard X-ray (HXR) emissions and Doppler velocities caused by the chromospheric evaporation in two X1.6 class solar flares on 2014 September 10 and October 22, respectively. Both events display double ribbons and the Interface Region Imaging Spectrograph slit is fixed on one of their ribbons from the flare onset. The explosive evaporations are detected in these two flares. The coronal line of Fe xxi 1354.09 Å shows blueshifts, but the chromospheric line of C i 1354.29 Å shows redshifts during the impulsive phase. The chromospheric evaporation tends to appear at the front of themore » flare ribbon. Both Fe xxi and C i display their Doppler velocities with an “increase-peak-decrease” pattern that is well related to the “rising-maximum-decay” phase of HXR emissions. Such anti-correlation between HXR emissions and Fe xxi Doppler shifts and correlation with C i Doppler shifts indicate the electron-driven evaporation in these two flares.« less

  8. Active Stellar Coronae: Lots of Little Flares?

    NASA Astrophysics Data System (ADS)

    Drake, J. J.; Kashyap, V. L.; Audard, M.; Guedel, M.

    2000-05-01

    One of the outstanding questions in stellar X-ray astronomy is the nature of the apparently quiescent emission on active stars -- does this emission actually arise as a superposition of a multitude of impulsive events (such as microflares or nanoflares), or from truly quiescent plasma? This question has gone unanswered due to the difficulties associated with the analysis: [1] the vast majority of the flares that would make up the emission are by definition too weak to be detected, let alone be distinguished from each other; [2] the low count-rates coupled with the small duty cycles of the telescopes increase the ``deadtime'' due to strong flares, masking the superposed weaker flares; and [3] because of the stochastic nature of the onset of the flares the light-curve cannot be simply fit with a suitably parameterized model. The distribution of microflares and nanoflares in the Sun are known to follow a power-law of the form (dN)/(dE)=k E-α (e.g.,Hudson 1991,Sol.Phys.133,357; Parnell & Jupp 2000,ApJ529,554). We adopt a similar model for stellar coronae, and have developed a method to determine the value of α for the given dataset. Because the model is stochastic, we cannot directly compare a simulated light-curve with the observed. Instead, we work directly on event lists (which has the additional advantage of being unbinned) and compare the distribution of photon arrival-time differences between the data and simulated model. Data gaps and deadtime corrections derived for the data set are applied to the simulations before making the comparisons. Many criteria are available to characterize the level of agreement of a model and data. We have used the Kolmogorov-Smirnoff statistic, and the reduced χ2 between the distributions of arrival-time differences as possible measures. We find that the KS statistic is unreliable for smaller values of α , where the spread in the flare intensities is large, but works very well for α >> 2. In contrast, the reduced χ2 provides

  9. Quasi-periodic Pulsations in the Most Powerful Solar Flare of Cycle 24

    NASA Astrophysics Data System (ADS)

    Kolotkov, Dmitrii Y.; Pugh, Chloe E.; Broomhall, Anne-Marie; Nakariakov, Valery M.

    2018-05-01

    Quasi-periodic pulsations (QPPs) are common in solar flares and are now regularly observed in stellar flares. We present the detection of two different types of QPP signals in the thermal emission light curves of the X9.3-class solar flare SOL2017-09-06T12:02, which is the most powerful flare of Cycle 24. The period of the shorter-period QPP drifts from about 12 to 25 s during the flare. The observed properties of this QPP are consistent with a sausage oscillation of a plasma loop in the flaring active region. The period of the longer-period QPP is about 4 to 5 minutes. Its properties are compatible with standing slow magnetoacoustic oscillations, which are often detected in coronal loops. For both QPP signals, other mechanisms such as repetitive reconnection cannot be ruled out, however. The studied solar flare has an energy in the realm of observed stellar flares, and the fact that there is evidence of a short-period QPP signal typical of solar flares along with a long-period QPP signal more typical of stellar flares suggests that the different ranges of QPP periods typically observed in solar and stellar flares is likely due to observational constraints, and that similar physical processes may be occurring in solar and stellar flares.

  10. Relationship of EUV Irradiance Coronal Dimming Slope and Depth to Coronal Mass Ejection Speed and Mass

    NASA Technical Reports Server (NTRS)

    Mason, James Paul; Woods, Thomas N.; Webb, David F.; Thompson, Barbara J.; Colaninno, Robin C.; Vourlidas, Angelos

    2016-01-01

    Extreme ultraviolet (EUV) coronal dimmings are often observed in response to solar eruptive events. These phenomena can be generated via several different physical processes. For space weather, the most important of these is the temporary void left behind by a coronal mass ejection (CME). Massive, fast CMEs tend to leave behind a darker void that also usually corresponds to minimum irradiance for the cooler coronal emissions. If the dimming is associated with a solar are, as is often the case, the are component of the irradiance light curve in the cooler coronal emission can be isolated and removed using simultaneous measurements of warmer coronal lines. We apply this technique to 37dimming events identified during two separate two-week periods in 2011, plus an event on 2010 August 7 analyzed in a previous paper, to parameterize dimming in terms of depth and slope. We provide statistics on which combination of wavelengths worked best for the flare-removal method, describe the fitting methods applied to the dimming light curves, and compare the dimming parameters with corresponding CME parameters of mass and speed. The best linear relationships found are nu(sub CME) [km/s] approx. equals 2.36 x 10 6 [km/%] x s(sub dim) [%/s] m(sub CME) [g] approx. equals 2.59 x 10(exp.15 [g/%] x the square root of d(sub dim) [%].These relationships could be used for space weather operations of estimating CME mass and speed using near-real-time irradiance dimming measurements.

  11. Identification of Low Coronal Sources of “Stealth” Coronal Mass Ejections Using New Image Processing Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alzate, Nathalia; Morgan, Huw, E-mail: naa19@aber.ac.uk

    Coronal mass ejections (CMEs) are generally associated with low coronal signatures (LCSs), such as flares, filament eruptions, extreme ultraviolet (EUV) waves, or jets. A number of recent studies have reported the existence of stealth CMEs as events without LCSs, possibly due to observational limitations. Our study focuses on a set of 40 stealth CMEs identified from a study by D’Huys et al. New image processing techniques are applied to high-cadence, multi-instrument sets of images spanning the onset and propagation time of each of these CMEs to search for possible LCSs. Twenty-three of these events are identified as small, low-mass, unstructuredmore » blobs or puffs, often occurring in the aftermath of a large CME, but associated with LCSs such as small flares, jets, or filament eruptions. Of the larger CMEs, seven are associated with jets and eight with filament eruptions. Several of these filament eruptions are different from the standard model of an erupting filament/flux tube in that they are eruptions of large, faint flux tubes that seem to exist at large heights for a long time prior to their slow eruption. For two of these events, we see an eruption in Large Angle Spectrometric Coronagraph C2 images and the consequent changes at the bottom edge of the eruption in EUV images. All 40 events in our study are associated with some form of LCS. We conclude that stealth CMEs arise from observational and processing limitations.« less

  12. PREDICTING CORONAL MASS EJECTIONS USING MACHINE LEARNING METHODS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobra, M. G.; Ilonidis, S.

    Of all the activity observed on the Sun, two of the most energetic events are flares and coronal mass ejections (CMEs). Usually, solar active regions that produce large flares will also produce a CME, but this is not always true. Despite advances in numerical modeling, it is still unclear which circumstances will produce a CME. Therefore, it is worthwhile to empirically determine which features distinguish flares associated with CMEs from flares that are not. At this time, no extensive study has used physically meaningful features of active regions to distinguish between these two populations. As such, we attempt to domore » so by using features derived from (1) photospheric vector magnetic field data taken by the Solar Dynamics Observatory ’s Helioseismic and Magnetic Imager instrument and (2) X-ray flux data from the Geostationary Operational Environmental Satellite’s X-ray Flux instrument. We build a catalog of active regions that either produced both a flare and a CME (the positive class) or simply a flare (the negative class). We then use machine-learning algorithms to (1) determine which features distinguish these two populations, and (2) forecast whether an active region that produces an M- or X-class flare will also produce a CME. We compute the True Skill Statistic, a forecast verification metric, and find that it is a relatively high value of ∼0.8 ± 0.2. We conclude that a combination of six parameters, which are all intensive in nature, will capture most of the relevant information contained in the photospheric magnetic field.« less

  13. Unresolved fine-scale structure in solar coronal loop-tops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scullion, E.; Van der Voort, L. Rouppe; Wedemeyer, S.

    2014-12-10

    New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer substructures within coronal loop cross-sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop substructures, through taking advantage of the resolving power of the Swedish 1 m Solar Telescope/CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory/Atmospheric Image Assembly (AIA). High-resolution imaging of the chromospheric Hα 656.28 nm spectral line core and wings can, under certainmore » circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in Hα) known as a coronal rain, to investigate their fine-scale structure. We identify, through analysis of three data sets, large-scale catastrophic cooling in coronal loop-tops and the existence of multi-thermal, multi-stranded substructures. Many cool strands even extend fully intact from loop-top to footpoint. We discover that coronal loop fine-scale strands can appear bunched with as many as eight parallel strands within an AIA coronal loop cross-section. The strand number density versus cross-sectional width distribution, as detected by CRISP within AIA-defined coronal loops, most likely peaks at well below 100 km, and currently, 69% of the substructure strands are statistically unresolved in AIA coronal loops.« less

  14. The Solar Flare 4: 10 keV X-ray Spectrum

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.

    2004-01-01

    The 4-10 keV solar flare spectrum includes highly excited lines of stripped Ca, Fe, and Ni ions as well as a continuum steeply falling with energy. Groups of lines at approximately 7 keV and approximately 8 keV, observed during flares by the broad-band RHESSI spectrometer and called here the Fe-line and Fe/Ni-line features, are formed mostly of Fe lines but with Ni lines contributing to the approximately 8 keV feature. Possible temperature indicators of these line features are discussed - the peak or centroid energies of the Fe-line feature, the line ratio of the Fe-line to the Fe/Ni-line features, and the equivalent width of the Fe-line feature. The equivalent width is by far the most sensitive to temperature. However, results will be confused if, as is commonly believed, the abundance of Fe varies from flare to flare, even during the course of a single flare. With temperature determined from the thermal continuum, the Fe-line feature becomes a diagnostic of the Fe abundance in flare plasmas. These results are of interest for other hot plasmas in coronal ionization equilibrium such as stellar flare plasmas, hot gas in galaxies, and older supernova remnants.

  15. Macrospicule Jets in On-Disk Coronal Holes

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Sterling, A. C.; Moore, R. L.

    2014-01-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of six jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 A, examine the magnetic field configuration, and postulate the probable trigger mechanism of these events. We recently reported on another jet in the same coronal hole on 2011 February 27, approximately 13:04 Universal Time (Adams et al 2014, Astrophysical Journal, 783: 11); this jet is a previously-unrecognized variety of blowout jet. In this variety, the reconnection bright point is not made by interchange reconnection of initially-closed erupting field in the base of the jet with ambient open field. Instead, there is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field.

  16. Statistical Study of Magnetic Nonpotential Measures in Confined and Eruptive Flares

    NASA Astrophysics Data System (ADS)

    Vasantharaju, N.; Vemareddy, P.; Ravindra, B.; Doddamani, V. H.

    2018-06-01

    Using Solar Dynamics Observatory/Helioseismic and Magnetic Imager vector magnetic field observations, we studied the relation between the degree of magnetic non-potentiality with the observed flare/coronal mass ejection (CME) in active regions (ARs). From a sample of 77 flare/CME cases, we found in general that the degree of non-potentiality is positively correlated with the flare strength and the associated CME speed. Since the magnetic flux in the flare-ribbon area is more related to the reconnection, we trace the strong gradient polarity inversion line (SGPIL) and Schrijver’s R value manually along the flare-ribbon extent. Manually detected SGPIL length and R values show higher correlation with the flare strength and CME speed than automatically traced values without flare-ribbon information. This highlights the difficulty of predicting the flare strength and CME speed a priori from the pre-flare magnetograms used in flare prediction models. Although the total potential magnetic energy proxies show a weak positive correlation, the decrease in free energy exhibits a higher correlation (0.56) with the flare strength and CME speed. Moreover, eruptive flares have thresholds of SGPIL length (31 Mm), R value (1.6 × 1019 Mx), and free energy decrease (2 × 1031 erg) compared to confined flares. In 90% of eruptive flares, the decay-index curve is steeper, reaching {n}crit}=1.5 within 42 Mm, whereas it is beyond this value in >70% of confined flares. While indicating improved statistics in the predictive capability of AR eruptive behavior with flare-ribbon information, our study provides threshold magnetic properties for a flare to be eruptive.

  17. The Role of Inverse Compton Scattering in Solar Coronal Hard X-Ray and γ-Ray Sources

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Bastian, T. S.

    2012-05-01

    Coronal hard X-ray (HXR) and continuum γ-ray sources associated with the impulsive phase of solar flares have been the subject of renewed interest in recent years. They have been interpreted in terms of thin-target, non-thermal bremsstrahlung emission. This interpretation has led to rather extreme physical requirements in some cases. For example, in one case, essentially all of the electrons in the source must be accelerated to non-thermal energies to account for the coronal HXR source. In other cases, the extremely hard photon spectra of the coronal continuum γ-ray emission suggest that the low-energy cutoff of the electron energy distribution lies in the MeV energy range. Here, we consider the role of inverse Compton scattering (ICS) as an alternate emission mechanism in both the ultra- and mildly relativistic regimes. It is known that relativistic electrons are produced during powerful flares; these are capable of upscattering soft photospheric photons to HXR and γ-ray energies. Previously overlooked is the fact that mildly relativistic electrons, generally produced in much greater numbers in flares of all sizes, can upscatter extreme-ultraviolet/soft X-ray photons to HXR energies. We also explore ICS on anisotropic electron distributions and show that the resulting emission can be significantly enhanced over an isotropic electron distribution for favorable viewing geometries. We briefly review results from bremsstrahlung emission and reconsider circumstances under which non-thermal bremsstrahlung or ICS would be favored. Finally, we consider a selection of coronal HXR and γ-ray events and find that in some cases the ICS is a viable alternative emission mechanism.

  18. Transition Region Emission and the Energy Input to Thermal Plasma in Solar Flares

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Holman, Gordon D.; Dennis, Brian R.; Haga, Leah; Raymond, John C.; Panasyuk, Alexander

    2005-01-01

    Understanding the energetics of solar flares depends on obtaining reliable determinations of the energy input to flare plasma. X-ray observations of the thermal bremsstrahlung from hot flare plasma provide temperatures and emission measures which, along with estimates of the plasma volume, allow the energy content of this hot plasma to be computed. However, if thermal energy losses are significant or if significant energy goes directly into cooler plasma, this is only a lower limit on the total energy injected into thermal plasma during the flare. We use SOHO UVCS observations of O VI flare emission scattered by coronal O VI ions to deduce the flare emission at transition region temperatures between 100,000 K and 1 MK for the 2002 July 23 and other flares. We find that the radiated energy at these temperatures significantly increases the deduced energy input to the thermal plasma, but by an amount that is less than the uncertainty in the computed energies. Comparisons of computed thermal and nonthermal electron energies deduced from RHESSI, GOES, and UVCS are shown.

  19. Homologous Flare-CME Events and Their Metric Type II Radio Burst Association

    NASA Technical Reports Server (NTRS)

    Yashiro, S.; Gopalswamy, N.; Makela, P.; Akiyama, S.; Uddin, W.; Srivastava, A. K.; Joshi, N. C.; Chandra, R.; Manoharan, P. K.; Mahalakshmi, K.; hide

    2014-01-01

    Active region NOAA 11158 produced many flares during its disk passage. At least two of these flares can be considered as homologous: the C6.6 flare at 06:51 UT and C9.4 flare at 12:41 UT on February 14, 2011. Both flares occurred at the same location (eastern edge of the active region) and have a similar decay of the GOES soft X-ray light curve. The associated coronal mass ejections (CMEs) were slow (334 and 337 km/s) and of similar apparent widths (43deg and 44deg), but they had different radio signatures. The second event was associated with a metric type II burst while the first one was not. The COR1 coronagraphs on board the STEREO spacecraft clearly show that the second CME propagated into the preceding CME that occurred 50 min before. These observations suggest that CME-CME interaction might be a key process in exciting the type II radio emission by slow CMEs.

  20. Flares, Fears, and Forecasts: Public Misconceptions About the Sunspot Cycle

    NASA Astrophysics Data System (ADS)

    Larsen, K.

    2012-06-01

    Among the disaster scenarios perpetrated by 2012 apocalypse aficionados is the destruction of humankind due to solar flares and coronal mass ejections (CMEs). These scenarios reflect common misconceptions regarding the solar cycle. This paper (based on an annual meeting poster) sheds light on those misconceptions and how the AAVSO Solar Section can address them.

  1. Ensemble flare forecasting: using numerical weather prediction techniques to improve space weather operations

    NASA Astrophysics Data System (ADS)

    Murray, S.; Guerra, J. A.

    2017-12-01

    One essential component of operational space weather forecasting is the prediction of solar flares. Early flare forecasting work focused on statistical methods based on historical flaring rates, but more complex machine learning methods have been developed in recent years. A multitude of flare forecasting methods are now available, however it is still unclear which of these methods performs best, and none are substantially better than climatological forecasts. Current operational space weather centres cannot rely on automated methods, and generally use statistical forecasts with a little human intervention. Space weather researchers are increasingly looking towards methods used in terrestrial weather to improve current forecasting techniques. Ensemble forecasting has been used in numerical weather prediction for many years as a way to combine different predictions in order to obtain a more accurate result. It has proved useful in areas such as magnetospheric modelling and coronal mass ejection arrival analysis, however has not yet been implemented in operational flare forecasting. Here we construct ensemble forecasts for major solar flares by linearly combining the full-disk probabilistic forecasts from a group of operational forecasting methods (ASSA, ASAP, MAG4, MOSWOC, NOAA, and Solar Monitor). Forecasts from each method are weighted by a factor that accounts for the method's ability to predict previous events, and several performance metrics (both probabilistic and categorical) are considered. The results provide space weather forecasters with a set of parameters (combination weights, thresholds) that allow them to select the most appropriate values for constructing the 'best' ensemble forecast probability value, according to the performance metric of their choice. In this way different forecasts can be made to fit different end-user needs.

  2. Onset of the Magnetic Explosion in Solar Polar Coronal X-Ray Jets

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep K.

    2018-05-01

    We follow up on the Sterling et al. discovery that nearly all polar coronal X-ray jets are made by an explosive eruption of a closed magnetic field carrying a miniature filament in its core. In the same X-ray and EUV movies used by Sterling et al., we examine the onset and growth of the driving magnetic explosion in 15 of the 20 jets that they studied. We find evidence that (1) in a large majority of polar X-ray jets, the runaway internal/tether-cutting reconnection under the erupting minifilament flux rope starts after both the minifilament’s rise and the spire-producing external/breakout reconnection have started; and (2) in a large minority, (a) before the eruption starts, there is a current sheet between the explosive closed field and the ambient open field, and (b) the eruption starts with breakout reconnection at that current sheet. The variety of event sequences in the eruptions supports the idea that the magnetic explosions that make polar X-ray jets work the same way as the much larger magnetic explosions that make a flare and coronal mass ejection (CME). That idea and recent observations indicating that magnetic flux cancellation is the fundamental process that builds the field in and around the pre-jet minifilament and triggers that field’s jet-driving explosion together suggest that flux cancellation inside the magnetic arcade that explodes in a flare/CME eruption is usually the fundamental process that builds the explosive field in the core of the arcade and triggers that field’s explosion.

  3. Oscillations in the wake of a flare blast wave

    NASA Astrophysics Data System (ADS)

    Tothova, D.; Innes, D. E.; Stenborg, G.

    2011-04-01

    Context. Oscillations of coronal loops in the Sun have been reported in both imaging and spectral observations at the onset of flares. Images reveal transverse oscillations, whereas spectra detect line-of-sight velocity or Doppler-shift oscillations. The Doppler-shift oscillations are commonly interpreted as longitudinal modes. Aims: Our aim is to investigate the relationship between loop dynamics and flows seen in TRACE 195 Å images and Doppler shifts observed by SUMER in Si iii 1113.2 Å and FeXIX 1118.1 Å at the time of a C.8-class limb flare and an associated CME. Methods: We carefully co-aligned the sequence of TRACE 195 Å images to structures seen in the SUMER Si iii, CaX, and FeXIX emission lines. Additionally, Hα observations of a lifting prominence associated with the flare and the coronal mass ejection (CME) are available in three bands around 6563.3 Å. They give constraints on the timing and geometry. Results: Large-scale Doppler-shift oscillations in FeXIX and transverse oscillations in intensity images were observed over a large region of the corona after the passage of a wide bright extreme-ultraviolet (EUV) disturbance, which suggests ionization, heating, and acceleration of hot plasma in the wake of a blast wave. The online movie associated to Fig. 2 is available at http://www.aanda.org and at http://www.mps.mpg.de/data/outgoing/tothova/movie.gif

  4. High-energy gamma-ray emission from solar flares: Summary of Fermi large area telescope detections and analysis of two m-class flares

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2014-04-29

    Here, we present the detections of 18 solar flares detected in high-energy γ-rays (above 100 MeV) with the Fermi Large Area Telescope (LAT) during its first 4 yr of operation. Our work suggests that particle acceleration up to very high energies in solar flares is more common than previously thought, occurring even in modest flares, and for longer durations. Interestingly, all these flares are associated with fairly fast coronal mass ejections (CMEs). We then describe the detailed temporal, spatial, and spectral characteristics of the first two long-lasting events: the 2011 March 7 flare, a moderate (M3.7) impulsive flare followed bymore » slowly varying γ-ray emission over 13 hr, and the 2011 June 7 M2.5 flare, which was followed by γ-ray emission lasting for 2 hr. We compare the Fermi LAT data with X-ray and proton data measurements from GOES and RHESSI. We argue that the γ-rays are more likely produced through pion decay than electron bremsstrahlung, and we find that the energy spectrum of the proton distribution softens during the extended emission of the 2011 March 7 flare. Furthermore, this would disfavor a trapping scenario for particles accelerated during the impulsive phase of the flare and point to a continuous acceleration process at play for the duration of the flares. CME shocks are known for accelerating the solar energetic particles (SEPs) observed in situ on similar timescales, but it might be challenging to explain the production of γ-rays at the surface of the Sun while the CME is halfway to the Earth. A stochastic turbulence acceleration process occurring in the solar corona is another likely scenario. Detailed comparison of characteristics of SEPs and γ-ray-emitting particles for several flares will be helpful to distinguish between these two possibilities.« less

  5. FORMATION AND ERUPTION OF A FLUX ROPE FROM THE SIGMOID ACTIVE REGION NOAA 11719 AND ASSOCIATED M6.5 FLARE: A MULTI-WAVELENGTH STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Bhuwan; Kushwaha, Upendra; Dhara, Sajal Kumar

    We investigate the formation, activation, and eruption of a flux rope (FR) from the sigmoid active region NOAA 11719 by analyzing E(UV), X-ray, and radio measurements. During the pre-eruption period of ∼7 hr, the AIA 94 Å images reveal the emergence of a coronal sigmoid through the interaction between two J-shaped bundles of loops, which proceeds with multiple episodes of coronal loop brightenings and significant variations in the magnetic flux through the photosphere. These observations imply that repetitive magnetic reconnections likely play a key role in the formation of the sigmoidal FR in the corona and also contribute toward sustaining themore » temperature of the FR higher than that of the ambient coronal structures. Notably, the formation of the sigmoid is associated with the fast morphological evolution of an S-shaped filament channel in the chromosphere. The sigmoid activates toward eruption with the ascent of a large FR in the corona, which is preceded by the decrease in photospheric magnetic flux through the core flaring region, suggesting tether-cutting reconnection as a possible triggering mechanism. The FR eruption results in a two-ribbon M6.5 flare with a prolonged rise phase of ∼21 minutes. The flare exhibits significant deviation from the standard flare model in the early rise phase, during which a pair of J-shaped flare ribbons form and apparently exhibit converging motions parallel to the polarity inversion line, which is further confirmed by the motions of hard X-ray footpoint sources. In the later stages, the flare follows the standard flare model and the source region undergoes a complete sigmoid-to-arcade transformation.« less

  6. REVEALING THE NATURE OF EXTREME CORONAL-LINE EMITTER SDSS J095209.56+214313.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaversa, Lovro; Holl, Berry; Gezari, Suvi

    Extreme coronal-line emitter (ECLE) SDSS J095209.56+214313.3, known by its strong, fading, high-ionization lines, has been a long-standing candidate for a tidal disruption event; however, a supernova (SN) origin has not yet been ruled out. Here we add several new pieces of information to the puzzle of the nature of the transient that powered its variable coronal lines: (1) an optical light curve from the Lincoln Near Earth Asteroid Research (LINEAR) survey that serendipitously catches the optical flare, and (2) late-time observations of the host galaxy with the Swift Ultraviolet and Optical Telescope (UVOT) and X-ray telescope (XRT) and the ground-based Mercator telescope.more » The well-sampled, ∼10 yr long, unfiltered LINEAR light curve constrains the onset of the flare to a precision of ±5 days and enables us to place a lower limit on the peak optical magnitude. Difference imaging allows us to estimate the location of the flare in proximity of the host galaxy core. Comparison of the GALEX data (early 2006) with the recently acquired Swift UVOT (2015 June) and Mercator observations (2015 April) demonstrates a decrease in the UV flux over a ∼10 yr period, confirming that the flare was UV-bright. The long-lived UV-bright emission, detected 1.8 rest-frame years after the start of the flare, strongly disfavors an SN origin. These new data allow us to conclude that the flare was indeed powered by the tidal disruption of a star by a supermassive black hole and that tidal disruption events are in fact capable of powering the enigmatic class of ECLEs.« less

  7. A Proton Flare Triggered the Mw 8.1 Chiapos Mexican Earthquake

    NASA Astrophysics Data System (ADS)

    Elfaki, H.; Yousef, S.

    2017-12-01

    In a 2015 Cairo University M.Sc. thesis by Sarah Khodairy, very strong earthquakes were found to be highly correlated with proton flares. Strange blue and green bright flashes of light across Mexico accompanied the 8th of September 2017 Mw 1.8 Chiapas earthquake. Those lights were contemporary with a solar proton flare. Those green and blue lights are indicative of the arrival of proton streams over Mexico and their interaction with atmospheric Oxygen and Nitrogen atoms respectively in analogy with aurora lights. The proton streams attacked the weak spots of tectonic plates where the Coscos plate is being subducted below the North American plate. It is suggested that they induced telluric electric currents in the ground and in the magma thus caused motion and more subduction in the tectonic plates. Such motion immediately trigged the Chiapas earthquake in the near vicinity. The Bz component of the interplanetary magnetic field was highly negative, a door was opened in the magnetosphere and the proton stream easily leaked inside and targeted Mexico. This proton flare was accompanied by coronal mass ejection and extremely strong X.9.3- class X-ray flare as well as magnetic storms. On the other hand, the 19th of September Mw 7.1 Puebla central Mexico earthquake was initiated by fast solar wind coronal hole stream. Such stream if they hit ground they cause earthquakes, if they hit narrow seas like the Red Sea they cause flash floods. However if they target Oceans they initiate hurricanes.

  8. Onset of the Magnetic Explosion in Solar Polar Coronal X-Ray Jets

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep

    2017-08-01

    We examine the onset of the driving magnetic explosion in 15 random polar coronal X-ray jets. Each eruption is observed in a coronal X-ray movie from Hinode and in a coronal EUV movie from Solar Dynamics Observatory. Contrary to the Sterling et al (2015, Nature, 523, 437) scenario for minifilament eruptions that drive polar coronal jets, these observations indicate: (1) in most polar coronal jets (a) the runaway internal tether-cutting reconnection under the erupting minifilament flux rope starts after the spire-producing breakout reconnection starts, not before it, and (b) aleady at eruption onset, there is a current sheet between the explosive closed magnetic field and ambient open field; and (2) the minifilament-eruption magnetic explosion often starts with the breakout reconnection of the outside of the magnetic arcade that carries the minifilament in its core. On the other hand, the diversity of the observed sequences of occurrence of events in the jet eruptions gives further credence to the Sterlling et al (2015, Nature, 523, 437) idea that the magnetic explosions that make a polar X-ray jet work the same way as the much larger magnetic explosions that make and flare and CME. We point out that this idea, and recent observations indicating that magnetic flux cancelation is the fundamental process that builds the field in and around pre-jet minifilaments and triggers the jet-driving magnetic explosion, together imply that usually flux cancelation inside the arcade that explodes in a flare/CME eruption is the fundamental process that builds the explosive field and triggers the explosion.This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through its Living With a Star Targeted Research and Technology Program, its Heliophsyics Guest Investigators Program, and the Hinode Project.

  9. Hard X-Ray Emission from Partially Occulted Solar Flares: RHESSI Observations in Two Solar Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Effenberger, Frederic; Costa, Fatima Rubio da; Petrosian, Vahé

    2017-02-01

    Flares close to the solar limb, where the footpoints are occulted, can reveal the spectrum and structure of the coronal looptop source in X-rays. We aim at studying the properties of the corresponding energetic electrons near their acceleration site, without footpoint contamination. To this end, a statistical study of partially occulted flares observed with Reuven Ramaty High-Energy Solar Spectroscopic Imager is presented here, covering a large part of solar cycles 23 and 24. We perform detailed spectra, imaging, and light curve analyses for 116 flares and include contextual observations from SDO and STEREO when available, providing further insights into flaremore » emission that were previously not accessible. We find that most spectra are fitted well with a thermal component plus a broken power-law, non-thermal component. A thin-target kappa distribution model gives satisfactory fits after the addition of a thermal component. X-ray imaging reveals small spatial separation between the thermal and non-thermal components, except for a few flares with a richer coronal source structure. A comprehensive light curve analysis shows a very good correlation between the derivative of the soft X-ray flux (from GOES ) and the hard X-rays for a substantial number of flares, indicative of the Neupert effect. The results confirm that non-thermal particles are accelerated in the corona and estimated timescales support the validity of a thin-target scenario with similar magnitudes of thermal and non-thermal energy fluxes.« less

  10. Bulk Acceleration of Electrons in Solar Flares?

    NASA Astrophysics Data System (ADS)

    Holman, Gordon D.

    2014-06-01

    In two recent papers it has been argued that RHESSI observations of two coronal “above-the-loop-top” hard X-ray sources, together with EUV observations, show that ALL the electrons in the source volumes must have been accelerated. I will briefly review these papers and show that the interpretation most consistent with the combined flare observations is multi-thermal, with hot, thermal plasma in the “above-the-loop-top” sources and only a fraction, albeit a substantial fraction, of the electrons accelerated. Thus, there is no credible scientific evidence for bulk acceleration of electrons in flares. Differential emission measure (DEM) models deduced from SDO/AIA and RHESSI data, including the inversion of the AIA data to determine DEM, will be discussed as part of this analysis.

  11. A simple model of chromospheric evaporation and condensation driven conductively in a solar flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longcope, D. W.

    2014-11-01

    Magnetic energy released in the corona by solar flares reaches the chromosphere where it drives characteristic upflows and downflows known as evaporation and condensation. These flows are studied here for the case where energy is transported to the chromosphere by thermal conduction. An analytic model is used to develop relations by which the density and velocity of each flow can be predicted from coronal parameters including the flare's energy flux F. These relations are explored and refined using a series of numerical investigations in which the transition region (TR) is represented by a simplified density jump. The maximum evaporation velocity,more » for example, is well approximated by v{sub e} ≅ 0.38(F/ρ{sub co,} {sub 0}){sup 1/3}, where ρ{sub co,} {sub 0} is the mass density of the pre-flare corona. This and the other relations are found to fit simulations using more realistic models of the TR both performed in this work, and taken from a variety of previously published investigations. These relations offer a novel and efficient means of simulating coronal reconnection without neglecting entirely the effects of evaporation.« less

  12. Statistical properties of correlated solar flares and coronal mass ejections in cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Aarnio, Alicia

    2018-01-01

    Outstanding problems in understanding early stellar systems include mass loss, angular momentum evolution, and the effects of energetic events on the surrounding environs. The latter of these drives much research into our own system's space weather and the development of predictive algorithms for geomagnetic storms. So dually motivated, we have leveraged a big-data approach to combine two decades of GOES and LASCO data to identify a large sample of spatially and temporally correlated solar flares and CMEs. In this presentation, we revisit the analysis of Aarnio et al. (2011), adding 10 years of data and further exploring the relationships between correlated flare and CME properties. We compare the updated data set results to those previously obtained, and discuss the effects of selecting smaller time windows within solar cycles 23 and 24 on the empirically defined relationships between correlated flare and CME properties. Finally, we discuss a newly identified large sample of potentially interesting correlated flares and CMEs perhaps erroneously excluded from previous searches.

  13. Cutting efficiency of conventional and martensitic nickel-titanium instruments for coronal flaring.

    PubMed

    Morgental, Renata Dornelles; Vier-Pelisser, Fabiana Vieira; Kopper, Patrícia Maria Poli; de Figueiredo, José Antonio Poli; Peters, Ove A

    2013-12-01

    This study aimed at evaluating the influence of rotational speed and number of uses on the cutting efficiency of 4 nickel-titanium coronal flaring instruments against 2 substrates, bovine dentin and acrylic blocks. BioRaCe BR0, HyFlex CM1, ProFile OS#2, and ProTaper Sx were used in simulated lateral action against both substrates at 250 and 500 rpm up to 5 times, producing 5 notches in each block. Notch areas and lengths were measured under a stereomicroscope, and data were compared by using parametric tests (α = 0.05). Against both substrates, HyFlex CM1 and ProFile OS#2 were the most and the least cutting efficient instruments, respectively (P < .05). Against acrylic, area and length values at 500 rpm were significantly higher than those at 250 rpm for all brands. Against dentin, significant differences were detected between 250 and 500 rpm for HyFlex CM1 and ProTaper Sx (area) and for BioRace BR0, HyFlex CM1, and ProTaper Sx (length). Regarding cutting efficiency loss, area and length for notches 1 and 2 (first notches) and 4 and 5 (last notches) were similar against acrylic. Against dentin, length values for notches 1 and 2 were significantly higher than those for notches 4 and 5 in ProFile OS#2 and ProTaper Sx. A strong correlation was detected between the overall results obtained on acrylic and dentin for area and length (P < .0001), although further analysis showed that data against acrylic were a poor predictor of data against dentin after repeated use. HyFlex CM1 was the most cutting efficient instrument in lateral action. An increase in rotational speed improved the cutting efficiency. Results against acrylic showed a high correlation to data against dentin, but acrylic may not be a proper substrate when the intention is to assess cutting efficiency loss with repeated use. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Determination of temperature maps of EUV coronal hole jets

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Patsourakos, Spiros; Bothmer, Volker; Zimbardo, Gaetano

    2011-11-01

    Coronal hole jets are fast ejections of plasma occurring within coronal holes, observed at Extreme-UltraViolet (EUV) and X-ray wavelengths. Recent observations of jets by the STEREO and Hinode missions show that they are transient phenomena which occur at much higher rates than large-scale impulsive phenomena like flares and Coronal Mass Ejections (CMEs). In this paper we describe some typical characteristics of coronal jets observed by the SECCHI instruments of STEREO spacecraft. We show an example of 3D reconstruction of the helical structure for a south pole jet, and present how the angular distribution of the jet position angles changes from the Extreme-UltraViolet-Imager (EUVI) field of view to the CORonagraph1 (COR1) (height ∼2.0 R⊙ heliocentric distance) field of view. Then we discuss a preliminary temperature determination for the jet plasma by using the filter ratio method at 171 and 195 Å and applying a technique for subtracting the EUV background radiation. The results show that jets are characterized by electron temperatures ranging between 0.8 and 1.3 MK. We present the thermal structure of the jet as temperature maps and we describe its thermal evolution.

  15. Statistical Properties of Ribbon Evolution and Reconnection Electric Fields in Eruptive and Confined Flares

    NASA Astrophysics Data System (ADS)

    Hinterreiter, J.; Veronig, A. M.; Thalmann, J. K.; Tschernitz, J.; Pötzi, W.

    2018-03-01

    A statistical study of the chromospheric ribbon evolution in Hα two-ribbon flares was performed. The data set consists of 50 confined (62%) and eruptive (38%) flares that occurred from June 2000 to June 2015. The flares were selected homogeneously over the Hα and Geostationary Operational Environmental Satellite (GOES) classes, with an emphasis on including powerful confined flares and weak eruptive flares. Hα filtergrams from the Kanzelhöhe Observatory in combination with Michelson Doppler Imager (MDI) and Helioseismic and Magnetic Imager (HMI) magnetograms were used to derive the ribbon separation, the ribbon-separation velocity, the magnetic-field strength, and the reconnection electric field. We find that eruptive flares reveal statistically larger ribbon separation and higher ribbon-separation velocities than confined flares. In addition, the ribbon separation of eruptive flares correlates with the GOES SXR flux, whereas no clear dependence was found for confined flares. The maximum ribbon-separation velocity is not correlated with the GOES flux, but eruptive flares reveal on average a higher ribbon-separation velocity (by ≈ 10 km s-1). The local reconnection electric field of confined (cc=0.50 ±0.02) and eruptive (cc=0.77 ±0.03) flares correlates with the GOES flux, indicating that more powerful flares involve stronger reconnection electric fields. In addition, eruptive flares with higher electric-field strengths tend to be accompanied by faster coronal mass ejections.

  16. Particle/fluid simulations of an eruptive flare: Identifying the field-aligned currents responsible for the hard x-rays

    NASA Astrophysics Data System (ADS)

    Winglee, R. M.

    1994-09-01

    While magnetohydrodynamics (MHD) can provide a reasonable description of the overall magnetic reconnection that is believed to drive flares, additional, and often separate processes have to be envoked to in order to explain the electron acceleration that is responsible for many of the observed flare emissions. A new model that incorporates the dynamic coronal current sheets, the reconnection site, and possible electron acceleration processes is developed through the use of two-dimensional particle and modified two-fluid simulations. The specific example of an eruptive flare driven by the coalescence of flux tubes supported by prescribed photospheric current elements is evaluated. It is shown that the electrons and ions have differential trajectories through the coronal current sheet which leads to the development of additonal plasma currents that flow around the surface of the current sheet. These surface currents are explicitly neglected in MHD but they are vital to the flare dynamics because they divert current from the coronal current sheet into the chromosphere, producing an effective resistivity that aids the development of fast reconnection. Because the surface currents are in the plane of the magnetic field, electrons in them experience strong acceleration and can account for the observed hard X-ray emissions. Model predictions are compared with observed time profiles of hard X-ray emissions and Doppler shifts seen in soft X-ray line emissions and are able to account for such features as (1) the asymmetry in the rise and decay time of the hard X-rays, (2) the apparent delay between the largest Doppler shifts and the hard X-ray peak, and (3) the relatively low intensity of the blue-shifted component. The use of particle and fluid simulations is important because it provides different, but complementary treatments of the electron acceleration, the global magnetic morphology, and the flare current system.

  17. Empirical studies of solar flares: Comparison of X-ray and H alpha filtergrams and analysis of the energy balance of the X-ray plasma

    NASA Technical Reports Server (NTRS)

    Moore, R. L.

    1979-01-01

    The physics of solar flares was investigated through a combined analysis of X-ray filtergrams of the high temperature coronal component of flares and H alpha filtergrams of the low temperature chromospheric component. The data were used to study the magnetic field configuration and its changes in solar flares, and to examine the chromospheric location and structure of X-ray bright points (XPB) and XPB flares. Each topic and the germane data are discussed. The energy balance of the thermal X-ray plasma in flares, while not studied, is addressed.

  18. Future Trends in Solar Radio Astronomy and Coronal Magnetic-Field Measurements

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory; Nita, Gelu; Gary, Dale

    Solar radio astronomy has an amazingly rich, but yet largely unexploited, potential for probing the solar corona and chromosphere. Radio emission offers multiple ways of detecting and tracking electron beams, studying chromospheric and coronal thermal structure, plasma processes, particle acceleration, and measuring magnetic fields. To turn the mentioned potential into real routine diagnostics, two major components are needed: (1) well-calibrated observations with high spatial, spectral, and temporal resolutions and (2) accurate and reliable theoretical models and fast numerical tools capable of recovering the emission source parameters from the radio data. This report gives a brief overview of the new, expanded, and planned radio facilities, such as Expanded Owens Valley Solar Array (EOVSA), Jansky Very Large Array (JVLA), Chinese Solar Radio Heliograph (CSRH), Upgraded Siberian Solar Radio Telescope (USSRT), and Frequency Agile Solar Radiotelescope (FASR) with the emphasis on their ability to measure the coronal magnetic fields in active regions and flares. In particular, we emphasize the new tools for 3D modeling of the radio emission and forward fitting tools in development needed to derive the magnetic field data from the radio measurements.

  19. Mini-filament Eruptions Triggering Confined Solar Flares Observed by ONSET and SDO

    NASA Astrophysics Data System (ADS)

    Yang, Shuhong; Zhang, Jun

    2018-06-01

    Using the observations from the Optical and Near-infrared Solar Eruption Tracer (ONSET) and the Solar Dynamics Observatory (SDO), we study an M5.7 flare in AR 11476 on 2012 May 10 and a micro-flare in the quiet Sun on 2017 March 23. Before the onset of each flare, there is a reverse S-shaped filament above the polarity inversion line, then the filaments become unstable and begin to rise. The rising filaments gain the upper hand over the tension force of the dome-like overlying loops and thus successfully erupt outward. The footpoints of the reconnecting overlying loops successively brighten and are observed as two flare ribbons, while the newly formed low-lying loops appear as post-flare loops. These eruptions are similar to the classical model of successful filament eruptions associated with coronal mass ejections (CMEs). However, the erupting filaments in this study move along large-scale lines and eventually reach the remote solar surface; i.e., no filament material is ejected into the interplanetary space. Thus, both the flares are confined. These results reveal that some successful filament eruptions can trigger confined flares. Our observations also imply that this kind of filament eruption may be ubiquitous on the Sun, from active regions (ARs) with large flares to the quiet Sun with micro-flares.

  20. Direct Observations of Magnetic Flux Rope Formation during a Solar Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Song, H. Q.; Zhang, J.; Chen, Y.; Cheng, X.

    2014-09-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (~10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME).

  1. Direct Observations of Magnetic Flux Rope Formation during a Solar Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Song, H.; Zhang, J.; Chen, Y.; Cheng, X.

    2014-12-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are results of eruptions of magnetic flux ropes (MFRs). However, a heated debate is on whether MFRs pre-exist before the eruptions or they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre existing MFR scenario. There is almost no reported observation about MFR formation during the eruption. In this presentation, we present an intriguing observation of a solar eruptive event with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows a detailed formation process of the MFR during the eruption. The process started with the expansion of a low lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly-formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved-in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (~ 10 MK), presumably a MFR, producing a CME. We suggest that two spatially-separated magnetic reconnections occurred in this event, responsible for producing the flare and the hot blob (CME), respectively.

  2. Dynamical Thermal Structure of Super-arcade Downflows in Solar Flares

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Liu, Rui; Deng, Na; Wang, Haimin

    2015-04-01

    Super­-arcade downflows (SADs) have been frequently observed during the gradual phase of flares near the limb. In coronal emission lines sensitive to flaring plasmas, they appear as tadpole-like dark voids against the bright fan-shape “haze” above the well-defined flare arcade and flow toward the arcade. We carefully studied several selected SADs from two flare events using data observed by Solar Dynamic Observatory / Atmospheric Imaging Assembly and calculated their differential emission measures (DEMs) as well as the DEM-weighted temperature. Our analysis shows that SADs are associated with a substantially decreased DEMs, by 1~3 order of magnitude, compared with the surrounding plasma. None of the SADs indicate DEM solutions above 20 MK, which implies that SADs are indeed density depletion rather than very hot plasma. This depression in DEMs rapidly recovers as SADs pass through, generally in a few minutes. In addition, we found that SADs in one event appear spatio-temporally associated with the formation of postflare loops. These results are examined against models and numerical simulations.

  3. Explosive Chromospheric Evaporation and Warm Rain in a GOES C3 Flare Observed by IRIS, Hinode/EIS, and RHESSI

    NASA Astrophysics Data System (ADS)

    Brosius, J. W.; Inglis, A. R.

    2017-12-01

    IRIS and Hinode/EIS observed a C3.1 flare in AR 12002 in stare mode on 2014 March 15.GOES observed the flare to start at 00:21:35 UT and peak at 00:26:30 UT. The IRIS slitwas pointed near the center of the flare while the EIS slit was pointed 35 arcsec westof the IRIS slit. About 4 minutes before the GOES flare start, the C II and Si IV lineintensities observed by IRIS became (and remained) significantly greater than theirpre-flare average values; this indicates that the flare had begun and that thechromosphere and transition region were involved. IRIS first detected significant,blueshifted Fe XXI emission at 00:22:42 UT, by which time the C II and Si IV lineintensities had increased by factors around 100 and their profiles were significantlyredshifted. This combination of simultaneous, cospatial blueshifted Fe XXI emissionwith redshifted C II and Si IV emission indicates explosive chromospheric evaporation.SDO's HMI observed a localized area of enhanced magnetic field strength toward thesouthernmost portion of the EIS slit's position that appears to be connected to theflare site by faint loops evident in AIA 131 A emission. EIS spectra at this locationreveal intensity enhancements by factors up to about 1.7 in the Fe XIV and Fe XVI lineemission, and the emergence of faint Fe XXIII emission that is too weak to measurevelocities. Emission lines from the two coronal ions show redshifts of about 9 km/saround 00:24:00 UT. The density sensitive line intensity ratio of Fe XIV 264.7/274.2observed by EIS reveals an increase of electron density from (1.03+/-0.20)X10^9 /cm^3before the flare to (3.58+/-0.68)X10^9 /cm^3 during the flare. This combination ofredshifted coronal line emission and increased coronal electron density is consistentwith explosively evaporated flare material observed by IRIS falling as warm rain andaccumulating in the remote area observed by EIS. A thermal/nonthermal fit to the hardX-ray spectrum observed by RHESSI yields a nonthermal energy injection

  4. Evidence for explosive chromospheric evaporation in a solar flare observed with SMM

    NASA Technical Reports Server (NTRS)

    Zarro, D. M.; Saba, J. L. R.; Strong, K. T.; Canfield, R. C.; Metcalf, T.

    1986-01-01

    SMM soft X-ray data and Sacramento Peak Observatory H-alpha observations are combined in a study of the impulsive phase of a solar flare. A blue asymmetry, indicative of upflow motions, was observed in the coronal Ca XIX line during the soft X-ray rise phase. H-alpha redshifts, indicative of downward motions, were observed simultaneously in bright flare kernels during the period of hard X-ray emission. It is shown that, to within observational errors, the impulsive phase momentum transported by the upflowing soft X-ray plasma is equivalent to that of the downward moving chromospheric material.

  5. Revealing the Evolution of Non-thermal Electrons in Solar Flares Using 3D Modeling

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Nita, Gelu M.; Kuroda, Natsuha; Jia, Sabina; Tong, Kevin; Wen, Richard R.; Zhizhuo, Zhou

    2018-05-01

    Understanding non-thermal particle generation, transport, and escape in solar flares requires detailed quantification of the particle evolution in the realistic 3D domain where the flare takes place. Rather surprisingly, apart from the standard flare scenario and integral characteristics of non-thermal electrons, not much is known about the actual evolution of non-thermal electrons in the 3D spatial domain. This paper attempts to begin to remedy this situation by creating sets of evolving 3D models, the synthesized emission from which matches the evolving observed emission. Here, we investigate two contrasting flares: a dense, “coronal-thick-target” flare SOL2002-04-12T17:42, that contained a single flare loop observed in both microwaves and X-rays, and a more complex flare, SOL2015-06-22T17:50, that contained at least four distinct flaring loops needed to consistently reproduce the microwave and X-ray emission. Our analysis reveals differing evolution patterns for the non-thermal electrons in the dense and tenuous loops; however, both patterns suggest that resonant wave–particle interactions with turbulence play a central role. These results offer new constraints for theory and models of the particle acceleration and transport in solar flares.

  6. Solar Flares Observed with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2004-01-01

    Solar flares are impressive examples of explosive energy release in unconfined, magnetized plasma. It is generally believed that the flare energy is derived from the coronal magnetic field. However, we have not been able to establish the specific energy release mechanism(s) or the relative partitioning of the released energy between heating, particle acceleration (electrons and ions), and mass motions. NASA's RHESSI Mission was designed to study the acceleration and evolution of electrons and ions in flares by observing the X-ray and gamma-ray emissions these energetic particles produce. This is accomplished through the combination of high-resolution spectroscopy and spectroscopic imaging, including the first images of flares in gamma rays. RHESSI has observed over 12,000 solar flares since its launch on February 5, 2002. I will demonstrate how we use the RHESSI spectra to deduce physical properties of accelerated electrons and hot plasma in flares. Using images to estimate volumes, w e typically find that the total energy in accelerated electrons is comparable to that in the thermal plasma. I will also present flare observations that provide strong support for the presence of magnetic reconnection in a large-scale, vertical current sheet in the solar corona. RHESSI observations such as these are allowing us to probe more deeply into the physics of solar flares.

  7. Decaying and decayless transverse oscillations of a coronal loop

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Nakariakov, V. M.; Verwichte, E.

    2013-04-01

    Aims: We investigate kink oscillations of loops observed in an active region with the Atmospheric Imaging Assembly (AIA) instrument on board the Solar Dynamics Observatory (SDO) spacecraft before and after a flare. Methods: The oscillations were depicted and analysed with time-distance maps, extracted from the cuts taken parallel or perpendicular to the loop axis. Moving loops were followed in time with steadily moving slits. The period of oscillations and its time variation were determined by best-fitting harmonic functions. Results: We show that before and well after the occurrence of the flare, the loops experience low-amplitude decayless oscillations. The flare and the coronal mass ejection associated to it trigger large-amplitude oscillations that decay exponentially in time. The periods of the kink oscillations in both regimes (about 240 s) are similar. An empirical model of the phenomenon in terms of a damped linear oscillator excited by a continuous low-amplitude harmonic driver and by an impulsive high-amplitude driver is found to be consistent with the observations. Two movies are available in electronic form at http://www.aanda.org

  8. Transition from eruptive to confined flares in the same active region

    NASA Astrophysics Data System (ADS)

    Zuccarello, F. P.; Chandra, R.; Schmieder, B.; Aulanier, G.; Joshi, R.

    2017-05-01

    Context. Solar flares are sudden and violent releases of magnetic energy in the solar atmosphere that can be divided into two classes: eruptive flares, where plasma is ejected from the solar atmosphere resulting in a coronal mass ejection (CME), and confined flares, where no CME is associated with the flare. Aims: We present a case study showing the evolution of key topological structures, such as spines and fans, which may determine the eruptive versus non-eruptive behavior of the series of eruptive flares followed by confined flares, which all originate from the same site. Methods: To study the connectivity of the different flux domains and their evolution, we compute a potential magnetic field model of the active region. Quasi-separatrix layers are retrieved from the magnetic field extrapolation. Results: The change in behavior of the flares from one day to the next - from eruptive to confined - can be attributed to the change in orientation of the magnetic field below the fan with respect to the orientation of the overlaying spine rather than an overall change in the stability of the large-scale field. Conclusions: Flares tend to be more confined when the field that supports the filament and the overlying field gradually becomes less anti-parallel as a direct result of changes in the photospheric flux distribution, being themselves driven by continuous shearing motions of the different magnetic flux concentrations. Movies associated to Figs. 2, 3, and 5 are available at http://www.aanda.org

  9. SPE in Solar Cycle 24 : Flare and CME characteristic

    NASA Astrophysics Data System (ADS)

    Neflia, Neflia

    SPE is one of the most severe hazards in the space environment. Such events, tend to occur during periods of intense solar activity, and can lead to high radiation doses in short time intervals. The proton enhancements produced by these solar events may last several days and are very hard to predict in advance and they also can cause harm to both satellite and human in space. The most significant sources of proton in the interplanetary medium are both solar flares and interplanetary shocks driven by coronal mass ejections (CMEs). In this study, I try to find the characteristic of Flare and CME that can cause the proton events in interplanetary medium. For my preliminary study, I will search flare characteristic such as class and position as an SPE causes. I also did the research with CME characteristic such as Angular Width (AW) and linier velocity. During solar cycle 24, the solar activity remain very low with several large flare and Halo CME. This low activity also occur on solar proton events in interplanetary medium. From January 2009 to May 2013, there are 25 SPEs with flux range from 12 - 6530 sfu (10 MeV). The solar flare during these events varies from C to X- class flare. From 27 X-class flare that occur during 2009 - May 2013, only 7 flares cause the SPE. Most of active region location are at solar Western Hemisphere (16/25). only 24 from 139 halo CME (AW=360) cause SPE. Although the probability of SPE from all flare and CME during this range of time is small but they have 3 common characteristics, ie, most of the SPE have active region position at Solar Western Hemisphere, the CME have AW=360 and they have a high linier velocity.

  10. The Origin of the EUV Late Phase: A Case Study of the C8.8 Flare on 2010 May 5

    NASA Technical Reports Server (NTRS)

    Hock, R. A.; Woods, T. N.; Klimchuk, J. A.; Eparvier, F. G.; Jones, A. R.

    2012-01-01

    Since the launch of NASA's Solar Dynamics Observatory on 2010 February 11, the Extreme ultraviolet Variability Experiment (EVE) has observed numerous flares. One interesting feature observed by EVE is that a subset of flares exhibit an additional enhancement of the 2-3 million K emission several hours after the flares soft X-ray emission. From the Atmospheric Imaging Assembly (AIA) images, we observe that this secondary emission, dubbed the EUV late phase, occurs in the same active region as the flare but not in the same coronal loops. Here, we examine the C8.8 flare that occurred on 2010 May 5 as a case study of EUV late phase flares. In addition to presenting detailed observations from both AIA and EVE, we develop a physical model of this flare and test it using the Enthalpy Based Thermal Evolution of Loops (EBTEL) model.

  11. Solar coronal magnetic field topology inferred from high resolution optical and x-ray movies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarbell, T.; Frank, Z.; Hurlburt, N.

    1993-01-01

    The authors are using high resolution digital movies of solar active regions in optical and X-ray wavelengths to study solar flares and other transients. The optical movies were collected at the Swedish Solar Observatory on La Palma using the Lockheed tunable filtergraph system, in May-July, 1992. They include longitudinal and transverse magnetograms, H-alpha Doppler and intensity images at many wavelengths, Ca K, Na D, and white light images. Simultaneous X-ray images from Yohkoh are available much of the time. Several ways to establish the connectivity of some coronal magnetic field lines are being explored. Some of the clues available are:more » magnetic footpoint polarities and transverse field direction; H-alpha fibrils and loops seen in several wavelengths; proper motion and Dopper shifts of blobs moving along field lines; footprint brightening in micro-flares; spreading of flare ribbons during gradual phases of flares; X-ray morphology and correlations with H-alpha; and draining of flare loops. Examples of each of these will be shown on video.« less

  12. Initiation of Coronal Mass Ejections by Tether-Cutting Reconnection

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present and interpret examples of the eruptive motion and flare brightening observed in the onset of magnetic explosions that produce coronal mass ejections. The observations are photospheric magnetograms and sequences of coronal and/or chromospheric images. In our examples, the explosion is apparently driven by the ejective eruption of a sigmoidal sheared-field flux rope from the core of an initially closed bipole. This eruption is initiated (triggered and unleashed) by reconnection located either (1) internally, low in the sheared core field, or (2) externally, at a magnetic null above the closed bipole. The internal reconnection is commonly called 'tether-cutting" reconnection, and the external reconnection is commonly called "break-out' reconnection. We point out that break-out reconnection amounts to external tether cutting. In one example, the eruptive motion of the sheared core field starts several minutes prior to any detectable brightening in the coronal images. We suggest that in this case the eruption is triggered by internal tether-cutting reconnection that at first is too slow and/or too localized to produce detectable heating in the coronal images. This work is supported by NASA's Office of Space Science through its Solar & Heliospheric Physics Supporting Research & Technology program and its Sun-Earth Connection Guest Investigator program.

  13. EFFECT OF A RADIATION COOLING AND HEATING FUNCTION ON STANDING LONGITUDINAL OSCILLATIONS IN CORONAL LOOPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.; Nakariakov, V. M.; Moon, Y.-J., E-mail: sanjaykumar@khu.ac.kr

    2016-06-10

    Standing long-period (with periods longer than several minutes) oscillations in large, hot (with a temperature higher than 3 MK) coronal loops have been observed as the quasi-periodic modulation of the EUV and microwave intensity emission and the Doppler shift of coronal emission lines, and they have been interpreted as standing slow magnetoacoustic (longitudinal) oscillations. Quasi-periodic pulsations of shorter periods, detected in thermal and non-thermal emissions in solar flares could be produced by a similar mechanism. We present theoretical modeling of the standing slow magnetoacoustic mode, showing that this mode of oscillation is highly sensitive to peculiarities of the radiative coolingmore » and heating function. We generalized the theoretical model of standing slow magnetoacoustic oscillations in a hot plasma, including the effects of the radiative losses and accounting for plasma heating. The heating mechanism is not specified and taken empirically to compensate the cooling by radiation and thermal conduction. It is shown that the evolution of the oscillations is described by a generalized Burgers equation. The numerical solution of an initial value problem for the evolutionary equation demonstrates that different dependences of the radiative cooling and plasma heating on the temperature lead to different regimes of the oscillations, including growing, quasi-stationary, and rapidly decaying. Our findings provide a theoretical foundation for probing the coronal heating function and may explain the observations of decayless long-period, quasi-periodic pulsations in flares. The hydrodynamic approach employed in this study should be considered with caution in the modeling of non-thermal emission associated with flares, because it misses potentially important non-hydrodynamic effects.« less

  14. Fearsome Flashes: A Study Of The Evolution Of Flaring Rates In Cool Stars Using Kepler Cluster Data

    NASA Astrophysics Data System (ADS)

    Saar, Steven

    Strong solar flares can damage power grids, satellites, interrupt communications and GPS information, and threaten astronauts and high latitude air travelers. Despite the potential cost, their frequency is poorly determined. Beyond purely current terrestrial concerns, how the rate of large flares (and associated coronal mass ejections [CMEs], high-energy particle fluxes and far UV emission) varies over the stellar lifetime holds considerable astrophysical interest. These include: the contributions of flares to coronal energy budgets; the importance of flares and CMEs to terrestrial and exoplanet atmospheric and biological evolution; and importance of CME mass loss for angular momentum evolution. We will explore the rate of strong flares and its variation with stellar age, mass and rotation by studying Kepler data of cool stars in two open clusters NGC 6811 (age ~ 1 Gyr) and NGC 6819 (~2.5 Gyr). We will use two flare analysis methods to build white-light flare distributions for cluster stars. One subtracts a low-pass filtered version of the data and analyzes the residue for positive flux deviations, the other does a statistical analysis of the flux deviations vs. time lags compared with a model. For near- solar stars, a known solar relation can then be used to estimate X-ray production by the white-light flares. For stars much hotter or cooler or with significantly different chromospheric density, we will use particle code flare models including bombardment effects to estimate how the X-ray to white light scaling changes. With the X-ray values, we can estimate far UV fluxes and CME rates, building a picture of the flare effects; with the two cluster ages, we can make a first estimate of the solar rate (by projecting to the Sun's age) and begin to build up an understanding of flare rate evolution with mass and age. Our proposal falls squarely in the "Stellar Astrophysics and Exoplanets" research area, and is relevant to NASA astrophysics goals in promoting better

  15. Solar Flare Abundances of Potassium, Argon, and Sulphur

    NASA Technical Reports Server (NTRS)

    Oegerle, William (Technical Monitor); Phillips, K. J. H.; Sylwester, J.; Sylwester, B.; Landi, E.

    2003-01-01

    The absolute coronal abundances of potassium has been determined for the first time from X-ray solar flare line and continuous spectra together with absolute and relative abundances of Ar and S. Potassium is of importance in the continuing debate concerning the nature of the coronal/photospheric element abundance ratios which are widely considered to depend on first ionization potential since it has the lowest FIP of any common element in the Sun. The measurements were obtained with the RESIK crystal spectrometer on the Coronas-F spacecraft. A differential emission measure DEM = const. x exp (-(beta)T(sub e) was found to be the most consistent with the data out of three models considered. We find that the coronal ratio [K/H] = 3.7 x 10(exp - 7), a factor 3 times photospheric, in agreement with other observations using line-to-line ratios. Our measured value for the coronal ratio [Ar/H] = 1.5 x 10(exp -6) is significantly less than photospheric, indicating that there is a slight depletion of this high-FIP element in the corona. For S (an intermediate-FIP element) we obtained [S/H] = 2.2 x 10(exp - 5), approximately the same as in previous work.

  16. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Technical Reports Server (NTRS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A. C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C. R.; Archontis, V.; hide

    2016-01-01

    Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.

  17. Blowout jets and impulsive eruptive flares in a bald-patch topology

    NASA Astrophysics Data System (ADS)

    Chandra, R.; Mandrini, C. H.; Schmieder, B.; Joshi, B.; Cristiani, G. D.; Cremades, H.; Pariat, E.; Nuevo, F. A.; Srivastava, A. K.; Uddin, W.

    2017-02-01

    Context. A subclass of broad extreme ultraviolet (EUV) and X-ray jets, called blowout jets, have become a topic of research since they could be the link between standard collimated jets and coronal mass ejections (CMEs). Aims: Our aim is to understand the origin of a series of broad jets, some of which are accompanied by flares and associated with narrow and jet-like CMEs. Methods: We analyze observations of a series of recurrent broad jets observed in AR 10484 on 21-24 October 2003. In particular, one of them occurred simultaneously with an M2.4 flare on 23 October at 02:41 UT (SOLA2003-10-23). Both events were observed by the ARIES Hα Solar Tower-Telescope, TRACE, SOHO, and RHESSI instruments. The flare was very impulsive and followed by a narrow CME. A local force-free model of AR 10484 is the basis to compute its topology. We find bald patches (BPs) at the flare site. This BP topology is present for at least two days before to events. Large-scale field lines, associated with the BPs, represent open loops. This is confirmed by a global potential free source surface (PFSS) model. Following the brightest leading edge of the Hα and EUV jet emission, we can temporarily associate these emissions with a narrow CME. Results: Considering their characteristics, the observed broad jets appear to be of the blowout class. As the most plausible scenario, we propose that magnetic reconnection could occur at the BP separatrices forced by the destabilization of a continuously reformed flux rope underlying them. The reconnection process could bring the cool flux-rope material into the reconnected open field lines driving the series of recurrent blowout jets and accompanying CMEs. Conclusions: Based on a model of the coronal field, we compute the AR 10484 topology at the location where flaring and blowout jets occurred from 21 to 24 October 2003. This topology can consistently explain the origin of these events. The movie associated to Fig. 1 is available at http://www.aanda.org

  18. PHYSICAL CONDITIONS OF CORONAL PLASMA AT THE TRANSIT OF A SHOCK DRIVEN BY A CORONAL MASS EJECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susino, R.; Bemporad, A.; Mancuso, S., E-mail: susino@oato.inaf.it

    2015-10-20

    We report here on the determination of plasma physical parameters across a shock driven by a coronal mass ejection using white light (WL) coronagraphic images and radio dynamic spectra (RDS). The event analyzed here is the spectacular eruption that occurred on 2011 June 7, a fast CME followed by the ejection of columns of chromospheric plasma, part of them falling back to the solar surface, associated with a M2.5 flare and a type-II radio burst. Images acquired by the Solar and Heliospheric Observatory/LASCO coronagraphs (C2 and C3) were employed to track the CME-driven shock in the corona between 2–12 R{submore » ⊙} in an angular interval of about 110°. In this interval we derived two-dimensional (2D) maps of electron density, shock velocity, and shock compression ratio, and we measured the shock inclination angle with respect to the radial direction. Under plausible assumptions, these quantities were used to infer 2D maps of shock Mach number M{sub A} and strength of coronal magnetic fields at the shock's heights. We found that in the early phases (2–4 R{sub ⊙}) the whole shock surface is super-Alfvénic, while later on (i.e., higher up) it becomes super-Alfvénic only at the nose. This is in agreement with the location for the source of the observed type-II burst, as inferred from RDS combined with the shock kinematic and coronal densities derived from WL. For the first time, a coronal shock is used to derive a 2D map of the coronal magnetic field strength over intervals of 10 R{sub ⊙} altitude and ∼110° latitude.« less

  19. More Macrospicule Jets in On-Disk Coronal Holes

    NASA Astrophysics Data System (ADS)

    Adams, Mitzi; Sterling, Alphonse; Moore, Ronald

    2015-04-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or at disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of about ten jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 Å, examine the magnetic field configuration and flux changes in the jet area, and discuss the probable trigger mechanism of these events. We reported on another jet in this same coronal hole on 2011 February 27, ~13:04 UT (Adams et al 2014, ApJ, 783: 11). That jet is a previously unrecognized variety of blowout jet, in which the base-edge bright point is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field. In contrast, in the presently-accepted "standard" picture for blowout jets, the base-edge bright point is made by interchange reconnection of initially-closed erupting jet-base field with ambient open field. This poster presents further evidence of the production of the base-edge bright point in blowout jets by internal reconnection. Our observations suggest that most of the bigger and brighter EUV jets in coronal holes are blowout jets of the new-found variety.

  20. More Macrospicule Jets in On-Disk Coronal Holes

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Sterling, A. C.; Moore, R. L.

    2015-01-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of about ten jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 A, examine the magnetic field configuration and flux changes in the jet area, and discuss the probable trigger mechanism of these events. We reported on another jet in this same coronal hole on 2011 February 27, (is) approximately 13:04 UT (Adams et al 2014, ApJ, 783: 11). That jet is a previously-unrecognized variety of blowout jet, in which the base-edge bright point is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field. In contrast, in the presently-accepted 'standard' picture for blowout jets, the base-edge bright point is made by interchange reconnection of initially-closed erupting jet-base field with ambient open field. This poster presents further evidence of the production of the base-edge bright point in blowout jets by internal reconnection. Our observations suggest that most of the bigger and brighter EUV jets in coronal holes are blowout jets of the new-found variety.

  1. Predicting Major Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Coronal mass ejections (CMEs) and solar flares are two examples of major explosions from the surface of the Sun but theyre not the same thing, and they dont have to happen at the same time. A recent study examines whether we can predict which solar flares will be closely followed by larger-scale CMEs.Image of a solar flare from May 2013, as captured by NASAs Solar Dynamics Observatory. [NASA/SDO]Flares as a Precursor?A solar flare is a localized burst of energy and X-rays, whereas a CME is an enormous cloud of magnetic flux and plasma released from the Sun. We know that some magnetic activity on the surface of the Sun triggers both a flare and a CME, whereas other activity only triggers a confined flare with no CME.But what makes the difference? Understanding this can help us learn about the underlying physical drivers of flares and CMEs. It also might help us to better predict when a CME which can pose a risk to astronauts, disrupt radio transmissions, and cause damage to satellites might occur.In a recent study, Monica Bobra and Stathis Ilonidis (Stanford University) attempt to improve our ability to make these predictions by using a machine-learning algorithm.Classification by ComputerUsing a combination of 6 or more features results in a much better predictive success (measured by the True Skill Statistic; higher positive value = better prediction) for whether a flare will be accompanied by a CME. [Bobra Ilonidis 2016]Bobra and Ilonidis used magnetic-field data from an instrument on the Solar Dynamics Observatory to build a catalog of solar flares, 56 of which were accompanied by a CME and 364 of which were not. The catalog includes information about 18 different features associated with the photospheric magnetic field of each flaring active region (for example, the mean gradient of the horizontal magnetic field).The authors apply a machine-learning algorithm known as a binary classifier to this catalog. This algorithm tries to predict, given a set of features

  2. A MAGNETOHYDRODYNAMIC MODEL OF THE 2006 DECEMBER 13 ERUPTIVE FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Y.

    2011-10-20

    We present a three-dimensional magnetohydrodynamic simulation that qualitatively models the coronal magnetic field evolution associated with the eruptive flare that occurred on 2006 December 13 in the emerging {delta}-sunspot region NOAA 10930 observed by the Hinode satellite. The simulation is set up to drive the emergence of an east-west-oriented magnetic flux rope at the lower boundary into a preexisting coronal field constructed from the Solar and Heliospheric Observatory/Michelson Doppler Imager full-disk magnetogram at 20:51:01 UT on 2006 December 12. The resulting coronal flux rope embedded in the ambient coronal magnetic field first settles into a stage of quasi-static rise andmore » then undergoes a dynamic eruption, with the leading edge of the flux rope cavity accelerating to a steady speed of about 830 km s{sup -1}. The pre-eruption coronal magnetic field shows morphology that is in qualitative agreement with that seen in the Hinode soft X-ray observation in both the magnetic connectivity as well as the development of an inverse-S-shaped X-ray sigmoid. We examine the properties of the erupting flux rope and the morphology of the post-reconnection loops, and compare them with the observations.« less

  3. Solar flares, coronal mass ejections and solar energetic particle event characteristics

    NASA Astrophysics Data System (ADS)

    Papaioannou, Athanasios; Sandberg, Ingmar; Anastasiadis, Anastasios; Kouloumvakos, Athanasios; Georgoulis, Manolis K.; Tziotziou, Kostas; Tsiropoula, Georgia; Jiggens, Piers; Hilgers, Alain

    2016-12-01

    A new catalogue of 314 solar energetic particle (SEP) events extending over a large time span from 1984 to 2013 has been compiled. The properties as well as the associations of these SEP events with their parent solar sources have been thoroughly examined. The properties of the events include the proton peak integral flux and the fluence for energies above 10, 30, 60 and 100 MeV. The associated solar events were parametrized by solar flare (SF) and coronal mass ejection (CME) characteristics, as well as related radio emissions. In particular, for SFs: the soft X-ray (SXR) peak flux, the SXR fluence, the heliographic location, the rise time and the duration were exploited; for CMEs the plane-of-sky velocity as well as the angular width were utilized. For radio emissions, type III, II and IV radio bursts were identified. Furthermore, we utilized element abundances of Fe and O. We found evidence that most of the SEP events in our catalogue do not conform to a simple two-class paradigm, with the 73% of them exhibiting both type III and type II radio bursts, and that a continuum of event properties is present. Although, the so-called hybrid or mixed events are found to be present in our catalogue, it was not possible to attribute each SEP event to a mixed/hybrid sub-category. Moreover, it appears that the start of the type III burst most often precedes the maximum of the SF and thus falls within the impulsive phase of the associated SF. At the same time, type III bursts take place within ≈5.22 min, on average, in advance from the time of maximum of the derivative of the SXR flux (Neupert effect). We further performed a statistical analysis and a mapping of the logarithm of the proton peak flux at E > 10 MeV, on different pairs of the parent solar source characteristics. This revealed correlations in 3-D space and demonstrated that the gradual SEP events that stem from the central part of the visible solar disk constitute a significant radiation risk. The velocity of

  4. Double-coronal X-Ray and Microwave Sources Associated with a Magnetic Breakout Solar Eruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yao; Wu, Zhao; Zhao, Di

    Double-coronal hard X-ray (HXR) sources are believed to be critical observational evidence of bi-directional energy release through magnetic reconnection in large-scale current sheets in solar flares. Here, we present a study on double-coronal sources observed in both HXR and microwave regimes, revealing new characteristics distinct from earlier reports. This event is associated with a footpoint-occulted X1.3-class flare (2014 April 25, starting at 00:17 UT) and a coronal mass ejection that were likely triggered by the magnetic breakout process, with the lower source extending upward from the top of the partially occulted flare loops and the upper source co-incident with rapidlymore » squeezing-in side lobes (at a speed of ∼250 km s{sup −1} on both sides). The upper source can be identified at energies as high as 70–100 keV. The X-ray upper source is characterized by flux curves that differ from those of the lower source, a weak energy dependence of projected centroid altitude above 20 keV, a shorter duration, and an HXR photon spectrum slightly harder than those of the lower source. In addition, the microwave emission at 34 GHz also exhibits a similar double-source structure and the microwave spectra at both sources are in line with gyrosynchrotron emission given by non-thermal energetic electrons. These observations, especially the co-incidence of the very-fast squeezing-in motion of side lobes and the upper source, indicate that the upper source is associated with (and possibly caused by) this fast motion of arcades. This sheds new light on the origin of the corona double-source structure observed in both HXRs and microwaves.« less

  5. Effects of transport coefficients on excitation of flare-induced standing slow-mode waves

    NASA Astrophysics Data System (ADS)

    Wang, Tongjiang; Ofman, Leon; Davila, Joseph

    2017-08-01

    The flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA, and interpreted as the slow-mode standing waves. By means of the seismology technique we have, for the first time, determined the transport coefficients in the hot (>9 MK) flare plasma, and found that thermal conductivity is suppressed by at least 3 times and viscosity coefficient is enhanced by a factor of 15 as the upper limit (Wang et al. 2015, ApJL, 811, L13). In this presentation, we first discuss possible causes for conduction suppression and viscosity enhancements. Then we use the nonlinear MHD simulations to validate the seismology method that is based on linear analytical analysis, and demonstrate the inversion scheme for determining transport coefficients using numerical parametric study. Finally, we show how the seismologically-determined transport coefficients are crucial for understanding the excitation of the observed standing slow-mode waves in coronal loops and the heating of the loop plasma by a footpoint flare.

  6. Probing the Production of Extreme-ultraviolet Late-phase Solar Flares Using the Model Enthalpy-based Thermal Evolution of Loops

    NASA Astrophysics Data System (ADS)

    Dai, Yu; Ding, Mingde

    2018-04-01

    Recent observations in extreme-ultraviolet (EUV) wavelengths reveal an EUV late phase in some solar flares that is characterized by a second peak in warm coronal emissions (∼3 MK) several tens of minutes to a few hours after the soft X-ray (SXR) peak. Using the model enthalpy-based thermal evolution of loops (EBTEL), we numerically probe the production of EUV late-phase solar flares. Starting from two main mechanisms of producing the EUV late phase, i.e., long-lasting cooling and secondary heating, we carry out two groups of numerical experiments to study the effects of these two processes on the emission characteristics in late-phase loops. In either of the two processes an EUV late-phase solar flare that conforms to the observational criteria can be numerically synthesized. However, the underlying hydrodynamic and thermodynamic evolutions in late-phase loops are different between the two synthetic flare cases. The late-phase peak due to a long-lasting cooling process always occurs during the radiative cooling phase, while that powered by a secondary heating is more likely to take place in the conductive cooling phase. We then propose a new method for diagnosing the two mechanisms based on the shape of EUV late-phase light curves. Moreover, from the partition of energy input, we discuss why most solar flares are not EUV late flares. Finally, by addressing some other factors that may potentially affect the loop emissions, we also discuss why the EUV late phase is mainly observed in warm coronal emissions.

  7. Quasi-periodic Counter-propagating Fast Magnetosonic Wave Trains from Neighboring Flares: SDO/AIA Observations and 3D MHD Modeling

    NASA Astrophysics Data System (ADS)

    Ofman, Leon; Liu, Wei

    2018-06-01

    Since their discovery by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) in the extreme ultraviolet, rapid (phase speeds of ∼1000 km s‑1), quasi-periodic, fast-mode propagating (QFP) wave trains have been observed accompanying many solar flares. They typically propagate in funnel-like structures associated with the expanding magnetic field topology of the active regions (ARs). The waves provide information on the associated flare pulsations and the magnetic structure through coronal seismology (CS). The reported waves usually originate from a single localized source associated with the flare. Here we report the first detection of counter-propagating QFPs associated with two neighboring flares on 2013 May 22, apparently connected by large-scale, trans-equatorial coronal loops. We present the first results of a 3D MHD model of counter-propagating QFPs in an idealized bipolar AR. We investigate the excitation, propagation, nonlinearity, and interaction of the counter-propagating waves for a range of key model parameters, such as the properties of the sources and the background magnetic structure. In addition to QFPs, we also find evidence of trapped fast- (kink) and slow-mode waves associated with the event. We apply CS to determine the magnetic field strength in an oscillating loop during the event. Our model results are in qualitative agreement with the AIA-observed counter-propagating waves and used to identify the various MHD wave modes associated with the observed event, providing insights into their linear and nonlinear interactions. Our observations provide the first direct evidence of counter-propagating fast magnetosonic waves that can potentially lead to turbulent cascade and carry significant energy flux for coronal heating in low-corona magnetic structures.

  8. Statistical Properties of Ribbon Evolution and Reconnection Electric Fields in Eruptive and Confined Flares.

    PubMed

    Hinterreiter, J; Veronig, A M; Thalmann, J K; Tschernitz, J; Pötzi, W

    2018-01-01

    A statistical study of the chromospheric ribbon evolution in H[Formula: see text] two-ribbon flares was performed. The data set consists of 50 confined (62%) and eruptive (38%) flares that occurred from June 2000 to June 2015. The flares were selected homogeneously over the H[Formula: see text] and Geostationary Operational Environmental Satellite (GOES) classes, with an emphasis on including powerful confined flares and weak eruptive flares. H[Formula: see text] filtergrams from the Kanzelhöhe Observatory in combination with Michelson Doppler Imager (MDI) and Helioseismic and Magnetic Imager (HMI) magnetograms were used to derive the ribbon separation, the ribbon-separation velocity, the magnetic-field strength, and the reconnection electric field. We find that eruptive flares reveal statistically larger ribbon separation and higher ribbon-separation velocities than confined flares. In addition, the ribbon separation of eruptive flares correlates with the GOES SXR flux, whereas no clear dependence was found for confined flares. The maximum ribbon-separation velocity is not correlated with the GOES flux, but eruptive flares reveal on average a higher ribbon-separation velocity (by ≈ 10 km s -1 ). The local reconnection electric field of confined ([Formula: see text]) and eruptive ([Formula: see text]) flares correlates with the GOES flux, indicating that more powerful flares involve stronger reconnection electric fields. In addition, eruptive flares with higher electric-field strengths tend to be accompanied by faster coronal mass ejections. The online version of this article (10.1007/s11207-018-1253-1) contains supplementary material, which is available to authorized users.

  9. Diagnostics of electron-heated solar flare models. III - Effects of tapered loop geometry and preheating

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.; Li, Peng; Mariska, John T.

    1992-01-01

    A series of hydrodynamic numerical simulations of nonthermal electron-heated solar flare atmospheres and their corresponding soft X-ray Ca XIX emission-line profiles, under the conditions of tapered flare loop geometry and/or a preheated atmosphere, is presented. The degree of tapering is parameterized by the magnetic mirror ratio, while the preheated atmosphere is parameterized by the initial upper chromospheric pressure. In a tapered flare loop, it is found that the upward motion of evaporated material is faster compared with the case where the flare loop is uniform. This is due to the diverging nozzle seen by the upflowing material. In the case where the flare atmosphere is preheated and the flare geometry is uniform, the response of the atmosphere to the electron collisional heating is slow. The upward velocity of the hydrodynamic gas is reduced due not only to the large coronal column depth, but also to the increased inertia of the overlying material. It is concluded that the only possible electron-heated scenario in which the predicted Ca XIX line profiles agree with the BCS observations is when the impulsive flare starts in a preheated dense corona.

  10. ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES AND ULTRAVIOLET EMISSIONS ACCOMPANYING SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, B. M.; Petrie, G. J. D.; Sudol, J. J.

    2012-11-20

    We have used Transition Region and Coronal Explorer 1600 A images and Global Oscillation Network Group (GONG) magnetograms to compare ultraviolet (UV) emissions from the chromosphere to longitudinal magnetic field changes in the photosphere during four X-class solar flares. An abrupt, significant, and persistent change in the magnetic field occurred across more than 10 pixels in the GONG magnetograms for each flare. These magnetic changes lagged the GOES flare start times in all cases, showing that they were consequences and not causes of the flares. Ultraviolet emissions were spatially coincident with the field changes. The UV emissions tended to lagmore » the GOES start times for the flares and led the changes in the magnetic field in all pixels except one. The UV emissions led the photospheric field changes by 4 minutes on average with the longest lead being 9 minutes; however, the UV emissions continued for tens of minutes, and more than an hour in some cases, after the field changes were complete. The observations are consistent with the picture in which an Alfven wave from the field reconnection site in the corona propagates field changes outward in all directions near the onset of the impulsive phase, including downward through the chromosphere and into the photosphere, causing the photospheric field changes, whereas the chromosphere emits in the UV in the form of flare kernels, ribbons, and sequential chromospheric brightenings during all phases of the flare.« less

  11. Correlated Flare and CME Energies for the October/November 2003 Events

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Haga, Leah; Medlin, Drew; Tolbert, A. Kimberly

    2006-01-01

    We find a strong correlation between the kinetic energies (KEs) of the coronal mass ejections (CMEs) and the radiated energies of the associated solar flares for the events that occurred during the period of intense solar activity between 18 October and 08 November 2003. CME start times, speeds, mass, and KEs were taken from Gopalswamy et al. (2005), who used SOHO/LASCO observations. The GOES observations of the associated flares were analyzed to find the peak SXR flux, the radiated energy in SXRs (L(sub sxr)), and the radiated energy from the SXR emitting plasma across all wavelengths (L(sub hot)). RHESSI observations were also used to find the energy in non-thermal electrons, ions, and the plasma thermal energy for some events. For two events, SORCE/TIM observations of the total solar irradiance during a flare were also available to give the total radiated flare energy (L(sub total)). We find that the total flare energies of the larger events are of the same order of magnitude as the CME KE with a stronger correlation than has been found in the past for other time intervals. The following rule-of-thumb (good to an order of magnitude for the larger events} can be used to relate flare and CME energies: CME KE l(sub total) 10 L(sub hot) 100 L(sub SXR).

  12. On the Factors Determining the Eruptive Character of Solar Flares

    NASA Astrophysics Data System (ADS)

    Baumgartner, Christian; Thalmann, Julia K.; Veronig, Astrid M.

    2018-02-01

    We investigated how the magnetic field in solar active regions (ARs) controls flare activity, i.e., whether a confined or eruptive flare occurs. We analyzed 44 flares of GOES class M5.0 and larger that occurred during 2011–2015. We used 3D potential magnetic field models to study their location (using the flare distance from the flux-weighted AR center d FC) and the strength of the magnetic field in the corona above (via decay index n and flux ratio). We also present a first systematic study of the orientation of the coronal magnetic field, using the orientation φ of the flare-relevant polarity inversion line as a measure. We analyzed all quantities with respect to the size of the underlying dipole field, characterized by the distance between the opposite-polarity centers, d PC. Flares originating from underneath the AR dipole (d FC/d PC < 0.5) tend to be eruptive if launched from compact ARs (d PC ≤ 60 Mm) and confined if launched from extended ARs. Flares ejected from the periphery of ARs (d FC/d PC > 0.5) are predominantly eruptive. In confined events, the flare-relevant field adjusts its orientation quickly to that of the underlying dipole with height (Δφ ≳ 40° until the apex of the dipole field), in contrast to eruptive events where it changes more slowly with height. The critical height for torus instability, h crit = h(n = 1.5), discriminates best between confined (h crit ≳ 40 Mm) and eruptive flares (h crit ≲ 40 Mm). It discriminates better than Δφ, implying that the decay of the confining field plays a stronger role than its orientation at different heights.

  13. Thermodynamics of supra-arcade downflows in solar flares

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Liu, Rui; Deng, Na; Wang, Haimin

    2017-10-01

    Context. Supra-arcade downflows (SADs) have been frequently observed during the gradual phase of solar flares near the limb. In coronal emission lines sensitive to flaring plasmas, they appear as tadpole-like dark voids against the diffuse fan-shaped "haze" above, flowing toward the well-defined flare arcade. Aims: We aim to investigate the evolution of SADs' thermal properties, and to shed light on the formation mechanism and physical processes of SADs. Methods: We carefully studied several selected SADs from two flare events and calculated their differential emission measures (DEMs) as well as DEM-weighted temperatures using data obtained by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamic Observatory. Results: Our analysis shows that SADs are associated with a substantial decrease in DEM above 4 MK, which is 1-3 orders of magnitude smaller than the surrounding haze as well as the region before or after the passage of SADs, but comparable to the quiet corona. There is no evidence for the presence of the SAD-associated hot plasma (>20 MK) in the AIA data, and this decrease in DEM does not cause any significant change in the DEM distribution as well as the DEM-weighted temperature, which supports this idea that SADs are density depletion. This depression in DEM rapidly recovers in the wake of the SADs studied, generally within a few minutes, suggesting that they are discrete features. In addition, we found that SADs in one event are spatio-temporally associated with the successive formation of post-flare loops along the flare arcade. Movies associated to Figs. A.1 and A.2 are available at http://www.aanda.org

  14. Mechanical energy output of the 5 September 1973 flare

    NASA Technical Reports Server (NTRS)

    Webb, D. F.; Cheng, C.-C.; Dulk, G. A.; Martin, S. F.; Mckenna-Lawlor, S.; Mclean, D. J.; Edberg, S. J.

    1980-01-01

    The mechanical energy flux of observed macroscopic mass plasma motions in the solar flare of Sept. 5, 1973, is estimated. Consideration is given to the cool eruptive material in the eruptive filament and large surge as revealed by H alpha observations, the moving emission front seen in Ca II as well as H alpha, the piston-driven shock and mass ejection coronal transient observed in radio spectra and flare core motions, and mechanical energy estimates of 5.6 x 10 to the 29th to 8.9 x 10 to the 30th, 9.0 x 10 to the 29th, 2 x 10 to the 30th (thermal) and 10 to the 31st (magnetic), and 9 x 10 to the 24th erg are obtained, respectively, in agreement with previous estimates. It is concluded that the mechanical energy of large-scale mass motions dominates the radiative output of the flare by more than two orders of magnitude, and that a significant portion of the mechanical energy is in the form of magnetic flux delivered to interplanetary space.

  15. Study of Two Successive Three-ribbon Solar Flares on 2012 July 6

    NASA Astrophysics Data System (ADS)

    Wang, Haimin; Liu, Chang; Deng, Na; Zeng, Zhicheng; Xu, Yan; Jing, Ju; Cao, Wenda

    2014-01-01

    This Letter reports two rarely observed three-ribbon flares (M1.9 and C9.2) on 2012 July 6 in NOAA AR 11515, which we found using Hα observations of 0.''1 resolution from the New Solar Telescope and Ca II H images from Hinode. The flaring site is characterized by an intriguing "fish-bone-like" morphology evidenced by both Hα images and a nonlinear force-free field (NLFFF) extrapolation, where two semi-parallel rows of low-lying, sheared loops connect an elongated, parasitic negative field with the sandwiching positive fields. The NLFFF model also shows that the two rows of loops are asymmetric in height and have opposite twists, and are enveloped by large-scale field lines including open fields. The two flares occurred in succession within half an hour and are located at the two ends of the flaring region. The three ribbons of each flare run parallel to the magnetic polarity inversion line, with the outer two lying in the positive field and the central one in the negative field. Both flares show surge-like flows in Hα apparently toward the remote region, while the C9.2 flare is also accompanied by EUV jets possibly along the open field lines. Interestingly, the 12-25 keV hard X-ray sources of the C9.2 flare first line up with the central ribbon then shift to concentrate on the top of the higher branch of loops. These results are discussed in favor of reconnection along the coronal null line, producing the three flare ribbons and the associated ejections.

  16. Study of Two Successive Three-ribbon Solar Flares Using BBSO/NST Observations

    NASA Astrophysics Data System (ADS)

    Wang, Haimin; Liu, Chang; Deng, Na; Zeng, Zhicheng; Xu, Yan; Jing, Ju; Cao, Wenda

    2014-06-01

    We studied two rarely observed three-ribbon flares (M1.9 and C9.2) on 2012 July 6 in NOAA AR 11515, which we found using Hα observations of 0.1 arcsec resolution from the New Solar Telescope and Ca II H images from Hinode. The flaring site is characterized by an intriguing "fish-bone-like" morphology evidenced by both Halpha images and a nonlinear force-free field (NLFFF) extrapolation, where two semi-parallel rows of low-lying, sheared loops connect an elongated, parasitic negative field with the sandwiching positive fields. The NLFFF model also shows that the two rows of loops are asymmetric in height and have opposite twists, and are enveloped by large-scale field lines including open fields. The two flares occurred in succession within half an hour and are located at the two ends of the flaring region. The three ribbons of each flare run parallel to the magnetic polarity inversion line, with the outer two lying in the positive field and the central one in the negative field. Both flares show surge-like flows in Halpha apparently toward the remote region, while the C9.2 flare is also accompanied by EUV jets possibly along the open field lines. Interestingly, the 12-25 keV hard X-ray sources of the C9.2 flare first line up with the central ribbon then shift to concentrate on the top of the higher branch of loops. These results are discussed in favor of reconnection along the coronal null line, producing the three flare ribbons and the associated ejections.

  17. First Demonstration of a Coronal Mass Ejection Driven by Helicity Condensation

    NASA Astrophysics Data System (ADS)

    Dahlin, J. T.; Antiochos, S. K.; DeVore, C. R.

    2017-12-01

    Understanding the mechanism for CMEs/eruptive flares is one of the most important problems in all space science. Two classes of theories have been proposed: ideal processes such as the torus instability, or magnetic reconnection as in the breakout model. Previous simulations of eruptions have used special assumptions, such as a particular initial condition ripe for instability and/or particular boundary conditions designed to induce eruption. We report on a simulation in which the initial state is the minimum-energy potential field, and the system is driven solely by the small-scale random motions observed for photospheric convection. The only requirement on the system is that the flows are sufficiently complex to induce pervasive and random reconnection throughout the volume, as expected for coronal heating, and a net helicity is injected into the corona, in agreement with the observed hemispheric helicity preference. We find that as a result of a turbulent-like cascade, the helicity "condenses" onto a polarity inversion line forming a filament channel, which eventually erupts explosively. We discuss the implications of this fully self-consistent eruption simulation for understanding CMEs/flares and for interpreting coronal observations. This work was supported by the NASA LWS and SR Programs.

  18. First Imaging Observation of Standing Slow Wave in Coronal Fan Loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pant, V.; Tiwari, A.; Banerjee, D.

    2017-09-20

    We observe intensity oscillations along coronal fan loops associated with the active region AR 11428. The intensity oscillations were triggered by blast waves that were generated due to X-class flares in the distant active region AR 11429. To characterize the nature of oscillations, we created time–distance maps along the fan loops and noted that the intensity oscillations at two ends of the loops were out of phase. As we move along the fan loop, the amplitude of the oscillations first decreased and then increased. The out-of-phase nature together with the amplitude variation along the loop implies that these oscillations aremore » very likely to be standing waves. The period of the oscillations is estimated to be ∼27 minutes, damping time to be ∼45 minutes, and phase velocity projected in the plane of sky to be ∼65–83 km s{sup −1}. The projected phase speeds were in the range of the acoustic speed of coronal plasma at about 0.6 MK, which further indicates that these are slow waves. To the best of our knowledge, this is the first report on the existence of the standing slow waves in non-flaring fan loops.« less

  19. SPECTROSCOPIC OBSERVATIONS OF AN EVOLVING FLARE RIBBON SUBSTRUCTURE SUGGESTING ORIGIN IN CURRENT SHEET WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brannon, S. R.; Longcope, D. W.; Qiu, J.

    2015-09-01

    We present imaging and spectroscopic observations from the Interface Region Imaging Spectrograph of the evolution of the flare ribbon in the SOL2014-04-18T13:03 M-class flare event, at high spatial resolution and time cadence. These observations reveal small-scale substructure within the ribbon, which manifests as coherent quasi-periodic oscillations in both position and Doppler velocities. We consider various alternative explanations for these oscillations, including modulation of chromospheric evaporation flows. Among these, we find the best support for some form of wave localized to the coronal current sheet, such as a tearing mode or Kelvin–Helmholtz instability.

  20. The decay of coronal loops brightened by flares and transients

    NASA Technical Reports Server (NTRS)

    Krieger, A. S.

    1978-01-01

    Observations of X-ray emitting loops derived from Skylab S-054 photographs, and combined with temperature and brightness estimates from Solrad data, are used to determine brightness decay times resulting from various coronal energy loss mechanisms. Conductive losses are found to be more rapid than radiative losses. Attention is given to the role of geometrical inhibition of conduction as a possible mechanism of brightness decay. Soft X-ray observations are consistent with the continuation of the 'evaporation' driven by thermal conduction late into the decay phase of the event.

  1. Two Coronal Holes on the Sun Viewed by SDO

    NASA Image and Video Library

    2015-03-17

    NASA’s Solar Dynamics Observatory, or SDO, captured this solar image on March 16, 2015, which clearly shows two dark patches, known as coronal holes. The larger coronal hole of the two, near the southern pole, covers an estimated 6- to 8-percent of the total solar surface. While that may not sound significant, it is one of the largest polar holes scientists have observed in decades. The smaller coronal hole, towards the opposite pole, is long and narrow. It covers about 3.8 billion square miles on the sun - only about 0.16-percent of the solar surface. Coronal holes are lower density and temperature regions of the sun’s outer atmosphere, known as the corona. Coronal holes can be a source of fast solar wind of solar particles that envelop the Earth. The magnetic field in these regions extends far out into space rather than quickly looping back into the sun’s surface. Magnetic fields that loop up and back down to the surface can be seen as arcs in non-coronal hole regions of the image, including over the lower right horizon. The bright active region on the lower right quadrant is the same region that produced solar flares last week. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. THE FLARE-ONA OF EK DRACONIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayres, Thomas R., E-mail: Thomas.Ayres@Colorado.edu

    2015-07-15

    EK Draconis (HD 129333: G1.5 V) is a well-known young (50 Myr) solar analog. In 2012, Hubble Space Telescope returned to EK Dra to follow up a far-ultraviolet (FUV) SNAPshot visit by Cosmic Origins Spectrograph (COS) two years earlier. The brief SNAP pointing had found surprisingly redshifted, impulsively variable subcoronal “hot-line” emission of Si iv 1400 Å (T ∼ 8 × 10{sup 4} K). Serendipitously, the 2012 follow-on program witnessed one of the largest FUV flares ever recorded on a sunlike star, which again displayed strong redshifts (downflows) of 30–40 km s{sup −1}, even after compensating for small systematics inmore » the COS velocity scales, uncovered through a cross-calibration by Space Telescope Imaging Spectrograph (STIS). The (now reduced, but still substantial) ∼10 km s{sup −1} hot-line redshifts outside the flaring interval did not vary with rotational phase, so cannot be caused by “Doppler imaging” (bright surface patches near a receding limb). Density diagnostic O iv] 1400 Å multiplet line ratios of EK Dra suggest n{sub e} ∼ 10{sup 11} cm{sup −3}, an order of magnitude larger than in low-activity solar twin α Centauri A, but typical of densities inferred in large stellar soft X-ray events. The self-similar FUV hot-line profiles between the flare decay and the subsequent more quiet periods, and the unchanging but high densities, reinforce a long-standing idea that the coronae of hyperactive dwarfs are flaring all the time, in a scale-free way; a flare-ona if you will. In this picture, the subsonic hot-line downflows probably are a byproduct of the post-flare cooling process, something like “coronal rain” on the Sun. All in all, the new STIS/COS program documents a complex, energetic, dynamic outer atmosphere of the young sunlike star.« less

  3. Intermittent Flare Energy Release: A Signature of Contracting Magnetic Islands from Reconnection?

    NASA Astrophysics Data System (ADS)

    Guidoni, S. E.; Karpen, J. T.; DeVore, C.

    2013-12-01

    Many flares show short-lived enhancements of emission that protrude above their smooth underlying emission. These spikes have been observed over a vast energy spectrum, from radio to hard x-rays. In hard X-rays, for example, their duration ranges from 0.2 to 2 s, with the majority occurring during the flare impulsive phase (Cheng 2012). In most cases, this intermittent energy release is situated at the footpoints of flare arcades where ionized particles, previously accelerated to high energies at coronal heights, are decelerated by the dense solar surface. It is not yet understood what mechanisms accelerate ionized particles to the energies required to produce the observed emission spikes. Drake et al. (2006) proposed a kinetic mechanism for accelerating electrons from contracting magnetic islands that form as reconnection proceeds, analogous to the energy gain of a ball bouncing between converging walls. They estimated that multi-island regions of macroscopic dimensions might account for the required acceleration rates in flares, but at this time it is impractical to simulate large-scale systems in kinetic models. On the other hand, our recent high-resolution MHD simulations of a breakout eruptive flare (Karpen et al. 2012) allow us to resolve in detail the generation and evolution of macroscopic magnetic islands in a flare current sheet. Incorporating a rigorous kinetic model into our global simulations is not feasible at present. However, we intend to breach the gap between kinetic and fluid models by characterizing the contractions of islands as they move away from the main reconnection site, to determine their plausibility as candidates for the observed bursts of radiation. With our null-tracking capabilities, we follow the creation and evolution of the X- and O-type (island) nulls that result from spatially and temporally localized reconnection. Different regimes of current-sheet reconnection (slow/fast), island sizes, rates of island coalescence, and rates

  4. Explosive Chromospheric Evaporation and Warm Rain in a C3.1 Flare Observed by IRIS, Hinode/EIS, and RHESSI

    NASA Astrophysics Data System (ADS)

    Brosius, Jeffrey W.; Inglis, Andrew R.

    2017-10-01

    IRIS and EIS observed a GOES C3.1 flare in stare mode on 2014 March 15. The GOES flare started at 00:21:35 and peaked at 00:26:30 UT. The IRIS slit pointed near the center of the flare, while the EIS slit pointed 35\\prime\\prime to its west. About 4 minutes before the GOES flare start, the IRIS C II and Si IV intensities became (and remained) greater than their pre-flare averages, indicating that the flare had begun and that the chromosphere and transition region were involved. IRIS first detected blueshifted Fe xxi emission at 00:22:42 UT, by which time the C II and Si IV intensities had increased by factors around 100 and their profiles were redshifted. Simultaneous, cospatial blueshifted Fe xxi emission with redshifted C II and Si IV emission indicates explosive chromospheric evaporation. EIS spectra reveal Fe xxiii emission that is too weak to measure velocities, and intensity enhancements by factors about 1.7 in the Fe xiv and Fe xvi emission. Lines from both of these coronal ions show redshifts ≈9 km s-1 around 00:24:00 UT, and the Fe xiv 264.7/274.2 intensity ratio reveals an increase of n e from (1.03+/- 0.20)× {10}9 before to (3.58+/- 0.68)× {10}9 cm-3 during the flare. The redshifted coronal line emission and increased n e are consistent with warm rain falling and accumulating in the remote area observed by EIS. A fit to the RHESSI hard X-ray spectrum yields a nonthermal energy injection rate of 4.9× {10}26 erg s-1, from which we estimate a HXR beam energy flux range consistent with explosive evaporation.

  5. Determination of the calcium elemental abundance for 43 flares from SMM-XRP solar X-ray spectra

    NASA Astrophysics Data System (ADS)

    Lemen, J. R.; Sylwester, J.; Bentley, R. D.

    The helium and lithium-like X-ray transitions of Ca XVIII-XIX have been used to make an absolute measurement of the coronal calcium elemental abundance relative to hydrogen (ACa) in solar flares. Cooling phase spectra of 43 flares obtained in channel 1 of the Bent Crystal Spectrometer on the Solar Maximum Mission have been analyzed. The abundance is determined from the intensity ratio of the Ca XIX resonance line (1S0 - 1P1) and nearby continuum. Attempts to correlate the ACa measurements with other observable features are discussed.

  6. Constraining Stellar Coronal Mass Ejections through Multi-wavelength Analysis of the Active M Dwarf EQ Peg

    NASA Astrophysics Data System (ADS)

    Crosley, M. K.; Osten, R. A.

    2018-03-01

    Stellar coronal mass ejections remain experimentally unconstrained, unlike their stellar flare counterparts, which are observed ubiquitously across the electromagnetic spectrum. Low-frequency radio bursts in the form of a type II burst offer the best means of identifying and constraining the rate and properties of stellar CMEs. CME properties can be further improved through the use of proposed solar-stellar scaling relations and multi-wavelength observations of CMEs through the use of type II bursts and the associated flares expected to occur alongside them. We report on 20 hr of observation of the nearby, magnetically active, and well-characterized M dwarf star EQ Peg. The observations are simultaneously observed with the Jansky Very Large Array at their P-band (230–470 MHz) and at the Apache Point observatory in the SDSS u‧ filter (λ = 3557 Å). Dynamic spectra of the P-band data, constructed to search for signals in the frequency-time domains, did not reveal evidence of drifting radio bursts that could be ascribed to type II bursts. Given the sensitivity of our observations, we are able to place limits on the brightness temperature and source size of any bursts that may have occurred. Using solar scaling rations on four observed stellar flares, we predict CME parameters. Given the constraints on coronal density and photospheric field strength, our models suggest that the observed flares would have been insufficient to produce detectable type II bursts at our observed frequencies. We consider the implications of these results, and other recent findings, on stellar mass loss.

  7. 8-12 GHz Radio Observations of Flare Activity On M dwarf CN Leo

    NASA Astrophysics Data System (ADS)

    Wofford, Alia; Villadsen, Jackie; Quintana, Elisa; Barclay, Thomas; Thackeray, Beverly

    2018-01-01

    Red dwarfs are cool stars that make up 70% of all stars. Red dwarfs can be utilized to detect potentially habitable planets but they have particularly strong magnetic activity that can be detrimental to orbiting planets’ atmospheres and habitability. A coronal mass ejection (CME) is an eruption of magnetized plasma from the star that is ejected into the interplanetary medium which can erode a planet’s atmosphere daily. Based on the sun CMEs are expected to produce very bright radio bursts along with optical flares. We are using M dwarf CN Leo, a well studied flare star that was in the K2 campaign field in summer 2017, as a template to understand the relationship between radio and optical flares and the space weather conditions impacting M dwarf planets. Using radio frequencies ranging from 0.22 GHz-12 GHz we search for simultaneous radio bursts and optical flares to infer if CMEs, flares or aurorae are occurring on the star. I will present the 8-12 GHz radio data from eight 1.5-hour observations with simultaneous optical data. CN Leo produced a bright non-thermal radio flare that lasted approximately for a day during two consecutive observations, with a gyrosynchrotron emission mechanism.

  8. THE NONPOTENTIALITY OF CORONAE OF SOLAR ACTIVE REGIONS, THE DYNAMICS OF THE SURFACE MAGNETIC FIELD, AND THE POTENTIAL FOR LARGE FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrijver, Carolus J., E-mail: schrijver@lmsal.com

    Flares and eruptions from solar active regions (ARs) are associated with atmospheric electrical currents accompanying distortions of the coronal field away from a lowest-energy potential state. In order to better understand the origin of these currents and their role in M- and X-class flares, I review all AR observations made with Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager and SDO/Atmospheric Imaging Assembly from 2010 May through 2014 October within ≈40° from the disk center. I select the roughly 4% of all regions that display a distinctly nonpotential coronal configuration in loops with a length comparable to the scale of themore » AR, and all that emit GOES X-class flares. The data for 41 regions confirm, with a single exception, that strong-field, high-gradient polarity inversion lines (SHILs) created during emergence of magnetic flux into, and related displacement within, pre-existing ARs are associated with X-class flares. Obvious nonpotentiality in the AR-scale loops occurs in six of ten selected regions with X-class flares, all with relatively long SHILs along their primary polarity inversion line, or with a long internal filament there. Nonpotentiality can exist in ARs well past the flux-emergence phase, often with reduced or absent flaring. I conclude that the dynamics of the flux involved in the compact SHILs is of pre-eminent importance for the large-flare potential of ARs within the next day, but that their associated currents may not reveal themselves in AR-scale nonpotentiality. In contrast, AR-scale nonpotentiality, which can persist for many days, may inform us about the eruption potential other than those from SHILs which is almost never associated with X-class flaring.« less

  9. Plasma parameters and structures of the X4 flare of 19 May 1984 as observed by SMM-XRP.

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Saba, J. L. R.; Strong, K. T.

    The eruption of a large flare on the east limb of the Sun was observed by the X-ray Polychromator (XRP) on board the Solar Maximum Mission (SMM) on 19 May 1984. The XRP Flat Crystal Spectrometer (FCS) made polychromatic soft X-ray images during the preflare, flare and postflare phases. The XRP Bent Crystal Spectrometer (BCS) provided information on the temperature and dynamics of the hot (Te > 8×106K) coronal plasma from spectra integrated spatially over the whole region.

  10. MINIFILAMENT ERUPTIONS THAT DRIVE CORONAL JETS IN A SOLAR ACTIVE REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.

    We present observations of eruptive events in an active region adjacent to an on-disk coronal hole on 2012 June 30, primarily using data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), and STEREO - B . One eruption is of a large-scale (∼100″) filament that is typical of other eruptions, showing slow-rise onset followed by a faster-rise motion starting as flare emissions begin. It also shows an “EUV crinkle” emission pattern, resulting from magnetic reconnections between the exploding filament-carrying field and surrounding field. Many EUV jets, some of which are surges,more » sprays and/or X-ray jets, also occur in localized areas of the active region. We examine in detail two relatively energetic ones, accompanied by GOES M1 and C1 flares, and a weaker one without a GOES signature. All three jets resulted from small-scale (∼20″) filament eruptions consistent with a slow rise followed by a fast rise occurring with flare-like jet-bright-point brightenings. The two more-energetic jets showed crinkle patters, but the third jet did not, perhaps due to its weakness. Thus all three jets were consistent with formation via erupting minifilaments, analogous to large-scale filament eruptions and to X-ray jets in polar coronal holes. Several other energetic jets occurred in a nearby portion of the active region; while their behavior was also consistent with their source being minifilament eruptions, we could not confirm this because their onsets were hidden from our view. Magnetic flux cancelation and emergence are candidates for having triggered the minifilament eruptions.« less

  11. MAGNETIC PROPERTIES OF SOLAR ACTIVE REGIONS THAT GOVERN LARGE SOLAR FLARES AND ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toriumi, Shin; Schrijver, Carolus J.; Harra, Louise K.

    Solar flares and coronal mass ejections (CMEs), especially the larger ones, emanate from active regions (ARs). With the aim of understanding the magnetic properties that govern such flares and eruptions, we systematically survey all flare events with Geostationary Orbiting Environmental Satellite levels of ≥M5.0 within 45° from disk center between 2010 May and 2016 April. These criteria lead to a total of 51 flares from 29 ARs, for which we analyze the observational data obtained by the Solar Dynamics Observatory . More than 80% of the 29 ARs are found to exhibit δ -sunspots, and at least three ARs violatemore » Hale’s polarity rule. The flare durations are approximately proportional to the distance between the two flare ribbons, to the total magnetic flux inside the ribbons, and to the ribbon area. From our study, one of the parameters that clearly determine whether a given flare event is CME-eruptive or not is the ribbon area normalized by the sunspot area, which may indicate that the structural relationship between the flaring region and the entire AR controls CME productivity. AR characterization shows that even X-class events do not require δ -sunspots or strong-field, high-gradient polarity inversion lines. An investigation of historical observational data suggests the possibility that the largest solar ARs, with magnetic flux of 2 × 10{sup 23} Mx, might be able to produce “superflares” with energies of the order of 10{sup 34} erg. The proportionality between the flare durations and magnetic energies is consistent with stellar flare observations, suggesting a common physical background for solar and stellar flares.« less

  12. Slipping magnetic reconnection during an X-class solar flare observed by SDO/AIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudík, J.; Del Zanna, G.; Mason, H. E.

    2014-04-01

    We present SDO/AIA observations of an eruptive X-class flare of 2012 July 12, and compare its evolution with the predictions of a three-dimensional (3D) numerical simulation. We focus on the dynamics of flare loops that are seen to undergo slipping reconnection during the flare. In the Atmospheric Imaging Assembly (AIA) 131 Å observations, lower parts of 10 MK flare loops exhibit an apparent motion with velocities of several tens of km s{sup –1} along the developing flare ribbons. In the early stages of the flare, flare ribbons consist of compact, localized bright transition-region emission from the footpoints of the flaremore » loops. A differential emission measure analysis shows that the flare loops have temperatures up to the formation of Fe XXIV. A series of very long, S-shaped loops erupt, leading to a coronal mass ejection observed by STEREO. The observed dynamics are compared with the evolution of magnetic structures in the 'standard solar flare model in 3D.' This model matches the observations well, reproducing the apparently slipping flare loops, S-shaped erupting loops, and the evolution of flare ribbons. All of these processes are explained via 3D reconnection mechanisms resulting from the expansion of a torus-unstable flux rope. The AIA observations and the numerical model are complemented by radio observations showing a noise storm in the metric range. Dm-drifting pulsation structures occurring during the eruption indicate plasmoid ejection and enhancement of the reconnection rate. The bursty nature of radio emission shows that the slipping reconnection is still intermittent, although it is observed to persist for more than an hour.« less

  13. Challenging Some Contemporary Views of Coronal Mass Ejections. I. The Case for Blast Waves

    NASA Astrophysics Data System (ADS)

    Howard, T. A.; Pizzo, V. J.

    2016-06-01

    Since the closure of the “solar flare myth” debate in the mid-1990s, a specific narrative of the nature of coronal mass ejections (CMEs) has been widely accepted by the solar physics community. This narrative describes structured magnetic flux ropes at the CME core that drive the surrounding field plasma away from the Sun. This narrative replaced the “traditional” view that CMEs were blast waves driven by solar flares. While the flux rope CME narrative is supported by a vast quantity of measurements made over five decades, it does not adequately describe every observation of what have been termed CME-related phenomena. In this paper we present evidence that some large-scale coronal eruptions, particularly those associated with EIT waves, exhibit characteristics that are more consistent with a blast wave originating from a localized region (such as a flare site) rather than a large-scale structure driven by an intrinsic flux rope. We present detailed examples of CMEs that are suspected blast waves and flux ropes, and show that of our small sample of 22 EIT-wave-related CMEs, 91% involve a blast wave as at least part of the eruption, and 50% are probably blast waves exclusively. We conclude with a description of possible signatures to look for in determining the difference between the two types of CMEs and with a discussion on modeling efforts to explore this possibility.

  14. CHALLENGING SOME CONTEMPORARY VIEWS OF CORONAL MASS EJECTIONS. I. THE CASE FOR BLAST WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, T. A.; Pizzo, V. J., E-mail: howard@boulder.swri.edu

    Since the closure of the “solar flare myth” debate in the mid-1990s, a specific narrative of the nature of coronal mass ejections (CMEs) has been widely accepted by the solar physics community. This narrative describes structured magnetic flux ropes at the CME core that drive the surrounding field plasma away from the Sun. This narrative replaced the “traditional” view that CMEs were blast waves driven by solar flares. While the flux rope CME narrative is supported by a vast quantity of measurements made over five decades, it does not adequately describe every observation of what have been termed CME-related phenomena.more » In this paper we present evidence that some large-scale coronal eruptions, particularly those associated with EIT waves, exhibit characteristics that are more consistent with a blast wave originating from a localized region (such as a flare site) rather than a large-scale structure driven by an intrinsic flux rope. We present detailed examples of CMEs that are suspected blast waves and flux ropes, and show that of our small sample of 22 EIT-wave-related CMEs, 91% involve a blast wave as at least part of the eruption, and 50% are probably blast waves exclusively. We conclude with a description of possible signatures to look for in determining the difference between the two types of CMEs and with a discussion on modeling efforts to explore this possibility.« less

  15. MINI-FILAMENT ERUPTION AS THE INITIATION OF A JET ALONG CORONAL LOOPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan

    Minifilament eruptions (MFEs) and coronal jets are different types of solar small-scale explosive events. We report an MFE observed at the New Vacuum Solar Telescope (NVST). As seen in the NVST H α images, during the rising phase, the minifilament erupts outward orthogonally to its length, accompanied with a flare-like brightening at the bottom. Afterward, dark materials are found to possibly extend along the axis of the expanded filament body. The MFE is analogous to large filament eruptions. However, a simultaneous observation of the Solar Dynamics Observatory shows that a jet is initiated and flows out along nearby coronal loopsmore » during the rising phase of the MFE. Meanwhile, small hot loops, which connect the original eruptive site of the minifilament to the footpoints of the coronal loops, are formed successively. A differential emission measure analysis demonstrates that, on the top of the new small loops, a hot cusp structure exists. We conjecture that the magnetic fields of the MFE interact with magnetic fields of the coronal loops. This interaction is interpreted as magnetic reconnection that produces the jet and the small hot loops.« less

  16. Mini-filament Eruption as the Initiation of a Jet along Coronal Loops

    NASA Astrophysics Data System (ADS)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Xiang, Yongyuan

    2016-10-01

    Minifilament eruptions (MFEs) and coronal jets are different types of solar small-scale explosive events. We report an MFE observed at the New Vacuum Solar Telescope (NVST). As seen in the NVST Hα images, during the rising phase, the minifilament erupts outward orthogonally to its length, accompanied with a flare-like brightening at the bottom. Afterward, dark materials are found to possibly extend along the axis of the expanded filament body. The MFE is analogous to large filament eruptions. However, a simultaneous observation of the Solar Dynamics Observatory shows that a jet is initiated and flows out along nearby coronal loops during the rising phase of the MFE. Meanwhile, small hot loops, which connect the original eruptive site of the minifilament to the footpoints of the coronal loops, are formed successively. A differential emission measure analysis demonstrates that, on the top of the new small loops, a hot cusp structure exists. We conjecture that the magnetic fields of the MFE interact with magnetic fields of the coronal loops. This interaction is interpreted as magnetic reconnection that produces the jet and the small hot loops.

  17. Observations of the 12.3 micron Mg I emission line during a major solar flare

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Jennings, Donald E.; Osherovich, Vladimir; Wiedemann, Gunter; Hewagama, Tilak

    1990-01-01

    The extremely Zeeman-sensitive 12.32 micron Mg I solar emission line was observed during a 3B/X5.7 solar flare on October 24, 1989. When compared to postflare values, Mg I emission-line intensity in the penumbral flare ribbon was 20 percent greater at the peak of the flare in soft X-rays, and the 12 micron continuum intensity was 7 percent greater. The flare also excited the emission line in the umbra where it is normally absent. The umbral flare emission exhibits a Zeeman splitting 200 G less than the adjacent penumbra, suggesting that it is excited at higher altitude. The absolute penumbral magnetic field strength did not change by more than 100 G between the flare peak and postflare period. However, a change in the inclination of the field lines, probably related to the formation and development of the flare loop system, was seen.

  18. Consequences of the Breakout Model for Particle Acceleration in CMEs and Flares

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Karpen, J. T.; DeVore, C. R.

    2011-01-01

    The largest and most efficient particle accelerators in the solar system are the giant events consisting of a fast coronal mass ejection (CME) and an intense X-class solar flare. Both flares and CMEs can produce l0(exp 32) ergs or more in nonthermal particles. Two general processes are believed to be responsible: particle acceleration at the strong shock ahead of the CME, and reconnection-driven acceleration in the flare current sheet. Although shock acceleration is relatively well understood, the mechanism by which flare reconnection produces nonthermal particles is still an issue of great debate. We address the question of CME/flare particle acceleration in the context of the breakout model using 2.5D MHD simulations with adaptive mesh refinement (AMR). The AMR capability allows us to achieve ultra-high numerical resolution and, thereby, determine the detailed structure and dynamics of the flare reconnection region. Furthermore, we employ newly developed numerical analysis tools for identifying and characterizing magnetic nulls, so that we can quantify accurately the number and location of magnetic islands during reconnection. Our calculations show that flare reconnection is dominated by the formation of magnetic islands. In agreement with many other studies, we find that the number of islands scales with the effective Lundquist number. This result supports the recent work by Drake and co-workers that postulates particle acceleration by magnetic islands. On the other hand, our calculations also show that the flare reconnection region is populated by numerous shocks and other indicators of strong turbulence, which can also accelerate particles. We discuss the implications of our calculations for the flare particle acceleration mechanism and for observational tests of the models.

  19. Are Complex Magnetic Field Structures Responsible for the Confined X-class Flares in Super Active Region 12192?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun; Li, Ting; Chen, Huadong, E-mail: zjun@nao.cas.cn, E-mail: hdchen@nao.cas.cn

    From 2014 October 19 to 27, six X-class flares occurred in super active region (AR) 12192. They were all confined flares and were not followed by coronal mass ejections. To examine the structures of the four flares close to the solar disk center from October 22 to 26, we firstly employ composite triple-time images in each flare process to display the stratified structure of these flare loops. The loop structures of each flare in both the lower (171 Å) and higher (131 Å) temperature channels are complex, e.g., the flare loops rooting at flare ribbons are sheared or twisted (enwound)more » together, and the complex structures were not destroyed during the flares. For the first flare, although the flare loop system appears as a spindle shape, we can estimate its structures from observations, with lengths ranging from 130 to 300 Mm, heights from 65 to 150 Mm, widths at the middle part of the spindle from 40 to 100 Mm, and shear angles from 16° to 90°. Moreover, the flare ribbons display irregular movements, such as the left ribbon fragments of the flare on October 22 sweeping a small region repeatedly, and both ribbons of the flare on October 26 moved along the same direction instead of separating from each other. These irregular movements also imply that the corresponding flare loops are complex, e.g., several sets of flare loops are twisted together. Although previous studies have suggested that the background magnetic fields prevent confined flares from erupting,based on these observations, we suggest that complex flare loop structures may be responsible for these confined flares.« less

  20. Flares in childhood eczema.

    PubMed

    Langan, S M

    2009-01-01

    Eczema is a major public health problem affecting children worldwide. Few studies have directly assessed triggers for disease flares. This paper presents evidence from a published systematic review and a prospective cohort study looking at flare factors in eczema. This systematic review suggested that foodstuffs in selected groups, dust exposure, unfamiliar pets, seasonal variation, stress, and irritants may be important in eczema flares. We performed a prospective cohort study that focused on environmental factors and identified associations between exposure to nylon clothing, dust, unfamiliar pets, sweating, shampoo, and eczema flares. Results from this study also demonstrated some new key findings. First, the effect of shampoo was found to increase in cold weather, and second, combinations of environmental factors were associated with disease exacerbation, supporting a multiple component disease model. This information is likely to be useful to families and may lead to the ability to reduce disease flares in the future.

  1. High-resolution Observations of Flares in an Arch Filament System

    NASA Astrophysics Data System (ADS)

    Su, Yingna; Liu, Rui; Li, Shangwei; Cao, Wenda; Ahn, Kwangsu; Ji, Haisheng

    2018-03-01

    We study five sequential solar flares (SOL2015-08-07) occurring in Active Region 12396 observed with the Goode Solar Telescope (GST) at the Big Bear Solar Observatory, complemented by Interface Region Imaging Spectrograph and SDO observations. The main flaring region is an arch filament system (AFS) consisting of multiple bundles of dark filament threads enclosed by semicircular flare ribbons. We study the magnetic configuration and evolution of the active region by constructing coronal magnetic field models based on SDO/HMI magnetograms using two independent methods, i.e., the nonlinear force-free field (NLFFF) extrapolation and the flux rope insertion method. The models consist of multiple flux ropes with mixed signs of helicity, i.e., positive (negative) in the northern (southern) region, which is consistent with the GST observations of multiple filament bundles. The footprints of quasi-separatrix layers (QSLs) derived from the extrapolated NLFFF compare favorably with the observed flare ribbons. An interesting double-ribbon fine structure located at the east border of the AFS is consistent with the fine structure of the QSL’s footprint. Moreover, magnetic field lines traced along the semicircular footprint of a dome-like QSL surrounding the AFS are connected to the regions of significant helicity and Poynting flux injection. The maps of magnetic twist show that positive twist became dominant as time progressed, which is consistent with the injection of positive helicity before the flares. We hence conclude that these circular shaped flares are caused by 3D magnetic reconnection at the QSLs associated with the AFS possessing mixed signs of helicity.

  2. Rapid Penumbra and Lorentz Force Changes in an X1.0 Solar Flare

    NASA Astrophysics Data System (ADS)

    Xu, Zhe; Jiang, Yunchun; Yang, Jiayang; Yang, Bo; Bi, Yi

    2016-03-01

    We present observations of the violent changes in photospheric magnetic structures associated with an X1.1 flare, which occurred in a compact δ-configuration region in the following part of AR 11890 on 2013 November 8. In both central and peripheral penumbra regions of the small δ sunspot, these changes took place abruptly and permanently in the reverse direction during the flare: the inner/outer penumbra darkened/disappeared, where the magnetic fields became more horizontal/vertical. Particularly, the Lorentz force (LF) changes in the central/peripheral region had a downward/upward and inward direction, meaning that the local pressure from the upper atmosphere was enhanced/released. It indicates that the LF changes might be responsible for the penumbra changes. These observations can be well explained as the photospheric response to the coronal field reconstruction within the framework of the magnetic implosion theory and the back reaction model of flares.

  3. Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    Solar coronal jets are common in both coronal holes and in active regions (e.g., Shibata et al. 1992, Shimojo et al. 1996, Cirtain et al. 2007. Savcheva et al. 2007). Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism (e.g. Yokoyama & Shibata 1995). We present observations of an on-disk active region (NOAA AR 11513) that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale 20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode. A full report of this study appears in Sterling et al. (2016).

  4. High sensitivity dynamic spectral search for flare star radio

    NASA Technical Reports Server (NTRS)

    Abada-Simon, M.; Lecacheux, A.; Louarn, P.; Dulk, G. A.; Belkora, L.; Bookbinder, J. A.; Rosolen, C.

    1994-01-01

    We observed ten well-known flare stars with the Arcibo radio telescope at 1.4 GHz and 5 GHz, using a special observing technique to discriminate between real flares and radio freqeuncy interference. With a high sensitivity of 5.5 K/Jy at 1.4 GHz when averaged over a 50 MHz band, we are able to recognize flux enhancements as weak as approximately 6 mJy above the sky background variations. In about 85 hours of observation, about a dozen bursts were detected, only from AD Leo. All had flux densities lower than 70 mJy, which probably explains their lack of fine structures (except for the strongest one), such as were reported in the literature for stronger flares. Half of the bursts that we recorded are 100% circularly polarized, and half are not circularly polarized. Our results are a first attempt of reliable statistics on dMe flare rates at 1.4 GHz. The high brightness temperatures we infer for the observed bursts are interpreted in terms of coherent emission processes, either the cyclotron maser instability or plasma radiation. Efficiencies are comparable to those of solar or planetary radio emissions in the case of the cyclotron maser, and higher than the solar efficiency in the case of plasma radiation, with the caveat that there are great uncertainties in the coronal model and the source size.

  5. Quiet-sun and non-flaring active region measurements from the FOXSI-2 sounding rocket

    NASA Astrophysics Data System (ADS)

    Buitrago-Casas, J. C.; Glesener, L.; Christe, S.; Ishikawa, S. N.; Narukage, N.; Krucker, S.; Bale, S. D.

    2016-12-01

    Solar hard X-ray (HXR) emissions are a cornerstone for understanding particle acceleration and energy release in the corona. These phenomena are present at different size scales and intensities, from large eruptive events down to the smallest flares. The presence of HXRs in small, unresolved flares would provide direct evidence of small reconnection events, i.e. nano-flares, that are thought to be be important for the unsolved coronal heating problem. Currently operating solar-dedicated instruments that observe HXRs from the Sun do not have the dynamic range, nor the sensitivity, crucial to observe the faintest solar HXRs. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload is a novel experiment that develops and applies direct focusing optics coupled with semiconductor detectors to observe faint HXRs from the Sun. The FOXSI rocket has successfully completed two flights, observing areas of the quiet-Sun, active regions and micro-flares. We present recent data analysis to test the presence of hot plasma in and outside of active regions observed during the two flights, focusing on the differential emission measure distribution of the non-flaring corona.

  6. Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.

    2005-01-01

    This paper is a synopsis of the initiation of the strong-field magnetic explosions that produce large, fast coronal mass ejections. Cartoons based on observations are used to describe the inferred basic physical processes and sequences that trigger and drive the explosion. The magnetic field that explodes is a sheared-core bipole that may or may not be embedded in surrounding strong magnetic field, and may or may not contain a flux rope before it starts to explode. We describe three different mechanisms that singly or in combination trigger the explosion: (1) runaway internal tether-cutting reconnection, (2) runaway external tether-cutting reconnection, and (3) ideal MHD instability or loss or equilibrium. For most eruptions, high-resolution, high-cadence magnetograms and chromospheric and coronal movies (such as from TRACE and/or Solar-B) of the pre-eruption region and of the onset of the eruption and flare are needed to tell which one or which combination of these mechanisms is the trigger. Whatever the trigger, it leads to the production of an erupting flux rope. Using a simple model flux rope, we demonstrate that the explosion can be driven by the magnetic pressure of the expanding flux rope, provided the shape of the expansion is "fat" enough.

  7. Expanding CME-flare relations to other stellar systems

    NASA Astrophysics Data System (ADS)

    Moschou, Sofia P.; Drake, Jeremy J.; Cohen, Ofer

    2017-05-01

    Stellar activity is one of the main parameters in exoplanet habitability studies. While the effects of UV to X-ray emission from extreme flares on exoplanets are beginning to be investigated, the impact of coronal mass ejections is currently highly speculative because CMEs and their properties cannot yet be directly observed on other stars. An extreme superflare was observed in X-rays on the Algol binary system on August 30 1997, emitting a total of energy 1.4x 10^{37} erg and making it a great candidate for studying the upper energy limits of stellar superflares in solar-type (GK) stars. A simultaneous increase and subsequent decline in absorption during the flare was also observed and interpretted as being caused by a CME. Here we investigate the dynamic properties of a CME that could explain such time-dependent absorption and appeal to trends revealed from solar flare and CME statistics as a guide. Using the ice-cream cone model that is extensively used in solar physics to describe the three-dimensional CME structure, in combination with the temporal profile of the hydrogen column density evolution, we are able to characterize the CME and estimate its kinetic energy and mass. We examine the mass, kinetic and flare X-ray fluence in the context of solar relations to examine the extent to which such relations can be extrapolated to much more extreme stellar events.

  8. Evidence for the Magnetic Breakout Model in an Equatorial Coronal-hole Jet

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Karpen, Judith T.; Antiochos, Spiro K.; Wyper, Peter F.; DeVore, C. Richard; DeForest, Craig E.

    2018-02-01

    Small, impulsive jets commonly occur throughout the solar corona, but are especially visible in coronal holes. Evidence is mounting that jets are part of a continuum of eruptions that extends to much larger coronal mass ejections and eruptive flares. Because coronal-hole jets originate in relatively simple magnetic structures, they offer an ideal testbed for theories of energy buildup and release in the full range of solar eruptions. We analyzed an equatorial coronal-hole jet observed by the Solar Dynamics Observatory (SDO)/AIA on 2014 January 9 in which the magnetic-field structure was consistent with the embedded-bipole topology that we identified and modeled previously as an origin of coronal jets. In addition, this event contained a mini-filament, which led to important insights into the energy storage and release mechanisms. SDO/HMI magnetograms revealed footpoint motions in the primary minority-polarity region at the eruption site, but show negligible flux emergence or cancellation for at least 16 hr before the eruption. Therefore, the free energy powering this jet probably came from magnetic shear concentrated at the polarity inversion line within the embedded bipole. We find that the observed activity sequence and its interpretation closely match the predictions of the breakout jet model, strongly supporting the hypothesis that the breakout model can explain solar eruptions on a wide range of scales.

  9. DIRECT SPATIAL ASSOCIATION OF AN X-RAY FLARE WITH THE ERUPTION OF A SOLAR QUIESCENT FILAMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holman, Gordon D.; Foord, Adi, E-mail: gordon.d.holman@nasa.gov

    Solar flares primarily occur in active regions. Hard X-ray flares have been found to occur only in active regions. They are often associated with the eruption of active region filaments and coronal mass ejections (CMEs). CMEs can also be associated with the eruption of quiescent filaments, not located in active regions. Here we report the first identification of a solar X-ray flare outside an active region observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The X-ray emission was directly associated with the eruption of a long, quiescent filament and fast CME. Images from RHESSI show this flare emissionmore » to be located along a section of the western ribbon of the expanding, post-eruption arcade. EUV images from the Solar Dynamics Observatory Atmospheric Imaging Assembly show no connection between this location and nearby active regions. Therefore the flare emission is found not to be located in or associated with an active region. However, a nearby, small, magnetically strong dipolar region provides a likely explanation for the existence and location of the flare X-ray emission. This emerging dipolar region may have also triggered the filament eruption.« less

  10. Observations of vector magnetic fields in flaring active regions

    NASA Technical Reports Server (NTRS)

    Chen, Jimin; Wang, Haimin; Zirin, Harold; Ai, Guoxiang

    1994-01-01

    We present vector magnetograph data of 6 active regions, all of which produced major flares. Of the 20 M-class (or above) flares, 7 satisfy the flare conditions prescribed by Hagyard (high shear and strong transverse fields). Strong photospheric shear, however, is not necessarily a condition for a flare. We find an increase in the shear for two flares, a 6-deg shear increase along the neutral line after a X-2 flare and a 13-deg increase after a M-1.9 flare. For other flares, we did not detect substantial shear changes.

  11. Recurrent flares in active region NOAA 11283

    NASA Astrophysics Data System (ADS)

    Romano, P.; Zuccarello, F.; Guglielmino, S. L.; Berrilli, F.; Bruno, R.; Carbone, V.; Consolini, G.; de Lauretis, M.; Del Moro, D.; Elmhamdi, A.; Ermolli, I.; Fineschi, S.; Francia, P.; Kordi, A. S.; Landi Degl'Innocenti, E.; Laurenza, M.; Lepreti, F.; Marcucci, M. F.; Pallocchia, G.; Pietropaolo, E.; Romoli, M.; Vecchio, A.; Vellante, M.; Villante, U.

    2015-10-01

    Context. Flares and coronal mass ejections (CMEs) are solar phenomena that are not yet fully understood. Several investigations have been performed to single out their related physical parameters that can be used as indices of the magnetic complexity leading to their occurrence. Aims: In order to shed light on the occurrence of recurrent flares and subsequent associated CMEs, we studied the active region NOAA 11283 where recurrent M and X GOES-class flares and CMEs occurred. Methods: We use vector magnetograms taken by HMI/SDO to calculate the horizontal velocity fields of the photospheric magnetic structures, the shear and the dip angles of the magnetic field, the magnetic helicity flux distribution, and the Poynting fluxes across the photosphere due to the emergence and the shearing of the magnetic field. Results: Although we do not observe consistent emerging magnetic flux through the photosphere during the observation time interval, we detected a monotonic increase of the magnetic helicity accumulated in the corona. We found that both the shear and the dip angles have high values along the main polarity inversion line (PIL) before and after all the events. We also note that before the main flare of X2.1 GOES class, the shearing motions seem to inject a more significant energy than the energy injected by the emergence of the magnetic field. Conclusions: We conclude that the very long duration (about 4 days) of the horizontal displacement of the main photospheric magnetic structures along the PIL has a primary role in the energy release during the recurrent flares. This peculiar horizontal velocity field also contributes to the monotonic injection of magnetic helicity into the corona. This process, coupled with the high shear and dip angles along the main PIL, appears to be responsible for the consecutive events of loss of equilibrium leading to the recurrent flares and CMEs. A movie associated to Fig. 4 is available in electronic form at http://www.aanda.org

  12. Quantitative Examination of a Large Sample of Supra-Arcade Downflows in Eruptive Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina L.; McKenzie, David E.

    2011-01-01

    Sunward-flowing voids above post-coronal mass ejection flare arcades were first discovered using the soft X-ray telescope aboard Yohkoh and have since been observed with TRACE (extreme ultraviolet (EUV)), SOHO/LASCO (white light), SOHO/SUMER (EUV spectra), and Hinode/XRT (soft X-rays). Supra-arcade downflow (SAD) observations suggest that they are the cross-sections of thin flux tubes retracting from a reconnection site high in the corona. Supra-arcade downflowing loops (SADLs) have also been observed under similar circumstances and are theorized to be SADs viewed from a perpendicular angle. Although previous studies have focused on dark flows because they are easier to detect and complementary spectral data analysis reveals their magnetic nature, the signal intensity of the flows actually ranges from dark to bright. This implies that newly reconnected coronal loops can contain a range of hot plasma density. Previous studies have presented detailed SAD observations for a small number of flares. In this paper, we present a substantial SADs and SADLs flare catalog. We have applied semiautomatic detection software to several of these events to detect and track individual downflows thereby providing statistically significant samples of parameters such as velocity, acceleration, area, magnetic flux, shrinkage energy, and reconnection rate. We discuss these measurements (particularly the unexpected result of the speeds being an order of magnitude slower than the assumed Alfven speed), how they were obtained, and potential impact on reconnection models.

  13. On the statistical characteristics of radio-loud and radio-quiet halo coronal mass ejections and their associated flares during solar cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Mittal, Nishant; Sharma, Joginder; Verma, Virendar Kumar; Garg, Vijay

    2016-08-01

    We have studied the characteristics of radio-loud (RL) and radio-quiet (RQ) front side halo coronal mass ejections (HCMEs) (angular width 360°) observed between the time period years 1996-2014. RL-HCMEs are associated with type II radio bursts, while RQ-HCMEs are not associated with type II radio bursts. CMEs near the Sun in the interplanetary medium associated with radio bursts also affect the magnetosphere. The type II radio burst data was observed by WIND/WAVES instrument and HCMEs were observed by LASCO/ SOHO instruments. In our study, we have examined the properties of RL-HCMEs and RQ-HCMEs and found that RL-HCMEs follow the solar cycle variation. Our study also shows that the 26% of slow speed HCMEs and 82% of fast speed HCMEs are RL. The average speed of RL-HCMEs and RQ-HCMEs are 1370 km/s and 727 km/s, respectively. Most of the RQ-HCMEs occur around the solar disc center while most of RL-HCMEs are uniformly distributed across the solar disc. The mean value of acceleration of RL-HCMEs is more than twice that of RQ-HCMEs and mean value of deceleration of RL- HCMEs is very small compare to RQ-HCMEs events. It is also found that RQ-HCMEs events are associated with C- and M-class of SXR flares, while RL-HCMEs events are associated with M and X-class of SXR flares, which indicates that the RQ-HCMEs are less energetic than the RL-HCMEs. We have also discussed the various results obtained in present investigation in view of recent scenario of solar physics.

  14. Association of 3He-rich solar energetic particles with large-scale coronal waves

    NASA Astrophysics Data System (ADS)

    Bucik, Radoslav; Innes, Davina; Guo, Lijia; Mason, Glenn M.; Wiedenbeck, Mark

    2016-07-01

    Impulsive or 3He-rich solar energetic particle (SEP) events have been typically associated with jets or small EUV brightenings. We identify 30 impulsive SEP events from ACE at L1 during the solar minimum period 2007-2010 and examine their solar sources with high resolution STEREO-A EUV images. At beginning of 2007, STEREO-A was near the Earth while at the end of the investigated period, when there were more events, STEREO-A was leading the Earth by 90°. Thus STEREO-A provided a better (more direct) view on 3He-rich flares generally located on the western Sun's hemisphere. Surprisingly, we find that about half of the events are associated with large-scale EUV coronal waves. This finding provides new insights on acceleration and transport of 3He-rich SEPs in solar corona. It is believed that elemental and isotopic fractionation in impulsive SEP events is caused by more localized processes operating in the flare sites. The EUV waves have been reported in gradual SEP events in association with fast coronal mass ejections. To examine their role on 3He-rich SEPs production the energy spectra and relative abundances are discussed. R. Bucik is supported by the Deutsche Forschungsgemeinschaft under grant BU 3115/2-1.

  15. HMI Data Driven Magnetohydrodynamic Model Predicted Active Region Photospheric Heating Rates: Their Scale Invariant, Flare Like Power Law Distributions, and Their Possible Association With Flares

    NASA Technical Reports Server (NTRS)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.

    2017-01-01

    A data driven, near photospheric, 3 D, non-force free magnetohydrodynamic model pre- dicts time series of the complete current density, and the resistive heating rate Q at the photosphere in neutral line regions (NLRs) of 14 active regions (ARs). The model is driven by time series of the magnetic field B observed by the Helioseismic & Magnetic Imager on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series for B in every AR pixel. Errors in B due to these periods can be significant. The number of occurrences N(q) of values of Q > or = q for each AR time series is found to be a scale invariant power law distribution, N(Q) / Q-s, above an AR dependent threshold value of Q, where 0.3952 < or = s < or = 0.5298 with mean and standard deviation of 0.4678 and 0.0454, indicating little variation between ARs. Observations show that the number of occurrences N(E) of coronal flares with a total energy released > or = E obeys the same type of distribution, N(E) / E-S, above an AR dependent threshold value of E, with 0.38 < or approx. S < or approx. 0.60, also with little variation among ARs. Within error margins the ranges of s and S are nearly identical. This strong similarity between N(Q) and N(E) suggests a fundamental connection between the process that drives coronal flares and the process that drives photospheric NLR heating rates in ARs. In addition, results suggest it is plausible that spikes in Q, several orders of magnitude above background values, are correlated with times of the subsequent occurrence of M or X flares.

  16. HMI Data Driven Magnetohydrodynamic Model Predicted Active Region Photospheric Heating Rates: Their Scale Invariant, Flare Like Power Law Distributions, and Their Possible Association With Flares

    NASA Technical Reports Server (NTRS)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.

    2017-01-01

    A data driven, near photospheric, 3 D, non-force free magnetohydrodynamic model predicts time series of the complete current density, and the resistive heating rate Q at the photosphere in neutral line regions (NLRs) of 14 active regions (ARs). The model is driven by time series of the magnetic field B observed by the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series for B in every AR pixel. Errors in B due to these periods can be significant. The number of occurrences N(q) of values of Q > or = q for each AR time series is found to be a scale invariant power law distribution, N(Q) / Q-s, above an AR dependent threshold value of Q, where 0.3952 < or = s < or = 0.5298 with mean and standard deviation of 0.4678 and 0.0454, indicating little variation between ARs. Observations show that the number of occurrences N(E) of coronal flares with a total energy released > or = E obeys the same type of distribution, N(E) / E-S, above an AR dependent threshold value of E, with 0.38 < or approx. S < or approx. 0.60, also with little variation among ARs. Within error margins the ranges of s and S are nearly identical. This strong similarity between N(Q) and N(E) suggests a fundamental connection between the process that drives coronal flares and the process that drives photospheric NLR heating rates in ARs. In addition, results suggest it is plausible that spikes in Q, several orders of magnitude above background values, are correlated with times of the subsequent occurrence of M or X flares.

  17. The association of transequatorial loops in the solar corona with coronal mass ejection onset

    NASA Astrophysics Data System (ADS)

    Glover, A.; Harra, L. K.; Matthews, S. A.; Foley, C. A.

    2003-03-01

    It has been shown that transequatorial loops can disappear in association with the onset of a coronal mass ejection (CME) (Khan & Hudson \\cite{khan}). We extend this result by considering a larger sample of transequatorial loop systems (TLS) to investigate their associated flaring and CME activity. We find 10 of a total 18 TLS considered here to be associated with flaring and CME onset originating from a connected active region. A total 33 cases of flaring and associated CME onset are observed from these 10 systems during their lifetime. We observe the influence of this activity on the TLS in each case. In contrast to the Khan & Hudson result, we find evidence that transequatorial loop eruption leading to soft X-ray brightening equivalent in temperature to a B-class flare is equally as common as dimming in the corona. Consequently we conclude that the scenario observed by Khan & Hudson is not universal and that other types of CME-TLS association occur. It was found that for transequatorial loops that were associated with CMEs the asymmetry in longitude was larger than for those that were not associated to a CME by 10o. In addition, the extent in latitude (as a measure of the loop length) was nearly twice as large for those TLS associated with CMEs than those that were not. The asymmetry in latitude was actually on average larger for those TLS not associated with CMEs, than for those that were. This suggests that differential rotation is not a major contributor to the production of CMEs from transequatorial loops. Instead it is more likely for a CME to be produced if the loop is long, and if there is a large asymmetry in longitude. The implications of these results for CME onset prediction are discussed.

  18. Coroners and death certification law reform: the Coroners and Justice Act 2009 and its aftermath.

    PubMed

    Luce, Tom

    2010-10-01

    After considering various different options for half a decade, the last Government legislated in 2009 to reform the England and Wales coroner and death certification systems. The Coroners and Justice Act 2009 provides for the creation of a new Chief Coroner post to lead the jurisdiction and for local medical examiners to oversee a new death certification scheme applicable equally to burial and cremation cases. In October 2010 the new Government announced that it judges the main coroner reform to be unaffordable, will not proceed with it and plans to repeal the provisions. It intends to implement the new death certification arrangements, which is welcome. The decision to abort the main coroner reform in spite of longstanding and widespread recognition of the need for major change is deplorable though in line with other failures over the last century to properly modernise this neglected service.

  19. High Resolution Flare Observations with the 1.6 m Telescope at Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Wang, H.

    2017-12-01

    This talk presents some exciting new results of 1.6m Goode Solar Telescope (GST, formally named as NST) at Big Bear Solar Observatory (BBSO). I will report: (1) Flare ribbons and post-flare loops are observed in the scale of around 100 to 200 km. (2) the sudden flare-induced rotation of a sunspot. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. (3) We found the clear evidence that electron streaming down during a flare can induce extra transient transverse magnetic field that cause apparent rotation only at the propagating ribbon front. Sometimes they are associated with so called negative flares in HeI 10830 and D3 lines. (4) We found evidence that episodes of precursor brightenings are initiated at a small-scale magnetic channel (a form of opposite polarity fluxes) with multiple polarity inversions and enhanced magnetic fluxes and currents, lying near the footpoints of sheared magnetic loops. The low-atmospheric origin of these precursor emissions is corroborated by microwave spectra.

  20. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Flare

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Cohen, C. M. S.; Cummings, A. C.; Labrador, A. W.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We discuss observations of energetic neutral hydrogen atoms (ENAs) from a solar flare/coronal mass ejection event reported by Mewaldt et al. (2009). The observations were made during the 5 December 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV particles arriving from the Sun. The derived solar emission profile, arrival directions, and energy spectrum all show that the <5 MeV particles were due to energetic neutral hydrogen atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. CME-driven shock acceleration is also considered. Taking into account ENA losses, we conclude that the observed ENAs must have been produced in the high corona at heliocentric distances .2 solar radii.

  1. How MAG4 Improves Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Falconer, David; Khazanov, Igor; Barghouty, Nasser

    2013-01-01

    Dangerous space weather is driven by solar flares and Coronal Mass Ejection (CMEs). Forecasting flares and CMEs is the first step to forecasting either dangerous space weather or All Clear. MAG4 (Magnetogram Forecast), developed originally for NASA/SRAG (Space Radiation Analysis Group), is an automated program that analyzes magnetograms from the HMI (Helioseismic and Magnetic Imager) instrument on NASA SDO (Solar Dynamics Observatory), and automatically converts the rate (or probability) of major flares (M- and X-class), Coronal Mass Ejections (CMEs), and Solar Energetic Particle Events.

  2. Thermodynamic Spectrum of Solar Flares Based on SDO/EVE Observations: Techniques and First Results

    NASA Technical Reports Server (NTRS)

    Wang, Yuming; Zhou, Zhenjun; Zhang, Jie; Liu, Kai; Liu, Rui; Shen, Chenglong; Chamberlin, Phillip C.

    2016-01-01

    The Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could potentially be useful for extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0 class, and reach the following statistical results. First, EUV peaks are always behind the soft X-ray (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.

  3. THERMODYNAMIC SPECTRUM OF SOLAR FLARES BASED ON SDO/EVE OBSERVATIONS: TECHNIQUES AND FIRST RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuming; Zhou, Zhenjun; Liu, Kai

    2016-03-15

    The Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could potentially be useful for extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0 class, and reach the following statistical results. First, EUV peaks are always behind the soft X-raymore » (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.« less

  4. On helium-like 1s2l-1snl prime transitions in solar flare spectra

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Neupert, W. M.; Swartz, M.

    1974-01-01

    Expected wavelengths and intensities are computed for 1s2l-1snl prime transitions in helium-like ions of the abundant elements from oxygen to iron under coronal conditions. Probable observations of some of these lines in the spectra of solar flares are discussed, and attention is called to a possible reversal of singlet and triplet intensities as compared to laboratory observations.

  5. Understanding the connection between the energy released during solar flares and their emission in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    da Costa, F. Rubio

    2017-10-01

    While progress has been made on understanding how energy is released and deposited along the solar atmosphere during explosive events such as solar flares, the chromospheric and coronal heating through the sudden release of magnetic energy remain an open problem in solar physics. Recent hydrodynamic models allow to investigate the energy deposition along a flare loop and to study the response of the chromosphere. These results have been improved with the consideration of transport and acceleration of particles along the loop. RHESSI and Fermi/GBM X-ray and gamma-ray observations help to constrain the spectral properties of the injected electrons. The excellent spatial, spectral and temporal resolution of IRIS will also help us to constrain properties of explosive events, such as the continuum emission during flares or their emission in the chromosphere.

  6. ANALYSIS AND MODELING OF TWO FLARE LOOPS OBSERVED BY AIA AND EIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Ding, M. D.; Qiu, J.

    2012-10-10

    We analyze and model an M1.0 flare observed by SDO/AIA and Hinode/EIS to investigate how flare loops are heated and evolve subsequently. The flare is composed of two distinctive loop systems observed in extreme ultraviolet (EUV) images. The UV 1600 A emission at the feet of these loops exhibits a rapid rise, followed by enhanced emission in different EUV channels observed by the Atmospheric Imaging Assembly (AIA) and the EUV Imaging Spectrometer (EIS). Such behavior is indicative of impulsive energy deposit and the subsequent response in overlying coronal loops that evolve through different temperatures. Using the method we recently developed,more » we infer empirical heating functions from the rapid rise of the UV light curves for the two loop systems, respectively, treating them as two big loops with cross-sectional area of 5'' by 5'', and compute the plasma evolution in the loops using the EBTEL model. We compute the synthetic EUV light curves, which, with the limitation of the model, reasonably agree with observed light curves obtained in multiple AIA channels and EIS lines: they show the same evolution trend and their magnitudes are comparable by within a factor of two. Furthermore, we also compare the computed mean enthalpy flow velocity with the Doppler shift measurements by EIS during the decay phase of the two loops. Our results suggest that the two different loops with different heating functions as inferred from their footpoint UV emission, combined with their different lengths as measured from imaging observations, give rise to different coronal plasma evolution patterns captured both in the model and in observations.« less

  7. MULTI-WAVELENGTH OBSERVATIONS OF THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES WITH AIA/SDO. I. UNIVERSAL SCALING LAWS OF SPACE AND TIME PARAMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschwanden, Markus J.; Zhang, Jie; Liu, Kai, E-mail: aschwanden@lmsal.com, E-mail: jzhang7@gmu.edu

    2013-09-20

    We extend a previous statistical solar flare study of 155 GOES M- and X-class flares observed with AIA/SDO to all seven coronal wavelengths (94, 131, 171, 193, 211, 304, and 335 Å) to test the wavelength dependence of scaling laws and statistical distributions. Except for the 171 and 193 Å wavelengths, which are affected by EUV dimming caused by coronal mass ejections (CMEs), we find near-identical size distributions of geometric (lengths L, flare areas A, volumes V, and fractal dimension D{sub 2}), temporal (flare durations T), and spatio-temporal parameters (diffusion coefficient κ, spreading exponent β, and maximum expansion velocities v{submore » max}) in different wavelengths, which are consistent with the universal predictions of the fractal-diffusive avalanche model of a slowly driven, self-organized criticality (FD-SOC) system, i.e., N(L)∝L {sup –3}, N(A)∝A {sup –2}, N(V)∝V {sup –5/3}, N(T)∝T {sup –2}, and D{sub 2} = 3/2, for a Euclidean dimension d = 3. Empirically, we find also a new strong correlation κ∝L {sup 0.94±0.01} and the three-parameter scaling law L∝κ T {sup 0.1}, which is more consistent with the logistic-growth model than with classical diffusion. The findings suggest long-range correlation lengths in the FD-SOC system that operate in the vicinity of a critical state, which could be used for predictions of individual extreme events. We find also that eruptive flares (with accompanying CMEs) have larger volumes V, longer flare durations T, higher EUV and soft X-ray fluxes, and somewhat larger diffusion coefficients κ than confined flares (without CMEs)« less

  8. Magnetic reconnection in numerical simulations of the Bastille day flare

    NASA Astrophysics Data System (ADS)

    Vincent, A. P.; Charbonneau, P.

    2011-12-01

    If neither waves nor adiabatic heating due to compression are taken into account, coronal heating may be obtained in numerical simulations from current dissipation inside solar flares. To increase Joule heating locally we used a model for hyper resistivity (Klimas et al., 2004: Journal of Geophysical Research, 109, 2218-2231). Here the change in resistivity is due to small scale (less than 1Mm in our simulations) current density fluctuations. Whenever the current exceeds a cut-off value, magnetic resistivity jumps sharply to reach a maximum locally thus increasing magnetic gradients at the border of the flare. In this way, not only the current increases but also the maximum is slowly displaced and simulations of the full set of 3-D MHD equations show a progression westward as can be seen in SOHO-EIT images of the ''slinky''. In our simulations of the Bastille day flare, most of the reconnection events take place just above the transition and mostly follow the neutral line but it is Spitzer thermal diffusivity together with radiative cooling that illuminates magnetic arcades in a way similar to what can be seen in extreme ultra-violet animations of the slinky.

  9. The statistical analysis of energy release in small-scale coronal structures

    NASA Astrophysics Data System (ADS)

    Ulyanov, Artyom; Kuzin, Sergey; Bogachev, Sergey

    We present the results of statistical analysis of impulsive flare-like brightenings, which numerously occur in the quiet regions of solar corona. For our study, we utilized high-cadence observations performed with two EUV-telescopes - TESIS/Coronas-Photon and AIA/SDO. In total, we processed 6 sequences of images, registered throughout the period between 2009 and 2013, covering the rising phase of the 24th solar cycle. Based on high-speed DEM estimation method, we developed a new technique to evaluate the main parameters of detected events (geometrical sizes, duration, temperature and thermal energy). We then obtained the statistical distributions of these parameters and examined their variations depending on the level of solar activity. The results imply that near the minimum of the solar cycle the energy release in quiet corona is mainly provided by small-scale events (nanoflares), whereas larger events (microflares) prevail on the peak of activity. Furthermore, we investigated the coronal conditions that had specified the formation and triggering of registered flares. By means of photospheric magnetograms obtained with MDI/SoHO and HMI/SDO instruments, we examined the topology of local magnetic fields at different stages: the pre-flare phase, the peak of intensity and the ending phase. To do so, we introduced a number of topological parameters including the total magnetic flux, the distance between magnetic sources and their mutual arrangement. The found correlation between the change of these parameters and the formation of flares may offer an important tool for application of flare forecasting.

  10. Detection of a Millimeter Flare from Proxima Centauri

    NASA Astrophysics Data System (ADS)

    MacGregor, Meredith A.; Weinberger, Alycia J.; Wilner, David J.; Kowalski, Adam F.; Cranmer, Steven R.

    2018-03-01

    We present new analyses of ALMA 12 m and Atacama Compact Array (ACA) observations at 233 GHz (1.3 mm) of the Proxima Centauri system with sensitivities of 9.5 and 47 μJy beam‑1, respectively, taken from 2017 January 21 through April 25. These analyses reveal that the star underwent a significant flaring event during one of the ACA observations on 2017 March 24. The complete event lasted for approximately 1 minute and reached a peak flux density of 100 ± 4 mJy, nearly a factor of 1000 times brighter than the star’s quiescent emission. At the flare peak, the continuum emission is characterized by a steeply falling spectral index with frequency F ν ∝ ν α with α = ‑1.77 ± 0.45, and a lower limit on the fractional linear polarization of | Q/I| =0.19+/- 0.02. Because the ACA observations do not show any quiescent excess emission, we conclude that there is no need to invoke the presence of a dust belt at 1–4 au. We also posit that the slight excess flux density of 101 ± 9 μJy observed in the 12 m observations, compared to the photospheric flux density of 74 ± 4 μJy extrapolated from infrared wavelengths, may be due to coronal heating from continual smaller flares, as is seen for AU Mic, another nearby well-studied M dwarf flare star. If this is true, then the need for warm dust at ∼0.4 au is also removed.

  11. On the expected γ-ray emission from nearby flaring stars

    NASA Astrophysics Data System (ADS)

    Ohm, S.; Hoischen, C.

    2018-02-01

    Stellar flares have been extensively studied in soft X-rays (SXRs) by basically every X-ray mission. Hard X-ray (HXR) emission from stellar superflares, however, have only been detected from a handful of objects over the past years. One very extreme event was the superflare from the young M-dwarf DG CVn binary star system, which triggered Swift/BAT as if it was a γ-ray burst. In this work, we estimate the expected γ-ray emission from DG CVn and the most extreme stellar flares by extrapolating from solar flares based on measured solar energetic particles (SEPs), as well as thermal and non-thermal emission properties. We find that ions are plausibly accelerated in stellar superflares to 100 GeV energies, and possibly up to TeV energies in the associated coronal mass ejections. The corresponding π0-decay γ-ray emission could be detectable from stellar superflares with ground-based γ-ray telescopes. On the other hand, the detection of γ-ray emission implies particle densities high enough that ions suffer significant losses due to inelastic proton-proton scattering. The next-generation Cherenkov Telescope Array (CTA) should be able to probe superflares from M dwarfs in the solar neighbourhood and constrain the energy in interacting cosmic rays and/or their maximum energy. The detection of γ-ray emission from stellar flares would open a new window for the study of stellar physics, the underlying physical processes in flares and their impact on habitability of planetary systems.

  12. Evidence for the Magnetic Breakout Model in an Equatorial Coronal-Hole Jet

    NASA Technical Reports Server (NTRS)

    Kumar, Pankaj; Karpen, Judith T.; Antiochos, Spiro K.; Wyper, Peter F.; Devore, C. Richard; DeForest, Craig E.

    2018-01-01

    Small, impulsive jets commonly occur throughout the solar corona, but are especially visible in coronal holes. Evidence is mounting that jets are part of a continuum of eruptions that extends to much larger coronal mass ejections and eruptive flares. Because coronal-hole jets originate in relatively simple magnetic structures, they offer an ideal testbed for theories of energy buildup and release in the full range of solar eruptions. We analyzed an equatorial coronal-hole jet observed by the Solar Dynamics Observatory (SDO)/AIA (Atmospheric Imaging Assembly)) on 2014 January 9 in which the magnetic-field structure was consistent with the embedded-bipole topology that we identified and modeled previously as an origin of coronal jets. In addition, this event contained a mini-filament, which led to important insights into the energy storage and release mechanisms. SDO/HMI (Solar Dynamics Observatory/Helioseismic and Magnetic Imager) magnetograms revealed footpoint motions in the primary minority-polarity region at the eruption site, but show negligible flux emergence or cancellation for at least 16 hours before the eruption. Therefore, the free energy powering this jet probably came from magnetic shear concentrated at the polarity inversion line within the embedded bipole. We find that the observed activity sequence and its interpretation closely match the predictions of the breakout jet model, strongly supporting the hypothesis that the breakout model can explain solar eruptions on a wide range of scales.

  13. Characteristics of solar coronal source regions producing He-3-rich particle events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Lin, R. P.; Reames, D. V.; Stone, R. G.; Liggett, M.

    1987-01-01

    H-alpha, X-ray, and kilometric radio data are used to examine solar coronal activity associated with energetic He-3-rich particle events observed near earth. The basis of the study is the 12 He-3-rich events observed in association with impulsive 2-100 keV electron events reported by Reames et al. (1985). In three or four events, associated H-alpha or X-ray flares were found, and in two events even the metric type III bursts were weak or absent. The measured low energy electron spectra for these events show no evidence of a flattening due to Coulomb collisional losses. These results and several other recent findings are consistent with the idea that the He-3/electron events are due to particle acceleration in the corona well above the associated H-alpha and X-ray flares.

  14. Solar flare induced cosmic noise absorption

    NASA Astrophysics Data System (ADS)

    Ogunmodimu, Olugbenga; Honary, Farideh; Rogers, Neil; Falayi, E. O.; Bolaji, O. S.

    2018-06-01

    Solar flare events are a major observing emphasis for space weather because they affect the ionosphere and can eject high-energy particles that can adversely affect Earth's technologies. In this study we model 38.2 MHz cosmic noise absorption (CNA) by utilising measurements from the Imaging Riometer for Ionospheric Studies (IRIS) at Kilpisjärvi, Finland obtained during solar cycle 23 (1996-2009). We utilised X-ray archive for the same period from the Geostationary Operational Environmental Satellite (GOES) to study solar flare induced cosmic noise absorption. We identified the threshold of flare (M4 class) that could bear significant influence on CNA. Through epoch analysis, we show the magnitude of absorption that each class of flare could produce. Using the parameters of flare and absorption we present a model that could provide the basis for nowcast of CNA induced by M and X-class solar flares.

  15. Evidence for the equality of the solar photospheric and coronal abundance of iron

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.; Pike, C. D.; Lang, J.; Zarro, D. M.; Fludra, A.; Watanabe, T.; Takahashi, M.

    1995-01-01

    The Fe K-alpha and K-beta X-ray lines (wavelengths 1.94 and 1.76 A) in the solar X-ray spectrum are formed by fluoroescence of photospheric iron atoms, and the ratio of the intensity of either to the He-like iron (Fe XXV) resonance line at 1.85 A is a function of the photospheric-to-coronal abundance of iron. The temperature dependence of this ratio is weak as long as the flare temperature T(sub e) greater than or approximately equal to 15 x 10(exp 6)K. Comparison of the theoretical value of this intensity ratio with observations from crystal spectrometers on Yohkoh, Solar Maximum Mission (SMM) and P78-1 are consistent with the photospheric abundance of Fe being equal to the coronal.

  16. Flare parameters inferred from a 3D loop model data base

    NASA Astrophysics Data System (ADS)

    Cuambe, Valente A.; Costa, J. E. R.; Simões, P. J. A.

    2018-06-01

    We developed a data base of pre-calculated flare images and spectra exploring a set of parameters which describe the physical characteristics of coronal loops and accelerated electron distribution. Due to the large number of parameters involved in describing the geometry and the flaring atmosphere in the model used, we built a large data base of models (˜250 000) to facilitate the flare analysis. The geometry and characteristics of non-thermal electrons are defined on a discrete grid with spatial resolution greater than 4 arcsec. The data base was constructed based on general properties of known solar flares and convolved with instrumental resolution to replicate the observations from the Nobeyama radio polarimeter spectra and Nobeyama radioheliograph (NoRH) brightness maps. Observed spectra and brightness distribution maps are easily compared with the modelled spectra and images in the data base, indicating a possible range of solutions. The parameter search efficiency in this finite data base is discussed. 8 out of 10 parameters analysed for 1000 simulated flare searches were recovered with a relative error of less than 20 per cent on average. In addition, from the analysis of the observed correlation between NoRH flare sizes and intensities at 17 GHz, some statistical properties were derived. From these statistics, the energy spectral index was found to be δ ˜ 3, with non-thermal electron densities showing a peak distribution ⪅107 cm-3, and Bphotosphere ⪆ 2000 G. Some bias for larger loops with heights as great as ˜2.6 × 109 cm, and looptop events were noted. An excellent match of the spectrum and the brightness distribution at 17 and 34 GHz of the 2002 May 31 flare is presented as well.

  17. Analysis of flares in the chromosphere and corona of main- and pre-main-sequence M-type stars

    NASA Astrophysics Data System (ADS)

    Crespo-Chacón, I.

    2015-11-01

    This Ph.D. Thesis revolves around flares on main- and pre-main-sequence M-type stars. We use observations in different wavelength ranges with the aim of analysing the effects of flares at different layers of stellar atmospheres. In particular, optical and X-ray observations are used so that we can study how flares affect, respectively, the chromosphere and the corona of stars. In the optical range we carry out a high temporal resolution spectroscopic monitoring of UV Ceti-type stars aimed at detecting non-white-light flares (the most typical kind of solar flares) in stars other than the Sun. With these data we confirm that non-white-light flares are a frequent phenomenon in UV Ceti-type stars, as observed in the Sun. We study and interpret the behaviour of different chromospheric lines during the flares detected on AD Leo. By using a simplified slab model of flares (Jevremović et al. 1998), we are able to determine the physical parameters of the chromospheric flaring plasma (electron density and electron temperature), the temperature of the underlying source, and the surface area covered by the flaring plasma. We also search for possible relationships between the physical parameters of the flaring plasma and other properties such as the flare duration, area, maximum flux and released energy. This work considerably extends the existing sample of stellar flares analysed with good quality spectroscopy in the optical range. In X-rays we take advantage of the great sensitivity, wide energy range, high energy resolution, and continuous time coverage of the EPIC detectors - on-board the XMMNewton satellite - in order to perform time-resolved spectral analysis of coronal flares. In particular, in the UV Ceti-type star CC Eri we study two flares that are weaker than those typically reported in the literature (allowing us to speculate about the role of flares as heating agents of stellar atmospheres); while in the pre-main-sequence M-type star TWA 11B (with no signatures of

  18. Coronal structures deduced from photospheric magnetic field and He I lambda 10830 observations

    NASA Technical Reports Server (NTRS)

    Harvey, Karen L.

    1995-01-01

    The National Solar Observatory synoptic program provides an extensive and unique data base of high-resolution full-disk observations of the line-of-sight photospheric magnetic fields and of the He I lambda 10830 equivalent width. These data have been taken nearly daily for more than 21 years since 1974 and provide the opportunity to investigate the behavior of the magnetic fields in the photosphere and those inferred for the corona spanning on the time scales of a day to that of a solar cycle. The intensity of structures observed in He I lambda 10830 are strongly modulated by overlying coronal radiation; areas with low coronal emission are generally brighter in He I lambda 10830, while areas with high coronal emission are darker. For this reason, He I lambda 10830 was selected in the mid-1970's as way to identify and monitor coronal holes, magnetic fields with an open configuration, and the sources of high-speed solar wind streams. The He I lambda 10830 spectroheliograms also show a wide variety of other structures from small-scale, short-lived dark points (less than 30 arc-sec, hours) to the large-scale, long-lived two 'ribbon' flare events that follow the filament eruptions (1000 arc-sec, days). Such structures provide clues about the connections and changes in the large-scale coronal magnetic fields that are rooted in concentrations of magnetic network and active regions in the photosphere. In this paper, what observations of the photospheric magnetic field and He I lambda 10830 can tell us about the short- and long-term evolution of the coronal magnetic fields will be discussed, focussing on the quiet Sun and coronal holes. These data and what we infer from them will be compared with direct observations of the coronal structure from the Yohkoh Soft X-ray Telescope.

  19. Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes.

    PubMed

    Sterling, Alphonse C; Moore, Ronald L; Falconer, David A; Adams, Mitzi

    2015-07-23

    Solar X-ray jets are thought to be made by a burst of reconnection of closed magnetic field at the base of a jet with ambient open field. In the accepted version of the 'emerging-flux' model, such a reconnection occurs at a plasma current sheet between the open field and the emerging closed field, and also forms a localized X-ray brightening that is usually observed at the edge of the jet's base. Here we report high-resolution X-ray and extreme-ultraviolet observations of 20 randomly selected X-ray jets that form in coronal holes at the Sun's poles. In each jet, contrary to the emerging-flux model, a miniature version of the filament eruptions that initiate coronal mass ejections drives the jet-producing reconnection. The X-ray bright point occurs by reconnection of the 'legs' of the minifilament-carrying erupting closed field, analogous to the formation of solar flares in larger-scale eruptions. Previous observations have found that some jets are driven by base-field eruptions, but only one such study, of only one jet, provisionally questioned the emerging-flux model. Our observations support the view that solar filament eruptions are formed by a fundamental explosive magnetic process that occurs on a vast range of scales, from the biggest mass ejections and flare eruptions down to X-ray jets, and perhaps even down to smaller jets that may power coronal heating. A similar scenario has previously been suggested, but was inferred from different observations and based on a different origin of the erupting minifilament.

  20. OBSERVATIONS OF AN X-SHAPED RIBBON FLARE IN THE SUN AND ITS THREE-DIMENSIONAL MAGNETIC RECONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Ding, M. D.; Yang, K.

    2016-05-20

    We report evolution of an atypical X-shaped flare ribbon that provides novel observational evidence of three-dimensional (3D) magnetic reconnection at a separator. The flare occurred on 2014 November 9. High-resolution slit-jaw 1330 Å images from the Interface Region Imaging Spectrograph reveal four chromospheric flare ribbons that converge and form an X-shape. Flare brightening in the upper chromosphere spreads along the ribbons toward the center of the “X” (the X-point), and then spreads outward in a direction more perpendicular to the ribbons. These four ribbons are located in a quadrupolar magnetic field. Reconstruction of magnetic topology in the active region suggestsmore » the presence of a separator connecting to the X-point outlined by the ribbons. The inward motion of flare ribbons in the early stage therefore indicates 3D magnetic reconnection between two sets of non-coplanar loops that approach laterally, and reconnection proceeds downward along a section of vertical current sheet. Coronal loops are also observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory confirming the reconnection morphology illustrated by ribbon evolution.« less

  1. Millimeter and X-Ray Emission from the 5 July 2012 Solar Flare

    NASA Astrophysics Data System (ADS)

    Tsap, Y. T.; Smirnova, V. V.; Motorina, G. G.; Morgachev, A. S.; Kuznetsov, S. A.; Nagnibeda, V. G.; Ryzhov, V. S.

    2018-03-01

    The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39 - 11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (≳ 300 keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.

  2. Joint SDO and IRIS Observations of a Novel, Hybrid Prominence-Coronal Rain Complex

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Antolin, Patrick; Sun, Xudong; Gao, Lijia; Vial, Jean-Claude; Gibson, Sarah; Okamoto, Takenori; Berger, Thomas; Uitenbroek, Han; De Pontieu, Bart

    2016-10-01

    Solar prominences and coronal rain are intimately related phenomena, both involving cool material at chromospheric temperatures within the hot corona and both playing important roles as part of the return flow of the chromosphere-corona mass cycle. At the same time, they exhibit distinct morphologies and dynamics not yet well understood. Quiescent prominences consist of numerous long-lasting, filamentary downflow threads, while coronal rain is more transient and falls comparably faster along well-defined curved paths. We report here a novel, hybrid prominence-coronal rain complex in an arcade-fan geometry observed by SDO/AIA and IRIS, which provides new insights to the underlying physics of such contrasting behaviors. We found that the supra-arcade fan region hosts a prominence sheet consisting of meandering threads with broad line widths. As the prominence material descends to the arcade, it turns into coronal rain sliding down coronal loops with line widths 2-3 times narrower. This contrast suggests that distinct local plasma and magnetic conditions determine the fate of the cool material, a scenario supported by our magnetic field extrapolations from SDO/HMI. Specifically, the supra-arcade fan (similar to those in solar flares; e.g., McKenzie 2013) is likely situated in a current sheet, where the magnetic field is weak and the plasma-beta could be close to unity, thus favoring turbulent flows like those prominence threads. In contrast, the underlying arcade has a stronger magnetic field and most likely a low-beta environment, such that the material is guided along magnetic field lines to appear as coronal rain. We will discuss the physical implications of these observations beyond prominence and coronal rain.

  3. Rapid soft X-ray fluctuations in solar flares observed with the X-ray polychromator

    NASA Technical Reports Server (NTRS)

    Zarro, D. M.; Saba, J. L. R.; Strong, K. T.

    1986-01-01

    Three flares observed by the Soft X-Ray Polychromator on the Solar Maximum Mission were studied. Flare light curves from the Flat Crystal Spectrometer and Bent Crystal Spectrometer were examined for rapid signal variations. Each flare was characterized by an initial fast (less than 1 min) burst, observed by the Hard X-Ray Burst Spectrometer (HXRBS), followed by softer gradual X-ray emission lasting several minutes. From an autocorrelation function analysis, evidence was found for quasi-periodic fluctuations with rise and decay times of 10 s in the Ca XIX and Fe XXV light curves. These variations were of small amplitude (less than 20%), often coincided with hard X-ray emissions, and were prominent during the onset of the gradual phase after the initial hard X-ray burst. It is speculated that these fluctuations were caused by repeated energy injections in a coronal loop that had already been heated and filled with dense plasma associated with the initial hard X-ray burst.

  4. Correlative analysis of hard and soft x ray observations of solar flares

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.

    1994-01-01

    We have developed a promising new technique for jointly analyzing BATSE hard X-ray observations of solar flares with simultaneous soft X-ray observations. The technique is based upon a model in which electric currents and associated electric fields are responsible for the respective heating and particle acceleration that occur in solar flares. A useful by-product of this technique is the strength and evolution of the coronal electric field. The latter permits one to derive important flare parameters such as the current density, the number of current filaments composing the loop, and ultimately the hard X-ray spectrum produced by the runaway electrons. We are continuing to explore the technique by applying it to additional flares for which we have joint BATSE/Yohkoh observations. A central assumption of our analysis is the constant of proportionality alpha relating the hard X-ray flux above 50 keV and the rate of electron acceleration. For a thick-target model of hard X-ray production, it can be shown that cv is in fact related to the spectral index and low-energy cutoff of precipitating electrons. The next step in our analysis is to place observational constraints on the latter parameters using the joint BATSE/Yohkoh data.

  5. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. III - NOAA active region 6233 (1990 August)

    NASA Technical Reports Server (NTRS)

    De La Beaujardiere, J.-F.; Canfield, Richard C.; Leka, K. D.

    1993-01-01

    We investigate the spatial relationship between vertical electric currents and flare phenomena in NOAA Active Region 6233, which was observed 1990, August 28-31 at Mees Solar Observatory. The two flares studied are the 1N/M1.8 flare on August 28, 22:30 UT and the 1N/M1.6 flare on August 29, 20:35 UT. Using Stokes polarimetry we make magnetograms of the region and compute the vertical current density. Using H-alpha imaging spectroscopy we identify sites of intense nonthermal electron precipitation or of high coronal pressure. The precipitation in these flares is barely strong enough to be detectable. We find that both precipitation and high pressure tend to occur near vertical currents, but that neither phenomenon is cospatial with current maxima. In contrast with the conclusion of other authors, we argue that these observations do not support a current-interruption model for flares, unless the relevant currents are primarily horizontal. The magnetic morphology and temporal evolution of these flares suggest that an erupting filament model may be relevant, but this model does not explicitly predict the relationship between precipitation, high pressure, and vertical currents.

  6. COMPTEL solar flare observations

    NASA Technical Reports Server (NTRS)

    Ryan, J. M.; Aarts, H.; Bennett, K.; Debrunner, H.; Devries, C.; Denherder, J. W.; Eymann, G.; Forrest, D. J.; Diehl, R.; Hermsen, W.

    1992-01-01

    COMPTEL as part of a solar target of opportunity campaign observed the sun during the period of high solar activity from 7-15 Jun. 1991. Major flares were observed on 9 and 11 Jun. Although both flares were large GOES events (greater than or = X10), they were not extraordinary in terms of gamma-ray emission. Only the decay phase of the 15 Jun. flare was observed by COMPTEL. We report the preliminary analysis of data from these flares, including the first spectroscopic measurement of solar flare neutrons. The deuterium formation line at 2.223 MeV was present in both events and for at least the 9 Jun. event, was comparable to the flux in the nuclear line region of 4-8 MeV, consistent with Solar-Maximum Mission (SSM) Observations. A clear neutron signal was present in the flare of 9 Jun. with the spectrum extending up to 80 MeV and consistent in time with the emission of gamma-rays, confirming the utility of COMPTEL in measuring the solar neutron flux at low energies. The neutron flux below 100 MeV appears to be lower than that of the 3 Jun. 1982 flare by more than an order of magnitude. The neutron signal of the 11 Jun. event is under study. Severe dead time effects resulting from the intense thermal x-rays require significant corrections to the measured flux which increase the magnitude of the associated systematic uncertainties.

  7. Stereoscopy and Tomography of Coronal Structures

    NASA Astrophysics Data System (ADS)

    de Patoul, J.

    2012-04-01

    The hot solar corona consists of a low density plasma, which is highly structured by the magnetic field. To resolve and study the corona, several solar Ultraviolet (UV) and X-ray telescopes are operated with high spatial and temporal resolution. EUV (Extreme UV) image sequences of the lower solar corona have revealed a wide variety of structures with sizes ranging from the Sun's diameter to the limit of the angular resolution. Active regions can be observed with enhanced temperature and density, as well as 'quiet' regions, coronal holes with lower density and numerous other transient phenomena such as plumes, jets, bright points, flares, filaments, coronal mass ejections, all structured by the coronal magnetic field. In this work, we analyze polar plumes in a sequence of Solar EUV images taken nearly simultaneously by the three telescopes on board of the spacecraft STEREO/SECCHI A and B, and SOHO/EIT. Plumes appear in EUV images as elongated objects starting on the surface of the Sun extending super-radially into the corona. Their formation and contribution to the fast solar wind and other coronal phenomena are still under debate. Knowledge of the polar plume 3-D geometry can help to understand some of the physical processes in the solar corona. In this dissertation we develop new techniques for the characterization of polar plume structures in solar coronal images (Part II) then we analyze these structures using the techniques (Part III): We design a new technique capable of automatically identifying plumes in solar EUV images close to the limb at 1.01-1.39 Ro. This plume identification is based on a multi-scale Hough-wavelet analysis. We show that the method is well adapted to identifying the location, width and orientation of plumes. Starting from Hough-wavelet analysis, we elaborate on two other techniques to determine 3-D plume localization and structure: (i) tomography employing data from a single spacecraft over more than half a rotation and (ii) stereoscopy

  8. Characteristics of gamma-ray line flares

    NASA Technical Reports Server (NTRS)

    Bai, T.; Dennis, B.

    1983-01-01

    Observations of solar gamma rays by the Solar Maximum Mission (SMM) demonstrate that energetic protons and ions are rapidly accelerated during the impulsive phase. To understand the acceleration mechanisms for these particles, the characteristics of the gamma ray line flares observed by SMM were studied. Some very intense hard X-ray flares without detectable gamma ray lines were also investigated. Gamma ray line flares are distinguished from other flares by: (1) intense hard X-ray and microwave emissions; (2) delay of high energy hard X-rays; (3) emission of type 2 and/or type 4 radio bursts; and (4) flat hard X-ray spectra (average power law index: 3.1). The majority of the gamma ray line flares shared all these characteristics, and the remainder shared at least three of them. Positive correlations were found between durations of spike bursts and spatial sizes of flare loops as well as between delay times and durations of spike bursts.

  9. Spectroscopic Observations of Magnetic Reconnection and Chromospheric Evaporation in an X-shaped Solar Flare

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kelly, M.; Ding, M. D.; Qiu, J.; Zhu, X. S.; Gan, W. Q.

    2017-10-01

    We present observations of distinct UV spectral properties at different locations during an atypical X-shaped flare (SOL2014-11-09T15:32) observed by the Interface Region Imaging Spectrograph (IRIS). In this flare, four chromospheric ribbons appear and converge at an X-point where a separator is anchored. Above the X-point, two sets of non-coplanar coronal loops approach laterally and reconnect at the separator. The IRIS slit was located close to the X-point, cutting across some of the flare ribbons and loops. Near the location of the separator, the Si IV 1402.77 Å line exhibits significantly broadened line wings extending to 200 km s-1 with an unshifted line core. These spectral features suggest the presence of bidirectional flows possibly related to the separator reconnection. While at the flare ribbons, the hot Fe xxi 1354.08 Å line shows blueshifts and the cool Si IV 1402.77 Å, C II 1335.71 Å, and Mg II 2803.52 Å lines show evident redshifts up to a velocity of 80 km s-1, which are consistent with the scenario of chromospheric evaporation/condensation.

  10. Spectroscopic Observations of Magnetic Reconnection and Chromospheric Evaporation in an X-shaped Solar Flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Gan, W. Q.; Kelly, M.

    We present observations of distinct UV spectral properties at different locations during an atypical X-shaped flare (SOL2014-11-09T15:32) observed by the Interface Region Imaging Spectrograph ( IRIS ). In this flare, four chromospheric ribbons appear and converge at an X-point where a separator is anchored. Above the X-point, two sets of non-coplanar coronal loops approach laterally and reconnect at the separator. The IRIS slit was located close to the X-point, cutting across some of the flare ribbons and loops. Near the location of the separator, the Si iv 1402.77 Å line exhibits significantly broadened line wings extending to 200 km s{supmore » −1} with an unshifted line core. These spectral features suggest the presence of bidirectional flows possibly related to the separator reconnection. While at the flare ribbons, the hot Fe xxi 1354.08 Å line shows blueshifts and the cool Si iv 1402.77 Å, C ii 1335.71 Å, and Mg ii 2803.52 Å lines show evident redshifts up to a velocity of 80 km s{sup −1}, which are consistent with the scenario of chromospheric evaporation/condensation.« less

  11. Fast-sausage oscillations in coronal loops with smooth boundary

    NASA Astrophysics Data System (ADS)

    Lopin, I.; Nagorny, I.

    2014-12-01

    Aims: The effect of the transition layer (shell) in nonuniform coronal loops with a continuous radial density profile on the properties of fast-sausage modes are studied analytically and numerically. Methods: We modeled the coronal waveguide as a structured tube consisting of a cord and a transition region (shell) embedded within a magnetic uniform environment. The derived general dispersion relation was investigated analytically and numerically in the context of frequency, cut-off wave number, and the damping rate of fast-sausage oscillations for various values of loop parameters. Results: The frequency of the global fast-sausage mode in the loops with a diffuse (or smooth) boundary is determined mainly by the external Alfvén speed and longitudinal wave number. The damping rate of such a mode can be relatively low. The model of coronal loop with diffuse boundary can support a comparatively low-frequency, global fast-sausage mode of detectable quality without involving extremely low values of the density contrast. The effect of thin transition layer (corresponds to the loops with steep boundary) is negligible and produces small reductions of oscillation frequency and relative damping rate in comparison with the case of step-function density profile. Seismological application of obtained results gives the estimated Alfvén speed outside the flaring loop about 3.25 Mm/s.

  12. Neglected X-ray discovered polars. I. Giant flares in V358 Aquarii

    NASA Astrophysics Data System (ADS)

    Beuermann, K.; Burwitz, V.; Reinsch, K.; Schwope, A.; Thomas, H.-C.

    2017-07-01

    We report photometric and spectroscopic observations of the polar V358 Aqr (=RX J2316-0527) collected over 25 yr. It was discovered as a bright very soft X-ray source in the ROSAT All Sky Survey, but had lapsed into a low state when reobserved in 1993. We have obtained an optical photometric ephemeris, which is free of cycle count errors and allows to correctly phase events around the orbit even for observations that lie decades apart. V358 Aqr possesses an accreting pole in the upper hemisphere of the white dwarf that is visible over the entire orbital period of 209.45 min. The magnetic field strength derived from cyclotron line emission is 31.8 MG. The orbital motion of the cyclotron lines yields an inclination of 60° and an offset of the magnetic pole from the rotational axis of about 10°. The secondary star is of spectral type dM4.0 ± 0.5 and the distance is 540 ± 100 pc. V358 Aqr is peculiar in showing giant optical outbursts that bear all of the characteristics of stellar flares. With two flares observed in 72 h on source, the flare frequency may be high. The total energy radiated in the flare of 28 November 2010 exceeded 1036 erg. While the flares clearly occur on the secondary star, it seems that they may or may not be connected with coronal mass ejection and subsequent accretion onto the white dwarf.

  13. Neutron-decay Protons from Solar Flares as Seed Particles for CME-shock Acceleration in the Inner Heliosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Ronald J.; Ko, Yuan-Kuen, E-mail: ronald.murphy@nrl.navy.mil, E-mail: yuan-kuen.ko@nrl.navy.mil

    The protons in large solar energetic particle events are accelerated in the inner heliosphere by fast shocks produced by coronal mass ejections. Unless there are other sources, the protons these shocks act upon would be those of the solar wind (SW). The efficiency of the acceleration depends on the kinetic energy of the protons. For a 2000 km s{sup −1} shock, the most effective proton energies would be 30–100 keV; i.e., within the suprathermal tail component of the SW. We investigate one possible additional source of such protons: those resulting from the decay of solar-flare-produced neutrons that escape from themore » Sun into the low corona. The neutrons are produced by interactions of flare-accelerated ions with the solar atmosphere. We discuss the production of low-energy neutrons in flares and their decay on a interplanetary magnetic field line near the Sun. We find that even when the flaring conditions are optimal, the 30–100 keV neutron-decay proton density produced by even a very large solar flare would be only about 10% of that of the 30–100 keV SW suprathermal tail. We discuss the implication of a seed-particle source of more frequent, small flares.« less

  14. Low coronal signatures of coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Attrill, Gemma Diana Ruth

    Coronal mass ejections (CMEs) are vast eruptions of magnetised plasma that explode from the solar atmosphere. This thesis focuses on understanding the nascent stages of CMEs, and their magnetic development as they expand into the interplanetary space of our solar system. This is an important part of our effort to understand the space weather environment that we live in, and increasingly interact with through satellite communications technologies. Predominantly through combining extreme ultra-violet imaging and magnetogram data, two low coronal signatures of CMEs, namely coronal waves and dimmings, are studied. A comprehensive list of observational properties of EIT coronal waves is compiled and potential counterparts in radio, Ha, soft X-rays and He n wavelengths are also discussed. New observational constraints on EIT coronal waves are presented, most notably diffuse coronal waves are shown to have a magnetic nature. Finding that many observational constraints are not satisfactorily explained by current theories, a new model for understanding the physical nature of diffuse coronal waves is developed. The new model interprets diffuse coronal "wave" bright fronts to be the low coronal magnetic footprint of CMEs. Implications for developing our understanding of how CMEs become large-scale in the low corona are discussed. Application of the model demonstrates how an understanding of the formation of complex global-scale coronal dimmings can be derived. For the first time it is shown that study of the evolution and magnetic nature of coronal dimming regions can be used to probe the post-eruptive evolution of the CME. Finally, a study is presented regarding why and how CME-related dimmings recover, despite the "open" magnetic connectivity of the ejecta to the Sun being maintained as indicated by electron heat flux measurements at 1 AU.

  15. THE FAST FILAMENT ERUPTION LEADING TO THE X-FLARE ON 2014 MARCH 29

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleint, Lucia; Battaglia, Marina; Krucker, Säm

    2015-06-10

    We investigate the sequence of events leading to the solar X1 flare SOL2014-03-29T17:48. Because of the unprecedented joint observations of an X-flare with the ground-based Dunn Solar Telescope and the spacecraft IRIS, Hinode, RHESSI, STEREO, and the Solar Dynamics Observatory, we can sample many solar layers from the photosphere to the corona. A filament eruption was observed above a region of previous flux emergence, which possibly led to a change in magnetic field configuration, causing the X-flare. This was concluded from the timing and location of the hard X-ray emission, which started to increase slightly less than a minute aftermore » the filament accelerated. The filament showed Doppler velocities of ∼2–5 km s{sup −1} at chromospheric temperatures for at least one hour before the flare occurred, mostly blueshifts, but also redshifts near its footpoints. Fifteen minutes before the flare, its chromospheric Doppler shifts increased to ∼6–10 km s{sup −1} and plasma heating could be observed before it lifted off with at least 600 km s{sup −1} as seen in IRIS data. Compared to previous studies, this acceleration (∼3–5 km s{sup −2}) is very fast, while the velocities are in the common range for coronal mass ejections. An interesting feature was a low-lying twisted second filament near the erupting filament, which did not seem to participate in the eruption. After the flare ribbons started on each of the second filament’s sides, it seems to have untangled and vanished during the flare. These observations are some of the highest resolution data of an X-class flare to date and reveal some small-scale features yet to be explained.« less

  16. Collisionless shock formation and the prompt acceleration of solar flare ions

    NASA Technical Reports Server (NTRS)

    Cargill, P. J.; Goodrich, C. C.; Vlahos, L.

    1988-01-01

    The formation mechanisms of collisionless shocks in solar flare plasmas are investigated. The priamry flare energy release is assumed to arise in the coronal portion of a flare loop as many small regions or 'hot spots' where the plasma beta locally exceeds unity. One dimensional hybrid numerical simulations show that the expansion of these 'hot spots' in a direction either perpendicular or oblique to the ambient magnetic field gives rise to collisionless shocks in a few Omega(i), where Omega(i) is the local ion cyclotron frequency. For solar parameters, this is less than 1 second. The local shocks are then subsequently able to accelerate particles to 10 MeV in less than 1 second by a combined drift-diffusive process. The formation mechanism may also give rise to energetic ions of 100 keV in the shock vicinity. The presence of these energetic ions is due either to ion heating or ion beam instabilities and they may act as a seed population for further acceleration. The prompt acceleration of ions inferred from the Gamma Ray Spectrometer on the Solar Maximum Mission can thus be explained by this mechanism.

  17. Analysis and modelling of recurrent solar flares observed with Hinode/EIS on March 9, 2012

    NASA Astrophysics Data System (ADS)

    Polito, V.; Del Zanna, G.; Valori, G.; Pariat, E.; Mason, H. E.; Dudík, J.; Janvier, M.

    2017-05-01

    Three homologous C-class flares and one last M-class flare were observed by both the Solar Dynamics Observatory (SDO) and the Hinode EUV Imaging Spectrometer (EIS) in the AR 11429 on March 9, 2012. All the recurrent flares occurred within a short interval of time (less than 4 h), showed very similar plasma morphology and were all confined, until the last one when a large-scale eruption occurred. The C-class flares are characterized by the appearance, at approximatively the same locations, of two bright and compact footpoint sources of ≈3-10 MK evaporating plasma, and a semi-circular ribbon. During all the flares, the continuous brightening of a spine-like hot plasma (≈10 MK) structure is also observed. Spectroscopic observations with Hinode/EIS are used to measure and compare the blueshift velocities in the Fe xxiii emission line and the electron number density at the flare footpoints for each flare. Similar velocities, of the order of 150-200 km s-1, are observed during the C2.0 and C4.7 confined flares, in agreement with the values reported by other authors in the study of the last M1.8 class flare. On the other hand, lower electron number densities and temperatures tend to be observed in flares with lower peak soft X-ray flux. In order to investigate the homologous nature of the flares, we performed a non-linear force-free field (NLFFF) extrapolation of the 3D magnetic field configuration in the corona. The NLFFF extrapolation and the Quasi-Separatrix Layers (QSLs) provide the magnetic field context which explains the location of the kernels, spine-like hot plasma and semi-circular brightenings observed in the (non-eruptive) flares. Given the absence of a coronal null point, we argue that the homologous flares were all generated by the continuous recurrence of bald patch reconnection. The movie associated to Fig. 2 is available at http://www.aanda.org

  18. The Dependence of Solar Flare Limb Darkening on Emission Peak Formation Temperature

    NASA Astrophysics Data System (ADS)

    Thiemann, Edward; Epp, Luke; Eparvier, Francis; Chamberlin, Phillip C.

    2017-08-01

    Solar limb effects are local brightening or darkening of an emission that depend on where in the Sun's atmosphere it forms. Near the solar limb, optically thick (thin) emissions will darken (brighten) as the column of absorbers (emitters) along the line-of-sight increases. Note that in limb brightening, emission sources are re-arranged whereas in limb darkening they are obscured. Thus, only limb darkening is expected to occur in disk integrated observations. Limb darkening also results in center-to-limb variations of disk-integrated solar flare spectra, with important consequences for how planetary atmospheres are affected by flares. Flares are typically characterized by their flux in the optically thin 0.1-0.8 nm band measured by the X-ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES). On the other hand, Extreme Ultraviolet (EUV) line emissions can limb darken because they are sensitive to resonant scattering, resulting in a flare's location on the solar disk controlling the amount of ionizing radiation that reaches a planet. For example, an X-class flare originating from disk center may significantly heat a planet's thermosphere, whereas the same flare originating near the limb may have no effect because much of the effective emissions are scattered in the solar corona.To advance the relatively poor understanding of flare limb darkening, we use over 300 M-class or larger flares observed by the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory (SDO) to characterize limb darkening as a function of emission peak formation temperature, Tf. For hot coronal emissions (Tf>2 MK), these results show a linear relationship between the degree of limb darkening and Tf where lines with Tf=2 MK darken approximately 7 times more than lines with Tf=16 MK. Because the extent of limb darkening is dependent on the height of the source plasma, we use simple Beer-Lambert radiative transfer analysis to interpret these results

  19. The Foggy EUV Corona and Coronal Heating by MHD Waves from Explosive Reconnection Events

    NASA Technical Reports Server (NTRS)

    Moore, Ron L.; Cirtain, Jonathan W.; Falconer, David A.

    2008-01-01

    In 0.5 arcsec/pixel TRACE coronal EUV images, the corona rooted in active regions that are at the limb and are not flaring is seen to consist of (1) a complex array of discrete loops and plumes embedded in (2) a diffuse ambient component that shows no fine structure and gradually fades with height. For each of two not-flaring active regions, found that the diffuse component is (1) approximately isothermal and hydrostatic and (2) emits well over half of the total EUV luminosity of the active-region corona. Here, from a TRACE Fe XII coronal image of another not-flaring active region, the large sunspot active region AR 10652 when it was at the west limb on 30 July 2004, we separate the diffuse component from the discrete loop component by spatial filtering, and find that the diffuse component has about 60% of the total luminosity. If under much higher spatial resolution than that of TRACE (e. g., the 0.1 arcsec/pixel resolution of the Hi-C sounding-rocket experiment proposed by J. W. Cirtain et al), most of the diffuse component remains diffuse rather being resolved into very narrow loops and plumes, this will raise the possibility that the EUV corona in active regions consists of two basically different but comparably luminous components: one being the set of discrete bright loops and plumes and the other being a truly diffuse component filling the space between the discrete loops and plumes. This dichotomy would imply that there are two different but comparably powerful coronal heating mechanisms operating in active regions, one for the distinct loops and plumes and another for the diffuse component. We present a scenario in which (1) each discrete bright loop or plume is a flux tube that was recently reconnected in a burst of reconnection, and (2) the diffuse component is heated by MHD waves that are generated by these reconnection events and by other fine-scale explosive reconnection events, most of which occur in and below the base of the corona where they are

  20. Sun-to-Earth Analysis of a Major Geoeffective Solar Eruption within the Framework of the

    NASA Astrophysics Data System (ADS)

    Patsourakos, S.; Vlahos, L.; Georgoulis, M.; Tziotziou, K.; Nindos, A.; Podladchikova, O.; Vourlidas, A.; Anastasiadis, A.; Sandberg, I.; Tsinganos, K.; Daglis, I.; Hillaris, A.; Preka-Papadema, P.; Sarris, M.; Sarris, T.

    2013-09-01

    Transient expulsions of gigantic clouds of solar coronal plasma into the interplanetary space in the form of Coronal Mass Ejections (CMEs) and sudden, intense flashes of electromagnetic radiation, solar flares, are well-established drivers of the variable Space Weather. Given the innate, intricate links and connections between the solar drivers and their geomagnetic effects, synergistic efforts assembling all pieces of the puzzle along the Sun-Earth line are required to advance our understanding of the physics of Space Weather. This is precisely the focal point of the Hellenic National Space Weather Research Network (HNSWRN) under the THALIS Programme. Within the HNSWRN framework, we present here the first results from a coordinated multi-instrument case study of a major solar eruption (X5.4 and X1.3 flares associated with two ultra-fast (>2000 km/s) CMEs) which were launched early on 7 March 2012 and triggered an intense geomagnetic storm (min Dst =-147 nT) approximately two days afterwards. Several elements of the associated phenomena, such as the flare and CME, EUV wave, WL shock, proton and electron event, interplanetary type II radio burst, ICME and magnetic cloud and their spatiotemporal relationships and connections are studied all way from Sun to Earth. To this end, we make use of satellite data from a flotilla of solar, heliospheric and magnetospheric missions and monitors (e.g., SDO, STEREO, WIND, ACE, Herschel, Planck and INTEGRAL). We also present our first steps toward formulating a cohesive physical scenario to explain the string of the observables and to assess the various physical mechanisms than enabled and gave rise to the significant geoeffectiveness of the eruption.

  1. STEREO Observations of Energetic Neutral Hydrogen Atoms during the 5 December 2006 Solar Flare

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Barghouty, A. F.; Labrador, A. W.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We report the discovery of energetic neutral hydrogen atoms emitted during the X9 solar event of December 5, 2006. Beginning 1 hour following the onset of this E79 flare, the Low Energy Telescopes (LETs) on both the STEREO A and B spacecraft observed a sudden burst of 1.6 to 15 MeV protons beginning hours before the onset of the main solar energetic particle (SEP) event at Earth. More than 70% of these particles arrived from a longitude within 10 of the Sun, consistent with the measurement resolution. The derived emission profile at the Sun had onset and peak times remarkably similar to the GOES soft X-ray profile and continued for more than an hour. The observed arrival directions and energy spectrum argue strongly that the particle events less than 5 MeV were due to energetic neutral hydrogen atoms (ENAs). To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. Possible origins for the production of ENAs in a large solar event are considered. We conclude that the observed ENAs were most likely produced in the high corona and that charge-transfer reactions between accelerated protons and partially-stripped coronal ions are an important source of ENAs in solar events.

  2. Earth-Directed X-Class Flare and CME

    NASA Image and Video Library

    2014-09-15

    An active region just about squarely facing Earth erupted with an X 1.6 flare (largest class) as well as a coronal mass ejection (CME) on Sept. 10-11, 2014. This event featured both a long flare decay time and a storm of electrically charged, energetic particles. The particles can be seen as bright white specks scattering across the frames. The coronagraph movie shows the cloud of particles expanding in all directions as if it were creating a halo around the Sun. Data shows that the CME was heading towards Earth that could generate strong aurora displays several days later. In coronagraph images the Sun (represented by the small white circle in the center) is blocked by an occulting disk so that we can observe faint features in the corona and beyond. Credit: NASA/ESA/Goddard/SOHO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. WebGL-enabled 3D visualization of a Solar Flare Simulation

    NASA Astrophysics Data System (ADS)

    Chen, A.; Cheung, C. M. M.; Chintzoglou, G.

    2016-12-01

    The visualization of magnetohydrodynamic (MHD) simulations of astrophysical systems such as solar flares often requires specialized software packages (e.g. Paraview and VAPOR). A shortcoming of using such software packages is the inability to share our findings with the public and scientific community in an interactive and engaging manner. By using the javascript-based WebGL application programming interface (API) and the three.js javascript package, we create an online in-browser experience for rendering solar flare simulations that will be interactive and accessible to the general public. The WebGL renderer displays objects such as vector flow fields, streamlines and textured isosurfaces. This allows the user to explore the spatial relation between the solar coronal magnetic field and the thermodynamic structure of the plasma in which the magnetic field is embedded. Plans for extending the features of the renderer will also be presented.

  4. PARTICLE ACCELERATION IN SOLAR FLARES AND ASSOCIATED CME SHOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrosian, Vahé; Department of Applied Physics, Stanford University, Stanford, CA 94305

    2016-10-10

    Observations relating the characteristics of electrons seen near Earth (solar energetic particles [SEPs]) and those producing flare radiation show that in certain (prompt) events the origin of both populations appears to be the flare site, which shows strong correlation between the number and spectral index of SEP and hard X-ray radiating electrons, but in others (delayed), which are associated with fast coronal mass ejections (CMEs), this relation is complex and SEPs tend to be harder. Prompt event spectral relation disagrees with that expected in thick or thin target models. We show that using a more accurate treatment of the transportmore » of the accelerated electrons to the footpoints and to Earth can account for this discrepancy. Our results are consistent with those found by Chen and Petrosian for two flares using nonparametric inversion methods, according to which we have weak diffusion conditions, and trapping mediated by magnetic field convergence. The weaker correlations and harder spectra of delayed events can come about by reacceleration of electrons in the CME shock environment. We describe under what conditions such a hardening can be achieved. Using this (acceleration at the flare and reacceleration in the CME) scenario, we show that we can describe the similar dichotomy that exists between the so-called impulsive, highly enriched ({sup 3}He and heavy ions), and softer SEP events and stronger, more gradual SEP events with near-normal ionic abundances and harder spectra. These methods can be used to distinguish the acceleration mechanisms and to constrain their characteristics.« less

  5. Hard X-ray Emission From A Flare-related Jet

    NASA Astrophysics Data System (ADS)

    Bain, Hazel; Fletcher, L.

    2009-05-01

    Solar X-ray jets were first observed by Yohkoh (Shibata 1992, Strong 1992). During these events, collimated flows of plasma are accelerated in the corona. Previous observations have detected jet-related electrons directly in space as well as via radio signatures (type III bursts). However the major diagnostic of fast electrons is bremsstrahlung X-ray emission, but until now we have never seen any evidence of hard X-ray emission directly from the jet in the corona. This could be because it is rare to find a coronal jet dense enough to provide a bremsstrahlung target for the electrons, or hot enough to generate high energy thermal emission. We report what we believe to be the first observation of hard X-ray emission formed in a coronal jet. The event occurred on the 22nd of August 2002 and its evolution was observed by a number of instruments. In particular we study the pre-impulsive and impulsive phase of the flare using data from RHESSI, TRACE and the Nobeyama Radioheliograph. During this period RHESSI observed significant hard X-ray emission to energies as high as 50 keV in the jet. Radio observations from the Nobeyama Radioheliograph show a positive spectral index for the ejected material, which may be explained by optically-thick gyrosynchrotron emission from non-thermal electrons in the jet. HMB gratefully acknowledges the support of an SPD and STFC studentship. LF gratefully acknowledges the support of an STFC Rolling Grant, and financial support by the European Commission through the SOLAIRE Network (MTRN-CT_2006-035484)

  6. Topics in High-Energy Astrophysics: X-ray Time Lags and Gamma-ray Flares

    NASA Astrophysics Data System (ADS)

    Kroon, John J.

    2016-03-01

    The Universe is host to a wide variety of high-energy processes that convert gravitational potential energy or rest-mass energy into non-thermal radiation such as bremsstrahlung and synchrotron. Prevailing models of X-ray emission from accreting Black Hole Binaries (BHBs) struggle to simultaneously fit the quiescent X-ray spectrum and the transients which result in the phenomenon known as X-ray time lags. And similarly, classical models of diffusive shock acceleration in pulsar wind nebulae fail to explain the extreme particle acceleration in very short timescales as is inferred from recent gamma-ray flares from the Crab nebula. In this dissertation, I develop new exact analytic models to shed light on these intriguing processes. I take a fresh look at the formation of X-ray time lags in compact sources using a new mathematical approach in which I obtain the exact Green's function solution. The resulting Green's function allows one to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. I obtain the exact solution for the dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous clouds. The model can successfully reproduce both the observed time lags and the quiescent X-ray spectrum using a single set of coronal parameters. I show that the implied coronal radii in the new model are significantly smaller than those obtained in the Monte Carlo simulations, hence greatly reducing the coronal heating problem. Recent bright gamma-ray flares from the Crab nebula observed by AGILE and Fermi reaching GeV energies and lasting several days challenge the contemporary model for particle acceleration in pulsar wind nebulae, specifically the diffusive shock acceleration model. Simulations indicate electron/positron pairs in the Crab nebula pulsar wind must be accelerated up to PeV energies in the presence of ambient magnetic fields with strength B ~100 microG. No

  7. Origin of the Sheared Magnetic Fields that Erupt in Flares and Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.

    2006-01-01

    From a search of the Yohkoh/SXT whole-Sun movie in the years 2000 and 2001, we found 37 flare-arcade events for which there were full-disk magnetograms from SOHO/MDI, coronagraph movies from SOHO/LASCO, and before and after full-disk chromospheric images from SOHOBIT and/or from ground-based observatories. For each event, the observations show or strongly imply that the flare arcade was produced in the usual way by the eruption of sheared core field (as a flux rope) from along the neutral line inside a mature bipolar magnetic arcade. Two-thirds (25) of these arcades had the normal leading-trailing magnetic polarity arrangement of the active regions in the hemisphere of the arcade, but the other third (12) had reversed polarity, their leading flux being the trailing-polarity remnant of one or more old active regions and their trailing flux being the leading-polarity remnant of one or more other old active regions. From these observations, we conclude: (1) The sheared core field in a reversed-polarity arcade must be formed by processes in and above the photosphere, not by the emergence of a twisted flux rope bodily from below the photosphere. (2) The sheared core fields in the normal-polarity arcades were basically the same as those in the reversed-polarity arcades: both showed similar sigmoidal form and produced similar explosions (similar flares and CMEs). (3) Hence, the sheared core fields in normal-polarity mature arcades are likely formed mainly by the same processes as in reversed-polarity arcades. (4) These processes should be discernible in high-resolution magnetogram sequences and movies of the photosphere, chromosphere, and corona such those to come from Solar-B

  8. Identification of coronal heating events in 3D simulations

    NASA Astrophysics Data System (ADS)

    Kanella, Charalambos; Gudiksen, Boris V.

    2017-07-01

    Context. The solar coronal heating problem has been an open question in the science community since 1939. One of the proposed models for the transport and release of mechanical energy generated in the sub-photospheric layers and photosphere is the magnetic reconnection model that incorporates Ohmic heating, which releases a part of the energy stored in the magnetic field. In this model many unresolved flaring events occur in the solar corona, releasing enough energy to heat the corona. Aims: The problem with the verification and quantification of this model is that we cannot resolve small scale events due to limitations of the current observational instrumentation. Flaring events have scaling behavior extending from large X-class flares down to the so far unobserved nanoflares. Histograms of observable characteristics of flares show powerlaw behavior for energy release rate, size, and total energy. Depending on the powerlaw index of the energy release, nanoflares might be an important candidate for coronal heating; we seek to find that index. Methods: In this paper we employ a numerical three-dimensional (3D)-magnetohydrodynamic (MHD) simulation produced by the numerical code Bifrost, which enables us to look into smaller structures, and a new technique to identify the 3D heating events at a specific instant. The quantity we explore is the Joule heating, a term calculated directly by the code, which is explicitly correlated with the magnetic reconnection because it depends on the curl of the magnetic field. Results: We are able to identify 4136 events in a volume 24 × 24 × 9.5 Mm3 (I.e., 768 × 786 × 331 grid cells) of a specific snapshot. We find a powerlaw slope of the released energy per second equal to αP = 1.5 ± 0.02, and two powerlaw slopes of the identified volume equal to αV = 1.53 ± 0.03 and αV = 2.53 ± 0.22. The identified energy events do not represent all the released energy, but of the identified events, the total energy of the largest events

  9. Numerical Simulations of Flare-productive Active Regions: δ-sunspots, Sheared Polarity Inversion Lines, Energy Storage, and Predictions

    NASA Astrophysics Data System (ADS)

    Toriumi, Shin; Takasao, Shinsuke

    2017-11-01

    Solar active regions (ARs) that produce strong flares and coronal mass ejections (CMEs) are known to have a relatively high non-potentiality and are characterized by δ-sunspots and sheared magnetic structures. In this study, we conduct a series of flux emergence simulations from the convection zone to the corona and model four types of active regions that have been observationally suggested to cause strong flares, namely the spot-spot, spot-satellite, quadrupole, and inter-AR cases. As a result, we confirm that δ-spot formation is due to the complex geometry and interaction of emerging magnetic fields, and we find that the strong-field, high-gradient, highly sheared polarity inversion line (PIL) is created by the combined effect of the advection, stretching, and compression of magnetic fields. We show that free magnetic energy builds up in the form of a current sheet above the PIL. It is also revealed that photospheric magnetic parameters that predict flare eruptions reflect the stored free energy with high accuracy, while CME-predicting parameters indicate the magnetic relationship between flaring zones and entire ARs.

  10. Interaction of Solar-Flare-Accelerated Nuclei with the Solar Photosphere and the Isotopic Composition of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Vasil'ev, G. I.; Ostryakov, V. M.; Pavlov, A. K.; Chakchurina, M. E.

    2017-12-01

    The nuclear interactions of solar-flare-accelerated protons and ions with the solar atmosphere and the deeper layers of the Sun lead to the formation of several stable and radioactive isotopes. This article examines the GEANT4 depth profiles of 2H, 3H, 3He, 6Li, 7Li, 10Be, and 14C. When accelerated particles pass through a layer of 0.1-2 g cm-2, 6Li, 7Li, 10Be, and 14C isotopes form in sufficient amounts to explain their anomalous abundances in lunar soil samples. It is assumed that they escape into interplanetary space with coronal mass ejections immediately after the flare.

  11. MULTIWAVELENGTH OBSERVATIONS OF A SLOW-RISE, MULTISTEP X1.6 FLARE AND THE ASSOCIATED ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yurchyshyn, V.; Kumar, P.; Cho, K.-S.

    Using multiwavelength observations, we studied a slow-rise, multistep X1.6 flare that began on 2014 November 7 as a localized eruption of core fields inside a δ-sunspot and later engulfed the entire active region (AR). This flare event was associated with formation of two systems of post-eruption arcades (PEAs) and several J-shaped flare ribbons showing extremely fine details, irreversible changes in the photospheric magnetic fields, and it was accompanied by a fast and wide coronal mass ejection. Data from the Solar Dynamics Observatory and IRIS spacecraft, along with the ground-based data from the New Solar Telescope, present evidence that (i) themore » flare and the eruption were directly triggered by a flux emergence that occurred inside a δ-sunspot at the boundary between two umbrae; (ii) this event represented an example of the formation of an unstable flux rope observed only in hot AIA channels (131 and 94 Å) and LASCO C2 coronagraph images; (iii) the global PEA spanned the entire AR and was due to global-scale reconnection occurring at heights of about one solar radius, indicating the global spatial and temporal scale of the eruption.« less

  12. Solar Flare Physics

    NASA Technical Reports Server (NTRS)

    Schmahl, Edward J.; Kundu, Mukul R.

    2000-01-01

    During the past year we have been working with the HESSI (High Energy Solar Spectroscopic Imager) team in preparation for launch in early 2001. HESSI has as its primary scientific goal photometric imaging and spectroscopy of solar flares in hard X-rays and gamma-rays with an approx. 2 sec angular resolution, approx. keV energy resolution and approx. 2 s time resolution over the 6 keV to 15 MeV energy range. We have performed tests of the imager using a specially designed experiment which exploits the second-harmonic response of HESSI's sub-collimators to an artificial X-ray source at a distance of 1550 cm from its front grids. Figures show the response to X-rays at energies in the range where HESSI is expected to image solar flares. To prepare the team and the solar user community for imaging flares with HESSI, we have written a description of the major imaging concepts. This paper will be submitted for publication in a referred journal.

  13. Solar flares

    NASA Technical Reports Server (NTRS)

    Zirin, H.

    1974-01-01

    A review of the knowledge about solar flares which has been obtained through observations from the earth and from space by various methods. High-resolution cinematography is best carried out at H-alpha wavelengths to reveal the structure, time history, and location of flares. The classification flares in H alpha according to either physical or morphological criteria is discussed. The study of flare morphology, which shows where, when, and how flares occur, is important for evaluating theories of flares. Consideration is given to studies of flares by optical spectroscopy, radio emissions, and at X-ray and XUV wavelengths. Research has shown where and possibly why flares occur, but the physics of the instability involved, of the particle acceleration, and of the heating are still not understood.

  14. Excitation of flare-induced waves in coronal loops and the effects of radiative cooling

    NASA Astrophysics Data System (ADS)

    Provornikova, Elena; Ofman, Leon; Wang, Tongjiang

    2018-01-01

    EUV imaging observations from several space missions (SOHO/EIT, TRACE, and SDO/AIA) have revealed a presence of propagating intensity disturbances in solar coronal loops. These disturbances are typically interpreted as slow magnetoacoustic waves. However, recent spectroscopic observations with Hinode/EIS of active region loops revealed that the propagating intensity disturbances are associated with intermittent plasma upflows (or jets) at the footpoints which are presumably generated by magnetic reconnection. For this reason, whether these disturbances are waves or periodic flows is still being studied. This study is aimed at understanding the physical properties of observed disturbances by investigating the excitation of waves by hot plasma injections from below and the evolution of flows and wave propagation along the loop. We expand our previous studies based on isothermal 3D MHD models of an active region to a more realistic model that includes full energy equation accounting for the effects of radiative losses. Computations are initialized with an equilibrium state of a model active region using potential (dipole) magnetic field, gravitationally stratified density and temperature obtained from the polytropic equation of state. We model an impulsive injection of hot plasma into the steady plasma outflow along the loops of different temperatures, warm (∼1 MK) and hot (∼6 MK). The simulations show that hot jets launched at the coronal base excite slow magnetoacoustic waves that propagate to high altitudes along the loops, while the injected hot flows decelerate rapidly with heights. Our results support that propagating disturbances observed in EUV are mainly the wave features. We also find that the effect of radiative cooling on the damping of slow-mode waves in 1-6 MK coronal loops is small, in agreement with the previous conclusion based on 1D MHD models.

  15. Energetic electron propagation in the decay phase of non-thermal flare emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jing; Yan, Yihua; Tsap, Yuri T., E-mail: huangj@nao.cas.cn

    On the basis of the trap-plus-precipitation model, the peculiarities of non-thermal emission in the decay phase of solar flares have been considered. The calculation formulas for the escape rate of trapped electrons into the loss cone in terms of time profiles of hard X-ray (HXR) and microwave (MW) emission have been obtained. It has been found that the evolution of the spectral indices of non-thermal emission depend on the regimes of the pitch angle diffusion of trapped particles into the loss cone. The properties of non-thermal electrons related to the HXR and MW emission of the solar flare on 2004more » November 3 are studied with Nobeyama Radioheliograph, Nobeyama Radio Polarimeters, RHESSI, and Geostationary Operational Environmental Satellite observations. The spectral indices of non-thermal electrons related to MW and HXR emission remained constant or decreased, while the MW escape rate as distinguished from that of the HXRs increased. This may be associated with different diffusion regimes of trapped electrons into the loss cone. New arguments in favor of an important role of the superstrong diffusion for high-energy electrons in flare coronal loops have been obtained.« less

  16. Dynamic Spectral Imaging of Decimetric Fiber Bursts in an Eruptive Solar Flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhitao; Chen, Bin; Gary, Dale E., E-mail: zw56@njit.edu

    Fiber bursts are a type of fine structure that is often superposed on type IV radio continuum emission during solar flares. Although studied for many decades, its physical exciter, emission mechanism, and association with the flare energy release remain unclear, partly due to the lack of simultaneous imaging observations. We report the first dynamic spectroscopic imaging observations of decimetric fiber bursts, which occurred during the rise phase of a long-duration eruptive flare on 2012 March 3, as obtained by the Karl G. Jansky Very Large Array in 1–2 GHz. Our results show that the fiber sources are located near andmore » above one footpoint of the flare loops. The fiber source and the background continuum source are found to be co-spatial and share the same morphology. It is likely that they are associated with nonthermal electrons trapped in the converging magnetic fields near the footpoint, as supported by a persistent coronal hard X-ray source present during the flare rise phase. We analyze three groups of fiber bursts in detail with dynamic imaging spectroscopy and obtain their mean frequency-dependent centroid trajectories in projection. By using a barometric density model and magnetic field based on a potential field extrapolation, we further reconstruct the 3D source trajectories of fiber bursts, for comparison with expectations from the whistler wave model and two MHD-based models. We conclude that the observed fiber burst properties are consistent with an exciter moving at the propagation velocity expected for whistler waves, or models that posit similar exciter velocities.« less

  17. The 26 December 2001 Solar Event Responsible for GLE63. I. Observations of a Major Long-Duration Flare with the Siberian Solar Radio Telescope

    NASA Astrophysics Data System (ADS)

    Grechnev, V. V.; Kochanov, A. A.

    2016-12-01

    Ground level enhancements (GLEs) of cosmic-ray intensity occur, on average, once a year. Because they are rare, studying the solar sources of GLEs is especially important to approach understanding their origin. The SOL2001-12-26 eruptive-flare event responsible for GLE63 seems to be challenging in some aspects. Deficient observations limited our understanding of it. Analysis of additional observations found for this event provided new results that shed light on the flare configuration and evolution. This article addresses the observations of this flare with the Siberian Solar Radio Telescope (SSRT). Taking advantage of its instrumental characteristics, we analyze the detailed SSRT observations of a major long-duration flare at 5.7 GHz without cleaning the images. The analysis confirms that the source of GLE63 was associated with an event in active region 9742 that comprised two flares. The first flare (04:30 - 05:03 UT) reached a GOES importance of about M1.6. Two microwave sources were observed, whose brightness temperatures at 5.7 GHz exceeded 10 MK. The main flare, up to an importance of M7.1, started at 05:04 UT and occurred in strong magnetic fields. The observed microwave sources reached a brightness temperature of about 250 MK. They were not static. After appearing on the weaker-field periphery of the active region, the microwave sources moved toward each other nearly along the magnetic neutral line, approaching the stronger-field core of the active region, and then moved away from the neutral line like expanding ribbons. These motions rule out an association of the non-thermal microwave sources with a single flaring loop.

  18. Flare Clustering

    NASA Astrophysics Data System (ADS)

    Title, Alan; DeRosa, Marc

    2016-10-01

    The continuous full disk observations provided by the Atmospheric Imaging Assembly (AIA ) can give an observer the impression that many flare eruptions are causally related to one another. However, both detailed analyses of a number of events as well as several statistical studies have provided only rare examples or weak evidence of causal behavior. Since the mechanisms of flare triggering are not well understood, the lack of hard evidence is not surprising. For this study we looked instead for groups of flares (flare clusters) in which successive flares occur within a fixed time - the selection time. The data set used for the investigation is the flare waiting times provided by the X-ray flare detectors on the Geostationary Operational Environmental Satellites (GOES). We limited the study to flares of magnitude C5 and greater obtained during cycles 21, 22, 23, and 24. The GOES field of view includes the entire visible surface. While many flares in a cluster may come from the same active region, the larger clusters often have origins in multiple regions. The longest C5 cluster found with a linking window of 36 hours in cycles 21, 22, 23,and 24 was 54, 82, 42, and 18 days, respectively. X flares also cluster. A superposed epoch analyses demonstrates that there is a pronounced enhancement of number of C5 and and above flares that are centered on the X flare clusters. We suggest that this behavior implies that a component of the observed coordinated behavior originates from the MHD processes driven by the solar dynamo that in turn creates unstable states in the solar atmosphere. The relationship between flare clusters and magnetic centers of activity was explored as was the correlation between high flare rates and significant changes in the total solar magnetic flux,

  19. Solar Flares and Coronal Physics Using P/OF as a Research Tool

    NASA Technical Reports Server (NTRS)

    Tandberg, E. (Editor); Wilson, R. M. (Editor); Hudson, R. M. (Editor)

    1986-01-01

    This NASA Conference Publication contains the proceedings of the Workshop on Solar High-Resolution Astrophysics Using the Pinhole/Occulter Facility held at NASA Marshall Space Flight Center, Alabama, on May 8 to 10, 1985. These proceedings include primarily the invited tutorial papers, extended abstracts of contributed poster papers, and summaries of subpanel (X-Ray and Coronal Physics) discussions. Both observational and theoretical results are presented. Although the emphasis of the Workshop was focused primarily on topics peculiar to solar physics, one paper is included that discusses the P/0F as a tool for X-ray astronomy.

  20. Prediction of Shock Arrival Times from CME and Flare Data

    NASA Technical Reports Server (NTRS)

    Nunez, Marlon; Nieves-Chinchilla, Teresa; Pulkkinen, Antti

    2016-01-01

    This paper presents the Shock ARrival Model (SARM) for predicting shock arrival times for distances from 0.72 AU to 8.7 AU by using coronal mass ejections (CME) and flare data. SARM is an aerodynamic drag model described by a differential equation that has been calibrated with a dataset of 120 shocks observed from 1997 to 2010 by minimizing the mean absolute error (MAE), normalized to 1 AU. SARM should be used with CME data (radial, earthward or plane-of-sky speeds), and flare data (peak flux, duration, and location). In the case of 1 AU, the MAE and the median of absolute errors were 7.0 h and 5.0 h respectively, using the available CMEflare data. The best results for 1 AU (an MAE of 5.8 h) were obtained using both CME data, either radial or cone-model-estimated speeds, and flare data. For the prediction of shock arrivals at distances from 0.72 AU to 8.7 AU, the normalized MAE and the median were 7.1 h and 5.1 h respectively, using the available CMEflare data. SARM was also calibrated to be used with CME data alone or flare data alone, obtaining normalized MAE errors of 8.9 h and 8.6 h respectively for all shock events. The model verification was carried out with an additional dataset of 20 shocks observed from 2010 to 2012 with radial CME speeds to compare SARM with the empirical ESA model [Gopalswamy et al., 2005a] and the numerical MHD-based ENLIL model [Odstrcil et al., 2004]. The results show that the ENLIL's MAE was lower than the SARM's MAE, which was lower than the ESA's MAE. The SARM's best results were obtained when both flare and true CME speeds were used.

  1. Analysis of X-ray observations of the 15 June 1973 flare in active region NOAA 131

    NASA Technical Reports Server (NTRS)

    Krall, K. R.; Reichmann, E. J.; Wilson, R. M.; Henze, W., Jr.; Smith, J. B., Jr.

    1978-01-01

    Observations and analyses of the 1B/M3 flare of 15 June, 1973 in active region NOAA 131 (McMath 12379) are presented. The X-ray observations, consisting of broadband photographs and proportional counter data from the Skylab/ATM NASA-MSFC/Aerospace S-056 experiment, are used to infer temperatures, emission measures, and densities for the flaring plasma. The peak temperature from the spatially resolved photographs is 25,000,000 K, while the temperature from the full-disk proportional counter data is approximately 15,000,000 K. The density is 3 times 10 to the 10th/cu cm. The X-ray flare emission appears to come primarily from two low-lying curvilinear features lying perpendicular to and centered on the line where the photospheric longitudinal magnetic field is zero. Similarities in the preflare and postflare X-ray emission patterns indicate that no large-scale relaxation of the coronal magnetic configuration was observed. Also discussed are H-alpha and magnetic field observations of the flare and the active region. Finally, results of numerical calculations, including thermal conduction, radiative loss, and chromospheric evaporation, are in qualitative agreement with the decay phase observations.

  2. Characteristics that Produce White-light Enhancements in Solar Flares Observed by Hinode/SOT

    NASA Astrophysics Data System (ADS)

    Watanabe, Kyoko; Kitagawa, Jun; Masuda, Satoshi

    2017-12-01

    To understand the conditions that produce white-light (WL) enhancements in solar flares, a statistical analysis of visible continuum data as observed by Hinode/Solar Optical Telescope (SOT) was performed. In this study, approximately 100 flare events from M- and X-class flares were selected. The time period during which the data were recorded spans from 2011 January to 2016 February. Of these events, approximately half are classified as white-light flares (WLFs), whereas the remaining events do not show any enhancements of the visible continuum (non-WLF; NWL). To determine the existence of WL emission, running difference images of not only the Hinode/SOT WL (G-band, blue, green, and red filter) data, but also the Solar Dynamics Observatory/Helioseismic and Magnetic Imager continuum data are used. A comparison between these two groups of WL data in terms of duration, temperature, emission measure of GOES soft X-rays, distance between EUV flare ribbons, strength of hard X-rays, and photospheric magnetic field strength was undertaken. In this statistical study, WLF events are characterized by a shorter timescale and shorter ribbon distance compared with NWL events. From the scatter plots of the duration of soft X-rays and the energy of non-thermal electrons, a clear distinction between WLF and NWL events can be made. It is found that the precipitation of large amounts of accelerated electrons within a short time period plays a key role in generating WL enhancements. Finally, it was demonstrated that the coronal magnetic field strength in the flare region is one of the most important factors that allow the individual identification of WLF events from NWL events.

  3. Solar and interplanetary activities of isolated and non-isolated coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Bendict Lawrance, M.; Shanmugaraju, A.; Moon, Y.-J.; Umapathy, S.

    2017-07-01

    We report our results on comparison of two halo Coronal Mass Ejections (CME) associated with X-class flares of similar strength (X1.4) but quite different in CME speed and acceleration, similar geo-effectiveness but quite different in Solar Energetic Particle (SEP) intensity. CME1 (non-isolated) was associated with a double event in X-ray flare and it was preceded by another fast halo CME of speed = 2684 km/s (pre-CME) associated with X-ray flare class X5.4 by 1 h from the same location. Since this pre-CME was more eastern, interaction with CME1 and hitting the earth were not possible. This event (CME1) has not suffered the cannibalism since pre-CME has faster speed than post-CME. Pre-CME plays a very important role in increasing the intensity of SEP and Forbush Decrease (FD) by providing energetic seed particles. So, the seed population is the major difference between these two selected events. CME2 (isolated) was a single event. We would like to address on the kinds of physical conditions related to such CMEs and their associated activities. Their associated activities such as, type II bursts, SEP, geomagnetic storm and FD are compared. The following results are obtained from the analysis. (1) The CME leading edge height at the start of metric/DH type II bursts are 2 R⊙/ 4 R⊙ for CME1, but 2 R⊙/ 2.75 R⊙ for CME2. (2) Peak intensity of SEP event associated with the two CMEs are quite different: 6530 pfu for CME1, but 96 pfu for CME2. (3) The Forbush decrease occurred with a minimum decrease of 9.98% in magnitude for CME1, but 6.90% for CME2. (4) These two events produced similar intense geomagnetic storms of intensity of Dst index -130 nT. (5) The maximum southward magnetic fields corresponding to Interplanetary CME (ICME) of these two events are nearly the same, but there is difference in Sheath Bz maximum (-14.2, -6.9 nT). (6) The time-line chart of the associated activities of two CMEs show some difference in the time delay between the onsets of

  4. Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints

    NASA Technical Reports Server (NTRS)

    Jones-Mecholsky, Shaela I.; Davila, Joseph M.; Uritskiy, Vadim

    2016-01-01

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field, an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.

  5. OPTIMIZING GLOBAL CORONAL MAGNETIC FIELD MODELS USING IMAGE-BASED CONSTRAINTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Shaela I.; Davila, Joseph M.; Uritsky, Vadim, E-mail: shaela.i.jonesmecholsky@nasa.gov

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field—an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of thismore » approach on two theoretical problems, and discuss opportunities for application.« less

  6. Quasi-static three-dimensional magnetic field evolution in solar active region NOAA 11166 associated with an X1.5 flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vemareddy, P.; Wiegelmann, T., E-mail: vema@prl.res.in, E-mail: wiegelmann@mps.mpg.de

    We study the quasi-static evolution of coronal magnetic fields constructed from the non-linear force-free field (NLFFF) approximation aiming to understand the relation between the magnetic field topology and ribbon emission during an X1.5 flare in active region (AR) NOAA 11166. The flare with a quasi-elliptical and two remote ribbons occurred on 2011 March 9 at 23:13 UT over a positive flux region surrounded by negative flux at the center of the bipolar AR. Our analysis of the coronal magnetic structure with potential and NLFFF solutions unveiled the existence of a single magnetic null point associated with a fan-spine topology andmore » is co-spatial with the hard X-ray source. The footpoints of the fan separatrix surface agree with the inner edge of the quasi-elliptical ribbon and the outer spine is linked to one of the remote ribbons. During the evolution, the slow footpoint motions stressed the field lines along the polarity inversion line and caused electric current layers in the corona around the fan separatrix surface. These current layers trigger magnetic reconnection as a consequence of dissipating currents, which are visible as cusp-shaped structures at lower heights. The reconnection process reorganized the magnetic field topology whose signatures are observed at the separatrices/quasi-separatrix layer structure in both the photosphere and the corona during the pre-to-post flare evolution. In agreement with previous numerical studies, our results suggest that the line-tied footpoint motions perturb the fan-spine system and cause null point reconnection, which eventually causes the flare emission at the footpoints of the field lines.« less

  7. Magnetic Flux Cancelation as the Trigger of Solar Coronal Jets in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2018-02-01

    We investigate in detail the magnetic cause of minifilament eruptions that drive coronal-hole jets. We study 13 random on-disk coronal-hole jet eruptions, using high-resolution X-ray images from the Hinode/X-ray telescope(XRT), EUV images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), and magnetograms from the SDO/Helioseismic and Magnetic Imager (HMI). For all 13 events, we track the evolution of the jet-base region and find that a minifilament of cool (transition-region-temperature) plasma is present prior to each jet eruption. HMI magnetograms show that the minifilaments reside along a magnetic neutral line between majority-polarity and minority-polarity magnetic flux patches. These patches converge and cancel with each other, with an average cancelation rate of ∼0.6 × 1018 Mx hr‑1 for all 13 jets. Persistent flux cancelation at the neutral line eventually destabilizes the minifilament field, which erupts outward and produces the jet spire. Thus, we find that all 13 coronal-hole-jet-driving minifilament eruptions are triggered by flux cancelation at the neutral line. These results are in agreement with our recent findings for quiet-region jets, where flux cancelation at the underlying neutral line triggers the minifilament eruption that drives each jet. Thus, from that study of quiet-Sun jets and this study of coronal-hole jets, we conclude that flux cancelation is the main candidate for triggering quiet-region and coronal-hole jets.

  8. An active role for magnetic fields in solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1976-01-01

    Observations of photospheric magnetic fields are reviewed to determine whether changes in such fields can be related to flare activity, assuming that magnetic fields play an active role in providing flare energy. An intimate relation between emerging fields and bright flare knots is noted, and it is shown that the activation and eruption of an H-alpha filament is indicative of a major disruption of a magnetic field just prior to a flare. Observations of twisting motions in a filament just before a flare are discussed, erupting untwisting filaments are taken as unambiguous evidence for restructuring of the magnetic fields associated with flares, and it is argued that magnetic-field changes in the midst of most flares are obvious. It is concluded that successive brightenings in a family of loops may be evidence for the spread of a magnetic-field reconnection point from one field concentration to another and that flares may well take place in regions of field-line reconnection. This latter conclusion is illustrated using an empirical flare model that involves field-line reconnection, filament activation, and emerging magnetic flux.

  9. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. II - NOAA active region 5747 (1989 October)

    NASA Technical Reports Server (NTRS)

    Leka, K. D.; Canfield, Richard C.; Mcclymont, A. N.; De La Beaujardiere, J.-F.; Fan, Yuhong; Tang, F.

    1993-01-01

    The paper describes October 1989 observations in NOAA Active Region 5747 of the morphology of energetic electron precipitation and high-pressure coronal flare plasmas of three flares and their relation to the vector magnetic field and vertical electric currents. The H-alpha spectroheliograms were coaligned with the vector magnetograms using continuum images of sunspots, enabling positional accuracy of a few arcsec. It was found that, during the gradual phase, the regions of the H-alpha flare that show the effects of enhanced pressure in the overlying corona often encompass extrema of the vertical current density, consistent with earlier work showing a close relationship between H-alpha emission and line-of-sight currents. The data are also consistent with the overall morphology and evolution described by erupting-filament models such as those of Kopp and Pneuman (1976) and Sturrock (1989).

  10. Spatial Offsets in Flare-CME Current Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, John C.; Giordano, Silvio; Ciaravella, Angela, E-mail: jraymond@cfa.harvard.edu

    Magnetic reconnection plays an integral part in nearly all models of solar flares and coronal mass ejections (CMEs). The reconnection heats and accelerates the plasma, produces energetic electrons and ions, and changes the magnetic topology to form magnetic flux ropes and to allow CMEs to escape. Structures that appear between flare loops and CME cores in optical, UV, EUV, and X-ray observations have been identified as current sheets and have been interpreted in terms of the nature of the reconnection process and the energetics of the events. Many of these studies have used UV spectral observations of high temperature emissionmore » features in the [Fe xviii] and Si xii lines. In this paper, we discuss several surprising cases in which the [Fe xviii] and Si xii emission peaks are spatially offset from each other. We discuss interpretations based on asymmetric reconnection, on a thin reconnection region within a broader streamer-like structure, and on projection effects. Some events seem to be easily interpreted as the projection of a sheet that is extended along the line of sight that is viewed an angle, but a physical interpretation in terms of asymmetric reconnection is also plausible. Other events favor an interpretation as a thin current sheet embedded in a streamer-like structure.« less

  11. Long Duration Gamma-Ray Flares & Solar Energetic Particles — Is there a Connection?

    NASA Astrophysics Data System (ADS)

    de Nolfo, G. A.; Boezio, M.; Bruno, A.; Christian, E. R.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Ryan, J. M.; Share, G.; Stochaj, S.

    2017-12-01

    Little is known still about the origin of the high-energy and sustained emission from Long Duration Gamma-Ray Flares (LDGRFs), identified with Compton Gamma-Ray Observatory (CGRO), the Solar Maximum Mission (SMM), and now Fermi. Though Fermi/LAT has identified dozens of flares with LDGRF emission, the nature of this emission has been a challenge to explain both due to the extreme energies and long durations. The highest energy emission has generally been attributed to pion production from the interaction of high-energy protons with the ambient matter, suggesting that particle acceleration occurs over large volumes extending high in the corona, either from stochastic acceleration within large coronal loops or from back precipitation from CME-driven shocks. It is possible to test these models by making direct comparisons between the accelerated ion population at the flare derived from the observations of Fermi/LAT with PAMELA measurements of solar energetic particles in the energy range corresponding to the pion-related emission observed with Fermi. For nearly a dozen SEP events, we compare the two populations (SEPs in space and the interacting population at the Sun) and discuss the implications in terms of particle acceleration and transport models.

  12. MODELING THE INITIATION OF THE 2006 DECEMBER 13 CORONAL MASS EJECTION IN AR 10930: THE STRUCTURE AND DYNAMICS OF THE ERUPTING FLUX ROPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Yuhong, E-mail: yfan@ucar.edu

    2016-06-20

    We carry out a 3D magnetohydrodynamic simulation to model the initiation of the coronal mass ejection (CME) on 2006 December 13 in the emerging δ -sunspot active region NOAA 10930. The setup of the simulation is similar to a previous simulation by Fan, but with a significantly widened simulation domain to accommodate the wide CME. The simulation shows that the CME can result from the emergence of a east–west oriented twisted flux rope whose positive, following emerging pole corresponds to the observed positive rotating sunspot emerging against the southern edge of the dominant pre-existing negative sunspot. The erupting flux ropemore » in the simulation accelerates to a terminal speed that exceeds 1500 km s{sup −1} and undergoes a counter-clockwise rotation of nearly 180° such that its front and flanks all exhibit southward directed magnetic fields, explaining the observed southward magnetic field in the magnetic cloud impacting the Earth. With continued driving of flux emergence, the source region coronal magnetic field also shows the reformation of a coronal flux rope underlying the flare current sheet of the erupting flux rope, ready for a second eruption. This may explain the build up for another X-class eruptive flare that occurred the following day from the same region.« less

  13. Heating and Cooling of Coronal Loops with Turbulent Suppression of Parallel Heat Conduction.

    PubMed

    Bian, Nicolas; Emslie, A Gordon; Horne, Duncan; Kontar, Eduard P

    2018-01-10

    Using the "enthalpy-based thermal evolution of loops" (EBTEL) model, we investigate the hydrodynamics of the plasma in a flaring coronal loop in which heat conduction is limited by turbulent scattering of the electrons that transport the thermal heat flux. The EBTEL equations are solved analytically in each of the two (conduction-dominated and radiation-dominated) cooling phases. Comparison of the results with typical observed cooling times in solar flares shows that the turbulent mean free path λ T lies in a range corresponding to a regime in which classical (collision-dominated) conduction plays at most a limited role. We also consider the magnitude and duration of the heat input that is necessary to account for the enhanced values of temperature and density at the beginning of the cooling phase and for the observed cooling times. We find through numerical modeling that in order to produce a peak temperature ≃1.5 × 10 7 K and a 200 s cooling time consistent with observations, the flare-heating profile must extend over a significant period of time; in particular, its lingering role must be taken into consideration in any description of the cooling phase. Comparison with observationally inferred values of post-flare loop temperatures, densities, and cooling times thus leads to useful constraints on both the magnitude and duration of the magnetic energy release in the loop, as well as on the value of the turbulent mean free path λ T .

  14. Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Güdel, M.; Audard, M.; Reale, F.; Skinner, S. L.; Linsky, J. L.

    2004-03-01

    We report results from a comprehensive study of the nearby M dwarf Proxima Centauri with the XMM-Newton satellite, using simultaneously its X-ray detectors and the Optical Monitor with its U band filter. We find strongly variable coronal X-ray emission, with flares ranging over a factor of 100 in peak flux. The low-level emission is found to be continuously variable on at least three time scales (a slow decay of several hours, modulation on a time scale of 1 hr, and weak flares with time scales of a few minutes). Several weak flares are characteristically preceded by an optical burst, compatible with predictions from standard solar flare models. We propose that the U band bursts are proxies for the elusive stellar non-thermal hard X-ray bursts suggested from solar observations. In the course of the observation, a very large X-ray flare started and was observed essentially in its entirety. Its peak luminosity reached 3.9× 1028 erg s-1 [0.15-10 keV], and the total X-ray energy released in the same band is derived to be 1.5× 1032 ergs. This flare has for the first time allowed to measure significant density variations across several phases of the flare from X-ray spectroscopy of the O VII He-like triplet; we find peak densities reaching up to 4× 1011 cm-3 for plasma of about 1-5 MK. Abundance ratios show little variability in time, with a tendency of elements with a high first ionization potential to be overabundant relative to solar photospheric values. Using Fe XVII lines with different oscillator strengths, we do not find significant effects due to opacity during the flare, indicating that large opacity increases are not the rule even in extreme flares. We model the large flare in terms of an analytic 2-Ribbon flare model and find that the flaring loop system should have large characteristic sizes (≈ 1R*) within the framework of this simplistic model. These results are supported by full hydrodynamic simulations. Comparing the large flare to flares of similar

  15. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: instrument capabilities and early science analysis on the quiet Sun, active regions, and flares.

    NASA Astrophysics Data System (ADS)

    Moore, Christopher S.; Woods, Tom; Caspi, Amir; Dennis, Brian R.; MinXSS Instrument Team, NIST-SURF Measurement Team

    2018-01-01

    Detection of soft X-rays (sxr) from the Sun provide direct information on coronal plasma at temperatures in excess of ~1 MK, but there have been relatively few solar spectrally resolved measurements from 0.5 – 10. keV. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, and has provided measurements from 0.8 -12 keV, with resolving power ~40 at 5.9 keV, at a nominal ~10 second time cadence. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. Instrument radiometric calibration was performed at the National Institute for Standard and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive X-ray sources. The MinXSS spectra allow for determining coronal abundance variations for Fe, Mg, Ni, Ca, Si, S, and Ar in active regions and during flares. Measurements from the first of the twin CubeSats, MinXSS-1, have proven to be consistent with the Geostationary Operational Environmental Satellite (GOES) 0.1 – 0.8 nm energy flux. Simultaneous MinXSS-1 and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations have provided the most complete sxr spectral coverage of flares in recent years. These combined measurements are vital in estimating the heating flare loops by non-thermal accelerated electrons. MinXSS-1 measurements have been combined with the Hinode X-ray Telescope (XRT) and Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO-AIA) to further constrain the coronal temperature distribution during quiescent times. The structure of the temperature distribution (especially for T > 5 MK) is important for deducing heating processes in the solar atmosphere. MinXSS-1 observations yield some of the tightest constraints on the high temperature component of the coronal plasma, in the

  16. Exploring the Role of Overlying Fields and Flare Ribbons in CME Speeds

    NASA Astrophysics Data System (ADS)

    Deng, M.; Welsch, B. T.

    2013-12-01

    The standard model of eruptive, two-ribbon flares involves reconnection of overlying magnetic fields beneath a rising ejection. Numerous observers have reported evidence linking this reconnection, indicated by photospheric flux swept out by flare ribbons, to coronal mass ejection (CME) acceleration. This acceleration might be caused by reconnected fields that wrap around the ejection producing an increased outward "hoop force." Other observations have linked stronger overlying fields, measured by the power-law index of the fitted decay rate of field strengths overlying eruption sites, to slower CME speeds. This might be caused by greater downward magnetic tension in stronger overlying fields. So overlying fields might both help and hinder the acceleration of CMEs: reconnection that converts overlying fields into flux winding about the ejection might help, but unreconnected overlying fields might hurt. Here, we investigate the roles of both ribbon fluxes and the decay rates of overlying fields in a set of eruptive events.

  17. Neutral pion production in solar flares

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.; Rieger, E.; Cooper, J. F.; Share, G. H.

    1985-01-01

    The Gamma-Ray Spectrometer (GRS) on SMM has detected more than 130 flares with emission approx 300 keV. More than 10 of these flares were detected at photon energies 10 MeV. Although the majority of the emission at 10 MeV must be from electron bremsstrahlung, at least two of the flares have spectral properties 40 MeV that require gamma rays from the decay of neutral pions. It is found that pion production can occur early in the impulsive phase as defined by hard X-rays near 100 keV. It is also found in one of these flares that a significant portion of this high-energy emission is produced well after the impulsive phase. This extended production phase, most clearly observed at high energies, may be a signature of the acceleration process which produces solar energetic particles (SEP's) in space.

  18. The evolution of flaring and non-flaring active regions

    NASA Astrophysics Data System (ADS)

    Kilcik, A.; Yurchyshyn, V.; Sahin, S.; Sarp, V.; Obridko, V.; Ozguc, A.; Rozelot, J. P.

    2018-06-01

    According to the modified Zurich classification, sunspot groups are classified into seven different classes (A, B, C, D, E, F and H) based on their morphology and evolution. In this classification, classes A and B, which are small groups, describe the beginning of sunspot evolution, while classes D, E and F describe the large and evolved groups. Class C describes the middle phase of sunspot evolution and the class H describes the end of sunspot evolution. Here, we compare the lifetime and temporal evolution of flaring and non-flaring active regions (ARs), and the flaring effect on ARs in these groups in detail for the last two solar cycles (1996 through 2016). Our main findings are as follows: (i) Flaring sunspot groups have longer lifetimes than non-flaring ones. (ii) Most of the class A, B and C flaring ARs rapidly evolve to higher classes, while this is not applicable for non-flaring ARs. More than 50 per cent of the flaring A, B and C groups changed morphologically, while the remaining D, E, F and H groups did not change remarkably after the flare activity. (iii) 75 per cent of all flaring sunspot groups are large and complex. (iv) There is a significant increase in the sunspot group area in classes A, B, C, D and H after flaring activity. In contrast, the sunspot group area of classes E and F decreased. The sunspot counts of classes D, E and F decreased as well, while classes A, B, C and H showed an increase.

  19. Solar flares associated coronal mass ejection accompanied with DH type II radio burst in relation with interplanetary magnetic field, geomagnetic storms and cosmic ray intensity

    NASA Astrophysics Data System (ADS)

    Chandra, Harish; Bhatt, Beena

    2018-04-01

    In this paper, we have selected 114 flare-CME events accompanied with Deca-hectometric (DH) type II radio burst chosen from 1996 to 2008 (i.e., solar cycle 23). Statistical analyses are performed to examine the relationship of flare-CME events accompanied with DH type II radio burst with Interplanetary Magnetic field (IMF), Geomagnetic storms (GSs) and Cosmic Ray Intensity (CRI). The collected sample events are divided into two groups. In the first group, we considered 43 events which lie under the CME span and the second group consists of 71 events which are outside the CME span. Our analysis indicates that flare-CME accompanied with DH type II radio burst is inconsistent with CSHKP flare-CME model. We apply the Chree analysis by the superposed epoch method to both set of data to find the geo-effectiveness. We observed different fluctuations in IMF for arising and decay phase of solar cycle in both the cases. Maximum decrease in Dst during arising and decay phase of solar cycle is different for both the cases. It is noted that when flare lie outside the CME span CRI shows comparatively more variation than the flare lie under the CME span. Furthermore, we found that flare lying under the CME span is more geo effective than the flare outside of CME span. We noticed that the time leg between IMF Peak value and GSs, IMF and CRI is on average one day for both the cases. Also, the time leg between CRI and GSs is on average 0 to 1 day for both the cases. In case flare lie under the CME span we observed high correlation (0.64) between CRI and Dst whereas when flare lie outside the CME span a weak correlation (0.47) exists. Thus, flare position with respect to CME span play a key role for geo-effectiveness of CME.

  20. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    NASA Astrophysics Data System (ADS)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay

    2017-05-01

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections at the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.

  1. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections atmore » the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.« less

  2. CORONAL FOURIER POWER SPECTRA: IMPLICATIONS FOR CORONAL SEISMOLOGY AND CORONAL HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ireland, J.; McAteer, R. T. J.; Inglis, A. R., E-mail: jack.ireland@nasa.gov

    The dynamics of regions of the solar corona are investigated using Atmospheric Imaging Assembly 171 Å and 193 Å data. The coronal emission from the quiet Sun, coronal loop footprints, coronal moss, and from above a sunspot is studied. It is shown that the mean Fourier power spectra in these regions can be described by a power law at lower frequencies that tails to a flat spectrum at higher frequencies, plus a Gaussian-shaped contribution that varies depending on the region studied. This Fourier spectral shape is in contrast to the commonly held assumption that coronal time series are well describedmore » by the sum of a long timescale background trend plus Gaussian-distributed noise, with some specific locations also showing an oscillatory signal. The implications of the observed spectral shape on the fields of coronal seismology and the automated detection of oscillations in the corona are discussed. The power-law contribution to the shape of the Fourier power spectrum is interpreted as being due to the summation of a distribution of exponentially decaying emission events along the line of sight. This is consistent with the idea that the solar atmosphere is heated everywhere by small energy deposition events.« less

  3. A Comparative Study of the Eruptive and Non-eruptive Flares Produced by the Largest Active Region of Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Sarkar, Ranadeep; Srivastava, Nandita

    2018-02-01

    We investigate the morphological and magnetic characteristics of solar active region (AR) NOAA 12192. AR 12192 was the largest region of Solar Cycle 24; it underwent noticeable growth and produced 6 X-class flares, 22 M-class flares, and 53 C-class flares in the course of its disc passage. However, the most peculiar fact of this AR is that it was associated with only one CME in spite of producing several X-class flares. In this work, we carry out a comparative study between the eruptive and non-eruptive flares produced by AR 12192. We find that the magnitude of abrupt and permanent changes in the horizontal magnetic field and Lorentz force are significantly smaller in the case of the confined flares compared to the eruptive one. We present the areal evolution of AR 12192 during its disc passage. We find the flare-related morphological changes to be weaker during the confined flares, whereas the eruptive flare exhibits a rapid and permanent disappearance of penumbral area away from the magnetic neutral line after the flare. Furthermore, from the extrapolated non-linear force-free magnetic field, we examine the overlying coronal magnetic environment over the eruptive and non-eruptive zones of the AR. We find that the critical decay index for the onset of torus instability was achieved at a lower height over the eruptive flaring region, than for the non-eruptive core area. These results suggest that the decay rate of the gradient of overlying magnetic-field strength may play a decisive role to determine the CME productivity of the AR. In addition, the magnitude of changes in the flare-related magnetic characteristics are found to be well correlated with the nature of solar eruptions.

  4. Non-thermal Motions in and above Flare Loop Tops Measured by the Extreme-ultraviolet Imaging Spectrometer on Hinode

    NASA Astrophysics Data System (ADS)

    Doschek, G. A.; Warren, H. P.

    2013-12-01

    The plasma volume above the soft X-ray emitting loop tops is of particular interest for studying the formation of flare loops. We present observations of non-thermal motions (turbulence) determined from spectral line profiles Fe XXIII and Fe XXIV ions. We compare the non-thermal motions at temperatures near 10 MK with the motions along the same lines-of-sight determined from lines of coronal ions such as Fe XII, Fe XIV, and Fe XV formed at 1-2 MK. We discuss the results in terms of predictions of the effects of magnetic reconnection and non-thermal motion results obtained in flares from earlier X-ray Yohkoh observations of line profiles of Fe XXV and Ca XIX. Fe XXV is formed at significantly higher temperatures than any strong flare EUV spectral line observed by EIS or by imaging telescopes such as AIA or TRACE. This work is supported by a NASA Hinode grant.

  5. ULTRA-NARROW NEGATIVE FLARE FRONT OBSERVED IN HELIUM-10830 Å USING THE 1.6 m NEW SOLAR TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yan; Liu, Chang; Jing, Ju

    2016-03-10

    Solar flares are sudden flashes of brightness on the Sun and are often associated with coronal mass ejections and solar energetic particles that have adverse effects on the near-Earth environment. By definition, flares are usually referred to as bright features resulting from excess emission. Using the newly commissioned 1.6 m New Solar Telescope at Big Bear Solar Observatory, we show a striking “negative” flare with a narrow but unambiguous “dark” moving front observed in He i 10830 Å, which is as narrow as 340 km and is associated with distinct spectral characteristics in Hα and Mg ii lines. Theoretically, such negativemore » contrast in He i 10830 Å can be produced under special circumstances by nonthermal electron collisions or photoionization followed by recombination. Our discovery, made possible due to unprecedented spatial resolution, confirms the presence of the required plasma conditions and provides unique information in understanding the energy release and radiative transfer in astronomical objects.« less

  6. Coronal Current Sheet Evolution in the Aftermath of a CME

    NASA Technical Reports Server (NTRS)

    Bemporad, A.; Poletto, G.; Suess, S. T.; Ko, Y.-K.; Schwadron, N. A.; Elliott, H. A.; Raymond, J. C.

    2005-01-01

    We report on SOHO-UVCS observations of coronal restructuring following a Coronal Mass Ejection (CME) on November 26, 2002, at the time of a SOHO-Ulysses quadrature campaign. Starting about 3 hours after the CME, which was directed towards Ulysses, UVCS began taking spectra at 1.7 solar radii, covering emission from both cool and hot plasma. Observations continued, with occasional gaps, for more than 2 days. Emission in the 974.8 Angstrom line of [Fe XVIII], indicating temperatures above 6x10(6) K, was observed throughout the campaign in a spatially limited location. Comparison with EIT images shows the [Fe XVIII] emission to overlie a growing post-flare loop system formed in the aftermath of the CME. The emission most likely originates in a current sheet overlying the arcade. Analysis of the [Fe XVIII] emission allows us to infer the evolution of physical parameters in the current sheet over the entire span of our observations: in particular, we give the temperature vs. time in the current sheet and estimate the density. Ulysses was directly above the location of the CME and intercepted the ejecta. High ionization state Fe was detected by SWICS throughout the magnetic cloud associated with the CME, although the rapid temporal variation suggests bursty, rather than smooth, reconnection in the coronal current sheet. Both the remote and in situ observations are compared with predictions of theoretical CME models.

  7. Relationships of a growing magnetic flux region to flares

    NASA Technical Reports Server (NTRS)

    Martin, S. F.; Bentley, R. D.; Schadee, A.; Antalova, A.; Kucera, A.; Dezso, L.; Gesztelyi, L.; Harvey, K. L.; Jones, H.; Livi, S. H. B.

    1984-01-01

    The evolution of flare sites at the boundaries of major new and growing magnetic flux regions within complexes of active regions has been analyzed using H-alpha images. A spectrum of possible relationships of growing flux regions to flares is described. An 'intimate' interaction between old and new flux and flare sites occurs at the boundaries of their regions. Forced or 'intimidated' interaction involves new flux pushing older, lower flux density fields toward a neighboring old polarity inversion line, followed by the occurrence of a flare. In 'influential' interaction, magnetic lines of force over an old polarity inversion line reconnect to new emerging flux, and a flare occurs when the magnetic field overlying the filament becomes too weak to prevent its eruption. 'Inconsequential' interaction occurs when a new flux region is too small or has the wrong orientation for creating flare conditions. 'Incidental' interaction involves a flare occurring without any significant relationship to new flux regions.

  8. Two Distinct Types of CME-flare Relationships Based on SOHO and STEREO Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Soojeong; Moon, Yong-Jae; Kim, Rok-Soon

    In this paper, we present two distinct types of coronal mass ejection (CME)-flare relationships according to their observing time differences using 107 events from 2010 to 2013. The observing time difference, Δ T , is defined as flare peak time minus CME first appearance time at Solar Terrestrial Relations Observatory ( STEREO ) COR1 field of view. There are 41 events for group A (Δ T < 0) and 66 events for group B (Δ T ≥ 0). We compare CME 3D parameters (speed and kinetic energy) based on multi-spacecraft data ( SOlar and Heliospheric Observatory ( SOHO ) andmore » STEREO A and B ) and their associated flare properties (peak flux, fluence, and duration). Our main results are as follows. First, there are better relationships between CME and flare parameters for group B than that of group A. In particular, CME 3D kinetic energy for group B is well correlated with flare fluence with the correlation coefficient of 0.67, which is much stronger than that (cc = 0.31) of group A. Second, the events belonging to group A have short flare durations of less than 1 hr (mean = 21 minutes), while the events for group B have longer durations up to 4 hr (mean = 81 minutes). Third, the mean value of height at peak speed for group B is 4.05 Rs, which is noticeably higher than that of group A (1.89 Rs). This is well correlated with the CME acceleration duration (cc = 0.75). A higher height at peak speed and a longer acceleration duration of CME for group B could be explained by the fact that magnetic reconnections for group B continuously occur for a longer time than those for group A.« less

  9. Early evolution of an energetic coronal mass ejection and its relation to EUV waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Rui; Wang, Yuming; Shen, Chenglong, E-mail: rliu@ustc.edu.cn

    2014-12-10

    We study a coronal mass ejection (CME) associated with an X-class flare whose initiation is clearly observed in the low corona with high-cadence, high-resolution EUV images, providing us a rare opportunity to witness the early evolution of an energetic CME in detail. The eruption starts with a slow expansion of cool overlying loops (∼1 MK) following a jet-like event in the periphery of the active region. Underneath the expanding loop system, a reverse S-shaped dimming is seen immediately above the brightening active region in hot EUV passbands. The dimming is associated with a rising diffuse arch (∼6 MK), which wemore » interpret as a preexistent, high-lying flux rope. This is followed by the arising of a double hot channel (∼10 MK) from the core of the active region. The higher structures rise earlier and faster than lower ones, with the leading front undergoing extremely rapid acceleration up to 35 km s{sup –2}. This suggests that the torus instability is the major eruption mechanism and that it is the high-lying flux rope rather than the hot channels that drives the eruption. The compression of coronal plasmas skirting and overlying the expanding loop system, whose aspect ratio h/r increases with time as a result of the rapid upward acceleration, plays a significant role in driving an outward-propagating global EUV wave and a sunward-propagating local EUV wave, respectively.« less

  10. Productivity of Solar Flares and Magnetic Helicity Injection in Active Regions

    NASA Astrophysics Data System (ADS)

    Park, Sung-hong; Chae, Jongchul; Wang, Haimin

    2010-07-01

    The main objective of this study is to better understand how magnetic helicity injection in an active region (AR) is related to the occurrence and intensity of solar flares. We therefore investigate the magnetic helicity injection rate and unsigned magnetic flux, as a reference. In total, 378 ARs are analyzed using SOHO/MDI magnetograms. The 24 hr averaged helicity injection rate and unsigned magnetic flux are compared with the flare index and the flare-productive probability in the next 24 hr following a measurement. In addition, we study the variation of helicity over a span of several days around the times of the 19 flares above M5.0 which occurred in selected strong flare-productive ARs. The major findings of this study are as follows: (1) for a sub-sample of 91 large ARs with unsigned magnetic fluxes in the range from (3-5) × 1022 Mx, there is a difference in the magnetic helicity injection rate between flaring ARs and non-flaring ARs by a factor of 2; (2) the GOES C-flare-productive probability as a function of helicity injection displays a sharp boundary between flare-productive ARs and flare-quiet ones; (3) the history of helicity injection before all the 19 major flares displayed a common characteristic: a significant helicity accumulation of (3-45) × 1042 Mx2 during a phase of monotonically increasing helicity over 0.5-2 days. Our results support the notion that helicity injection is important in flares, but it is not effective to use it alone for the purpose of flare forecast. It is necessary to find a way to better characterize the time history of helicity injection as well as its spatial distribution inside ARs.

  11. PRODUCTIVITY OF SOLAR FLARES AND MAGNETIC HELICITY INJECTION IN ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sung-hong; Wang Haimin; Chae, Jongchul, E-mail: sp295@njit.ed

    The main objective of this study is to better understand how magnetic helicity injection in an active region (AR) is related to the occurrence and intensity of solar flares. We therefore investigate the magnetic helicity injection rate and unsigned magnetic flux, as a reference. In total, 378 ARs are analyzed using SOHO/MDI magnetograms. The 24 hr averaged helicity injection rate and unsigned magnetic flux are compared with the flare index and the flare-productive probability in the next 24 hr following a measurement. In addition, we study the variation of helicity over a span of several days around the times ofmore » the 19 flares above M5.0 which occurred in selected strong flare-productive ARs. The major findings of this study are as follows: (1) for a sub-sample of 91 large ARs with unsigned magnetic fluxes in the range from (3-5) x 10{sup 22} Mx, there is a difference in the magnetic helicity injection rate between flaring ARs and non-flaring ARs by a factor of 2; (2) the GOES C-flare-productive probability as a function of helicity injection displays a sharp boundary between flare-productive ARs and flare-quiet ones; (3) the history of helicity injection before all the 19 major flares displayed a common characteristic: a significant helicity accumulation of (3-45) x 10{sup 42} Mx{sup 2} during a phase of monotonically increasing helicity over 0.5-2 days. Our results support the notion that helicity injection is important in flares, but it is not effective to use it alone for the purpose of flare forecast. It is necessary to find a way to better characterize the time history of helicity injection as well as its spatial distribution inside ARs.« less

  12. Characteristics of Solar Flare Hard X-ray Emissions: Observations and Models

    NASA Astrophysics Data System (ADS)

    Liu, Wei

    2006-12-01

    The main theme of this thesis is the investigation of the physics of acceleration and transport of particles in solar flares, and their thermal and nonthermal radiative signatures. The observational studies, using hard X-rays (HXRs) observed by the RHESSI mission, concentrate on four flares, which support the classical magnetic reconnection model of solar flares in various ways. In the X3.9 flare occurring on 11/03/2003, there is a monotonic upward motion of the loop top (LT) source accompanied by a systematic increase in the separation of the footpoint (FP) sources at a comparable speed. This is consistent with the reconnection model with an inverted-Y geometry. The 04/30/2002 event exhibits rarely observed two coronal sources. The two sources (with almost identical spectra) show energy-dependent structures, with higher-energy emission being close together. This suggests that reconnection takes place within the region between the sources. In the 10/29/2003 X10 flare, the logarithmic total HXR flux of the FPs correlates with the mean magnetic field. The two FPs show asymmetric HXR fluxes, which is qualitatively consistent with the magnetic mirroring effect. The M1.7 flare on 11/13/2003 reveals evidence of evaporation directly imaged by RHESSI for the first time, in which emission from the legs of the loop appears at intermediate energies. The emission centroid moves toward the LT as time proceeds, indicating an increase of density in the loop. The theoretical modeling of this work combines the stochastic acceleration model with the NRL hydrodynamic model to study the interplay of the particle acceleration, transport, and radiation effects and the atmospheric response to the energy deposition by nonthermal electrons. We find that low-energy electrons in the quasi-thermal portion of the spectrum affects the hydrodynamics by producing more heating in the corona than the previous models that used a power-law spectrum with a low-energy cutoff. The Neupert effect is

  13. SoFAST: Automated Flare Detection with the PROBA2/SWAP EUV Imager

    NASA Astrophysics Data System (ADS)

    Bonte, K.; Berghmans, D.; De Groof, A.; Steed, K.; Poedts, S.

    2013-08-01

    The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV imager onboard PROBA2 provides a non-stop stream of coronal extreme-ultraviolet (EUV) images at a cadence of typically 130 seconds. These images show the solar drivers of space-weather, such as flares and erupting filaments. We have developed a software tool that automatically processes the images and localises and identifies flares. On one hand, the output of this software tool is intended as a service to the Space Weather Segment of ESA's Space Situational Awareness (SSA) program. On the other hand, we consider the PROBA2/SWAP images as a model for the data from the Extreme Ultraviolet Imager (EUI) instrument prepared for the future Solar Orbiter mission, where onboard intelligence is required for prioritising data within the challenging telemetry quota. In this article we present the concept of the software, the first statistics on its effectiveness and the online display in real time of its results. Our results indicate that it is not only possible to detect EUV flares automatically in an acquired dataset, but that quantifying a range of EUV dynamics is also possible. The method is based on thresholding of macropixelled image sequences. The robustness and simplicity of the algorithm is a clear advantage for future onboard use.

  14. Flare Plasma Diagnostics from X-Ray and Ultraviolet Observations

    NASA Astrophysics Data System (ADS)

    Tsap, Yu. T.; Motorina, G. G.

    2017-12-01

    We compare the measured values of emission measure EM and temperature T of coronal flare plasma following the GOES, RHESSI, and SDO/AIA satellite observations for the events of July 4, 5, and 7, 2012, in the NOAA 11515 active region. We show that the values of EM and T can vary widely (up to one order of magnitude for EM) depending on the technical features of instruments and processing technique. The maximum difference has been found to be between RHESSI and SDO/AIA measurements for temperature and between GOES and SDO/AIA measurements for EM. We discuss the pros and cons of the approaches used and the practical effects of the resulting numerical estimates for EM and T.

  15. Association of Impulsive Solar Energetic Particle Events With Large-Scale Coronal Waves

    NASA Astrophysics Data System (ADS)

    Bucik, R.; Innes, D.; Mason, G. M.; Wiedenbeck, M. E.

    2016-12-01

    Impulsive or 3He-rich solar energetic particle (SEP) events have been commonly associated with EUV jets and narrow CMEs which are believed to be the signatures of magnetic reconnection involving field lines open to interplanetary space. The elemental and isotopic fractionation in these events are thought to be caused by processes confined to the flare sites. In addition to their anomalous abundances, 3He-rich SEPs show puzzling energy spectral shapes varying from rounded forms to power laws where the later are characteristics of shock acceleration. In this study we identify 32 impulsive SEP events observed by the ACE near the Earth during the solar minimum period 2007-2010 and examine their solar sources with the high resolution STEREO EUV images. Leading the Earth, STEREO-A provided for the first time a direct view on impulsive SEP event sources, which are generally located on the Sun's western hemisphere. Surprisingly, we find that about half of the impulsive SEP events in this survey are associated with large-scale EUV coronal waves. An examination of the wave front propagation and the coronal magnetic field connections suggests that the EUV waves may affect the injection of 3He-rich SEPs into interplanetary space. We found the events with jets tend to be associated with rounded spectra and the events with coronal waves with power laws. This suggests that coronal waves may be related to the unknown second stage mechanism commonly used to interpret spectral forms of 3He-rich SEPs. R. Bucik is supported by the Deutsche Forschungsgemeinschaft under grant BU 3115/2-1.

  16. ARCADE IMPLOSION CAUSED BY A FILAMENT ERUPTION IN A FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juntao; Simões, P. J. A.; Fletcher, L.

    Coronal implosions—the convergence motion of plasmas and entrained magnetic field in the corona due to a reduction in magnetic pressure—can help to locate and track sites of magnetic energy release or redistribution during solar flares and eruptions. We report here on the analysis of a well-observed implosion in the form of an arcade contraction associated with a filament eruption, during the C3.5 flare SOL2013-06-19T07:29. A sequence of events including the magnetic flux-rope instability and distortion, followed by a filament eruption and arcade implosion, lead us to conclude that the implosion arises from the transfer of magnetic energy from beneath the arcademore » as part of the global magnetic instability, rather than due to local magnetic energy dissipation in the flare. The observed net contraction of the imploding loops, which is found also in nonlinear force-free field extrapolations, reflects a permanent reduction of magnetic energy underneath the arcade. This event shows that, in addition to resulting in the expansion or eruption of an overlying field, flux-rope instability can also simultaneously implode an unopened field due to magnetic energy transfer. It demonstrates the “partial opening of the field” scenario, which is one of the ways in 3D to produce a magnetic eruption without violating the Aly–Sturrock hypothesis. In the framework of this observation, we also propose a unification of three main concepts for active region magnetic evolution, namely the metastable eruption model, the implosion conjecture, and the standard “CSHKP” flare model.« less

  17. Endodontic flare up: incidence and association of possible risk factors.

    PubMed

    Gbadebo, S O; Sulaiman, A O; Anifowose, O O

    2016-06-01

    Endodontic emergency during root canal treatment (flare up) is a common occurrence in multivisit root canal treatment (RCT) and it may be associated with many factors. The occurrence however can affect the prognosis of the tooth and the patient -clinician relationship. To determine the incidence and risk factors associated with occurrence of flare up in a multi visit RCT. Patients planned for multi-visit (RCT) were recruited for the research. Standard protocol was followed in all cases. After the first visit, the patients were followed up for possible development of flare up. Patients' demographics, presence or absence of preoperative pain, status of the pulp and occurrence of flare up were among the data collected. Data was analyzed using SPSS version 20 with level of significance set at P <0.05. A total of 106 root treated teeth were analyzed in patients aged 17 to 73years with a mean of 33±13.2 and male to female ratio of 1:1.5. Incidence of flare up was 8.5%. Prior to treatment, 47% of the cases had pain, 61.3% had apical radioluscency and 83% had pulpal necrosis. Majority (7, 77.8%) of the flare up occurred after the first visit (p=0.000). Only pre- treatment pain had a statistical significant ielationship with occurrence of flare up (p=0.009). Incidence of flare up was 8.5% and the major risk factor was preoperative pain. First visit in a multi visit RCT is an important stage which if well handled, can reduce the incidence of flare up.

  18. Coronal Loops: Observations and Modeling of Confined Plasma.

    PubMed

    Reale, Fabio

    Coronal loops are the building blocks of the X-ray bright solar corona. They owe their brightness to the dense confined plasma, and this review focuses on loops mostly as structures confining plasma. After a brief historical overview, the review is divided into two separate but not independent parts: the first illustrates the observational framework, the second reviews the theoretical knowledge. Quiescent loops and their confined plasma are considered and, therefore, topics such as loop oscillations and flaring loops (except for non-solar ones, which provide information on stellar loops) are not specifically addressed here. The observational section discusses the classification, populations, and the morphology of coronal loops, its relationship with the magnetic field, and the loop stranded structure. The section continues with the thermal properties and diagnostics of the loop plasma, according to the classification into hot, warm, and cool loops. Then, temporal analyses of loops and the observations of plasma dynamics, hot and cool flows, and waves are illustrated. In the modeling section, some basics of loop physics are provided, supplying fundamental scaling laws and timescales, a useful tool for consultation. The concept of loop modeling is introduced and models are divided into those treating loops as monolithic and static, and those resolving loops into thin and dynamic strands. More specific discussions address modeling the loop fine structure and the plasma flowing along the loops. Special attention is devoted to the question of loop heating, with separate discussion of wave (AC) and impulsive (DC) heating. Large-scale models including atmosphere boxes and the magnetic field are also discussed. Finally, a brief discussion about stellar coronal loops is followed by highlights and open questions.

  19. GLOBAL SAUSAGE OSCILLATION OF SOLAR FLARE LOOPS DETECTED BY THE INTERFACE REGION IMAGING SPECTROGRAPH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Hui; He, Jiansen; Young, Peter R.

    An observation from the Interface Region Imaging Spectrograph reveals coherent oscillations in the loops of an M1.6 flare on 2015 March 12. Both the intensity and Doppler shift of Fe xxi 1354.08 Å show clear oscillations with a period of ∼25 s. Remarkably similar oscillations were also detected in the soft X-ray flux recorded by the Geostationary Operational Environmental Satellites ( GOES ). With an estimated phase speed of ∼2420 km s{sup −1} and a derived electron density of at least 5.4 × 10{sup 10} cm{sup −3}, the observed short-period oscillation is most likely the global fast sausage mode ofmore » a hot flare loop. We find a phase shift of ∼ π /2 (1/4 period) between the Doppler shift oscillation and the intensity/ GOES oscillations, which is consistent with a recent forward modeling study of the sausage mode. The observed oscillation requires a density contrast between the flare loop and coronal background of a factor ≥42. The estimated phase speed of the global mode provides a lower limit of the Alfvén speed outside the flare loop. We also find an increase of the oscillation period, which might be caused by the separation of the loop footpoints with time.« less

  20. EUV Waves Driven by the Sudden Expansion of Transequatorial Loops Caused by Coronal Jets

    NASA Astrophysics Data System (ADS)

    Shen, Yuandeng; Tang, Zehao; Miao, Yuhu; Su, Jiangtao; Liu, Yu

    2018-06-01

    We present two events to study the driving mechanism of extreme-ultraviolet (EUV) waves that are not associated with coronal mass ejections (CMEs), by using high-resolution observations taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Observational results indicate that the observed EUV waves were accompanied by flares and coronal jets, but not the CMEs that were regarded as drivers of most EUV waves in previous studies. In the first case, it is observed that a coronal jet is ejected along a transequatorial loop system at a plane-of-the-sky (POS) speed of 335 ± 22 km s{}-1; in the meantime, an arc-shaped EUV wave appeared on the eastern side of the loop system. In addition, the EUV wave further interacted with another interconnecting loop system and launched a fast propagating (QFP) magnetosonic wave along the loop system, which had a period of 200 s and a speed of 388 ± 65 km s{}-1, respectively. In the second case, we observed a coronal jet that ejected at a POS speed of 282 ± 44 km s{}-1 along a transequatorial loop system as well as the generation of bright EUV waves on the eastern side of the loop system. Based on the observational results, we propose that the observed EUV waves on the eastern side of the transequatorial loop systems are fast-mode magnetosonic waves and that they are driven by the sudden lateral expansion of the transequatorial loop systems due to the direct impingement of the associated coronal jets, while the QFP wave in the fist case formed due to the dispersive evolution of the disturbance caused by the interaction between the EUV wave and the interconnecting coronal loops. It is noted that EUV waves driven by sudden loop expansions have shorter lifetimes than those driven by CMEs.

  1. The quantitative properties of three soft X-ray flare kernels observed with the AS&E X-ray telescope on Skylab

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Petrasso, R. D.; Kane, S. R.

    1976-01-01

    The physical parameters for the kernels of three solar X-ray flare events have been deduced using photographic data from the S-054 X-ray telescope on Skylab as the primary data source and 1-8 and 8-20 A fluxes from Solrad 9 as the secondary data source. The kernels had diameters of about 5-7 seconds of arc and in two cases electron densities at least as high as 0.3 trillion per cu cm. The lifetimes of the kernels were 5-10 min. The presence of thermal conduction during the decay phases is used to argue: (1) that kernels are entire, not small portions of, coronal loop structures, and (2) that flare heating must continue during the decay phase. We suggest a simple geometric model to explain the role of kernels in flares in which kernels are identified with emerging flux regions.

  2. Advances In Understanding Solar And Stellar Flares

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.

    2016-07-01

    Flares result from the sudden reconnection and relaxation of magnetic fields in the coronae of stellar atmospheres. The highly dynamic atmospheric response produces radiation across the electromagnetic spectrum, from the radio to X-rays, on a range of timescales, from seconds to days. New high resolution data of solar flares have revealed the intrinsic spatial properties of the flaring chromosphere, which is thought to be where the majority of the flare energy is released as radiation in the optical and near-UV continua and emission lines. New data of stellar flares have revealed the detailed properties of the broadband (white-light) continuum emission, which provides straightforward constraints for models of the transformation of stored magnetic energy in the corona into thermal energy of the lower atmosphere. In this talk, we discuss the physical processes that produce several important spectral phenomena in the near-ultraviolet and optical as revealed from new radiative-hydrodynamic models of flares on the Sun and low mass stars. We present recent progress with high-flux nonthermal electron beams in reproducing the observed optical continuum color temperature of T 10,000 K and the Balmer jump properties in the near-ultraviolet. These beams produce dense, heated chromospheric condensations, which can explain the shape and strength of the continuum emission in M dwarf flares and the red-wing asymmetries in the chromospheric emission lines in recent observations of solar flares from the Interface Region Imaging Spectrograph. Current theoretical challenges and future modeling directions will be discussed, as well as observational synergies between solar and stellar flares.

  3. Endodontic cellulitis 'flare-up'. Case report.

    PubMed

    Matusow, R J

    1995-02-01

    Endodontic cellulitis involves facial swelling which can vary from mild to severe and can occur as a primary case or a flare-up following initial treatment of asymptomatic teeth with periapical lesions. The microbial spectrum in primary cases involves a significant mixture of anaerobic and facultative aerobic microbes, chiefly streptococci. In a previous study, cultures from flare-up cases, utilizing the same anaerobic techniques as in primary cases, revealed an absence of obligate anaerobes and an 80 per cent incidence of facultative aerobic streptococci. These cases also revealed a significant time lapse from onset of symptoms to the cellulitis phase. No sex or age factors were noted in the primary or flare-up cases. The purpose of this case report is to restate a traditional theory, namely, the alteration of the oxidation/reduction potential (Eh), as a major factor for endodontic cellulitis flare-ups; to confirm the pathogenic potential of oral facultative streptococci; and that asymptomatic endodontic lesions tend to exist with mixed aerobic/anaerobic microbial flora.

  4. On the Origin of Long-duration Solar Gamma-ray Flares and Their Connection with SEPs

    NASA Astrophysics Data System (ADS)

    Bernstein, V.; Winter, L. M.; Cliver, E. W.; Omodei, N.; Pesce-Rollins, M.

    2016-12-01

    The mechanism producing long-duration solar gamma-ray events (LDGREs) is unresolved. Such events are characterized by high-energy (>100 MeV) pion-decay emission that can be detected for up to 10 hours after the flare impulsive phase. Candidate processes include: (1) prolonged acceleration/trapping of high-energy (> 300 MeV) protons in flare loops and (2) precipitation of energetic protons to the Sun's surface from the CME-driven coronal shock waves. LDGREs, or events with delayed/prolonged pion-dominated emission, have been detected by the SMM GRS, GRO EGRET, and Fermi LAT. To gain insight on their origin, we examine associated GOES X-ray bursts, LASCO CMEs, Wind Waves low-frequency radio bursts, and GOES high-energy proton events, and compare the properties of these various phenomena with the intensities and durations of the observed LDGREs.

  5. Multi-thermal observations of the 2010 October 16 flare:heating of a ribbon via loops, or a blast wave?

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Inglis, A.; Aschwanden, M.; Dennis, B.

    2011-05-01

    On 2010 October 16th SDO/AIA observed its first flare using automatic exposure control. Coincidentally, this flare also exhibited a large number of interesting features. Firstly, a large ribbon significantly to the solar west of the flare kernel was ignited and was visible in all AIA wavelengths, posing the question as to how this energy was deposited and how it relates to the main flare site. A faint blast wave also emanates from the flare kernel, visible in AIA and observed traveling to the solar west at an estimated speed of 1000 km/s. This blast wave is associated with a weak white-light CME observed with STEREO B and a Type II radio burst observed from Green Bank Observatory (GBSRBS). One possibility is that this blast wave is responsible for the heating of the ribbon. However, closer scrutiny reveals that the flare site and the ribbon are in fact connected magnetically via coronal loops which are heated during the main energy release. These loops are distinct from the expected hot, post-flare loops present within the main flare kernel. RHESSI spectra indicate that these loops are heated to approximately 10 MK in the immediate flare aftermath. Using the multi-temperature capabilities of AIA in combination with RHESSI, and by employing the cross-correlation mapping technique, we are able to measure the loop temperatures as a function of time over several post-flare hours and hence measure the loop cooling rate. We find that the time delay between the appearance of loops in the hottest channel, 131 A, and the cool 171 A channel, is 70 minutes. Yet the causality of this event remains unclear. Is the ribbon heated via these interconnected loops or via a blast wave?

  6. Coronal loops and active region structure

    NASA Technical Reports Server (NTRS)

    Webb, D. F.; Zirin, H.

    1981-01-01

    Synoptic H-alpha Ca K, magnetograph and Skylab soft X-ray and EUV data were compared for the purpose of identifying the basic coronal magnetic structure of loops in a 'typical' active region and studying its evolution. A complex of activity in July 1973, especially McMath 12417, was emphasized. The principal results are: (1) most of the brightest loops connected the bright f plage to either the sunspot penumbra or to p satellite spots; no non-flaring X-ray loops end in umbrae; (2) short, bright loops had one or both ends in regions of emergent flux, strong field or high field gradients; (3) stable, strongly sheared loop arcades formed over filaments; (4) EFRs were always associated with compact X-ray arcades; and (5) loops connecting to other active regions had their bases in outlying plage of weak field strength in McM 417 where H-alpha fibrils marked the direction of the loops

  7. History and Development of Coronal Mass Ejections as a Key Player in Solar Terrestrial Relationship

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    Coronal mass ejections (CMEs) are relatively a recently discovered phenomenon in 1971, some 15 years into the Space Era. It took another two decades to realize that CMEs are the most important players in solar terrestrial relationship as the root cause of severe weather in Earths space environment. CMEs are now counted among the major natural hazards because they cause large solar energetic particle (SEP) events and major geomagnetic storms, both of which pose danger to humans and their technology in space and ground. Geomagnetic storms discovered in the 1700s, solar flares discovered in the 1800s, and SEP events discovered in the 1900s are all now found to be closely related to CMEs via various physical processes occurring at various locations in and around CMEs, when they interact with the ambient medium. This article identifies a number of key developments that preceded the discovery of white-light CMEs suggesting that CMEs were waiting to be discovered. The last two decades witnessed an explosion of CME research following the launch of the Solar and Heliospheric Observatory mission in 1995, resulting in the establishment of a full picture of CMEs.

  8. OBSERVATIONS OF ENHANCED EXTREME ULTRAVIOLET CONTINUA DURING AN X-CLASS SOLAR FLARE USING SDO/EVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, Ryan O.; Mathioudakis, Mihalis; Keenan, Francis P.

    2012-03-20

    Observations of extreme ultraviolet (EUV) emission from an X-class solar flare that occurred on 2011 February 15 at 01:44 UT are presented, obtained using the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The complete EVE spectral range covers the free-bound continua of H I (Lyman continuum), He I, and He II, with recombination edges at 91.2, 50.4, and 22.8 nm, respectively. By fitting the wavelength ranges blueward of each recombination edge with an exponential function, light curves of each of the integrated continua were generated over the course of the flare, as was emission from the free-freemore » continuum (6.5-37 nm). The He II 30.4 nm and Ly{alpha} 121.6 nm lines, and soft X-ray (SXR; 0.1-0.8 nm) emission from GOES are also included for comparison. Each free-bound continuum was found to have a rapid rise phase at the flare onset similar to that seen in the 25-50 keV light curves from RHESSI, suggesting that they were formed by recombination with free electrons in the chromosphere. However, the free-free emission exhibited a slower rise phase seen also in the SXR emission from GOES, implying a predominantly coronal origin. By integrating over the entire flare the total energy emitted via each process was determined. We find that the flare energy in the EVE spectral range amounts to at most a few percent of the total flare energy, but EVE gives us a first comprehensive look at these diagnostically important continuum components.« less

  9. Comparative study of x ray and microwave emissions during solar flares

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.

    1993-01-01

    The work supported by the grant consisted of two projects. The first project involved making detailed case studies of two flares using SMM data in conjunction with ground based observations. The first flare occurred at 1454 UT on June 20, 1989 and involved the eruption of a prominence near the limb. In the study we used data from many wavelength regimes including the radio, H-alpha, hard X-rays, and soft X-rays. We used a full gyrosynchrotron code to model the apparent presence of a 1.4 GHz source early in the flare that was in the form of a large coronal loop. The model results lead us to conclude that the initial acceleration occurs in small, dense loops which also produced the flare's hard X-ray emission. We also found evidence that a source at 1.4 GHz later in the event was due to second harmonic plasma emission. This source was adjacent to a leg of the prominence and comes from a dense column of material in the magnetic structure supporting the prominence. Finally, we investigated a source of microwaves and soft X-rays, occurring approximately 10 min after the hard X-ray peak, and calculate a lower limit for the density of the source. The second flare that was studied occurred at 2156 UT on June 20, 1989 and was observed with the VLA and the Owens Valley Radio Observatory (OVRO) Frequency Agile Array. We have developed a gyrosynchrotron model of the sources at flare peak using a new gyrosynchrotron approximation which is valid at very low harmonics of the gyrofrequency. We found that the accelerated particle densities of the sources decreased much more with radius from the source center than had been supposed in previous work, while the magnetic field varied less. We also used the available data to analyze a highly polarized source which appeared late in the flare. The second project involved compiling a statistical base for the relative timing of the hard X-ray peak, the turbulent and blue-shift velocities inferred from soft X-ray line emissions observed by

  10. Evolution of Photospheric Flow and Magnetic Fields Associated with the 2015 June 22 M6.5 Flare

    NASA Astrophysics Data System (ADS)

    Wang, Jiasheng; Liu, Chang; Deng, Na; Wang, Haimin

    2018-02-01

    The evolution of photospheric flow and magnetic fields before and after flares can provide important information regarding the flare triggering and back-reaction processes. However, such studies on the flow field are rare due to the paucity of high-resolution observations covering the entire flaring period. Here we study the structural evolution of penumbra and shear flows associated with the 2015 June 22 M6.5 flare in NOAA AR 12371, using high-resolution imaging observation in the TiO band taken by the 1.6 m Goode Solar Telescope at Big Bear Solar Observatory, with the aid of the differential affine velocity estimator method for flow tracking. The accompanied photospheric vector magnetic field changes are also analyzed using data from the Helioseismic and Magnetic Imager. As a result, we found, for a penumbral segment in the negative field adjacent to the magnetic polarity inversion line (PIL), an enhancement of penumbral flows (up to an unusually high value of ∼2 km s‑1) and extension of penumbral fibrils after the first peak of the flare hard X-ray emission. We also found an area at the PIL, which is co-spatial with a precursor brightening kernel, that exhibits a gradual increase of shear flow velocity (up to ∼0.9 km s‑1) after the flare. The enhancing penumbral and shear flow regions are also accompanied by an increase of horizontal field and decrease of magnetic inclination angle (measured from the solar surface). These results are discussed in the context of the theory of back-reaction of coronal restructuring on the photosphere as a result of flare energy release.

  11. X4 Flare was no Shrimp

    NASA Image and Video Library

    2014-02-26

    An active region at the edge of the Sun blew out an X4 flare (one of the largest of the solar cycle) and a coronal mass ejection on Feb. 25, 2014. The still image of the ejected plasma (taken at 00:45 UT) shows it curled like a shrimp, but this eruption was no shrimp: it was powerful. The images seen here are a combination of two wavelengths of extreme ultraviolet light (171 and 304 Angstroms). The video clip covers about three hours of activity. Credit: NASA/GSFC/Solar Dynamics Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Time delays in the nonthermal radiation of solar flares according to observations of the CORONAS-F satellite

    NASA Astrophysics Data System (ADS)

    Tsap, Yu. T.; Stepanov, A. V.; Kashapova, L. K.; Myagkova, I. N.; Bogomolov, A. V.; Kopylova, Yu. G.; Goldvarg, T. B.

    2016-07-01

    In 2001-2003, the X-ray and microwave observations of ten solar flares of M- and X-classes were carried out by the CORONAS-F orbital station, the RSTN Sun service, and Nobeyama radio polarimeters. Based on these observations, a correlation analysis of time profiles of nonthermal radiation was performed. On average, hard X-ray radiation outstrips the microwave radiation in 9 events, i.e., time delays are positive. The appearance of negative delays is associated with effective scattering of accelerated electrons in pitch angles, where the length of the free path of a particle is less than the half-length of a flare loop. The additional indications are obtained in favor of the need to account for the effect of magnetic mirrors on the dynamics of energetic particles in the coronal arches.

  13. Transient behavior of a flare-associated solar wind. I - Gas dynamics in a radial open field region

    NASA Technical Reports Server (NTRS)

    Nagai, F.

    1984-01-01

    A numerical investigation is conducted into the way in which a solar wind model initially satisfying both steady state and energy balance conditions is disturbed and deformed, under the assumption of heating that correspoonds to the energy release of solar flares of an importance value of approximately 1 which occur in radial open field regions. Flare-associated solar wind transient behavior is modeled for 1-8 solar radii. The coronal temperature around the heat source region rises, and a large thermal conductive flux flows inward to the chromosphere and outward to interplanetary space along field lines. The speed of the front of expanding chromospheric material generated by the impingement of the conduction front on the upper chromosphere exceeds the local sound velocity in a few minutes and eventually exceeds 100 million cm/sec.

  14. Observations of the Coronal Mass Ejection with a Complex Acceleration Profile

    NASA Astrophysics Data System (ADS)

    Reva, A. A.; Kirichenko, A. S.; Ulyanov, A. S.; Kuzin, S. V.

    2017-12-01

    We study the coronal mass ejection (CME) with a complex acceleration profile. The event occurred on 2009 April 23. It had an impulsive acceleration phase, an impulsive deceleration phase, and a second impulsive acceleration phase. During its evolution, the CME showed signatures of different acceleration mechanisms: kink instability, prominence drainage, flare reconnection, and a CME–CME collision. The special feature of the observations is the usage of the TESIS EUV telescope. The instrument could image the solar corona in the Fe 171 Å line up to a distance of 2 {R}ȯ from the center of the Sun. This allows us to trace the CME up to the LASCO/C2 field of view without losing the CME from sight. The onset of the CME was caused by kink instability. The mass drainage occurred after the kink instability. The mass drainage played only an auxiliary role: it decreased the CME mass, which helped to accelerate the CME. The first impulsive acceleration phase was caused by the flare reconnection. We observed the two-ribbon flare and an increase of the soft X-ray flux during the first impulsive acceleration phase. The impulsive deceleration and the second impulsive acceleration phases were caused by the CME–CME collision. The studied event shows that CMEs are complex phenomena that cannot be explained with only one acceleration mechanism. We should seek a combination of different mechanisms that accelerate CMEs at different stages of their evolution.

  15. Relationship between the start times of flares and CMEs to the time of potential radiation hazards

    NASA Astrophysics Data System (ADS)

    Kang, G.; Zheng, Y.; Kuznetsova, M. M.

    2013-12-01

    Solar flares, short-term outbursts of energy of the Sun, and coronal mass ejections (CME), massive bursts of solar matter, are two solar phenomena that are known to increase solar energetic particles in space. Increased solar energetic particles cause immense radiation that poses a serious threat to astronauts in space, radio communication signals, and passengers on high-latitude flights on the Earth. The relationship between the start times of flares and CMEs to the time of potential radiation hazards was investigated to determine how much warning time is available. Additionally, this project compared the difference between these relationships for four energy levels of solar energetic particles: proton flux exceeding 10 MeV, 30 MeV, 50 MeV and 100 MeV. This project gathered data of 22 recent SEP events between 2010 and 2012 and the parameters of associated CMEs and flares. Through the use of IDL (Interactive Data Language) programming, thorough analysis was conducted, including 2-sample t-tests and Kruskal-Wallis tests for 2 or more samples. The average lead time to warn humans of possible radiation hazard from the detection of a flare and a CME occurrence was found to be around 12 to 20 hours. The lead time was the greatest for the lowest energy level, though the differences in energy levels and that between the lead times for CME and flares were found to be statistically insignificant with p-values exceeding the alpha value of 0.20.

  16. Effect of enhanced x-ray flux on the ionosphere over Cyprus during solar flares

    NASA Astrophysics Data System (ADS)

    Mostafa, Md. Golam; Haralambous, Haris

    2015-06-01

    In this work we study the effect of solar flares on the ionosphere over Cyprus. Solar flares are impulsive solar activity events usually coupled with Coronal Mass Ejection (CME). The arrival and the subsequent impact of solar flares on geospace, following an eruption on the Sun's surface is almost immediate (around 9 min) whereas the impact of CMEs is rather delayed (2-3 days) as the former is based on X-ray radiation whereas the latter phenomenon is related with particles and magnetic fields travelling at lower speeds via the Solar Wind. The penetration of X-rays down to the Dregion following such an event enhances the electron density. This increase can be monitored by ionosondes, which measure the electron density up to the maximum electron density NmF2. The significance of this increase lies on the increase of signal absorption causing limited window of operating frequencies for HF communications. In this study the effect of enhanced X-ray flux on the ionosphere over Cyprus during solar flares has been investigated. To establish the correlation and extent of impact on different layers, data of X-ray intensity from Geostationary Operational Environmental Satellite (GOES) and ionospheric characteristics (D & F layer) over Nicosia station (35° N, 33° E) were examined for all solar flares during the period 2011-2014. The analysis revealed a positive and good correlation between frequency of minimum reflection, fmin and X-ray intensity for D layer demonstrating that X-rays play a dominant role in the ionization of lower ionosphere. Hence, X-ray flux can be used as a good proxy for studying the solar flare effects on lower ionosphere. The correlation coefficient between maximum electron density of F layer, NmF2 and X-ray intensity was found to be poor.

  17. MAGNETIC NON-POTENTIALITY OF SOLAR ACTIVE REGIONS AND PEAK X-RAY FLUX OF THE ASSOCIATED FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Gosain, Sanjay, E-mail: pvk@prl.res.i, E-mail: sgosain@prl.res.i

    Predicting the severity of solar eruptive phenomena such as flares and coronal mass ejections remains a great challenge despite concerted efforts to do so over the past several decades. However, the advent of high-quality vector magnetograms obtained from Hinode (SOT/SP) has increased the possibility of meeting this challenge. In particular, the spatially averaged signed shear angle (SASSA) seems to be a unique parameter for quantifying the non-potentiality of active regions. We demonstrate the usefulness of the SASSA for predicting flare severity. For this purpose, we present case studies of the evolution of magnetic non-potentiality using 115 vector magnetograms of fourmore » active regions, namely, ARs NOAA 10930, 10960, 10961, and 10963 during 2006 December 8-15, 2007 June 3-10, 2007 June 28-July 5, and 2007 July 10-17, respectively. The NOAA ARs 10930 and 10960 were very active and produced X and M class flares, respectively, along with many smaller X-ray flares. On the other hand, the NOAA ARs 10961 and 10963 were relatively less active and produced only very small (mostly A- and B-class) flares. For this study, we have used a large number of high-resolution vector magnetograms obtained from Hinode (SOT/SP). Our analysis shows that the peak X-ray flux of the most intense solar flare emanating from the active regions depends on the magnitude of the SASSA at the time of the flare. This finding of the existence of a lower limit of the SASSA for a given class of X-ray flares will be very useful for space weather forecasting. We have also studied another non-potentiality parameter called the mean weighted shear angle (MWSA) of the vector magnetograms along with the SASSA. We find that the MWSA does not show such distinction as the SASSA for upper limits of the GOES X-ray flux of solar flares; however, both the quantities show similar trends during the evolution of all active regions studied.« less

  18. FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Bale, S. D.; Carter, T. A.; Crocker, N.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.; Belova, E.; Ellis, R.; Fox, W. R., II; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Que, W.; Ren, Y.; Titus, P.; Yamada, M.; Yoo, J.

    2014-12-01

    A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE, is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to space, solar and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) at Princeton (http://mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to space and solar plasmas. The motivating major physics questions, the construction status, and the planned collaborative research especially with space and solar research communities will be discussed.

  19. Foretelling Flares and Solar Energetic Particle Events: the FORSPEF tool

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Anastasios; Papaioannou, Athanasios; Sandberg, Ingmar; Georgoulis, Manolis K.; Tziotziou, Kostas; Jiggens, Piers

    2017-04-01

    A novel integrated prediction system, for both solar flares (SFs) and solar energetic particle (SEP) events is being presented. The Forecasting Solar Particle Events and Flares (FORSPEF) provides forecasting of solar eruptive events, such as SFs with a projection to coronal mass ejections (CMEs) (occurrence and velocity) and the likelihood of occurrence of a SEP event. In addition, FORSPEF, also provides nowcasting of SEP events based on actual SF and CME near real-time data, as well as the complete SEP profile (peak flux, fluence, rise time, duration) per parent solar event. The prediction of SFs relies on a morphological method: the effective connected magnetic field strength (Beff); it is based on an assessment of potentially flaring active-region (AR) magnetic configurations and it utilizes sophisticated analysis of a large number of AR magnetograms. For the prediction of SEP events new methods have been developed for both the likelihood of SEP occurrence and the expected SEP characteristics. In particular, using the location of the flare (longitude) and the flare size (maximum soft X-ray intensity), a reductive statistical method has been implemented. Moreover, employing CME parameters (velocity and width), proper functions per width (i.e. halo, partial halo, non-halo) and integral energy (E>30, 60, 100 MeV) have been identified. In our technique warnings are issued for all > C1.0 soft X-ray flares. The prediction time in the forecasting scheme extends to 24 hours with a refresh rate of 3 hours while the respective prediction time for the nowcasting scheme depends on the availability of the near real-time data and falls between 15-20 minutes for solar flares and 6 hours for CMEs. We present the modules of the FORSPEF system, their interconnection and the operational set up. The dual approach in the development of FORPSEF (i.e. forecasting and nowcasting scheme) permits the refinement of predictions upon the availability of new data that characterize changes on

  20. OSO-8 observations of the impulsive phase of solar flares in the transition-zone and corona

    NASA Technical Reports Server (NTRS)

    Lites, B. W.; Bruner, E. C., Jr.; Wolfson, C. J.

    1981-01-01

    Several solar flares were observed from their onset in C IV 1548.2 A and 1-8 A X-rays using instruments on OSO-8. It is found that impulsive brightening in C IV is often accompanied by redshifts, interpreted as downflows, of the order of 80 km/s. The maximum soft X-ray intensity usually arrives several minutes after the maximum C IV intensity. The most energetic C IV event observed shows a small blueshift just before reaching maximum intensity; estimates of the mass flux associated with this upflow through the transition zone are consistent with the increase of mass in the coronal loops as observed in soft X-rays. Finally, it is suggested that the frequent occurrence of violent dynamical processes at the onset of the flare is associated with the initial energy release mechanism.