Sample records for major histocompatibility gene

  1. Polymorphism and selection in the major histocompatibility complex DRA and DQA genes in the family Equidae.

    PubMed

    Janova, Eva; Matiasovic, Jan; Vahala, Jiri; Vodicka, Roman; Van Dyk, Enette; Horin, Petr

    2009-07-01

    The major histocompatibility complex genes coding for antigen binding and presenting molecules are the most polymorphic genes in the vertebrate genome. We studied the DRA and DQA gene polymorphism of the family Equidae. In addition to 11 previously reported DRA and 24 DQA alleles, six new DRA sequences and 13 new DQA alleles were identified in the genus Equus. Phylogenetic analysis of both DRA and DQA sequences provided evidence for trans-species polymorphism in the family Equidae. The phylogenetic trees differed from species relationships defined by standard taxonomy of Equidae and from trees based on mitochondrial or neutral gene sequence data. Analysis of selection showed differences between the less variable DRA and more variable DQA genes. DRA alleles were more often shared by more species. The DQA sequences analysed showed strong amongst-species positive selection; the selected amino acid positions mostly corresponded to selected positions in rodent and human DQA genes.

  2. Genomic polymorphism, recombination, and linkage disequilibrium in human major histocompatibility complex-encoded antigen-processing genes.

    PubMed Central

    van Endert, P M; Lopez, M T; Patel, S D; Monaco, J J; McDevitt, H O

    1992-01-01

    Recently, two subunits of a large cytosolic protease and two putative peptide transporter proteins were found to be encoded by genes within the class II region of the major histocompatibility complex (MHC). These genes have been suggested to be involved in the processing of antigenic proteins for presentation by MHC class I molecules. Because of the high degree of polymorphism in MHC genes, and previous evidence for both functional and polypeptide sequence polymorphism in the proteins encoded by the antigen-processing genes, we tested DNA from 27 consanguineous human cell lines for genomic polymorphism by restriction fragment length polymorphism (RFLP) analysis. These studies demonstrate a strong linkage disequilibrium between TAP1 and LMP2 RFLPs. Moreover, RFLPs, as well as a polymorphic stop codon in the telomeric TAP2 gene, appear to be in linkage disequilibrium with HLA-DR alleles and RFLPs in the HLA-DO gene. A high rate of recombination, however, seems to occur in the center of the complex, between the TAP1 and TAP2 genes. Images PMID:1360671

  3. Isolation and characterization of major histocompatibility complex class II B genes in cranes.

    PubMed

    Kohyama, Tetsuo I; Akiyama, Takuya; Nishida, Chizuko; Takami, Kazutoshi; Onuma, Manabu; Momose, Kunikazu; Masuda, Ryuichi

    2015-11-01

    In this study, we isolated and characterized the major histocompatibility complex (MHC) class II B genes in cranes. Genomic sequences spanning exons 1 to 4 were amplified and determined in 13 crane species and three other species closely related to cranes. In all, 55 unique sequences were identified, and at least two polymorphic MHC class II B loci were found in most species. An analysis of sequence polymorphisms showed the signature of positive selection and recombination. A phylogenetic reconstruction based on exon 2 sequences indicated that trans-species polymorphism has persisted for at least 10 million years, whereas phylogenetic analyses of the sequences flanking exon 2 revealed a pattern of concerted evolution. These results suggest that both balancing selection and recombination play important roles in the crane MHC evolution.

  4. Major histocompatibility complex variation in the endangered Przewalski's horse.

    PubMed Central

    Hedrick, P W; Parker, K M; Miller, E L; Miller, P S

    1999-01-01

    The major histocompatibility complex (MHC) is a fundamental part of the vertebrate immune system, and the high variability in many MHC genes is thought to play an essential role in recognition of parasites. The Przewalski's horse is extinct in the wild and all the living individuals descend from 13 founders, most of whom were captured around the turn of the century. One of the primary genetic concerns in endangered species is whether they have ample adaptive variation to respond to novel selective factors. In examining 14 Przewalski's horses that are broadly representative of the living animals, we found six different class II DRB major histocompatibility sequences. The sequences showed extensive nonsynonymous variation, concentrated in the putative antigen-binding sites, and little synonymous variation. Individuals had from two to four sequences as determined by single-stranded conformation polymorphism (SSCP) analysis. On the basis of the SSCP data, phylogenetic analysis of the nucleotide sequences, and segregation in a family group, we conclude that four of these sequences are from one gene (although one sequence codes for a nonfunctional allele because it contains a stop codon) and two other sequences are from another gene. The position of the stop codon is at the same amino-acid position as in a closely related sequence from the domestic horse. Because other organisms have extensive variation at homologous loci, the Przewalski's horse may have quite low variation in this important adaptive region. PMID:10430594

  5. Isolation and characterization of major histocompatibility complex class IIB genes from the nurse shark.

    PubMed

    Bartl, S; Weissman, I L

    1994-01-04

    The major histocompatibility complex (MHC) contains a set of linked genes which encode cell surface proteins involved in the binding of small peptide antigens for their subsequent recognition by T lymphocytes. MHC proteins share structural features and the presence and location of polymorphic residues which play a role in the binding of antigens. In order to compare the structure of these molecules and gain insights into their evolution, we have isolated two MHC class IIB genes from the nurse shark, Ginglymostoma cirratum. Two clones, most probably alleles, encode proteins which differ by 13 amino acids located in the putative antigen-binding cleft. The protein structure and the location of polymorphic residues are similar to their mammalian counterparts. Although these genes appear to encode a typical MHC protein, no T-cell-mediated responses have been demonstrated in cartilaginous fish. The nurse shark represents the most phylogenetically primitive organism in which both class IIA [Kasahara, M., Vazquez, M., Sato, K., McKinney, E.C. & Flajnik, M.F. (1992) Proc. Natl. Acad. Sci USA 89, 6688-6692] and class IIB genes, presumably encoding the alpha/beta heterodimer, have been isolated.

  6. Gene duplication and fragmentation in the zebra finch major histocompatibility complex

    PubMed Central

    2010-01-01

    Background Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. Results The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. Conclusion The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene

  7. Gene duplication and fragmentation in the zebra finch major histocompatibility complex.

    PubMed

    Balakrishnan, Christopher N; Ekblom, Robert; Völker, Martin; Westerdahl, Helena; Godinez, Ricardo; Kotkiewicz, Holly; Burt, David W; Graves, Tina; Griffin, Darren K; Warren, Wesley C; Edwards, Scott V

    2010-04-01

    Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the

  8. Transcriptional and posttranscriptional regulation of class I major histocompatibility complex genes following transformation with human adenoviruses.

    PubMed Central

    Shemesh, J; Rotem-Yehudar, R; Ehrlich, R

    1991-01-01

    Transformation of rodent cells by human adenoviruses is a well-established model system for studying the expression, regulation, and function of class I antigens. In this report, we demonstrate that the highly oncogenic adenovirus type 12 operates at the transcriptional and posttranscriptional levels in regulating the activity of major histocompatibility complex class I genes and products in transformed cells. Adenovirus type 12 suppresses the cell surface expression of class I antigens in most cell lines. Nevertheless, in a number of cell lines suppression is the result of reduction in the amount of stable specific mRNA, while in another group of cell lines suppression involves interference with processing of a posttranscriptional product. The two mechanisms operate both for the endogenous H-2 genes and for a miniature swine class I transgene that is expressed in the cells. Images PMID:1895404

  9. Reevaluation of the major histocompatibility complex genes of the NOD-progenitor CTS/Shi strain.

    PubMed

    Mathews, C E; Graser, R T; Serreze, D V; Leiter, E H

    2000-01-01

    The common Kd and/or Db alleles of NOD mice contribute to the development of autoimmune diabetes, but their respective contributions are unresolved. The major histocompatibility complex (MHC) of the CTS/Shi mouse, originally designated as H2ct, shares MHC class II region identity with the H2g7 haplotype of NOD mice. However, CTS mice were reported to express distinct but undefined MHC class I gene products. Because diabetes frequency was reduced 56% in females of a NOD stock congenic for H2ct, this partial resistance may have derived from the MHC class I allelic differences. In the present report, we use a combination of serologic analysis and sequencing of MHC class I cDNAs to establish that NOD/Lt and CTS/Shi share a common H2-Kd allele but differ at the H2-D end of the MHC complex. The H2-D allele of CTS/Shi was identified as the rare H2-Ddx recently described in ALR/Lt, another NOD-related strain. These results in mouse model systems show that multiple MHC genes confer diabetes resistance and suggest that at least one of the protective MHC or MHC-linked genes in CTS mice may be at the H2-D end of the complex.

  10. Persistent Ehrlichia chaffeensis infection occurs in the absence of functional major histocompatibility complex class II genes

    NASA Technical Reports Server (NTRS)

    Ganta, Roman Reddy; Wilkerson, Melinda J.; Cheng, Chuanmin; Rokey, Aaron M.; Chapes, Stephen K.

    2002-01-01

    Human monocytic ehrlichiosis is an emerging tick-borne disease caused by the rickettsia Ehrlichia chaffeensis. We investigated the impact of two genes that control macrophage and T-cell function on murine resistance to E. chaffeensis. Congenic pairs of wild-type and toll-like receptor 4 (tlr4)- or major histocompatibility complex class II (MHC-II)-deficient mice were used for these studies. Wild-type mice cleared the infection within 2 weeks, and the response included macrophage activation and the synthesis of E. chaffeensis-specific Th1-type immunoglobulin G response. The absence of a functional tlr4 gene depressed nitric oxide and interleukin 6 secretion by macrophages and resulted in short-term persistent infections for > or =30 days. In the absence of MHC-II alleles, E. chaffeensis infections persisted throughout the entire 3-month evaluation period. Together, these data suggest that macrophage activation and cell-mediated immunity, orchestrated by CD4(+) T cells, are critical for conferring resistance to E. chaffeensis.

  11. The Major Histocompatibility Complex in Bovines: A Review

    PubMed Central

    Behl, Jyotsna Dhingra; Verma, N. K.; Tyagi, Neha; Mishra, Priyanka; Behl, Rahul; Joshi, B. K.

    2012-01-01

    Productivity in dairy cattle and buffaloes depends on the genetic factors governing the production of milk and milk constituents as well as genetic factors controlling disease resistance or susceptibility. The immune system is the adaptive defense system that has evolved in vertebrates to protect them from invading pathogens and also carcinomas. It is remarkable in the sense that it is able to generate an enormous variety of cells and biomolecules which interact with each other in numerous ways to form a complex network that helps to recognize, counteract, and eliminate the apparently limitless number of foreign invading pathogens/molecules. The major histocompatibility complex which is found to occur in all mammalian species plays a central role in the development of the immune system. It is an important candidate gene involved in susceptibility/resistance to various diseases. It is associated with intercellular recognition and with self/nonself discrimination. It plays major role in determining whether transplanted tissue will be accepted as self or rejected as foreign. PMID:23738132

  12. In vivo immunologic selection of class I major histocompatibility complex gene deletion variants from the B16-BL6 melanoma.

    PubMed

    Talmadge, J E; Talmadge, C B; Zbar, B; McEwen, R; Meeker, A K; Tribble, H

    1987-06-01

    The mechanism by which tumor allografts escape host immunologic attack was investigated. B16-BL6 cells (the bladder 6 subline of the B16 melanoma) (H-2b) were transfected with a gene (Dd) encoding an allogeneic class I major histocompatibility complex antigen. Clones that expressed Dd antigen were injected into the footpads of nonimmune syngeneic mice, syngeneic immune mice, and nude mice. Under conditions of immunologic selection a clone that contained multiple copies of the transfected gene formed variants that lacked the transfected gene. Primary tumors and pulmonary metastases of immunized mice and pulmonary metastases of nonimmunized mice had lost the Dd gene and, in most cases, all of the associated plasmid. In contrast, in immunodeficient nude mice, primary tumors and pulmonary metastases retained the Dd gene and the associated plasmid. Deletion of genes encoding cell surface antigens may be one of the mechanisms by which allogeneic tumors escape immunologic attack.

  13. Genes of the class II and class III major histocompatibility complex are associated with typhoid fever in Vietnam.

    PubMed

    Dunstan, S J; Stephens, H A; Blackwell, J M; Duc, C M; Lanh, M N; Dudbridge, F; Phuong, C X; Luxemburger, C; Wain, J; Ho, V A; Hien, T T; Farrar, J; Dougan, G

    2001-01-15

    The influence of genes of the major histocompatibility complex (MHC) class II and class III loci on typhoid fever susceptibility was investigated. Individuals with blood culture-confirmed typhoid fever and control subjects from 2 distinct geographic locations in southern Vietnam were genotyped for HLA-DRB1 and HLA-DQB1 alleles, the gene that encodes tumor necrosis factor (TNF)-alpha (TNFA [-238] and TNFA [-308]), the gene that encodes lymphotoxin-alpha, and alleles of the TNF-alpha microsatellite. HLA-DRB1*0301/6/8, HLA-DQB1*0201-3, and TNFA*2 (-308) were associated with susceptibility to typhoid fever, whereas HLA-DRB1*04, HLA-DQB1*0401/2, and TNFA*1 (-308) were associated with disease resistance. The frequency of all possible haplotypes of the 3 individually associated loci were estimated and were found to be significantly different in typhoid case patients and control subjects (chi2=55.56, 32 df; P=.006). Haplotypes that were either protective (TNFA*1 [-308].DRB1*04) or predisposed individuals to typhoid fever (TNFA*2 [-308].DRB1*0301) were determined. This report identifies a genetic association in humans between typhoid fever and MHC class II and III genes.

  14. Selection and Trans-Species Polymorphism of Major Histocompatibility Complex Class II Genes in the Order Crocodylia

    PubMed Central

    Jaratlerdsiri, Weerachai; Isberg, Sally R.; Higgins, Damien P.; Miles, Lee G.; Gongora, Jaime

    2014-01-01

    Major Histocompatibility Complex (MHC) class II genes encode for molecules that aid in the presentation of antigens to helper T cells. MHC characterisation within and between major vertebrate taxa has shed light on the evolutionary mechanisms shaping the diversity within this genomic region, though little characterisation has been performed within the Order Crocodylia. Here we investigate the extent and effect of selective pressures and trans-species polymorphism on MHC class II α and β evolution among 20 extant species of Crocodylia. Selection detection analyses showed that diversifying selection influenced MHC class II β diversity, whilst diversity within MHC class II α is the result of strong purifying selection. Comparison of translated sequences between species revealed the presence of twelve trans-species polymorphisms, some of which appear to be specific to the genera Crocodylus and Caiman. Phylogenetic reconstruction clustered MHC class II α sequences into two major clades representing the families Crocodilidae and Alligatoridae. However, no further subdivision within these clades was evident and, based on the observation that most MHC class II α sequences shared the same trans-species polymorphisms, it is possible that they correspond to the same gene lineage across species. In contrast, phylogenetic analyses of MHC class II β sequences showed a mixture of subclades containing sequences from Crocodilidae and/or Alligatoridae, illustrating orthologous relationships among those genes. Interestingly, two of the subclades containing sequences from both Crocodilidae and Alligatoridae shared specific trans-species polymorphisms, suggesting that they may belong to ancient lineages pre-dating the divergence of these two families from the common ancestor 85–90 million years ago. The results presented herein provide an immunogenetic resource that may be used to further assess MHC diversity and functionality in Crocodylia. PMID:24503938

  15. Major Histocompatibility Complex Genes Map to Two Chromosomes in an Evolutionarily Ancient Reptile, the Tuatara Sphenodon punctatus

    PubMed Central

    Miller, Hilary C.; O’Meally, Denis; Ezaz, Tariq; Amemiya, Chris; Marshall-Graves, Jennifer A.; Edwards, Scott

    2015-01-01

    Major histocompatibility complex (MHC) genes are a central component of the vertebrate immune system and usually exist in a single genomic region. However, considerable differences in MHC organization and size exist between different vertebrate lineages. Reptiles occupy a key evolutionary position for understanding how variation in MHC structure evolved in vertebrates, but information on the structure of the MHC region in reptiles is limited. In this study, we investigate the organization and cytogenetic location of MHC genes in the tuatara (Sphenodon punctatus), the sole extant representative of the early-diverging reptilian order Rhynchocephalia. Sequencing and mapping of 12 clones containing class I and II MHC genes from a bacterial artificial chromosome library indicated that the core MHC region is located on chromosome 13q. However, duplication and translocation of MHC genes outside of the core region was evident, because additional class I MHC genes were located on chromosome 4p. We found a total of seven class I sequences and 11 class II β sequences, with evidence for duplication and pseudogenization of genes within the tuatara lineage. The tuatara MHC is characterized by high repeat content and low gene density compared with other species and we found no antigen processing or MHC framework genes on the MHC gene-containing clones. Our findings indicate substantial differences in MHC organization in tuatara compared with mammalian and avian MHCs and highlight the dynamic nature of the MHC. Further sequencing and annotation of tuatara and other reptile MHCs will determine if the tuatara MHC is representative of nonavian reptiles in general. PMID:25953959

  16. Major Histocompatibility Complex Genes Map to Two Chromosomes in an Evolutionarily Ancient Reptile, the Tuatara Sphenodon punctatus.

    PubMed

    Miller, Hilary C; O'Meally, Denis; Ezaz, Tariq; Amemiya, Chris; Marshall-Graves, Jennifer A; Edwards, Scott

    2015-05-07

    Major histocompatibility complex (MHC) genes are a central component of the vertebrate immune system and usually exist in a single genomic region. However, considerable differences in MHC organization and size exist between different vertebrate lineages. Reptiles occupy a key evolutionary position for understanding how variation in MHC structure evolved in vertebrates, but information on the structure of the MHC region in reptiles is limited. In this study, we investigate the organization and cytogenetic location of MHC genes in the tuatara (Sphenodon punctatus), the sole extant representative of the early-diverging reptilian order Rhynchocephalia. Sequencing and mapping of 12 clones containing class I and II MHC genes from a bacterial artificial chromosome library indicated that the core MHC region is located on chromosome 13q. However, duplication and translocation of MHC genes outside of the core region was evident, because additional class I MHC genes were located on chromosome 4p. We found a total of seven class I sequences and 11 class II β sequences, with evidence for duplication and pseudogenization of genes within the tuatara lineage. The tuatara MHC is characterized by high repeat content and low gene density compared with other species and we found no antigen processing or MHC framework genes on the MHC gene-containing clones. Our findings indicate substantial differences in MHC organization in tuatara compared with mammalian and avian MHCs and highlight the dynamic nature of the MHC. Further sequencing and annotation of tuatara and other reptile MHCs will determine if the tuatara MHC is representative of nonavian reptiles in general. Copyright © 2015 Miller et al.

  17. Characterization of HKE2: an ancient antigen encoded in the major histocompatibility complex.

    PubMed

    Ostrov, D A; Barnes, C L; Smith, L E; Binns, S; Brusko, T M; Brown, A C; Quint, P S; Litherland, S A; Roopenian, D C; Iczkowski, K A

    2007-02-01

    Genes at the centromeric end of the human leukocyte antigen region influence adaptive autoimmune diseases and cancer. In this study, we characterized protein expression of HKE2, a gene located in the centromeric portion of the class II region of the major histocompatibility complex encoding subunit 6 of prefoldin. Immunohistochemical analysis using an anti-HKE2 antibody indicated that HKE2 protein expression is dramatically upregulated as a consequence of activation. In a tissue microarray and in several tumors, HKE2 was overexpressed in certain cancers compared with normal counterparts. The localization of the HKE2 gene to the class II region, its cytoplasmic expression and putative protein-binding domain suggest that HKE2 may function in adaptive immunity and cancer.

  18. Analysis of Class I Major Histocompatibility Complex Gene Transcription in Human Tumors Caused by Human Papillomavirus Infection

    PubMed Central

    Gameiro, Steven F.; Zhang, Ali; Ghasemi, Farhad; Barrett, John W.; Mymryk, Joe S.

    2017-01-01

    Oncoproteins from high-risk human papillomaviruses (HPV) downregulate the transcription of the class I major histocompatibility complex (MHC-I) antigen presentation apparatus in tissue culture model systems. This could allow infected or transformed cells to evade the adaptive immune response. Using data from over 800 human cervical and head & neck tumors from The Cancer Genome Atlas (TCGA), we determined the impact of HPV status on the mRNA expression of all six MHC-I heavy chain genes, and the β2 microglobulin light chain. Unexpectedly, these genes were all expressed at high levels in HPV positive (HPV+) cancers compared with normal control tissues. Indeed, many of these genes were expressed at significantly enhanced levels in HPV+ tumors. Similarly, the transcript levels of several other components of the MHC-I peptide-loading complex were also high in HPV+ cancers. The coordinated expression of high mRNA levels of the MHC-I antigen presentation apparatus could be a consequence of the higher intratumoral levels of interferon γ in HPV+ carcinomas, which correlate with signatures of increased infiltration by T- and NK-cells. These data, which were obtained from both cervical and oral tumors in large human cohorts, indicates that HPV oncoproteins do not efficiently suppress the transcription of the antigen presentation apparatus in human tumors. PMID:28891951

  19. Evolution of major histocompatibility complex class I and class II genes in the brown bear

    PubMed Central

    2012-01-01

    Background Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia. PMID:23031405

  20. Evolution of major histocompatibility complex class I and class II genes in the brown bear.

    PubMed

    Kuduk, Katarzyna; Babik, Wiesław; Bojarska, Katarzyna; Sliwińska, Ewa B; Kindberg, Jonas; Taberlet, Pierre; Swenson, Jon E; Radwan, Jacek

    2012-10-02

    Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South-north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.

  1. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus

    PubMed Central

    2011-01-01

    Background Major Histocompatibility Complex (MHC) genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. Results We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA), DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli). We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS) averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN

  2. Spatial and temporal variation at major histocompatibility complex class IIB genes in the endangered Blakiston's fish owl.

    PubMed

    Kohyama, Tetsuo I; Omote, Keita; Nishida, Chizuko; Takenaka, Takeshi; Saito, Keisuke; Fujimoto, Satoshi; Masuda, Ryuichi

    2015-01-01

    Quantifying intraspecific genetic variation in functionally important genes, such as those of the major histocompatibility complex (MHC), is important in the establishment of conservation plans for endangered species. The MHC genes play a crucial role in the vertebrate immune system and generally show high levels of diversity, which is likely due to pathogen-driven balancing selection. The endangered Blakiston's fish owl (Bubo blakistoni) has suffered marked population declines on Hokkaido Island, Japan, during the past several decades due to human-induced habitat loss and fragmentation. We investigated the spatial and temporal patterns of genetic diversity in MHC class IIβ genes in Blakiston's fish owl, using massively parallel pyrosequencing. We found that the Blakiston's fish owl genome contains at least eight MHC class IIβ loci, indicating recent gene duplications. An analysis of sequence polymorphism provided evidence that balancing selection acted in the past. The level of MHC variation, however, was low in the current fish owl populations in Hokkaido: only 19 alleles were identified from 174 individuals. We detected considerable spatial differences in MHC diversity among the geographically isolated populations. We also detected a decline of MHC diversity in some local populations during the past decades. Our study demonstrated that the current spatial patterns of MHC variation in Blakiston's fish owl populations have been shaped by loss of variation due to the decline and fragmentation of populations, and that the short-term effects of genetic drift have counteracted the long-term effects of balancing selection.

  3. Histocompatibility type and immune responsiveness in random bred Hartley strain guinea pigs.

    PubMed

    Martin, W J; Ellman, L; Green, I; Benacerraf, B

    1970-12-01

    Outbred Hartley strain guinea pigs capable of responding immunologically to 2,4-dinitrophenylated poly-L-lysine were shown to display a histocompatibility specificity in common with inbred strain 2 guinea pigs. This histocompatibility specificity was not detected in guinea pigs unable to respond immunologically to DNP-PLL. The result suggests that the poly-L-lysine specific immune response gene is very closely linked or even identical with a gene determining a major histocompatibility antigen in guinea pigs.

  4. 'Good genes as heterozygosity': the major histocompatibility complex and mate choice in Atlantic salmon (Salmo salar).

    PubMed

    Landry, C; Garant, D; Duchesne, P; Bernatchez, L

    2001-06-22

    According to the theory of mate choice based on heterozygosity, mates should choose each other in order to increase the heterozygosity of their offspring. In this study, we tested the 'good genes as heterozygosity' hypothesis of mate choice by documenting the mating patterns of wild Atlantic salmon (Salmo salar) using both major histocompatibility complex (MHC) and microsatellite loci. Specifically, we tested the null hypotheses that mate choice in Atlantic salmon is not dependent on the relatedness between potential partners or on the MHC similarity between mates. Three parameters were assessed: (i) the number of shared alleles between partners (x and y) at the MHC (M(xy)), (ii) the MHC amino-acid genotypic distance between mates' genotypes (AA(xy)), and (iii) genetic relatedness between mates (r(xy)). We found that Atlantic salmon choose their mates in order to increase the heterozygosity of their offspring at the MHC and, more specifically, at the peptide-binding region, presumably in order to provide them with better defence against parasites and pathogens. This was supported by a significant difference between the observed and expected AA(xy) (p = 0.0486). Furthermore, mate choice was not a mechanism of overall inbreeding avoidance as genetic relatedness supported a random mating scheme (p = 0.445). This study provides the first evidence that MHC genes influence mate choice in fish.

  5. The Major Histocompatibility Complex and Autism Spectrum Disorder

    PubMed Central

    Needleman, Leigh A.; McAllister, A. Kimberley

    2015-01-01

    Autism spectrum disorder (ASD) is a complex disorder that appears to be caused by interactions between genetic changes and environmental insults during early development. A wide range of factors have been linked to the onset of ASD, but recently both genetic associations and environmental factors point to a central role for immune- related genes and immune responses to environmental stimuli. Specifically, many of the proteins encoded by the major histocompatibility complex (MHC) play a vital role in the formation, refinement, maintenance, and plasticity of the brain. Manipulations of levels of MHC molecules have illustrated how disrupted MHC signaling can significantly alter brain connectivity and function. Thus, an emerging hypothesis in our field is that disruptions in MHC expression in the developing brain caused by mutations and/or immune dysregulation may contribute to the altered brain connectivity and function characteristic of ASD. This review provides an overview of the structure and function of the three classes of MHC molecules in the immune system, healthy brain, and their possible involvement in ASD. PMID:22760919

  6. Canine parvovirus enteritis, canine distemper, and major histocompatibility complex genetic variation in Mexican wolves.

    PubMed

    Hedrick, Philip W; Lee, Rhonda N; Buchanan, Colleen

    2003-10-01

    The endangered Mexican wolf (Canis lupus baileyi) was recently reintroduced into Arizona and New Mexico (USA). In 1999 and 2000, pups from three litters that were part of the reintroduction program died of either canine parvovirus or canine distemper. Overall, half (seven of 14) of the pups died of either canine parvovirus or canine distemper. The parents and their litters were analyzed for variation at the class II major histocompatibility complex (MHC) gene DRB1. Similar MHC genes are related to disease resistance in other species. All six of the surviving pups genotyped for the MHC gene were heterozygous while five of the pups that died were heterozygous and one was homozygous. Resistance to pathogens is an important aspect of the management and long-term survival of endangered taxa, such as the Mexican wolf.

  7. Positive selection drives the evolution of a major histocompatibility complex gene in an endangered Mexican salamander species complex.

    PubMed

    Tracy, Karen E; Kiemnec-Tyburczy, Karen M; DeWoody, J Andrew; Parra-Olea, Gabriela; Zamudio, Kelly R

    2015-06-01

    Immune gene evolution can be critical to species survival in the face of infectious disease. In particular, polymorphism in the genes of the major histocompatibility complex (MHC) helps vertebrates combat novel and diverse pathogens by increasing the number of pathogen-derived proteins that can initiate the host's acquired immune response. In this study, we used a combination of presumably adaptive and neutral markers to investigate MHC evolution in populations of five salamander species within the Ambystoma velasci complex, a group consisting of 15 recently diverged species, several of which are endangered. We isolated 31 unique MHC class II β alleles from 75 total individuals from five species in this complex. MHC heterozygosity was significantly lower than expected for all five species, and we found no clear relationship between number of MHC alleles and species range, life history, or level of heterozygosity. We inferred a phylogeny representing the evolutionary history of Ambystoma MHC, with which we found signatures of positive selection on the overall gene, putative peptide-binding residues, and allelic lineages. We identified several instances of trans-species polymorphism, a hallmark of balancing selection observed in other groups of closely related species. In contrast, we did not detect comparable allelic diversity or signatures of selection on neutral loci. Additionally, we identified 17 supertypes among the 44 unique Ambystoma alleles, indicating that these sequences may encode functionally distinct MHC variants. We therefore have strong evidence that positive selection is a major evolutionary force driving patterns of MHC polymorphism in this recently radiated species complex.

  8. Immunoglobulin Heavy Chain Variable Region and Major Histocompatibility Region Genes Are Linked to Induced Graves' Disease in Females From Two Very Large Families of Recombinant Inbred Mice

    PubMed Central

    Aliesky, Holly; Banuelos, Bianca; Magana, Jessica; Williams, Robert W.; Rapoport, Basil

    2014-01-01

    Graves' hyperthyroidism is caused by antibodies to the TSH receptor (TSHR) that mimic thyroid stimulation by TSH. Stimulating TSHR antibodies and hyperthyroidism can be induced by immunizing mice with adenovirus expressing the human TSHR A-subunit. Prior analysis of induced Graves' disease in small families of recombinant inbred (RI) female mice demonstrated strong genetic control but did not resolve trait loci for TSHR antibodies or elevated serum T4. We investigated the genetic basis for induced Graves' disease in female mice of two large RI families and combined data with earlier findings to provide phenotypes for 178 genotypes. TSHR antibodies measured by inhibition of TSH binding to its receptor were highly significantly linked in the BXD set to the major histocompatibility region (chromosome 17), consistent with observations in 3 other RI families. In the LXS family, we detected linkage between T4 levels after TSHR-adenovirus immunization and the Ig heavy chain variable region (Igvh, chromosome 12). This observation is a key finding because components of the antigen binding region of Igs determine antibody specificity and have been previously linked to induced thyroid-stimulating antibodies. Data from the LXS family provide the first evidence in mice of a direct link between induced hyperthyroidism and Igvh genes. A role for major histocompatibility genes has now been established for genetic susceptibility to Graves' disease in both humans and mice. Future studies using arrays incorporating variation in the complex human Ig gene locus will be necessary to determine whether Igvh genes are also linked to Graves' disease in humans. PMID:25051451

  9. Major histocompatibility complex and other allergy-related candidate genes associated with insect bite hypersensitivity in Icelandic horses.

    PubMed

    Klumplerova, Marie; Vychodilova, Leona; Bobrova, Olga; Cvanova, Michaela; Futas, Jan; Janova, Eva; Vyskocil, Mirko; Vrtkova, Irena; Putnova, Lenka; Dusek, Ladislav; Marti, Eliane; Horin, Petr

    2013-04-01

    Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of insects. IBH is a multifactorial disease with contribution of genetic and environmental factors. Candidate gene association analysis of IBH was performed in a group of 89 Icelandic horses all born in Iceland and imported to Europe. Horses were classified in IBH-affected and non-affected based on clinical signs and history of recurrent dermatitis, and on the results of an in vitro sulfidoleukotriene (sLT)-release assay with Culicoides nubeculosus and Simulium vittatum extract. Different genetic markers were tested for association with IBH by the Fisher's exact test. The effect of the major histocompatibility complex (MHC) gene region was studied by genotyping five microsatellites spanning the MHC region (COR112, COR113, COR114, UM011 and UMN-JH34-2), and exon 2 polymorphisms of the class II Eqca-DRA gene. Associations with Eqca-DRA and COR113 were identified (p < 0.05). In addition, a panel of 20 single nucleotide polymorphisms (SNPs) in 17 candidate allergy-related genes was tested. During the initial screen, no marker from the panel was significantly (p < 0.05) associated with IBH. Five SNPs associated with IBH at p < 0.10 were therefore used for analysis of combined genotypes. Out of them, SNPs located in the genes coding for the CD14 receptor (CD14), interleukin 23 receptor (IL23R), thymic stromal lymphopoietin (TSLP) and transforming growth factor beta 3 (TGFB3) molecules were associated with IBH as parts of complex genotypes. These results are supported by similar associations and by expression data from different horse populations and from human studies.

  10. The nature of selection on the major histocompatibility complex.

    PubMed

    Apanius, V; Penn, D; Slev, P R; Ruff, L R; Potts, W K

    1997-01-01

    Only natural selection can account for the extreme genetic diversity of genes of the major histocompatibility complex (MHC). Although the structure and function of classic MHC genes is well understood at the molecular and cellular levels, there is controversy about how MHC diversity is selectively maintained. The diversifying selection can be driven by pathogen interactions and inbreeding avoidance mechanisms. Pathogen-driven selection can maintain MHC polymorphism based on heterozygote advantage or frequency-dependent selection due to pathogen evasion of MHC-dependent immune recognition. Empirical evidence demonstrates that specific MHC haplotypes are resistant to certain infectious agents, while susceptible to others. These data are consistent with both heterozygote advantage and frequency-dependent models. Additional research is needed to discriminate between these mechanisms. Infectious agents can precipitate autoimmunity and can potentially contribute to MHC diversity through molecular mimicry and by favoring immunodominance. MHC-dependent abortion and mate choice, based on olfaction, can also maintain MHC diversity and probably functions both to avoid genome-wide inbreeding and produce MHC-heterozygous offspring with increased immune responsiveness. Although this diverse set of hypotheses are often treated as competing alternatives, we believe that they all fit into a coherent, internally consistent thesis. It is likely that at least in some species, all of these mechanisms operate, leading to the extreme diversification found in MHC genes.

  11. Inferring the evolution of the major histocompatibility complex of wild pigs and peccaries using hybridisation DNA capture-based sequencing.

    PubMed

    Lee, Carol; Moroldo, Marco; Perdomo-Sabogal, Alvaro; Mach, Núria; Marthey, Sylvain; Lecardonnel, Jérôme; Wahlberg, Per; Chong, Amanda Y; Estellé, Jordi; Ho, Simon Y W; Rogel-Gaillard, Claire; Gongora, Jaime

    2018-06-01

    The major histocompatibility complex (MHC) is a key genomic model region for understanding the evolution of gene families and the co-evolution between host and pathogen. To date, MHC studies have mostly focused on species from major vertebrate lineages. The evolution of MHC classical (Ia) and non-classical (Ib) genes in pigs has attracted interest because of their antigen presentation roles as part of the adaptive immune system. The pig family Suidae comprises over 18 extant species (mostly wild), but only the domestic pig has been extensively sequenced and annotated. To address this, we used a DNA-capture approach, with probes designed from the domestic pig genome, to generate MHC data for 11 wild species of pigs and their closest living family, Tayassuidae. The approach showed good efficiency for wild pigs (~80% reads mapped, ~87× coverage), compared to tayassuids (~12% reads mapped, ~4× coverage). We retrieved 145 MHC loci across both families. Phylogenetic analyses show that the class Ia and Ib genes underwent multiple duplications and diversifications before suids and tayassuids diverged from their common ancestor. The histocompatibility genes mostly form orthologous groups and there is genetic differentiation for most of these genes between Eurasian and sub-Saharan African wild pigs. Tests of selection showed that the peptide-binding region of class Ib genes was under positive selection. These findings contribute to better understanding of the evolutionary history of the MHC, specifically, the class I genes, and provide useful data for investigating the immune response of wild populations against pathogens.

  12. Transduction of a Foreign Histocompatibility Gene into the Arterial Wall Induces Vasculitis

    NASA Astrophysics Data System (ADS)

    Nabel, Elizabeth G.; Plautz, Gregory; Nabel, Gary J.

    1992-06-01

    Autoimmune vasculitis represents a disease characterized by focal inflammation within arteries at multiple sites in the vasculature. Therapeutic interventions in this disease are empirical and often unsuccessful, and the mechanisms of immune injury are not well-defined. The direct transfer of recombinant genes and their expression in the arterial wall provides an opportunity to explore the pathogenesis and treatment of vascular disease. In this report, an animal model for vasculitis has been developed. Inflammation has been elicited by direct gene transfer of a foreign class I major histocompatibility complex gene, HLA-B7, to specific sites in porcine arteries. Transfer and expression of this recombinant gene was confirmed by a polymerase chain reaction and immunohistochemistry, and cytolytic T cells specific for HLA-B7 were detected. These findings demonstrate that expression of a recombinant gene in the vessel wall can induce a focal immune response and suggest that vessel damage induced by cell-mediated immune injury can initiate vasculitis.

  13. Characterization of class II β chain major histocompatibility complex genes in a family of Hawaiian honeycreepers: 'amakihi (Hemignathus virens).

    PubMed

    Jarvi, Susan I; Bianchi, Kiara R; Farias, Margaret Em; Txakeeyang, Ann; McFarland, Thomas; Belcaid, Mahdi; Asano, Ashley

    2016-07-01

    Hawaiian honeycreepers (Drepanidinae) have evolved in the absence of mosquitoes for over five million years. Through human activity, mosquitoes were introduced to the Hawaiian archipelago less than 200 years ago. Mosquito-vectored diseases such as avian malaria caused by Plasmodium relictum and Avipoxviruses have greatly impacted these vulnerable species. Susceptibility to these diseases is variable among and within species. Due to their function in adaptive immunity, the role of major histocompatibility complex genes (Mhc) in disease susceptibility is under investigation. In this study, we evaluate gene organization and levels of diversity of Mhc class II β chain genes (exon 2) in a captive-reared family of Hawaii 'amakihi (Hemignathus virens). A total of 233 sequences (173 bp) were obtained by PCR+1 amplification and cloning, and 5720 sequences were generated by Roche 454 pyrosequencing. We report a total of 17 alleles originating from a minimum of 14 distinct loci. We detected three linkage groups that appear to represent three distinct haplotypes. Phylogenetic analysis revealed one variable cluster resembling classical Mhc sequences (DAB) and one highly conserved, low variability cluster resembling non-classical Mhc sequences (DBB). High net evolutionary divergence values between DAB and DBB resemble that seen between chicken BLB system and YLB system genes. High amino acid identity among non-classical alleles from 12 species of passerines (DBB) and four species of Galliformes (YLB) was found, suggesting that these non-classical passerine sequences may be related to the Galliforme YLB sequences.

  14. Emerging Major Histocompatibility Complex Class I-Related Functions of NLRC5.

    PubMed

    Chelbi, S T; Dang, A T; Guarda, G

    2017-01-01

    Recent evidence demonstrates a key role for the nucleotide-binding oligomerization domain-like receptor (NLR) family member NLRC5 (NLR family, CARD domain containing protein 5) in the transcriptional regulation of major histocompatibility complex (MHC) class I and related genes. Detailed information on NLRC5 target genes in various cell types and conditions is emerging. Thanks to its analogy to CIITA (class II major MHC transactivator), a NLR family member known for over 20 years to be the master regulator of MHC class II gene transcription, also the molecular mechanisms underlying NLRC5 function are being rapidly unraveled. MHC class I molecules are crucial in regulating innate and adaptive cytotoxic responses. Whereas CD8 + T cells detect antigens presented on MHC class I molecules by infected or transformed cells, natural killer (NK) lymphocytes eliminate target cells with downregulated MHC class I expression. Data uncovering the relevance of NLRC5 in homeostasis and activity of these two lymphocyte subsets have been recently reported. Given the importance of CD8 + T and NK cells in controlling infection and cancer, it is not surprising that NLRC5 is also starting to emerge as a central player in these diseases. This chapter summarizes and discusses novel insights into the molecular mechanisms underlying NLRC5 activity and its relevance to pathological conditions. A thorough understanding of both aspects is essential to evaluate the clinical significance and therapeutic potential of NLRC5. © 2017 Elsevier Inc. All rights reserved.

  15. Characterisation of major histocompatibility complex class I transcripts in an Australian dragon lizard.

    PubMed

    Hacking, Jessica; Bertozzi, Terry; Moussalli, Adnan; Bradford, Tessa; Gardner, Michael

    2018-07-01

    Characterisation of squamate major histocompatibility complex (MHC) genes has lagged behind other taxonomic groups. MHC genes encode cell-surface glycoproteins that present self- and pathogen-derived peptides to T cells and play a critical role in pathogen recognition. Here we characterise MHC class I transcripts for an agamid lizard (Ctenophorus decresii) and investigate the evolution of MHC class I in Iguanian lizards. An iterative assembly strategy was used to identify six full-length C. decresii MHC class I transcripts, which were validated as likely to encode classical class I MHC molecules. Evidence for exon shuffling recombination was uncovered for C. decresii transcripts and Bayesian phylogenetic analysis of Iguanian MHC class I sequences revealed a pattern expected under a birth-and-death mode of evolution. This work provides a stepping stone towards further research on the agamid MHC class I region. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. FUNCTIONAL IMPLICATION OF MAJOR HISTOCOMPATIBILITY (MH) VARIATION USING AN ESTUARINE FISH POPULATION

    EPA Science Inventory

    Recently, there has been a dramatic expansion of studies of major histocompatibility complex (MHC) variation aimed at discovering functional differences in immunity across wild populations of diverse vertebrate species. Some species with relatively low genetic diversity or under ...

  17. The major histocompatibility complex genes impact pain response in DA and DA.1U rats.

    PubMed

    Guo, Yuan; Yao, Fan-Rong; Cao, Dong-Yuan; Li, Li; Wang, Hui-Sheng; Xie, Wen; Zhao, Yan

    2015-08-01

    Our recent studies have shown that the difference in basal pain sensitivity to mechanical and thermal stimulation between Dark-Agouti (DA) rats and a novel congenic DA.1U rats is major histocompatibility complex (MHC) genes dependent. In the present study, we further used DA and DA.1U rats to investigate the role of MHC genes in formalin-induced pain model by behavioral, electrophysiological and immunohistochemical methods. Behavioral results showed biphasic nociceptive behaviors increased significantly following the intraplantar injection of formalin in the hindpaw of DA and DA.1U rats. The main nociceptive behaviors were lifting and licking, especially in DA rats (P<0.001 and P<0.01). The composite pain scores (CPS) in DA rats were significantly higher than those in DA.1U rats in both phases of the formalin test (P<0.01). Electrophysiological results also showed the biphasic increase in discharge rates of C and Aδ fibers of L5 dorsal root in the two strains, and the net change of the discharge rate of DA rats was significantly higher than that of DA.1U rats (P<0.05). The mechanical thresholds decreased after formalin injection in both strains (P<0.01), and the net change in the mechanical threshold in DA was greater than that in DA.1U rats (P<0.05). The expression of RT1-B, representation of MHC class II molecule, in laminae I-II of L4/5 spinal cord in DA rats was significantly higher than that in DA.1U rats in the respective experimental group (P<0.05). These results suggested that both DA and DA.1U rats exhibited nociceptive responses in formalin-induced pain model and DA rats were more sensitive to noxious chemical stimulus than DA.1U rats, indicating that MHC genes might contribute to the difference in pain sensitivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Major-histocompatibility-complex-associated variation in secondary sexual traits of white-tailed deer (Odocoileus virginianus): evidence for good-genes advertisement.

    PubMed

    Ditchkoff, S S; Lochmiller, R L; Masters, R E; Hoofer, S R; Van Den Bussche, R A

    2001-03-01

    Good-genes hypotheses predict that development of secondary sexual characters can be an honest advertisement of heritable male quality. We explored this hypothesis using a cervid model (adult, male white-tailed deer, Odocoileus virginianus) to determine whether antler development could provide an honest signal of a male's genetic quality and condition to adversaries. We compared antler, morphometric, hormonal, and parasitic data collected from hunter-harvested deer to characteristics of the Mhc-DRB (Odvi), the most widely studied gene of the major histocompatibility complex (MHC) in Artiodactyla. We detected associations between genetic characteristics at Odvi-DRB and antler development and body mass, suggesting that antler development and body mass may be associated with pathogen resistance in deer and thus may be an honest signal of genetic quality. We also detected associations between Odvi-DRB characteristics and serum testosterone during the breeding season, suggesting that certain MHC characteristics may help deer cope with stresses related to breeding activity. In addition, we observed a negative relationship between degree of antler development and overall abundance of abomasal helminths. Our observations provide support for the hypothesis that antler development in white-tailed deer is an honest signal of quality.

  19. Peptide selection by class I molecules of the major histocompatibility complex.

    PubMed

    Elliott, T; Smith, M; Driscoll, P; McMichael, A

    1993-12-01

    Class I molecules of the major histocompatibility complex (MHC) bind peptides derived from cytoplasmic proteins. Comparison of over 100 such peptides reveals the importance of the carboxy-terminal residue in selective binding. Recent evidence implicates the proteases and transporters of the processing pathway in providing peptides with the correct residues at the carboxyl terminus.

  20. Random oligonucleotide mutagenesis: application to a large protein coding sequence of a major histocompatibility complex class I gene, H-2DP.

    PubMed Central

    Murray, R; Pederson, K; Prosser, H; Muller, D; Hutchison, C A; Frelinger, J A

    1988-01-01

    We have used random oligonucleotide mutagenesis (or saturation mutagenesis) to create a library of point mutations in the alpha 1 protein domain of a Major Histocompatibility Complex (MHC) molecule. This protein domain is critical for T cell and B cell recognition. We altered the MHC class I H-2DP gene sequence such that synthetic mutant alpha 1 exons (270 bp of coding sequence), which contain mutations identified by sequence analysis, can replace the wild type alpha 1 exon. The synthetic exons were constructed from twelve overlapping oligonucleotides which contained an average of 1.3 random point mutations per intact exon. DNA sequence analysis of mutant alpha 1 exons has shown a point mutant distribution that fits a Poisson distribution, and thus emphasizes the utility of this mutagenesis technique to "scan" a large protein sequence for important mutations. We report our use of saturation mutagenesis to scan an entire exon of the H-2DP gene, a cassette strategy to replace the wild type alpha 1 exon with individual mutant alpha 1 exons, and analysis of mutant molecules expressed on the surface of transfected mouse L cells. Images PMID:2903482

  1. Brief review of the chicken Major Histocompatibility Complex: the genes, their distribution on chromosome 16, and their contributions to disease resistance

    PubMed Central

    Miller, Marcia M.; Taylor, Robert L.

    2016-01-01

    Nearly all genes presently mapped to chicken chromosome 16 (GGA 16) have either a demonstrated role in immune responses or are considered to serve in immunity by reason of sequence homology with immune system genes defined in other species. The genes are best described in regional units. Among these, the best known is the polymorphic major histocompatibility complex-B (MHC-B) region containing genes for classical peptide antigen presentation. Nearby MHC-B is a small region containing two CD1 genes, which encode molecules known to bind lipid antigens and which will likely be found in chickens to present lipids to specialized T cells, as occurs with CD1 molecules in other species. Another region is the MHC-Y region, separated from MHC-B by an intervening region of tandem repeats. Like MHC-B, MHC-Y is polymorphic. It contains specialized class I and class II genes and c-type lectin-like genes. Yet another region, separated from MHC-Y by the single nucleolar organizing region (NOR) in the chicken genome, contains olfactory receptor genes and scavenger receptor genes, which are also thought to contribute to immunity. The structure, distribution, linkages and patterns of polymorphism in these regions, suggest GGA 16 evolves as a microchromosome devoted to immune defense. Many GGA 16 genes are polymorphic and polygenic. At the moment most disease associations are at the haplotype level. Roles of individual MHC genes in disease resistance are documented in only a very few instances. Provided suitable experimental stocks persist, the availability of increasingly detailed maps of GGA 16 genes combined with new means for detecting genetic variability will lead to investigations defining the contributions of individual loci and more applications for immunogenetics in breeding healthy poultry. PMID:26740135

  2. Selective loss of mouse embryos due to the expression of transgenic major histocompatibility class I molecules early in embryogenesis.

    PubMed

    Aït-Azzouzene, D; Langkopf, A; Cohen, J; Bleux, C; Gendron, M C; Kanellopoulos-Langevin, C

    1998-05-01

    Among the numerous hypotheses proposed to explain the absence of fetal rejection by the mother in mammals, it has been suggested that regulation of expression of the polymorphic major histocompatibility complex (MHC) at the fetal-maternal interface plays a major role. In addition to a lack of MHC gene expression in the placenta throughout gestation, the absence of polymorphic MHC molecules on the early embryo, as well as their low level of expression after midgestation, could contribute to this important biologic phenomenon. In order to test this hypothesis, we have produced transgenic mice able to express polymorphic MHC class I molecules early in embryogenesis. We have placed the MHC class la gene H-2Kb under the control of a housekeeping gene promoter, the hydroxy-methyl-glutaryl coenzyme A reductase (HMG) gene minimal promoter. This construct has been tested for functionality after transfection into mouse fibroblast L cells. The analysis of three founder transgenic mice and their progeny suggested that fetoplacental units that could express the H-2Kb heavy chains are unable to survive in utero beyond midgestation. We have shown further that a much higher resorption rate, on days 11 to 13 of embryonic development, is observed among transgenic embryos developing from eggs microinjected at the one-cell stage with the pHMG-Kb construct than in control embryos. This lethality is not due to immune phenomena, since it is observed in histocompatible combinations between mother and fetus. These results are discussed in the context of what is currently known about the regulation of MHC expression at the fetal-maternal interface and in various transgenic mouse models.

  3. The major histocompatibility complex and the chemosensory signalling of individuality in humans.

    PubMed

    Eggert, F; Luszyk, D; Haberkorn, K; Wobst, B; Vostrowsky, O; Westphal, E; Bestmann, H J; Müller-Ruchholtz, W; Ferstl, R

    The chemosensory identity of mice and rats is determined partly by polymorphic genes of the major histocompatibility complex (MHC). In inbred strains of mice, as well as in seminatural populations, MHC-associated mating preferences selectively influence reproductive success, thus serving to promote heterozygocity in the MHC. In order to determine whether MHC-associated chemosignals are present in humans, two studies were conducted. In a first study, olfactory identification of MHC-associated chemosignals was conducted on 12 trained rats' responses to the urine odors of humans. In a second study, MHC-associated olfactory cues in humans were analyzed by means of gas chromatography. The results indicate that the urine odors of humans are associated with the MHC and demonstrate that the profile of volatile components in the urine odors shows some association with the MHC. Furthermore, results show that a profile of some specific components, as well as a few ubiquitous volatiles, constitutes MHC-associated odor signals in humans.

  4. Brief Note Low diversity of the major histocompatibility complex class II DRA gene in domestic goats (Capra hircus) in Southern China.

    PubMed

    Chen, L P; E, G X; Zhao, Y J; Na, R S; Zhao, Z Q; Zhang, J H; Ma, Y H; Sun, Y W; Zhong, T; Zhang, H P; Huang, Y F

    2015-06-18

    DRA encodes the alpha chain of the DR heterodimer, is closely linked to DRB and is considered almost monomorphic in major histocompatibility complex region. In this study, we identified the exon 2 of DRA to evaluate the immunogenetic diversity of Chinese south indigenous goat. Two single nucleotide polymorphisms in an untranslated region and one synonymous substitution in coding region were identified. These data suggest that high immunodiversity in native Chinese population.

  5. Suggestive association of major histocompatibility IB genetic markers with resistance to bacterial cold water disease in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Johnson, Nathan A; Vallejo, Roger L; Silverstein, Jeffrey T; Welch, Timothy J; Wiens, Gregory D; Hallerman, Eric M; Palti, Yniv

    2008-01-01

    Genes within the major histocompatibility complex (MHC) are important for both innate and adaptive immune responses in mammals; however, much less is known regarding their contribution in teleost fishes. We examined the involvement of four major histocompatibility (MH) genomic regions in rainbow trout in resistance to the causative agent of bacterial coldwater disease (BCWD), Flavobacterium psychrophilum. Fish from the 2005 NCCCWA brood-year (71 full-sib families) were challenged with F. psychrophilum strain CSF 259-93. The overall mortality rate was 70%, with large variation in mortality between families. Disease resistance was quantified as post-challenge days to death. Phenotypic variation and additive genetic variation were estimated using mixed models of survival analysis. To examine association, eight microsatellite markers were isolated from MH gene-containing BAC clones and mapped onto the rainbow trout genetic linkage map. The parents and grandparents of the 2005 brood-year families were genotyped with these eight markers and another two markers tightly linked to the MH-IB region to assess the extent of linkage disequilibrium (LD) of MH genomic regions MH-IA, MH-IB, TAP1, and MH-II with survival post-challenge. MH-IB and MH-II markers were linked to BCWD survivability when data were analyzed by family. Tests for disease association at the population level substantiated the involvement of MH-IB, but not MH-II, with disease resistance. The impact of selective breeding for disease resistance on MH sequence variation is discussed in the context of aquaculture production.

  6. Blood parasites shape extreme major histocompatibility complex diversity in a migratory passerine.

    PubMed

    Biedrzycka, Aleksandra; Bielański, Wojciech; Ćmiel, Adam; Solarz, Wojciech; Zając, Tadeusz; Migalska, Magdalena; Sebastian, Alvaro; Westerdahl, Helena; Radwan, Jacek

    2018-06-01

    Pathogens are one of the main forces driving the evolution and maintenance of the highly polymorphic genes of the vertebrate major histocompatibility complex (MHC). Although MHC proteins are crucial in pathogen recognition, it is still poorly understood how pathogen-mediated selection promotes and maintains MHC diversity, and especially so in host species with highly duplicated MHC genes. Sedge warblers (Acrocephalus schoenobaenus) have highly duplicated MHC genes, and using data from high-throughput MHC genotyping, we were able to investigate to what extent avian malaria parasites explain temporal MHC class I supertype fluctuations in a long-term study population. We investigated infection status and infection intensities of two different strains of Haemoproteus, that is avian malaria parasites that are known to have significant fitness consequences in sedge warblers. We found that prevalence of avian malaria in carriers of specific MHC class I supertypes was a significant predictor of their frequency changes between years. This finding suggests that avian malaria infections partly drive the temporal fluctuations of the MHC class I supertypes. Furthermore, we found that individuals with a large number of different supertypes had higher resistance to avian malaria, but there was no evidence for an optimal MHC class I diversity. Thus, the two studied malaria parasite strains appear to select for a high MHC class I supertype diversity. Such selection may explain the maintenance of the extremely high number of MHC class I gene copies in sedge warblers and possibly also in other passerines where avian malaria is a common disease. © 2018 John Wiley & Sons Ltd.

  7. DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history.

    PubMed Central

    Yuhki, N; O'Brien, S J

    1990-01-01

    The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. We present here a quantitative analysis of restriction fragment length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations. Images PMID:1967831

  8. Staphylococcus-mediated T-cell activation and spontaneous natural killer cell activity in the absence of major histocompatibility complex class II molecules

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Hoynowski, S. M.; Woods, K. M.; Armstrong, J. W.; Beharka, A. A.; Iandolo, J. J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    We used major histocompatibility complex class II antigen-deficient transgenic mice to show that in vitro natural killer cell cytotoxicity and T-cell activation by staphylococcal exotoxins (superantigens) are not dependent upon the presence of major histocompatibility complex class II molecules. T cells can be activated by exotoxins in the presence of exogenously added interleukin 1 or 2 or in the presence of specific antibody without exogenously added cytokines.

  9. Balancing selection and genetic drift at major histocompatibility complex class II genes in isolated populations of golden snub-nosed monkey (Rhinopithecus roxellana)

    PubMed Central

    2012-01-01

    Background Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species. Results Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. FST outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci. Conclusions MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs

  10. Recombinational hotspot specific to female meiosis in the mouse major histocompatibility complex.

    PubMed

    Shiroishi, T; Hanzawa, N; Sagai, T; Ishiura, M; Gojobori, T; Steinmetz, M; Moriwaki, K

    1990-01-01

    The wm7 haplotype of the major histocompatibility complex (MHC), derived from the Japanese wild mouse Mus musculus molossinus, enhances recombination specific to female meiosis in the K/A beta interval of the MHC. We have mapped crossover points of fifteen independent recombinants from genetic crosses of the wm7 and laboratory haplotypes. Most of them were confined to a short segment of approximately 1 kilobase (kb) of DNA between the A beta 3 and A beta 2 genes, indicating the presence of a female-specific recombinational hotspot. Its location overlaps with a sex-independent hotspot previously identified in the Mus musculus castaneus CAS3 haplotype. We have cloned and sequenced DNA fragments surrounding the hotspot from the wm7 haplotype and the corresponding regions from the hotspot-negative B10.A and C57BL/10 strains. There is no significant difference between the sequences of these three strains, or between these and the published sequences of the CAS3 and C57BL/6 strains. However, a comparison of this A beta 3/A beta 2 hotspot with a previously characterized hotspot in the E beta gene revealed that they have a very similar molecular organization. Each hotspot consists of two elements, the consensus sequence of the mouse middle repetitive MT family and the tetrameric repeated sequences, which are separated by 1 kb of DNA.

  11. Macrophage cell lines derived from major histocompatibility complex II-negative mice

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    Two bone-marrow-derived macrophage cell lines, C2D and C2Dt, were isolated from major histocompatibility class II negative knock-out mice. The C2D cell line was stabilized by continuous culture in colony-stimulating factor-1 and the C2Dt cell line was transformed with SV40 virus large T antigen. These cells exhibited phenotypic properties of macrophages including morphology and expression of Mac 1 and Mac 2 cell surface molecules. These cells also had comparable growth to the bone-marrow-derived macrophage cell line B6MP102. These new cell lines were not spontaneously cytotoxic and were only capable of modest killing of F5b tumor cells when stimulated with LPS and interferon-gamma, but not when stimulated with LPS alone or with staphylococcal exotoxin. C2D and C2Dt cells phagocytosed labeled Staphylococcus aureus similarly to B6MP102 cells but less well than C2D peritoneal macrophages. These cell lines secreted interleukin-6, but not tumor necrosis factor or nitric oxide in response to LPS or staphlococcal enterotoxins A or B C2D(t) cells were tumorigenic in C2D and C57BL/6J mice but C2D cells were not. These data suggest that macrophage cell lines can be established from bone marrow cells of major histocompatibility complex II-negative mice.

  12. Sequence-based evidence for major histocompatibility complex-disassortative mating in a colonial seabird.

    PubMed

    Juola, Frans A; Dearborn, Donald C

    2012-01-07

    The major histocompatibility complex (MHC) is a polymorphic gene family associated with immune defence, and it can play a role in mate choice. Under the genetic compatibility hypothesis, females choose mates that differ genetically from their own MHC genotypes, avoiding inbreeding and/or enhancing the immunocompetence of their offspring. We tested this hypothesis of disassortative mating based on MHC genotypes in a population of great frigatebirds (Fregata minor) by sequencing the second exon of MHC class II B. Extensive haploid cloning yielded two to four alleles per individual, suggesting the amplification of two genes. MHC similarity between mates was not significantly different between pairs that did (n = 4) or did not (n = 42) exhibit extra-pair paternity. Comparing all 46 mated pairs to a distribution based on randomized re-pairings, we observed the following (i): no evidence for mate choice based on maximal or intermediate levels of MHC allele sharing (ii), significantly disassortative mating based on similarity of MHC amino acid sequences, and (iii) no evidence for mate choice based on microsatellite alleles, as measured by either allele sharing or similarity in allele size. This suggests that females choose mates that differ genetically from themselves at MHC loci, but not as an inbreeding-avoidance mechanism.

  13. Characterization and 454 pyrosequencing of Major Histocompatibility Complex class I genes in the great tit reveal complexity in a passerine system

    PubMed Central

    2012-01-01

    Background The critical role of Major Histocompatibility Complex (Mhc) genes in disease resistance and their highly polymorphic nature make them exceptional candidates for studies investigating genetic effects on survival, mate choice and conservation. Species that harbor many Mhc loci and high allelic diversity are particularly intriguing as they are potentially under strong selection and studies of such species provide valuable information as to the mechanisms maintaining Mhc diversity. However comprehensive genotyping of complex multilocus systems has been a major challenge to date with the result that little is known about the consequences of this complexity in terms of fitness effects and disease resistance. Results In this study, we genotyped the Mhc class I exon 3 of the great tit (Parus major) from two nest-box breeding populations near Oxford, UK that have been monitored for decades. Characterization of Mhc class I exon 3 was adopted and bidirectional sequencing was carried using the 454 sequencing platform. Full analysis of sequences through a stepwise variant validation procedure allowed reliable typing of more than 800 great tits based on 214,357 reads; from duplicates we estimated the repeatability of typing as 0.94. A total of 862 alleles were detected, and the presence of at least 16 functional loci was shown - the highest number characterized in a wild bird species. Finally, the functional alleles were grouped into 17 supertypes based on their antigen binding affinities. Conclusions We found extreme complexity at the Mhc class I of the great tit both in terms of allelic diversity and gene number. The presence of many functional loci was shown, together with a pseudogene family and putatively non-functional alleles; there was clear evidence that functional alleles were under strong balancing selection. This study is the first step towards an in-depth analysis of this gene complex in this species, which will help understanding how parasite

  14. Aflatoxicosis chemoprevention by probiotic Lactobacillius and lack of effect on the major histocompatibility complex.

    PubMed

    Rawal, Sumit; Bauer, Miranda M; Mendoza, Kristelle M; El-Nezami, Hani; Hall, Jeffery R; Kim, Ji Eun; Stevens, John R; Reed, Kent M; Coulombe, Roger A

    2014-10-01

    Turkeys are extremely sensitive to aflatoxin B1 (AFB1) which causes decreased growth, immunosuppression and liver necrosis. The purpose of this study was to determine whether probiotic Lactobacillus, shown to be protective in animal and clinical studies, would likewise confer protection in turkeys, which were treated for 11 days with either AFB1 (AFB; 1 ppm in diet), probiotic (PB; 1 × 10(11) CFU/ml; oral, daily), probiotic + AFB1 (PBAFB), or PBS control (CNTL). The AFB1 induced drop in body and liver weights were restored to normal in CNTL and PBAFB groups. Hepatotoxicity markers were not significantly reduced by probiotic treatment. Major histocompatibility complex (MHC) genes BG1 and BG4, which are differentially expressed in liver and spleens, were not significantly affected by treatments. These data indicate modest protection, but the relatively high dietary AFB1 treatment, and the extreme sensitivity of this species may reveal limits of probiotic-based protection strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice.

    PubMed

    Grainger, Andrew T; Jones, Michael B; Li, Jing; Chen, Mei-Hua; Manichaikul, Ani; Shi, Weibin

    2016-11-01

    Recent genome-wide association studies (GWAS) have identified over 50 significant loci containing common variants associated with coronary artery disease. However, these variants explain only 26% of the genetic heritability of the disease, suggesting that many more variants remain to be discovered. Here, we examined the genetic basis underlying the marked difference between SM/J-Apoe -/- and BALB/cJ-Apoe -/- mice in atherosclerotic lesion formation. 206 female F 2 mice generated from an intercross between the two Apoe -/- strains were fed 12 weeks of western diet. Atherosclerotic lesion sizes in the aortic root were measured and 149 genetic markers genotyped across the entire genome. A significant locus, named Ath49 (LOD score: 4.18), for atherosclerosis was mapped to the H2 complex [mouse major histocompatibility complex (MHC)] on chromosome 17. Bioinformatic analysis identified 12 probable candidate genes, including Tnfrsf21, Adgrf1, Adgrf5, Mep1a, and Pla2g7. Corresponding human genomic regions of Ath49 showed significant association with coronary heart disease. Five suggestive loci on chromosomes 1, 4, 5, and 8 for atherosclerosis were also identified. Atherosclerotic lesion sizes were significantly correlated with HDL but not with non-HDL cholesterol, triglyceride or glucose levels in the F 2 cohort. We have identified the MHC as a major genetic determinant of atherosclerosis, highlighting the importance of inflammation in atherogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Isolation and characterization of major histocompatibility class IIβ genes in an endangered North American cyprinid fish, the Rio Grande silvery minnow (Hybognathus amarus).

    PubMed

    Osborne, Megan J; Turner, Thomas F

    2011-06-01

    The major histocompatibility complex (MHC) is a critical component of the adaptive immune response in vertebrates. Due to the role that MHC plays in immunity, absence of variation within these genes may cause species to be vulnerable to emerging diseases. The freshwater fish family Cyprinidae comprises the most diverse and species-rich group of freshwater fish in the world, but some are imperiled. Despite considerable species richness and the long evolutionary history of the family, there are very few reports of MHC sequences (apart from a few model species), and no sequences are reported from endemic North American cyprinids (subfamily Leuciscinae). Here we isolate and characterize the MH Class II beta genes from complementary DNA and genomic DNA of the non-model, endangered Rio Grande silvery minnow (Hybognathus amarus), a North American cyprinid. Phylogenetic reconstruction revealed two groups of divergent MH alleles that are paralogous to previously described loci found in deeply divergent cyprinid taxa including common carp, zebrafish, African large barb and bream. Both groups of alleles were under the influence of diversifying selection yet not all individuals had alleles belonging to both allelic groups. We concluded that the general organization and pattern of variation of MH class II genes in Rio Grande silvery minnow is similar to that identified in other cyprinid fishes studied to date, despite distant evolutionary relationships and evidence of a severe genetic bottleneck. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Diversity at the major histocompatibility complex Class II in the platypus, Ornithorhynchus anatinus.

    PubMed

    Lillie, Mette; Woodward, Rachael E; Sanderson, Claire E; Eldridge, Mark D B; Belov, Katherine

    2012-07-01

    The platypus (Ornithorhynchus anatinus) is the sole survivor of a previously widely distributed and diverse lineage of ornithorhynchid monotremes. Its dependence on healthy water systems imposes an inherent sensitivity to habitat degradation and climate change. Here, we compare genetic diversity at the major histocompatibility complex (MHC) Class II-DZB gene and 3 MHC-associated microsatellite markers with diversity at 6 neutral microsatellite markers in 70 platypuses from across their range, including the mainland of Australia and the isolated populations of Tasmania, King Island, and Kangaroo Island. Overall, high DZB diversity was observed in the platypus, with 57 DZB β1 alleles characterized. Significant positive selection was detected within the DZB peptide-binding region, promoting variation in this domain. Low levels of genetic diversity were detected at all markers in the 2 island populations, King Island (endemic) and Kangaroo Island (introduced), with the King Island platypuses monomorphic at the DZB locus. Loss of MHC diversity on King Island is of concern, as the population may have compromised immunological fitness and reduced ability to resist changing environmental conditions.

  18. Broadly targeted CD8 + T cell responses restricted by major histocompatibility complex E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Scott G.; Wu, Helen L.; Burwits, Benjamin J.

    Major histocompatibility complex (MHC)-E is a highly conserved, ubiquitously expressed, nonclassical, MHC-Ib molecule with limited polymorphism primarily involved in regulation of NK cell reactivity via interaction with NKG2/CD94 receptors. We found that vaccination of rhesus macaques with Rh157.5/.4 gene-deleted rhesus Cytomegalovirus (RhCMV) vectors uniquely diverts MHC-E function to presentation of highly diverse peptide epitopes to CD8α/β + T cells, approximately 4 distinct epitopes per 100 amino acids, in all tested protein antigens. Computational structural analysis revealed that a relatively stable, open binding groove in MHC-E attains broad peptide binding specificity by imposing a similar backbone configuration on bound peptides withmore » few restrictions based on amino acid side chains. Since MHC-E is up-regulated on cells infected with HIV/SIV and other persistent viruses to evade NK cell activity, MHC-E-restricted CD8 + T cell responses have the potential to exploit pathogen immune evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.« less

  19. Broadly targeted CD8 + T cell responses restricted by major histocompatibility complex E

    DOE PAGES

    Hansen, Scott G.; Wu, Helen L.; Burwits, Benjamin J.; ...

    2016-02-12

    Major histocompatibility complex (MHC)-E is a highly conserved, ubiquitously expressed, nonclassical, MHC-Ib molecule with limited polymorphism primarily involved in regulation of NK cell reactivity via interaction with NKG2/CD94 receptors. We found that vaccination of rhesus macaques with Rh157.5/.4 gene-deleted rhesus Cytomegalovirus (RhCMV) vectors uniquely diverts MHC-E function to presentation of highly diverse peptide epitopes to CD8α/β + T cells, approximately 4 distinct epitopes per 100 amino acids, in all tested protein antigens. Computational structural analysis revealed that a relatively stable, open binding groove in MHC-E attains broad peptide binding specificity by imposing a similar backbone configuration on bound peptides withmore » few restrictions based on amino acid side chains. Since MHC-E is up-regulated on cells infected with HIV/SIV and other persistent viruses to evade NK cell activity, MHC-E-restricted CD8 + T cell responses have the potential to exploit pathogen immune evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.« less

  20. DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuhki, Naoya; O'Brien, S.J.

    1990-01-01

    The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. The authors present here a quantitative analysis of restriction fragmentmore » length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations.« less

  1. Major Histocompatibility Complex in Human - HLA System: Biological Role and Impact for Practical Medicine.

    PubMed

    Alexeev, Leonid P.

    1999-10-01

    Interactions of HLA constitute the key basis for development of the whole number of pathologies, starting from oncological and infectious diseases, and ending with autoimmune disorders and allergies. The most demonstrable example is oncopathology. The fact is that HLA class I (namely, its non-polymorphic determinants) have recently been shown to be the main target for so called natural (or non-specific) killer cells (NK). Naturally, the profound decrease of class I histocompatibility antigens on the surface of pathologically changed cells, impairing cellular interaction between NK and target cells, "takes them out" from the control of NK. As a result, the body looses one of the most important protective functions. Quite another type of impairment of HLA role in cellular interaction may be the basis of autoimmune diseases. The most successful results were obtained in studies of insulin dependent diabetes. One of the main pathogenic factors was shown to be marked elevation (aberrant expression) of HLA on islet cells (insulin producers). This, in its turn, is the consequence of dysfunction and activation of genes, responsible for "assembly and transport" of HLA class II. The problem about role of HLA in cell interactions in allergy is rather novel, but poor studied trend, however some obtained results are encouraging. The point is that the unique feature in expression of class II histocompatibility antigens, specific for allergy, was revealed for recent years. Expression of class II histocompatibility antigens is appeared to be sharply increased on B lymphocytes of allergic patients.

  2. Pseudorabies virus-induced suppression of major histocompatibility complex class I antigen expression.

    PubMed Central

    Mellencamp, M W; O'Brien, P C; Stevenson, J R

    1991-01-01

    The ability of pseudorabies virus (PrV) to down-modulate expression of major histocompatibility complex class I antigens in murine and porcine cells was investigated. When quantified by flow cytometry, surface expression of class I Kk and Dk antigens on PrV-infected cells decreased by 60% or more. Down-modulation was associated with a decrease in total cellular class I antigens, indicating regulation at the transcriptional or posttranscriptional level. PrV did not suppress expression of transferrin receptor, suggesting a selective regulatory mechanism. Images PMID:1851884

  3. The Emerging Role of the Major Histocompatibility Complex Class I in Amyotrophic Lateral Sclerosis

    PubMed Central

    Chiarotto, Gabriela Bortolança; Trolese, Maria Chiara; França, Marcondes Cavalcante; Bendotti, Caterina

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting upper and lower motoneurons (MNs). The etiology of the disease is still unknown for most patients with sporadic ALS, while in 5–10% of the familial cases, several gene mutations have been linked to the disease. Mutations in the gene encoding Cu, Zn superoxide dismutase (SOD1), reproducing in animal models a pathological scenario similar to that found in ALS patients, have allowed for the identification of mechanisms relevant to the ALS pathogenesis. Among them, neuroinflammation mediated by glial cells and systemic immune activation play a key role in the progression of the disease, through mechanisms that can be either neuroprotective or neurodetrimental depending on the type of cells and the MN compartment involved. In this review, we will examine and discuss the involvement of major histocompatibility complex class I (MHCI) in ALS concerning its function in the adaptive immunity and its role in modulating the neural plasticity in the central and peripheral nervous system. The evidence indicates that the overexpression of MHCI into MNs protect them from astrocytes’ toxicity in the central nervous system (CNS) and promote the removal of degenerating motor axons accelerating collateral reinnervation of muscles. PMID:29104236

  4. Functional implications of Major Histocompatibility (MH) variation using estuarine fish populations.

    PubMed

    Cohen, Sarah; Tirindelli, Joëlle; Gomez-Chiarri, Marta; Nacci, Diane

    2006-12-01

    Recently, there has been a dramatic expansion of studies of major histocompatibility complex (MHC) variation aimed at discovering functional differences in immunity across wild populations of diverse vertebrate species. Some species with relatively low genetic diversity or under strong directional selection by pathogens have revealed fascinating cases of MHC allelic disease linkage. More generally in genetically diverse species, however, these linkages may be hard to find. In this paper, we review approaches for assessing functional variation in MHC and discuss their potential use for discovering smaller-scale intraspecific spatial and temporal patterns of MHC variation. Then, we describe and illustrate an approach using the structural model to produce a population composite of variation in antigen-binding regions by mapping population-specific substitutions onto functional regions of the molecule. We are producing models of variation in major histocompatibility (MH) loci for populations of non-migratory fish (killifish, Fundulus heteroclitus) resident at sites that vary dramatically in environmental quality. We discuss the goal of relating MH population variation to functional differences in disease susceptibility such as those inferred by observations of parasitic infection and direct measurement of bacterial challenges in the laboratory. Our study has focused on relatively well-studied killifish populations, including those resident in a highly disturbed, chemically contaminated estuary and nearby less contaminated sites. Population-specific genetic changes at MHC antigen-binding loci are described, and evidence relevant to functional implications of these changes is reviewed. Population-specific patterns of variation in antigen-binding regions in combination with a range of assessments of immune function will provide a powerful new approach to reveal functional changes in MHC.

  5. Major histocompatibility complex class I chain related gene-A microsatellite polymorphism shows secondary association with type 1 diabetes and celiac disease in North Indians.

    PubMed

    Kumar, N; Sharma, G; Kaur, G; Tandon, N; Bhatnagar, S; Mehra, N

    2012-10-01

    Microsatellite polymorphism in exon 5 of major histocompatibility complex class I chain related gene-A (MIC-A) has been implicated in the etiology of autoimmune diseases including type 1 diabetes (T1D) and celiac disease (CD). In this study on North Indian population, the MIC-A5.1 allele, carrying a premature termination codon in transmembrane region, was observed with increased frequency in T1D (29.6%, odds ratio OR = 2.1, P = 0.00017) and CD patients (40.3%, OR = 3.37, P = 1.67E-05) than in controls (16.7%). When the MIC-A5.1 association was adjusted for linkage with human leukocyte antigen (HLA)-DR3, the statistical significance of the association was abolished. This implies that the observed association of MIC-A5.1 is due to its linkage disequilibrium (D' = 0.94) with HLA-B8-DR3-DQ2 haplotype and is secondary to the overall association with DR3 positive MHC haplotypes. © 2012 John Wiley & Sons A/S.

  6. Toxic shock syndrome toxin 1 binds to major histocompatibility complex class II molecules.

    PubMed Central

    Scholl, P; Diez, A; Mourad, W; Parsonnet, J; Geha, R S; Chatila, T

    1989-01-01

    Toxic shock syndrome toxin 1 (TSST-1) is a 22-kDa exotoxin produced by strains of Staphylococcus aureus and implicated in the pathogenesis of toxic shock syndrome. In common with other staphylococcal exotoxins, TSST-1 has diverse immunological effects. These include the induction of interleukin 2 receptor expression, interleukin 2 synthesis, proliferation of human T lymphocytes, and stimulation of interleukin 1 synthesis by human monocytes. In the present study, we demonstrate that TSST-1 binds with saturation kinetics and with a dissociation constant of 17-43 nM to a single class of binding sites on human mononuclear cells. There was a strong correlation between the number of TSST-1 binding sites and the expression of major histocompatibility complex class II molecules, and interferon-gamma induced the expression of class II molecules as well as TSST-1 binding sites on human skin-derived fibroblasts. Monoclonal antibodies to HLA-DR, but not to HLA-DP or HLA-DQ, strongly inhibited TSST-1 binding. Affinity chromatography of 125I-labeled cell membranes over TSST-1-agarose resulted in the recovery of two bands of 35 kDa and 31 kDa that comigrated, respectively, with the alpha and beta chains of HLA-DR and that could be immunoprecipitated with anti-HLA-DR monoclonal antibodies. Binding of TSST-1 was demonstrated to HLA-DR and HLA-DQ L-cell transfectants. These results indicate that major histocompatibility complex class II molecules represent the major binding site for TSST-1 on human cells. Images PMID:2542966

  7. Chemical composition of preen wax reflects major histocompatibility complex similarity in songbirds.

    PubMed

    Slade, J W G; Watson, M J; Kelly, T R; Gloor, G B; Bernards, M A; MacDougall-Shackleton, E A

    2016-11-16

    In jawed vertebrates, genes of the major histocompatibility complex (MHC) play a key role in immunity by encoding cell-surface proteins that recognize and bind non-self antigens. High variability at MHC suggests that these loci may also function in social signalling such as mate choice and kin recognition. This requires that MHC genotype covaries with some perceptible phenotypic trait. In mammals and fish, MHC is signalled chemically through volatile and non-volatile peptide odour cues, facilitating MHC-dependent mate choice and other behaviours. In birds, despite evidence for MHC-dependent mating, candidate mechanisms for MHC signalling remain largely unexplored. However, feather preen wax has recently been implicated as a potential source of odour cues. We examined whether the chemical composition of preen wax correlates with MHC class IIβ genotypes of wild song sparrows (Melospiza melodia). Pairwise chemical distance reflected amino acid distance at MHC for male-female dyads, although not for same-sex dyads. Chemical diversity did not reflect MHC diversity. We used gas chromatography-mass spectrometry (GC-MS) to characterize preen wax compounds, and identified four wax esters that best reflect MHC similarity. Provided songbirds can detect variation in preen wax composition, this cue may allow individuals to assess MHC compatibility of potential mates. © 2016 The Author(s).

  8. Olfactory cues associated with the major histocompatibility complex.

    PubMed

    Eggert, F; Müller-Ruchholtz, W; Ferstl, R

    Besides its immunological function of self/non-self discrimination the major histocompatibility complex (MHC) has been recognized as a possible source of individual specific body odors. Dating back to speculations on the role of the extraordinary polymorphism of the MHC as background of an individual chemosensory identity and to early observations of MHC-dependent mate choice in inbred strains of mice, systematic experimental studies revealed a first evidence for H-2 related body odors in this species. Meanwhile a large number of animal studies with rodents and a series of field studies and experiments with humans have extended our knowledge of MHC-related odor signals and substantiated the hypothesis of immunogenetic associated odor types. These results suggest that the most prominent feature of the MHC, its extraordinary genetic diversity, seems in part to be selectively maintained by behavioral mechanisms which operate in contemporary natural populations. The high degree of heterozygosity found in natural populations of most species seems to be promoted by non-disease-based selection such as mating preferences and selective block of pregnancy.

  9. Immunomodulation of glioma cells after gene therapy: induction of major histocompatibility complex class I but not class II antigen in vitro.

    PubMed

    Parsa, A T; Chi, J H; Hurley, P T; Jeyapalan, S A; Bruce, J N

    2001-09-01

    Acquired immunity has been demonstrated in Fischer rats bearing syngeneic 9L tumors after herpes simplex virus (HSV) thymidine kinase (TK) gene transfection and ganciclovir treatment. The nature of this immunity in rats and its relevance to the HSV TK/ganciclovir protocol for human subjects remain to be determined. In this study, levels of major histocompatibility complex (MHC) Class I and II antigen expression were measured before and after HSV TK transfection, in an effort to document immunomodulatory changes caused by gene therapy. Tumor cells from the 9L gliosarcoma cell line, three primary human glioma cultures, and the human glioma cell line U87 MG were transduced with HSV TK vector-containing supernatant from fibroblast-producing cells (titer of 5 x 10(6) colony-forming units/ml) and selected in G418 medium for neomycin resistance. Clones were pooled or individually selected for cell-killing assays with ganciclovir, to confirm TK expression (10(3) cells/well in a 96-well dish). Northern analyses using MHC Class I and Class II complementary deoxyribonucleic acid probes were performed on blots containing total ribonucleic acid from wild-type tumor cells and HSV TK transfectants. A beta-actin complementary deoxyribonucleic acid probe served as an internal control. Cell surface expression was confirmed with flow cytometry. The induction of MHC Class I was tested for cycloheximide and genistein sensitivity. All cell cultures exhibited increases in MHC Class I but not MHC Class II expression, as determined by Northern analysis densitometry and flow cytometry. Cycloheximide treatment did not diminish the up-regulation of MHC Class I after retroviral transfection, implicating a signal transduction pathway that does not require ongoing protein synthesis. Genistein pretreatment of cell cultures did diminish the up-regulation of MHC Class I, implicating a tyrosine kinase in the signaling cascade. Induction of MHC Class I in rat and human glioma cells after HSV TK

  10. Placental Extravillous Cytotrophoblasts Persistently Express Class I Major Histocompatibility Complex Molecules after Human Cytomegalovirus Infection

    PubMed Central

    Terauchi, Masakazu; Koi, Hideki; Hayano, Chikako; Toyama-Sorimachi, Noriko; Karasuyama, Hajime; Yamanashi, Yuji; Aso, Takeshi; Shirakata, Masaki

    2003-01-01

    Human cytomegalovirus (HCMV) downregulates the class I major histocompatibility complexes (MHCs), HLA-A and -B, in infected fibroblasts to escape from antigen-specific cytotoxic T lymphocytes. The HCMV genes responsible for the downregulation of MHCs are US2, US3, US6, and US11, which encode type I membrane proteins working at the endoplasmic reticulum (ER). However, it is largely unknown whether HCMV downregulates the class I MHC molecules in placental extravillous cytotrophoblasts (EVT), which express HLA-C, -E, and -G to protect a semiallogenic fetus from maternal natural killer (NK) cells at the fetomaternal interface. Here, we report that differentiated EVT prepared from human first-trimester chorionic villi persistently express class I MHC molecules upon HCMV infection. When these US proteins were expressed in uninfected EVT, they were localized at the ER in the entire cytoplasm. However, subsequent HCMV infection resulted in dissociation of these US proteins from the ER, which relocated toward the cell membrane. In fibroblasts, these US proteins were localized at the ER before and after HCMV infection. These results suggest that the US gene products are not integrated into ER of HCMV-infected EVT and fail to downregulate class I MHC molecules. PMID:12857887

  11. Analysis of Major Histocompatibility Complex (MHC) Immunopeptidomes Using Mass Spectrometry.

    PubMed

    Caron, Etienne; Kowalewski, Daniel J; Chiek Koh, Ching; Sturm, Theo; Schuster, Heiko; Aebersold, Ruedi

    2015-12-01

    The myriad of peptides presented at the cell surface by class I and class II major histocompatibility complex (MHC) molecules are referred to as the immunopeptidome and are of great importance for basic and translational science. For basic science, the immunopeptidome is a critical component for understanding the immune system; for translational science, exact knowledge of the immunopeptidome can directly fuel and guide the development of next-generation vaccines and immunotherapies against autoimmunity, infectious diseases, and cancers. In this mini-review, we summarize established isolation techniques as well as emerging mass spectrometry-based platforms (i.e. SWATH-MS) to identify and quantify MHC-associated peptides. We also highlight selected biological applications and discuss important current technical limitations that need to be solved to accelerate the development of this field. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. A complex alloantigen system in Florida sandhill cranes, Grus canadensis pratensis: Evidence for the major histocompatibility (B) system

    USGS Publications Warehouse

    Jarvi, S.I.; Gee, G.F.; Miller, M.M.; Briles, W.E.

    1995-01-01

    The B blood group system constitutes the major histocompatibility complex (Mhc) in birds. The Mhc is a cluster of genes largely devoted to the processing and presentation of antigen. The Mhc is highly polymorphic in many species and, thus, useful in the evaluation of genetic diversity for fitness traits within populations of a variety of animals. Correlations found between particular Mhc haplotypes and resistance to certain diseases emphasize the importance of understanding the functional significance of diversity of the Mhc, particularly in species threatened with extinction. As part of studies focused on genetic diversity in wild birds, serological techniques were used to define a highly polymorphic alloantigen system in seven families of Florida sandhill cranes (Grus canadensis pratensis). The results of analyses with antisera produced within the crane families and with chicken Mhc antigen-specific reagents revealed a single major alloantigen system that is likely the Mhc of the Florida sandhill crane. Preliminary experiments indicate that these crane alloantisera will provide a means of defining .the Mhc in other species of cranes.

  13. Conditional analysis identifies three novel major histocompatibility complex loci associated with psoriasis.

    PubMed

    Knight, Jo; Spain, Sarah L; Capon, Francesca; Hayday, Adrian; Nestle, Frank O; Clop, Alex; Barker, Jonathan N; Weale, Michael E; Trembath, Richard C

    2012-12-01

    Psoriasis is a common, chronic, inflammatory skin disorder. A number of genetic loci have been shown to confer risk for psoriasis. Collectively, these offer an integrated model for the inherited basis for susceptibility to psoriasis that combines altered skin barrier function together with the dysregulation of innate immune pathogen sensing and adap-tive immunity. The major histocompatibility complex (MHC) harbours the psoriasis susceptibility region which exhibits the largest effect size, driven in part by variation contained on the HLA-Cw*0602 allele. However, the resolution of the number and genomic location of potential independent risk loci are hampered by extensive linkage disequilibrium across the region. We leveraged the power of large psoriasis case and control data sets and the statistical approach of conditional analysis to identify potential further association signals distributed across the MHC. In addition to the major loci at HLA-C (P = 2.20 × 10(-236)), we observed and replicated four additional independent signals for disease association, three of which are novel. We detected evidence for association at SNPs rs2507971 (P = 6.73 × 10(-14)), rs9260313 (P = 7.93 × 10(-09)), rs66609536 (P = 3.54 × 10(-07)) and rs380924 (P = 6.24 × 10(-06)), located within the class I region of the MHC, with each observation replicated in an independent sample (P ≤ 0.01). The previously identified locus is close to MICA, the other three lie near MICB, HLA-A and HCG9 (a non-coding RNA gene). The identification of disease associations with both MICA and MICB is particularly intriguing, since each encodes an MHC class I-related protein with potent immunological function.

  14. Major histocompatibility complex loci are associated with susceptibility of Atlantic salmon to infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Miller, Kristina M.; Winton, James R.; Schulze, Angela D.; Purcell, Maureen K.; Ming, Tobi J.

    2004-01-01

    Infectious hematopoietic necrosis virus (IHNV) is one of the most significant viral pathogens of salmonids and is a leading cause of death among cultured juvenile fish. Although several vaccine strategies have been developed, some of which are highly protective, the delivery systems are still too costly for general use by the aquaculture industry. More cost effective methods could come from the identification of genes associated with IHNV resistance for use in selective breeding. Further, identification of susceptibility genes may lead to an improved understanding of viral pathogenesis and may therefore aid in the development of preventive and therapeutic measures. Genes of the major histocompatibility complex (MHC), involved in the primary recognition of foreign pathogens in the acquired immune response, are associated with resistance to a variety of diseases in vertebrate organisms. We conducted a preliminary analysis of MHC disease association in which an aquaculture strain of Atlantic salmon was challenged with IHNV at three different doses and individual fish were genotyped at three MHC loci using denaturing gradient gel electrophoresis (PCR-DGGE), followed by sequencing of all differentiated alleles. Nine to fourteen alleles per exon-locus were resolved, and alleles potentially associated with resistance or susceptibility were identified. One allele (Sasa-B-04) from a potentially non-classical class I locus was highly associated with resistance to infectious hematopoietic necrosis (p < 0.01). This information can be used to design crosses of specific haplotypes for family analysis of disease associations.

  15. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system

    PubMed Central

    Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix

    2017-01-01

    Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic. PMID:28875066

  16. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system.

    PubMed

    Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix; Hoi, Herbert

    2017-01-01

    A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. To do this we used captive house sparrows ( Passer domesticus ) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.

  17. Major histocompatibility complex class I molecules modulate embryonic neuritogenesis and neuronal polarization

    PubMed Central

    Bilousova, Tina; Dang, Hoa; Xu, Willem; Gustafson, Sarah; Jin, Yingli; Wickramasinghe, Lalinda; Won, Tony; Bobarnac, Gabriela; Middleton, Blake; Tian, Jide; Kaufman, Daniel L.

    2012-01-01

    We studied cultured hippocampal neurons from embryonic wildtype, major histocompatibility complex class I (MHCI) heavy chain-deficient (KbDb−/−) and NSE-Db (which have elevated neuronal MHCI expression) C57BL/6 mice. KbDb−/− neurons displayed slower neuritogenesis and establishment of polarity, while NSE-Db neurons had faster neurite outgrowth, more primary neurites, and tended to have accelerated polarization. Additional studies with ϐ2M−/− neurons, exogenous ϐ2M, and a self-MHCI monomer suggest that free heavy chain cis interactions with other surface molecules can promote neuritogenesis while tripartite MHCI interactions with classical MHCI receptors can inhibit axon outgrowth. Together with the results of others, MHCI appears to differentially modulate neuritogenesis and synaptogenesis. PMID:22503373

  18. Class I and class II major histocompatibility molecules play a role in bone marrow-derived macrophage development

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Simske, S. J.; Beharka, A. A.; Balch, S.; Luttges, M. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Class I and class II major histocompatibility complex (MHC) molecules play significant roles in T cell development and immune function. We show that MHCI- and MHCII-deficient mice have low numbers of macrophage precursors and circulating monocytes, as well as abnormal bone marrow cell colony-stimulating factor type 1 secretion and bone composition. We suggest that MHCI and MHCII molecules play a significant role in macrophage development.

  19. Identification of a Polymorphic Gene, BCL2A1, Encoding Two Novel Hematopoietic Lineage-specific Minor Histocompatibility Antigens

    PubMed Central

    Akatsuka, Yoshiki; Nishida, Tetsuya; Kondo, Eisei; Miyazaki, Mikinori; Taji, Hirohumi; Iida, Hiroatsu; Tsujimura, Kunio; Yazaki, Makoto; Naoe, Tomoki; Morishima, Yasuo; Kodera, Yoshihisa; Kuzushima, Kiyotaka; Takahashi, Toshitada

    2003-01-01

    We report the identification of two novel minor histocompatibility antigens (mHAgs), encoded by two separate single nucleotide polymorphisms on a single gene, BCL2A1, and restricted by human histocompatibility leukocyte antigen (HLA)-A*2402 (the most common HLA-A allele in Japanese) and B*4403, respectively. Two cytotoxic T lymphocyte (CTL) clones specific for these mHAgs were first isolated from two distinct recipients after hematopoietic cell transplantation. Both clones lyse only normal and malignant cells within the hematopoietic lineage. To localize the gene encoding the mHAgs, two-point linkage analysis was performed on the CTL lytic patterns of restricting HLA-transfected B lymphoblastoid cell lines obtained from Centre d'Etude du Polymorphisme Humain. Both CTL clones showed a completely identical lytic pattern for 4 pedigrees and the gene was localized within a 3.6-cM interval of 15q24.3–25.1 region that encodes at least 46 genes. Of those, only BCL2A1 has been reported to be expressed in hematopoietic cells and possess three nonsynonymous nucleotide changes. Minigene transfection and epitope reconstitution assays with synthetic peptides identified both HLA-A*2402– and B*4403-restricted mHAg epitopes to be encoded by distinct polymorphisms within BCL2A1. PMID:12771180

  20. Olfactory fingerprints for major histocompatibility complex-determined body odors.

    PubMed

    Schaefer, M L; Young, D A; Restrepo, D

    2001-04-01

    Recognition of individual body odors is analogous to human face recognition in that it provides information about identity. Individual body odors determined by differences at the major histocompatibility complex (MHC or H-2) have been shown to influence mate choice, pregnancy block, and maternal behavior in mice. Unfortunately, the mechanism and extent of the main olfactory bulb (MOB) and accessory olfactory bulb (AOB) involvement in the discrimination of animals according to H-2-type has remained ambiguous. Here we study the neuronal activation patterns evoked in the MOB in different individuals on exposure to these complex, biologically meaningful sensory stimuli. We demonstrate that body odors from H-2 disparate mice evoke overlapping but distinct maps of neuronal activation in the MOB. The spatial patterns of odor-evoked activity are sufficient to be used like fingerprints to predict H-2 identity using a novel computer algorithm. These results provide functional evidence for discrimination of H-2-determined body odors in the MOB, but do not preclude a role for the AOB. These data further our understanding of the neural strategies used to decode socially relevant odors.

  1. Genes Outside the Major Histocompatibility Complex Locus Are Linked to the Development of Thyroid Autoantibodies and Thyroiditis in NOD.H2h4 Mice

    PubMed Central

    Lesage, Sylvie; Collin, Roxanne; Banuelos, Bianca; Aliesky, Holly A.; Rapoport, Basil

    2017-01-01

    Thyroiditis and autoantibodies to thyroglobulin (TgAb) and thyroid peroxidase (TPOAb) develop spontaneously in NOD.H2h4 mice, a phenotype enhanced by dietary iodine. NOD.H2h4 mice were derived by introducing the major histocompatibility class (MHC) molecule I-Ak from B10.A(4R) mice to nonobese diabetic (NOD) mice. Apart from I-Ak, the genes responsible for the NOD.H2h4 phenotype are unknown. Extending serendipitous observations from crossing BALB/c to NOD.H2h4 mice, thyroid autoimmunity was investigated in both genders of the F1, F2, and the second-generation backcross of F1 to NOD.H2h4 (N2). Medium-density linkage analysis was performed on thyroid autoimmunity traits in F2 and N2 progeny. TgAb develop before TPOAb and were measured after 8 and 16 weeks of iodide exposure; TPOAb and thyroiditis were studied at 16 weeks. TgAb, TPOAb, and thyroiditis, absent in BALB/c and F1 mice, developed in most NOD.H2h4 and in more N2 than F2 progeny. No linkages were observed in F2 progeny, probably because of the small number of autoantibody-positive mice. In N2 progeny (equal numbers of males and females), a chromosome 17 locus is linked to thyroiditis and TgAb and is suggestively linked to TPOAb. This locus includes MHC region genes from B10.A(4R) mice (such as I-Ak and Tnf, the latter involved in thyrocyte apoptosis) and genes from NOD mice such as Satb1, which most likely plays a role in immune tolerance. In conclusion, MHC and non-MHC genes, encoded within the chromosome 17 locus from both B10.A(4R) and NOD strains, are most likely responsible for the Hashimoto disease–like phenotype of NOD.H2h4 mice. PMID:28323998

  2. Genes Outside the Major Histocompatibility Complex Locus Are Linked to the Development of Thyroid Autoantibodies and Thyroiditis in NOD.H2h4 Mice.

    PubMed

    McLachlan, Sandra M; Lesage, Sylvie; Collin, Roxanne; Banuelos, Bianca; Aliesky, Holly A; Rapoport, Basil

    2017-04-01

    Thyroiditis and autoantibodies to thyroglobulin (TgAb) and thyroid peroxidase (TPOAb) develop spontaneously in NOD.H2h4 mice, a phenotype enhanced by dietary iodine. NOD.H2h4 mice were derived by introducing the major histocompatibility class (MHC) molecule I-Ak from B10.A(4R) mice to nonobese diabetic (NOD) mice. Apart from I-Ak, the genes responsible for the NOD.H2h4 phenotype are unknown. Extending serendipitous observations from crossing BALB/c to NOD.H2h4 mice, thyroid autoimmunity was investigated in both genders of the F1, F2, and the second-generation backcross of F1 to NOD.H2h4 (N2). Medium-density linkage analysis was performed on thyroid autoimmunity traits in F2 and N2 progeny. TgAb develop before TPOAb and were measured after 8 and 16 weeks of iodide exposure; TPOAb and thyroiditis were studied at 16 weeks. TgAb, TPOAb, and thyroiditis, absent in BALB/c and F1 mice, developed in most NOD.H2h4 and in more N2 than F2 progeny. No linkages were observed in F2 progeny, probably because of the small number of autoantibody-positive mice. In N2 progeny (equal numbers of males and females), a chromosome 17 locus is linked to thyroiditis and TgAb and is suggestively linked to TPOAb. This locus includes MHC region genes from B10.A(4R) mice (such as I-Ak and Tnf, the latter involved in thyrocyte apoptosis) and genes from NOD mice such as Satb1, which most likely plays a role in immune tolerance. In conclusion, MHC and non-MHC genes, encoded within the chromosome 17 locus from both B10.A(4R) and NOD strains, are most likely responsible for the Hashimoto disease-like phenotype of NOD.H2h4 mice. Copyright © 2017 Endocrine Society.

  3. Disruption and pseudoautosomal localization of the major histocompatibility complex in monotremes

    PubMed Central

    Dohm, Juliane C; Tsend-Ayush, Enkhjargal; Reinhardt, Richard; Grützner, Frank; Himmelbauer, Heinz

    2007-01-01

    Background The monotremes, represented by the duck-billed platypus and the echidnas, are the most divergent species within mammals, featuring a flamboyant mix of reptilian, mammalian and specialized characteristics. To understand the evolution of the mammalian major histocompatibility complex (MHC), the analysis of the monotreme genome is vital. Results We characterized several MHC containing bacterial artificial chromosome clones from platypus (Ornithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus) and mapped them onto chromosomes. We discovered that the MHC of monotremes is not contiguous and locates within pseudoautosomal regions of two pairs of their sex chromosomes. The analysis revealed an MHC core region with class I and class II genes on platypus and echidna X3/Y3. Echidna X4/Y4 and platypus Y4/X5 showed synteny to the human distal class III region and beyond. We discovered an intron-containing class I pseudogene on platypus Y4/X5 at a genomic location equivalent to the human HLA-B,C region, suggesting ancestral synteny of the monotreme MHC. Analysis of male meioses from platypus and echidna showed that MHC chromosomes occupy different positions in the meiotic chains of either species. Conclusion Molecular and cytogenetic analyses reveal new insights into the evolution of the mammalian MHC and the multiple sex chromosome system of monotremes. In addition, our data establish the first homology link between chicken microchromosomes and the smallest chromosomes in the monotreme karyotype. Our results further suggest that segments of the monotreme MHC that now reside on separate chromosomes must once have been syntenic and that the complex sex chromosome system of monotremes is dynamic and still evolving. PMID:17727704

  4. A Recombinant Antibody with the Antigen-Specific, Major Histocompatibility Complex-Restricted Specificity of T Cells

    NASA Astrophysics Data System (ADS)

    Andersen, Peter S.; Stryhn, Anette; Hansen, Bjarke E.; Fugger, Lars; Engberg, Jan; Buus, Soren

    1996-03-01

    Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might lead to novel approaches in immunotherapy. However, it has proven difficult to generate antibodies with the specificity of T cells by conventional hybridoma techniques. Here we report that the phage display technology is a feasible alternative to generate antibodies recognizing specific, predetermined peptide/MHC complexes.

  5. Expression of bovine non-classical major histocompatibility complex class 1 proteins in mouse P815 and human K562 cells

    USDA-ARS?s Scientific Manuscript database

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-class...

  6. Mate choice for major histocompatibility complex complementarity in a strictly monogamous bird, the grey partridge (Perdix perdix).

    PubMed

    Rymešová, Dana; Králová, Tereza; Promerová, Marta; Bryja, Josef; Tomášek, Oldřich; Svobodová, Jana; Šmilauer, Petr; Šálek, Miroslav; Albrecht, Tomáš

    2017-01-01

    Sexual selection has been hypothesised as favouring mate choice resulting in production of viable offspring with genotypes providing high pathogen resistance. Specific pathogen recognition is mediated by genes of the major histocompatibility complex (MHC) encoding proteins fundamental for adaptive immune response in jawed vertebrates. MHC genes may also play a role in odour-based individual recognition and mate choice, aimed at avoiding inbreeding. MHC genes are known to be involved in mate choice in a number of species, with 'good genes' (absolute criteria) and 'complementary genes' (self-referential criteria) being used to explain MHC-based mating. Here, we focus on the effect of morphological traits and variation and genetic similarity between individuals in MHC class IIB (MHCIIB) exon 2 on mating in a free-living population of a monogamous bird, the grey partridge. We found no evidence for absolute mate choice criteria as regards grey partridge MHCIIB genotypes, i.e., number and occurrence of amino acid variants, though red chroma of the spot behind eyes was positively associated with male pairing success. On the other hand, mate choice at MHCIIB was based on relative criteria as females preferentially paired with more dissimilar males having a lower number of shared amino acid variants. This observation supports the 'inbreeding avoidance' and 'complementary genes' hypotheses. Our study provides one of the first pieces of evidence for MHC-based mate choice for genetic complementarity in a strictly monogamous bird. The statistical approach employed can be recommended for testing mating preferences in cases where availability of potential mates (recorded with an appropriate method such as radio-tracking) shows considerable temporal variation. Additional genetic analyses using neutral markers may detect whether MHC-based mate choice for complementarity emerges as a by-product of general inbreeding avoidance in grey partridges.

  7. Restriction fragment length polymorphism of the major histocompatibility complex of the dog.

    PubMed

    Sarmiento, U M; Storb, R F

    1988-01-01

    Human major histocompatibility complex (HLA) cDNA probes were used to analyze the restriction fragment length polymorphism (RFLP) of the DLA-D region in dogs. Genomic DNA from peripheral blood leucocytes of 23 unrelated DLA-D-homozygous dogs representing nine DLA-D types (defined by mixed leucocyte reaction) was digested with restriction enzymes (Bam HI, Eco RI, Hind III, Pvu II, Taq I, Rsa I, Msp I, Pst I, and Bgl II), separated by agarose gel electrophoresis, and transferred onto Biotrace membrane. The Southern blots were successively hybridized with radiolabeled HLA cDNA probes corresponding to DR, DQ, DP, and DO beta genes. The autoradiograms for all nine enzyme digests displayed multiple bands with the DRb, DQb, and DPb probes while the DOb probe hybridized with one to two bands. The RFLP patterns were highly polymorphic but consistent within each DLA-D type. Standard RFLP patterns were established for nine DLA-D types which could be discriminated from each other by using two enzymes (Rsa I and Pst I) and the HLA-DPb probe. Cluster analysis of the polymorphic restriction fragments detected by the DRb probe revealed four closely related supertypic groups or DLA-DR families: Dw3 + Dw4 + D1, Dw8 + D10, D7 + D16 + D9, and Dw1. This study provides the basis for DLA-D genotyping at a population level by RFLP analysis. These results also suggest that the genetic organization of the DLA-D region may closely resemble that of the HLA complex.

  8. PHENOTYPIC EXPRESSIONS OF THE MAJOR HISTOCOMPATIBILITY LOCUS IN MAN (HL-A): LEUKOCYTE ANTIGENS AND MIXED LEUKOCYTE CULTURE REACTIVITY

    PubMed Central

    Amos, D. Bernard; Bach, Fritz H.

    1968-01-01

    The evidence is reviewed that a single genetic system, the major histocompatibility locus in man, HL-A, determines most of the antigens measured by presently available leukocyte isoantisera, and also controls reactivity in one-way mixed leucocyte culture tests. Studies in 12 families are presented to support this conclusion. Some interesting exceptions to the general typing—MLC tests correlation are presented and discussed. PMID:5675436

  9. High intralocus variability and interlocus recombination promote immunological diversity in a minimal major histocompatibility system.

    PubMed

    Wilson, Anthony B; Whittington, Camilla M; Bahr, Angela

    2014-12-20

    The genes of the major histocompatibility complex (MHC/MH) have attracted considerable scientific interest due to their exceptional levels of variability and important function as part of the adaptive immune system. Despite a large number of studies on MH class II diversity of both model and non-model organisms, most research has focused on patterns of genetic variability at individual loci, failing to capture the functional diversity of the biologically active dimeric molecule. Here, we take a systematic approach to the study of MH variation, analyzing patterns of genetic variation at MH class IIα and IIβ loci of the seahorse, which together form the immunologically active peptide binding cleft of the MH class II molecule. The seahorse carries a minimal class II system, consisting of single copies of both MH class IIα and IIβ, which are physically linked and inherited in a Mendelian fashion. Both genes are ubiquitously expressed and detectible in the brood pouch of male seahorses throughout pregnancy. Genetic variability of the two genes is high, dominated by non-synonymous variation concentrated in their peptide-binding regions. Coding variation outside these regions is negligible, a pattern thought to be driven by intra- and interlocus recombination. Despite the tight physical linkage of MH IIα and IIβ loci, recombination has produced novel composite alleles, increasing functional diversity at sites responsible for antigen recognition. Antigen recognition by the adaptive immune system of the seahorse is enhanced by high variability at both MH class IIα and IIβ loci. Strong positive selection on sites involved in pathogen recognition, coupled with high levels of intra- and interlocus recombination, produce a patchwork pattern of genetic variation driven by genetic hitchhiking. Studies focusing on variation at individual MH loci may unintentionally overlook an important component of ecologically relevant variation.

  10. Myelin-oligodendrocyte glycoprotein is a member of a subset of the immunoglobulin superfamily encoded within the major histocompatibility complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham-Dinh, D.; Dautigny, A.; Mattei, M.G.

    1993-09-01

    Myelin/oligodendrocyte glycoprotein (MOG) is found on the surface of myelinating oligodendrocytes and external lamellae of myelin sheaths in the central nervous system, and it is target antigen in experimental autoimmune encephalomyelitis and multiple sclerosis. The authors have isolated bovine, mouse, and rat MOG cDNA clones and shown that the developmental pattern of MOG expression in the rat central nervous system coincides with the late stages of myelination. The amino-terminal, extracellular domain of MOG has characteristics of an immunoglobulin variable domain and is 46% and 41% identical with the amino terminus of bovine butyrophilin (expressed in the lactating mammary gland) andmore » B-G antigens of the chicken major histocompatibility complex (MHC), respectively; these proteins thus form a subset of the immunoglobulin superfamily. The homology between MOG and B-G extends beyond their structure and genetic mapping to their ability to induce strong antibody responses and has implications for the role of MOG in pathological, autoimmune conditions. The authors colocalized the MOG and BT genes to the human MHC on chromosome 6p21.3-p22. The mouse MOG gene was mapped to the homologous band C of chromosome 17, within the M region of the mouse MHC. 38 refs., 6 figs.« less

  11. H-2RIIBP, a member of the nuclear hormone receptor superfamily that binds to both the regulatory element of major histocompatibility class I genes and the estrogen response element.

    PubMed

    Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K

    1989-11-01

    Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, but not to other MHC cis-acting sequences or to mutant region II sequences, similar to the naturally occurring region II factor in mouse cells. The deduced amino acid sequence of H-2RIIBP revealed two putative zinc fingers homologous to the DNA-binding domain of steroid/thyroid hormone receptors. Although sequence similarity in other regions was minimal, H-2RIIBP has apparent modular domains characteristic of the nuclear hormone receptors. Further analyses showed that both H-2RIIBP and the natural region II factor bind to the estrogen response element (ERE) of the vitellogenin A2 gene. The ERE is composed of a palindrome, and half of this palindrome resembles the region II binding site of the MHC CRE. These results indicate that H-2RIIBP (i) is a member of the superfamily of nuclear hormone receptors and (ii) may regulate not only MHC class I genes but also genes containing the ERE and related sequences. Sequences homologous to the H-2RIIBP gene are widely conserved in the animal kingdom. H-2RIIBP mRNA is expressed in many mouse tissues, in agreement with the distribution of the natural region II factor.

  12. Definitions of histocompatibility typing terms.

    PubMed

    Nunes, Eduardo; Heslop, Helen; Fernandez-Vina, Marcelo; Taves, Cynthia; Wagenknecht, Dawn R; Eisenbrey, A Bradley; Fischer, Gottfried; Poulton, Kay; Wacker, Kara; Hurley, Carolyn Katovich; Noreen, Harriet; Sacchi, Nicoletta

    2011-12-01

    Histocompatibility testing for stem cell and solid organ transplantation has become increasingly complex as newly discovered HLA alleles are described. HLA typing assignments reported by laboratories are used by physicians and donor registries for matching donors and recipients. To communicate effectively, a common language for histocompatibility terms should be established. In early 2010, representatives from Clinical, Registry, and Histocompatibility organizations joined together as the Harmonization of Histocompatibility Typing Terms Working Group to define a consensual language for laboratories, physicians, and registries to communicate histocompatibility typing information. The Working Group defined terms for HLA typing resolution, HLA matching, and a format for reporting HLA assignments. In addition, definitions of verification typing and extended typing were addressed. The original draft of the Definitions of Histocompatibility Typing Terms was disseminated to colleagues from each organization to gain feedback and create a collaborative document. Commentary gathered during this 90-day review period were discussed and implemented for preparation of this report. Histocompatibility testing continues to evolve; thus, the definitions agreed on today probably will require refinement and perhaps additional terminology in the future.

  13. Major histocompatibility complex similarity and sexual selection: different does not always mean attractive.

    PubMed

    Gasparini, Clelia; Congiu, Leonardo; Pilastro, Andrea

    2015-08-01

    Females that mate multiply have the possibility to exert postcopulatory choice and select more compatible sperm to fertilize eggs. Prior work suggests that dissimilarity in major histocompatibility complex (MHC) plays an important role in determining genetic compatibility between partners. Favouring a partner with dissimilar MHC alleles would result in offspring with high MHC diversity and therefore with enhanced survival thanks to increased resistance to pathogens and parasites. The high variability of MHC genes may further allow discrimination against the sperm from related males, reducing offspring homozygosity and inbreeding risk. Despite the large body of work conducted at precopulatory level, the role of MHC similarity between partners at postcopulatory level has been rarely investigated. We used an internal fertilizing fish with high level of multiple matings (Poecilia reticulata) to study whether MHC similarity plays a role in determining the outcome of fertilization when sperm from two males compete for the same set of eggs. We also controlled for genomewide similarity by determining similarity at 10 microsatellite loci. Contrary to prediction, we found that the more MHC-similar male sired more offspring while similarity at the microsatellite loci did not predict the outcome of sperm competition. Our results suggest that MHC discrimination may be involved in avoidance of hybridization or outbreeding rather than inbreeding avoidance. This, coupled with similar findings in salmon, suggests that the preference for MHC-dissimilar mates is far from being unanimous and that pre- and postcopulatory episodes of sexual selection can indeed act in opposite directions. © 2015 John Wiley & Sons Ltd.

  14. Spatial variation and low diversity in the major histocompatibility complex in walrus (Odobenus rosmarus)

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Fales, Krystal R.; Jay, Chadwick V.; Sage, George K.; Talbot, Sandra L.

    2014-01-01

    Increased global temperature and associated changes to Arctic habitats will likely result in the northward advance of species, including an influx of pathogens novel to the Arctic. How species respond to these immunological challenges will depend in part on the adaptive potential of their immune response system. We compared levels of genetic diversity at a gene associated with adaptive immune response [Class II major histocompatibility complex (MHC), DQB exon 2] between populations of walrus (Odobenus rosmarus), a sea ice-dependent Arctic species. Walrus was represented by only five MHC DQB alleles, with frequency differences observed between Pacific and Atlantic populations. MHC DQB alleles appear to be under balancing selection, and most (80 %; n = 4/5) of the alleles were observed in walruses from both oceans, suggesting broad scale differences in the frequency of exposure and diversity of pathogens may be influencing levels of heterozygosity at DQB in walruses. Limited genetic diversity at MHC, however, suggests that walrus may have a reduced capacity to respond to novel immunological challenges associated with shifts in ecological communities and environmental stressors predicted for changing climates. This is particularly pertinent for walrus, since reductions in summer sea ice may facilitate both northward expansion of marine species and associated pathogens from more temperate regions, and exchange of marine mammals and associated pathogens through the recently opened Northwest Passage between the Atlantic and Pacific Oceans in the Canadian high Arctic.

  15. Selection, trans-species polymorphism, and locus identification of major histocompatibility complex class IIβ alleles of New World ranid frogs

    USGS Publications Warehouse

    Kiemnec-Tyburczy, Karen M.; Richmond, Jonathan Q.; Savage, Anna E.; Zamudio, Kelly R.

    2010-01-01

    Genes encoded by the major histocompatibility complex (MHC) play key roles in the vertebrate immune system. However, our understanding of the evolutionary processes and underlying genetic mechanisms shaping these genes is limited in many taxa, including amphibians, a group currently impacted by emerging infectious diseases. To further elucidate the evolution of the MHC in frogs (anurans) and develop tools for population genetics, we surveyed allelic diversity of the MHC class II ??1 domain in both genomic and complementary DNA of seven New World species in the genus Rana (Lithobates). To assign locus affiliation to our alleles, we used a "gene walking" technique to obtain intron 2 sequences that flanked MHC class II?? exon 2. Two distinct intron sequences were recovered, suggesting the presence of at least two class II?? loci in Rana. We designed a primer pair that successfully amplified an orthologous locus from all seven Rana species. In total, we recovered 13 alleles and documented trans-species polymorphism for four of the alleles. We also found quantitative evidence of selection acting on amino acid residues that are putatively involved in peptide binding and structural stability of the ??1 domain of anurans. Our results indicated that primer mismatch can result in polymerase chain reaction (PCR) bias, which influences the number of alleles that are recovered. Using a single locus may minimize PCR bias caused by primer mismatch, and the gene walking technique was an effective approach for generating single-copy orthologous markers necessary for future studies of MHC allelic variation in natural amphibian populations. ?? 2010 Springer-Verlag.

  16. Role of major histocompatibility complex class II in resistance of mice to naturally acquired infection with Syphacia obvelata

    NASA Technical Reports Server (NTRS)

    Stewart, Patricia W.; Chapes, Stephen K.

    2003-01-01

    Genetics plays a substantial role in host resistance in many host-parasite interactions. We examined the prevalence of naturally acquired infection with Syphacia obvelata in a number of mouse strains housed in a non-barrier facility. These mice, which included cross-bred and congenic, inbred strains on various genetic backgrounds, differ in the loci for the immune function genes--major histocompatibility complex class II (MHCII), toll-like receptor 4 (Tlr4), and solute carrier family 11, member 1 (Slc11a1)--which allowed comparisons of the impact of these genes on resistance to pinworm infection. Male and female mice of various ages were sampled over an 18-month period; infection was determined by use of the cellophane tape test. Results indicated that mice that were MHCII+/+ had a significantly lower prevalence of infection than did mice that were MHCII-/-. Differences were not seen between male and female mice. Although MHCII+/+ mice had an age-associated decrease in infection prevalence, such decrease was not seen in MHCII-/- mice. In contrast, infection prevalence in mice with the normal Tlr4 gene (Tlr4(LPS-n/LPS-n)) gene did not differ significantly compared with that in mice that were homozygous for either the point mutation (Tlr4(LPS-d/LPS-d)) or deletion (Tlr4(LPS-del/LPS-del)) of that gene. Likewise, the presence (Sle11a1r/r) or absence (Slc11a1s/s) of functional alleles for Slc11a1 had no effect on the prevalence of infection with S. obvelata. In conclusion, presence of MHCII, but not Tlr4 or Slc11a1 significantly influences prevalence of naturally acquired infection with S. obvelata. These data justify further comprehensive analyses of the immune components that are involved in pinworm resistance.

  17. Enhanced neuronal expression of major histocompatibility complex class I leads to aberrations in neurodevelopment and neurorepair

    PubMed Central

    Wu, Zhongqi-Phyllis; Washburn, Lorraine; Bilousova, Tina V.; Boudzinskaia, Maia; Escande-Beillard, Nathalie; Querubin, Jyes; Dang, Hoa; Xie, Cui-Wei; Tian, Jide; Kaufman, Daniel L.

    2012-01-01

    Mice deficient in classical major histocompatibility complex class I (MHCI) have aberrations in neurodevelopment. The consequences of up-regulated neuronal MHCI expression have not been examined. We found that transgenic C57Bl/6 mice that are engineered to express higher levels of self-Db on their CNS neurons have alterations in their hippocampal morphology and retinogeniculate projections, as well as impaired neurorepair responses. Thus, enhanced neuronal classical MHCI expression can lead to aberrations in neural circuitry and neurorepair. These findings complement a growing body of knowledge concerning the neurobiological activities of MHCI and may have potential clinical relevance. PMID:20950866

  18. Involvement of the major histocompatibility complex region in the genetic regulation of circulating CD8 T-cell numbers in humans.

    PubMed

    Cruz, E; Vieira, J; Gonçalves, R; Alves, H; Almeida, S; Rodrigues, P; Lacerda, R; Porto, G

    2004-07-01

    Variability in T-lymphocyte numbers is partially explained by a genetic regulation. From studies in animal models, it is known that the Major Histocompatibility Complex (MHC) is involved in this regulation. In humans, this has not been shown yet. The objective of the present study was to test the hypothesis that genes in the MHC region influence the regulation of T-lymphocyte numbers. Two approaches were used. Association studies between T-cell counts (CD4(+) and CD8(+)) or total lymphocyte counts and HLA class I alleles (A and B) or mutations in the HFE (C282Y and H63D), the hemochromatosis gene, in an unrelated population (n = 264). A second approach was a sibpair correlation analysis of the same T-cell counts in relation to HLA-HFE haplotypes in subjects belonging to 48 hemochromatosis families (n = 456 sibpairs). In the normal population, results showed a strong statistically significant association of the HLA-A*01 with high numbers of CD8(+) T cells and a less powerful association with the HLA-A*24 with low numbers of CD8(+) T cells. Sibpair correlations revealed the most significant correlation for CD8(+) T-cell numbers for sibpairs with HLA-HFE-identical haplotypes. This was not observed for CD4(+) T cells. These results show that the MHC region is involved in the genetic regulation of CD8(+) T-cell numbers in humans. Identification of genes responsible for this control may have important biological and clinical implications.

  19. Duplication and population dynamics shape historic patterns of selection and genetic variation at the major histocompatibility complex in rodents

    PubMed Central

    Winternitz, Jamie C; Wares, John P

    2013-01-01

    Genetic variation at the major histocompatibility complex (MHC) is vitally important for wildlife populations to respond to pathogen threats. As natural populations can fluctuate greatly in size, a key issue concerns how population cycles and bottlenecks that could reduce genetic diversity will influence MHC genes. Using 454 sequencing, we characterized genetic diversity at the DRB Class II locus in montane voles (Microtus montanus), a North American rodent that regularly undergoes high-amplitude fluctuations in population size. We tested for evidence of historic balancing selection, recombination, and gene duplication to identify mechanisms maintaining allelic diversity. Counter to our expectations, we found strong evidence of purifying selection acting on the DRB locus in montane voles. We speculate that the interplay between population fluctuations and gene duplication might be responsible for the weak evidence of historic balancing selection and strong evidence of purifying selection detected. To further explore this idea, we conducted a phylogenetically controlled comparative analysis across 16 rodent species with varying demographic histories and MHC duplication events (based on the maximum number of alleles detected per individual). On the basis of phylogenetic generalized linear model-averaging, we found evidence that the estimated number of duplicated loci was positively related to allelic diversity and, surprisingly, to the strength of purifying selection at the DRB locus. Our analyses also revealed that species that had undergone population bottlenecks had lower allelic richness than stable species. This study highlights the need to consider demographic history and genetic structure alongside patterns of natural selection to understand resulting patterns of genetic variation at the MHC. PMID:23789067

  20. Major histocompatibility complex class I-deficient NOD-B2mnull mice are diabetes and insulitis resistant.

    PubMed

    Serreze, D V; Leiter, E H; Christianson, G J; Greiner, D; Roopenian, D C

    1994-03-01

    Specific allelic combinations within the class II region of the major histocompatibility complex (MHC) represent a major genetic component for susceptibility to autoimmune insulin-dependent diabetes mellitus (IDDM) in humans. We produced and used a stock of NOD/Lt mice congenic for a functionally inactivated beta 2-microglobulin (B2mnull) locus to assess whether there was an absolute requirement for MHC class I expression and/or CD8+ T-cells in diabetogenesis. These NOD-B2mnull mice do not express cell surface MHC class I molecules or produce detectable levels of CD8+ T-cells and are diabetes and insulitis resistant. Previous results from transgenic mouse models indicated that intracellular accumulation of MHC class I molecules negatively affects pancreatic beta-cell function and can result in the development of nonautoimmune insulin-dependent diabetes mellitus (IDDM). MHC class I molecules have been shown to accumulate intracellularly in the presence of a disrupted B2m locus, but this mutation does not negatively affect plasma insulin levels in either NOD/Lt mice or in those of a mixed 129 and C57BL/6 genetic background. Interestingly, 14% of the male mice in this mixed background did develop hyperinsulinemia (> 1,500 pM) independent of the disrupted B2m locus, suggesting that these mice could conceivably develop insulin-resistant diabetes. However, none of these mice became diabetic at up to 22 months of age. Thus, elimination of cell surface MHC class I expression with a disrupted B2m gene blocks autoimmune diabetes in NOD/Lt mice, without engendering a separate, distinct form of glucose intolerance.

  1. Molecular docking of superantigens with class II major histocompatibility complex proteins.

    PubMed

    Olson, M A; Cuff, L

    1997-01-01

    The molecular recognition of two superantigens with class II major histocompatibility complex molecules was simulated by using protein-protein docking. Superantigens studied were staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin-1 (TSST-1) in their crystallographic assemblies with HLA-DR1. Rigid-body docking was performed sampling configurational space of the interfacial surfaces by employing a strategy of partitioning the contact regions on HLA-DR1 into separate molecular recognition units. Scoring of docked conformations was based on an electrostatic continuum model evaluated with the finite-difference Poisson-Boltzmann method. Estimates of nonpolar contributions were derived from the buried molecular surface areas. We found for both superantigens that docking the HLA-DR1 surface complementary with the SEB and TSST-1 contact regions containing a homologous hydrophobic surface loop provided sufficient recognition for the reconstitution of native-like conformers exhibiting the highest-scoring free energies. For the SEB complex, the calculations were successful in reproducing the total association free energy. A comparison of the free-energy determinants of the conserved hydrophobic contact residue indicates functional similarity between the two proteins for this interface. Though both superantigens share a common global association mode, differences in binding topology distinguish the conformational specificities underlying recognition.

  2. Expression of Immune Genes on Chromosome 6p21.3-22.1 in Schizophrenia

    PubMed Central

    Sinkus, Melissa L.; Adams, Catherine E.; Logel, Judith; Freedman, Robert; Leonard, Sherry

    2013-01-01

    Schizophrenia is a common mental illness with a large genetic component. Three genome-wide association studies have implicated the major histocompatibility complex gene region on chromosome 6p21.3-22.1 in schizophrenia. In addition, nicotine, which is commonly abused in schizophrenia, affects the expression of central nervous system immune genes. Messenger RNA levels for genes in the 6p21.3-22.1 region were measured in human postmortem hippocampus of 89 subjects. The effects of schizophrenia diagnosis, smoking and systemic inflammatory illness were compared. Cell-specific expression patterns for the class I major histocompatibility complex gene HLA-A were explored utilizing in situ hybridization. Expression of five genes was altered in schizophrenic subjects. Messenger RNA levels for the class I major histocompatibility complex antigen HLA-B were increased in schizophrenic nonsmokers, while levels for smokers were indistinguishable from those of controls. β2 microglobulin, HLA-A and Notch4 were all expressed in a pattern where inflammatory illness was associated with increased expression in controls but not in subjects with schizophrenia. Schizophrenia was also associated with increased expression of Butyrophilin 2A2. HLA-A was expressed in glutamatergic and GABAergic neurons in the dentate gyrus, hilus, and the stratum pyramidale of the CA1-CA4 regions of the hippocampus, but not in astrocytes. In conclusion, the expression of genes from the major histocompatibility complex region of chromosome 6 with likely roles in synaptic development is altered in schizophrenia. There were also significant interactions between schizophrenia diagnosis and both inflammatory illness and smoking. PMID:23395714

  3. Genetic wealth, population health: Major histocompatibility complex variation in captive and wild ring-tailed lemurs (Lemur catta).

    PubMed

    Grogan, Kathleen E; Sauther, Michelle L; Cuozzo, Frank P; Drea, Christine M

    2017-10-01

    Across species, diversity at the major histocompatibility complex (MHC) is critical to individual disease resistance and, hence, to population health; however, MHC diversity can be reduced in small, fragmented, or isolated populations. Given the need for comparative studies of functional genetic diversity, we investigated whether MHC diversity differs between populations which are open, that is experiencing gene flow, versus populations which are closed, that is isolated from other populations. Using the endangered ring-tailed lemur ( Lemur catta ) as a model, we compared two populations under long-term study: a relatively "open," wild population ( n  = 180) derived from Bezà Mahafaly Special Reserve, Madagascar (2003-2013) and a "closed," captive population ( n  = 121) derived from the Duke Lemur Center (DLC, 1980-2013) and from the Indianapolis and Cincinnati Zoos (2012). For all animals, we assessed MHC-DRB diversity and, across populations, we compared the number of unique MHC-DRB alleles and their distributions. Wild individuals possessed more MHC-DRB alleles than did captive individuals, and overall, the wild population had more unique MHC-DRB alleles that were more evenly distributed than did the captive population. Despite management efforts to maintain or increase genetic diversity in the DLC population, MHC diversity remained static from 1980 to 2010. Since 2010, however, captive-breeding efforts resulted in the MHC diversity of offspring increasing to a level commensurate with that found in wild individuals. Therefore, loss of genetic diversity in lemurs, owing to small founder populations or reduced gene flow, can be mitigated by managed breeding efforts. Quantifying MHC diversity within individuals and between populations is the necessary first step to identifying potential improvements to captive management and conservation plans.

  4. Sperm competition, but not major histocompatibility divergence, drives differential fertilization success between alternative reproductive tactics in Chinook salmon.

    PubMed

    Lehnert, S J; Helou, L; Pitcher, T E; Heath, J W; Heath, D D

    2018-01-01

    Post-copulatory sexual selection processes, including sperm competition and cryptic female choice (CFC), can operate based on major histocompatibility (MH) genes. We investigated sperm competition between male alternative reproductive tactics [jack (sneaker) and hooknose (guard)] of Chinook salmon (Oncorhynchus tshawytscha). Using a full factorial design, we examined in vitro competitive fertilization success of paired jack and hooknose males at three time points after sperm activation (0, 15 and 60 s) to test for male competition, CFC and time effects on male fertilization success. We also examined egg-mediated CFC at two MH genes by examining both the relationship between competitive fertilization success and MH divergence as well as inheritance patterns of MH alleles in resulting offspring. We found that jacks sired more offspring than hooknose males at 0 s post-activation; however, jack fertilization success declined over time post-activation, suggesting a trade-off between sperm speed and longevity. Enhanced fertilization success of jacks (presumably via higher sperm quality) may serve to increase sneaker tactic competitiveness relative to dominant hooknose males. We also found evidence of egg-mediated CFC (i.e. female × male interaction) influencing competitive fertilization success; however, CFC was not acting on the MH genes as we found no relationship between fertilization success and MH II β 1 or MH I α 1 divergence and we found no deviations from Mendelian inheritance of MH alleles in the offspring. Our study provides insight into evolutionary mechanisms influencing variation in male mating success within alternative reproductive tactics, thus underscoring different strategies that males can adopt to attain success. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  5. Major histocompatibility complex (MHC) heterozygote superiority to natural multi-parasite infections in the water vole (Arvicola terrestris)

    PubMed Central

    Oliver, M.K.; Telfer, S.; Piertney, S.B.

    2008-01-01

    The fundamental role of the major histocompatibility complex (MHC) in immune recognition has led to a general consensus that the characteristically high levels of functional polymorphism at MHC genes is maintained by balancing selection operating through host–parasite coevolution. However, the actual mechanism by which selection operates is unclear. Two hypotheses have been proposed: overdominance (or heterozygote superiority) and negative frequency-dependent selection. Evidence for these hypotheses was evaluated by examining MHC–parasite relationships in an island population of water voles (Arvicola terrestris). Generalized linear mixed models were used to examine whether individual variation at an MHC class II DRB locus explained variation in the individual burdens of five different parasites. MHC genotype explained a significant amount of variation in the burden of gamasid mites, fleas (Megabothris walkeri) and nymphs of sheep ticks (Ixodes ricinus). Additionally, MHC heterozygotes were simultaneously co-infected by fewer parasite types than homozygotes. In each case where an MHC-dependent effect on parasite burden was resolved, the heterozygote genotype was associated with fewer parasites, and the heterozygote outperformed each homozygote in two of three cases, suggesting an overall superiority against parasitism for MHC heterozygote genotypes. This is the first demonstration of MHC heterozygote superiority against multiple parasites in a natural population, a mechanism that could help maintain high levels of functional MHC genetic diversity in natural populations. PMID:19129114

  6. High-Resolution Patterns of Meiotic Recombination across the Human Major Histocompatibility Complex

    PubMed Central

    Cullen, Michael; Perfetto, Stephen P.; Klitz, William; Nelson, George; Carrington, Mary

    2002-01-01

    Definitive characteristics of meiotic recombination events over large (i.e., >1 Mb) segments of the human genome remain obscure, yet they are essential for establishing the haplotypic structure of the genome and for efficient mapping of complex traits. We present a high-resolution map of recombination at the kilobase level across a 3.3-Mb interval encompassing the major histocompatibility complex (MHC). Genotyping of 20,031 single sperm from 12 individuals resulted in the identification and fine mapping of 325 recombinant chromosomes within genomic intervals as small as 7 kb. Several principal characteristics of recombination in this region were observed: (1) rates of recombination can differ significantly between individuals; (2) intense hot spots of recombination occur at least every 0.8 Mb but are not necessarily evenly spaced; (3) distribution in the location of recombination events can differ significantly among individuals; (4) between hot spots, low levels of recombination occur fairly evenly across 100-kb segments, suggesting the presence of warm spots of recombination; and (5) specific sequence motifs associate significantly with recombination distribution. These data provide a plausible model for recombination patterns of the human genome overall. PMID:12297984

  7. Atlantic salmon eggs favour sperm in competition that have similar major histocompatibility alleles.

    PubMed

    Yeates, Sarah E; Einum, Sigurd; Fleming, Ian A; Megens, Hendrik-Jan; Stet, René J M; Hindar, Kjetil; Holt, William V; Van Look, Katrien J W; Gage, Matthew J G

    2009-02-07

    Polyandry and post-copulatory sexual selection provide opportunities for the evolution of female differential sperm selection. Here, we examined the influence of variation in major histocompatibility (MH) class I allelic composition upon sperm competition dynamics in Atlantic salmon. We ran in vitro fertilization competitions that mimicked the gametic microenvironment, and replicated a paired-male experimental design that allowed us to compare differences in sperm competition success among males when their sperm compete for eggs from females that were genetically either similar or dissimilar at the MH class I locus. Concurrently, we measured variation in spermatozoal traits that are known to influence relative fertilization success under these conditions. Contrary to the findings demonstrating mechanisms that promote MH complex heterozygosity, our results showed that males won significantly greater relative fertilization success when competing for eggs from genetically similar females at the MH class I. This result also showed covariation with the known influences of sperm velocity on relative fertilization success. We discuss these unexpected findings in relation to sperm-egg recognition and hybridization avoidance mechanisms based upon immunogenetic variation.

  8. Binding and activation of major histocompatibility complex class II-deficient macrophages by staphylococcal exotoxins

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Iandolo, J. J.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Macrophages from C2D transgenic mice deficient in the expression of major histocompatibility complex (MHC) class II proteins were used to identify binding sites for superantigens distinct from the MHC class II molecule. Iodinated staphylococcal enterotoxins A and B (SEA and SEB) and exfoliative toxins A and B (ETA and ETB) bound to C2D macrophages in a concentration-dependent and competitive manner. All four toxins increased F-actin concentration within 30 s of their addition to C2D macrophages, indicating that signal transduction occurred in response to toxin in the absence of class II MHC. Furthermore, ETA, ETB, SEA, and, to a lesser extent, SEB induced C2D macrophages to produce interleukin 6. Several molecular species on C2D macrophages with molecular masses of 140, 97, 61, 52, 43, and 37 kDa bound SEA in immunoprecipitation experiments. These data indicate the presence of novel, functionally active toxin binding sites on murine macrophages distinct from MHC class II molecules.

  9. Introgression from Domestic Goat Generated Variation at the Major Histocompatibility Complex of Alpine Ibex

    PubMed Central

    Grossen, Christine; Keller, Lukas; Biebach, Iris; Croll, Daniel

    2014-01-01

    The major histocompatibility complex (MHC) is a crucial component of the vertebrate immune system and shows extremely high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms maintained by balancing selection. However, introgression from related species was recently proposed as an additional mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex). At a usually very polymorphic MHC exon involved in pathogen recognition (DRB exon 2), Alpine ibex carried only two alleles. We found that one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus). We sequenced 2489 bp of the coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2 allele showed nearly identical sequences (99.8%) to a breed of domestic goats. Using Sanger and RAD sequencing, microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic diversity at the MHC and other loci under balancing selection. PMID:24945814

  10. The resistance of BALB/cJ mice to Yersinia pestis maps to the major histocompatibility complex of chromosome 17.

    PubMed

    Turner, Joshua K; McAllister, Milton M; Xu, John L; Tapping, Richard I

    2008-09-01

    Yersinia pestis, the causative agent of plague, has been well studied at the molecular and genetic levels, but little is known about the role that host genes play in combating this highly lethal pathogen. We challenged several inbred strains of mice with Y. pestis and found that BALB/cJ mice are highly resistant compared to susceptible strains such as C57BL/6J. This resistance was observed only in BALB/cJ mice and not in other BALB/c substrains. Compared to C57BL/6J mice, the BALB/cJ strain exhibited reduced bacterial burden in the spleen and liver early after infection as well as lower levels of serum interleukin-6. These differences were evident 24 h postinfection and became more pronounced with time. Although a significant influx of neutrophils in the spleen and liver was exhibited in both strains, occlusive fibrinous thrombi resulting in necrosis of the surrounding tissue was observed only in C57BL/6J mice. In an effort to identify the gene(s) responsible for resistance, we measured total splenic bacteria in 95 F(2) mice 48 h postinfection and performed quantitative trait locus mapping using 58 microsatellite markers spaced throughout the genome. This analysis revealed a single nonrecessive plague resistance locus, designated prl1 (plague resistance locus 1), which coincides with the major histocompatibility complex of chromosome 17. A second screen of 95 backcrossed mice verified that this locus confers resistance to Y. pestis early in infection. Finally, eighth generation backcrossed mice harboring prl1 were found to maintain resistance in the susceptible C57BL/6J background. These results identify a novel genetic locus in BALB/cJ mice that confers resistance to Y. pestis.

  11. Expression of major histocompatibility complex class II and costimulatory molecules in oral carcinomas in vitro.

    PubMed

    Villarroel-Dorrego, Mariana; Speight, Paul M; Barrett, A William

    2005-01-01

    Recognition in the 1980 s that keratinocytes can express class II molecules of the Major Histocompatibility Complex (MHC) first raised the possibility that these cells might have an immunological function, and may even act as antigen presenting cells (APC). For effective T lymphocyte activation, APC require, in addition to MHC II, appropriate costimulatory signals. The aim of this study was to determine the expression of MHC class II and the co-stimulatory molecules CD40, CD80 and CD86 in keratinocytes derived from healthy oral mucosa and oral carcinomas. Using flow cytometry, it was confirmed that oral keratinocytes, switch on, expression of MHC class II molecules after stimulation with IFNgamma in vitro. All keratinocyte lines expressed CD40 constitutively; by contrast, CD80 and CD86 were universally absent. Loss of CD80 and CD86 may be one means whereby tumours escape immunological surveillance.

  12. Odour-based discrimination of similarity at the major histocompatibility complex in birds

    PubMed Central

    Strandh, Maria; Mardon, Jérôme; Westerdahl, Helena; Bonadonna, Francesco

    2017-01-01

    Many animals are known to preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC) in order to maximize the antigen binding repertoire (or disease resistance) in their offspring. Although several mammals, fish or lizards use odour cues to assess MHC similarity with potential partners, the ability of birds to assess MHC similarity using olfactory cues has not yet been explored. Here we used a behavioural binary choice test and high-throughput-sequencing of MHC class IIB to determine whether blue petrels can discriminate MHC similarity based on odour cues alone. Blue petrels are seabirds with particularly good sense of smell, they have a reciprocal mate choice and are known to preferentially mate with MHC-dissimilar partners. Incubating males preferentially approached the odour of the more MHC-dissimilar female, whereas incubating females showed opposite preferences. Given their mating pattern, females were, however, expected to show preference for the odour of the more MHC-dissimilar male. Further studies are needed to determine whether, as in women and female mice, the preference varies with the reproductive cycle in blue petrel females. Our results provide the first evidence that birds can use odour cues only to assess MHC dissimilarity. PMID:28077776

  13. Odour-based discrimination of similarity at the major histocompatibility complex in birds.

    PubMed

    Leclaire, Sarah; Strandh, Maria; Mardon, Jérôme; Westerdahl, Helena; Bonadonna, Francesco

    2017-01-11

    Many animals are known to preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC) in order to maximize the antigen binding repertoire (or disease resistance) in their offspring. Although several mammals, fish or lizards use odour cues to assess MHC similarity with potential partners, the ability of birds to assess MHC similarity using olfactory cues has not yet been explored. Here we used a behavioural binary choice test and high-throughput-sequencing of MHC class IIB to determine whether blue petrels can discriminate MHC similarity based on odour cues alone. Blue petrels are seabirds with particularly good sense of smell, they have a reciprocal mate choice and are known to preferentially mate with MHC-dissimilar partners. Incubating males preferentially approached the odour of the more MHC-dissimilar female, whereas incubating females showed opposite preferences. Given their mating pattern, females were, however, expected to show preference for the odour of the more MHC-dissimilar male. Further studies are needed to determine whether, as in women and female mice, the preference varies with the reproductive cycle in blue petrel females. Our results provide the first evidence that birds can use odour cues only to assess MHC dissimilarity. © 2017 The Author(s).

  14. Targeting foreign major histocompatibility complex molecules to tumors by tumor cell specific single chain antibody (scFv).

    PubMed

    Li, Jinhua; Franek, Karl J; Patterson, Andrea L; Holmes, Lillia M; Burgin, Kelly E; Ji, Jianfei; Yu, Xianzhong; Wagner, Thomas E; Wei, Yanzhang

    2003-11-01

    Down-regulation of the major histocompatibility complex (MHC) is one of the major mechanisms that tumor cells adopted to escape immunosurveillance. Therefore, specifically coating tumor cells with foreign MHC may make tumor cells a better target for immune recognition and surveillance. In this study, we designed and generated a fusion protein, H2Kd/scPSMA, consisting of a single chain antibody against human prostate specific membrane antigen (PSMA) and the extracellular domain of mouse H-2Kd. The expression of this fusion protein in B16F0 mouse melanoma cells was confirmed by RT-PCR and fluorescent activated cell sorting (FACS). Our animal study showed that the expression of H2Kd/scPSMA in B16F0/PSMA5, a B16F0 cell line expressing human PSMA, significantly inhibited tumor growth as demonstrated in the pulmonary metastasis assay and tumor growth study and improved overall survival.

  15. Association between Single Nucleotide Polymorphisms of the Major Histocompatibility Complex Class II Gene and Newcastle Disease Virus Titre and Body Weight in Leung Hang Khao Chickens

    PubMed Central

    Molee, A.; Kongroi, K.; Kuadsantia, P.; Poompramun, C.; Likitdecharote, B.

    2016-01-01

    The aim of the present study was to investigate the effect of single nucleotide polymorphisms in the major histocompatibility complex (MHC) class II gene on resistance to Newcastle disease virus and body weight of the Thai indigenous chicken, Leung Hang Khao (Gallus gallus domesticus). Blood samples were collected for single nucleotide polymorphism analysis from 485 chickens. Polymerase chain reaction sequencing was used to classify single nucleotide polymorphisms of class II MHC. Body weights were measured at the ages of 3, 4, 5, and 7 months. Titres of Newcastle disease virus at 2 weeks to 7 months were determined and the correlation between body weight and titre was analysed. The association between single nucleotide polymorphisms and body weight and titre were analysed by a generalized linear model. Seven single nucleotide polymorphisms were identified: C125T, A126T, C209G, C242T, A243T, C244T, and A254T. Significant correlations between log titre and body weight were found at 2 and 4 weeks. Associations between single nucleotide polymorphisms and titre were found for C209G and A254T, and between all single nucleotide polymorphisms (except A243T) and body weight. The results showed that class II MHC is associated with both titre of Newcastle disease virus and body weight in Leung Hang Khao chickens. This is of concern because improved growth traits are the main goal of breeding selection. Moreover, the results suggested that MHC has a pleiotropic effect on the titre and growth performance. This mechanism should be investigated in a future study. PMID:26732325

  16. The Major Histocompatibility Complex–related Fc Receptor for IgG (FcRn) Binds Albumin and Prolongs Its Lifespan

    PubMed Central

    Chaudhury, Chaity; Mehnaz, Samina; Robinson, John M.; Hayton, William L.; Pearl, Dennis K.; Roopenian, Derry C.; Anderson, Clark L.

    2003-01-01

    The inverse relationship between serum albumin concentration and its half-life suggested to early workers that albumin would be protected from a catabolic fate by a receptor-mediated mechanism much like that proposed for IgG. We show here that albumin binds FcRn in a pH dependent fashion, that the lifespan of albumin is shortened in FcRn-deficient mice, and that the plasma albumin concentration of FcRn-deficient mice is less than half that of wild-type mice. These results affirm the hypothesis that the major histocompatibility complex–related Fc receptor protects albumin from degradation just as it does IgG, prolonging the half-lives of both. PMID:12566415

  17. Major Histocompatibility Complex I Expression by Motor Neurons and Its Implication in Amyotrophic Lateral Sclerosis

    PubMed Central

    Nardo, Giovanni; Trolese, Maria Chiara; Bendotti, Caterina

    2016-01-01

    Neuronal expression of major histocompatibility complex I (MHCI)-related molecules in adults and during CNS diseases is involved in the synaptic plasticity and axonal regeneration with mechanisms either dependent or independent of their immune functions. Motor neurons are highly responsive in triggering the expression of MHCI molecules during normal aging or following insults and diseases, and this has implications in the synaptic controls, axonal regeneration, and neuromuscular junction stability of these neurons. We recently reported that MHCI and immunoproteasome are strongly activated in spinal motor neurons and their peripheral motor axon in a mouse model of familial amyotrophic lateral sclerosis (ALS) during the course of the disease. This response was prominent in ALS mice with slower disease progression in which the axonal structure and function was better preserved than in fast-progressing mice. This review summarizes and discusses our observations in the light of knowledge about the possible role of MHCI in motor neurons providing additional insight into the pathophysiology of ALS. PMID:27379008

  18. The Resistance of BALB/cJ Mice to Yersinia pestis Maps to the Major Histocompatibility Complex of Chromosome 17▿

    PubMed Central

    Turner, Joshua K.; McAllister, Milton M.; Xu, John L.; Tapping, Richard I.

    2008-01-01

    Yersinia pestis, the causative agent of plague, has been well studied at the molecular and genetic levels, but little is known about the role that host genes play in combating this highly lethal pathogen. We challenged several inbred strains of mice with Y. pestis and found that BALB/cJ mice are highly resistant compared to susceptible strains such as C57BL/6J. This resistance was observed only in BALB/cJ mice and not in other BALB/c substrains. Compared to C57BL/6J mice, the BALB/cJ strain exhibited reduced bacterial burden in the spleen and liver early after infection as well as lower levels of serum interleukin-6. These differences were evident 24 h postinfection and became more pronounced with time. Although a significant influx of neutrophils in the spleen and liver was exhibited in both strains, occlusive fibrinous thrombi resulting in necrosis of the surrounding tissue was observed only in C57BL/6J mice. In an effort to identify the gene(s) responsible for resistance, we measured total splenic bacteria in 95 F2 mice 48 h postinfection and performed quantitative trait locus mapping using 58 microsatellite markers spaced throughout the genome. This analysis revealed a single nonrecessive plague resistance locus, designated prl1 (plague resistance locus 1), which coincides with the major histocompatibility complex of chromosome 17. A second screen of 95 backcrossed mice verified that this locus confers resistance to Y. pestis early in infection. Finally, eighth generation backcrossed mice harboring prl1 were found to maintain resistance in the susceptible C57BL/6J background. These results identify a novel genetic locus in BALB/cJ mice that confers resistance to Y. pestis. PMID:18573896

  19. DNA typing revealing high HLA-Cw polymorphism completes availability of major histocompatibility complex loci in forensic medicine.

    PubMed

    Keresztury, L; Rajczy, K; Tauszik, T; Gyódi, E; Petrányi, G G; Falus, A

    2003-03-01

    Studies of human population genetics in Hungary have revealed relevant heterogeneity in the major histocompatibility complex. In the present studies, two isolated ethnic groups were chosen: people living in the Káli Basin westward from the Danube River, and those living in Opusztaszer, a village eastward from Danube, who are known as native ancient Hungarians. Blood samples were collected from 70 people in the Káli Basin and from 45 people in Opusztaszer. The frequency of HLA-Cw alleles was determined by serology as well as by DNA typing in 46 and 32 samples of the two populations, respectively, and in 44 randomly selected subjects of Hungarian origin. Compared with a random population of cadaver donors (the deaths having resulted mostly from accidents or, in a smaller number, strokes or heart infarcts) and voluntary bone marrow donors (typed in the last 10 years) recruited from all parts of Hungary and representing the mixed Hungarian population, remarkable differences were found in haplotype and allele frequencies. HLA-A, -B, -Cw typing was performed by serology and, in the case of the HLA-Cw locus, by polymerase chain reaction (PCR)-SSP and/or PCR-SSOP techniques, as well. The PCR-SSO oligotyping procedure allowed the identification of 32 Cw alleles in contrast with the 9 serologically detectable types. Because of the combination of low antigen expression and the lack of specific serologic reagents of good quality, no HLA-Cw antigens were detectable in 41%, and only one was detected in 48%, of the investigated individuals by standard serologic typing. With PCR-SSO typing, however, 97% of the investigated individuals proved to be heterozygous for HLA-Cw alleles. The two isolated populations differed from each other, from mixed Hungarian and other Caucasian populations in HLA-Cw* allele frequencies, as well as in haplotype distribution. This newly recognized polymorphism at the HLA-Cw locus completes the availability of major histocompatibility complex typing in

  20. The major histocompatibility complex class Ib molecule HLA-E at the interface between innate and adaptive immunity.

    PubMed

    Sullivan, L C; Clements, C S; Rossjohn, J; Brooks, A G

    2008-11-01

    The non-classical major histocompatibility complex (MHC) class I molecule human leucocyte antigen (HLA)-E is the least polymorphic of all the MHC class I molecules and acts as a ligand for receptors of both the innate and the adaptive immune systems. The recognition of self-peptides complexed to HLA-E by the CD94-NKG2A receptor expressed by natural killer (NK) cells represents a crucial checkpoint for immune surveillance by NK cells. However, HLA-E can also be recognised by the T-cell receptor expressed by alphabeta CD8 T cells and therefore can play a role in the adaptive immune response to invading pathogens. The recent resolution of HLA-E in complex with both innate and adaptive ligands has provided insight into the dual role of this molecule in immunity.

  1. The overlooked "nonclassical" functions of major histocompatibility complex (MHC) class II antigens in immune and nonimmune cells.

    PubMed

    Altomonte, M; Pucillo, C; Maio, M

    1999-06-01

    Besides their "classical" antigenic peptide-presenting activity, major histocompatibility complex (MHC) class II antigens can activate different cellular functions in immune and nonimmune cells. However, this "nonclassical" role and its functional consequences are still substantially overlooked. In this review, we will focus on these alternative functional properties of MHC class II antigens, to reawaken attention to their present and foreseeable immunobiologic and pathogenetic implications. The main issues that will be addressed concern 1) the role of MHC class II molecules as basic components of exchangeable oligomeric protein complexes with intracellular signaling ability; 2) the nonclassical functions of MHC class II antigens in immune cells; 3) the pathogenetic role of MHC class II antigens in inflammatory/autoimmune and infectious disease; and 4) the functional role of MHC class II antigens in solid malignancies.

  2. Patterns of selection and allele diversity of class I and class II major histocompatibility loci across the species range of sockeye salmon (Oncorhynchus nerka).

    PubMed

    McClelland, Erin K; Ming, Tobi J; Tabata, Amy; Kaukinen, Karia H; Beacham, Terry D; Withler, Ruth E; Miller, Kristina M

    2013-09-01

    The major histocompatibility complex (MHC), an important component of the vertebrate immune system, provides an important suite of genes to examine the role of genetic diversity at non-neutral loci for population persistence. We contrasted patterns of diversity at the two classical MHC loci in sockeye salmon (Oncorhynchus nerka), MHC class I (UBA) and MHC class II (DAB), and neutral microsatellite loci across 70 populations spanning the species range from Washington State to Japan. There was no correlation in allelic richness or heterozygosity between MHC loci or between MHC loci and microsatellites. The two unlinked MHC loci may be responding to different selective pressures; the distribution of FST values for the two loci was uncorrelated, and evidence for both balancing and directional selection on alleles and lineages of DAB and UBA was observed in populations throughout the species range but rarely on both loci within a population. These results suggest that fluctuating selection has resulted in the divergence of MHC loci in contemporary populations. © 2013 John Wiley & Sons Ltd.

  3. Allogeneic major histocompatibility complex-mismatched equine bone marrow-derived mesenchymal stem cells are targeted for death by cytotoxic anti-major histocompatibility complex antibodies.

    PubMed

    Berglund, A K; Schnabel, L V

    2017-07-01

    Allogeneic mesenchymal stem cells (MSCs) are a promising cell source for treating musculoskeletal injuries in horses. Controversy exists, however, over whether major histocompatibility complex (MHC)-mismatched MSCs are recognised by the recipient immune system and targeted for death by a cytotoxic antibody response. To determine if cytotoxic anti-MHC antibodies generated in vivo following MHC-mismatched MSC injections are capable of initiating complement-dependent cytotoxicity of MSCs. Experimental controlled study. Antisera previously collected at Days 0, 7, 14 and 21 post-injection from 4 horses injected with donor MHC-mismatched equine leucocyte antigen (ELA)-A2 haplotype MSCs and one control horse injected with donor MHC-matched ELA-A2 MSCs were utilised in this study. Antisera were incubated with ELA-A2 MSCs before adding complement in microcytotoxicity assays and cell death was analysed via eosin dye exclusion. ELA-A2 peripheral blood leucocytes (PBLs) were used in the assays as a positive control. Antisera from all 4 horses injected with MHC-mismatched MSCs contained antibodies that caused the death of ELA-A2 haplotype MSCs in the microcytotoxicity assays. In 2 of the 4 horses, antibodies were present as early as Day 7 post-injection. MSC death was consistently equivalent to that of ELA-A2 haplotype PBL death at all time points and antisera dilutions. Antisera from the control horse that was injected with MHC-matched MSCs did not contain cytotoxic ELA-A2 antibodies at any of the time points examined. This study examined MSC death in vitro only and utilized antisera from a small number of horses. The cytotoxic antibody response induced in recipient horses following injection with donor MHC-mismatched MSCs is capable of killing donor MSCs in vitro. These results suggest that the use of allogeneic MHC-mismatched MSCs must be cautioned against, not only for potential adverse events, but also for reduced therapeutic efficacy due to targeted MSC death. © 2016 The

  4. Social pairing and female mating fidelity predicted by restriction fragment length polymorphism similarity at the major histocompatibility complex in a songbird.

    PubMed

    Freeman-Gallant, Corey R; Meguerdichian, Michael; Wheelwright, Nathaniel T; Sollecito, Suzanne V

    2003-11-01

    Female birds often copulate outside the pair-bond to produce broods of mixed paternity, but despite much recent attention the adaptive significance of this behaviour remains elusive. Although several studies support the idea that extra-pair copulations (EPCs) allow females to obtain 'good genes' for their offspring, many others have found no relationship between female mating fidelity and traits likely to reflect male quality. A corollary to the good genes hypothesis proposes that females do use EPCs to increase the quality of young, but it is the interaction between maternal and paternal genomes - and not male quality per se - that is the target of female choice. We tested this 'genetic compatibility' hypothesis in a free-living population of Savannah sparrows (Passerculus sandwichensis) by determining whether females mated nonrandomly with respect to the major histocompatibility complex (Mhc). During both the 1994 and 1995 breeding seasons, female yearlings (but not older birds) avoided pairing with Mhc-similar males (P < 0.005). The Mhc similarity between mates also predicted the occurrence of extra-pair young in first broods (P < 0.007) and covaried with estimates of genome-wide levels of similarity derived from multilocus DNA fingerprinting profiles (P = 0.007). The overall genetic similarity between adults tended to predict female mating fidelity, but with less precision than their Mhc similarity (P = 0.09). In contrast, females appeared insensitive to the size, weight or age of males, none of which explained variation in female mating fidelity. Taken together, these results are consistent with the hypothesis that females sought complementary genes for their offspring and suggest either that the benefits of heterozygosity (at the Mhc) drive female mating patterns or that the avoidance of inbreeding is an ultimate cause of social and genetic mate choice in Savannah sparrows.

  5. Major histocompatibility complex class I evolution in songbirds: universal primers, rapid evolution and base compositional shifts in exon 3

    PubMed Central

    Alcaide, Miguel; Liu, Mark

    2013-01-01

    Genes of the Major Histocompatibility Complex (MHC) have become an important marker for the investigation of adaptive genetic variation in vertebrates because of their critical role in pathogen resistance. However, despite significant advances in the last few years the characterization of MHC variation in non-model species still remains a challenging task due to the redundancy and high variation of this gene complex. Here we report the utility of a single pair of primers for the cross-amplification of the third exon of MHC class I genes, which encodes the more polymorphic half of the peptide-binding region (PBR), in oscine passerines (songbirds; Aves: Passeriformes), a group especially challenging for MHC characterization due to the presence of large and complex MHC multigene families. In our survey, although the primers failed to amplify exon 3 from two suboscine passerine birds, they amplified exon 3 of multiple MHC class I genes in all 16 species of oscine songbirds tested, yielding a total of 120 sequences. The 16 songbird species belong to 14 different families, primarily within the Passerida, but also in the Corvida. Using a conservative approach based on the analysis of cloned amplicons (n = 16) from each species, we found between 3 and 10 MHC sequences per individual. Each allele repertoire was highly divergent, with the overall number of polymorphic sites per species ranging from 33 to 108 (out of 264 sites) and the average number of nucleotide differences between alleles ranging from 14.67 to 43.67. Our survey in songbirds allowed us to compare macroevolutionary dynamics of exon 3 between songbirds and non-passerine birds. We found compelling evidence of positive selection acting specifically upon peptide-binding codons across birds, and we estimate the strength of diversifying selection in songbirds to be about twice that in non-passerines. Analysis using comparative methods suggest weaker evidence for a higher GC content in the 3rd codon position of

  6. Stallion semen quality depends on major histocompatibility complex matching to teaser mare.

    PubMed

    Jeannerat, E; Marti, E; Berney, C; Janett, F; Bollwein, H; Sieme, H; Burger, D; Wedekind, C

    2018-02-01

    The major histocompatibility complex (MHC) has repeatedly been found to influence mate choice of vertebrates, with MHC-dissimilar mates typically being preferred over MHC-similar mates. We used horses (Equus caballus) to test whether MHC matching also affects male investment into ejaculates after short exposure to a female. Semen characteristics varied much among stallions. Controlling for this variance with a full-factorial within-subject experimental design, we found that a short exposure to an MHC-dissimilar mare enhanced male plasma testosterone and led to ejaculates with elevated sperm numbers as compared to exposure to an MHC-similar mare. Sperm velocity seemed not affected by the treatment. Overall genetic similarity between stallions and mares (determined from polymorphic microsatellites on 20 different chromosomes) played no significant role here. The MHC type of the teaser mare also affected characteristics of cold-stored sperm after 24 and 48 hr. As expected from ejaculate economics, sperm viability was elevated after exposure to an MHC-dissimilar mare. However, oxidative stress and the percentage of sperm with a high DNA fragmentation were mostly increased after exposure to an MHC-dissimilar mare, depending also on whether the teaser mare was in oestrous or not. We conclude that males can quickly adjust ejaculate quality relative to a female's MHC, and that this male reaction to the social environment can also affect important characteristics of cold-stored semen. © 2018 John Wiley & Sons Ltd.

  7. A quantitative and qualitative comparison of illumina MiSeq and 454 amplicon sequencing for genotyping the highly polymorphic major histocompatibility complex (MHC) in a non-model species.

    PubMed

    Razali, Haslina; O'Connor, Emily; Drews, Anna; Burke, Terry; Westerdahl, Helena

    2017-07-28

    High-throughput sequencing enables high-resolution genotyping of extremely duplicated genes. 454 amplicon sequencing (454) has become the standard technique for genotyping the major histocompatibility complex (MHC) genes in non-model organisms. However, illumina MiSeq amplicon sequencing (MiSeq), which offers a much higher read depth, is now superseding 454. The aim of this study was to quantitatively and qualitatively evaluate the performance of MiSeq in relation to 454 for genotyping MHC class I alleles using a house sparrow (Passer domesticus) dataset with pedigree information. House sparrows provide a good study system for this comparison as their MHC class I genes have been studied previously and, consequently, we had prior expectations concerning the number of alleles per individual. We found that 454 and MiSeq performed equally well in genotyping amplicons with low diversity, i.e. amplicons from individuals that had fewer than 6 alleles. Although there was a higher rate of failure in the 454 dataset in resolving amplicons with higher diversity (6-9 alleles), the same genotypes were identified by both 454 and MiSeq in 98% of cases. We conclude that low diversity amplicons are equally well genotyped using either 454 or MiSeq, but the higher coverage afforded by MiSeq can lead to this approach outperforming 454 in amplicons with higher diversity.

  8. Low major histocompatibility complex diversity in the Tasmanian devil predates European settlement and may explain susceptibility to disease epidemics

    PubMed Central

    Morris, Katrina; Austin, Jeremy J.; Belov, Katherine

    2013-01-01

    The Tasmanian devil (Sarcophilus harrisii) is at risk of extinction owing to the emergence of a contagious cancer known as devil facial tumour disease (DFTD). The emergence and spread of DFTD has been linked to low genetic diversity in the major histocompatibility complex (MHC). We examined MHC diversity in historical and ancient devils to determine whether loss of diversity is recent or predates European settlement in Australia. Our results reveal no additional diversity in historical Tasmanian samples. Mainland devils had common modern variants plus six new variants that are highly similar to existing alleles. We conclude that low MHC diversity has been a feature of devil populations since at least the Mid-Holocene and could explain their tumultuous history of population crashes. PMID:23221872

  9. Quantitative disease resistance: to better understand parasite-mediated selection on major histocompatibility complex

    PubMed Central

    Westerdahl, Helena; Asghar, Muhammad; Hasselquist, Dennis; Bensch, Staffan

    2012-01-01

    We outline a descriptive framework of how candidate alleles of the immune system associate with infectious diseases in natural populations of animals. Three kinds of alleles can be separated when both prevalence of infection and infection intensity are measured—qualitative disease resistance, quantitative disease resistance and susceptibility alleles. Our descriptive framework demonstrates why alleles for quantitative resistance and susceptibility cannot be separated based on prevalence data alone, but are distinguishable on infection intensity. We then present a case study to evaluate a previous finding of a positive association between prevalence of a severe avian malaria infection (GRW2, Plasmodium ashfordi) and a major histocompatibility complex (MHC) class I allele (B4b) in great reed warblers Acrocephalus arundinaceus. Using the same dataset, we find that individuals with allele B4b have lower GRW2 infection intensities than individuals without this allele. Therefore, allele B4b provides quantitative resistance rather than increasing susceptibility to infection. This implies that birds carrying B4b can mount an immune response that suppresses the acute-phase GRW2 infection, while birds without this allele cannot and may die. We argue that it is important to determine whether MHC alleles related to infections are advantageous (quantitative and qualitative resistance) or disadvantageous (susceptibility) to obtain a more complete picture of pathogen-mediated balancing selection. PMID:21733902

  10. Quantitative disease resistance: to better understand parasite-mediated selection on major histocompatibility complex.

    PubMed

    Westerdahl, Helena; Asghar, Muhammad; Hasselquist, Dennis; Bensch, Staffan

    2012-02-07

    We outline a descriptive framework of how candidate alleles of the immune system associate with infectious diseases in natural populations of animals. Three kinds of alleles can be separated when both prevalence of infection and infection intensity are measured--qualitative disease resistance, quantitative disease resistance and susceptibility alleles. Our descriptive framework demonstrates why alleles for quantitative resistance and susceptibility cannot be separated based on prevalence data alone, but are distinguishable on infection intensity. We then present a case study to evaluate a previous finding of a positive association between prevalence of a severe avian malaria infection (GRW2, Plasmodium ashfordi) and a major histocompatibility complex (MHC) class I allele (B4b) in great reed warblers Acrocephalus arundinaceus. Using the same dataset, we find that individuals with allele B4b have lower GRW2 infection intensities than individuals without this allele. Therefore, allele B4b provides quantitative resistance rather than increasing susceptibility to infection. This implies that birds carrying B4b can mount an immune response that suppresses the acute-phase GRW2 infection, while birds without this allele cannot and may die. We argue that it is important to determine whether MHC alleles related to infections are advantageous (quantitative and qualitative resistance) or disadvantageous (susceptibility) to obtain a more complete picture of pathogen-mediated balancing selection.

  11. The impact of sex-role reversal on the diversity of the major histocompatibility complex: Insights from the seahorse (Hippocampus abdominalis)

    PubMed Central

    2011-01-01

    Background Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex (MHC/MH) is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sex-related differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Results Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIβ locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIβ allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIβ locus of the seahorse exhibits a novel expression domain in the male brood pouch. Conclusions The high variation found at the seahorse MHIIβ gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates. Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation, providing powerful comparative

  12. The impact of sex-role reversal on the diversity of the major histocompatibility complex: insights from the seahorse (Hippocampus abdominalis).

    PubMed

    Bahr, Angela; Wilson, Anthony B

    2011-05-10

    Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex (MHC/MH) is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sex-related differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIβ locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIβ allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIβ locus of the seahorse exhibits a novel expression domain in the male brood pouch. The high variation found at the seahorse MHIIβ gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates.Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation, providing powerful comparative models for understanding the

  13. Applicability of major histocompatibility complex DRB1 alleles as markers to detect vertebrate hybridization: a case study from Iberian ibex × domestic goat in southern Spain

    PubMed Central

    2012-01-01

    Background Hybridization between closely related wild and domestic species is of great concern because it can alter the evolutionary integrity of the affected populations. The high allelic variability of Major Histocompatibility Complex (MHC) loci usually excludes them from being used in studies to detect hybridization events. However, if a) the parental species don’t share alleles, and b) one of the parental species possesses an exceptionally low number of alleles (to facilitate analysis), then even MHC loci have the potential to detect hybrids. Results By genotyping the exon2 of the MHC class II DRB1 locus, we were able to detect hybridization between domestic goats (Capra hircus) and free-ranging Iberian ibex (Capra pyrenaica hispanica) by molecular means. Conclusions This is the first documentation of a Capra pyrenaica × Capra hircus hybridization, which presented us the opportunity to test the applicability of MHC loci as new, simple, cost-effective, and time-saving approach to detect hybridization between wild species and their domesticated relatives, thus adding value to MHC genes role in animal conservation and management. PMID:23006678

  14. Low Major Histocompatibility Complex Class II Variation in the Endangered Indo-Pacific Humpback Dolphin (Sousa chinensis): Inferences About the Role of Balancing Selection.

    PubMed

    Zhang, Xiyang; Lin, Wenzhi; Zhou, Ruilian; Gui, Duan; Yu, Xinjian; Wu, Yuping

    2016-03-01

    It has been widely reported that the major histocompatibility complex (MHC) is under balancing selection due to its immune function across terrestrial and aquatic mammals. The comprehensive studies at MHC and other neutral loci could give us a synthetic evaluation about the major force determining genetic diversity of species. Previously, a low level of genetic diversity has been reported among the Indo-Pacific humpback dolphin (Sousa chinensis) in the Pearl River Estuary (PRE) using both mitochondrial marker and microsatellite loci. Here, the expression and sequence polymorphism of 2 MHC class II genes (DQB and DRB) in 32 S. chinensis from PRE collected between 2003 and 2011 were investigated. High ratios of non-synonymous to synonymous substitution rates, codon-based selection analysis, and trans-species polymorphism (TSP) support the hypothesis that balancing selection acted on S. chinensis MHC sequences. However, only 2 haplotypes were detected at either DQB or DRB loci. Moreover, the lack of deviation from the Hardy-Weinberg expectation at DRB locus combined with the relatively low heterozygosity at both DQB locus and microsatellite loci suggested that balancing selection might not be sufficient, which further suggested that genetic drift associated with historical bottlenecks was not mitigated by balancing selection in terms of the loss of MHC and neutral variation in S. chinensis. The combined results highlighted the importance of maintaining the genetic diversity of the endangered S. chinensis. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Differential Transmembrane Domain GXXXG Motif Pairing Impacts Major Histocompatibility Complex (MHC) Class II Structure*

    PubMed Central

    Dixon, Ann M.; Drake, Lisa; Hughes, Kelly T.; Sargent, Elizabeth; Hunt, Danielle; Harton, Jonathan A.; Drake, James R.

    2014-01-01

    Major histocompatibility complex (MHC) class II molecules exhibit conformational heterogeneity, which influences their ability to stimulate CD4 T cells and drive immune responses. Previous studies suggest a role for the transmembrane domain of the class II αβ heterodimer in determining molecular structure and function. Our previous studies identified an MHC class II conformer that is marked by the Ia.2 epitope. These Ia.2+ class II conformers are lipid raft-associated and able to drive both tyrosine kinase signaling and efficient antigen presentation to CD4 T cells. Here, we establish that the Ia.2+ I-Ak conformer is formed early in the class II biosynthetic pathway and that differential pairing of highly conserved transmembrane domain GXXXG dimerization motifs is responsible for formation of Ia.2+ versus Ia.2− I-Ak class II conformers and controlling lipid raft partitioning. These findings provide a molecular explanation for the formation of two distinct MHC class II conformers that differ in their inherent ability to signal and drive robust T cell activation, providing new insight into the role of MHC class II in regulating antigen-presenting cell-T cell interactions critical to the initiation and control of multiple aspects of the immune response. PMID:24619409

  16. Effects of major histocompatibility complex class II knockout on mouse bone mechanical properties during development

    NASA Technical Reports Server (NTRS)

    Simske, Steven J.; Bateman, Ted A.; Smith, Erin E.; Ferguson, Virginia L.; Chapes, Stephen K.

    2002-01-01

    We investigated the effect of major histocompatibility complex class II (MHC II) knockout on the development of the mouse peripheral skeleton. These C2D mice had less skeletal development at 8, 12 and 16 weeks of age compared to wild-type C57BL/6J (B6) male mice. The C2D mice had decreased femur mechanical, geometric and compositional measurements compared to wild type mice at each of these ages. C2D femur stiffness (S), peak force in 3-pt bending (Pm), and mineral mass (Min-M) were 74%, 64% and 66%, respectively, of corresponding B6 values at 8 weeks of age. Similar differences were measured at 12 weeks (for which C2D femoral S, Pm and Min-M were 71%, 72% and 73%, respectively, of corresponding B6 values) and at 16 weeks (for which C2D femoral S, Pm and Min-M were 80%, 66% and 61%, respectively, of corresponding B6 values). MHC II knockout delays the development of adult bone properties and is accompanied by lower body mass compared to wild-type controls.

  17. Recombination and selection in the major histocompatibility complex of the endangered forest musk deer (Moschus berezovskii).

    PubMed

    Cai, Ruibo; Shafer, Aaron B A; Laguardia, Alice; Lin, Zhenzhen; Liu, Shuqiang; Hu, Defu

    2015-11-25

    The forest musk deer (Moschus berezovskii) is a high elevation species distributed across western China and northern Vietnam. Once abundant, habitat loss and poaching has led to a dramatic decrease in population numbers prompting the IUCN to list the species as endangered. Here, we characterized the genetic diversity of a Major Histocompatibility Complex (MHC) locus and teased apart driving factors shaping its variation. Seven DRB exon 2 alleles were identified among a group of randomly sampled forest musk deer from a captive population in the Sichuan province of China. Compared to other endangered or captive ungulates, forest musk deer have relatively low levels of MHC genetic diversity. Non-synonymous substitutions primarily occurred in the putative peptide-binding region (PBR), with analyses suggesting that recombination and selection has shaped the genetic diversity across the locus. Specifically, inter-allelic recombination generated novel allelic combinations, with evidence for both positive selection acting on the PBR and negative selection on the non-PBR. An improved understanding of functional genetic variability of the MHC will facilitate better design and management of captive breeding programs for this endangered species.

  18. Evaluation of the class II region of the major histocompatibility complex of the greyhound with the genomic matching technique and sequence-based typing.

    PubMed

    Fliegner, R A; Holloway, S A; Lester, S; McLure, C A; Dawkins, R L

    2008-08-01

    The class II region of the major histocompatibility complex was evaluated in 25 greyhounds by sequence-based typing and the genomic matching technique (GMT). Two new DLA-DRB1 alleles were identified. Twenty-four dogs carried the DLA-DRB1*01201/DQA1*00401/DQB1*01303/DQB1*01701 haplotype, which carries two DQB1 alleles. One haplotype was identified from which DQB1 and DQA1 appeared to be deleted. The GMT enabled detection of DQB1 copy number, discrimination of the different class II haplotypes and the identification of new, possibly biologically relevant polymorphisms.

  19. Polymorphism in the major histocompatibility complex (MHC class II B) genes of the Rufous-backed Bunting (Emberiza jankowskii)

    PubMed Central

    Li, Dan; Zhao, Yunjiao; Lin, Aiqing; Li, Shi; Feng, Jiang

    2017-01-01

    Genetic diversity is one of the pillars of conservation biology research. High genetic diversity and abundant genetic variation in an organism may be suggestive of capacity to adapt to various environmental changes. The major histocompatibility complex (MHC) is known to be highly polymorphic and plays an important role in immune function. It is also considered an ideal model system to investigate genetic diversity in wildlife populations. The Rufous-backed Bunting (Emberiza jankowskii) is an endangered species that has experienced a sharp decline in both population and habitat size. Many historically significant populations are no longer present in previously populated regions, with only three breeding populations present in Inner Mongolia (i.e., the Aolunhua, Gahaitu and Lubei557 populations). Efforts focused on facilitating the conservation of the Rufous-backed Bunting (Emberiza jankowskii) are becoming increasingly important. However, the genetic diversity of E. jankowskii has not been investigated. In the present study, polymorphism in exon 2 of the MHCIIB of E. jankowskii was investigated. This polymorphism was subsequently compared with a related species, the Meadow Bunting (Emberiza cioides). A total of 1.59 alleles/individual were detected in E. jankowskii and 1.73 alleles/individual were identified in E. cioides. The maximum number of alleles per individual from the three E. jankowskii populations suggest the existence of at least three functional loci, while the maximum number of alleles per individual from the three E. cioides populations suggest the presence of at least four functional loci. Two of the alleles were shared between the E. jankowskii and E. cioides. Among the 12 unique alleles identified in E. jankowskii, 10.17 segregating sites per allele were detected, and the nucleotide diversity was 0.1865. Among the 17 unique alleles identified in E. cioides, eight segregating sites per allele were detected, and the nucleotide diversity was 0

  20. Major histocompatibility complex alleles associated with parasite susceptibility in wild giant pandas.

    PubMed

    Zhang, L; Wu, Q; Hu, Y; Wu, H; Wei, F

    2015-01-01

    Major histocompatibility complex (MHC) polymorphism is thought to be driven by antagonistic coevolution between pathogens and hosts, mediated through either overdominance or frequency-dependent selection. However, investigations under natural conditions are still rare for endangered mammals which often exhibit depleted variation, and the mechanism of selection underlying the maintenance of characteristics remains a considerable debate. In this study, 87 wild giant pandas were used to investigate MHC variation associated with parasite load. With the knowledge of the MHC profile provided by the genomic data of the giant panda, seven DRB1, seven DQA1 and eight DQA2 alleles were identified at each single locus. Positive selection evidenced by a significantly higher number of non-synonymous substitutions per non-synonymous codon site relative to synonymous substitutions per synonymous codon site could only be detected at the DRB1 locus, which leads to the speculation that DRB1 may have a more important role in dealing with parasite infection for pandas. Coprological analyses revealed that 55.17% of individuals exhibited infection with 1-2 helminthes and 95.3% of infected pandas carried Baylisascaris shroederi. Using a generalized linear model, we found that Aime-DRB1*10 was significantly associated with parasite infection, but no resistant alleles could be detected. MHC heterozygosity of the pandas was found to be uncorrelated with the infection status or the infection intensity. These results suggested that the possible selection mechanisms in extant wild pandas may be frequency dependent rather than being determined by overdominance selection. Our findings could guide the candidate selection for the ongoing reintroduction or translocation of pandas.

  1. Major histocompatibility complex alleles associated with parasite susceptibility in wild giant pandas

    PubMed Central

    Zhang, L; Wu, Q; Hu, Y; Wu, H; Wei, F

    2015-01-01

    Major histocompatibility complex (MHC) polymorphism is thought to be driven by antagonistic coevolution between pathogens and hosts, mediated through either overdominance or frequency-dependent selection. However, investigations under natural conditions are still rare for endangered mammals which often exhibit depleted variation, and the mechanism of selection underlying the maintenance of characteristics remains a considerable debate. In this study, 87 wild giant pandas were used to investigate MHC variation associated with parasite load. With the knowledge of the MHC profile provided by the genomic data of the giant panda, seven DRB1, seven DQA1 and eight DQA2 alleles were identified at each single locus. Positive selection evidenced by a significantly higher number of non-synonymous substitutions per non-synonymous codon site relative to synonymous substitutions per synonymous codon site could only be detected at the DRB1 locus, which leads to the speculation that DRB1 may have a more important role in dealing with parasite infection for pandas. Coprological analyses revealed that 55.17% of individuals exhibited infection with 1–2 helminthes and 95.3% of infected pandas carried Baylisascaris shroederi. Using a generalized linear model, we found that Aime-DRB1*10 was significantly associated with parasite infection, but no resistant alleles could be detected. MHC heterozygosity of the pandas was found to be uncorrelated with the infection status or the infection intensity. These results suggested that the possible selection mechanisms in extant wild pandas may be frequency dependent rather than being determined by overdominance selection. Our findings could guide the candidate selection for the ongoing reintroduction or translocation of pandas. PMID:25248466

  2. Analysis of the Expression of Peptide–Major Histocompatibility Complexes Using High Affinity Soluble Divalent T Cell Receptors

    PubMed Central

    O'Herrin, Sean M.; Lebowitz, Michael S.; Bieler, Joan G.; al-Ramadi, Basel K.; Utz, Ursula; Bothwell, Alfred L.M.; Schneck, Jonathan P.

    1997-01-01

    Understanding the regulation of cell surface expression of specific peptide–major histocompatibility complex (MHC) complexes is hindered by the lack of direct quantitative analyses of specific peptide–MHC complexes. We have developed a direct quantitative biochemical approach by engineering soluble divalent T cell receptor analogues (TCR–Ig) that have high affinity for their cognate peptide–MHC ligands. The generality of this approach was demonstrated by specific staining of peptide-pulsed cells with two different TCR–Ig complexes: one specific for the murine alloantigen 2C, and one specific for a viral peptide from human T lymphocyte virus–1 presented by human histocompatibility leukocyte antigens–A2. Further, using 2C TCR– Ig, a more detailed analysis of the interaction with cognate peptide–MHC complexes revealed several interesting findings. Soluble divalent 2C TCR–Ig detected significant changes in the level of specific antigenic–peptide MHC cell surface expression in cells treated with γ-interferon (γ-IFN). Interestingly, the effects of γ-IFN on expression of specific peptide–MHC complexes recognized by 2C TCR–Ig were distinct from its effects on total H-2 Ld expression; thus, lower doses of γ-IFN were required to increase expression of cell surface class I MHC complexes than were required for upregulation of expression of specific peptide–MHC complexes. Analysis of the binding of 2C TCR–Ig for specific peptide–MHC ligands unexpectedly revealed that the affinity of the 2C TCR–Ig for the naturally occurring alloreactive, putatively, negatively selecting, complex, dEV-8–H-2 Kbm3, is very low, weaker than 71 μM. The affinity of the 2C TCR for the other naturally occurring, negatively selecting, alloreactive complex, p2Ca–H-2 Ld, is ∼1000-fold higher. Thus, negatively selecting peptide–MHC complexes do not necessarily have intrinsically high affinity for cognate TCR. These results, uniquely revealed by this analysis

  3. Major histocompatibility complex harbors widespread genotypic variability of non-additive risk of rheumatoid arthritis including epistasis.

    PubMed

    Wei, Wen-Hua; Bowes, John; Plant, Darren; Viatte, Sebastien; Yarwood, Annie; Massey, Jonathan; Worthington, Jane; Eyre, Stephen

    2016-04-25

    Genotypic variability based genome-wide association studies (vGWASs) can identify potentially interacting loci without prior knowledge of the interacting factors. We report a two-stage approach to make vGWAS applicable to diseases: firstly using a mixed model approach to partition dichotomous phenotypes into additive risk and non-additive environmental residuals on the liability scale and secondly using the Levene's (Brown-Forsythe) test to assess equality of the residual variances across genotype groups per marker. We found widespread significant (P < 2.5e-05) vGWAS signals within the major histocompatibility complex (MHC) across all three study cohorts of rheumatoid arthritis. We further identified 10 epistatic interactions between the vGWAS signals independent of the MHC additive effects, each with a weak effect but jointly explained 1.9% of phenotypic variance. PTPN22 was also identified in the discovery cohort but replicated in only one independent cohort. Combining the three cohorts boosted power of vGWAS and additionally identified TYK2 and ANKRD55. Both PTPN22 and TYK2 had evidence of interactions reported elsewhere. We conclude that vGWAS can help discover interacting loci for complex diseases but require large samples to find additional signals.

  4. Clarifying the association of genes within the major histocompatibility complex with narcolepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acton, R.T.; Watson, B.; Rivers, C.

    1994-09-01

    HLA-DR2 and DQwl has been reported to be strongly associated with narcolepsy. The particular phenotype and strength of these associations varies between races. For example DQB*0601 has been reported associated with some African American (AA) narcoleptics while some Caucasian American (CA) narcoleptics do not possess DR2 or DQw1. We have sought to clarify the relationship of MHC genes with narcolepsy in the local CA and AA population. There was no significant difference in the frequency of DR phenotypes in CA or AA narcoleptics compared to race, age, sex and geographic region-matched controls. DR2 was increased in CA cataplexy positive (Cat+)more » narcoleptics compared to controls (p=0.028, odds ratio (OR)=2.4) and to Cat- narcoleptics (p=<0.001, OR=8.8). DR11 was increased in AA Cat+ narcoleptics compared to controls (p=0.004, OR=11.2) and to Cat- narcoleptics (p=0.002). DQB1*0601 was not significantly associated with narcolepsy in our AA population. We have assessed the frequency of the TNFa (13 alleles, 1.1Mb telomeric to DQ{alpha}), D6S105 (13 alleles, 1kb telomeric of HLA-A), and GLP-1R (19 alleles, 18.5 Mb centromeric of DQ{alpha}), dinucleotide repeats in narcoleptics compared to controls. The TNFa allele 117 was increased in CA Cat+ vs. controls (p=0.003). The GLP-1R allele 144 was increased in CA Cat- vs. controls (p=0.02). In AA narcoleptics, the TNFa allele 109 was significantly increased (p=0.04) along with the D6S105 allele 130 (p=0.02) compared to controls. The D6S105 allele 130 was increased in AA Cat- vs. controls (p=0.03). The GLP-1R allele 154 was significantly decreased in AA Cat+ vs. Cat- (p=0.04). These data suggest that DR and/or DQ genes are not responsible for narcolepsy and that cataplexy is associated with different regions around the MHC in various racial groups.« less

  5. Major histocompatibility complex class II molecule expression on muscle cells is regulated by differentiation: implications for the immunopathogenesis of muscle autoimmune diseases.

    PubMed

    Mantegazza, R; Gebbia, M; Mora, M; Barresi, R; Bernasconi, P; Baggi, F; Cornelio, F

    1996-08-01

    Major histocompatibility complex (MHC) class II molecules are expressed on myoblasts after interferon-gamma (IFN-gamma) treatment, suggesting a muscle cell involvement in antigen presentation in inflammatory myopathies. However, they were not observed on normal or pathological myofibers. This discrepancy might be related to different responsiveness of developmentally differentiated muscle cells to IFN-gamma. Myoblasts expressed class II transcripts and proteins after IFN-gamma, while myotubes and innervated contracting muscle cells did not show staining for class II molecules. At all cell stages no loss of IFN-gamma receptor was detected indicating that myofiber maturation blocks their capacity to express MHC class II molecules. This suggests that completely differentiated myofibers cannot participate in class II restricted immunological reactions.

  6. From genome-wide to candidate gene: an investigation of variation at the major histocompatibility complex in common bottlenose dolphins exposed to harmful algal blooms.

    PubMed

    Cammen, Kristina M; Wilcox, Lynsey A; Rosel, Patricia E; Wells, Randall S; Read, Andrew J

    2015-02-01

    The role the major histocompatibility complex (MHC) plays in response to exposure to environmental toxins is relatively poorly understood, particularly in comparison to its well-described role in pathogen immunity. We investigated associations between MHC diversity and resistance to brevetoxins in common bottlenose dolphins (Tursiops truncatus). A previous genome-wide association study investigating an apparent difference in harmful algal bloom (HAB) resistance among dolphin populations in the Gulf of Mexico identified genetic variation associated with survival in close genomic proximity to multiple MHC class II loci. Here, we characterized genetic variation at DQA, DQB, DRA, and DRB loci in dolphins from central-west Florida and the Florida Panhandle, including dolphins that died during HABs and dolphins presumed to have survived HAB exposure. We found that DRB and DQB exhibited patterns of genetic differentiation among geographic regions that differed from neutral microsatellite loci. In addition, genetic differentiation at DRB across multiple pairwise comparisons of live and dead dolphins was greater than differentiation observed at neutral loci. Our findings at these MHC loci did not approach the strength of association with survival previously described for a nearby genetic variant. However, the results provide evidence that selective pressures at the MHC vary among dolphin populations that differ in the frequency of HAB exposure and that the overall composition of DRB variants differs between dolphin survivors and non-survivors of HABs. These results may suggest a potential role of MHC diversity in variable survival of bottlenose dolphins exposed to HABs.

  7. New horizons in mouse immunoinformatics: reliable in silico prediction of mouse class I histocompatibility major complex peptide binding affinity.

    PubMed

    Hattotuwagama, Channa K; Guan, Pingping; Doytchinova, Irini A; Flower, Darren R

    2004-11-21

    Quantitative structure-activity relationship (QSAR) analysis is a main cornerstone of modern informatic disciplines. Predictive computational models, based on QSAR technology, of peptide-major histocompatibility complex (MHC) binding affinity have now become a vital component of modern day computational immunovaccinology. Historically, such approaches have been built around semi-qualitative, classification methods, but these are now giving way to quantitative regression methods. The additive method, an established immunoinformatics technique for the quantitative prediction of peptide-protein affinity, was used here to identify the sequence dependence of peptide binding specificity for three mouse class I MHC alleles: H2-D(b), H2-K(b) and H2-K(k). As we show, in terms of reliability the resulting models represent a significant advance on existing methods. They can be used for the accurate prediction of T-cell epitopes and are freely available online ( http://www.jenner.ac.uk/MHCPred).

  8. The Missing Link in Epstein-Barr Virus Immune Evasion: the BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II

    PubMed Central

    Quinn, Laura L.; Williams, Luke R.; White, Claire; Forrest, Calum; Rowe, Martin

    2015-01-01

    ABSTRACT The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8+ cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8+ cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8+ cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4+ cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8+ and CD4+ T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. IMPORTANCE Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8+ T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8+ T cells specific for

  9. High-Density SNP Screening of the Major Histocompatibility Complex in Systemic Lupus Erythematosus Demonstrates Strong Evidence for Independent Susceptibility Regions

    PubMed Central

    Barcellos, Lisa F.; May, Suzanne L.; Ramsay, Patricia P.; Quach, Hong L.; Lane, Julie A.; Nititham, Joanne; Noble, Janelle A.; Taylor, Kimberly E.; Quach, Diana L.; Chung, Sharon A.; Kelly, Jennifer A.; Moser, Kathy L.; Behrens, Timothy W.; Seldin, Michael F.; Thomson, Glenys; Harley, John B.; Gaffney, Patrick M.; Criswell, Lindsey A.

    2009-01-01

    A substantial genetic contribution to systemic lupus erythematosus (SLE) risk is conferred by major histocompatibility complex (MHC) gene(s) on chromosome 6p21. Previous studies in SLE have lacked statistical power and genetic resolution to fully define MHC influences. We characterized 1,610 Caucasian SLE cases and 1,470 parents for 1,974 MHC SNPs, the highly polymorphic HLA-DRB1 locus, and a panel of ancestry informative markers. Single-marker analyses revealed strong signals for SNPs within several MHC regions, as well as with HLA-DRB1 (global p = 9.99×10−16). The most strongly associated DRB1 alleles were: *0301 (odds ratio, OR = 2.21, p = 2.53×10−12), *1401 (OR = 0.50, p = 0.0002), and *1501 (OR = 1.39, p = 0.0032). The MHC region SNP demonstrating the strongest evidence of association with SLE was rs3117103, with OR = 2.44 and p = 2.80×10−13. Conditional haplotype and stepwise logistic regression analyses identified strong evidence for association between SLE and the extended class I, class I, class III, class II, and the extended class II MHC regions. Sequential removal of SLE–associated DRB1 haplotypes revealed independent effects due to variation within OR2H2 (extended class I, rs362521, p = 0.006), CREBL1 (class III, rs8283, p = 0.01), and DQB2 (class II, rs7769979, p = 0.003, and rs10947345, p = 0.0004). Further, conditional haplotype analyses demonstrated that variation within MICB (class I, rs3828903, p = 0.006) also contributes to SLE risk independent of HLA-DRB1*0301. Our results for the first time delineate with high resolution several MHC regions with independent contributions to SLE risk. We provide a list of candidate variants based on biologic and functional considerations that may be causally related to SLE risk and warrant further investigation. PMID:19851445

  10. Dynamics of major histocompatibility complex class I association with the human peptide-loading complex.

    PubMed

    Panter, Michaela S; Jain, Ankur; Leonhardt, Ralf M; Ha, Taekjip; Cresswell, Peter

    2012-09-07

    Although the human peptide-loading complex (PLC) is required for optimal major histocompatibility complex class I (MHC I) antigen presentation, its composition is still incompletely understood. The ratio of the transporter associated with antigen processing (TAP) and MHC I to tapasin, which is responsible for MHC I recruitment and peptide binding optimization, is particularly critical for modeling of the PLC. Here, we characterized the stoichiometry of the human PLC using both biophysical and biochemical approaches. By means of single-molecule pulldown (SiMPull), we determined a TAP/tapasin ratio of 1:2, consistent with previous studies of insect-cell microsomes, rat-human chimeric cells, and HeLa cells expressing truncated TAP subunits. We also report that the tapasin/MHC I ratio varies, with the PLC population comprising both 2:1 and 2:2 complexes, based on mutational and co-precipitation studies. The MHC I-saturated PLC may be particularly prevalent among peptide-selective alleles, such as HLA-C4. Additionally, MHC I association with the PLC increases when its peptide supply is reduced by inhibiting the proteasome or by blocking TAP-mediated peptide transport using viral inhibitors. Taken together, our results indicate that the composition of the human PLC varies under normal conditions and dynamically adapts to alterations in peptide supply that may arise during viral infection. These findings improve our understanding of the quality control of MHC I peptide loading and may aid the structural and functional modeling of the human PLC.

  11. Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection

    PubMed Central

    Cram, Erik D.; Simmons, Ryan S.; Palmer, Amy L.; Hildebrand, William H.; Rockey, Daniel D.

    2015-01-01

    The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8+ cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8+ T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8+ killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins. PMID:26597986

  12. The effects of historical fragmentation on major histocompatibility complex class II β and microsatellite variation in the Aegean island reptile, Podarcis erhardii.

    PubMed

    Santonastaso, Trent; Lighten, Jackie; van Oosterhout, Cock; Jones, Kenneth L; Foufopoulos, Johannes; Anthony, Nicola M

    2017-07-01

    The major histocompatibility complex (MHC) plays a key role in disease resistance and is the most polymorphic gene region in vertebrates. Although habitat fragmentation is predicted to lead to a loss in MHC variation through drift, the impact of other evolutionary forces may counter this effect. Here we assess the impact of selection, drift, migration, and recombination on MHC class II and microsatellite variability in 14 island populations of the Aegean wall lizard Podarcis erhardii . Lizards were sampled from islands within the Cyclades (Greece) formed by rising sea levels as the last glacial maximum approximately 20,000 before present. Bathymetric data were used to determine the area and age of each island, allowing us to infer the corresponding magnitude and timing of genetic bottlenecks associated with island formation. Both MHC and microsatellite variation were positively associated with island area, supporting the hypothesis that drift governs neutral and adaptive variation in this system. However, MHC but not microsatellite variability declined significantly with island age. This discrepancy is likely due to the fact that microsatellites attain mutation-drift equilibrium more rapidly than MHC. Although we detected signals of balancing selection, recombination and migration, the effects of these evolutionary processes appeared negligible relative to drift. This study demonstrates how land bridge islands can provide novel insights into the impact of historical fragmentation on genetic diversity as well as help disentangle the effects of different evolutionary forces on neutral and adaptive diversity.

  13. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions.

    PubMed

    Karosiene, Edita; Lundegaard, Claus; Lund, Ole; Nielsen, Morten

    2012-03-01

    A key role in cell-mediated immunity is dedicated to the major histocompatibility complex (MHC) molecules that bind peptides for presentation on the cell surface. Several in silico methods capable of predicting peptide binding to MHC class I have been developed. The accuracy of these methods depends on the data available characterizing the binding specificity of the MHC molecules. It has, moreover, been demonstrated that consensus methods defined as combinations of two or more different methods led to improved prediction accuracy. This plethora of methods makes it very difficult for the non-expert user to choose the most suitable method for predicting binding to a given MHC molecule. In this study, we have therefore made an in-depth analysis of combinations of three state-of-the-art MHC-peptide binding prediction methods (NetMHC, NetMHCpan and PickPocket). We demonstrate that a simple combination of NetMHC and NetMHCpan gives the highest performance when the allele in question is included in the training and is characterized by at least 50 data points with at least ten binders. Otherwise, NetMHCpan is the best predictor. When an allele has not been characterized, the performance depends on the distance to the training data. NetMHCpan has the highest performance when close neighbours are present in the training set, while the combination of NetMHCpan and PickPocket outperforms either of the two methods for alleles with more remote neighbours. The final method, NetMHCcons, is publicly available at www.cbs.dtu.dk/services/NetMHCcons , and allows the user in an automatic manner to obtain the most accurate predictions for any given MHC molecule.

  14. Impact of lipid rafts on the T -cell-receptor and peptide-major-histocompatibility-complex interactions under different measurement conditions

    NASA Astrophysics Data System (ADS)

    Li, Long; Xu, Guang-Kui; Song, Fan

    2017-01-01

    The interactions between T-cell receptor (TCR) and peptide-major-histocompatibility complex (pMHC), which enable T-cell development and initiate adaptive immune responses, have been intensively studied. However, a central issue of how lipid rafts affect the TCR-pMHC interactions remains unclear. Here, by using a statistical-mechanical membrane model, we show that the binding affinity of TCR and pMHC anchored on two apposing cell membranes is significantly enhanced because of the lipid raft-induced signaling protein aggregation. This finding may provide an alternative insight into the mechanism of T-cell activation triggered by very low densities of pMHC. In the case of cell-substrate adhesion, our results indicate that the loss of lateral mobility of the proteins on the solid substrate leads to the inhibitory effect of lipid rafts on TCR-pMHC interactions. Our findings help to understand why different experimental methods for measuring the impact of lipid rafts on the receptor-ligand interactions have led to contradictory conclusions.

  15. The candidate histocompatibility locus of a Basal chordate encodes two highly polymorphic proteins.

    PubMed

    Nydam, Marie L; Netuschil, Nikolai; Sanders, Erin; Langenbacher, Adam; Lewis, Daniel D; Taketa, Daryl A; Marimuthu, Arumugapradeep; Gracey, Andrew Y; De Tomaso, Anthony W

    2013-01-01

    The basal chordate Botryllus schlosseri undergoes a natural transplantation reaction governed by a single, highly polymorphic locus called the fuhc. Our initial characterization of this locus suggested it encoded a single gene alternatively spliced into two transcripts: a 555 amino acid-secreted form containing the first half of the gene, and a full-length, 1008 amino acid transmembrane form, with polymorphisms throughout the ectodomain determining outcome. We have now found that the locus encodes two highly polymorphic genes which are separated by a 227 bp intergenic region: first, the secreted form as previously described, and a second gene encoding a 531 amino acid membrane-bound gene containing three extracellular immunoglobulin domains. While northern blotting revealed only these two mRNAs, both PCR and mRNA-seq detect a single capped and polyadenylated transcript that encodes processed forms of both genes linked by the intergenic region, as well as other transcripts in which exons of the two genes are spliced together. These results might suggest that the two genes are expressed as an operon, during which both genes are co-transcribed and then trans-spliced into two separate messages. This type of transcriptional regulation has been described in tunicates previously; however, the membrane-bound gene does not encode a typical Splice Leader (SL) sequence at the 5' terminus that usually accompanies trans-splicing. Thus, the presence of stable transcripts encoding both genes may suggest a novel mechanism of regulation, or conversely may be rare but stable transcripts in which the two mRNAs are linked due to a small amount of read-through by RNA polymerase. Both genes are highly polymorphic and co-expressed on tissues involved in histocompatibility. In addition, polymorphisms on both genes correlate with outcome, although we have found a case in which it appears that the secreted form may be major allorecognition determinant.

  16. Cross-linking staphylococcal enterotoxin A bound to major histocompatibility complex class I is required for TNF-alpha secretion

    NASA Technical Reports Server (NTRS)

    Wright, A. D.; Chapes, S. K.

    1999-01-01

    The mechanism of how superantigens function to activate cells has been linked to their ability to bind and cross-link the major histocompatibility complex class II (MHCII) molecule. Cells that lack the MHCII molecule also respond to superantigens, however, with much less efficiency. Therefore, the purpose of this study was to confirm that staphylococcal enterotoxin A (SEA) could bind the MHCI molecule and to test the hypothesis that cross-linking SEA bound to MHCII-deficient macrophages would induce a more robust cytokine response than without cross-linking. We used a capture enzyme-linked immunosorbent assay and an immunprecipitation assay to directly demonstrate that MHCI molecules bind SEA. Directly cross-linking MHCI using monoclonal antibodies or cross-linking bound SEA with an anti-SEA antibody or biotinylated SEA with avidin increased TNF-alpha and IL-6 secretion by MHCII(-/-) macrophages. The induction of a vigorous macrophage cytokine response by SEA/anti-SEA cross-linking of MHCI offers a mechanism to explain how MHCI could play an important role in superantigen-mediated pathogenesis. Copyright 1999 Academic Press.

  17. On the composition of the preimmune repertoire of T cells specific for Peptide-major histocompatibility complex ligands.

    PubMed

    Jenkins, Marc K; Chu, H Hamlet; McLachlan, James B; Moon, James J

    2010-01-01

    Millions of T cells are produced in the thymus, each expressing a unique alpha/beta T cell receptor (TCR) capable of binding to a foreign peptide in the binding groove of a host major histocompatibility complex (MHC) molecule. T cell-mediated immunity to infection is due to the proliferation and differentiation of rare clones in the preimmune repertoire that by chance express TCRs specific for peptide-MHC (pMHC) ligands derived from the microorganism. Here we review recent findings that have altered our understanding of how the preimmune repertoire is established. Recent structural studies indicate that a germline-encoded tendency of TCRs to bind MHC molecules contributes to the MHC bias of T cell repertoires. It has also become clear that the preimmune repertoire contains functionally heterogeneous subsets including recent thymic emigrants, mature naive phenotype cells, memory phenotype cells, and natural regulatory T cells. In addition, sensitive new detection methods have revealed that the repertoire of naive phenotype T cells consists of distinct pMHC-specific populations that consistently vary in size in different individuals. The implications of these new findings for the clonal selection theory, self-tolerance, and immunodominance are discussed.

  18. The major histocompatibility complex of tassel-eared squirrels. II. Genetic diversity associated with Abert squirrels.

    PubMed

    Wettstein, P J; States, J S

    1986-01-01

    The extent of polymorphism and the rate of divergence of class I and class II sequences mapping to the mammalian major histocompatibility complex (MHC) have been the subject of experimentation and speculation. To provide further insight into the evolution of the MHC we have initiated the analysis of two geographically isolated subspecies of tassel-eared squirrels. In the preceding communication we described the number and polymorphism of TSLA class I and class II sequences in Kaibab squirrels (S. aberti kaibabensis), which live north of the Grand Canyon. In this report we present a parallel analysis of Abert squirrels (S. aberti aberti), which live south of the Grand Canyon in northern Arizona. Genomic DNA from 12 Abert squirrels was digested with restriction enzymes, electrophoresed, blotted, and hybridized with DR alpha, DR beta, DQ alpha, DQ beta, and HLA-B7 probes. The results of these hybridizations were remarkably similar to those obtained in Kaibab squirrels. The majority of class I and class II bands were identical in size and number, suggesting that Abert and Kaibab squirrels have not significantly diverged in the TSLA complex despite their geographical separation. Relative polymorphism of class II sequences was similar to that observed with Kaibab squirrels: beta sequences exhibited higher polymorphism than alpha sequences. As in Kaibab squirrels, a number of alpha and beta sequences were apparently carried on the same fragments. In comparison to class II beta sequences, there was limited polymorphism in class I sequences, although a diverse number of class I genotypes were observed. Attempts to identify segregating TSLA haplotypes were futile in that the only families of sequences with concordant distributions were DQ alpha and DQ beta. These observations and those obtained with Kaibab squirrels suggest that the present-day TSLA haplotypes of both subspecies are derived from a limited number of common, progenitor haplotypes through repeated intra

  19. HISTOCOMPATIBILITY STUDIES IN A CLOSELY BRED COLONY OF DOGS

    PubMed Central

    Rapaport, Felix T.; Boyd, Arthur D.; Spencer, Frank C.; Lower, Richard R.; Dausset, Jean; Cannon, Florence D.; Ferrebee, Joseph W.

    1971-01-01

    The DL-A system of histocompatibility plays an important role in conditioning the survival of cardiac allografts in the unmodified canine host. The mean survival time of six cardiac allografts performed in DL-A-compatible littermate dogs obtained from a closely bred colony of beagles was 53.2 days, while the MST of transplants performed in seven DL-A-incompatible animals was 7.3 days. The MST of cardiac allografts performed in nine DL-A-compatible nonlittermate beagles was 26.3 days, as compared with 6.3 days in six DL-A-incompatible nonlittermate transplants. The results did not appear to be affected by Swisher erythrocyte-group incompatibilities. The MST of 28 cardiac allografts performed in randomly selected mongrel dogs was 10.0 days. Incompatibilities for DL-A antigens e, f, g, l, and m may constitute major barriers to transplantation, but antigens b, c, d, and k appeared to act as weak histocompatibility antigens. Under controlled conditions of donor-recipient DL-A compatibility, cardiac allografts may be less immunogenic than renal transplants. Heart transplants performed across major donor-recipient DL-A incompatibilities appeared, however, to be more vulnerable to the events of allograft rejection than renal allografts performed under similar conditions. The selection of optimally compatible donor-recipient combinations for organ transplantation may be aided materially by genetic studies of the transmission of DL-A antigens to the animals under consideration. PMID:4943931

  20. The Missing Link in Epstein-Barr Virus Immune Evasion: the BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II.

    PubMed

    Quinn, Laura L; Williams, Luke R; White, Claire; Forrest, Calum; Zuo, Jianmin; Rowe, Martin

    2016-01-01

    The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8(+) cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8(+) cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8(+) cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4(+) cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8(+) and CD4(+) T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8(+) T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8(+) T cells specific for

  1. Pediatric Multiple Sclerosis: Genes, Environment, and a Comprehensive Therapeutic Approach.

    PubMed

    Cappa, Ryan; Theroux, Liana; Brenton, J Nicholas

    2017-10-01

    Pediatric multiple sclerosis is an increasingly recognized and studied disorder that accounts for 3% to 10% of all patients with multiple sclerosis. The risk for pediatric multiple sclerosis is thought to reflect a complex interplay between environmental and genetic risk factors. Environmental exposures, including sunlight (ultraviolet radiation, vitamin D levels), infections (Epstein-Barr virus), passive smoking, and obesity, have been identified as potential risk factors in youth. Genetic predisposition contributes to the risk of multiple sclerosis, and the major histocompatibility complex on chromosome 6 makes the single largest contribution to susceptibility to multiple sclerosis. With the use of large-scale genome-wide association studies, other non-major histocompatibility complex alleles have been identified as independent risk factors for the disease. The bridge between environment and genes likely lies in the study of epigenetic processes, which are environmentally-influenced mechanisms through which gene expression may be modified. This article will review these topics to provide a framework for discussion of a comprehensive approach to counseling and ultimately treating the pediatric patient with multiple sclerosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Preferential V beta gene usage and lack of junctional sequence conservation among human T cell receptors specific for a tetanus toxin- derived peptide: evidence for a dominant role of a germline-encoded V region in antigen/major histocompatibility complex recognition

    PubMed Central

    1992-01-01

    To investigate the structural and genetic basis of the T cell response to defined peptide/major histocompatibility (MHC) class II complexes in humans, we established a large panel of T cell clones (61) from donors of different HLA-DR haplotypes and reactive with a tetanus toxin- derived peptide (tt830-844) recognized in association with most DR molecules (universal peptide). By using a bacterial enterotoxin-based proliferation assay and cDNA sequencing, we found preferential use of a particular V beta region gene segment, V beta 2.1, in three of the individuals studied (64%, n = 58), irrespective of whether the peptide was presented by the DR6wcI, DR4w4, or DRw11.1 and DRw11.2 alleles, demonstrating that shared MHC class II antigens are not required for shared V beta gene use by T cell receptors (TCRs) specific for this peptide. V alpha gene use was more heterogeneous, with at least seven different V alpha segments derived from five distinct families encoding alpha chains able to pair with V beta 2.1 chains to form a tt830-844/DR- specific binding site. Several cases were found of clones restricted to different DR alleles that expressed identical V beta and (or very closely related) V alpha gene segments and that differed only in their junctional sequences. Thus, changes in the putative complementary determining region 3 (CDR3) of the TCR may, in certain cases, alter MHC specificity and maintain peptide reactivity. Finally, in contrast to what has been observed in other defined peptide/MHC systems, a striking heterogeneity was found in the junctional regions of both alpha and beta chains, even for TCRs with identical V alpha and/or V beta gene segments and the same restriction. Among 14 anti-tt830-844 clones using the V beta 2.1 gene segment, 14 unique V beta-D-J beta junctions were found, with no evident conservation in length and/or amino acid composition. One interpretation for this apparent lack of coselection of specific junctional sequences in the context of

  3. Characterization of major histocompatibility complex class I, and class II DRB loci of captive and wild Indian leopards (Panthera pardus fusca).

    PubMed

    Parmar, Drashti R; Mitra, Siuli; Bhadouriya, Snehalata; Rao, Tirupathi; Kunteepuram, Vaishnavi; Gaur, Ajay

    2017-12-01

    The major histocompatibility complex (MHC), in vertebrate animals, is a multi-genic protein complex that encodes various receptors. During a disease, MHC interacts with the antigen and triggers a cascade of adaptive immune responses to overcome a disease outbreak. The MHC is very important region from immunological point of view, but it is poorly characterized among Indian leopards. During this investigation, we examined genetic diversity for MHC class I (MHC-I) and MHC class II-DRB (MHC-II) among wild and captive Indian leopards. This study estimated a pool of 9 and 17 alleles for MHC-I and MHC-II, respectively. The wild group of individuals showed higher nucleotide diversity and amino acid polymorphism compared to the captive group. A phylogenetic comparison with other felids revealed a clustering in MHC-I and interspersed presence in MHC-II sequences. A test for selection also revealed a deviation from neutrality at MHC-II DRB loci and higher non-synonymous substitution rate (dN) among the individuals from wild group. Further, the wild individuals showed higher dN for both MHC I and II genes compared to the group that was bred under captive conditions. These findings suggest the role of micro-evolutionary forces, such as pathogen-mediated selection, to cause MHC variations among the two groups of Indian leopards, because the two groups have been bred in two different environments for a substantial period of time. Since, MHC diversity is often linked with the quality of immunological health; the results obtained from this study fill the gap of knowledge on disease predisposition among wild and captive Indian leopards.

  4. Molecular modeling of class I and II alleles of the major histocompatibility complex in Salmo salar.

    PubMed

    Cárdenas, Constanza; Bidon-Chanal, Axel; Conejeros, Pablo; Arenas, Gloria; Marshall, Sergio; Luque, F Javier

    2010-12-01

    Knowledge of the 3D structure of the binding groove of major histocompatibility (MHC) molecules, which play a central role in the immune response, is crucial to shed light into the details of peptide recognition and polymorphism. This work reports molecular modeling studies aimed at providing 3D models for two class I and two class II MHC alleles from Salmo salar (Sasa), as the lack of experimental structures of fish MHC molecules represents a serious limitation to understand the specific preferences for peptide binding. The reliability of the structural models built up using bioinformatic tools was explored by means of molecular dynamics simulations of their complexes with representative peptides, and the energetics of the MHC-peptide interaction was determined by combining molecular mechanics interaction energies and implicit continuum solvation calculations. The structural models revealed the occurrence of notable differences in the nature of residues at specific positions in the binding groove not only between human and Sasa MHC proteins, but also between different Sasa alleles. Those differences lead to distinct trends in the structural features that mediate the binding of peptides to both class I and II MHC molecules, which are qualitatively reflected in the relative binding affinities. Overall, the structural models presented here are a valuable starting point to explore the interactions between MHC receptors and pathogen-specific interactions and to design vaccines against viral pathogens.

  5. Zika Virus Escapes NK Cell Detection by Upregulating Major Histocompatibility Complex Class I Molecules.

    PubMed

    Glasner, Ariella; Oiknine-Djian, Esther; Weisblum, Yiska; Diab, Mohammad; Panet, Amos; Wolf, Dana G; Mandelboim, Ofer

    2017-11-15

    NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-β). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus. IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika virus

  6. Zika Virus Escapes NK Cell Detection by Upregulating Major Histocompatibility Complex Class I Molecules

    PubMed Central

    Glasner, Ariella; Oiknine-Djian, Esther; Weisblum, Yiska; Diab, Mohammad; Panet, Amos; Wolf, Dana G.

    2017-01-01

    ABSTRACT NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-β). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus. IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika

  7. IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex

    PubMed Central

    Maccari, Giuseppe; Robinson, James; Ballingall, Keith; Guethlein, Lisbeth A.; Grimholt, Unni; Kaufman, Jim; Ho, Chak-Sum; de Groot, Natasja G.; Flicek, Paul; Bontrop, Ronald E.; Hammond, John A.; Marsh, Steven G. E.

    2017-01-01

    The IPD-MHC Database project (http://www.ebi.ac.uk/ipd/mhc/) collects and expertly curates sequences of the major histocompatibility complex from non-human species and provides the infrastructure and tools to enable accurate analysis. Since the first release of the database in 2003, IPD-MHC has grown and currently hosts a number of specific sections, with more than 7000 alleles from 70 species, including non-human primates, canines, felines, equids, ovids, suids, bovins, salmonids and murids. These sequences are expertly curated and made publicly available through an open access website. The IPD-MHC Database is a key resource in its field, and this has led to an average of 1500 unique visitors and more than 5000 viewed pages per month. As the database has grown in size and complexity, it has created a number of challenges in maintaining and organizing information, particularly the need to standardize nomenclature and taxonomic classification, while incorporating new allele submissions. Here, we describe the latest database release, the IPD-MHC 2.0 and discuss planned developments. This release incorporates sequence updates and new tools that enhance database queries and improve the submission procedure by utilizing common tools that are able to handle the varied requirements of each MHC-group. PMID:27899604

  8. Female major histocompatibility complex type affects male testosterone levels and sperm number in the horse (Equus caballus)

    PubMed Central

    Burger, D.; Dolivo, G.; Marti, E.; Sieme, H.; Wedekind, C.

    2015-01-01

    Odours of vertebrates often contain information about the major histocompatibility complex (MHC), and are used in kin recognition, mate choice or female investment in pregnancy. It is, however, still unclear whether MHC-linked signals can also affect male reproductive strategies. We used horses (Equus caballus) to study this question under experimental conditions. Twelve stallions were individually exposed either to an unfamiliar MHC-similar mare and then to an unfamiliar MHC-dissimilar mare, or vice versa. Each exposure lasted over a period of four weeks. Peripheral blood testosterone levels were determined weekly. Three ejaculates each were collected in the week after exposure to both mares (i.e. in the ninth week) to determine mean sperm number and sperm velocity. We found high testosterone levels when stallions were kept close to MHC-dissimilar mares and significantly lower ones when kept close to MHC-similar mares. Mean sperm number per ejaculate (but not sperm velocity) was positively correlated to mean testosterone levels and also affected by the order of presentation of mares: sperm numbers were higher if MHC-dissimilar mares were presented last than if MHC-similar mares were presented last. We conclude that MHC-linked signals influence testosterone secretion and semen characteristics, two indicators of male reproductive strategies. PMID:25904670

  9. Analysis of MHC class I genes across horse MHC haplotypes

    PubMed Central

    Tallmadge, Rebecca L.; Campbell, Julie A.; Miller, Donald C.; Antczak, Douglas F.

    2010-01-01

    The genomic sequences of 15 horse Major Histocompatibility Complex (MHC) class I genes and a collection of MHC class I homozygous horses of five different haplotypes were used to investigate the genomic structure and polymorphism of the equine MHC. A combination of conserved and locus-specific primers was used to amplify horse MHC class I genes with classical and non-classical characteristics. Multiple clones from each haplotype identified three to five classical sequences per homozygous animal, and two to three non-classical sequences. Phylogenetic analysis was applied to these sequences and groups were identified which appear to be allelic series, but some sequences were left ungrouped. Sequences determined from MHC class I heterozygous horses and previously described MHC class I sequences were then added, representing a total of ten horse MHC haplotypes. These results were consistent with those obtained from the MHC homozygous horses alone, and 30 classical sequences were assigned to four previously confirmed loci and three new provisional loci. The non-classical genes had few alleles and the classical genes had higher levels of allelic polymorphism. Alleles for two classical loci with the expected pattern of polymorphism were found in the majority of haplotypes tested, but alleles at two other commonly detected loci had more variation outside of the hypervariable region than within. Our data indicate that the equine Major Histocompatibility Complex is characterized by variation in the complement of class I genes expressed in different haplotypes in addition to the expected allelic polymorphism within loci. PMID:20099063

  10. 42 CFR 493.1227 - Condition: Histocompatibility.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., and §§ 493.1281 through 493.1299. General Laboratory Systems ... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Quality System for Nonwaived Testing § 493.1227 Condition: Histocompatibility. If the laboratory provides services in the specialty of...

  11. 42 CFR 493.1227 - Condition: Histocompatibility.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., and §§ 493.1281 through 493.1299. General Laboratory Systems ... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Quality System for Nonwaived Testing § 493.1227 Condition: Histocompatibility. If the laboratory provides services in the specialty of...

  12. The major histocompatibility complex and mate choice: inbreeding avoidance and selection of good genes.

    PubMed

    Grob, B; Knapp, L A; Martin, R D; Anzenberger, G

    1998-01-01

    It has been known for decades that MHC genes play a critical role in the cellular immune response, but only recent research has provided a better understanding of how these molecules might affect mate choice. Original studies in inbred mouse strains revealed that mate choice was influenced by MHC dissimilarity. Detection of MHC differences between individuals in these experiments was related to olfactory cues, primarily in urine. Recent studies in humans have shown an analogous picture of MHC-based mating. Taken together, these findings could support either the hypothesis of MHC-based inbreeding avoidance or the hypothesis of MHC-related avoidance of reproductive failure, since studies in mice, humans and pigtailed macaques have shown that parental sharing of certain MHC alleles correlates with frequent spontaneous abortion or prolonged intergestational intervals. Data from many mammalian species clearly demonstrate that reproductive failure occurs as a result of inbreeding. Therefore, MHC similarity might serve as an indicator of genome-wide relatedness. In contrast, increased fitness due to the presence of individual MHC alleles in a pathogenic environment could explain MHC-based selection of currently good genes. Specifically, the physical condition of long-living animals depends on the ability to respond to immunological challenge and an individual's MHC alleles determine the response, since, unlike the T cell receptors, MHC alleles are not somatically recombined. Therefore, sexual selection of condition-dependent traits during mate choice could be used to select successful MHC alleles, thereby providing offspring with a higher relative immunity in their pathogenic environment.

  13. Parasite Manipulation of the Invariant Chain and the Peptide Editor H2-DM Affects Major Histocompatibility Complex Class II Antigen Presentation during Toxoplasma gondii Infection

    PubMed Central

    Nishi, Manami; El-Hage, Sandy; Fox, Barbara A.; Bzik, David J.

    2015-01-01

    Toxoplasma gondii is an obligate intracellular protozoan parasite. This apicomplexan is the causative agent of toxoplasmosis, a leading cause of central nervous system disease in AIDS. It has long been known that T. gondii interferes with major histocompatibility complex class II (MHC-II) antigen presentation to attenuate CD4+ T cell responses and establish persisting infections. Transcriptional downregulation of MHC-II genes by T. gondii was previously established, but the precise mechanisms inhibiting MHC-II function are currently unknown. Here, we show that, in addition to transcriptional regulation of MHC-II, the parasite modulates the expression of key components of the MHC-II antigen presentation pathway, namely, the MHC-II-associated invariant chain (Ii or CD74) and the peptide editor H2-DM, in professional antigen-presenting cells (pAPCs). Genetic deletion of CD74 restored the ability of infected dendritic cells to present a parasite antigen in the context of MHC-II in vitro. CD74 mRNA and protein levels were, surprisingly, elevated in infected cells, whereas MHC-II and H2-DM expression was inhibited. CD74 accumulated mainly in the endoplasmic reticulum (ER), and this phenotype required live parasites, but not active replication. Finally, we compared the impacts of genetic deletion of CD74 and H2-DM genes on parasite dissemination toward lymphoid organs in mice, as well as activation of CD4+ T cells and interferon gamma (IFN-γ) levels during acute infection. Cyst burdens and survival during the chronic phase of infection were also evaluated in wild-type and knockout mice. These results highlight the fact that the infection is influenced by multiple levels of parasite manipulation of the MHC-II antigen presentation pathway. PMID:26195549

  14. Cyclophilin C Participates in the US2-Mediated Degradation of Major Histocompatibility Complex Class I Molecules.

    PubMed

    Chapman, Daniel C; Stocki, Pawel; Williams, David B

    2015-01-01

    Human cytomegalovirus uses a variety of mechanisms to evade immune recognition through major histocompatibility complex class I molecules. One mechanism mediated by the immunoevasin protein US2 causes rapid disposal of newly synthesized class I molecules by the endoplasmic reticulum-associated degradation pathway. Although several components of this degradation pathway have been identified, there are still questions concerning how US2 targets class I molecules for degradation. In this study we identify cyclophilin C, a peptidyl prolyl isomerase of the endoplasmic reticulum, as a component of US2-mediated immune evasion. Cyclophilin C could be co-isolated with US2 and with the class I molecule HLA-A2. Furthermore, it was required at a particular expression level since depletion or overexpression of cyclophilin C impaired the degradation of class I molecules. To better characterize the involvement of cyclophilin C in class I degradation, we used LC-MS/MS to detect US2-interacting proteins that were influenced by cyclophilin C expression levels. We identified malectin, PDIA6, and TMEM33 as proteins that increased in association with US2 upon cyclophilin C knockdown. In subsequent validation all were shown to play a functional role in US2 degradation of class I molecules. This was specific to US2 rather than general ER-associated degradation since depletion of these proteins did not impede the degradation of a misfolded substrate, the null Hong Kong variant of α1-antitrypsin.

  15. Cyclophilin C Participates in the US2-Mediated Degradation of Major Histocompatibility Complex Class I Molecules

    PubMed Central

    Chapman, Daniel C.; Stocki, Pawel; Williams, David B.

    2015-01-01

    Human cytomegalovirus uses a variety of mechanisms to evade immune recognition through major histocompatibility complex class I molecules. One mechanism mediated by the immunoevasin protein US2 causes rapid disposal of newly synthesized class I molecules by the endoplasmic reticulum-associated degradation pathway. Although several components of this degradation pathway have been identified, there are still questions concerning how US2 targets class I molecules for degradation. In this study we identify cyclophilin C, a peptidyl prolyl isomerase of the endoplasmic reticulum, as a component of US2-mediated immune evasion. Cyclophilin C could be co-isolated with US2 and with the class I molecule HLA-A2. Furthermore, it was required at a particular expression level since depletion or overexpression of cyclophilin C impaired the degradation of class I molecules. To better characterize the involvement of cyclophilin C in class I degradation, we used LC-MS/MS to detect US2-interacting proteins that were influenced by cyclophilin C expression levels. We identified malectin, PDIA6, and TMEM33 as proteins that increased in association with US2 upon cyclophilin C knockdown. In subsequent validation all were shown to play a functional role in US2 degradation of class I molecules. This was specific to US2 rather than general ER-associated degradation since depletion of these proteins did not impede the degradation of a misfolded substrate, the null Hong Kong variant of α1-antitrypsin. PMID:26691022

  16. A nonpolymorphic major histocompatibility complex class Ib molecule binds a large array of diverse self-peptides

    PubMed Central

    1994-01-01

    Unlike the highly polymorphic major histocompatibility complex (MHC) class Ia molecules, which present a wide variety of peptides to T cells, it is generally assumed that the nonpolymorphic MHC class Ib molecules may have evolved to function as highly specialized receptors for the presentation of structurally unique peptides. However, a thorough biochemical analysis of one class Ib molecule, the soluble isoform of Qa-2 antigen (H-2SQ7b), has revealed that it binds a diverse array of structurally similar peptides derived from intracellular proteins in much the same manner as the classical antigen-presenting molecules. Specifically, we find that SQ7b molecules are heterodimers of heavy and light chains complexed with nonameric peptides in a 1:1:1 ratio. These peptides contain a conserved hydrophobic residue at the COOH terminus and a combination of one or more conserved residue(s) at P7 (histidine), P2 (glutamine/leucine), and/or P3 (leucine/asparagine) as anchors for binding SQ7b. 2 of 18 sequenced peptides matched cytosolic proteins (cofilin and L19 ribosomal protein), suggesting an intracellular source of the SQ7b ligands. Minimal estimates of the peptide repertoire revealed that at least 200 different naturally processed self-peptides can bind SQ7b molecules. Since Qa-2 molecules associate with a diverse array of peptides, we suggest that they function as effective presenting molecules of endogenously synthesized proteins like the class Ia molecules. PMID:8294869

  17. Characterization of immune response to Eimeria tenella antigens in a natural immunity model with hosts which differ serologically at the B locus of the major histocompatibility complex.

    PubMed Central

    Brake, D A; Fedor, C H; Werner, B W; Miller, T J; Taylor, R L; Clare, R A

    1997-01-01

    A model to simulate natural immunity to Eimeria tenella was developed in three chicken lines which differ at the B locus of the major histocompatibility complex. Homozygous, 1-day-old chicks of the B19B19, B24B24, or B30B30 genotype were trickle immunized by being orally fed a small infectious dose of E. tenella oocysts for 5 consecutive days. These naturally exposed birds were then challenged at different times between 5 and 24 days after the final dose, and the level of protection was assessed 6 days after challenge, using body weight gain and intestinal lesion scores. The duration of immunity in naturally exposed birds differed among the major histocompatibility complex lines. Trickle immunization of the B19B19 haplotype afforded the longest and strongest level of protection compared to the other two haplotypes tested. In addition, in vitro splenic and peripheral blood lymphocyte proliferative responses in trickle-immunized birds were measured against sporozoite, merozoite, and tissue culture-derived E. tenella parasite antigens isolated from the recently described SB-CEV-1/F7 established cell line. The lymphocytes obtained from B19B19 birds trickle immunized responded in vitro to the E. tenella-infected SB-CEV-1/F7 tissue culture-derived parasite antigen. Furthermore, antigen-specific immune responses appeared earlier in immune, challenged B19B19 birds than in their naive, challenged counterparts. The development of a model simulating natural immunization will serve as a foundation to further characterize both humoral and cell-mediated responses to E. tenella tissue culture-derived parasite antigens and to better understand host protective immune responses to avian coccidiosis. PMID:9119452

  18. Peptide Modulation of Class I Major Histocompatibility Complex Protein Molecular Flexibility and the Implications for Immune Recognition*

    PubMed Central

    Hawse, William F.; Gloor, Brian E.; Ayres, Cory M.; Kho, Kevin; Nuter, Elizabeth; Baker, Brian M.

    2013-01-01

    T cells use the αβ T cell receptor (TCR) to recognize antigenic peptides presented by class I major histocompatibility complex proteins (pMHCs) on the surfaces of antigen-presenting cells. Flexibility in both TCRs and peptides plays an important role in antigen recognition and discrimination. Less clear is the role of flexibility in the MHC protein; although recent observations have indicated that mobility in the MHC can impact TCR recognition in a peptide-dependent fashion, the extent of this behavior is unknown. Here, using hydrogen/deuterium exchange, fluorescence anisotropy, and structural analyses, we show that the flexibility of the peptide binding groove of the class I MHC protein HLA-A*0201 varies significantly with different peptides. The variations extend throughout the binding groove, impacting regions contacted by TCRs as well as other activating and inhibitory receptors of the immune system. Our results are consistent with statistical mechanical models of protein structure and dynamics, in which the binding of different peptides alters the populations and exchange kinetics of substates in the MHC conformational ensemble. Altered MHC flexibility will influence receptor engagement, impacting conformational adaptations, entropic penalties associated with receptor recognition, and the populations of binding-competent states. Our results highlight a previously unrecognized aspect of the “altered self” mechanism of immune recognition and have implications for specificity, cross-reactivity, and antigenicity in cellular immunity. PMID:23836912

  19. IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex.

    PubMed

    Maccari, Giuseppe; Robinson, James; Ballingall, Keith; Guethlein, Lisbeth A; Grimholt, Unni; Kaufman, Jim; Ho, Chak-Sum; de Groot, Natasja G; Flicek, Paul; Bontrop, Ronald E; Hammond, John A; Marsh, Steven G E

    2017-01-04

    The IPD-MHC Database project (http://www.ebi.ac.uk/ipd/mhc/) collects and expertly curates sequences of the major histocompatibility complex from non-human species and provides the infrastructure and tools to enable accurate analysis. Since the first release of the database in 2003, IPD-MHC has grown and currently hosts a number of specific sections, with more than 7000 alleles from 70 species, including non-human primates, canines, felines, equids, ovids, suids, bovins, salmonids and murids. These sequences are expertly curated and made publicly available through an open access website. The IPD-MHC Database is a key resource in its field, and this has led to an average of 1500 unique visitors and more than 5000 viewed pages per month. As the database has grown in size and complexity, it has created a number of challenges in maintaining and organizing information, particularly the need to standardize nomenclature and taxonomic classification, while incorporating new allele submissions. Here, we describe the latest database release, the IPD-MHC 2.0 and discuss planned developments. This release incorporates sequence updates and new tools that enhance database queries and improve the submission procedure by utilizing common tools that are able to handle the varied requirements of each MHC-group. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Mate choice for major histocompatibility complex genetic divergence as a bet-hedging strategy in the Atlantic salmon (Salmo salar).

    PubMed

    Evans, Melissa L; Dionne, Mélanie; Miller, Kristina M; Bernatchez, Louis

    2012-01-22

    Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures.

  1. Functional Macroautophagy Induction by Influenza A Virus without a Contribution to Major Histocompatibility Complex Class II-Restricted Presentation▿†

    PubMed Central

    Comber, Joseph D.; Robinson, Tara M.; Siciliano, Nicholas A.; Snook, Adam E.; Eisenlohr, Laurence C.

    2011-01-01

    Major histocompatibility complex (MHC) class II-presented peptides can be derived from both exogenous (extracellular) and endogenous (biosynthesized) sources of antigen. Although several endogenous antigen-processing pathways have been reported, little is known about their relative contributions to global CD4+ T cell responses against complex antigens. Using influenza virus for this purpose, we assessed the role of macroautophagy, a process in which cytosolic proteins are delivered to the lysosome by de novo vesicle formation and membrane fusion. Influenza infection triggered productive macroautophagy, and autophagy-dependent presentation was readily observed with model antigens that naturally traffic to the autophagosome. Furthermore, treatments that enhance or inhibit macroautophagy modulated the level of presentation from these model antigens. However, validated enzyme-linked immunospot (ELISpot) assays of influenza-specific CD4+ T cells from infected mice using a variety of antigen-presenting cells, including primary dendritic cells, revealed no detectable macroautophagy-dependent component. In contrast, the contribution of proteasome-dependent endogenous antigen processing to the global influenza CD4+ response was readily appreciated. The contribution of macroautophagy to the MHC class II-restricted response may vary depending upon the pathogen. PMID:21525345

  2. Mate choice for major histocompatibility complex genetic divergence as a bet-hedging strategy in the Atlantic salmon (Salmo salar)

    PubMed Central

    Evans, Melissa L.; Dionne, Mélanie; Miller, Kristina M.; Bernatchez, Louis

    2012-01-01

    Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures. PMID:21697172

  3. Assembly and function of the major histocompatibility complex (MHC) I peptide-loading complex are conserved across higher vertebrates.

    PubMed

    Hinz, Andreas; Jedamzick, Johanna; Herbring, Valentina; Fischbach, Hanna; Hartmann, Jessica; Parcej, David; Koch, Joachim; Tampé, Robert

    2014-11-28

    Antigen presentation to cytotoxic T lymphocytes via major histocompatibility complex class I (MHC I) molecules depends on the heterodimeric transporter associated with antigen processing (TAP). For efficient antigen supply to MHC I molecules in the ER, TAP assembles a macromolecular peptide-loading complex (PLC) by recruiting tapasin. In evolution, TAP appeared together with effector cells of adaptive immunity at the transition from jawless to jawed vertebrates and diversified further within the jawed vertebrates. Here, we compared TAP function and interaction with tapasin of a range of species within two classes of jawed vertebrates. We found that avian and mammalian TAP1 and TAP2 form heterodimeric complexes across taxa. Moreover, the extra N-terminal domain TMD0 of mammalian TAP1 and TAP2 as well as avian TAP2 recruits tapasin. Strikingly, however, only TAP1 and TAP2 from the same taxon can form a functional heterodimeric translocation complex. These data demonstrate that the dimerization interface between TAP1 and TAP2 and the tapasin docking sites for PLC assembly are conserved in evolution, whereas elements of antigen translocation diverged later in evolution and are thus taxon specific. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. IFN-γ Blocks CD4+CD25+ Tregs and Abolishes Immune Privilege of Minor Histocompatibility Mismatched Corneal Allografts

    PubMed Central

    Cunnusamy, Khrishen; Niederkorn, Jerry Y.

    2014-01-01

    Th1 CD4+ cells are believed to be the primary mediators of corneal allograft rejection. However, rejection of fully allogeneic C57BL/6 corneal allografts soared from 50% to 90% in both INF-γ−/− and anti-IFN-γ-treated BALB/c mice. In contrast, similar deficits in IFN-γ in BALB/c hosts enhanced immune privilege of BALB.B (minor histocompatibility antigen-matched, MHC-mismatched) and NZB (major histocompatibility complex-matched, minor histocompatibility antigen-mismatched) corneal allografts – decreasing rejection from 80% to ~20%. This effect of IFN-γ was independent of CD4+ T cell lineage commitment as both anti-IFN-γ-treated acceptor and rejector mice displayed a Th2 cytokine profile. The presence of IFN-γ prevented the generation of alloantigen-specific CD4+CD25+ Tregs in hosts receiving either MHC only mismatched BALB.B or minor only histocompatibility (minor H)-mismatched NZB corneal allografts. Tregs in these hosts, promoted corneal allograft survival by suppressing Th2 effector cells. By contrast, IFN-γ was necessary for the generation of CD4+CD25+ Tregs that prevented rejection of fully allogeneic C57BL/6 corneal allografts in BALB/c hosts. These findings suggest that MHC-matching in combination with blockade of IFN-γ holds promise as a means of enhancing corneal allograft survival. PMID:24119152

  5. The great diversity of major histocompatibility complex class II genes in Philippine native cattle

    PubMed Central

    Takeshima, S.N.; Miyasaka, T.; Polat, M.; Kikuya, M.; Matsumoto, Y.; Mingala, C.N.; Villanueva, M.A.; Salces, A.J.; Onuma, M.; Aida, Y.

    2014-01-01

    Bovine leukocyte antigens (BoLA) are extensively used as markers for bovine disease and immunological traits. However, none of the BoLA genes in Southeast Asian breeds have been characterized by polymerase chain reaction (PCR)-sequence-based typing (SBT). Therefore, we sequenced exon 2 of the BoLA class II DRB3 gene from 1120 individual cows belonging to the Holstein, Sahiwal, Simbrah, Jersey, Brahman, and Philippine native breeds using PCR-SBT. Several cross-breeds were also examined. BoLA-DRB3 PCR-SBT identified 78 previously reported alleles and five novel alleles. The number of BoLA-DRB3 alleles identified in each breed from the Philippines was higher (71 in Philippine native cattle, 58 in Brahman, 46 in Holstein × Sahiwal, and 57 in Philippine native × Brahman) than that identified in breeds from other countries (e.g., 23 alleles in Japanese Black and 35 in Bolivian Yacumeño cattle). A phylogenetic tree based on the DA distance calculated from the BoLA-DRB3 allele frequency showed that Philippine native cattle from different Philippine islands are closely related, and all of them are closely similar to Philippine Brahman cattle but not to native Japanese and Latin American breeds. Furthermore, the BoLA-DRB3 allele frequency in Philippine native cattle from Luzon Island, located in the Northern Philippines was different from that in cattle from Iloilo, Bohol, and Leyte Islands, which are located in the Southern Philippines. Therefore, we conclude that Philippine native cattle can be divided into two populations, North and South areas. Moreover, a neutrality test revealed that Philippine native cattle from Leyte showed significantly greater genetic diversity, which may be maintained by balancing selection. This study shows that Asian breeds have high levels of BoLA-DRB3 polymorphism. This finding, especially the identification of five novel BoLA-DRB3 alleles, will be helpful for future SBT studies of BoLA-DRB3 alleles in East Asian cattle. PMID:25606401

  6. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation

    PubMed Central

    Wieczorek, Marek; Abualrous, Esam T.; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian

    2017-01-01

    Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity. PMID:28367149

  7. Serum angiotensin-1 converting enzyme activity processes a human immunodeficiency virus 1 gp160 peptide for presentation by major histocompatibility complex class I molecules

    PubMed Central

    1992-01-01

    T cell stimulation by the human immunodeficiency virus 1 gp160-derived peptide p18 presented by H-2Dd class I major histocompatibility complex molecules in a cell-free system was found to require proteolytic cleavage. This extracellular processing was mediated by peptidases present in fetal calf serum. In vitro processing of p18 resulted in a distinct reverse phase high performance liquid chromatography profile, from which a biologically active product was isolated and sequenced. This peptide processing can be specifically blocked by the angiotensin- 1 converting enzyme (ACE) inhibitor captopril, and can occur by exposing p18 to purified ACE. The ability of naturally occurring extracellular proteases to convert inactive peptides to T cell antigens has important implications for understanding cytotoxic T lymphocyte responses in vivo, and for rational peptide vaccine design. PMID:1316930

  8. Structure of novel rat major histocompatibility complex class II genes RT1.Ha and Hb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arimura, Yutaka; Tang, Wei Ran; Koda, Toshiaki

    1995-03-01

    We have cloned the novel rat MHC class II genes, RT1.Ha and Hb, which are homologous to human HLA-DPA and DPB. RT1.Hb is a pseudogene, whereas RT1.Ha is apparently intact and may have transcriptional potential. In addition, with an RT1.Ha probe, we detecteda single Southern hybridization band in the genome of the mouse. This finding may aford an opportunity to analyze the HLA-DPA homologue in the mouse genome. 18 refs., 4 figs., 1 tab.

  9. Equus caballus Major Histocompatibility Complex Class I Is an Entry Receptor for Equine Herpesvirus Type 1▿

    PubMed Central

    Kurtz, Brian M.; Singletary, Lauren B.; Kelly, Sean D.; Frampton, Arthur R.

    2010-01-01

    In this study, Equus caballus major histocompatibility complex class I (MHC-I) was identified as a cellular entry receptor for the alphaherpesvirus equine herpesvirus type 1 (EHV-1). This novel EHV-1 receptor was discovered using a cDNA library from equine macrophages. cDNAs from this EHV-1-susceptible cell type were inserted into EHV-1-resistant B78H1 murine melanoma cells, these cells were infected with an EHV-1 lacZ reporter virus, and cells that supported virus infection were identified by X-Gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside) staining. Positive cells were subjected to several rounds of purification to obtain homogeneous cell populations that were shown to be uniformly infected with EHV-1. cDNAs from these cell populations were amplified by PCR and then sequenced. The sequence data revealed that the EHV-1-susceptible cells had acquired an E. caballus MHC-I cDNA. Cell surface expression of this receptor was verified by confocal immunofluorescence microscopy. The MHC-I cDNA was cloned into a mammalian expression vector, and stable B78H1 cell lines were generated that express this receptor. These cell lines were susceptible to EHV-1 infection while the parental B78H1 cells remained resistant to infection. In addition, EHV-1 infection of the B78H1 MHC-I-expressing cell lines was inhibited in a dose-dependent manner by an anti-MHC-I antibody. PMID:20610718

  10. Major Histocompatibility Complex, demographic, and environmental predictors of antibody presence in a free-ranging mammal.

    PubMed

    Ruiz-López, María José; Monello, Ryan J; Schuttler, Stephanie G; Lance, Stacey L; Gompper, Matthew E; Eggert, Lori S

    2014-12-01

    Major Histocompatibility Complex (MHC) variability plays a key role in pathogen resistance, but its relative importance compared to environmental and demographic factors that also influence resistance is unknown. We analyzed the MHC II DRB exon 2 for 165 raccoons (Procyon lotor) in Missouri (USA). For each animal we also determined the presence of immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies to two highly virulent pathogens, canine distemper virus (CDV) and parvovirus. We investigated the role of MHC polymorphism and other demographic and environmental factors previously associated with predicting seroconversion. In addition, using an experimental approach, we studied the relative importance of resource availability and contact rates. We found important associations between IgG antibody presence and several MHC alleles and supertypes but not between IgM antibody presence and MHC. No effect of individual MHC diversity was found. For CDV, supertype S8, one allele within S8 (Prlo-DRB(∗)222), and a second allele (Prlo-DRB(∗)204) were positively associated with being IgG+, while supertype S4 and one allele within the supertype (Prlo-DRB(∗)210) were negatively associated with being IgG+. Age, year, and increased food availability were also positively associated with being IgG+, but allele Prlo-DRB(∗)222 was a stronger predictor. For parvovirus, only one MHC allele was negatively associated with being IgG+ and age and site were stronger predictors of seroconversion. Our results show that negative-frequency dependent selection is likely acting on the raccoon MHC and that while the role of MHC in relation to other factors depends on the pathogen of interest, it may be one of the most important factors predicting successful immune response. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Human Macrophages Escape Inhibition of Major Histocompatibility Complex-Dependent Antigen Presentation by Cytomegalovirus and Drive Proliferation and Activation of Memory CD4+ and CD8+ T Cells.

    PubMed

    Frascaroli, Giada; Lecher, Carina; Varani, Stefania; Setz, Corinna; van der Merwe, Johannes; Brune, Wolfram; Mertens, Thomas

    2018-01-01

    Human cytomegalovirus (HCMV) persistently infects 40-90% of the human population but in the face of a normal immune system, viral spread and dissemination are efficiently controlled thus preventing clinically signs and disease. HCMV-infected hosts produce a remarkably large amount of HCMV-specific CD4 + and CD8 + T cells that can even reach 20-50% of total T memory cells in the elderly. How HCMV may elicit such large and long-lasting T-cell responses in the absence of detectable viremia has not been elucidated yet. Additionally, HCMV is known to encode several gene products that potently inhibit T-cell recognition of infected cells. The best characterized are the four immune evasive US2, US3, US6, and US11 genes that by different mechanisms account for major histocompatibility complex (MHC) class I and class II degradation and intracellular retention in infected cells. By infecting M1 and M2 human macrophages (Mφ) with the wild-type HCMV strain TB40E or a mutant virus deleted of the four immune evasive genes US2, US3, US6, and US11, we demonstrated that human Mφ counteract the inhibitory potential of the US2-11 genes and remain capable to present peptides via MHC class I and class II molecules. Moreover, by sorting the infected and bystander cells, we provide evidence that both infected and bystander Mφ contribute to antigen presentation to CD4 + and CD8 + T cells. The T cells responding to TB40E-infected Mφ show markers of the T effector memory compartment, produce interferon-γ, and express the lytic granule marker CD107a on the cell surface, thus mirroring the HCMV-specific T cells present in healthy seropositive individuals. All together, our findings reveal that human Mφ escape inhibition of MHC-dependent antigen presentation by HCMV and continue to support T cell proliferation and activation after HCMV infection. Taking into account that Mφ are natural targets of HCMV infection and a site of viral reactivation from latency, our findings support the

  12. Identification of Major Histocompatibility Complex-Regulated Body Odorants by Statistical Analysis of a Comparative Gas Chromatography/Mass Spectrometry Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willse, Alan R.; Belcher, Ann; Preti, George

    2005-04-15

    Gas chromatography (GC), combined with mass spectrometry (MS) detection, is a powerful analytical technique that can be used to separate, quantify, and identify volatile compounds in complex mixtures. This paper examines the application of GC-MS in a comparative experiment to identify volatiles that differ in concentration between two groups. A complex mixture might comprise several hundred or even thousands of volatile compounds. Because their number and location in a chromatogram generally are unknown, and because components overlap in populous chromatograms, the statistical problems offer significant challenges beyond traditional two-group screening procedures. We describe a statistical procedure to compare two-dimensional GC-MSmore » profiles between groups, which entails (1) signal processing: baseline correction and peak detection in single ion chromatograms; (2) aligning chromatograms in time; (3) normalizing differences in overall signal intensities; and (4) detecting chromatographic regions that differ between groups. Compared to existing approaches, the proposed method is robust to errors made at earlier stages of analysis, such as missed peaks or slightly misaligned chromatograms. To illustrate the method, we identify differences in GC-MS chromatograms of ether-extracted urine collected from two nearly identical inbred groups of mice, to investigate the relationship between odor and genetics of the major histocompatibility complex.« less

  13. Good genes, complementary genes and human mate preferences.

    PubMed

    Roberts, S Craig; Little, Anthony C

    2008-03-01

    The past decade has witnessed a rapidly growing interest in the biological basis of human mate choice. Here we review recent studies that demonstrate preferences for traits which might reveal genetic quality to prospective mates, with potential but still largely unknown influence on offspring fitness. These include studies assessing visual, olfactory and auditory preferences for potential good-gene indicator traits, such as dominance or bilateral symmetry. Individual differences in these robust preferences mainly arise through within and between individual variation in condition and reproductive status. Another set of studies have revealed preferences for traits indicating complementary genes, focussing on discrimination of dissimilarity at genes in the major histocompatibility complex (MHC). As in animal studies, we are only just beginning to understand how preferences for specific traits vary and inter-relate, how consideration of good and compatible genes can lead to substantial variability in individual mate choice decisions and how preferences expressed in one sensory modality may reflect those in another. Humans may be an ideal model species in which to explore these interesting complexities.

  14. Good genes, complementary genes and human mate preferences.

    PubMed

    Roberts, S Craig; Little, Anthony C

    2008-09-01

    The past decade has witnessed a rapidly growing interest in the biological basis of human mate choice. Here we review recent studies that demonstrate preferences for traits which might reveal genetic quality to prospective mates, with potential but still largely unknown influence on offspring fitness. These include studies assessing visual, olfactory and auditory preferences for potential good-gene indicator traits, such as dominance or bilateral symmetry. Individual differences in these robust preferences mainly arise through within and between individual variation in condition and reproductive status. Another set of studies have revealed preferences for traits indicating complementary genes, focussing on discrimination of dissimilarity at genes in the major histocompatibility complex (MHC). As in animal studies, we are only just beginning to understand how preferences for specific traits vary and inter-relate, how consideration of good and compatible genes can lead to substantial variability in individual mate choice decisions and how preferences expressed in one sensory modality may reflect those in another. Humans may be an ideal model species in which to explore these interesting complexities.

  15. A comparative study of major histocompatibility complex and red blood cell antigen phenotypes as risk factors for recurrent urinary tract infections in women.

    PubMed

    Hopkins, W J; Heisey, D M; Lorentzen, D F; Uehling, D T

    1998-05-01

    Recurrent urinary tract infections (RUTI) are a significant health problem for many women, and host characteristics that increase susceptibility are not completely defined. This study evaluated data from 99 patients to examine further the question of a possible association between major histocompatibility complex (MHC) or red blood cell (RBC) antigen phenotype and predisposition to RUTIs. MHC class I and II, ABO, and Lewis RBC phenotypes were determined serologically. The MHC class II phenotypes of 55 subjects were also determined by DNA polymerase chain reaction techniques. There were no significant differences in the proportions of HLA-A or -B antigen types between patients and controls, nor in the frequencies of serologically or DNA-defined HLA-DR or -DQ phenotypes. Patient ABO and Lewis RBC phenotypes were not statistically different than those for controls. Thus, the overall risk for women to develop RUTIs does not appear to be associated with any single HLA, ABO, or Lewis phenotype.

  16. Restriction fragment length polymorphism within the class I gene loci of the equine major histocompatibility complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, A.J.; Bailey, E.; Woodward, J.G.

    1986-03-05

    Fourteen standard bred horses were serotyped as homozygous for 1 of 6 Equine Leukocyte Antigen (ELA) specificities. DNA was purified from peripheral leukocytes and digested with Hind III or Pvu II. Southern blot hybridization analysis was carried out using a /sup 32/P-labeled mouse cDNA probe (PH2IIa) specific for class I MHC genes. Both enzymes generated blots that contained a large number of bands (23 to 30) per horse. Significant polymorphism existed among most fragment sizes, while a dozen highly conserved band sizes suggested the presence of Qa/tla - like genes. Only 2 animals (both W6's) showed identical band patterns. Polymorphismmore » was greatest between horses of different serotypes and was significantly decreased within serotypes. Unique bands were present on both blots for both W1's and W6's and may account for the serologic specificity seen in ELA W1 and W6 horses. This study is consistent with the findings in other higher vertebrates and implies that the MHC of the horse includes a highly polymorphic class I multigene family.« less

  17. Testing for post-copulatory selection for major histocompatibility complex genotype in a semi-free-ranging primate population.

    PubMed

    Setchell, Joanna M; Abbott, Kristin M; Gonzalez, Jean-Paul; Knapp, Leslie A

    2013-10-01

    A large body of evidence suggests that major histocompatibility complex (MHC) genotype influences mate choice. However, few studies have investigated MHC-mediated post-copulatory mate choice under natural, or even semi-natural, conditions. We set out to explore this question in a large semi-free-ranging population of mandrills (Mandrillus sphinx) using MHC-DRB genotypes for 127 parent-offspring triads. First, we showed that offspring MHC heterozygosity correlates positively with parental MHC dissimilarity suggesting that mating among MHC dissimilar mates is efficient in increasing offspring MHC diversity. Second, we compared the haplotypes of the parental dyad with those of the offspring to test whether post-copulatory sexual selection favored offspring with two different MHC haplotypes, more diverse gamete combinations, or greater within-haplotype diversity. Limited statistical power meant that we could only detect medium or large effect sizes. Nevertheless, we found no evidence for selection for heterozygous offspring when parents share a haplotype (large effect size), genetic dissimilarity between parental haplotypes (we could detect an odds ratio of ≥1.86), or within-haplotype diversity (medium-large effect). These findings suggest that comparing parental and offspring haplotypes may be a useful approach to test for post-copulatory selection when matings cannot be observed, as is the case in many study systems. However, it will be extremely difficult to determine conclusively whether post-copulatory selection mechanisms for MHC genotype exist, particularly if the effect sizes are small, due to the difficulty in obtaining a sufficiently large sample. © 2013 Wiley Periodicals, Inc.

  18. Natural selection of the major histocompatibility complex (Mhc) in Hawaiian honeycreepers (Drepanidinae)

    USGS Publications Warehouse

    Jarvi, S.I.; Tarr, C.L.; Mcintosh, C.E.; Atkinson, C.T.; Fleischer, R.C.

    2004-01-01

    The native Hawaiian honeycreepers represent a classic example of adaptive radiation and speciation, but currently face one the highest extinction rates in the world. Although multiple factors have likely influenced the fate of Hawaiian birds, the relatively recent introduction of avian malaria is thought to be a major factor limiting honeycreeper distribution and abundance. We have initiated genetic analyses of class II ?? chain Mhc genes in four species of honeycreepers using methods that eliminate the possibility of sequencing mosaic variants formed by cloning heteroduplexed polymerase chain reaction products. Phylogenetic analyses group the honeycreeper Mhc sequences into two distinct clusters. Variation within one cluster is high, with dN > d S and levels of diversity similar to other studies of Mhc (B system) genes in birds. The second cluster is nearly invariant and includes sequences from honeycreepers (Fringillidae), a sparrow (Emberizidae) and a blackbird (Emberizidae). This highly conserved cluster appears reminiscent of the independently segregating Rfp-Y system of genes defined in chickens. The notion that balancing selection operates at the Mhc in the honeycreepers is supported by transpecies polymorphism and strikingly high dN/dS ratios at codons putatively involved in peptide interaction. Mitochondrial DNA control region sequences were invariant in the i'iwi, but were highly variable in the 'amakihi. By contrast, levels of variability of class II ?? chain Mhc sequence codons that are hypothesized to be directly involved in peptide interactions appear comparable between i'iwi and 'amakihi. In the i'iwi, natural selection may have maintained variation within the Mhc, even in the face of what appears to a genetic bottleneck.

  19. Major histocompatibility complex class II compatibility, but not class I, predicts mate choice in a bird with highly developed olfaction

    PubMed Central

    Strandh, Maria; Westerdahl, Helena; Pontarp, Mikael; Canbäck, Björn; Dubois, Marie-Pierre; Miquel, Christian; Taberlet, Pierre; Bonadonna, Francesco

    2012-01-01

    Mate choice for major histocompatibility complex (MHC) compatibility has been found in several taxa, although rarely in birds. MHC is a crucial component in adaptive immunity and by choosing an MHC-dissimilar partner, heterozygosity and potentially broad pathogen resistance is maximized in the offspring. The MHC genotype influences odour cues and preferences in mammals and fish and hence olfactory-based mate choice can occur. We tested whether blue petrels, Halobaena caerulea, choose partners based on MHC compatibility. This bird is long-lived, monogamous and can discriminate between individual odours using olfaction, which makes it exceptionally well suited for this analysis. We screened MHC class I and II B alleles in blue petrels using 454-pyrosequencing and quantified the phylogenetic, functional and allele-sharing similarity between individuals. Partners were functionally more dissimilar at the MHC class II B loci than expected from random mating (p = 0.033), whereas there was no such difference at the MHC class I loci. Phylogenetic and non-sequence-based MHC allele-sharing measures detected no MHC dissimilarity between partners for either MHC class I or II B. Our study provides evidence of mate choice for MHC compatibility in a bird with a high dependency on odour cues, suggesting that MHC odour-mediated mate choice occurs in birds. PMID:22951737

  20. Major histocompatibility complex class II compatibility, but not class I, predicts mate choice in a bird with highly developed olfaction.

    PubMed

    Strandh, Maria; Westerdahl, Helena; Pontarp, Mikael; Canbäck, Björn; Dubois, Marie-Pierre; Miquel, Christian; Taberlet, Pierre; Bonadonna, Francesco

    2012-11-07

    Mate choice for major histocompatibility complex (MHC) compatibility has been found in several taxa, although rarely in birds. MHC is a crucial component in adaptive immunity and by choosing an MHC-dissimilar partner, heterozygosity and potentially broad pathogen resistance is maximized in the offspring. The MHC genotype influences odour cues and preferences in mammals and fish and hence olfactory-based mate choice can occur. We tested whether blue petrels, Halobaena caerulea, choose partners based on MHC compatibility. This bird is long-lived, monogamous and can discriminate between individual odours using olfaction, which makes it exceptionally well suited for this analysis. We screened MHC class I and II B alleles in blue petrels using 454-pyrosequencing and quantified the phylogenetic, functional and allele-sharing similarity between individuals. Partners were functionally more dissimilar at the MHC class II B loci than expected from random mating (p = 0.033), whereas there was no such difference at the MHC class I loci. Phylogenetic and non-sequence-based MHC allele-sharing measures detected no MHC dissimilarity between partners for either MHC class I or II B. Our study provides evidence of mate choice for MHC compatibility in a bird with a high dependency on odour cues, suggesting that MHC odour-mediated mate choice occurs in birds.

  1. Recent advances in Major Histocompatibility Complex (MHC) class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control

    PubMed Central

    van Hateren, Andy; Bailey, Alistair; Elliott, Tim

    2017-01-01

    We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity). We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related), which has been shown to act as a second quality-control stage in MHC I antigen presentation. PMID:28299193

  2. Signal one and two blockade are both critical for non-myeloablative murine HSCT across a major histocompatibility complex barrier.

    PubMed

    Langford-Smith, Kia J; Sandiford, Zara; Langford-Smith, Alex; Wilkinson, Fiona L; Jones, Simon A; Wraith, J Ed; Wynn, Robert F; Bigger, Brian W

    2013-01-01

    Non-myeloablative allogeneic haematopoietic stem cell transplantation (HSCT) is rarely achievable clinically, except where donor cells have selective advantages. Murine non-myeloablative conditioning regimens have limited clinical success, partly through use of clinically unachievable cell doses or strain combinations permitting allograft acceptance using immunosuppression alone. We found that reducing busulfan conditioning in murine syngeneic HSCT, increases bone marrow (BM):blood SDF-1 ratio and total donor cells homing to BM, but reduces the proportion of donor cells engrafting. Despite this, syngeneic engraftment is achievable with non-myeloablative busulfan (25 mg/kg) and higher cell doses induce increased chimerism. Therefore we investigated regimens promoting initial donor cell engraftment in the major histocompatibility complex barrier mismatched CBA to C57BL/6 allo-transplant model. This requires full myeloablation and immunosuppression with non-depleting anti-CD4/CD8 blocking antibodies to achieve engraftment of low cell doses, and rejects with reduced intensity conditioning (≤75 mg/kg busulfan). We compared increased antibody treatment, G-CSF, niche disruption and high cell dose, using reduced intensity busulfan and CD4/8 blockade in this model. Most treatments increased initial donor engraftment, but only addition of co-stimulatory blockade permitted long-term engraftment with reduced intensity or non-myeloablative conditioning, suggesting that signal 1 and 2 T-cell blockade is more important than early BM niche engraftment for transplant success.

  3. An analysis of variation in the long-range genomic organization of the human major histocompatibility complex class II region by pulsed-field gel electrophoresis.

    PubMed

    Dunham, I; Sargent, C A; Dawkins, R L; Campbell, R D

    1989-11-01

    The class II region of the human major histocompatibility complex in seven common HLA haplotypes has been analyzed using pulsed-field gel electrophoresis, restriction enzymes that cut genomic DNA infrequently, and Southern blotting. This analysis has revealed that there are differences in the amount of DNA present in the DQ and DR subregions dependent on the haplotype. The class II region of the DR3 haplotype spans approximately 750 kb and has the same amount of DNA as the class II region of the DR5 and DR6 haplotypes. However, the DR2 haplotype has approximately 30 kb more DNA within the DR subregion. The DR4 haplotype has an additional approximately 110 kb of DNA within the DQ or DR subregions compared to the DR3, DR5, and DR6 haplotypes. These haplotype-specific differences could have some bearing both on the analysis of disease susceptibility and on the ability of chromosomes possessing different HLA haplotypes to recombine within the DQ/DR subregions.

  4. Selective Downregulation of Rhesus Macaque and Sooty Mangabey Major Histocompatibility Complex Class I Molecules by Nef Alleles of Simian Immunodeficiency Virus and Human Immunodeficiency Virus Type 2▿

    PubMed Central

    DeGottardi, M. Quinn; Specht, Anke; Metcalf, Benjamin; Kaur, Amitinder; Kirchhoff, Frank; Evans, David T.

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) Nef downregulates HLA-A and -B molecules, but not HLA-C or -E molecules, based on amino acid differences in their cytoplasmic domains to simultaneously evade cytotoxic T lymphocyte (CTL) and natural killer cell surveillance. Rhesus macaques and sooty mangabeys express orthologues of HLA-A, -B, and -E, but not HLA-C, and many of these molecules have unique amino acid differences in their cytoplasmic tails. We found that these differences also resulted in differential downregulation by primary simian immunodeficiency virus (SIV) SIVsmm/mac and HIV-2 Nef alleles. Thus, selective major histocompatibility complex class I downregulation is a conserved mechanism of immune evasion for pathogenic SIV infection of rhesus macaques and nonpathogenic SIV infection of sooty mangabeys. PMID:18199657

  5. [Histocompatibility tests in a transplantation program].

    PubMed

    de-Leo-Cervantes, Claudia

    2005-01-01

    The importance of the role of the histocompatibility laboratory in solid organ transplantation is to perform HLA typing and determine the degree of HLA matching between recipient/donor. It is a useful tool to increase graft survival and decrease chronic rejection. HLA matching has a positive effect on kidney transplants and it has variable impact on other organ transplants. The crossmatch procedure is the most important test in a solid organ transplantation to evaluate the presence of recipient antibodies to antigens expressed on donor white cells. This test decreases the risk of hyperacute humoral rejection or early graft loss. Positive crossmatch is a contraindication for transplantation because it represents the existence of IgG recipient antibodies that will reath againts donor antigens. Antibody evaluation is important in donor-recipient selection and the responsability of the histocompatibility laboratory is to identify clinically relevant anti-donor HLA antibodies. This detection is useful to determine the degree of humoral alloimmunization, expressed as a percent panel reactive antibody (%PRA). This test also provides information about the antibody specificity and can be used for evaluate a patient's immune status providing a significant correlation in selecting donors.

  6. Structural and Functional Dissection of Human Cytomegalovirus US3 in Binding Major Histocompatibility Complex Class I Molecules

    PubMed Central

    Lee, Sungwook; Yoon, Juhan; Park, Boyoun; Jun, Youngsoo; Jin, Mirim; Sung, Ha Chin; Kim, Ik-Hwan; Kang, Seongman; Choi, Eui-Ju; Ahn, Byung Yoon; Ahn, Kwangseog

    2000-01-01

    The human cytomegalovirus US3, an endoplasmic reticulum (ER)-resident transmembrane glycoprotein, forms a complex with major histocompatibility complex (MHC) class I molecules and retains them in the ER, thereby preventing cytolysis by cytotoxic T lymphocytes. To identify which parts of US3 confine the protein to the ER and which parts are responsible for the association with MHC class I molecules, we constructed truncated mutant and chimeric forms in which US3 domains were exchanged with corresponding domains of CD4 and analyzed them for their intracellular localization and the ability to associate with MHC class I molecules. All of the truncated mutant and chimeric proteins containing the luminal domain of US3 were retained in the ER, while replacement of the US3 luminal domain with that of CD4 led to cell surface expression of the chimera. Thus, the luminal domain of US3 was sufficient for ER retention. Immunolocalization of the US3 glycoprotein after nocodazole treatment and the observation that the carbohydrate moiety of the US3 glycoprotein was not modified by Golgi enzymes indicated that the ER localization of US3 involved true retention, without recycling through the Golgi. Unlike the ER retention signal, the ability to associate with MHC class I molecules required the transmembrane domain in addition to the luminal domain of US3. Direct interaction between US3 and MHC class I molecules could be demonstrated after in vitro translation by coimmunoprecipitation. Together, the present data indicate that the properties that allow US3 to be localized in the ER and bind MHC class I molecules are located in different parts of the molecule. PMID:11070025

  7. Novel full-length major histocompatibility complex class I allele discovery and haplotype definition in pig-tailed macaques.

    PubMed

    Semler, Matthew R; Wiseman, Roger W; Karl, Julie A; Graham, Michael E; Gieger, Samantha M; O'Connor, David H

    2018-06-01

    Pig-tailed macaques (Macaca nemestrina, Mane) are important models for human immunodeficiency virus (HIV) studies. Their infectability with minimally modified HIV makes them a uniquely valuable animal model to mimic human infection with HIV and progression to acquired immunodeficiency syndrome (AIDS). However, variation in the pig-tailed macaque major histocompatibility complex (MHC) and the impact of individual transcripts on the pathogenesis of HIV and other infectious diseases is understudied compared to that of rhesus and cynomolgus macaques. In this study, we used Pacific Biosciences single-molecule real-time circular consensus sequencing to describe full-length MHC class I (MHC-I) transcripts for 194 pig-tailed macaques from three breeding centers. We then used the full-length sequences to infer Mane-A and Mane-B haplotypes containing groups of MHC-I transcripts that co-segregate due to physical linkage. In total, we characterized full-length open reading frames (ORFs) for 313 Mane-A, Mane-B, and Mane-I sequences that defined 86 Mane-A and 106 Mane-B MHC-I haplotypes. Pacific Biosciences technology allows us to resolve these Mane-A and Mane-B haplotypes to the level of synonymous allelic variants. The newly defined haplotypes and transcript sequences containing full-length ORFs provide an important resource for infectious disease researchers as certain MHC haplotypes have been shown to provide exceptional control of simian immunodeficiency virus (SIV) replication and prevention of AIDS-like disease in nonhuman primates. The increased allelic resolution provided by Pacific Biosciences sequencing also benefits transplant research by allowing researchers to more specifically match haplotypes between donors and recipients to the level of nonsynonymous allelic variation, thus reducing the risk of graft-versus-host disease.

  8. Ex Vivo Analysis of Human T Lymphotropic Virus Type 1–Specific CD4+ Cells by Use of a Major Histocompatibility Complex Class II Tetramer Composed of a Neurological Disease–Susceptibility Allele and Its Immunodominant Peptide

    PubMed Central

    Nose, Hirohisa; Kubota, Ryuji; Seth, Nilufer P.; Goon, Peter K.; Tanaka, Yuetsu; Izumo, Shuji; Usuku, Koichiro; Ohara, Yoshiro; Wucherpfennig, Kai W.; Bangham, Charles R. M.; Osame, Mitsuhiro; Saito, Mineki

    2015-01-01

    HLA-DRB1*0101 is associated with susceptibility to human T lymphotropic virus type 1 (HTLV-1)–associated myelopathy/tropical spastic paraparesis (HAM/TSP). Here, we used a synthetic tetramer of DRB1*0101 and its epitope peptide to analyze HTLV-1–specific CD4+ T cells ex vivo. The frequency of tetramer+CD4+ T cells was significantly greater in patients with HAM/TSP than in healthy HTLV-1 carriers (HCs) at a given proviral load and correlated with HTLV-1 tax messenger RNA expression in HCs but not in patients with HAM/TSP. These cells displayed an early to intermediate effector memory phenotype and were preferentially infected by HTLV-1. T cell receptor gene analyses of 2 unrelated DRB1*0101-positive patients with HAM/TSP showed similar Vβ repertoires and amino acid motifs in complementarity-determining region 3. Our data suggest that efficient clonal expansion of virus-specific CD4+ T cells in patients with HAM/TSP does not simply reflect higher viral burden but rather reflects a rapid turnover caused by preferential infection and/or in vivo stimulation by major histocompatibility complex–peptide complexes. PMID:18190256

  9. Genome-Wide Association Study Implicates HLA-C*01: 02 as a Risk Factor at the Major Histocompatibility Complex Locus in Schizophrenia

    PubMed Central

    2012-01-01

    Background We performed a genome-wide association study (GWAS) to identify common risk variants for schizophrenia. Methods The discovery scan included 1606 patients and 1794 controls from Ireland, using 6,212,339 directly genotyped or imputed single nucleotide polymorphisms (SNPs). A subset of this sample (270 cases and 860 controls) was subsequently included in the Psychiatric GWAS Consortium-schizophrenia GWAS meta-analysis. Results One hundred eight SNPs were taken forward for replication in an independent sample of 13,195 cases and 31,021 control subjects. The most significant associations in discovery, corrected for genomic inflation, were (rs204999, p combined = 1.34 × 10−9 and in combined samples (rs2523722 p combined = 2.88 × 10−16) mapped to the major histocompatibility complex (MHC) region. We imputed classical human leukocyte antigen (HLA) alleles at the locus; the most significant finding was with HLA-C*01:02. This association was distinct from the top SNP signal. The HLA alleles DRB1*03:01 and B*08:01 were protective, replicating a previous study. Conclusions This study provides further support for involvement of MHC class I molecules in schizophrenia. We found evidence of association with previously reported risk alleles at the TCF4, VRK2, and ZNF804A loci. PMID:22883433

  10. Vaccinia virus decreases major histocompatibility complex (MHC) class II antigen presentation, T-cell priming, and peptide association with MHC class II

    PubMed Central

    Rehm, Kristina E; Connor, Ramsey F; Jones, Gwendolyn J B; Yimbu, Kenneth; Mannie, Mark D; Roper, Rachel L

    2009-01-01

    Vaccinia virus (VACV) is the current live virus vaccine used to protect humans against smallpox and monkeypox, but its use is contraindicated in several populations because of its virulence. It is therefore important to elucidate the immune evasion mechanisms of VACV. We found that VACV infection of antigen-presenting cells (APCs) significantly decreased major histocompatibility complex (MHC) II antigen presentation and decreased synthesis of 13 chemokines and cytokines, suggesting a potent viral mechanism for immune evasion. In these model systems, responding T cells were not directly affected by virus, indicating that VACV directly affects the APC. VACV significantly decreased nitric oxide production by peritoneal exudate cells and the RAW macrophage cell line in response to lipopolysaccharide (LPS) and interferon (IFN)-γ, decreased class II MHC expression on APCs, and induced apoptosis in macrophages and dendritic cells. However, VACV decreased antigen presentation by 1153 B cells without apparent apoptosis induction, indicating that VACV differentially affects B lymphocytes and other APCs. We show that the key mechanism of VACV inhibition of antigen presentation may be its reduction of antigenic peptide loaded into the cleft of MHC class II molecules. These data indicate that VACV evades the host immune response by impairing critical functions of the APC. PMID:20067538

  11. Trophoblast Major Histocompatibility Complex Class I Expression Is Associated with Immune-Mediated Rejection of Bovine Fetuses Produced by Cloning.

    PubMed

    Rutigliano, Heloisa M; Thomas, Aaron J; Wilhelm, Amanda; Sessions, Benjamin R; Hicks, Brady A; Schlafer, Donald H; White, Kenneth L; Davies, Christopher J

    2016-08-01

    Trophoblast cells from bovine somatic cell nuclear transfer (SCNT) conceptuses express major histocompatibility complex class I (MHC-I) proteins early in gestation, and this may be one cause of the significant first-trimester embryonic mortality observed in these pregnancies. MHC-I homozygous-compatible (n = 9), homozygous-incompatible (n = 8), and heterozygous-incompatible (n = 5) SCNT pregnancies were established. The control group consisted of eight pregnancies produced by artificial insemination. Uterine and placental samples were collected on Day 35 ± 1 of pregnancy, and expression of MHC-I, leukocyte markers, and cytokines were examined by immunohistochemistry. Trophoblast cells from all SCNT pregnancies expressed MHC-I, while trophoblast cells from age-matched control pregnancies were negative for MHC-I expression. Expression of MHC-I antigens by trophoblast cells from SCNT pregnancies was associated with lymphocytic infiltration in the endometrium. Furthermore, MHC-I-incompatible conceptuses, particularly the heterozygous-incompatible ones, induced a more pronounced lymphocytic infiltration than MHC-I-compatible conceptuses. Cells expressing cluster of differentiation (CD) 3, gamma/deltaTCR, and MHC-II were increased in the endometrium of SCNT pregnancies compared to the control group. CD4(+) lymphocytes were increased in MHC-I-incompatible pregnancies compared to MHC-I-compatible and control pregnancies. CD8(+), FOXP3(+), and natural killer cells were increased in MHC-I heterozygous-incompatible SCNT pregnancies compared to homozygous SCNT and control pregnancies. © 2016 by the Society for the Study of Reproduction, Inc.

  12. In Situ Detection of Autoreactive CD4 T Cells in Brain and Heart Using Major Histocompatibility Complex Class II Dextramers

    PubMed Central

    Massilamany, Chandirasegaran; Gangaplara, Arunakumar; Jia, Ting; Elowsky, Christian; Li, Qingsheng; Zhou, You; Reddy, Jay

    2014-01-01

    This report demonstrates the use of major histocompatibility complex (MHC) class II dextramers for detection of autoreactive CD4 T cells in situ in myelin proteolipid protein (PLP) 139-151-induced experimental autoimmune encephalomyelitis (EAE) in SJL mice and cardiac myosin heavy chain-α (Myhc) 334-352-induced experimental autoimmune myocarditis (EAM) in A/J mice. Two sets of cocktails of dextramer reagents were used, where dextramers+ cells were analyzed by laser scanning confocal microscope (LSCM): EAE, IAs/PLP 139-151 dextramers (specific)/anti-CD4 and IAs/Theiler’s murine encephalomyelitis virus (TMEV) 70-86 dextramers (control)/anti-CD4; and EAM, IAk/Myhc 334-352 dextramers/anti-CD4 and IAk/bovine ribonuclease (RNase) 43-56 dextramers (control)/anti-CD4. LSCM analysis of brain sections obtained from EAE mice showed the presence of cells positive for CD4 and PLP 139-151 dextramers, but not TMEV 70-86 dextramers suggesting that the staining obtained with PLP 139-151 dextramers was specific. Likewise, heart sections prepared from EAM mice also revealed the presence of Myhc 334-352, but not RNase 43-56-dextramer+ cells as expected. Further, a comprehensive method has also been devised to quantitatively analyze the frequencies of antigen-specific CD4 T cells in the ‘Z’ serial images. PMID:25145797

  13. Development of an ELA-DRA gene typing method based on pyrosequencing technology.

    PubMed

    Díaz, S; Echeverría, M G; It, V; Posik, D M; Rogberg-Muñoz, A; Pena, N L; Peral-García, P; Vega-Pla, J L; Giovambattista, G

    2008-11-01

    The polymorphism of equine lymphocyte antigen (ELA) class II DRA gene had been detected by polymerase chain reaction-single-strand conformational polymorphism (PCR-SSCP) and reference strand-mediated conformation analysis. These methodologies allowed to identify 11 ELA-DRA exon 2 sequences, three of which are widely distributed among domestic horse breeds. Herein, we describe the development of a pyrosequencing-based method applicable to ELA-DRA typing, by screening samples from eight different horse breeds previously typed by PCR-SSCP. This sequence-based method would be useful in high-throughput genotyping of major histocompatibility complex genes in horses and other animal species, making this system interesting as a rapid screening method for animal genotyping of immune-related genes.

  14. Human Cytomegalovirus Protein US2 Interferes with the Expression of Human HFE, a Nonclassical Class I Major Histocompatibility Complex Molecule That Regulates Iron Homeostasis

    PubMed Central

    Ben-Arieh, Sayeh Vahdati; Zimerman, Baruch; Smorodinsky, Nechama I.; Yaacubovicz, Margalit; Schechter, Chana; Bacik, Igor; Gibbs, Jim; Bennink, Jack R.; Yewdell, Jon W.; Coligan, John E.; Firat, Hüseyin; Lemonnier, François; Ehrlich, Rachel

    2001-01-01

    HFE is a nonclassical class I major histocompatibility complex (MHC) molecule that is mutated in the autosomal recessive iron overload disease hereditary hemochromatosis. There is evidence linking HFE with reduced iron uptake by the transferrin receptor (TfR). Using a panel of HFE and TfR monoclonal antibodies to examine human HFE (hHFE)-expressing cell lines, we demonstrate the expression of stable and fully glycosylated TfR-free and TfR-associated hHFE/β2m complexes. We show that both the stability and assembly of hHFE complexes can be modified by the human cytomegalovirus (HCMV) viral protein US2, known to interfere with the expression of classical class I MHC molecules. HCMV US2, but not US11, targets HFE molecules for degradation by the proteasome. Whether this interference with the regulation of iron metabolism by a viral protein is a means of potentiating viral replication remains to be determined. The reduced expression of classical class I MHC and HFE complexes provides the virus with an efficient tool for altering cellular metabolism and escaping certain immune responses. PMID:11581431

  15. Expression and clinical value of the soluble major histocompatibility complex class I-related chain A molecule in the serum of patients with renal tumors.

    PubMed

    Zhao, Y-K; Jia, C-M; Yuan, G-J; Liu, W; Qiu, Y; Zhu, Q-G

    2015-06-29

    We investigated the expression and clinical value of the soluble major histocompatibility complex class I-related chain A (sMICA) molecule in the serum of patients with renal tumors. Sixty patients diagnosed with renal tumors were enrolled in the experimental group, whereas 20 healthy volunteers served as the control group. The sMICA levels were measured via enzyme-linked immunosorbent assay, and the results were analyzed in combination with data from pathol-ogy examination. The experimental group had a statistically significant higher sMICA level (P < 0.05) than the control group. The sMICA level was higher in patients with malignant tumors than in those with be-nign tumors. We also observed a positive relationship among different tumor-node-metastasis (TNM) pathological stages with more advanced diseases exhibiting higher sMICA levels. As a tumor-associated antigen, MICA has a close relationship with renal tumorigenesis and immune es-cape. Our results indicated that sMICA levels were related to tumor pathol-ogy, TNM stage, and metastasis. Therefore, sMICA might be a potential marker for tumor characteristics, prognosis, and recurrence prediction.

  16. Endoplasmic reticulum aminopeptidase 1 function and its pathogenic role in regulating innate and adaptive immunity in cancer and major histocompatibility complex class I-associated autoimmune diseases.

    PubMed

    Fruci, D; Romania, P; D'Alicandro, V; Locatelli, F

    2014-08-01

    Major histocompatibility complex (MHC) class I molecules present antigenic peptides on the cell surface to alert natural killer (NK) cells and CD8(+) T cells for the presence of abnormal intracellular events, such as virus infection or malignant transformation. The generation of antigenic peptides is a multistep process that ends with the trimming of N-terminal extensions in the endoplasmic reticulum (ER) by aminopeptidases ERAP1 and ERAP2. Recent studies have highlighted the potential role of ERAP1 in reprogramming the immunogenicity of tumor cells in order to elicit innate and adaptive antitumor immune responses, and in conferring susceptibility to autoimmune diseases in predisposed individuals. In this review, we will provide an overview of the current knowledge about the role of ERAP1 in MHC class I antigen processing and how its manipulation may constitute a promising tool for cancer immunotherapy and treatment of MHC class I-associated autoimmune diseases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Molecular Determinants of Peptide Binding to Two Common Rhesus Macaque Major Histocompatibility Complex Class II Molecules

    PubMed Central

    Dzuris, John L.; Sidney, John; Horton, Helen; Correa, Rose; Carter, Donald; Chesnut, Robert W.; Watkins, David I.; Sette, Alessandro

    2001-01-01

    Major histocompatibility complex class II molecules encoded by two common rhesus macaque alleles Mamu-DRB1*0406 and Mamu-DRB*w201 have been purified, and quantitative binding assays have been established. The structural requirements for peptide binding to each molecule were characterized by testing panels of single-substitution analogs of the two previously defined epitopes HIV Env242 (Mamu-DRB1*0406 restricted) and HIV Env482 (Mamu-DRB*w201 restricted). Anchor positions of both macaque DR molecules were spaced following a position 1 (P1), P4, P6, P7, and P9 pattern. The specific binding motif associated with each molecule was distinct, but largely overlapping, and was based on crucial roles of aromatic and/or hydrophobic residues at P1, P6, and P9. Based on these results, a tentative Mamu class II DR supermotif was defined. This pattern is remarkably similar to a previously defined human HLA-DR supermotif. Similarities in binding motifs between human HLA and macaque Mamu-DR molecules were further illustrated by testing a panel of more than 60 different single-substitution analogs of the HLA-DR-restricted HA 307–319 epitope for binding to Mamu-DRB*w201 and HLA-DRB1*0101. The Mamu-DRB1*0406 and -DRB*w201 binding capacity of a set of 311 overlapping peptides spanning the entire simian immunodeficiency virus (SIV) genome was also evaluated. Ten peptides capable of binding both molecules were identified, together with 19 DRB1*0406 and 43 DRB*w201 selective binders. The Mamu-DR supermotif was found to be present in about 75% of the good binders and in 50% of peptides binding with intermediate affinity but only in approximately 25% of the peptides which did not bind either Mamu class II molecule. Finally, using flow cytometric detection of antigen-induced intracellular gamma interferon, we identify a new CD4+ T-lymphocyte epitope encoded within the Rev protein of SIV. PMID:11602736

  18. Engineering chimeric human and mouse major histocompatibility complex (MHC) class I tetramers for the production of T-cell receptor (TCR) mimic antibodies

    PubMed Central

    Bentley, Carol; Yates, Jenna; Salimi, Maryam; Greig, Jenny; Wiblin, Sarah; Hassanali, Tasneem; Banham, Alison H.

    2017-01-01

    Therapeutic monoclonal antibodies targeting cell surface or secreted antigens are among the most effective classes of novel immunotherapies. However, the majority of human proteins and established cancer biomarkers are intracellular. Peptides derived from these intracellular proteins are presented on the cell surface by major histocompatibility complex class I (MHC-I) and can be targeted by a novel class of T-cell receptor mimic (TCRm) antibodies that recognise similar epitopes to T-cell receptors. Humoural immune responses to MHC-I tetramers rarely generate TCRm antibodies and many antibodies recognise the α3 domain of MHC-I and β2 microglobulin (β2m) that are not directly involved in presenting the target peptide. Here we describe the production of functional chimeric human-murine HLA-A2-H2Dd tetramers and modifications that increase their bacterial expression and refolding efficiency. These chimeric tetramers were successfully used to generate TCRm antibodies against two epitopes derived from wild type tumour suppressor p53 (RMPEAAPPV and GLAPPQHLIRV) that have been used in vaccination studies. Immunisation with chimeric tetramers yielded no antibodies recognising the human α3 domain and β2m and generated TCRm antibodies capable of specifically recognising the target peptide/MHC-I complex in fully human tetramers and on the cell surface of peptide pulsed T2 cells. Chimeric tetramers represent novel immunogens for TCRm antibody production and may also improve the yield of tetramers for groups using these reagents to monitor CD8 T-cell immune responses in HLA-A2 transgenic mouse models of immunotherapy. PMID:28448627

  19. A peptide-major histocompatibility complex II chimera favors survival of pancreatic beta-islets grafted in type 1 diabetic mice.

    PubMed

    Casares, Sofia; Lin, Marvin; Zhang, Nan; Teijaro, John R; Stoica, Cristina; McEvoy, Robert; Farber, Donna L; Bona, Constantin; Brumeanu, Teodor D

    2008-06-27

    Transplantation of pancreatic islets showed a tremendous progress over the years as a promising, new therapeutic strategy in patients with type 1 diabetes. However, additional immunosuppressive drug therapy is required to prevent rejection of engrafted islets. The current immunosuppressive therapies showed limited success in maintaining long-term islet survival as required to achieve insulin independence in type 1 diabetes, and they induce severe adverse effects. Herein, we analyzed the effects of a soluble peptide-major histocompatibility complex (MHC) class II chimera aimed at devising an antigen-specific therapy for suppression of anti-islet T cell responses and to improve the survival of pancreatic islets transplants. Pancreatic islets from transgenic mice expressing the hemagglutinin antigen in the beta islets under the rat insulin promoter (RIP-HA) were grafted under the kidney capsule of diabetic, double transgenic mice expressing hemagglutinin in the pancreas and T cells specific for hemagglutinin (RIP-HA, TCR-HA). The recipient double transgenic mice were treated or not with the soluble peptide-MHC II chimera, and the progression of diabetes, graft survival, and T cell responses to the grafted islets were analyzed. The peptide-MHC II chimera protected syngeneic pancreatic islet transplants against the islet-reactive CD4 T cells, and prolonged the survival of transplanted islets. Protection of transplanted islets occurred by polarization of antigen-specific memory CD4 T cells toward a Th2 anti-inflammatory response. The peptide-MHC II chimera approach is an efficient and specific therapeutic approach to suppress anti-islet T cell responses and provides a long survival of pancreatic grafted islets.

  20. Anti-GBM disease after nephrectomy for xanthogranulomatous pyelonephritis in a patient expressing HLA DR15 major histocompatibility antigens: a case report.

    PubMed

    O'Hagan, Emma; Mallett, Tamara; Convery, Mairead; McKeever, Karl

    2015-01-01

    Antiglomerular basement membrane (anti-GBM) antibody disease is uncommon in the pediatric population. There are no cases in the literature describing the development of anti-GBM disease following XGP or nephrectomy. We report the case of a 7-year-old boy with no past history of urological illness, treated with antimicrobials and nephrectomy for diffuse, unilateral xanthogranulomatous pyelonephritis (XGP). Renal function and ultrasound scan of the contralateral kidney postoperatively were normal. Three months later, the child represented in acute renal failure with rapidly progressive glomerulonephritis requiring hemodialysis. Renal biopsy showed severe crescentic glomerulonephritis with 95% of glomeruli demonstrating circumferential cellular crescents. Strong linear IgG staining of the glomerular basement membranes was present, in keeping with anti-GBM disease. Circulating anti-GBM antibodies were positive. Treatment with plasma exchange, methylprednisolone, and cyclophosphamide led to normalization of anti-GBM antibody titers. Frequency of hemodialysis was reduced as renal function improved, and he is currently independent of dialysis with estimated glomerular filtration rate 20.7 mls/min/1.73 m 2 . Case studies in the adult literature have reported the development of a rapidly progressive anti-GBM antibody-induced glomerulonephritis following renal surgery where patients expressed HLA DR2/HLA DR15 major histocompatibility (MHC) antigens. Of note, our patient also expresses the HLA DR15 MHC antigen.

  1. Loss of T Cell Antigen Recognition Arising from Changes in Peptide and Major Histocompatibility Complex Protein Flexibility: Implications for Vaccine Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Insaidoo, Francis K.; Borbulevych, Oleg Y.; Hossain, Moushumi

    Modification of the primary anchor positions of antigenic peptides to improve binding to major histocompatibility complex (MHC) proteins is a commonly used strategy for engineering peptide-based vaccine candidates. However, such peptide modifications do not always improve antigenicity, complicating efforts to design effective vaccines for cancer and infectious disease. Here we investigated the MART-1{sub 27-35} tumor antigen, for which anchor modification (replacement of the position two alanine with leucine) dramatically reduces or ablates antigenicity with a wide range of T cell clones despite significantly improving peptide binding to MHC. We found that anchor modification in the MART-1{sub 27-35} antigen enhances themore » flexibility of both the peptide and the HLA-A*0201 molecule. Although the resulting entropic effects contribute to the improved binding of the peptide to MHC, they also negatively impact T cell receptor binding to the peptide {center_dot} MHC complex. These results help explain how the 'anchor-fixing' strategy fails to improve antigenicity in this case, and more generally, may be relevant for understanding the high specificity characteristic of the T cell repertoire. In addition to impacting vaccine design, modulation of peptide and MHC flexibility through changes to antigenic peptides may present an evolutionary strategy for the escape of pathogens from immune destruction.« less

  2. Recombinant modified vaccinia virus Ankara–simian immunodeficiency virus gag pol elicits cytotoxic T lymphocytes in rhesus monkeys detected by a major histocompatibility complex class I/peptide tetramer

    PubMed Central

    Seth, Aruna; Ourmanov, Ilnour; Kuroda, Marcelo J.; Schmitz, Jörn E.; Carroll, Miles W.; Wyatt, Linda S.; Moss, Bernard; Forman, Meryl A.; Hirsch, Vanessa M.; Letvin, Norman L.

    1998-01-01

    The utility of modified vaccinia virus Ankara (MVA) as a vector for eliciting AIDS virus-specific cytotoxic T lymphocytes (CTL) was explored in the simian immunodeficiency virus (SIV)/rhesus monkey model. After two intramuscular immunizations with recombinant MVA-SIVSM gag pol, the monkeys developed a Gag epitope-specific CTL response readily detected in peripheral blood lymphocytes by using a functional killing assay. Moreover, those immunizations also elicited a population of CD8+ T lymphocytes in the peripheral blood that bound a specific major histocompatibility complex class I/peptide tetramer. These Gag epitope-specific CD8+ T lymphocytes also were demonstrated by using both functional and tetramer-binding assays in lymph nodes of the immunized monkeys. These observations suggest that MVA may prove a useful vector for an HIV-1 vaccine. They also suggest that tetramer staining may be a useful technology for monitoring CTL generation in vaccine trials in nonhuman primates and in humans. PMID:9707609

  3. Major Histocompatibility Complex I and II Expression and Lymphocytic Subtypes in Muscle of Horses with Immune-Mediated Myositis.

    PubMed

    Durward-Akhurst, S A; Finno, C J; Barnes, N; Shivers, J; Guo, L T; Shelton, G D; Valberg, S J

    2016-07-01

    Major histocompatibility complex (MHC) I and II expression is not normally detected on sarcolemma, but is detected with lymphocytic infiltrates in immune-mediated myositis (IMM) of humans and dogs and in dysferlin-deficient muscular dystrophy. To determine if sarcolemmal MHC is expressed in active IMM in horses, if MHC expression is associated with lymphocytic subtype, and if dysferlin is expressed in IMM. Twenty-one IMM horses of Quarter Horse-related breeds, 3 healthy and 6 disease controls (3 pasture myopathy, 3 amylase-resistant polysaccharide storage myopathy [PSSM]). Immunohistochemical staining for MHC I, II, and CD4+, CD8+, CD20+ lymphocytes was performed on archived muscle of IMM and control horses. Scores were given for MHC I, II, and lymphocytic subtypes. Immunofluorescent staining for dysferlin, dystrophin, and a-sarcoglycan was performed. Sarcolemmal MHC I and II expression was detected in 17/21 and 15/21 of IMM horses, respectively, and in specific fibers of PSSM horses, but not healthy or pasture myopathy controls. The CD4+, CD8+, and CD20+ cells were present in 20/21 IMM muscles with CD4+ predominance in 10/21 and CD8+ predominance in 6/21 of IMM horses. Dysferlin, dystrophin, and a-sarcoglycan staining were similar in IMM and control muscles. Deficiencies of dysferlin, dystrophin, and a-sarcoglycan are not associated with IMM. Sarcolemmal MHC I and II expression in a proportion of myofibers of IMM horses in conjunction with lymphocytic infiltration supports an immune-mediated etiology for IMM. The MHC expression also occured in specific myofibers in PSSM horses in the absence of lymphocytic infiltrates. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  4. Availability of endogenous peptides limits expression of an M3a-Ld major histocompatibility complex class I chimera

    PubMed Central

    1994-01-01

    Taking advantage of our understanding of the peptide specificity of the major histocompatibility complex class I-b molecule M3a, we sought to determine why these molecules are poorly represented on the cell surface. To this end we constructed a chimeric molecule with the alpha 1 and alpha 2 domains of M3a and alpha 3 of Ld thereby allowing use of available monoclonal antibodies to quantify surface expression. Transfected, but not control, B10.CAS2 (H-2M3b) cells were lysed readily by M3a-restricted monoclonal cytotoxic T lymphocytes. Thus, the chimera bound, trafficked, and presented endogenous mitochondrial peptides. However, despite high levels of M3a-Ld mRNA, transfectants were negative by surface staining. This finding was consistent with inefficient trafficking to the cell surface. Incubation at 26 degrees C, thought to permit trafficking of unoccupied heavy (H) chains, resulted in detectable cell surface expression of chimeric molecules. Incubation with exogenous peptide at 26 degrees C (but not at 37 degrees C) greatly enhanced expression of M3a-Ld molecules in a dose- dependent manner, suggesting stabilization of unoccupied molecules. Stable association of beta 2-microglobulin with the chimeric H chain was observed in labeled cell lysates only in the presence of exogenous specific peptide, indicating that peptide is required for the formation of a ternary complex. These results indicate that surface expression of M3a-Ld is limited largely by the steady-state availability of endogenous peptides. Since most known M3a-binding peptides are N- formylated, native M3a may normally be expressed at high levels only during infection by intracellular bacteria. PMID:8270862

  5. Molecular and immunogenetic analysis of major histocompatibility haplotypes in Northern Bobwhite enable direct identification of corresponding haplotypes in an endangered subspecies, the Masked Bobwhite

    USGS Publications Warehouse

    Drake, B.M.; Goto, R.M.; Miller, M.M.; Gee, G.F.; Briles, W.E.

    1999-01-01

    The major histocompatibility complex (MHC) is a group of genetic loci coding for haplotypes that have been associated with fitness traits in mammals and birds. Such associations suggest that MHC diversity may be an indicator of overall genetic fitness of endangered or threatened species. The MHC haplotypes of a captive population of 12 families of northern bobwhites (Colinus virginianus) were identified using a combination of immunogenetic and molecular techniques. Alloantisera were produced within families of northern bobwhites and were then tested for differential agglutination of erythrocytes of all members of each family. The pattern of reactions determined from testing these alloantisera identified a single genetic system of alloantigens in the northern bobwhites, resulting in the assignment of a tentative genotype to each individual within the quail families. Restriction fragment patterns of the DNA of each bird were determined using the chicken MHC B-G cDNA probe bg11. The concordance between the restriction fragment patterns and the alloantisera reactions showed that the alloantisera had identified the MHC of the northern bobwhite and supported the tentative genotype assignments, identifying at least 12 northern bobwhite MHC haplotypes.

  6. Bordetella pertussis proteins dominating the major histocompatibility complex class II-presented epitope repertoire in human monocyte-derived dendritic cells.

    PubMed

    Stenger, Rachel M; Meiring, Hugo D; Kuipers, Betsy; Poelen, Martien; van Gaans-van den Brink, Jacqueline A M; Boog, Claire J P; de Jong, Ad P J M; van Els, Cécile A C M

    2014-05-01

    Knowledge of naturally processed Bordetella pertussis-specific T cell epitopes may help to increase our understanding of the basis of cell-mediated immune mechanisms to control this reemerging pathogen. Here, we elucidate for the first time the dominant major histocompatibility complex (MHC) class II-presented B. pertussis CD4(+) T cell epitopes, expressed on human monocyte-derived dendritic cells (MDDC) after the processing of whole bacterial cells by use of a platform of immunoproteomics technology. Pertussis epitopes identified in the context of HLA-DR molecules were derived from two envelope proteins, i.e., putative periplasmic protein (PPP) and putative peptidoglycan-associated lipoprotein (PAL), and from two cytosolic proteins, i.e., 10-kDa chaperonin groES protein (groES) and adenylosuccinate synthetase (ASS). No epitopes were detectable from known virulence factors. CD4(+) T cell responsiveness in healthy adults against peptide pools representing epitope regions or full proteins confirmed the immunogenicity of PAL, PPP, groES, and ASS. Elevated lymphoproliferative activity to PPP, groES, and ASS in subjects within a year after the diagnosis of symptomatic pertussis suggested immunogenic exposure to these proteins during clinical infection. The PAL-, PPP-, groES-, and ASS-specific responses were associated with secretion of functional Th1 (tumor necrosis factor alpha [TNF-α] and gamma interferon [IFN-γ]) and Th2 (interleukin 5 [IL-5] and IL-13) cytokines. Relative paucity in the natural B. pertussis epitope display of MDDC, not dominated by epitopes from known protective antigens, can interfere with the effectiveness of immune recognition of B. pertussis. A more complete understanding of hallmarks in B. pertussis-specific immunity may advance the design of novel immunological assays and prevention strategies.

  7. Major histocompatibility complex class I expression on neurons in subacute sclerosing panencephalitis and experimental subacute measles encephalitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gogate, N.; Yamabe, Toshio; Verma, L.

    1996-04-01

    Lack of major histocompatibility class I antigens on neurons has been implicated as a possible mechanism for viral persistence in the brain since these antigens are required for cytotoxic T-lymphocyte recognition of infected cells. In subacute sclerosing panencephalitis (SSPE), measles virus (MV) persists in neurons, resulting in a fatal chronic infection. MHC class I mRNA expression was examined in formalin-fixed brain tissue from 6 SSPE patients by in situ hybridization. In addition MHC class I protein expression in MV-infected neurons was examined in experimental Subacute Measles Encephalitis (SME) by double immunohistochemistry. MHC class I mRNA expression was found to bemore » upregulated in SSPE tissues studied, and in 5 out of 6 cases the expression was definitively seen on neurons. The percentage of neurons expressing MHC class I mRNA ranged between 20 to 84% in infected areas. There was no correlation between the degree of infection and expression of MHC class I molecules on neurons. Importantly, the number of neurons co-expressing MHC class I and MV antigens was markedly low, varying between 2 to 8%. Similar results were obtained in SME where 20 to 30% of the neurons expressed MHC class I but < 8% co-expressed MHC class I and MV antigens. Perivascular infiltrating cells in the infected regions in SME expressed IFN{gamma} immunoreactivity. The results suggest that MV may not be directly involved in the induction of MHC class I on neurons and that cytokines such as IFN{gamma} may play an important role. Furthermore, the paucity of neurons co-expressing MHC class I and MV antigens in SSPE and SME suggests that such cells are either rapidly cleared by cytotoxic T lymphocytes (CTL), or, alternatively, lack of co-expression of MHC class I on MV infected neurons favors MV persistence in these cells by escaping CTL recognition. 33 refs., 3 figs., 3 tabs.« less

  8. Genes in one megabase of the HLA class I region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, H.; Fan, Wu-Fang; Xu, Hongxia

    1993-11-15

    To define the gene content of the HLA class I region, cDNA selection was applied to three overlapping yeast artificial chromosomes (YACs) that spanned 1 megabase (Mb) of this region of the human major histocompatibility complex. These YACs extended from the region centromeric to HLA-E to the region telomeric to HLA-F. In additions to the recognized class I genes and pseudogenes and the anonymous non-class-I genes described recently by the authors and others, 20 additional anonymous cDNA clones were identified from this 1-Mb region. They also identified a long repetitive DNA element in the region between HLA-B and HLA-E. Homologuesmore » of this outside of the HLA complex. The portion of the HLA class I region represented by these YACs shows an average gene density as high as the class II and class III regions. Thus, the high gene density portion of the HLA complex is extended to more than 3 Mb.« less

  9. Genetic variants are major determinants of CSF antibody levels in multiple sclerosis

    PubMed Central

    Pauwels, Ine; Gustavsen, Marte W.; van Son, Brechtje; Hilven, Kelly; Bos, Steffan D.; Celius, Elisabeth Gulowsen; Berg-Hansen, Pål; Aarseth, Jan; Myhr, Kjell-Morten; D’Alfonso, Sandra; Barizzone, Nadia; Leone, Maurizio A.; Martinelli Boneschi, Filippo; Sorosina, Melissa; Liberatore, Giuseppe; Kockum, Ingrid; Olsson, Tomas; Hillert, Jan; Alfredsson, Lars; Bedri, Sahl Khalid; Hemmer, Bernhard; Buck, Dorothea; Berthele, Achim; Knier, Benjamin; Biberacher, Viola; van Pesch, Vincent; Sindic, Christian; Bang Oturai, Annette; Søndergaard, Helle Bach; Sellebjerg, Finn; Jensen, Poul Erik H.; Comabella, Manuel; Montalban, Xavier; Pérez-Boza, Jennifer; Malhotra, Sunny; Lechner-Scott, Jeannette; Broadley, Simon; Slee, Mark; Taylor, Bruce; Kermode, Allan G.; Gourraud, Pierre-Antoine; Sawcer, Stephen J.; Andreassen, Bettina Kullle; Dubois, Bénédicte; Harbo, Hanne F.

    2015-01-01

    Immunological hallmarks of multiple sclerosis include the production of antibodies in the central nervous system, expressed as presence of oligoclonal bands and/or an increased immunoglobulin G index—the level of immunoglobulin G in the cerebrospinal fluid compared to serum. However, the underlying differences between oligoclonal band-positive and -negative patients with multiple sclerosis and reasons for variability in immunoglobulin G index are not known. To identify genetic factors influencing the variation in the antibody levels in the cerebrospinal fluid in multiple sclerosis, we have performed a genome-wide association screen in patients collected from nine countries for two traits, presence or absence of oligoclonal bands (n = 3026) and immunoglobulin G index levels (n = 938), followed by a replication in 3891 additional patients. We replicate previously suggested association signals for oligoclonal band status in the major histocompatibility complex region for the rs9271640*A-rs6457617*G haplotype, correlated with HLA-DRB1*1501, and rs34083746*G, correlated with HLA-DQA1*0301 (P comparing two haplotypes = 8.88 × 10−16). Furthermore, we identify a novel association signal of rs9807334, near the ELAC1/SMAD4 genes, for oligoclonal band status (P = 8.45 × 10−7). The previously reported association of the immunoglobulin heavy chain locus with immunoglobulin G index reaches strong evidence for association in this data set (P = 3.79 × 10−37). We identify two novel associations in the major histocompatibility complex region with immunoglobulin G index: the rs9271640*A-rs6457617*G haplotype (P = 1.59 × 10−22), shared with oligoclonal band status, and an additional independent effect of rs6457617*G (P = 3.68 × 10−6). Variants identified in this study account for up to 2-fold differences in the odds of being oligoclonal band positive and 7.75% of the variation in immunoglobulin G index. Both traits are associated with clinical features of disease such

  10. Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection

    PubMed Central

    Zhang, Jianzhi; Dyer, Kimberly D.; Rosenberg, Helene F.

    2000-01-01

    The mammalian RNase A superfamily comprises a diverse array of ribonucleolytic proteins that have a variety of biochemical activities and physiological functions. Two rapidly evolving RNases of higher primates are of particular interest as they are major secretory proteins of eosinophilic leukocytes and have been found to possess anti-pathogen activities in vitro. To understand how these RNases acquired this function during evolution and to develop animal models for the study of their functions in vivo, it is necessary to investigate these genes in many species. Here, we report the sequences of 38 functional genes and 23 pseudogenes of the eosinophil-associated RNase (EAR) family from 5 rodent species. Our phylogenetic analysis of these genes showed a clear pattern of evolution by a rapid birth-and-death process and gene sorting, a process characterized by rapid gene duplication and deactivation occurring differentially among lineages. This process ultimately generates distinct or only partially overlapping inventories of the genes, even in closely related species. Positive Darwinian selection also contributed to the diversification of these EAR genes. The striking similarity between the evolutionary patterns of the EAR genes and those of the major histocompatibility complex, immunoglobulin, and T cell receptor genes stands in strong support of the hypothesis that host-defense and generation of diversity are among the primary physiological function of the rodent EARs. The discovery of a large number of divergent EARs suggests the intriguing possibility that these proteins have been specifically tailored to fight against distinct rodent pathogens. PMID:10758160

  11. Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhanam, U.; Ray, A.; Sehgal, P.B.

    1991-09-01

    The aberrant overexpression of interleukin 6 (IL-6) is implicated as an autocrine mechanism in the enhanced proliferation of the neoplastic cell elements in various B- and T-cell malignancies and in some carcinomas and sarcomas; many of these neoplasms have been shown to be associated with a mutated p53 gene. The possibility that wild-type (wt) p53, a nuclear tumor-suppressor protein, but not its transforming mutants might serve to repress IL-6 gene expression was investigated in HeLa cells. The authors transiently cotransfected these cells with constitutive cytomegalovirus (CMV) enhancer/promoter expression plasmids overproducing wt or mutant human or murine p53 and with appropriatemore » chloramphenicol acetyltransferase (CAT) reporter plasmids containing the promoter elements of human IL-6, c-fos, or {beta}-actin genes or of porcine major histocompatibility complex (MHC) class I gene in pN-38 to evaluate the effect of the various p53 species on these promoters. These observations identify transcriptional repression as a property of p53 and suggest that p53 and RB may be involved as transcriptional repressors in modulating IL-6 gene expression during cellular differentiation and oncogenesis.« less

  12. Partitioning of genetic variation between regulatory and coding gene segments: the predominance of software variation in genes encoding introvert proteins.

    PubMed

    Mitchison, A

    1997-01-01

    In considering genetic variation in eukaryotes, a fundamental distinction can be made between variation in regulatory (software) and coding (hardware) gene segments. For quantitative traits the bulk of variation, particularly that near the population mean, appears to reside in regulatory segments. The main exceptions to this rule concern proteins which handle extrinsic substances, here termed extrovert proteins. The immune system includes an unusually large proportion of this exceptional category, but even so its chief source of variation may well be polymorphism in regulatory gene segments. The main evidence for this view emerges from genome scanning for quantitative trait loci (QTL), which in the case of the immune system points to a major contribution of pro-inflammatory cytokine genes. Further support comes from sequencing of major histocompatibility complex (Mhc) class II promoters, where a high level of polymorphism has been detected. These Mhc promoters appear to act, in part at least, by gating the back-signal from T cells into antigen-presenting cells. Both these forms of polymorphism are likely to be sustained by the need for flexibility in the immune response. Future work on promoter polymorphism is likely to benefit from the input from genome informatics.

  13. Prevalence and Penetrance of Major Genes and Polygenes for Colorectal Cancer

    PubMed Central

    Win, Aung Ko; Jenkins, Mark A.; Dowty, James G.; Antoniou, Antonis C.; Lee, Andrew; Giles, Graham G.; Buchanan, Daniel D.; Clendenning, Mark; Rosty, Christophe; Ahnen, Dennis J.; Thibodeau, Stephen N.; Casey, Graham; Gallinger, Steven; Le Marchand, Loïc; Haile, Robert W.; Potter, John D.; Zheng, Yingye; Lindor, Noralane M.; Newcomb, Polly A.; Hopper, John L.; MacInnis, Robert J.

    2016-01-01

    Background While high-risk mutations in identified major susceptibility genes (DNA mismatch repair genes and MUTYH) account for some familial aggregation of colorectal cancer, their population prevalence and the causes of the remaining familial aggregation are not known. Methods We studied the families of 5,744 colorectal cancer cases (probands) recruited from population cancer registries in the USA, Canada and Australia and screened probands for mutations in mismatch repair genes and MUTYH. We conducted modified segregation analyses using the cancer history of first-degree relatives, conditional on the proband’s age at diagnosis. We estimated the prevalence of mutations in the identified genes, the prevalence of and hazard ratio for unidentified major gene mutations, and the variance of the residual polygenic component. Results We estimated that 1 in 279 of the population carry mutations in mismatch repair genes (MLH1= 1 in 1946, MSH2= 1 in 2841, MSH6= 1 in 758, PMS2= 1 in 714), 1 in 45 carry mutations in MUTYH, and 1 in 504 carry mutations associated with an average 31-fold increased risk of colorectal cancer in unidentified major genes. The estimated polygenic variance was reduced by 30–50% after allowing for unidentified major genes and decreased from 3.3 for age <40 years to 0.5 for age ≥70 years (equivalent to sibling relative risks of 5.1 to 1.3, respectively). Conclusion Unidentified major genes might explain one-third to one-half of the missing heritability of colorectal cancer. Impact Our findings could aid gene discovery and development of better colorectal cancer risk prediction models. PMID:27799157

  14. Bordetella pertussis Proteins Dominating the Major Histocompatibility Complex Class II-Presented Epitope Repertoire in Human Monocyte-Derived Dendritic Cells

    PubMed Central

    Stenger, Rachel M.; Meiring, Hugo D.; Kuipers, Betsy; Poelen, Martien; van Gaans-van den Brink, Jacqueline A. M.; Boog, Claire J. P.; de Jong, Ad P. J. M.

    2014-01-01

    Knowledge of naturally processed Bordetella pertussis-specific T cell epitopes may help to increase our understanding of the basis of cell-mediated immune mechanisms to control this reemerging pathogen. Here, we elucidate for the first time the dominant major histocompatibility complex (MHC) class II-presented B. pertussis CD4+ T cell epitopes, expressed on human monocyte-derived dendritic cells (MDDC) after the processing of whole bacterial cells by use of a platform of immunoproteomics technology. Pertussis epitopes identified in the context of HLA-DR molecules were derived from two envelope proteins, i.e., putative periplasmic protein (PPP) and putative peptidoglycan-associated lipoprotein (PAL), and from two cytosolic proteins, i.e., 10-kDa chaperonin groES protein (groES) and adenylosuccinate synthetase (ASS). No epitopes were detectable from known virulence factors. CD4+ T cell responsiveness in healthy adults against peptide pools representing epitope regions or full proteins confirmed the immunogenicity of PAL, PPP, groES, and ASS. Elevated lymphoproliferative activity to PPP, groES, and ASS in subjects within a year after the diagnosis of symptomatic pertussis suggested immunogenic exposure to these proteins during clinical infection. The PAL-, PPP-, groES-, and ASS-specific responses were associated with secretion of functional Th1 (tumor necrosis factor alpha [TNF-α] and gamma interferon [IFN-γ]) and Th2 (interleukin 5 [IL-5] and IL-13) cytokines. Relative paucity in the natural B. pertussis epitope display of MDDC, not dominated by epitopes from known protective antigens, can interfere with the effectiveness of immune recognition of B. pertussis. A more complete understanding of hallmarks in B. pertussis-specific immunity may advance the design of novel immunological assays and prevention strategies. PMID:24599530

  15. Antigenic peptides containing large PEG loops designed to extend out of the HLA-A2 binding site form stable complexes with class I major histocompatibility complex molecules.

    PubMed Central

    Bouvier, M; Wiley, D C

    1996-01-01

    Recognition of peptides bound to class I major histocompatibility complex (MHC) molecules by specific receptors on T cells regulates the development and activity of the cellular immune system. We have designed and synthesized de novo cyclic peptides that incorporate PEG in the ring structure for binding to class I MHC molecules. The large PEG loops are positioned to extend out of the peptide binding site, thus creating steric effects aimed at preventing the recognition of class I MHC complexes by T-cell receptors. Peptides were synthesized and cyclized on polymer support using high molecular weight symmetrical PEG dicarboxylic acids to link the side chains of lysine residues substituted at positions 4 and 8 in the sequence of the HLA-A2-restricted human T-lymphotrophic virus type I Tax peptide. Cyclic peptides promoted the in vitro folding and assembly of HLA-A2 complexes. Thermal denaturation studies using circular dichroism spectroscopy showed that these complexes are as stable as complexes formed with antigenic peptides. Images Fig. 2 Fig. 4 PMID:8643447

  16. Differential expression of isoproterenol-induced salivary polypeptides in two mouse strains that are congenic for the H-2 histocompatibility gene complex.

    PubMed

    López Solís, Remigio O; Weis, Ulrike Kemmerling; Ceballos, Alicia Ramos; Salas, Gustavo Hoecker

    2003-12-01

    Two inbred mouse strains, A/Snell and A.Swiss, which were produced as congenic with regard to the H-2 histocompatibility gene complex, are homozygous for two different groups of isoproterenol-induced salivary polypeptides (IISP). These polypeptides, which have been considered as markers of the hypertrophic growth of the parotid acinar cells, are members of the complex family of salivary proline-rich proteins (PRP) on the basis of both their massive accumulation in the parotid acinar cells in response to chronic isoproterenol, secretory character, high solubility in trichloroacetic acid and metachromatic staining by Coomassie blue. IISP expressed in both mouse strains were identified by unidimensional SDS-polyacrylamide electrophoresis and Coomassie blue staining both in parotid gland homogenates and in whole salivas obtained from mice repeatedly stimulated at 24-h intervals with isoproterenol. Parotid glands from 40 mice (20 A/Snell and 20 A.Swiss) and salivas from 270 mice (200 A/Snell and 70 A.Swiss) were analyzed. One of the congenic strains (A/Snell) expressed five IISP (Mr 65, 61, 51.5, 38, and 37 kDa) and the other strain (A.Swiss) expressed six IISP (Mr 59, 57, 54.5, 46, 36, and 34 kDa). No inter-individual intra-strain variations were observed, thus defining strain-associated patterns of IISP (PRP). Copyright 2003 Wiley-Liss, Inc.

  17. Assessment of biodiversity in Chilean cattle using the distribution of major histocompatibility complex class II BoLA-DRB3 allele.

    PubMed

    Takeshima, S-N; Miyasaka, T; Matsumoto, Y; Xue, G; Diaz, V de la Barra; Rogberg-Muñoz, A; Giovambattista, G; Ortiz, M; Oltra, J; Kanemaki, M; Onuma, M; Aida, Y

    2015-01-01

    Bovine leukocyte antigens (BoLAs) are used extensively as markers for bovine disease and immunological traits. In this study, we estimated BoLA-DRB3 allele frequencies using 888 cattle from 10 groups, including seven cattle breeds and three crossbreeds: 99 Red Angus, 100 Black Angus, 81 Chilean Wagyu, 49 Hereford, 95 Hereford × Angus, 71 Hereford × Jersey, 20 Hereford × Overo Colorado, 113 Holstein, 136 Overo Colorado, and 124 Overo Negro cattle. Forty-six BoLA-DRB3 alleles were identified, and each group had between 12 and 29 different BoLA-DRB3 alleles. Overo Negro had the highest number of alleles (29); this breed is considered in Chile to be an 'Old type' European Holstein Friesian descendant. By contrast, we detected 21 alleles in Holstein cattle, which are considered to be a 'Present type' Holstein Friesian cattle. Chilean cattle groups and four Japanese breeds were compared by neighbor-joining trees and a principal component analysis (PCA). The phylogenetic tree showed that Red Angus and Black Angus cattle were in the same clade, crossbreeds were closely related to their parent breeds, and Holstein cattle from Chile were closely related to Holstein cattle in Japan. Overall, the tree provided a thorough description of breed history. It also showed that the Overo Negro breed was closely related to the Holstein breed, consistent with historical data indicating that Overo Negro is an 'Old type' Holstein Friesian cattle. This allelic information will be important for investigating the relationship between major histocompatibility complex (MHC) and disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Altered Expression of TAP-1 and Major Histocompatibility Complex Class I in Laryngeal Papillomatosis: Correlation of TAP-1 with Disease

    PubMed Central

    Vambutas, Andrea; Bonagura, Vincent R.; Steinberg, Bettie M.

    2000-01-01

    Recurrent respiratory papillomatosis (RRP) is an insidious disease caused by human papillomavirus (HPV) infection. It is characterized by a variable clinical course that can include frequent disease recurrence, significant morbidity, and occasional mortality. The mechanisms responsible for the variability in the clinical course and the persistence of latent HPV infection remain unknown. Effective T-cell-mediated clearance of HPV-infected cells may be defective in patients with RRP, leading to recurrent disease and failure to suppress latent HPV reactivation. This study describes the down-regulation of the transporter associated with antigen presentation (TAP-1) and the major histocompatibility complex (MHC) class I protein expression in laryngeal papilloma tissue biopsies and cell culture of primary explants. There was a statistically significant correlation between reduction of TAP-1 expression in biopsy tissues and rapid recurrence of disease. Patients with RRP had less frequent recurrence if their papillomas expressed TAP-1 at levels close to that of normal tissue, compared with those with very low expression of TAP-1, who had frequent recurrence (32 versus 5 weeks to the next surgical intervention). These findings suggest that HPV may evade immune recognition by down-regulating class I MHC cell surface expression via decreased TAP-1 levels. Expression of TAP-1 could be used for prognostic evaluation of disease severity. Gamma interferon was able to restore class I MHC expression at the surfaces of laryngeal papilloma cells in culture. This up-regulation of class I MHC antigen at the cell surface potentially allows the infected cell to become a target for the immune system again. This finding provides some promise for nonsurgical treatment of laryngeal papillomas. PMID:10618282

  19. Calreticulin is expressed on the cell surface of activated human peripheral blood T lymphocytes in association with major histocompatibility complex class I molecules.

    PubMed

    Arosa, F A; de Jesus, O; Porto, G; Carmo, A M; de Sousa, M

    1999-06-11

    Calreticulin is an endoplasmic reticulum resident molecule known to be involved in the folding and assembly of major histocompatibility complex (MHC) class I molecules. In the present study, expression of calreticulin was analyzed in human peripheral blood T lymphocytes. Pulse-chase experiments in [35S]methionine-labeled T cell blasts showed that calreticulin was associated with several proteins in the endoplasmic reticulum and suggested that it was expressed at the cell surface. Indeed, the 60-kDa calreticulin was labeled by cell surface biotinylation and precipitated from the surface of activated T cells together with a protein with an apparent molecular mass of 46 kDa. Cell surface expression of calreticulin by activated T lymphocytes was further confirmed by immunofluorescence and flow cytometry, studies that showed that both CD8+ and CD4+ T cells expressed calreticulin in the plasma membrane. Low amounts of cell surface calreticulin were detected in resting T lymphocytes. By sequential immunoprecipitation using the conformation independent monoclonal antibody HC-10, we provided evidence that the cell surface 46-kDa protein co-precipitated with calreticulin is unfolded MHC I. These results show for the first time that after T cell activation, significant amounts of calreticulin are expressed on the T cell surface, where they are found in physical association with a pool of beta2-free MHC class I molecules.

  20. Sexual selection for genetic compatibility: the role of the major histocompatibility complex on cryptic female choice in Chinook salmon (Oncorhynchus tshawytscha)

    PubMed Central

    Gessner, C; Nakagawa, S; Zavodna, M; Gemmell, N J

    2017-01-01

    Cryptic female choice (CFC), a form of sexual selection during or post mating, describes processes of differential sperm utilization by females to bias fertilization outcomes towards certain males. In Chinook salmon (Oncorhynchus tshawytscha) the ovarian fluid surrounding the ova of a given female differently enhances the sperm velocity of males. Sperm velocity is a key ejaculate trait that determines fertilization success in externally fertilizing fishes, thus the differential effect on sperm velocity might bias male fertilization outcomes and represent a mechanism of CFC. Once sperm reach the oocyte, CFC could potentially be further facilitated by sperm–egg interactions, which are well understood in externally fertilizing marine invertebrates. Here, we explored the potential genetic basis of both possible mechanisms of CFC by examining whether the genotypic combinations of mates (amino-acid divergence, number of shared alleles) at the major histocompatibility complex (MHC) class I and II explain the variation in sperm velocity and/or male fertilization success that is not explained by sperm velocity, which might indicate MHC-based sperm–egg interactions. We recorded sperm velocity in ovarian fluid, employed paired-male fertilization trials and evaluated the fertilization success of each male using microsatellite-based paternity assignment. We showed that relative sperm velocity was positively correlated with fertilization success, confirming that the differential effect on sperm velocity may be a mechanism of CFC in Chinook salmon. The variation in sperm velocity was independent of MHC class I and II. However, the MHC class II divergence of mates explained fertilization success, indicating that this locus might influence sperm–egg interactions. PMID:28051059

  1. Major histocompatibility complex class I expression impacts on patient survival and type and density of immune cells in biliary tract cancer

    PubMed Central

    Goeppert, Benjamin; Frauenschuh, Lena; Zucknick, Manuela; Roessler, Stephanie; Mehrabi, Arianeb; Hafezi, Mohammadreza; Stenzinger, Albrecht; Warth, Arne; Pathil, Anita; Renner, Marcus; Schirmacher, Peter; Weichert, Wilko

    2015-01-01

    Background: Biliary tract cancers (BTC) are rare malignant tumours with a poor prognosis. Previously, we have presented a detailed characterisation of the inflammatory infiltrate in BTC. Here, we analysed the impact of the expression of major histocompatibility complex class I (MHC I) on patient survival and the quantity, as well as the quality of tumour-infiltrating immune cell types in BTC. Methods: MHC I expression was assessed semi-quantitatively in 334 BTC, including extrahepatic (n=129) and intrahepatic cholangiocarcinomas (n=146), as well as adenocarcinomas of the gallbladder (n=59). In addition, 71 high-grade biliary intraepithelial lesions (BilIN 3) were included. Results were correlated with data on antitumour inflammation and investigated with respect to their association with clinicopathological variables and patient survival. Results: BTC showed a wide spectrum of different MHC I expression patterns ranging from complete negativity in some tumours to strong homogenous expression in others. In BilIN 3, significantly higher MHC I expression levels were seen compared to invasive tumours (P=0.004). Patients with strong tumoural MHC I expression had a significantly higher overall survival probability (median survival benefit: 8 months; P=0.006). MHC I expression strongly correlated with the number of tumour-infiltrating T-lymphocytes (CD4+ and CD8+) and macrophages. Conclusions: Differences of MHC I expression predict patient outcome and show correlations with specific components of the inflammatory infiltrate in BTC. These findings contribute to a better understanding of immune response and immune escape phenomena in cholangiocarcinogenesis. PMID:26461054

  2. Sexual selection for genetic compatibility: the role of the major histocompatibility complex on cryptic female choice in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Gessner, C; Nakagawa, S; Zavodna, M; Gemmell, N J

    2017-05-01

    Cryptic female choice (CFC), a form of sexual selection during or post mating, describes processes of differential sperm utilization by females to bias fertilization outcomes towards certain males. In Chinook salmon (Oncorhynchus tshawytscha) the ovarian fluid surrounding the ova of a given female differently enhances the sperm velocity of males. Sperm velocity is a key ejaculate trait that determines fertilization success in externally fertilizing fishes, thus the differential effect on sperm velocity might bias male fertilization outcomes and represent a mechanism of CFC. Once sperm reach the oocyte, CFC could potentially be further facilitated by sperm-egg interactions, which are well understood in externally fertilizing marine invertebrates. Here, we explored the potential genetic basis of both possible mechanisms of CFC by examining whether the genotypic combinations of mates (amino-acid divergence, number of shared alleles) at the major histocompatibility complex (MHC) class I and II explain the variation in sperm velocity and/or male fertilization success that is not explained by sperm velocity, which might indicate MHC-based sperm-egg interactions. We recorded sperm velocity in ovarian fluid, employed paired-male fertilization trials and evaluated the fertilization success of each male using microsatellite-based paternity assignment. We showed that relative sperm velocity was positively correlated with fertilization success, confirming that the differential effect on sperm velocity may be a mechanism of CFC in Chinook salmon. The variation in sperm velocity was independent of MHC class I and II. However, the MHC class II divergence of mates explained fertilization success, indicating that this locus might influence sperm-egg interactions.

  3. Brucella abortus Inhibits Major Histocompatibility Complex Class II Expression and Antigen Processing through Interleukin-6 Secretion via Toll-Like Receptor 2▿

    PubMed Central

    Barrionuevo, Paula; Cassataro, Juliana; Delpino, M. Victoria; Zwerdling, Astrid; Pasquevich, Karina A.; Samartino, Clara García; Wallach, Jorge C.; Fossati, Carlos A.; Giambartolomei, Guillermo H.

    2008-01-01

    The strategies that allow Brucella abortus to survive inside macrophages for prolonged periods and to avoid the immunological surveillance of major histocompatibility complex class II (MHC-II)-restricted gamma interferon (IFN-γ)-producing CD4+ T lymphocytes are poorly understood. We report here that infection of THP-1 cells with B. abortus inhibited expression of MHC-II molecules and antigen (Ag) processing. Heat-killed B. abortus (HKBA) also induced both these phenomena, indicating the independence of bacterial viability and involvement of a structural component of the bacterium. Accordingly, outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, inhibited both MHC-II expression and Ag processing to the same extent as HKBA. Moreover, a synthetic lipohexapeptide that mimics the structure of the protein lipid moiety also inhibited MHC-II expression, indicating that any Brucella lipoprotein could down-modulate MHC-II expression and Ag processing. Inhibition of MHC-II expression and Ag processing by either HKBA or lipidated Omp19 (L-Omp19) depended on Toll-like receptor 2 and was mediated by interleukin-6. HKBA or L-Omp19 also inhibited MHC-II expression and Ag processing of human monocytes. In addition, exposure to the synthetic lipohexapeptide inhibited Ag-specific T-cell proliferation and IFN-γ production of peripheral blood mononuclear cells from Brucella-infected patients. Together, these results indicate that there is a mechanism by which B. abortus may prevent recognition by T cells to evade host immunity and establish a chronic infection. PMID:17984211

  4. Conditioned taste aversion dependent regulation of amygdala gene expression.

    PubMed

    Panguluri, Siva K; Kuwabara, Nobuyuki; Kang, Yi; Cooper, Nigel; Lundy, Robert F

    2012-02-28

    The present experiments investigated gene expression in the amygdala following contingent taste/LiCl treatment that supports development of conditioned taste aversion (CTA). The use of whole genome chips and stringent data set filtering led to the identification of 168 genes regulated by CTA compared to non-contingent LiCl treatment that does not support CTA learning. Seventy-six of these genes were eligible for network analysis. Such analysis identified "behavior" as the top biological function, which was represented by 15 of the 76 genes. These genes included several neuropeptides, G protein-coupled receptors, ion channels, kinases, and phosphatases. Subsequent qRT-PCR analyses confirmed changes in mRNA expression for 5 of 7 selected genes. We were able to demonstrate directionally consistent changes in protein level for 3 of these genes; insulin 1, oxytocin, and major histocompatibility complex class I-C. Behavioral analyses demonstrated that blockade of central insulin receptors produced a weaker CTA that was less resistant to extinction. Together, these results support the notion that we have identified downstream genes in the amygdala that contribute to CTA learning. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. HLA class II and TNF genes in African Americans from the Southeastern United States: regional differences in allele frequencies.

    PubMed

    Kuffner, Tamara; Whitworth, William; Jairam, Maya; McNicholl, Janet

    2003-06-01

    Knowledge of population major histocompatibility complex gene frequencies is important for construction of organ donor pools and for studies of disease association. Human leukocyte antigen DRB1 (HLA-DRB1), HLA-DQB1, and TNFalpha -308 (G-A) promoter genetic typing was performed in 112 healthy, unrelated African Americans (AAs) from the southeastern United States. Allele frequencies were compared with published frequency data from other AA populations. Our AA population had the highest frequency of HLA- DRB1*09 (6.7%) reported in any AA population. The frequency of the TNF alpha -308A polymorphism was also high (14.4%), when compared with published frequencies in AAs. Significant regional differences in the distribution of most HLA-DRB1 and HLA-DQB1 alleles were observed in all AA populations examined. The AA HLA-DRB1 and -DQB1 frequencies also differed from published Caucasian frequencies. This is the first report describing the distribution of TNF alpha promoter alleles in the Southeastern United States. The high DRB1*09 and TNF alpha -308A allele frequencies of our population most resemble the frequencies of these alleles in certain West African populations. These varying major histocompatibility complex gene frequencies may reflect different regional population structures among AAs in the United States, which may be due to differences in ancestral origins, migration, and racial admixture.

  6. Soluble Major Histocompatibility Complex Class I-Related Chain B Molecules Are Increased and Correlate With Clinical Outcomes During Rhinovirus Infection in Healthy Subjects

    PubMed Central

    Telcian, Aurica G.; Caramori, Gaetano; Laza-Stanca, Vasile; Message, Simon D.; Kebadze, Tatiana; Kon, Onn M.; Groh, Veronika; Papi, Alberto; Johnston, Sebastian L.; Mallia, Patrick; Stanciu, Luminita A.

    2014-01-01

    BACKGROUND: Surface major histocompatibility complex class I-related chain (MIC) A and B molecules are increased by IL-15 and have a role in the activation of natural killer group 2 member D-positive natural killer and CD8 T cells. MICA and MICB also exist in soluble forms (sMICA and sMICB). Rhinoviruses (RVs) are the major cause of asthma exacerbations, and IL-15 levels are decreased in the airways of subjects with asthma. The role of MIC molecules in immune responses in the lung has not been studied. Here, we determine the relationship between MICA and MICB and RV infection in vitro in respiratory epithelial cells and in vivo in healthy subjects and subjects with asthma. METHODS: Surface MICA and MICB, as well as sMICA and sMICB, in respiratory epithelial cells were measured in vitro in response to RV infection and exposure to IL-15. Levels of sMICA and sMICB in serum, sputum, and BAL were measured and correlated with blood and bronchoalveolar immune cells in healthy subjects and subjects with asthma before and during RV infection. RESULTS: RV increased MICA and MICB in vitro in epithelial cells. Exogenous IL-15 upregulated sMICB levels in RV-infected epithelial cells. Levels of sMICB molecules in serum were increased in healthy subjects compared with subjects with stable asthma. Following RV infection, airway levels of sMIC are upregulated, and there are positive correlations between sputum MICB levels and the percentage of bronchoalveolar natural killer cells in healthy subjects but not subjects with asthma. CONCLUSIONS: RV infection induces MIC molecules in respiratory epithelial cells in vitro and in vivo. Induction of MICB molecules is impaired in subjects with asthma, suggesting these molecules may have a role in the antiviral immune response to RV infections. PMID:24556715

  7. Linkage analyses of chromosome 6 loci, including HLA, in familial aggregations of Crohn disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugot, J.P.; Laurent-Puig, P.; Gower-Rousseau, C.

    1994-08-15

    Segregation analyses of familial aggregations of Crohn disease have provided consistent results pointing to the involvement of a predisposing gene with a recessive mode of inheritance. Although extensively investigated, the role played by human leucocyte antigen (HLA) genes in this inflammatory bowel disease remains elusive and the major histocompatibility complex is a candidate region for the mapping of the Crohn disease susceptibility gene. A total of 25 families with multiple cases of Crohn disease was genotyped for HLA DRB1 and for 16 highly polymorphic loci evenly distributed on chromosome 6. The data were subjected to linkage analysis using the lodmore » score method. Neither individual nor combined lod scores for any family and for any locus tested reached values suggesting linkage or genetic heterogeneity. The Crohn disease predisposing locus was excluded from the whole chromosome 6 with lod scores less than -2. It was excluded from the major histocompatibility complex and from 91% of the chromosome 6 genetic map with lod scores less than -4. The major recessive gene involved in genetic predisposition to Crohn disease does not reside on the major histocompatibility complex nor on any locus mapping to chromosome 6. 37 refs., 2 figs., 2 tabs.« less

  8. Genome-Wide Analysis of Gene-Gene and Gene-Environment Interactions Using Closed-Form Wald Tests.

    PubMed

    Yu, Zhaoxia; Demetriou, Michael; Gillen, Daniel L

    2015-09-01

    Despite the successful discovery of hundreds of variants for complex human traits using genome-wide association studies, the degree to which genes and environmental risk factors jointly affect disease risk is largely unknown. One obstacle toward this goal is that the computational effort required for testing gene-gene and gene-environment interactions is enormous. As a result, numerous computationally efficient tests were recently proposed. However, the validity of these methods often relies on unrealistic assumptions such as additive main effects, main effects at only one variable, no linkage disequilibrium between the two single-nucleotide polymorphisms (SNPs) in a pair or gene-environment independence. Here, we derive closed-form and consistent estimates for interaction parameters and propose to use Wald tests for testing interactions. The Wald tests are asymptotically equivalent to the likelihood ratio tests (LRTs), largely considered to be the gold standard tests but generally too computationally demanding for genome-wide interaction analysis. Simulation studies show that the proposed Wald tests have very similar performances with the LRTs but are much more computationally efficient. Applying the proposed tests to a genome-wide study of multiple sclerosis, we identify interactions within the major histocompatibility complex region. In this application, we find that (1) focusing on pairs where both SNPs are marginally significant leads to more significant interactions when compared to focusing on pairs where at least one SNP is marginally significant; and (2) parsimonious parameterization of interaction effects might decrease, rather than increase, statistical power. © 2015 WILEY PERIODICALS, INC.

  9. Global Gene Expression Change Induced by Major Thoracoabdominal Surgery.

    PubMed

    Allen, Casey J; Griswold, Anthony J; Schulman, Carl I; Sleeman, Danny; Levi, Joe U; Livingstone, Alan S; Proctor, Kenneth G

    2017-12-01

    To test the hypothesis that major thoracoabdominal surgery induces gene expression changes associated with adverse outcomes. Widely different traumatic injuries evoke surprisingly similar gene expression profiles, but there is limited information on whether the iatrogenic injury caused by major surgery is associated with similar patterns. With informed consent, blood samples were obtained from 50 patients before and after open transhiatal esophagectomy or pancreaticoduodenectomy. Twelve cases with complicated recoveries (death, infection, venous thromboembolism) were matched with 12 cases with uneventful recoveries. Global gene expression was assayed using human microarray chips. A 2-fold change with a corrected P < 0.05 was considered differentially expressed. In these 24 patients, 522 genes were differentially expressed after surgery; 248 (48%) were upregulated (innate immunity and inflammation) and 274 (52%) were downregulated [adaptive immunity (antigen presentation, T-cell function)]. Hierarchical clustering of the profile reliably predicted pre- and postoperative status. The within-patient change was 3.08 ± 0.91-fold. There was no measurable association with age, malignancy, procedure, surgery length, operative blood loss, or transfusion requirements, but was positively associated with postoperative infection (3.81 ± 0.97 vs 2.79 ± 0.73; P = 0.009) and hospital length of stay (r = 0.583, P = 0.003). Venous thromboembolism and mortality each occurred in one patient, thus no associations were possible. Major surgery induces a quantifiable pattern of gene expression change that is associated with adverse outcome. This could reflect early impaired adaptive immunity and suggests potential therapeutic targets to improve postoperative recovery.

  10. The Major Histocompatibility Complex Class II Transactivator CIITA Inhibits the Persistent Activation of NF-κB by the Human T Cell Lymphotropic Virus Type 1 Tax-1 Oncoprotein

    PubMed Central

    Forlani, Greta; Abdallah, Rawan

    2016-01-01

    ABSTRACT Human T cell lymphotropic virus type 1 (HTLV-1) Tax-1, a key protein in HTLV-1-induced T cell transformation, deregulates diverse cell signaling pathways. Among them, the NF-κB pathway is constitutively activated by Tax-1, which binds to NF-κB proteins and activates the IκB kinase (IKK). Upon phosphorylation-dependent IκB degradation, NF-κB migrates into the nucleus, mediating Tax-1-stimulated gene expression. We show that the transcriptional regulator of major histocompatibility complex class II genes CIITA (class II transactivator), endogenously or ectopically expressed in different cells, inhibits the activation of the canonical NF-κB pathway by Tax-1 and map the region that mediates this effect. CIITA affects the subcellular localization of Tax-1, which is mostly retained in the cytoplasm, and this correlates with impaired migration of RelA into the nucleus. Cytoplasmic and nuclear mutant forms of CIITA reveal that CIITA exploits different strategies to suppress Tax-1-mediated NF-κB activation in both subcellular compartments. CIITA interacts with Tax-1 without preventing Tax-1 binding to both IKKγ and RelA. Nevertheless, CIITA affects Tax-1-induced IKK activity, causing retention of the inactive p50/RelA/IκB complex in the cytoplasm. Nuclear CIITA associates with Tax-1/RelA in nuclear bodies, blocking Tax-1-dependent activation of NF-κB-responsive genes. Thus, CIITA inhibits cytoplasmic and nuclear steps of Tax-1-mediated NF-κB activation. These results, together with our previous finding that CIITA acts as a restriction factor inhibiting Tax-1-promoted HTLV-1 gene expression and replication, indicate that CIITA is a versatile molecule that might also counteract Tax-1 transforming activity. Unveiling the molecular basis of CIITA-mediated inhibition of Tax-1 functions may be important in defining new strategies to control HTLV-1 spreading and oncogenic potential. IMPORTANCE HTLV-1 is the causative agent of human adult T cell leukemia

  11. The Major Histocompatibility Complex Class II Transactivator CIITA Inhibits the Persistent Activation of NF-κB by the Human T Cell Lymphotropic Virus Type 1 Tax-1 Oncoprotein.

    PubMed

    Forlani, Greta; Abdallah, Rawan; Accolla, Roberto S; Tosi, Giovanna

    2016-01-20

    Human T cell lymphotropic virus type 1 (HTLV-1) Tax-1, a key protein in HTLV-1-induced T cell transformation, deregulates diverse cell signaling pathways. Among them, the NF-κB pathway is constitutively activated by Tax-1, which binds to NF-κB proteins and activates the IκB kinase (IKK). Upon phosphorylation-dependent IκB degradation, NF-κB migrates into the nucleus, mediating Tax-1-stimulated gene expression. We show that the transcriptional regulator of major histocompatibility complex class II genes CIITA (class II transactivator), endogenously or ectopically expressed in different cells, inhibits the activation of the canonical NF-κB pathway by Tax-1 and map the region that mediates this effect. CIITA affects the subcellular localization of Tax-1, which is mostly retained in the cytoplasm, and this correlates with impaired migration of RelA into the nucleus. Cytoplasmic and nuclear mutant forms of CIITA reveal that CIITA exploits different strategies to suppress Tax-1-mediated NF-κB activation in both subcellular compartments. CIITA interacts with Tax-1 without preventing Tax-1 binding to both IKKγ and RelA. Nevertheless, CIITA affects Tax-1-induced IKK activity, causing retention of the inactive p50/RelA/IκB complex in the cytoplasm. Nuclear CIITA associates with Tax-1/RelA in nuclear bodies, blocking Tax-1-dependent activation of NF-κB-responsive genes. Thus, CIITA inhibits cytoplasmic and nuclear steps of Tax-1-mediated NF-κB activation. These results, together with our previous finding that CIITA acts as a restriction factor inhibiting Tax-1-promoted HTLV-1 gene expression and replication, indicate that CIITA is a versatile molecule that might also counteract Tax-1 transforming activity. Unveiling the molecular basis of CIITA-mediated inhibition of Tax-1 functions may be important in defining new strategies to control HTLV-1 spreading and oncogenic potential. HTLV-1 is the causative agent of human adult T cell leukemia-lymphoma (ATLL). The viral

  12. Evolution of MHC class I genes in the endangered loggerhead sea turtle (Caretta caretta) revealed by 454 amplicon sequencing.

    PubMed

    Stiebens, Victor A; Merino, Sonia E; Chain, Frédéric J J; Eizaguirre, Christophe

    2013-04-30

    In evolutionary and conservation biology, parasitism is often highlighted as a major selective pressure. To fight against parasites and pathogens, genetic diversity of the immune genes of the major histocompatibility complex (MHC) are particularly important. However, the extensive degree of polymorphism observed in these genes makes it difficult to conduct thorough population screenings. We utilized a genotyping protocol that uses 454 amplicon sequencing to characterize the MHC class I in the endangered loggerhead sea turtle (Caretta caretta) and to investigate their evolution at multiple relevant levels of organization. MHC class I genes revealed signatures of trans-species polymorphism across several reptile species. In the studied loggerhead turtle individuals, it results in the maintenance of two ancient allelic lineages. We also found that individuals carrying an intermediate number of MHC class I alleles are larger than those with either a low or high number of alleles. Multiple modes of evolution seem to maintain MHC diversity in the loggerhead turtles, with relatively high polymorphism for an endangered species.

  13. Detecting site-specific physicochemical selective pressures: applications to the Class I HLA of the human major histocompatibility complex and the SRK of the plant sporophytic self-incompatibility system.

    PubMed

    Sainudiin, Raazesh; Wong, Wendy Shuk Wan; Yogeeswaran, Krithika; Nasrallah, June B; Yang, Ziheng; Nielsen, Rasmus

    2005-03-01

    Models of codon substitution are developed that incorporate physicochemical properties of amino acids. When amino acid sites are inferred to be under positive selection, these models suggest the nature and extent of the physicochemical properties under selection. This is accomplished by first partitioning the codons on the basis of some property of the encoded amino acids. This partition is used to parametrize the rates of property-conserving and property-altering base substitutions at the codon level by means of finite mixtures of Markov models that also account for codon and transition:transversion biases. Here, we apply this method to two positively selected receptors involved in ligand-recognition: the class I alleles of the human major histocompatibility complex (MHC) of known structure and the S-locus receptor kinase (SRK) of the sporophytic self-incompatibility system (SSI) in cruciferous plants (Brassicaceae), whose structure is unknown. Through likelihood ratio tests we demonstrate that at some sites, the positively selected MHC and SRK proteins are under physicochemical selective pressures to alter polarity, volume, polarity and/or volume, and charge to various extents. An empirical Bayes approach is used to identify sites that may be important for ligand recognition in these proteins.

  14. Association between the epidermal growth factor gene and intelligence in major depression patients.

    PubMed

    Tian, Wen-min; Zhang, Ke-ran; Zhang, Juan; Shen, Yan; Xu, Qi

    2010-06-01

    To study the association between the epidermal growth factor (EGF) gene and intelligence in patients with major depression. Intelligence measurement using Wechsler Adult Intelligence Scale (WAIS) was performed on 120 unrelated patients with major depression and 46 control subjects. Blood was collected from all subjects for extraction of genomic DNA. Four single nucleotide polymorphisms (SNPs) in the EGF gene were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI- TOF-MS). Mean scores of both score lang and score task, two subtests in WAIS, differed significantly between major depression patients and controls (P<0.0001). Quantitative trait analysis showed that the genotype of rs2250724 was closely associated with score lang and score task in major depression patients. The associations were still significant after 10 000 permutations. Although preliminary, our results provide evidence for association between the EGF gene and intelligence in patients with major depression. Genetic variation in the EGF gene may increase the susceptibility of major depression.

  15. The genetic origin of minor histocompatibility antigens.

    PubMed

    Roopenian, D C; Christianson, G J; Davis, A P; Zuberi, A R; Mobraaten, L E

    1993-01-01

    The purpose of this study was to elucidate the genetic origin of minor histocompatibility (H) antigens. Toward this end common inbred mouse strains, distinct subspecies, and species of the subgenus Mus were examined for expression of various minor H antigens. These antigens were encoded by the classical minor H loci H-3 and H-4 or by newly identified minor H antigens detected as a consequence of mutation. Both minor H antigens that stimulate MHC class I-restricted cytotoxic T cells (Tc) and antigens that stimulate MHC class II-restricted helper T cells (Th) were monitored. The results suggested that strains of distinct ancestry commonly express identical or cross-reactive antigens. Moreover, a correlation between the lack of expression of minor H antigens and ancestral heritage was observed. To address whether the antigens found on unrelated strains were allelic with the sensitizing minor H antigens or a consequence of antigen cross-reactivity, classical genetic segregation analysis was carried out. Even in distinct subspecies and species, the minor H antigens always mapped to the site of the appropriate minor H locus. Together the results suggest: 1) minor H antigen sequences are evolutionarily stable in that their pace of antigenic change is slow enough to predate subspeciation and speciation; 2) the minor H antigens originated in the inbred strains as a consequence of a rare polymorphism or loss mutation carried in a founder mouse stock that caused the mouse to perceive the wild-type protein as foreign; 3) there is a remarkable lack of antigenic cross-reactivity between the defined minor H antigens and other gene products.

  16. Co-evolution with chicken class I genes.

    PubMed

    Kaufman, Jim

    2015-09-01

    The concept of co-evolution (or co-adaptation) has a long history, but application at molecular levels (e.g., 'supergenes' in genetics) is more recent, with a consensus definition still developing. One interesting example is the chicken major histocompatibility complex (MHC). In contrast to typical mammals that have many class I and class I-like genes, only two classical class I genes, two CD1 genes and some non-classical Rfp-Y genes are known in chicken, and all are found on the microchromosome that bears the MHC. Rarity of recombination between the closely linked and polymorphic genes encoding classical class I and TAPs allows co-evolution, leading to a single dominantly expressed class I molecule in each MHC haplotype, with strong functional consequences in terms of resistance to infectious pathogens. Chicken tapasin is highly polymorphic, but co-evolution with TAP and class I genes remains unclear. T-cell receptors, natural killer (NK) cell receptors, and CD8 co-receptor genes are found on non-MHC chromosomes, with some evidence for co-evolution of surface residues and number of genes along the avian and mammalian lineages. Over even longer periods, co-evolution has been invoked to explain how the adaptive immune system of jawed vertebrates arose from closely linked receptor, ligand, and antigen-processing genes in the primordial MHC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Expression of bovine non-classical major histocompatibility complex class I proteins in mouse P815 and human K562 cells.

    PubMed

    Parasar, Parveen; Wilhelm, Amanda; Rutigliano, Heloisa M; Thomas, Aaron J; Teng, Lihong; Shi, Bi; Davis, William C; Suarez, Carlos E; New, Daniel D; White, Kenneth L; Davies, Christopher J

    2016-08-01

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-classical MHC-I isoforms, we expressed the MHC proteins in murine P815 and human K562 (MHC-I deficient) cells. Following antibiotic selection, stably transfected cell lines were stained with H1A or W6/32 antibodies to detect expression of the MHC-I proteins by flow cytometry. Two non-classical proteins (BoLA-NC1*00501 and BoLA-NC3*00101) were expressed on the cell surface in both cell lines. Surprisingly, the BoLA-NC4*00201 protein was expressed on the cell membrane of human K562 but not mouse P815 cells. Two non-classical proteins (BoLA-NC1*00401, which lacks a transmembrane domain, and BoLA-NC2*00102) did not exhibit cell surface expression. Nevertheless, Western blot analyses demonstrated expression of the MHC-I heavy chain in all transfected cell lines. Ammonium-sulfate precipitation of proteins from culture supernatants showed that BoLA-NC1*00401 was secreted and that all surface expressed proteins where shed from the cell membrane by the transfected cells. Interestingly, the surface expressed MHC-I proteins were present in culture supernatants at a much higher concentration than BoLA-NC1*00401. This comprehensive study shows that bovine non-classical MHC-I proteins BoLA-NC1*00501, BoLA-NC3*00101, and BoLA-NC4*00201 are expressed as surface isoforms with the latter reaching the cell membrane only in K562 cells. Furthermore, it demonstrated that BoLA-NC1*00401 is a secreted isoform and that significant quantities of membrane associated MHC-I proteins can be shed from the cell membrane. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Modalities and future prospects of gene therapy in heart transplantation.

    PubMed

    Vassalli, Giuseppe; Roehrich, Marc-Estienne; Vogt, Pierre; Pedrazzini, Giovanni B; Siclari, Francesco; Moccetti, Tiziano; von Segesser, Ludwig K

    2009-06-01

    Heart transplantation is the treatment of choice for many patients with end-stage heart failure. Its success, however, is limited by organ shortage, side effects of immunosuppressive drugs, and chronic rejection. Gene therapy is conceptually appealing for applications in transplantation, as the donor organ is genetically manipulated ex vivo before transplantation. Localised expression of immunomodulatory genes aims to create a state of immune privilege within the graft, which could eliminate the need for systemic immunosuppression. In this review, recent advances in the development of gene therapy in heart transplantation are discussed. Studies in animal models have demonstrated that genetic modification of the donor heart with immunomodulatory genes attenuates ischaemia-reperfusion injury and rejection. Alternatively, bone marrow-derived cells genetically engineered with donor-type major histocompatibility complex (MHC) class I or II promote donor-specific hyporesponsiveness. Genetic engineering of naïve T cells or dendritic cells may induce regulatory T cells and regulatory dendritic cells. Despite encouraging results in animal models, however, clinical gene therapy trials in heart transplantation have not yet been started. The best vector and gene to be delivered remain to be identified. Pre-clinical studies in non-human primates are needed. Nonetheless, the potential of gene therapy as an adjunct therapy in transplantation is essentially intact.

  19. 42 CFR 413.200 - Payment of independent organ procurement organizations and histocompatibility laboratories.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Payment of independent organ procurement... SKILLED NURSING FACILITIES Payment for End-Stage Renal Disease (ESRD) Services and Organ Procurement Costs § 413.200 Payment of independent organ procurement organizations and histocompatibility laboratories. (a...

  20. A Gene Co-Expression Network in Whole Blood of Schizophrenia Patients Is Independent of Antipsychotic-Use and Enriched for Brain-Expressed Genes

    PubMed Central

    de Jong, Simone; Boks, Marco P. M.; Fuller, Tova F.; Strengman, Eric; Janson, Esther; de Kovel, Carolien G. F.; Ori, Anil P. S.; Vi, Nancy; Mulder, Flip; Blom, Jan Dirk; Glenthøj, Birte; Schubart, Chris D.; Cahn, Wiepke; Kahn, René S.; Horvath, Steve; Ophoff, Roel A.

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network. PMID:22761806

  1. The human TREM gene cluster at 6p21.1 encodes both activating and inhibitory single IgV domain receptors and includes NKp44.

    PubMed

    Allcock, Richard J N; Barrow, Alexander D; Forbes, Simon; Beck, Stephan; Trowsdale, John

    2003-02-01

    We have characterized a cluster of single immunoglobulin variable (IgV) domain receptors centromeric of the major histocompatibility complex (MHC) on human chromosome 6. In addition to triggering receptor expressed on myeloid cells (TREM)-1 and TREM2, the cluster contains NKp44, a triggering receptor whose expression is limited to NK cells. We identified three new related genes and two gene fragments within a cluster of approximately 200 kb. Two of the three new genes lack charged residues in their transmembrane domain tails. Further, one of the genes contains two potential immunotyrosine Inhibitory motifs in its cytoplasmic tail, suggesting that it delivers inhibitory signals. The human and mouse TREM clusters appear to have diverged such that there are unique sequences in each species. Finally, each gene in the TREM cluster was expressed in a different range of cell types.

  2. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.

    PubMed

    Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C

    2014-03-07

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.

  3. A general method for identifying major hybrid male sterility genes in Drosophila.

    PubMed

    Zeng, L W; Singh, R S

    1995-10-01

    The genes responsible for hybrid male sterility in species crosses are usually identified by introgressing chromosome segments, monitored by visible markers, between closely related species by continuous backcrosses. This commonly used method, however, suffers from two problems. First, it relies on the availability of markers to monitor the introgressed regions and so the portion of the genome examined is limited to the marked regions. Secondly, the introgressed regions are usually large and it is impossible to tell if the effects of the introgressed regions are the result of single (or few) major genes or many minor genes (polygenes). Here we introduce a simple and general method for identifying putative major hybrid male sterility genes which is free of these problems. In this method, the actual hybrid male sterility genes (rather than markers), or tightly linked gene complexes with large effects, are selectively introgressed from one species into the background of another species by repeated backcrosses. This is performed by selectively backcrossing heterozygous (for hybrid male sterility gene or genes) females producing fertile and sterile sons in roughly equal proportions to males of either parental species. As no marker gene is required for this procedure, this method can be used with any species pairs that produce unisexual sterility. With the application of this method, a small X chromosome region of Drosophila mauritiana which produces complete hybrid male sterility (aspermic testes) in the background of D. simulans was identified. Recombination analysis reveals that this region contains a second major hybrid male sterility gene linked to the forked locus located at either 62.7 +/- 0.66 map units or at the centromere region of the X chromosome of D. mauritiana.

  4. Herpes B Virus, Macacine Herpesvirus 1, Breaks Simplex Virus Tradition via Major Histocompatibility Complex Class I Expression in Cells from Human and Macaque Hosts

    PubMed Central

    Vasireddi, Mugdha

    2012-01-01

    B virus of the family Herpesviridae is endemic to rhesus macaques but results in 80% fatality in untreated humans who are zoonotically infected. Downregulation of major histocompatibility complex (MHC) class I in order to evade CD8+ T-cell activation is characteristic of most herpesviruses. Here we examined the cell surface presence and total protein expression of MHC class I molecules in B virus-infected human foreskin fibroblast cells and macaque kidney epithelial cells in culture, which are representative of foreign and natural host initial target cells of B virus. Our results show <20% downregulation of surface MHC class I molecules in either type of host cells infected with B virus, which is statistically insignificantly different from that observed in uninfected cells. We also examined the surface expression of MHC class Ib molecules, HLA-E and HLA-G, involved in NK cell inhibition. Our results showed significant upregulation of HLA-E and HLA-G in host cells infected with B virus relative to the amounts observed in other herpesvirus-infected cells. These results suggest that B virus-infected cell surfaces maintain normal levels of MHC class Ia molecules, a finding unique among simplex viruses. This is a unique divergence in immune evasion for B virus, which, unlike human simplex viruses, does not inhibit the transport of peptides for loading onto MHC class Ia molecules because B virus ICP47 lacks a transporter-associated protein binding domain. The fact that MHC class Ib molecules were significantly upregulated has additional implications for host-pathogen interactions. PMID:22973043

  5. Major histocompatibility complex-dependent cytotoxic T lymphocyte repertoire and functional avidity contribute to strain-specific disease susceptibility after murine respiratory syncytial virus infection.

    PubMed

    Jessen, Birthe; Faller, Simone; Krempl, Christine D; Ehl, Stephan

    2011-10-01

    Susceptibility to respiratory syncytial virus (RSV) infection in mice is genetically determined. While RSV causes little pathology in C57BL/6 mice, pulmonary inflammation and weight loss occur in BALB/c mice. Using major histocompatibility complex (MHC)-congenic mice, we observed that the H-2(d) allele can partially transfer disease susceptibility to C57BL/6 mice. This was not explained by altered viral elimination or differences in the magnitude of the overall virus-specific cytotoxic T lymphocyte (CTL) response. However, H-2(d) mice showed a more focused response, with 70% of virus-specific CTL representing Vβ8.2(+) CTL directed against the immunodominant epitope M2-1 82, while in H-2(b) mice only 20% of antiviral CTL were Vβ9(+) CTL specific for the immunodominant epitope M187. The immunodominant H-2(d)-restricted CTL lysed target cells less efficiently than the immunodominant H-2(b) CTL, probably contributing to prolonged CTL stimulation and cytokine-mediated immunopathology. Accordingly, reduction of dominance of the M2-1 82-specific CTL population by introduction of an M187 response in the F1 generation of a C57BL/6N × C57BL/6-H-2(d) mating (C57BL/6-H-2(dxb) mice) attenuated disease. Moreover, disease in H-2(d) mice was less pronounced after infection with an RSV mutant failing to activate M2-1 82-specific CTL or after depletion of Vβ8.2(+) cells. These data illustrate how the MHC-determined diversity and functional avidity of CTL responses contribute to disease susceptibility after viral infection.

  6. T Cell Receptor-Major Histocompatibility Complex Interaction Strength Defines Trafficking and CD103+ Memory Status of CD8 T Cells in the Brain.

    PubMed

    Sanecka, Anna; Yoshida, Nagisa; Kolawole, Elizabeth Motunrayo; Patel, Harshil; Evavold, Brian D; Frickel, Eva-Maria

    2018-01-01

    T cell receptor-major histocompatibility complex (TCR-MHC) affinities span a wide range in a polyclonal T cell response, yet it is undefined how affinity shapes long-term properties of CD8 T cells during chronic infection with persistent antigen. Here, we investigate how the affinity of the TCR-MHC interaction shapes the phenotype of memory CD8 T cells in the chronically Toxoplasma gondii- infected brain. We employed CD8 T cells from three lines of transnuclear (TN) mice that harbor in their endogenous loci different T cell receptors specific for the same Toxoplasma antigenic epitope ROP7. The three TN CD8 T cell clones span a wide range of affinities to MHCI-ROP7. These three CD8 T cell clones have a distinct and fixed hierarchy in terms of effector function in response to the antigen measured as proliferation capacity, trafficking, T cell maintenance, and memory formation. In particular, the T cell clone of lowest affinity does not home to the brain. The two higher affinity T cell clones show differences in establishing resident-like memory populations (CD103 + ) in the brain with the higher affinity clone persisting longer in the host during chronic infection. Transcriptional profiling of naïve and activated ROP7-specific CD8 T cells revealed that Klf2 encoding a transcription factor that is known to be a negative marker for T cell trafficking is upregulated in the activated lowest affinity ROP7 clone. Our data thus suggest that TCR-MHC affinity dictates memory CD8 T cell fate at the site of infection.

  7. Possible roles for products of polymorphic MHC and linked olfactory receptor genes during selection processes in reproduction.

    PubMed

    Ziegler, Andreas; Dohr, Gotrfried; Uchanska-Ziegler, Barbara

    2002-07-01

    Polymorphic genes of the human major histocompatibility complex [MHC; human leukocyte antigen (HLA)] are probably important in determining resistance to parasites and avoidance of inbreeding. We investigated whether HLA-associated sexual selection could also involve HLA-linked olfactory receptor (OR) genes, which might not only participate in olfaction-guided mate choice, but also in selection processes within the testis. The testicular expression status of HLA class I molecules (by immunohistology) and HLA-linked OR genes (by transcriptional analysis) was determined. Various HLA class I heavy chains, but not beta2-microglobulin (beta2m), were expressed, mainly at the spermatocyte I stage. Of 17 HLA-linked OR genes analyzed, eight were found to be transcribed in the testis. They exhibited varying numbers of 5'- or 3'-non-coding exons as well as differential splicing. We suggest that testis-expressed polymorphic HLA and OR proteins are functionally connected and serve the selection of spermatozoa, enabling them to distinguish 'self from 'non-self [the sperm-receptor-selection (SRS) hypothesis].

  8. NF-Y and the immune response: Dissecting the complex regulation of MHC genes.

    PubMed

    Sachini, Nikoleta; Papamatheakis, Joseph

    2017-05-01

    Nuclear Factor Y (NF-Y) was first described as one of the CCAAT binding factors. Although CCAAT motifs were found to be present in various genes, NF-Y attracted a lot of interest early on, due to its role in Major Histocompatibility Complex (MHC) gene regulation. MHC genes are crucial in immune response and show peculiar expression patterns. Among other conserved elements on MHC promoters, an NF-Y binding CCAAT box was found to contribute to MHC transcriptional regulation. NF-Y along with other DNA binding factors assembles in a stereospecific manner to form a multiprotein scaffold, the MHC enhanceosome, which is necessary but not sufficient to drive transcription. Transcriptional activation is achieved by the recruitment of yet another factor, the class II transcriptional activator (CIITA). In this review, we briefly discuss basic findings on MHCII transcription regulation and we highlight NF-Y different modes of function in MHCII gene activation. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori*

    PubMed Central

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-01-01

    Hox genes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hox genes can also function in terminally differentiated tissue of the lepidopteran Bombyx mori. In this species, Antennapedia (Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antp can regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antp in the posterior silk gland induced ectopic expression of major silk protein genes such as sericin-3, fhxh4, and fhxh5. These genes are normally expressed specifically in the middle silk gland as is Antp. Therefore, the evidence strongly suggests that Antp activates these silk protein genes in the middle silk gland. The putative sericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antp directly activates their expression. We also found that the pattern of gene expression was well conserved between B. mori and the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori. We suggest that Hox genes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes. PMID:26814126

  10. Analysis of Major Histocompatibility Complex-Bound HIV Peptides Identified from Various Cell Types Reveals Common Nested Peptides and Novel T Cell Responses

    PubMed Central

    Rucevic, Marijana; Kourjian, Georgio; Boucau, Julie; Blatnik, Renata; Garcia Bertran, Wilfredo; Berberich, Matthew J.; Walker, Bruce D.; Riemer, Angelika B.

    2016-01-01

    ABSTRACT Despite the critical role of epitope presentation for immune recognition, we still lack a comprehensive definition of HIV peptides presented by HIV-infected cells. Here we identified 107 major histocompatibility complex (MHC)-bound HIV peptides directly from the surface of live HIV-transfected 293T cells, HIV-infected B cells, and primary CD4 T cells expressing a variety of HLAs. The majority of peptides were 8 to 12 amino acids (aa) long and mostly derived from Gag and Pol. The analysis of the total MHC-peptidome and of HLA-A02-bound peptides identified new noncanonical HIV peptides of up to 16 aa that could not be predicted by HLA anchor scanning and revealed an heterogeneous surface peptidome. Nested sets of surface HIV peptides included optimal and extended HIV epitopes and peptides partly overlapping or distinct from known epitopes, revealing new immune responses in HIV-infected persons. Surprisingly, in all three cell types, a majority of Gag peptides derived from p15 rather than from the most immunogenic p24. The cytosolic degradation of peptide precursors in corresponding cells confirmed the generation of identified surface-nested peptides. Cytosolic degradation revealed peptides commonly produced in all cell types and displayed by various HLAs, peptides commonly produced in all cell types and selectively displayed by specific HLAs, and peptides produced in only one cell type. Importantly, we identified areas of proteins leading to common presentations of noncanonical peptides by several cell types with distinct HLAs. These peptides may benefit the design of immunogens, focusing T cell responses on relevant markers of HIV infection in the context of HLA diversity. IMPORTANCE The recognition of HIV-infected cells by immune T cells relies on the presentation of HIV-derived peptides by diverse HLA molecules at the surface of cells. The landscape of HIV peptides displayed by HIV-infected cells is not well defined. Considering the diversity of HLA

  11. Recombination and mutation of class II histocompatibility genes in wild mice.

    PubMed

    Wakeland, E K; Darby, B R

    1983-12-01

    We have compared the tryptic peptide fingerprints of the A alpha, A beta, E alpha, and E beta subunits encoded by four wild-derived H-2 complexes expressing A molecules closely related to Ak. The A molecules encoded by these Ak-related mice have A alpha and A beta subunits that differ from A alpha k and A beta k by less than 10% of their tryptic peptides. Comparisons among the four wild-derived A molecules suggested that these contemporary A alpha and A beta alleles arose by sequential mutational events from common ancestor A alpha and A beta alleles. These results suggest that A alpha and A beta may co-evolve as an A beta A alpha gene duplex in wild mice. Tryptic peptide fingerprint comparisons of the E beta gene linked to these Ak-related A beta A alpha gene duplexes indicate that two encode E beta d-like subunits, whereas another encodes an E beta s-like subunit. These results strongly suggest that the A beta A alpha duplex and E beta recombine in wild mouse populations. The significantly different evolutionary patterns exhibited by the class II genes encoding A vs E molecules are discussed.

  12. IMGT/GeneInfo: enhancing V(D)J recombination database accessibility

    PubMed Central

    Baum, Thierry-Pascal; Pasqual, Nicolas; Thuderoz, Florence; Hierle, Vivien; Chaume, Denys; Lefranc, Marie-Paule; Jouvin-Marche, Evelyne; Marche, Patrice-Noël; Demongeot, Jacques

    2004-01-01

    IMGT/GeneInfo is a user-friendly online information system that provides information on data resulting from the complex mechanisms of immunoglobulin (IG) and T cell receptor (TR) V(D)J recombinations. For the first time, it is possible to visualize all the rearrangement parameters on a single page. IMGT/GeneInfo is part of the international ImMunoGeneTics information system® (IMGT), a high-quality integrated knowledge resource specializing in IG, TR, major histocompatibility complex (MHC), and related proteins of the immune system of human and other vertebrate species. The IMGT/GeneInfo system was developed by the TIMC and ICH laboratories (with the collaboration of LIGM), and is the first example of an external system being incorporated into IMGT. In this paper, we report the first part of this work. IMGT/GeneInfo_TR deals with the human and mouse TRA/TRD and TRB loci of the TR. Data handling and visualization are complementary to the current data and tools in IMGT, and will subsequently allow the modelling of V(D)J gene use, and thus, to predict non-standard recombination profiles which may eventually be found in conditions such as leukaemias or lymphomas. Access to IMGT/GeneInfo is free and can be found at http://imgt.cines.fr/GeneInfo. PMID:14681357

  13. Avian influenza rapidly induces antiviral genes in duck lung and intestine

    PubMed Central

    Vanderven, Hillary A.; Petkau, Kristina; Ryan-Jean, Kieran E. E.; Aldridge, Jerry R.; Webster, Robert G.; Magor, Katharine E.

    2012-01-01

    Ducks are the natural reservoir of influenza A and survive infection by most strains. To characterize the duck immune response to influenza, we sought to identify innate immune genes expressed early in an infection. We used suppressive subtractive hybridization (SSH) to construct 3 libraries enriched in differentially expressed genes from lung RNA of a duck infected with highly pathogenic avian influenza virus A/Vietnam/1203/04 (H5N1), or lung and intestine RNA of a duck infected with low pathogenic avian influenza A/mallard/BC/500/05 (H5N2) compared to a mock-infected duck. Sequencing of 1687 clones identified a transcription profile enriched in genes involved in antiviral defense and other cellular processes. Major histocompatibility complex class I (MHC I), interferon induced protein with tricopeptide repeats 5 (IFIT5), and 2′–5′oligoadenylate synthetase-like gene (OASL) were increased more than 1000-fold in relative transcript abundance in duck lung at 1 dpi with highly pathogenic VN1203. These genes were induced much less in lung or intestine following infection with low pathogenic BC500. The expression of these genes following infection suggests that ducks initiate an immediate and robust response to a potentially lethal influenza strain, and a minimal response a low pathogenic strain. PMID:22534314

  14. Gene expression in the liver of rainbow trout, Oncorhynchus mykiss, during the stress response

    USGS Publications Warehouse

    Momoda, T.S.; Schwindt, A.R.; Feist, G.W.; Gerwick, L.; Bayne, C.J.; Schreck, C.B.

    2007-01-01

    To better appreciate the mechanisms underlying the physiology of the stress response, an oligonucleotide microarray and real-time RT-PCR (QRT-PCR) were used to study gene expression in the livers of rainbow trout (Oncorhynchus mykiss). For increased confidence in the discovery of candidate genes responding to stress, we conducted two separate experiments using fish from different year classes. In both experiments, fish exposed to a 3 h stressor were compared to control (unstressed) fish. In the second experiment some additional fish were exposed to only 0.5 h of stress and others were sampled 21 h after experiencing a 3 h stressor. This 21 h post-stress treatment was a means to study gene expression during recovery from stress. The genes we report as differentially expressed are those that responded similarly in both experiments, suggesting that they are robust indicators of stress. Those genes are a major histocompatibility complex class 1 molecule (MHC1), JunB, glucose 6-phosphatase (G6Pase), and nuclear protein 1 (Nupr1). Interestingly, Nupr1 gene expression was still elevated 21 h after stress, which indicates that recovery was incomplete at that time.

  15. Autoantibody Profiles in Collagen Disease Patients with Interstitial Lung Disease (ILD): Antibodies to Major Histocompatibility Complex Class I-Related Chain A (MICA) as Markers of ILD

    PubMed Central

    Furukawa, Hiroshi; Oka, Shomi; Shimada, Kota; Masuo, Kiyoe; Nakajima, Fumiaki; Funano, Shunichi; Tanaka, Yuki; Komiya, Akiko; Fukui, Naoshi; Sawasaki, Tatsuya; Tadokoro, Kenji; Nose, Masato; Tsuchiya, Naoyuki; Tohma, Shigeto

    2015-01-01

    Interstitial lung disease (ILD) is frequently associated with collagen disease. It is then designated as collagen vascular disease-associated ILD (CVD-ILD), and influences patients’ prognosis. The prognosis of acute-onset diffuse ILD (AoDILD) occurring in patients with collagen disease is quite poor. Here, we report our investigation of auto-antibody (Ab) profiles to determine whether they may be useful in diagnosing CVD-ILD or AoDILD in collagen disease. Auto-Ab profiles were analyzed using the Lambda Array Beads Multi-Analyte System, granulocyte immunofluorescence test, Proto-Array Human Protein Microarray, AlphaScreen assay, and glutathione S-transferase capture enzyme-linked immunosorbent assay in 34 patients with rheumatoid arthritis (RA) with or without CVD-ILD and in 15 patients with collagen disease with AoDILD. The average anti-major histocompatibility complex class I-related chain A (MICA) Ab levels were higher in RA patients with CVD-ILD than in those without (P = 0.0013). The ratio of the average anti-MICA Ab level to the average anti-human leukocyte antigen class I Ab level (ie, MICA/Class I) was significantly higher in RA patients with CVD-ILD compared with those without (P = 4.47 × 10−5). To the best of our knowledge, this is the first report of auto-Ab profiles in CVD-ILD. The MICA/Class I ratio could be a better marker for diagnosing CVD-ILD than KL-6 (Krebs von den lungen-6). PMID:26327779

  16. Ovar-DRB1 haplotypes *2001 and *0301 are associated with sheep growth and ewe lifetime prolificacy

    USDA-ARS?s Scientific Manuscript database

    Background: The major histocompatibility complex (MHC) is an organized cluster of tightly linked vertebrate genes with immunological and non-immunological functions. While the important MHC gene DRB1 has been examined in regard to many sheep infectious disease traits, only one study, based on micros...

  17. Presence of strong association of the major histocompatibility complex (MHC) class I allele HLA-A*26:01 with idiopathic hypoparathyroidism.

    PubMed

    Goswami, Ravinder; Singh, Archana; Gupta, Nandita; Rani, Rajni

    2012-09-01

    The pathogenesis of isolated hypoparathyroidism, also referred to as idiopathic hypoparathyroidism (IH), is not clear. There is a paucity of information related to the immunogenetic basis of the disease due to its rarity. A recurrent theme of several autoimmune disorders is aberrant antigen presentation. We investigated for the association of alleles of the human leukocyte antigen (HLA) class I and II loci with IH. A total of 134 patients with IH and 902 healthy controls from the same ethnic background participated in the study. There was a significant increase of HLA class I alleles HLA-A*26:01 [P < 1.71 × 10(-34); odds ratio (OR) = 9.29; 95% confidence interval (CI) = 6.08-14.16] and HLA-B*08:01 (P < 8.19 × 10(-6); OR = 2.59; 95% CI = 1.63-4.04) in patients with IH compared to healthy controls. However, the association of A*26:01 was primary because B*08:01 was in linkage disequilibrium with A*26:01. Although the major histocompatibility complex (MHC) is very polymorphic, several alleles of HLA loci share key residues at anchor positions in the peptide binding pockets such that similar peptides may be presented by different MHC molecules encoded by the same locus. These allelic forms with similar anchoring amino acids have been clustered in supertypes. An analysis of HLA-A locus supertypes A01, A02, A03, and A04 revealed that supertype A01 was significantly increased (P < 9.18 × 10(-9); OR = 2.95) in IH compared to controls. However, this increase in the supertype A01 was contributed by A*26:01 because 68.7% of the A01 samples had A*26:01. Other alleles of the supertype did not show any significant differences. The strong association of HLA-A*26:01 suggests an important role of MHC class I-mediated presentation of autoantigenic peptides to CD8(+) cytotoxic T cells in the pathogenesis of IH. These data provide evidence for the autoimmune etiology of IH akin to other autoimmune disorders like type 1 diabetes and rheumatoid arthritis.

  18. CD4 T Cells and Major Histocompatibility Complex Class II Expression Influence Worm Expulsion and Increased Intestinal Muscle Contraction during Trichinella spiralis Infection

    PubMed Central

    Vallance, Bruce A.; Galeazzi, Francesca; Collins, Stephen M.; Snider, Denis P.

    1999-01-01

    Expulsion of intestinal nematode parasites and the associated increased contraction by intestinal muscle are T cell dependent, since both are attenuated in athymic rodents. The CD4 T-cell subset has been strongly associated with worm expulsion; however, the relationship between these cells, antigen presentation, and worm expulsion is not definitive and the role of these factors in intestinal muscle hypercontractility has not been defined. We infected C57BL/6, athymic, CD4-deficient, CD8α-deficient, and major histocompatibility complex class II (MHC II)-deficient (C2d) mice with Trichinella spiralis larvae. We examined intestinal worm numbers, longitudinal muscle contraction, and MHC II expression. Numerous MHC II-positive cells were identified within the muscularis externa of infected but not uninfected C57BL/6 mice. C57BL/6 and CD8α-deficient mice developed large increases in muscle contraction, expelling the parasite by day 21. Athymic and C2d mice exhibited much smaller increases in muscle contraction and delayed parasite expulsion. CD4-deficient mice exhibited intermediate levels of muscle contraction and delayed parasite expulsion. To further examine the role of MHC II and CD4 T cells, we irradiated C2d mice and reconstituted them with C57BL/6 bone marrow alone or with C57BL/6 CD4 T cells. C57BL/6 bone marrow alone did not affect muscle function or worm expulsion in recipient C2d mice. Partial CD4 T-cell reconstitution was sufficient to restore increased muscle contraction but not worm expulsion. Thus, hematopoietic MHC II expression alone is insufficient for the development of muscle hypercontractility and worm expulsion, but the addition of even small numbers of CD4 T cells was sufficient to induce intestinal muscle pathophysiology. PMID:10531271

  19. Major Histocompatibility Complex-Dependent Cytotoxic T Lymphocyte Repertoire and Functional Avidity Contribute to Strain-Specific Disease Susceptibility after Murine Respiratory Syncytial Virus Infection ▿

    PubMed Central

    Jessen, Birthe; Faller, Simone; Krempl, Christine D.; Ehl, Stephan

    2011-01-01

    Susceptibility to respiratory syncytial virus (RSV) infection in mice is genetically determined. While RSV causes little pathology in C57BL/6 mice, pulmonary inflammation and weight loss occur in BALB/c mice. Using major histocompatibility complex (MHC)-congenic mice, we observed that the H-2d allele can partially transfer disease susceptibility to C57BL/6 mice. This was not explained by altered viral elimination or differences in the magnitude of the overall virus-specific cytotoxic T lymphocyte (CTL) response. However, H-2d mice showed a more focused response, with 70% of virus-specific CTL representing Vβ8.2+ CTL directed against the immunodominant epitope M2-1 82, while in H-2b mice only 20% of antiviral CTL were Vβ9+ CTL specific for the immunodominant epitope M187. The immunodominant H-2d-restricted CTL lysed target cells less efficiently than the immunodominant H-2b CTL, probably contributing to prolonged CTL stimulation and cytokine-mediated immunopathology. Accordingly, reduction of dominance of the M2-1 82-specific CTL population by introduction of an M187 response in the F1 generation of a C57BL/6N × C57BL/6-H-2d mating (C57BL/6-H-2dxb mice) attenuated disease. Moreover, disease in H-2d mice was less pronounced after infection with an RSV mutant failing to activate M2-1 82-specific CTL or after depletion of Vβ8.2+ cells. These data illustrate how the MHC-determined diversity and functional avidity of CTL responses contribute to disease susceptibility after viral infection. PMID:21795345

  20. Genetic recombination as a major cause of mutagenesis in the human globin gene clusters.

    PubMed

    Borg, Joseph; Georgitsi, Marianthi; Aleporou-Marinou, Vassiliki; Kollia, Panagoula; Patrinos, George P

    2009-12-01

    Homologous recombination is a frequent phenomenon in multigene families and as such it occurs several times in both the alpha- and beta-like globin gene families. In numerous occasions, genetic recombination has been previously implicated as a major mechanism that drives mutagenesis in the human globin gene clusters, either in the form of unequal crossover or gene conversion. Unequal crossover results in the increase or decrease of the human globin gene copies, accompanied in the majority of cases with minor phenotypic consequences, while gene conversion contributes either to maintaining sequence homogeneity or generating sequence diversity. The role of genetic recombination, particularly gene conversion in the evolution of the human globin gene families has been discussed elsewhere. Here, we summarize our current knowledge and review existing experimental evidence outlining the role of genetic recombination in the mutagenic process in the human globin gene families.

  1. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    PubMed

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Molecular evolution of the major chemosensory gene families in insects.

    PubMed

    Sánchez-Gracia, A; Vieira, F G; Rozas, J

    2009-09-01

    Chemoreception is a crucial biological process that is essential for the survival of animals. In insects, olfaction allows the organism to recognise volatile cues that allow the detection of food, predators and mates, whereas the sense of taste commonly allows the discrimination of soluble stimulants that elicit feeding behaviours and can also initiate innate sexual and reproductive responses. The most important proteins involved in the recognition of chemical cues comprise moderately sized multigene families. These families include odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), which are involved in peripheral olfactory processing, and the chemoreceptor superfamily formed by the olfactory receptor (OR) and gustatory receptor (GR) families. Here, we review some recent evolutionary genomic studies of chemosensory gene families using the data from fully sequenced insect genomes, especially from the 12 newly available Drosophila genomes. Overall, the results clearly support the birth-and-death model as the major mechanism of evolution in these gene families. Namely, new members arise by tandem gene duplication, progressively diverge in sequence and function, and can eventually be lost from the genome by a deletion or pseudogenisation event. Adaptive changes fostered by environmental shifts are also observed in the evolution of chemosensory families in insects and likely involve reproductive, ecological or behavioural traits. Consequently, the current size of these gene families is mainly a result of random gene gain and loss events. This dynamic process may represent a major source of genetic variation, providing opportunities for FUTURE specific adaptations.

  3. Genome-wide minor histocompatibility matching as related to the risk of graft-versus-host disease.

    PubMed

    Martin, Paul J; Levine, David M; Storer, Barry E; Warren, Edus H; Zheng, Xiuwen; Nelson, Sarah C; Smith, Anajane G; Mortensen, Bo K; Hansen, John A

    2017-02-09

    The risk of acute graft-versus-host disease (GVHD) is higher after allogeneic hematopoietic cell transplantation (HCT) from unrelated donors as compared with related donors. This difference has been explained by increased recipient mismatching for major histocompatibility antigens or minor histocompatibility antigens. In the current study, we used genome-wide arrays to enumerate single nucleotide polymorphisms (SNPs) that produce graft-versus-host (GVH) amino acid coding differences between recipients and donors. We then tested the hypothesis that higher degrees of genome-wide recipient GVH mismatching correlate with higher risks of GVHD after allogeneic HCT. In HLA-genotypically matched sibling recipients, the average recipient mismatching of coding SNPs was 9.35%. Each 1% increase in genome-wide recipient mismatching was associated with an estimated 20% increase in the hazard of grades III-IV GVHD (hazard ratio [HR], 1.20; 95% confidence interval [CI], 1.05-1.37; P = .007) and an estimated 22% increase in the hazard of stage 2-4 acute gut GVHD (HR, 1.22; 95% CI, 1.02-1.45; P = .03). In HLA-A, B, C, DRB1, DQA1, DQB1, DPA1, DPB1-phenotypically matched unrelated recipients, the average recipient mismatching of coding SNPs was 17.3%. The estimated risks of GVHD-related outcomes in HLA-phenotypically matched unrelated recipients were low, relative to the large difference in genome-wide mismatching between the 2 groups. In contrast, the risks of GVHD-related outcomes were higher in HLA-DP GVH-mismatched unrelated recipients than in HLA-matched sibling recipients. Taken together, these results suggest that the increased GVHD risk after unrelated HCT is predominantly an effect of HLA-mismatching. © 2017 by The American Society of Hematology.

  4. Gene Deletions in Mycobacterium bovis BCG Stimulate Increased CD8+ T Cell Responses

    PubMed Central

    Panas, Michael W.; Sixsmith, Jaimie D.; White, KeriAnn; Korioth-Schmitz, Birgit; Shields, Shana T.; Moy, Brian T.; Lee, Sunhee; Schmitz, Joern E.; Jacobs, William R.; Porcelli, Steven A.; Haynes, Barton F.; Letvin, Norman L.

    2014-01-01

    Mycobacteria, the etiological agents of tuberculosis and leprosy, have coevolved with mammals for millions of years and have numerous ways of suppressing their host's immune response. It has been suggested that mycobacteria may contain genes that reduce the host's ability to elicit CD8+ T cell responses. We screened 3,290 mutant Mycobacterium bovis bacillus Calmette Guerin (BCG) strains to identify genes that decrease major histocompatibility complex (MHC) class I presentation of mycobacterium-encoded epitope peptides. Through our analysis, we identified 16 mutant BCG strains that generated increased transgene product-specific CD8+ T cell responses. The genes disrupted in these mutant strains had disparate predicted functions. Reconstruction of strains via targeted deletion of genes identified in the screen recapitulated the enhanced immunogenicity phenotype of the original mutant strains. When we introduced the simian immunodeficiency virus (SIV) gag gene into several of these novel BCG strains, we observed enhanced SIV Gag-specific CD8+ T cell responses in vivo. This study demonstrates that mycobacteria carry numerous genes that act to dampen CD8+ T cell responses and suggests that genetic modification of these genes may generate a novel group of recombinant BCG strains capable of serving as more effective and immunogenic vaccine vectors. PMID:25287928

  5. Gene deletions in Mycobacterium bovis BCG stimulate increased CD8+ T cell responses.

    PubMed

    Panas, Michael W; Sixsmith, Jaimie D; White, KeriAnn; Korioth-Schmitz, Birgit; Shields, Shana T; Moy, Brian T; Lee, Sunhee; Schmitz, Joern E; Jacobs, William R; Porcelli, Steven A; Haynes, Barton F; Letvin, Norman L; Gillard, Geoffrey O

    2014-12-01

    Mycobacteria, the etiological agents of tuberculosis and leprosy, have coevolved with mammals for millions of years and have numerous ways of suppressing their host's immune response. It has been suggested that mycobacteria may contain genes that reduce the host's ability to elicit CD8(+) T cell responses. We screened 3,290 mutant Mycobacterium bovis bacillus Calmette Guerin (BCG) strains to identify genes that decrease major histocompatibility complex (MHC) class I presentation of mycobacterium-encoded epitope peptides. Through our analysis, we identified 16 mutant BCG strains that generated increased transgene product-specific CD8(+) T cell responses. The genes disrupted in these mutant strains had disparate predicted functions. Reconstruction of strains via targeted deletion of genes identified in the screen recapitulated the enhanced immunogenicity phenotype of the original mutant strains. When we introduced the simian immunodeficiency virus (SIV) gag gene into several of these novel BCG strains, we observed enhanced SIV Gag-specific CD8(+) T cell responses in vivo. This study demonstrates that mycobacteria carry numerous genes that act to dampen CD8(+) T cell responses and suggests that genetic modification of these genes may generate a novel group of recombinant BCG strains capable of serving as more effective and immunogenic vaccine vectors. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Expressed MHC class II genes in sea otters (Enhydra lutris) from geographically disparate populations

    USGS Publications Warehouse

    Bowen, Lizabeth; Aldridge, B.M.; Miles, A. Keith; Stott, J.L.

    2006-01-01

    The major histocompatibility complex (MHC) is central to maintaining the immunologic vigor of individuals and populations. Classical MHC class II genes were targeted for partial sequencing in sea otters (Enhydra lutris) from populations in California, Washington, and Alaska. Sequences derived from sea otter peripheral blood leukocyte mRNAs were similar to those classified as DQA, DQB, DRA, and DRB in other species. Comparisons of the derived amino acid compositions supported the classification of these as functional molecules from at least one DQA, DQB, and DRA locus and at least two DRB loci. While limited in scope, phylogenetic analysis of the DRB peptide‐binding region suggested the possible existence of distinct clades demarcated by geographic region. These preliminary findings support the need for additional MHC gene sequencing and expansion to a comprehensive study targeting additional otters.

  7. Development and evaluation of near-isogenic lines for major blast resistance gene(s) in Basmati rice.

    PubMed

    Khanna, Apurva; Sharma, Vinay; Ellur, Ranjith K; Shikari, Asif B; Gopala Krishnan, S; Singh, U D; Prakash, G; Sharma, T R; Rathour, Rajeev; Variar, Mukund; Prashanthi, S K; Nagarajan, M; Vinod, K K; Bhowmick, Prolay K; Singh, N K; Prabhu, K V; Singh, B D; Singh, Ashok K

    2015-07-01

    A set of NILs carrying major blast resistance genes in a Basmati rice variety has been developed. Also, the efficacy of pyramids over monogenic NILs against rice blast pathogen Magnaporthe oryzae has been demonstrated. Productivity and quality of Basmati rice is severely affected by rice blast disease. Major genes and QTLs conferring resistance to blast have been reported only in non-Basmati rice germplasm. Here, we report incorporation of seven blast resistance genes from the donor lines DHMASQ164-2a (Pi54, Pi1, Pita), IRBLz5-CA (Pi2), IRBLb-B (Pib), IRBL5-M (Pi5) and IRBL9-W (Pi9) into the genetic background of an elite Basmati rice variety Pusa Basmati 1 (PB1). A total of 36 near-isogenic lines (NILs) comprising of 14 monogenic, 16 two-gene pyramids and six three-gene pyramids were developed through marker-assisted backcross breeding (MABB). Foreground, recombinant and background selection was used to identify the plants with target gene(s), minimize the linkage drag and increase the recurrent parent genome (RPG) recovery (93.5-98.6 %), respectively, in the NILs. Comparative analysis performed using 50,051 SNPs and 500 SSR markers revealed that the SNPs provided better insight into the RPG recovery. Most of the monogenic NILs showed comparable performance in yield and quality, concomitantly, Pusa1637-18-7-6-20 (Pi9), was significantly superior in yield and stable across four different environments as compared to recurrent parent (RP) PB1. Further, among the pyramids, Pusa1930-12-6 (Pi2+Pi5) showed significantly higher yield and Pusa1633-7-8-53-6-8 (Pi54+Pi1+Pita) was superior in cooking quality as compared to RP PB1. The NILs carrying gene Pi9 were found to be the most effective against the concoction of virulent races predominant in the hotspot locations for blast disease. Conversely, when analyzed under artificial inoculation, three-gene pyramids expressed enhanced resistance as compared to the two-gene and monogenic NILs.

  8. Analysis of the HLA population data (AHPD) submitted to the 15th International Histocompatibility/Immunogenetics Workshop by using the Gene[rate] computer tools accommodating ambiguous data (AHPD project report).

    PubMed

    Nunes, J M; Riccio, M E; Buhler, S; Di, D; Currat, M; Ries, F; Almada, A J; Benhamamouch, S; Benitez, O; Canossi, A; Fadhlaoui-Zid, K; Fischer, G; Kervaire, B; Loiseau, P; de Oliveira, D C M; Papasteriades, C; Piancatelli, D; Rahal, M; Richard, L; Romero, M; Rousseau, J; Spiroski, M; Sulcebe, G; Middleton, D; Tiercy, J-M; Sanchez-Mazas, A

    2010-07-01

    During the 15th International Histocompatibility and Immunogenetics Workshop (IHIWS), 14 human leukocyte antigen (HLA) laboratories participated in the Analysis of HLA Population Data (AHPD) project where 18 new population samples were analyzed statistically and compared with data available from previous workshops. To that aim, an original methodology was developed and used (i) to estimate frequencies by taking into account ambiguous genotypic data, (ii) to test for Hardy-Weinberg equilibrium (HWE) by using a nested likelihood ratio test involving a parameter accounting for HWE deviations, (iii) to test for selective neutrality by using a resampling algorithm, and (iv) to provide explicit graphical representations including allele frequencies and basic statistics for each series of data. A total of 66 data series (1-7 loci per population) were analyzed with this standard approach. Frequency estimates were compliant with HWE in all but one population of mixed stem cell donors. Neutrality testing confirmed the observation of heterozygote excess at all HLA loci, although a significant deviation was established in only a few cases. Population comparisons showed that HLA genetic patterns were mostly shaped by geographic and/or linguistic differentiations in Africa and Europe, but not in America where both genetic drift in isolated populations and gene flow in admixed populations led to a more complex genetic structure. Overall, a fruitful collaboration between HLA typing laboratories and population geneticists allowed finding useful solutions to the problem of estimating gene frequencies and testing basic population diversity statistics on highly complex HLA data (high numbers of alleles and ambiguities), with promising applications in either anthropological, epidemiological, or transplantation studies.

  9. Major genes and QTL influencing wool production and quality: a review.

    PubMed

    Purvis, Ian William; Franklin, Ian Robert

    2005-01-01

    The opportunity exists to utilise our knowledge of major genes that influence the economically important traits in wool sheep. Genes with Mendelian inheritance have been identified for many important traits in wool sheep. Of particular importance are genes influencing pigmentation, wool quality and the keratin proteins, the latter of which are important for the morphology of the wool fibre. Gene mapping studies have identified some chromosomal regions associated with variation in wool quality and production traits. The challenge now is to build on this knowledge base in a cost-effective way to deliver molecular tools that facilitate enhanced genetic improvement programs for wool sheep.

  10. Modified Vaccinia Virus Ankara-Infected Dendritic Cells Present CD4+ T-Cell Epitopes by Endogenous Major Histocompatibility Complex Class II Presentation Pathways

    PubMed Central

    Thiele, Frank; Tao, Sha; Zhang, Yi; Muschaweckh, Andreas; Zollmann, Tina; Protzer, Ulrike; Abele, Rubert

    2014-01-01

    ABSTRACT CD4+ T lymphocytes play a central role in the immune system and mediate their function after recognition of their respective antigens presented on major histocompatibility complex II (MHCII) molecules on antigen-presenting cells (APCs). Conventionally, phagocytosed antigens are loaded on MHCII for stimulation of CD4+ T cells. Certain epitopes, however, can be processed directly from intracellular antigens and are presented on MHCII (endogenous MHCII presentation). Here we characterized the MHCII antigen presentation pathways that are possibly involved in the immune response upon vaccination with modified vaccinia virus Ankara (MVA), a promising live viral vaccine vector. We established CD4+ T-cell lines specific for MVA-derived epitopes as tools for in vitro analysis of MHCII antigen processing and presentation in MVA-infected APCs. We provide evidence that infected APCs are able to directly transfer endogenous viral proteins into the MHCII pathway to efficiently activate CD4+ T cells. By using knockout mice and chemical inhibitory compounds, we further elucidated the molecular basis, showing that among the various subcellular pathways investigated, proteasomes and autophagy are key players in the endogenous MHCII presentation during MVA infection. Interestingly, although proteasomal processing plays an important role, neither TAP nor LAMP-2 was found to be involved in the peptide transport. Defining the molecular mechanism of MHCII presentation during MVA infection provides a basis for improving MVA-based vaccination strategies by aiming for enhanced CD4+ T-cell activation by directing antigens into the responsible pathways. IMPORTANCE This work contributes significantly to our understanding of the immunogenic properties of pathogens by deciphering antigen processing pathways contributing to efficient activation of antigen-specific CD4+ T cells. We identified autophagosome formation, proteasomal activity, and lysosomal integrity as being crucial for

  11. Modeling alternative binding registers of a minimal immunogenic peptide on two class II major histocompatibility complex (MHC II) molecules predicts polarized T-cell receptor (TCR) contact positions.

    PubMed

    Murray, J S; Fois, S D S; Schountz, T; Ford, S R; Tawde, M D; Brown, J C; Siahaan, T J

    2002-03-01

    Several major histocompatibility complex class II (MHC II) complexes with known minimal immunogenic peptides have now been solved by X-ray crystallography. Specificity pockets within the MHC II binding groove provide distinct peptide contacts that influence peptide conformation and define the binding register within different allelic MHC II molecules. Altering peptide ligands with respect to the residues that contact the T-cell receptor (TCR) can drastically change the nature of the ensuing immune response. Here, we provide an example of how MHC II (I-A) molecules may indirectly effect TCR contacts with a peptide and drive functionally distinct immune responses. We modeled the same immunogenic 12-amino acid peptide into the binding grooves of two allelic MHC II molecules linked to distinct cytokine responses against the peptide. Surprisingly, the favored conformation of the peptide in each molecule was distinct with respect to the exposure of the N- or C-terminus of the peptide above the MHC II binding groove. T-cell clones derived from each allelic MHC II genotype were found to be allele-restricted with respect to the recognition of these N- vs. C-terminal residues on the bound peptide. Taken together, these data suggest that MHC II alleles may influence T-cell functions by restricting TCR access to specific residues of the I-A-bound peptide. Thus, these data are of significance to diseases that display genetic linkage to specific MHC II alleles, e.g. type 1 diabetes and rheumatoid arthritis.

  12. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Landis, E.D.; Purcell, M.K.; Thorgaard, G.H.; Wheeler, P.A.; Hansen, J.D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in nai??ve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  13. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Landis, Eric D.; Purcell, Maureen K.; Thorgaard, Gary H.; Wheeler , Paul A.; Hansen, John D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in naïve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  14. Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes

    USGS Publications Warehouse

    Jarvi, S.I.; Goto, R.M.; Gee, G.F.; Briles, W.E.; Miller, M.M.

    1999-01-01

    We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbgl and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of '-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.

  15. Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes.

    PubMed

    Jarvi, S I; Goto, R M; Gee, G F; Briles, W E; Miller, M M

    1999-01-01

    We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbg1 and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of alpha-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.

  16. Histocompatibility assessment in the chicken colonies of the RIR-Y8/NU, YL, WL-G, and BL-E closed for 28-48 years.

    PubMed

    Valdez, Marcos B; Kinoshita, Keiji; Mizutani, Makoto; Fujiwara, Akira; Yazawa, Hajime; Yamagata, Takahiro; Shimada, Kiyoshi; Namikawa, Takao

    2009-04-01

    Histocompatibility was assessed in the RIR-Y8/NU, BL-E, YL, and WL-G chicken closed colonies by hemagglutination test using anti-red blood cell (RBC) antibodies (HT), skin transplantation test (STT), and formation of isohemagglutinins (FIHs) during STT. The YL individuals all showed the survival of skingrafts for more than 17 days with no FIHs in STT and no RBC antigenic variations in HT, indicating a histocompatible nature together with high homogeneity at serological loci. The BL-E as well as WL-G closed colonies were also found to be histocompatible in the STT with no FIHs, although the HT showed heterogeneities at serological locus/loci other than the B and C blood group loci which have significant effects on histocompatibility or FIHs in chicken. In the RIR-Y8/NU closed colonies, one individual in 6 reciprocal combinations of the STT showed early skingraft rejection with positive FIHs caused by different B locus alleles, and the HT suggested relatively high heterogeneities at the other serological loci too. The closed colonies of YL, BL-E, and WL-G will be useful avian materials for transplantation or related experiments, but RIR-Y8/NU needs further pedigree selection for serological homogeneity.

  17. Misfolding of major histocompatibility complex class I molecules in activated T cells allows cis-interactions with receptors and signaling molecules and is associated with tyrosine phosphorylation.

    PubMed

    Santos, Susana G; Powis, Simon J; Arosa, Fernando A

    2004-12-17

    Knowledge of the origin and biochemical status of beta(2)-microglobulin-free or misfolded major histocompatibility complex (MHC)-I molecules is essential for understanding their pleiotropic properties. Here we show that in normal human T cells, misfolding of MHC-I molecules is turned on upon activation and cell division and is proportional to the level of proliferation. Immunoprecipitation showed that a number of proteins are associated with MHC-I heavy chains at the surface of activated T cells, including the CD8alphabeta receptor and the chaperone tandem calreticulin/ERp57, associations that rely upon the existence of a pool of HC-10-reactive molecules. Biochemical analysis showed that misfolded MHC-I molecules present at the cell surface are fully glycosylated mature molecules. Importantly, misfolded MHC-I molecules are tyrosine phosphorylated and are associated with kinase activity. In vitro kinase assays followed by reprecipitation indicated that tyrosine phosphorylation of the class I heavy chain is probably mediated by a Src tyrosine kinase because Lck was found associated with HC-10 immunocomplexes. Finally, we show that inhibition of tyrosine phosphorylation by using the Src-family tyrosine kinase inhibitor PP2 resulted in enhanced release of MHC-I heavy chains from the cell surface of activated T cells and a slight down-regulation of cell surface W6/32-reactive molecules. This study provides new insights into the biology of MHC-I molecules and suggests that tyrosine phosphorylation may be involved in the regulation of MHC-I misfolding and expression.

  18. Hepatocyte‐induced CD4+ T cell alloresponse is associated with major histocompatibility complex class II up‐regulation on hepatocytes and suppressible by regulatory T cells

    PubMed Central

    DeTemple, Daphne E.; Oldhafer, Felix; Falk, Christine S.; Chen‐Wacker, Chen; Figueiredo, Constanca; Kleine, Moritz; Ramackers, Wolf; Timrott, Kai; Lehner, Frank; Klempnauer, Juergen; Bock, Michael

    2018-01-01

    Hepatocyte transplantation is a promising therapeutic approach for various liver diseases. Despite the liver's tolerogenic potential, early immune‐mediated loss of transplanted cells is observed, and longterm acceptance has not been achieved yet. Patients deemed tolerant after liver transplantation presented an increased frequency of regulatory T cells (Tregs), which therefore also might enable reduction of posttransplant cell loss and enhance longterm allograft acceptance. We hence characterized hepatocyte‐induced immune reactions and evaluated the immunomodulatory potential of Tregs applying mixed lymphocyte cultures and mixed lymphocyte hepatocyte cultures. These were set up using peripheral blood mononuclear cells and primary human hepatocytes, respectively. Polyclonally expanded CD4+CD25highCD127low Tregs were added to cocultures in single‐/trans‐well setups with/without supplementation of anti‐interferon γ (IFNγ) antibodies. Hepatocyte‐induced alloresponses were then analyzed by multicolor flow cytometry. Measurements indicated that T cell response upon stimulation was associated with IFNγ‐induced major histocompatibility complex (MHC) class II up‐regulation on hepatocytes and mediated by CD4+ T cells. An indirect route of antigen presentation could be ruled out by use of fragmented hepatocytes and culture supernatants of hepatocytes. Allospecific proliferation was accompanied by inflammatory cytokine secretion. CD8+ T cells showed early up‐regulation of CD69 despite lack of cell proliferation in the course of coculture. Supplementation of Tregs effectively abrogated hepatocyte‐induced alloresponses and was primarily cell contact dependent. In conclusion, human hepatocytes induce a CD4+ T cell alloresponse in vitro, which is associated with MHC class II up‐regulation on hepatocytes and is susceptible to suppression by Tregs. Liver Transplantation 24 407–419 2018 AASLD. PMID:29365365

  19. Decoding genes with coexpression networks and metabolomics - 'majority report by precogs'.

    PubMed

    Saito, Kazuki; Hirai, Masami Y; Yonekura-Sakakibara, Keiko

    2008-01-01

    Following the sequencing of whole genomes of model plants, high-throughput decoding of gene function is a major challenge in modern plant biology. In view of remarkable technical advances in transcriptomics and metabolomics, integrated analysis of these 'omics' by data-mining informatics is an excellent tool for prediction and identification of gene function, particularly for genes involved in complicated metabolic pathways. The availability of Arabidopsis public transcriptome datasets containing data of >1000 microarrays reinforces the potential for prediction of gene function by transcriptome coexpression analysis. Here, we review the strategy of combining transcriptome and metabolome as a powerful technology for studying the functional genomics of model plants and also crop and medicinal plants.

  20. Histocompatibility Typing for the Prediction of Susceptibility to Infectious Disease.

    DTIC Science & Technology

    1980-06-01

    w6/A2, B27 , w4, Cwl Sib B A2, A28 87, 818 (w6) blank A28, B7, w6/A2, 818, w6 12 5.2 HLA -DR typing. HLA -DR (B cell) typing will begin in June after...BACKGROUND 3 D. RESEARCH DESIGN AND PLAN 5 E. RESULTS 6 1. Development of Guidelines and Questionnaire- 6 Computer Form 2. Development of an HLA ...Histocompatibility Testing 7 Serology Laboratory 2.1 Establishment of HLA -A,B,C,DR Typing Trays 7 2.2 Establishment of the Two-Color Fluorescence 9 Method of B

  1. Molecular characterization of 5S ribosomal RNA genes and transcripts in the protozoan parasite Leishmania major.

    PubMed

    Moreno-Campos, Rodrigo; Florencio-Martínez, Luis E; Nepomuceno-Mejía, Tomás; Rojas-Sánchez, Saúl; Vélez-Ramírez, Daniel E; Padilla-Mejía, Norma E; Figueroa-Angulo, Elisa; Manning-Cela, Rebeca; Martínez-Calvillo, Santiago

    2016-12-01

    Eukaryotic 5S rRNA, synthesized by RNA polymerase III (Pol III), is an essential component of the large ribosomal subunit. Most organisms contain hundreds of 5S rRNA genes organized into tandem arrays. However, the genome of the protozoan parasite Leishmania major contains only 11 copies of the 5S rRNA gene, which are interspersed and associated with other Pol III-transcribed genes. Here we report that, in general, the number and order of the 5S rRNA genes is conserved between different species of Leishmania. While in most organisms 5S rRNA genes are normally associated with the nucleolus, combined fluorescent in situ hybridization and indirect immunofluorescence experiments showed that 5S rRNA genes are mainly located at the nuclear periphery in L. major. Similarly, the tandemly repeated 5S rRNA genes in Trypanosoma cruzi are dispersed throughout the nucleus. In contrast, 5S rRNA transcripts in L. major were localized within the nucleolus, and scattered throughout the cytoplasm, where mature ribosomes are located. Unlike other rRNA species, stable antisense RNA complementary to 5S rRNA is not detected in L. major.

  2. Evolution by selection, recombination, and gene duplication in MHC class I genes of two Rhacophoridae species

    PubMed Central

    2013-01-01

    Background Comparison of major histocompatibility complex (MHC) genes across vertebrate species can reveal molecular mechanisms underlying the evolution of adaptive immunity-related proteins. As the first terrestrial tetrapods, amphibians deserve special attention because of their exposure to probably increased spectrum of microorganisms compared with ancestral aquatic fishes. Knowledge regarding the evolutionary patterns and mechanisms associated with amphibian MHC genes remains limited. The goal of the present study was to isolate MHC class I genes from two Rhacophoridae species (Rhacophorus omeimontis and Polypedates megacephalus) and examine their evolution. Results We identified 27 MHC class I alleles spanning the region from exon 2 to 4 in 38 tree frogs. The available evidence suggests that these 27 sequences all belong to classical MHC class I (MHC Ia) genes. Although several anuran species only display one MHC class Ia locus, at least two or three loci were observed in P. megacephalus and R. omeimontis, indicating that the number of MHC class Ia loci varies among anuran species. Recombination events, which mainly involve the entire exons, played an important role in shaping the genetic diversity of the 27 MHC class Ia alleles. In addition, signals of positive selection were found in Rhacophoridae MHC class Ia genes. Amino acid sites strongly suggested by program to be under positive selection basically accorded with the putative antigen binding sites deduced from crystal structure of human HLA. Phylogenetic relationships among MHC class I alleles revealed the presence of trans-species polymorphisms. Conclusions In the two Rhacophoridae species (1) there are two or three MHC class Ia loci; (2) recombination mainly occurs between the entire exons of MHC class Ia genes; (3) balancing selection, gene duplication and recombination all contribute to the diversity of MHC class Ia genes. These findings broaden our knowledge on the evolution of amphibian MHC systems

  3. Meta-analysis of human gene expression in response to Mycobacterium tuberculosis infection reveals potential therapeutic targets.

    PubMed

    Wang, Zhang; Arat, Seda; Magid-Slav, Michal; Brown, James R

    2018-01-10

    With the global emergence of multi-drug resistant strains of Mycobacterium tuberculosis, new strategies to treat tuberculosis are urgently needed such as therapeutics targeting potential human host factors. Here we performed a statistical meta-analysis of human gene expression in response to both latent and active pulmonary tuberculosis infections from nine published datasets. We found 1655 genes that were significantly differentially expressed during active tuberculosis infection. In contrast, no gene was significant for latent tuberculosis. Pathway enrichment analysis identified 90 significant canonical human pathways, including several pathways more commonly related to non-infectious diseases such as the LRRK2 pathway in Parkinson's disease, and PD-1/PD-L1 signaling pathway important for new immuno-oncology therapies. The analysis of human genome-wide association studies datasets revealed tuberculosis-associated genetic variants proximal to several genes in major histocompatibility complex for antigen presentation. We propose several new targets and drug-repurposing opportunities including intravenous immunoglobulin, ion-channel blockers and cancer immuno-therapeutics for development as combination therapeutics with anti-mycobacterial agents. Our meta-analysis provides novel insights into host genes and pathways important for tuberculosis and brings forth potential drug repurposing opportunities for host-directed therapies.

  4. Digital gene expression analysis of the zebra finch genome

    PubMed Central

    2010-01-01

    Background In order to understand patterns of adaptation and molecular evolution it is important to quantify both variation in gene expression and nucleotide sequence divergence. Gene expression profiling in non-model organisms has recently been facilitated by the advent of massively parallel sequencing technology. Here we investigate tissue specific gene expression patterns in the zebra finch (Taeniopygia guttata) with special emphasis on the genes of the major histocompatibility complex (MHC). Results Almost 2 million 454-sequencing reads from cDNA of six different tissues were assembled and analysed. A total of 11,793 zebra finch transcripts were represented in this EST data, indicating a transcriptome coverage of about 65%. There was a positive correlation between the tissue specificity of gene expression and non-synonymous to synonymous nucleotide substitution ratio of genes, suggesting that genes with a specialised function are evolving at a higher rate (or with less constraint) than genes with a more general function. In line with this, there was also a negative correlation between overall expression levels and expression specificity of contigs. We found evidence for expression of 10 different genes related to the MHC. MHC genes showed relatively tissue specific expression levels and were in general primarily expressed in spleen. Several MHC genes, including MHC class I also showed expression in brain. Furthermore, for all genes with highest levels of expression in spleen there was an overrepresentation of several gene ontology terms related to immune function. Conclusions Our study highlights the usefulness of next-generation sequence data for quantifying gene expression in the genome as a whole as well as in specific candidate genes. Overall, the data show predicted patterns of gene expression profiles and molecular evolution in the zebra finch genome. Expression of MHC genes in particular, corresponds well with expression patterns in other vertebrates

  5. Characterization of class II alpha genes and DLA-D region allelic associations in the dog.

    PubMed

    Sarmiento, U M; Storb, R F

    1988-10-01

    Human major histocompatibility complex (HLA) cDNA probes were used to analyze the restriction fragment length polymorphism (RFLP) of the alpha genes of the DLA-D region in dogs. Genomic DNA from peripheral blood leucocytes of 23 unrelated DLA-D homozygous dogs representing nine DLA-D types (defined by mixed leucocyte reaction) was digested with restriction enzymes (BamHI, EcoRI, Hind III, Pvu II, Taq I, Rsa I, Msp I, Pst I and Bgl II), separated by agarose gel electrophoresis and transferred onto Biotrace membrane. The Southern blots were successively hybridized with radiolabelled HLA cDNA probes corresponding to DQ, DP, DZ and DR alpha genes. Clear evidence was obtained for the canine homologues of DQ and DR alpha genes with simple bi- or tri-allelic polymorphism respectively. Evidence for a single, nonpolymorphic DP alpha gene was also obtained. However, the presence of a DZ alpha gene could not be clearly demonstrated in canine genomic DNA. This report extends our previous RFLP analysis documenting polymorphism of DLA class II beta genes in the same panel of homozygous typing cell dogs, and provides the basis for DLA-D genotyping at a population level. This study also characterizes the RFLP-defined preferential allelic associations across the DLA-D region in nine different homozygous typing cell specificities.

  6. Hepatocyte-induced CD4+ T cell alloresponse is associated with major histocompatibility complex class II up-regulation on hepatocytes and suppressible by regulatory T cells.

    PubMed

    DeTemple, Daphne E; Oldhafer, Felix; Falk, Christine S; Chen-Wacker, Chen; Figueiredo, Constanca; Kleine, Moritz; Ramackers, Wolf; Timrott, Kai; Lehner, Frank; Klempnauer, Juergen; Bock, Michael; Vondran, Florian W R

    2018-03-01

    Hepatocyte transplantation is a promising therapeutic approach for various liver diseases. Despite the liver's tolerogenic potential, early immune-mediated loss of transplanted cells is observed, and longterm acceptance has not been achieved yet. Patients deemed tolerant after liver transplantation presented an increased frequency of regulatory T cells (Tregs), which therefore also might enable reduction of posttransplant cell loss and enhance longterm allograft acceptance. We hence characterized hepatocyte-induced immune reactions and evaluated the immunomodulatory potential of Tregs applying mixed lymphocyte cultures and mixed lymphocyte hepatocyte cultures. These were set up using peripheral blood mononuclear cells and primary human hepatocytes, respectively. Polyclonally expanded CD4 + CD25 high CD127 low Tregs were added to cocultures in single-/trans-well setups with/without supplementation of anti-interferon γ (IFNγ) antibodies. Hepatocyte-induced alloresponses were then analyzed by multicolor flow cytometry. Measurements indicated that T cell response upon stimulation was associated with IFNγ-induced major histocompatibility complex (MHC) class II up-regulation on hepatocytes and mediated by CD4 + T cells. An indirect route of antigen presentation could be ruled out by use of fragmented hepatocytes and culture supernatants of hepatocytes. Allospecific proliferation was accompanied by inflammatory cytokine secretion. CD8 + T cells showed early up-regulation of CD69 despite lack of cell proliferation in the course of coculture. Supplementation of Tregs effectively abrogated hepatocyte-induced alloresponses and was primarily cell contact dependent. In conclusion, human hepatocytes induce a CD4 + T cell alloresponse in vitro, which is associated with MHC class II up-regulation on hepatocytes and is susceptible to suppression by Tregs. Liver Transplantation 24 407-419 2018 AASLD. © 2018 The Authors. Liver Transplantation published by Wiley Periodicals, Inc

  7. Lineage-Specific Evolutionary Histories and Regulation of Major Starch Metabolism Genes during Banana Ripening

    PubMed Central

    Jourda, Cyril; Cardi, Céline; Gibert, Olivier; Giraldo Toro, Andrès; Ricci, Julien; Mbéguié-A-Mbéguié, Didier; Yahiaoui, Nabila

    2016-01-01

    Starch is the most widespread and abundant storage carbohydrate in plants. It is also a major feature of cultivated bananas as it accumulates to large amounts during banana fruit development before almost complete conversion to soluble sugars during ripening. Little is known about the structure of major gene families involved in banana starch metabolism and their evolution compared to other species. To identify genes involved in banana starch metabolism and investigate their evolutionary history, we analyzed six gene families playing a crucial role in plant starch biosynthesis and degradation: the ADP-glucose pyrophosphorylases (AGPases), starch synthases (SS), starch branching enzymes (SBE), debranching enzymes (DBE), α-amylases (AMY) and β-amylases (BAM). Using comparative genomics and phylogenetic approaches, these genes were classified into families and sub-families and orthology relationships with functional genes in Eudicots and in grasses were identified. In addition to known ancestral duplications shaping starch metabolism gene families, independent evolution in banana and grasses also occurred through lineage-specific whole genome duplications for specific sub-families of AGPase, SS, SBE, and BAM genes; and through gene-scale duplications for AMY genes. In particular, banana lineage duplications yielded a set of AGPase, SBE and BAM genes that were highly or specifically expressed in banana fruits. Gene expression analysis highlighted a complex transcriptional reprogramming of starch metabolism genes during ripening of banana fruits. A differential regulation of expression between banana gene duplicates was identified for SBE and BAM genes, suggesting that part of starch metabolism regulation in the fruit evolved in the banana lineage. PMID:27994606

  8. DNA methylation in a Scottish family multiply affected by bipolar disorder and major depressive disorder.

    PubMed

    Walker, Rosie May; Christoforou, Andrea Nikie; McCartney, Daniel L; Morris, Stewart W; Kennedy, Nicholas A; Morten, Peter; Anderson, Susan Maguire; Torrance, Helen Scott; Macdonald, Alix; Sussmann, Jessika Elizabeth; Whalley, Heather Clare; Blackwood, Douglas H R; McIntosh, Andrew Mark; Porteous, David John; Evans, Kathryn Louise

    2016-01-01

    Bipolar disorder (BD) is a severe, familial psychiatric condition. Progress in understanding the aetiology of BD has been hampered by substantial phenotypic and genetic heterogeneity. We sought to mitigate these confounders by studying a multi-generational family multiply affected by BD and major depressive disorder (MDD), who carry an illness-linked haplotype on chromosome 4p. Within a family, aetiological heterogeneity is likely to be reduced, thus conferring greater power to detect illness-related changes. As accumulating evidence suggests that altered DNA methylation confers risk for BD and MDD, we compared genome-wide methylation between (i) affected carriers of the linked haplotype (ALH) and married-in controls (MIs), (ii) well unaffected haplotype carriers (ULH) and MI, (iii) ALH and ULH and (iv) all haplotype carriers (LH) and MI. Nominally significant differences in DNA methylation were observed in all comparisons, with differences withstanding correction for multiple testing when the ALH or LH group was compared to the MIs. In both comparisons, we observed increased methylation at a locus in FANCI, which was accompanied by increased FANCI expression in the ALH group. FANCI is part of the Fanconi anaemia complementation (FANC) gene family, which are mutated in Fanconi anaemia and participate in DNA repair. Interestingly, several FANC genes have been implicated in psychiatric disorders. Regional analyses of methylation differences identified loci implicated in psychiatric illness by genome-wide association studies, including CACNB2 and the major histocompatibility complex. Gene ontology analysis revealed enrichment for methylation differences in neurologically relevant genes. Our results highlight altered DNA methylation as a potential mechanism by which the linked haplotype might confer risk for mood disorders. Differences in the phenotypic outcome of haplotype carriers might, in part, arise from additional changes in DNA methylation that converge on

  9. An ontology for major histocompatibility restriction.

    PubMed

    Vita, Randi; Overton, James A; Seymour, Emily; Sidney, John; Kaufman, Jim; Tallmadge, Rebecca L; Ellis, Shirley; Hammond, John; Butcher, Geoff W; Sette, Alessandro; Peters, Bjoern

    2016-01-01

    MHC molecules are a highly diverse family of proteins that play a key role in cellular immune recognition. Over time, different techniques and terminologies have been developed to identify the specific type(s) of MHC molecule involved in a specific immune recognition context. No consistent nomenclature exists across different vertebrate species. To correctly represent MHC related data in The Immune Epitope Database (IEDB), we built upon a previously established MHC ontology and created an ontology to represent MHC molecules as they relate to immunological experiments. This ontology models MHC protein chains from 16 species, deals with different approaches used to identify MHC, such as direct sequencing verses serotyping, relates engineered MHC molecules to naturally occurring ones, connects genetic loci, alleles, protein chains and multi-chain proteins, and establishes evidence codes for MHC restriction. Where available, this work is based on existing ontologies from the OBO foundry. Overall, representing MHC molecules provides a challenging and practically important test case for ontology building, and could serve as an example of how to integrate other ontology building efforts into web resources.

  10. HLA is unlikely to be a major component of risk in familial inflammatory bowl disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, C.G.; Naom, I.S.; Hodgson, S.V.

    1994-09-01

    Inflammatory bowel disease (IBD) is a chronic inflammation of the bowel which is confined to the colon in ulcerative colitis (UC) or may affect any part of the gastrointestinal tract in Crohn`s disease (CD). The cause of IBD is unknown, but a genetic component is suggested by a 10-fold increase in risk to first degree relatives, and a higher concordance of disease in MZ versus DZ twins. Distinct associations of HLA DR2 with UC and DR1/DQw5 with CD have been reported. We are searching for susceptibility genes in IBD by linkage analysis in a panel of 43 families with 3more » or more living affected members, which includes 12 families with CD, 17 with UC and 14 {open_quotes}mixed{close_quotes} families with UC and CD. In view of the reported HLA associations in IBD, we have analyzed 5 microsatellite markers from the major histocompatibility complex for linkage to IBD using both parametric and nonparametric methods. LOD scores were calculated for 4 different genetic models, including both dominant and recessive inheritance, and haplotype sharing was analyzed in affected siblings. LOD scores for the MHC locus were negative in the full data set, and in the 3 classes of family (UC,CD,mixed). Haplotype sharing in affected sibs was very close to that expected if no linkage was present. We conclude that genes from the HLA region are unlikely to be a major component of risk in familial IBD. Linkage analysis of genes which cause chronic colitis when disrupted in transgenic mice is in progress.« less

  11. Effect of Dactylogyrus catlaius (Jain 1961) infection in Labeo rohita (Hamilton 1822): innate immune responses and expression profile of some immune related genes.

    PubMed

    Dash, Pujarini; Kar, Banya; Mishra, Arpita; Sahoo, P K

    2014-03-01

    The monogenean ectoparasite, Dactylogyrus sp. is a major pathogen in freshwater aquaculture. The immune responses in parasitized fish were analyzed by quantitation of innate immune factors (natural agglutinin level, haemolysin titre, antiprotease, lysozyme and myeloperoxidase activities) in serum and immune-relevant gene expression in gill and anterior kidney. The antiprotease activity and natural agglutinin level were found to be significantly higher and lysozyme activity was significantly lower in parasitized fish. Most of the genes viz., beta2-microglobulin (beta2M), major histocompatibility complex I (MHCI), MHCII, tumor necrosis factor alpha (TNFalpha) and toll-like receptor 22 (TLR22) in gill samples were significantly down-regulated in the experimental group. In the anterior kidney, the expression of superoxide dismutase and interleukin 1beta (IL1beta) were significantly up-regulated whereas a significant down regulation of MHCII and TNFalpha was also observed. The down-regulation of most of the genes viz, MHCI, beta2M, MHCII, TLR22 and TNFalpha in infected gills indicated a well evolved mechanism in this parasite to escape the host immune response. The modulation of innate and adaptive immunity by this parasite can be further explored to understand host susceptibility.

  12. The role of charge and multiple faces of the CD8 alpha/alpha homodimer in binding to major histocompatibility complex class I molecules: support for a bivalent model.

    PubMed

    Giblin, P A; Leahy, D J; Mennone, J; Kavathas, P B

    1994-03-01

    The CD8 dimer interacts with the alpha 3 domain of major histocompatibility complex class I molecules through two immunoglobulin variable-like domains. In this study a crystal structure-informed mutational analysis has been performed to identify amino acids in the CD8 alpha/alpha homodimer that are likely to be involved in binding to class I. Several key residues are situated on the top face of the dimer within loops analogous to the complementarity-determining regions (CDRs) of immunoglobulin. In addition, other important amino acids are located in the A and B beta-strands on the sides of the dimer. The potential involvement of amino acids on both the top and the side faces of the molecule is consistent with a bivalent model for the interaction between a single CD8 alpha/alpha homodimer and two class I molecules and may have important implications for signal transduction in class I-expressing cells. This study also demonstrates a role for the positive surface potential of CD8 in class I binding and complements previous work demonstrating the importance of a negatively charged loop on the alpha 3 domain of class I for CD8 alpha/alpha-class I interaction. We propose a model whereby residues located on the CDR-like loops of the CD8 homodimer interact with the alpha 3 domain of MHC class I while amino acids on the side of the molecule containing the A and B beta-strands contact the alpha 2 domain of class I.

  13. Utilization of a major brown rust resistance gene in sugarcane breeding

    USDA-ARS?s Scientific Manuscript database

    Brown rust, caused by Puccinia melanocephala has had devastating effects on sugarcane (Saccharum spp.) breeding programs and on commercial production. The discovery of Bru1, a major gene conferring resistance to brown rust represented a substantial breakthrough and markers for the detection of Bru1 ...

  14. Improvement in adenoviral gene transfer efficiency after preincubation at +37 degrees C in vitro and in vivo.

    PubMed

    Kossila, Maija; Jauhiainen, Suvi; Laukkanen, Mikko O; Lehtolainen, Pauliina; Jääskeläinen, Maiju; Turunen, Päivi; Loimas, Sami; Wahlfors, Jarmo; Ylä-Herttuala, Seppo

    2002-01-01

    Adenovirus is a widely used vector in gene transfer experiments because it produces high transduction efficiency in vitro and in vivo by means of the coxsackie-adenovirus receptor (CAR) and major histocompatibility complex (MHC) class I alpha-2 domain. Adenoviral gene transfer efficiency has been reported to correlate with cellular CAR expression. We report here a simple method to increase adenoviral gene transfer efficiency in cells that do not express high levels of CAR: preincubation of adenovirus for 30-40 minutes at +37 degrees C significantly increased the transduction efficiency in vitro in CHO and BALB/3T3 cells, in which CAR is expressed at very low levels. Increased transduction efficiency of preincubated adenovirus was also detected in vivo in rat brain tissue. In addition, we found that adenoviruses were rapidly inactivated in human serum in a complement-independent manner, whereas fetal bovine serum (FBS) had hardly any effects on the viral infectivity. We conclude that preincubation of adenoviral vectors at +37 degrees C may substantially increase gene transfer efficiency in applications in which target cells do not express high levels of CAR.

  15. Identification and Characterization of Multiple Spidroin 1 Genes Encoding Major Ampullate Silk Proteins in Nephila clavipes

    PubMed Central

    Gaines, William A.; Marcotte, William R.

    2010-01-01

    Spider dragline silk is primarily composed of proteins called major ampullate spidroins (MaSp) that consist of a large repeat array flanked by non-repetitive N- and C-terminal domains. Until recently, there has been little evidence for more than one gene encoding each of the two major spidroin silk proteins, MaSp1 and MaSp2. Here, we report the deduced N-terminal domain sequences for two distinct MaSp1 genes from Nephila clavipes (MaSp1A and MaSp1B) and for MaSp2. All three MaSp genes are co-expressed in the major ampullate gland. A search of the GenBank database also revealed two distinct MaSp1 C-terminal domain sequences. Sequencing confirmed that both MaSp1 genes are present in all seven Nephila clavipes spiders examined. The presence of nucleotide polymorphisms in these genes confirmed that MaSp1A and MaSp1B are distinct genetic loci and not merely alleles of the same gene. We have experimentally determined the transcription start sites for all three MaSp genes and established preliminary pairing between the two MaSp1 N- and C-terminal domains. Phylogenetic analysis of these new sequences and other published MaSp N- and C-terminal domain sequences illustrated that duplications of MaSp genes may be widespread among spider species. PMID:18828837

  16. HFE gene: Structure, function, mutations, and associated iron abnormalities.

    PubMed

    Barton, James C; Edwards, Corwin Q; Acton, Ronald T

    2015-12-15

    The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Association study of NDST3 gene for schizophrenia, bipolar disorder, major depressive disorder in the Han Chinese population.

    PubMed

    Wang, Lin; Chen, Jianhua; Li, Zhiqiang; Sun, Weiming; Chen, Boyu; Li, Sining; Li, Weidong; Lu, Dajiang; Wang, Yonggang; Shi, Yongyong

    2018-01-01

    The NDST3 gene at 4q26 was a functional candidate gene for mental disorders. Recently, a novel genome-wide significant risk locus at chromosome 4q26 was identified and the top single nucleotide polymorphism rs11098403 in the vicinity of NDST3 gene was reported to confer risk of schizophrenia in Caucasian. Nevertheless, association between NDST3 gene polymorphisms and schizophrenia, bipolar disorder, or major depressive disorders has not been well studied in the Han Chinese population. To further investigate whether NDST3 is a risk gene for these mental disorders, we genotyped and analyzed eight tag SNPs (rs11098403, rs10857057, rs2389521, rs4833564, rs6837896, rs7689157, rs3817274, rs609512) covering NDST3 gene in 1,248 schizophrenia cases, 1,056 major depression cases, 1,344 bipolar disorder cases, and 1,248 controls of Chinese origin. However, there was no significant difference in allelic or genotypic frequency observed between each case group and healthy controls. Accordingly, our study does not support that the NDST3 gene plays a major role in schizophrenia, bipolar disorder, and major depressive disorder in the Han Chinese population. © 2017 Wiley Periodicals, Inc.

  18. The evolution of highly variable immunity genes across a passerine bird radiation.

    PubMed

    O'Connor, E A; Strandh, M; Hasselquist, D; Nilsson, J-Å; Westerdahl, H

    2016-02-01

    To survive, individuals must be able to recognize and eliminate pathogens. The genes of the major histocompatibility complex (MHC) play an essential role in this process in vertebrates as their diversity affects the repertoire of pathogens that can be recognized by the immune system. Emerging evidence suggests that birds within the parvorder Passerida possess an exceptionally high number of MHC genes. However, this has yet to be directly investigated using a consistent framework, and the question of how this MHC diversity has evolved has not been addressed. We used next-generation sequencing to investigate how MHC class I gene copy number and sequence diversity varies across the Passerida radiation using twelve species chosen to represent the phylogenetic range of this group. Additionally, we performed phylogenetic analyses on this data to identify, for the first time, the evolutionary model that best describes how MHC class I gene diversity has evolved within Passerida. We found evidence of multiple MHC class I genes in every family tested, with an extremely broad range in gene copy number across Passerida. There was a strong phylogenetic signal in MHC gene copy number and diversity, and these traits appear to have evolved through a process of Brownian motion in the species studied, that is following the pattern of genetic drift or fluctuating selection, as opposed to towards a single optimal value or through evolutionary 'bursts'. By characterizing MHC class I gene diversity across Passerida in a systematic framework, this study provides a first step towards understanding this huge variation. © 2016 John Wiley & Sons Ltd.

  19. IMGT, the International ImMunoGeneTics database.

    PubMed Central

    Lefranc, M P; Giudicelli, V; Busin, C; Bodmer, J; Müller, W; Bontrop, R; Lemaitre, M; Malik, A; Chaume, D

    1998-01-01

    IMGT, the international ImMunoGeneTics database, is an integrated database specialising in Immunoglobulins (Ig), T cell Receptors (TcR) and Major Histocompatibility Complex (MHC) of all vertebrate species, created by Marie-Paule Lefranc, CNRS, Montpellier II University, Montpellier, France (lefranc@ligm.crbm.cnrs-mop.fr). IMGT includes three databases: LIGM-DB (for Ig and TcR), MHC/HLA-DB and PRIMER-DB (the last two in development). IMGT comprises expertly annotated sequences and alignment tables. LIGM-DB contains more than 23 000 Immunoglobulin and T cell Receptor sequences from 78 species. MHC/HLA-DB contains Class I and Class II Human Leucocyte Antigen alignment tables. An IMGT tool, DNAPLOT, developed for Ig, TcR and MHC sequence alignments, is also available. IMGT works in close collaboration with the EMBL database. IMGT goals are to establish a common data access to all immunogenetics data, including nucleotide and protein sequences, oligonucleotide primers, gene maps and other genetic data of Ig, TcR and MHC molecules, and to provide a graphical user friendly data access. IMGT has important implications in medical research (repertoire in autoimmune diseases, AIDS, leukemias, lymphomas), therapeutical approaches (antibody engineering), genome diversity and genome evolution studies. IMGT is freely available at http://imgt.cnusc.fr:8104 PMID:9399859

  20. Characterization of the human RAB38 and RAB7 genes: exclusion of new major pathological loci for Japanese OCA.

    PubMed

    Suzuki, Tamio; Miyamura, Yoshinori; Inagaki, Katsuhiko; Tomita, Yasushi

    2003-08-01

    Oculocutaneous albinisms (OCAs) are due to various gene mutations that cause a disruption of melanogenesis in the melanocyte. Four different genes associated with human OCA have been reported, however, not all of OCA patients can be classified according to these four genes. We have sought to find a new major locus for Japanese OCA. Recently two genes, RAB38 and RAB7, were reported to play an important role in melanogenesis in the melanocyte, suggesting that these two genes could be good candidates for new OCA loci. To determine the structures of the human RAB38 and RAB7 genes, and examine if the two genes are new major loci for Japanese OCA. We screened mutations in these genes of 25 Japanese OCA patients who lacked mutations in the OCA1 and OCA2 genes with SSCP/heteroduplexes method. We determined the both genes, and their genomic organizations to design the primers for SSCP/heteroduplexes method. And then we screened mutations, but no mutation was detected. Neither of the genes is a new major locus for Japanese OCA.

  1. Mechanisms of HO-1 mediated attenuation of renal immune injury: a gene profiling study.

    PubMed

    Duann, Pu; Lianos, Elias A

    2011-10-01

    Using a mouse model of immune injury directed against the renal glomerular vasculature and resembling human forms of glomerulonephritis (GN), we assessed the effect of targeted expression of the cytoprotective enzyme heme oxygenase (HO)-1. A human (h) HO-1 complementary DNAN (cDNA) sequence was targeted to glomerular epithelial cells (GECs) using a GEC-specific murine nephrin promoter. Injury by administration of antibody against the glomerular basement membrane (anti-GBM) to transgenic (TG) mice with GEC-targeted hHO-1 was attenuated compared with wild-type (WT) controls. To explore changes in the expression of genes that could mediate this salutary effect, we performed gene expression profiling using a microarray analysis of RNA isolated from the renal cortex of WT or TG mice with or without anti-GBM antibody-induced injury. Significant increases in expression were detected in 9 major histocompatibility complex (MHC)-class II genes, 2 interferon-γ (IFN-γ)-inducible guanosine triphosphate (GTP)ases, and 3 genes of the ubiquitin-proteasome system. The increase in MHC-class II and proteasome gene expression in TG mice with injury was validated by real-time polymerase chain reaction (PCR) or Western blot analysis. The observations point to novel mechanisms underlying the cytoprotective effect of HO-1 in renal immune injury. Copyright © 2011. Published by Mosby, Inc.

  2. Segregation analysis reveals evidence of a major gene for Alzheimer disease.

    PubMed Central

    Farrer, L A; Myers, R H; Connor, L; Cupples, L A; Growdon, J H

    1991-01-01

    In an attempt to resolve the relative influences of major genes, multifactorial heritability, and cohort effects on the susceptibility to Alzheimer disease (AD), complex segregation analysis was performed on 232 nuclear families. All families were consecutively ascertained through a single proband who was referred for diagnostic evaluation of a memory disorder. The results suggest that susceptibility to AD is determined, in part, by a major autosomal dominant allele with an additional multifactorial component. Single-locus, polygenic, sporadic, and no-transmission models, as well as recessive inheritance of the major effect, were significantly rejected. Excess transmission from the heterozygote was marginally significant and probably reflects the presence of phenocopies or perhaps the existence of two or more major loci for AD. The frequency of the AD susceptibility allele was estimated to be .038, but the major locus accounts for only 24% of the transmission variance, indicating a substantial role for other genetic and nongenetic mechanisms in the causation of AD. PMID:2035523

  3. Mice completely lacking immunoproteasomes display major alterations in antigen presentation

    PubMed Central

    Kincaid, Eleanor Z; Che, Jenny W; York, Ian; Escobar, Hernando; Reyes-Vargas, Eduardo; Delgado, Julio C.; Welsh, Raymond M; Karow, Margaret L.; Murphy, Andrew J.; Valenzuela, David M.; Yancopoulos, George D.; Rock, Kenneth L

    2011-01-01

    The importance of immunoproteasomes to antigen presentation has been unclear because animals totally lacking immunoproteasomes have not been previously developed. Here we show that dendritic cells from mice lacking the three immunoproteasome catalytic subunits display defects in presenting multiple major histocompatability (MHC) class I epitopes. During viral infection in vivo, the presentation of a majority of MHC class I epitopes is markedly reduced in immunoproteasome-deficient animals, while presentation of MHC class II peptides is unaffected. By mass spectrometry the repertoire of MHC class I-presented peptides is ~50% different and these differences are sufficient to stimulate robust transplant rejection of wild type cells in mutant mice. These results indicate that immunoproteasomes play a much more important role in antigen presentation than previously thought. PMID:22197977

  4. The simultaneous isolation of multiple high and low frequent T-cell populations from donor peripheral blood mononuclear cells using the major histocompatibility complex I-Streptamer isolation technology.

    PubMed

    Roex, Marthe C J; Hageman, Lois; Heemskerk, Matthias T; Veld, Sabrina A J; van Liempt, Ellis; Kester, Michel G D; Germeroth, Lothar; Stemberger, Christian; Falkenburg, J H Frederik; Jedema, Inge

    2018-04-01

    Adoptive transfer of donor-derived T cells can be applied to improve immune reconstitution in immune-compromised patients after allogeneic stem cell transplantation. The separation of beneficial T cells from potentially harmful T cells can be achieved by using the major histocompatibility complex (MHC) I-Streptamer isolation technology, which has proven its feasibility for the fast and pure isolation of T-cell populations with a single specificity. We have analyzed the feasibility of the simultaneous isolation of multiple antigen-specific T-cell populations in one procedure by combining different MHC I-Streptamers. First, the effect of combining different amounts of MHC I-Streptamers used in the isolation procedure on the isolation efficacy of target antigen-specific T cells and on the number of off-target co-isolated contaminating cells was assessed. The feasibility of this approach was demonstrated in large-scale validation procedures targeting both high and low frequent T-cell populations using the Good Manufacturing Practice (GMP)-compliant CliniMACS Plus device. T-cell products targeting up to 24 different T-cell populations could be isolated in one, simultaneous MHC I-Streptamer procedure, by adjusting the amount of MHC I- Streptamers per target antigen-specific T-cell population. Concurrently, the co-isolation of potentially harmful contaminating T cells remained below our safety limit. This technology allows the reproducible isolation of high and low frequent T-cell populations. However, the expected therapeutic relevance of direct clinical application without in vitro expansion of these low frequent T-cell populations is questionable. This study provides a feasible, fast and safe method for the generation of highly personalized MHC I-Streptamer isolated T-cell products for adoptive immunotherapy. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. Estimating the probability for major gene Alzheimer disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrer, L.A.; Cupples, L.A.

    1994-02-01

    Alzheimer disease (AD) is a neuropsychiatric illness caused by multiple etiologies. Prediction of whether AD is genetically based in a given family is problematic because of censoring bias among unaffected relatives as a consequence of the late onset of the disorder, diagnostic uncertainties, heterogeneity, and limited information in a single family. The authors have developed a method based on Bayesian probability to compute values for a continuous variable that ranks AD families as having a major gene form of AD (MGAD). In addition, they have compared the Bayesian method with a maximum-likelihood approach. These methods incorporate sex- and age-adjusted riskmore » estimates and allow for phenocopies and familial clustering of age on onset. Agreement is high between the two approaches for ranking families as MGAD (Spearman rank [r] = .92). When either method is used, the numerical outcomes are sensitive to assumptions of the gene frequency and cumulative incidence of the disease in the population. Consequently, risk estimates should be used cautiously for counseling purposes; however, there are numerous valid applications of these procedures in genetic and epidemiological studies. 41 refs., 4 figs., 3 tabs.« less

  6. Immunobiologic effects of cytokine gene transfer of the B16-BL6 melanoma.

    PubMed

    Strome, S E; Krauss, J C; Cameron, M J; Forslund, K; Shu, S; Chang, A E

    1993-12-01

    The genetic modification of tumors offers an approach to modulate the host immune response to relatively weak native tumor antigens. We examined the immunobiologic effects of various cytokine genes transferred into the poorly immunogenic B16-BL6 murine melanoma. Retroviral expression vectors containing cDNAs for interleukin 2, interleukin 4, interferon gamma, or a neomycin-resistant control were electroporated into a B16-BL6 tumor clone. Selected transfected clones were examined for in vitro cytokine secretion and in vivo tumorigenicity. When cells from individual clones were injected intradermally into syngeneic mice, the interleukin 4-secreting clone grew significantly slower than did the neomycin-resistant transfected control, while the growth of the interleukin 2- and interferon gamma-expressing clones was not affected. Despite minimal cytokine secretion by interferon gamma-transfected cells, these cells expressed upregulated major histocompatibility class I antigen and were more susceptible to lysis by allosensitized cytotoxic T lymphocytes compared with parental or neomycin-resistant transfected tumor targets. We observed diverse immunobiologic effects associated with cytokine gene transfer into the B16-BL6 melanoma. Interleukin 4 transfection of tumor resulted in decreased in vivo tumorigenicity that may be related to a host immune response. Further studies to evaluate the host T-cell response to these gene-modified tumors are being investigated.

  7. Notable Expressions: Transcriptional Regulation from Biochemistry to Immunology | Center for Cancer Research

    Cancer.gov

    Dinah Singer, Ph.D., came to NCI in 1975 as a Postdoctoral Fellow in the Laboratory of Biochemistry, but soon created a career for herself in the Experimental Immunology Branch. Her interest in how genes are regulated to control biological function led her to focus on major histocompatibility complex class I genes (MHC Class I)—molecules critical to immune system function—as a

  8. Bone marrow transplantation across major histocompatibility barriers. V. Protection of mice from lethal graft-vs. -host disease by pretreatment of donor cells with monoclonal anti-Thy-1. 2 coupled to the toxin ricin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallera, D.A.; Youle, R.J.; Neville, D.M. Jr.

    1982-03-01

    A new method has been devised to eliminate T cells from murine bone marrow grafts across major histocompatibility barriers and thus prevent graft-vs.-host disease (GVHD). The method utilizes a monoclonal antibody directed at the Thy-1.2 antigen but is complement independent. To make anti-Thy-1.2 toxic, the antibody is covalently linked to the toxin ricin. Ricin ordinarily binds, enters, and kills cells through receptors containing galactose. The hybrid protein, anti-Thy-1.2-ricin, can enter and kill cells via the Thy-1.2 receptor. In the presence of lactose the usual entry route for ricin is largely blocked and the hybrid is shown to be a highlymore » selective reagent that is T cell specific in its inhibition of mitogen-stimulated splenocytes. We have used a model of severe and fatal GVHD where BALB/c splenocytes and bone marrow cells are given to irradiated C57BL/6 recipients. Over 90% of these mice die by day 70, exhibiting signs of GVHD. When donor cells are pretreated with 0.5 microgram/ml of anti-Thy-1.2-ricin plus 200 mM lactose before injection, 10 of 11 animals survive through day 70 without signs of GVHD. These studies demonstrate that ricin linked to monoclonal antibodies may have utility related to the prevention of GVHD in human bone marrow transplantation.« less

  9. Functional Interactions of Major Rice Blast Resistance Genes Pi-ta with Pi-b and Minor Blast Resistance QTLs

    USDA-ARS?s Scientific Manuscript database

    Major blast resistance (R) genes confer resistance in a gene-for-gene manner. However, little information is available on interactions between R genes. In this study, interactions between two rice blast R genes, Pi-ta and Pi-b, and other minor blast resistance quantitative trait locus (QTLs) were in...

  10. Contrasting evolutionary histories of MHC class I and class II loci in grouse—effects of selection and gene conversion

    PubMed Central

    Minias, P; Bateson, Z W; Whittingham, L A; Johnson, J A; Oyler-McCance, S; Dunn, P O

    2016-01-01

    Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens. PMID:26860199

  11. Signatures of selection acting on the innate immunity gene Toll-like receptor 2 (TLR2) during the evolutionary history of rodents.

    PubMed

    Tschirren, B; Råberg, L; Westerdahl, H

    2011-06-01

    Patterns of selection acting on immune defence genes have recently been the focus of considerable interest. Yet, when it comes to vertebrates, studies have mainly focused on the acquired branch of the immune system. Consequently, the direction and strength of selection acting on genes of the vertebrate innate immune defence remain poorly understood. Here, we present a molecular analysis of selection on an important receptor of the innate immune system of vertebrates, the Toll-like receptor 2 (TLR2), across 17 rodent species. Although purifying selection was the prevalent evolutionary force acting on most parts of the rodent TLR2, we found that codons in close proximity to pathogen-binding and TLR2-TLR1 heterodimerization sites have been subject to positive selection. This indicates that parasite-mediated selection is not restricted to acquired immune system genes like the major histocompatibility complex, but also affects innate defence genes. To obtain a comprehensive understanding of evolutionary processes in host-parasite systems, both innate and acquired immunity thus need to be considered. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  12. A peptide-binding motif for I-A(g7), the class II major histocompatibility complex (MHC) molecule of NOD and Biozzi AB/H mice.

    PubMed

    Harrison, L C; Honeyman, M C; Trembleau, S; Gregori, S; Gallazzi, F; Augstein, P; Brusic, V; Hammer, J; Adorini, L

    1997-03-17

    The class II major histocompatibility complex molecule I-A(g7) is strongly linked to the development of spontaneous insulin-dependent diabetes mellitus (IDDM) in non obese diabetic mice and to the induction of experimental allergic encephalomyelitis in Biozzi AB/H mice. Structurally, it resembles the HLA-DQ molecules associated with human IDDM, in having a non-Asp residue at position 57 in its beta chain. To identify the requirements for peptide binding to I-A(g7) and thereby potentially pathogenic T cell epitopes, we analyzed a known I-A(g7)-restricted T cell epitope, hen egg white lysozyme (HEL) amino acids 9-27. NH2- and COOH-terminal truncations demonstrated that the minimal epitope for activation of the T cell hybridoma 2D12.1 was M12-R21 and the minimum sequence for direct binding to purified I-A(g7) M12-Y20/K13-R21. Alanine (A) scanning revealed two primary anchors for binding at relative positions (p) 6 (L) and 9 (Y) in the HEL epitope. The critical role of both anchors was demonstrated by incorporating L and Y in poly(A) backbones at the same relative positions as in the HEL epitope. Well-tolerated, weakly tolerated, and nontolerated residues were identified by analyzing the binding of peptides containing multiple substitutions at individual positions. Optimally, p6 was a large, hydrophobic residue (L, I, V, M), whereas p9 was aromatic and hydrophobic (Y or F) or positively charged (K, R). Specific residues were not tolerated at these and some other positions. A motif for binding to I-A(g7) deduced from analysis of the model HEL epitope was present in 27/30 (90%) of peptides reported to be I-A(g7)-restricted T cell epitopes or eluted from I-A(g7). Scanning a set of overlapping peptides encompassing human proinsulin revealed the motif in 6/6 good binders (sensitivity = 100%) and 4/13 weak or non-binders (specificity = 70%). This motif should facilitate identification of autoantigenic epitopes relevant to the pathogenesis and immunotherapy of IDDM.

  13. A Method for Gene-Based Pathway Analysis Using Genomewide Association Study Summary Statistics Reveals Nine New Type 1 Diabetes Associations

    PubMed Central

    Evangelou, Marina; Smyth, Deborah J; Fortune, Mary D; Burren, Oliver S; Walker, Neil M; Guo, Hui; Onengut-Gumuscu, Suna; Chen, Wei-Min; Concannon, Patrick; Rich, Stephen S; Todd, John A; Wallace, Chris

    2014-01-01

    Pathway analysis can complement point-wise single nucleotide polymorphism (SNP) analysis in exploring genomewide association study (GWAS) data to identify specific disease-associated genes that can be candidate causal genes. We propose a straightforward methodology that can be used for conducting a gene-based pathway analysis using summary GWAS statistics in combination with widely available reference genotype data. We used this method to perform a gene-based pathway analysis of a type 1 diabetes (T1D) meta-analysis GWAS (of 7,514 cases and 9,045 controls). An important feature of the conducted analysis is the removal of the major histocompatibility complex gene region, the major genetic risk factor for T1D. Thirty-one of the 1,583 (2%) tested pathways were identified to be enriched for association with T1D at a 5% false discovery rate. We analyzed these 31 pathways and their genes to identify SNPs in or near these pathway genes that showed potentially novel association with T1D and attempted to replicate the association of 22 SNPs in additional samples. Replication P-values were skewed () with 12 of the 22 SNPs showing . Support, including replication evidence, was obtained for nine T1D associated variants in genes ITGB7 (rs11170466, ), NRP1 (rs722988, ), BAD (rs694739, ), CTSB (rs1296023, ), FYN (rs11964650, ), UBE2G1 (rs9906760, ), MAP3K14 (rs17759555, ), ITGB1 (rs1557150, ), and IL7R (rs1445898, ). The proposed methodology can be applied to other GWAS datasets for which only summary level data are available. PMID:25371288

  14. Phenotypic diversity, major genes and production potential of local chickens and guinea fowl in Tamale, northern Ghana

    PubMed Central

    Brown, Michael Mensah; Alenyorege, Benjamin; Teye, Gabriel Ayum; Roessler, Regina

    2017-01-01

    Objective Our study provides information on phenotypes of local chickens and guinea fowl and their body measures as well as on major genes in local chickens in northern Ghana. Methods Qualitative and morphometric traits were recorded on 788 local chickens and 394 guinea fowl in urban households in Tamale, Ghana. Results The results showed considerable variation of color traits and numerous major genes in local chickens, while color variations and related genotypes in guinea fowl were limited. In local chickens, white was preferred for plumage, whereas dark colors were preferred for beak and shanks. More than half of the chickens carried at least one major gene, but the contributions of single gene carriers were low. All calculated allele frequencies were significantly lower than their expected Mendelian allele frequencies. We observed higher mean body weight and larger linear body measures in male as compared to female chickens. In female chickens, we detected a small effect of major genes on body weight and chest circumference. In addition, we found some association between feather type and plumage color. In guinea fowl, seven distinct plumage colors were observed, of which pearl grey pied and pearl grey were the most prevalent. Male pearl grey pied guinea fowl were inferior to pearl grey and white guinea fowl in terms of body weight, body length and chest circumference; their shank length was lower than that of pearl grey fowl. Conclusion Considerable variation in qualitative traits of local chickens may be indicative of genetic diversity within local chicken populations, but major genes were rare. In contrast, phenotypic and genetic diversity in local guinea fowl is limited. Broader genetic diversity studies and evaluation of trait preferences of local poultry producers are required for the design of appropriate breeding programs. PMID:28728378

  15. Phenotypic diversity, major genes and production potential of local chickens and guinea fowl in Tamale, northern Ghana.

    PubMed

    Brown, Michael Mensah; Alenyorege, Benjamin; Teye, Gabriel Ayum; Roessler, Regina

    2017-10-01

    Our study provides information on phenotypes of local chickens and guinea fowl and their body measures as well as on major genes in local chickens in northern Ghana. Qualitative and morphometric traits were recorded on 788 local chickens and 394 guinea fowl in urban households in Tamale, Ghana. The results showed considerable variation of color traits and numerous major genes in local chickens, while color variations and related genotypes in guinea fowl were limited. In local chickens, white was preferred for plumage, whereas dark colors were preferred for beak and shanks. More than half of the chickens carried at least one major gene, but the contributions of single gene carriers were low. All calculated allele frequencies were significantly lower than their expected Mendelian allele frequencies. We observed higher mean body weight and larger linear body measures in male as compared to female chickens. In female chickens, we detected a small effect of major genes on body weight and chest circumference. In addition, we found some association between feather type and plumage color. In guinea fowl, seven distinct plumage colors were observed, of which pearl grey pied and pearl grey were the most prevalent. Male pearl grey pied guinea fowl were inferior to pearl grey and white guinea fowl in terms of body weight, body length and chest circumference; their shank length was lower than that of pearl grey fowl. Considerable variation in qualitative traits of local chickens may be indicative of genetic diversity within local chicken populations, but major genes were rare. In contrast, phenotypic and genetic diversity in local guinea fowl is limited. Broader genetic diversity studies and evaluation of trait preferences of local poultry producers are required for the design of appropriate breeding programs.

  16. Peptides of a major histocompatibility complex class I (Kb) molecule cause prolongation of skin graft survival and induce specific down-regulatory T cells demonstrable in the mixed lymphocyte reaction.

    PubMed Central

    Brondz, B D; Kazansky, D B; Chernyshova, A D; Ivanov, V S

    1995-01-01

    Six individual peptides of the major histocompatibility complex (MHC) class I molecule H-2Kb were synthesized. Intravenous injection of peptide 6 into mice prolonged the survival of Kb (BL/6 or B10.MBR) skin grafts on allogeneic R101 and B10.AKM mice, respectively. This was specific, as control skin grafts from Kk (B10.BR) or Kd (DBA/2) donors, respectively, were rejected at the same time in both control and peptide-treated mice. The optimal doses for peptide 6, which is from the alpha 2 domain, were defined. The test system was the inhibition of proliferation in vitro of naive lymph node cells by syngeneic mitomycin c-treated spleen cells from R101 mice preimmunized with irradiated stimulator splenocytes of Kb (BL/6) origin. Down-regulation was specific, as proliferation in response to third-party allogeneic stimulator Kk (B10.BR) splenocytes was not inhibited. Of the six peptides of H-2Kb tested, potent down-regulatory cells were induced by peptides 2 (alpha 1 domain) and 5 and 6 (alpha 2 domain). The greatest down-regulatory activity was obtained by giving peptide 2 to mice that had already been immunized against H-2Kb by injecting EL4 cells. Under the same conditions, injecting peptide 2 did not induce any cytotoxic T cells. In contrast, specific cytotoxic lymphocytes (CTL) were induced when cells from primed mice were incubated for 4 days with heated stimulator cells from BL/6 mice. The data suggest that peptides from MHC class I molecules activate precursors of down-regulatory T cells, but not of CTL, and this may explain their ability to prolong skin allograft survival. PMID:7490121

  17. Genomic Anatomy of a Premier Major Histocompatibility Complex Paralogous Region on Chromosome 1q21–q22

    PubMed Central

    Shiina, Takashi; Ando, Asako; Suto, Yumiko; Kasai, Fumio; Shigenari, Atsuko; Takishima, Nobusada; Kikkawa, Eri; Iwata, Kyoko; Kuwano, Yuko; Kitamura, Yuka; Matsuzawa, Yumiko; Sano, Kazumi; Nogami, Masahiro; Kawata, Hisako; Li, Suyun; Fukuzumi, Yasuhito; Yamazaki, Masaaki; Tashiro, Hiroyuki; Tamiya, Gen; Kohda, Atsushi; Okumura, Katsuzumi; Ikemura, Toshimichi; Soeda, Eiichi; Mizuki, Nobuhisa; Kimura, Minoru; Bahram, Seiamak; Inoko, Hidetoshi

    2001-01-01

    Human chromosomes 1q21–q25, 6p21.3–22.2, 9q33–q34, and 19p13.1–p13.4 carry clusters of paralogous loci, to date best defined by the flagship 6p MHC region. They have presumably been created by two rounds of large-scale genomic duplications around the time of vertebrate emergence. Phylogenetically, the 1q21–25 region seems most closely related to the 6p21.3 MHC region, as it is only the MHC paralogous region that includes bona fide MHC class I genes, the CD1 and MR1 loci. Here, to clarify the genomic structure of this model MHC paralogous region as well as to gain insight into the evolutionary dynamics of the entire quadriplication process, a detailed analysis of a critical 1.7 megabase (Mb) region was performed. To this end, a composite, deep, YAC, BAC, and PAC contig encompassing all five CD1 genes and linking the centromeric +P5 locus to the telomeric KRTC7 locus was constructed. Within this contig a 1.1-Mb BAC and PAC core segment joining CD1D to FCER1A was fully sequenced and thoroughly analyzed. This led to the mapping of a total of 41 genes (12 expressed genes, 12 possibly expressed genes, and 17 pseudogenes), among which 31 were novel. The latter include 20 olfactory receptor (OR) genes, 9 of which are potentially expressed. Importantly, CD1, SPTA1, OR, and FCERIA belong to multigene families, which have paralogues in the other three regions. Furthermore, it is noteworthy that 12 of the 13 expressed genes in the 1q21–q22 region around the CD1 loci are immunologically relevant. In addition to CD1A-E, these include SPTA1, MNDA, IFI-16, AIM2, BL1A, FY and FCERIA. This functional convergence of structurally unrelated genes is reminiscent of the 6p MHC region, and perhaps represents the emergence of yet another antigen presentation gene cluster, in this case dedicated to lipid/glycolipid antigens rather than antigen-derived peptides. [The nucleotide sequence data reported in this paper have been submitted to the DDBJ, EMBL, and GenBank databases under

  18. Comprehensive analysis of MHC class II genes in teleost fish genomes reveals dispensability of the peptide-loading DM system in a large part of vertebrates

    PubMed Central

    2013-01-01

    Background Classical major histocompatibility complex (MHC) class II molecules play an essential role in presenting peptide antigens to CD4+ T lymphocytes in the acquired immune system. The non-classical class II DM molecule, HLA-DM in the case of humans, possesses critical function in assisting the classical MHC class II molecules for proper peptide loading and is highly conserved in tetrapod species. Although the absence of DM-like genes in teleost fish has been speculated based on the results of homology searches, it has not been definitively clear whether the DM system is truly specific for tetrapods or not. To obtain a clear answer, we comprehensively searched class II genes in representative teleost fish genomes and analyzed those genes regarding the critical functional features required for the DM system. Results We discovered a novel ancient class II group (DE) in teleost fish and classified teleost fish class II genes into three major groups (DA, DB and DE). Based on several criteria, we investigated the classical/non-classical nature of various class II genes and showed that only one of three groups (DA) exhibits classical-type characteristics. Analyses of predicted class II molecules revealed that the critical tryptophan residue required for a classical class II molecule in the DM system could be found only in some non-classical but not in classical-type class II molecules of teleost fish. Conclusions Teleost fish, a major group of vertebrates, do not possess the DM system for the classical class II peptide-loading and this sophisticated system has specially evolved in the tetrapod lineage. PMID:24279922

  19. Integrated Enrichment Analysis of Variants and Pathways in Genome-Wide Association Studies Indicates Central Role for IL-2 Signaling Genes in Type 1 Diabetes, and Cytokine Signaling Genes in Crohn's Disease

    PubMed Central

    Carbonetto, Peter; Stephens, Matthew

    2013-01-01

    Pathway analyses of genome-wide association studies aggregate information over sets of related genes, such as genes in common pathways, to identify gene sets that are enriched for variants associated with disease. We develop a model-based approach to pathway analysis, and apply this approach to data from the Wellcome Trust Case Control Consortium (WTCCC) studies. Our method offers several benefits over existing approaches. First, our method not only interrogates pathways for enrichment of disease associations, but also estimates the level of enrichment, which yields a coherent way to promote variants in enriched pathways, enhancing discovery of genes underlying disease. Second, our approach allows for multiple enriched pathways, a feature that leads to novel findings in two diseases where the major histocompatibility complex (MHC) is a major determinant of disease susceptibility. Third, by modeling disease as the combined effect of multiple markers, our method automatically accounts for linkage disequilibrium among variants. Interrogation of pathways from eight pathway databases yields strong support for enriched pathways, indicating links between Crohn's disease (CD) and cytokine-driven networks that modulate immune responses; between rheumatoid arthritis (RA) and “Measles” pathway genes involved in immune responses triggered by measles infection; and between type 1 diabetes (T1D) and IL2-mediated signaling genes. Prioritizing variants in these enriched pathways yields many additional putative disease associations compared to analyses without enrichment. For CD and RA, 7 of 8 additional non-MHC associations are corroborated by other studies, providing validation for our approach. For T1D, prioritization of IL-2 signaling genes yields strong evidence for 7 additional non-MHC candidate disease loci, as well as suggestive evidence for several more. Of the 7 strongest associations, 4 are validated by other studies, and 3 (near IL-2 signaling genes RAF1, MAPK14

  20. Inhibition of the HDAC/Suv39/G9a pathway restores the expression of DNA damage-dependent major histocompatibility complex class I-related chain A and B in cancer cells.

    PubMed

    Nakajima, Nakako Izumi; Niimi, Atsuko; Isono, Mayu; Oike, Takahiro; Sato, Hiro; Nakano, Takashi; Shibata, Atsushi

    2017-08-01

    Immunotherapy is expected to be promising as a next generation cancer therapy. Immunoreceptors are often activated constitutively in cancer cells, however, such levels of ligand expression are not effectively recognized by the native immune system due to tumor microenvironmental adaptation. Studies have demonstrated that natural-killer group 2, member D (NKG2D), a major activating immunoreceptor, responds to DNA damage. The upregulation of major histocompatibility complex class I-related chain A and B (MICA/B) (members of NKG2D ligands) expression after DNA damage is associated with NK cell-mediated killing of cancer cells. However, the regulation of DNA damage-induced MICA/B expression has not been fully elucidated in the context of the types of cancer cell lines. In the present study, we found that MICA/B expression varied between cancer cell lines after DNA damage. Screening in terms of chromatin remodeling identified that inhibitors related to chromatin relaxation via post-translational modification on histone H3K9, i.e. HDAC, Suv39 or G9a inhibition, restored DNA damage-dependent MICA/B expression in insensitive cells. In addition, we revealed that the restored MICA/B expression was dependent on ATR as well as E2F1, a transcription factor. We further revealed that low‑dose treatment of an HDAC inhibitor was sufficient to restore MICA/B expression in insensitive cells. Finally, we demonstrated that HDAC inhibition restored DNA damage‑dependent cytotoxic NK activity against insensitive cells. Thus, the present study revealed that DNA damage‑dependent MICA/B expression in insensitive cancer cells can be restored by chromatin relaxation via the HDAC/Suv39/G9a pathway. Collectively, manipulation of chromatin status by therapeutic cancer drugs may potentiate the antitumor effect by enhancing immune activation following radiotherapy and DNA damage-associated chemotherapy.

  1. Variation in MHC class II B genes in marbled murrelets: implications for delineating conservation units

    Treesearch

    C. Vásquez-Carrillo; V. Friesen; L. Hall; M.Z. Peery

    2013-01-01

    Conserving genetic variation is critical for maintaining the evolutionary potential and viability of a species. Genetic studies seeking to delineate conservation units, however, typically focus on characterizing neutral genetic variation and may not identify populations harboring local adaptations. Here, variation at two major histocompatibility complex (MHC) class II...

  2. Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea

    PubMed Central

    Das, Shouvik; Upadhyaya, Hari D.; Bajaj, Deepak; Kujur, Alice; Badoni, Saurabh; Laxmi; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. Laxmipathi; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    A rapid high-resolution genome-wide strategy for molecular mapping of major QTL(s)/gene(s) regulating important agronomic traits is vital for in-depth dissection of complex quantitative traits and genetic enhancement in chickpea. The present study for the first time employed a NGS-based whole-genome QTL-seq strategy to identify one major genomic region harbouring a robust 100-seed weight QTL using an intra-specific 221 chickpea mapping population (desi cv. ICC 7184 × desi cv. ICC 15061). The QTL-seq-derived major SW QTL (CaqSW1.1) was further validated by single-nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker-based traditional QTL mapping (47.6% R2 at higher LOD >19). This reflects the reliability and efficacy of QTL-seq as a strategy for rapid genome-wide scanning and fine mapping of major trait regulatory QTLs in chickpea. The use of QTL-seq and classical QTL mapping in combination narrowed down the 1.37 Mb (comprising 177 genes) major SW QTL (CaqSW1.1) region into a 35 kb genomic interval on desi chickpea chromosome 1 containing six genes. One coding SNP (G/A)-carrying constitutive photomorphogenic9 (COP9) signalosome complex subunit 8 (CSN8) gene of these exhibited seed-specific expression, including pronounced differential up-/down-regulation in low and high seed weight mapping parents and homozygous individuals during seed development. The coding SNP mined in this potential seed weight-governing candidate CSN8 gene was found to be present exclusively in all cultivated species/genotypes, but not in any wild species/genotypes of primary, secondary and tertiary gene pools. This indicates the effect of strong artificial and/or natural selection pressure on target SW locus during chickpea domestication. The proposed QTL-seq-driven integrated genome-wide strategy has potential to delineate major candidate gene(s) harbouring a robust trait regulatory QTL rapidly with optimal use of resources. This will further assist us to extrapolate the

  3. Structural Definition of Duck Major Histocompatibility Complex Class I Molecules That Might Explain Efficient Cytotoxic T Lymphocyte Immunity to Influenza A Virus

    PubMed Central

    Wu, Yanan; Wang, Junya; Fan, Shuhua; Chen, Rong; Liu, Yanjie; Zhang, Jianhua; Yuan, Hongyu; Liang, Ruiying

    2017-01-01

    ABSTRACT A single dominantly expressed allele of major histocompatibility complex class I (MHC I) may be responsible for the duck's high tolerance to highly pathogenic influenza A virus (HP-IAV) compared to the chicken's lower tolerance. In this study, the crystal structures of duck MHC I (Anpl-UAA*01) and duck β2-microglobulin (β2m) with two peptides from the H5N1 strains were determined. Two remarkable features were found to distinguish the Anpl-UAA*01 complex from other known MHC I structures. A disulfide bond formed by Cys95 and Cys112 and connecting the β5 and β6 sheets at the bottom of peptide binding groove (PBG) in Anpl-UAA*01 complex, which can enhance IAV peptide binding, was identified. Moreover, the interface area between duck MHC I and β2m was found to be larger than in other species. In addition, the two IAV peptides that display distinctive conformations in the PBG, B, and F pockets act as the primary anchor sites. Thirty-one IAV peptides were used to verify the peptide binding motif of Anpl-UAA*01, and the results confirmed that the peptide binding motif is similar to that of HLA-A*0201. Based on this motif, approximately 600 peptides from the IAV strains were partially verified as the candidate epitope peptides for Anpl-UAA*01, which is a far greater number than those for chicken BF2*2101 and BF2*0401 molecules. Extensive IAV peptide binding should allow for ducks with this Anpl-UAA*01 haplotype to resist IAV infection. IMPORTANCE Ducks are natural reservoirs of influenza A virus (IAV) and are more resistant to the IAV than chickens. Both ducks and chickens express only one dominant MHC I locus providing resistance to the virus. To investigate how MHC I provides IAV resistance, crystal structures of the dominantly expressed duck MHC class I (pAnpl-UAA*01) with two IAV peptides were determined. A disulfide bond was identified in the peptide binding groove that can facilitate Anpl-UAA*01 binding to IAV peptides. Anpl-UAA*01 has a much wider

  4. Structural Definition of Duck Major Histocompatibility Complex Class I Molecules That Might Explain Efficient Cytotoxic T Lymphocyte Immunity to Influenza A Virus.

    PubMed

    Wu, Yanan; Wang, Junya; Fan, Shuhua; Chen, Rong; Liu, Yanjie; Zhang, Jianhua; Yuan, Hongyu; Liang, Ruiying; Zhang, Nianzhi; Xia, Chun

    2017-07-15

    A single dominantly expressed allele of major histocompatibility complex class I (MHC I) may be responsible for the duck's high tolerance to highly pathogenic influenza A virus (HP-IAV) compared to the chicken's lower tolerance. In this study, the crystal structures of duck MHC I ( Anpl -UAA*01) and duck β2-microglobulin (β2m) with two peptides from the H5N1 strains were determined. Two remarkable features were found to distinguish the Anpl -UAA*01 complex from other known MHC I structures. A disulfide bond formed by Cys 95 and Cys 112 and connecting the β5 and β6 sheets at the bottom of peptide binding groove (PBG) in Anpl -UAA*01 complex, which can enhance IAV peptide binding, was identified. Moreover, the interface area between duck MHC I and β2m was found to be larger than in other species. In addition, the two IAV peptides that display distinctive conformations in the PBG, B, and F pockets act as the primary anchor sites. Thirty-one IAV peptides were used to verify the peptide binding motif of Anpl -UAA*01, and the results confirmed that the peptide binding motif is similar to that of HLA-A*0201. Based on this motif, approximately 600 peptides from the IAV strains were partially verified as the candidate epitope peptides for Anpl -UAA*01, which is a far greater number than those for chicken BF2*2101 and BF2*0401 molecules. Extensive IAV peptide binding should allow for ducks with this Anpl -UAA*01 haplotype to resist IAV infection. IMPORTANCE Ducks are natural reservoirs of influenza A virus (IAV) and are more resistant to the IAV than chickens. Both ducks and chickens express only one dominant MHC I locus providing resistance to the virus. To investigate how MHC I provides IAV resistance, crystal structures of the dominantly expressed duck MHC class I (p Anpl -UAA*01) with two IAV peptides were determined. A disulfide bond was identified in the peptide binding groove that can facilitate Anpl -UAA*01 binding to IAV peptides. Anpl -UAA*01 has a much wider

  5. Evidence of a major gene from Bayesian segregation analyses of liability to osteochondral diseases in pigs.

    PubMed

    Kadarmideen, Haja N; Janss, Luc L G

    2005-11-01

    Bayesian segregation analyses were used to investigate the mode of inheritance of osteochondral lesions (osteochondrosis, OC) in pigs. Data consisted of 1163 animals with OC and their pedigrees included 2891 animals. Mixed-inheritance threshold models (MITM) and several variants of MITM, in conjunction with Markov chain Monte Carlo methods, were developed for the analysis of these (categorical) data. Results showed major genes with significant and substantially higher variances (range 1.384-37.81), compared to the polygenic variance (sigmau2). Consequently, heritabilities for a mixed inheritance (range 0.65-0.90) were much higher than the heritabilities from the polygenes. Disease allele frequencies range was 0.38-0.88. Additional analyses estimating the transmission probabilities of the major gene showed clear evidence for Mendelian segregation of a major gene affecting osteochondrosis. The variants, MITM with informative prior on sigmau2, showed significant improvement in marginal distributions and accuracy of parameters. MITM with a "reduced polygenic model" for parameterization of polygenic effects avoided convergence problems and poor mixing encountered in an "individual polygenic model." In all cases, "shrinkage estimators" for fixed effects avoided unidentifiability for these parameters. The mixed-inheritance linear model (MILM) was also applied to all OC lesions and compared with the MITM. This is the first study to report evidence of major genes for osteochondral lesions in pigs; these results may also form a basis for underpinning the genetic inheritance of this disease in other animals as well as in humans.

  6. Association between HLA-E gene polymorphism and unexplained recurrent spontaneous abortion (RSA) in Iranian women.

    PubMed

    Fotoohi, Maryam; Ghasemi, Nasrin; Mirghanizadeh, Seyed Ali; Vakili, Mahmood; Samadi, Morteza

    2016-07-01

    Human leukocyte antigen-E (HLA-E)is a non-classical major histocompatibility complex (MHC) class I antigens which expressed on extra villous cytotrophoblast, which interacts with NKG2A, is an inhibitory receptor on natural killer (NK) cells and leading to down regulation of immune response in the maternal-fetal interface and provides maternal immune tolerance of the fetus. This study was designated to investigate the gene frequencies of E0101 and E0103 in HLA-E gene in Iranian women with recurrent spontaneous abortion (RSA). Amplification Refractory Mutation System (ARMS-PCR) technique was carried out to detect polymorphism in exon 3 of the HLA-E gene in women with RSA and controls (n=200). Differences between groups were analyzed by SPSS19 software using (2) test. There was no significant difference in the allele frequencies of the HLA-E polymorphism between RSA and fertile controls but HLA-E 0101/0103 heterozygous genotype was found to be significantly higher in RSA group (p=0.006, OR=1.73), so this genotype might confer susceptibility to RSA. Our results suggest that HLA-E 0101/0103 heterozygous genotype leads to increase of RSA risk. It seems that by genotyping of HLA-E polymorphism, we can predict the risk of RSA in infertile women.

  7. Rare variants in SQSTM1 and VCP genes and risk of sporadic inclusion body myositis.

    PubMed

    Gang, Qiang; Bettencourt, Conceição; Machado, Pedro M; Brady, Stefen; Holton, Janice L; Pittman, Alan M; Hughes, Deborah; Healy, Estelle; Parton, Matthew; Hilton-Jones, David; Shieh, Perry B; Needham, Merrilee; Liang, Christina; Zanoteli, Edmar; de Camargo, Leonardo Valente; De Paepe, Boel; De Bleecker, Jan; Shaibani, Aziz; Ripolone, Michela; Violano, Raffaella; Moggio, Maurizio; Barohn, Richard J; Dimachkie, Mazen M; Mora, Marina; Mantegazza, Renato; Zanotti, Simona; Singleton, Andrew B; Hanna, Michael G; Houlden, Henry

    2016-11-01

    Genetic factors have been suggested to be involved in the pathogenesis of sporadic inclusion body myositis (sIBM). Sequestosome 1 (SQSTM1) and valosin-containing protein (VCP) are 2 key genes associated with several neurodegenerative disorders but have yet to be thoroughly investigated in sIBM. A candidate gene analysis was conducted using whole-exome sequencing data from 181 sIBM patients, and whole-transcriptome expression analysis was performed in patients with genetic variants of interest. We identified 6 rare missense variants in the SQSTM1 and VCP in 7 sIBM patients (4.0%). Two variants, the SQSTM1 p.G194R and the VCP p.R159C, were significantly overrepresented in this sIBM cohort compared with controls. Five of these variants had been previously reported in patients with degenerative diseases. The messenger RNA levels of major histocompatibility complex genes were upregulated, this elevation being more pronounced in SQSTM1 patient group. We report for the first time potentially pathogenic SQSTM1 variants and expand the spectrum of VCP variants in sIBM. These data suggest that defects in neurodegenerative pathways may confer genetic susceptibility to sIBM and reinforce the mechanistic overlap in these neurodegenerative disorders. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Impact of Leukocyte Function-Associated Antigen-1 Blockade on Endogenous Allospecific T Cells to Multiple Minor Histocompatibility Antigen Mismatched Cardiac Allograft.

    PubMed

    Kwun, Jean; Farris, Alton B; Song, Hyunjin; Mahle, William T; Burlingham, William J; Knechtle, Stuart J

    2015-12-01

    Blocking leukocyte function-associated antigen (LFA)-1 in organ transplant recipients prolongs allograft survival. However, the precise mechanisms underlying the therapeutic potential of LFA-1 blockade in preventing chronic rejection are not fully elucidated. Cardiac allograft vasculopathy (CAV) is the preeminent cause of late cardiac allograft failure characterized histologically by concentric intimal hyperplasia. Anti-LFA-1 monoclonal antibody was used in a multiple minor antigen-mismatched, BALB.B (H-2B) to C57BL/6 (H-2B), cardiac allograft model. Endogenous donor-specific CD8 T cells were tracked down using major histocompatibility complex multimers against the immunodominant H4, H7, H13, H28, and H60 minor Ags. The LFA-1 blockade prevented acute rejection and preserved palpable beating quality with reduced CD8 T-cell graft infiltration. Interestingly, less CD8 T cell infiltration was secondary to reduction of T-cell expansion rather than less trafficking. The LFA-1 blockade significantly suppressed the clonal expansion of minor histocompatibility antigen-specific CD8 T cells during the expansion and contraction phase. The CAV development was evaluated with morphometric analysis at postoperation day 100. The LFA-1 blockade profoundly attenuated neointimal hyperplasia (61.6 vs 23.8%; P < 0.05), CAV-affected vessel number (55.3 vs 15.9%; P < 0.05), and myocardial fibrosis (grade 3.29 vs 1.8; P < 0.05). Finally, short-term LFA-1 blockade promoted long-term donor-specific regulation, which resulted in attenuated transplant arteriosclerosis. Taken together, LFA-1 blockade inhibits initial endogenous alloreactive T-cell expansion and induces more regulation. Such a mechanism supports a pulse tolerance induction strategy with anti-LFA-1 rather than long-term treatment.

  9. Molecular characterization of classical and nonclassical MHC class I genes from the golden pheasant (Chrysolophus pictus).

    PubMed

    Zeng, Q-Q; Zhong, G-H; He, K; Sun, D-D; Wan, Q-H

    2016-02-01

    Classical major histocompatibility complex (MHC) class I allelic polymorphism is essential for competent antigen presentation. To improve the genotyping efforts in the golden pheasant, it is necessary to differentiate more accurately between classical and nonclassical class I molecules. In our study, all MHC class I genes were isolated from one golden pheasant based on two overlapping PCR amplifications. In total, six full-length class I nucleotide sequences (A-F) were identified, and four were novel. Two (A and C) belonged to the IA1 gene, two (B and D) were alleles derived from the IA2 gene through transgene amplification, and two (E and F) comprised a third novel locus, IA3 that was excluded from the core region of the golden pheasant MHC-B. IA1 and IA2 exhibited the broad expression profiles characteristic of classical loci, while IA3 showed no expression in multiple tissues and was therefore defined as a nonclassical gene. Phylogenetic analysis indicated that the three IA genes in the golden pheasant share a much closer evolutionary relationship than the corresponding sequences in other galliform species. This observation was consistent with high sequence similarity among them, which likely arises from the homogenizing effect of recombination. Our careful distinction between the classical and nonclassical MHC class I genes in the golden pheasant lays the foundation for developing locus-specific genotyping and establishing a good molecular marker system of classical MHC I loci. © 2015 John Wiley & Sons Ltd.

  10. HLA: The Major Histocompatibility Complex of Man

    DTIC Science & Technology

    1991-01-01

    an ancestor of the Jewish bution of HLA - B27 in patients with ankylosing spon- population on a precursor extended haplotype [ HLA - dylitis strongly...suggests dominant inheritance, even B38/35, SC21,SC31. DR4, DQw8] and diffused though most individuals who carry HLA - B27 do not through recombinants into...molecularly distinguishable forms of pressing the [ HLA -Bw55. SB45, DRw6, DQw5] ex- HLA - B27 and all of these are increased among patients, tended

  11. PERB11 (MIC): a polymorphic MHC gene is expressed in skin and single nucleotide polymorphisms are associated with psoriasis

    PubMed Central

    Tay, G K; Hui, J; Gaudieri, S; Schmitt-Egenolf, M; Martinez, O P; Leelayuwat, C; Williamson, J F; Eiermann, T H; Dawkins, R L

    2000-01-01

    The susceptibility genes for psoriasis remain to be identified. At least one of these must be in the major histocompatibility complex (MHC) to explain associations with alleles at human leucocyte antigen (HLA)-A, -B, -C, -DR, -DQ and C4. In fact, most of these alleles are components of just two ancestral haplotypes (AHs) designated 13.1 and 57.1. Although relevant MHC gene(s) could be within a region of at least 4 Mb, most studies have favoured the area near HLA-B and -C. This region contains a large number of non-HLA genes, many of which are duplicated and polymorphic. Members of one such gene family, PERB11.1 and PERB11.2, are expressed in the skin and are encoded in the region between tumour necrosis factor and HLA-B. To investigate the relationship of PERB11.1 alleles to psoriasis, sequence based typing was performed on 97 patients classified according to age of onset and family history. The frequency of the PERB11.1*06 allele is 44% in type I psoriasis but only 7% in controls (Pc = 0.003 by Fisher's exact test, two-tailed). The major determinant of this association is a single nucleotide polymorphism (SNP) within intron 4. In normal and affected skin, expression of PERB11 is mainly in the basal layer of the epidermis including ducts and follicles. PERB11 is also present in the upper keratin layers but there is relative deficiency in the intermediate layers. These findings suggest a possible role for PERB11 and other MHC genes in the pathogenesis of psoriasis. PMID:10691930

  12. Prediction of cancer class with majority voting genetic programming classifier using gene expression data.

    PubMed

    Paul, Topon Kumar; Iba, Hitoshi

    2009-01-01

    In order to get a better understanding of different types of cancers and to find the possible biomarkers for diseases, recently, many researchers are analyzing the gene expression data using various machine learning techniques. However, due to a very small number of training samples compared to the huge number of genes and class imbalance, most of these methods suffer from overfitting. In this paper, we present a majority voting genetic programming classifier (MVGPC) for the classification of microarray data. Instead of a single rule or a single set of rules, we evolve multiple rules with genetic programming (GP) and then apply those rules to test samples to determine their labels with majority voting technique. By performing experiments on four different public cancer data sets, including multiclass data sets, we have found that the test accuracies of MVGPC are better than those of other methods, including AdaBoost with GP. Moreover, some of the more frequently occurring genes in the classification rules are known to be associated with the types of cancers being studied in this paper.

  13. Suppression of adenoviral gene expression in the liver: role of innate vs adaptive immunity and their cell lysis mechanisms.

    PubMed

    Minagawa, Masahiro; Kawamura, Hiroki; Liu, Zhangxu; Govindarajan, Sugantha; Dennert, Gunther

    2005-06-01

    Injection of adenoviral constructs causes liver infection prompting immunity, which suppress viral gene expression. Innate and adaptive immunity mediate these processes raising the question which pathways are the most prominent. Adenovirus expressing the beta-galactosidase (beta-gal) gene was injected into normal and immunodeficient mice. Elimination of beta-gal-expressing hepatocytes and increases in liver enzymes were assayed. Major histocompatibility complex (MHC) class I densities, perforin channel insertion and apoptosis by Fas and tumor necrosis factor (TNF)-alpha were assayed. At high virus doses, suppression of viral gene expression was as efficient in immunodeficient as in normal mice, while at low doses effects of cytotoxic T lymphocytes (CTL) were demonstrable. Despite CTL priming and elimination of infected hepatocytes no liver injury is detected. Hepatocyte MHC I densities were able to trigger CTL granule exocytosis and perforin lysis in vitro but not in vivo. This is we show is because of decreased sensitivity of hepatocytes from infected mice to perforin and increased sensitivity to Fas and TNF-alpha lysis. Effector cells of the innate immune system are exceedingly effective in suppressing adenoviral gene expression. Perforin-independent pathways, those mediated by TNF-alpha and Fas are very efficient in hepatocytes from virus-infected livers.

  14. The protocadherin 17 gene affects cognition, personality, amygdala structure and function, synapse development and risk of major mood disorders.

    PubMed

    Chang, H; Hoshina, N; Zhang, C; Ma, Y; Cao, H; Wang, Y; Wu, D-D; Bergen, S E; Landén, M; Hultman, C M; Preisig, M; Kutalik, Z; Castelao, E; Grigoroiu-Serbanescu, M; Forstner, A J; Strohmaier, J; Hecker, J; Schulze, T G; Müller-Myhsok, B; Reif, A; Mitchell, P B; Martin, N G; Schofield, P R; Cichon, S; Nöthen, M M; Walter, H; Erk, S; Heinz, A; Amin, N; van Duijn, C M; Meyer-Lindenberg, A; Tost, H; Xiao, X; Yamamoto, T; Rietschel, M; Li, M

    2018-02-01

    Major mood disorders, which primarily include bipolar disorder and major depressive disorder, are the leading cause of disability worldwide and pose a major challenge in identifying robust risk genes. Here, we present data from independent large-scale clinical data sets (including 29 557 cases and 32 056 controls) revealing brain expressed protocadherin 17 (PCDH17) as a susceptibility gene for major mood disorders. Single-nucleotide polymorphisms (SNPs) spanning the PCDH17 region are significantly associated with major mood disorders; subjects carrying the risk allele showed impaired cognitive abilities, increased vulnerable personality features, decreased amygdala volume and altered amygdala function as compared with non-carriers. The risk allele predicted higher transcriptional levels of PCDH17 mRNA in postmortem brain samples, which is consistent with increased gene expression in patients with bipolar disorder compared with healthy subjects. Further, overexpression of PCDH17 in primary cortical neurons revealed significantly decreased spine density and abnormal dendritic morphology compared with control groups, which again is consistent with the clinical observations of reduced numbers of dendritic spines in the brains of patients with major mood disorders. Given that synaptic spines are dynamic structures which regulate neuronal plasticity and have crucial roles in myriad brain functions, this study reveals a potential underlying biological mechanism of a novel risk gene for major mood disorders involved in synaptic function and related intermediate phenotypes.

  15. Variability and repertoire size of T-cell receptor V alpha gene segments.

    PubMed

    Becker, D M; Pattern, P; Chien, Y; Yokota, T; Eshhar, Z; Giedlin, M; Gascoigne, N R; Goodnow, C; Wolf, R; Arai, K

    The immune system of higher organisms is composed largely of two distinct cell types, B lymphocytes and T lymphocytes, each of which is independently capable of recognizing an enormous number of distinct entities through their antigen receptors; surface immunoglobulin in the case of the former, and the T-cell receptor (TCR) in the case of the latter. In both cell types, the genes encoding the antigen receptors consist of multiple gene segments which recombine during maturation to produce many possible peptides. One striking difference between B- and T-cell recognition that has not yet been resolved by the structural data is the fact that T cells generally require a major histocompatibility determinant together with an antigen whereas, in most cases, antibodies recognize antigen alone. Recently, we and others have found that a series of TCR V beta gene sequences show conservation of many of the same residues that are conserved between heavy- and light-chain immunoglobulin V regions, and these V beta sequences are predicted to have an immunoglobulin-like secondary structure. To extend these studies, we have isolated and sequenced eight additional alpha-chain complementary cDNA clones and compared them with published sequences. Analyses of these sequences, reported here, indicate that V alpha regions have many of the characteristics of V beta gene segments but differ in that they almost always occur as cross-hybridizing gene families. We conclude that there may be very different selective pressures operating on V alpha and V beta sequences and that the V alpha repertoire may be considerably larger than that of V beta.

  16. Glucocorticoid Receptor Related Genes: Genotype And Brain Gene Expression Relationships To Suicide And Major Depressive Disorder

    PubMed Central

    Pantazatos, Spiro P.; Huang, Yung-yu; Rosoklija, Gorazd B.; Dwork, Andrew J.; Burke, Ainsley; Arango, Victoria; Oquendo, Maria A.; Mann, J. John

    2016-01-01

    Introduction We tested the relationship between genotype, gene expression and suicidal behavior and MDD in live subjects and postmortem samples for three genes, associated with the hypothalamic-pituitary-adrenal axis, suicidal behavior and major depressive disorder (MDD); FK506 binding protein 5 (FKBP5), Spindle and kinetochore-associated protein 2 (SKA2) and Glucocorticoid Receptor (NR3C1). Materials and Methods Single-nucleotide polymorphisms (SNPs) and haplotypes were tested for association with suicidal behavior and MDD in a live (N=277) and a postmortem sample (N=209). RNA-seq was used to examine gene and isoform-level brain expression postmortem (Brodmann Area 9) (N=59). Expression quantitative trait loci (eQTL) relationships were examined using a public database (UK Brain Expression Consortium). Results We identified a haplotype within the FKBP5 gene, present in 47% of the live subjects, that was associated with increased risk of suicide attempt (OR=1.58, t=6.03, p=0.014). Six SNPs on this gene, three SNPs on SKA2 and one near NR3C1 showed before-adjustment association with attempted suicide, and two SNPs of SKA2 with suicide death, but none stayed significant after adjustment for multiple testing. Only the SKA2 SNPs were related to expression in the prefrontal cortex. One NR3C1 transcript had lower expression in suicide relative to non-suicide sudden death cases (b=-0.48, SE=0.12, t=-4.02, adjusted p=0.004). Conclusion We have identified an association of FKBP5 haplotype with risk of suicide attempt and found an association between suicide and altered NR3C1 gene expression in the prefrontal cortex. Our findings further implicate hypothalamic pituitary axis dysfunction in suicidal behavior. PMID:27030168

  17. GLUCOCORTICOID RECEPTOR-RELATED GENES: GENOTYPE AND BRAIN GENE EXPRESSION RELATIONSHIPS TO SUICIDE AND MAJOR DEPRESSIVE DISORDER.

    PubMed

    Yin, Honglei; Galfalvy, Hanga; Pantazatos, Spiro P; Huang, Yung-Yu; Rosoklija, Gorazd B; Dwork, Andrew J; Burke, Ainsley; Arango, Victoria; Oquendo, Maria A; Mann, J John

    2016-06-01

    We tested the relationship between genotype, gene expression and suicidal behavior and major depressive disorder (MDD) in live subjects and postmortem samples for three genes, associated with the hypothalamic-pituitary-adrenal axis, suicidal behavior, and MDD; FK506-binding protein 5 (FKBP5), Spindle and kinetochore-associated protein 2 (SKA2), and Glucocorticoid Receptor (NR3C1). Single-nucleotide polymorphisms (SNPs) and haplotypes were tested for association with suicidal behavior and MDD in a live (N = 277) and a postmortem sample (N = 209). RNA-seq was used to examine gene and isoform-level brain expression postmortem (Brodmann Area 9; N = 59). Expression quantitative trait loci (eQTL) relationships were examined using a public database (UK Brain Expression Consortium). We identified a haplotype within the FKBP5 gene, present in 47% of the live subjects, which was associated with increased risk of suicide attempt (OR = 1.58, t = 6.03, P = .014). Six SNPs on this gene, three SNPs on SKA2, and one near NR3C1 showed before-adjustment association with attempted suicide, and two SNPs of SKA2 with suicide death, but none stayed significant after adjustment for multiple testing. Only the SKA2 SNPs were related to expression in the prefrontal cortex (pFCTX). One NR3C1 transcript had lower expression in suicide relative to nonsuicide sudden death cases (b = -0.48, SE = 0.12, t = -4.02, adjusted P = .004). We have identified an association of FKBP5 haplotype with risk of suicide attempt and found an association between suicide and altered NR3C1 gene expression in the pFCTX. Our findings further implicate hypothalamic pituitary axis dysfunction in suicidal behavior. © 2016 Wiley Periodicals, Inc.

  18. Gene flow contributes to diversification of the major fungal pathogen Candida albicans.

    PubMed

    Ropars, Jeanne; Maufrais, Corinne; Diogo, Dorothée; Marcet-Houben, Marina; Perin, Aurélie; Sertour, Natacha; Mosca, Kevin; Permal, Emmanuelle; Laval, Guillaume; Bouchier, Christiane; Ma, Laurence; Schwartz, Katja; Voelz, Kerstin; May, Robin C; Poulain, Julie; Battail, Christophe; Wincker, Patrick; Borman, Andrew M; Chowdhary, Anuradha; Fan, Shangrong; Kim, Soo Hyun; Le Pape, Patrice; Romeo, Orazio; Shin, Jong Hee; Gabaldon, Toni; Sherlock, Gavin; Bougnoux, Marie-Elisabeth; d'Enfert, Christophe

    2018-06-08

    Elucidating population structure and levels of genetic diversity and recombination is necessary to understand the evolution and adaptation of species. Candida albicans is the second most frequent agent of human fungal infections worldwide, causing high-mortality rates. Here we present the genomic sequences of 182 C. albicans isolates collected worldwide, including commensal isolates, as well as ones responsible for superficial and invasive infections, constituting the largest dataset to date for this major fungal pathogen. Although, C. albicans shows a predominantly clonal population structure, we find evidence of gene flow between previously known and newly identified genetic clusters, supporting the occurrence of (para)sexuality in nature. A highly clonal lineage, which experimentally shows reduced fitness, has undergone pseudogenization in genes required for virulence and morphogenesis, which may explain its niche restriction. Candida albicans thus takes advantage of both clonality and gene flow to diversify.

  19. Modulation of Mycoplasma arthritidis-derived superantigen-induced cytokine gene expression by dexamethasone and interleukin-4.

    PubMed Central

    Mehindate, K; al-Daccak, R; Rink, L; Mecheri, S; Hébert, J; Mourad, W

    1994-01-01

    Activation of human monocytes or monocytic cell lines with all known stimuli coordinately induces the gene expression of various cytokines, including tumor necrosis factor alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), and the IL-1 receptor antagonist (IL-1Ra). In contrast, superantigens induce TNF-alpha and IL-1 beta but fail to affect IL-1Ra gene expression, suggesting that activation of monocytes via major histocompatibility complex class II is distinct from other signal transduction pathways. In the present study, we analyzed the regulation of the Mycoplasma arthritidis-derived superantigen (MAM)-induced IL-1 beta and TNF-alpha gene expression by studying the effects of two different anti-inflammatory agents: dexamethasone (DEX) and the T-cell-derived cytokine IL-4. Both agents contributed to the downregulation of MAM-induced IL-1 beta and TNF-alpha gene expression. They accelerated the normal decline of the gene expression of both MAM-induced cytokines by decreasing the stability of mRNAs via the induction or enhanced synthesis of one or more regulatory proteins. In addition, IL-4, but not DEX, induced a strong and rapid expression of IL-1Ra mRNA in MAM-stimulated and unstimulated THP-1 cells in a de novo protein synthesis-independent manner. The capacity of IL-4 to induce IL-1Ra gene expression reinforces its anti-inflammatory activity. This study illustrates some of the mechanisms by which MAM-induced proinflammatory monokine gene expression can be downregulated by IL-4 and DEX. Images PMID:7927746

  20. Modulation of Mycoplasma arthritidis-derived superantigen-induced cytokine gene expression by dexamethasone and interleukin-4.

    PubMed

    Mehindate, K; al-Daccak, R; Rink, L; Mecheri, S; Hébert, J; Mourad, W

    1994-11-01

    Activation of human monocytes or monocytic cell lines with all known stimuli coordinately induces the gene expression of various cytokines, including tumor necrosis factor alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), and the IL-1 receptor antagonist (IL-1Ra). In contrast, superantigens induce TNF-alpha and IL-1 beta but fail to affect IL-1Ra gene expression, suggesting that activation of monocytes via major histocompatibility complex class II is distinct from other signal transduction pathways. In the present study, we analyzed the regulation of the Mycoplasma arthritidis-derived superantigen (MAM)-induced IL-1 beta and TNF-alpha gene expression by studying the effects of two different anti-inflammatory agents: dexamethasone (DEX) and the T-cell-derived cytokine IL-4. Both agents contributed to the downregulation of MAM-induced IL-1 beta and TNF-alpha gene expression. They accelerated the normal decline of the gene expression of both MAM-induced cytokines by decreasing the stability of mRNAs via the induction or enhanced synthesis of one or more regulatory proteins. In addition, IL-4, but not DEX, induced a strong and rapid expression of IL-1Ra mRNA in MAM-stimulated and unstimulated THP-1 cells in a de novo protein synthesis-independent manner. The capacity of IL-4 to induce IL-1Ra gene expression reinforces its anti-inflammatory activity. This study illustrates some of the mechanisms by which MAM-induced proinflammatory monokine gene expression can be downregulated by IL-4 and DEX.

  1. Extensive shared polymorphism at non-MHC immune genes in recently diverged North American prairie grouse

    USGS Publications Warehouse

    Minias, Piotr; Bateson, Zachary W.; Whittingham, Linda A.; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O.

    2018-01-01

    Gene polymorphisms shared between recently diverged species are thought to be widespread and most commonly reflect introgression from hybridization or retention of ancestral polymorphism through incomplete lineage sorting. Shared genetic diversity resulting from incomplete lineage sorting is usually maintained for a relatively short period of time, but under strong balancing selection it may persist for millions of years beyond species divergence (balanced trans-species polymorphism), as in the case of the major histocompatibility complex (MHC) genes. However, balancing selection is much less likely to act on non-MHC immune genes. The aim of this study was to investigate the patterns of shared polymorphism and selection at non-MHC immune genes in five grouse species from Centrocercus and Tympanuchus genera. For this purpose, we genotyped five non-MHC immune genes that do not interact directly with pathogens, but are involved in signaling and regulate immune cell growth. In contrast to previous studies with MHC, we found no evidence for balancing selection or balanced trans-species polymorphism among the non-MHC immune genes. No haplotypes were shared between genera and in most cases more similar allelic variants sorted by genus. Between species within genera, however, we found extensive shared polymorphism, which was most likely attributable to introgression or incomplete lineage sorting following recent divergence and large ancestral effective population size (i.e., weak genetic drift). Our study suggests that North American prairie grouse may have attained relatively low degree of reciprocal monophyly at nuclear loci and reinforces the rarity of balancing selection in non-MHC immune genes.

  2. Trans-species polymorphism at antimicrobial innate immunity cathelicidin genes of Atlantic cod and related species

    PubMed Central

    Árnason, Einar

    2015-01-01

    Natural selection, the most important force in evolution, comes in three forms. Negative purifying selection removes deleterious variation and maintains adaptations. Positive directional selection fixes beneficial variants, producing new adaptations. Balancing selection maintains variation in a population. Important mechanisms of balancing selection include heterozygote advantage, frequency-dependent advantage of rarity, and local and fluctuating episodic selection. A rare pathogen gains an advantage because host defenses are predominantly effective against prevalent types. Similarly, a rare immune variant gives its host an advantage because the prevalent pathogens cannot escape the host’s apostatic defense. Due to the stochastic nature of evolution, neutral variation may accumulate on genealogical branches, but trans-species polymorphisms are rare under neutrality and are strong evidence for balancing selection. Balanced polymorphism maintains diversity at the major histocompatibility complex (MHC) in vertebrates. The Atlantic cod is missing genes for both MHC-II and CD4, vital parts of the adaptive immune system. Nevertheless, cod are healthy in their ecological niche, maintaining large populations that support major commercial fisheries. Innate immunity is of interest from an evolutionary perspective, particularly in taxa lacking adaptive immunity. Here, we analyze extensive amino acid and nucleotide polymorphisms of the cathelicidin gene family in Atlantic cod and closely related taxa. There are three major clusters, Cath1, Cath2, and Cath3, that we consider to be paralogous genes. There is extensive nucleotide and amino acid allelic variation between and within clusters. The major feature of the results is that the variation clusters by alleles and not by species in phylogenetic trees and discriminant analysis of principal components. Variation within the three groups shows trans-species polymorphism that is older than speciation and that is suggestive of

  3. Polymorphisms within the tumor necrosis factor and lymphotoxin-alpha genes and endemic pemphigus foliaceus--are there any associations?

    PubMed

    Roxo, V M M S; Pereira, N F; Pavoni, D P; Lin, M-T; Hansen, J A; de O Poersch, C; Filho, A Marquart; Petzl-Erler, M L

    2003-11-01

    The purpose of this study was to analyze the possible influence of the TNF and LTA loci polymorphisms on the susceptibility/resistance to endemic pemphigus foliaceus, also named fogo selvagem (FS), an autoimmune disease characterized by blisters due to acantholysis of the superficial-most epidermal cells. Autoantibodies, mainly of the IgG4 subclass, are directed against a desmosomal glycoprotein known as desmoglein 1. FS shares clinical, histological and immunological features with nonendemic pemphigus foliaceus. Most residents of the endemic regions do not develop the disease, and familial clustering has been documented, suggesting that host factors play a role in susceptibility. In fact, strong positive and negative associations with HLA class II genes have been reported. The TNF and LTA genes are located in the class III region of the Human Major Histocompatibility Complex. Their location, the function of their products, which are cytokines and pluripotent immunomodulators, as well as their genetic variability make them candidate genes for complex diseases with an altered immune response. A total of 162 patients and 191 controls were enrolled in this study. No significant associations were found with any one of the three LTA single nucleotide polymorphisms (SNP) analyzed (at nucleotides 249, 365, 720), nor with the TNF SNP located at positions -863 and -308. The frequency of allele TNF*238A was slightly decreased in patients (OR = 0.45). In conclusion, the results of this study indicate that genetic variability of the TNF and LTA genes does not play a major role in susceptibility/resistance to pemphigus foliaceus.

  4. The role of gene-environment interplay in occupational and environmental diseases: current concepts and knowledge gaps.

    PubMed

    Kwo, Elizabeth; Christiani, David

    2017-03-01

    The interplay between genetic susceptibilities and environmental exposures in the pathogenesis of a variety of diseases is an area of increased scientific, epidemiologic, and social interest. Given the variation in methodologies used in the field, this review aims to create a framework to help understand occupational exposures as they currently exist and provide a foundation for future inquiries into the biological mechanisms of the gene-environment interactions. Understanding of this complex interplay will be important in the context of occupational health, given the public health concerns surrounding a variety of occupational exposures. Studies found evidence that suggest genetics influence the progression of disease postberyllium exposure through genetically encoded major histocompatibility complex, class II, DP alpha 2 (HLA-DP2)-peptide complexes as it relates to T-helper cells. This was characterized at the molecular level by the accumulation of Be-responsive CD4 T cells in the lung, which resulted in posttranslational change in the HLA-DPB1 complex. These studies provide important evidence of gene-environment association, and many provide insights into specific pathogenic mechanisms. The following includes a review of the literature regarding gene-environment associations with a focus on pulmonary diseases as they relate to the workplace.

  5. Genes encoding major light-harvesting polypeptides are clustered on the genome of the cyanobacterium Fremyella diplosiphon.

    PubMed Central

    Conley, P B; Lemaux, P G; Lomax, T L; Grossman, A R

    1986-01-01

    The polypeptide composition of the phycobilisome, the major light-harvesting complex of prokaryotic cyanobacteria and certain eukaryotic algae, can be modulated by different light qualities in cyanobacteria exhibiting chromatic adaptation. We have identified genomic fragments encoding a cluster of phycobilisome polypeptides (phycobiliproteins) from the chromatically adapting cyanobacterium Fremyella diplosiphon using previously characterized DNA fragments of phycobiliprotein genes from the eukaryotic alga Cyanophora paradoxa and from F. diplosiphon. Characterization of two lambda-EMBL3 clones containing overlapping genomic fragments indicates that three sets of phycobiliprotein genes--the alpha- and beta-allophycocyanin genes plus two sets of alpha- and beta-phycocyanin genes--are clustered within 13 kilobases on the cyanobacterial genome and transcribed off the same strand. The gene order (alpha-allophycocyanin followed by beta-allophycocyanin and beta-phycocyanin followed by alpha-phycocyanin) appears to be a conserved arrangement found previously in a eukaryotic alga and another cyanobacterium. We have reported that one set of phycocyanin genes is transcribed as two abundant red light-induced mRNAs (1600 and 3800 bases). We now present data showing that the allophycocyanin genes and a second set of phycocyanin genes are transcribed into major mRNAs of 1400 and 1600 bases, respectively. These transcripts are present in RNA isolated from cultures grown in red and green light, although lower levels of the 1600-base phycocyanin transcript are present in cells grown in green light. Furthermore, a larger transcript of 1750 bases hybridizes to the allophycocyanin genes and may be a precursor to the 1400-base species. Images PMID:3086870

  6. Contrasting evolutionary histories of MHC class I and class II loci in grouse—Effects of selection and gene conversion

    USGS Publications Warehouse

    Minias, Piotr; Bateson, Zachary W.; Whittingham, Linda A.; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O.

    2016-01-01

    Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens.

  7. MHC class I and MHC class II DRB gene variability in wild and captive Bengal tigers (Panthera tigris tigris).

    PubMed

    Pokorny, Ina; Sharma, Reeta; Goyal, Surendra Prakash; Mishra, Sudanshu; Tiedemann, Ralph

    2010-10-01

    Bengal tigers are highly endangered and knowledge on adaptive genetic variation can be essential for efficient conservation and management. Here we present the first assessment of allelic variation in major histocompatibility complex (MHC) class I and MHC class II DRB genes for wild and captive tigers from India. We amplified, cloned, and sequenced alpha-1 and alpha-2 domain of MHC class I and beta-1 domain of MHC class II DRB genes in 16 tiger specimens of different geographic origin. We detected high variability in peptide-binding sites, presumably resulting from positive selection. Tigers exhibit a low number of MHC DRB alleles, similar to other endangered big cats. Our initial assessment-admittedly with limited geographic coverage and sample size-did not reveal significant differences between captive and wild tigers with regard to MHC variability. In addition, we successfully amplified MHC DRB alleles from scat samples. Our characterization of tiger MHC alleles forms a basis for further in-depth analyses of MHC variability in this illustrative threatened mammal.

  8. Changes in lncRNAs and related genes in β-thalassemia minor and β-thalassemia major.

    PubMed

    Ma, Jing; Liu, Fei; Du, Xin; Ma, Duan; Xiong, Likuan

    2017-03-01

    β-thalassemia is caused by β-globin gene mutations. However, heterogeneous phenotypes were found in individuals with same genotype, and still undescribed mechanism underlies such variation. We collected blood samples from 30 β-thalassemia major, 30 β-thalassemia minor patients, and 30 matched normal controls. Human lncRNA Array v2.0 (8 × 60 K, Arraystar) was used to detect changes in long non-coding RNAs (lncRNAs) and mRNAs in three samples each from β-thalassemia major, β-thalassemia minor, and control groups. Compared with normal controls, 1424 and 2045 lncRNAs were up- and downregulated, respectively, in β-thalassemia major patients, whereas 623 and 349 lncRNAs were up- and downregulated, respectively, in β-thalassemia minor patients. Compared with β-thalassemia minor group, 1367 and 2356 lncRNAs were up- and downregulated, respectively, in β-thalassemia major group. We selected five lncRNAs that displayed altered expressions (DQ583499, X-inactive specific transcript (Xist), lincRNA-TPM1, MRFS16P, and lincRNA-RUNX2-2) and confirmed their expression levels in all samples using real-time polymerase chain reaction. Based on coding-noncoding gene co-expression network and gene ontology biological process analyses, several signaling pathways were associated with three common organ systems exhibiting β-thalassemia phenotypes: hematologic, skeletal, and hepatic systems. This study implicates that abnormal expression levels of lncRNAs and mRNA in β-thalassemia cases may be correlated with its various clinical phenotypes.

  9. [Histocompatibility of nano-hydroxyapatite/poly-co-glycolic acid tissue engineering bone modified by mesenchymal stem cells with vascular endothelial frowth factor].

    PubMed

    Zhang, Minglei; Wang, Dapeng; Yin, Ruofeng

    2015-10-06

    To explorec Histocompatibility of nano-hydroxyapatite/poly-co-glycolic acid tissue engineering bone modified by mesenchymal stem cells with vascular endothelial frowth factor transinfected. Rat bone marrow mesenchymal stem cells (BMSCs) was separated, using BMSCs as target cells, and then vascular endothelial growth factor (VEGF) gene was transfected. Composite bone marrow mesenchymal stem cells and cells transfected with nano-hydroxyapatite (HA)/polylactic-co-glycolic acid (PLGA). The composition of cell and scaffold was observed. The blank plasmid transfection was 39.1%, 40.1% in VEGF group. The cell adhesion and growth was found on the scaffold pore wall after 5 days, and the number of adherent cells in the nano-HA/PLGA composite scaffold material basically had no significant difference in both. Although the nano-HA/PLGA scaffold material is still not fully meet the requirements of the matrix material for bone tissue engineering, but good biocompatibility, structure is its rich microporous satisfaction in material mechanics, toughening, enhanced obviously. Composition scaffold with BMSCs transfected by VEGF plasmid, the ability of angiogenesis is promoted.

  10. Efficient gene disruption in cultured primary human endothelial cells by CRISPR/Cas9.

    PubMed

    Abrahimi, Parwiz; Chang, William G; Kluger, Martin S; Qyang, Yibing; Tellides, George; Saltzman, W Mark; Pober, Jordan S

    2015-07-03

    The participation of endothelial cells (EC) in many physiological and pathological processes is widely modeled using human EC cultures, but genetic manipulation of these untransformed cells has been technically challenging. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) technology offers a promising new approach. However, mutagenized cultured cells require cloning to yield homogeneous populations, and the limited replicative lifespan of well-differentiated human EC presents a barrier for doing so. To create a simple but highly efficient method using CRISPR/Cas9 to generate biallelic gene disruption in untransformed human EC. To demonstrate proof-of-principle, we used CRISPR/Cas9 to disrupt the gene for the class II transactivator. We used endothelial colony forming cell-derived EC and lentiviral vectors to deliver CRISPR/Cas9 elements to ablate EC expression of class II major histocompatibility complex molecules and with it, the capacity to activate allogeneic CD4(+) T cells. We show the observed loss-of-function arises from biallelic gene disruption in class II transactivator that leaves other essential properties of the cells intact, including self-assembly into blood vessels in vivo, and that the altered phenotype can be rescued by reintroduction of class II transactivator expression. CRISPR/Cas9-modified human EC provides a powerful platform for vascular research and for regenerative medicine/tissue engineering. © 2015 American Heart Association, Inc.

  11. HIV Controllers Exhibit Enhanced Frequencies of Major Histocompatibility Complex Class II Tetramer+ Gag-Specific CD4+ T Cells in Chronic Clade C HIV-1 Infection.

    PubMed

    Laher, Faatima; Ranasinghe, Srinika; Porichis, Filippos; Mewalal, Nikoshia; Pretorius, Karyn; Ismail, Nasreen; Buus, Søren; Stryhn, Anette; Carrington, Mary; Walker, Bruce D; Ndung'u, Thumbi; Ndhlovu, Zaza M

    2017-04-01

    Immune control of viral infections is heavily dependent on helper CD4 + T cell function. However, the understanding of the contribution of HIV-specific CD4 + T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4 + T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4 + T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4 + T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4 + T cells in HIV controllers than progressors ( P = 0.0001), and these expanded Gag-specific CD4 + T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control ( r = -0.5, P = 0.02). These data identify an association between HIV-specific CD4 + T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4 + T cell responses in natural infections. IMPORTANCE Increasing evidence suggests that virus-specific CD4 + T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4 + T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV

  12. HIV Controllers Exhibit Enhanced Frequencies of Major Histocompatibility Complex Class II Tetramer+ Gag-Specific CD4+ T Cells in Chronic Clade C HIV-1 Infection

    PubMed Central

    Laher, Faatima; Ranasinghe, Srinika; Porichis, Filippos; Mewalal, Nikoshia; Pretorius, Karyn; Ismail, Nasreen; Buus, Søren; Stryhn, Anette; Carrington, Mary; Walker, Bruce D.; Ndung'u, Thumbi

    2017-01-01

    ABSTRACT Immune control of viral infections is heavily dependent on helper CD4+ T cell function. However, the understanding of the contribution of HIV-specific CD4+ T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4+ T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4+ T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4+ T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4+ T cells in HIV controllers than progressors (P = 0.0001), and these expanded Gag-specific CD4+ T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control (r = −0.5, P = 0.02). These data identify an association between HIV-specific CD4+ T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4+ T cell responses in natural infections. IMPORTANCE Increasing evidence suggests that virus-specific CD4+ T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4+ T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV

  13. Effects of Mutations on Replicative Fitness and Major Histocompatibility Complex Class I Binding Affinity Are Among the Determinants Underlying Cytotoxic-T-Lymphocyte Escape of HIV-1 Gag Epitopes.

    PubMed

    Du, Yushen; Zhang, Tian-Hao; Dai, Lei; Zheng, Xiaojuan; Gorin, Aleksandr M; Oishi, John; Wu, Ting-Ting; Yoshizawa, Janice M; Li, Xinmin; Yang, Otto O; Martinez-Maza, Otoniel; Detels, Roger; Sun, Ren

    2017-11-28

    Certain "protective" major histocompatibility complex class I (MHC-I) alleles, such as B*57 and B*27, are associated with long-term control of HIV-1 in vivo mediated by the CD8 + cytotoxic-T-lymphocyte (CTL) response. However, the mechanism of such superior protection is not fully understood. Here we combined high-throughput fitness profiling of mutations in HIV-1 Gag, in silico prediction of MHC-peptide binding affinity, and analysis of intraperson virus evolution to systematically compare differences with respect to CTL escape mutations between epitopes targeted by protective MHC-I alleles and those targeted by nonprotective MHC-I alleles. We observed that the effects of mutations on both viral replication and MHC-I binding affinity are among the determinants of CTL escape. Mutations in Gag epitopes presented by protective MHC-I alleles are associated with significantly higher fitness cost and lower reductions in binding affinity with respect to MHC-I. A linear regression model accounting for the effect of mutations on both viral replicative capacity and MHC-I binding can explain the protective efficacy of MHC-I alleles. Finally, we found a consistent pattern in the evolution of Gag epitopes in long-term nonprogressors versus progressors. Overall, our results suggest that certain protective MHC-I alleles allow superior control of HIV-1 by targeting epitopes where mutations typically incur high fitness costs and small reductions in MHC-I binding affinity. IMPORTANCE Understanding the mechanism of viral control achieved in long-term nonprogressors with protective HLA alleles provides insights for developing functional cure of HIV infection. Through the characterization of CTL escape mutations in infected persons, previous researchers hypothesized that protective alleles target epitopes where escape mutations significantly reduce viral replicative capacity. However, these studies were usually limited to a few mutations observed in vivo Here we utilized our recently

  14. Differential gene expression in patients with subsyndromal symptomatic depression and major depressive disorder.

    PubMed

    Yang, Chengqing; Hu, Guoqin; Li, Zezhi; Wang, Qingzhong; Wang, Xuemei; Yuan, Chengmei; Wang, Zuowei; Hong, Wu; Lu, Weihong; Cao, Lan; Chen, Jun; Wang, Yong; Yu, Shunying; Zhou, Yimin; Yi, Zhenghui; Fang, Yiru

    2017-01-01

    Subsyndromal symptomatic depression (SSD) is a subtype of subthreshold depressive and can lead to significant psychosocial functional impairment. Although the pathogenesis of major depressive disorder (MDD) and SSD still remains poorly understood, a set of studies have found that many same genetic factors play important roles in the etiology of these two disorders. Nowadays, the differential gene expression between MDD and SSD is still unknown. In our previous study, we compared the expression profile and made the classification with the leukocytes by using whole-genome cRNA microarrays among drug-free first-episode subjects with SSD, MDD and matched healthy controls (8 subjects in each group), and finally determined 48 gene expression signatures. Based on these findings, we further clarify whether these genes mRNA was different expressed in peripheral blood in patients with SSD, MDD and healthy controls (60 subjects respectively). With the help of the quantitative real-time reverse transcription-polymerase chain reaction (RT-qPCR), we gained gene relative expression levels among the three groups. We found that there are three of the forty eight co-regulated genes had differential expression in peripheral blood among the three groups, which are CD84, STRN, CTNS gene (F = 3.528, p = 0.034; F = 3.382, p = 0.039; F = 3.801, p = 0.026, respectively) while there were no significant differences for other genes. CD84, STRN, CTNS gene may have significant value for performing diagnostic functions and classifying SSD, MDD and healthy controls.

  15. Long-term dietary supplementation of organic selenium modulates gene expression profiles in leukocytes of adult pigs.

    PubMed

    Song, Ki-Duk; Dowd, Scott E; Lee, Hak-Kyo; Kim, Sung Woo

    2013-03-01

    Seventy-two pigs at 34.4 kg body weight (BW) were allotted to two treatments with six replicates/treatment and six pigs/pen: the CON (negative control, no added selenium (Se)) and the OS (0.36 mg/kg added selenium from selenium-enriched yeast). Pigs were fed until 130 kg BW. The CON diet contained 0.18 mg/kg indigenous Se whereas the OS diet contained 0.54 mg/kg Se. Blood samples were collected at 130 kg BW and further processed for microarray analysis, prepared with 885 genes related to immune function of pigs. Among those, 28 genes related to improved immune status and innate immunity were up-regulated (P < 0.05) in leukocytes from Se-fed pigs and those include major histocompatibility class I (> 1.66), arginase I (> 1.27), integrin beta-1-subunit (> 1.20), toll like receptor 2 (> 1.12) and double-stranded RNA-dependent protein kinase. However, 24 genes including tissue factor (< 4.70), serum amyloid A-2 protein (< 3.11) and p27Kip1 (< 1.42) were down-regulated (P < 0.05) in leukocytes from Se-fed pigs. Expression of four selected genes was validated using quantitative PCR (qPCR) showing significant correlation between mircroarray analysis and qPCR analysis. This study indicates that a long- term dietary supplementation (0.3%) of organic Se improves the expression of genes that are related to enhanced immunity of pigs. © 2012 Japanese Society of Animal Science.

  16. Refining the Candidate Environment: Interpersonal Stress, the Serotonin Transporter Polymorphism, and Gene-Environment Interactions in Major Depression.

    PubMed

    Vrshek-Schallhorn, Suzanne; Mineka, Susan; Zinbarg, Richard E; Craske, Michelle G; Griffith, James W; Sutton, Jonathan; Redei, Eva E; Wolitzky-Taylor, Kate; Hammen, Constance; Adam, Emma K

    2014-05-01

    Meta-analytic evidence supports a gene-environment (G×E) interaction between life stress and the serotonin transporter polymorphism (5-HTTLPR) on depression, but few studies have examined factors that influence detection of this effect, despite years of inconsistent results. We propose that the "candidate environment" (akin to a candidate gene) is key. Theory and evidence implicate major stressful life events (SLEs)-particularly major interpersonal SLEs-as well as chronic family stress. Participants ( N = 400) from the Youth Emotion Project (which began with 627 high school juniors oversampled for high neuroticism) completed up to five annual diagnostic and life stress interviews and provided DNA samples. A significant G×E effect for major SLEs and S -carrier genotype was accounted for significantly by major interpersonal SLEs but not significantly by major non-interpersonal SLEs. S -carrier genotype and chronic family stress also significantly interacted. Identifying such candidate environments may facilitate future G×E research in depression and psychopathology more broadly.

  17. The Effect of Garlic Extract on Expression of INFγ And Inos Genes in Macrophages Infected with Leishmania major

    PubMed Central

    Gharavi, MJ; Nobakht, M; Khademvatan, SH; Bandani, E; Bakhshayesh, M; Roozbehani, M

    2011-01-01

    Background The study was aimed to show the effect of molecular mechanism of Aqueous Garlic Extract (AGE) on expression of IFNγ and iNOS genes in Leishmania major. Methods Leishmania major promastigotes (MRHO/IR/75/ER) were added to the in-vitro cultured J774 cell line, the cells were incubated for 72 hours. Various concentrations of garlic extract (9.25, 18.5, 37, 74, 148 mg/ml) were added to the infected cells. MTT assay was applied for cellular proliferation. After 72 hours of incubation, supernatants were collected and total RNA was extracted from the infected cells. The express of IFNγ and iNOS genes were studied by RT-PCR method. Results The colorimetric MTT assay after 3 days of incubation showed cytotoxic effect of garlic extract with an IC50 of 37 mg/ml. In addition, IFNγ and iNOS genes expression by RT-PCR indicated that garlic extract lead to over expression of these genes in J774 cell line infected with L. major. Conclusion Garlic extract exerts cytotoxic effect on infected J774 cell line. In addition, the hypothesis that garlic can improve cellular immunity with raising the expression of IFNγ and of iNOS genes confirmed. PMID:22347300

  18. Expression of mouse Tla region class I genes in tissues enriched for gamma delta cells.

    PubMed

    Eghtesady, P; Brorson, K A; Cheroutre, H; Tigelaar, R E; Hood, L; Kronenberg, M

    1992-01-01

    The Tla region of the BALB/c mouse major histocompatibility complex contains at least 20 class I genes. The function of the products of these genes is unknown, but recent evidence demonstrates that some Tla region gene products could be involved in presentation of antigens to gamma delta T cells. We have generated a set of polymerase chain reaction (PCR) oligonucleotide primers and hybridization probes that permit us to specifically amplify and detect expression of 11 of the 20 BALB/c Tla region genes. cDNA prepared from 12 adult and fetal tissues and from seven cell lines was analyzed. In some cases, northern blot analysis or staining with monoclonal antibodies specific for the Tla-encoded thymus leukemia (TL) antigen were used to confirm the expression pattern of several of the genes as determined by PCR. Some Tla region genes, such as T24d and the members of the T10d/T22d gene pair, are expressed in a wide variety of tissues in a manner similar to the class I transplantation antigens. The members of the TL antigen encoding gene pair, T3d/T18d, are expressed in only a limited number of organs, including several sites enriched for gamma delta T cells. Other Tla region genes, including T1d, T2d, T16d, and T17d, are transcriptionally silent and transcripts from the T8d/T20d gene pair do not undergo proper splicing. In general, sites that contain gamma delta T lymphocytes have Tla region transcripts. The newly identified pattern of expression of the genes analyzed in sites containing gamma delta T cells further extends the list of potential candidates for antigen presentation to gamma delta T cells.

  19. Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Morris, Katrina M; Wright, Belinda; Grueber, Catherine E; Hogg, Carolyn; Belov, Katherine

    2015-08-01

    The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction due to the spread of devil facial tumour disease. Polymorphisms in immune genes can provide adaptive potential to resist diseases. Previous studies in diversity at immune loci in wild species have almost exclusively focused on genes of the major histocompatibility complex (MHC); however, these genes only account for a fraction of immune gene diversity. Devils lack diversity at functionally important immunity loci, including MHC and Toll-like receptor genes. Whether there are polymorphisms at devil immune genes outside these two families is unknown. Here, we identify polymorphisms in a wide range of key immune genes, and develop assays to type single nucleotide polymorphisms (SNPs) within a subset of these genes. A total of 167 immune genes were examined, including cytokines, chemokines and natural killer cell receptors. Using genome-level data from ten devils, SNPs within coding regions, introns and 10 kb flanking genes of interest were identified. We found low polymorphism across 167 immune genes examined bioinformatically using whole-genome data. From this data, we developed long amplicon assays to target nine genes. These amplicons were sequenced in 29-220 devils and found to contain 78 SNPs, including eight SNPS within exons. Despite the extreme paucity of genetic diversity within these genes, signatures of balancing selection were exhibited by one chemokine gene, suggesting that remaining diversity may hold adaptive potential. The low functional diversity may leave devils highly vulnerable to infectious disease, and therefore, monitoring and preserving remaining diversity will be critical for the long-term management of this species. Examining genetic variation in diverse immune genes should be a priority for threatened wildlife species. This study can act as a model for broad-scale immunogenetic diversity analysis in threatened species. © 2015 The Authors. Molecular Ecology Published

  20. Characterization of a Major Cluster of nif, fix, and Associated Genes in a Sugarcane Endophyte, Acetobacter diazotrophicus

    PubMed Central

    Lee, Sunhee; Reth, Alexander; Meletzus, Dietmar; Sevilla, Myrna; Kennedy, Christina

    2000-01-01

    A major 30.5-kb cluster of nif and associated genes of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus), a nitrogen-fixing endophyte of sugarcane, was sequenced and analyzed. This cluster represents the largest assembly of contiguous nif-fix and associated genes so far characterized in any diazotrophic bacterial species. Northern blots and promoter sequence analysis indicated that the genes are organized into eight transcriptional units. The overall arrangement of genes is most like that of the nif-fix cluster in Azospirillum brasilense, while the individual gene products are more similar to those in species of Rhizobiaceae or in Rhodobacter capsulatus. PMID:11092875

  1. Allelic diversity of the MHC class II DRB genes in brown bears (Ursus arctos) and a comparison of DRB sequences within the family Ursidae.

    PubMed

    Goda, N; Mano, T; Kosintsev, P; Vorobiev, A; Masuda, R

    2010-11-01

    The allelic diversity of the DRB locus in major histocompatibility complex (MHC) genes was analyzed in the brown bear (Ursus arctos) from the Hokkaido Island of Japan, Siberia, and Kodiak of Alaska. Nineteen alleles of the DRB exon 2 were identified from a total of 38 individuals of U. arctos and were highly polymorphic. Comparisons of non-synonymous and synonymous substitutions in the antigen-binding sites of deduced amino acid sequences indicated evidence for balancing selection on the bear DRB locus. The phylogenetic analysis of the DRB alleles among three genera (Ursus, Tremarctos, and Ailuropoda) in the family Ursidae revealed that DRB allelic lineages were not separated according to species. This strongly shows trans-species persistence of DRB alleles within the Ursidae. © 2010 John Wiley & Sons A/S.

  2. Genome architecture changes and major gene variations of Andrias davidianus ranavirus (ADRV)

    PubMed Central

    2013-01-01

    Ranaviruses are emerging pathogens that have led to global impact and public concern. As a rarely endangered species and the largest amphibian in the world, the Chinese giant salamander, Andrias davidianus, has recently undergone outbreaks of epidemic diseases with high mortality. In this study, we isolated and identified a novel ranavirus from the Chinese giant salamanders that exhibited systemic hemorrhage and swelling syndrome with high death rate in China during May 2011 to August 2012. The isolate, designated Andrias davidianus ranavirus (ADRV), not only could induce cytopathic effects in different fish cell lines and yield high viral titers, but also caused severely hemorrhagic lesions and resulted in 100% mortality in experimental infections of salamanders. The complete genome of ADRV was sequenced and compared with other sequenced amphibian ranaviruses. Gene content and phylogenetic analyses revealed that ADRV should belong to an amphibian subgroup in genus Ranavirus, and is more closely related to frog ranaviruses than to other salamander ranaviruses. Homologous gene comparisons show that ADRV contains 99%, 97%, 94%, 93% and 85% homologues in RGV, FV3, CMTV, TFV and ATV genomes respectively. In addition, several variable major genes, such as duplicate US22 family-like genes, viral eukaryotic translation initiation factor 2 alpha gene and novel 75L gene with both motifs of nuclear localization signal (NLS) and nuclear export signal (NES), were predicted to contribute to pathogen virulence and host susceptibility. These findings confirm the etiologic role of ADRV in epidemic diseases of Chinese giant salamanders, and broaden our understanding of evolutionary emergence of ranaviruses. PMID:24143877

  3. Cure for thalassemia major – from allogeneic hematopoietic stem cell transplantation to gene therapy

    PubMed Central

    Srivastava, Alok; Shaji, Ramachandran V.

    2017-01-01

    Allogeneic hematopoietic stem cell transplantation has been well established for several decades as gene replacement therapy for patients with thalassemia major, and now offers very high rates of cure for patients who have access to this therapy. Outcomes have improved tremendously over the last decade, even in high-risk patients. The limited data available suggests that the long-term outcome is also excellent, with a >90% survival rate, but for the best results, hematopoietic stem cell transplantation should be offered early, before any end organ damage occurs. However, access to this therapy is limited in more than half the patients by the lack of suitable donors. Inadequate hematopoietic stem cell transplantation services and the high cost of therapy are other reasons for this limited access, particularly in those parts of the world which have a high prevalence of this condition. As a result, fewer than 10% of eligible patients are actually able to avail of this therapy. Other options for curative therapies are therefore needed. Recently, gene correction of autologous hematopoietic stem cells has been successfully established using lentiviral vectors, and several clinical trials have been initiated. A gene editing approach to correct the β-globin mutation or disrupt the BCL11A gene to increase fetal hemoglobin production has also been reported, and is expected to be introduced in clinical trials soon. Curative possibilities for the major hemoglobin disorders are expanding. Providing access to these therapies around the world will remain a challenge. PMID:27909215

  4. Associations between malaria and MHC genes in a migratory songbird

    PubMed Central

    Westerdahl, Helena; Waldenström, Jonas; Hansson, Bengt; Hasselquist, Dennis; von Schantz, Torbjörn; Bensch, Staffan

    2005-01-01

    Malaria parasites are a widespread and species-rich group infecting many wild populations of mammals, birds and reptiles. Studies on humans have demonstrated that genetic factors play a key role in the susceptibility and outcome of malaria infections. Until the present study, it has not been examined whether genetic variation in hosts is important for the outcome of malaria infections in natural avian populations. We investigated associations between major histocompatibility complex (MHC) genes and prevalence of three different avian malaria parasites (Haemoproteus payevskyi (GRW1), Plasmodium sp. (GRW2) and Plasmodium sp. (GRW4)) in a long-term study of great reed warblers Acrocephalus arundinaceus. We hypothesized that the MHC genes could either give full protection against a malaria infection, or confer protection against lethal malaria and direct the infection towards being milder. We found a positive association between numbers of MHC class I alleles (a measure of level of heterozygosity) and prevalence of the GRW2 parasite, suggesting the latter scenario. There was also a positive association between a specific MHC allele (B4b), previously shown to be under frequency-dependent selection in the study population, and prevalence of GRW2. These associations suggest that individuals carrying either a large number of MHC alleles or a specific MHC allele are protected against lethal malaria infections. PMID:16011927

  5. Associations between malaria and MHC genes in a migratory songbird.

    PubMed

    Westerdahl, Helena; Waldenström, Jonas; Hansson, Bengt; Hasselquist, Dennis; von Schantz, Torbjörn; Bensch, Staffan

    2005-07-22

    Malaria parasites are a widespread and species-rich group infecting many wild populations of mammals, birds and reptiles. Studies on humans have demonstrated that genetic factors play a key role in the susceptibility and outcome of malaria infections. Until the present study, it has not been examined whether genetic variation in hosts is important for the outcome of malaria infections in natural avian populations. We investigated associations between major histocompatibility complex (MHC) genes and prevalence of three different avian malaria parasites (Haemoproteus payevskyi (GRW1), Plasmodium sp. (GRW2) and Plasmodium sp. (GRW4)) in a long-term study of great reed warblers Acrocephalus arundinaceus. We hypothesized that the MHC genes could either give full protection against a malaria infection, or confer protection against lethal malaria and direct the infection towards being milder. We found a positive association between numbers of MHC class I alleles (a measure of level of heterozygosity) and prevalence of the GRW2 parasite, suggesting the latter scenario. There was also a positive association between a specific MHC allele (B4b), previously shown to be under frequency-dependent selection in the study population, and prevalence of GRW2. These associations suggest that individuals carrying either a large number of MHC alleles or a specific MHC allele are protected against lethal malaria infections.

  6. Epidemiology and gene markers of ulcerative colitis in the Chinese

    PubMed Central

    Yun, Jun; Xu, Chang-Tai; Pan, Bo-Rong

    2009-01-01

    Inflammatory bowel disease (IBD) includes two similar yet distinct conditions called ulcerative colitis (UC) and Crohn's disease (CD). These diseases affect the digestive system and cause the inflammation of intestinal tissue, form sores and bleed easily. Most children with IBD are diagnosed in late childhood and adolescence. However, both UC and CD have been reported as early as in infancy. Most information pertaining to the epidemiology of IBD is based upon adult studies. Symptoms include abdominal pain, cramping, fatigue and diarrhea. Genetic factors play a significant role in determining IBD susceptibility. Epidemiological data support a genetic contribution to the pathogenesis of IBD. Recently, numerous new genes have been identified as being involved in the genetic susceptibility to IBD: TNF-308A, CARD15 (NOD2), MIF-173, N-acetyltransferase 2 (NAT2), NKG2D (natural killer cell 2D), STAT6 (signal transducer and activator of transcription 6), CTLA-4 (cytotoxic T lymphocyte antigen-4), MICA-MICB (major histocompatibility complex A and B), HLA-DRB1, HLA class-II, IL-18, IL-4, MICA-A5, CD14, TLR4, Fas-670, p53 and NF-κB. The characterization of these novel genes has the potential to identify therapeutic agents and aid clinical assessment of phenotype and prognosis in patients with IBD (UC and CD). PMID:19230040

  7. Positive selection on MHC class II DRB and DQB genes in the bank vole (Myodes glareolus).

    PubMed

    Scherman, Kristin; Råberg, Lars; Westerdahl, Helena

    2014-05-01

    The major histocompatibility complex (MHC) class IIB genes show considerable sequence similarity between loci. The MHC class II DQB and DRB genes are known to exhibit a high level of polymorphism, most likely maintained by parasite-mediated selection. Studies of the MHC in wild rodents have focused on DRB, whilst DQB has been given much less attention. Here, we characterised DQB genes in Swedish bank voles Myodes glareolus, using full-length transcripts. We then designed primers that specifically amplify exon 2 from DRB (202 bp) and DQB (205 bp) and investigated molecular signatures of natural selection on DRB and DQB alleles. The presence of two separate gene clusters was confirmed using BLASTN and phylogenetic analysis, where our seven transcripts clustered according to either DQB or DRB homologues. These gene clusters were again confirmed on exon 2 data from 454-amplicon sequencing. Our DRB primers amplify a similar number of alleles per individual as previously published DRB primers, though our reads are longer. Traditional d N/d S analyses of DRB sequences in the bank vole have not found a conclusive signal of positive selection. Using a more advanced substitution model (the Kumar method) we found positive selection in the peptide binding region (PBR) of both DRB and DQB genes. Maximum likelihood models of codon substitutions detected positively selected sites located in the PBR of both DQB and DRB. Interestingly, these analyses detected at least twice as many positively selected sites in DQB than DRB, suggesting that DQB has been under stronger positive selection than DRB over evolutionary time.

  8. Differential Expression of CHL1 Gene during Development of Major Human Cancers

    PubMed Central

    Senchenko, Vera N.; Krasnov, George S.; Dmitriev, Alexey A.; Kudryavtseva, Anna V.; Anedchenko, Ekaterina A.; Braga, Eleonora A.; Pronina, Irina V.; Kondratieva, Tatiana T.; Ivanov, Sergey V.; Zabarovsky, Eugene R.; Lerman, Michael I.

    2011-01-01

    Background CHL1 gene (also known as CALL) on 3p26.3 encodes a one-pass trans-membrane cell adhesion molecule (CAM). Previously CAMs of this type, including L1, were shown to be involved in cancer growth and metastasis. Methodology/Principal Findings We used Clontech Cancer Profiling Arrays (19 different types of cancers, 395 samples) to analyze expression of the CHL1 gene. The results were further validated by RT-qPCR for breast, renal and lung cancer. Cancer Profiling Arrays revealed differential expression of the gene: down-regulation/silencing in a majority of primary tumors and up-regulation associated with invasive/metastatic growth. Frequent down-regulation (>40% of cases) was detected in 11 types of cancer (breast, kidney, rectum, colon, thyroid, stomach, skin, small intestine, bladder, vulva and pancreatic cancer) and frequent up-regulation (>40% of cases) – in 5 types (lung, ovary, uterus, liver and trachea) of cancer. Using real-time quantitative PCR (RT-qPCR) we found that CHL1 expression was decreased in 61% of breast, 60% of lung, 87% of clear cell and 89% papillary renal cancer specimens (P<0.03 for all the cases). There was a higher frequency of CHL1 mRNA decrease in lung squamous cell carcinoma compared to adenocarcinoma (81% vs. 38%, P = 0.02) without association with tumor progression. Conclusions/Significance Our results suggested that CHL1 is involved in the development of different human cancers. Initially, during the primary tumor growth CHL1 could act as a putative tumor suppressor and is silenced to facilitate in situ tumor growth for 11 cancer types. We also suggested that re-expression of the gene on the edge of tumor mass might promote local invasive growth and enable further metastatic spread in ovary, colon and breast cancer. Our data also supported the role of CHL1 as a potentially novel specific biomarker in the early pathogenesis of two major histological types of renal cancer. PMID:21408220

  9. Inactivation of the Major Hemolysin Gene Influences Expression of the Nonribosomal Peptide Synthetase Gene swrA in the Insect Pathogen Serratia sp. Strain SCBI

    PubMed Central

    Petersen, Lauren M.; LaCourse, Kaitlyn; Schöner, Tim A.; Bode, Helge

    2017-01-01

    ABSTRACT Hemolysins are important virulence factors for many bacterial pathogens, including Serratia marcescens. The role of the major hemolysin gene in the insect pathogen Serratia sp. strain SCBI was investigated using both forward and reverse-genetics approaches. Introduction of the major hemolysin gene into Escherichia coli resulted in a gain of both virulence and hemolytic activity. Inactivation of this hemolysin in Serratia sp. SCBI resulted in a loss of hemolysis but did not attenuate insecticidal activity. Unexpectedly, inactivation of the hemolysin gene in Serratia sp. SCBI resulted in significantly increased motility and increased antimicrobial activity. Reverse transcription-quantitative PCR (qRT-PCR) analysis of mutants with a disrupted hemolysin gene showed a dramatic increase in mRNA levels of a nonribosomal peptide synthetase gene, swrA, which produces the surfactant serrawettin W2. Mutation of the swrA gene in Serratia sp. SCBI resulted in highly varied antibiotic activity, motility, virulence, and hemolysis phenotypes that were dependent on the site of disruption within this 17.75-kb gene. When introduced into E. coli, swrA increases rates of motility and confers antimicrobial activity. While it is unclear how inactivation of the major hemolysin gene influences the expression of swrA, these results suggest that swrA plays an important role in motility and antimicrobial activity in Serratia sp. SCBI. IMPORTANCE The opportunistic Gram-negative bacteria of the genus Serratia are widespread in the environment and can cause human illness. A comparative genomics analysis between Serratia marcescens and a new Serratia species from South Africa, termed Serratia sp. strain SCBI, shows that these two organisms are closely related but differ in pathogenesis. S. marcescens kills Caenorhabditis nematodes, while Serratia sp. SCBI is not harmful and forms a beneficial association with them. This distinction presented the opportunity to investigate potential

  10. Inactivation of the Major Hemolysin Gene Influences Expression of the Nonribosomal Peptide Synthetase Gene swrA in the Insect Pathogen Serratia sp. Strain SCBI.

    PubMed

    Petersen, Lauren M; LaCourse, Kaitlyn; Schöner, Tim A; Bode, Helge; Tisa, Louis S

    2017-11-01

    Hemolysins are important virulence factors for many bacterial pathogens, including Serratia marcescens The role of the major hemolysin gene in the insect pathogen Serratia sp. strain SCBI was investigated using both forward and reverse-genetics approaches. Introduction of the major hemolysin gene into Escherichia coli resulted in a gain of both virulence and hemolytic activity. Inactivation of this hemolysin in Serratia sp. SCBI resulted in a loss of hemolysis but did not attenuate insecticidal activity. Unexpectedly, inactivation of the hemolysin gene in Serratia sp. SCBI resulted in significantly increased motility and increased antimicrobial activity. Reverse transcription-quantitative PCR (qRT-PCR) analysis of mutants with a disrupted hemolysin gene showed a dramatic increase in mRNA levels of a nonribosomal peptide synthetase gene, swrA , which produces the surfactant serrawettin W2. Mutation of the swrA gene in Serratia sp. SCBI resulted in highly varied antibiotic activity, motility, virulence, and hemolysis phenotypes that were dependent on the site of disruption within this 17.75-kb gene. When introduced into E. coli , swrA increases rates of motility and confers antimicrobial activity. While it is unclear how inactivation of the major hemolysin gene influences the expression of swrA , these results suggest that swrA plays an important role in motility and antimicrobial activity in Serratia sp. SCBI. IMPORTANCE The opportunistic Gram-negative bacteria of the genus Serratia are widespread in the environment and can cause human illness. A comparative genomics analysis between Serratia marcescens and a new Serratia species from South Africa, termed Serratia sp. strain SCBI, shows that these two organisms are closely related but differ in pathogenesis. S. marcescens kills Caenorhabditis nematodes, while Serratia sp. SCBI is not harmful and forms a beneficial association with them. This distinction presented the opportunity to investigate potential differences

  11. Chitosan nanoparticle-based delivery of fused NKG2D–IL-21 gene suppresses colon cancer growth in mice

    PubMed Central

    Tan, Lunmei; Han, Sen; Ding, Shizhen; Xiao, Weiming; Ding, Yanbing; Qian, Li; Wang, Chenming; Gong, Weijuan

    2017-01-01

    Nanoparticles can be loaded with exogenous DNA for the potential expression of cytokines with immune-stimulatory function. NKG2D identifies major histocompatibility complex class I chain-related protein in human and retinoic acid early induced transcript-1 in mouse, which acts as tumor-associated antigens. Biologic agents based on interleukin 21 (IL-21) have displayed antitumor activities through lymphocyte activation. The NKG2D–IL-21 fusion protein theoretically identifies tumor cells through NKG2D moiety and activates T cells through IL-21 moiety. In this study, double-gene fragments that encode the extracellular domains of NKG2D and IL-21 genes were connected and then inserted into the pcDNA3.1(−) plasmid. PcDNA3.1–dsNKG2D–IL-21 plasmid nanoparticles based on chitosan were generated. Tumor cells pretransfected with dsNKG2D–IL-21 gene nanoparticles can activate natural killer (NK) and CD8+ T cells in vitro. Serum IL-21 levels were enhanced in mice intramuscularly injected with the gene nanoparticles. DsNKG2D–IL-21 gene nanoparticles accumulated in tumor tissues after being intravenously injected for ~4–24 h. Treatment of dsNKG2D–IL-21 gene nanoparticles also retarded tumor growth and elongated the life span of tumor-bearing mice by activating NK and T cells in vivo. Thus, the dsNKG2D–IL-21 gene nanoparticles exerted efficient antitumor activities and would be potentially used for tumor therapy. PMID:28450784

  12. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in 'Thatcher' Wheat.

    PubMed

    Hiebert, Colin W; Kolmer, James A; McCartney, Curt A; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. 'Thatcher' wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in 'Thatcher' and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for 'Thatcher'-derived APR in several environments and this resistance was enhanced in the presence of Lr34.

  13. Gene expression deficits in pontine locus coeruleus astrocytes in men with major depressive disorder.

    PubMed

    Chandley, Michelle J; Szebeni, Katalin; Szebeni, Attila; Crawford, Jessica; Stockmeier, Craig A; Turecki, Gustavo; Miguel-Hidalgo, Jose Javier; Ordway, Gregory A

    2013-07-01

    Norepinephrine and glutamate are among several neurotransmitters implicated in the neuropathology of major depressive disorder (MDD). Glia deficits have also been demonstrated in people with MDD, and glia are critical modulators of central glutamatergic transmission. We studied glia in men with MDD in the region of the brain (locus coeruleus; LC) where noradrenergic neuronal cell bodies reside and receive glutamatergic input. The expression of 3 glutamate-related genes (SLC1A3, SLC1A2, GLUL) concentrated in glia and a glia gene (GFAP) were measured in postmortem tissues from men with MDD and from paired psychiatrically healthy controls. Initial gene expression analysis of RNA isolated from homogenized tissue (n = 9-10 pairs) containing the LC were followed by detailed analysis of gene expressions in astrocytes and oligodendrocytes (n = 6-7 pairs) laser captured from the LC region. We assessed protein changes in GFAP using immunohistochemistry and immunoblotting (n = 7-14 pairs). Astrocytes, but not oligodendrocytes, demonstrated robust reductions in the expression of SLC1A3 and SLC1A2, whereas GLUL expression was unchanged. GFAP expression was lower in astrocytes, and we confirmed reduced GFAP protein in the LC using immunostaining methods. Reduced expression of protein products of SLC1A3 and SLC1A2 could not be confirmed because of insufficient amounts of LC tissue for these assays. Whether gene expression abnormalities were associated with only MDD and not with suicide could not be confirmed because most of the decedents who had MDD died by suicide. Major depressive disorder is associated with unhealthy astrocytes in the noradrenergic LC, characterized here by a reduction in astrocyte glutamate transporter expression. These findings suggest that increased glutamatergic activity in the LC occurs in men with MDD.

  14. Integrative mouse and human mRNA studies using WGCNA nominates novel candidate genes involved in the pathogenesis of major depressive disorder.

    PubMed

    Malki, Karim; Tosto, Maria Grazia; Jumabhoy, Irfan; Lourdusamy, Anbarasu; Sluyter, Frans; Craig, Ian; Uher, Rudolf; McGuffin, Peter; Schalkwyk, Leonard C

    2013-12-01

    This study aims to identify novel genes associated with major depressive disorder and pharmacological treatment response using animal and human mRNA studies. Weighted gene coexpression network analysis was used to uncover genes associated with stress factors in mice and to inform mRNA probe set selection in a post-mortem study of depression. A total of 171 genes were found to be differentially regulated in response to both early and late stress protocols in a mouse study. Ten human genes, orthologous to mouse genes differentially expressed by stress, were also found to be dysregulated in depressed cases in a human post-mortem brain study from the Stanley Foundation Brain Collection. Several novel genes associated with depression were uncovered, including NOVA1 and USP9X. Moreover, we found further evidence in support of hippocampal neurogenesis and peripheral inflammation in major depressive disorder.

  15. MYD88 and functionally related genes are associated with multiple infections in a model population of Kenyan village dogs.

    PubMed

    Necesankova, Michaela; Vychodilova, Leona; Albrechtova, Katerina; Kennedy, Lorna J; Hlavac, Jan; Sedlak, Kamil; Modry, David; Janova, Eva; Vyskocil, Mirko; Horin, Petr

    2016-12-01

    The purpose of this study was to seek associations between immunity-related molecular markers and endemic infections in a model population of African village dogs from Northern Kenya with no veterinary care and no selective breeding. A population of village dogs from Northern Kenya composed of three sub-populations from three different areas (84, 50 and 55 dogs) was studied. Canine distemper virus (CDV), Hepatozoon canis, Microfilariae (Acantocheilonema dracunculoides, Acantocheilonema reconditum) and Neospora caninum were the pathogens studied. The presence of antibodies (CDV, Neospora), light microscopy (Hepatozoon) and diagnostic PCR (Microfilariae) were the methods used for diagnosing infection. Genes involved in innate immune mechanisms, NOS3, IL6, TLR1, TLR2, TLR4, TLR7, TLR9, LY96, MYD88, and three major histocompatibility genes class II genes were selected as candidates. Single nucleotide polymorphism (SNP) markers were detected by Sanger sequencing, next generation sequencing and PCR-RFLP. The Fisher´s exact test for additive and non-additive models was used for association analyses. Three SNPs within the MYD88 gene and one TLR4 SNP marker were associated with more than one infection. Combined genotypes and further markers identified by next generation sequencing confirmed associations observed for individual genes. The genes associated with infection and their combinations in specific genotypes match well our knowledge on their biological role and on the role of the relevant biological pathways, respectively. Associations with multiple infections observed between the MYD88 and TLR4 genes suggest their involvement in the mechanisms of anti-infectious defenses in dogs.

  16. The minor histocompatibility antigen HA-3 arises from differential proteasome-mediated cleavage of the lymphoid blast crisis (Lbc) oncoprotein.

    PubMed

    Spierings, Eric; Brickner, Anthony G; Caldwell, Jennifer A; Zegveld, Suzanne; Tatsis, Nia; Blokland, Els; Pool, Jos; Pierce, Richard A; Mollah, Sahana; Shabanowitz, Jeffrey; Eisenlohr, Laurence C; van Veelen, Peter; Ossendorp, Ferry; Hunt, Donald F; Goulmy, Els; Engelhard, Victor H

    2003-07-15

    Minor histocompatibility (H) antigens crucially affect the outcome of human leukocyte antigen (HLA)-identical allogeneic stem cell transplantation (SCT). To understand the basis of alloimmune responses against minor H antigens, identification of minor H peptides and their antigenicity-determining mechanisms is essential. Here we report the identification of HA-3 and its encoding gene. The HA-3 peptide, VTEPGTAQY (HA-3T), is encoded by the lymphoid blast crisis (Lbc) oncogene. We thus show for the first time that a leukemia-associated oncogene can give rise to immunogenic T-cell epitopes that may have participated in antihost and antileukemic alloimmune responses. Genotypic analysis of HA-3- individuals revealed the allelic counterpart VMEPGTAQY (HA-3M). Despite the lack of T-cell recognition of HA-3- cells, the Thr-->Met substitution had only a modest effect on peptide binding to HLA-A1 and a minimal impact on recognition by T cells when added exogenously to target cells. This substitution did not influence transporter associated with antigen processing (TAP) transport, but, in contrast to the HA-3T peptide, HA-3M is destroyed by proteasome-mediated digestion. Thus, the immunogenicity of minor H antigens can result from proteasome-mediated destruction of the negative allelic peptide.

  17. Identification of ALK as the Major Familial Neuroblastoma Predisposition Gene

    PubMed Central

    Mossë, Yalë P; Laudenslager, Marci; Longo, Luca; Cole, Kristina A; Wood, Andrew; Attiyeh, Edward F; Laquaglia, Michael J; Sennett, Rachel; Lynch, Jill E; Perri, Patrizia; Laureys, Geneviève; Speleman, Frank; Hakonarson, Hakon; Torkamani, Ali; Schork, Nicholas J; Brodeur, Garrett M; Tonini, Gian Paolo; Rappaport, Eric; Devoto, Marcella; Maris, John M

    2009-01-01

    SUMMARY Survival rates for the childhood cancer neuroblastoma have not substantively improved despite dramatic escalation in chemotherapy intensity. Like most human cancers, this embryonal malignancy can be inherited, but the genetic etiology of familial and sporadically occurring neuroblastoma was largely unknown. Here we show that germline mutations in the anaplastic lymphoma kinase gene (ALK) explain the majority of hereditary neuroblastomas, and that activating mutations can also be somatically acquired. We first identified a significant linkage signal at the short arm of chromosome 2 (maximum nonparametric LOD=4.23 at rs1344063) using a whole-genome scan in neuroblastoma pedigrees. Resequencing of regional candidate genes identified three separate missense mutations in the tyrosine kinase domain of ALK (G1128A, R1192P and R1275Q) that segregated with the disease in eight separate families. Examination of 491 sporadically occurring human neuroblastoma samples showed that the ALK locus was gained in 22.8%, and highly amplified in an additional 3.3%, and that these aberrations were highly associated with death from disease (P=0.0003). Resequencing of 194 high-risk neuroblastoma samples showed somatically acquired mutations within the tyrosine kinase domain in 12.4%. Nine of the ten mutations map to critical regions of the kinase domain and were predicted to be oncogenic drivers with high probability. Mutations resulted in constitutive phosphorylation consistent with activation, and targeted knockdown of ALK mRNA resulted in profound growth inhibition of 4 of 4 cell lines harboring mutant or amplified ALK, as well as 2 of 6 wild type for ALK. Our results demonstrate that heritable mutations of ALK are the major cause of familial neuroblastoma, and that germline or acquired activation of this cell surface kinase is a tractable therapeutic target for this lethal pediatric malignancy. PMID:18724359

  18. Diversity in the Toll-Like Receptor Genes of the African Penguin (Spheniscus demersus).

    PubMed

    Dalton, Desiré Lee; Vermaak, Elaine; Roelofse, Marli; Kotze, Antoinette

    2016-01-01

    The African penguin, Spheniscus demersus, is listed as Endangered by the IUCN Red List of Threatened Species due to the drastic reduction in population numbers over the last 20 years. To date, the only studies on immunogenetic variation in penguins have been conducted on the major histocompatibility complex (MHC) genes. It was shown in humans that up to half of the genetic variability in immune responses to pathogens are located in non-MHC genes. Toll-like receptors (TLRs) are now increasingly being studied in a variety of taxa as a broader approach to determine functional genetic diversity. In this study, we confirm low genetic diversity in the innate immune region of African penguins similar to that observed in New Zealand robin that has undergone several severe population bottlenecks. Single nucleotide polymorphism (SNP) diversity across TLRs varied between ex situ and in situ penguins with the number of non-synonymous alterations in ex situ populations (n = 14) being reduced in comparison to in situ populations (n = 16). Maintaining adaptive diversity is of vital importance in the assurance populations as these animals may potentially be used in the future for re-introductions. Therefore, this study provides essential data on immune gene diversity in penguins and will assist in providing an additional monitoring tool for African penguin in the wild, as well as to monitor diversity in ex situ populations and to ensure that diversity found in the in situ populations are captured in the assurance populations.

  19. Polymorphism of the serotonin transporter gene (5-HTTLPR) in major depressive disorder patients in Malaysia.

    PubMed

    Mohamed Saini, Suriati; Muhamad Radzi, Azizah; Abdul Rahman, Abdul Hamid

    2012-06-01

    The serotonin transporter promoter (5-HTTLPR) is a potential susceptibility locus in the pathogenesis of major depressive disorder. However, data from Malaysia is lacking. The present study aimed to determine the association between the homozygous short variant of the serotonin transporter promoter gene (5-HTTLPR) with major depressive disorder. This is a candidate gene case-control association study. The sample consists of 55 major depressive disorder probands and 66 controls. They were Malaysian descents and were unrelated. The Axis I diagnosis was determined using Mini International Neuropsychiatric Interview (M.I.N.I.). The control group comprised healthy volunteers without personal psychiatric history and family history of mood disorders. Participants' blood was sent to the Institute Medical Research for genotyping. The present study failed to detect an association between 5-HTTLPR ss genotype with major depressive disorder (χ(2)  = 3.67, d.f. = 1, P = 0.055, odds ratio 0.25, 95% confidence interval = 0.07-1.94). Sub-analysis revealed that the frequency of l allele in healthy controls was higher (78.0%) than that of Caucasian and East Asian population. However, in view of the small sample size this study may be prone to type II error (and type I error). This preliminary study suggests that the homozygous short variant of the 5-HTTLPR did not appear to be a risk factor for increasing susceptibility to major depressive disorder. Copyright © 2012 Blackwell Publishing Asia Pty Ltd.

  20. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.

    PubMed

    Hattotuwagama, Channa K; Doytchinova, Irini A; Flower, Darren R

    2007-01-01

    Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method

  1. The Role of HLA Class I Gene Variation in Autoimmune Diabetes

    PubMed Central

    Sia, Charles; Weinem, Michael

    2005-01-01

    The use of DNA-based genetic typing has enabled the identification of type 1 diabetes mellitus (T1DM) susceptible and protective major histocompatibility complex (MHC) class II alleles and haplotypes. The application of this approach has also progressed to locate MHC class I alleles that contribute to the clinicopathology of T1DM. Recent studies have shown a widespread involvement of genes from the MHC class I gene region in the clinicopathology of T1DM. These genes are shown to be involved in contributing to progression from the preclinical stage of the disease, which is characterized by the occurrence of islet-specific antibodies, to clinical disease and also to the occurrence of autoimmunity. They can either contribute directly to disease development or indirectly in concert with other susceptible MHC class II alleles or haplotypes via linkage disequilibrium. Class I alleles may also be negatively associated with T1DM. These findings are useful for the development of future strategies in designing tolerogenic approaches for the prevention or even reversal of T1DM. In this article, the latest evidence for the different kinds of participation of HLA class I genes in the etiology of T1DM is reviewed. A meta-analysis which included existing association studies was also carried out in order to re-assess the relevance of class I genes in diabetes development. The analysis of an enlarged heterogeneous sample confirmed the involvement of previously detected serotypes in the etiology of T1DM, such as A24, B8 and B18, and revealed hitherto unknown associations with B60 and B62. The analysis points out that much of the conflicting results of previous association studies originate from inadequate sample sizes and accentuate the value of future investigations of larger samples for identifying linkage in multigenic diseases. PMID:17491685

  2. Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness.

    PubMed

    Fonseca, Larissa Fernanda Simielli; Gimenez, Daniele Fernanda Jovino; Dos Santos Silva, Danielly Beraldo; Barthelson, Roger; Baldi, Fernando; Ferro, Jesus Aparecido; Albuquerque, Lucia Galvão

    2017-12-04

    Meat tenderness is the consumer's most preferred sensory attribute. This trait is affected by a number of factors, including genotype, age, animal sex, and pre- and post-slaughter management. In view of the high percentage of Zebu genes in the Brazilian cattle population, mainly Nellore cattle, the improvement of meat tenderness is important since the increasing proportion of Zebu genes in the population reduces meat tenderness. However, the measurement of this trait is difficult once it can only be made after animal slaughtering. New technologies such as RNA-Seq have been used to increase our understanding of the genetic processes regulating quantitative traits phenotypes. The objective of this study was to identify differentially expressed genes related to meat tenderness, in Nellore cattle in order to elucidate the genetic factors associated with meat quality. Samples were collected 24 h postmortem and the meat was not aged. We found 40 differentially expressed genes related to meat tenderness, 17 with known functions. Fourteen genes were up-regulated and 3 were down-regulated in the tender meat group. Genes related to ubiquitin metabolism, transport of molecules such as calcium and oxygen, acid-base balance, collagen production, actin, myosin, and fat were identified. The PCP4L1 (Purkinje cell protein 4 like 1) and BoLA-DQB (major histocompatibility complex, class II, DQ beta) genes were validated by qRT-PCR. The results showed relative expression values similar to those obtained by RNA-Seq, with the same direction of expression (i.e., the two techniques revealed higher expression of PCP4L1 in tender meat samples and of BoLA-DQB in tough meat samples). This study revealed the differential expression of genes and functions in Nellore cattle muscle tissue, which may contain potential biomarkers involved in meat tenderness.

  3. Adaptive major histocompatibility complex (MHC) and neutral genetic variation in two native Baltic Sea fishes (perch Perca fluviatilis and zander Sander lucioperca) with comparisons to an introduced and disease susceptible population in Australia (P. fluviatilis): assessing the risk of disease epidemics.

    PubMed

    Faulks, L K; Östman, Ö

    2016-04-01

    This study assessed the major histocompatibility complex (MHC) and neutral genetic variation and structure in two percid species, perch Perca fluviatilis and zander Sander lucioperca, in a unique brackish ecosystem, the Baltic Sea. In addition, to assess the importance of MHC diversity to disease susceptibility in these populations, comparisons were made to an introduced, disease susceptible, P. fluviatilis population in Australia. Eighty-three MHC class II B exon 2 variants were amplified: 71 variants from 92 P. fluviatilis samples, and 12 variants from 82 S. lucioperca samples. Microsatellite and MHC data revealed strong spatial genetic structure in S. lucioperca, but not P. fluviatilis, across the Baltic Sea. Both microsatellite and MHC data showed higher levels of genetic diversity in P. fluviatilis from the Baltic Sea compared to Australia, which may have facilitated the spread of an endemic virus, EHNV in the Australian population. The relatively high levels of genetic variation in the Baltic Sea populations, together with spatial genetic structure, however, suggest that there currently seems to be little risk of disease epidemics in this system. To ensure this remains the case in the face of ongoing environmental changes, fisheries and habitat disturbance, the conservation of local-scale genetic variation is recommended. © 2016 The Fisheries Society of the British Isles.

  4. Mouse HLA-DPA homologue H2-Pa: A pseudogene that maps between H2-Pb and H2-Oa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arimura, Y.; Koda, T.; Kishi, M.

    1996-12-31

    The major histocompatibility complex (MHC) class II subregion contains several subclasses of genes. The classical class II genes, HLA-DP, DQ, and DR homologues, present antigens directly to CD4{sup +} T cells. HLA-DM homologues facilitate the efficacy and transport of antigens to the cell surface by removing the CLIP peptides from the classical class II molecules. HLA-DNA/DOB homologues show unusual expression patterns and limited polymorphism, but their function is yet to be elucidated. 15 refs., 2 figs.

  5. High-resolution phylogenetic analysis of southeastern Europe traces major episodes of paternal gene flow among Slavic populations.

    PubMed

    Pericić, Marijana; Lauc, Lovorka Barać; Klarić, Irena Martinović; Rootsi, Siiri; Janićijevic, Branka; Rudan, Igor; Terzić, Rifet; Colak, Ivanka; Kvesić, Ante; Popović, Dan; Sijacki, Ana; Behluli, Ibrahim; Dordevic, Dobrivoje; Efremovska, Ljudmila; Bajec, Dorde D; Stefanović, Branislav D; Villems, Richard; Rudan, Pavao

    2005-10-01

    The extent and nature of southeastern Europe (SEE) paternal genetic contribution to the European genetic landscape were explored based on a high-resolution Y chromosome analysis involving 681 males from seven populations in the region. Paternal lineages present in SEE were compared with previously published data from 81 western Eurasian populations and 5,017 Y chromosome samples. The finding that five major haplogroups (E3b1, I1b* (xM26), J2, R1a, and R1b) comprise more than 70% of SEE total genetic variation is consistent with the typical European Y chromosome gene pool. However, distribution of major Y chromosomal lineages and estimated expansion signals clarify the specific role of this region in structuring of European, and particularly Slavic, paternal genetic heritage. Contemporary Slavic paternal gene pool, mostly characterized by the predominance of R1a and I1b* (xM26) and scarcity of E3b1 lineages, is a result of two major prehistoric gene flows with opposite directions: the post-Last Glacial Maximum R1a expansion from east to west, the Younger Dryas-Holocene I1b* (xM26) diffusion out of SEE in addition to subsequent R1a and I1b* (xM26) putative gene flows between eastern Europe and SEE, and a rather weak extent of E3b1 diffusion toward regions nowadays occupied by Slavic-speaking populations.

  6. Associations between gastric dilatation-volvulus in Great Danes and specific alleles of the canine immune-system genes DLA88, DRB1, and TLR5.

    PubMed

    Harkey, Michael A; Villagran, Alexandra M; Venkataraman, Gopalakrishnan M; Leisenring, Wendy M; Hullar, Meredith A J; Torok-Storb, Beverly J

    2017-08-01

    OBJECTIVE To determine whether specific alleles of candidate genes of the major histocompatibility complex (MHC) and innate immune system were associated with gastric dilatation-volvulus (GDV) in Great Danes. ANIMALS 42 healthy Great Danes (control group) and 39 Great Danes with ≥ 1 GDV episode. PROCEDURES Variable regions of the 2 most polymorphic MHC genes (DLA88 and DRB1) were amplified and sequenced from the dogs in each group. Similarly, regions of 3 genes associated with the innate immune system (TLR5, NOD2, and ATG16L1), which have been linked to inflammatory bowel disease, were amplified and sequenced. Alleles were evaluated for associations with GDV, controlling for age and dog family. RESULTS Specific alleles of genes DLA88, DRB1, and TLR5 were significantly associated with GDV. One allele of each gene had an OR > 2 in the unadjusted univariate analyses and retained a hazard ratio > 2 after controlling for temperament, age, and familial association in the multivariate analysis. CONCLUSIONS AND CLINICAL RELEVANCE The 3 GDV-associated alleles identified in this study may serve as diagnostic markers for identification of Great Danes at risk for GDV. Additional research is needed to determine whether other dog breeds have the same genetic associations. These findings also provided a new target for research into the etiology of, and potential treatments for, GDV in dogs.

  7. Evidence of a major gene influencing hair length and heat tolerance in Bos taurus cattle.

    PubMed

    Olson, T A; Lucena, C; Chase, C C; Hammond, A C

    2003-01-01

    Evidence was found that supports the existence of a major gene (designated as the slick hair gene), dominant in mode of inheritance, that is responsible for producing a very short, sleek hair coat. Cattle with slick hair were observed to maintain lower rectal temperatures (RT). The gene is found in Senepol cattle and criollo (Spanish origin) breeds in Central and South America. This gene is also found in a Venezuelan composite breed, the Carora, formed from the Brown Swiss and a Venezuelan criollo breed. Two sets of backcross matings of normal-haired sire breeds to Senepol crossbred dams assumed to be heterozygous for the slick hair gene resulted in ratios of slick to normal-haired progeny that did not significantly differ from 1:1. Data from Carora x Holstein crossbred cows in Venezuela also support the concept of a major gene that is responsible for the slick hair coat of the Carora breed. Cows that were 75% Holstein: 25% Carora in breed composition segregated with a ratio that did not differ from 1:1, as would be expected from a backcross matinginvolving a dominant gene. The effect of the slick hair gene on RT depended on the degree of heat stress and appeared to be affected by age and/or lactation status. The decreased RT observed for slick-haired crossbred calves compared to normal-haired contemporaries ranged from 0.18 to 0.4 degrees C. An even larger decrease in RT (0.61 degrees C; P < 0.01) was observed in lactating Carora x Holstein F1 crossbred cows, even though it did not appear that these cows were under severe heat stress. The improved thermotolerance of crossbred calves due to their slick hair coats did not result in increased weaning weights, possibly because both the slick and normal-haired calves were being nursed by slick-haired dams. There were indications that the slick-haired calves grew faster immediately following weaning and that their growth during the cooler months of the year was not compromised significantly by their reduced quantity of

  8. Evidence of a Major Gene From Bayesian Segregation Analyses of Liability to Osteochondral Diseases in Pigs

    PubMed Central

    Kadarmideen, Haja N.; Janss, Luc L. G.

    2005-01-01

    Bayesian segregation analyses were used to investigate the mode of inheritance of osteochondral lesions (osteochondrosis, OC) in pigs. Data consisted of 1163 animals with OC and their pedigrees included 2891 animals. Mixed-inheritance threshold models (MITM) and several variants of MITM, in conjunction with Markov chain Monte Carlo methods, were developed for the analysis of these (categorical) data. Results showed major genes with significant and substantially higher variances (range 1.384–37.81), compared to the polygenic variance (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\pagestyle{empty} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{{\\sigma}}}_{{\\mathrm{u}}}^{2}\\end{equation*}\\end{document}). Consequently, heritabilities for a mixed inheritance (range 0.65–0.90) were much higher than the heritabilities from the polygenes. Disease allele frequencies range was 0.38–0.88. Additional analyses estimating the transmission probabilities of the major gene showed clear evidence for Mendelian segregation of a major gene affecting osteochondrosis. The variants, MITM with informative prior on \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\pagestyle{empty} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{{\\sigma}}}_{{\\mathrm{u}}}^{2}\\end{equation*}\\end{document}, showed significant improvement in marginal distributions and accuracy of parameters. MITM with a “reduced polygenic model” for parameterization of polygenic effects avoided convergence problems and poor mixing encountered in an “individual polygenic model.” In all cases, “shrinkage estimators” for fixed effects avoided unidentifiability for these parameters. The mixed

  9. Ex vivo pretreatment of human vessels with siRNA nanoparticles provides protein silencing in endothelial cells.

    PubMed

    Cui, Jiajia; Qin, Lingfeng; Zhang, Junwei; Abrahimi, Parwiz; Li, Hong; Li, Guangxin; Tietjen, Gregory T; Tellides, George; Pober, Jordan S; Mark Saltzman, W

    2017-08-04

    Human endothelial cells are initiators and targets of the rejection response. Pre-operative modification of endothelial cells by small interfering RNA transfection could shape the nature of the host response post-transplantation. Ablation of endothelial cell class II major histocompatibility complex molecules by small interfering RNA targeting of class II transactivator can reduce the capacity of human endothelial cells to recruit and activate alloreactive T cells. Here, we report the development of small interfering RNA-releasing poly(amine-co-ester) nanoparticles, distinguished by their high content of a hydrophobic lactone. We show that a single transfection of small interfering RNA targeting class II transactivator attenuates major histocompatibility complex class II expression on endothelial cells for at least 4 to 6 weeks after transplantation into immunodeficient mouse hosts. Furthermore, silencing of major histocompatibility complex class II reduces allogeneic T-cell responses in vitro and in vivo. These data suggest that poly(amine-co-ester) nanoparticles, potentially administered during ex vivo normothermic machine perfusion of human organs, could be used to modify endothelial cells with a sustained effect after transplantation.The use of gene silencing techniques in the treatment of post-transplantation host rejection is not long lasting and can have systemic effects. Here, the authors utilize a nanocarrier for siRNA for treatment of arteries ex vivo prior to implantation subsequently attenuating immune reaction in vivo.

  10. Phenotypic expression of the HLA-linked iron-loading gene in the Afrikaner population of the western Cape.

    PubMed

    Meyer, T E; Baynes, R D; Bothwell, T H; Jenkins, T; Ballot, D; Jooste, P L; Green, A; Du Toit, E; Jacobs, P

    1988-03-05

    A previous study conducted on a group of Afrikaans-speaking subjects in the south-western Cape indicated a high frequency (0.115) of the HLA-linked iron-loading gene which causes idiopathic haemochromatosis. The results of phenotypic and genotypic studies on the first degree relatives of identified homozygotes and heterozygotes are now reported. There was considerable heterogeneity of phenotypic expression in the group of heterozygotes, with overlap between the homozygous and heterozygous subjects. The heterozygous relatives of heterozygous index cases, who had been identified on the basis of a serum ferritin concentration greater than 400 micrograms/l, appeared to have more frequent and more marked abnormalities of iron measurements than the heterozygote relatives of homozygous index cases (serum ferritin value greater than 400 micrograms/l, percentage transferrin saturation greater than 60). This suggests that the screening test was identifying a group of more significantly affected heterozygotes, with biochemical abnormalities that overlapped with the identified homozygotes. The index cases were followed up over a period of 5 years and during this time the 7 subjects diagnosed as heterozygotes showed a progressive increase in serum ferritin concentrations, which suggests some iron accumulation. Individual pedigrees included instances of gene recombination within the major histocompatibility complex, and of probable false-positive genotype assignment. The overall results confirm a high frequency of the gene in this particular community.

  11. A major gene controls mimicry and crypsis in butterflies and moths

    PubMed Central

    Nadeau, Nicola J.; Pardo-Diaz, Carolina; Whibley, Annabel; Supple, Megan; Saenko, Suzanne V.; Wallbank, Richard W. R.; Wu, Grace C.; Maroja, Luana; Ferguson, Laura; Hanly, Joseph J.; Hines, Heather; Salazar, Camilo; Merrill, Richard; Dowling, Andrea; ffrench-Constant, Richard; Llaurens, Violaine; Joron, Mathieu; McMillan, W. Owen; Jiggins, Chris D.

    2016-01-01

    The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of evolutionary diversification by natural selection1,2. Lepidopteran wing colour patterns are a key innovation, consisting of arrays of coloured scales. We still lack a general understanding of how these patterns are controlled and if there is any commonality across the 160,000 moth and 17,000 butterfly species. Here, we identify a gene, cortex, through fine-scale mapping using population genomics and gene expression analyses, which regulates pattern switches in multiple species across the mimetic radiation in Heliconius butterflies. cortex belongs to a fast evolving subfamily of the otherwise highly conserved fizzy family of cell cycle regulators3, suggesting that it most likely regulates pigmentation patterning through regulation of scale cell development. In parallel with findings in the peppered moth (Biston betularia)4, our results suggest that this mechanism is common within Lepidoptera and that cortex has become a major target for natural selection acting on colour and pattern variation in this group of insects. PMID:27251285

  12. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in ‘Thatcher’ Wheat

    PubMed Central

    Hiebert, Colin W.; Kolmer, James A.; McCartney, Curt A.; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N.; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. ‘Thatcher’ wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in ‘Thatcher’ and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for ‘Thatcher’-derived APR in several environments and this resistance was enhanced in the presence of Lr34. PMID:27309724

  13. Uterine Gene Expression in the Live-Bearing Lizard, Chalcides ocellatus, Reveals Convergence of Squamate Reptile and Mammalian Pregnancy Mechanisms

    PubMed Central

    Brandley, Matthew C.; Young, Rebecca L.; Warren, Dan L.; Thompson, Michael B.; Wagner, Günter P.

    2012-01-01

    Although the morphological and physiological changes involved in pregnancy in live-bearing reptiles are well studied, the genetic mechanisms that underlie these changes are not known. We used the viviparous African Ocellated Skink, Chalcides ocellatus, as a model to identify a near complete gene expression profile associated with pregnancy using RNA-Seq analyses of uterine transcriptomes. Pregnancy in C. ocellatus is associated with upregulation of uterine genes involved with metabolism, cell proliferation and death, and cellular transport. Moreover, there are clear parallels between the genetic processes associated with pregnancy in mammals and Chalcides in expression of genes related to tissue remodeling, angiogenesis, immune system regulation, and nutrient provisioning to the embryo. In particular, the pregnant uterine transcriptome is dominated by expression of proteolytic enzymes that we speculate are involved both with remodeling the chorioallantoic placenta and histotrophy in the omphaloplacenta. Elements of the maternal innate immune system are downregulated in the pregnant uterus, indicating a potential mechanism to avoid rejection of the embryo. We found a downregulation of major histocompatability complex loci and estrogen and progesterone receptors in the pregnant uterus. This pattern is similar to mammals but cannot be explained by the mammalian model. The latter finding provides evidence that pregnancy is controlled by different endocrinological mechanisms in mammals and reptiles. Finally, 88% of the identified genes are expressed in both the pregnant and the nonpregnant uterus, and thus, morphological and physiological changes associated with C. ocellatus pregnancy are likely a result of regulation of genes continually expressed in the uterus rather than the initiation of expression of unique genes. PMID:22333490

  14. Serotonin and Dopamine Gene Variation and Theory of Mind Decoding Accuracy in Major Depression: A Preliminary Investigation.

    PubMed

    Zahavi, Arielle Y; Sabbagh, Mark A; Washburn, Dustin; Mazurka, Raegan; Bagby, R Michael; Strauss, John; Kennedy, James L; Ravindran, Arun; Harkness, Kate L

    2016-01-01

    Theory of mind-the ability to decode and reason about others' mental states-is a universal human skill and forms the basis of social cognition. Theory of mind accuracy is impaired in clinical conditions evidencing social impairment, including major depressive disorder. The current study is a preliminary investigation of the association of polymorphisms of the serotonin transporter (SLC6A4), dopamine transporter (DAT1), dopamine receptor D4 (DRD4), and catechol-O-methyl transferase (COMT) genes with theory of mind decoding in a sample of adults with major depression. Ninety-six young adults (38 depressed, 58 non-depressed) completed the 'Reading the Mind in the Eyes task' and a non-mentalistic control task. Genetic associations were only found for the depressed group. Specifically, superior accuracy in decoding mental states of a positive valence was seen in those homozygous for the long allele of the serotonin transporter gene, 9-allele carriers of DAT1, and long-allele carriers of DRD4. In contrast, superior accuracy in decoding mental states of a negative valence was seen in short-allele carriers of the serotonin transporter gene and 10/10 homozygotes of DAT1. Results are discussed in terms of their implications for integrating social cognitive and neurobiological models of etiology in major depression.

  15. A method for gene-based pathway analysis using genomewide association study summary statistics reveals nine new type 1 diabetes associations.

    PubMed

    Evangelou, Marina; Smyth, Deborah J; Fortune, Mary D; Burren, Oliver S; Walker, Neil M; Guo, Hui; Onengut-Gumuscu, Suna; Chen, Wei-Min; Concannon, Patrick; Rich, Stephen S; Todd, John A; Wallace, Chris

    2014-12-01

    Pathway analysis can complement point-wise single nucleotide polymorphism (SNP) analysis in exploring genomewide association study (GWAS) data to identify specific disease-associated genes that can be candidate causal genes. We propose a straightforward methodology that can be used for conducting a gene-based pathway analysis using summary GWAS statistics in combination with widely available reference genotype data. We used this method to perform a gene-based pathway analysis of a type 1 diabetes (T1D) meta-analysis GWAS (of 7,514 cases and 9,045 controls). An important feature of the conducted analysis is the removal of the major histocompatibility complex gene region, the major genetic risk factor for T1D. Thirty-one of the 1,583 (2%) tested pathways were identified to be enriched for association with T1D at a 5% false discovery rate. We analyzed these 31 pathways and their genes to identify SNPs in or near these pathway genes that showed potentially novel association with T1D and attempted to replicate the association of 22 SNPs in additional samples. Replication P-values were skewed (P=9.85×10-11) with 12 of the 22 SNPs showing P<0.05. Support, including replication evidence, was obtained for nine T1D associated variants in genes ITGB7 (rs11170466, P=7.86×10-9), NRP1 (rs722988, 4.88×10-8), BAD (rs694739, 2.37×10-7), CTSB (rs1296023, 2.79×10-7), FYN (rs11964650, P=5.60×10-7), UBE2G1 (rs9906760, 5.08×10-7), MAP3K14 (rs17759555, 9.67×10-7), ITGB1 (rs1557150, 1.93×10-6), and IL7R (rs1445898, 2.76×10-6). The proposed methodology can be applied to other GWAS datasets for which only summary level data are available. © 2014 The Authors. ** Genetic Epidemiology published by Wiley Periodicals, Inc.

  16. Differential expression of the major immediate early gene of human cytomegalovirus.

    PubMed

    Tsutsui, Y; Nogami-Satake, T

    1990-01-01

    We prepared a murine monoclonal antibody reactive to a human cytomegalovirus (HCMV)-induced nuclear protein with an Mr of 68,000. Expression of the 68K protein was compared with the major immediate early (IE) 72K protein in various cell types after infection with HCMV or microinjection of plasmid DNA containing the major IE gene. The 68K nuclear protein was detected 2 to 3 h after appearance of the 72K protein in human embryonal lung (HEL) cells infected with HCMV. The 68K protein was distributed throughout the cytoplasm in the late phase of infection, while the 72K protein remained chiefly in the nucleus. The 68K protein was barely detected in the cells under IE conditions by immunoprecipitation, but, together with the 72K protein, it was expressed after microinjection of cloned DNA, containing only the major IE region (region 1), into the nuclei of HEL cells. The 72K protein was expressed in nuclei 2 h after microinjection, whereas the 68K protein was detected 4 to 5 h after the injection. The 68K protein was expressed after microinjection in non-permissive rodent fibroblasts or non-permissive transformed human cells in which these proteins were not expressed after viral infection. Immunoprecipitations after chase-labelling from IE conditions or after partial digestions suggested that the 68K protein is neither a degradation nor a modification product of the major IE 72K protein.

  17. Whole-genome de novo sequencing reveals unique genes that contributed to the adaptive evolution of the Mikado pheasant.

    PubMed

    Lee, Chien-Yueh; Hsieh, Ping-Han; Chiang, Li-Mei; Chattopadhyay, Amrita; Li, Kuan-Yi; Lee, Yi-Fang; Lu, Tzu-Pin; Lai, Liang-Chuan; Lin, En-Chung; Lee, Hsinyu; Ding, Shih-Torng; Tsai, Mong-Hsun; Chen, Chien-Yu; Chuang, Eric Y

    2018-05-01

    The Mikado pheasant (Syrmaticus mikado) is a nearly endangered species indigenous to high-altitude regions of Taiwan. This pheasant provides an opportunity to investigate evolutionary processes following geographic isolation. Currently, the genetic background and adaptive evolution of the Mikado pheasant remain unclear. We present the draft genome of the Mikado pheasant, which consists of 1.04 Gb of DNA and 15,972 annotated protein-coding genes. The Mikado pheasant displays expansion and positive selection of genes related to features that contribute to its adaptive evolution, such as energy metabolism, oxygen transport, hemoglobin binding, radiation response, immune response, and DNA repair. To investigate the molecular evolution of the major histocompatibility complex (MHC) across several avian species, 39 putative genes spanning 227 kb on a contiguous region were annotated and manually curated. The MHC loci of the pheasant revealed a high level of synteny, several rapidly evolving genes, and inverse regions compared to the same loci in the chicken. The complete mitochondrial genome was also sequenced, assembled, and compared against four long-tailed pheasants. The results from molecular clock analysis suggest that ancestors of the Mikado pheasant migrated from the north to Taiwan about 3.47 million years ago. This study provides a valuable genomic resource for the Mikado pheasant, insights into its adaptation to high altitude, and the evolutionary history of the genus Syrmaticus, which could potentially be useful for future studies that investigate molecular evolution, genomics, ecology, and immunogenetics.

  18. Transcriptional Profiling of Murine Organ Genes in Response to Infection with Bacillus anthracis Ames Spores

    PubMed Central

    Moen, Scott T.; Yeager, Linsey A.; Lawrence, William S.; Ponce, Cindy; Galindo, Cristi L.; Garner, Harold R.; Baze, Wallace B.; Suarez, Giovanni; Peterson, Johnny W.; Chopra, Ashok K.

    2008-01-01

    Bacillus anthracis is the gram positive, spore-forming etiological agent of anthrax, an affliction studied because of its importance as a potential bioweapon. Although in vitro transcriptional responses of macrophages to either spore or anthrax toxins have been previously reported, little is known regarding the impact of infection on gene expression in host tissues. We infected Swiss-Webster mice intranasally with 5 LD50 of B. anthracis virulent Ames spores and observed the global transcriptional profiles of various tissues over a 48 hr time period. RNA was extracted from spleen, lung, and heart tissues of infected and control mice and examined by Affymetrix GeneChip analysis. Approximately 580 host genes were significantly over or under expressed among the lung, spleen, and heart tissues at 8 hr and 48 hr time points. Expression of genes encoding for surfactant and major histocompatibility complex (MHC) presentation was diminished during the early phase of infection in lungs. By 48 hr, a significant number of genes were modulated in the heart, including up-regulation of calcium-binding related gene expression, and down-regulation of multiple genes related to cell adhesion, formation of the extracellular matrix, and the cell cytoskeleton. Interestingly, the spleen 8 hr post-infection showed striking increases in the expression of genes that encode hydrolytic enzymes, and these levels remained elevated throughout infection. Further, genes involving antigen presentation and interferon responses were down-regulated in the spleen at 8 hr. In late stages of infection, splenic genes related to the inflammatory response were up-regulated. This study is the first to describe the in vivo global transcriptional response of multiple organs during inhalational anthrax. Although numerous genes related to the host immunological response and certain protection mechanisms were up-regulated in these organs, a vast list of genes important for fully developing and maintaining this

  19. IMGT, the international ImMunoGeneTics information system®

    PubMed Central

    Lefranc, Marie-Paule; Giudicelli, Véronique; Kaas, Quentin; Duprat, Elodie; Jabado-Michaloud, Joumana; Scaviner, Dominique; Ginestoux, Chantal; Clément, Oliver; Chaume, Denys; Lefranc, Gérard

    2005-01-01

    The international ImMunoGeneTics information system® (IMGT) (http://imgt.cines.fr), created in 1989, by the Laboratoire d'ImmunoGénétique Moléculaire LIGM (Université Montpellier II and CNRS) at Montpellier, France, is a high-quality integrated knowledge resource specializing in the immunoglobulins (IGs), T cell receptors (TRs), major histocompatibility complex (MHC) of human and other vertebrates, and related proteins of the immune systems (RPI) that belong to the immunoglobulin superfamily (IgSF) and to the MHC superfamily (MhcSF). IMGT includes several sequence databases (IMGT/LIGM-DB, IMGT/PRIMER-DB, IMGT/PROTEIN-DB and IMGT/MHC-DB), one genome database (IMGT/GENE-DB) and one three-dimensional (3D) structure database (IMGT/3Dstructure-DB), Web resources comprising 8000 HTML pages (IMGT Marie-Paule page), and interactive tools. IMGT data are expertly annotated according to the rules of the IMGT Scientific chart, based on the IMGT-ONTOLOGY concepts. IMGT tools are particularly useful for the analysis of the IG and TR repertoires in normal physiological and pathological situations. IMGT is used in medical research (autoimmune diseases, infectious diseases, AIDS, leukemias, lymphomas, myelomas), veterinary research, biotechnology related to antibody engineering (phage displays, combinatorial libraries, chimeric, humanized and human antibodies), diagnostics (clonalities, detection and follow up of residual diseases) and therapeutical approaches (graft, immunotherapy and vaccinology). IMGT is freely available at http://imgt.cines.fr. PMID:15608269

  20. Structure and content of the major histocompatibility complex (MHC) class I regions of the great anthropoid apes.

    PubMed

    Venditti, C P; Lawlor, D A; Sharma, P; Chorney, M J

    1996-09-01

    The origins of the functional class I genes predated human speciation, a phenomenon known as trans-speciation. The retention of class Ia orthologues within the great apes, however, has not been paralleled by studies designed to examine the pseudogene content, organization, and structure of their class I regions. Therefore, we have begun the systematic characterization of the Old World primate MHCs. The numbers and sizes of fragments harboring class I sequences were similar among the chimpanzee, gorilla, and human genomes tested. Both of the gorillas included in our study possessed genomic fragments carrying orthologues of the recently evolved HLA-H pseudogene identical to those found in the human. The overall megabase restriction fragment patterns of humans and chimpanzees appeared slightly more similar to each other, although the HLA-A subregional megabase variants may have been generated following the emergence of Homo sapiens. Based on the results of this initial study, it is difficult to generate a firm species tree and to determine human's closest evolutionary neighbor. Nevertheless, an analysis of MHC subregional similarities and differences in the hominoid apes may ultimately aid in localizing and identifying MHC haplotype-associated disease genes such as idiopathic hemochromatosis.

  1. Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data

    PubMed Central

    Brorsson, C.; Hansen, N. T.; Lage, K.; Bergholdt, R.; Brunak, S.; Pociot, F.

    2009-01-01

    Aim To develop novel methods for identifying new genes that contribute to the risk of developing type 1 diabetes within the Major Histocompatibility Complex (MHC) region on chromosome 6, independently of the known linkage disequilibrium (LD) between human leucocyte antigen (HLA)-DRB1, -DQA1, -DQB1 genes. Methods We have developed a novel method that combines single nucleotide polymorphism (SNP) genotyping data with protein–protein interaction (ppi) networks to identify disease-associated network modules enriched for proteins encoded from the MHC region. Approximately 2500 SNPs located in the 4 Mb MHC region were analysed in 1000 affected offspring trios generated by the Type 1 Diabetes Genetics Consortium (T1DGC). The most associated SNP in each gene was chosen and genes were mapped to ppi networks for identification of interaction partners. The association testing and resulting interacting protein modules were statistically evaluated using permutation. Results A total of 151 genes could be mapped to nodes within the protein interaction network and their interaction partners were identified. Five protein interaction modules reached statistical significance using this approach. The identified proteins are well known in the pathogenesis of T1D, but the modules also contain additional candidates that have been implicated in β-cell development and diabetic complications. Conclusions The extensive LD within the MHC region makes it important to develop new methods for analysing genotyping data for identification of additional risk genes for T1D. Combining genetic data with knowledge about functional pathways provides new insight into mechanisms underlying T1D. PMID:19143816

  2. Haplotype specific alteration of diabetes MHC risk by olfactory receptor gene polymorphism.

    PubMed

    Jahromi, Mohamed M

    2012-12-01

    Evidence for genes associated with risk for Type 1 diabetes (T1D) in the extended region of the major histocompatibility complex (MHC) genes is accumulating. The aim of this study was to investigate the association pattern of the extended MHC region with T1D susceptibility to identify effects independent of well established DR/DQ genes. A total of 394 Europid families with T1D were genotyped for the single nucleotide polymorphism (SNP) in the olfactory receptor family 14, subfamily J, member 1 (OR14J1) gene, rs9257691, in the MHC telomeric region. The OR provides "an internal depiction of our external world" through the capture of odorant molecules in the main OR system by several large families of G-protein coupled receptors (GPCR). These receptors transduce and chemosignals into the central nervous system (CNS). This SNP was chosen to identify its association with T1D. Interestingly, OR14J1C allele was significantly associated with T1D that seems to go with DRB1*0401, Χ(2)=10.9, p=0.0003. However, by fixing both genes of DR*0401-DQB1*0302, high risk, the association of T1D with OR14J1C still existed, Χ(2)=7.4, p=0.005. The occurrence of association of the OR14J1C allele with T1D patients with DRB1*401/DQB1*0302 is an independent risk for T1D. As an accumulative report suggests the role of OR in the pathogenesis of diabetic microvascular and other diabetic complications, undoubtedly, this haplotype specific alteration of T1D risk is an independent risk for the disease and can address the promising MHC-linked gene other than DR/DQ. Moreover, there is nothing to hinder for that this might be a signal that identifies the role of OR gene in the pathogenesis of T1D in patients who are prone to diabetic complications. Copyright © 2012. Published by Elsevier B.V.

  3. The Major Genetic Determinants of HIV-1 Control Affect HLA Class I Peptide Presentation

    PubMed Central

    Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J.; Telenti, Amalio; de Bakker, Paul I.W.; Walker, Bruce D.; Jia, Xiaoming; McLaren, Paul J.; Ripke, Stephan; Brumme, Chanson J.; Pulit, Sara L.; Telenti, Amalio; Carrington, Mary; Kadie, Carl M.; Carlson, Jonathan M.; Heckerman, David; de Bakker, Paul I.W.; Pereyra, Florencia; de Bakker, Paul I.W.; Graham, Robert R.; Plenge, Robert M.; Deeks, Steven G.; Walker, Bruce D.; Gianniny, Lauren; Crawford, Gabriel; Sullivan, Jordan; Gonzalez, Elena; Davies, Leela; Camargo, Amy; Moore, Jamie M.; Beattie, Nicole; Gupta, Supriya; Crenshaw, Andrew; Burtt, Noël P.; Guiducci, Candace; Gupta, Namrata; Carrington, Mary; Gao, Xiaojiang; Qi, Ying; Yuki, Yuko; Pereyra, Florencia; Piechocka-Trocha, Alicja; Cutrell, Emily; Rosenberg, Rachel; Moss, Kristin L.; Lemay, Paul; O’Leary, Jessica; Schaefer, Todd; Verma, Pranshu; Toth, Ildiko; Block, Brian; Baker, Brett; Rothchild, Alissa; Lian, Jeffrey; Proudfoot, Jacqueline; Alvino, Donna Marie L.; Vine, Seanna; Addo, Marylyn M.; Allen, Todd M.; Altfeld, Marcus; Henn, Matthew R.; Le Gall, Sylvie; Streeck, Hendrik; Walker, Bruce D.; Haas, David W.; Kuritzkes, Daniel R.; Robbins, Gregory K.; Shafer, Robert W.; Gulick, Roy M.; Shikuma, Cecilia M.; Haubrich, Richard; Riddler, Sharon; Sax, Paul E.; Daar, Eric S.; Ribaudo, Heather J.; Agan, Brian; Agarwal, Shanu; Ahern, Richard L.; Allen, Brady L.; Altidor, Sherly; Altschuler, Eric L.; Ambardar, Sujata; Anastos, Kathryn; Anderson, Ben; Anderson, Val; Andrady, Ushan; Antoniskis, Diana; Bangsberg, David; Barbaro, Daniel; Barrie, William; Bartczak, J.; Barton, Simon; Basden, Patricia; Basgoz, Nesli; Bazner, Suzane; Bellos, Nicholaos C.; Benson, Anne M.; Berger, Judith; Bernard, Nicole F.; Bernard, Annette M.; Birch, Christopher; Bodner, Stanley J.; Bolan, Robert K.; Boudreaux, Emilie T.; Bradley, Meg; Braun, James F.; Brndjar, Jon E.; Brown, Stephen J.; Brown, Katherine; Brown, Sheldon T.; Burack, Jedidiah; Bush, Larry M.; Cafaro, Virginia; Campbell, Omobolaji; Campbell, John; Carlson, Robert H.; Carmichael, J. Kevin; Casey, Kathleen K.; Cavacuiti, Chris; Celestin, Gregory; Chambers, Steven T.; Chez, Nancy; Chirch, Lisa M.; Cimoch, Paul J.; Cohen, Daniel; Cohn, Lillian E.; Conway, Brian; Cooper, David A.; Cornelson, Brian; Cox, David T.; Cristofano, Michael V.; Cuchural, George; Czartoski, Julie L.; Dahman, Joseph M.; Daly, Jennifer S.; Davis, Benjamin T.; Davis, Kristine; Davod, Sheila M.; Deeks, Steven G.; DeJesus, Edwin; Dietz, Craig A.; Dunham, Eleanor; Dunn, Michael E.; Ellerin, Todd B.; Eron, Joseph J.; Fangman, John J.W.; Farel, Claire E.; Ferlazzo, Helen; Fidler, Sarah; Fleenor-Ford, Anita; Frankel, Renee; Freedberg, Kenneth A.; French, Neel K.; Fuchs, Jonathan D.; Fuller, Jon D.; Gaberman, Jonna; Gallant, Joel E.; Gandhi, Rajesh T.; Garcia, Efrain; Garmon, Donald; Gathe, Joseph C.; Gaultier, Cyril R.; Gebre, Wondwoosen; Gilman, Frank D.; Gilson, Ian; Goepfert, Paul A.; Gottlieb, Michael S.; Goulston, Claudia; Groger, Richard K.; Gurley, T. Douglas; Haber, Stuart; Hardwicke, Robin; Hardy, W. David; Harrigan, P. Richard; Hawkins, Trevor N.; Heath, Sonya; Hecht, Frederick M.; Henry, W. Keith; Hladek, Melissa; Hoffman, Robert P.; Horton, James M.; Hsu, Ricky K.; Huhn, Gregory D.; Hunt, Peter; Hupert, Mark J.; Illeman, Mark L.; Jaeger, Hans; Jellinger, Robert M.; John, Mina; Johnson, Jennifer A.; Johnson, Kristin L.; Johnson, Heather; Johnson, Kay; Joly, Jennifer; Jordan, Wilbert C.; Kauffman, Carol A.; Khanlou, Homayoon; Killian, Robert K.; Kim, Arthur Y.; Kim, David D.; Kinder, Clifford A.; Kirchner, Jeffrey T.; Kogelman, Laura; Kojic, Erna Milunka; Korthuis, P. Todd; Kurisu, Wayne; Kwon, Douglas S.; LaMar, Melissa; Lampiris, Harry; Lanzafame, Massimiliano; Lederman, Michael M.; Lee, David M.; Lee, Jean M.L.; Lee, Marah J.; Lee, Edward T.Y.; Lemoine, Janice; Levy, Jay A.; Llibre, Josep M.; Liguori, Michael A.; Little, Susan J.; Liu, Anne Y.; Lopez, Alvaro J.; Loutfy, Mono R.; Loy, Dawn; Mohammed, Debbie Y.; Man, Alan; Mansour, Michael K.; Marconi, Vincent C.; Markowitz, Martin; Marques, Rui; Martin, Jeffrey N.; Martin, Harold L.; Mayer, Kenneth Hugh; McElrath, M. Juliana; McGhee, Theresa A.; McGovern, Barbara H.; McGowan, Katherine; McIntyre, Dawn; Mcleod, Gavin X.; Menezes, Prema; Mesa, Greg; Metroka, Craig E.; Meyer-Olson, Dirk; Miller, Andy O.; Montgomery, Kate; Mounzer, Karam C.; Nagami, Ellen H.; Nagin, Iris; Nahass, Ronald G.; Nelson, Margret O.; Nielsen, Craig; Norene, David L.; O’Connor, David H.; Ojikutu, Bisola O.; Okulicz, Jason; Oladehin, Olakunle O.; Oldfield, Edward C.; Olender, Susan A.; Ostrowski, Mario; Owen, William F.; Pae, Eunice; Parsonnet, Jeffrey; Pavlatos, Andrew M.; Perlmutter, Aaron M.; Pierce, Michael N.; Pincus, Jonathan M.; Pisani, Leandro; Price, Lawrence Jay; Proia, Laurie; Prokesch, Richard C.; Pujet, Heather Calderon; Ramgopal, Moti; Rathod, Almas; Rausch, Michael; Ravishankar, J.; Rhame, Frank S.; Richards, Constance Shamuyarira; Richman, Douglas D.; Robbins, Gregory K.; Rodes, Berta; Rodriguez, Milagros; Rose, Richard C.; Rosenberg, Eric S.; Rosenthal, Daniel; Ross, Polly E.; Rubin, David S.; Rumbaugh, Elease; Saenz, Luis; Salvaggio, Michelle R.; Sanchez, William C.; Sanjana, Veeraf M.; Santiago, Steven; Schmidt, Wolfgang; Schuitemaker, Hanneke; Sestak, Philip M.; Shalit, Peter; Shay, William; Shirvani, Vivian N.; Silebi, Vanessa I.; Sizemore, James M.; Skolnik, Paul R.; Sokol-Anderson, Marcia; Sosman, James M.; Stabile, Paul; Stapleton, Jack T.; Starrett, Sheree; Stein, Francine; Stellbrink, Hans-Jurgen; Sterman, F. Lisa; Stone, Valerie E.; Stone, David R.; Tambussi, Giuseppe; Taplitz, Randy A.; Tedaldi, Ellen M.; Telenti, Amalio; Theisen, William; Torres, Richard; Tosiello, Lorraine; Tremblay, Cecile; Tribble, Marc A.; Trinh, Phuong D.; Tsao, Alice; Ueda, Peggy; Vaccaro, Anthony; Valadas, Emilia; Vanig, Thanes J.; Vecino, Isabel; Vega, Vilma M.; Veikley, Wenoah; Wade, Barbara H.; Walworth, Charles; Wanidworanun, Chingchai; Ward, Douglas J.; Warner, Daniel A.; Weber, Robert D.; Webster, Duncan; Weis, Steve; Wheeler, David A.; White, David J.; Wilkins, Ed; Winston, Alan; Wlodaver, Clifford G.; Wout, Angelique van’t; Wright, David P.; Yang, Otto O.; Yurdin, David L.; Zabukovic, Brandon W.; Zachary, Kimon C.; Zeeman, Beth; Zhao, Meng

    2011-01-01

    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA–viral peptide interaction as the major factor modulating durable control of HIV infection. PMID:21051598

  4. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation.

    PubMed

    Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J; Telenti, Amalio; de Bakker, Paul I W; Walker, Bruce D; Ripke, Stephan; Brumme, Chanson J; Pulit, Sara L; Carrington, Mary; Kadie, Carl M; Carlson, Jonathan M; Heckerman, David; Graham, Robert R; Plenge, Robert M; Deeks, Steven G; Gianniny, Lauren; Crawford, Gabriel; Sullivan, Jordan; Gonzalez, Elena; Davies, Leela; Camargo, Amy; Moore, Jamie M; Beattie, Nicole; Gupta, Supriya; Crenshaw, Andrew; Burtt, Noël P; Guiducci, Candace; Gupta, Namrata; Gao, Xiaojiang; Qi, Ying; Yuki, Yuko; Piechocka-Trocha, Alicja; Cutrell, Emily; Rosenberg, Rachel; Moss, Kristin L; Lemay, Paul; O'Leary, Jessica; Schaefer, Todd; Verma, Pranshu; Toth, Ildiko; Block, Brian; Baker, Brett; Rothchild, Alissa; Lian, Jeffrey; Proudfoot, Jacqueline; Alvino, Donna Marie L; Vine, Seanna; Addo, Marylyn M; Allen, Todd M; Altfeld, Marcus; Henn, Matthew R; Le Gall, Sylvie; Streeck, Hendrik; Haas, David W; Kuritzkes, Daniel R; Robbins, Gregory K; Shafer, Robert W; Gulick, Roy M; Shikuma, Cecilia M; Haubrich, Richard; Riddler, Sharon; Sax, Paul E; Daar, Eric S; Ribaudo, Heather J; Agan, Brian; Agarwal, Shanu; Ahern, Richard L; Allen, Brady L; Altidor, Sherly; Altschuler, Eric L; Ambardar, Sujata; Anastos, Kathryn; Anderson, Ben; Anderson, Val; Andrady, Ushan; Antoniskis, Diana; Bangsberg, David; Barbaro, Daniel; Barrie, William; Bartczak, J; Barton, Simon; Basden, Patricia; Basgoz, Nesli; Bazner, Suzane; Bellos, Nicholaos C; Benson, Anne M; Berger, Judith; Bernard, Nicole F; Bernard, Annette M; Birch, Christopher; Bodner, Stanley J; Bolan, Robert K; Boudreaux, Emilie T; Bradley, Meg; Braun, James F; Brndjar, Jon E; Brown, Stephen J; Brown, Katherine; Brown, Sheldon T; Burack, Jedidiah; Bush, Larry M; Cafaro, Virginia; Campbell, Omobolaji; Campbell, John; Carlson, Robert H; Carmichael, J Kevin; Casey, Kathleen K; Cavacuiti, Chris; Celestin, Gregory; Chambers, Steven T; Chez, Nancy; Chirch, Lisa M; Cimoch, Paul J; Cohen, Daniel; Cohn, Lillian E; Conway, Brian; Cooper, David A; Cornelson, Brian; Cox, David T; Cristofano, Michael V; Cuchural, George; Czartoski, Julie L; Dahman, Joseph M; Daly, Jennifer S; Davis, Benjamin T; Davis, Kristine; Davod, Sheila M; DeJesus, Edwin; Dietz, Craig A; Dunham, Eleanor; Dunn, Michael E; Ellerin, Todd B; Eron, Joseph J; Fangman, John J W; Farel, Claire E; Ferlazzo, Helen; Fidler, Sarah; Fleenor-Ford, Anita; Frankel, Renee; Freedberg, Kenneth A; French, Neel K; Fuchs, Jonathan D; Fuller, Jon D; Gaberman, Jonna; Gallant, Joel E; Gandhi, Rajesh T; Garcia, Efrain; Garmon, Donald; Gathe, Joseph C; Gaultier, Cyril R; Gebre, Wondwoosen; Gilman, Frank D; Gilson, Ian; Goepfert, Paul A; Gottlieb, Michael S; Goulston, Claudia; Groger, Richard K; Gurley, T Douglas; Haber, Stuart; Hardwicke, Robin; Hardy, W David; Harrigan, P Richard; Hawkins, Trevor N; Heath, Sonya; Hecht, Frederick M; Henry, W Keith; Hladek, Melissa; Hoffman, Robert P; Horton, James M; Hsu, Ricky K; Huhn, Gregory D; Hunt, Peter; Hupert, Mark J; Illeman, Mark L; Jaeger, Hans; Jellinger, Robert M; John, Mina; Johnson, Jennifer A; Johnson, Kristin L; Johnson, Heather; Johnson, Kay; Joly, Jennifer; Jordan, Wilbert C; Kauffman, Carol A; Khanlou, Homayoon; Killian, Robert K; Kim, Arthur Y; Kim, David D; Kinder, Clifford A; Kirchner, Jeffrey T; Kogelman, Laura; Kojic, Erna Milunka; Korthuis, P Todd; Kurisu, Wayne; Kwon, Douglas S; LaMar, Melissa; Lampiris, Harry; Lanzafame, Massimiliano; Lederman, Michael M; Lee, David M; Lee, Jean M L; Lee, Marah J; Lee, Edward T Y; Lemoine, Janice; Levy, Jay A; Llibre, Josep M; Liguori, Michael A; Little, Susan J; Liu, Anne Y; Lopez, Alvaro J; Loutfy, Mono R; Loy, Dawn; Mohammed, Debbie Y; Man, Alan; Mansour, Michael K; Marconi, Vincent C; Markowitz, Martin; Marques, Rui; Martin, Jeffrey N; Martin, Harold L; Mayer, Kenneth Hugh; McElrath, M Juliana; McGhee, Theresa A; McGovern, Barbara H; McGowan, Katherine; McIntyre, Dawn; Mcleod, Gavin X; Menezes, Prema; Mesa, Greg; Metroka, Craig E; Meyer-Olson, Dirk; Miller, Andy O; Montgomery, Kate; Mounzer, Karam C; Nagami, Ellen H; Nagin, Iris; Nahass, Ronald G; Nelson, Margret O; Nielsen, Craig; Norene, David L; O'Connor, David H; Ojikutu, Bisola O; Okulicz, Jason; Oladehin, Olakunle O; Oldfield, Edward C; Olender, Susan A; Ostrowski, Mario; Owen, William F; Pae, Eunice; Parsonnet, Jeffrey; Pavlatos, Andrew M; Perlmutter, Aaron M; Pierce, Michael N; Pincus, Jonathan M; Pisani, Leandro; Price, Lawrence Jay; Proia, Laurie; Prokesch, Richard C; Pujet, Heather Calderon; Ramgopal, Moti; Rathod, Almas; Rausch, Michael; Ravishankar, J; Rhame, Frank S; Richards, Constance Shamuyarira; Richman, Douglas D; Rodes, Berta; Rodriguez, Milagros; Rose, Richard C; Rosenberg, Eric S; Rosenthal, Daniel; Ross, Polly E; Rubin, David S; Rumbaugh, Elease; Saenz, Luis; Salvaggio, Michelle R; Sanchez, William C; Sanjana, Veeraf M; Santiago, Steven; Schmidt, Wolfgang; Schuitemaker, Hanneke; Sestak, Philip M; Shalit, Peter; Shay, William; Shirvani, Vivian N; Silebi, Vanessa I; Sizemore, James M; Skolnik, Paul R; Sokol-Anderson, Marcia; Sosman, James M; Stabile, Paul; Stapleton, Jack T; Starrett, Sheree; Stein, Francine; Stellbrink, Hans-Jurgen; Sterman, F Lisa; Stone, Valerie E; Stone, David R; Tambussi, Giuseppe; Taplitz, Randy A; Tedaldi, Ellen M; Telenti, Amalio; Theisen, William; Torres, Richard; Tosiello, Lorraine; Tremblay, Cecile; Tribble, Marc A; Trinh, Phuong D; Tsao, Alice; Ueda, Peggy; Vaccaro, Anthony; Valadas, Emilia; Vanig, Thanes J; Vecino, Isabel; Vega, Vilma M; Veikley, Wenoah; Wade, Barbara H; Walworth, Charles; Wanidworanun, Chingchai; Ward, Douglas J; Warner, Daniel A; Weber, Robert D; Webster, Duncan; Weis, Steve; Wheeler, David A; White, David J; Wilkins, Ed; Winston, Alan; Wlodaver, Clifford G; van't Wout, Angelique; Wright, David P; Yang, Otto O; Yurdin, David L; Zabukovic, Brandon W; Zachary, Kimon C; Zeeman, Beth; Zhao, Meng

    2010-12-10

    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA-viral peptide interaction as the major factor modulating durable control of HIV infection.

  5. Stress-induced alterations in interferon production and class II histocompatibility antigen expression

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Cunnick, J. E.; Armfield, A. V.; Wood, P. G.; Rabin, B. S.

    1992-01-01

    Mild electric foot-shock has been shown to be a stressor that can alter immune responses. Male Lewis rats were exposed to one session of 16 5.0-s 1.6-mA foot-shocks. Production of interferon-gamma by splenocytes in response to concanavalin-A was decreased in spleens from the shocked rats compared to control spleens. Spleen cells from rats treated with nadolol, a peripherally acting beta-adrenergic receptor antagonist, and then shocked, showed dose-dependent attenuation of the suppression of interferon-gamma production. This suggests that catecholamines mediate shock-induced suppression of interferon-gamma production. The percentage of splenic mononuclear cells expressing class II histocompatibility (Ia) antigens on their surfaces from spleens of shocked rats was determined by flow cytometry. Significantly decreased class II positive mononuclear cells were present in the spleens of shocked rats in comparison to the spleens of control rats. This may reflect an alteration of cell trafficking or decreased production of class II antigens.

  6. Enhancement of immune response induced by DNA vaccine cocktail expressing complete LACK and TSA genes against Leishmania major.

    PubMed

    Ghaffarifar, Fatemeh; Jorjani, Ogholniaz; Sharifi, Zohreh; Dalimi, Abdolhossein; Hassan, Zuhair M; Tabatabaie, Fatemeh; Khoshzaban, Fariba; Hezarjaribi, Hajar Ziaei

    2013-04-01

    Leishmaniasis is an important disease in humans. Leishmania homologue of receptor for Activated C Kinase (LACK) and thiol specific antioxidant (TSA) as immuno-dominant antigens of Leishmania major are considered the most promising molecules for a DNA vaccine. We constructed a DNA cocktail, containing plasmids encoding LACK and TSA genes of Leishmania major and evaluated the immune response and survival rate in BALB/c mice. IgG and Interferon gamma values were noticeably increased in the immunized group with DNA cocktail vaccine, which were significantly higher than those in the single-gene vaccinated and control groups (p < 0.05) following the immunization and after challenging with Leishmania major. Interleukin 4 values were decreased in all immunized groups, but only in DNA vaccine cocktail and single-gene vaccination with pc-LACK there were statistical differences with control groups (p > 0.05). The immunized mice with the cocktail DNA vaccine presented a considerable reduction in diameter of lesion compared to other groups and a significant difference was observed (p < 0.05) in this regard. The survival time of the immunized mice with the cocktail DNA vaccine was significantly higher than that in the other groups (p < 0.05) after their being challenged with Leishmania major. The findings of this study indicated that the cocktail DNA vaccine increased the cellular response and survival rate and induced protection against infection with Leishmania in the mice. © 2012 The Authors © 2012 APMIS.

  7. Functional expression and characterization of a purine nucleobase transporter gene from Leishmania major.

    PubMed

    Sanchez, Marco A; Tryon, Rob; Pierce, Steven; Vasudevan, Gayatri; Landfear, Scott M

    2004-01-01

    Leishmania major, like all the other kinetoplastid protozoa, are unable to synthesize purines and rely on purine nucleobase and nucleoside acquisition across the parasite plasma membrane by specific permeases. Although, several genes have been cloned that encode nucleoside transporters in Leishmania and Trypanosoma brucei, much less progress has been made on nucleobase transporters, especially at the molecular level. The studies reported here have cloned and expressed the first gene for a L. major nucleobase transporter, designated LmaNT3. The LmaNT3 permease shows 33% identity to L. donovani nucleoside transporter 1.1 (LdNT1.1) and is, thus, a member of the equilibrative nucleoside transporter (ENT) family. ENT family members identified to date are nucleoside transporters, some of which also transport one or several nucleobases. Functional expression studies in Xenopus laevis oocytes revealed that LmaNT3 mediates high levels of uptake of hypoxanthine, xanthine, adenine and guanine. Moreover, LmaNT3 is an high affinity transporter with K(m) values for hypoxanthine, xanthine, adenine and guanine of 16.5 +/- 1.5, 8.5 +/- 0.6, 8.5 +/- 1.1, and 8.8 +/- 4.0 microM, respectively. LmaNT3 is, thus, the first member of the ENT family identified in any organism that functions as a nucleobase rather than nucleoside or nucleoside/nucleobase transporter.

  8. Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype Project

    PubMed Central

    Horton, Roger; Gibson, Richard; Coggill, Penny; Miretti, Marcos; Allcock, Richard J.; Almeida, Jeff; Forbes, Simon; Gilbert, James G. R.; Halls, Karen; Harrow, Jennifer L.; Hart, Elizabeth; Howe, Kevin; Jackson, David K.; Palmer, Sophie; Roberts, Anne N.; Sims, Sarah; Stewart, C. Andrew; Traherne, James A.; Trevanion, Steve; Wilming, Laurens; Rogers, Jane; de Jong, Pieter J.; Elliott, John F.; Sawcer, Stephen; Todd, John A.; Trowsdale, John

    2008-01-01

    The human major histocompatibility complex (MHC) is contained within about 4 Mb on the short arm of chromosome 6 and is recognised as the most variable region in the human genome. The primary aim of the MHC Haplotype Project was to provide a comprehensively annotated reference sequence of a single, human leukocyte antigen-homozygous MHC haplotype and to use it as a basis against which variations could be assessed from seven other similarly homozygous cell lines, representative of the most common MHC haplotypes in the European population. Comparison of the haplotype sequences, including four haplotypes not previously analysed, resulted in the identification of >44,000 variations, both substitutions and indels (insertions and deletions), which have been submitted to the dbSNP database. The gene annotation uncovered haplotype-specific differences and confirmed the presence of more than 300 loci, including over 160 protein-coding genes. Combined analysis of the variation and annotation datasets revealed 122 gene loci with coding substitutions of which 97 were non-synonymous. The haplotype (A3-B7-DR15; PGF cell line) designated as the new MHC reference sequence, has been incorporated into the human genome assembly (NCBI35 and subsequent builds), and constitutes the largest single-haplotype sequence of the human genome to date. The extensive variation and annotation data derived from the analysis of seven further haplotypes have been made publicly available and provide a framework and resource for future association studies of all MHC-associated diseases and transplant medicine. PMID:18193213

  9. Comprehensive Analysis of Contributions from Protein Conformational Stability and Major Histocompatibility Complex Class II-Peptide Binding Affinity to CD4+ Epitope Immunogenicity in HIV-1 Envelope Glycoprotein

    PubMed Central

    Li, Tingfeng; Steede, N. Kalaya; Nguyen, Hong-Nam P.; Freytag, Lucy C.; McLachlan, James B.; Mettu, Ramgopal R.; Robinson, James E.

    2014-01-01

    ABSTRACT Helper T-cell epitope dominance in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is not adequately explained by peptide binding to major histocompatibility complex (MHC) proteins. Antigen processing potentially influences epitope dominance, but few, if any, studies have attempted to reconcile the influences of antigen processing and MHC protein binding for all helper T-cell epitopes of an antigen. Epitopes of gp120 identified in both humans and mice occur on the C-terminal flanks of flexible segments that are likely to be proteolytic cleavage sites. In this study, the influence of gp120 conformation on the dominance pattern in gp120 from HIV strain 89.6 was examined in CBA mice, whose MHC class II protein has one of the most well defined peptide-binding preferences. Only one of six dominant epitopes contained the most conserved element of the I-Ak binding motif, an aspartic acid. Destabilization of the gp120 conformation by deletion of single disulfide bonds preferentially enhanced responses to the cryptic I-Ak motif-containing sequences, as reported by T-cell proliferation or cytokine secretion. Conversely, inclusion of CpG in the adjuvant with gp120 enhanced responses to the dominant CD4+ T-cell epitopes. The gp120 destabilization affected secretion of some cytokines more than others, suggesting that antigen conformation could modulate T-cell functions through mechanisms of antigen processing. IMPORTANCE CD4+ helper T cells play an essential role in protection against HIV and other pathogens. Thus, the sites of helper T-cell recognition, the dominant epitopes, are targets for vaccine design; and the corresponding T cells may provide markers for monitoring infection and immunity. However, T-cell epitopes are difficult to identify and predict. It is also unclear whether CD4+ T cells specific for one epitope are more protective than T cells specific for other epitopes. This work shows that the three-dimensional (3D) structure of an

  10. NMDA Receptors Regulate Genes Responsible for Major Immune Functions of Mononuclears in Human Peripheral Blood.

    PubMed

    Kuzmina, U Sh; Zainullina, L F; Sadovnikov, S V; Vakhitov, V A; Vakhitova, Yu V

    2018-06-19

    To determine the role of NMDA receptors in the functional regulation of immunocompetent cells, comparative assay was carried out for genes expressed in the mononuclears in peripheral blood of healthy persons under normal conditions and after blockade of these receptors. The genes, whose expression changed in response to blockade of NMDA receptors in mononuclears, encode the products involved in regulation of the major functions of immune cells, such as proliferation (IL4, VCAM1, and CDKN2A), apoptosis (BAX, MYC, CDKN2A, HSPB1, and CADD45A), activation (IL4R, IL4, VCAM1, and CDKN2A), and differentiation (IL4, VCAM1, and BAX).

  11. Gene-environment interaction in major depression: focus on experience-dependent biological systems.

    PubMed

    Lopizzo, Nicola; Bocchio Chiavetto, Luisella; Cattane, Nadia; Plazzotta, Giona; Tarazi, Frank I; Pariante, Carmine M; Riva, Marco A; Cattaneo, Annamaria

    2015-01-01

    Major depressive disorder (MDD) is a multifactorial and polygenic disorder, where multiple and partially overlapping sets of susceptibility genes interact each other and with the environment, predisposing individuals to the development of the illness. Thus, MDD results from a complex interplay of vulnerability genes and environmental factors that act cumulatively throughout individual's lifetime. Among these environmental factors, stressful life experiences, especially those occurring early in life, have been suggested to exert a crucial impact on brain development, leading to permanent functional changes that may contribute to lifelong risk for mental health outcomes. In this review, we will discuss how genetic variants (polymorphisms, SNPs) within genes operating in neurobiological systems that mediate stress response and synaptic plasticity, can impact, by themselves, the vulnerability risk for MDD; we will also consider how this MDD risk can be further modulated when gene × environment interaction is taken into account. Finally, we will discuss the role of epigenetic mechanisms, and in particular of DNA methylation and miRNAs expression changes, in mediating the effect of the stress on the vulnerability risk to develop MDD. Taken together, we aim to underlie the role of genetic and epigenetic processes involved in stress- and neuroplasticity-related biological systems on the development of MDD after exposure to early life stress, thereby building the basis for future research and clinical interventions.

  12. Molecular Dissection of a Major Gene Effect on a Quantitative Trait: The Level of Alcohol Dehydrogenase Expression in Drosophila Melanogaster

    PubMed Central

    Stam, L. F.; Laurie, C. C.

    1996-01-01

    A molecular mapping experiment shows that a major gene effect on a quantitative trait, the level of alcohol dehydrogenase expression in Drosophila melanogaster, is due to multiple polymorphisms within the Adh gene. These polymorphisms are located in an intron, the coding sequence, and the 3' untranslated region. Because of nonrandom associations among polymorphisms at different sites, the individual effects combine (in some cases epistatically) to produce ``superalleles'' with large effect. These results have implications for the interpretation of major gene effects detected by quantitative trait locus mapping methods. They show that large effects due to a single locus may be due to multiple associated polymorphisms (or sequential fixations in isolated populations) rather than individual mutations of large effect. PMID:8978044

  13. mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea

    PubMed Central

    Das, Shouvik; Singh, Mohar; Srivastava, Rishi; Bajaj, Deepak; Saxena, Maneesha S.; Rana, Jai C.; Bansal, Kailash C.; Tyagi, Akhilesh K.; Parida, Swarup K.

    2016-01-01

    The present study used a whole-genome, NGS resequencing-based mQTL-seq (multiple QTL-seq) strategy in two inter-specific mapping populations (Pusa 1103 × ILWC 46 and Pusa 256 × ILWC 46) to scan the major genomic region(s) underlying QTL(s) governing pod number trait in chickpea. Essentially, the whole-genome resequencing of low and high pod number-containing parental accessions and homozygous individuals (constituting bulks) from each of these two mapping populations discovered >8 million high-quality homozygous SNPs with respect to the reference kabuli chickpea. The functional significance of the physically mapped SNPs was apparent from the identified 2,264 non-synonymous and 23,550 regulatory SNPs, with 8–10% of these SNPs-carrying genes corresponding to transcription factors and disease resistance-related proteins. The utilization of these mined SNPs in Δ (SNP index)-led QTL-seq analysis and their correlation between two mapping populations based on mQTL-seq, narrowed down two (CaqaPN4.1: 867.8 kb and CaqaPN4.2: 1.8 Mb) major genomic regions harbouring robust pod number QTLs into the high-resolution short QTL intervals (CaqbPN4.1: 637.5 kb and CaqbPN4.2: 1.28 Mb) on chickpea chromosome 4. The integration of mQTL-seq-derived one novel robust QTL with QTL region-specific association analysis delineated the regulatory (C/T) and coding (C/A) SNPs-containing one pentatricopeptide repeat (PPR) gene at a major QTL region regulating pod number in chickpea. This target gene exhibited anther, mature pollen and pod-specific expression, including pronounced higher up-regulated (∼3.5-folds) transcript expression in high pod number-containing parental accessions and homozygous individuals of two mapping populations especially during pollen and pod development. The proposed mQTL-seq-driven combinatorial strategy has profound efficacy in rapid genome-wide scanning of potential candidate gene(s) underlying trait-associated high-resolution robust QTL(s), thereby expediting

  14. In vitro modulation of Drimys winteri bark extract and the active compound polygodial on Salmo salar immune genes after exposure to Saprolegnia parasitica.

    PubMed

    Pereira-Torres, D; Gonçalves, A T; Ulloa, V; Martínez, R; Carrasco, H; Olea, A F; Espinoza, L; Gallardo-Escárate, C; Astuya, A

    2016-12-01

    The rapid development of the aquaculture industry has global concerns with health management and control strategies to prevent and/or treat diseases and increase sustainability standards. Saprolegniosis is a disease caused by Saprolegnia parasitica, and is characterized by promoting an immunosuppression in the host. This study evaluated in vitro the extract and one active compound (polygodial) of Drimys winteri, a Chilean medicinal tree as a potential early immunostimulatory aid in Saprolegniosis control. Atlantic salmon (Salmo salar) head kidney cells (ASK-1) were incubated with both extract and pure polygodial before exposure to S. parasitica mycelium, and the expression of the immune-related genes interleukin 1β (IL-1β), interferon α (IFNα), and major histocompatibility complex II (MHCII) was evaluated. Both evidenced immunomodulatory capacities by increasing gene expressions. This immunomodulation related to a mitigatory action counteracting the immunosuppressing effects of S. parasitica. Despite that most immune-related genes were up-regulated, the down-regulation of MHCII, characteristic of S. parasitica infection, was lessened by pre-incubation with the compounds. This study provides the first insight on the potential of D. winteri bark extract as a possible immunomodulatory and defensive strategy against this oomycete infection in fish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Genetic variation of the MHC class II DRB genes in the Japanese weasel, Mustela itatsi, endemic to Japan, compared with the Siberian weasel, Mustela sibirica.

    PubMed

    Nishita, Y; Abramov, A V; Kosintsev, P A; Lin, L-K; Watanabe, S; Yamazaki, K; Kaneko, Y; Masuda, R

    2015-12-01

    Major histocompatibility complex (MHC) genes encode proteins that play a critical role in vertebrate immune system and are highly polymorphic. To further understand the molecular evolution of the MHC genes, we compared MHC class II DRB genes between the Japanese weasel (Mustela itatsi), a species endemic to Japan, and the Siberian weasel (Mustela sibirica), a closely related species on the continent. We sequenced a 242-bp region of DRB exon 2, which encodes antigen-binding sites (ABS), and found 24 alleles from 31 M. itatsi individuals and 17 alleles from 21 M. sibirica individuals, including broadly distributed, species-specific and/or geographically restricted alleles. Our results suggest that pathogen-driven balancing selection have acted to maintain the diversity in the DRB genes. For predicted ABS, nonsynonymous substitutions exceeded synonymous substitutions, also indicating positive selection, which was not seen at non-ABS. In a Bayesian phylogenetic tree, two M. sibirica DRB alleles were basal to the rest of the sequences from mustelid species and may represent ancestral alleles. Trans-species polymorphism was evident between many mustelid DRB alleles, especially between M. itatsi and M. sibirica. These two Mustela species divided about 1.7 million years ago, but still share many MHC alleles, indicative of their close phylogenetic relationship. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Restricting nonclassical MHC genes coevolve with TRAV genes used by innate-like T cells in mammals

    PubMed Central

    Boudinot, Pierre; Mondot, Stanislas; Jouneau, Luc; Teyton, Luc; Lefranc, Marie-Paule; Lantz, Olivier

    2016-01-01

    Whereas major histocompatibility class-1 (MH1) proteins present peptides to T cells displaying a large T-cell receptor (TR) repertoire, MH1Like proteins, such as CD1D and MR1, present glycolipids and microbial riboflavin precursor derivatives, respectively, to T cells expressing invariant TR-α (iTRA) chains. The groove of such MH1Like, as well as iTRA chains used by mucosal-associated invariant T (MAIT) and natural killer T (NKT) cells, respectively, may result from a coevolution under particular selection pressures. Herein, we investigated the evolutionary patterns of the iTRA of MAIT and NKT cells and restricting MH1Like proteins: MR1 appeared 170 Mya and is highly conserved across mammals, evolving more slowly than other MH1Like. It has been pseudogenized or independently lost three times in carnivores, the armadillo, and lagomorphs. The corresponding TRAV1 gene also evolved slowly and harbors highly conserved complementarity determining regions 1 and 2. TRAV1 is absent exclusively from species in which MR1 is lacking, suggesting that its loss released the purifying selection on MR1. In the rabbit, which has very few NKT and no MAIT cells, a previously unrecognized iTRA was identified by sequencing leukocyte RNA. This iTRA uses TRAV41, which is highly conserved across several groups of mammals. A rabbit MH1Like gene was found that appeared with mammals and is highly conserved. It was independently lost in a few groups in which MR1 is present, like primates and Muridae, illustrating compensatory emergences of new MH1Like/Invariant T-cell combinations during evolution. Deciphering their role is warranted to search similar effector functions in humans. PMID:27170188

  17. UGT2B17 minor histocompatibility mismatch and clinical outcome after HLA-identical sibling donor stem cell transplantation.

    PubMed

    Santos, N; Rodríguez-Romanos, R; Nieto, J B; Buño, I; Vallejo, C; Jiménez-Velasco, A; Brunet, S; Buces, E; López-Jiménez, J; González, M; Ferrá, C; Sampol, A; de la Cámara, R; Martínez, C; Gallardo, D

    2016-01-01

    Minor histocompatibility Ags (mHags) have been implicated in the pathogenesis of GVHD after allogeneic hematopoietic stem cell transplantation (HSCT). Uridine diphospho-glucuronosyltransferase 2B17 (UGT2B17) gene deletion may act as a mHag and its association with acute GVHD (aGVHD) has been described. We retrospectively studied the clinical impact of a UGT2B17 mismatch in a cohort of 1127 patients receiving a HSCT from an HLA-identical sibling donor. UGT2B17 mismatch was present in 69 cases (6.1%). Incidence of severe aGVHD was higher in the UGT2B17 mismatched pairs (22.7% vs 14.6%), but this difference was not statistically significant (P: 0.098). We did not detect differences in chronic GVHD, overall survival, relapse-free survival, transplant-related mortality or relapse. Nevertheless, when we analyzed only those patients receiving grafts from a male donor (616 cases), aGVHD was significantly higher in the UGT2B17 mismatched group (25.1% vs 12.8%; P: 0.005) and this association was confirmed by the multivariate analysis (P: 0.043; hazard ratio: 2.16, 95% confidence interval: 1.03-4.57). Overall survival was worse for patients mismatched for UGT2B17 (P: 0.005). We conclude that UGT2B17 mismatch has a negative clinical impact in allogeneic HSCT from HLA-identical sibling donors only when a male donor is used. These results should be confirmed by other studies.

  18. Over-expression of XIST, the Master Gene for X Chromosome Inactivation, in Females With Major Affective Disorders

    PubMed Central

    Ji, Baohu; Higa, Kerin K.; Kelsoe, John R.; Zhou, Xianjin

    2015-01-01

    Background Psychiatric disorders are common mental disorders without a pathological biomarker. Classic genetic studies found that an extra X chromosome frequently causes psychiatric symptoms in patients with either Klinefelter syndrome (XXY) or Triple X syndrome (XXX). Over-dosage of some X-linked escapee genes was suggested to cause psychiatric disorders. However, relevance of these rare genetic diseases to the pathogenesis of psychiatric disorders in the general population of psychiatric patients is unknown. Methods XIST and several X-linked genes were studied in 36 lymphoblastoid cell lines from healthy females and 60 lymphoblastoid cell lines from female patients with either bipolar disorder or recurrent major depression. XIST and KDM5C expression was also quantified in 48 RNA samples from postmortem human brains of healthy female controls and female psychiatric patients. Findings We found that the XIST gene, a master in control of X chromosome inactivation (XCI), is significantly over-expressed (p = 1 × 10− 7, corrected after multiple comparisons) in the lymphoblastoid cells of female patients with either bipolar disorder or major depression. The X-linked escapee gene KDM5C also displays significant up-regulation (p = 5.3 × 10− 7, corrected after multiple comparisons) in the patients' cells. Expression of XIST and KDM5C is highly correlated (Pearson's coefficient, r = 0.78, p = 1.3 × 10− 13). Studies on human postmortem brains supported over-expression of the XIST gene in female psychiatric patients. Interpretations We propose that over-expression of XIST may cause or result from subtle alteration of XCI, which up-regulates the expression of some X-linked escapee genes including KDM5C. Over-expression of X-linked genes could be a common mechanism for the development of psychiatric disorders between patients with those rare genetic diseases and the general population of female psychiatric patients with XIST over-expression. Our studies

  19. Ubiquitin-Fused and/or Multiple Early Genes from Cottontail Rabbit Papillomavirus as DNA Vaccines

    PubMed Central

    Leachman, Sancy A.; Shylankevich, Mark; Slade, Martin D.; Levine, Dana; K. Sundaram, Ranjini; Xiao, Wei; Bryan, Marianne; Zelterman, Daniel; Tiegelaar, Robert E.; Brandsma, Janet L.

    2002-01-01

    Human papillomavirus (HPV) vaccines have the potential to prevent cervical cancer by preventing HPV infection or treating premalignant disease. We previously showed that DNA vaccination with the cottontail rabbit papillomavirus (CRPV) E6 gene induced partial protection against CRPV challenge and that the vaccine's effects were greatly enhanced by priming with granulocyte-macrophage colony-stimulating factor (GM-CSF). In the present study, two additional strategies for augmenting the clinical efficacy of CRPV E6 vaccination were evaluated. The first was to fuse a ubiquitin monomer to the CRPV E6 protein to enhance antigen processing and presentation through the major histocompatibility complex class I pathway. Rabbits vaccinated with the wild-type E6 gene plus GM-CSF or with the ubiquitin-fused E6 gene formed significantly fewer papillomas than the controls. The papillomas also required a longer time to appear and grew more slowly. Finally, a significant proportion of the papillomas subsequently regressed. The ubiquitin-fused E6 vaccine was significantly more effective than the wild-type E6 vaccine plus GM-CSF priming. The second strategy was to vaccinate with multiple CRPV early genes to increase the breadth of the CRPV-specific response. DNA vaccines encoding the wild-type CRPV E1-E2, E6, or E7 protein were tested alone and in all possible combinations. All vaccines and combinations suppressed papilloma formation, slowed papilloma growth, and stimulated subsequent papilloma regression. Finally, the two strategies were merged and a combination DNA vaccine containing ubiquitin-fused versions of the CRPV E1, E2, and E7 genes was tested. This last vaccine prevented papilloma formation at all challenge sites in all rabbits, demonstrating complete protection. PMID:12097575

  20. HapMap scanning of novel human minor histocompatibility antigens.

    PubMed

    Kamei, Michi; Nannya, Yasuhito; Torikai, Hiroki; Kawase, Takakazu; Taura, Kenjiro; Inamoto, Yoshihiro; Takahashi, Taro; Yazaki, Makoto; Morishima, Satoko; Tsujimura, Kunio; Miyamura, Koichi; Ito, Tetsuya; Togari, Hajime; Riddell, Stanley R; Kodera, Yoshihisa; Morishima, Yasuo; Takahashi, Toshitada; Kuzushima, Kiyotaka; Ogawa, Seishi; Akatsuka, Yoshiki

    2009-05-21

    Minor histocompatibility antigens (mHags) are molecular targets of allo-immunity associated with hematopoietic stem cell transplantation (HSCT) and involved in graft-versus-host disease, but they also have beneficial antitumor activity. mHags are typically defined by host SNPs that are not shared by the donor and are immunologically recognized by cytotoxic T cells isolated from post-HSCT patients. However, the number of molecularly identified mHags is still too small to allow prospective studies of their clinical importance in transplantation medicine, mostly due to the lack of an efficient method for isolation. Here we show that when combined with conventional immunologic assays, the large data set from the International HapMap Project can be directly used for genetic mapping of novel mHags. Based on the immunologically determined mHag status in HapMap panels, a target mHag locus can be uniquely mapped through whole genome association scanning taking advantage of the unprecedented resolution and power obtained with more than 3 000 000 markers. The feasibility of our approach could be supported by extensive simulations and further confirmed by actually isolating 2 novel mHags as well as 1 previously identified example. The HapMap data set represents an invaluable resource for investigating human variation, with obvious applications in genetic mapping of clinically relevant human traits.

  1. Gene expression-based biological test for major depressive disorder: an advanced study.

    PubMed

    Watanabe, Shin-Ya; Numata, Shusuke; Iga, Jun-Ichi; Kinoshita, Makoto; Umehara, Hidehiro; Ishii, Kazuo; Ohmori, Tetsuro

    2017-01-01

    Recently, we could distinguished patients with major depressive disorder (MDD) from nonpsychiatric controls with high accuracy using a panel of five gene expression markers ( ARHGAP24, HDAC5, PDGFC, PRNP , and SLC6A4 ) in leukocyte. In the present study, we examined whether this biological test is able to discriminate patients with MDD from those without MDD, including those with schizophrenia and bipolar disorder. We measured messenger ribonucleic acid expression levels of the aforementioned five genes in peripheral leukocytes in 17 patients with schizophrenia and 36 patients with bipolar disorder using quantitative real-time polymerase chain reaction (PCR), and we combined these expression data with our previous expression data of 25 patients with MDD and 25 controls. Subsequently, a linear discriminant function was developed for use in discriminating between patients with MDD and without MDD. This expression panel was able to segregate patients with MDD from those without MDD with a sensitivity and specificity of 64% and 67.9%, respectively. Further research to identify MDD-specific markers is needed to improve the performance of this biological test.

  2. Characterization of a Nonclassical Class I MHC Gene in a Reptile, the Galápagos Marine Iguana (Amblyrhynchus cristatus)

    PubMed Central

    Glaberman, Scott; Du Pasquier, Louis; Caccone, Adalgisa

    2008-01-01

    Squamates are a diverse order of vertebrates, representing more than 7,000 species. Yet, descriptions of full-length major histocompatibility complex (MHC) genes in this group are nearly absent from the literature, while the number of MHC studies continues to rise in other vertebrate taxa. The lack of basic information about MHC organization in squamates inhibits investigation into the relationship between MHC polymorphism and disease, and leaves a large taxonomic gap in our understanding of amniote MHC evolution. Here, we use both cDNA and genomic sequence data to characterize a class I MHC gene (Amcr-UA) from the Galápagos marine iguana, a member of the squamate subfamily Iguaninae. Amcr-UA appears to be functional since it is expressed in the blood and contains many of the conserved peptide-binding residues that are found in classical class I genes of other vertebrates. In addition, comparison of Amcr-UA to homologous sequences from other iguanine species shows that the antigen-binding portion of this gene is under purifying selection, rather than balancing selection, and therefore may have a conserved function. A striking feature of Amcr-UA is that both the cDNA and genomic sequences lack the transmembrane and cytoplasmic domains that are necessary to anchor the class I receptor molecule into the cell membrane, suggesting that the product of this gene is secreted and consequently not involved in classical class I antigen-presentation. The truncated and conserved character of Amcr-UA lead us to define it as a nonclassical gene that is related to the few available squamate class I sequences. However, phylogenetic analysis placed Amcr-UA in a basal position relative to other published classical MHC genes from squamates, suggesting that this gene diverged near the beginning of squamate diversification. PMID:18682845

  3. Evidence of major genes for plasma HDL, LDL cholesterol and triglyceride levels at baseline and in response to 20 weeks of endurance training: the HERITAGE Family Study.

    PubMed

    An, P; Borecki, I B; Rankinen, T; Després, J-P; Leon, A S; Skinner, J S; Wilmore, J H; Bouchard, C; Rao, D C

    2005-01-01

    This study assessed major gene effects for baseline HDL-C, LDL-C, TG, and their training responses (post-training minus baseline) in 527 individuals from 99 White families and 326 individuals from 113 Black families in the HERITAGE Family Study. The baseline phenotypes were adjusted for the effects of age and BMI, and the training response phenotypes were adjusted for the effects of age, BMI, and their respective baseline values, within each of the sex-by-generation-by-race groups, prior to genetic analyses. In Whites, we found that LDL-C at baseline and HDL-C training response were under influence of major recessive genes (accounting for 2--30 % of the variance) and multifactorial (polygenic and familial environmental) effects. Interactions of these major genes with sex, age, and BMI were tested, and found to be nonsignificant. In Blacks, we found that baseline HDL-C was influenced by a major dominant gene without a multifactorial component. This major gene effect accounted for 45 % of the variance, and exhibited no significant genotype-specific interactions with age, sex, and BMI. Evidence of major genes for the remaining phenotypes at baseline and in response to endurance training were not found in both races, though some were influenced by major effects that did not follow Mendelian expectations or were with ambiguous transmission from parents to offspring. In summary, major gene effects that influence baseline plasma HDL-C and LDL-C levels as well as changes in HDL-C levels in response to regular exercise were detected in the current study.

  4. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus.

    PubMed

    Hurgobin, Bhavna; Golicz, Agnieszka A; Bayer, Philipp E; Chan, Chon-Kit Kenneth; Tirnaz, Soodeh; Dolatabadian, Aria; Schiessl, Sarah V; Samans, Birgit; Montenegro, Juan D; Parkin, Isobel A P; Pires, J Chris; Chalhoub, Boulos; King, Graham J; Snowdon, Rod; Batley, Jacqueline; Edwards, David

    2018-07-01

    Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes in a range of polyploid species. Gene presence/absence variation (PAV) is also a major contributor to genetic diversity. In this study, we show that there is an association between these two events, particularly in recent Brassica napus synthetic accessions, and that these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species. By assembling the pangenome of B. napus, we show that 38% of the genes display PAV behaviour, with some of these variable genes predicted to be involved in important agronomic traits including flowering time, disease resistance, acyl lipid metabolism and glucosinolate metabolism. This study is a first and provides a detailed characterization of the association between HEs and PAVs in B. napus at the pangenome level. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Trends of the Major Porin Gene (ompF) Evolution: Insight from the Genus Yersinia

    PubMed Central

    Stenkova, Anna M.; Isaeva, Marina P.; Shubin, Felix N.; Rasskazov, Valeri A.; Rakin, Alexander V.

    2011-01-01

    OmpF is one of the major general porins of Enterobacteriaceae that belongs to the first line of bacterial defense and interactions with the biotic as well as abiotic environments. Porins are surface exposed and their structures strongly reflect the history of multiple interactions with the environmental challenges. Unfortunately, little is known on diversity of porin genes of Enterobacteriaceae and the genus Yersinia especially. We analyzed the sequences of the ompF gene from 73 Yersinia strains covering 14 known species. The phylogenetic analysis placed most of the Yersinia strains in the same line assigned by 16S rDNA-gyrB tree. Very high congruence in the tree topologies was observed for Y. enterocolitica, Y. kristensenii, Y. ruckeri, indicating that intragenic recombination in these species had no effect on the ompF gene. A significant level of intra- and interspecies recombination was found for Y. aleksiciae, Y. intermedia and Y. mollaretii. Our analysis shows that the ompF gene of Yersinia has evolved with nonrandom mutational rate under purifying selection. However, several surface loops in the OmpF porin contain positively selected sites, which very likely reflect adaptive diversification Yersinia to their ecological niches. To our knowledge, this is a first investigation of diversity of the porin gene covering the whole genus of the family Enterobacteriaceae. This study demonstrates that recombination and positive selection both contribute to evolution of ompF, but the relative contribution of these evolutionary forces are different among Yersinia species. PMID:21655186

  6. Binge eating as a major phenotype of melanocortin 4 receptor gene mutations.

    PubMed

    Branson, Ruth; Potoczna, Natascha; Kral, John G; Lentes, Klaus-Ulrich; Hoehe, Margret R; Horber, Fritz F

    2003-03-20

    Obesity, a multifactorial disease caused by the interaction of genetic factors with the environment, is largely polygenic. A few mutations in these genes, such as in the leptin receptor (LEPR) gene and melanocortin 4 receptor (MC4R) gene, have been identified as causes of monogenic obesity. We sequenced the complete MC4R coding region, the region of the proopiomelanocortin gene (POMC) encoding the alpha melanocyte-stimulating hormone, and the leptin-binding domain of LEPR in 469 severely obese white subjects (370 women and 99 men; mean [+/-SE] age, 41.0+/-0.5 years; body-mass index [the weight in kilograms divided by the square of the height in meters], 44.1+/-2.0). Fifteen women and 10 men without a history of dieting or a family history of obesity served as normal-weight controls (age, 47.7+/-2.0 years; body-mass index, 21.6+/-0.4). Detailed phenotypic data, including information on body fat, resting energy expenditure, diet-induced thermogenesis, serum concentrations of leptin, and eating behavior, were collected. Twenty-four obese subjects (5.1 percent) and one control subject (4 percent) had MC4R mutations, including five novel variants. Twenty of the 24 obese subjects with an MC4R mutation were matched for age, sex, and body-mass index with 120 of the 445 obese subjects without an MC4R mutation. All mutation carriers reported binge eating, as compared with 14.2 percent of obese subjects without mutations (P<0.001) and 0 percent of the normal-weight subjects without mutations. The prevalence of binge eating was similar among carriers of mutations in the leptin-binding domain of LEPR and noncarriers. No mutations were found in the region of POMC encoding alpha melanocyte-stimulating hormone. Binge eating is a major phenotypic characteristic of subjects with a mutation in MC4R, a candidate gene for the control of eating behavior. Copyright 2003 Massachusetts Medical Society

  7. The role of the potassium channel gene KCNK2 in major depressive disorder.

    PubMed

    Congiu, Chiara; Minelli, Alessandra; Bonvicini, Cristian; Bortolomasi, Marco; Sartori, Riccardo; Maj, Carlo; Scassellati, Catia; Maina, Giuseppe; Trabucchi, Luigi; Segala, Matilde; Gennarelli, Massimo

    2015-02-28

    Six single nucleotide polymorphisms (SNPs) of the KCNK2 gene were investigated for their association with major depressive disorder (MDD) and treatment efficacy in 590 MDD patients and 441 controls. The A homozygotes of rs10779646 were significantly more frequent in patients than controls whereas G allele of rs7549184 was associated with the presence of psychotic symptoms and the severity of disease. Evaluating the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) dataset, we confirmed our findings. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Induction of anti-viral genes during acute infection with Viral hemorrhagic septicemia virus (VHSV) genogroup IVa in Pacific herring (Clupea pallasii)

    USGS Publications Warehouse

    Hansen, John D.; Woodson, James C.; Hershberger, Paul K.; Grady, Courtney; Gregg, Jacob L.; Purcell, Maureen K.

    2012-01-01

    Infection with the aquatic rhabdovirus Viral hemorrhagic septicemia virus (VHSV) genogroup IVa results in high mortality in Pacific herring (Clupea pallasii) and is hypothesized to be a potential limiting factor for herring recovery. To investigate anti-viral immunity in the Pacific herring, four immune response genes were identified: the myxovirus resistance (Clpa-Mx), a major histocompatibility complex IB (named Clpa-UAA.001), the inducible immunoproteosome subunit 9 (Clpa-PSMB9) and the neutrophil chemotactic factor (Clpa-LECT2). Reverse transcriptase quantitative PCR (RT-qPCR) assays were developed based on these gene sequences to investigate the host immune response to acute VHSV infection following both injection and immersion challenge. Virus levels were measured by both plaque assay and RT-qPCR and peaked at day 6 during the 10-day exposure period for both groups of fish. The interferon stimulated genes (Clpa-Mx, −UAA.001, and −PSMB9) were significantly up-regulated in response to VHSV infection at both 6 and 10 days post-infection in both spleen and fin. Results from this study indicate that Pacific herring mount a robust, early antiviral response in both fin and spleen tissues. The immunological tools developed in this study will be useful for future studies to investigate antiviral immunity in Pacific herring.

  9. Patterns of evolution of MHC class II genes of crows (Corvus) suggest trans-species polymorphism

    PubMed Central

    Townsend, Andrea K.; Sepil, Irem; Nishiumi, Isao; Satta, Yoko

    2015-01-01

    A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC) is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP), in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis) American crows (C. brachyrhynchos) and carrion crows (C. corone orientalis). Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed using non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While clustering of

  10. Diversity and evolutionary patterns of immune genes in free-ranging Namibian leopards (Panthera pardus pardus).

    PubMed

    Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Sommer, Simone

    2011-01-01

    The genes of the major histocompatibility complex (MHC) are a key component of the mammalian immune system and have become important molecular markers for fitness-related genetic variation in wildlife populations. Currently, no information about the MHC sequence variation and constitution in African leopards exists. In this study, we isolated and characterized genetic variation at the adaptively most important region of MHC class I and MHC class II-DRB genes in 25 free-ranging African leopards from Namibia and investigated the mechanisms that generate and maintain MHC polymorphism in the species. Using single-stranded conformation polymorphism analysis and direct sequencing, we detected 6 MHC class I and 6 MHC class II-DRB sequences, which likely correspond to at least 3 MHC class I and 3 MHC class II-DRB loci. Amino acid sequence variation in both MHC classes was higher or similar in comparison to other reported felids. We found signatures of positive selection shaping the diversity of MHC class I and MHC class II-DRB loci during the evolutionary history of the species. A comparison of MHC class I and MHC class II-DRB sequences of the leopard to those of other felids revealed a trans-species mode of evolution. In addition, the evolutionary relationships of MHC class II-DRB sequences between African and Asian leopard subspecies are discussed.

  11. T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors.

    PubMed

    Manzo, Teresa; Sturmheit, Tabea; Basso, Veronica; Petrozziello, Elisabetta; Hess Michelini, Rodrigo; Riba, Michela; Freschi, Massimo; Elia, Angela R; Grioni, Matteo; Curnis, Flavio; Protti, Maria Pia; Schumacher, Ton N; Debets, Reno; Swartz, Melody A; Corti, Angelo; Bellone, Matteo; Mondino, Anna

    2017-02-01

    Donor-derived allogeneic T cells evoke potent graft versus tumor (GVT) effects likely due to the simultaneous recognition of tumor-specific and host-restricted minor histocompatibility (H) antigens. Here we investigated whether such effects could be reproduced in autologous settings by TCR gene-engineered lymphocytes. We report that T cells redirected either to a broadly expressed Y-encoded minor H antigen or to a tumor-associated antigen, although poorly effective if individually transferred, when simultaneously administered enabled acute autochthonous tumor debulking and resulted in durable clinical remission. Y-redirected T cells proved hyporesponsive in peripheral lymphoid organs, whereas they retained effector function at the tumor site, where in synergy with tumor-redirected lymphocytes, they instructed TNFα expression, endothelial cell activation, and intratumoral T-cell infiltration. While neutralizing TNFα hindered GVT effects by the combined T-cell infusion, a single injection of picogram amounts of NGR-TNF, a tumor vessel-targeted TNFα derivative currently in phase III clinical trials, substituted for Y-redirected cells and enabled tumor debulking by tumor-redirected lymphocytes. Together, our results provide new mechanistic insights into allogeneic GVT, validate the importance of targeting the tumor and its associated stroma, and prove the potency of a novel combined approach suitable for immediate clinical implementation. Cancer Res; 77(3); 658-71. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. The major resistance gene cluster in lettuce is highly duplicated and spans several megabases.

    PubMed Central

    Meyers, B C; Chin, D B; Shen, K A; Sivaramakrishnan, S; Lavelle, D O; Zhang, Z; Michelmore, R W

    1998-01-01

    At least 10 Dm genes conferring resistance to the oomycete downy mildew fungus Bremia lactucae map to the major resistance cluster in lettuce. We investigated the structure of this cluster in the lettuce cultivar Diana, which contains Dm3. A deletion breakpoint map of the chromosomal region flanking Dm3 was saturated with a variety of molecular markers. Several of these markers are components of a family of resistance gene candidates (RGC2) that encode a nucleotide binding site and a leucine-rich repeat region. These motifs are characteristic of plant disease resistance genes. Bacterial artificial chromosome clones were identified by using duplicated restriction fragment length polymorphism markers from the region, including the nucleotide binding site-encoding region of RGC2. Twenty-two distinct members of the RGC2 family were characterized from the bacterial artificial chromosomes; at least two additional family members exist. The RGC2 family is highly divergent; the nucleotide identity was as low as 53% between the most distantly related copies. These RGC2 genes span at least 3.5 Mb. Eighteen members were mapped on the deletion breakpoint map. A comparison between the phylogenetic and physical relationships of these sequences demonstrated that closely related copies are physically separated from one another and indicated that complex rearrangements have shaped this region. Analysis of low-copy genomic sequences detected no genes, including RGC2, in the Dm3 region, other than sequences related to retrotransposons and transposable elements. The related but divergent family of RGC2 genes may act as a resource for the generation of new resistance phenotypes through infrequent recombination or unequal crossing over. PMID:9811791

  13. Balancing Selection at the Tomato RCR3 Guardee Gene Family Maintains Variation in Strength of Pathogen Defense

    PubMed Central

    Hörger, Anja C.; Ilyas, Muhammad; Stephan, Wolfgang; Tellier, Aurélien; van der Hoorn, Renier A. L.; Rose, Laura E.

    2012-01-01

    Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors) and host resistance genes such as the major histocompatibility complex (MHC) in mammals or resistance (R) genes in plants. In plant–pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the “Guard-Hypothesis,” R proteins (the “guards”) can sense modification of target molecules in the host (the “guardees”) by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3) and its guard (Cf-2). We conclude that, in addition to coevolution at the “guardee-effector” interface for pathogen recognition, natural selection acts on the “guard-guardee” interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto

  14. Identification of genes and gene pathways associated with major depressive disorder by integrative brain analysis of rat and human prefrontal cortex transcriptomes

    PubMed Central

    Malki, K; Pain, O; Tosto, M G; Du Rietz, E; Carboni, L; Schalkwyk, L C

    2015-01-01

    Despite moderate heritability estimates, progress in uncovering the molecular substrate underpinning major depressive disorder (MDD) has been slow. In this study, we used prefrontal cortex (PFC) gene expression from a genetic rat model of MDD to inform probe set prioritization in PFC in a human post-mortem study to uncover genes and gene pathways associated with MDD. Gene expression differences between Flinders sensitive (FSL) and Flinders resistant (FRL) rat lines were statistically evaluated using the RankProd, non-parametric algorithm. Top ranking probe sets in the rat study were subsequently used to prioritize orthologous selection in a human PFC in a case–control post-mortem study on MDD from the Stanley Brain Consortium. Candidate genes in the human post-mortem study were then tested against a matched control sample using the RankProd method. A total of 1767 probe sets were differentially expressed in the PFC between FSL and FRL rat lines at (q⩽0.001). A total of 898 orthologous probe sets was found on Affymetrix's HG-U95A chip used in the human study. Correcting for the number of multiple, non-independent tests, 20 probe sets were found to be significantly dysregulated between human cases and controls at q⩽0.05. These probe sets tagged the expression profile of 18 human genes (11 upregulated and seven downregulated). Using an integrative rat–human study, a number of convergent genes that may have a role in pathogenesis of MDD were uncovered. Eighty percent of these genes were functionally associated with a key stress response signalling cascade, involving NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), AP-1 (activator protein 1) and ERK/MAPK, which has been systematically associated with MDD, neuroplasticity and neurogenesis. PMID:25734512

  15. H2-M polymorphism in mice susceptible to collagen-induced arthritis involves the peptide binding groove

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, W.; Loos, M.; Maeurer, M.J.

    1996-12-31

    The ability to develop type II collagen (CII)-induced arthritis (CIA) in mice is associated with the major histocompatibility I-A gene and with as yet poorly defined regulatory molecules of the major histocompatibility complex (MHC) class II antigen processing and presentation pathway. H2-M molecules are thought to be involved in the loading of antigenic peptides into the MHC class II binding cleft. We sequenced H2-Ma, H2-Mb1, and H2-Mb2 genes from CIA-susceptible and -resistant mouse strains and identified four different Ma and Mb2 alleles, and three different Mb1 alleles defined by polymorphic residues within the predicted peptide binding groove. Most CIA-resistant mousemore » strains share common Ma, Mb1, and Mb2 alleles. In contrast, H2-M alleles designated Ma-III, Ma-IV, Mb1-III, and Mb2-IV could be exclusively identified in the CIA-susceptible H2{sup r} and H2{sup q} haplotypes, suggesting that allelic H2-M molecules may modulate the composition of different CII peptides loaded onto MHC class II molecules, presumably presenting {open_quotes}arthritogenic{close_quotes} epitopes to T lymphocytes. 42 refs., 4 figs., 3 tabs.« less

  16. Structure and transcriptional regulation of the major intrinsic protein gene family in grapevine.

    PubMed

    Wong, Darren Chern Jan; Zhang, Li; Merlin, Isabelle; Castellarin, Simone D; Gambetta, Gregory A

    2018-04-11

    The major intrinsic protein (MIP) family is a family of proteins, including aquaporins, which facilitate water and small molecule transport across plasma membranes. In plants, MIPs function in a huge variety of processes including water transport, growth, stress response, and fruit development. In this study, we characterize the structure and transcriptional regulation of the MIP family in grapevine, describing the putative genome duplication events leading to the family structure and characterizing the family's tissue and developmental specific expression patterns across numerous preexisting microarray and RNAseq datasets. Gene co-expression network (GCN) analyses were carried out across these datasets and the promoters of each family member were analyzed for cis-regulatory element structure in order to provide insight into their transcriptional regulation. A total of 29 Vitis vinifera MIP family members (excluding putative pseudogenes) were identified of which all but two were mapped onto Vitis vinifera chromosomes. In this study, segmental duplication events were identified for five plasma membrane intrinsic protein (PIP) and four tonoplast intrinsic protein (TIP) genes, contributing to the expansion of PIPs and TIPs in grapevine. Grapevine MIP family members have distinct tissue and developmental expression patterns and hierarchical clustering revealed two primary groups regardless of the datasets analyzed. Composite microarray and RNA-seq gene co-expression networks (GCNs) highlighted the relationships between MIP genes and functional categories involved in cell wall modification and transport, as well as with other MIPs revealing a strong co-regulation within the family itself. Some duplicated MIP family members have undergone sub-functionalization and exhibit distinct expression patterns and GCNs. Cis-regulatory element (CRE) analyses of the MIP promoters and their associated GCN members revealed enrichment for numerous CREs including AP2/ERFs and NACs

  17. Association study of four polymorphisms in the interleukin-7 receptor alpha gene with multiple sclerosis in Eastern Iran.

    PubMed

    Haj, Mehrdad Sadeghi; Nikravesh, Abbas; Kakhki, Majid Pahlevan; Rakhshi, Nahid

    2015-06-01

    Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system (CNS) with unknown etiology. Various genetics and environmental factors contribute to the pathogenesis of the disease. The interleukin-7 receptor alpha chain (IL-7Ra) was identified as the first non-major histocompatibility complex (non-MHC) MS susceptibility locus. In this study we are trying to find the association of IL-7Ra gene polymorphisms with MS susceptibility in Eastern Iran. A case-control study was performed in two provinces Sistan & Baluchistan and Khorasan with 219 patients and 258 unrelated matched healthy controls, using PCR-RFLP method for four single nucleotide polymorphisms (SNPs) rs7718919, rs11567685, rs11567686 and rs6897932 of IL-7Ra gene. We found a tendency toward association with genotyping analyses in SNP rs7718919 (P=0.048, OR=4.344, and 95% CI=0.892-21.146); also genotype and allele frequency in gender and MS subtype stratification were shown to have significant association with MS. Analysis of two provinces separately showed a significant difference in results of the allele and genotype frequencies. Moreover, haplotyping analysis showed that (GTGC) has an association only in the male secondary-progressive multiple sclerosis (SPMS) patients in comparison to the healthy controls (P=0.043, OR=0.413, and 95% CI=0.179-0.955). IL7-Ra could be a susceptible gene to MS within the Eastern Iran population especially after MS and gender stratification.

  18. Plant Genetic Background Increasing the Efficiency and Durability of Major Resistance Genes to Root-knot Nematodes Can Be Resolved into a Few Resistance QTLs

    PubMed Central

    Barbary, Arnaud; Djian-Caporalino, Caroline; Marteu, Nathalie; Fazari, Ariane; Caromel, Bernard; Castagnone-Sereno, Philippe; Palloix, Alain

    2016-01-01

    With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs) in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes). However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a quantitative trait loci (QTL) analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, Meloidogyne incognita, M. arenaria, and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS–LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes. PMID:27242835

  19. Pooled Sequencing of 531 Genes in Inflammatory Bowel Disease Identifies an Associated Rare Variant in BTNL2 and Implicates Other Immune Related Genes

    PubMed Central

    Prescott, Natalie J.; Lehne, Benjamin; Stone, Kristina; Lee, James C.; Taylor, Kirstin; Knight, Jo; Papouli, Efterpi; Mirza, Muddassar M.; Simpson, Michael A.; Spain, Sarah L.; Lu, Grace; Fraternali, Franca; Bumpstead, Suzannah J.; Gray, Emma; Amar, Ariella; Bye, Hannah; Green, Peter; Chung-Faye, Guy; Hayee, Bu’Hussain; Pollok, Richard; Satsangi, Jack; Parkes, Miles; Barrett, Jeffrey C.; Mansfield, John C.; Sanderson, Jeremy; Lewis, Cathryn M.; Weale, Michael E.; Schlitt, Thomas; Mathew, Christopher G.

    2015-01-01

    The contribution of rare coding sequence variants to genetic susceptibility in complex disorders is an important but unresolved question. Most studies thus far have investigated a limited number of genes from regions which contain common disease associated variants. Here we investigate this in inflammatory bowel disease by sequencing the exons and proximal promoters of 531 genes selected from both genome-wide association studies and pathway analysis in pooled DNA panels from 474 cases of Crohn’s disease and 480 controls. 80 variants with evidence of association in the sequencing experiment or with potential functional significance were selected for follow up genotyping in 6,507 IBD cases and 3,064 population controls. The top 5 disease associated variants were genotyped in an extension panel of 3,662 IBD cases and 3,639 controls, and tested for association in a combined analysis of 10,147 IBD cases and 7,008 controls. A rare coding variant p.G454C in the BTNL2 gene within the major histocompatibility complex was significantly associated with increased risk for IBD (p = 9.65x10−10, OR = 2.3[95% CI = 1.75–3.04]), but was independent of the known common associated CD and UC variants at this locus. Rare (<1%) and low frequency (1–5%) variants in 3 additional genes showed suggestive association (p<0.005) with either an increased risk (ARIH2 c.338-6C>T) or decreased risk (IL12B p.V298F, and NICN p.H191R) of IBD. These results provide additional insights into the involvement of the inhibition of T cell activation in the development of both sub-phenotypes of inflammatory bowel disease. We suggest that although rare coding variants may make a modest overall contribution to complex disease susceptibility, they can inform our understanding of the molecular pathways that contribute to pathogenesis. PMID:25671699

  20. Multipotent adult germ-line stem cells, like other pluripotent stem cells, can be killed by cytotoxic T lymphocytes despite low expression of major histocompatibility complex class I molecules

    PubMed Central

    Dressel, Ralf; Guan, Kaomei; Nolte, Jessica; Elsner, Leslie; Monecke, Sebastian; Nayernia, Karim; Hasenfuss, Gerd; Engel, Wolfgang

    2009-01-01

    Background Multipotent adult germ-line stem cells (maGSCs) represent a new pluripotent cell type that can be derived without genetic manipulation from spermatogonial stem cells (SSCs) present in adult testis. Similarly to induced pluripotent stem cells (iPSCs), they could provide a source of cellular grafts for new transplantation therapies of a broad variety of diseases. To test whether these stem cells can be rejected by the recipients, we have analyzed whether maGSCs and iPSCs can become targets for cytotoxic T lymphocytes (CTL) or whether they are protected, as previously proposed for embryonic stem cells (ESCs). Results We have observed that maGSCs can be maintained in prolonged culture with or without leukemia inhibitory factor and/or feeder cells and still retain the capacity to form teratomas in immunodeficient recipients. They were, however, rejected in immunocompetent allogeneic recipients, and the immune response controlled teratoma growth. We analyzed the susceptibility of three maGSC lines to CTL in comparison to ESCs, iPSCs, and F9 teratocarcinoma cells. Major histocompatibility complex (MHC) class I molecules were not detectable by flow cytometry on these stem cell lines, apart from low levels on one maGSC line (maGSC Stra8 SSC5). However, using a quantitative real time PCR analysis H2K and B2m transcripts were detected in all pluripotent stem cell lines. All pluripotent stem cell lines were killed in a peptide-dependent manner by activated CTLs derived from T cell receptor transgenic OT-I mice after pulsing of the targets with the SIINFEKL peptide. Conclusion Pluripotent stem cells, including maGSCs, ESCs, and iPSCs can become targets for CTLs, even if the expression level of MHC class I molecules is below the detection limit of flow cytometry. Thus they are not protected against CTL-mediated cytotoxicity. Therefore, pluripotent cells might be rejected after transplantation by this mechanism if specific antigens are presented and if specific

  1. Complementary DNA sequences encoding the multimammate rat MHC class II DQ alpha and beta chains and cross-species sequence comparison in rodents.

    PubMed

    de Bellocq, J Goüy; Leirs, H

    2009-09-01

    Sequences of the complete open reading frame (ORF) for rodents major histocompatibility complex (MHC) class II genes are rare. Multimammate rat (Mastomys natalensis) complementary DNA (cDNA) encoding the alpha and beta chains of MHC class II DQ gene was cloned from a rapid amplifications of cDNA Emds (RACE) cDNA library. The ORFs consist of 801 and 771 bp encoding 266 and 256 amino acid residues for DQB and DQA, respectively. The genomic structure of Mana-DQ genes is globally analogous to that described for other rodents except for the insertion of a serine residue in the signal peptide of Mana-DQB, which is unique among known rodents.

  2. Meiotic recombination generates rich diversity in NK cell receptor genes, alleles, and haplotypes

    PubMed Central

    Norman, Paul J.; Abi-Rached, Laurent; Gendzekhadze, Ketevan; Hammond, John A.; Moesta, Achim K.; Sharma, Deepti; Graef, Thorsten; McQueen, Karina L.; Guethlein, Lisbeth A.; Carrington, Christine V.F.; Chandanayingyong, Dasdayanee; Chang, Yih-Hsin; Crespí, Catalina; Saruhan-Direskeneli, Güher; Hameed, Kamran; Kamkamidze, Giorgi; Koram, Kwadwo A.; Layrisse, Zulay; Matamoros, Nuria; Milà, Joan; Park, Myoung Hee; Pitchappan, Ramasamy M.; Ramdath, D. Dan; Shiau, Ming-Yuh; Stephens, Henry A.F.; Struik, Siske; Tyan, Dolly; Verity, David H.; Vaughan, Robert W.; Davis, Ronald W.; Fraser, Patricia A.; Riley, Eleanor M.; Ronaghi, Mostafa; Parham, Peter

    2009-01-01

    Natural killer (NK) cells contribute to the essential functions of innate immunity and reproduction. Various genes encode NK cell receptors that recognize the major histocompatibility complex (MHC) Class I molecules expressed by other cells. For primate NK cells, the killer-cell immunoglobulin-like receptors (KIR) are a variable and rapidly evolving family of MHC Class I receptors. Studied here is KIR3DL1/S1, which encodes receptors for highly polymorphic human HLA-A and -B and comprises three ancient allelic lineages that have been preserved by balancing selection throughout human evolution. While the 3DS1 lineage of activating receptors has been conserved, the two 3DL1 lineages of inhibitory receptors were diversified through inter-lineage recombination with each other and with 3DS1. Prominent targets for recombination were D0-domain polymorphisms, which modulate enhancer function, and dimorphism at position 283 in the D2 domain, which influences inhibitory function. In African populations, unequal crossing over between the 3DL1 and 3DL2 genes produced a deleted KIR haplotype in which the telomeric “half” was reduced to a single fusion gene with functional properties distinct from its 3DL1 and 3DL2 parents. Conversely, in Eurasian populations, duplication of the KIR3DL1/S1 locus by unequal crossing over has enabled individuals to carry and express alleles of all three KIR3DL1/S1 lineages. These results demonstrate how meiotic recombination combines with an ancient, preserved diversity to create new KIR phenotypes upon which natural selection acts. A consequence of such recombination is to blur the distinction between alleles and loci in the rapidly evolving human KIR gene family. PMID:19411600

  3. Major psychological factors affecting acceptance of gene-recombination technology.

    PubMed

    Tanaka, Yutaka

    2004-12-01

    The purpose of this study was to verify the validity of a causal model that was made to predict the acceptance of gene-recombination technology. A structural equation model was used as a causal model. First of all, based on preceding studies, the factors of perceived risk, perceived benefit, and trust were set up as important psychological factors determining acceptance of gene-recombination technology in the structural equation model. An additional factor, "sense of bioethics," which I consider to be important for acceptance of biotechnology, was added to the model. Based on previous studies, trust was set up to have an indirect influence on the acceptance of gene-recombination technology through perceived risk and perceived benefit in the model. Participants were 231 undergraduate students in Japan who answered a questionnaire with a 5-point bipolar scale. The results indicated that the proposed model fits the data well, and showed that acceptance of gene-recombination technology is explained largely by four factors, that is, perceived risk, perceived benefit, trust, and sense of bioethics, whether the technology is applied to plants, animals, or human beings. However, the relative importance of the four factors was found to vary depending on whether the gene-recombination technology was applied to plants, animals, or human beings. Specifically, the factor of sense of bioethics is the most important factor in acceptance of plant gene-recombination technology and animal gene-recombination technology, and the factors of trust and perceived risk are the most important factors in acceptance of human being gene-recombination technology.

  4. Genomic signatures of fine-scale local selection in Atlantic salmon suggest involvement of sexual maturation, energy homeostasis and immune defence-related genes.

    PubMed

    Pritchard, Victoria L; Mäkinen, Hannu; Vähä, Juha-Pekka; Erkinaro, Jaakko; Orell, Panu; Primmer, Craig R

    2018-06-01

    Elucidating the genetic basis of adaptation to the local environment can improve our understanding of how the diversity of life has evolved. In this study, we used a dense SNP array to identify candidate loci potentially underlying fine-scale local adaptation within a large Atlantic salmon (Salmo salar) population. By combining outlier, gene-environment association and haplotype homozygosity analyses, we identified multiple regions of the genome with strong evidence for diversifying selection. Several of these candidate regions had previously been identified in other studies, demonstrating that the same loci could be adaptively important in Atlantic salmon at subdrainage, regional and continental scales. Notably, we identified signals consistent with local selection around genes associated with variation in sexual maturation, energy homeostasis and immune defence. These included the large-effect age-at-maturity gene vgll3, the known obesity gene mc4r, and major histocompatibility complex II. Most strikingly, we confirmed a genomic region on Ssa09 that was extremely differentiated among subpopulations and that is also a candidate for local selection over the global range of Atlantic salmon. This region colocalized with a haplotype strongly associated with spawning ecotype in sockeye salmon (Oncorhynchus nerka), with circumstantial evidence that the same gene (six6) may be the selective target in both cases. The phenotypic effect of this region in Atlantic salmon remains cryptic, although allelic variation is related to upstream catchment area and covaries with timing of the return spawning migration. Our results further inform management of Atlantic salmon and open multiple avenues for future research. © 2018 John Wiley & Sons Ltd.

  5. A novel TaqI polymorphism in the coding region of the ovine TNXB gene in the MHC class III region: morphostructural and physiological influences.

    PubMed

    Ajayi, Oyeyemi O; Adefenwa, Mufliat A; Agaviezor, Brilliant O; Ikeobi, Christian O N; Wheto, Matthew; Okpeku, Moses; Amusan, Samuel A; Yakubu, Abdulmojeed; De Donato, Marcos; Peters, Sunday O; Imumorin, Ikhide G

    2014-02-01

    The tenascin-XB (TNXB) gene has antiadhesive effects, functions in matrix maturation in connective tissues, and localizes to the major histocompatibility complex class III region. We hypothesized that it may influence adaptive physiological response through an effect on blood vessel function. We identified a novel g.1324 A→G polymorphism at a TaqI recognition site in a 454 bp fragment of ovine TNXB and genotyped it in 150 Nigerian sheep using PCR-RFLP. The missense mutation changes glutamic acid (GAA) to glycine (GGA). Among SNP genotypes, significant differences (P < 0.05) were observed in body weight and fore cannon bone length. Interaction effects of breed, SNP genotype, and geographic location had a significant effect (P < 0.05) on chest girth. The SNP genotype was significantly (P < 0.05) associated with physiological traits of pulse rate and skin temperature. The observed effect of this novel polymorphism may be mediated through its role in connective tissue biology, requiring further association and functional studies.

  6. Testing the predictive value of peripheral gene expression for nonremission following citalopram treatment for major depression.

    PubMed

    Guilloux, Jean-Philippe; Bassi, Sabrina; Ding, Ying; Walsh, Chris; Turecki, Gustavo; Tseng, George; Cyranowski, Jill M; Sibille, Etienne

    2015-02-01

    Major depressive disorder (MDD) in general, and anxious-depression in particular, are characterized by poor rates of remission with first-line treatments, contributing to the chronic illness burden suffered by many patients. Prospective research is needed to identify the biomarkers predicting nonremission prior to treatment initiation. We collected blood samples from a discovery cohort of 34 adult MDD patients with co-occurring anxiety and 33 matched, nondepressed controls at baseline and after 12 weeks (of citalopram plus psychotherapy treatment for the depressed cohort). Samples were processed on gene arrays and group differences in gene expression were investigated. Exploratory analyses suggest that at pretreatment baseline, nonremitting patients differ from controls with gene function and transcription factor analyses potentially related to elevated inflammation and immune activation. In a second phase, we applied an unbiased machine learning prediction model and corrected for model-selection bias. Results show that baseline gene expression predicted nonremission with 79.4% corrected accuracy with a 13-gene model. The same gene-only model predicted nonremission after 8 weeks of citalopram treatment with 76% corrected accuracy in an independent validation cohort of 63 MDD patients treated with citalopram at another institution. Together, these results demonstrate the potential, but also the limitations, of baseline peripheral blood-based gene expression to predict nonremission after citalopram treatment. These results not only support their use in future prediction tools but also suggest that increased accuracy may be obtained with the inclusion of additional predictors (eg, genetics and clinical scales).

  7. Association between KIR genes and dust mite sensitization in a Brazilian population.

    PubMed

    Caniatti, Marcela Caleffi da Costa Lima; Borelli, Sueli Donizete; Guilherme, Ana Lúcia Falavigna; Franzener, Soraya Barrionuevo; Tsuneto, Luiza Tamie

    2018-01-01

    Killer cell immunoglobulin-like receptors (KIRs), found on the surface of natural killer (NK) cells, play a key role in controlling the innate response. Such response depends on a series of cellular interactions between these receptors and HLA activating/inhibiting ligands. Atopic diseases have been associated with genes that regulate cytokine production and HLA genes, which may either protect or predispose to hypersensitivity. To verify an association study of KIR genes with sensitization to the following mites: Dermatophagoides farinae, Dermatophagoides pteronyssinus, and Blomia tropicalis. A total of 341 children aged up to 14 years, were classified as mite-sensitive or mite-insensitive after undergoing a skin prick test for immediate allergic reactions. The presence/absence of KIR genes and their human leukocyte antigen (HLA) ligands was determined by polymerase chain reaction-sequence specific oligonucleotide (PCR-SSO) with the commercial kit LabType™ using Luminex™. The frequencies of KIR genes and their respective class I HLA ligands and the frequency of haplotypes were performed in sensitive and insensitive individuals, and no significant differences were found. Our results suggest no influence of KIR genes on resistance/susceptibility to sensitization to dust mites. Copyright © 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  8. Mapping of a dominant rust resistance gene revealed two R genes around the major Rust_QTL in cultivated peanut (Arachis hypogaea L.).

    PubMed

    Mondal, Suvendu; Badigannavar, Anand M

    2018-05-09

    A consensus rust QTL was identified within a 1.25 cM map interval of A03 chromosome in cultivated peanut. This map interval contains a TIR-NB-LRR R gene and four pathogenesis-related genes. Disease resistance in plants is manifested due to the specific interaction between the R gene product and its cognate avirulence gene product (AVR) in the pathogen. Puccinia arachidis Speg. causes rust disease and inflicts economic damages to peanut. Till now, no experimental evidence is known for the action of R gene in peanut for rust resistance. A fine mapping approach towards the development of closely linked markers for rust resistance gene was undertaken in this study. Phenotyping of an RIL population at five environments for field rust score and subsequent QTL analysis has identified a 1.25 cM map interval that harbored a consensus major Rust_QTL in A03 chromosome. This Rust_QTL is flanked by two SSR markers: FRS72 and SSR_GO340445. Both the markers clearly identified strong association of the mapped region with rust reaction in both resistant and susceptible genotypes from a collection of 95 cultivated peanut germplasm. This 1.25 cM map interval contained 331.7 kb in the physical map of A. duranensis and had a TIR-NB-LRR category R gene (Aradu.Z87JB) and four glucan endo-1,3 β glucosidase genes (Aradu.RKA6 M, Aradu.T44NR, Aradu.IWV86 and Aradu.VG51Q). Another resistance gene analog was also found in the vicinity of mapped Rust_QTL. The sequence between SSR markers, FRS72 and FRS49, contains an LRR-PK (Aradu.JG217) which is equivalent to RHG4 in soybean. Probably, the protein kinase domain in AhRHG4 acts as an integrated decoy for the cognate AVR from Puccinia arachidis and helps the TIR-NB-LRR R-protein to initiate a controlled program cell death in resistant peanut plants.

  9. Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter.

    PubMed

    Sawado, T; Igarashi, K; Groudine, M

    2001-08-28

    The mouse beta-globin gene locus control region (LCR), located upstream of the beta-globin gene cluster, is essential for the activated transcription of genes in the cluster. The LCR contains multiple binding sites for transactivators, including Maf-recognition elements (MAREs). However, little is known about the specific proteins that bind to these sites or the time at which they bind during erythroid differentiation. We have performed chromatin immunoprecipitation experiments to determine the recruitment of the erythroid-specific transactivator p45 NF-E2/MafK (p18 NF-E2) heterodimer and small Maf proteins to various regions in the globin gene locus before and after the induction of murine erythroleukemia (MEL) cell differentiation. We report that, before induction, the LCR is occupied by small Maf proteins, and, on erythroid maturation, the NF-E2 complex is recruited to the LCR and the active globin promoters, even though the promoters do not contain MAREs. This differentiation-coupled recruitment of NF-E2 complex correlates with a greater than 100-fold increase in beta-major globin transcription, but is not associated with a significant change in locus-wide histone H3 acetylation. These findings suggest that the beta-globin gene locus exists in a constitutively open chromatin conformation before terminal differentiation, and we speculate that recruitment of NF-E2 complex to the LCR and active promoters may be a rate-limiting step in the activation of beta-globin gene expression.

  10. Copy number variations of six and seven α-globin genes in a family with intermedia and major thalassemia phenotypes.

    PubMed

    Farashi, Samaneh; Vakili, Shadi; Faramarzi Garous, Negin; Ashki, Mehri; Imanian, Hashem; Azarkeivan, Azita; Najmabadi, Hossein

    2015-10-01

    Copy number variations in α-globin genes are results of unequal crossover between homologous segments in the α-globin gene cluster that misalign during the meiosis phase of the gametogenesis process. Reduction or augmentation of α-globin genes leads to imbalance of α/β chains in hemoglobin tetramer and consequently attenuate or worsen the β-thal clinical symptoms, respectively. Multiplications in α-globin genes have been found in some populations, justifying unexpected severe phenotype of β-thal carriers. Unexpected severe phenotype in the family members may result from coexistence of extra α-globin genes, which is an important factor in the causation of thalassemia intermedia and major in heterozygous β-thalassemia. We described different multiplications in α-globin locus in an Iranian family with one, two or three extra α-globin genes (ααα/αα, αααα/αα and αααα/ααα). The excess α-globin gene/genes cause increment in β/α chain imbalance and leads to worsening pathophysiology and clinical severity of β-thalassemia carriers.

  11. Roles of polypyrimidine tract binding proteins in major immediate-early gene expression and viral replication of human cytomegalovirus.

    PubMed

    Cosme, Ruth S Cruz; Yamamura, Yasuhiro; Tang, Qiyi

    2009-04-01

    Human cytomegalovirus (HCMV), a member of the beta subgroup of the family Herpesviridae, causes serious health problems worldwide. HCMV gene expression in host cells is a well-defined sequential process: immediate-early (IE) gene expression, early-gene expression, DNA replication, and late-gene expression. The most abundant IE gene, major IE (MIE) gene pre-mRNA, needs to be spliced before being exported to the cytoplasm for translation. In this study, the regulation of MIE gene splicing was investigated; in so doing, we found that polypyrimidine tract binding proteins (PTBs) strongly repressed MIE gene production in cotransfection assays. In addition, we discovered that the repressive effects of PTB could be rescued by splicing factor U2AF. Taken together, the results suggest that PTBs inhibit MIE gene splicing by competing with U2AF65 for binding to the polypyrimidine tract in pre-mRNA. In intron deletion mutation assays and RNA detection experiments (reverse transcription [RT]-PCR and real-time RT-PCR), we further observed that PTBs target all the introns of the MIE gene, especially intron 2, and affect gene splicing, which was reflected in the variation in the ratio of pre-mRNA to mRNA. Using transfection assays, we demonstrated that PTB knockdown cells induce a higher degree of MIE gene splicing/expression. Consistently, HCMV can produce more viral proteins and viral particles in PTB knockdown cells after infection. We conclude that PTB inhibits HCMV replication by interfering with MIE gene splicing through competition with U2AF for binding to the polypyrimidine tract in MIE gene introns.

  12. Association of SNP variants of MHC Class II DRB gene with thermo-physiological traits in tropical goats.

    PubMed

    Yakubu, Abdulmojeed; Salako, Adebowale E; De Donato, Marcos; Peters, Sunday O; Takeet, Michael I; Wheto, Mathew; Okpeku, Moses; Imumorin, Ikhide G

    2017-02-01

    Host defense in vertebrates depend on many secreted regulatory proteins such as major histocompatibility complex (MHC) class II which provide important regulatory and effector functions of T cells. Gene polymorphism in the second exon of Capra-DRB gene in three major Nigerian goat breeds [West African Dwarf (WAD), Red Sokoto (RS), and Sahel (SH)] was analyzed by restriction fragment length polymorphisms (RFLP). Four restriction enzymes, BsaHI, AluI, HaeIII, and SacII, were utilized. The association between the polymorphic sites and some heat tolerance traits were also investigated in a total of 70 WAD, 90 RS, and 50 SH goats. Fourteen different types of alleles identified in the Nigerian goats, four of which were found in the peptide coding region (A57G, Q89R, G104D, and T112I), indicate a high degree of polymorphism at the DRB locus in this species. An obvious excess (P < 0.01) of non-synonymous substitutions than synonymous (dN/dS) in this locus is a reflection of adaptive evolution and positive selection. The phylogenetic trees revealed largely species-wise clustering in DRB gene. BsaHI, AluI, HaeIII, and SacII genotype frequencies were in Hardy-Weinberg equilibrium (P > 0.05), except AluI in RS goats and HaeIII in WAD goats (P < 0.05). The expected heterozygosity (H), which is a measure of gene diversity in the goat populations, ranged from 0.16 to 0.50. Genotypes AA (BsaHI), GG, GC and CC (AluI) and GG, GA, AA (HaeIII) appeared better in terms of heat tolerance. The heat-tolerant ability of SH and RS goats to the hot and humid tropical environment of Nigeria seemed better than that of the WAD goats. Sex effect (P < 0.05) was mainly on pulse rate and heat stress index, while there were varying interaction effects on heat tolerance. Variation at the DRB locus may prove to be important in possible selection and breeding for genetic resistance to heat stress in the tropics.

  13. PU.1 is a major transcriptional activator of the tumour suppressor gene LIMD1

    PubMed Central

    Foxler, Daniel E.; James, Victoria; Shelton, Samuel J.; Vallim, Thomas Q. de A.; Shaw, Peter E.; Sharp, Tyson V.

    2011-01-01

    LIMD1 is a tumour suppressor gene (TSG) down regulated in ∼80% of lung cancers with loss also demonstrated in breast and head and neck squamous cell carcinomas. LIMD1 is also a candidate TSG in childhood acute lymphoblastic leukaemia. Mechanistically, LIMD1 interacts with pRB, repressing E2F-driven transcription as well as being a critical component of microRNA-mediated gene silencing. In this study we show a CpG island within the LIMD1 promoter contains a conserved binding motif for the transcription factor PU.1. Mutation of the PU.1 consensus reduced promoter driven transcription by 90%. ChIP and EMSA analysis demonstrated that PU.1 specifically binds to the LIMD1 promoter. siRNA depletion of PU.1 significantly reduced endogenous LIMD1 expression, demonstrating that PU.1 is a major transcriptional activator of LIMD1. PMID:21402070

  14. MHC class I chain-related gene a diversity in patients with cutaneous malignant melanoma from southeastern Spain.

    PubMed

    Campillo, José Antonio; López-Hernández, Ruth; Martínez-Banaclocha, Helios; Bolarín, José Miguel; Gimeno, Lourdes; Mrowiec, Anna; López, Manuela; Las Heras, Beatriz; Minguela, Alfredo; Moya-Quiles, Maria Rosa; Legáz, Isabel; Frías-Iniesta, José Francisco; García-Alonso, Ana María; Álvarez-López, María Rocío; Martínez-Escribano, Jorge Antonio; Muro, Manuel

    2015-01-01

    A limited number of studies have been performed so far on the polymorphism in the transmembrane region (exon 5) of the major histocompatibility complex class I chain-related gene A (MICA) in patients with melanoma. However, the influence of MICA polymorphism in extracellular domains (exons 2, 3, and 4) has not been investigated on melanoma disease. This study aims to characterize the influence of extracellular MICA polymorphism, and its previously described linkage disequilibrium with HLA-B locus, on patients with cutaneous melanoma from southeastern Spain. For this purpose, MICA and HLA-B genotyping was performed in 233 patients and 200 ethnically matched controls by luminex technology. Patients were classified according to the presence of methionine or valine at codon 129 of MICA gene. We found a high frequency of MICA(*)009 in melanoma patients compared with controls (P = 0.002, Pc = 0.03). Our results also showed an association between MICA(*)009 and HLA-B(*)51 alleles in both patients and controls. This association was stronger in patients than controls (P = 0.015). However, a multivariate logistic regression model showed that neither MICA(*)009 nor the combination MICA(*)009/HLA-B(*)51 was associated with melanoma susceptibility. No relationship was observed between MICA-129 dimorphism and melanoma nor when MICA polymorphism was evaluated according to clinical findings at diagnosis.

  15. Distribution and frequency of Bru1, a major brown rust resistance gene, in the sugarcane world collection

    USDA-ARS?s Scientific Manuscript database

    Brown rust, caused by Puccinia melanocephala, is an important disease of sugarcane worldwide. Molecular markers for a major brown rust resistance gene, Bru1, were used to screen a total of 1,282 clones in the World Collection of Sugarcane and Related Grasses (WCSRG) to determine the distribution and...

  16. Distribution of triclosan-resistant genes in major pathogenic microorganisms revealed by metagenome and genome-wide analysis

    PubMed Central

    Khan, Raees; Roy, Nazish; Choi, Kihyuck

    2018-01-01

    The substantial use of triclosan (TCS) has been aimed to kill pathogenic bacteria, but TCS resistance seems to be prevalent in microbial species and limited knowledge exists about TCS resistance determinants in a majority of pathogenic bacteria. We aimed to evaluate the distribution of TCS resistance determinants in major pathogenic bacteria (N = 231) and to assess the enrichment of potentially pathogenic genera in TCS contaminated environments. A TCS-resistant gene (TRG) database was constructed and experimentally validated to predict TCS resistance in major pathogenic bacteria. Genome-wide in silico analysis was performed to define the distribution of TCS-resistant determinants in major pathogens. Microbiome analysis of TCS contaminated soil samples was also performed to investigate the abundance of TCS-resistant pathogens. We experimentally confirmed that TCS resistance could be accurately predicted using genome-wide in silico analysis against TRG database. Predicted TCS resistant phenotypes were observed in all of the tested bacterial strains (N = 17), and heterologous expression of selected TCS resistant genes from those strains conferred expected levels of TCS resistance in an alternative host Escherichia coli. Moreover, genome-wide analysis revealed that potential TCS resistance determinants were abundant among the majority of human-associated pathogens (79%) and soil-borne plant pathogenic bacteria (98%). These included a variety of enoyl-acyl carrier protein reductase (ENRs) homologues, AcrB efflux pumps, and ENR substitutions. FabI ENR, which is the only known effective target for TCS, was either co-localized with other TCS resistance determinants or had TCS resistance-associated substitutions. Furthermore, microbiome analysis revealed that pathogenic genera with intrinsic TCS-resistant determinants exist in TCS contaminated environments. We conclude that TCS may not be as effective against the majority of bacterial pathogens as previously presumed

  17. Comparison of Five Major Trichome Regulatory Genes in Brassica villosa with Orthologues within the Brassicaceae

    PubMed Central

    Nayidu, Naghabushana K.; Kagale, Sateesh; Taheri, Ali; Withana-Gamage, Thushan S.; Parkin, Isobel A. P.; Sharpe, Andrew G.; Gruber, Margaret Y.

    2014-01-01

    Coding sequences for major trichome regulatory genes, including the positive regulators GLABRA 1(GL1), GLABRA 2 (GL2), ENHANCER OF GLABRA 3 (EGL3), and TRANSPARENT TESTA GLABRA 1 (TTG1) and the negative regulator TRIPTYCHON (TRY), were cloned from wild Brassica villosa, which is characterized by dense trichome coverage over most of the plant. Transcript (FPKM) levels from RNA sequencing indicated much higher expression of the GL2 and TTG1 regulatory genes in B. villosa leaves compared with expression levels of GL1 and EGL3 genes in either B. villosa or the reference genome species, glabrous B. oleracea; however, cotyledon TTG1 expression was high in both species. RNA sequencing and Q-PCR also revealed an unusual expression pattern for the negative regulators TRY and CPC, which were much more highly expressed in trichome-rich B. villosa leaves than in glabrous B. oleracea leaves and in glabrous cotyledons from both species. The B. villosa TRY expression pattern also contrasted with TRY expression patterns in two diploid Brassica species, and with the Arabidopsis model for expression of negative regulators of trichome development. Further unique sequence polymorphisms, protein characteristics, and gene evolution studies highlighted specific amino acids in GL1 and GL2 coding sequences that distinguished glabrous species from hairy species and several variants that were specific for each B. villosa gene. Positive selection was observed for GL1 between hairy and non-hairy plants, and as expected the origin of the four expressed positive trichome regulatory genes in B. villosa was predicted to be from B. oleracea. In particular the unpredicted expression patterns for TRY and CPC in B. villosa suggest additional characterization is needed to determine the function of the expanded families of trichome regulatory genes in more complex polyploid species within the Brassicaceae. PMID:24755905

  18. Major carcinogenic pathways identified by gene expression analysis of peritoneal mesotheliomas following chemical treatment in F344 rats

    EPA Science Inventory

    This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo a...

  19. Testing genotyping strategies for ultra-deep sequencing of a co-amplifying gene family: MHC class I in a passerine bird.

    PubMed

    Biedrzycka, Aleksandra; Sebastian, Alvaro; Migalska, Magdalena; Westerdahl, Helena; Radwan, Jacek

    2017-07-01

    Characterization of highly duplicated genes, such as genes of the major histocompatibility complex (MHC), where multiple loci often co-amplify, has until recently been hindered by insufficient read depths per amplicon. Here, we used ultra-deep Illumina sequencing to resolve genotypes at exon 3 of MHC class I genes in the sedge warbler (Acrocephalus schoenobaenus). We sequenced 24 individuals in two replicates and used this data, as well as a simulated data set, to test the effect of amplicon coverage (range: 500-20 000 reads per amplicon) on the repeatability of genotyping using four different genotyping approaches. A third replicate employed unique barcoding to assess the extent of tag jumping, that is swapping of individual tag identifiers, which may confound genotyping. The reliability of MHC genotyping increased with coverage and approached or exceeded 90% within-method repeatability of allele calling at coverages of >5000 reads per amplicon. We found generally high agreement between genotyping methods, especially at high coverages. High reliability of the tested genotyping approaches was further supported by our analysis of the simulated data set, although the genotyping approach relying primarily on replication of variants in independent amplicons proved sensitive to repeatable errors. According to the most repeatable genotyping method, the number of co-amplifying variants per individual ranged from 19 to 42. Tag jumping was detectable, but at such low frequencies that it did not affect the reliability of genotyping. We thus demonstrate that gene families with many co-amplifying genes can be reliably genotyped using HTS, provided that there is sufficient per amplicon coverage. © 2016 John Wiley & Sons Ltd.

  20. Structure and expression of MHC class Ib genes of the central M region in rat and mouse: M4, M5, and M6.

    PubMed

    Lambracht-Washington, Doris; Moore, Yuki F; Wonigeit, Kurt; Lindahl, Kirsten Fischer

    2008-04-01

    The M region at the telomeric end of the murine major histocompatibility complex (MHC) contains class I genes that are highly conserved in rat and mouse. We have sequenced a cosmid clone of the LEW rat strain (RT1 haplotype) containing three class I genes, RT1.M6-1, RT1.M4, and RT1.M5. The sequences of allelic genes of the BN strain (RT1n haplotype) were obtained either from cDNAs or genomic clones. For the coding parts of the genes few differences were found between the two RT1 haplotypes. In LEW, however, only RT1.M5 and RT1.M6 have open reading frames; whereas in BN all three genes were intact. In line with the findings in BN, transcription was found for all three rat genes in several tissues from strain Sprague Dawley. Protein expression in transfectants could be demonstrated for RT1.M6-1 using the monoclonal antibody OX18. By sequencing of transcripts obtained by RT-PCR, a second, transcribed M6 gene, RT1.M6-2, was discovered, which maps next to RT1.M6-1 outside of the region covered by the cosmid. In addition, alternatively spliced forms for RT1.M5 and RT1.M6 were detected. Of the orthologous mouse genes, H2-M4, H2-M5, and H2-M6, only H2-M5 has an open reading frame. Other important differences between the corresponding parts of the M region of the two species are insertion of long LINE repeats, duplication of RT1.M6, and the inversion of RT1.M5 in the rat. This demonstrates substantial evolutionary dynamics in this region despite conservation of the class I gene sequences themselves.

  1. Roles of Polypyrimidine Tract Binding Proteins in Major Immediate-Early Gene Expression and Viral Replication of Human Cytomegalovirus▿

    PubMed Central

    Cosme, Ruth S. Cruz; Yamamura, Yasuhiro; Tang, Qiyi

    2009-01-01

    Human cytomegalovirus (HCMV), a member of the β subgroup of the family Herpesviridae, causes serious health problems worldwide. HCMV gene expression in host cells is a well-defined sequential process: immediate-early (IE) gene expression, early-gene expression, DNA replication, and late-gene expression. The most abundant IE gene, major IE (MIE) gene pre-mRNA, needs to be spliced before being exported to the cytoplasm for translation. In this study, the regulation of MIE gene splicing was investigated; in so doing, we found that polypyrimidine tract binding proteins (PTBs) strongly repressed MIE gene production in cotransfection assays. In addition, we discovered that the repressive effects of PTB could be rescued by splicing factor U2AF. Taken together, the results suggest that PTBs inhibit MIE gene splicing by competing with U2AF65 for binding to the polypyrimidine tract in pre-mRNA. In intron deletion mutation assays and RNA detection experiments (reverse transcription [RT]-PCR and real-time RT-PCR), we further observed that PTBs target all the introns of the MIE gene, especially intron 2, and affect gene splicing, which was reflected in the variation in the ratio of pre-mRNA to mRNA. Using transfection assays, we demonstrated that PTB knockdown cells induce a higher degree of MIE gene splicing/expression. Consistently, HCMV can produce more viral proteins and viral particles in PTB knockdown cells after infection. We conclude that PTB inhibits HCMV replication by interfering with MIE gene splicing through competition with U2AF for binding to the polypyrimidine tract in MIE gene introns. PMID:19144709

  2. Identification of the gene encoding the major capsid protein of fish lymphocystis disease virus.

    PubMed

    Schnitzler, P; Darai, G

    1993-10-01

    The gene encoding the major capsid protein (MCP) of fish lymphocystis disease virus (flounder isolate; FLCDV-f) has been identified by PCR using oligonucleotide primers corresponding to different regions of the MCP of Tipula iridescent virus (TIV), iridescent virus 22 (IV22) and Chilo iridescent virus (CIV). DNA fragments of 0.4 kbp, 0.5 kbp and 0.27 kbp in size were amplified using oligonucleotide primers corresponding to amino acids (aa) 146 to 153 (primer 1) and 274 to 268 (primer 6), or aa 146 to 153 (primer 1) and 313 to 304 (primer 8), or aa 304 to 312 (primer 7) and 385 to 381 (primer 9) of the MCP of TIV, respectively. The PCR products were used as hybridization probes for screening the gene library of FLCDV-f. The MCP gene of FLCDV-f(1377 bp; 459 aa; 51.4K) was identified within the DNA sequence of the EcoRI FLCDV-f DNA fragment C (11.2 kbp; 0.611 to 0.718 map units). A high degree of aa sequence identity/similarity was detected between the MCP of FLCDV-f and TIV (50.3%/33.8%), IV22 (49.1%/34.2%). CIV (53%/29.5%) and African swine fever virus (16%/38.1%).

  3. E6 and E7 Gene Polymorphisms in Human Papillomavirus Types-58 and 33 Identified in Southwest China

    PubMed Central

    Wen, Qiang; Wang, Tao; Mu, Xuemei; Chenzhang, Yuwei; Cao, Man

    2017-01-01

    Cancer of the cervix is associated with infection by certain types of human papillomavirus (HPV). The gene variants differ in immune responses and oncogenic potential. The E6 and E7 proteins encoded by high-risk HPV play a key role in cellular transformation. HPV-33 and HPV-58 types are highly prevalent among Chinese women. To study the gene intratypic variations, polymorphisms and positive selections of HPV-33 and HPV-58 E6/E7 in southwest China, HPV-33 (E6, E7: n = 216) and HPV-58 (E6, E7: n = 405) E6 and E7 genes were sequenced and compared to others submitted to GenBank. Phylogenetic trees were constructed by Maximum-likelihood and the Kimura 2-parameters methods by MEGA 6 (Molecular Evolutionary Genetics Analysis version 6.0). The diversity of secondary structure was analyzed by PSIPred software. The selection pressures acting on the E6/E7 genes were estimated by PAML 4.8 (Phylogenetic Analyses by Maximun Likelihood version4.8) software. The positive sites of HPV-33 and HPV-58 E6/E7 were contrasted by ClustalX 2.1. Among 216 HPV-33 E6 sequences, 8 single nucleotide mutations were observed with 6/8 non-synonymous and 2/8 synonymous mutations. The 216 HPV-33 E7 sequences showed 3 single nucleotide mutations that were non-synonymous. The 405 HPV-58 E6 sequences revealed 8 single nucleotide mutations with 4/8 non-synonymous and 4/8 synonymous mutations. Among 405 HPV-58 E7 sequences, 13 single nucleotide mutations were observed with 10/13 non-synonymous mutations and 3/13 synonymous mutations. The selective pressure analysis showed that all HPV-33 and 4/6 HPV-58 E6/E7 major non-synonymous mutations were sites of positive selection. All variations were observed in sites belonging to major histocompatibility complex and/or B-cell predicted epitopes. K93N and R145 (I/N) were observed in both HPV-33 and HPV-58 E6. PMID:28141822

  4. No effect of serotoninergic gene variants on response to interpersonal counseling and antidepressants in major depression.

    PubMed

    Serretti, Alessandro; Fabbri, Chiara; Pellegrini, Silvia; Porcelli, Stefano; Politi, Pierluigi; Bellino, Silvio; Menchetti, Marco; Mariotti, Veronica; Demi, Cristina; Martinelli, Valentina; Cappucciati, Marco; Bozzatello, Paola; Brignolo, Elena; Brambilla, Paolo; Pae, Chi-Un; Balestrieri, Matteo; De Ronchi, Diana

    2013-06-01

    Gene variants within the serotonin pathway have been associated with major depressive disorder (MDD) treatment outcomes, however a possible different modulation on pharmacological or psychological treatments has never been investigated. One hundred sixty MDD patients were partially randomized to either inter-personal counseling (IPC) or antidepressants. The primary outcome was remission at week 8. Five serotonergic polymorphisms were investigated (COMT rs4680, HTR1A rs6295, HTR2A rs2224721, HTR2A rs7997012 and SLC6A4 rs421417). IPC (n=43) and antidepressant (n=117) treated patients did not show any difference in remission rates at week 8 (corrected for baseline severity, age and center). None of the studied gene variants impacted on response and remission rates at week 8 neither in the IPC nor in the antidepressant group. An analysis of the whole sample showed a trend of association between rs7997012 AA genotype and a better treatment outcome. Our study confirms that IPC is an effective psychological intervention comparable to antidepressants in mild-moderate MDD. Polymorphisms related to the serotonin system did not exert a major effect on clinical outcomes in none of the treatment groups.

  5. The toxR Gene of Vibrio (Listonella) anguillarum Controls Expression of the Major Outer Membrane Proteins but Not Virulence in a Natural Host Model

    PubMed Central

    Okuda, Jun; Nakai, Toshihiro; Chang, Park Se; Oh, Takanori; Nishino, Takeshi; Koitabashi, Tsutomu; Nishibuchi, Mitsuaki

    2001-01-01

    To examine the hypothesis that the ancestral role of the toxR gene in the family Vibrionaceae is control of the expression of outer membrane protein (OMP)-encoding genes for adaptation to environmental change, we investigated the role of the toxR gene in Vibrio anguillarum, an important fish pathogen. The toxR gene of V. angullarum (Va-toxR) was cloned from strain PT-87050 isolated from diseased ayu (Plecoglossus altivelis), and the sequence was analyzed. The toxR sequence was 63 to 51% identical to those reported for other species of the family Vibrionaceae. Distribution of the Va-toxR gene sequence in V. anguillarum strains of various serotypes was confirmed by using DNA probe and PCR methods. An isogenic toxR mutant of V. anguillarum PT-24, isolated from diseased ayu, was constructed by using an allelic exchange method. The wild-type strain and the toxR mutant did not differ in the ability to produce a protease(s) and a hemolysin(s) or in pathogenicity for ayu when examined by the intramuscular injection and immersion methods. A 35-kDa major OMP was not produced by the toxR mutant. However, a 46-kDa OMP was hardly detected in the wild-type strain but was produced as the major OMP by the toxR mutant. For the toxR mutant, the MICs of two β-lactam antibiotics were higher and the minimum bactericidal concentration of sodium dodecyl sulfate was lower than for the wild-type strain. Analysis of the N-terminal amino acid sequences of the 35- and 46-kDa OMPs indicated that these proteins are the porin-like OMPs and are related to the toxR-regulated major OMPs of the family Vibrionaceae. The results indicate that the toxR gene is not involved in virulence expression in V. anguillarum PT-24 and that toxR regulation of major OMPs is universal in the family Vibrionaceae. These results support the hypothesis that the ancestral role of the toxR gene is regulation of OMP gene expression and that only in some Vibrio species has ToxR been appropriated for the regulation of a

  6. High polymorphism in MHC-DRB genes in golden snub-nosed monkeys reveals balancing selection in small, isolated populations.

    PubMed

    Zhang, Pei; Huang, Kang; Zhang, Bingyi; Dunn, Derek W; Chen, Dan; Li, Fan; Qi, Xiaoguang; Guo, Songtao; Li, Baoguo

    2018-03-13

    Maintaining variation in immune genes, such as those of the major histocompatibility complex (MHC), is important for individuals in small, isolated populations to resist pathogens and parasites. The golden snub-nosed monkey (Rhinopithecus roxellana), an endangered primate endemic to China, has experienced a rapid reduction in numbers and severe population fragmentation over recent years. For this study, we measured the DRB diversity among 122 monkeys from three populations in the Qinling Mountains, and estimated the relative importance of different agents of selection in maintaining variation of DRB genes. We identified a total of 19 DRB sequences, in which five alleles were novel. We found high DRB variation in R. roxellana and three branches of evidence suggesting that balancing selection has contributed to maintaining MHC polymorphism over the long term in this species: i) different patterns of both genetic diversity and population differentiation were detected at MHC and neutral markers; ii) an excess of non-synonymous substitutions compared to synonymous substitutions at antigen binding sites, and maximum-likelihood-based random-site models, showed significant positive selection; and iii) phylogenetic analyses revealed a pattern of trans-species evolution for DRB genes. High levels of DRB diversity in these R. roxellana populations may reflect strong selection pressure in this species. Patterns of genetic diversity and population differentiation, positive selection, as well as trans-species evolution, suggest that pathogen-mediated balancing selection has contributed to maintaining MHC polymorphism in R. roxellana over the long term. This study furthers our understanding of the role pathogen-mediated balancing selection has in maintaining variation in MHC genes in small and fragmented populations of free-ranging vertebrates.

  7. The importance of immune gene variability (MHC) in evolutionary ecology and conservation

    PubMed Central

    Sommer, Simone

    2005-01-01

    Genetic studies have typically inferred the effects of human impact by documenting patterns of genetic differentiation and levels of genetic diversity among potentially isolated populations using selective neutral markers such as mitochondrial control region sequences, microsatellites or single nucleotide polymorphism (SNPs). However, evolutionary relevant and adaptive processes within and between populations can only be reflected by coding genes. In vertebrates, growing evidence suggests that genetic diversity is particularly important at the level of the major histocompatibility complex (MHC). MHC variants influence many important biological traits, including immune recognition, susceptibility to infectious and autoimmune diseases, individual odours, mating preferences, kin recognition, cooperation and pregnancy outcome. These diverse functions and characteristics place genes of the MHC among the best candidates for studies of mechanisms and significance of molecular adaptation in vertebrates. MHC variability is believed to be maintained by pathogen-driven selection, mediated either through heterozygote advantage or frequency-dependent selection. Up to now, most of our knowledge has derived from studies in humans or from model organisms under experimental, laboratory conditions. Empirical support for selective mechanisms in free-ranging animal populations in their natural environment is rare. In this review, I first introduce general information about the structure and function of MHC genes, as well as current hypotheses and concepts concerning the role of selection in the maintenance of MHC polymorphism. The evolutionary forces acting on the genetic diversity in coding and non-coding markers are compared. Then, I summarise empirical support for the functional importance of MHC variability in parasite resistance with emphasis on the evidence derived from free-ranging animal populations investigated in their natural habitat. Finally, I discuss the importance of

  8. Downregulation of peptide transporter genes in cell lines transformed with the highly oncogenic adenovirus 12

    PubMed Central

    1994-01-01

    The expression of class I major histocompatibility complex antigens on the surface of cells transformed by adenovirus 12 (Ad12) is generally very low, and correlates with the high oncogenicity of this virus. In primary embryonal fibroblasts from transgenic mice that express both endogenous H-2 genes and a miniature swine class I gene (PD1), Ad12- mediated transformation results in suppression of cell surface expression of all class I antigens. Although class I mRNA levels of PD1 and H-2Db are similar to those in nonvirally transformed cells, recognition of newly synthesized class I molecules by a panel of monoclonal antibodies is impaired, presumably as a result of inefficient assembly and transport of the class I molecules. Class I expression can be partially induced by culturing cells at 26 degrees C, or by coculture of cells with class I binding peptides at 37 degrees C. Analysis of steady state mRNA levels of the TAP1 and TAP2 transporter genes for Ad12-transformed cell lines revealed that they both are significantly reduced, TAP2 by about 100-fold and TAP1 by 5-10-fold. Reconstitution of PD1 and H-2Db, but not H-2Kb, expression is achieved in an Ad12-transformed cell line by stable transfection with a TAP2, but not a TAP1, expression construct. From these data it may be concluded that suppressed expression of peptide transporter genes, especially TAP2, in Ad12-transformed cells inhibits cell surface expression of class I molecules. The failure to fully reconstitute H- 2Db and H-2Kb expression indicates that additional factors are involved in controlling class I gene expression in Ad12-transformed cells. Nevertheless, these results suggest that suppression of peptide transporter genes might be an important mechanism whereby virus- transformed cells escape immune recognition in vivo. PMID:7519239

  9. Gene expression in blood of children and adolescents: Mediation between childhood maltreatment and major depressive disorder.

    PubMed

    Spindola, Leticia Maria; Pan, Pedro Mario; Moretti, Patricia Natalia; Ota, Vanessa Kiyomi; Santoro, Marcos Leite; Cogo-Moreira, Hugo; Gadelha, Ary; Salum, Giovanni; Manfro, Gisele Gus; Mari, Jair Jesus; Brentani, Helena; Grassi-Oliveira, Rodrigo; Brietzke, Elisa; Miguel, Euripedes Constantino; Rohde, Luis Augusto; Sato, João Ricardo; Bressan, Rodrigo Affonseca; Belangero, Sintia Iole

    2017-09-01

    Investigating major depressive disorder (MDD) in childhood and adolescence can help reveal the relative contributions of genetic and environmental factors to MDD, since early stages of disease have less influence of illness exposure. Thus, we investigated the mRNA expression of 12 genes related to the hypothalamic-pituitary-adrenal (HPA) axis, inflammation, neurodevelopment and neurotransmission in the blood of children and adolescents with MDD and tested whether a history of childhood maltreatment (CM) affects MDD through gene expression. Whole-blood mRNA levels of 12 genes were compared among 20 children and adolescents with MDD diagnosis (MDD group), 49 participants without MDD diagnosis but with high levels of depressive symptoms (DS group), and 61 healthy controls (HC group). The differentially expressed genes were inserted in a mediation model in which CM, MDD, and gene expression were, respectively, the independent variable, outcome, and intermediary variable. NR3C1, TNF, TNFR1 and IL1B were expressed at significantly lower levels in the MDD group than in the other groups. CM history did not exert a significant direct effect on MDD. However, an indirect effect of the aggregate expression of the 4 genes mediated the relationship between CM and MDD. In the largest study investigating gene expression in children with MDD, we demonstrated that NR3C1, TNF, TNFR1 and IL1B expression levels are related to MDD and conjunctly mediate the effect of CM history on the risk of developing MDD. This supports a role of glucocorticoids and inflammation as potential effectors of environmental stress in MDD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A critical examination of the numerology of antigen-binding cells: evidence for multiple receptor specificities on single cells.

    PubMed

    Miller, A

    1977-01-01

    The data available from other laboratories as well as our own on the frequency of cells recognizing major histocompatibility antigens or conventional protein and hapten antigens is critically evaluated. The frequency of specific binding for a large number of antigens is sufficiently high to support the idea that at least part of the antigen-binding cell population must have multiple specificities. Our results suggest that these multiple specific cells result from single cells synthesizing and displaying as many as 50-100 species of receptor, each at a frequency of 10(4) per cell. A model involving gene expansion of constant-region genes is suggested and some auxilliary evidence consistent with such C-gene expansion is presented.

  11. Genome-wide evolutionary characterization and expression analyses of major latex protein (MLP) family genes in Vitis vinifera.

    PubMed

    Zhang, Ningbo; Li, Ruimin; Shen, Wei; Jiao, Shuzhen; Zhang, Junxiang; Xu, Weirong

    2018-04-27

    The major latex protein/ripening-related protein (MLP/RRP) subfamily is known to be involved in a wide range of biological processes of plant development and various stress responses. However, the biological function of MLP/RRP proteins is still far from being clear and identification of them may provide important clues for understanding their roles. Here, we report a genome-wide evolutionary characterization and gene expression analysis of the MLP family in European Vitis species. A total of 14 members, was found in the grape genome, all of which are located on chromosome 1, where are predominantly arranged in tandem clusters. We have noticed, most surprisingly, promoter-sharing by several non-identical but highly similar gene members to a greater extent than expected by chance. Synteny analysis between the grape and Arabidopsis thaliana genomes suggested that 3 grape MLP genes arose before the divergence of the two species. Phylogenetic analysis provided further insights into the evolutionary relationship between the genes, as well as their putative functions, and tissue-specific expression analysis suggested distinct biological roles for different members. Our expression data suggested a couple of candidate genes involved in abiotic stresses and phytohormone responses. The present work provides new insight into the evolution and regulation of Vitis MLP genes, which represent targets for future studies and inclusion in tolerance-related molecular breeding programs.

  12. Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy.

    PubMed

    Maugeri, A; Klevering, B J; Rohrschneider, K; Blankenagel, A; Brunner, H G; Deutman, A F; Hoyng, C B; Cremers, F P

    2000-10-01

    The photoreceptor cell-specific ATP-binding cassette transporter gene (ABCA4; previously denoted "ABCR") is mutated, in most patients, with autosomal recessive (AR) Stargardt disease (STGD1) or fundus flavimaculatus (FFM). In addition, a few cases with AR retinitis pigmentosa (RP) and AR cone-rod dystrophy (CRD) have been found to have ABCA4 mutations. To evaluate the importance of the ABCA4 gene as a cause of AR CRD, we selected 5 patients with AR CRD and 15 patients from Germany and The Netherlands with isolated CRD. Single-strand conformation-polymorphism analysis and sequencing revealed 19 ABCA4 mutations in 13 (65%) of 20 patients. In six patients, mutations were identified in both ABCA4 alleles; in seven patients, mutations were detected in one allele. One complex ABCA4 allele (L541P;A1038V) was found exclusively in German patients with CRD; one patient carried this complex allele homozygously, and five others were compound heterozygous. These findings suggest that mutations in the ABCA4 gene are the major cause of AR CRD. A primary role of the ABCA4 gene in STGD1/FFM and AR CRD, together with the gene's involvement in an as-yet-unknown proportion of cases with AR RP, strengthens the idea that mutations in the ABCA4 gene could be the most frequent cause of inherited retinal dystrophy in humans.

  13. Intraperitoneal Administration of a Tumor-Associated Antigen SART3, CD40L, and GM-CSF Gene-Loaded Polyplex Micelle Elicits a Vaccine Effect in Mouse Tumor Models

    PubMed Central

    Furugaki, Kouichi; Cui, Lin; Kunisawa, Yumi; Osada, Kensuke; Shinkai, Kentaro; Tanaka, Masao; Kataoka, Kazunori; Nakano, Kenji

    2014-01-01

    Polyplex micelles have demonstrated biocompatibility and achieve efficient gene transfection in vivo. Here, we investigated a polyplex micelle encapsulating genes encoding the tumor-associated antigen squamous cell carcinoma antigen recognized by T cells-3 (SART3), adjuvant CD40L, and granulocyte macrophage colony-stimulating factor (GM-CSF) as a DNA vaccine platform in mouse tumor models with different types of major histocompatibility antigen complex (MHC). Intraperitoneally administrated polyplex micelles were predominantly found in the lymph nodes, spleen, and liver. Compared with mock controls, the triple gene vaccine significantly prolonged the survival of mice harboring peritoneal dissemination of CT26 colorectal cancer cells, of which long-term surviving mice showed complete rejection when re-challenged with CT26 tumors. Moreover, the DNA vaccine inhibited the growth and metastasis of subcutaneous CT26 and Lewis lung tumors in BALB/c and C57BL/6 mice, respectively, which represent different MHC haplotypes. The DNA vaccine highly stimulated both cytotoxic T lymphocyte and natural killer cell activities, and increased the infiltration of CD11c+ DCs and CD4+/CD8a+ T cells into tumors. Depletion of CD4+ or CD8a+ T cells by neutralizing antibodies deteriorated the anti-tumor efficacy of the DNA vaccine. In conclusion, a SART3/CD40L+GM-CSF gene-loaded polyplex micelle can be applied as a novel vaccine platform to elicit tumor rejection immunity regardless of the recipient MHC haplotype. PMID:25013909

  14. Clinical characteristics of inflammation-associated depression: Monocyte gene expression is age-related in major depressive disorder.

    PubMed

    Grosse, Laura; Carvalho, Livia A; Wijkhuijs, Annemarie J M; Bellingrath, Silja; Ruland, Tillmann; Ambrée, Oliver; Alferink, Judith; Ehring, Thomas; Drexhage, Hemmo A; Arolt, Volker

    2015-02-01

    Increased inflammatory activation might only be present in a subgroup of depressed individuals in which immune processes are especially relevant to disease development. We aimed to analyze demographic, depression, and trauma characteristics of major depressive disorder (MDD) patients with regard to inflammatory monocyte gene expression. Fifty-six naturalistically treated MDD patients (32 ± 12 years) and 57 healthy controls (HC; 31 ± 11 years) were analyzed by the Inventory of Depressive Symptomatology (IDS) and by the Childhood Trauma Questionnaire (CTQ). We determined the expression of 38 inflammatory and immune activation genes including the glucocorticoid receptor (GR)α and GRβ genes in purified CD14(+) monocytes using quantitative-polymerase chain reaction (RT-qPCR). Monocyte gene expression was age-dependent, particularly in MDD patients. Increased monocyte gene expression and decreased GRα/β ratio were only present in MDD patients aged ⩾ 28 years. Post hoc analyses of monocyte immune activation in patients <28 years showed two subgroups: a subgroup with a severe course of depression (recurrent type, onset <15 years) - additionally characterized by panic/arousal symptoms and childhood trauma - that had a monocyte gene expression similar to HC, and a second subgroup with a milder course of the disorder (73% first episode depression, onset ⩾15 years) - additionally characterized by the absence of panic symptoms - that exhibited a strongly reduced inflammatory monocyte activation compared to HC. In conclusion, monocyte immune activation was not uniformly raised in MDD patients but was increased only in patients of 28 years and older. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Identifying genome-wide immune gene variation underlying infectious disease in wildlife populations - a next generation sequencing approach in the gopher tortoise.

    PubMed

    Elbers, Jean P; Brown, Mary B; Taylor, Sabrina S

    2018-01-19

    Infectious disease is the single greatest threat to taxa such as amphibians (chytrid fungus), bats (white nose syndrome), Tasmanian devils (devil facial tumor disease), and black-footed ferrets (canine distemper virus, plague). Although understanding the genetic basis to disease susceptibility is important for the long-term persistence of these groups, most research has been limited to major-histocompatibility and Toll-like receptor genes. To better understand the genetic basis of infectious disease susceptibility in a species of conservation concern, we sequenced all known/predicted immune response genes (i.e., the immunomes) in 16 Florida gopher tortoises, Gopherus polyphemus. All tortoises produced antibodies against Mycoplasma agassizii (an etiologic agent of infectious upper respiratory tract disease; URTD) and, at the time of sampling, either had (n = 10) or lacked (n = 6) clinical signs. We found several variants associated with URTD clinical status in complement and lectin genes, which may play a role in Mycoplasma immunity. Thirty-five genes deviated from neutrality according to Tajima's D. These genes were enriched in functions relating to macromolecule and protein modifications, which are vital to immune system functioning. These results are suggestive of genetic differences that might contribute to disease severity, a finding that is consistent with other mycoplasmal diseases. This has implications for management because tortoises across their range may possess genetic variation associated with a more severe response to URTD. More generally: 1) this approach demonstrates that a broader consideration of immune genes is better able to identify important variants, and; 2) this data pipeline can be adopted to identify alleles associated with disease susceptibility or resistance in other taxa, and therefore provide information on a population's risk of succumbing to disease, inform translocations to increase genetic variation for disease resistance

  16. Evidence of major genes for exercise heart rate and blood pressure at baseline and in response to 20 weeks of endurance training: the HERITAGE family study.

    PubMed

    An, P; Borecki, I B; Rankinen, T; Pérusse, L; Leon, A S; Skinner, J S; Wilmore, J H; Bouchard, C; Rao, D C

    2003-10-01

    Major gene effects on exercise heart rate (HR) and blood pressure (BP) measured at 50 W and 80 % maximal oxygen uptake (VO (2)max) were assessed in 99 White families in the HERITAGE Family Study. Exercise HR and BP were measured both before and after 20 weeks of endurance training. The baseline phenotypes were adjusted for the effects of age and BMI, whereas the training responses (post-training minus baseline) were adjusted for the effects of age, BMI and the corresponding baseline values, within four sex-by-generation groups. Baseline exercise HR at 50 W was under the influence of a major recessive gene and a multifactorial component, which accounted for 30 % and 27 % of the variance, respectively. The training response was found to be under the influence of a major dominant gene, which accounted for 27 % of the variance. These significant major gene effects were independent of the effects of cigarette smoking, baseline VO (2)max, and the resting HR levels. No significant interactions were found between genotype and age, sex, or BMI. No major gene effect was found for exercise BP. Instead, we found the baseline exercise BP at 50 W and 80 % VO (2)max and the training response at 50 W were solely influenced by multifactorial effects, which accounted for about 50 %, 40 % and 20 % of the variance, respectively. No familial resemblance was found for training responses in exercise HR or BP at 80 % VO (2)max. Segregation analysis also was carried out for exercise HR in Whites pooled with a small sample of Blacks in HERITAGE. Similar major effects were found, but the transmission from parents to offspring did not follow Mendelian expectations, suggesting sample heterogeneity. In conclusion, submaximal exercise HR at baseline and in response to endurance training was influenced by putative major genes, with no evidence of interactions with sex, age or BMI, in contrast to a multifactorial etiology for exercise BP.

  17. Molecular Mapping of Flowering Time Major Genes and QTLs in Chickpea (Cicer arietinum L.)

    PubMed Central

    Mallikarjuna, Bingi P.; Samineni, Srinivasan; Thudi, Mahendar; Sajja, Sobhan B.; Khan, Aamir W.; Patil, Ayyanagowda; Viswanatha, Kannalli P.; Varshney, Rajeev K.; Gaur, Pooran M.

    2017-01-01

    Flowering time is an important trait for adaptation and productivity of chickpea in the arid and the semi-arid environments. This study was conducted for molecular mapping of genes/quantitative trait loci (QTLs) controlling flowering time in chickpea using F2 populations derived from four crosses (ICCV 96029 × CDC Frontier, ICC 5810 × CDC Frontier, BGD 132 × CDC Frontier and ICC 16641 × CDC Frontier). Genetic studies revealed monogenic control of flowering time in the crosses ICCV 96029 × CDC Frontier, BGD 132 × CDC Frontier and ICC 16641 × CDC Frontier, while digenic control with complementary gene action in ICC 5810 × CDC Frontier. The intraspecific genetic maps developed from these crosses consisted 75, 75, 68 and 67 markers spanning 248.8 cM, 331.4 cM, 311.1 cM and 385.1 cM, respectively. A consensus map spanning 363.8 cM with 109 loci was constructed by integrating four genetic maps. Major QTLs corresponding to flowering time genes efl-1 from ICCV 96029, efl-3 from BGD 132 and efl-4 from ICC 16641 were mapped on CaLG04, CaLG08 and CaLG06, respectively. The QTLs and linked markers identified in this study can be used in marker-assisted breeding for developing early maturing chickpea. PMID:28729871

  18. Negative and positive regulation by a short segment in the 5'-flanking region of the human cytomegalovirus major immediate-early gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, J.A.; Reynolds-Kohler, C.; Smith, B.A.

    1987-11-01

    To analyze the significance of inducible DNase I-hypersensitive sites occurring in the 5'-flanking sequence of the major immediate-early gene of human cytomegalovirus (HCMV), various deleted portions of the HCMV immediate-early promoter regulatory region were attached to the chloramphenicol acetyltransferase (CAT) gene and assayed for activity in transiently transfected undifferentiated and differentiated human teratocarcinoma cells, Tera-2. Assays of progressive deletions in the promoter regulatory region indicated that removal of a 395-base-pair portion of this element (nucleotides -750 to -1145) containing two inducible DNase I sites which correlate with gene expression resulted in a 7.5-fold increase in CAT activity in undifferentiated cells.more » However, in permissive differentiated Tera-2, human foreskin fibroblast, and HeLa cells, removal of this regulatory region resulted in decreased activity. In addition, attachment of this HCMV upstream element to a homologous or heterologous promoter increased activity three-to fivefold in permissive cells. Therefore, a cis regulatory element exists 5' to the enhancer of the major immediate-early gene of HCMV. This element negatively modulates expression in nonpermissive cells but positively influences expression in permissive cells.« less

  19. Pyramided rice lines harbouring Allium sativum (asal) and Galanthus nivalis (gna) lectin genes impart enhanced resistance against major sap-sucking pests.

    PubMed

    Bharathi, Y; Vijaya Kumar, S; Pasalu, I C; Balachandran, S M; Reddy, V D; Rao, K V

    2011-03-20

    We have developed transgene pyramided rice lines, endowed with enhanced resistance to major sap-sucking insects, through sexual crosses made between two stable transgenic rice lines containing Allium sativum (asal) and Galanthus nivalis (gna) lectin genes. Presence and expression of asal and gna genes in pyramided lines were confirmed by PCR and western blot analyses. Segregation analysis of F₂ progenies disclosed digenic (9:3:3:1) inheritance of the transgenes. Homozygous F₃ plants carrying asal and gna genes were identified employing genetic and molecular methods besides insect bioassays. Pyramided lines, infested with brown planthopper (BPH), green leafhopper (GLH) and whitebacked planthopper (WBPH), proved more effective in reducing insect survival, fecundity, feeding ability besides delayed development of insects as compared to the parental transgenics. Under infested conditions, pyramided lines were found superior to the parental transgenics in their seed yield potential. This study represents first report on pyramiding of two lectin genes into rice exhibiting enhanced resistance against major sucking pests. The pyramided lines appear promising and might serve as a novel genetic resource in rice breeding aimed at durable and broad based resistance against hoppers. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Gene gun-mediated delivery of an interleukin-12 expression plasmid protects against infections with the intracellular protozoan parasites Leishmania major and Trypanosoma cruzi in mice

    PubMed Central

    Sakai, T; Hisaeda, H; Nakano, Y; Ishikawa, H; Maekawa, Y; Ishii, K; Nitta, Y; Miyazaki, J; Himeno, K

    2000-01-01

    An interleukin-12 (IL-12) expression plasmid was transferred, using a gene gun, to mice infected with Leishmania major or Trypanosoma cruzi. Transfer of the IL-12 gene to susceptible BALB/c mice resulted in regression of lesion size and reduced the number of parasites in draining lymph nodes (LN) at the site of L. major infection. Coincident with these protective effects, the T-helper type (Th) response shifted towards Th1, as evaluated by cytokine production in vitro and L. major-specific antibody responses. Protective effects of the IL-12 gene were also observed in T. cruzi infection. Treatment of BALB/c mice infected with T. cruzi enhanced the production of interferon-γ (IFN-γ) by spleen cells, while suppressed production of interleukin-10 (IL-10) compared with control mice. Administration of anti-CD4 or anti-CD8 monoclonal antibody (mAb) abolished the protective immunity against T. cruzi infection, and treatment with the IL-12 gene could not restore the resistance in these mice. Mice depleted of natural killer (NK) cells with anti-asialo GM1 also became susceptible to infection, while the resistance was restored when these mice were treated with the IL-12 gene. Thus, target cells for the treatment appear to be CD4+ and CD8+ T cells, which are ordinarily activated by NK cells. These results suggest that the transfer of cytokine genes using a gene gun is an effective method for investigating the roles of cytokines and gene therapy in infectious diseases. PMID:10792510