Science.gov

Sample records for major ions volatile

  1. Major Odorants Released as Urinary Volatiles by Urinary Incontinent Patients

    PubMed Central

    Pandey, Sudhir Kumar; Kim, Ki-Hyun; Choi, Si On; Sa, In Young; Oh, Soo Yeon

    2013-01-01

    In this study, volatile urinary components were collected using three different types of samples from patients suffering from urinary incontinence (UI): (1) urine (A); (2) urine + non-used pad (B); and (3) urine + used pad (C). In addition, urine + non-used pad (D) samples from non-patients were also collected as a reference. The collection of urinary volatiles was conducted with the aid of a glass impinger-based mini-chamber method. Each of the four sample types (A through D) was placed in a glass impinger and incubated for 4 hours at 37 °C. Ultra pure air was then passed through the chamber, and volatile urine gas components were collected into Tedlar bags at the other end. These bag samples were then analyzed for a wide range of VOCs and major offensive odorants (e.g., reduced sulfur compounds (RSCs), carbonyls, trimethylamine (TMA), ammonia, etc.). Among the various odorants, sulfur compounds (methanethiol and hydrogen sulfide) and aldehydes (acetaldehyde, butylaldehyde, and isovaleraldehyde) were detected above odor threshold and predicted to contribute most effectively to odor intensity of urine incontinence. PMID:23823973

  2. Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds.

    PubMed

    Park, J-H; Goldstein, A H; Timkovsky, J; Fares, S; Weber, R; Karlik, J; Holzinger, R

    2013-08-01

    Numerous volatile organic compounds (VOCs) exist in Earth's atmosphere, most of which originate from biogenic emissions. Despite VOCs' critical role in tropospheric chemistry, studies for evaluating their atmosphere-ecosystem exchange (emission and deposition) have been limited to a few dominant compounds owing to a lack of appropriate measurement techniques. Using a high-mass resolution proton transfer reaction-time of flight-mass spectrometer and an absolute value eddy-covariance method, we directly measured 186 organic ions with net deposition, and 494 that have bidirectional flux. This observation of active atmosphere-ecosystem exchange of the vast majority of detected VOCs poses a challenge to current emission, air quality, and global climate models, which do not account for this extremely large range of compounds. This observation also provides new insight for understanding the atmospheric VOC budget. PMID:23929979

  3. Identification and Quantification of Oxidoselina-1,3,7(11)-Trien-8-One and Cyanidin-3-Glucoside as One of the Major Volatile and Non-Volatile Low-Molecular-Weight Constituents in Pitanga Pulp.

    PubMed

    Josino Soares, Denise; Pignitter, Marc; Ehrnhöfer-Ressler, Miriam Margit; Walker, Jessica; Montenegro Brasil, Isabella; Somoza, Veronika

    2015-01-01

    The pulp of pitanga (Eugenia uniflora L.) is used to prepare pitanga juice. However, there are no reports on the identification and quantification of the main constituents in pitanga pulp. The aim of this study was to identify and quantify the major volatile and non-volatile low-molecular-weight constituents of the pulp. Isolation of volatile compounds was performed by solvent-assisted flavor evaporation technique. Characterization of the main volatile and non-volatile constituents was performed by GC-MS, LC-MS and NMR spectroscopy. For quantitative measurements, the main volatile compound needed to be isolated from pitanga pulp to obtain a commercially not available reference standard. Cyanidin-3-glucoside was determined as one of the most abundant non-volatile pulp compound yielding 53.8% of the sum of the intensities of all ions detected by LC-MS. Quantification of cyanidin-3-glucoside in pitanga pulp resulted in a concentration of 344 ± 66.4 μg/mL corresponding to 688 ± 133 μg/g dried pulp and 530 ± 102 μg/g fruit. For the volatile fraction, oxidoselina-1,3,7(11)-trien-8-one was identified as the main volatile pulp constituent (27.7% of the sum of the intensities of all ions detected by GC-MS), reaching a concentration of 89.0 ± 16.9 μg/mL corresponding to 1.34 ± 0.25 μg/g fresh pulp and 1.03 ± 0.19 μg/g fruit. The results provide quantitative evidence for the occurrence of an anthocyanin and an oxygenated sesquiterpene as one of the major volatile and non-volatile low-molecular-weight compounds in pitanga pulp. PMID:26394146

  4. Identification and Quantification of Oxidoselina-1,3,7(11)-Trien-8-One and Cyanidin-3-Glucoside as One of the Major Volatile and Non-Volatile Low-Molecular-Weight Constituents in Pitanga Pulp

    PubMed Central

    Ehrnhöfer-Ressler, Miriam Margit; Walker, Jessica; Montenegro Brasil, Isabella; Somoza, Veronika

    2015-01-01

    The pulp of pitanga (Eugenia uniflora L.) is used to prepare pitanga juice. However, there are no reports on the identification and quantification of the main constituents in pitanga pulp. The aim of this study was to identify and quantify the major volatile and non-volatile low-molecular-weight constituents of the pulp. Isolation of volatile compounds was performed by solvent-assisted flavor evaporation technique. Characterization of the main volatile and non-volatile constituents was performed by GC-MS, LC-MS and NMR spectroscopy. For quantitative measurements, the main volatile compound needed to be isolated from pitanga pulp to obtain a commercially not available reference standard. Cyanidin-3-glucoside was determined as one of the most abundant non-volatile pulp compound yielding 53.8% of the sum of the intensities of all ions detected by LC-MS. Quantification of cyanidin-3-glucoside in pitanga pulp resulted in a concentration of 344 ± 66.4 μg/mL corresponding to 688 ± 133 μg/g dried pulp and 530 ± 102 μg/g fruit. For the volatile fraction, oxidoselina-1,3,7(11)-trien-8-one was identified as the main volatile pulp constituent (27.7% of the sum of the intensities of all ions detected by GC-MS), reaching a concentration of 89.0 ± 16.9 μg/mL corresponding to 1.34 ± 0.25 μg/g fresh pulp and 1.03 ± 0.19 μg/g fruit. The results provide quantitative evidence for the occurrence of an anthocyanin and an oxygenated sesquiterpene as one of the major volatile and non-volatile low-molecular-weight compounds in pitanga pulp. PMID:26394146

  5. Majority ion heating near the ion-ion hybrid layer in tokamaks

    SciTech Connect

    Phillips, C.K.; Hosea, J.C.; Ignat, D.; Majeski, R.; Rogers, J.H.; Schilling, G.; Wilson, J.R.

    1995-08-01

    Efficient direct majority ion heating in a deuterium-tritium (D-T) reactor-grade plasma via absorption of fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) is discussed. Majority ion heating results from resonance overlap between the cyclotron layers and the D-T ion-ion hybrid layer in hot, dense plasmas for fast waves launched with high parallel wavenumbers. Analytic and numerical models are used to explore the regime in ITER plasmas.

  6. Ion mobility spectrometry for detection of skin volatiles

    PubMed Central

    Ruzsanyi, Veronika; Mochalski, Pawel; Schmid, Alex; Wiesenhofer, Helmut; Klieber, Martin; Hinterhuber, Hartmann; Amann, Anton

    2012-01-01

    Volatile organic compounds (VOCs) released by humans through their skin were investigated in near real time using ion mobility spectrometry after gas chromatographic separation with a short multi-capillary column. VOCs typically found in a small nitrogen flow covering the skin are 3-methyl-2-butenal, 6-methylhept-5-en-2-one, sec-butyl acetate, benzaldehyde, octanal, 2-ethylhexanol, nonanal and decanal at volume fractions in the low part per billion-(ppb) range. The technique presented here may contribute to elucidating some physiological processes occurring in the human skin. PMID:23217311

  7. Major constituents and anthelmintic activity of volatile oils from leaves and flowers of Cymbopogon martini Roxb.

    PubMed

    Nirmal, S A; Girme, A S; Bhalke, R D

    2007-11-01

    The major volatile constituents of leaves and flowers of Cymbopogon martini from the volatile oil obtained by steam distillation were identified by GC/MS. Five constituents were identified from the volatile oil of leaves and flowers, which constituted about 82.49 and 75.63% of the total amount, respectively. A monoterpene, piperitone (6.00%), was identified in the flowers of C. martini; in addition, flowers were found to contain more olefinic terpenes, namely geraniol (69.63%), compared with leaves (53.41%). Leaves contain bicyclic monoterpene, nerol (24.76%) and alpha-pinene (4.32%). Anthelmintic activity of these oils was evaluated on adult Indian earthworms Pheretima posthuma and results showed that the volatile oil of C. martini flower required less time to cause paralysis and death of the earthworms. PMID:17987504

  8. Majority ion heating near the ion-ion hybrid layer in tokamaks

    SciTech Connect

    Phillips, C.K.; Hosea, J.C.; Ignat, D.; Majeski, R.; Rogers, J.H.; Schilling, G.; Wilson, J.R.

    1996-02-01

    Efficient direct majority ion heating in a deuterium-tritium (D-T) reactor-grade plasma via absorption of fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) is discussed. Majority ion heating results from resonance overlap between the cyclotron layers and the D-T ion-ion hybrid layer in hot, dense plasmas for fast waves launched with high parallel wavenumbers. Analytic and numerical models are used to explore the regime in ITER plasmas. {copyright} {ital 1996 American Institute of Physics.}

  9. Volatile signals of the major histocompatibility complex in male mouse urine.

    PubMed

    Singer, A G; Beauchamp, G K; Yamazaki, K

    1997-03-18

    Variation in the genes of the major histocompatibility complex (MHC) contributes to unique individual odors (odortypes) in mice, as demonstrated by the ability of trained mice in a Y-maze olfactometer to discriminate nearly identical inbred mice that differ genetically only at the MHC (MHC congenic mice), while they cannot distinguish genetically identical inbred mice. Similar distinctions are possible with urine, a substance that is involved in many facets of mouse chemical communication. This paper reports results supporting the hypothesis that the MHC-determined urinary odor is composed of a mixture of volatile carboxylic acids occurring in relative concentrations that are characteristic of the odortype. Y-maze behavioral testing of urine fractions from anion exchange chromatography indicates that volatile acids are necessary and sufficient to convey MHC odortype information. Diethyl ether extracts, which are expected to contain the more volatile, less polar organic acids, were also discriminable in the Y-maze olfactometer. Ether extracts of 12 different urine samples from each of two panels of MHC congenic mice were analyzed by gas chromatography. No compounds unique to urine of either genotype were detected, but compounds did appear to occur in characteristic ratios in most of the samples of each type. Nonparametric statistical analysis of the gas chromatographic data showed that eight of the peaks occurred in significantly different relative concentrations in the congenic samples. One of the peaks was shown to represent phenylacetic acid, which has implications for the mechanism of the MHC specification of odortype. PMID:9122173

  10. Toxicity of major geochemical ions to freshwater species

    EPA Science Inventory

    Extensive testing regarding the toxicity of major geochemical ions to Ceriodaphnia dubia, Hyalella azteca, and Pimephales promelas will be presented. For C. dubia, tests of single salts and binary mixtures in various dilution waters demonstrated multiple mechanisms of toxicity an...

  11. Antifungal activities of major tea leaf volatile constituents toward Colletorichum camelliae Massea.

    PubMed

    Zhang, Zheng-Zhu; Li, Ying-Bo; Qi, Li; Wan, Xiao-Chun

    2006-05-31

    A crude glycosidic fraction was prepared from fresh tea leaves and treated with the crude tea enzyme, fractions of cis-3-hexenol, linalool oxide I (cis-furanoid), linalool oxide II (trans-furanoid), linalool, methyl salicylate, geraniol, benzyl alcohol, and 2-phenylethanol were monitored to be the major aglycone moieties by analyzing the released volatiles. The amount of the released aglycone moieties is 5.8 times higher than those in free form. For investigation of the functions of the glycosidically bound form aroma constituents in tea leaves, their antifungal activities were determined by antifungal assay. Geraniol, linalool, methyl salicylate, benzyl alcohol, and 2-phenylethanol exhibited significant antifungal activities toward Colletorichum camelliae Massea, although cis-3-hexenol and linalool oxides showed weaker activities by comparison. Among them, geraniol was shown to be the most potential antifungal substance with a MIC value of 440 microg/mL. The crude glycosidic fraction prepared from tea leaves also exhibited significant antifungal activities in a wide range of concentrations from 2 to 25 mg/mL in a PDA medium. It was deduced that the glycosidically bound volatiles are formed and stored in the intact tissue of tea leaf and hydrolyzed by the actions of both the endogenous and the exogenous glycosidases to release volatiles as antifungal substances when exposed to Colletorichum camelliae Massea. The results suggested that the higher content of the bound form geraniol in tea leaves of var. sinensis might be responsible for their stronger antipathogen properties toward tea leaf blight, as opposed to those of var. assamica. PMID:16719518

  12. Major Volatiles from MSL SAM Evolved Gas Analyses: Yellowknife Bay Through Lower Mount Sharp

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Archer, P. D., Jr.; Sutter, B.; Franz, H. B.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Niles, P. B.; Stern, J. C.; Freissinet, C.; Glavin, D. P.; Atreya, S. K.; Bish, D. L.; Blake, D. F.; Mahaffy, P. R.; Navarro-Gonzalez, R.; McKay, C. P.; Wilhelm, M. B.

    2015-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of <150 µm fines from five sites at Gale Crater. Three were in Yellowknife Bay: the Rocknest aeolian bedform ("RN") and drilled Sheepbed mudstone from sites John Klein ("JK") and Cumberland ("CB"). One was drilled from the Windjana ("WJ") site on a sandstone of the Kimberly formation investigated on route to Mount Sharp. Another was drilled from the Confidence Hills ("CH") site on a sandstone of the Murray Formation at the base of Mt. Sharp (Pahrump Hills). Outcrops are sedimentary rocks that are largely of fluvial or lacustrine origin, with minor aeolian deposits.. SAM's evolved gas analysis (EGA) mass spectrometry detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments. The identity and evolution temperature (T) of evolved gases can support CheMin mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with XRD (e.g., X-ray amorphous phases). They can also give constraints on sample organic chemistry. Here, we discuss trends in major evolved volatiles from SAM EGA analyses to date.

  13. Assessment of ambient volatile organic compounds (VOCs) near major roads in urban Nanjing, China

    NASA Astrophysics Data System (ADS)

    Wang, P.; Zhao, W.

    2008-08-01

    Volatile organic compounds (VOCs) are a major component of atmospheric pollutants in Nanjing, a large city in the east of China. Accordingly, 12-h diurnal monitoring for ten consecutive days was performed adjacent to major roads in five districts, ca.1.5 m above ground level, in April, July and October 2006, and January 2007. The most numerous species of VOCs (benzene, toluene, ethylbenzene, m/ p-xylene, o-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, tetrachloromethane, trichloroethane and tetrachloroethane) were selected as the target pollutants for this field study of atmospheric distribution. The eleven VOCs were mostly found in gas phase due to their high vapor pressures. Gas-phase concentrations ranged between 0.6 and 67.9 μg m - 3 . Simultaneously, the levels of those VOCs measured near major roads were associated slightly with their regional background level. For all these areas, as expected, the high traffic area was the highest in terms of concentration. A positive correlation was also found between the VOC levels and traffic density. Our studies also provided VOC distribution, and vertical/horizontal profiles. The results show that traffic-related exposure to VOCs in major road microenvironments is higher than elsewhere and poses a potential threat to pedestrians, commuters, and traffic-exposed workers.

  14. A volatile organic analyzer for Space Station: Description and evaluation of a gas chromatography/ ion mobility

    NASA Technical Reports Server (NTRS)

    Limero, Thomas F.; James, John T.

    1994-01-01

    A Volatile Organic Analyzer (VOA) is being developed as an essential component of the Space Station's Environmental Health System (EHS) air quality monitoring strategy to provide warning to the crew and ground personnel if volatile organic compounds exceed established exposure limits. The short duration of most Shuttle flights and the relative simplicity of the contaminant removal mechanism have lessened the concern about crew exposure to air contaminants on the Shuttle. However, the longer missions associated with the Space Station, the complex air revitalization system and the proposed number of experiments have led to a desire for real-time monitoring of the contaminants in the Space Station atmosphere. Achieving the performance requirements established for the VOA within the Space Station resource (e.g., power, weight) allocations led to a novel approach that joined a gas chromatograph (GC) to an ion mobility spectrometer (IMS). The authors of this paper will discuss the rational for selecting the GC/IMS technology as opposed to the more established gas chromatography/mass spectrometry (GC/MS) for the foundation of the VOA. The data presented from preliminary evaluations will demonstrate the versatile capability of the GC/IMS to analyze the major contaminants expected in the Space Station atmosphere. The favorable GC/IMS characteristics illustrated in this paper included excellent sensitivity, dual-mode operation for selective detection, and mobility drift times to distinguish co-eluting GC peaks. Preliminary studies have shown that the GC/IMS technology can meet surpass the performance requirements of the Space Station VOA.

  15. Modeling interactions in major ion toxicity to Ceriodaphnia dubia

    EPA Science Inventory

    Various anthopogenic activities can cause exposures of freshwater systems to greatly elevated concentrations of major ions (Na, K, Ca, Mg, Cl, SO4, HCO3) with widely-varying compositions. A data set on the acute toxicity of single salts and binary salt mixtures to Ceriodaphnia d...

  16. Modeling interactions in major ion toxicity to Ceriodaphnia dubia (presentation)

    EPA Science Inventory

    Various anthropogenic activities can cause exposures of freshwater systems to greatly elevated concentrations of major ions (Na, K, Ca, Mg, Cl, SO4, HCO3) with widely-varying compositions. A data set on the acute toxicity of single salts and binary salt mixtures to Ceriodaphnia d...

  17. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    SciTech Connect

    Daisey, J.M.

    1991-11-01

    There is considerable interest in the ``unattached`` fraction of radon progeny in indoor air because of its significance to the estimation of the risks of radon exposure. Because of its high mobility in air, the unattached fraction is more efficiently deposited in the respiratory tract. Variation in the diameter of the ``unattached`` fraction and in its diffusion coefficient can be due to clustering of other atmospheric species around the {sup 218}PoO{sub 2}{sup +} ion. The purpose of this study was to investigate the potential for the formation of clusters of vapor phase organic compounds, found in indoor air, around the {sup 218}PoO{sub 2}{sup +} ion and to determine which were most likely to form clusters. A secondary purpose was to provide a compilation of measurements of indoor organic compounds for future experiments and theoretical calculations by the radon research community. The classical charged liquid droplet theory (Thomson equation) was used to estimate the Gibbs free energy of ion-induced nucleation and to provide an indication of the indoor organic compounds most likely to undergo ion-induced nucleation. Forty-four volatile and semi-volatile organic compounds out of the more than 300 which have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the {sup 218}PoO{sub 2}{sup +} ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones and the acetates) and the semi-volatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos).

  18. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    SciTech Connect

    Daisey, J.M.

    1991-11-01

    There is considerable interest in the unattached'' fraction of radon progeny in indoor air because of its significance to the estimation of the risks of radon exposure. Because of its high mobility in air, the unattached fraction is more efficiently deposited in the respiratory tract. Variation in the diameter of the unattached'' fraction and in its diffusion coefficient can be due to clustering of other atmospheric species around the {sup 218}PoO{sub 2}{sup +} ion. The purpose of this study was to investigate the potential for the formation of clusters of vapor phase organic compounds, found in indoor air, around the {sup 218}PoO{sub 2}{sup +} ion and to determine which were most likely to form clusters. A secondary purpose was to provide a compilation of measurements of indoor organic compounds for future experiments and theoretical calculations by the radon research community. The classical charged liquid droplet theory (Thomson equation) was used to estimate the Gibbs free energy of ion-induced nucleation and to provide an indication of the indoor organic compounds most likely to undergo ion-induced nucleation. Forty-four volatile and semi-volatile organic compounds out of the more than 300 which have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the {sup 218}PoO{sub 2}{sup +} ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones and the acetates) and the semi-volatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos).

  19. Effects of light and copper ions on volatile aldehydes of milk and milk fractions

    SciTech Connect

    Jeno, W.; Bassette, R.; Crang, R.E.

    1988-09-01

    Raw, laboratory-pasteurized and plant-pasteurized homogenized milks were exposed to copper ions (5 ppm), to sunlight or fluorescent light and the effects determined on the composition of volatile aldehydes. The greatest change due to copper treatment was an increase in n-hexanal; acetaldehyde showed the least response in each of the sources of milk. The responses were similar from all three sources of milk with laboratory-pasteurized milk samples showing the greatest responses for each aldehyde analyzed. Similar milk samples exposed to sunlight also showed an increase in volatile aldehydes from all milk sources but with the greatest response being acetaldehyde and n-pentanal components. The milk fraction most susceptible to changes in the presence of light was neutralized whey, whereas resuspended cream was most susceptible to copper exposure. Overall, dialyzed whey appeared to be influenced more than other milk fractions by both light and copper ions.

  20. Identification and quantification of volatile organic compounds using systematic single-ion chromatograms

    SciTech Connect

    Tsuchiya, Yoshio; Kanabus-Kaminska, J.M.

    1996-12-31

    In order to determine the background level of volatile organic compounds (VOCs) in Canadian indoor air, a method of identification and quantification at a level of 0.3 {micro}g/m{sup 3} using systematic single-ion chromatograms (SICs) has been developed. The compounds selected for measurement included several halogenated compounds, oxygen compounds, terpenes, and C8 to C16 n-alkanes. Air samples were taken in 3-layered sorbent tubes and trapped compounds were thermally desorbed into the helium stream of a gas chromatograph/mass spectrometer (GC/MS) analytical system. Total quantities of volatile organic compounds (TVOCs) were measured using a flame ionization detector (FID). Individual compounds were analyzed by a GC/MS. For the identification of compounds in the main stream GC effluent, both the specific GC retention and mass spectra were used. About 50 selected SICs were routinely extracted from a total ion chromatogram (TIC) to detect and quantify compounds. For each compound, a single representative ion was selected. The specific retention was calculated from the elution time on the SIC. For quantification, ion counts under a peak in the SIC were measured. The single-ion MS response factor for some of the compounds was experimentally determined using a dynamic reference procedure.

  1. The major-ion composition of Silurian seawater

    USGS Publications Warehouse

    Brennan, S.T.; Lowenstein, T.K.

    2002-01-01

    One-hundred fluid inclusions in Silurian marine halite were analyzed in order to determine the major-ion composition of Silurian seawater. The samples analyzed were from three formations in the Late Silurian Michigan Basin, the A-1, A-2, and B Evaporites of the Salina Group, and one formation in the Early Silurian Canning Basin (Australia), the Mallowa Salt of the Carribuddy Group. The results indicate that the major-ion composition of Silurian seawater was not the same as present-day seawater. The Silurian ocean had lower concentrations of Mg2+, Na+, and SO2-4, and much higher concentrations of Ca2+ relative to the ocean's present-day composition. Furthermore, Silurian seawater had Ca2+ in excess of SO2-4. Evaporation of Silurian seawater of the composition determined in this study produces KC1-type potash minerals that lack the MgSO4-type late stage salts formed during the evaporation of present-day seawater. The relatively low Na+ concentrations in Silurian seawater support the hypothesis that oscillations in the major-ion composition of the oceans are primarily controlled by changes in the flux of mid-ocean ridge brine and riverine inputs and not global or basin-scale, seawater-driven dolomitization. The Mg2+/Ca2+ ratio of Silurian seawater was ~1.4, and the K+/Ca2+ ratio was ~0.3, both of which differ from the present-day counterparts of 5 and 1, respectively. Seawaters with Mg2+/Ca2+ 2 (e.g., modern seawater) facilitate the precipitation of aragonite and high-magnesian calcite. Therefore, the early Paleozoic calcite seas were likely due to the low Mg2+/Ca2+ ratio of seawater, not the pCO2 of the Silurian atmosphere. Copyright ?? 2002 Elsevier Science Ltd.

  2. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent; Kellogg, James; Jaeger, Ferzan; Raaen, Eric; Tan, Florence

    2014-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.

  3. Volatilization of PM2.5 Inorganic Ions in a Filter Pack System with Backup Filter and Denuders

    NASA Astrophysics Data System (ADS)

    Kim, C.; Choi, Y.; Ghim, Y.

    2012-12-01

    Concentrations of PM2.5 inorganic ions were measured at the rooftop of the 5-story building on the hill (37.02oN, 127.16oE, 167 m above sea level) in the Global Campus of Hankuk University of Foreign Studies, about 35 km southeast of downtown Seoul, Korea. The measurements were made four times during one-year span between 2011 and 2012 by considering the climate of Korea with distinct seasonal variations: July 29 to August 26 (summer); September 14 to October 13 (fall); November 28 to January 4 (winter); February 14 to May 31 (spring). A filter pack system was composed of PM2.5 cyclone, two annular denuders, Teflon filter, nylon filter, and an annular denuder, in series. Two annular denuders were to remove acidic and basic gases prior to collecting particles on the Teflon filter. Nylon filter and an annular denuder were to back up the Teflon filter by absorbing acidic and basic gases, respectively, which were volatilized from collected particles on the Teflon filter. Samplings were made for 24 hours every day. Extracts from filters and denuders were analyzed by ion chromatography to measure concentrations of anions (SO42-, NO3-, Cl-) and cations (Ca2+, Mg2+, NH4+, Na+, K+). The amounts of ionic species absorbed at the backup nylon filter and denuder were examined in terms of meteorological parameters, the amounts of gases removed in front of the Teflon filter, and the amounts of particulate ions collected on the Teflon filter. Major factors to affect the volatilization from particles collected on the Teflon filter were discussed.

  4. Major ion correlation in groundwater of Kancheepuram Region, South India.

    PubMed

    Rajmohan, N; Elango, L; Ramachandran, S; Natarajan, M

    2003-01-01

    Groundwater samples were collected from both dugwells and borewells in an intensively irrigated area of Kancheepuram Taluk, Tamil Nadu. pH, EC and TDS of groundwater samples were measured in the site. The collected samples were analysed in the laboratory for Ca, Mg, Na, K, Cl, HCO3, CO3, SO4, NO3, P-PO4 and Si-SiO2. The results are used for inter elemental correlation analysis which indicates that most of the elements having good correlation. Piper Trilinear diagram is used to find out the hydrochemical type of groundwater which shows that most of them are CaHCO3 and the remaining are CaMgCl type. Hydrochemical characteristics of groundwater indicate that silicate weathering reaction is a probable source for high concentration of major ions. PMID:14723276

  5. Common volatiles are major attractants for neonate larvae of the specialist flea beetle Altica koreana (Coleoptera: Chrysomelidae)

    NASA Astrophysics Data System (ADS)

    Xue, Huai-Jun; Yang, Xing-Ke

    2008-07-01

    Olfactory stimuli play an important role in the host searching of larval phytophagous insects. Previous studies indicate that larvae that have to find feeding sites after hatching are generally attracted to host volatiles. However, there are few studies on the olfactory responses of neonate larvae to host volatiles in cases when those larvae hatched on the host plant. In the present study, we determined the olfactory responses of neonate larvae of the specialist flea beetle, Altica koreana Ogloblin, to host and six non-host plants, using a static-air “arena.” Larvae responded significantly to the host plant Potentilla chinensis Ser. and five of six non-host plants, compared to the control. Larvae did not prefer the host plant over the non-host plants (except Artemisia sp.) when offered a choice. Additionally, odours of a non-host plant, which were unattractive to neonate larvae, may have masked the attractive odour of the host plant. These results indicate that common volatiles can play a major role in attracting larvae of this specialist to plants, but attraction to such odours may not be the major mechanism of host choice.

  6. Multi-Capillary Column-Ion Mobility Spectrometry of Volatile Metabolites Emitted by Saccharomyces Cerevisiae

    PubMed Central

    Halbfeld, Christoph; Ebert, Birgitta E.; Blank, Lars M.

    2014-01-01

    Volatile organic compounds (VOCs) produced during microbial fermentations determine the flavor of fermented food and are of interest for the production of fragrances or food additives. However, the microbial synthesis of these compounds from simple carbon sources has not been well investigated so far. Here, we analyzed the headspace over glucose minimal salt medium cultures of Saccharomyces cerevisiae using multi-capillary column-ion mobility spectrometry (MCC-IMS). The high sensitivity and fast data acquisition of the MCC-IMS enabled online analysis of the fermentation off-gas and 19 specific signals were determined. To four of these volatile compounds, we could assign the metabolites ethanol, 2-pentanone, isobutyric acid, and 2,3-hexanedione by MCC-IMS measurements of pure standards and cross validation with thermal desorption–gas chromatography-mass spectrometry measurements. Despite the huge biochemical knowledge of the biochemistry of the model organism S. cerevisiae, only the biosynthetic pathways for ethanol and isobutyric acid are fully understood, demonstrating the considerable lack of research of volatile metabolites. As monitoring of VOCs produced during microbial fermentations can give valuable insight into the metabolic state of the organism, fast and non-invasive MCC-IMS analyses provide valuable data for process control. PMID:25197771

  7. The Major-ion Composition of Permian Seawater

    SciTech Connect

    Lowenstein, T K.; Timofeeff, Michael N.; Kovalevych, Volodymyr M.; Horita, Juske

    2005-01-01

    The major-ion (Mg{sup 2+}, Ca{sup 2+}, Na{sup +}, K{sup +}, SO{sub 4}{sup 2-}, and Cl{sup -}) composition of Permian seawater was determined from chemical analyses of fluid inclusions in marine halites. New data from the Upper Permian San Andres Formation of Texas (274--272 Ma) and Salado Formation of New Mexico (251 Ma), analyzed by the environmental scanning electron microscopy (ESEM) X-ray energy-dispersive spectrometry (EDS) method, along with published chemical compositions of fluid inclusions in Permian marine halites from North America (two formations of different ages) and the Central and Eastern European basins (eight formations of four different ages) show that Permian seawater shares chemical characteristics with modern seawater, including SO{sub 4}{sup 2-} > Ca{sup 2+} at the point of gypsum precipitation, evolution into Mg{sup 2+}-Na{sup +}-K{sup +}-SO{sub 4}{sup 2-}-Cl{sup -} brines, and Mg{sup 2+}/K{sup +} ratios {approx} 5. Permian seawater, however, is slightly depleted in SO{sub 4}{sup 2-} and enriched in Ca{sup 2+}, although modeling results do not rule out Ca{sup 2+} concentrations close to those in present-day seawater. Na{sup +} and Mg{sup 2+} in Permian seawater are close to (slightly below) their concentrations in modern seawater. Permian and modern seawater are both classified as aragonite seas, with Mg{sup 2+}/Ca{sup 2+} ratios >2, conditions favorable for precipitation of aragonite and magnesian calcite as ooids and cements. The chemistry of Permian seawater was modeled using the chemical composition of brine inclusions for three periods: Lower Permian Asselian-Sakmarian (296--283 Ma), Lower Permian Artinskian-Kungurian (283--274 Ma), and Upper Permian Tatarian (258--251 Ma). Parallel changes in the chemistry of brine inclusions from equivalent age evaporites in North America, Central Europe, and Eastern Europe show that seawater underwent secular variations in chemistry over the 50 million years of the Permian. Modeled SO{sub 4}{sup 2

  8. Major-ion chemistry of the Rocky Mountain snowpack, USA

    USGS Publications Warehouse

    Turk, J.T.; Taylor, H.E.; Ingersoll, G.P.; Tonnessen, K.A.; Clow, D.W.; Mast, M.A.; Campbell, D.H.; Melack, J.M.

    2001-01-01

    During 1993-97, samples of the full depth of the Rocky Mountain snowpack were collected at 52 sites from northern New Mexico to Montana and analyzed for major-ion concentrations. Concentrations of acidity, sulfate, nitrate, and calcium increased from north to south along the mountain range. In the northern part of the study area, acidity was most correlated (negatively) with calcium. Acidity was strongly correlated (positively) with nitrate and sulfate in the southern part and for the entire network. Acidity in the south exceeded the maximum acidity measured in snowpack of the Sierra Nevada and Cascade Mountains. Principal component analysis indicates three solute associations we characterize as: (1) acid (acidity, sulfate, and nitrate), (2) soil (calcium, magnesium, and potassium), and (3) salt (sodium, chloride, and ammonium). Concentrations of acid solutes in the snowpack are similar to concentrations in nearby wetfall collectors, whereas, concentrations of soil solutes are much higher in the snowpack than in wetfall. Thus, dryfall of acid solutes during the snow season is negligible, as is gypsum from soils. Snowpack sampling offers a cost-effective complement to sampling of wetfall in areas where wetfall is difficult to sample and where the snowpack accumulates throughout the winter. Copyright ?? 2001 .

  9. Revalidation of the Volatile Organic Analyzer Following a Major On-Orbit Maintenance Activity

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; James, John T.

    2007-01-01

    The Volatile Organic Analyzer (VOA) contributes to the assessment of air quality aboard the International Space Station (ISS) by identifying and quantifying target airborne volatile organic contaminants in the module air. This on-orbit contaminant monitoring capability becomes particularly important during an air quality degradation event such as a system leak. During several ISS air quality degradations, the VOA has generated near real-time data that was used to make decisions or to better understand the contingency. The VOA was operational from January 2002 through June 2003, during which time it was validated by comparing VOA data to simultaneously acquired grab sample containers (GSCs). In January 2003, one of the two analytical channels of the VOA was shutdown because of a component failure, but a redundant channel continued to supply the necessary analytical data. In June 2003, the sole remaining channel was deactivated. Initial assessments of the channel shutdowns pointed to failed fuses or heaters, but neither was considered repairable on orbit. In 2005, it was determined that failed fuses could be replaced on orbit and the crew conducted a diagnostic procedure to identify the failed component. The crew discovered that both channels incurred failed fuses, which lead to a subsequent on orbit maintenance activity and return of the VOA to operational status in December 2005. The VOA has been providing data on the ISS atmosphere since its reactivation in 2005 and this paper will present the VOA data collected during 2006. Special emphasis will be placed upon the revalidation of the repaired VOA using GSCs as well as a summary of the diagnostic and repair procedures.

  10. A Volatile Organic Analyzer for Space Station - Description and evaluation of a gas chromatography/ion mobility spectrometer

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Brokenshire, John; Cumming, Colin; Overton, ED; Carney, Ken; Cross, Jay; Eiceman, Gary; James, John

    1992-01-01

    An on-board Volatile Organic Analyzer (VOA), an essential component of the Environmental Health System (EHS) air-quality monitoring strategy, is described. The strategy is aimed at warning the crew and ground personnel if volatile compounds exceed safe exposure limits. The VOA uses a combination of gas chromatography (GC) and ion-mobility spectrometry (IMS) for environmental monitoring and analysis. It is concluded that the VOA dual-mode detection capability and the ion mobilities in the drift region are unique features that can assist in the resolution of coeluting GC peaks. The VOA is capable of accurately identifying and quantifying target compounds in a complex mixture.

  11. Ethylene and 1-MCP regulate major volatile biosynthetic pathways in apple fruit.

    PubMed

    Yang, Xiaotang; Song, Jun; Du, Lina; Forney, Charles; Campbell-Palmer, Leslie; Fillmore, Sherry; Wismer, Paul; Zhang, Zhaoqi

    2016-03-01

    The effects of ethylene and 1-methylcyclopropene (1-MCP) on apple fruit volatile biosynthesis and gene expression were investigated. Statistical analysis identified 17 genes that changed significantly in response to ethylene and 1-MCP treatments. Genes encoding branched-chain amino acid aminotransferase (BCAT), aromatic amino acid aminotransferase (ArAT) and amino acid decarboxylases (AADC) were up-regulated during ripening and further enhanced by ethylene treatment. Genes related to fatty acid synthesis and metabolism, including acyl-carrier-proteins (ACPs), malonyl-CoA:ACP transacylase (MCAT), acyl-ACP-desaturase (ACPD), lipoxygenase (LOX), hydroperoxide lyase (HPL), alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC2), β-oxidation, acyl-CoA synthetase (ACS), enoyl-CoA hydratase (ECHD), acyl-CoA dehydrogenase (ACAD), and alcohol acyltransferases (AATs) also increased during ripening and in response to ethylene treatment. Allene oxide synthase (AOS), alcohol dehydrogenase 1 (ADH1), 3-ketoacyl-CoA thiolase and branched-chain amino acid aminotransferase 2 (BCAT2) decreased in ethylene-treated fruit. Treatment with 1-MCP and ethylene generally produced opposite effects on related genes, which provides evidence that regulation of these genes is ethylene dependent. PMID:26471562

  12. Migration of volatile organic compounds from attached garages to residences: a major exposure source.

    PubMed

    Batterman, Stuart; Jia, Chunrong; Hatzivasilis, Gina

    2007-06-01

    Vehicle garages often contain high concentrations of volatile organic compounds (VOCs) that may migrate into adjoining residences. This study characterizes VOC concentrations, exposures, airflows, and source apportionments in 15 single-family houses with attached garages in southeast Michigan. Fieldwork included inspections to determine possible VOC sources, deployment of perfluorocarbon tracer (PFT) sources in garages and occupied spaces, and measurements of PFT, VOC, and CO(2) concentrations over a 4-day period. Air exchange rates (AERs) averaged 0.43+/-0.37 h(-1) in the houses and 0.77+/-0.51 h(-1) in the garages, and air flows from garages to houses averaged 6.5+/-5.3% of the houses' overall air exchange. A total of 39 VOC species were detected indoors, 36 in the garage, and 20 in ambient air. Garages showed high levels of gasoline-related VOCs, e.g., benzene averaged 37+/-39 microg m(-3). Garage/indoor ratios and multizone IAQ models show that nearly all of the benzene and most of the fuel-related aromatics in the houses resulted from garage sources, confirming earlier reports that suggested the importance of attached garages. Moreover, doses of VOCs such as benzene experienced by non-smoking individuals living in houses with attached garages are dominated by emissions in garages, a result of exposures occurring in both garage and house microenvironments. All of this strongly suggests the need to better control VOC emissions in garages and contaminant migration through the garage-house interface. PMID:17350611

  13. Determination of volatile fatty acids in landfill leachates by ion-exclusion chromatography.

    PubMed

    Yamamoto, Atsushi; Yasuhara, Akio; Kodama, Shuji; Matsunaga, Akinobu; Suzuki, Shigeru; Mohri, Shino; Yamada, Masato

    2004-03-01

    An ion-exclusion chromatographic method with on-line desalinization for the determination of volatile fatty acids in landfill leachates is described. Highly sensitive conductivity detection of the organic acids was achieved by using dilute p-hydroxybenzoic acid solution as an eluent. Interference with mineral acids was reduced by treatment with barium chloride solution prior to desalinization. A silver-loaded cation-exchange guard column for the desalinization was installed in series with the analytical column to avoid the contamination of organic acids. This method features detection limits of 0.01 mg L(-1) formic acid, 0.02 mg L(-1) acetic acid, 0.05 mg L(-1) propionic acid, and 0.1 mg L(-1) butyric acid, respectively, with an injection of 20 microL sample. Application of the on-line desalinization LC method is illustrated for leachate samples from a Japanese sanitary landfill. PMID:15334921

  14. Making healthier or killing enemies? Bacterial volatile-elicited plant immunity plays major role upon protection of Arabidopsis than the direct pathogen inhibition.

    PubMed

    Sharifi, Rouhallah; Ryu, Choong-Min

    2016-01-01

    Bacterial volatiles protect plants either by directly inhibiting a pathogenic fungus or by improving the defense capabilities of plants. The effect of bacterial volatiles on fungal growth was dose-dependent. A low dosage did not have a noticeable effect on Botrytis cinerea growth and development, but was sufficient to elicit induced resistance in Arabidopsis thaliana. Bacterial volatiles displayed negative effects on biofilm formation on a polystyrene surface and in in planta leaf colonization of B. cinerea. However, bacterial volatile-mediated induced resistance was the major mechanism mediating protection of plants from B. cinerea. It was responsible for more than 90% of plant protection in comparison with direct fungal inhibition. Our results broaden our knowledge of the role of bacterial volatiles in plant protection. PMID:27574539

  15. Making healthier or killing enemies? Bacterial volatile-elicited plant immunity plays major role upon protection of Arabidopsis than the direct pathogen inhibition

    PubMed Central

    Sharifi, Rouhallah; Ryu, Choong-Min

    2016-01-01

    ABSTRACT Bacterial volatiles protect plants either by directly inhibiting a pathogenic fungus or by improving the defense capabilities of plants. The effect of bacterial volatiles on fungal growth was dose-dependent. A low dosage did not have a noticeable effect on Botrytis cinerea growth and development, but was sufficient to elicit induced resistance in Arabidopsis thaliana. Bacterial volatiles displayed negative effects on biofilm formation on a polystyrene surface and in in planta leaf colonization of B. cinerea. However, bacterial volatile-mediated induced resistance was the major mechanism mediating protection of plants from B. cinerea. It was responsible for more than 90% of plant protection in comparison with direct fungal inhibition. Our results broaden our knowledge of the role of bacterial volatiles in plant protection. PMID:27574539

  16. VOLATILE ORGANIC COMPOUNDS IN 600 U.S. HOMES: MAJOR SOURCES OF PERSONAL EXPOSURE

    EPA Science Inventory

    The USEPA carried out the Total Exposure Assessment Methodology (TEAM) Study (1980-85) on 600 subjects in five cities representing a total population of more than 700,000 persons. Personal exposures to all prevalent target compounds exceeded outdoor concentrations. Major sources ...

  17. Major ion toxicity of six produced waters to three freshwater species: Application of ion toxicity models and TIE procedures

    SciTech Connect

    Tietge, J.E.; Hockett, J.R.; Evans, J.M.

    1997-10-01

    Previous research to characterize the acute toxicity of major ions to freshwater organisms resulted in the development of statistical toxicity models for three freshwater species (Ceriodaphnia dubia, Pimephales promelas, and Daphnia magna). These ion toxicity models estimate the toxicity of seven major ions utilizing logistic regression. In this study, the ion toxicity models were used in conjunction with Phase 1 toxicity identification evaluation (TIE) procedures to evaluate the contribution of major ion toxicity to the total toxicity of six produced water samples ranging in total salinity from 1.7 to 58.1 g/L. Initial toxicities of all six samples were compared to the model predictions. Four produced waters were found to have toxicity consistent with toxicity attributable to major ion concentrations only. Two produced waters were found to exhibit more toxicity than expected from ion concentrations alone. These samples were subjected to Phase 1 TIE procedures. Toxicities were reduced by specific Phase 1 TIE manipulations to those predicted by the ion toxicity models. Mock effluents were used to verify the results. The combination of the ion toxicity models with Phase 1 TIE procedures successfully quantified the toxicity due to major ions in six produced water samples.

  18. Volatile organic compounds in 600 US homes: major sources of personal exposure

    SciTech Connect

    Wallace, L.; Clayton, C.A.

    1987-05-01

    The USEPA carried out the Total Exposure Assessment Methodology (TEAM) Study (1980-85) on 600 subjects in five cities representing a total population of more than 700,000 persons. Personal exposures to all prevalent target compounds exceeded outdoor concentrations. Major sources were smoking (benzene, styrene, xylenes, and octane); using hot water (chloroform); wearing dry-cleaned clothes (tetrachloroethylene); and using moth crystals or room air deodorants (para-dichlorobenzene). Eleven of 14 occupations also showed elevated exposures to one or more chemicals (particularly aromatics). Auto related activities (lengthy commuting, filling gas tanks) were associated with increased exposures to several aromatics. Breath concentrations were significantly associated with personal air exposures but not with outdoor concentrations. Residence in major chemical-manufacturing and petroleum-refining areas did not significantly affect personal exposures.

  19. Evaluation of NO+ reagent ion chemistry for online measurements of atmospheric volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Koss, Abigail R.; Warneke, Carsten; Yuan, Bin; Coggon, Matthew M.; Veres, Patrick R.; de Gouw, Joost A.

    2016-07-01

    NO+ chemical ionization mass spectrometry (NO+ CIMS) can achieve fast (1 Hz and faster) online measurement of trace atmospheric volatile organic compounds (VOCs) that cannot be ionized with H3O+ ions (e.g., in a PTR-MS or H3O+ CIMS instrument). Here we describe the adaptation of a high-resolution time-of-flight H3O+ CIMS instrument to use NO+ primary ion chemistry. We evaluate the NO+ technique with respect to compound specificity, sensitivity, and VOC species measured compared to H3O+. The evaluation is established by a series of experiments including laboratory investigation using a gas-chromatography (GC) interface, in situ measurement of urban air using a GC interface, and direct in situ measurement of urban air. The main findings are that (1) NO+ is useful for isomerically resolved measurements of carbonyl species; (2) NO+ can achieve sensitive detection of small (C4-C8) branched alkanes but is not unambiguous for most; and (3) compound-specific measurement of some alkanes, especially isopentane, methylpentane, and high-mass (C12-C15) n-alkanes, is possible with NO+. We also demonstrate fast in situ chemically specific measurements of C12 to C15 alkanes in ambient air.

  20. The major-ion composition of Carboniferous seawater

    NASA Astrophysics Data System (ADS)

    Holt, Nora M.; García-Veigas, Javier; Lowenstein, Tim K.; Giles, Peter S.; Williams-Stroud, Sherilyn

    2014-06-01

    The major-ion chemistry (Na+, Mg2+, Ca2+, K+, SO42-, and Cl-) of Carboniferous seawater was determined from chemical analyses of fluid inclusions in marine halites, using the cryo scanning electron microscopy (Cryo-SEM) X-ray energy-dispersive spectrometry (EDS) technique. Fluid inclusions in halite from the Mississippian Windsor and Mabou Groups, Shubenacadie Basin, Nova Scotia, Canada (Asbian and Pendleian Substages, 335.5-330 Ma), and from the Pennsylvanian Paradox Formation, Utah, USA, (Desmoinesian Stage 309-305 Ma) contain Na+-Mg2+-K+-Ca2+-Cl- brines, with no measurable SO42-, which shows that the Carboniferous ocean was a “CaCl2 sea”, relatively enriched in Ca2+ and low in SO42- with equivalents Ca2+ > SO42- + HCO3-. δ34S values from anhydrite in the Mississippian Shubenacadie Basin (13.2-14.0 ‰) and the Pennsylvanian Paradox Formation (11.2-12.6 ‰) support seawater sources. Br in halite from the Shubenacadie Basin (53-111 ppm) and the Paradox Basin (68-147 ppm) also indicate seawater parentages. Carboniferous seawater, modeled from fluid inclusions, contained ∼22 mmol Ca2+/kg H2O (Mississippian) and ∼24 mmol Ca2+/kg H2O (Pennsylvanian). Estimated sulfate concentrations are ∼14 mmol SO42-/kg H2O (Mississippian), and ∼12 mmol SO42-/kg H2O (Pennsylvanian). Calculated Mg2+/Ca2+ ratios are 2.5 (Mississippian) and 2.3 (Pennsylvanian), with an estimated range of 2.0-3.2. The fluid inclusion record of seawater chemistry shows a long period of CaCl2 seas in the Paleozoic, from the Early Cambrian through the Carboniferous, when seawater was enriched in Ca2+ and relatively depleted in SO42-. During this ∼200 Myr interval, Ca2+ decreased and SO42- increased, but did not cross the Ca2+-SO42- chemical divide to become a MgSO4 sea (when SO42- in seawater became greater than Ca2+) until the latest Pennsylvanian or earliest Permian (∼309-295 Ma). Seawater remained a MgSO4 sea during the Permian and Triassic, for ∼100 Myr. Fluid inclusions also record

  1. Volatile Metabolites

    PubMed Central

    Rowan, Daryl D.

    2011-01-01

    Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243

  2. A method for measuring semi- and non-volatile organic halogens by combustion ion chromatography.

    PubMed

    Miyake, Yuichi; Kato, Mika; Urano, Kohei

    2007-01-12

    Recent studies have shown that various semi- and non-volatile organohalogen compounds are ubiquitous in the environment: these include halogenated dioxins including chlorinated dioxins, other persistent organic pollutants (POPs), brominated flame retardants (BFRs), and perfluorooctane sulfonate (PFOS). However, monitoring and assessment of these compounds by the analyses of individual compounds and their isomers is onerous because of their low environmental concentrations and large number of compounds. In this study, we have developed a new method that is capable of screening and monitoring an array of organohalogen compounds efficiently by combustion ion chromatography (CIC) - the new analyzer that serially connects combustion furnace and ion chromatograph. Analyzer performance was evaluated in terms of its applicability, reproducibility, and sensitivity as limit of detection (LOD). Recoveries of organochlorine, organobromine, and organoiodine compounds by the CIC were between 97 and 105%; those of organofluorine compounds were from 86 to 91%. In all cases, the relative standard deviation of five analyses was 4% or smaller. The analyzer would exhibit good sensitivity for various environmental matrices (e.g., 2.8-31ng-X/g-soil, 1.4-16ng-X/L-water, and 9.2-100ng-X/m3N-gas). The method is fast and can provide information regarding the occurrence of organohalogen compounds within 1 or 2 days after sampling. Applicability of the new method for the assessment of contamination in flue gas and fly ash was also demonstrated. Our results show that the method is efficient to investigate emission sources and areas contaminated by organohalogen compounds. PMID:17109873

  3. Volatile composition of Brassica oleracea L. var. costata DC leaves using solid-phase microextraction and gas chromatography/ion trap mass spectrometry.

    PubMed

    de Pinho, Paula Guedes; Valentão, Patrícia; Gonçalves, Rui F; Sousa, Carla; Andrade, Paula B

    2009-08-01

    Volatile and semi-volatile components of internal and external leaves of Brassica oleracea L. var. costata DC, grown under different fertilization regimens, were determined by headspace solid-phase microextraction (HS-SPME) combined with gas chromatography/ion trap mass spectrometry (GC/ITMS). Forty-one volatiles and non-volatile components were formally identified and thirty others were tentatively identified. Qualitative and quantitative differences were noticed between internal and external leaves. In general, internal leaves exhibited more aldehydes and sulfur volatile compounds than external ones, and less ketone, terpenes and norisoprenoid compounds. The fertilization regimens influenced considerably the volatile profile. Fertilizations with higher levels of sulfur produced Brassica leaves with more sulfur volatiles. In opposition, N and S fertilization led to leaves with lower levels of norisoprenoids and terpenes. PMID:19579264

  4. Characteristics of major secondary ions in typical polluted atmospheric aerosols during autumn in central Taiwan.

    PubMed

    Fang, Guor-Cheng; Lin, Shih-Chieh; Chang, Shih-Yu; Lin, Chuan-Yao; Chou, Charles-C K; Wu, Yun-Jui; Chen, Yu-Chieh; Chen, Wei-Tzu; Wu, Tsai-Lin

    2011-06-01

    In autumn of 2008, the chemical characteristics of major secondary ionic aerosols at a suburban site in central Taiwan were measured during an annually occurring season of high pollution. The semicontinuous measurement system measured major soluble inorganic species, including NH(4)(+), NO(3)(-), and SO(4)(2-), in PM(10) with a 15 min resolution time. The atmospheric conditions, except for the influences of typhoons, were dominated by the local sea-land breeze with clear diurnal variations of meteorological parameters and air pollutant concentrations. To evaluate secondary aerosol formation at different ozone levels, daily ozone maximum concentration (O(3,daily max)) was used as an index of photochemical activity for dividing between the heavily polluted period (O(3,daily max) ≧80 ppb) and the lightly polluted period (O(3,daily max)<80 ppb). The concentrations of PM(10), NO(3)(-), SO(4)(2-), NH(4)(+) and total major ions during the heavily polluted period were 1.6, 1.9, 2.4, 2.7 and 2.3 times the concentrations during the lightly polluted period, respectively. Results showed that the daily maximum concentrations of PM(10) occurred around midnight and the daily maximum ozone concentration occurred during daytime. The average concentration of SO(2) was higher during daytime, which could be explained by the transportation of coastal industry emissions to the sampling site. In contrast, the high concentration of NO(2) at night was due to the land breeze flow that transport inland urban air masses toward this site. The simulations of breeze circulations and transitions were reflected in transports and distributions of these pollutants. During heavily polluted periods, NO(3)(-) and NH(4)(+) showed a clear diurnal variations with lower concentrations after midday, possibly due to the thermal volatilization of NH(4)NO(3) during daytime and transport of inland urban plume at night. The diurnal variation of PM(10) showed the similar pattern to that of NO(3)(-) and NH(4

  5. Elevated major ion concentrations inhibit larval mayfly growth and development.

    PubMed

    Johnson, Brent R; Weaver, Paul C; Nietch, Christopher T; Lazorchak, James M; Struewing, Katherine A; Funk, David H

    2015-01-01

    Anthropogenic disturbances, including those from developing energy resources, can alter stream chemistry significantly by elevating total dissolved solids. Field studies have indicated that mayflies (Order Ephemeroptera) are particularly sensitive to high total dissolved solids. In the present study, the authors measured 20-d growth and survivorship of larval Neocloeon triangulifer exposed to a gradient of brine salt (mixed NaCl and CaCl2 ) concentrations. Daily growth rates were reduced significantly in all salt concentrations above the control (363 µS cm(-1) ) and larvae in treatments with specific conductance >812 µS cm(-1) were in comparatively earlier developmental stages (instars) at the end of the experiment. Survivorship declined significantly when specific conductance was >1513 µS cm(-1) and the calculated 20-d 50% lethal concentration was 2866 µS cm(-1) . The present study's results provide strong experimental evidence that elevated ion concentrations similar to those observed in developing energy resources, such as oil and gas drilling or coal mining, can adversely affect sensitive aquatic insect species. PMID:25307284

  6. Silencing of the olfactory co-receptor gene in Dendroctonus armandi leads to EAG response declining to major host volatiles.

    PubMed

    Zhang, Ranran; Gao, Guanqun; Chen, Hui

    2016-01-01

    In this study, a polymerase chain reaction (PCR) based on homology genes of Orco was utilized to identify DarmOrco, which is essential for olfaction in D. armandi. The results showed that DarmOrco shares significant sequence homology with Orco proteins had known in other insects. Quantitative real-time PCR (qRT-PCR) analysis suggested that DarmOrco was abundantly expressed in adult D. armandi; by contrast, DarmOrco showed trace amounts of expression level in other stages. Of different tissues, DarmOrco expression level was the highest in the antennae. In order to understand the functional significance of Orco, we injected siRNA of DarmOrco into the conjunctivum between the second and third abdominal segments, and evaluated its expression after siRNA injected for 24 h, 48 h and 72 h. The results of qRT-PCR demonstrated that the reduction of mRNA expression level was significant (~80%) in DarmOrco siRNA-treated D. armandi than in water-injected and non-injected controls. The electroantennogram responses of females and males to 11 major volatiles of its host, were also reduced (30~68% for females; 16~70% for males) in siRNA-treated D. armandi compared with the controls. These results suggest that DarmOrco is crucial in mediating odorant perception. PMID:26979566

  7. Silencing of the olfactory co-receptor gene in Dendroctonus armandi leads to EAG response declining to major host volatiles

    NASA Astrophysics Data System (ADS)

    Zhang, Ranran; Gao, Guanqun; Chen, Hui

    2016-03-01

    In this study, a polymerase chain reaction (PCR) based on homology genes of Orco was utilized to identify DarmOrco, which is essential for olfaction in D. armandi. The results showed that DarmOrco shares significant sequence homology with Orco proteins had known in other insects. Quantitative real-time PCR (qRT-PCR) analysis suggested that DarmOrco was abundantly expressed in adult D. armandi; by contrast, DarmOrco showed trace amounts of expression level in other stages. Of different tissues, DarmOrco expression level was the highest in the antennae. In order to understand the functional significance of Orco, we injected siRNA of DarmOrco into the conjunctivum between the second and third abdominal segments, and evaluated its expression after siRNA injected for 24 h, 48 h and 72 h. The results of qRT-PCR demonstrated that the reduction of mRNA expression level was significant (~80%) in DarmOrco siRNA-treated D. armandi than in water-injected and non-injected controls. The electroantennogram responses of females and males to 11 major volatiles of its host, were also reduced (30~68% for females; 16~70% for males) in siRNA-treated D. armandi compared with the controls. These results suggest that DarmOrco is crucial in mediating odorant perception.

  8. Silencing of the olfactory co-receptor gene in Dendroctonus armandi leads to EAG response declining to major host volatiles

    PubMed Central

    Zhang, Ranran; Gao, Guanqun; Chen, Hui

    2016-01-01

    In this study, a polymerase chain reaction (PCR) based on homology genes of Orco was utilized to identify DarmOrco, which is essential for olfaction in D. armandi. The results showed that DarmOrco shares significant sequence homology with Orco proteins had known in other insects. Quantitative real-time PCR (qRT-PCR) analysis suggested that DarmOrco was abundantly expressed in adult D. armandi; by contrast, DarmOrco showed trace amounts of expression level in other stages. Of different tissues, DarmOrco expression level was the highest in the antennae. In order to understand the functional significance of Orco, we injected siRNA of DarmOrco into the conjunctivum between the second and third abdominal segments, and evaluated its expression after siRNA injected for 24 h, 48 h and 72 h. The results of qRT-PCR demonstrated that the reduction of mRNA expression level was significant (~80%) in DarmOrco siRNA-treated D. armandi than in water-injected and non-injected controls. The electroantennogram responses of females and males to 11 major volatiles of its host, were also reduced (30~68% for females; 16~70% for males) in siRNA-treated D. armandi compared with the controls. These results suggest that DarmOrco is crucial in mediating odorant perception. PMID:26979566

  9. Textural characterization, major and volatile element quantification and Ar-Ar systematics of spherulites in the Rocche Rosse obsidian flow, Lipari, Aeolian Islands: a temperature continuum growth model

    NASA Astrophysics Data System (ADS)

    Clay, P. L.; O'Driscoll, B.; Gertisser, R.; Busemann, H.; Sherlock, S. C.; Kelley, S. P.

    2013-02-01

    Spherulitic textures in the Rocche Rosse obsidian flow (Lipari, Aeolian Islands, Italy) have been characterized through petrographic, crystal size distribution (CSD) and in situ major and volatile elemental analyses to assess the mode, temperature and timescales of spherulite formation. Bulk glass chemistry and spherulite chemistry analyzed along transects across the spherulite growth front/glass boundary reveal major-oxide and volatile (H2O, CO2, F, Cl and S) chemical variations and heterogeneities at a ≤5 μm scale. Numerous bulk volatile data in non-vesicular glass (spatially removed from spherulitic textures) reveal homogenous distributions of volatile concentrations: H2O (0.089 ± 0.012 wt%), F (950 ± 40 ppm) and Cl (4,100 ± 330 ppm), with CO2 and S consistently below detection limits suggesting either complete degassing of these volatiles or an originally volatile-poor melt. Volatile concentrations across the spherulite boundary and within the spherulitic textures are highly variable. These observations are consistent with diffusive expulsion of volatiles into melt, leaving a volatile-poor rim advancing ahead of anhydrous crystallite growth, which is envisaged to have had a pronounced effect on spherulite crystallization dynamics. Argon concentrations dissolved in the glass and spherulites differ by a factor of ~20, with Ar sequestered preferentially in the glass phase. Petrographic observation, CSD analysis, volatile and Ar data as well as diffusion modeling support continuous spherulite nucleation and growth starting at magmatic (emplacement) temperatures of ~790-825 °C and progressing through the glass transition temperature range ( T g ~ 750-620 °C), being further modified in the solid state. We propose that nucleation and growth rate are isothermally constant, but vary between differing stages of spherulite growth with continued cooling from magmatic temperatures, such that there is an evolution from a high to a low rate of crystallization and low

  10. The major volatile compound 2-phenylethanol from the biocontrol yeast Pichia anomala inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is a globally distributed fungus and an important food contaminant because it produces the most potent natural carcinogenic compound known as aflatoxin (AF) B1. The major volatile from a yeast strain, Pichia anomala WRL-076 was identified by SPEM-GC/MS analysis to be 2-phenylethan...

  11. Influence of extraction methodologies on the analysis of five major volatile aromatic compounds of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) grown in Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infusions of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) have been commonly used in folk medicine in Thailand and other Asian countries. This study focuses on a systematic comparison of two extraction methods for major volatile aromatic compounds (VACs) of citronella g...

  12. Relationships determining the toxicity of major ion mixtures to Ceriodaphnia dubia

    EPA Science Inventory

    Significant impacts to aquatic systems can occur due to increases in major ions (Na, K, Ca, Mg, Cl, SO4, HCO3) from various anthropogenic activities, these impacts varying with both the specific combination of ions that are elevated and the chemistry of the background water. A s...

  13. Inconsistent relationships between major ions and water stable isotopes in Antarctic snow under different accumulation environments

    NASA Astrophysics Data System (ADS)

    Hoshina, Yu; Fujita, Koji; Iizuka, Yoshinori; Motoyama, Hideaki

    2016-03-01

    Major ions, stable oxygen isotopes (δ18O), and accumulation rates are analyzed using high temporal resolution data from shallow ice cores and snow pits from East and West Antarctica. Seasonal cycles of major ions and δ18O are well preserved at sites with an accumulation rate threshold of >100 kg m-2 a-1 and calm wind conditions. The seasonal cycle is unclear at sites with high wind speeds, even if the accumulation rate is greater than the threshold. To eliminate the influences of different source regions on major ion and δ18O signals in ice cores, we calculate correlation coefficients between annually averaged major ion concentrations and δ18O, and then compare these with accumulation rates and other geographical variables such as latitude, elevation, and distance from the coast. We find that accumulation rates are highly correlated with elevation and the 10-m snow temperature, and that major ions and δ18O are negatively correlated at low accumulation sites in inland Antarctica. Negative correlations could reflect inconsistent accumulation due to a large inter-annual variability in the accumulation rate. The results show that the relationships between major ions and δ18O may not reflect climatic signatures, and could be a result of the unique characteristics of this arid environment.

  14. A flowing atmospheric pressure afterglow as an ion source coupled to a differential mobility analyzer for volatile organic compound detection.

    PubMed

    Bouza, Marcos; Orejas, Jaime; López-Vidal, Silvia; Pisonero, Jorge; Bordel, Nerea; Pereiro, Rosario; Sanz-Medel, Alfredo

    2016-05-23

    Atmospheric pressure glow discharges have been widely used in the last decade as ion sources in ambient mass spectrometry analyses. Here, an in-house flowing atmospheric pressure afterglow (FAPA) has been developed as an alternative ion source for differential mobility analysis (DMA). The discharge source parameters (inter-electrode distance, current and helium flow rate) determining the atmospheric plasma characteristics have been optimized in terms of DMA spectral simplicity with the highest achievable sensitivity while keeping an adequate plasma stability and so the FAPA working conditions finally selected were: 35 mA, 1 L min(-1) of He and an inter-electrode distance of 8 mm. Room temperature in the DMA proved to be adequate for the coupling and chemical analysis with the FAPA source. Positive and negative ions for different volatile organic compounds were tested and analysed by FAPA-DMA using a Faraday cup as a detector and proper operation in both modes was possible (without changes in FAPA operational parameters). The FAPA ionization source showed simpler ion mobility spectra with narrower peaks and a better, or similar, sensitivity than conventional UV-photoionization for DMA analysis in positive mode. Particularly, the negative mode proved to be a promising field of further research for the FAPA ion source coupled to ion mobility, clearly competitive with other more conventional plasmas such as corona discharge. PMID:27141552

  15. Identification of volatile chemical signatures from plastic explosives by SPME-GC/MS and detection by ion mobility spectrometry.

    PubMed

    Lai, Hanh; Leung, Alfred; Magee, Matthew; Almirall, José R

    2010-04-01

    This study demonstrates the use of solid-phase microextraction (SPME) to extract and pre-concentrate volatile signatures from static air above plastic explosive samples followed by detection using ion mobility spectrometry (IMS) optimized to detect the volatile, non-energetic components rather than the energetic materials. Currently, sample collection for detection by commercial IMS analyzers is conducted through swiping of suspected surfaces for explosive particles and vapor sampling. The first method is not suitable for sampling inside large volume areas, and the latter method is not effective because the low vapor pressure of some explosives such as RDX and PETN make them not readily available in the air for headspace sampling under ambient conditions. For the first time, headspace sampling and detection of Detasheet, Semtex H, and C-4 is reported using SPME-IMS operating under one universal setting with limits of detection ranging from 1.5 to 2.5 ng for the target volatile signatures. The target signature compounds n-butyl acetate and the taggant DMNB are associated with untagged and tagged Detasheet explosives, respectively. Cyclohexanone and DMNB are associated with tagged C-4 explosives. DMNB is associated with tagged Semtex H explosives. Within 10 to 60 s of sampling, the headspace inside a glass vial containing 1 g of explosive, more than 20 ng of the target signatures can be extracted by the SPME fiber followed by IMS detection. PMID:20229010

  16. Major, Trace, and Volatile (CO2, H2O, S, F, and Cl) Elements from 1000+ Hawaiian Olivine-hosted Melt Inclusions Reveal the Dynamics of Crustal Recycling

    NASA Astrophysics Data System (ADS)

    Marske, J. P.; Hauri, E. H.; Trusdell, F.; Garcia, M. O.; Pietruszka, A. J.

    2015-12-01

    Global cycling of volatile elements (H2O, CO2, F, S, Cl) via subduction to deep mantle followed by entrainment and melting within ascending mantle plumes is an enigmatic process that controls key aspects of hot spot volcanism (i.e. melting rate, magma supply, degassing, eruptive style). Variations in radiogenic isotope ratios (e.g.187Os/188Os) at hot spots such as Hawaii reveal magmatic processes within deep-seated mantle plumes (e.g. mantle heterogeneity, lithology, and melt transport). Shield-stage lavas from Hawaii likely originate from a mixed plume source containing peridotite and recycled oceanic crust (pyroxenite) based on variations of radiogenic isotopes. Hawaiian lavas display correlations among isotopes, major and trace elements [1] that might be expected to have an expression in the volatile elements. To investigate this link, we present Os isotopic ratios (n=51), and major, trace, and volatile elements from 1003 olivine-hosted melt inclusions (MI) and their host minerals from tephra from Koolau, Mauna Loa, Hualalai, Kilauea, and Loihi volcanoes. The data show a strong correlation between MI volatile contents and incompatible trace element ratios (La/Yb) with Os isotopes of the same host olivines and reveal large-scale volatile heterogeneity and zonation exists within the Hawaiian plume. 'Loa' chain lavas, which are thought to originate from greater proportions of recycled oceanic crust/pyroxenite, have MIs with lower H2O, S, F, and Cl contents compared to 'Kea' chain lavas that were derived from more peridotite-rich sources. The depletion of volatile elements in the 'Loa' volcano MIs can be explained if they tapped an ancient dehydrated oceanic crust component within the Hawaiian plume. Higher extents of melting beneath 'Loa' volcanoes can also explain these depletions. The presence of dehydrated recycled mafic material in the plume source suggests that subduction effectively devolatilizes part of the oceanic crust. These results are similar to the

  17. Volatile production in nonice materials on Solar System bodies with tenuous atmospheres by ion bombardment - Laboratory results

    NASA Astrophysics Data System (ADS)

    Hibbitts, C. A.; Thevuthasan, S.; Shutthanandan, V.; Orlando, T.; Hansen, G. B.; McCord, T. B.

    2003-05-01

    Volatiles, inferred to be trapped in nonice materials, have been discovered on the Jovian satellites and in IDPs [McCord et al., 1998; Hibbitts et al., 2000; Flynn et al., 2002]. In general, these types of volatiles may be produced through high-energy ion bombardment of Solar System bodies that have tenuous atmospheres, from the Moon to the Saturnian satellites and beyond. The surfaces of these bodies are continually bombarded by a combination of cosmic, solar, and planetary magnetospheric radiation including UV, keV protons and Helium nuclei, and more massive keV to MeV ions. The Moon's surface contains Fe-oxides that may release water products under bombardment by solar wind protons. Many classes of asteroids and the outer planets' satellites appear to contain clays or other OH-bearing materials that could release water-products as well under bombardment. Also, organic material, likely present on surfaces other than the Moon, may participate in bombardment reactions to form carbon monoxide or dioxide. Results from our laboratory experiments conducted at the Environmental Molecular Sciences Laboratory (EMSL) accelerator facility, Pacific Northwest National Laboratory (PNNL) show that volatiles are produced during MeV ion irradiation of these types of materials. We bombarded clays, oxyhydroxides, ilmenite, and carbon-doped samples with MeV hydrogen, deuterium, oxygen, and sulfur ions at current densities of 100 to 1000 namps ( 1E12 to 1E13 ions/cm2/sec) over several minutes. Ohmic heating and outgassing of trapped atmospheric gases was minimal at the lower flux levels. Most of the irradiation effects are non-thermal and are due to ionization and momentum transfer processes. Proton or deuteron bombardment of ilmenite produces water-related molecules that are quickly released into the vacuum chamber and detected by mass spectrometry. The bombardment of carbon-doped clays appears to produce CO. This process occurs independently of any reduction of FeO involved in

  18. Effects of environmentally relevant mixtures of major ions on a freshwater mussel.

    PubMed

    Ciparis, Serena; Phipps, Andrew; Soucek, David J; Zipper, Carl E; Jones, Jess W

    2015-12-01

    The Clinch and Powell Rivers (Virginia, USA) support diverse mussel assemblages. Extensive coal mining occurs in both watersheds. In large reaches of both rivers, major ion concentrations are elevated and mussels have been extirpated or are declining. We conducted a laboratory study to assess major ion effects on growth and survival of juvenile Villosa iris. Mussels were exposed to pond water and diluted pond water with environmentally relevant major ion mixtures for 55 days. Two treatments were tested to mimic low-flow concentrations of Ca(2+), Mg(2+), [Formula: see text] , [Formula: see text] , K(+) and Cl(-) in the Clinch and Powell Rivers, total ion concentrations of 419 mg/L and 942 mg/L, respectively. Mussel survival (>90%) and growth in the two treatments showed little variation, and were not significantly different than in diluted pond water (control). Results suggest that major ion chronic toxicity is not the primary cause for mussel declines in the Clinch and Powell Rivers. PMID:26412268

  19. ANALYSIS OF AMBIENT POLAR VOLATILE ORGANIC COMPOUNDS USING CHEMICAL IONIZATION -- ION TRAP DETECTOR

    EPA Science Inventory

    The current approach to measuring trace levels of volatile organic compounds (VOCs) in ambient air requires cryogenic trapping of the analytes, followed by thermal desorption and low-temperature refocussing onto a column for analysis by capillary gas chromatography/mass spectrome...

  20. Ultrafiltration behavior of major ions (Na, Ca, Mg, F, Cl, and SO4) in natural waters.

    PubMed

    Guo, L; Hunt, B J; Santschi, P H

    2001-04-01

    Aquatic colloids, including macromolecules and microparticles, with sizes ranging between 1 nm to 1 micron, play important roles in the mobility and bioavailability of heavy metals and other contaminants in natural waters. Cross-flow ultrafiltration has become one of the most commonly used techniques for isolating aquatic colloids. However, the ultrafiltration behavior of chemical species remains poorly understood. We report here the permeation behavior of major ions (Na, Ca, Mg, F, Cl, and SO4) in natural waters during ultrafiltration using an Amicon 1 kDa ultrafiltration membrane (S10N1). Water samples across a salinity gradient of 0-20@1000 were collected from the Trinity River and Galveston Bay. The permeation behavior of major ions was well predicted by a permeation model, resulting in a constant permeation coefficient for each ion. The value of the model-derived permeation coefficient (Pc) was 0.99 for Na, 0.97 for Cl, and 0.95 for F, respectively, in Trinity River waters. Values of Pc close to 1 indicate that retention of Na, Cl, and F by the 1 kDa membrane during ultrafiltration was indeed minimal (< 1-5%). In contrast, significant (14-36%) retention was observed for SO4, Ca, and Mg in Trinity River waters, with a Pc value of 0.64, 0.82, and 0.86 for SO4, Ca and Mg, respectively. However, these retained major ions can further permeate through the 1 kDa membrane during diafiltration with ultrapure water. The selective retention of major ions during ultrafiltration may have important implications for the measurement of chemical and physical speciation of trace elements when using cross-flow ultrafiltration membranes to separate colloidal species from natural waters. Our results also demonstrate that the percent retention of major ions during ultrafiltration decreases with increasing salinity or ionic strength. This retention is largely attributed to electrostatic repulsion by the negatively charged cartridge membrane. PMID:11317897

  1. Interactive toxicity of major ion salts: Comparisons among species and between acute and chronic endpoints

    EPA Science Inventory

    Increased concentrations of major ions (Na, K, Ca, Mg, Cl, SO4, HCO3) in freshwater systems can result from a variety of anthropogenic activities, and can adversely affect aquatic organisms if the increase is sufficiently severe. Laboratory tests have indicated that the toxicity...

  2. Mesocosm Community Response Sensitivities to Specific Conductivity Comprised of Different Major Ions

    EPA Science Inventory

    Traditional toxicity test assays have been used to evaluate the relative sensitivity to different major ion mixtures as a proxy for understanding what the response of aquatic species growing in their natural environment would be during exposure to specific conductivity stress ema...

  3. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses. PMID:26583448

  4. On-site Rapid Detection of Trace Non-volatile Inorganic Explosives by Stand-alone Ion Mobility Spectrometry via Acid-enhanced Evaporization

    PubMed Central

    Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang

    2014-01-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones. PMID:25318960

  5. On-site rapid detection of trace non-volatile inorganic explosives by stand-alone ion mobility spectrometry via acid-enhanced evaporization.

    PubMed

    Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang

    2014-01-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones. PMID:25318960

  6. On-site Rapid Detection of Trace Non-volatile Inorganic Explosives by Stand-alone Ion Mobility Spectrometry via Acid-enhanced Evaporization

    NASA Astrophysics Data System (ADS)

    Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang

    2014-10-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones.

  7. Major-ion and selected trace-metal chemistry of the Biscayne Aquifer, Southeast Florida

    USGS Publications Warehouse

    Radell, M.J.; Katz, B.G.

    1991-01-01

    The major-ion and selected trace-metal chemistry of the Biscayne aquifer was characterized as part of the Florida Ground-Water Quality Monitoring Network Program, a multiagency cooperative effort concerned with delineating baseline water quality for major aquifer systems in the State. The Biscayne aquifer is unconfined and serves as the sole source of drinking water for more than 3 million people in southeast Florida. The Biscayne aquifer consists of highly permeable interbedded limestone and sandstone of Pleistocene and Pliocene age underlying most of Dade and Broward Counties and parts of Palm Beach and Monroe Counties. The high permeability is largely caused by extensive carbonate dissolution. Water sampled from 189 wells tapping the Biscayne aquifer was predominantly a calcium bicarbonate type with some mixed types occurring in coastal areas and near major canals. Major - ion is areally uniform throughout the aquifer. According to nonparametric statistical tests of major ions and dissolved solids, the concentrations of calcium, sodium, bicarbonate, and dissolved solids increased significantly with well depth ( 0.05 significance level ), probably a result of less circulation at depth. Potassium and nitrate concentrations decreased significantly with depth. Although the source of recharge to the aquifer varies seasonally, there was no statistical difference in the concentration of major ions in pared water samples from 27 shallow wells collected during wet and dry seasons. Median concentrations for barium, chromium, copper, lead, and manganese were below maximum or secondary maximum contaminant levels set by the US Environmental Protection Agency. The median iron concentration only slightly exceeded the secondary maximum contaminant level. The concentration of barium was significantly related (0.05 significance level) to calcium and bicarbonate concentration. No distinct areal pattern or vertical distribution of the selected trace metals was evident in water from

  8. Major Ion Content of Aerosols from Denali Base Camp during Summer 2013

    NASA Astrophysics Data System (ADS)

    Wake, C. P.; Burakowski, E. A.; Osterberg, E. C.

    2014-12-01

    Aerosol samples were collected on Teflon filters at a site up-glacier from Denali Base Camp (2380 m) in Denali National Park, Alaska during May and June of 2013 using an autonomous aerosol sampler powered by solar panels and batteries. The samples were analyzed for major ions via ion chromatography. Surface and fresh snow samples were also collected over the same time period and analyzed for major ions. Ion concentrations in the aerosol samples are completely dominated by NH4+ (mean concentration of 6.6 nmol/m3) and SO4= (mean concentration of 4.0 nmol/m3). Overall, the ion burden in aerosol samples from Denali Base Camp was much lower compared to aerosol samples collected from the Denali National Park and Trapper Creek IMPROVE sites over the same time period. In contrast to the aerosol chemistry, the snow chemistry is more balanced, with NH4+, Ca2+, and Na+ dominating the cation concentrations and NO3-, Cl-, and SO4= dominating the anion concentrations. The higher levels of Ca2+, Na+, and Cl- in the snow (relative to NH4+ and SO4=) compared to relative concentrations in the aerosol samples suggest that dry deposition of sea salt and dust are important contributors to the major ion signals preserved in the snow. This has important ramifications for improving our understanding of the reconstruction of North Pacific climate variability and change from glaciochemical records currently being developed from the 208 m ice cores recovered from the Mt. Hunter plateau (3900 m) during the summer of 2013.

  9. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen.

    PubMed

    Huang, Mengsu; Sanchez-Moreiras, Adela M; Abel, Christian; Sohrabi, Reza; Lee, Sungbeom; Gershenzon, Jonathan; Tholl, Dorothea

    2012-03-01

    Flowers have a high risk of pathogen attack because of their rich nutrient and moisture content, and high frequency of insect visitors. We investigated the role of (E)-β-caryophyllene in floral defense against a microbial pathogen. This sesquiterpene is a common volatile compound emitted from flowers, and is a major volatile released from the stigma of Arabidopsis thaliana flowers. Arabidopsis thaliana lines lacking a functional (E)-β-caryophyllene synthase or constitutively overexpressing this gene were challenged with Pseudomonas syringae pv. tomato DC3000, which is a bacterial pathogen of brassicaceous plants. Flowers of plant lines lacking (E)-β-caryophyllene emission showed greater bacterial growth on their stigmas than did wild-type flowers, and their seeds were lighter and misshapen. By contrast, plant lines with ectopic (E)-β-caryophyllene emission from vegetative parts were more resistant than wild-type plants to pathogen infection of leaves, and showed reduced cell damage and higher seed production. Based on in vitro experiments, (E)-β-caryophyllene seems to act by direct inhibition of bacterial growth, rather than by triggering defense signaling pathways. (E)-β-Caryophyllene thus appears to serve as a defense against pathogens that invade floral tissues and, like other floral volatiles, may play multiple roles in defense and pollinator attraction. PMID:22187939

  10. Development and validation of automatic HS-SPME with a gas chromatography-ion trap/mass spectrometry method for analysis of volatiles in wines.

    PubMed

    Paula Barros, Elisabete; Moreira, Nathalie; Elias Pereira, Giuliano; Leite, Selma Gomes Ferreira; Moraes Rezende, Claudia; Guedes de Pinho, Paula

    2012-11-15

    An automated headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-ion trap/mass spectrometry (GC-IT/MS) was developed in order to quantify a large number of volatile compounds in wines such as alcohols, ester, norisoprenoids and terpenes. The procedures were optimized for SPME fiber selection, pre-incubation temperature and time, extraction temperature and time, and salt addition. A central composite experimental design was used in the optimization of the extraction conditions. The volatile compounds showed optimal extraction using a DVB/CAR/PDMS fiber, incubation of 5 ml of wine with 2g NaCl at 45 °C during 5 min, and subsequent extraction of 30 min at the same temperature. The method allowed the identification of 64 volatile compounds. Afterwards, the method was validated successfully for the most significant compounds and was applied to study the volatile composition of different white wines. PMID:23158309

  11. DATA QUALIFICATION REPORT: MAJOR ION AND PH DATA FOR USE ON THE YUCCA MOUNTAIN PROJECT

    SciTech Connect

    C. WILSON; D.M. JENKINS; T. STEINBORN; R. WEMHEUER

    2000-08-23

    This data qualification report uses technical assessment and corroborating data methods according to Attachment 2 of AP-SIII.2Q, Rev. 0, ICN 2, ''Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data'', to qualify major ion and pH data. This report was prepared in accordance with Data Qualification Plan TDP-NBS-GS-00003 1, Revision 2. Additional reports will be prepared to address isotopic and precipitation-related data. Most of the data considered in this report were acquired and developed by the U.S. Geological Survey (USGS). The data qualification team considers the sampling and analytical protocols employed by the USGS over the time period of data acquisition to be state-of-the-art. The sample collection methodologies have evolved with no significant change that could affect the quality of the data considered in this report into the currently used Hydrologic Procedures that support the Yucca Mountain Project-approved USGS Quality Assurance Program Plan. Consequently, for USGS data, the data collection methods, documentation, and results are reasonable and appropriate in view of standard practice at the time the data were collected. A small number of data sets were collected by organizations other than the USGS and were reviewed along with the other major ion and pH data using corroborating data methods. Hydrochemical studies reviewed in this qualification report indicate that the extent and quality of corroborating data are sufficient to support qualification of both USGS and non-USGS major ion and pH data for generalized hydrochemical studies. The corroborating data included other major ion and pH data, isotope data, and independent hydrological data. Additionally, the analytical adequacy of the major ion data was supported by a study of anion-cation charge balances. Charge balance errors for USGS and non-USGS data were under 10% and acceptable for all data. This qualification report addresses the specific major ion data sets

  12. Product ion distributions for the reactions of NO+ with some physiologically significant volatile organosulfur and organoselenium compounds obtained using a selective reagent ionization time-of-flight mass spectrometer

    PubMed Central

    Mochalski, Paweł; Unterkofler, Karl; Španěl, Patrik; Smith, David; Amann, Anton

    2014-01-01

    RATIONALE The reactions of NO+ with volatile organic compounds (VOCs) in Selective Reagent Ionization Time-of-Flight Mass Spectrometry (SRI-TOF-MS) reactors are relatively poorly known, inhibiting their use for trace gas analysis. The rationale for this product ion distribution study was to identify the major product ions of the reactions of NO+ ions with 13 organosulfur compounds and 2 organoselenium compounds in an SRI-TOF-MS instrument and thus to prepare the way for their analysis in exhaled breath, in skin emanations and in the headspace of urine, blood and cell and bacterial cultures. METHODS Product ion distributions have been investigated by a SRI-TOF-MS instrument at an E/N in the drift tube reactor of 130 Td for both dry air and humid air (4.9% absolute humidity) used as the matrix gas. The investigated species were five monosulfides (dimethyl sulfide, ethyl methyl sulfide, methyl propyl sulfide, allyl methyl sulfide and methyl 5-methyl-2-furyl sulfide), dimethyl disulfide, dimethyl trisulfide, thiophene, 2-methylthiophene, 3-methylthiophene, methanethiol, allyl isothiocyanate, dimethyl sulfoxide, and two selenium compounds – dimethyl selenide and dimethyl diselenide. RESULTS Charge transfer was seen to be the dominant reaction mechanism in all reactions under study forming the M+ cations. For methanethiol and allyl isothiocyanate significant fractions were also observed of the stable adduct ions NO+M, formed by ion-molecule association, and [M–H]+ ions, formed by hydride ion transfer. Several other minor product channels are seen for most reactions indicating that the nascent excited intermediate (NOM)+* adduct ions partially fragment along other channels, most commonly by the elimination of neutral CH3, CH4 and/or C2H4 species that are probably bound to an NO molecule. Humidity had little effect on the product ion distributions. CONCLUSIONS The findings of this study are of particular importance for data interpretation in studies of volatile

  13. ICRH of JET and LHD Majority Ions at Their Fundamental Cyclotron Frequency

    SciTech Connect

    Krasilnikov, A. V.; Kaschuck, Yu. A.; Amosov, V. N.; Van Eester, D.; Lerche, E.; Mailloux, J.; Stamp, M.; Jachmich, S.; Leggate, H.; Walden, A.; Mayoral, M.-L.; Santala, M.; Kiptily, V.; Popovichev, S.; Vdovin, V.; Biewer, T.; Crombe, K.; Esposito, B.

    2007-09-28

    Results of the experimental studies of ICRH at the fundamental cyclotron frequency of the majority deuterons in JET plasmas with near-tangential deuteron neutral beam injection (NBI) are presented. 1D, 2D and 3D ICRH modeling indicated that several ITER relevant mechanisms of heating may occur simultaneously in this heating scheme: fundamental ion cyclotron resonance heating of majority and beam D ions, impurity ion heating and electron heating due to Landau damping and TTMP. These mechanisms were studied in JET experiments with a {approx}90% D, 5% H plasma including traces of Be and Ar. Up to 2MW of ICRH power was applied at 25 MHz to NBI heated plasmas. In most of the discharges the toroidal magnetic field strength was 3.3T, but in one it was equal to 3.6T. The E{sub +} component of the electric field governs the ion cyclotron heating of not too fast particles. The Doppler shifted RF absorption of the beam deuterons away from the cold resonance at which E{sub +} is small was exploited to enhance the RF power absorption efficiency. Fundamental ICRH experiments were also carried out in LHD hydrogen plasma with high energy hydrogen NBI. ICRH was performed at 38MHz with injected power <1 MW. The effect of fundamental ICRH was clearly demonstrated in both machines.

  14. Predicting the Rejection of Major Seawater Ions by Spiral-Wound Nanofiltration Membranes.

    PubMed

    Fridman-Bishop, Noga; Nir, Oded; Lahav, Ori; Freger, Viatcheslav

    2015-07-21

    Seawater nanofiltration (SWNF) generates a softened permeate stream and a retentate stream in which the multivalent ions accumulate, offering opportunities for practical utilization of both streams. This study presents an approach to simulation of SWNF including all major seawater ions (Na(+), Cl(-), Ca(2+), Mg(2+), and SO4(2-)) based on the Nernst-Planck equation, and uses it for permeate and retentate streams composition prediction. The number of degrees of freedom in the system was reduced by assuming a very high ionic permeability for Na(+), which only weakly affected the other parameters in the system. Two alternatives were examined to analyze the importance of concentration dependence of ion permeabilities: The assumption of constant ion permeabilities resulted in a reasonable fit with experimental data. However, for the permeate composition the overall fit was significantly improved (P < 0.0001) when the permeabilities of Ca(2+) and Mg(2+) were allowed to depend on the ratio of their total concentration to Na(+). This type of dependence emphasizes the strong interaction of divalent ions with the membrane and its effect on the membrane fixed charge through screening or charge reversal. When this effect was included, model predictions closely matched the experimental results obtained, corroborating the phenomenological approach proposed in this study. PMID:26107401

  15. Corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry for monitoring of volatile organic compounds.

    PubMed

    Sabo, Martin; Matejčík, Štefan

    2012-06-19

    We demonstrate the application of corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry (CD IMS-oaTOF) for volatile organic compounds (VOCs) monitoring. Two-dimensional (2D) IMS-oaTOF spectra of VOCs were recorded in nearly real time. The corona discharge atmospheric pressure chemical ionization (APCI) source was operated in positive mode in nitrogen and air. The CD ion source generates in air H(3)O(+)(H(2)O)(n) and NO(+). The NO(+) offers additional possibility for selective ionization and for an increase of the sensitivity of monoaromatic compounds. In addition to H(3)O(+)(H(2)O)(n) and NO(+), we have carried out ionization of VOCs using acetone as dopant gas ((CH(3))(2)COH(+)). Sixteen model VOCs (tetrahydrofuran, butanol, n-propanol, iso-propano, acetone, methanol, ethanol, toluene, benzene, amomnia, dioxan, triethylamine, acetonitrile, formaldehyde, m-xylene, 2,2,2-trifluoroethylamine) were tested using these ionization techniques. PMID:22594852

  16. Sources and cycling of major ions and nutrients in Devils Lake, North Dakota

    USGS Publications Warehouse

    Lent, R.M.

    1994-01-01

    Devils Lake is a saline lake in a large, closed drainage basin in northeastern North Dakota. Previous studies determined that major-ion and nutrient concentrations in Devils Lake are strongly affected by microbially mediated sulfate reduction and dissolution of sulfate and carbonate minerals in the bottom sediments. These studies documented substantial spatial variability in the magnitude of calculated benthic fluxes coincident with the horizontal salinity gradient in Devils Lake. The purpose of the present study is to evaluate seasonal variability in benthic-flux rates, and to understand the effect of these fluxes on the major- chemistries in Devils Lake between May and October 1991. During the study period, the water column was well mixed, and specific conductance, pH, and temperature did not vary with depth. Dissolved oxygen was enriched near the lake surface due to photosynthesis. Major-ion concentrations and nutrient concentrations did not vary with depth. Because the water-quality data were obtained during open-water periods, the vertical profiles reflect well-mixed conditions. However, the first and last profiles for the study period did document near-bottom maxima of major cations. Secchi-disk depth varied from 0.82 meter on May 7, 1991, to 2.13 meters on June 5, 1991. The mean Secchi-disk depth during the study period was 1.24 meters. Seasonal variations in Secchi-disk depths were attributed to variations in primary productivity and phytoplankton communities. Nutrient cycles in Devils Lake were evaluated using gross primary productivity rate data, sediment trap data, and major-ion and nutrient benthic-flux rate data. Gross primary productivity rate was smallest in May (0.076 gram of carbon per square meter per day) and largest in September (1.8 grams of carbon per square meter per day). Average gross primary productivity for the study period was 0.87 gram of carbon per square meter per day. Average gross primary productivity is consistent with historic

  17. Major Ion concentrations in the new NEEM ice core in Greenland

    NASA Astrophysics Data System (ADS)

    Wegner, A.; Azuma, K. G.; Hirabayashi, M.; Schmidt, K.; Hansson, M.; Twarloh, B.

    2012-12-01

    The drilling of the new deep ice core in NEEM (77.45°N 51.06°W) was terminated in 2010. Using a continuous flow analysis system (CFA), discrete samples were filled and analyzed for major ion concentrations (Na, K, Mg, Ca, Cl, SO_4 and NO_3) using Ion Chromatography (IC). The samples were measured at Alfred Wegener Institute for Polar and Marine Research (Germany) and National Institute of Polar Research (Japan). Here we present preliminary results of the major Ion concentrations. We found highest variations in concentrations of Calcium and Magnesium which are mainly originating from terrestrial sources with concentrations between 5-10 ppb and 4 ppb during the Holocene compared to 800 ppb and 80 ppb during the LGM. This is in line with measurements of particulate dust concentrations. Sulphate concentrations closely follow DO events and vary between 25 ppb during the Holocene and ~400 ppb during the LGM. Sodium concentrations vary between ~ 8 ppb during the Holocene and up to 100 ppb during the LGM. We discuss influences of changes in the source areas and atmospheric transport intensity on the different time scales.

  18. Mars heavy ion precipitating flux as measured by Mars Atmosphere and Volatile EvolutioN

    NASA Astrophysics Data System (ADS)

    Leblanc, F.; Modolo, R.; Curry, S.; Luhmann, J.; Lillis, R.; Chaufray, J. Y.; Hara, T.; McFadden, J.; Halekas, J.; Eparvier, F.; Larson, D.; Connerney, J.; Jakosky, B.

    2015-11-01

    In the absence of an intrinsic dipole magnetic field, Mars' O+ planetary ions are accelerated by the solar wind. Because of their large gyroradius, a population of these planetary ions can precipitate back into Mars' upper atmosphere with enough energy to eject neutrals into space via collision. This process, referred to as sputtering, may have been a dominant atmospheric loss process during earlier stages of our Sun. Yet until now, a limited number of observations have been possible; Analyzer of Space Plasmas and Energetic Atoms-3/Mars Express observed such a precipitation only during extreme conditions, suggesting that sputtering might be not as intense as theoretically predicted. Here we describe one example of precipitation of heavy ions during quiet solar conditions. Between November 2014 and April 2015, the average precipitating flux is significant and in agreement with predictions. From these measured precipitating fluxes, we estimate that a maximum of 1.0 × 1024 O/s could have been lost due to sputtering.

  19. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries.

    PubMed

    Li, Jia; Wang, Guangxu; Xu, Zhenming

    2016-06-01

    The recycling of spent lithium-ion batteries brings benefits to both economic and environmental terms, but it can also lead to contaminants in a workshop environment. This study focused on metals, non-metals and volatile organic compounds generated by the discharging and dismantling pretreatment processes which are prerequisite for recycling spent lithium-ion batteries. After discharging in NaCl solution, metal contents in supernate and concentrated liquor were detected. Among results of condition #2, #3, #4 and #5, supernate and concentrated liquor contain high levels of Na, Al, Fe; middle levels of Co, Li, Cu, Ca, Zn; and low levels of Mn, Sn, Cr, Zn, Ba, K, Mg, V. The Hg, Ag, Cr and V are not detected in any of the analyzed supernate. 10wt% NaCl solution was a better discharging condition for high discharge efficiency, less possible harm to environment. To collect the gas released from dismantled LIB belts, a set of gas collecting system devices was designed independently. Two predominant organic vapour compounds were dimethyl carbonate (4.298mgh(-1)) and tert-amylbenzene (0.749mgh(-1)) from one dismantled battery cell. To make sure the concentrations of dimethyl carbonate under recommended industrial exposure limit (REL) of 100mgL(-1), for a workshop on dismantling capacity of 1000kg spent LIBs, the minimum flow rate of ventilating pump should be 235.16m(3)h(-1). PMID:27021697

  20. Mineral dust and major ion concentrations in snowpit samples from the NEEM site, Greenland

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Ho; Hwang, Heejin; Hong, Sang Bum; Hur, Soon Do; Choi, Sung-Deuk; Lee, Jeonghoon; Hong, Sungmin

    2015-11-01

    Polar ice sheets conserve atmospheric aerosols at the time of snowfall, which can be used to reconstruct past climate and environmental conditions. We investigated mineral dust and major ion records in snowpit samples obtained from the northwestern Greenland ice sheet near the North Greenland Eemian Ice Drilling (NEEM) camp in June 2009. We analyzed the samples for mineral dust concentrations as well as stable water isotopes (δ18O, δD, and deuterium excess) and major ions (Cl-, SO42-, methanesulfonic acid (MSA), Na+, and Ca2+). Seasonal δ18O and δD cycles indicate that the snowpit samples covered a six-year period from spring 2003 to early summer 2009. Concentrations of mineral dust, nss-Ca2+, and nss-SO42- showed seasonal deposition events with maxima in the winter-spring layers. On the other hand, the Cl-/Na+ ratio and the concentrations of MSA exhibited maxima in the summer layers, making them useful indicators for the summer season. Moreover, an anomalous atmospheric mineral dust event was recorded at a depth of 165-170 cm corresponding to late winter 2005 to spring 2006. A back trajectory analysis suggests that a major contributor to the Greenland aerosol was an air mass passing over the Canadian Arctic and North America. Several trajectories point to Asian regions as a dust source. The mineral dust deposited at NEEM was strongly influenced by long-range atmospheric transport and dust input from arid source areas in northern China and Mongolia.

  1. The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus.

    PubMed

    Hua, Sui Sheng T; Beck, John J; Sarreal, Siov Bouy L; Gee, Wai

    2014-05-01

    Aspergillus flavus is a ubiquitous saprophyte that is able to produce the most potent natural carcinogenic compound known as aflatoxin B1 (AFB1). This toxin frequently contaminates crops including corn, cotton, peanuts, and tree nuts causing substantial economic loss worldwide. Consequently, more than 100 countries have strict regulations limiting AFB1 in foodstuffs and feedstuffs. Plants and microbes are able to produce volatile compounds that act as a defense mechanism against other organisms. Pichia anomala strain WRL-076 is a biocontrol yeast currently being tested to reduce AF contamination of tree nuts in California. We used the SPME-GC/MS analysis and identified the major volatile compound produced by this strain to be 2-phenylethanol (2-PE). It inhibited spore germination and AF production of A. flavus. Inhibition of AF formation by 2-PE was correlated with significant down regulation of clustering AF biosynthesis genes as evidenced by several to greater than 10,000-fold decrease in gene expression. In a time-course analysis we found that 2-PE also altered the expression patterns of chromatin modifying genes, MYST1, MYST2, MYST3, gcn5, hdaA and rpdA. The biocontrol capacity of P. anomala can be attributed to the production of 2-PE, which affects spore germination, growth, toxin production, and gene expression in A. flavus. PMID:24504634

  2. Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China

    NASA Astrophysics Data System (ADS)

    Wang, Yanxin; Guo, Qinghai; Su, Chunli; Ma, Teng

    2006-09-01

    SummaryKarst water is the most important source of water supply for Shanxi province, northern China. The Shentou springs are representative of the 19 major karst springs at Shanxi. The total area of the Shentou karst water system is 5316 km 2, the Middle Ordovician limestone being its major karst aquifer. In this study, data about the strontium isotope geochemistry and major ion hydrochemistry were analyzed to understand the flow patterns and hydrogeochemical processes of karst water at Shentou. The contour map of TDS value of karst water and that of Sr concentration are similar, showing the general tendency of increase from the northern, western and southern boundary to the discharge area. The average values of 87Sr/ 86Sr ratios of karst water decrease from recharge (0.7107) to discharge area (0.7102), evolving towards those of limestone hostrocks. Comparison of 87Sr/ 86Sr ratios with Sr content suggests that isotopic compositions of some karst water samples from the recharge and flow through area should be the result of interaction between aquifer limestone matrix and strontium-poor recharge waters of meteoric origin. However, for samples from the discharge area that are plotted above the mixing line, mixing with groundwater in the Quaternary aquifers with high 87Sr/ 86Sr ratios may be another factor controlling Sr isotope chemistry. Two major groundwater flow paths were discerned from hydrogeological and geochemical data. Along both flow paths, the 87Sr/ 86Sr ratios of karst water show a general tendency of decrease. Geochemical modeling of the major ion geochemistry of karst water using PHREEQC also indicates that the chemistry of springs should be affected by the incorporation of groundwater in Quaternary aquifer. The effect of the mixing action on the spring hydrochemistry in flow path 1 is more remarkable than that in flow path 2, according to different mixing ratios in both paths (30% in flow path 1 and 5% in flow path 2).

  3. Quantitative analysis of volatile organic compounds using ion mobility spectra and cascade correlation neural networks

    NASA Technical Reports Server (NTRS)

    Harrington, Peter DEB.; Zheng, Peng

    1995-01-01

    Ion Mobility Spectrometry (IMS) is a powerful technique for trace organic analysis in the gas phase. Quantitative measurements are difficult, because IMS has a limited linear range. Factors that may affect the instrument response are pressure, temperature, and humidity. Nonlinear calibration methods, such as neural networks, may be ideally suited for IMS. Neural networks have the capability of modeling complex systems. Many neural networks suffer from long training times and overfitting. Cascade correlation neural networks train at very fast rates. They also build their own topology, that is a number of layers and number of units in each layer. By controlling the decay parameter in training neural networks, reproducible and general models may be obtained.

  4. Evaluation of nutrients and major ions in streams-implications of different timescale procedures.

    PubMed

    Chaussê, Thais Carvalho Cerqueira; Dos Santos Brandão, Camila; da Silva, Lenilda Pita; Salamim Fonseca Spanghero, Pedro Enrico; da Silva, Daniela Mariano Lopes

    2016-01-01

    Small watersheds are characterized by a high degree of sensitivity to changes observed in their environment, making them important sampling and management units. Due to this high sensitivity, several studies have shown that intensive collecting may be more effective in these systems compared to other timescale procedures. The aim of this study was to evaluate the concentration of organic and inorganic nutrients and major ions dissolved in two small watersheds with different land uses to determine whether there are differences between these watersheds with different levels of impact and to identify the most appropriate timescale procedure for the variables under analysis. Therefore, monthly, daily, and hourly samples were taken in the two streams in the northeast of Brazil. One of the streams is located in an undisturbed area (environmental protected area) (S1) and one in a disturbed area (S2). The results showed significant differences for conductivity, temperature, pH, dissolved oxygen (%), sodium (Na(+)), and chloride (Cl(-)) ions and higher values presented in the anthropogenic stream. Dissolved inorganic nitrogen (DIN) in S2 mainly comprised ammonium (NH4 (+)), while nitrate (NO3 (-)) predominated in S1. The considerable increase in the concentration of NO3 (-) and dilution of Na(+) and Cl(-) after rain in April in S1 shows how precipitation may change the chemical composition of the water in a 1-day period. No changes were observed in the concentrations of major ions and nutrients that could be related to the cyclical variation of the hours during the day in both small watersheds. Daily collections allow better monitoring of the dynamics of streams and greater robustness of the data. PMID:26681182

  5. Mobilization of major inorganic ions during experimental diagenesis of characterized peats

    USGS Publications Warehouse

    Bailey, A.M.; Cohen, A.D.; Orem, W.H.; Blackson, J.H.

    2000-01-01

    Laboratory experiments were undertaken to study changes in concentrations of major inorganic ions during simulated burial of peats to about 1.5 km. Cladium, Rhizophora, and Cyrilla peats were first analyzed to determine cation distributions among fractions of the initial materials and minerals in residues from wet oxidation. Subsamples of the peats (80 g) were then subjected to increasing temperatures and pressures in steps of 5??C and 300 psi at 2-day intervals and produced solutions collected. After six steps, starting from 30??C and 300 psi, a final temperature of 60??C and a final pressure of 2100 psi were achieved. The system was then allowed to stand for an additional 2 weeks at 60??C and 2100 psi. Treatments resulted in highly altered organic solids resembling lignite and expelled solutions of systematically varying compositions. Solutions from each step were analyzed for Na+, Ca2+, Mg2+, total dissolved Si (Si(T)), Cl-, SO42-, and organic acids and anions (OAAs). Some data on total dissolved Al (Al(T)) were also collected. Mobilization of major ions from peats during these experiments is controlled by at least three processes: (1) loss of dissolved ions in original porewater expelled during compaction, (2) loss of adsorbed cations as adsorption sites are lost during modification of organic solids, and (3) increased dissolution of inorganic phases at later steps due to increased temperatures (Si(T)) and increased complexing by OAAs (Al(T)). In general, results provide insight into early post-burial inorganic changes occurring during maturation of terrestrial organic matter. (C) 2000 Elsevier Science B.V. All rights reserved.

  6. Major ion chemistry and weathering processes in the Midyan Basin, northwestern Saudi Arabia.

    PubMed

    Ghrefat, Habes A; Batayneh, Awni; Zaman, Haider; Zumlot, Taisser; Elawadi, Eslam; Nazzal, Yousef

    2013-10-01

    Chemical characteristics of 72 groundwater samples collected from Midyan Basin have been studied to evaluate major ion chemistry together with the geochemical and weathering processes controlling the water composition. Water chemistry of the study area is mainly dominated by Na, Ca, SO4, and Cl. The molar ratios of (Ca + Mg)/total cations, (Na + K)/total cations, (Ca + Mg)/(Na + K), (Ca + Mg)/(HCO3 + SO4), (Ca + Mg)/HCO3, and Na/Cl reveal that water chemistry of the Midyan Basin is controlled by evaporite dissolution (gypsum and/or anhydrite, and halite), silicate weathering, and minor contribution of carbonate weathering. The studied groundwater samples are largely undersaturated with respect to dolomite, gypsum, and anhydrite. These waters are capable of dissolving more of these minerals under suitable physicochemical conditions. PMID:23609922

  7. Geochemical processes in the Onyx River, Wright Valley, Antarctica: Major ions, nutrients, trace metals

    NASA Astrophysics Data System (ADS)

    Green, William J.; Stage, Brian R.; Preston, Adam; Wagers, Shannon; Shacat, Joseph; Newell, Silvia

    2005-02-01

    We present data on major ions, nutrients and trace metals in an Antarctic stream. The Onyx River is located in Wright Valley (77-32 S; 161-34 E), one of a group of ancient river and glacier-carved landforms that comprise the McMurdo Dry Valleys of Antarctica. The river is more than 30 km long and is the largest of the glacial meltwater streams that characterize this relatively ice-free region near the Ross Sea. The complete absence of rainfall in the region and the usually small contributions of glacially derived tributaries to the main channel make this a comparatively simple system for geochemical investigation. Moreover, the lack of human impacts, past or present, provides an increasingly rare window onto a pristine aquatic system. For all major ions and silica, we observe increasing concentrations with distance from Lake Brownworth down to the recording weir near Lake Vanda. Chemical weathering rates are unexpectedly high and may be related to the rapid dissolution of ancient carbonate deposits and to the severe physical weathering associated with the harsh Antarctic winter. Of the nutrients, nitrate and dissolved reactive phosphate appear to have quite different sources. Nitrate is enriched in waters near the Lower Wright Glacier and may ultimately be derived from stratospheric sources; while phosphate is likely to be the product of chemical weathering of valley rocks and soils. We confirm the work of earlier investigations regarding the importance of the Boulder Pavement as a nutrient sink. Dissolved Mn, Fe, Ni, Cu, and Cd are present at nanomolar levels and, in all cases, the concentrations of these metals are lower than in average world river water. We hypothesize that metal uptake and exchange with particulate phases along the course of the river may serve as a buffer for the dissolved load. Concurrent study of these three solute classes points out significant differences in the mechanisms and sites of their removal from the Onyx River.

  8. Time study of trace elements and major ions during two cloud events at the Mt. Brocken

    NASA Astrophysics Data System (ADS)

    Plessow, K.; Acker, K.; Heinrichs, H.; Möller, D.

    Cloud water investigations have been performed at the highest elevation of Central Germany in 1997. Results of extensive trace element measurements are presented. Besides conductivity, pH, liquid water content and major ions the data set includes 49 minor and trace elements. Estimation of crustal enrichment factors (EFs) provides an indication of the anthropogenic contributions to the cloud water concentrations. The variation of cloud composition with time has been illustrated for two selected events with different air mass origins. The chemical composition of the cloud condensation nuclei on which the droplets grow mainly determines the cloud water chemistry. For a cloud event in June 1997 the concentrations of the crustally derived elements Si, Al, Fe, Ti, Ce, La and Nd follow each other closely. The fact that SO 42-, NO 3- and NH 4+ are only moderately correlated with the particular pollutants with high enrichment factors such as Cd, Sb, Pb, Zn, Cu, As, Bi, Sn, Mo, Ni, Tl and V indicates that their source regions are more widespread. During an event in October 1997 the time trends for most minor and trace elements follow rather closely those for the major ions NH 4+, SO 42- and NO 3-. Back trajectories show that the transport from continental and marine European sources was the likely cause of the sample concentrations. EFs of trace elements in cloud water samples during the June and October event show a strong correlation with those obtained for urban particulate matter. Although both events are influenced by air masses of different origin, there is a good agreement between the EF signatures.

  9. Solar Ion Processing of Major Element Surface Compositions of Mature Mare Soils: Insights from Combined XPS and Analytical TEM Observations

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Dukes, C.; Keller, L. P.; Baragiola, R.

    2012-01-01

    Solar wind ions are capable of altering the sur-face chemistry of the lunar regolith by a number of mechanisms including preferential sputtering, radiation-enhanced diffusion and sputter erosion of space weathered surfaces containing pre-existing compositional profiles. We have previously reported in-situ ion irradiation experiments supported by X-ray photoelectron spectroscopy (XPS) and analytical TEM that show how solar ions potentially drive Fe and Ti reduction at the monolayer scale as well as the 10-100 nm depth scale in lunar soils [1]. Here we report experimental data on the effect of ion irradiation on the major element surface composition in a mature mare soil.

  10. Major Ion Chemistry and Mixing Proportions of Nitrate Sources in Urban Groundwater

    NASA Astrophysics Data System (ADS)

    Munster, J.; Hanson, G. N.; Bokuniewicz, H.

    2007-05-01

    Working with Dr. Gilbert Hanson has allowed me to apply general mixing equations to identification of nonpoint sources of groundwater contamination. These methods have not commonly been used in hydrologic studies, as they involve a more classical petrologic approach, one which Dr. Hanson has pioneered. Our drinking water supplies are becoming more susceptible to contamination and knowing the chemistry of contaminate sources will yield precise determination of potential sources to groundwater and allow government agencies to adopt policies to reduce or prevent contamination. The geochemistry of soil water from below fertilized turfgrass sites and of sewage from septic tank/cesspools was used to place constraints on the sources of nitrate in groundwater of an unconsolidated aquifer in Suffolk County, Long Island, New York, USA. Twenty four sewage samples were acquired from Suffolk County Public Works. Soil water samples, from suction lysimeters, were acquired monthly during 2003, totaling 70 samples. We found that soil water concentrations were elevated in Ca, Mg and SO4 relative to sewage and sewage had higher concentrations of Cl, N-NO3, PO4, Na and K. This difference in the major ion chemistry allows identification of the source signatures in groundwater. We then compared the source signatures to 28 groundwater wells on binary ion diagrams of SO4, Cl and N- NO3 and created a cation sorption model for Na, Ca, Mg and K, in order to model cation concentrations on binary ion diagrams. These diagrams allow estimates of the relative contributions of each source to each well. Groundwater wells plotted according to their major land use and show that wells of similar land use have similar geochemistry and similar source contributions. The estimates of source contributions show that the proportions of soil water and sewage increase as residential land use increases. Although volumetric source proportions to groundwater wells are similar for soil water and sewage within a

  11. Major ion chemistry of the Son River, India: Weathering processes, dissolved fluxes and water quality assessment

    NASA Astrophysics Data System (ADS)

    Maharana, Chinmaya; Gautam, Sandeep Kumar; Singh, Abhay Kumar; Tripathi, Jayant K.

    2015-08-01

    River Son, draining diverse lithologies in the subtropical climate of the peninsular sub-basin of the Ganga basin, is one of the major tributaries of the Ganga River. The chemistry of major ions in the surface water of the Son River was studied in detail to determine various source(s) and processes controlling its water chemistry, seasonal and spatial variations in water chemistry, dissolved fluxes and chemical denudation rate (CDR). The study shows that Ca2+, Mg2+ and HCO 3- are major ionic species in the river water. Most of the measured parameters exhibit a relatively lower concentration in the post-monsoon as compared to pre-monsoon season. The water chemistry highlights the influence of continental weathering aided by secondary contributions from ground water, saline/alkaline soils and anthropogenic activities in the catchment. Results also reflect the dominance of carbonate weathering over silicate weathering in controlling water composition. The Son River delivers about 4.2 million tons of dissolved loads annually to the Ganga River, which accounts for ˜6% of the total annual load carried by the Ganga River to the Bay of Bengal. The average CDR of the Son River is 59.5 tons km -2 yr -1, which is less than the reported 72 tons km -2 yr -1 of the Ganga River and higher than the global average of 36 tons km -2 yr -1. The water chemistry for the pre-monsoon and post-monsoon periods shows a strong seasonal control on solute flux and CDR values. The water chemistry indicates that the Son River water is good to excellent in quality for irrigation and also suitable for drinking purposes.

  12. Development and validation of models predicting the toxicity of major seawater ions to the mysid shrimp, Americamysis bahia.

    PubMed

    Pillard, David A; DuFresne, Doree L; Mickley, Mike C

    2002-10-01

    The concentration and balance of major ions that comprise total dissolved solids (TDS) can influence the toxicity of effluents discharged to freshwater and marine environments. An additional complicating factor in waters released to saltwater systems is the effluent salinity since the toxicity of major ions changes with the salinity of the test solution. A study was conducted to evaluate the toxicity of six major seawater ions (bicarbonate, borate, calcium, magnesium, potassium, and sulfate) to the mysid shrimp, Americamysis bahia, at salinities of 10 and 20/1000. Logistic regression models were developed to predict organism survival at deficient and excess concentrations of the ions. Calcium and potassium caused significant mortality to mysid shrimp in both excess and deficient (relative to artificial seawater) solutions. Bicarbonate, borate, and magnesium displayed significant toxicity only in excess concentrations, while sulfate had no adverse impacts at any of the concentrations tested. As the salinity of the test solutions decreased, mysid shrimp tolerated increasingly lower calcium and potassium concentrations. Similarly, as salinity increased, the upper tolerance levels of calcium, potassium, and magnesium also increased. The models developed during these studies, and similar models developed by other researchers, were used to evaluate 11 actual effluents with unexplained toxicity that might be associated with TDS ions. The models correctly identified calcium as the primary toxicant in 9 of the 11 effluents. These results indicate the models can be used as an important tool to identify toxicity associated with major seawater ions. PMID:12371489

  13. Determination of the volatile fraction of Polygonum bistorta L. at different growing stages and evaluation of its antimicrobial activity against two major honeybee (Apis mellifera) pathogens.

    PubMed

    Cecotti, Roberto; Carpana, Emanuele; Falchero, Luca; Paoletti, Renato; Tava, Aldo

    2012-02-01

    The composition of the volatile fraction of Polygonum bistorta L. (also known as bistort or snakeroot) was investigated. Fresh aerial parts of this plant species were collected in the Western Italian Alps during the summer at three different phenological stages, namely vegetative, flowering, and fruiting, and steam-distilled in a Clevenger-type apparatus. The oils accounted for 0.004 to 0.010% of the fresh plant material, and their compositions were determined by GC/FID and GC/MS. The composition of the oils during the vegetative period varied both in quantity and quality; several classes of compounds were found with a predominance of alcohols in the vegetative phase, terpenes and linear-chained saturated hydrocarbons in the flowering phase, while saturated aliphatic acids and their methyl esters were predominant in fruiting phase. The most abundant compounds were 3-methylbut-3-en-1-ol in the vegetative phase, linalool in the flowering phase, and dodecanoic acid and its methyl ester in the fruiting phase. The obtained essential oils were then tested against two major bee pathogens, i.e., Paenibacillus larvae and Melissococcus plutonius, and against a reference bacterial species, Bacillus subtilis. Data were compared to those obtained with reference standards used against those pathogens such as the essential oils obtained from leaves and bark of Cinnamomum zeylanicum (cinnamon), and the antibiotic oxytetracyclin. PMID:22344911

  14. PCBs and OCPs on a east-to-west transect: the importance of major currents and net volatilization for PCBs in the Atlantic Ocean.

    PubMed

    Lohmann, Rainer; Klanova, Jana; Kukucka, Petr; Yonis, Shifra; Bollinger, Kevyn

    2012-10-01

    Air-water exchange gradients of selected polychlorinated biphenyl (PCB) congeners across a large section of the tropical Atlantic suggested net volatilization of PCBs to the atmosphere. Only for the higher chlorinated PCB 153 and hexachlorobenzene (HCB) were gradients near equilibrium detected. The use of passive samplers also enabled the detection of dichlorodiphenyltrichloroethane (DDT) and its transformation products across the tropical Atlantic, indicating net deposition. There were clear differences between the southern and northern hemisphere apparent in terms of atmospheric concentrations: Once the ship moved from the southern into the northern hemisphere air, concentrations of HCB and other organochlorine pesticides increased several-fold. For large swaths of the tropical Atlantic Ocean, neither PCB nor organochlorine pesticide dissolved concentrations varied much longitudinally, probably due to efficient mixing by ocean currents. In selected samples, dissolved concentrations reflected the influence of river plumes and major ocean currents far away from the continents. Dissolved concentrations of PCBs 28, 52, 101, 118, and HCB increased in the Amazon plume and the Gulf Stream. While the Amazon plume flushed only a few kg of PCBs and HCB, the Gulf Stream is potentially delivering tons of PCBs into the North Atlantic annually. PMID:22303957

  15. Influence of extraction methodologies on the analysis of five major volatile aromatic compounds of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) grown in Thailand.

    PubMed

    Chanthai, Saksit; Prachakoll, Sujitra; Ruangviriyachai, Chalerm; Luthria, Devanand L

    2012-01-01

    This paper deals with the systematic comparison of extraction of major volatile aromatic compounds (VACs) of citronella grass and lemongrass by classical microhydrodistillation (MHD), as well as modern accelerated solvent extraction (ASE). Sixteen VACs were identified by GC/MS. GC-flame ionization detection was used for the quantification of five VACs (citronellal, citronellol, geraniol, citral, and eugenol) to compare the extraction efficiency of the two different methods. Linear range, LOD, and LOQ were calculated for the five VACs. Intraday and interday precisions for the analysis of VACs were determined for each sample. The extraction recovery, as calculated by a spiking experiment with known standards of VACs, by ASE and MHD ranged from 64.9 to 91.2% and 74.3 to 95.2%, respectively. The extraction efficiency of the VACs was compared for three solvents of varying polarities (hexane, dichloromethane, and methanol), seven different temperatures (ranging from 40 to 160 degrees C, with a gradual increment of 20 degrees C), five time periods (from 1 to 10 min), and three cycles (1, 2, and 3 repeated extractions). Optimum extraction yields of VACs were obtained when extractions were carried out for 7 min with dichloromethane and two extraction cycles at 120 degrees C. The results showed that the ASE technique is more efficient than MHD, as it results in improved yields and significant reduction in extraction time with automated extraction capabilities. PMID:22816268

  16. Evaluation of environmental factors affecting yields of major dissolved ions of streams in the United States

    USGS Publications Warehouse

    Peters, Norman E.

    1984-01-01

    The seven major dissolved ions in streams-sodium, potassium, magnesium, calcium, chloride, sulfate, and bicarbonate and their sum dissolved solids from 56 basins in the conterminous United States and Hawaii were correlated with bedrock type, annual precipitation, population density, and average stream temperature of their respective basins through multiple linear-regression equations to predict annual yields. The study was restricted to basins underlain by limestone, sandstone, or crystalline rock. Depending on the constituent, yields ranged from about 10 to 100,000 kilograms per square kilometer. Predicted yields were within 1 order of magnitude of measured yields. The most important factor in yield prediction was annual precipitation, which accounted for 58 to 71 percent of all yields. Rock type was second in importance. Yields of magnesium, calcium, bicarbonate, and dissolved solids from limestone basins were 4 to 10 times larger than those from sandstone or crystalline basins as a result of carbonate weathering. Population density was an ineffective indicator of all constituents except sodium and chloride; it accounted for 13 percent of the annual sodium yield and 20 percent of the annual chloride yield. Average stream temperature was significant only for calcium and bicarbonate in limestone basins. Its relationship with yields was consistently negative. Either carbonate dissolution increases at low temperatures, or weathering in northern basins, which contain glacial deposits and have the lowest stream temperatures, is greater than in southern basins. Average ion contributions from atmospheric deposition accounted for 30 percent of the sodium and chloride and 60 percent of the sulfate in annual yields. The amount of sulfate derived from atmospheric contributions was higher in sandstone and crystalline basins (65 and 80 percent, respectively) than limestone basins (38 percent). This disparity is attributed to the lack of available sulfate in crystalline rock

  17. Seasonal Variability of Major Ions and δ13CDIC in Permafrost Watersheds of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Lehn, G. O.; Jacobson, A. D.; Douglas, T. A.; McClelland, J. W.; Khosh, M. S.; Barker, A. J.

    2011-12-01

    Models and observations predict that climate change will have more severe effects at higher latitudes. Many effects may already be underway. Increasing temperatures are expected to thaw permafrost soils, changing the hydrology and biogeochemistry of Arctic watersheds. These changes are particularly important because permafrost thaw could destabilize a large carbon reservoir, potentially leading to sizable greenhouse gas emissions. Tracking soil thaw and concomitant changes in carbon export are therefore critical to predicting feedbacks between Arctic climate change and global warming. As the climate warms, the seasonally thawed active layer will extend into deeper, previously frozen, mineral-rich soils, increasing the signal of chemical weathering in streams. Historical methods of monitoring active layer thaw depth are labor intensive and may not capture the heterogeneity of Arctic soils, whereas stream geochemistry provides a unique opportunity to integrate signals across vast spatial distances. We present major ion geochemistry and δ13C of dissolved inorganic carbon (DIC) variations that relate to seasonal changes in permafrost thaw depths. Samples were collected from six watersheds on the North Slope of Alaska. All rivers drain continuous permafrost but three drain tussock tundra-dominated watersheds and three drain bare bedrock catchments with minor tundra influences. Water samples were collected from April until October in 2009 and 2010. The major ion and δ13CDIC trends of tundra streams suggest that silicate weathering dominates during the spring melt while carbonate weathering dominates as the active layer deepens in the summer. In tundra streams, early season δ13CDIC values indicate carbonic acid-silicate weathering. Summer δ13CDIC values indicate carbonic acid-carbonate weathering. In both cases, carbonic acid forms from CO2 produced by the microbial decomposition of C3 organic matter. Bedrock streams have nearly constant δ13CDIC values and high

  18. EXPERIMENTAL EFFECTS OF CONDUCTIVITY AND MAJOR IONS ON STREAM PERIPHYTON - abstract

    EPA Science Inventory

    Our study examined if specific conductivities comprised of different ions associated with resource extraction affected stream periphyton assemblages, which are important sources of primary production. Sixteen artificial streams were dosed with two ion recipes intended to mimic so...

  19. Feasibility of halogen determination in noncombustible inorganic matrices by ion chromatography after a novel volatilization method using microwave-induced combustion.

    PubMed

    Pereira, Rodrigo M; Costa, Vanize C; Hartwig, Carla A; Picoloto, Rochele S; Flores, Erico M M; Duarte, Fabio A; Mesko, Marcia F

    2016-01-15

    A microwave-induced combustion (MIC) system based on the volatilization process was applied for subsequent halogen determination from noncombustible inorganic matrices. Portland cement samples were selected to demonstrate the feasibility of the proposed method, allowing the subsequent determination of Cl and F by ion chromatography (IC). Samples were mixed with high-purity microcrystalline cellulose, wrapped with a polyethylene film and combusted in quartz closed vessels pressurized with oxygen (20bar). Water and NH4OH (10, 25 or 50m mol L(-1)) were evaluated for Cl and F absorption, but water was selected, using 5min of reflux after volatilization. Final solutions were also suitable for analysis by pontentiometry with ion-selective electrode (ISE) for both analytes, and no difference was found when comparing the results with IC. The accuracy of the proposed method for Cl was evaluated by analysis of certified reference materials (CRMs), and agreement with certified values ranged from 98% to 103%. Results were also compared to those using the procedure recommended by the American Society of Testing and Materials (ASTM) for the determination of total chlorides (C114-13), and no difference was found. Volatilization by MIC using a mixture of cement, cellulose and a biological CRM was carried out in order to evaluate the accuracy for F, and recovery was about 96%. The proposed method allowed suitable limits of detection for Cl and F by IC (99 and 18mg kg(-1), respectively) for routine analysis of cement. Using the proposed method, a relatively low standard deviation (<7%), high throughput (up to eight samples can be processed in less than 30min) and lower generation of laboratory effluents, when compared to the ASTM method, were obtained. Therefore, the method for volatilization of Cl and F by MIC and subsequent determination by IC can be proposed as a suitable alternative for cement analysis. PMID:26592579

  20. Wet precipitation of major ions, polonium-210, and organic carbon in a metropolitan city, Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Yan, G.; Kim, G.

    2011-12-01

    An extensive survey of chemical constituents in precipitation including dissolved organic carbon, dissolved nitrogen, major ions, trace elements, and radionuclides was conducted in a representative urban environment of Seoul over one-year period from 2009 to 2010. The sources for these chemical species were apportioned by applying principal component analysis (PCA) in association with commonly acknowledged key tracers, such as Na, K, Ca, and V. The fossil fuel combustion (especially coal) was shown to be the dominant source for most constituents being investigated, with biomass burning being recognized as another significant source. With the aid of air mass backward trajectory analyses, we concluded that the primary fraction of the chemical species in our precipitation samples originated locally in Korea, albeit the frequent long-range transport from the eastern and northeastern China might contribute substantially. Overall, our study suggests the significant role of human activities in altering the atmospheric environment of Seoul and presumably most urban areas around the world, highlighting its profound environmental implications, such as health risks posed by excessive polonium-210, enhanced rainwater acidity from organic acids, and radiative forcing by organic aerosols.

  1. Cometary coma ions. [which occur when water is the major constituent

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.

    1974-01-01

    For comets whose nuclei are composed of water ice conglomerates it is shown that the ion H3O(+) can predominate to distances of 5000 km in the subsolar direction. Beyond this distance H2O(+) is the most important ion. The crossover point is a sensitive function of the rate of evaporation from the nucleus. The presence of ammonia or metals such as sodium, in concentrations greater than 0.1% H2O, can lead to NH4(+) and Na(+) ions.

  2. The general description of major ion concentrations in groundwater of Latvia

    NASA Astrophysics Data System (ADS)

    Kalvāns, A.; Delina, A.

    2012-04-01

    Latvia is situated at the North central part of the Baltic sedimentary basin where the crystalline basement is found in depth between 0.6 to 2 km. Three large aquifer complexes with distinct chemical composition of groundwater are identified: the stagnant water exchange zone where Na-Ca-Cl brine is found; the slow water exchange zone where Na-Ca-Cl-SO4 brackish water is found and active water exchange zone where the freshwater resides. These are separated by distinct regional aquicludes. The composition of the Cl- dominated brines at the base of sedimentary basin is characterised by shift from Na+ towards Ca++ as dominant cation, partially associated with depth of the aquifer and the strength of the brine. The concentration of SO4-- here is inversely linked to the concentration of Ca++ and, according to geochemical modelling, often is close to the solubility limit of the gypsum. The major ion concentrations in the E and W part of the territory are rather different. Therefore two different initial sources of the formation brine were suggested. Alternatively the observations can be explained by different thermal histories of different parts of the basin, affecting the rate of albitization - exchange of the Na for Ca in the solution due to water-rock interaction. The groundwater composition in the slow exchange zone can be nicely explained by the mixing of freshwater and brine residing deeper in the presence of gypsum during some but no all stages of mixing. In some shallow parts of the zone still bound by the Narva regional aquiclude freshwater is found. The question is posted - could this be a paleogroundwater originating from the extensive continental glaciations that override the territory several times during the Pleistocene? Initial isotope studies presented elsewhere seems to give negative answer to this question. The active water exchange zone is characterised by fresh Ca-Mg-HCO3 water with exceptions in cases where gypsum are abundant in sedimentary rocks and

  3. Determination of microbial volatile organic compounds from Staphylococcus pasteuri against Tuber borchii using solid-phase microextraction and gas chromatography/ion trap mass spectrometry.

    PubMed

    Barbieri, E; Gioacchini, A M; Zambonelli, A; Bertini, L; Stocchi, V

    2005-01-01

    The mycelium of Tuber borchii Vittad., a commercial truffle species, is used as a model system for in vitro ectomycorrhizal synthesis, infected seedling production and biotechnological applications. Our fungal cultures were accidentally contaminated with a Staphylococcus pasteuri strain, showing a strong antifungal activity against T. borchii mycelium. In order to identify the antifungal volatile agents produced by S. pasteuri, solid-phase microextraction (SPME) with gas chromatography and mass spectrometry (GC/MS) was used. Using this method 65 microbial volatile organic compounds (MVOCs), synthesized by this bacterium in either single or in fungal-bacterial dual culture, were identified. SPME combined with GC/MS may be a useful method for the determination of MVOCs involved in the antifungal activity. These results showed that bacteria with unusual biological activities could be a major problem during large-scale production of inoculum for truffle-infected seedling. PMID:16259047

  4. Resection is a major repair pathway of heavy ion-induced DNA lesions

    NASA Astrophysics Data System (ADS)

    Durante, Marco; Averbeck, Nicole; Taucher-Scholz, Gisela

    Space radiation include densely ionizing heavy ions, which can produce clustered DNA damage with high frequency in human cells. Repair of these complex lesions is generally assumed to be more difficult than for simple double-strand breaks. We show here that human cells use break resection with increasing frequency after exposure to heavy ions. Resection can lead to misrepair of the DNA lesion, via microhomology mediated end-joining. Resection can therefore be responsible for the increased effectiveness of heavy ions in the induction of mutations and genetic late effects.

  5. Evidence for Extremely Large Lava Flows on Ontong Java Plateau from High Precision Measurements of Volatiles and Major Elements in Natural Glasses

    NASA Astrophysics Data System (ADS)

    Michael, P. J.

    2004-12-01

    Magmas of Ontong Java Plateau (OJP) display little geochemical variation, having only a few widely dispersed magma types (Mahoney et al. , 1993). (Here we define magma type as all lavas that have evolved by similar extents of melting of a similar mantle source, and have undergone similar polybaric fractionation histories). In this study, we use high precision microprobe measurements of Cl, K, S, H2O, CO2 and major elements in glasses to show that magmas from widespread locations on OJP are identical in composition and are probably from the same eruption and quite possibly from the same series of lava flows. By same eruption, we mean the quasi-continuous issuance of magma from a continuous chamber over a time period that is insufficient for further differentiation or assimilation. By same lava flow, we mean lavas that have issued from the same or nearby vents and were part of a sequence that that was continuously molten at the surface or beneath a crust. Cl concentrations are controlled by assimilation that takes place fairly late at shallow levels in the magma chamber. The amount of assimilation and Cl content of assimilated material control Cl contents of magmas, and are expected to be highly variable in this stochastic process. It is inconceivable that magmas erupted at different times would have precisely the same Cl content, even if they have the same major element chemistry from identical cotectic evolution. The clearest case of distant lavas being from the same eruption is the Kroenke-type lavas from ODP holes 1187A and 1185B, about 140 km apart. The lavas form roughly 150 flow units of about 1 meter average thickness, which we feel are multiple surges of lava from a quasi-continuous eruption. Glass compositions (major elements and volatiles) do not vary more than analytical uncertainties within each hole. Differences between the two holes are also less than analytical uncertainties. Averages of 4 samples from each of the two holes are: Cl 750 vs 732 ppm; s

  6. Effect of enzyme activity and frozen storage on jalapeño pepper volatiles by selected ion flow tube-mass spectrometry.

    PubMed

    Azcarate, Carolina; Barringer, Sheryl A

    2010-01-01

    Samples of unblanched (fresh), stannous chloride-treated, or blanched jalapeño peppers were measured for real-time generation of lipoxygenase-derived volatiles during 10 min after tissue disruption. Volatiles were also measured before and after 1.5, 2.5, 3, 6, and 9 mo of frozen storage at -15 °C. The concentration of all lipoxygenase-derived compounds was significantly higher in unblanched jalapeño peppers compared to enzyme inhibited peppers. The maximum concentration of (Z)-3-hexenal, (E)-2-hexenal, and hexanal was detected at about 1.2, 1.5, and 1.5 min after tissue disruption, respectively. A decrease in (Z)-3-hexenal and an increase in dimethyl sulfide and methylbutanal occurred in blanched compared to stannous chloride-treated peppers due to heat. Frozen storage resulted in no major changes in the lipoxygenase-derived volatiles of whole and pureed blanched peppers after 9 mo. However, in whole unblanched peppers a gradual decrease of (Z)-3-hexenal, (E)-2-hexenal, hexanal, hexenol, and hexanol was observed over time; whereas in pureed unblanched peppers these compounds increased, reached maximum concentration, and then decreased. Similarly, the minor volatiles 2-pentenal, 1-penten-3-one, (E)-2-heptenal, (E)-2-octenal, and (E)-2-nonenal showed an initial increase followed by a decline in both whole and pureed unblanched peppers. Tissue disruption increased generation and degradation rates during frozen storage. The compounds (E,Z)-2,6-nonadienal, n-propyl aldehyde, 2-isobutyl-3-methoxypyrazine, and a mixture of terpenes decreased in unblanched and blanched frozen samples, while nonanal and methylbutanal increased only in unblanched samples. PMID:21535582

  7. DIRECT TRACE ANALYSIS OF VOLATILE ORGANIC COMPOUNDS IN AIR USING ION TRAP MASS SPECTROMETERS WITH FILTERED NOISE FIELDS

    EPA Science Inventory

    Two ion trap mass spectrometers and direct air sampling interfaces are being evaluated in the laboratory for monitoring toxic air pollutants in real time. he mass spectrometers are the large, laboratory-based Finnigan MAT ion trap (ITMS) and the compact, field-deployable Teledyne...

  8. [Major ion chemistry of surface water in the upper reach of Shule River Basin and the possible controls ].

    PubMed

    Zhou, Jia-xin; Ding, Yong-jian; Zeng, Guo-xiong; Wu, Jin-kui; Qin, Jia

    2014-09-01

    To analyze the major ion chemistry of water in the upper reach of the Shule River Basin and possible controls, samples of river water, groundwater, precipitation, melt water were collected and methods including descriptive statistics, Gibbs Figure, Piper Triangular diagrams of anions and cations were comprehensive used. Results showed that the major ion compositions and hydrochemical types were significantly different in different waters such as stream water, groundwater and precipitation. The total dissolved solid (TDS) in the river water ranges between 51.7 to 432. 3 mgL-1 with an average of 177.7 mgL-1. The major cations of river water are Ca2+ and Mg2+, accounting for 45% and 31% of the cations respectively. Meanwhile, HCO(3)- constituted about 75% of the anions. The hydrochemical type of river water is HCO(-)(3)-Ca2+-Mg2+. Owing to the interaction between the river and layer, the concentration of SO(2-)4 is relatively higher. Comparing major ion concentrations of the river water with local groundwater and precipitation, concentrations of the river water ranged between precipitation and groundwater but were much closer to the concentration of groundwater, indicating that the surface water was recharged by a mixture of precipitation and groundwater while groundwater is dominant. The chemical composition of surface water samples located in the middle and a bit upper of Gibbs model, which indicates that the major chemical process of river water is controlled by rock weathering and evaporation-crystallization but rock weathering plays a much more important role. PMID:25518647

  9. Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia, Daphnia magna and Pimephales promelas (fathead minnows)

    SciTech Connect

    Mount, D.R.; Gulley, D.D.; Hockett, J.R.; Garrison, T.D.; Evans, J.M.

    1997-10-01

    Toxicity of fresh waters with high total dissolved solids has been shown to be dependent on the specific ionic composition of the water. To provide a predictive tool to assess toxicity attributable to major ions, the authors tested the toxicity of over 2,900 ion solutions using the daphnids, Ceriodaphnia dubia and Daphnia magna, and fathead minnows (Pimephales promelas). Multiple logistic regression was used to relate ion composition to survival for each of the three test species. In general, relative ion toxicity was K{sup +} > HCO{sub 3}{sup {minus}} {approx} Mg{sup 2+} > Cl{sup {minus}} > SO{sub 4}{sup 2{minus}}; Na{sup +} and Ca{sup 2+} were not significant variables in the regressions, suggesting that the toxicity of Na{sup +} and Ca{sup 2+} salts was primarily attributable to the corresponding anion. For C. dubia and D. magna, toxicity of Cl{sup {minus}}, SO{sub 4}{sup 2{minus}}, and K{sup +} was reduced in solutions enriched with more than one cation. Final regression models showed a good quality of fit to the data (R{sup 2} = 0.767--0.861). Preliminary applications of these models to field-collected samples indicated a high degree of accuracy for the C. dubia model, while the D. magna and fathead minnow models tended to overpredict ion toxicity. Studies of oil and gas produced waters, irrigation drain waters, shale oil leachates, sediment pore waters, and industrial process waters have shown toxicity caused by elevated concentrations of common ions.

  10. Environmental isotopes and major ions for tracing leachate contamination from a municipal landfill in Metro Manila, Philippines.

    PubMed

    Castañeda, S S; Sucgang, R J; Almoneda, R V; Mendoza, N D S; David, C P C

    2012-08-01

    The surface water and groundwater sources in the vicinity of a major municipal landfill in Metro Manila, Philippines were investigated to determine contamination by landfill leachate. Tritium, stable isotopes of hydrogen and oxygen, and major ions in the leachate and freshwater within the landfill environment were determined. The leachate contained elevated tritium activities and high concentrations of sodium, chloride, potassium, and calcium. The concentrations of tritium and the leachate related ions in the affected surface water were significantly higher than the non-impacted water and correlated strongly with distance from the leachate source, following a negative exponential relationship, providing evidence of leachate transport along the affected surface water. Enrichment in deuterium was exhibited by leachate in the holding pond but not by the effluent leachate. The stable isotope signature of leachate is masked in the surface water due to dilution by stream water. Dilution similarly masked the effect of leachate in the shallow groundwater which was strongly influenced by precipitation. Evidence of leachate contamination in the deep groundwater was sporadic. In isolated cases, elevated tritium concentrations coincided with enrichment in deuterium. In the same case, leachate related ions, Na, Ca, Mg, and Cl, varied with rainfall but generally increased from 2003 to 2009. The effect on the groundwater of methane produced within the landfill was seen in the depletion in deuterium in groundwater in the drier months. PMID:22343499

  11. Discrimination of Swiss cheese from 5 different factories by high impact volatile organic compound profiles determined by odor activity value using selected ion flow tube mass spectrometry and odor threshold.

    PubMed

    Taylor, Kaitlyn; Wick, Cheryl; Castada, Hardy; Kent, Kyle; Harper, W James

    2013-10-01

    Swiss cheese contains more than 200 volatile organic compounds (VOCs). Gas chromatography-mass spectrometry has been utilized for the analysis of volatile compounds in food products; however, it is not sensitive enough to measure VOCs directly in the headspace of a food at low concentrations. Selected ion flow tube mass spectrometry (SIFT-MS) provides a basis for determining the concentrations of VOCs in the head space of the sample in real time at low concentration levels of parts per billion/trillion by volume. Of the Swiss cheese VOCs, relatively few have a major impact on flavor quality. VOCs with odor activity values (OAVs) (concentration/odor threshold) greater than one are considered high-impact flavor compounds. The objective of this study was to utilize SIFT-MS concentrations in conjunction with odor threshold values to determine OAVs thereby identifying high-impact VOCs to use for differentiating Swiss cheese from five factories and identify the factory variability. Seventeen high-impact VOCs were identified for Swiss cheese based on an OAV greater than one in at least 1 of the 5 Swiss cheese factories. Of these, 2,3-butanedione was the only compound with significantly different OAVs in all factories; however, cheese from any pair of factories had multiple statistically different compounds based on OAV. Principal component analysis using soft independent modeling of class analogy statistical differentiation plots, with all of the OAVs, showed differentiation between the 5 factories. Overall, Swiss cheese from different factories was determined to have different OAV profiles utilizing SIFT-MS to determine OAVs of high impact compounds. PMID:24106758

  12. A major host plant volatile, 1-octen-3-ol, contributes to mating in the legume pod borer, Maruca vitrata (Fabricius) (Lepidoptera: Crambidae)

    NASA Astrophysics Data System (ADS)

    Bendera, M.; Ekesi, S.; Ndung'u, M.; Srinivasan, R.; Torto, B.

    2015-10-01

    Previous studies on the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae), a serious pest of cowpea, Vigna unguiculata (L.) Walp. (Fabales: Fabaceae), in sub-Saharan Africa have focused on sex pheromones, but the role of the host plant on sexual behavior has not been explored. We investigated this interaction in the laboratory using behavioral assays and chemical analyses. We found that the presence of cowpea seedlings and a dichloromethane extract of the leaf increased coupling in the legume pod borer by 33 and 61 %, respectively, compared to the control, suggesting the involvement of both contact and olfactory cues. We used coupled gas chromatography-electroantennographic detection (GC/EAD) and GC-mass spectrometry (GC/MS) to identify compounds from the cowpea leaf extract, detected by M. vitrata antenna. We found that the antennae of the insect consistently detected four components, with 1-octen-3-ol identified as a common and dominant component in both the volatiles released by the intact cowpea plant and leaf extract. We therefore investigated its role in the coupling of M. vitrata. In dose-response assays, 1-octen-3-ol increased coupling in M. vitrata with increasing dose of the compound compared to the control. Our results suggest that the cowpea volatile 1-octen-3-ol contributes to M. vitrata sexual behavior.

  13. A major host plant volatile, 1-octen-3-ol, contributes to mating in the legume pod borer, Maruca vitrata (Fabricius) (Lepidoptera: Crambidae).

    PubMed

    Bendera, M; Ekesi, S; Ndung'u, M; Srinivasan, R; Torto, B

    2015-10-01

    Previous studies on the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae), a serious pest of cowpea, Vigna unguiculata (L.) Walp. (Fabales: Fabaceae), in sub-Saharan Africa have focused on sex pheromones, but the role of the host plant on sexual behavior has not been explored. We investigated this interaction in the laboratory using behavioral assays and chemical analyses. We found that the presence of cowpea seedlings and a dichloromethane extract of the leaf increased coupling in the legume pod borer by 33 and 61 %, respectively, compared to the control, suggesting the involvement of both contact and olfactory cues. We used coupled gas chromatography-electroantennographic detection (GC/EAD) and GC-mass spectrometry (GC/MS) to identify compounds from the cowpea leaf extract, detected by M. vitrata antenna. We found that the antennae of the insect consistently detected four components, with 1-octen-3-ol identified as a common and dominant component in both the volatiles released by the intact cowpea plant and leaf extract. We therefore investigated its role in the coupling of M. vitrata. In dose-response assays, 1-octen-3-ol increased coupling in M. vitrata with increasing dose of the compound compared to the control. Our results suggest that the cowpea volatile 1-octen-3-ol contributes to M. vitrata sexual behavior. PMID:26280704

  14. A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Kovalenko, Igor; Zdyrko, Bogdan; Magasinski, Alexandre; Hertzberg, Benjamin; Milicev, Zoran; Burtovyy, Ruslan; Luzinov, Igor; Yushin, Gleb

    2011-10-01

    The identification of similarities in the material requirements for applications of interest and those of living organisms provides opportunities to use renewable natural resources to develop better materials and design better devices. In our work, we harness this strategy to build high-capacity silicon (Si) nanopowder-based lithium (Li)-ion batteries with improved performance characteristics. Si offers more than one order of magnitude higher capacity than graphite, but it exhibits dramatic volume changes during electrochemical alloying and de-alloying with Li, which typically leads to rapid anode degradation. We show that mixing Si nanopowder with alginate, a natural polysaccharide extracted from brown algae, yields a stable battery anode possessing reversible capacity eight times higher than that of the state-of-the-art graphitic anodes.

  15. Tropical Greenhouse Measurements of Volatile Organic Compounds Using Switchable Reagent Ion Proton-Transfer-Reaction Time-of-Flight Mass Spectromety (PTR-TOF-MS)

    NASA Astrophysics Data System (ADS)

    Veres, P.; Auld, J.; Williams, J.

    2012-04-01

    In this presentation, we will summarize the results of measurements made in an approximately 1300 m3 tropical greenhouse at the Johannes Gutenberg University botanical garden in Mainz Germany conducted over a one month period. The greenhouse is home to a large variety of plant species from hot and humid regions of the world. The greenhouse is also host to several crops such as Cocoa and Cola Nut as well as ornamental plants. A particular focus of the species maintained are those which are considered ant plants, or plants which have an intimate relationship with ants in tropical habitats. Volatile organic compounds (VOCs) were measured using a Switchable Reagent Ion Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-TOF-MS) using H3O+, NO+, and O2+ ion chemistry. Measurements will be presented both for primary emissions observed in the closed greenhouse atmosphere as well as the oxidation products observed after the introduction of ambient ozone. The high resolving power (5000 m/Δm) of the time-of-flight instrument allows for the separation of isobaric species. In particular, both isoprene (68.1170 amu) and furan (68.0740 amu) were observed and separated as primary emissions during this study. The significance of this will be discussed in terms of both atmospheric implications as well as with respect to previous measurements of isoprene obtained using quadrupole PTR-MS where isobaric separation of these compounds is not possible. Additionally observed species (e.g. Methanol, Acetaldehyde, MVK and MEK) will be discussed in detail with respect to their behavior as a function of light, temperature and relative humidity. The overall instrument performance of the PTR-TOF-MS technique using the H3O+, NO+, and O2+ primary ions for the measurement of VOCs will be evaluated.

  16. Behavioral responses of the leafhopper, Cicadulina storeyi China, a major vector of maize streak virus, to volatile cues from intact and leafhopper-damaged maize.

    PubMed

    Oluwafemi, Sunday; Bruce, Toby J A; Pickett, John A; Ton, Jurriaan; Birkett, Michael A

    2011-01-01

    The chemical ecology of the leafhopper, Cicadulina storeyi China (Homoptera: Cicadellidae), an important vector of Maize Streak Virus (MSV), was studied with a view to developing novel leafhopper control strategies in sub-Saharan Africa. Choice tests using a Y-tube olfactometer revealed that odors from uninfested maize seedlings (Zea mays cv. Delprim) were significantly more attractive to C. storeyi than odors from C. storeyi-infested seedlings. Headspace samples of volatile organic compounds (VOCs) collected from 10 to 12 day-old uninfested seedlings were more attractive than those collected from infested seedlings. While VOCs collected from uninfested maize seedlings were attractive, VOCs collected from C. storeyi-infested seedlings were significantly repellent. Analysis of the collected VOCs by gas chromatography (GC) and coupled GC-mass spectrometry (GC-MS) led to the identification of myrcene, linalool, (E)-2-decen-1-ol, and decanal from uninfested seedlings, and (Z)-3-hexenyl acetate, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate, benzyl acetate, indole, geranyl acetate, (E)-caryophyllene, α-bergamotene, (E)-β-farnesene, β-sesquiphellandrene, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) from infested seedlings. Of these, methyl salicylate, (E)-caryophyllene, (E)-β-farnesene, and TMTT were identified previously as volatile semiochemicals involved in plant defense against other sucking insect pests. When tested individually for behavioral activity, all compounds were repellent for C. storeyi. Moreover, when these induced VOCs were added to the blend of VOCs from uninfested maize seedlings, a shift from attraction to repellency was observed. Addition of methyl salicylate, (E)-β-farnesene, or TMTT resulted in a choice for the solvent control (i.e., repulsion), whereas addition of (E)-caryophyllene resulted in no reduction in host VOC attractiveness. These results show that VOCs induced in maize have the potential to be exploited

  17. Statistical generation of training sets for measuring NO3(-), NH4(+) and major ions in natural waters using an ion selective electrode array.

    PubMed

    Mueller, Amy V; Hemond, Harold F

    2016-05-18

    Knowledge of ionic concentrations in natural waters is essential to understand watershed processes. Inorganic nitrogen, in the form of nitrate and ammonium ions, is a key nutrient as well as a participant in redox, acid-base, and photochemical processes of natural waters, leading to spatiotemporal patterns of ion concentrations at scales as small as meters or hours. Current options for measurement in situ are costly, relying primarily on instruments adapted from laboratory methods (e.g., colorimetric, UV absorption); free-standing and inexpensive ISE sensors for NO3(-) and NH4(+) could be attractive alternatives if interferences from other constituents were overcome. Multi-sensor arrays, coupled with appropriate non-linear signal processing, offer promise in this capacity but have not yet successfully achieved signal separation for NO3(-) and NH4(+)in situ at naturally occurring levels in unprocessed water samples. A novel signal processor, underpinned by an appropriate sensor array, is proposed that overcomes previous limitations by explicitly integrating basic chemical constraints (e.g., charge balance). This work further presents a rationalized process for the development of such in situ instrumentation for NO3(-) and NH4(+), including a statistical-modeling strategy for instrument design, training/calibration, and validation. Statistical analysis reveals that historical concentrations of major ionic constituents in natural waters across New England strongly covary and are multi-modal. This informs the design of a statistically appropriate training set, suggesting that the strong covariance of constituents across environmental samples can be exploited through appropriate signal processing mechanisms to further improve estimates of minor constituents. Two artificial neural network architectures, one expanded to incorporate knowledge of basic chemical constraints, were tested to process outputs of a multi-sensor array, trained using datasets of varying degrees of

  18. Volatile content and distribution in the Azorean mantle plume

    NASA Astrophysics Data System (ADS)

    Costa, K.; Parman, S. W.; Saal, A. E.; Kelley, K. A.; Shimizu, N.; Nunes, J. C.; Rose-Koga, E. F.

    2012-12-01

    In order to assess pre-eruptive volatile contents of magmas in the central Azores, we have measured major element, trace element, and volatile contents of olivine hosted melt inclusions. Seventy tephra samples were collected from Sao Jorge, Pico and Faial islands. Three samples yielded naturally glassy melt inclusions, while five samples produced crystallized melt inclusions that were rehomogenized with either a one atmosphere furnace or a heating stage. The melt inclusions were analyzed for major elements, volatiles, and trace elements by electron microprobe, secondary ion mass spectrometry (SIMS), and laser ablation ICP-MS, respectively. Olivine host crystals for the melt inclusions are Fo77-88. Melt inclusions compositionally are alkali basalts with Mg #50-68, 40-51wt% SiO2, and 0.82-1.63wt% K2O (corrected for post-entrapment olivine crystallization), which is consistent with existing whole-rock data. They are trace element enriched with 19.3-49.9ppm La and 3.22-4.33 La/Sm. Volatile contents are 270-2509ppm CO2, 0.06-1.52wt% H2O, 120-1465ppm F, 30-2298ppm S, and 28-727ppm Cl. Volatile to trace element ratios are 8.4-46.5 CO2/Nb, 7-220 H2O/Ce, 2.1-42.4 F/Nd, 4-381 S/Dy, and 0.002-0.084 Cl/K. Correlation between Cl and F precludes seawater contamination as a source for the high volatile content. These data suggest that the HIMU component of the Azorean mantle plume is volatile rich, which is consistent with previously published volatile data from other HIMU sources, such as the Austral Islands plume (Lassiter et. al., 2002).

  19. One-year observations of size distribution characteristics of major aerosol constituents at a coastal receptor site in Hong Kong - Part 1: Inorganic ions and oxalate

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Huang, X. H. H.; Yu, J. Z.

    2014-01-01

    Size distribution data of major aerosol constituents are essential in source apportioning of visibility degradation, testing and verification of air quality models incorporating aerosols. We report here one-year observations of mass size distributions of major inorganic ions (sulfate, nitrate, chloride, ammonium, sodium, potassium, magnesium and calcium) and oxalate at a coastal suburban receptor site in Hong Kong, China. A total of 43 sets of size segregated samples in the size range of 0.056-18 μm were collected from March 2011 to February 2012. The size distributions of sulfate, ammonium, potassium and oxalate were characterized by a dominant droplet mode with a mass mean aerodynamic diameter (MMAD) in the range of ~0.7-0.9 μm. Oxalate had a slightly larger MMAD than sulfate on days with temperatures above 22 °C as a result of the process of volatilization and repartitioning. Nitrate was mostly dominated by the coarse mode but enhanced presence in fine mode was detected on winter days with lower temperature and lower concentrations of sea salt and soil particles. This data set reveals an inversely proportional relationship between the fraction of nitrate in the fine mode and product of the sum of sodium and calcium in equivalent concentrations and the dissociation constant of ammonium nitrate (i.e., (1/[Na+] + 2[Ca2+]) × (1/Ke')). The seasonal variation observed for sea salt aerosol abundance, with lower values in summer and winter, is possibly linked with the lower marine salinities in these two seasons. Positive matrix factorization was applied to estimate the relative contributions of local formation and transport to the observed ambient sulfate level through the use of the combined datasets of size-segregated sulfate and select gaseous air pollutants. On average, the regional/super-regional transport of air pollutants was the dominant source at this receptor site, especially on high sulfate days, while local formation processes contributed approximately

  20. One-year observations of size distribution characteristics of major aerosol constituents at a coastal receptor site in Hong Kong - Part 1: Inorganic ions and oxalate

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Huang, X. H. H.; Yu, J. Z.

    2014-09-01

    Size distribution data of major aerosol constituents are essential in source apportioning of visibility degradation, testing and verification of air quality models incorporating aerosols. We report here 1-year observations of mass size distributions of major inorganic ions (sulfate, nitrate, chloride, ammonium, sodium, potassium, magnesium and calcium) and oxalate at a coastal suburban receptor site in Hong Kong, China. A total of 43 sets of size-segregated samples in the size range of 0.056-18 μm were collected from March 2011 to February 2012. The size distributions of sulfate, ammonium, potassium and oxalate were characterized by a dominant droplet mode with a mass mean aerodynamic diameter (MMAD) in the range of ~ 0.7-0.9 μm. Oxalate had a slightly larger MMAD than sulfate on days with temperatures above 22 °C as a result of the process of volatilization and repartitioning. Nitrate was mostly dominated by the coarse mode but enhanced presence in fine mode was detected on winter days with lower temperature and lower concentrations of sea salt and soil particles. This data set reveals an inversely proportional relationship between the fraction of nitrate in the fine mode and product of the sum of sodium and calcium in equivalent concentrations and the dissociation constant of ammonium nitrate (i.e., (1/([Na+] + 2[Ca2+]) × (1/Ke')) when Pn_fine is significant (> 10%). The seasonal variation observed for sea salt aerosol abundance, with lower values in summer and winter, is possibly linked with the lower marine salinities in these two seasons. Positive matrix factorization was applied to estimate the relative contributions of local formation and transport to the observed ambient sulfate level through the use of the combined data sets of size-segregated sulfate and select gaseous air pollutants. On average, the regional/super-regional transport of air pollutants was the dominant source at this receptor site, especially on high-sulfate days while local formation

  1. Relationships between groundwater contamination and major-ion chemistry in a karst aquifer

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.

    1990-11-01

    Groundwater contamination was examined within a rural setting of the Inner Bluegrass Karst Region of central Kentucky where potential contaminant sources include soil-organic matter, organic and inorganic fertilizer, and septic-tank effluent. To evaluate controls on groundwater contamination, data on nitrate concentrations and indicator bacteria in water from wells and springs were compared with physical and chemical attributes of the groundwater system. Bacterial densities greater than the recommended limit were found in all springs and approximately half of the wells, whereas nitrate concentrations >45 mg l -1 were restricted to 20% of the springs and 10% of the wells. Nitrate concentrations varied markedly in closely spaced wells and springs, which indicates that land use is not the primary control on groundwater contamination. Groundwater contamination is related to the distribution of chemical water types in the study area. All Ca subtype water was contaminated with nitrate and bacteria. Ca subtype water occurs in the shallow, rapidly circulating groundwater zone, which is most susceptible to contamination. The similarity in nitrate concentrations between local springs, major springs, and wells that contain Ca subtype water indicates that the occurrence of large conduits is not the main control on nitrate and bacterial contamination of groundwater. Temporal fluctuations in nitrate concentrations of Ca subtype water are attributed to seasonal fluctuations in recharge and in plant growth. Ca-Mg water subtype was generally not contaminated, and Na-HCO 3 and Na-Cl water types were not contaminated. Ca-Mg water subtype, and Na-HCO 3 and Na-Cl water types are associated with longer residence times and reducing conditions, which allow bacterial die-off and denitrification, respectively. Differences in residence time and reducing conditions among the chemical water types and subtypes are attributed to variations in rock permeability and to the occurrence of horizontal

  2. Landscape controls on dissolved nutrients, organic matter and major ions in a suburbanizing watershed

    NASA Astrophysics Data System (ADS)

    Daley, M. L.; McDowell, W. H.

    2010-12-01

    Understanding the relative importance of anthropogenic and natural landscape features that drive spatial variability in water quality is a central challenge in studying the biogeochemistry of heterogeneous landscapes. We quantified the average annual flux and concentration of dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON), dissolved organic carbon (DOC), phosphate-P (PO4-P), sodium (Na+) and chloride (Cl-) at ~40 stream sites in three major (51 to 903 km2) NH basins. We used GIS to quantify anthropogenic (e.g. human population density, % impervious surface cover and % agriculture) and natural (e.g. % forest, % wetlands and soil C:N) landscape features for each sub-basin and then employed multiple-regression analysis to relate water quality parameters to landscape characteristics. Anthropogenic features were strong predictors of DIN flux and Na+ and Cl- concentrations, whereas wetland cover (a natural feature) was a significant, but weak predictor of DOC (r2=0.26, p<0.01) and DON (r2 = 0.14, p<0.05) flux. Anthropogenic features could not explain a significant amount of variance in DON or DOC flux. Mean PO4-P concentrations were surprisingly low (<0.015 mg P/L) when compared to the larger range in mean DIN concentrations (0.03 to 0.96 mg/L) and consequently no landscape characteristics could explain a significant amount of spatial variability in PO4-P flux or concentration. Human population density was the single best predictor of DIN flux (r2=0.76, p<0.01), and together with % impervious surface and % agriculture explained 86% (p<0.01) of the total variance. Among all sites, % road pavement was a strong predictor of stream Na+ and Cl- concentrations (r2 = 0.75 to 0.78, p<0.01) and % impervious surface was a stronger predictor (r2 = 0.86 to 0.92, p<0.01) among a subset of sites. Our results suggest that DIN and DON result from different sources in the landscape and although sources of DON and DOC are similar, DON and DOC concentrations respond

  3. A novel method for the determination of three volatile organic compounds in exhaled breath by solid-phase microextraction-ion mobility spectrometry.

    PubMed

    Allafchian, Ali Reza; Majidian, Zahra; Ielbeigi, Vahideh; Tabrizchi, Mahmoud

    2016-01-01

    A method was carried out for the quantitative determination of the concentrations of volatile organic compounds (VOCs) using solid-phase microextraction and ion mobility spectrometry (SPME-IMS). This method was optimized and evaluated. The best results were obtained at sorption temperature 70 °C, desorption temperature 200 °C, and extraction time 15 min. Under the optimized conditions, the linear dynamic range was found to be 0.01-4.0 ppb (R(2) > 0.995), 2.3-400 ppm (R(2) > 0.994), and 2.5-76 ppb (R(2) > 0.998) for acetone, acetaldehyde, and acetonitrile, respectively. The detection limits for acetone, acetaldehyde, and acetonitrile were 0.001 ppb, 0.18 ppm, and 0.22 ppb, respectively. As a practical application, the method was applied for the determination of acetone, acetaldehyde, and acetonitrile in human breath matrix. Therefore, the proposed method was found to be effective and simple enough to be strongly recommended for real sample analysis. PMID:26558761

  4. Self-Volatilization Approach to Mesoporous Carbon Nanotube/Silver Nanoparticle Hybrids: The Role of Silver in Boosting Li Ion Storage.

    PubMed

    Jiang, Hao; Zhang, Haoxuan; Fu, Yao; Guo, Shaojun; Hu, Yanjie; Zhang, Ling; Liu, Yu; Liu, Honglai; Li, Chunzhong

    2016-01-26

    One of the biggest challenging issues of carbon nanomaterials for Li ion batteries (LIBs) is that they show low initial Coulombic efficiency (CE), leading to a limited specific capacity. Herein, we demonstrate a simple template self-volatilization strategy for in situ synthesis of mesoporous carbon nanotube/Ag nanoparticle (NP) hybrids (Ag-MCNTs) to boost the LIBs' performance. The key concept of Ag-MCNTs for enhancing LIBs is that a small trace of Ag NPs on MCNTS can greatly restrict the formation of a thicker solid electrolyte interphase film, which has been well verified by both transmission electron microscopy results and quantum density functional theory calculations, leading to the highest initial CE in all the reported carbon nanomaterials. This uncovered property of Ag NPs from Ag-MCNTs makes them exhibit a very high reversible capacity of 1637 mAh g(-1) after 400 discharge/charge cycles at 100 mA g(-1), approximately 5 times higher than the theoretical value of a graphite anode (372 mAh g(-1)), excellent rate capability, and long cycle life. PMID:26691283

  5. Primary emissions and secondary formation of volatile organic compounds from natural gas production in five major U.S. shale plays

    NASA Astrophysics Data System (ADS)

    Gilman, J.; Lerner, B. M.; Warneke, C.; Graus, M.; Lui, R.; Koss, A.; Yuan, B.; Murphy, S. M.; Alvarez, S. L.; Lefer, B. L.; Min, K. E.; Brown, S. S.; Roberts, J. M.; Osthoff, H. D.; Hatch, C. D.; Peischl, J.; Ryerson, T. B.; De Gouw, J. A.

    2014-12-01

    According to the U.S. Energy and Information Administration (EIA), domestic production of natural gas from shale formations is currently at the highest levels in U.S. history. Shale gas production may also result in the production of natural gas plant liquids (NGPLs) such as ethane and propane as well as natural gas condensate composed of a complex mixture of non-methane hydrocarbons containing more than ~5 carbon atoms (e.g., hexane, cyclohexane, and benzene). The amounts of natural gas liquids and condensate produced depends on the particular reservoir. The source signature of primary emissions of hydrocarbons to the atmosphere within each shale play will therefore depend on the composition of the raw natural gas as well as the industrial processes and equipment used to extract, separate, store, and transport the raw materials. Characterizing the primary emissions of VOCs from natural gas production is critical to assessing the local and regional atmospheric impacts such as the photochemical formation of ozone and secondary formation of organic aerosol. This study utilizes ground-based measurements of a full suite of volatile organic compounds (VOCs) in two western U.S. basins, the Uintah (2012-2014 winter measurements only) and Denver-Julesburg (winter 2011 and summer 2012), and airborne measurements over the Haynesville, Fayetteville, and Marcellus shale basins (summer 2013). By comparing the observed VOC to propane enhancement ratios, we show that each basin has a unique VOC source signature associated with oil and natural gas operations. Of the shale basins studied, the Uintah basin had the largest overall VOC to propane enhancement ratios while the Marcellus had the lowest. For the western basins, we will compare the composition of oxygenated VOCs produced from photochemical oxidation of VOC precursors and contrast the oxygenated VOC mixture to a "typical" summertime urban VOC mixture. The relative roles of alkanes, alkenes, aromatics, and cycloalkanes as

  6. Emissions of volatile organic compounds (VOCs) from oil and natural gas activities: compositional comparison of 13 major shale basins via NOAA airborne measurements

    NASA Astrophysics Data System (ADS)

    Gilman, J.; Lerner, B. M.; Aikin, K. C.; De Gouw, J. A.; Koss, A.; Yuan, B.; Warneke, C.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Graus, M.; Tokarek, T. W.; Isaacman-VanWertz, G. A.; Sueper, D.; Worsnop, D. R.

    2015-12-01

    The recent and unprecedented increase in natural gas production from shale formations is associated with a rise in the production of non-methane volatile organic compounds (VOCs) including natural gas plant liquids (e.g., ethane, propane, and butanes) and liquid lease condensate (e.g., pentanes, hexanes, aromatics and cycloalkanes). Since 2010, the production of natural gas liquids and the amount of natural gas vented/flared has increased by factors of ~1.28 and 1.57, respectively (U.S. Energy and Information Administration), indicating an increasingly large potential source of hydrocarbons to the atmosphere. Emission of VOCs may affect local and regional air quality due to the potential to form tropospheric ozone and organic particles as well as from the release of toxic species such as benzene and toluene. The 2015 Shale Oil and Natural Gas Nexus (SONGNex) campaign studied emissions from oil and natural gas activities across the central United States in order to better understand their potential air quality and climate impacts. Here we present VOC measurements from 19 research flights aboard the NOAA WP-3D over 11 shale basins across 8 states. Non-methane hydrocarbons were measured using an improved whole air sampler (iWAS) with post-flight analysis via a custom-built gas chromatograph-mass spectrometer (GC-MS). The whole air samples are complimented by higher-time resolution measurements of methane (Picarro spectrometer), ethane (Aerodyne spectrometer), and VOCs (H3O+ chemical ionization mass spectrometer). Preliminary analysis show that the Permian Basin on the New Mexico/Texas border had the highest observed VOC mixing ratios for all basins studied. We will utilize VOC enhancement ratios to compare the composition of methane and VOC emissions for each basin and the associated reactivities of these gases with the hydroxyl radical, OH, as a proxy for potential ozone formation.

  7. The Calcium Goes Meow: Effects of Ions and Glycosylation on Fel d 1, the Major Cat Allergen.

    PubMed

    Ligabue-Braun, Rodrigo; Sachett, Liana Guimarães; Pol-Fachin, Laércio; Verli, Hugo

    2015-01-01

    The major cat allergen, Fel d 1, is a structurally complex protein with two N-glycosylation sites that may be filled by different glycoforms. In addition, the protein contains three putative Ca2+ binding sites. Since the impact of these Fel d 1 structure modifications on the protein dynamics, physiology and pathology are not well established, the present work employed computational biology techniques to tackle these issues. While conformational effects brought upon by glycosylation were identified, potentially involved in cavity volume regulation, our results indicate that only the central Ca2+ ion remains coordinated to Fel d 1 in biological solutions, impairing its proposed role in modulating phospholipase A2 activity. As these results increase our understanding of Fel d 1 structural biology, they may offer new support for understanding its physiological role and impact into cat-promoted allergy. PMID:26134118

  8. The Calcium Goes Meow: Effects of Ions and Glycosylation on Fel d 1, the Major Cat Allergen

    PubMed Central

    Pol-Fachin, Laércio; Verli, Hugo

    2015-01-01

    The major cat allergen, Fel d 1, is a structurally complex protein with two N-glycosylation sites that may be filled by different glycoforms. In addition, the protein contains three putative Ca2+ binding sites. Since the impact of these Fel d 1 structure modifications on the protein dynamics, physiology and pathology are not well established, the present work employed computational biology techniques to tackle these issues. While conformational effects brought upon by glycosylation were identified, potentially involved in cavity volume regulation, our results indicate that only the central Ca2+ ion remains coordinated to Fel d 1 in biological solutions, impairing its proposed role in modulating phospholipase A2 activity. As these results increase our understanding of Fel d 1 structural biology, they may offer new support for understanding its physiological role and impact into cat-promoted allergy. PMID:26134118

  9. Likelihood and objective Bayesian modeling of acidity and major ions in rainfall using a bivariate pseudo-Gamma distribution

    NASA Astrophysics Data System (ADS)

    Mohsin, Muhammad; Kazianka, Hannes; Pilz, Jürgen

    2013-04-01

    Modeling the acidity in rainfall at certain locations is a complex task because of different environmental conditions for different rainfall regimes and the large variability in the covariates involved. In this paper, concentration of acidity and major ions in the rainfall in UK is analyzed by assuming a bivariate pseudo-Gamma distribution. The model parameters are estimated by using the maximum likelihood method and the goodness of fit is checked. Furthermore, the non-informative Jeffreys prior for the distribution parameters is derived and a hybrid Gibbs sampling strategy is proposed to sample the corresponding posterior for conducting an objective Bayesian analysis. Finally, related quantities such as the deposition flux density are derived where the general pattern of the observed data appears to follow the fitted densities closely.

  10. Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal

    SciTech Connect

    Sarin, M.M.; Krishnaswami, S.; Dilli, K.; Somayajulu, B.L.K. ); Moore, W.S. )

    1989-05-01

    The Ganga-Brahmaputra, one of the worlds's largest river systems, is first in terms of sediment transport and fourth in terms of water discharge. A detailed and systematic study of the major ion chemistry of these rivers and their tributaries, as well as the clay mineral composition of the bed sediments has been conducted. The chemistry of the highland rivers are all dominated by carbonate weathering; (Ca + Mg) and HCO{sub 3} account for about 80% of the cations and anions. In the lowland rivers, HCO{sub 3} excess over (Ca + Mg) and a relatively high contribution of (Na + K) to the total cations indicate that silicate weathering and/or contributions from alkaline/saline soils and ground waters could be important sources of major ions to these waters. The chemistry of the Ganga and the Yamuna in the lower reaches is by and large dictated by the chemistry of their tributaries and their mixing proportions. The highland rivers weather acidic rocks, whereas the others flow initially through basic effusives. The Ganga-Brahmaputra river system transports about 130 million tons of dissolved salts to the Bay of Bengal, which is nearly 3% of the global river flux to the oceans. The chemical denudation rates for the Ganga and the Brahmaputra basins are about 72 and 105 tons{center dot}km{sup {minus}2}{center dot}yr{sup {minus}1}, respectively, which are factors of 2 to 3 higher than the global average. The high denudation rate, particularly in the Brahmaputra, is attributable to high relief and heavy rainfall.

  11. Electron impact and chemical ionization mass spectral analysis of a volatile uranyl derivative

    SciTech Connect

    Reutter, D.J.; Hardy, D.R.

    1981-01-01

    Quadrupole mass spectral analysis of the volatile uranium ligand complex bis (1,1,1,5,5,5-hexafluoro-2,4-pentanedionato) dioxouranium-di-n-butyl sulfoxide is described utilizing electron impact (EI) and methane chemical ionization (CI) ion sources. All major ions are tentatively identified and the potential usefulness of this complex for determining uranium isotope /sup 235/U//sup 238/U abundance is demonstrated.

  12. Hexahydrated magnesium ions bind in the deep major groove and at the outer mouth of A-form nucleic acid duplexes.

    SciTech Connect

    Robinson, H.; Gao, Y.-G.; Sanishvili, R.; Joachimiak, A.; Wang, A. H.-J.; Univ. of Illinois; Northwestern Univ.

    2000-01-01

    Magnesium ions play important roles in the structure and function of nucleic acids. Whereas the tertiary folding of RNA often requires magnesium ions binding to tight places where phosphates are clustered, the molecular basis of the interactions of magnesium ions with RNA helical regions is less well understood. We have refined the crystal structures of four decamer oligonucleotides, d(ACCGGCCGGT), r(GCG)d(TATACGC), r(GC)d(GTATACGC) and r(G)d(GCGTATACGC) with bound hexahydrated magnesium ions at high resolution. The structures reveal that A-form nucleic acid has characteristic [Mg(H2O)6]2+ binding modes. One mode has the ion binding in the deep major groove of a GpN step at the O6/N7 sites of guanine bases via hydrogen bonds. Our crystallographic observations are consistent with the recent NMR observations that in solution [Co(NH3)6]3+, a model ion of [Mg(H2O)6]2+, binds in an identical manner. The other mode involves the binding of the ion to phosphates, bridging across the outer mouth of the narrow major groove. These [Mg(H2O)6]2+ ions are found at the most negative electrostatic potential regions of A-form duplexes. We propose that these two binding modes are important in the global charge neutralization, and therefore stability, of A-form duplexes.

  13. Trophic dynamics of shrinking Subarctic lakes: naturally eutrophic waters impart resilience to rising nutrient and major ion concentrations.

    PubMed

    Lewis, Tyler L; Heglund, Patricia J; Lindberg, Mark S; Schmutz, Joel A; Schmidt, Joshua H; Dubour, Adam J; Rover, Jennifer; Bertram, Mark R

    2016-06-01

    Shrinking lakes were recently observed for several Arctic and Subarctic regions due to increased evaporation and permafrost degradation. Along with lake drawdown, these processes often boost aquatic chemical concentrations, potentially impacting trophic dynamics. In particular, elevated chemical levels may impact primary productivity, which may in turn influence populations of primary and secondary consumers. We examined trophic dynamics of 18 shrinking lakes of the Yukon Flats, Alaska, that had experienced pronounced increases in nutrient (>200 % total nitrogen, >100 % total phosphorus) and ion concentrations (>100 % for four major ions combined) from 1985-1989 to 2010-2012, versus 37 stable lakes with relatively little chemical change over the same period. We found that phytoplankton stocks, as indexed by chlorophyll concentrations, remained unchanged in both shrinking and stable lakes from the 1980s to 2010s. Moving up the trophic ladder, we found significant changes in invertebrate abundance across decades, including decreased abundance of five of six groups examined. However, these decadal losses in invertebrate abundance were not limited to shrinking lakes, occurring in lakes with stable surface areas as well. At the top of the food web, we observed that probabilities of lake occupancy for ten waterbird species, including adults and chicks, remained unchanged from the period 1985-1989 to 2010-2012. Overall, our study lakes displayed a high degree of resilience to multi-trophic cascades caused by rising chemical concentrations. This resilience was likely due to their naturally high fertility, such that further nutrient inputs had little impact on waters already near peak production. PMID:26857253

  14. The major-ion composition of Cenozoic seawater: the past 36 million years from fluid inclusions in marine halite

    USGS Publications Warehouse

    Brennan, Sean T.; Lowenstein, Tim K.; Cendon, Dioni I.

    2013-01-01

    Fluid inclusions from ten Cenozoic (Eocene-Miocene) marine halites are used to quantify the major-ion composition (Mg2+, Ca2+, K+, Na+, SO42−, and Cl−) of seawater over the past 36 My. Criteria used to determine a seawater origin of the halites include: (1) stratigraphic, sedimentologic, and paleontologic observations; (2) Br− in halite; (3) δ34S of sulfate minerals; (4) 87Sr/86Sr of carbonates and sulfates; and (5) fluid inclusion brine compositions and evaporation paths, which must overlap from geographically separated basins of the same age to confirm a “global” seawater chemical signal. Changes in the major-ion chemistry of Cenozoic seawater record the end of a systematic, long term (>150 My) shift from the Ca2+-rich, Mg2+- and SO42−-poor seawater of the Mesozoic (“CaCl2 seas”) to the “MgSO4 seas” (with higher Mg2+ and SO42−>Ca2+) of the Cenozoic. The major ion composition of Cenozoic seawater is calculated for the Eocene-Oligocene (36-34 Ma), Serravallian-Tortonian (13.5-11.8 Ma) and the Messinian (6-5 Ma), assuming chlorinity (565 mmolal), salinity, and the K+ concentration (11 mmolal) are constant and the same as in modern seawater. Fluid inclusions from Cenozoic marine halites show that the concentrations of Mg2+and SO42− have increased in seawater over the past 36 My and the concentration of Ca2+ has decreased. Mg2+ concentrations increased from 36 mmolal in Eocene-Oligocene seawater (36-34 Ma) to 55 mmolal in modern seawater. The Mg2+/Ca2+ ratio of seawater has risen from ∼2.3 at the end of the Eocene, to 3.4 and 4.0, respectively, at 13.5 to 11.8 Ma and 6 to 5 Ma, and to 5 in modern seawater. Eocene-Oligocene seawater (36-34 Ma) has estimated ranges of SO42− = 14–23 mmolal and Ca2+ = 11–20 mmolal. If the (Ca2+)(SO42−) product is assumed to be the same as in modern seawater (∼300 mmolal2), Eocene-Oligocene seawater had Ca2+ ∼16 mmolal and SO42− ∼19 mmolal. The same estimates of Ca2+ and SO42− for Serravallian

  15. Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Sarin, M. M.; Krishnaswami, S.; Dilli, K.; Somayajulu, B. L. K.; Moore, W. S.

    1989-05-01

    The Ganga-Brahmaputra, one of the world's largest river systems, is first in terms of sediment transport and fourth in terms of water discharge. A detailed and systematic study of the major ion chemistry of these rivers and their tributaries, as well as the clay mineral composition of the bed sediments has been conducted. The chemistry of the highland rivers (upper reaches of the Ganga, the Yamuna, the Brahmaputra, the Gandak and the Ghaghra) are all dominated by carbonate weathering; (Ca + Mg) and HCO 3 account for about 80% of the cations and anions. In the lowland rivers (the Chambal, the Betwa and the Ken), HCO 3 excess over (Ca + Mg) and a relatively high contribution of (Na + K) to the total cations indicate that silicate weathering and/or contributions from alkaline/saline soils and groundwaters could be important sources of major ions to these waters. The chemistry of the Ganga and the Yamuna in the lower reaches is by and large dictated by the chemistry of their tributaries and their mixing proportions. Illite is the dominant clay mineral (about 80%) in the bedload sediments of the highland rivers. Kaolinite and chlorite together constitute the remaining 20% of the clays. In the Chambal, Betwa and Ken, smectite accounts for about 80% of the clays. This difference in the clay mineral composition of the bed sediments is a reflection of the differences in the geology of their drainage basins. The highland rivers weather acidic rocks, whereas the others flow initially through basic effusives. The Ganga-Brahmaputra river system transports about 130 million tons of dissolved salts to the Bay of Bengal, which is nearly 3% of the global river flux to the oceans. The chemical denudation rates for the Ganga and the Brahmaputra basins are about 72 and 105 tons· km -· yr -1, respectively, which are factors of 2 to 3 higher than the global average. The high denudation rate, particularly in the Brahmaputra, is attributable to high relief and heavy rainfall.

  16. Predicting the toxicity of major ions in seawater to mysid shrimp (Mysidopsis bahia), sheepshead minnow (Cyprinodon variegatus), and inland silverside minnow (Menidia beryllina)

    SciTech Connect

    Pillard, D.A.; DuFresne, D.L.; Caudle, D.D.; Tietge, J.E.; Evans, J.M.

    2000-01-01

    Although marine organisms are naturally adapted to salinities well above those of freshwater, elevated concentrations of specific ions have been shown to cause adverse effects on some saltwater species. Because some ions are also physiologically essential, a deficiency of these ions can also cause significant effects. To provide a predictive tool to assess toxicity associated with major ions, mysid shrimp (Mysidopsis bahia), sheepshead minnows (Cyprinodon variegatus), and inland silverside minnows (Menidia beryllina) were exposed to saline solutions containing calcium, magnesium, potassium, strontium, bicarbonate, borate, bromide, and sulfate at concentrations above and below what would be found in seawater. Solution salinity was maintained at approximately 31% by increasing or decreasing sodium and chloride concentrations. Logistic regression models were developed with both the ion molar concentrations and ion activity. Toxicity to all three species was observed when either a deficiency or an excess of potassium and calcium occurred. Significant mortality occurred in all species when exposed to excess concentrations of magnesium, bicarbonate, and borate. The response to the remaining ions varied with species. Sheepshead minnows were the most tolerant of both deficient and elevated levels of the different ions. Mysid shrimp and inland silverside minnows demonstrated similar sensitivities to several ions, but silverside minnow response was more variable. As a result, the logistic models that predict inland silverside minnow survival generally were less robust than for the other two species.

  17. Hydro-chemical evolution of groundwater and mixing between aquifers: a statistical approach based on major ions

    NASA Astrophysics Data System (ADS)

    Sun, Linhua; Gui, Herong

    2015-03-01

    Geochemical analysis is a useful tool in hydrogeological assessment, particularly in constructing a conceptual model of a hydrogeological system. In this study, major ion concentrations of 53 groundwater samples from the coal-bearing aquifer in the Qidong coal mine, northern Anhui Province of China have been processed by statistical analysis for understanding either hydro-chemical characteristics or hydrological evolution, which will be useful for the safety of coal mining. The results suggest that most of the samples are Na-SO4 and Na-HCO3 types, and their hydro-chemical compositions are mainly controlled by dissolution of more soluble minerals (e.g. calcite) and weathering of silicate minerals (e.g. plagioclase). Two groups of samples have been subdivided by quantile and scatter plots of factor scores, one is related to different degrees of water-rock interactions and another is related to groundwater mixing. Moreover, four end members have been identified and the mixing calculation suggests that the groundwater samples affected by mixing have 20-100 % contribution from the loose layer aquifer (LA), and therefore, groundwater from the LA in the coal mine should be taken seriously during coal mining. The study demonstrated that statistical analysis is useful for connecting the hydrochemistry of groundwater with hydrological evolution of the aquifer.

  18. Tracing groundwater input into Lake Vanda, Wright Valley, Antarctica using major ions, stable isotopes and noble gas

    NASA Astrophysics Data System (ADS)

    Dowling, C. B.; Poreda, R. J.; Snyder, G. T.

    2008-12-01

    The McMurdo Dry Valleys (MDV), Antarctica, is the largest ice-free region on Antarctica. Lake Vanda, located in central Wright Valley, is the deepest lake among the MDV lakes. It has a relatively fresh water layer above 50 m with a hypersaline calcium-chloride brine below (50-72 m). The Onyx River is the only stream input into Lake Vanda. It flows westward from the coastal Lower Wright Glacier and discharges into Lake Vanda. Suggested by the published literature and this study, there has been and may still be groundwater input into Lake Vanda. Stable isotopes, major ions, and noble gas data from this study coupled with previously published data indicate that the bottom waters of Lake Vanda have had significant contributions from a deep groundwater system. The dissolved gas of the bottom waters of Lake Vanda display solubility concentrations rather than the Ar-enriched dissolved gas seen in the Taylor Valley lakes (such as Lake Bonney). The isotopic data indicate that the bottom calcium-chloride-brine of Lake Vanda has undergone very little evaporation. The calcium-chloride chemistry of the groundwater that discharges into Lake Vanda most likely results from the chemical weathering and dissolution of cryogenic evaporites (antarcticite and gypsum) within the glacial sediments of Wright Valley. The high calcium concentrations of the brine have caused gypsum to precipitate on the lake bottom. Our work also supports previous physical and chemical observations suggesting that the upper portion actively circulates and the hypersaline bottom layer does not. The helium and calcium chloride values are concentrated at the bottom, with a very narrow transition layer between it and the above fresh water. If the freshwater layer did not actively circulate, then diffusion over time would have caused the helium and calcium chloride to slowly permeate upwards through the water column.

  19. Variability of Near-stream, Sub-surface Major-ion and Tracer Concentrations in an Acid Mine Drainage Environment

    NASA Astrophysics Data System (ADS)

    Bencala, K. E.; Kimball, B. A.; Runkel, R. L.

    2006-12-01

    In acid mine drainage environments, tracer-injection and synoptic sampling approaches provide tools for making operational estimates of solute loading within a stream segment. Identifying sub-surface contaminant sources remains a challenge both for characterization of in-stream metal loading and hydrological process research. There is a need to quantitatively define the character and source of contaminants entering streams from ground-water pathways, as well as the potential for changes in water chemistry and contaminant concentrations along these flow paths crossing the sediment-water interface. Complicating the identification of inflows is the mixing of solute sources which may occur in the `near-stream' subsurface areas and specifically along hyporheic exchange flows (HEFs). In Mineral Creek (Silverton, Colorado), major-ion (SO42-, Cl-, Na+, Ca2+, Mg2+) meter-scale sampling shows that subsurface inflows and likely HEFs occur in a hydro- geochemical setting of significant, one order-of-magnitude, spatial variation in the solute concentrations. Transient Storage Models (TSMs) are a tool for interpreting the in-stream responses of solute transport in streams influenced by hyporheic exchange flows. Simulations using the USGS TSM code OTIS are interpreted as suggesting that in Mineral Creek the strong concentration `tailing' of bromide following the tracer injection occurred, at least in part, from HEFs in a hydro - solute transport setting of likely multiple, dispersed and mixed sources of water along a 64 m sub-reach of the nominally gaining stream. In acid mine drainage environments, the ability to distinguish between local and deep solute sources is critical in modeling reactive transport along the stream, as well as in identifying the geochemical evolution of dispersed, subsurface inflows thorough the catchment.

  20. The volatile compound BinBase mass spectral database

    PubMed Central

    2011-01-01

    Background Volatile compounds comprise diverse chemical groups with wide-ranging sources and functions. These compounds originate from major pathways of secondary metabolism in many organisms and play essential roles in chemical ecology in both plant and animal kingdoms. In past decades, sampling methods and instrumentation for the analysis of complex volatile mixtures have improved; however, design and implementation of database tools to process and store the complex datasets have lagged behind. Description The volatile compound BinBase (vocBinBase) is an automated peak annotation and database system developed for the analysis of GC-TOF-MS data derived from complex volatile mixtures. The vocBinBase DB is an extension of the previously reported metabolite BinBase software developed to track and identify derivatized metabolites. The BinBase algorithm uses deconvoluted spectra and peak metadata (retention index, unique ion, spectral similarity, peak signal-to-noise ratio, and peak purity) from the Leco ChromaTOF software, and annotates peaks using a multi-tiered filtering system with stringent thresholds. The vocBinBase algorithm assigns the identity of compounds existing in the database. Volatile compound assignments are supported by the Adams mass spectral-retention index library, which contains over 2,000 plant-derived volatile compounds. Novel molecules that are not found within vocBinBase are automatically added using strict mass spectral and experimental criteria. Users obtain fully annotated data sheets with quantitative information for all volatile compounds for studies that may consist of thousands of chromatograms. The vocBinBase database may also be queried across different studies, comprising currently 1,537 unique mass spectra generated from 1.7 million deconvoluted mass spectra of 3,435 samples (18 species). Mass spectra with retention indices and volatile profiles are available as free download under the CC-BY agreement (http

  1. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat.

    PubMed

    Mandal, Sanchita; Thangarajan, Ramya; Bolan, Nanthi S; Sarkar, Binoy; Khan, Naser; Ok, Yong Sik; Naidu, Ravi

    2016-01-01

    Ammonia (NH3) volatilization is a major nitrogen (N) loss from the soil, especially under tropical conditions, NH3 volatilization results in low N use efficiency by crops. Incubation experiments were conducted using five soils (pH 5.5-9.0), three N sources such as, urea, di-ammonium phosphate (DAP), and poultry manure (PM) and two biochars such as, poultry litter biochar (PL-BC) and macadamia nut shell biochar (MS-BC). Ammonia volatilization was higher at soil with higher pH (pH exceeding 8) due to the increased hydroxyl ions. Among the N sources, urea recorded the highest NH3 volatilization (151.6 mg kg(-1)soil) followed by PM (124.2 mg kg(-1)soil) and DAP (99 mg kg(-1)soil). Ammonia volatilization was reduced by approximately 70% with PL-BC and MS-BC. The decreased NH3 volatilization with biochars is attributed to multiple mechanisms such as NH3 adsorption/immobilization, and nitrification. Moreover, biochar increased wheat dry weight and N uptake as high as by 24.24% and 76.11%, respectively. This study unravels the immense potential of biochar in decreasing N volatilization from soils and simultaneously improving use efficiency by wheat. PMID:25959224

  2. SPME-GC-MS versus Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) analyses for the study of volatile compound generation and oxidation status during dry fermented sausage processing.

    PubMed

    Olivares, Alicia; Dryahina, Kseniya; Navarro, José Luis; Smith, David; Spanĕl, Patrik; Flores, Mónica

    2011-03-01

    The use of selected ion flow tube mass spectrometry (SIFT-MS) and gas chromatography-mass spectrometry together with solid phase microextraction (GC-MS-SPME) has been compared in the analysis of volatile compounds during dry fermented sausage processing. Thus, the headspace (HS) of samples of dry fermented sausages with different fat contents was analyzed during their manufacture using both techniques, and significant and positive correlations were found between SIFT-MS and SPME-GC-MS measurements for the compounds pentanal, hexanal, 2-heptenal, octanal, 2-nonenal, 2-butanone, 2-pentanone, ethanol, acetic acid, and hexanoic acid. The oxidative status of fermented sausages during processing was also evaluated, and a significant correlation was obtained between the HS concentration of lipid autoxidation volatile compounds measured by SIFT-MS and SPME-GC-MS and the level of thiobarbituric acid reactive substances (TBARS) in the sausage. The hexanal measured by SIFT-MS resulted in a higher correlation coefficient (r = 0.936) than that obtained using SPME-GC-MS (r = 0.927). SIFT-MS is shown to be a fast, real time analytical technique for monitoring changes in the profile of volatile compounds in dry fermented sausages during processing and a useful tool to evaluate the oxidative status of meat products. PMID:21294565

  3. Estimates of average major ion concentrations in bulk precipitation at two high-altitude sites near the continental divide in Southwestern Colorado

    USGS Publications Warehouse

    Reddy, M.M.; Claassen, H.C.

    1985-01-01

    The composition of bulk precipitation from two high-altitude sites, established in 1971 near the Continental Divide in southwestern Colorado, has been monitored by season during the past decade. Calcium ions are the predominant cationic species; sulfate is the major anionic constituent. Bulk precipitation major ion concentrations exhibit log-normal distributions. Representative mean and standard deviation values for the major inorganic ionic species present in bulk precipitation have been calculated for three years of consecutive seasons. Standard deviations for all species, except nitrate, are similar. For two years of data grouped into quarters, deviations from mean values fall well within the plus or minus two standard deviation limit. There does not seem to be a systematic deviation from the mean concentration values, with respect to either ionic component or season.

  4. Major ions, nutrients, and trace elements in the Mississippi River near Thebes, Illinois, July through September 1993

    USGS Publications Warehouse

    Taylor, Howard E.; Antweiler, Ronald C.; Brinton, Terry I.; Roth, David A.; Moody, John A.

    1994-01-01

    Extensive flooding in the upper Mississippi River Basin during summer 1993 had a significant effect on the water quality of the Mississippi River. To evaluate the change in temporal distribution and transport of dissolved constituents in the Mississippi River, six water samples were collected by a discharge-weighted method from July through September 1993 near Thebes, Illinois. Sampling at this location provided water-quality information from the upper Mississippi, the Missouri, and the Illinois River Basins. Dissolved major constituents that were analyzed in each of the samples included bicarbonate, calcium (Ca), carbonate (CO3), chloride (C1), dissolved organic carbon, magnesium (Mg), potassium (K), silica (SiO2) , sodium (Na), and sulfate (SO4). Dissolved nutrients included ammonium ion (NH4), nitrate (NO3), nitrite (NO2), and orthophosphate (PO4). Dissolved trace elements included aluminum (A1), arsenic (As), barium (Ba), boron (B), beryllium (Be), bromide (Br), cadmium (Cd), chromium (Cr), cobalt, (Co), copper (Cu), fluoride (F), iron (Fe), lead, lithium (Li), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), strontium (Sr), thallium, uranium (U), vanadium (V), and zinc (Zn). Other physical properties of water that were measured included specific conductance, pH and suspended-sediment concentration (particle size, less than 63 micrometers). Results of this study indicated that large quantifies of dissolved constituents were transported through the river system. Generally, pH, alkalinity, and specific conductance and the concentrations of B, Br, Ca, C1, Cr, K, Li, Mg, Mo, Na, SO4, Sr, U, and V increased as water discharge decreased, while concentrations of F, Hg, and suspended sediment sharply decreased as water discharge decreased after the crest of the flood. Concentrations of other constituents, such as A1, As, Ba, Be, Co, Cu, Ni, NO3, NO2, NH4, PO 4, and SiO2, varied with time as discharge decreased after the crest of the flood. For most

  5. Principal Locations of Major-Ion, Trace-Element, Nitrate, and Escherichia coli Loading to Emigration Creek, Salt Lake County, Utah, October 2005

    USGS Publications Warehouse

    Kimball, Briant A.; Runkel, Robert L.; Walton-Day, Katherine

    2008-01-01

    Housing development and recreational activity in Emigration Canyon have increased substantially since 1980, perhaps causing an observed decrease in water quality of this northern Utah stream located near Salt Lake City. To identify reaches of the stream that contribute to water-quality degradation, a tracer-injection and synoptic-sampling study was done to quantify mass loading of major ions, trace elements, nitrate, and Escherichia coli (E. coli) to the stream. The resulting mass-loading profiles for major ions and trace elements indicate both geologic and anthropogenic inputs to the stream, principally from tributary and spring inflows to the stream at Brigham Fork, Burr Fork, Wagner Spring, Emigration Tunnel Spring, Blacksmith Hollow, and Killyon Canyon. The pattern of nitrate loading does not correspond to the major-ion and trace-element loading patterns. Nitrate levels in the stream did not exceed water-quality standards at the time of synoptic sampling. The majority of nitrate mass loading can be considered related to anthropogenic input, based on the field settings and trends in stable isotope ratios of nitrogen. The pattern of E. coli loading does not correspond to the major-ion, trace-element, or nitrate loading patterns. The majority of E. coli loading was related to anthropogenic sources based on field setting, but a considerable part of the loading also comes from possible animal sources in Killyon Canyon, in Perkins Flat, and in Rotary Park. In this late summer sampling, E. coli concentrations only exceeded water-quality standards in limited sections of the study reach. The mass-loading approach used in this study provides a means to design future studies and to evaluate the loading on a catchment scale.

  6. Origin of Volatiles in Earth: Indigenous Versus Exogenous Sources Based on Highly Siderophile, Volatile Siderophile, and Light Volatile Elements

    NASA Technical Reports Server (NTRS)

    Righter, K.; Danielson, L.; Pando, K. M.; Marin, N.; Nickodem, K.

    2015-01-01

    Origin of Earth's volatiles has traditionally been ascribed to late accretion of material after major differentiation events - chondrites, comets, ice or other exogenous sources. A competing theory is that the Earth accreted its volatiles as it was built, thus water and other building blocks were present early and during differentiation and core formation (indigenous). Here we discuss geochemical evidence from three groups of elements that suggests Earth's volatiles were acquired during accretion and did not require additional sources after differentiation.

  7. Comparing Single species Toxicity Tests to Mesocosm Community-Level Responses to Total Dissolved Solids Comprised of Different Major Ions

    EPA Science Inventory

    Total Dissolved Solids (TDS) dosing studies representing different sources of ions were conducted from 2011-2015. Emergence responses in stream mesocosms were compared to single-species exposures using a whole effluent testing (WET) format and an ex-situ method (single species te...

  8. A Test of a Major-ion Toxicity Model to Predict the Toxicity of Coal Bed Methane Product Waters to Aquatic Biota

    NASA Astrophysics Data System (ADS)

    Forbes, M. B.; Meyer, J. S.

    2003-12-01

    Coal bed methane (CBM) accounts for about 7.5% of the total natural gas production in the United States, and the Powder River Basin (PRB) in Montana and Wyoming has recently become a major production area. During CBM extraction, a coal seam is partially de-watered to relieve hydraulic pressure, thus causing methane gas to desorb. Some of this water (called product water) is discharged on the land surface and allowed to run into local drainages in the PRB. Due to the massive amounts of product water being discharged (rates up to 64,000 L/day per well), studies are needed to examine the potential effects on aquatic organisms. Additionally, models to predict such effects would be useful regulatory screening tools. To that end, we tested the ability of a multivariate logistic regression model of the toxicity of major inorganic ions (i.e., Na+, K+, Ca2+, Mg2+, Cl-, HCO3-, SO42-) to predict the acute toxicity of CBM-related waters to two aquatic invertebrates (Ceriodaphnia dubia and Daphnia magna) and fathead minnows (Pimephales promelas). First, we entered water chemistry data for several CBM product and receiving waters from the PRB into the major-ion model. Then we compared the model's predicted survival to the survival of the three species in toxicity tests we had previously conducted with those waters. For the majority of CBM product water and stream water samples in which CBM product water constituted the entire flow of the stream, the major-ion model consistently under-predicted survival by >50%. Therefore, from a regulatory standpoint, this model is conservative for detecting toxicity of CBM product waters (i.e., it over-predicts toxicity). Although the model appeared to be an excellent predictor of survival for receiving waters that contained no inputs from CBM processing (i.e., the difference between predicted and observed survival was <=10%), the majority of those cases were inconclusive tests of the model because the predicted and observed survival were

  9. Quantify the loss of major ions induced by CO2 enrichment and nitrogen addition in subtropical model forest ecosystems

    NASA Astrophysics Data System (ADS)

    Liu, Juxiu; Zhang, Deqiang; Huang, Wenjuan; Zhou, Guoyi; Li, Yuelin; Liu, Shizhong

    2014-04-01

    Previous studies have reported that atmospheric CO2 enrichment would increase the ion concentrations in the soil water. However, none of these studies could exactly quantify the amount of ion changes in the soil water induced by elevated CO2 and all of these experiments were carried out only in the temperate areas. Using an open-top chamber design, we studied the effects of CO2 enrichment alone and together with nitrogen (N) addition on soil water chemistry in the subtropics. Three years of exposure to an atmospheric CO2 concentration of 700 ppm resulted in accelerated base cation loss via leaching water below the 70 cm soil profile. The total of base cation (K+ + Na+ + Ca2+ + Mg2+) loss in the elevated CO2 treatment was higher than that of the control by 220%, 115%, and 106% in 2006, 2007, and 2008, respectively. The N treatment decreased the effect of high CO2 treatment on the base cation loss in the leachates. Compared to the control, N addition induced greater metal cation (Al3+ and Mn2+) leaching loss in 2008 and net Al3+ and Mn2+ loss in the high N treatment increased by 100% and 67%, respectively. However, the CO2 treatment decreased the effect of high N treatment on the metal cation loss. Changes of ion export followed by the exposure to the elevated CO2, and N treatments were related to both ion concentrations and leached water amount. We hypothesize that forests in subtropical China might suffer from nutrient limitation and some poisonous metal activation in plant biomass under future global change.

  10. Atmospheric trace element and major ion concentrations over the eastern Mediterranean Sea: Identification of anthropogenic source regions

    NASA Astrophysics Data System (ADS)

    Güllü, Gülen; Doğan, Güray; Tuncel, Gürdal

    Concentrations of elements and ions measured in aerosol samples collected from March 1992 to the end of December 1993 were investigated to identify source regions affecting chemical composition of aerosols in the eastern Mediterranean atmosphere. Collected samples were analyzed for approximately 40 elements and ions using a combination of atomic absorption spectrometry, instrumental neutron activation analysis, ion chromatography and colorimetry. Statistical techniques, such as enrichment factors and a non-parametric bootstrapped potential source contribution function, were applied on the data set to determine main source types and source regions of anthropogenic particles in the eastern Mediterranean basin. Source regions of two previously defined anthropogenic components, namely a long-range transported component and a local pollution component, were identified. The main source areas for pollutants reaching the eastern Mediterranean basin were determined as southern and western parts of Turkey, central and eastern regions of Ukraine, east of Belarus, Greece, Georgia, Romania, coastal areas along France and Spain and coastal areas around the Black Sea, Russia. More distant source regions in the South of UK and Sweden, the central part of Algeria, the northeastern part of Turkey, Russia, Germany, Hungary, Czech Republic, Bosnia and Herzegovina, and coastal areas of Egypt, Israel and Italy do affect aerosol composition in the eastern Mediterranean, but transport from these regions cannot account for the highest 20% of the measured pollutant concentrations.

  11. The study of capacity fading processes of Li-ion batteries: major factors that play a role

    NASA Astrophysics Data System (ADS)

    Markovsky, B.; Rodkin, A.; Cohen, Y. S.; Palchik, O.; Levi, E.; Aurbach, D.; Kim, H.-J.; Schmidt, M.

    In this work, we studied the impact of some factors on the behavior of practical electrodes of Li-ion batteries. These included elevated temperatures (45-80 °C), prolonged storage of Li-ion cells, and additives in the electrolyte solution. The Li-ion battery systems studied included negative electrodes (anodes) comprising of mesocarbon microbeads (MCMB) and mesocarbon fibers (MCF), and Li xCoO 2 positive electrodes (cathodes) in an ethylene carbonate (EC)/ethyl-methyl carbonate (EMC) (1:2)/LiPF 6 1 M solution. Vinylene carbonate (VC) and a Li-organo-borate complex (Li-OBC) were tested as additives. It is shown that the electrochemical response of Li-C negative electrodes depends on the structure of the surface films controlling their behavior, which change upon storage, temperature, and cycling. We established that impedance of these electrodes increased with storage time due to the enrichment of the surface films by LiF and other fluorine-containing species. The capacity fading of the Li xCoO 2 electrodes in cycling/storage processes at elevated temperatures relates mostly to surface phenomena, whereas the bulk structural characteristics of the electrodes do not change.

  12. A high-resolution time-of-flight chemical ionization mass spectrometer utilizing hydronium ions (H3O+ ToF-CIMS) for measurements of volatile organic compounds in the atmosphere

    NASA Astrophysics Data System (ADS)

    Yuan, Bin; Koss, Abigail; Warneke, Carsten; Gilman, Jessica B.; Lerner, Brian M.; Stark, Harald; de Gouw, Joost A.

    2016-07-01

    Proton transfer reactions between hydronium ions (H3O+) and volatile organic compounds (VOCs) provide a fast and highly sensitive technique for VOC measurements, leading to extensive use of proton-transfer-reaction mass spectrometry (PTR-MS) in atmospheric research. Based on the same ionization approach, we describe the development of a high-resolution time-of-flight chemical ionization mass spectrometer (ToF-CIMS) utilizing H3O+ as the reagent ion. The new H3O+ ToF-CIMS has sensitivities of 100-1000 cps ppb-1 (ion counts per second per part-per-billion mixing ratio of VOC) and detection limits of 20-600 ppt at 3σ for a 1 s integration time for simultaneous measurements of many VOC species of atmospheric relevance. The ToF analyzer with mass resolution (m/Δm) of up to 6000 allows the separation of isobaric masses, as shown in previous studies using similar ToF-MS. While radio frequency (RF)-only quadrupole ion guides provide better overall ion transmission than ion lens system, low-mass cutoff of RF-only quadrupole causes H3O+ ions to be transmitted less efficiently than heavier masses, which leads to unusual humidity dependence of reagent ions and difficulty obtaining a humidity-independent parameter for normalization. The humidity dependence of the instrument was characterized for various VOC species and the behaviors for different species can be explained by compound-specific properties that affect the ion chemistry (e.g., proton affinity and dipole moment). The new H3O+ ToF-CIMS was successfully deployed on the NOAA WP-3D research aircraft for the SONGNEX campaign in spring of 2015. The measured mixing ratios of several aromatics from the H3O+ ToF-CIMS agreed within ±10 % with independent gas chromatography measurements from whole air samples. Initial results from the SONGNEX measurements demonstrate that the H3O+ ToF-CIMS data set will be valuable for the identification and characterization of emissions from various sources, investigation of secondary

  13. Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: a case study from northwestern Saudi Arabia.

    PubMed

    Zaidi, Faisal K; Nazzal, Yousef; Jafri, Muhammad Kamran; Naeem, Muhammad; Ahmed, Izrar

    2015-10-01

    Assessment of groundwater quality is of utmost significance in arid regions like Saudi Arabia where the lack of present-day recharge and high evaporation rates coupled with increasing groundwater withdrawal may restrict its usage for domestic or agricultural purposes. In the present study, groundwater samples collected from agricultural farms in Hail (15 samples), Al Jawf (15 samples), and Tabuk (30 samples) regions were analyzed for their major ion concentration. The objective of the study was to determine the groundwater facies, the main hydrochemical process governing the groundwater chemistry, the saturation index with respect to the principal mineral phases, and the suitability of the groundwater for irrigational use. The groundwater samples fall within the Ca-Cl type, mixed Ca-Mg-Cl type, and Na-Cl type. Evaporation and reverse ion exchange appear to be the major processes controlling the groundwater chemistry though reverse ion exchange process is the more dominating factor. The various ionic relationships confirmed the reverse ion exchange process where the Ca and Mg in the aquifer matrix have been replaced by Na at favorable exchange sites. This phenomenon has accounted for the dominance of Ca and Mg ions over Na ion at all the sites. The process of reverse ion exchange was further substantiated by the use of modified Piper diagram (Chadha's classification) and the chloro-alkaline indices. Evaporation as a result of extreme aridity has resulted in the groundwater being oversaturated with aragonite/calcite and dolomite as revealed by the saturation indices. The groundwater samples were classified as safe (less than 10) in terms of sodium adsorption ratio (SAR) values, good (less than 1.25) in terms of residual sodium carbonate (RSC) values, and safe to moderate (between 0 and 3) in terms of Mg hazard for irrigation purposes. Though the high salinity groundwater in the three regions coupled with low SAR values are good for the soil structure, it can have a

  14. Parallel single-species and stream mesocosm exposures for grading major ion effects in doses mimicking energy extraction produced waters

    EPA Science Inventory

    Excess TDS/Major Ionic Stress/Elevated Conductivities appeared increasing in streams in Central and Eastern Appalachia. Direct discharges from permitted point sources and regional interest in setting eco-based effluent guidelines/aquatic life criteria, as well as potential differ...

  15. The major ion, 87Sr/86Sr, and δ11B geochemistry of groundwater in the Wyodak-Anderson coal bed aquifer (Powder River Basin, Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Lemarchand, Damien; Jacobson, Andrew D.; Cividini, Damien; Chabaux, François

    2015-11-01

    We developed a multicomponent, 1D advective transport model that describes the downgradient evolution of solute concentrations, 87Sr/86Sr ratios, and δ11B values in the Wyodak-Anderson Coal Bed (WACB) aquifer located in the Powder River Basin, Wyoming, USA. The purpose of the study was to evaluate the chemical vulnerability of groundwater to potential environmental change stemming from the extraction of coal bed methane and shale gas. Model calculations demonstrate that coupling between microbial activity and the dissolved carbonate system controls major ion transport in the WACB aquifer. The analysis of 87Sr/86Sr ratios further reveals the importance of ion-exchange reactions. Similarly, δ11B data emphasize the significance of pH-dependent surface reactions and demonstrate the vulnerability of the aquifer to the long-term acidification of recharge water.

  16. Analysis of the volatile compounds in Senecio scandens Buch-Ham by gas chromatography-tandem mass spectrometry based on diversified scan technologies.

    PubMed

    Li, Sensen; Su, Yue; Guo, Yinlong

    2011-01-01

    Static headspace gas chromatography-tandem mass spectrometry was used to identify volatile compounds from Senecio scandens Buch-Ham. The elemental composition of compounds was confirmed by exploiting the tandem mass spectra of isotopic peaks from the precursor ion. Some isomers were well distinguished by the diversified scan technologies of tandem mass spectrometry (MS/MS). The MS/MS included a product ion scan, a precursor ion scan and a neutral loss scan. The results showed that 46 volatile compounds were completely identified, and the great of majority compounds were α-pinene (11.93%), n-caproaldehyde (9.02%) and dehydrosabinene (6.22%). This qualitative method is convenient and accurate and can be considered as a complementary identification method for the qualitative analysis of volatile compounds in complex samples. PMID:22006636

  17. CHARACTERISTICS OF ACIDITY AND MAJOR ION CONCENTRATION OF SNOWFALL, SNOWPACK AND SNOWMELT WATER IN THE TEMPERATE SNOW AREA

    NASA Astrophysics Data System (ADS)

    Asaoka, Yoshihiro; Takeuchi, Yukari

    This paper describes the acidity and main ion concentration of snowfall, snowpack and snowmelt water in the temperate snow area. In order to understand the variation of snow water quality and its relationship among snow, snowpack and snowmelt, snow monitoring and chemical measurement were conducted from December 2008 to March 2009 at Tohkamachi experiment site. As a result, the both of snowfall and snowmelt were high acidity and their average were around 4.6 and 5.0, individually. However, high frequencies of rainfall and snowmelt occurrence during winter decrease the high acidity of snowpack and snowmelt water since they prevent the chemical matter from depositing in the snowpack layer. Moreover, it is suspected that the soil component from Eurasia continent contained in the snow particle also decrease the high acidity of snowfall and snowpack.

  18. The use of laboratory-determined ion exchange parameters in the predictive modelling of field-scale major cation migration in groundwater over a 40-year period.

    PubMed

    Carlyle, Harriet F; Tellam, John H; Parker, Karen E

    2004-01-01

    An attempt has been made to estimate quantitatively cation concentration changes as estuary water invades a Triassic Sandstone aquifer in northwest England. Cation exchange capacities and selectivity coefficients for Na(+), K(+), Ca(2+), and Mg(2+) were measured in the laboratory using standard techniques. Selectivity coefficients were also determined using a method involving optimized back-calculation from flushing experiments, thus permitting better representation of field conditions; in all cases, the Gaines-Thomas/constant cation exchange capacity (CEC) model was found to be a reasonable, though not perfect, first description. The exchange parameters interpreted from the laboratory experiments were used in a one-dimensional reactive transport mixing cell model, and predictions compared with field pumping well data (Cl and hardness spanning a period of around 40 years, and full major ion analyses in approximately 1980). The concentration patterns predicted using Gaines-Thomas exchange with calcite equilibrium were similar to the observed patterns, but the concentrations of the divalent ions were significantly overestimated, as were 1980 sulphate concentrations, and 1980 alkalinity concentrations were underestimated. Including representation of sulphate reduction in the estuarine alluvium failed to replicate 1980 HCO(3) and pH values. However, by including partial CO(2) degassing following sulphate reduction, a process for which there is 34S and 18O evidence from a previous study, a good match for SO(4), HCO(3), and pH was attained. Using this modified estuary water and averaged values from the laboratory ion exchange parameter determinations, good predictions for the field cation data were obtained. It is concluded that the Gaines-Thomas/constant exchange capacity model with averaged parameter values can be used successfully in ion exchange predictions in this aquifer at a regional scale and over extended time scales, despite the numerous assumptions inherent in

  19. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: Laboratory studies and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Holden, A. A.; Haque, S. E.; Mayer, K. U.; Ulrich, A. C.

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840 × 106 m3 and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~ 375 mg L- 1) and Na (~ 575 mg L- 1) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides — in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present

  20. Analysis of secondary organic aerosol using a Micro-Orifice Volatilization Impactor (MOVI) coupled to an ion trap mass spectrometer with atmospheric pressure chemical ionization (APCI-IT/MS)

    NASA Astrophysics Data System (ADS)

    Brueggemann, M.; Vogel, A.; Hoffmann, T.

    2012-04-01

    We describe the development and characterization of a Micro-Orifice Volatilization Impactor (MOVI) which is coupled to an ion trap mass spectrometer with atmospheric pressure chemical ionization (APCI-IT/MS), and its application in laboratory and field measurements. The MOVI-APCI-IT/MS allows the quantification of organic acids and other oxidation products of volatile organic compounds (VOCs) in secondary organic aerosols (SOA) on a semi-continuous basis. Furthermore, the vapor pressure and saturation concentration of the particle components can be estimated. The MOVI was first described in 2010 by Yatavelli and Thornton (Yatavelli and Thornton, 2010). It is a single stage, multi-nozzle impactor with 100 nozzles, each having a diameter of 150 μm. At a flow-rate of 10 L·min-1 air is drawn through the MOVI and particles are collected on a deposition plate. The cut-point diameter (d50, diameter of 50% collection efficiency) is at 130 nm. A low pressure-drop of only 5.3% of atmospheric pressure behind the nozzles allows collecting not only low-volatile but even semi-volatile compounds, which are an important part of SOA. After collecting particles hydrocarbon-free synthetic air is led over the collection surface into the APCI-IT/MS and the collection surface is heated up to 120 ° C in less than 200 s, volatilizing the sampled SOA. The vaporized compounds are transferred into the ion source and subsequently analyzed by mass spectrometry. Due to the soft ionization at atmospheric pressure the obtained mass spectra show only low fragmentations and can easily be interpreted. In laboratory experiments the MOVI-APCI-IT/MS was used for the chemical analysis of SOA generated from α-pinene-ozonolysis in a smog chamber. The limit of detection was found at 7.3 ng for pinic acid. The vapor pressure log p0 and the saturation concentration C25* for pinic acid were calculated from the desorption temperature using the method presented by Faulhaber et al. (Faulhaber et al., 2009

  1. [Composition characteristics and source analysis of major ions in four small lake-watersheds on the Tibetan Plateau, China].

    PubMed

    Li, He; Li, Jun; Liu, Xiao-Long; Yang, Xi; Zhang, Wei; Wang, Jie; Niu, Ying-Quan

    2015-02-01

    To investigate the ionic compositions of small lake-watersheds on the Tibetan Plateau, water samples from the brackish lakes (Pung Co (lake), Angrenjin Co and Dajia Co), the freshwater lake (Daggyaima Co), their inflowing rivers and the hot spring (Dagejia Geothermal Field), were collected during July-August 2013. The results showed that the major anions and cations of the brackish lakes were HCO3-, SO4(2-) and Na+, respectively, and the hydrochemical types were HCO3-SO4-Na and HCO3-Na. The major anions and cations of the inflowing rivers and the freshwater lake were HCO3-, SO4(2-) and Ca2+, Mg2+, respectively, and the hydrochemical types were HCO3-Ca, HCO3-Ca-Mg, HCO3-Mg-Ca, HCO3-SO4-Ca and SO4-HCO3- Ca. The major anions and cations of the hot spring were HCO3- and Na+, respectively, and the hydrochemical type was HCO3-Na. Water chemistry in the brackish lakes was primarily dominated by evaporation-crystallization processes, while the inflowing rivers and the freshwater lake were mainly influenced by carbonate weathering, and the hot spring was mainly controlled by hot water-granite interaction. Ca2+ was preferentially removed over Mg2+ from the water when carbonate minerals precipitation occured, which resulted in the high Mg2+/Ca2+ molar ratios of the brackish lakes. In the contribution of cation compositions, the largest contribution was carbonate weathering (54% - 79%), followed by silicate weathering (13% -29%) and evaperite dissolution (4% -23%), and the smallest was atmospheric input (3% - 7%). PMID:26031067

  2. Chemical weathering in the plain and peninsular sub-basins of the Ganga: Impact on major ion chemistry and elemental fluxes

    NASA Astrophysics Data System (ADS)

    Rai, Santosh K.; Singh, Sunil K.; Krishnaswami, S.

    2010-04-01

    Concentrations of major ions, Sr and 87Sr/ 86Sr have been measured in the Gomti, the Son and the Yamuna, tributaries of the Ganga draining its peninsular and plain sub-basins to determine their contribution to the water chemistry of the Ganga and silicate and carbonate erosion of the Ganga basin. The results show high concentrations of Na and Sr in the Gomti, the Yamuna and the Ganga (at Varanasi) with much of the Na in excess of Cl. The use of this 'excess Na' (Na∗ = Na riv - Cl riv) a common index of silicate weathering yield values of ˜18 tons km -2 yr -1 for silicate erosion rate (SER) in the Gomti and the Yamuna basins. There are however, indications that part of this Na∗ can be from saline/alkaline soils abundant in their basins, raising questions about its use as a proxy to determine SER of the Ganga plain. Independent estimation of SER based on dissolved Si as a proxy give an average value of ˜5 tons km -2 yr -1 for the peninsular and the plain drainages, several times lower than that derived using Na∗. The major source of uncertainty in this estimate is the potential removal of Si from rivers by biological and chemical processes. The Si based SER and CER (carbonate erosion rate) are also much lower than that in the Himalayan sub-basin of the Ganga. The lower relief, runoff and physical erosion in the peninsular and the plain basins relative to the Himalayan sub-basin and calcite precipitation in them all could be contributing to their lower erosion rates. Budget calculations show that the Yamuna, the Son and Gomti together account for ˜75% Na, 41% Mg and ˜53% Sr and 87Sr of their supply to the Ganga from its major tributaries, with the Yamuna dominating the contribution. The results highlight the important role of the plain and peninsular sub-basins in determining the solute and Sr isotope budgets of the Ganga. The study also shows that the anthropogenic contribution accounts for ⩽10% of the major ion fluxes of the Ganga at Rajmahal during high

  3. Application of δ(18)O, δ(13)CDIC, and major ions to evaluate micropollutant sources in the Bay of Vidy, Lake Geneva.

    PubMed

    Halder, Janine; Pralong, Charles; Bonvin, Florence; Lambiel, Frederic; Vennemann, Torsten W

    2016-01-01

    Waters were sampled monthly from a profile at the wastewater outlet and a reference point in the Bay of Vidy (Lake Geneva) for a year. The samples were analyzed for (18)O/(16)O of water, (13)C/(12)C of dissolved inorganic carbon (DIC), major ions, and selected micropollutant concentrations. δ(18)O values, combined with the major ion concentrations, allowed discharged waste and storm-drainage water to be traced within the water column. On the basis of δ(18)O values, mole fractions of wastewater (up to 45 %), storm-drainage (up to 16 %), and interflowing Rhône River water (up to 34 %) could be determined. The results suggest that the stormwater fractions do not influence micropollutant concentrations in a measurable way. In contrast, the Rhône River interflow coincides with elevated concentrations of Rhône River-derived micropollutants in some profiles. δ(13)C values of DIC suggest that an increase in micropollutant concentrations at the sediment-water interface could be related to remineralization processes or resuspension. PMID:25358053

  4. Conference on Planetary Volatiles

    NASA Technical Reports Server (NTRS)

    Hrametz, K.; Kofler, L.

    1982-01-01

    Initial and present volatile inventories and distributions in the Earth, other planets, meteorites, and comets; observational evidence on the time history of volatile transfer among reservoirs; and volatiles in planetary bodies, their mechanisms of transport, and their relation to thermal, chemical, geological and biological evolution were addressed.

  5. Conference on Planetary Volatiles

    NASA Technical Reports Server (NTRS)

    Pepin, R. O. (Compiler); Oconnell, R. (Compiler)

    1982-01-01

    Initial and present volatile inventories and distributions in the Earth, other planets, meteorites, and comets; observational evidence on the time history of volatile transfer among reservoirs; and volatiles in planetary bodies, their mechanisms of transport, and their relation to thermal, chemical, geological and biological evolution are addressed.

  6. A one-year record of carbonaceous components and major ions in aerosols from an urban kerbside location in Oporto, Portugal.

    PubMed

    Custódio, Danilo; Cerqueira, Mário; Alves, Célia; Nunes, Teresa; Pio, Casimiro; Esteves, Valdemar; Frosini, Daniele; Lucarelli, Franco; Querol, Xavier

    2016-08-15

    PM2.5 aerosol samples were collected from January 2013 to January 2014 on the kerbside of a major arterial route in the city of Oporto, Portugal, and later analyzed for carbonaceous fractions and water soluble ions. The average concentrations of organic carbon (OC), elemental carbon (EC) and water soluble organic carbon (WSOC) in the aerosol were 6.2μg/m(3), 5.0μg/m(3) and 3.8μg/m(3), respectively, and fit within the range of values that have been observed close to major roads in Europe, Asia and North America. On average, carbonaceous matter accounted for 56% of the gravimetrically measured PM2.5 mass. The three carbon fractions exhibited a similar seasonal variation, with high concentrations in late autumn and in winter, and low concentrations in spring. SO4(2-) was the dominant water soluble ion, followed by NO3(-), NH4(+), Cl(-), Na(+), K(+), oxalate, Ca(2+), Mg(2+), formate, methanesulfonate and acetate. Some of these ions exhibited a clear seasonal trend during the study period. The average OC/EC ratio for the entire set of samples was 1.28±0.61, which was consistent with a significant influence of vehicle exhaust emissions on aerosol composition. On the other hand, the average WSOC/OC ratio was 0.67±0.23, reflecting the influence of other emitting sources. WSOC was highly correlated with nssK(+), a tracer of biomass combustion, and was not correlated with nssSO4(2-), a species associated with secondary processes, suggesting that the main source of WSOC was biomass burning. Most of the SO4(2-) was anthropogenic in origin and was closely associated with NH4(+), pointing to the formation of secondary aerosols. Na(+), Cl(-) and methanesulfonate were clearly associated with marine sources while NO3(-) was related with combustion of both fossil and non-fossil fuels. Mixed sources explained the occurrence of the other water soluble ions. PMID:27110993

  7. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: laboratory studies and reactive transport modeling.

    PubMed

    Holden, A A; Haque, S E; Mayer, K U; Ulrich, A C

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840×10(6) m(3) and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~375 mg L(-1)) and Na (~575 mg L(-1)) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides - in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present

  8. Effect of γ-irradiation on the volatile compounds of medicinal herb, Paeoniae Radix

    NASA Astrophysics Data System (ADS)

    Shim, Sung-Lye; Hwang, In-Min; Ryu, Keun-Young; Jung, Min-Seok; Seo, Hye-young; Kim, Hee-Yeon; Song, Hyun-Pa; Kim, Jae-Hun; Lee, Ju-Woon; Byun, Myung-Woo; Kwon, Joong-Ho; Kim, Kyong-Su

    2009-07-01

    A study was carried out to find the effect of γ-irradiation on contents of volatile compounds from medicinal herb, Paeoniae Radix ( Paenia albiflora Pallas var. trichocarpa Bunge). The volatile compounds of control, 1, 3, 5 and 10 kGy irradiated samples were extracted by simultaneous steam distillation and extraction (SDE) method and analyzed by gas chromatograph-mass spectrometer. The major volatile compounds were paeonol, ( E)-carveol, ( E, E)-2,4-octadienal, methyl salicylate, myrtanol and eugenol acetate. Volatile compounds belonging to chemical classes of acids, alcohols, aldehydes, esters, hydrocarbons and miscellaneous were identified in all experimental samples. The types of volatile compounds in irradiated samples were similar to those of non-irradiated sample and the concentrations of these compounds differed between treatments. 1,3-Bis (1,1-dimethylethyl)-benzene was identified by using the selected ion monitoring (GC/MS-SIM) mode. The concentration of this compound increased with the increase of irradiation dose level. These results suggest that it could be used as the base data for the effect of γ-irradiation on medicinal herb.

  9. Current status of fluoride volatility method development

    SciTech Connect

    Uhlir, J.; Marecek, M.; Skarohlid, J.

    2013-07-01

    The Fluoride Volatility Method is based on a separation process, which comes out from the specific property of uranium, neptunium and plutonium to form volatile hexafluorides whereas most of fission products (mainly lanthanides) and higher transplutonium elements (americium, curium) present in irradiated fuel form nonvolatile tri-fluorides. Fluoride Volatility Method itself is based on direct fluorination of the spent fuel, but before the fluorination step, the removal of cladding material and subsequent transformation of the fuel into a powdered form with a suitable grain size have to be done. The fluorination is made with fluorine gas in a flame fluorination reactor, where the volatile fluorides (mostly UF{sub 6}) are separated from the non-volatile ones (trivalent minor actinides and majority of fission products). The subsequent operations necessary for partitioning of volatile fluorides are the condensation and evaporation of volatile fluorides, the thermal decomposition of PuF{sub 6} and the finally distillation and sorption used for the purification of uranium product. The Fluoride Volatility Method is considered to be a promising advanced pyrochemical reprocessing technology, which can mainly be used for the reprocessing of oxide spent fuels coming from future GEN IV fast reactors.

  10. Major-ion chemistry, δ13C and 87Sr/86Sr as indicators of hydrochemical evolution and sources of salinity in groundwater in the Yuncheng Basin, China

    NASA Astrophysics Data System (ADS)

    Currell, Matthew J.; Cartwright, Ian

    2011-06-01

    Processes controlling hydrogeochemistry in the Yuncheng Basin, China, were characterised using major-ion chemistry, 87Sr/86Sr ratios and δ13C values. Evapotranspiration during recharge increased solute concentrations by factors of ˜5-50 in deep palaeowaters, while higher degrees of evapotranspiration have occurred in shallow, modern groundwater. Aquifer sediments (loess) contain approximately 15 weight% calcite; trends in groundwater HCO3 concentrations and δ13C values (ranging from -16.4 to -8.2‰) indicate that carbonate weathering is a significant source of DIC. Groundwater 87Sr/86Sr ratios (0.7110-0.7162, median of 0.7116) are similar to those in both loess carbonate (0.7109-0.7116) and local rainfall (0.7112), and are significantly lower than Sr in aquifer silicates (0.7184-0.7251). Despite evidence for substantial carbonate dissolution, groundwater is generally Ca-poor (< 10% of total cations) and Na-rich, due to cation exchange. Saturation with respect to carbonate minerals occurs during or soon after recharge (all calcite and dolomite saturation indices are positive). Subsequent carbonate dissolution in the deep aquifer must occur as a second-stage process, in response to Ca loss (by ion exchange) and/or via incongruent dissolution of dolomite and impure calcite. The latter is consistent with positive correlations between δ13C values and Mg/Ca and Sr/Ca ratios ( r 2 = 0.32 and 0.34).

  11. Aquifer wise seasonal variations and spatial distribution of major ions with focus on fluoride contamination-Pandharkawada block, Yavatmal district, Maharashtra, India.

    PubMed

    Pandith, Madhnure; Malpe, D B; Rao, A D; Rao, P N

    2016-02-01

    Seasonal variations in groundwater reveal lesser concentrations of major ions except NO3(-) during post-monsoon seasons in shallow aquifers as compared to deeper aquifers. The F(-) concentration from deeper aquifers is high in both seasons and shows a moderate positive relationship with weathering depth and is >5 mg/L in compound lava flow. Groundwater is mainly a Ca-HCO3 type in shallow aquifers and mixed type in deeper aquifers. Fluoride shows a positive correlation with pH, Na(+), HCO3(-) in shallow aquifers and an inverse correlation with Ca(2+) and HCO3(-) from deeper aquifers in both seasons. Approximately 45% of the samples are not suitable for drinking from both aquifers but suitable for irrigation purposes. Rock-water interaction, moderate alkalinity, sluggish movement, and higher residence time are the main causes for high F(-) in deeper aquifers as compared to shallow aquifers. As recommendations, drinking water requirement may be met from shallow aquifers/surface water and fluoride rich groundwater for other purposes. Most effective defluoridation techniques like ion exchange and reverse osmosis may be adopted along with integrated fluorosis mitigation measures and rooftop rainwater harvesting. Supplementary calcium and phosphorous rich food should be provided to children and creating awareness about safe drinking water habits, side effects of high F(-), and NO3(-) rich groundwater, improving oral hygiene conditions are other measures. PMID:26728981

  12. Major ion chemistry and dissolved inorganic carbon cycling in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China.

    PubMed

    Zhang, Shurong; Lu, X X; Sun, Huiguo; Han, Jingtai; Higgitt, David Laurence

    2009-04-01

    Major ion chemistry and dissolved inorganic carbon system (DIC, mainly HCO3(-) and gaseous CO2) in the Luodingjiang River, a mountainous tributary of the Zhujiang (Pearl River), China, were examined based on a seasonal and spatial sampling scheme in 2005. The diverse distribution of lithology and anthropogenic impacts in the river basin provided the basic idea to assess the effects of lithology vs. human activities on water chemistry and carbon biogeochemistry in river systems. Major ions showed great spatial variations, with higher concentrations of total dissolved solids (TDS) and DIC in the regions with carbonate rocks and clastic sedimentary rocks, while lower in the regions with metamorphic sandstones and schists as well as granites. pCO2 at all sampling sites was oversaturated in June, ranging with a factor from 1.6 to 18.8 of the atmospheric concentration, reflecting the enhanced contribution from baseflow and interflow influx as well as in situ oxidation of organic matter. However, in April and December, undersaturated pCO2 was found in some shallow, clean rivers in the upstream regions. delta13C of DIC has a narrow range from -9.07 to -13.59 per thousand, which was more depleted in the regions with metamorphic rocks and granites than in the carbonate regions. Seasonally, it was slightly more depleted in the dry season (December) than in the wet season (June). The results suggested that lithological variability had a dominant control on spatial variations of water chemistry and carbon geochemistry in river systems. Besides, anthropogenic activities, such as agricultural and urban activities and in-stream damming, as well as river physical properties, such as water depth and transparency, also indicated their impacts. The seasonal variations likely reflected the changes of hydrological regime, as well as metabolic processes in the river. PMID:19185905

  13. Assessment of major ions and heavy metals in groundwater: a case study from Guangzhou and Zhuhai of the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Lu, Yintao; Tang, Changyuan; Chen, Jianyao; Yao, Hong

    2016-06-01

    Anthropogenic activities in the Pearl River Delta (PRD) have caused a deterioration of groundwater quality over the past twenty years as a result of rapid urbanization and industrial development. In this study, the hydrochemical characteristics, quality, and sources of heavy metals in the groundwater of the PRD were investigated. Twenty-five groundwater samples were collected and analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), δ18O, δ2H, major ions, and heavy metals. The groundwater was slightly acidic and presented TDS values that ranged from 35.5 to 8,779.3 mg·L-1. The concentrations of the major ions followed the order Cl->HCO 3 - >Na+>SO 4 2- >NO 3 - >NH 4 + >Ca2+>K+>Mg2+>Fe2+/3+>Al3+. Ca-Mg-HCO3 and Na-K-HCO3 were the predominant types of facies, and the chemical composition of the groundwater was primarily controlled by chemical weathering of the basement rocks, by mixing of freshwater and seawater and by anthropogenic activities. The heavy metal pollution index (HPI) indicated that 64% of the samples were in the low category, 16% were in the medium category and 20% were in the high category, providing further evidence that this groundwater is unsuitable for drinking. Lead, arsenic, and manganese were mainly sourced from landfill leachate; cadmium from landfill leachate and agricultural wastes; mercury from the discharge of leachate associated with mining activities and agricultural wastes; and chromium primarily from industrial wastes. According to the irrigation water quality indicators, the groundwater in the PRD can be used for irrigation in most farmland without strong negative impacts. However, approximately 9 million people in the Guangdong Province are at risk due to the consumption of untreated water. Therefore, we suggest that treating the groundwater to achieve safer levels is necessary.

  14. First Identification of 5,11-Dideoxytetrodotoxin in Marine Animals, and Characterization of Major Fragment Ions of Tetrodotoxin and Its Analogs by High Resolution ESI-MS/MS

    PubMed Central

    Yotsu-Yamashita, Mari; Abe, Yuka; Kudo, Yuta; Ritson-Williams, Raphael; Paul, Valerie J.; Konoki, Keiichi; Cho, Yuko; Adachi, Masaatsu; Imazu, Takuya; Nishikawa, Toshio; Isobe, Minoru

    2013-01-01

    Even though tetrodotoxin (TTX) is a widespread toxin in marine and terrestrial organisms, very little is known about the biosynthetic pathway used to produce it. By describing chemical structures of natural analogs of TTX, we can start to identify some of the precursors that might be important for TTX biosynthesis. In the present study, an analog of TTX, 5,11-dideoxyTTX, was identified for the first time in natural sources, the ovary of the pufferfish and the pharynx of a flatworm (planocerid sp. 1), by comparison with totally synthesized (−)-5,11-dideoxyTTX, using high resolution ESI-LC-MS. Based on the presence of 5,11-dideoxyTTX together with a series of known deoxy analogs, 5,6,11-trideoxyTTX, 6,11-dideoxyTTX, 11-deoxyTTX, and 5-deoxyTTX, in these animals, we predicted two routes of stepwise oxidation pathways in the late stages of biosynthesis of TTX. Furthermore, high resolution masses of the major fragment ions of TTX, 6,11-dideoxyTTX, and 5,6,11-trideoxyTTX were also measured, and their molecular formulas and structures were predicted to compare them with each other. Although both TTX and 5,6,11-trideoxyTTX give major fragment ions that are very close, m/z 162.0660 and 162.1020, respectively, they are distinguishable and predicted to be different molecular formulas. These data will be useful for identification of TTXs using high resolution LC-MS/MS. PMID:23924959

  15. Integrated Chemical and Microorganism Monitoring of Air Using Gas Chromatography/Ion Mobility Spectometry: Toward an Expanded-Use Volatile Organic Analyzer (VOA)

    NASA Technical Reports Server (NTRS)

    Eiceman, G. A.

    1999-01-01

    The work described in this research program originated with the choice by NASA of an ion mobility spectrometer for air quality monitoring on-board the international spacestation. Though the gas chromatograph-ion mobility spectrometer analyzer known as VOA met or exceeded expectations, limitations in the basic understanding of response and the utilization of foundational principles into usable technology was considered unacceptable. In this research program, a comprehensive model for the origins of mobility spectra was proposed, tested and verified. The principles considered responsible for the appearance of mobility spectra have now been elucidated through this project. This understanding has been applied in automated identification of mobility spectra using neural networks and routine procedures for this now exist. Finally, the limitation on linear range has been shown to be a technical limitation and not a fundamental limitation so that a hardware component was crafted to extend the linear range of a mobility spectrometer by 10X. This project has led to one Ph.D. dissertation and one MS thesis. In addition, over ten public presentations at professional meetings and six journal publications have resulted from this program of research. The findings are so plentiful that total analysis of the findings may require four to six years or more. The findings confirm that the decision to use VOA was sound and that the chemical and physical principles of mobility spectrometry are both understandable and predictable.

  16. Extreme times for volatility processes

    NASA Astrophysics Data System (ADS)

    Masoliver, Jaume; Perelló, Josep

    2007-04-01

    Extreme times techniques, generally applied to nonequilibrium statistical mechanical processes, are also useful for a better understanding of financial markets. We present a detailed study on the mean first-passage time for the volatility of return time series. The empirical results extracted from daily data of major indices seem to follow the same law regardless of the kind of index thus suggesting an universal pattern. The empirical mean first-passage time to a certain level L is fairly different from that of the Wiener process showing a dissimilar behavior depending on whether L is higher or lower than the average volatility. All of this indicates a more complex dynamics in which a reverting force drives volatility toward its mean value. We thus present the mean first-passage time expressions of the most common stochastic volatility models whose approach is comparable to the random diffusion description. We discuss asymptotic approximations of these models and confront them to empirical results with a good agreement with the exponential Ornstein-Uhlenbeck model.

  17. Direct analysis of volatile organic compounds in human breath using a miniaturized cylindrical ion trap mass spectrometer with a membrane inlet.

    PubMed

    Riter, Leah S; Laughlin, Brian C; Nikolaev, Eugene; Cooks, R Graham

    2002-01-01

    Membrane introduction mass spectrometry (MIMS) coupled to a miniature mass spectrometer equipped with a cylindrical ion trap (CIT) analyzer was used to monitor the flavor components, 3-phenyl-2-propenal and methyl salicylate, found in cinnamon and wintergreen candies, respectively, directly from human breath. The poly(dimethylsiloxane) (PDMS) membrane was operated in a trap-and-release mode, where the temperature of the membrane was cycled during the experiments, which permitted temporal resolution of the two compounds of interest, facilitating their observation in the complex sample. Under these thermally driven conditions, the 10-90% rise times for both compounds are similar (15 s for methyl salicylate, 17 s for 3-phenyl-2-propenal), but the difference in diffusivity means that the signal for 3-phenyl-2-propenal is delayed and the 10% point occurs 6 s later than that for wintergreen. Additional specificity needed for complex samples was gained by using tandem mass spectrometry. PMID:12478583

  18. Determination of nanogram per liter concentrations of volatile organic compounds in water by capillary gas chromatography and selected ion monitoring mass spectrometry and its use to define groundwater flow directions in Edwards Aquifer, Texas

    USGS Publications Warehouse

    Buszka, P.M.; Rose, D.L.; Ozuna, G.B.; Groschen, G.E.

    1995-01-01

    A method has been developed to measure nanogram per liter amounts of selected volatile organic compounds (VOCs) including dichlorodifluoromethane, trichlorofluoromethane, cis-1,2-dichloroethene, trichloroethene, tetrachloroethene, and the isomers of dichlorobenzene in water. The method uses purge-and-trap techniques on a 100 mL sample, gas chromatography with a megabore capillary column, and electron impact, selected ion monitoring mass spectrometry. Minimum detection levels for these compounds ranged from 1 to 4 ng/L in water. Recoveries from organic-free distilled water and natural groundwater ranged from 70.5% for dichlorodifluoromethane to 107.8% for 1,4-dichlorobenzene. Precision was generally best for cis-1,2-dichloroethene, tetrachloroethene, and the dichlorobenzene isomers and worst for dichlorodifluoromethane and trichlorofluoromethane. Blank data indicated persistent, trace-level introduction of dichlorodifluoromethane, 1,4-dichlorobenzene, and tetrachloroemene to samples during storage and shipment at concentrations less than the method reporting limits. The largest concentrations of the selected VOCs in 27 water samples from the Edwards aquifer near San Antonio, TX, were from confined-zone wells near an abandoned landfill. The results defined a zone of water with no detectable VOCs in nearly all of the aquifer west of San Antonio and from part of the confined zone beneath San Antonio.

  19. The effect of H2O gas on volatilities of planet-forming major elements. I - Experimental determination of thermodynamic properties of Ca-, Al-, and Si-hydroxide gas molecules and its application to the solar nebula

    NASA Technical Reports Server (NTRS)

    Hashimoto, Akihiko

    1992-01-01

    The vapor pressures of Ca(OH)2(g), Al(OH)3(g), and Si(OH)4(g) molecules in equilibrium with solid calcium-, aluminum, and silicon-oxides, respectively, were determined, and were used to derive the heats of formation and entropies of these species, which are expected to be abundant under the currently postulated physical conditions in the primordial solar nebula. These data, in conjunction with thermodynamic data from literature, were used to calculate the relative abundances of M, MO(x), and M(OH)n gas species and relative volatilities of Fe, Mg, Si, Ca, and Al for ranges of temperature, total pressure, and H/O abundance ratio corresponding to the plausible ranges of physical conditions in the solar nebula. The results are used to explain how Ca and Al could have evaporated from Ca,Al-rich inclusions in carbonaceous chondrites, while Si, Mg, and Fe condensed onto them during the preaccretion alteration of CAIs.

  20. Volatile organic compound emissions from silage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols with other impor...

  1. Food price volatility

    PubMed Central

    Gilbert, C. L.; Morgan, C. W.

    2010-01-01

    The high food prices experienced over recent years have led to the widespread view that food price volatility has increased. However, volatility has generally been lower over the two most recent decades than previously. Variability over the most recent period has been high but, with the important exception of rice, not out of line with historical experience. There is weak evidence that grains price volatility more generally may be increasing but it is too early to say. PMID:20713400

  2. Characterization of major-ion chemistry and nutrients in headwater streams along the Appalachian National Scenic Trail and within adjacent watersheds, Maine to Georgia

    USGS Publications Warehouse

    Argue, Denise M.; Pope, Jason P.; Dieffenbach, Fred

    2012-01-01

    An inventory of water-quality data on field parameters, major ions, and nutrients provided a summary of water quality in headwater (first- and second-order) streams within watersheds along the Appalachian National Scenic Trail (Appalachian Trail). Data from 1,817 sampling sites in 831 catchments were used for the water-quality summary. Catchment delineations from NHDPlus were used as the fundamental geographic units for this project. Criteria used to evaluate sampling sites for inclusion were based on selected physical attributes of the catchments adjacent to the Appalachian Trail, including stream elevation, percentage of developed land cover, and percentage of agricultural land cover. The headwater streams of the Appalachian Trail are generally dilute waters, with low pH, low acid neutralizing capacity (ANC), and low concentrations of nutrients. The median pH value was slightly acidic at 6.7; the median specific conductance value was 23.6 microsiemens per centimeter, and the median ANC value was 98.7 milliequivalents per liter (μeq/L). Median concentrations of cations (calcium, magnesium, sodium, and potassium) were each less than 1.5 milligrams per liter (mg/L), and median concentrations of anions (bicarbonate, chloride, fluoride, sulfate, and nitrate) were less than 10 mg/L. Differences in water-quality constituent levels along the Appalachian Trail may be related to elevation, atmospheric deposition, geology, and land cover. Spatial variations were summarized by ecological sections (ecosections) developed by the U.S. Forest Service. Specific conductance, pH, ANC, and concentrations of major ions (calcium, chloride, magnesium, sodium, and sulfate) were all negatively correlated with elevation. The highest elevation ecosections (White Mountains, Blue Ridge Mountains, and Allegheny Mountains) had the lowest pH, ANC, and concentrations of major ions. The lowest elevation ecosections (Lower New England and Hudson Valley) generally had the highest pH, ANC, and

  3. Lunar apatite with terrestrial volatile abundances.

    PubMed

    Boyce, Jeremy W; Liu, Yang; Rossman, George R; Guan, Yunbin; Eiler, John M; Stolper, Edward M; Taylor, Lawrence A

    2010-07-22

    The Moon is thought to be depleted relative to the Earth in volatile elements such as H, Cl and the alkalis. Nevertheless, evidence for lunar explosive volcanism has been used to infer that some lunar magmas exsolved a CO-rich and CO(2)-rich vapour phase before or during eruption. Although there is also evidence for other volatile species on glass spherules, until recently there had been no unambiguous reports of indigenous H in lunar rocks. Here we report quantitative ion microprobe measurements of late-stage apatite from lunar basalt 14053 that document concentrations of H, Cl and S that are indistinguishable from apatites in common terrestrial igneous rocks. These volatile contents could reflect post-magmatic metamorphic volatile addition or growth from a late-stage, interstitial, sulphide-saturated melt that contained approximately 1,600 parts per million H(2)O and approximately 3,500 parts per million Cl. Both metamorphic and igneous models of apatite formation suggest a volatile inventory for at least some lunar materials that is similar to comparable terrestrial materials. One possible implication is that portions of the lunar mantle or crust are more volatile-rich than previously thought. PMID:20651686

  4. Low molecular weight (C1-C10) monocarboxylic acids, dissolved organic carbon and major inorganic ions in alpine snow pit sequence from a high mountain site, central Japan

    NASA Astrophysics Data System (ADS)

    Kawamura, Kimitaka; Matsumoto, Kohei; Tachibana, Eri; Aoki, Kazuma

    2012-12-01

    Snowpack samples were collected from a snow pit sequence (6 m in depth) at the Murodo-Daira site near the summit of Mt. Tateyama, central Japan, an outflow region of Asian dusts. The snow samples were analyzed for a homologous series of low molecular weight normal (C1-C10) and branched (iC4-iC6) monocarboxylic acids as well as aromatic (benzoic) and hydroxy (glycolic and lactic) acids, together with major inorganic ions and dissolved organic carbon (DOC). The molecular distributions of organic acids were characterized by a predominance of acetic (range 7.8-76.4 ng g-1-snow, av. 34.8 ng g-1) or formic acid (2.6-48.1 ng g-1, 27.7 ng g-1), followed by propionic acid (0.6-5.2 ng g-1, 2.8 ng g-1). Concentrations of normal organic acids generally decreased with an increase in carbon chain length, although nonanoic acid (C9) showed a maximum in the range of C5-C10. Higher concentrations were found in the snowpack samples containing dust layer. Benzoic acid (0.18-4.1 ng g-1, 1.4 ng g-1) showed positive correlation with nitrate (r = 0.70), sulfate (0.67), Na+ (0.78), Ca2+ (0.86) and Mg+ (0.75), suggesting that this aromatic acid is involved with anthropogenic sources and Asian dusts. Higher concentrations of Ca2+ and SO42- were found in the dusty snow samples. We found a weak positive correlation (r = 0.43) between formic acid and Ca2+, suggesting that gaseous formic acid may react with Asian dusts in the atmosphere during long-range transport. However, acetic acid did not show any positive correlations with major inorganic ions. Hydroxyacids (0.03-5.7 ng g-1, 1.5 ng g-1) were more abundant in the granular and dusty snow. Total monocarboxylic acids (16-130 ng g-1, 74 ng g-1) were found to account for 1-6% of DOC (270-1500 ng g-1, 630 ng g-1) in the snow samples.

  5. Volatile Analyzer for Lunar Polar Missions

    NASA Technical Reports Server (NTRS)

    Gibons, Everett K.; Pillinger, Colin T.; McKay, David S.; Waugh, Lester J.

    2011-01-01

    One of the major questions remaining for the future exploration of the Moon by humans concerns the presence of volatiles on our nearest neighbor in space. Observational studies, and investigations involving returned lunar samples and using robotic spacecraft infer the existence of volatile compounds particularly water [1]. It seems very likely that a volatile component will be concentrated at the poles in circumstances where low-temperatures exist to provide cryogenic traps. However, the full inventory of species, their concentration and their origin and sources are unknown. Of particular importance is whether abundances are sufficient to act as a resource of consumables for future lunar expeditions especially if a long-term base involving humans is to be established. To address some of these issues requires a lander designed specifically for operation at a high-lunar latitude. A vital part of the payload needs to be a volatile analyzer such as the Gas Analysis Package specifically designed for identification quantification of volatile substances and collecting information which will allow the origin of these volatiles to be identified [1]. The equipment included, particularly the gas analyzer, must be capable of operation in the extreme environmental conditions to be encountered. No accurate information yet exists regarding volatile concentration even for sites closer to the lunar equator (because of contamination). In this respect it will be important to understand (and thus limit) contamination of the lunar surface by extraneous material contributed from a variety of sources. The only data for the concentrations of volatiles at the poles comes from orbiting spacecraft and whilst the levels at high latitudes may be greater than at the equator, the volatile analyzer package under consideration will be designed to operate at the highest specifications possible and in a way that does not compromise the data.

  6. Assessment of spatial variability of major-ion concentrations and del oxygen-18 values in surface snow, Upper Fremont Glacier, Wyoming, USA

    USGS Publications Warehouse

    Naftz, D.L.; Schuster, P.F.; Reddy, M.M.

    1994-01-01

    One hundred samples were collected from the surface of the Upper Fremont Glacier at equally spaced intervals defined by an 8100m2 snow grid to asesss the significance of lateral variability in major-ion concentrations and del oxygen-18 values. Comparison of the observed variability of each chemical constituent to the variability expected by measurement error indicated substantial lateral variability with the surface-snow layer. Results of the nested ANOVA indicate most of the variance for every constituent is in the values grouped at the two smaller geographic scales (between 506m2 and within 506m2 sections). The variance data from the snow grid were used to develop equations to evaluate the significance of both positive and negative concentration/value peaks of nitrate and del oxygen-18 with depth, in a 160m ice core. Values of del oxygen-18 in the section from 110-150m below the surface consistently vary outside the expected limits and possibly represents cooler temperatures during the Little Ice Age from about 1810 to 1725 A.D. -from Authors

  7. A BENCH SCALE STUDY ON BIODEGRADATION AND VOLATILIZATION OF ETHYLBENZOATE IN AQUIFERS. (R825549C039)

    EPA Science Inventory

    Experiments were conducted to investigate the fate of ethylbenzoate and soil microorganisms in shallow aquifers. Biodegradation and volatilization have been identified as the major mechanisms in attenuating ethylbenzoate in contaminated soils. The rate of volatilization was ex...

  8. Semi-continuous mass closure of the major components of fine particulate matter in Riverside, CA

    NASA Astrophysics Data System (ADS)

    Grover, Brett D.; Eatough, Norman L.; Woolwine, Woods R.; Cannon, Justin P.; Eatough, Delbert J.; Long, Russell W.

    The application of newly developed semi-continuous aerosol monitors allows for the measurement of all the major species of PM 2.5 on a 1-h time basis. Temporal resolution of both non-volatile and semi-volatile species is possible. A suite of instruments to measure the major chemical species of PM 2.5 allows for semi-continuous mass closure. A newly developed dual-oven Sunset carbon monitor is used to measure non-volatile organic carbon, semi-volatile organic carbon and elemental carbon. Inorganic species, including sulfate and nitrate, can be measured with an ion chromatograph based sampler. Comparison of the sum of the major chemical species in an urban aerosol with mass measured by an FDMS resulted in excellent agreement. Linear regression analysis resulted in a zero-intercept slope of 0.98±0.01 with an R2=0.86. One-hour temporal resolution of the major species of PM 2.5 may reduce the uncertainty in receptor based source apportionment modeling, will allow for better forecasting of PM 2.5 episodes, and may lead to increased understanding of related health effects.

  9. Polycyclic aromatic hydrocarbons (PAHs) in ambient aerosols from Beijing: characterization of low volatile PAHs by positive-ion atmospheric pressure photoionization (APPI) coupled with Fourier transform ion cyclotron resonance.

    PubMed

    Jiang, Bin; Liang, Yongmei; Xu, Chunming; Zhang, Jingyi; Hu, Miao; Shi, Quan

    2014-05-01

    Aromatic fractions derived from aerosol samples were characterized by gas chromatography and mass spectrometry (GC-MS), high temperature simulated distillation (SIMDIS), and positive-ion atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), respectively. It was found that about 27 wt % compounds in aromatic fractions could not be eluted from a GC column and some large molecule PAHs were neglected in GC-MS analysis. APPI FT-ICR MS was proven to be a powerful approach for characterizing the molecular composition of aromatics, especially for the large molecular species. An aromatic sample from Beijing urban aerosol was successfully characterized by APPI FT-ICR MS. Results showed that most abundant aromatic compounds in PM2.5 (particles with aerodynamic diameter ≤ 2.5 μm) were highly condensed hydrocarbons with 4-8 aromatic rings and their homologues with very short alkyl chains. Furthermore, heteroatom-containing hydrocarbons were found as the significant components of the aromatic fractions: O1, O2, N1, and S1 class species with 10-28 DBEs (double bond equivalents) and 14-38 carbon numbers were identified by APPI FT-ICR MS. The heteroatom PAHs had similar DBEs and carbon number distribution as regular PAHs. PMID:24702199

  10. Volatile Organic Compounds in Uremia

    PubMed Central

    Seifert, Luzia; Slodzinski, Rafael; Jankowski, Joachim; Zidek, Walter; Westhoff, Timm H.

    2012-01-01

    Background Although “uremic fetor” has long been felt to be diagnostic of renal failure, the compounds exhaled in uremia remain largely unknown so far. The present work investigates whether breath analysis by ion mobility spectrometry can be used for the identification of volatile organic compounds retained in uremia. Methods Breath analysis was performed in 28 adults with an eGFR ≥60 ml/min per 1.73 m2, 26 adults with chronic renal failure corresponding to an eGFR of 10–59 ml/min per 1.73 m2, and 28 adults with end-stage renal disease (ESRD) before and after a hemodialysis session. Breath analysis was performed by ion mobility spectrometryafter gas-chromatographic preseparation. Identification of the compounds of interest was performed by thermal desorption gas chromatography/mass spectrometry. Results Breath analyses revealed significant differences in the spectra of patients with and without renal failure. Thirteen compounds were chosen for further evaluation. Some compounds including hydroxyacetone, 3-hydroxy-2-butanone and ammonia accumulated with decreasing renal function and were eliminated by dialysis. The concentrations of these compounds allowed a significant differentiation between healthy, chronic renal failure with an eGFR of 10–59 ml/min, and ESRD (p<0.05 each). Other compounds including 4-heptanal, 4-heptanone, and 2-heptanone preferentially or exclusively occurred in patients undergoing hemodialysis. Conclusion Impairment of renal function induces a characteristic fingerprint of volatile compounds in the breath. The technique of ion mobility spectrometry can be used for the identification of lipophilic uremic retention molecules. PMID:23049998

  11. Major ion chemistry in the headwaters of the Yamuna river system:. Chemical weathering, its temperature dependence and CO 2 consumption in the Himalaya

    NASA Astrophysics Data System (ADS)

    Dalai, T. K.; Krishnaswami, S.; Sarin, M. M.

    2002-10-01

    The Yamuna river and its tributaries in the Himalaya constitute the Yamuna River System (YRS). The YRS basin has a drainage area and discharge comparable in magnitude to those of the Bhagirathi and the Alaknanda rivers, which merge to form the Ganga at the foothills of the Himalaya. A detailed geochemical study of the YRS was carried out to determine: (i) the relative significance of silicate, carbonate and evaporite weathering in contributing to its major ion composition; (ii) CO 2 consumption via silicate weathering; and (iii) the factors regulating chemical weathering of silicates in the basin. The results show that the YRS waters are mildly alkaline, with a wide range of TDS, ˜32 to ˜620 mg l-1. In these waters, the abundances of Ca, Mg and alkalinity, which account for most of TDS, are derived mainly from carbonates. Many of the tributaries in the lower reaches of the Yamuna basin are supersaturated with calcite. In addition to carbonic acid, sulphuric acid generated by oxidation of pyrites also seems to be supplying protons for chemical weathering. Silicate weathering in YRS basin contributes, on average, ˜25% (molar basis) of total cations on a basin wide scale. Silicate weathering, however, does not seem to be intense in the basin as evident from low Si/(Na*+K) in the waters, ˜1.2 and low values of chemical index of alteration (CIA) in bed sediments, ˜60. CO 2 drawdown resulting from silicate weathering in the YRS basin in the Himalaya during monsoon ranges between (4 to 7) × 10 5 moles km -2 y -1. This is higher than that estimated for the Ganga at Rishikesh for the same season. The CO 2 consumption rates in the Yamuna and the Ganga basins in the Himalaya are higher than the global average value, suggesting enhanced CO 2 drawdown in the southern slopes of the Himalaya. The impact of this enhanced drawdown on the global CO 2 budget may not be pronounced, as the drainage area of the YRS and the Ganga in the Himalaya is small. The CO 2 drawdown by

  12. Volatile composition and aroma activity of guava puree before and after thermal and dense phase carbon dioxide treatments.

    PubMed

    Plaza, Maria Lourdes; Marshall, Maurice R; Rouseff, Russell Lee

    2015-02-01

    Volatiles from initially frozen, dense phase carbon dioxide (DPCD)- and thermally treated guava purees were isolated by solid phase microextraction (SPME), chromatographically separated and identified using a combination of gas chromatography-mass spectrometry (GC-MS), GC-olfactometry (GC-O), and GC-pulsed flame photometric detector (GC-PFPD, sulfur mode). Fifty-eight volatiles were identified using GC-MS consisting of: 6 aldehydes, 2 acids, 15 alcohols, 6 ketones, 21 esters, and 8 terpenes. Eleven volatiles were newly identified in guava puree. Hexanal was the most abundant volatile in all 3 types of guava puree. Ten sulfur compounds were identified using GC-PFPD of which 3 possessed aroma activity and 3 were not previously reported in guava puree. Both treatments profoundly reduced total sulfur peak areas and produced different peak patterns compared to control. Thermal treatment reduced total sulfur peak area 47.9% compared to a loss of 34.7% with DPCD treatment. Twenty-six volatiles possessed aroma activity. (Z)-3-Hexenyl hexanoate was the major contributor to the aroma of the freshly thawed and DPCD-treated guava puree. DPCD treatment reduced total MS ion chromatogram (MS TIC) peak area 35% but produced a GC-O aroma profile very similar to control. Whereas thermal treatment reduced total TIC peak area only 8.7% compared to control but produced a 35% loss in total GC-O peak intensities. PMID:25588413

  13. Diurnal variations of carbonaceous components, major ions, and stable carbon and nitrogen isotope ratios in suburban aerosols from northern vicinity of Beijing

    NASA Astrophysics Data System (ADS)

    He, Nannan; Kawamura, Kimitaka; Kanaya, Yugo; Wang, Zifa

    2015-12-01

    We report diurnal variations of organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and major ions as well as stable carbon and nitrogen isotope ratios (δ13C and δ15N) in ambient aerosols at a suburban site (Mangshan), 40 km north of Beijing, China. We found that aerosol chemical compositions were largely controlled by the air mass transport from Beijing in daytime with southerly winds and by relatively fresh air mass in nighttime from the northern forest areas with northerly winds. Higher concentrations of aerosol mass and total carbon were obtained in daytime. Further, higher OC/EC ratios were recorded in daytime (4.0 ± 1.7) than nighttime (3.2 ± 0.7), suggesting that OC is formed by photochemical oxidation of gaseous precursors in daytime. Contributions of WSOC to OC were slightly higher in daytime (38%) than nighttime (34%), possibly due to secondary formation of WSOC in daytime. We also found higher concentrations of Ca2+ in daytime, which was originated from the construction dust in Beijing area and transported to the sampling site. δ13C ranged from -25.3 to -21.2‰ (ave. -23.5 ± 0.9‰) in daytime and -29.0 to -21.4‰ (-24.0 ± 1.5‰) in nighttime, suggesting that Mangshan aerosols were more influenced by fossil fuel combustion products in daytime and by terrestrial C3 plants in nighttime. This study suggests that daytime air mass delivery from megacity Beijing largely influence the air quality at the receptor site in the north together with photochemical processing of organic aerosols during the atmospheric transport, whereas the Mangshan site is covered with relatively clean air masses at night.

  14. Seasonal hydrology drives rapid shifts in the flux and composition of dissolved and particulate organic carbon and major and trace ions in the Fraser River, Canada

    NASA Astrophysics Data System (ADS)

    Voss, B. M.; Peucker-Ehrenbrink, B.; Eglinton, T. I.; Spencer, R. G. M.; Bulygina, E.; Galy, V.; Lamborg, C. H.; Ganguli, P. M.; Montluçon, D. B.; Marsh, S.; Gillies, S. L.; Fanslau, J.; Epp, A.; Luymes, R.

    2015-10-01

    Rapid changes in the volume and sources of discharge during the spring freshet lead to pronounced variations in biogeochemical properties in snowmelt-dominated river basins. We used daily sampling during the onset of the freshet in the Fraser River (southwestern Canada) in 2013 to identify rapid changes in the flux and composition of dissolved material, with a focus on dissolved organic matter (DOM). Previous time series sampling (at twice monthly frequency) of dissolved inorganic species in the Fraser River has revealed smooth seasonal transitions in concentrations of major ions and tracers of water and dissolved load sources between freshet and base flow periods. In contrast, daily sampling reveals a significant increase in dissolved organic carbon (DOC) concentration (200 to 550 μmol L-1) occurring over a matter of days, accompanied by a shift in DOM optical properties, indicating a transition towards higher molecular weight, more aromatic DOM composition. Comparable changes in DOM composition, but not concentration, occur at other times of year, underscoring the role of seasonal climatology in DOM cycling. A smaller data set of total and dissolved Hg concentrations also showed variability during the spring freshet period, although dissolved Hg dynamics appear to be driven by factors beyond DOM as characterized here. The time series records of DOC and particulate organic carbon (POC) concentrations indicate that the Fraser River exports 0.25-0.35 % of its annual basin net primary productivity. The snowmelt-dominated hydrology, forested land cover, and minimal reservoir impoundment of the Fraser River may influence the DOC yield of the basin, which is high relative to the nearby Columbia River and of similar magnitude to that of the Yukon River to the north. Anticipated warming and decreased snowfall due to climate changes in the region may cause an overall decrease in DOM flux from the Fraser River to the coastal ocean in coming decades

  15. Diurnal variations of carbonaceous components, major ions, and stable carbon and nitrogen isotope ratios in suburban aerosols from northern vicinity of Beijing

    NASA Astrophysics Data System (ADS)

    He, Nannan; Kawamura, Kimitaka; Kanaya, Yugo; Wang, Zifa

    2015-12-01

    We report diurnal variations of organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and major ions as well as stable carbon and nitrogen isotope ratios (δ13C and δ15N) in ambient aerosols at a suburban site (Mangshan), 40 km north of Beijing, China. We found that aerosol chemical compositions were largely controlled by the air mass transport from Beijing in daytime with southerly winds and by relatively fresh air mass in nighttime from the northern forest areas with northerly winds. Higher concentrations of aerosol mass and total carbon were obtained in daytime. Further, higher OC/EC ratios were recorded in daytime (4.0 ± 1.7) than nighttime (3.2 ± 0.7), suggesting that OC is formed by photochemical oxidation of gaseous precursors in daytime. Contributions of WSOC to OC were slightly higher in daytime (38%) than nighttime (34%), possibly due to secondary formation of WSOC in daytime. We also found higher concentrations of Ca2+ in daytime, which was originated from the construction dust in Beijing area and transported to the sampling site. δ13C ranged from -25.3 to -21.2‰ (ave. -23.5 ± 0.9‰) in daytime and -29.0 to -21.4‰ (-24.0 ± 1.5‰) in nighttime, suggesting that Mangshan aerosols were more influenced by fossil fuel combustion products in daytime and by terrestrial C3 plants in nighttime. This study suggests that daytime air mass delivery from megacity Beijing largely influence the air quality at the receptor site in the north together with photochemical processing of organic aerosols during the atmospheric transport, whereas the Mangshan site is covered with relatively clean air masses at night.

  16. Confirmation of diosmetin 3-O-glucuronide as major metabolite of diosmin in humans, using micro-liquid-chromatography-mass spectrometry and ion mobility mass spectrometry.

    PubMed

    Silvestro, Luigi; Tarcomnicu, Isabela; Dulea, Constanta; Attili, Nageswara Rao B N; Ciuca, Valentin; Peru, Dan; Rizea Savu, Simona

    2013-10-01

    Diosmin is a flavonoid often administered in the treatment of chronic venous insufficiency, hemorrhoids, and related affections. Diosmin is rapidly hydrolized in the intestine to its aglicone, diosmetin, which is further metabolized to conjugates. In this study, the development and validations of three new methods for the determination of diosmetin, free and after enzymatic deconjugation, and of its potential glucuronide metabolites, diosmetin-3-O-glucuronide, diosmetin-7-O-glucuronide, and diosmetin-3,7-O-glucuronide from human plasma and urine are presented. First, the quantification of diosmetin, free and after deconjugation, was carried out by high-performance liquid chromatography coupled with tandem mass spectrometry, on an Ascentis RP-Amide column (150 × 2.1 mm, 5 μm), in reversed-phase conditions, after enzymatic digestion. Then glucuronide metabolites from plasma were separated by micro-liquid chromatography coupled with tandem mass spectrometry on a HALO C18 (50 × 0.3 mm, 2.7 μm, 90 Å) column, after solid-phase extraction. Finally, glucuronides from urine were measured using a Discovery HSF5 (100 × 2.1 mm, 5 μm) column, after simple dilution with mobile phase. The methods were validated by assessing linearity, accuracy, precision, low limit of quantification, selectivity, extraction recovery, stability, and matrix effects; results in agreement with regulatory (Food and Drug Administration and European Medicines Agency) guidelines acceptance criteria were obtained in all cases. The methods were applied to a pharmacokinetic study with diosmin (450 mg orally administered tablets). The mean C max of diosmetin in plasma was 6,049.3 ± 5,548.6 pg/mL. A very good correlation between measured diosmetin and glucuronide metabolites concentrations was obtained. Diosmetin-3-O-glucuronide was identified as a major circulating metabolite of diosmetin in plasma and in urine, and this finding was confirmed by supplementary experiments with differential ion

  17. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; Kroll, J. H.; Worsnop, D.; Thornton, J. A.

    2015-02-01

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25-50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of

  18. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A. J.; Daumit, K. E.; Hunter, J. F.; Kroll, J. H.; Worsnop, D. R.; Thornton, J. A.

    2015-07-01

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO-HR-ToF-CIMS are highly correlated with, and explain at least 25-50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of

  19. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGESBeta

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A. J.; Daumit, K. E.; Hunter, J. F.; et al

    2015-07-16

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  20. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGESBeta

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; et al

    2015-02-18

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  1. Aerosol volatility in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    during spring and autumn 2008. Results from the aerosol mass spectrometry indicate that the non-volatile residual consists of nitrate and organic compounds, especially during autumn. These compounds may be low-volatile organic nitrates or salts. During winter and spring the non-volatile core (black carbon removed) correlated markedly with carbon monoxide, which is a tracer of anthropogenic emissions. Due to this, the non-volatile residual may also contain other pollutants in addition to black carbon. Thus, it seems that the amount of different compounds in submicron aerosol particles varies with season and as a result the chemical composition of the non-volatile residual changes within a year. This work was supported by University of Helsinki three-year research grant No 490082 and Maj and Tor Nessling Foundation grant No 2010143. Aalto et al., (2001). Physical characterization of aerosol particles during nucleation events. Tellus B, 53, 344-358. Jayne, et al., (2000). Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol., 33(1-2), 49-70. Kalberer et al., (2004). Identification of Polymers as Major Components of Atmospheric Organic Aerosols. Science, 303, 1659-1662. Smith et al., (2010). Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. P. Natl. Acad. Sci., 107(15). Vesala et al., (1998). Long-term field measurements of atmosphere-surface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends Heat, Mass Mom. Trans., 4, 17-35. Wehner et al., (2002). Design and calibration of a thermodenuder with an improved heating unit to measure the size-dependent volatile fraction of aerosol particles. J. Aerosol Sci., 33, 1087-1093.

  2. ANTIOXIDANT ACTIVITY AND CHARACTERIZATION OF VOLATILE CONSTITUENTS OF TAHEEBO

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatiles were isolated from the dried inner bark of Tabebuia impetiginosa using steam distillation under reduced pressure followed by continuous liquid-liquid extraction. The extract was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The major volatile const...

  3. PREDICTING THE TOXICITY OF MAJOR IONS IN SEAWATER TO MYSID SHRIMP (MYSIDOPSIS BAHIA), SHEEPSHEAD MINNOW (CYPRINODON VARIEGATUS), AND INLAND SILVERSIDE MINNOW (MENIDIA BERYLLINA)

    EPA Science Inventory

    Although marine organisms are naturally adapted to salinities well above those of freshwater, elevated concentrations of specific ions have been shown to cause adverse effects on some saltwater species. Because some ions are also physiologically essential, a deficiency of these i...

  4. Volatile halocarbons in water

    SciTech Connect

    Kroneld, R.

    1986-11-01

    Volatile halocarbons in drinking water have attracted increasing attention during recent years. These substances are also found in body fluids. All disinfectant chemicals used in water treatment seem to produce by-products. Of particular concern are the following substances from the use of various disinfectants according to US EPA: chlorine, bromine and iodine, and chlorine dioxide. The aim of the present study was to follow the formation and occurrence of volatile halocarbons in different types of water.

  5. Microbial Small Talk: Volatiles in Fungal–Bacterial Interactions

    PubMed Central

    Schmidt, Ruth; Etalo, Desalegn W.; de Jager, Victor; Gerards, Saskia; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2016-01-01

    There is increasing evidence that volatile organic compounds (VOCs) play an important role in the interactions between fungi and bacteria, two major groups of soil inhabiting microorganisms. Yet, most of the research has been focused on effects of bacterial volatiles on suppression of plant pathogenic fungi whereas little is known about the responses of bacteria to fungal volatiles. In the current study we performed a metabolomics analysis of volatiles emitted by several fungal and oomycetal soil strains under different nutrient conditions and growth stages. The metabolomics analysis of the tested fungal and oomycetal strains revealed different volatile profiles dependent on the age of the strains and nutrient conditions. Furthermore, we screened the phenotypic responses of soil bacterial strains to volatiles emitted by fungi. Two bacteria, Collimonas pratensis Ter291 and Serratia plymuthica PRI-2C, showed significant changes in their motility, in particular to volatiles emitted by Fusarium culmorum. This fungus produced a unique volatile blend, including several terpenes. Four of these terpenes were selected for further tests to investigate if they influence bacterial motility. Indeed, these terpenes induced or reduced swimming and swarming motility of S. plymuthica PRI-2C and swarming motility of C. pratensis Ter291, partly in a concentration-dependent manner. Overall the results of this work revealed that bacteria are able to sense and respond to fungal volatiles giving further evidence to the suggested importance of volatiles as signaling molecules in fungal–bacterial interactions. PMID:26779150

  6. Volatile terpenoids from aeciospores of Cronartium fusiforme.

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Weete, J. D.; Walkinshaw, C. H.

    1973-01-01

    Identification of the terpenoids present in the volatile fraction from aeciospores of the gall rust fungus Cronartium fusiforme. The major monoterpenoid hydrocarbons found to be present with only traces of camphene include alpha-pinene, beta-pinene, delta(3)-carene, myrcene, linonene, beta-phellandrene, and delta-terpinene. A number of monoterpenoid alcohols, acyclic sesquiterpenes, and aromatic compounds were also present.

  7. Theoretical predictions of volatile bearing phases and volatile resources in some carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Ganguly, Jibamitra; Saxena, Surendra K.

    1989-01-01

    Carbonaceous chondrites are usually believed to be the primary constituents of near-Earth asteroids and Phobos and Diemos, and are potential resources of fuels which may be exploited for future planetary missions. The nature and abundances are calculated of the major volatile bearing and other phases, including the vapor phase that should form in C1 and C2 type carbonaceous chondrites as functions of pressure and temperature. The results suggest that talc, antigorite plus or minus magnesite are the major volatile bearing phases and are stable below 400 C at 1 bar in these chondritic compositions. Simulated heating of a kilogram of C2 chondrite at fixed bulk composition between 400 and 800 C at 1 bar yields about 135 gm of volatile, which is made primarily of H2O, H2, CH4, CO2 and CO. The relative abundances of these volatile species change as functions of temperature, and on a molar basis, H2 becomes the most dominant species above 500 C. In contrast, Cl chondrites yield about 306 gm of volatile under the same condition, which consist almost completely of 60 wt percent H2O and 40 wt percent CO2. Preliminary kinetic considerations suggest that equilibrium dehydration of hydrous phyllosilicates should be attainable within a few hours at 600 C. These results provide the framework for further analyses of the volatile and economic resource potentials of carbonaceous chondrites.

  8. Occurrence and Origin of Methane in Relation to Major Ion Concentrations in Groundwater Wells of the Denver-Julesburg and Piceance Basins of Colorado

    NASA Astrophysics Data System (ADS)

    Rogers, J. D.; Sherwood, O.; Lackey, G.; Burke, T. L.; Osborn, S. G.; Ryan, J. N.

    2014-12-01

    The rapid expansion of unconventional oil and gas development in North America has generated intense public concerns about potential impacts to groundwater quality. To address these concerns, we examined geochemical data from a publicly available Colorado Oil and Gas Conservation Commission (COGCC) database. The data consist of over 17,000 samples from 4,756 unique surface and groundwater locations collected since 1990, representing one of the most extensive databases of groundwater quality in relation to oil and gas development anywhere. Following rigorous data QA/QC, we classified groundwater samples with respect to major ion composition and compared the assigned water "types" along with other geochemical parameters to methane concentrations and carbon isotopes in the Denver-Julesburg (DJ) and Piceance Basins in Colorado. 88% of samples with elevated methane (defined as > 1 mg L-1) were classified as Na-HCO3 type in the DJ basin and 78% were classified as either Na-HCO3 or Na-Cl type in the Piceance basin. Of the elevated methane samples, 96% and 69% in the DJ and Piceance basins respectively had microbial gas signatures, as determined by d13C values < - 60 ‰. Samples with elevated methane concentrations had higher pH, higher concentrations of chloride and sodium and lower concentrations of calcium in both the DJ and Piceance Basin. Elevated methane concentrations were predominately microbial in origin and correlated to indicators of increased water-rock interactions and anaerobic groundwater conditions, indicating that methane observed in these groundwater samples are largely a result of natural processes. Rare occurrences of stray thermogenic gas (d13C > 55 ‰, gas wetness > 5 % C2+ hydrocarbons) were most frequently associated with the Na-HCO3 water type in the DJ basin (67% of occurrences) and were randomly distributed across water types in the Piceance Basin. Investigation of natural and anthropogenic causes for the presence of methane is ongoing, using

  9. Relationships between volatile and non-volatile metabolites and attributes of processed potato flavour.

    PubMed

    Morris, Wayne L; Shepherd, Tom; Verrall, Susan R; McNicol, James W; Taylor, Mark A

    2010-10-01

    Although the flavour of processed potatoes (Solanum tuberosum L.) is important to consumers, the blend of volatile and non-volatile metabolites that impact on flavour attributes is not well-defined. Additionally, it is important to understand how potato flavour changes during storage. In this study, quantitative descriptive analysis of potato samples by a trained taste panel was undertaken, comparing tubers from S. tuberosum group Phureja with those from S. tuberosum group Tuberosum, both at harvest and following storage. The cooked tuber volatile profile was analysed by solid phase micro extraction followed by gas chromatography-mass spectrometry analysis in sub-samples of the tubers that were assessed by taste panels. A range of non-volatile metabolites including the major umami compounds, glycoalkaloids and sugars was also measured in tuber sub-samples. Correlation and principal component analyses revealed differences between the potato cultivars and storage conditions and demonstrated associations of metabolites with the different sensory attributes. PMID:20678781

  10. Evaluation of γ-radiation on green tea odor volatiles

    NASA Astrophysics Data System (ADS)

    Fanaro, G. B.; Duarte, R. C.; Araújo, M. M.; Purgatto, E.; Villavicencio, A. L. C. H.

    2011-01-01

    The aim of this study was to evaluate the gamma radiation effects on green tea odor volatiles in green tea at doses of 0, 5, 10, 15 and 20 kGy. The volatile organic compounds were extracted by hydrodistillation and analyzed by GC/MS. The green tea had a large influence on radiation effects, increasing the identified volatiles in relation to control samples. The dose of 10 kGy was responsible to form the majority of new odor compounds following by 5 and 20 kGy. However, the dose of 5 kGy was the dose that degraded the majority of volatiles in non-irradiated samples, following by 20 kGy. The dose of 15 kGy showed has no effect on odor volatiles. The gamma radiation, at dose up to 20 kGy, showed statistically no difference between irradiated and non irradiated green tea on odors compounds.

  11. Volatile compound formation during argan kernel roasting.

    PubMed

    El Monfalouti, Hanae; Charrouf, Zoubida; Giordano, Manuela; Guillaume, Dominique; Kartah, Badreddine; Harhar, Hicham; Gharby, Saïd; Denhez, Clément; Zeppa, Giuseppe

    2013-01-01

    Virgin edible argan oil is prepared by cold-pressing argan kernels previously roasted at 110 degrees C for up to 25 minutes. The concentration of 40 volatile compounds in virgin edible argan oil was determined as a function of argan kernel roasting time. Most of the volatile compounds begin to be formed after 15 to 25 minutes of roasting. This suggests that a strictly controlled roasting time should allow the modulation of argan oil taste and thus satisfy different types of consumers. This could be of major importance considering the present booming use of edible argan oil. PMID:23472454

  12. Effects of temperature and soil type on ammonia volatilization from slow-release nitrogen fertilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia (NH3) volatilization is the major pathway for mineral nitrogen (N) loss from N sources applied to soils. The information on NH3 volatilization from slow-release N fertilizers is limited. Ammonia volatilization, over a 78-d period, from four slow-release N fertilizers with different proportio...

  13. REDUCTION OF INGESTION EXPOSURE TO TRIHALOMETHANES DUE TO VOLATILIZATION. (R825362)

    EPA Science Inventory

    Ingestion of tap water is one of the principal exposure
    pathways for disinfection byproducts (DBPs). One major
    class of DBPs, trihalomethanes (THM), are highly volatile,
    and volatilization will tend to lower ingestion exposures.
    This study quantifies volatilization...

  14. Lunar volatiles: balancing science and resource development

    NASA Astrophysics Data System (ADS)

    Crider, Dana

    In the context of human exploration of the moon, the volatiles postulated to exist at the lunar poles have value as resources as well as scientific significance. Once sustained human operations commence on the moon, society will move from a paradigm in which examination of planetary materials has been unconstrained to one where use of those materials will support habitability and further exploration. A framework for the scientific investigation of lunar volatiles that allows for eventual economic exploitation can guide both activities and resolve the conflicts that will inevitably develop if the postulated lunar volatiles prove to be both extant and accessible. Scientific constraints on the framework include characterization at both poles of the isotopes, elements, and molecules in the volatiles, their relative and absolute abundances, and their horizontal and vertical distribution. A subset of this data is necessary in order to assess, develop, and initiate resource exploitation. In addition, the scientific record of volatiles in the cold traps can be contaminated by the cold-trapping of migrating volatiles released from operations elsewhere on the moon even if the indigenous, cold-trapped volatiles are not utilized. Possible decision points defining the transition from science-dominated to exploitation-dominated use include technology limits in the 70K environment, evolving science priorities (funding), and the resolution of major science issues. Inputs to policy development include any North vs. South Pole differences in volatile characteristics and the suitability of the volatiles to enable further scientific exploration of the moon. In the absence of national sovereignty on the moon, enforcement of any framework is an open question, particularly if science and commercial interests are in competition. The framework, processes, and precedent set by how we as a society choose to handle the scientific bounty and resource promise of lunar volatiles may eventually

  15. Volatiles of Chrysanthemum zawadskii var. latilobum K

    PubMed Central

    Chang, Kyung-Mi; Kim, Gun-Hee

    2012-01-01

    The volatile aroma constituents of Chrysanthemum zawadskii var. latilobum K. were separated by hydro distillation extraction (HDE) method using a Clevenger-type apparatus, and analyzed by gas chromatography-mass spectrometry (GC/MS). The yield of C. zawadskii var. latilobum K. flower essential oil (FEO) was 0.12% (w/w) and the color was light green. Fifty-five volatile chemical components, which make up 88.38% of the total aroma composition, were tentatively characterized. C. zawadskii var. latilobum K. FEOs contained 27 hydrocarbons, 12 alcohols, 7 ketones, 4 esters, 1 aldehyde, 1 amine, and 3 miscellaneous components. The major functional groups were terpene alcohol and ketone. Borneol (12.96), (±)-7-epi-amiteol (12.60), and camphor (10.54%) were the predominant volatiles. These compounds can be used in food and pharmaceutical industries due to their active bio-functional properties. PMID:24471090

  16. Volatiles of Chrysanthemum zawadskii var. latilobum K.

    PubMed

    Chang, Kyung-Mi; Kim, Gun-Hee

    2012-09-01

    The volatile aroma constituents of Chrysanthemum zawadskii var. latilobum K. were separated by hydro distillation extraction (HDE) method using a Clevenger-type apparatus, and analyzed by gas chromatography-mass spectrometry (GC/MS). The yield of C. zawadskii var. latilobum K. flower essential oil (FEO) was 0.12% (w/w) and the color was light green. Fifty-five volatile chemical components, which make up 88.38% of the total aroma composition, were tentatively characterized. C. zawadskii var. latilobum K. FEOs contained 27 hydrocarbons, 12 alcohols, 7 ketones, 4 esters, 1 aldehyde, 1 amine, and 3 miscellaneous components. The major functional groups were terpene alcohol and ketone. Borneol (12.96), (±)-7-epi-amiteol (12.60), and camphor (10.54%) were the predominant volatiles. These compounds can be used in food and pharmaceutical industries due to their active bio-functional properties. PMID:24471090

  17. Major depression

    MedlinePlus

    Depression - major; Depression - clinical; Clinical depression; Unipolar depression; Major depressive disorder ... Doctors do not know the exact causes of depression. It is believed that chemical changes in the ...

  18. Volatile aldehydes in libraries and archives

    NASA Astrophysics Data System (ADS)

    Fenech, Ann; Strlič, Matija; Kralj Cigić, Irena; Levart, Alenka; Gibson, Lorraine T.; de Bruin, Gerrit; Ntanos, Konstantinos; Kolar, Jana; Cassar, May

    2010-06-01

    Volatile aldehydes are produced during degradation of paper-based materials. This may result in their accumulation in archival and library repositories. However, no systematic study has been performed so far. In the frame of this study, passive sampling was carried out at ten locations in four libraries and archives. Despite the very variable sampling locations, no major differences were found, although air-filtered repositories were found to have lower concentrations while a non-ventilated newspaper repository exhibited the highest concentrations of volatile aldehydes (formaldehyde, acetaldehyde, furfural and hexanal). Five employees in one institution were also provided with personal passive samplers to investigate employees' exposure to volatile aldehydes. All values were lower than the presently valid exposure limits. The concentration of volatile aldehydes, acetic acid, and volatile organic compounds (VOCs) in general was also compared with that of outdoor-generated pollutants. It was evident that inside the repository and particularly inside archival boxes, the concentration of VOCs and acetic acid was much higher than the concentration of outdoor-generated pollutants, which are otherwise more routinely studied in connection with heritage materials. This indicates that further work on the pro-degradative effect of VOCs on heritage materials is necessary and that monitoring of VOCs in heritage institutions should become more widespread.

  19. Analyses of Plant UDP-Dependent Glycosyltransferases to Identify Their Volatile Substrates Using Recombinant Proteins.

    PubMed

    Kamiyoshihara, Yusuke; Tieman, Denise M; Klee, Harry J

    2016-01-01

    Glycosylation is one of major modifications for plant secondary metabolites. In the case of volatile compounds, glycosylation makes them nonvolatile and odorless. Identification of UDP-dependent glycosyltransferases responsible for volatile glycosylation is essential to understand the regulatory mechanism of volatile release from plant tissues. Here, we describe an efficient protocol to find possible combinations of volatiles/glycosyltransferases using tomato (Solanum lycopersicum) enzymes expressed in Escherichia coli. The presented method requires a basic gas chromatography system and conventional laboratory tools. PMID:26577791

  20. Mechanism of Formation of the Major Estradiol Product Ions Following Collisional Activation of the Molecular Anion in a Tandem Quadrupole Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wooding, Kerry M.; Barkley, Robert M.; Hankin, Joseph A.; Johnson, Christopher A.; Bradford, Andrew P.; Santoro, Nanette; Murphy, Robert C.

    2013-10-01

    The importance of the mass spectral product ion structure is highlighted in quantitative assays, which typically use multiple reaction monitoring (MRM), and in the discovery of novel metabolites. Estradiol is an important sex steroid whose quantitation and metabolite identification using tandem mass spectrometry has been widely employed in numerous clinical studies. Negative electrospray ionization tandem mass spectrometry of estradiol (E2) results in several product ions, including the abundant m/z 183 and 169. Although m/z 183 is one of the most abundant product ions used in many quantitative assays, the structure of m/z 183 has not been rigorously examined. We suggest a structure for m/z 183 and a mechanism of formation consistent with collision induced dissociation (CID) of E2 and several stable isotopes ([D4]-E2, [13C6]-E2, and [D1]-E2). An additional product ion from E2, namely m/z 169, has also been examined. MS3 experiments indicated that both m/z 183 and m/z 169 originate from only E2 [M - H]- m/z 271. These ions, m/z 183 and m/z 169, were also present in the collision induced decomposition mass spectra of other prominent estrogens, estrone (E1) and estriol (E3), indicating that these two product ions could be used to elucidate the estrogenic origin of novel metabolites. We propose two fragmentation schemes to explain the CID data and suggest a structure of m/z 183 and m/z 169 consistent with several isotopic variants and high resolution mass spectrometric measurements.

  1. Speciation of the major inorganic salts in atmospheric aerosols of Beijing, China: Measurements and comparison with model

    NASA Astrophysics Data System (ADS)

    Tang, Xiong; Zhang, Xiaoshan; Ci, Zhijia; Guo, Jia; Wang, Jiaqi

    2016-05-01

    In the winter and summer of 2013-2014, we used a sampling system, which consists of annular denuder, back-up filter and thermal desorption set-up, to measure the speciation of major inorganic salts in aerosols and the associated trace gases in Beijing. This sampling system can separate volatile ammonium salts (NH4NO3 and NH4Cl) from non-volatile ammonium salts ((NH4)2SO4), as well as the non-volatile nitrate and chloride. The measurement data was used as input of a thermodynamic equilibrium model (ISORROPIA II) to investigate the gas-aerosol equilibrium characteristics. Results show that (NH4)2SO4, NH4NO3 and NH4Cl were the major inorganic salts in aerosols and mainly existed in the fine particles. The sulfate, nitrate and chloride associated with crustal ions were also important in Beijing where mineral dust concentrations were high. About 19% of sulfate in winter and 11% of sulfate in summer were associated with crustal ions and originated from heterogeneous reactions or direct emissions. The non-volatile nitrate contributed about 33% and 15% of nitrate in winter and summer, respectively. Theoretical thermodynamic equilibrium calculations for NH4NO3 and NH4Cl suggest that the gaseous precursors were sufficient to form stable volatile ammonium salts in winter, whereas the internal mixing with sulfate and crustal species were important for the formation of volatile ammonium salts in summer. The results of the thermodynamic equilibrium model reasonably agreed with the measurements of aerosols and gases, but large discrepancy existed in predicting the speciation of inorganic ammonium salts. This indicates that the assumption on crustal species in the model was important for obtaining better understanding on gas-aerosol partitioning and improving the model prediction.

  2. Ion Mobility Spectrometry (IMS) and Mass Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.

    2010-04-20

    In a media of finite viscosity, the Coulomb force of external electric field moves ions with some terminal speed. This dynamics is controlled by “mobility” - a property of the interaction potential between ions and media molecules. This fact has been used to separate and characterize gas-phase ions in various modes of ion mobility spectrometry (IMS) developed since 1970. Commercial IMS devices were introduced in 1980-s for field detection of volatile traces such as explosives and chemical warfare agents. Coupling to soft-ionization sources, mass spectrometry (MS), and chromatographic methods in 1990-s had allowed IMS to handle complex samples, enabling new applications in biological and environmental analyses, nanoscience, and other areas. Since 2003, the introduction of commercial systems by major instrument vendors started bringing the IMS/MS capability to broad user community. The other major development of last decade has been the differential IMS or “field asymmetric waveform IMS” (FAIMS) that employs asymmetric time-dependent electric field to sort ions not by mobility itself, but by the difference between its values in strong and weak electric fields. Coupling of FAIMS to conventional IMS and stacking of conventional IMS stages have enabled two-dimensional separations that dramatically expand the power of ion mobility methods.

  3. Theoretical predictions of volatile bearing phases and volatile resources in some carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Ganguly, Jibamitra; Saxena, Surendra K.

    1989-01-01

    Results are presented from theoretical calculations to predict the modal abundances and compositions of the major mineral phases and the vapor phase that could develop in the bulk compositions of carbonaceous chondrites. The abundances and compositions are obtained as functions of temperature and pressure. The calculations are used to evaluate the volatile and mineralogical resource potential of C1 and C2 carbonaceous chondrites.

  4. Monitoring plant bioremediation of volatile organic compounds (VOCs) using open path Fourier transform infrared (FT-IR) spectrometry

    SciTech Connect

    Hoffman, R.M.; Visser, V.P.; Davis, L.C.; Erickson, L.E.; Muralidharan, N.; Hammaker, R.M.; Fateley, W.G.

    1994-12-31

    This study addresses a viable and natural solution to the elimination of volatile organic compounds (VOCs), which are pollutants, through the bioremediation process. Plants and associated rhizosphere bacteria have the ability to bioremediate both volatile and non-volatile organic compounds. For volatile compounds, intersystem transfer by transpiration may be a matter for concern when plants interact with such materials. The authors have monitored, using FT-IR, the potential transfer from subsurface water in the presence of toluene-adapted alfalfa plants. These experiments show that the plants and/or their associated micro-organisms effectively degrade toluene so that potential intersystem transfer of VOCs by transpiration may be quite manageable with adapted plants. Presently, the authors are monitoring 1,1,1-trichloroethane (TCA), chloroform (CHCl{sub 3}), and, trichloroethylene (TCE) from the subsurface water and the gas phase above the plants. TCA does not show an indication of degradation, whereas TCE does. Methane is produced in the groundwater but not transferred to the atmosphere, indicating the presence of a consortium of methanogens and methanotrophs in this soil. The TCE presumably is the substrate for methane production based on chloride ion accumulation. The majority of the TCE must be degraded aerobically to yield CO{sub 2} in the vadose zone. The FT-IR spectrometer can quickly determine and analyze contaminants in the gas phase, groundwater and plant tissue.

  5. Detection of rare species of volatile organic selenium metabolites in male golden hamster urine.

    PubMed

    Kwak, Jae; Ohrnberger, Sarah A; Valencak, Teresa G

    2016-07-01

    Selenium has been considered as an essential trace element in mammals and its intake comes mainly from food. Mammals can metabolize both inorganic and organic species, and urinary excretion is the primary elimination route of selenium. Selenosugars and trimethylselenonium ion have been identified as major urinary metabolites. Other metabolites have been reported, but they were detected in some studies and not in others. Still, a large portion of the ingested selenium eliminated from the body is unknown. Volatile selenium species may account for a certain portion of the unknown species since they can easily be lost during sample analyses. While we analyzed male golden hamster urine in search of potential volatile pheromone(s), four volatile selenium compounds were detected. They were dimethyl selenenylsulfide, dimethyl diselenide, dimethyl bis(thio)selenide, and dimethyl selenodisulfide. When the urine samples were aged and dried for 48 h, dimethyl selenodisulfide tended to increase, while others decreased. The increase might be due to the formation of dimethyl selenodisulfide via reaction of dimethyl diselenide and dimethyl trisulfide whose concentration increased as urine aged. To our knowledge, dimethyl bis(thio)selenide and dimethyl selenodisulfide have never been demonstrated in urine. It remains to be determined whether these species are common metabolites in other animals or hamster-specific. PMID:27129975

  6. Volatile Selenium Flux in the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Diaz, X.; Johnson, W. P.

    2006-12-01

    Volatilization of selenium has been proven to be the major source of selenium vapor from oceans and estuaries and it may be the major mechanism of permanent selenium removal from the Great Salt Lake (other than brine shrimp harvest). However, the volatilization flux of selenium from the Great Salt Lake has not been previously measured due to challenges of analysis in this hyper-saline environment. This work presents results from recent field studies examining the spatial distribution of volatile selenium (geographical and with depth) in the South Arm (main body) of the Great Salt Lake. The analyses involved collection of volatile selenium in a cryo-focusing trap system via sparging with helium. The cryo-trapped volatile selenium was digested with nitric acid and analyzed by ICP-MS. The results show concentrations of volatile selenium that are much greater than values reported for marine estuaries and oceans. Volatile selenium flux to the atmosphere was determined using mass transport equations corrected to simulate the highly saline environment of the South Arm of the Great Salt Lake.

  7. Analysis of volatile organic compounds from illicit cocaine samples

    SciTech Connect

    Robins, W.H.; Wright, B.W.

    1994-07-01

    Detection of illicit cocaine hydrochloride shipments can be improved if there is a greater understanding of the identity and quantity of volatile compounds present. This study provides preliminary data concerning the volatile organic compounds detected in a limited Set of cocaine hydrochloride samples. In all cases, cocaine was one of the major volatile compounds detected. Other tropeines were detected in almost all samples. Low concentrations of compounds that may be residues of processing solvents were observed in some samples. The equilibrium emissivity of. cocaine from cocaine hydrochloride was investigated and a value of 83 parts-per-trillion was determined.

  8. biogenic aerosol precursors: volatile amines from agriculture

    NASA Astrophysics Data System (ADS)

    Kuhn, Uwe; Sintermann, Jörg; Spirig, Christoph; Ammann, Christof; Neftel, Albrecht

    2010-05-01

    Information on the occurrence of volatile biogenic amines in the atmosphere is marginal. This group of N-bearing organic compounds are assumed to be a small, though significant component of the atmospheric N-cycle, but are not accounted for in global assessments due to the scarceness of available data. There is increasing evidence for an important role of biogenic amines in the formation of new particulate matter, as well as for aerosol secondary growth. Volatile amines are ubiquitously formed by biodegradation of organic matter, and agriculture is assumed to dominantly contribute to their atmospheric burden. Here we show that the mixing ratios of volatile amines within livestock buildings scale about 2 orders of magnitude lower than NH3, confirming the few literature data available (e.g., Schade and Crutzen, J. Atm. Chem. 22, 319-346, 1995). Flux measurements after manure application in the field, mixing ratios in the headspace of manure storage pools, and concentrations in distilled manure all indicate major depletion of amines relative to NH3 during manure processing. We conclude that the agricultural source distribution of NH3 and amines is not similar. While for NH3 the spreading of manure in the field dominates agricultural emissions, the direct release from livestock buildings dominates the budget of volatile biogenic amines.

  9. PERTURBATION OF VOLTAGE-SENSITIVE Ca2+ CHANNEL FUNCTION BY VOLATILE ORGANIC SOLVENTS.

    EPA Science Inventory

    The mechanisms underlying the acute neurophysiological and behavioral effects of volatile organic compounds (VOCs) remain to be elucidated. However, the function of neuronal ion channels is perturbed by VOCs. The present study examined effects of toluene (TOL), trichloroethylene ...

  10. ANALYSIS OF VOLATILES AND SEMIVOLATILES BY DIRECT AQUEOUS INJECTION

    EPA Science Inventory

    Direct aqueous injection analysis (DAI) with gas chromatographic separation and ion trap mass spectral detection was used to analyze aqueous samples for g/L levels of 54 volatile and semivolatile compounds, and problematic non-purgeables and non-extractables. The method reduces ...

  11. Statistical Analysis of Major Ion and Trace Element Geochemistry of Water, 1986-2006, at Seven Wells Transecting the Freshwater/Saline-Water Interface of the Edwards Aquifer, San Antonio, Texas

    USGS Publications Warehouse

    Mahler, Barbara J.

    2008-01-01

    This report by the U.S. Geological Survey, in cooperation with the San Antonio Water System, describes the results of a statistical analysis of major ion and trace element geochemistry of water at seven wells transecting the freshwater/saline-water interface of the Edwards aquifer in San Antonio, Texas, either over time or in response to variations in hydrologic conditions. The data used in this report were collected during 1986-2006. The seven monitoring wells are screened at different depths in the aquifer at three sites that form a generally north-to-south transect. The three wells of the southern site and the deeper of the two middle-site wells are open to the freshwater/saline-water transition zone, which contains saline water. The shallower well of the middle site and the two wells of the northern site are open to the freshwater zone. Mean specific conductance (SC) values were greater at transition-zone wells than at freshwater-zone wells, but SC did not vary systematically with depth. Concentrations of all major ions except bicarbonate were greater at transition-zone wells than at freshwater-zone wells, but concentrations tended to be more variable at freshwater-zone wells. Mean molar ratios of magnesium:calcium, sulfate:chloride, and sodium:chloride were similar at transition-zone wells and freshwater-zone wells. Concentrations of trace elements for many water samples at the seven transect wells were below the laboratory analytical reporting level. Detections of trace elements were more frequent at transition-zone wells, and mean concentrations of cadmium, chromium, copper, lead, and silver were elevated at transition-zone wells relative to freshwater-zone wells. All strong correlations between SC and major ions were positive, and in general there were more and stronger correlations between SC and major ions in the water from the freshwater-zone wells than from the transition-zone wells. Except for the shallowest transition-zone well, the transition

  12. Volatilization of Mercury By Bacteria

    PubMed Central

    Magos, L.; Tuffery, A. A.; Clarkson, T. W.

    1964-01-01

    Volatilization of mercury has been observed from various biological media (tissue homogenates, infusion broth, plasma, urine) containing mercuric chloride. That micro-organisms were responsible was indicated by the finding that the rates of volatilization were highly variable, that a latent period often preceded volatilization, that toluene inhibited the process, and that the capacity to volatilize mercury could be transferred from one biological medium to another. Two species of bacteria when isolated and cultured from these homogenates were able to volatilize mercury. Two other bacteria, one of which was isolated from the local water supply, were also highly active. The volatile mercury was identified as mercury vapour. The importance of these findings in relation to the storage of urine samples prior to mercury analysis is discussed. PMID:14249899

  13. Immune Modulation by Volatile Anesthetics.

    PubMed

    Stollings, Lindsay M; Jia, Li-Jie; Tang, Pei; Dou, Huanyu; Lu, Binfeng; Xu, Yan

    2016-08-01

    Volatile general anesthetics continue to be an important part of clinical anesthesia worldwide. The impact of volatile anesthetics on the immune system has been investigated at both mechanistic and clinical levels, but previous studies have returned conflicting findings due to varied protocols, experimental environments, and subject species. While many of these studies have focused on the immunosuppressive effects of volatile anesthetics, compelling evidence also exists for immunoactivation. Depending on the clinical conditions, immunosuppression and activation due to volatile anesthetics can be either detrimental or beneficial. This review provides a balanced perspective on the anesthetic modulation of innate and adaptive immune responses as well as indirect effectors of immunity. Potential mechanisms of immunomodulation by volatile anesthetics are also discussed. A clearer understanding of these issues will pave the way for clinical guidelines that better account for the impact of volatile anesthetics on the immune system, with the ultimate goal of improving perioperative management. PMID:27286478

  14. Major Links.

    ERIC Educational Resources Information Center

    Henderson, Tona

    1995-01-01

    Provides electronic mail addresses for resources and discussion groups related to the following academic majors: art, biology, business, chemistry, computer science, economics, health sciences, history, literature, math, music, philosophy, political science, psychology, sociology, and theater. (AEF)

  15. Predicting the emission of volatile organic compounds from silage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major VOC emission source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols wit...

  16. Classification of Volatile Engine Particles

    SciTech Connect

    Cheng, Mengdawn

    2013-01-01

    Volatile particles cannot be detected at the engine exhaust by an aerosol detector. They are formed when the exhaust is mixed with ambient air downstream. Lack of a precise definition of volatile engine particles has been an impediment to engine manufacturers and regulatory agencies involved in the development of an effective control strategy. It is beyond doubt that volatile particles from combustion sources contribute to the atmospheric particulate burden, and the effect of that contribution is a critical issue in the ongoing research in the areas of air quality and climate change. A new instrument, called volatile particle separator (VPS), has been developed. It utilizes a proprietary microporous metallic membrane to separate particles from vapors. VPS data were used in the development of a two-parameter function to quantitatively classify, for the first time, the volatilization behavior of engine particles. The value of parameter A describes the volatilization potential of an aerosol. A nonvolatile particle has a larger A-value than a volatile one. The value of parameter k, an effective evaporation energy barrier, is found to be much smaller for small engine particles than that for large engine particles. The VPS instrument provides a means beyond just being a volatile particle remover; it enables a numerical definition to characterize volatile engine particles.

  17. Genome-Wide Association Mapping for Tomato Volatiles Positively Contributing to Tomato Flavor

    PubMed Central

    Zhang, Jing; Zhao, Jiantao; Xu, Yao; Liang, Jing; Chang, Peipei; Yan, Fei; Li, Mingjun; Liang, Yan; Zou, Zhirong

    2015-01-01

    Tomato volatiles, mainly derived from essential nutrients and health-promoting precursors, affect tomato flavor. Taste volatiles present a major challenge for flavor improvement and quality breeding. In this study, we performed genome-wide association studies (GWAS) to investigate potential chromosome regions associated with the tomato flavor volatiles. We observed significant variation (1200x) among the selected 28 most important volatiles in tomato based on their concentration and odor threshold importance across our sampled accessions. Using 174 tomato accessions, GWAS identified 125 significant associations (P < 0.005) among 182 SSR markers and 28 volatiles (27 volatiles with at least one significant association). Several significant associations were co-localized in previously identified quantitative trait loci (QTL). This result provides new potential candidate loci affecting the metabolism of several volatiles. PMID:26640472

  18. Major depression.

    PubMed

    Bentley, Susan M; Pagalilauan, Genevieve L; Simpson, Scott A

    2014-09-01

    Major depression is a common, disabling condition seen frequently in primary care practices. Non-psychiatrist ambulatory providers are increasingly responsible for diagnosing, and primarily managing patients suffering from major depressive disorder (MDD). The goal of this review is to help primary care providers to understand the natural history of MDD, identify practical tools for screening, and a thoughtful approach to management. Clinically challenging topics like co-morbid conditions, treatment resistant depression and pharmacotherapy selection with consideration to side effects and medication interactions, are also covered. PMID:25134869

  19. Arsenic(III, V) adsorption on a goethite-based adsorbent in the presence of major co-existing ions: Modeling competitive adsorption consistent with spectroscopic and molecular evidence

    NASA Astrophysics Data System (ADS)

    Kanematsu, Masakazu; Young, Thomas M.; Fukushi, Keisuke; Green, Peter G.; Darby, Jeannie L.

    2013-04-01

    Adsorption of the two oxyanions, arsenate (As(V)) and arsenite (As(III)), on a common goethite-based granular porous adsorbent is studied in the presence of major co-existing ions in groundwater (i.e., phosphate, silicic acid, sulfate, carbonate, magnesium, and calcium) and predicted using the extended triple layer model (ETLM), a dipole modified single-site triple layer surface complexation model consistent with spectroscopic and molecular evidence. Surface species of all ions were selected according to the previous ETLM studies and published experimental spectroscopic/theoretical molecular information. The adsorption equilibrium constants for all ions were determined using adsorption data obtained in single-solute systems. The adsorption equilibrium constants referenced to the site-occupancy standard state (indicated by Kθ) were compared with those for goethite in the literature if available. The values of these constants for the goethite-based adsorbent are found to be close to the values for goethite previously studied. These "constrained" adsorption equilibrium constants determined in single-solute systems were used in the ETLM to predict the competitive interactions of As(III, V) with the co-existing ions in binary-solute systems. The ETLM is capable of predicting As(III, V) adsorption in the presence of oxyanions (phosphate, silicic acid, sulfate, and carbonate). This study presents the first successful and systematic prediction of the competitive interactions of As(III, V) with these oxyanions using the ETLM. The ETLM prediction of surface (and aqueous) speciation also provides insights into the distinct adsorption behavior of As(III, V) in the presence of the oxyanions. Magnesium and calcium significantly enhanced As(V) adsorption at higher pH values, while they had little effect on As(III) adsorption. The enhanced adsorption of As(V), however, could not be predicted by the ETLM using the surface species proposed in previous ETLM studies. Further studies

  20. Areal distribution of selected trace elements, salinity, and major ions in shallow ground water, Tulare Basin, Southern San Joaquin Valley, California

    USGS Publications Warehouse

    Fujii, Roger; Swain, W.C.

    1995-01-01

    The distribution of salinity and selected trace elements in shallow ground water in the Tulare Basin, California, was assessed to evaluate potential problems related to disposal in evaporation ponds of irrigation drain water containing elevated concentrations of selenium and other trace elements. The constituents of primary concern were selenium, arsenic, and salinity; uranium, boron, and molybdenum also were evaluated. Samples from 117 shallow wells were analyzed, and the results for samples from 110 of the wells were interpreted in relation to surficial geology, sediment depositional environment, soil characteristics, and hydrologic processes to determine the geochemical and hydrologic factors affecting the distribution of these constituents in ground water. In general, shallow ground water in areas where concentrations of salinity and most trace elements are elevated is influenced primarily by sediments derived from marine sedimentary rocks originating in the Coast Range, San Emigdio Mountains, and Tehachapi Mountains, and probably by unusual exposures of similar marine formations in the Sierra Nevada. Ground water in areas where concentrations of salinity and trace elements are significantly lower generally is influenced by igneous and metamorphic rocks exposed in the Sierra Nevada. In addition to sources of sediments, evaporation of shallow ground water, as indicated by isotopic enrichment of oxygen-18 and deuterium, increases salinity and concentrations of conservative trace elements such as selenium (under oxidizing conditions) and boron. Redox conditions affect the oxidation state of all trace elements of concern, except boron, and were found to be a major influence on trace-element solubility. Under oxidized conditions, selenate predominates and behaves conservatively, and arsenate predominates and is affected by sorption reactions that can limit arsenic solubility. Under reduced conditions, selenium is reduced to insoluble elemental selenium and arsenite

  1. Major Andre

    ERIC Educational Resources Information Center

    Henisch, B. A.; Henisch, H. K.

    1976-01-01

    If most Revolutionary era people seem two-dimensional their lives simpler to understand than ours, it may be only that history, with the benefit of hindsight, clarifies. Examines a profile of Major John Andre, the British liaison officer in Benedict Arnold's plan to surrender West Point, as both hero and villain to show the complexity of early…

  2. Aroma volatiles in tangerine hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile compounds are well known to contribute to food flavor. In a breeding program, the knowledge of the identity and quantity of volatile compounds may help selecting fruit with desirable eating quality. Many studies report which compounds are responsible for orange juice flavor and aroma, but...

  3. Production of bioactive volatiles by different Burkholderia ambifaria strains.

    PubMed

    Groenhagen, Ulrike; Baumgartner, Rita; Bailly, Aurélien; Gardiner, Amber; Eberl, Leo; Schulz, Stefan; Weisskopf, Laure

    2013-07-01

    Increasing evidence indicates that volatile compounds emitted by bacteria can influence the growth of other organisms. In this study, the volatiles produced by three different strains of Burkholderia ambifaria were analysed and their effects on the growth of plants and fungi, as well as on the antibiotic resistance of target bacteria, were assessed. Burkholderia ambifaria emitted highly bioactive volatiles independently of the strain origin (clinical environment, rhizosphere of pea, roots of maize). These volatile blends induced significant biomass increase in the model plant Arabidopsis thaliana as well as growth inhibition of two phytopathogenic fungi (Rhizoctonia solani and Alternaria alternata). In Escherichia coli exposed to the volatiles of B. ambifaria, resistance to the aminoglycoside antibiotics gentamicin and kanamycin was found to be increased. The volatile blends of the three strains were similar, and dimethyl disulfide was the most abundant compound. Sulfur compounds, ketones, and aromatic compounds were major groups in all three volatile profiles. When applied as pure substance, dimethyl disulfide led to increased plant biomass, as did acetophenone and 3-hexanone. Significant fungal growth reduction was observed with high concentrations of dimethyl di- and trisulfide, 4-octanone, S-methyl methanethiosulphonate, 1-phenylpropan-1-one, and 2-undecanone, while dimethyl trisulfide, 1-methylthio-3-pentanone, and o-aminoacetophenone increased resistance of E. coli to aminoglycosides. Comparison of the volatile profile produced by an engineered mutant impaired in quorum-sensing (QS) signalling with the corresponding wild-type led to the conclusion that QS is not involved in the regulation of volatile production in B. ambifaria LMG strain 19182. PMID:23832658

  4. Volatile chemical reagent detector

    DOEpatents

    Chen, Liaohai; McBranch, Duncan; Wang, Rong; Whitten, David

    2004-08-24

    A device for detecting volatile chemical reagents based on fluorescence quenching analysis that is capable of detecting neutral electron acceptor molecules. The device includes a fluorescent material, a contact region, a light source, and an optical detector. The fluorescent material includes at least one polymer-surfactant complex. The polymer-surfactant complex is formed by combining a fluorescent ionic conjugated polymer with an oppositely charged surfactant. The polymer-surfactant complex may be formed in a polar solvent and included in the fluorescent material as a solution. Alternatively, the complex may be included in the fluorescent material as a thin film. The use of a polymer-surfactant complex in the fluorescent material allows the device to detect both neutral and ionic acceptor molecules. The use of a polymer-surfactant complex film allows the device and the fluorescent material to be reusable after exposing the fluorescent material to a vacuum for limited time.

  5. VOLATILIZATION OF ORGANIC POLLUTANTS FROM WATER

    EPA Science Inventory

    The volatilization of organic environmental contaminants from water bodies to the atmosphere was investigated. The general aim was to elucidate the factors that control the volatilization process and develop predictive methods for calculating volatilization rates for various comp...

  6. Biofiltration of volatile organic compounds.

    PubMed

    Malhautier, Luc; Khammar, Nadia; Bayle, Sandrine; Fanlo, Jean-Louis

    2005-07-01

    The removal of volatile organic compounds (VOCs) from contaminated airstreams has become a major air pollution concern. Improvement of the biofiltration process commonly used for the removal of odorous compounds has led to a better control of key parameters, enabling the application of biofiltration to be extended also to the removal of VOCs. Moreover, biofiltration, which is based on the ability of micro-organisms to degrade a large variety of compounds, proves to be economical and environmentally viable. In a biofilter, the waste gas is forced to rise through a layer of packed porous material. Thus, pollutants contained in the gaseous effluent are oxidised or converted into biomass by the action of microorganisms previously fixed on the packing material. The biofiltration process is then based on two principal phenomena: (1) transfer of contaminants from the air to the water phase or support medium, (2) bioconversion of pollutants to biomass, metabolic end-products, or carbon dioxide and water. The diversity of biofiltration mechanisms and their interaction with the microflora mean that the biofilter is defined as a complex and structured ecosystem. As a result, in addition to operating conditions, research into the microbial ecology of biofilters is required in order better to optimise the management of such biological treatment systems. PMID:15803311

  7. Ion Trap Mass Spectrometry

    SciTech Connect

    Eiden, Greg C.

    2005-09-01

    This chapter describes research conducted in a few research groups in the 1990s in which RF quadrupole ion trap mass spectrometers were coupled to a powerful atomic ion source, the inductively coupled plasma used in conventional ICP-MS instruments. Major section titles for this chapter are: RF Quadrupole Ion Traps Features of RF Quadrupole Ion Trap Mass Spectrometers Selective Ion Trapping methods Inductively Coupled Plasma Source Ion Trap Mass Spectrometers

  8. Subduction and volatile recycling in Earth's mantle

    NASA Technical Reports Server (NTRS)

    King, S. D.; Ita, J. J.; Staudigel, H.

    1994-01-01

    The subduction of water and other volatiles into the mantle from oceanic sediments and altered oceanic crust is the major source of volatile recycling in the mantle. Until now, the geotherms that have been used to estimate the amount of volatiles that are recycled at subduction zones have been produced using the hypothesis that the slab is rigid and undergoes no internal deformation. On the other hand, most fluid dynamical mantle flow calculations assume that the slab has no greater strength than the surrounding mantle. Both of these views are inconsistent with laboratory work on the deformation of mantle minerals at high pressures. We consider the effects of the strength of the slab using two-dimensional calculations of a slab-like thermal downwelling with an endothermic phase change. Because the rheology and composition of subducting slabs are uncertain, we consider a range of Clapeyron slopes which bound current laboratory estimates of the spinel to perovskite plus magnesiowustite phase transition and simple temperature-dependent rheologies based on an Arrhenius law diffusion mechanism. In uniform viscosity convection models, subducted material piles up above the phase change until the pile becomes gravitationally unstable and sinks into the lower mantle (the avalanche). Strong slabs moderate the 'catastrophic' effects of the instabilities seen in many constant-viscosity convection calculations; however, even in the strongest slabs we consider, there is some retardation of the slab descent due to the presence of the phase change.

  9. Detection of signature volatiles for cariogenic microorganisms.

    PubMed

    Hertel, M; Preissner, R; Gillissen, B; Schmidt-Westhausen, A M; Paris, S; Preissner, S

    2016-02-01

    The development of a breath test by the identification of volatile organic compounds (VOCs) emitted by cariogenic bacteria is a promising approach for caries risk assessment and early caries detection. The aim of the present study was to investigate the volatile profiles of three major cariogenic bacteria and to assess whether the obtained signatures were species-specific. Therefore, the headspaces above cultures of Streptococcus mutans, Lactobacillus salivarius and Propionibacterium acidifaciens were analysed after 24 and 48 h of cultivation using gas chromatography and mass spectrometry. A volatile database was queried for the obtained VOC profiles. Sixty-four compounds were detected within the analysed culture headspaces and were absent (36) or at least only present in minor amounts (28) in the control headspace. For S. mutans 18, for L. salivarius three and for P. acidifaciens five compounds were found to be unique signature VOCs. Database matching revealed that the identified signatures of all bacteria were unique. Furthermore, 13 of the 64 detected substances have not been previously reported to be emitted by bacteria or fungi. Specific VOC signatures were found in all the investigated bacteria cultures. The obtained results encourage further research to investigate the transferability to in vivo conditions towards the development of a breath test. PMID:26610336

  10. Volatile phytochemicals as mosquito semiochemicals

    PubMed Central

    Nyasembe, Vincent O.; Torto, Baldwyn

    2014-01-01

    Plant biochemical processes result in the release of an array of volatile chemical substances into the environment, some of which are known to play important plant fitness enhancing functions, such as attracting pollinators, thermal tolerance of photosynthesis, and defense against herbivores. Cunningly, phytophagous insects have evolved mechanisms to utilize these volatiles to their own advantage, either to colonize a suitable host for feeding, reproduction and oviposition or avoid an unsuitable one. The volatile compounds involved in plant–insect chemical interactions have been widely exploited in the management of agricultural pests. On the other hand, use of plant volatiles in the management of medically important insects is limited, mainly due to paucity of information on their role in disease vector–plant interactions. To date, a total of 29 plant volatile compounds from various chemical classes, including phenols, aldehydes, alcohols, ketones and terpenes, have been identified as mosquito semiochemicals. In this review, we present highlights of mosquito–plant interactions, the available evidence of nectar feeding, with particular emphasis on sources of plant attractants, methods of plant volatile collection and the candidate plant volatile compounds that attract mosquitoes to nectar sources. We also highlight the potential application of these phytochemical attractants in integrated mosquito management. PMID:25383131

  11. Plant volatile analogues strengthen attractiveness to insect.

    PubMed

    Sun, Yufeng; Yu, Hao; Zhou, Jing-Jiang; Pickett, John A; Wu, Kongming

    2014-01-01

    Green leaf bug Apolygus lucorum (Meyer-Dür) is one of the major pests in agriculture. Management of A. lucorum was largely achieved by using pesticides. However, the increasing population of A. lucorum since growing Bt cotton widely and the increased awareness of ecoenvironment and agricultural product safety makes their population-control very challenging. Therefore this study was conducted to explore a novel ecological approach, synthetic plant volatile analogues, to manage the pest. Here, plant volatile analogues were first designed and synthesized by combining the bioactive components of β-ionone and benzaldehyde. The stabilities of β-ionone, benzaldehyde and analogue 3 g were tested. The electroantennogram (EAG) responses of A. lucorum adult antennae to the analogues were recorded. And the behavior assay and filed experiment were also conducted. In this study, thirteen analogues were acquired. The analogue 3 g was demonstrated to be more stable than β-ionone and benzaldehyde in the environment. Many of the analogues elicited EAG responses, and the EAG response values to 3 g remained unchanged during seven-day period. 3 g was also demonstrated to be attractive to A. lucorum adults in the laboratory behavior experiment and in the field. Its attractiveness persisted longer than β-ionone and benzaldehyde. This indicated that 3 g can strengthen attractiveness to insect and has potential as an attractant. Our results suggest that synthetic plant volatile analogues can strengthen attractiveness to insect. This is the first published study about synthetic plant volatile analogues that have the potential to be used in pest control. Our results will support a new ecological approach to pest control and it will be helpful to ecoenvironment and agricultural product safety. PMID:24911460

  12. Plant Volatile Analogues Strengthen Attractiveness to Insect

    PubMed Central

    Sun, Yufeng; Yu, Hao; Zhou, Jing-Jiang; Pickett, John A.; Wu, Kongming

    2014-01-01

    Green leaf bug Apolygus lucorum (Meyer-Dür) is one of the major pests in agriculture. Management of A. lucorum was largely achieved by using pesticides. However, the increasing population of A. lucorum since growing Bt cotton widely and the increased awareness of ecoenvironment and agricultural product safety makes their population-control very challenging. Therefore this study was conducted to explore a novel ecological approach, synthetic plant volatile analogues, to manage the pest. Here, plant volatile analogues were first designed and synthesized by combining the bioactive components of β-ionone and benzaldehyde. The stabilities of β-ionone, benzaldehyde and analogue 3 g were tested. The electroantennogram (EAG) responses of A. lucorum adult antennae to the analogues were recorded. And the behavior assay and filed experiment were also conducted. In this study, thirteen analogues were acquired. The analogue 3 g was demonstrated to be more stable than β-ionone and benzaldehyde in the environment. Many of the analogues elicited EAG responses, and the EAG response values to 3 g remained unchanged during seven-day period. 3 g was also demonstrated to be attractive to A. lucorum adults in the laboratory behavior experiment and in the field. Its attractiveness persisted longer than β-ionone and benzaldehyde. This indicated that 3 g can strengthen attractiveness to insect and has potential as an attractant. Our results suggest that synthetic plant volatile analogues can strengthen attractiveness to insect. This is the first published study about synthetic plant volatile analogues that have the potential to be used in pest control. Our results will support a new ecological approach to pest control and it will be helpful to ecoenvironment and agricultural product safety. PMID:24911460

  13. Characterization by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry of the major photoproducts of temoporfin (m-THPC) and bacteriochlorin (m-THPBC).

    PubMed

    Angotti, M; Maunit, B; Muller, J F; Bezdetnaya, L; Guillemin, F

    2001-07-01

    The photobleaching of 5,10,15,20-tetrakis(m-hydroxyphenyl)chlorin (temoporfin, m-THPC) and 5,10,15,20-tetrakis(m-hydroxyphenyl)bacteriochlorin (bacteriochlorin, m-THPBC) was studied in ethanol-water (1 : 99, v/v) and in physiological medium (phosphate-buffered saline, PBS) with or without fetal calf serum (FCS). m-THPC solution was irradiated with the laser radiation of 650 nm, whereas m-THPBC solution underwent two consecutive irradiations at 532 and 650 nm. The photoproducts were characterized by UV-visible absorption spectrophotometry and by matrix-assisted laser desorption/ionization (MALDI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). Independent of the solvent used, the phototransformation of either photosensitizer yielded the formation of 5,10,15,20-tetrakis (m-hydroxyphenyl)porphyrin (m-THPP) through a major dehydrogenation process. PMID:11473406

  14. Changes in volatile compounds and some physicochemical properties of European cranberrybush (Viburnum opulus L.) during ripening through traditional fermentation.

    PubMed

    Yilmaztekin, Murat; Sislioglu, Kubra

    2015-04-01

    The changes in volatile compounds and some physicochemical properties of European Cranberrybush (Viburnum opulus L.) were investigated during traditional fermentation. Using the principal component analysis (PCA), relations between volatile compounds and fermentation were associated with dynamics of these compounds. In total, 58 volatile compounds were identified, 3-methylbutanoic acid (25.4% to 66.4% of identified volatile compounds) being the major constituent in raw, 2-, 3-, and 4-mo fermented European Cranberrybush fruits, while 2-octanone was dominant in 1-mo fermented sample with a 30% of the total identified volatiles. The amount of total volatile compounds was increased in the 1st month of fermentation and then decreased gradually in the following months. Acids were the dominant volatile compounds in raw and 3- to 4-mo fermented European Cranberrybush. Ketones and alcohols had the highest percentage in total volatile compounds in the 2nd and 3rd months of fermentation, respectively. PMID:25808206

  15. Senescing grass crops as regional sources of reactive volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Karl, T.; Harren, F.; Warneke, C.; de Gouw, J.; Grayless, C.; Fall, R.

    2005-08-01

    Grass crop species, rice and sorghum, that are widely grown in the southeastern Texas region were analyzed for release of biogenic volatile organic compounds (VOCs) in simulated leaf-drying/senescence experiments. VOC release was measured by both online proton transfer reaction mass spectrometry (PTR-MS) and proton transfer ion trap mass spectrometry (PIT-MS) methods, and it was demonstrated that these two grass crops release a large variety of oxygenated VOCs upon drying under laboratory conditions primarily from leaves and not from stems. VOC release from paddy rice varieties was much greater than from sorghum, and major VOCs identified by gas chromatography PTR-MS included methanol, acetaldehyde, acetone, n-pentanal, methyl propanal, hexenol, hexanal, cis-3-hexenal, and trans-2-hexenal. The latter four VOCs, all C6 compounds known to be formed in wounded leaves, were the major volatiles released from drying rice leaves; smaller but substantial amounts of acetaldehyde were observed in all drying experiments. Online detection of VOCs using PIT-MS gave results comparable to those obtained with PTR-MS, and use of PIT-MS with collision-induced dissociation of trapped ions allowed unambiguous determination of the ratios of cis- and trans-hexenals during different phases of drying. As rice is one of the largest harvested crops on a global scale, it is conceivable that during rice senescence releases of biogenic VOCs, especially the reactive C6 wound VOCs, may contribute to an imbalance in regional atmospheric oxidant formation during peak summer/fall ozone formation periods. A county-by-county estimate of the integrated emissions of reactive biogenic VOCs from sorghum and rice production in Texas suggests that these releases are orders of magnitude lower than anthropogenic VOCs in urban areas but also that VOC emissions from rice in southeastern coastal Texas may need to be included in regional air quality assessments during periods of extensive harvesting.

  16. Syrtis Major

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 1 May 2002) The Science This image is from the region of Syrtis Major, which is dominated by a low-relief shield volcano. This area is believed to be an area of vigorous aeolian activity with strong winds in the east-west direction. The effects of these winds are observed as relatively bright streaks across the image, extending from topographic features such as craters. The brighter surface material probably indicates a smaller relative particle size in these areas, as finer particles have a higher albedo. The bright streaks seen off of craters are believed to have formed during dust storms. A raised crater rim can cause a reduction in the wind velocity directly behind it, which results in finer particles being preferentially deposited in this location. In the top half of the image, there is a large bright streak that crosses the entire image. There is no obvious topographic obstacle, therefore it is unclear whether it was formed in the same manner as described above. This image is located northwest of Nili Patera, a large caldera in Syrtis Major. Different flows from the caldera eruptions can be recognized as raised ridges, representing the edge of a flow lobe. The Story In the 17th century, Holland was in its Golden Age, a time of cultural greatness and immense political and economic influence in the world. In that time, lived a inquisitive person named Christian Huygens. As a boy, he loved to draw and to figure out problems in mathematics. As a man, he used these talents to make the first detailed drawings of the Martian surface - - only 50 years or so after Galileo first turned his telescope on Mars. Mars suddenly became something other than a small red dot in the sky. One of the drawings Huygens made was of a dark marking on the red planet's surface named Syrtis Major. Almost 350 years later, here we are with an orbiter that can show us this place in detail. Exploration lives! It's great we can study this area up close. In earlier periods of history

  17. Volatiles on Mars

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.

    1988-01-01

    The long-term evolution of both the atmosphere and the surface of Mars can be understood by examining the history of volatiles in the Mars atmosphere, their non-atmospheric reservoirs, and the processes of exchange between the two. Clearly, the present state of both the surface and the atmosphere can only be seen, so that any inferences about the evolution of the climate system are just that, inferences. The processes which control the atmosphere and surface on a seasonal basis, however, are the same processes which can act on longer timescales; only the specific solar and atmospheric forcing will differ. Once the ability of each process to affect the seasonal behavior is understood, the long-timescale forcing may be applied to the various processes in order to clearly identify the ability of the processes to act over the entire history of Mars. The areas of surface-atmospheric interaction of Mars are addressed in the ongoing research. The climate system on Mars is controlled by processes involving the exchange between the surface and atmosphere, so it is important to understand the current behavior of those processes. This is especially so in light of the current interest in understanding Mars; the upcoming Mars Observer mission, and the potential for a future sample-return or human-exploration mission will focus emphasis on this area of Mars science.

  18. Field sampling method for quantifying volatile sulfur compounds from animal feeding operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile sulfur compounds (VSCs) are a major class of chemicals associated with odor from animal feeding operations (AFO). Identifying and quantifying VSCs in air is challenging due to their volatility, reactivity, and low concentrations in ambient air. In the present study, a canister based metho...

  19. Syrtis Major

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 6 June 2002) The Science This image, located near the equator and 288W (72E), is near the southern edge of a low, broad volcanic feature called Syrtis Major. A close look at this image reveals a wrinkly texture that indicates a very rough surface that is associated with the lava flows that cover this region. On a larger scale, there are numerous bright streaks that trail topographic features such as craters. These bright streaks are in the wind shadows of the craters where dust that settles onto the surface is not as easily scoured away. It is important to note that these streaks are only bright in a relative sense to the surrounding image. Syrtis Major is one of the darkest regions on Mars and it is as dark as fresh basalt flows or dunes are on Earth. The Story Cool! It almost looks as if nature has 'painted' comets on the surface of Mars, using craters as comet cores and dust as streaky tails. Of course, that's just an illusion. As in many areas of Mars, the wind is behind the creation of such fantastic landforms. The natural phenomenon seen here gives this particular surface of Mars a very dynamic, fast-moving, almost luminous 'cosmic personality.' The bright, powdery-looking streaks of dust are in the 'wind shadows' of craters, where dust that settles onto the surface is not as easily scoured away. That's because the wind moves across the land in a particular direction, and a raised surface like the rim of a crater 'protects' dust from being completely blown away on the other side. The raised landforms basically act as a buffer. From the streaks seen above, you can tell the wind was blowing in a northeast to southwest direction. Why are the streaks so bright? Because they contrast with the really dark underlying terrain in this volcanic area of Mars. Syrtis Major is one of the darkest regions on Mars because it is made of basalt. Basalt is typically dark gray or black, and forms when a certain type of molten lava cools. The meaning of the word basalt

  20. Volatile hexafluoroacetylacetonate complexes of einsteinium

    SciTech Connect

    Fedoseev, E.V.; Aizenberg, M.I.; Travnikov, S.S.; Davydov, A.V.; Myasoedov, B.F.

    1988-07-01

    Volatile hexafluoroacetylacetonate complexes of einsteinium have been synthesized. Their sublimation and thermochromatographic behavior in the presence of free ..beta..-diketone were studied. The reaction of einsteinium di- and tri-chlorides with hexafluoroacetylacetone vapor is discussed.

  1. [Analysis of major components in water based stamp pad inks and their imprints by ultra high performance liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry].

    PubMed

    Zhang, Qing; Zou, Jixin; Shi, Gaojun; Zhang, Lijuan

    2010-12-01

    Ultra high performance liquid chromatography-mass spectrometry (UHPLC-MS) technology and gas chromatography-mass spectrometry (GC-MS) technology were used to qualitatively analyze the major components in water based stamp pad inks including major colorants and volatile components. After the samples were supersonically extracted and then centrifuged, UHPLC-MS was used to separate and identify the major colorants. A ZORBAX Eclipse Plus Phenyl-Hexyl (50 mm x 4.6 mm, 1.8 microm) column and 15 mmol/L ammonium acetate-acetonitrile were utilized for the separation and negative selected ion monitoring mode (SIM) was set for the MS analysis. An HP-INNOWAX (30 m x 0.25 mm, 0.25 microm) column was employed in the GC-MS analysis with the full-scan mode to determine the volatiles. This study demonstrated that the major colorants in the inks and their imprints were Acid Red R, Eosin Y and Pigment Red 112; and the major volatiles were glycerol, 1,2-propanediol, etc. The method is rapid and accurate. It also demonstrates that the method can meet the requirements for imprint determination in material evidence identification. The work provides a reliable tool for the categorization research in the forensic sciences. PMID:21438364

  2. Evolution of Triton's volatile budget

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.

    1993-01-01

    Triton's volatile budget provides important links to planetary formation processes in the cold outer solar nebula. However, the budget has been modified by processes subsequent to the accretion of this body. It is of interest to assess whether certain formation environments can be ruled out for Triton on the basis of its current volatile abundances, and also to quantify some of the post-accretional processes by which the abundances have been modified.

  3. Volatile Emission of Mechanically Damaged Almonds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mature almonds from the Monterey variety were evaluated for their volatile composition after mechanical damage and compared to the volatile composition of the corresponding undamaged almonds. Volatiles were collected on Tenax, desorbed with diethyl ether, and identified via GC-MS analyses. Volatile ...

  4. Radiation chemistry of major food components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter summarizes radiolysis of lipids, proteins, carbohydrates and vitamins. The major focuses of the chapter are on recent developments in radiation chemistry and the use of irradiation to reduce undesirable chemicals in foods. Specifically, formation of volatile sulfur compounds from...

  5. Eco-evolutionary factors drive induced plant volatiles: a meta-analysis.

    PubMed

    Rowen, Elizabeth; Kaplan, Ian

    2016-04-01

    Herbivore-induced plant volatiles (HIPVs) mediate critical ecological functions, but no studies have quantitatively synthesized data published on HIPVs to evaluate broad patterns. We tested three hypotheses that use eco-evolutionary theory to predict volatile induction: feeding guild (chewing arthropods > sap feeders), diet breadth (specialist herbivores > generalists), and selection history (domesticated plants < wild species). To test these hypotheses, we extracted data from 236 experiments that report volatiles produced by herbivore-damaged and undamaged plants. These data were subjected to meta-analysis, including effects on total volatiles and major biochemical classes. Overall, we found that chewers induced more volatiles than sap feeders, for both total volatiles and most volatile classes (e.g. green leaf volatiles, monoterpenes). Although specialist herbivores induced more total volatiles than generalists, this was inconsistent across chemical classes. Contrary to our expectation, domesticated species induced stronger volatile responses than wild species, even when controlling for plant taxonomy. Surprisingly, this is the first quantitative synthesis of published studies on HIPVs. Our analysis provides support for perceptions in the published literature (chewers > sap feeders), while challenging other commonly held notions (wild > crop). Despite the large number of experiments, we identified several gaps in the existing literature that should guide future investigations. PMID:26725245

  6. Modeling emissions of volatile organic compounds from silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Photochemical smog is a major air pollution problem and a significant cause of premature death in the U.S. Smog forms in the presence of volatile organic compounds (VOCs), which are emitted primarily from industry and motor vehicles in the U.S. However, dairy farms may be an important source in so...

  7. Volatile analysis of ground almonds contaminated with naturally occurring fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxigenic aspergilli inflict major economic damage to the tree nut industry of California, with the highest negative impact to almonds. Aspergilli and fungi in general are known to emit volatiles in varying quantity and composition dependent upon their growth media. The goal of the study was to ...

  8. Changes in streamflow and summary of major-ion chemistry and loads in the North Fork Red River basin upstream from Lake Altus, northwestern Texas and western Oklahoma, 1945-1999

    USGS Publications Warehouse

    Smith, S. Jerrod; Wahl, Kenneth L.

    2003-01-01

    Upstream from Lake Altus, the North Fork Red River drains an area of 2,515 square miles. The quantity and quality of surface water are major concerns at Lake Altus, and water-resource managers and consumers need historical information to make informed decisions about future development. The Lugert-Altus Irrigation District relies on withdrawals from the lake to sustain nearly 46,000 acres of agricultural land. Kendall's tau tests of precipitation data indicated no statistically significant trend over the entire 100 years of available record. However, a significant increase in precipitation occurred in the last 51 years. Four streamflow-gaging stations with more than 10 years of record were maintained in the basin. These stations recorded no significant trends in annual streamflow volume. Two stations, however, had significant increasing trends in the base-flow index, and three had significant decreasing trends in annual peak flows. Major-ion chemistry in the North Fork Red River is closely related to the chemical composition of the underlying bedrock. Two main lithologies are represented in the basin upstream from Lake Altus. In the upper reaches, young and poorly consolidated sediments include a range of sizes from coarse gravel to silt and clay. Nearsurface horizons commonly are cemented as calcium carbonate caliche. Finer-grained gypsiferous sandstones and shales dominate the lower reaches of the basin. A distinct increase in dissolved solids, specifically sodium, chloride, calcium, and sulfate, occurs as the river flows over rocks that contain substantial quantities of gypsum, anhydrite, and dolomite. These natural salts are the major dissolved constituents in the North Fork Red River.

  9. Syrtis Major

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 18 May 2004 This image of Syrtis Major was acquired August 20, 2002, during northern spring.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude 12.8, Longitude 79.5 East (280.5 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The

  10. Fruit volatile analysis using an electronic nose.

    PubMed

    Vallone, Simona; Lloyd, Nathan W; Ebeler, Susan E; Zakharov, Florence

    2012-01-01

    Numerous and diverse physiological changes occur during fruit ripening, including the development of a specific volatile blend that characterizes fruit aroma. Maturity at harvest is one of the key factors influencing the flavor quality of fruits and vegetables. The validation of robust methods that rapidly assess fruit maturity and aroma quality would allow improved management of advanced breeding programs, production practices and postharvest handling. Over the last three decades, much research has been conducted to develop so-called electronic noses, which are devices able to rapidly detect odors and flavors. Currently there are several commercially available electronic noses able to perform volatile analysis, based on different technologies. The electronic nose used in our work (zNose, EST, Newbury Park, CA, USA), consists of ultra-fast gas chromatography coupled with a surface acoustic wave sensor (UFGC-SAW). This technology has already been tested for its ability to monitor quality of various commodities, including detection of deterioration in apple; ripeness and rot evaluation in mango; aroma profiling of thymus species; C(6) volatile compounds in grape berries; characterization of vegetable oil and detection of adulterants in virgin coconut oil. This system can perform the three major steps of aroma analysis: headspace sampling, separation of volatile compounds, and detection. In about one minute, the output, a chromatogram, is produced and, after a purging cycle, the instrument is ready for further analysis. The results obtained with the zNose can be compared to those of other gas-chromatographic systems by calculation of Kovats Indices (KI). Once the instrument has been tuned with an alkane standard solution, the retention times are automatically converted into KIs. However, slight changes in temperature and flow rate are expected to occur over time, causing retention times to drift. Also, depending on the polarity of the column stationary phase, the

  11. Recent Advances in Volatiles of Teas.

    PubMed

    Zheng, Xin-Qiang; Li, Qing-Sheng; Xiang, Li-Ping; Liang, Yue-Rong

    2016-01-01

    Volatile compounds are important components of tea aroma, a key attribute of sensory quality. The present review examines the formation of aromatic volatiles of various kinds of teas and factors influencing the formation of tea volatiles, including tea cultivar, growing environment and agronomic practices, processing method and storage of tea. The determination of tea volatiles and the relationship of active-aroma volatiles with the sensory qualities of tea are also discussed in the present paper. PMID:26978340

  12. Characterization of Szovitsia callicarpa volatile constituents obtained by micro- and hydrodistillation.

    PubMed

    Demirci, Betül; Küçükboyaci, Nurgün; Adigüzel, Nezaket; Başer, K Hüsnü Can; Demirci, Fatih

    2010-02-01

    The volatile constituents of Szovitsia callicarpa Fisch. & C. A. Mey. were obtained from the fruits by microdistillation, due to the limited plant material availability. Initial GC-MS analyses of the obtained material showed an unidentified major constituent with a molecular ion peak at M+ 280. After hydrodistillation of the plant material, the resulting essential oil was also analyzed by GC and GC-MS, simultaneously. In total, twenty-two compounds, representing 98.6% of the microdistilled sample, were identified, whereas seventeen components were detected in the hydrodistilled oil, representing 98.5% of the total. The GC-MS analyses showed that the samples contained an unidentified major constituent, which was further purified from the hydrodistilled essential oil by micro-column chromatography. The structure was elucidated as alpha-kessyl acetate using 1H- and 13C-NMR spectroscopic and mass spectroscopic techniques. Other major constituents in the analytes were determined as longipinene, longicyclene and kessane. In addition, both samples, as well as the major compound alpha-kessyl acetate, were tested at 1 mg/mL concentration against the pathogen Candida tropicalis and for its free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH*) by TLC-bioauthographic techniques. Both preliminary assays at the tested concentration showed no activity. PMID:20334147

  13. Comparative Characterization of Aroma Volatiles and Related Gene Expression Analysis at Vegetative and Mature Stages in Basmati and Non-Basmati Rice (Oryza sativa L.) Cultivars.

    PubMed

    Hinge, Vidya; Patil, Hemant; Nadaf, Altafhusain

    2016-02-01

    Aroma volatiles in Basmati-370, Ambemohar-157 (non-basmati scented), and IR-64 (non-scented) rice cultivars were qualitatively and quantitatively analyzed at vegetative and maturity stages to study their differential accumulation using headspace solid-phase microextraction, followed by gas chromatography mass spectrometry (HS-SPME-GCMS) with selected ion monitoring (SIM) approach. In addition, expression analysis of major aroma volatile 2-acetyl-1-pyrroline (2AP)-related genes, betaine aldehyde dehydrogenase 2 (badh2) and Δ(1)-pyrolline-5-carboxylic acid synthetase (P5CS), were studied by real-time PCR. Maximum number of volatiles recorded at vegetative (72-58) than at mature stage (54-39). Twenty new compounds (12 in scented and 8 in both) were reported in rice. N-containing aromatic compounds were major distinguishing class separating scented from non-scented. Among quantified 26 volatiles, 14 odor-active compounds distinguished vegetative and mature stage. Limit of detection (LOD) and limit of quantification (LOQ) for 2AP was 0.001 mg/kg of 2AP and 0.01 g of rice, respectively. 2AP accumulation in mature grains was found three times more than in leaves of scented rice. Positive correlation of 2AP with 2-pentylfuran, 6-methyl-5-hepten-2-one, and (E)-2-nonenal suggests their major role as aroma contributors. The badh2 expression was inversely and P5CS expression was positively correlated with 2AP accumulation in scented over non-scented cultivar. PMID:26481230

  14. Seasonal Variability of Riverine Geochemistry (87Sr/86Sr, δ13CDIC, δ44/40Ca, and major ions) in Permafrost Watersheds on the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Lehn, G. O.; Jacobson, A. D.; Douglas, T. A.; McClelland, J. W.; Khosh, M. S.; Barker, A. J.

    2014-12-01

    Global climate models predict amplified warming at high latitudes, where permafrost soils have historically acted as a carbon sink. As warming occurs, the seasonally thawed active layer will propagate downward into previously frozen mineral-rich soil, releasing carbon and introducing unique chemical weathering signatures into rivers. We use variations in the 87Sr/86Sr, δ13CDIC, δ44/40Ca, and major ion geochemistry of rivers to track seasonal active layer dynamics. We collected water from six streams on the North Slope of Alaska between May and October, 2009 and 2010. All rivers drain continuous permafrost but three drain tussock tundra-dominated watersheds and three drain steeper bedrock catchments with minor tundra coverage. In tundra streams, elevated 87Sr/86Sr ratios, low δ13CDIC values and major ions ([Na+]+[K+]/ [Ca+2]+[Mg+2]) in spring melt runoff suggest flushing of shallow soils with relatively low carbonate content. By July, 87Sr/86Sr ratios stabilize at relatively low values and δ13CDIC at relatively higher values, indicating the active layer thawed into deeper carbonate-rich soils. In bedrock streams, elevated 87Sr/86Sr ratios correlate with high discharge. By late fall, bedrock stream 87Sr/86Sr ratios decrease steadily, consistent with increased carbonate weathering. Nearly constant δ13CDIC values and high [SO4-2] for most of the melt season imply significant sulfuric acid-carbonate weathering in bedrock streams. δ13CDIC values suggest a shift to carbonic acid-carbonate weathering in late 2010, possibly due to limited oxygen for pyrite oxidation during freezing of the active layer. δ44/40Ca values in both tundra and bedrock streams increase during the seasons, suggesting increased uptake of 40Ca by plants. δ44/40Ca values of rivers are at least 0.1-0.2‰ higher than their watershed soils, rocks and sediments, suggesting significant plant uptake. Our findings show how seasonal changes in mineral weathering have potential for tracking active

  15. VOLATILIZATION OF METHYL PARATHION FROM FIELDS TREATED WITH MICROENCAPSULATED AND EMULSIFIABLE CONCENTRATE FORMULATIONS

    EPA Science Inventory

    Volatilization of pesticides from treated agricultural crops constitutes a major input of these chemicals into the atmosphere. Microencapsulated pesticide formulations are designed for slow release of biocides and thus increase the residence time on the plant foliage. The rate of...

  16. Comparative study on volatile components of Nardostachys rhizome.

    PubMed

    Tanaka, Ken; Komatsu, Katsuko

    2008-01-01

    Volatile components in 13 crude drug samples derived from Nardostachys chinensis or Nardostachys grandiflora were studied by solid phase micro extraction (SPME)-GC and SPME-GC-MS. Twenty-three compounds accounting for 81.3 and 70.0% of volatile components in newly collected samples of two species were identified. beta-Maaliene, 9-aristolene, calarene and patchouli alcohol were identified as the major volatile constituents of N. chinensis, whereas aromadendrene, cube-11-ene, epi-alpha-selinene, spirojatamol and valeranone were identified as those of N. grandiflora. Using the peaks of beta-maaliene and 9-aristolene in GC profiles as the marker, two Nardostachys species were clearly distinguished among the samples examined. PMID:18404355

  17. Volatility from copper and tungsten alloys for fusion reactor applications

    SciTech Connect

    Smolik, G.R.; Neilson, R.M. Jr.; Piet, S.J. )

    1989-01-01

    Accident scenarios for fusion power plants present the potential for release and transport of activated constituents volatilized from first wall and structural materials. The extent of possible mobilization and transport of these activated species, many of which are oxidation driven'', is being addressed by the Fusion Safety Program at the Idaho National Engineering Laboratory (INEL). This report presents experimental measurements of volatilization from a copper alloy in air and steam and from a tungsten alloy in air. The major elements released included zinc from the copper alloy and rhenium and tungsten from the tungsten alloy. Volatilization rates of several constituents of these alloys over temperatures ranging from 400 to 1200{degree}C are presented. These values represent release rates recommended for use in accident assessment calculations. 8 refs., 3 figs., 5 tabs.

  18. Volatile Components Emitted from the Liverwort Marchantia paleacea subsp. diptera.

    PubMed

    Sakurai, Kazutoshi; Tomiyama, Kenichi; Kawakami, Yukihiko; Ochiai, Nozomi; Yabe, Shigeki; Nakagawa, Tomomi; Asakawa, Yoshinori

    2016-02-01

    The volatile components from the thalloid liverwort, Marchantia paleacea subsp. diptera were investigated by HS-SPME-GC-MS analysis. The monocyclic monoterpene aldehyde, perillaldehyde was identified for the first time as the major component and its content was about 50% of the volatiles, along with β-pinene, limonene, β-caryophyllene, α-selinene and β-selinene as minor volatiles. Using MD (Multi-dimensional) GC-MS analysis equipped with a chiral column as the second column, the chirality was determined of both perillaldehyde and limonene, which was considered as the precursor of perillaldehyde. Both compounds were (S)-(-)-enantiomers (over 99.0 %) and (R)-enantiomers (less than 0.5 %). This is the first report of the existence of perillaldehyde in liverworts. PMID:27032216

  19. Observability of market daily volatility

    NASA Astrophysics Data System (ADS)

    Petroni, Filippo; Serva, Maurizio

    2016-02-01

    We study the price dynamics of 65 stocks from the Dow Jones Composite Average from 1973 to 2014. We show that it is possible to define a Daily Market Volatility σ(t) which is directly observable from data. This quantity is usually indirectly defined by r(t) = σ(t) ω(t) where the r(t) are the daily returns of the market index and the ω(t) are i.i.d. random variables with vanishing average and unitary variance. The relation r(t) = σ(t) ω(t) alone is unable to give an operative definition of the index volatility, which remains unobservable. On the contrary, we show that using the whole information available in the market, the index volatility can be operatively defined and detected.

  20. Modeling the influence of precursor volatility and molecular structure on secondary organic aerosol formation using evaporated fuel experiments

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Donahue, N. M.; Adams, P. J.; Robinson, A. L.

    2013-09-01

    We use SOA production data from an ensemble of evaporated fuels to test various SOA formation models. Except for gasoline, traditional SOA models focusing exclusively on volatile species in the fuels under-predict the observed SOA formation. These models can be improved dramatically by accounting for lower volatility species, but at the cost of a large set of free parameters. In contrast, a SOA model based only on the volatility of the precursor, starting with the volatility distribution of the evaporated fuels and optimized for the volatility reduction of first-generation products, reasonably reproduces the observed SOA formation with relatively few free parameters. The exceptions are exotic fuels such as Fischer-Tropsch fuels that expose the central assumption of the volatility based model that most emissions consist of complex mixtures displaying reasonably average behavior. However, for the vast majority of fuels, the volatility based model performs well.

  1. Temperature- and fO2-Dependence of the Volatility and Condensation Behavior of Volatile Elements: Experimental Results

    NASA Astrophysics Data System (ADS)

    Ertel, W.; Dingwell, D. B.

    2010-12-01

    due to volatility. In the upper, cooler parts of the setup, condensation on the surface of the two Al2O3 plates was observed. In this way both evaporation as well as condensation behaviour of the investigated elements was investigated simultaneously. Quenched samples were investigated by electron microprobe analysis (major elements) and laser-ablation inductively coupled plasma mass spectrometry (LAMS) for their volatile content. The present data indicate a complex behaviour of volatility. 1. Volatile concentrations do not generally decrease for all elements continuously with time as anticipated in previous studies: concentrations of some elements generally assumed to be volatile exhibit very low volatility (independent of fO2: Cs, Rb, Na, K, Li). Some elements become more volatile with increasing fO2 (Cr, Ti, Mn), while others become less volatile (moderately: Cu, Co, Tl, Ga, Zn; dramatically: In, Sn, Sb, Cd). Condensation traps show clear indications (e.g.: differences in colour) for a continuous condensation sequence of components with decreasing T, which will require detailed analysis by LAMS.

  2. Direct injection ion chromatography for the control of chlorinated drinking water: simultaneous estimation of nine haloacetic acids and quantitation of bromate, chlorite and chlorate along with the major inorganic anions.

    PubMed

    Garcia-Villanova, Rafael J; Raposo Funcia, César; Oliveira Dantas Leite, M Vilani; Toruño Fonseca, Ivania M; Espinosa Nieto, Miguel; Espuelas India, Javier

    2014-09-01

    Most methods for the analysis of haloacetic acids published in recent years are based on ion chromatography with direct injection, employing a gradient elution with potassium hydroxide (KOH). This work reports the exploration of an alternative eluent, a buffer of sodium carbonate/sodium hydrogen carbonate, aimed at the simultaneous analysis of nine haloacetic acids along with bromate, chlorite and chlorate. The alternative of both a less alkaline eluent and a lower temperature of operation may prevent the partial decomposition of some of the haloacetic acids during the analytical process, especially the more vulnerable brominated ones. Gradient elution at temperature of 7 °C yielded the best results, with an acceptable separation of 17 analytes (which includes the major natural inorganic anions) and a good linearity. Precision ranges from 0.3 to 23.4 (% V.C.), and detection limits are within units of μg L⁻¹, except for tribromoacetic acid - somewhat high in comparison with those of the official methods. Nonetheless, with the basic instrumentation setup herein described, this method may be suitable for monitoring when the drinking water treatments are to be optimized. This is especially interesting for small communities or for developing/developed countries in which regulations on disinfection by-products others than trihalomethanes are being addressed. PMID:25252348

  3. Comparative volatile profiles in soy sauce according to inoculated microorganisms.

    PubMed

    Lee, Kyung Eun; Lee, Sang Mi; Choi, Yong Ho; Hurh, Byung Serk; Kim, Young-Suk

    2013-01-01

    We compared the volatile profiles in soy sauce according to inoculation with Tetragenococcus halophilus and/or Zygosaccharomyces rouxii. Totals of 107 and 81 volatiles were respectively identified by using solid-phase microextraction and solvent extraction. The various volatile compounds identified included acids, aldehydes, esters, ketones, furans and furan derivatives, and phenols. The major volatiles in the samples treated with T. halophilus were acetic acid, formic acid, benzaldehyde, methyl acetate, ethyl 2-hydroxypropanoate, 2-hydroxy-3-methyl-2-cyclopenten-1-one, and 4-hydroxy-3-methoxybenzaldehyde, while those in the samples inoculated with Z. rouxii were mainly ethanol, acetaldehyde, ethyl propanoate, 2/3-methylbutanol, 1-butanol, 2-phenylethanol, ethyl 2-methylpropanoate, and 4-hydroxy-2-ethyl-5-methyl-3(2H)-furanone. The results indicate that T. halophilus produced significant acid compounds and could affect the Z. rouxii activity, supporting the notion that yeasts and lactic acid bacteria respectively have different metabolic pathways of alcoholic fermentation and lactic acid fermentation, and produce different dominant volatile compounds in soy sauce. PMID:24200796

  4. Thermochromatography study of volatile tellurium species in various gas atmospheres

    NASA Astrophysics Data System (ADS)

    Maugeri, Emilio Andrea; Neuhausen, Jörg; Eichler, Robert; Piguet, David; Schumann, Dorothea

    2014-09-01

    The adsorption interaction of tellurium species with fused silica was studied by thermochromatography. Trace amounts of tellurium were obtained by irradiating elemental tin with α-particles. Different tellurium species were obtained using carrier gases with varied redox potential. Adsorption enthalpies of the obtained species were calculated allowing for the identification of some species. Elemental tellurium or SnTe was deposited in thermochromatography experiments when using both dried and deoxygenated He and H2 as carrier gases. Tellurium dioxide was deposited in thermochromatography experiments when using dry oxygen as carrier gas. Tellurium dioxide was found to be significantly less volatile compared to elemental Te or SnTe. The deposition of a species with still lower volatility occurring under less oxidizing conditions was tentatively assigned to tellurium monoxide, TeO. Species more volatile than elemental tellurium or SnTe, most likely Te-hydroxides, were detected in experiments using moist H2 as carrier gas. In moist oxidizing gas, species more volatile than TeO2 were found, most likely Te-oxyhydroxides. The obtained results provide valuable input to design experiments for studying the volatility of tellurium's heavier homologue polonium and its compounds, which represent one of the major radiological concerns for the use of lead-bismuth-eutectic as coolant and target material for innovative accelerator-driven systems or spallation sources.

  5. Mechanisms of volatile production from non-sulfur amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Dong Uk; Lee, Eun Joo; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Non-sulfur amino acid monomers were used to study the mechanisms of volatile production in meat by irradiation. Irradiation not only produced many volatiles but also increased the amounts of volatiles from non-sulfur amino acid monomers. The major reaction mechanisms involved in volatile production from each group of the amino acids by irradiation differ significantly. However, we speculate that the radiolysis of amino acid side chains were the major mechanism. In addition, Strecker degradation, especially the production of aldehydes from aliphatic group amino acids, and deamination, isomerization, decarboxylation, cyclic reaction and dehydrogenation of the initial radiolytic products were also contributed to the production of volatile compounds. Each amino acid monomers produced different odor characteristics, but the intensities of odor from all non-sulfur amino acid groups were very weak. This indicated that the contribution of volatiles produced from non-sulfur amino acids was minor. If the volatile compounds from non-sulfur amino acids, especially aldehydes, interact with other volatiles compounds such as sulfur compounds, however, they can contribute to the off-odor of irradiated meat significantly.

  6. Identification of a volatile phytotoxin from algae

    NASA Technical Reports Server (NTRS)

    Garavelli, J. S.; Fong, F.; Funkhouser, E. A.

    1984-01-01

    The objectives were to develop a trap system for isolating fractions of volatile algal phytotoxin and to characterize the major components of the isolated phytotoxin fractions. A bioassay using Phaseolus vulgaris seedlings was developed to aid in investigating the properties of the phytotoxin produced by cultures of Euglena gracilis var. bacillaris and Chlorella vulgaris. Two traps were found, 1.0 M hydrochloric acid and 0 C, which removed the phytotoxin from the algal effluent and which could be treated to release that phytotoxin as judged with the bioassay procedure. It was also determined that pretraps of 1.0 M sodium hydroxide and 1.0 M potassium biocarbonate could be used without lowering the phytotoxin effect. Ammonia was identified in trap solutions by ninhydrin reaction, indophenol reaction and derivatization with dansyl chloride and phenylisothiocyanate. Ammonia at the gaseous concentrations detected was found to have the same effects in the bioassay system as the volatile phytotoxin. It is possible that other basic, nitrogen containing compounds which augment the effects of ammonia were present at lower concentrations in the algal effluent.

  7. Trends in major-ion constituents and properties for selected sampling sites in the Tongue and Powder River watersheds, Montana and Wyoming, based on data collected during water years 1980-2010

    USGS Publications Warehouse

    Sando, Steven K.; Vecchia, Aldo V.; Barnhart, Elliott P.; Sando, Thomas R.; Clark, Melanie L.; Lorenz, David L.

    2014-01-01

    The primary purpose of this report is to present information relating to flow-adjusted temporal trends in major-ion constituents and properties for 16 sampling sites in the Tongue and Powder River watersheds based on data collected during 1980–2010. In association with this primary purpose, the report presents background information on major-ion characteristics (including specific conductance, calcium, magnesium, potassium, sodium adsorption ratio, sodium, alkalinity, chloride, fluoride, dissolved sulfate, and dissolved solids) of the sampling sites and coal-bed methane (CBM) produced water (groundwater pumped from coal seams) in the site watersheds, trend analysis methods, streamflow conditions, and factors that affect trend results. The Tongue and Powder River watersheds overlie the Powder River structural basin (PRB) in northeastern Wyoming and southeastern Montana. Limited extraction of coal-bed methane (CBM) from the PRB began in the early 1990’s, and increased dramatically during the late 1990’s and early 2000’s. CBM-extraction activities produce discharges of water with high concentrations of dissolved solids (particularly sodium and bicarbonate ions) relative to most stream water in the Tongue and Powder River watersheds. Water-quality of CBM produced water is of concern because of potential effects of sodium on agricultural soils and potential effects of bicarbonate on aquatic biota. Two parametric trend-analysis methods were used in this study: the time-series model (TSM) and ordinary least squares regression (OLS) on time, streamflow, and season. The TSM was used to analyze trends for 11 of the 16 study sites. For five sites, data requirements of the TSM were not met and OLS was used to analyze trends. Two primary 10-year trend-analysis periods were selected. Trend-analysis period 1 (water years 1986–95; hereinafter referred to as period 1) was selected to represent variability in major-ion concentrations in the Tongue and Powder River

  8. Magmatic volatiles and the weathering of Mars

    NASA Technical Reports Server (NTRS)

    Clark, B. C.

    1993-01-01

    The sources for volatiles on Mars have been the subject of many hypotheses for exogenous influences including late accretion of volatile-enriched material, impact devolatilization to create massive early atmospheres, and even major bombardment by comets. However, the inventory of chemically active volatiles observable at the contemporary surface of Mars is consistent with domination by endogenous, subsequent planetary processes, viz., persistent magmatic outgassing. Volcanism on Mars has been widespread in both space and time. Notwithstanding important specific differences between the mantles of Earth and Mars, the geochemical similarities are such that the suite of gases emitted from Martian volcanic activity should include H2O, CO2, S-containing gases (e.g. H2S and/or SO2), and Cl-containing gases (e.g., Cl2 and/or HCl). H2O and CO2 exist in the atmosphere of Mars. Both are also present as surface condensates. However, spectroscopic observations of the Martian atmosphere clearly show that the S- and Cl-containing gases are severely depleted, with upper limits of less than or equal to 10(exp -7) the abundance of CO2. Likewise, there is no evidence of polar condensates of compounds of these elements as there is for CO2 and H2O. Within the soil, on the other hand, there has been direct measurement of incorporated H2O and abundant compounds containing S and Cl. Barring some as yet implausible geochemical sequestering process, the S/Cl ratio of about 6:1 in Martian soils implies a limit of 5% on the contribution of matter of solarlike composition (e.g., carbonaceous chondrite or cometary material) to these volatiles. Hence, exogenous sources are minor or not yet observed. From analysis of elemental trends in Martian soils, it has been recently shown that a simple two-component model can satisfy the Viking in situ measurements. Component A includes Si and most or all the Al, Ca, Ti, and Fe. Component B, taken as 16 +/- 3% by weight of the total, contains S and most or

  9. Volatile Hydrocarbon Pheromones from Beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter reviews literature about hydrocarbons from beetles that serve as long-range pheromones. The most thoroughly studied beetles that use volatile hydrocarbon pheromones belong to the family Nitidulidae in the genera Carpophilus and Colopterus. Published pheromone research deals with behav...

  10. Pyrolysis of Spent Ion Exchange Resins - 12210

    SciTech Connect

    Braehler, Georg; Slametschka, Rainer

    2012-07-01

    Organic ion exchangers (IEX) play a major and increasing role in the reactor coolant and other water purification processes. During their operation time they receive significant amounts of radioactivity, making their disposal, together with their organic nature, as medium active waste challenging. Processes applied so far do not eliminate the organic matter, which is unwanted in disposal facilities, or, if high temperatures are applied, raise problems with volatile radionuclides. NUKEM Technologies offers their well introduces process for the destruction of spent solvent (TBP), the pebble bed pyrolysis, now for the treatment of spent IEX (and other problematic waste), with the following benefits: the pyrolysis product is free of organic matter, and the operation temperature with approx. 500 deg. C keeps Cs radionuclides completely in the solid residue. (authors)

  11. Fluctuation behaviors of financial return volatility duration

    NASA Astrophysics Data System (ADS)

    Niu, Hongli; Wang, Jun; Lu, Yunfan

    2016-04-01

    It is of significantly crucial to understand the return volatility of financial markets because it helps to quantify the investment risk, optimize the portfolio, and provide a key input of option pricing models. The characteristics of isolated high volatility events above certain threshold in price fluctuations and the distributions of return intervals between these events arouse great interest in financial research. In the present work, we introduce a new concept of daily return volatility duration, which is defined as the shortest passage time when the future volatility intensity is above or below the current volatility intensity (without predefining a threshold). The statistical properties of the daily return volatility durations for seven representative stock indices from the world financial markets are investigated. Some useful and interesting empirical results of these volatility duration series about the probability distributions, memory effects and multifractal properties are obtained. These results also show that the proposed stock volatility series analysis is a meaningful and beneficial trial.

  12. Possible Sources of Polar Volatiles

    NASA Astrophysics Data System (ADS)

    Schultz, P. H.

    2011-12-01

    Extensive analyses of returned Apollo samples demonstrated that the Moon is extremely volatile poor. While this conclusion remains true, various measurements since the late 90's implicated the presence of water: e.g., enhanced reflection of circularly polarized radar signals and suppression of epithermal neutrons near the poles. More recently, traces of H2O have been discovered inside volcanic glass, along with more significant amounts residing in hydrous minerals (apatite) returned from both highland and mare landing sites. Three recent lunar missions (DIXI, M3, Cassini) identified hydrous phases on/near the lunar surface, whereas the LCROSS probe detected significant quantities of volatiles (OH, H2O and other volatiles) excavated by the Centaur impact. These new mission results and sample studies, however, now allow testing different hypotheses for the generation, trapping, and replenishment of these volatiles. Solar-proton implantation must contribute to the hydrous phases in the lunar regolith in order to account for the observed time-varying abundances and occurrence near the lunar equator. This also cannot be the entire story. The relatively low speed LCROSS-Centaur impact (2.5km/s) could not vaporize such hydrous minerals, yet emissions lines of OH (from the thermal disassociation of H2O), along with other compounds (CO2, NH2) were detected within the first second, before ejecta could reach sunlight. Telescopic observations by Potter and Morgan (1985) discovered a tenuous lunar atmosphere of Na, but the LCROSS UV/Vis spectrometer did not detect the Na-D line until after the ejecta reached sunlight (along with a line pair attributed to Ag). With time, other volatile species emerged (OH, CO). The LAMP instrument on the Lunar Reconnaissance Orbiter had a different viewpoint from the side (rather than from above) and detected many other atomic species release by the LCROSS-Centaur impact. Consequently, it appears that there is a stratigraphy for trapped species

  13. Pyrolysis and volatilization of cocaine

    SciTech Connect

    Martin, B.R.; Lue, L.P.; Boni, J.P. )

    1989-05-01

    The increasing popularity of inhaling cocaine vapor prompted the present study, to determine cocaine's fate during this process. The free base of (3H)cocaine (1 microCi/50 mg) was added to a glass pipe, which was then heated in a furnace to simulate freebasing. Negative pressure was used to draw the vapor through a series of glass wool, ethanol, acidic, and basic traps. Air flow rate and temperature were found to have profound effects on the volatilization and pyrolysis of cocaine. At a temperature of 260 degrees C and a flow rate of 400 mL/min, 37% of the radioactivity remained in the pipe, 39% was found in the glass wool trap, and less than 1% in the remainder of the volatilization apparatus after a 10-min volatilization. Reducing the air flow rate to 100 mL/min reduced the amount of radioactivity collected in the glass wool trap to less than 10% of the starting material and increased the amount that remained in the pipe to 58%. GC/MS analysis of the contents of the glass wool trap after volatilization at 260 degrees C and a flow rate of 400 mL/min revealed that 60% of the cocaine remained intact, while approximately 6 and 2% of the starting material was recovered as benzoic acid and methylecgonidine, respectively. As the temperature was increased to 650 degrees C, benzoic acid and methylecgonidine accounted for 83 and 89% of the starting material, respectively, whereas only 2% of the cocaine remained intact. Quantitation of cocaine in the vapor during the course of volatilization revealed high concentrations during the first two min and low concentrations for the remaining time.

  14. Alkaline dechlorination of chlorinated volatile organic compounds

    SciTech Connect

    Gu, B.; Siegrist, R.L.

    1996-06-01

    The vast majority of contaminated sites in the United States and abroad are contaminated with chlorinated volatile organic compounds (VOCs) such as trichloroethylene (TCE), trichloroethane (TCA), and chloroform. These VOCs are mobile and persistent in the subsurface and present serious health risks at trace concentrations. The goal of this project was to develop a new chemical treatment system that can rapidly and effectively degrade chlorinated VOCs. The system is based on our preliminary findings that strong alkalis such as sodium hydroxide (NaOH) can absorb and degrade TCE. The main objectives of this study were to determine the reaction rates between chlorinated VOCs, particularly TCE, and strong alkalis, to elucidate the reaction mechanisms and by-products, to optimize the chemical reactions under various experimental conditions, and to develop a laboratory bench- scale alkaline destruction column that can be used to destroy vapor- phase TCE.

  15. Identification of anthropogenic and natural inputs of sulfate into a karstic coastal groundwater system in northeast China: evidence from major ions, δ13CDIC and δ34SSO4

    NASA Astrophysics Data System (ADS)

    Han, D.; Song, X.; Currell, M. J.

    2015-11-01

    The hydrogeochemical processes controlling groundwater evolution in the Daweijia area of Dalian, northeast China, were characterized using hydrochemistry and isotopes of carbon and sulfur (δ13CDIC and δ34SSO4). The aim was to distinguish anthropogenic impacts as distinct from natural processes, with a particular focus on sulfate, which is found at elevated levels (range: 54.4 to 368.8 mg L-1; mean: 174.4 mg L-1) in fresh and brackish groundwater. The current investigation reveals minor seawater intrusion impact (not exceeding 5 % of overall solute load), in contrast with extensive impacts observed in 1982 during the height of intensive abstraction. This indicates that measures to restrict groundwater abstraction have been effective. However, hydrochemical facies analysis shows that the groundwater remains in a state of ongoing hydrochemical evolution (towards Ca-Cl type water) and quality degradation (increasing nitrate and sulphate concentrations). The wide range of NO3 concentrations (74.7-579 mg L-1) in the Quaternary aquifer indicates considerable input of fertilizers and/or leakage from septic systems. Both δ13C (-14.5 to -5.9 ‰) and δ34SSO4 (+5.4-+13.1 ‰) values in groundwater show increasing trends along groundwater flow paths. While carbonate minerals may contribute to increasing δ13CDIC and δ34SSO4 values in deep karstic groundwater, high loads of agricultural fertilizers reaching the aquifer via irrigation return flow are likely the main source of the dissolved sulfate in Quaternary groundwater, as shown by distinctive isotopic ratios and a lack of evidence for other sources in the major ion chemistry. According to isotope mass balance calculations, the fertilizer contribution to overall sulfate has reached an average of 62.1 % in the Quaternary aquifer, which has a strong hydraulic connection to the underlying carbonate aquifer. The results point to an alarming level of impact from the local intensive agriculture on the groundwater system, a

  16. [In-situ measurement on volatilization loss of ammonia in the vegetable field and its influencing factors].

    PubMed

    Gong, Wei-Wei; Zhang, Yi-Sheng; He, Ling-Yan; Luan, Sheng-Ji

    2011-02-01

    In order to obtain ammonia volatilization flux and volatilization loss rate in the vegetable field and investigate their relationship with environmental factors, an on-line monitoring system was used to measure the ammonia volatilization in the vegetable (Brassica rapa L. and lettuce) field after urea application during January to September, 2009. The system included a wind tunnel system, a gas collector and an online analyzer system with ion chromatography. The time resolution of measurement was 15 min. The recovery of the system was (92.6 +/- 3.4)%; the accumulated ammonia volatilization within 15 d continuous sampling after fertilization was regarded as the total loss. The accumulated ammonia volatilization of 12 d continuous sampling after fertilization accounted for (85.4 +/- 5.2)% of the total volatilization. The ammonia volatilization loss of broadcasting basal dressing and top dressing for Brassica rapa L. were 23.6% and 21.3%, respectively. The ammonia volatilization loss of holing basal dressing and top dressing for lettuce were 17.6% and 24.0%, respectively. The ammonia volatilization in the vegetable field mostly occurred in the first 2-3 weeks after fertilization. The ammonia volatilization flux had significant positive correlation with the nitrogen application rate, while the ammonia volatilization loss rate had negative correlation with the nitrogen application rate. The ammonia volatilization flux was positively correlated with the soil temperature (r = 0.041, p < 0.05) and the air temperature (r = 0.049, p < 0.01), while not significantly associated with the air humidity and the soil moisture. Temperature was found to be a main factor influencing the ammonia volatilization in the vegetable field. PMID:21528553

  17. Biogenic volatile organic compound analyses by PTR-TOF-MS: Calibration, humidity effect and reduced electric field dependency.

    PubMed

    Pang, Xiaobing

    2015-06-01

    Green leaf volatiles (GLVs) emitted by plants after stress or damage induction are a major part of biogenic volatile organic compounds (BVOCs). Proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) is a high-resolution and sensitive technique for in situ GLV analyses, while its performance is dramatically influenced by humidity, electric field, etc. In this study the influence of gas humidity and the effect of reduced field (E/N) were examined in addition to measuring calibration curves for the GLVs. Calibration curves measured for seven of the GLVs in dry air were linear, with sensitivities ranging from 5 to 10 ncps/ppbv (normalized counts per second/parts per billion by volume). The sensitivities for most GLV analyses were found to increase by between 20% and 35% when the humidity of the sample gas was raised from 0% to 70% relative humidity (RH) at 21°C, with the exception of (E)-2-hexenol. Product ion branching ratios were also affected by humidity, with the relative abundance of the protonated molecular ions and higher mass fragment ions increasing with humidity. The effect of reduced field (E/N) on the fragmentation of GLVs was examined in the drift tube of the PTR-TOF-MS. The structurally similar GLVs are acutely susceptible to fragmentation following ionization and the fragmentation patterns are highly dependent on E/N. Overall the measured fragmentation patterns contain sufficient information to permit at least partial separation and identification of the isomeric GLVs by looking at differences in their fragmentation patterns at high and low E/N. PMID:26040746

  18. Inhibition of prostate cancer (LNCaP) cell proliferation by volatile components from Nagami kumquats.

    PubMed

    Jayaprakasha, Guddadarangavvanahally K; Murthy, Kotamballi N Chidambara; Demarais, Rock; Patil, Bhimanagouda S

    2012-06-01

    Fresh Nagami kumquats (Fortunella margarita) were subjected to hydrodistillation using a Clevenger-type apparatus to obtain volatile oil. The chemical composition of the volatile oil was analyzed by GC-MS using Rtx-5 Sil MS and DB Wax columns. A total of 25 volatile compounds were identified by mass spectra, retention index, and comparison with known standards. The major identified compounds are d-limonene (41.64 %), β-myrecene (16.54 %), linalyl propionate (9.55 %), and germacrene-D (5.93 %) from the Rtx-5 Sil MS column; d-limonene and β-myrecene were also separated as major compounds on the DB wax column. The oil is rich in hydrocarbons (77.41 %) consisting of 60.05 % monoterpenes and 17.36 % sesquiterpenes. Interestingly, oxygenated hydrocarbons (17.6 %) were also found in kumquat volatile oil. Certain volatile compounds were also confirmed by positive chemical ionization and NMR spectra. Further, the volatile oil demonstrated good DPPH radical scavenging activity and antioxidant capacity. Kumquat volatile oil at 200 ppm concentration exhibited 55 %, 61 %, and 63.4 % inhibition of human prostate cancer (LNCaP) cell proliferation at 24, 48, and 72 h, respectively, by cell count assays. Significant increases in expression of bax/bcl2 and p53 proteins confirmed that volatile oil induces apoptosis. In addition, inhibition of inflammatory markers such as NF-κB and Cox-2 was observed. The cleavage of caspase-8 in the LNCaP cells treated with volatile oil demonstrated that apoptosis occurred through an extrinsic pathway. This is the first report of the identification and possible mechanisms of in vitro antiproliferative effects of kumquat volatile components on human prostate cancer (LNCaP) cells. PMID:22673830

  19. On the origin of resistive switching volatility in Ni/TiO2/Ni stacks

    NASA Astrophysics Data System (ADS)

    Cortese, Simone; Trapatseli, Maria; Khiat, Ali; Prodromakis, Themistoklis

    2016-08-01

    Resistive switching and resistive random access memories have attracted huge interest for next generation nonvolatile memory applications, also thought to be able to overcome flash memories limitations when arranged in crossbar arrays. A cornerstone of their potential success is that the toggling between two distinct resistance states, usually a High Resistive State (HRS) and a Low Resistive State (LRS), is an intrinsic non-volatile phenomenon with the two states being thermodynamically stable. TiO2 is one of the most common materials known to support non-volatile RS. In this paper, we report a volatile resistive switching in a titanium dioxide thin film sandwiched by two nickel electrodes. The aim of this work is to understand the underlying physical mechanism that triggers the volatile effect, which is ascribed to the presence of a NiO layer at the bottom interface. The NiO layer alters the equilibrium between electric field driven filament formation and thermal enhanced ion diffusion, resulting in the volatile behaviour. Although the volatility is not ideal for non-volatile memory applications, it shows merit for access devices in crossbar arrays due to its high LRS/HRS ratio, which are also briefly discussed.

  20. Relation of Specific Conductance in Ground Water to Intersection of Flow Paths by Wells, and Associated Major Ion and Nitrate Geochemistry, Barton Springs Segment of the Edwards Aquifer, Austin, Texas, 1978-2003

    USGS Publications Warehouse

    Garner, Bradley D.; Mahler, Barbara J.

    2007-01-01

    Understanding of karst flow systems can be complicated by the presence of solution-enlarged conduits, which can transmit large volumes of water through the aquifer rapidly. If the geochemistry at a well can be related to streamflow or spring discharge (springflow), or both, the relations can indicate the presence of recent recharge in water at the well, which in turn might indicate that the well intersects a conduit (and thus a major flow path). Increasing knowledge of the occurrence and distribution of conduits in the aquifer can contribute to better understanding of aquifer framework and function. To that end, 26 wells in the Barton Springs segment of the Edwards aquifer, Austin, Texas, were investigated for potential intersection with conduits; 26 years of arbitrarily timed specific conductance measurements in the wells were compared to streamflow in five creeks that provide recharge to the aquifer and were compared to aquifer flow conditions as indicated by Barton Springs discharge. A nonparametric statistical test (Spearman's rho) was used to divide the 26 wells into four groups on the basis of correlation of specific conductance of well water to streamflow or spring discharge, or both. Potential relations between conduit intersection by wells and ground-water geochemistry were investigated through analysis of historical major ion and nitrate geochemistry for wells in each of the four groups. Specific conductance at nine wells was negatively correlated with both streamflow and spring discharge, or streamflow only. These correlations were interpreted as evidence of an influx of surface-water recharge during periods of high streamflow and the influence at the wells of water from a large, upgradient part of the aquifer; and further interpreted as indicating that four wells intersect major aquifer flow paths and five wells intersect minor aquifer flow paths (short, tributary conduits). Specific conductance at six wells was positively correlated with spring

  1. Relation of specific conductance in ground water to intersection of flow paths by wells, and associated major ion and nitrate geochemistry, Barton Springs Segment of the Edwards Aquifer, Austin, Texas, 1978-2003

    USGS Publications Warehouse

    Garner, Bradley D.; Mahler, Barbara J.

    2007-01-01

    Understanding of karst flow systems can be complicated by the presence of solution-enlarged conduits, which can transmit large volumes of water through the aquifer rapidly. If the geochemistry at a well can be related to streamflow or spring discharge (springflow), or both, the relations can indicate the presence of recent recharge in water at the well, which in turn might indicate that the well intersects a conduit (and thus a major flow path). Increasing knowledge of the occurrence and distribution of conduits in the aquifer can contribute to better understanding of aquifer framework and function. To that end, 26 wells in the Barton Springs segment of the Edwards aquifer, Austin, Texas, were investigated for potential intersection with conduits; 26 years of arbitrarily timed specific conductance measurements in the wells were compared to streamflow in five creeks that provide recharge to the aquifer and were compared to aquifer flow conditions as indicated by Barton Springs discharge. A nonparametric statistical test (Spearman's rho) was used to divide the 26 wells into four groups on the basis of correlation of specific conductance of well water to streamflow or spring discharge, or both. Potential relations between conduit intersection by wells and ground-water geochemistry were investigated through analysis of historical major ion and nitrate geochemistry for wells in each of the four groups. Specific conductance at nine wells was negatively correlated with both streamflow and spring discharge, or streamflow only. These correlations were interpreted as evidence of an influx of surface-water recharge during periods of high streamflow and the influence at the wells of water from a large, upgradient part of the aquifer; and further interpreted as indicating that four wells intersect major aquifer flow paths and five wells intersect minor aquifer flow paths (short, tributary conduits). Specific conductance at six wells was positively correlated with spring

  2. The volatile composition of comets

    NASA Technical Reports Server (NTRS)

    Weaver, H. A.

    1988-01-01

    Comets may be our best probes of the physical and chemical conditions in the outer regions of the solar nebula during that crucial period when the planets formed. The volatile composition of cometary nuclei can be used to decide whether comets are the product of a condensation sequence similar to that invoked to explain the compositions of the planets and asteroids, or if comets are simply agglomerations of interstellar grains which have been insignificantly modified by the events that shaped the other bodies in the solar system. Although cometary nuclei are not generally accessible to observation, observations of cometary comae can illuminate at least some of the mysteries of the nuclei provided one has a detailed knowledge of the excitation conditions in the coma and also has access to basic atomic and molecular data on the many species present in comets. Examined here is the status of our knowledge of the volatile composition of cometary nuclei and how these data are obtained.

  3. Chirospecific analysis of plant volatiles

    NASA Astrophysics Data System (ADS)

    Tkachev, A. V.

    2007-10-01

    Characteristic features of the analysis of plant volatiles by enantioselective gas (gas-liquid) chromatography and gas chromatography/mass spectrometry are discussed. The most recent advances in the design of enantioselective stationary phases are surveyed. Examples of the preparation of the most efficient phases based on modified cyclodextrins are given. Current knowledge on the successful analytical resolution of different types of plant volatiles (aliphatic and aromatic compounds and mono-, sesqui- and diterpene derivatives) into optical antipodes is systematically described. Chiral stationary phases used for these purposes, temperature conditions and enantiomer separation factors are summarised. Examples of the enantiomeric resolution of fragrance compounds and components of plant extracts, wines and essential oils are given.

  4. Arbitrage and Volatility in Chinese Stock's Markets

    NASA Astrophysics Data System (ADS)

    Lu, Shu Quan; Ito, Takao; Zhang, Jianbo

    From the point of view of no-arbitrage pricing, what matters is how much volatility the stock has, for volatility measures the amount of profit that can be made from shorting stocks and purchasing options. With the short-sales constraints or in the absence of options, however, high volatility is likely to mean arbitrage from stock market. As emerging stock markets for China, investors are increasingly concerned about volatilities of Chinese two stock markets. We estimate volatility's models for Chinese stock markets' indexes using Markov chain Monte Carlo (MCMC) method and GARCH. We find that estimated values of volatility parameters are very high for all data frequencies. It suggests that stock returns are extremely volatile even at long term intervals in Chinese markets. Furthermore, this result could be considered that there seems to be arbitrage opportunities in Chinese stock markets.

  5. Chilling and heating may regulate C6 volatile aroma production by different mechanisms in tomato (Solanum lycopersicum) fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hexanal, Z-3-hexenal, E-2-hexenal, hexanol, and Z-3-hexenol are major tomato (Solanum lycopersicum L.) volatile aromas derived from oxygenation of unsaturated fatty acids. Chilling and heating may suppress production of these C6 volatiles. The objective of this research was to determine the response...

  6. A Novel Inlet System for On-line Chemical Analysis of Semi-Volatile Submicron Particulate Matter

    NASA Astrophysics Data System (ADS)

    Wisthaler, A.; Eichler, P.; Müller, M.

    2015-12-01

    Semi-volatile organic molecules bound to particles are difficult to measure, especially if they are reactive in nature. Any technique based on aerosol collection onto a substrate generates sampling artifacts due to surface reactions and ad- and desorption of semi-volatile analytes. On-line sampling without sample pre-collection, as for example implemented in the AMS, has greatly reduced many sampling artifacts. AMS measurements of organics do, however, suffer from the drawback that molecular-level information is, in most cases, lost during hard ionization events. As a consequence, only little speciated and thus mechanistically informative data on organic matter is obtained. PTR-ToF-MS is a well-established on-line measurement technique for gas-phase organics. Soft ionization via gas-phase hydronium ions preserves, to a large extent, molecular-level information and thus allows identifying organic compounds at an elemental composition level. We have recently developed a particle inlet system for PTR-ToF-MS instruments (doi:10.5194/amt-8-1353-2015). The CHARON ("Chemical Analysis of Aerosol On-line") inlet consists of a gas-phase denuder, an aerodynamic lens and a thermodesorption unit. In its latest version, it includes a heatable tube upstream of the denuder to form a thermodenuder. Over the last year, the CHARON PTR-ToF-MS system has been successfully used in a series of measurement campaigns to characterize i) POA emitted from a marine diesel engine, ii) SOA generated from the photo-oxidation of toluene, iii) SOA generated from the photo-oxidation of selected amines, iv) ambient aerosol in two major European cities and v) SOA generated from the photo-oxidation of biogenic VOCs. These measurements have demonstrated that the CHARON PTR-ToF-MS system i) generates on-line and real-time elemental composition information of semi-volatile organics in submicron particles (both POA and SOA), ii) detects 80-100 % of the organic mass as measured by the AMS and iii) generates

  7. Volatiles in Inter-Specific Bacterial Interactions.

    PubMed

    Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities. PMID:26733959

  8. Volatiles in Inter-Specific Bacterial Interactions

    PubMed Central

    Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities. PMID:26733959

  9. Characterization of ammonia volatilization from liquid dairy manure

    NASA Astrophysics Data System (ADS)

    Koirala, Kedar

    Emission of gases, odor, and particulate matters from livestock manure is a major concern because of their potential adverse environmental impacts. For example, ammonia in the air has the potential to: negatively affect animal, human health and environment. Mitigation of ammonia emissions from livestock manure to protect animal and human health, and the environment, in general, is thus an important agenda for livestock producers, engineers, and environmental scientists. Proper understanding of the mechanisms or process of its volatilization from manure is the first step towards designing or formulating appropriate emissions mitigation strategies. This research investigated the effects of suspended solids, anaerobic digestion, and ionic strength on the ammonia (NH3) volatilization mechanism from liquid dairy manure. Experiments were conducted to: (i) assess the role of suspended solids characteristics on ammonia volatilization, (ii) evaluate the impacts of anaerobic digestion on the process governing NH 3 volatilization, and (iii) delineate the influences of suspended solids (SS) and ionic strength (IS) on the ammonia volatilization process from dairy manure. Two key parameters (the ammonia dissociation and the overall mass transfer coefficient (KoL)) that govern ammonia volatilization were evaluated to achieve these objectives. The physical and chemical properties of manure were also evaluated to further elucidate the respective processes. The suspended solids ammoniacal nitrogen adsorption properties did not significantly affect either the ammonium dissociation or the K oL; suggesting that the characteristics of manure suspended solids did not play a significant role in ammonia volatilization from liquid dairy manure. The dissociation of ammonium in anaerobically digested (AD) manure was significantly higher than in the undigested (UD) manure. However, KoL was less in AD manure than in UD manure, while an increase in total ammoniacal nitrogen (TAN) was observed

  10. Effect of gamma irradiation on curcuminoids and volatile oils of fresh turmeric ( Curcuma longa)

    NASA Astrophysics Data System (ADS)

    Dhanya, R.; Mishra, B. B.; Khaleel, K. M.

    2011-11-01

    In our earlier study a radiation dose of 5 kGy was reported to be suitable for microbial decontamination and shelf life extension of fresh turmeric ( Curcuma longa), while maintaining its quality attributes. In continuation of that work, the effect of gamma radiation on curcuminoids and volatile oil constituents in fresh turmeric was studied. Fresh peeled turmeric rhizomes were gamma irradiated at doses of 1, 3 and 5 kGy. Curcuminoid content and volatile oils were analyzed by reverse phase HPLC and GC-MS, respectively. The curcuminoid content was slightly increased by gamma irradiation. No statistically significant changes were observed due to irradiation in majority of the volatile oil constituents.

  11. Identification of anthropogenic and natural inputs of sulfate into a karstic coastal groundwater system in northeast China: evidence from major ions, δ13CDIC and δ34SSO4

    NASA Astrophysics Data System (ADS)

    Han, Dongmei; Song, Xianfang; Currell, Matthew J.

    2016-05-01

    The hydrogeochemical processes controlling groundwater evolution in the Daweijia area of Dalian, northeast China, were characterised using hydrochemistry and isotopes of carbon and sulfur (δ13CDIC and δ34SSO4). The aim was to distinguish anthropogenic impacts as distinct from natural processes, with a particular focus on sulfate, which is found at elevated levels (range: 54.4 to 368.8 mg L-1; mean: 174.4 mg L-1) in fresh and brackish groundwater. The current investigation reveals minor seawater intrusion impact (not exceeding 5 % of the overall solute load), in contrast with extensive impacts observed in 1982 during the height of intensive abstraction. This indicates that measures to restrict groundwater abstraction have been effective. However, hydrochemical facies analysis shows that the groundwater remains in a state of ongoing hydrochemical evolution (towards Ca-Cl type water) and quality degradation (increasing nitrate and sulfate concentrations). The wide range of NO3 concentrations (74.7-579 mg L-1) in the Quaternary aquifer indicates considerable input of fertilisers and/or leakage from septic systems. Both δ13C (-14.5 to -5.9 permil) and δ34SSO4 (+5.4 to +13.1 permil) values in groundwater show increasing trends along groundwater flow paths. While carbonate minerals may contribute to increasing δ13CDIC and δ34SSO4 values in deep karstic groundwater, high loads of agricultural fertilisers reaching the aquifer via irrigation return flow are likely the main source of the dissolved sulfate in Quaternary groundwater, as shown by distinctive isotopic ratios and a lack of evidence for other sources in the major ion chemistry. According to isotope mass balance calculations, the fertiliser contribution to overall sulfate has reached an average of 62.1 % in the Quaternary aquifer, which has a strong hydraulic connection to the underlying carbonate aquifer. The results point to an alarming level of impact from the local intensive agriculture on the groundwater

  12. Streptopyridines, volatile pyridine alkaloids produced by Streptomyces sp. FORM5

    PubMed Central

    Groenhagen, Ulrike; Maczka, Michael; Dickschat, Jeroen S

    2014-01-01

    Summary Streptomyces sp. FORM5 is a bacterium that is known to produce the antibiotic streptazolin and related compounds. We investigated the strain for the production of volatiles using the CLSA (closed-loop stripping analysis) method. Liquid and agar plate cultures revealed the formation of new 2-alkylpyridines (streptopyridines), structurally closely related to the already known 2-pentadienylpiperidines. The structures of the streptopyridines A to E were confirmed by total synthesis. The analysis of the liquid phase by solvent extraction or extraction with an Oasis adsorbent showed that streptazolin and 2-pentadienylpiperidine are the major compounds, while the streptopyridines are only minor components. In the gas phase, only the streptopyridines could be detected. Therefore, an orthogonal set of analysis is needed to assess the metabolic profile of bacteria, because volatile compounds are obviously overlooked by traditional analytical methods. The streptopyridines are strain specific volatiles that are accompanied by a broad range of headspace constituents that occur in many actinomycetes. Volatiles might be of ecological importance for the producing organism, and, as biosynthetic intermediates or shunt products, they can be useful as indicators of antibiotic production in a bacterium. PMID:24991297

  13. Penicillium expansum volatiles reduce pine weevil attraction to host plants.

    PubMed

    Azeem, Muhammad; Rajarao, Gunaratna Kuttuva; Nordenhem, Henrik; Nordlander, Göran; Borg-Karlson, Anna Karin

    2013-01-01

    The pine weevil Hylobius abietis (L.) is a severe pest of conifer seedlings in reforested areas of Europe and Asia. To identify minimally toxic and ecologically sustainable compounds for protecting newly planted seedlings, we evaluated the volatile metabolites produced by microbes isolated from H. abietis feces and frass. Female weevils deposit feces and chew bark at oviposition sites, presumably thus protecting eggs from feeding conspecifics. We hypothesize that microbes present in feces/frass are responsible for producing compounds that deter weevils. Here, we describe the isolation of a fungus from feces and frass of H. abietis and the biological activity of its volatile metabolites. The fungus was identified by morphological and molecular methods as Penicillium expansum Link ex. Thom. It was cultured on sterilized H. abietis frass medium in glass flasks, and volatiles were collected by SPME and analyzed by GC-MS. The major volatiles of the fungus were styrene and 3-methylanisole. The nutrient conditions for maximum production of styrene and 3-methylanisole were examined. Large quantities of styrene were produced when the fungus was cultured on grated pine bark with yeast extract. In a multi-choice arena test, styrene significantly reduced male and female pine weevils' attraction to cut pieces of Scots pine twigs, whereas 3-methylanisole only reduced male weevil attraction to pine twigs. These studies suggest that metabolites produced by microbes may be useful as compounds for controlling insects, and could serve as sustainable alternatives to synthetic insecticides. PMID:23297108

  14. Investigation of the Volatile Fraction of Rosemary Infusion Extracts

    PubMed Central

    Tschiggerl, Christine; Bucar, Franz

    2010-01-01

    The relative proportions of chemical classes (hydrocarbons, oxides, alcohols, ketones, esters) in the essential oil of rosemary (Rosmarinus officinalis L., Lamicaeae) and in the volatile fraction of the infusion extracts were examined and showed remarkable differences. The volatile compounds of the infusion were isolated by two different methods, hydrodistillation and solid phase extraction (SPE). The main constituents of the volatile fraction of the infusion were (hydrodistillation/SPE): 1,8-cineole (42.4%/44.7%), camphor (31.4%/31.8%), α-terpineol (8.6%/8.1%) and borneol (8.3%/7.8%). The qualitative and quantitative composition of the volatile compounds of the infusion was compared to the essential oil isolated by hydrodistillation directly from the leaves. The major constituents of the essential oil of the leaves were 1,8-cineole (41.6%), camphor (17.0%), α-pinene (9.9%), α-terpineol (4.9%) and borneol (4.8%). Comparison of the total essential oil yield quantified by hydrodistillation of the infusion (0.36% v/w) with the essential oil yield of the leaves (1.84% v/w) revealed that only 19.6% of the initial oil could be extracted by infusion. PMID:21179360

  15. Improved Ambient Pressure Pyroelectric Ion Source

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett

    2011-01-01

    The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.

  16. AMBIENT LEVEL VOLATILE ORGANIC COMPOUND (VOC) MONITORING USING SOLID ADSORBANTS - RECENT U.S. EPA STUDIES

    EPA Science Inventory

    Ambient air spiked with 1-10 ppbv concentrations of 41 toxic volatile organic compounds (VOCs) listed in U.S. Environmental Protection Agency (EPA) Compendium Method TO-14A was monitored using solid sorbents for sample collection and a Varian Saturn 2000 ion trap mass spectrome...

  17. VOLATILE ORGANIC COMPOUNDS INHIBIT HUMAN AND RAT NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS EXPRESSED IN XENOPUS OOCYTES.

    EPA Science Inventory

    This manuscript provides evidence to indicate that rats and humans are equally sensitive at the pharmacodynamic level to effects of volatile organic compounds.

    ? This manuscript also presents novel data that provides a plausible mechanism, disruption of ion channel functi...

  18. Effect of preparation conditions on release of selected volatiles in tea headspace.

    PubMed

    Wright, Jonathan; Wulfert, Florian; Hort, Joanne; Taylor, Andrew J

    2007-02-21

    The release of volatile compounds from infused tea was monitored using on-line atmospheric pressure chemical ionization (APCI) mass spectrometry. Assignment of the APCI ions to particular compounds was achieved using gas chromatography of tea headspace with dual electron ionization and APCI-MS detectors. Six ions in the APCI spectrum could be assigned to individual compounds, five ions were associated with isobaric compounds (e.g., 2- and 3-methylbutanal and pentanal) or stereoisomers (e.g., heptenals or heptadienals), and a further four ions monitored were identified compounds but with some unknown impurities. Reproducibility of infusion preparation and the analytical system was good with percentage variation values generally below 5%. The analysis was used to study the effect of infusion and holding temperatures on the volatile profile of tea headspace samples, and this was found to be compound-dependent. Both the extraction of volatiles from leaf tea and the release of volatiles into the headspace play a role in creating the aroma profile that the consumer experiences. PMID:17261012

  19. Stochastic volatility models and Kelvin waves

    NASA Astrophysics Data System (ADS)

    Lipton, Alex; Sepp, Artur

    2008-08-01

    We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.

  20. Consumer palatability scores and volatile beef flavor compounds of five USDA quality grades and four muscles.

    PubMed

    Legako, J F; Brooks, J C; O'Quinn, T G; Hagan, T D J; Polkinghorne, R; Farmer, L J; Miller, M F

    2015-02-01

    Proximate data, consumer palatability scores and volatile compounds were investigated for four beef muscles (Longissimus lumborum, Psoas major, Semimembranosus and Gluteus medius) and five USDA quality grades(Prime, Upper 2/3 Choice, Low Choice, Select, and Standard). Quality grade did not directly affect consumer scores or volatiles but interactions (P < 0.05) between muscle and grade were determined. Consumer scores and volatiles differed (P < 0.05) between muscles. Consumers scored Psoas major highest for tenderness, juiciness, flavor liking and overall liking, followed by Longissimus lumborum, Gluteus medius, and Semimembranosus (P < 0.05). Principal component analysis revealed clustering of compound classes, formed by related mechanisms. Volatile n-aldehydes were inversely related to percent fat. Increases in lipid oxidation compounds were associated with Gluteus medius and Semimembranosus, while greater quantities of sulfur-containing compounds were associated with Psoas major. Relationships between palatability scores and volatile compound classes suggest that differences in the pattern of volatile compounds may play a valuable role in explaining consumer liking. PMID:25460139

  1. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    SciTech Connect

    Jeong, S. C.; Oyaizu, M.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Niki, K.; Okada, M.; Watanabe, Y. X.; Otokawa, Y.; Osa, A.; Ichikawa, S.

    2012-02-15

    We investigated the ion-loss distribution on the sidewall of an electron cyclotron resonance (ECR) plasma chamber using the 18-GHz ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex (TRIAC). Similarities and differences between the ion-loss distributions (longitudinal and azimuthal) of different ion species (i.e., radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions that are typical volatile and nonvolatile elements) was qualitatively discussed to understand the element dependence of the charge breeding efficiency. Especially, the similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  2. Shedding light on Aspergillus niger volatile exometabolome

    PubMed Central

    Costa, Carina Pedrosa; Gonçalves Silva, Diogo; Rudnitskaya, Alisa; Almeida, Adelaide; Rocha, Sílvia M.

    2016-01-01

    An in-depth exploration of the headspace content of Aspergillus niger cultures was performed upon different growth conditions, using a methodology based on advanced multidimensional gas chromatography. This volatile fraction comprises 428 putatively identified compounds distributed over several chemical families, being the major ones hydrocarbons, alcohols, esters, ketones and aldehydes. These metabolites may be related with different metabolic pathways, such as amino acid metabolism, biosynthesis and metabolism of fatty acids, degradation of aromatic compounds, mono and sesquiterpenoid synthesis and carotenoid cleavage. The A. niger molecular biomarkers pattern was established, comprising the 44 metabolites present in all studied conditions. This pattern was successfully used to distinguish A. niger from other fungi (Candida albicans and Penicillium chrysogenum) with 3 days of growth by using Partial Least Squares-Discriminant Analysis (PLS-DA). In addition, PLS-DA-Variable Importance in Projection was applied to highlight the metabolites playing major roles in fungi distinction; decreasing the initial dataset to only 16 metabolites. The data pre-processing time was substantially reduced, and an improvement of quality-of-fit value was achieved. This study goes a step further on A. niger metabolome construction and A. niger future detection may be proposed based on this molecular biomarkers pattern. PMID:27264696

  3. Shedding light on Aspergillus niger volatile exometabolome.

    PubMed

    Costa, Carina Pedrosa; Gonçalves Silva, Diogo; Rudnitskaya, Alisa; Almeida, Adelaide; Rocha, Sílvia M

    2016-01-01

    An in-depth exploration of the headspace content of Aspergillus niger cultures was performed upon different growth conditions, using a methodology based on advanced multidimensional gas chromatography. This volatile fraction comprises 428 putatively identified compounds distributed over several chemical families, being the major ones hydrocarbons, alcohols, esters, ketones and aldehydes. These metabolites may be related with different metabolic pathways, such as amino acid metabolism, biosynthesis and metabolism of fatty acids, degradation of aromatic compounds, mono and sesquiterpenoid synthesis and carotenoid cleavage. The A. niger molecular biomarkers pattern was established, comprising the 44 metabolites present in all studied conditions. This pattern was successfully used to distinguish A. niger from other fungi (Candida albicans and Penicillium chrysogenum) with 3 days of growth by using Partial Least Squares-Discriminant Analysis (PLS-DA). In addition, PLS-DA-Variable Importance in Projection was applied to highlight the metabolites playing major roles in fungi distinction; decreasing the initial dataset to only 16 metabolites. The data pre-processing time was substantially reduced, and an improvement of quality-of-fit value was achieved. This study goes a step further on A. niger metabolome construction and A. niger future detection may be proposed based on this molecular biomarkers pattern. PMID:27264696

  4. Volatile communication in plant-aphid interactions.

    PubMed

    de Vos, Martin; Jander, Georg

    2010-08-01

    Volatile communication plays an important role in mediating the interactions between plants, aphids, and other organisms in the environment. In response to aphid infestation, many plants initiate indirect defenses through the release of volatiles that attract ladybugs, parasitoid wasps, and other aphid-consuming predators. Aphid-induced volatile release in the model plant Arabidopsis thaliana requires the jasmonate signaling pathway. Volatile release is also induced by infection with aphid-transmitted viruses. Consistent with mathematical models of optimal transmission, viruses that are acquired rapidly by aphids induce volatile release to attract migratory aphids, but discourage long-term aphid feeding. Although the ecology of these interactions is well-studied, further research is needed to identify the molecular basis of aphid-induced and virus-induced changes in plant volatile release. PMID:20627668

  5. Floral volatiles: from biosynthesis to function.

    PubMed

    Muhlemann, Joëlle K; Klempien, Antje; Dudareva, Natalia

    2014-08-01

    Floral volatiles have attracted humans' attention since antiquity and have since then permeated many aspects of our lives. Indeed, they are heavily used in perfumes, cosmetics, flavourings and medicinal applications. However, their primary function is to mediate ecological interactions between flowers and a diverse array of visitors, including pollinators, florivores and pathogens. As such, they ultimately ensure the plants' reproductive and evolutionary success. To date, over 1700 floral volatile organic compounds (VOCs) have been identified. Interestingly, they are derived from only a few biochemical networks, which include the terpenoid, phenylpropanoid/benzenoid and fatty acid biosynthetic pathways. These pathways are intricately regulated by endogenous and external factors to enable spatially and temporally controlled emission of floral volatiles, thereby fine-tuning the ecological interactions facilitated by floral volatiles. In this review, we will focus on describing the biosynthetic pathways leading to floral VOCs, the regulation of floral volatile emission, as well as biological functions of emitted volatiles. PMID:24588567

  6. Volatile accretion history of the Earth.

    PubMed

    Wood, B J; Halliday, A N; Rehkämper, M

    2010-10-28

    It has long been thought that the Earth had a protracted and complex history of volatile accretion and loss. Albarède paints a different picture, proposing that the Earth first formed as a dry planet which, like the Moon, was devoid of volatile constituents. He suggests that the Earth's complement of volatile elements was only established later, by the addition of a small veneer of volatile-rich material at ∼100 Myr (here and elsewhere, ages are relative to the origin of the Solar System). Here we argue that the Earth's mass balance of moderately volatile elements is inconsistent with Albarède's hypothesis but is well explained by the standard model of accretion from partially volatile-depleted material, accompanied by core formation. PMID:20981045

  7. Volatile and semi-volatile organic compounds of respiratory health relevance in French dwellings.

    PubMed

    Dallongeville, A; Costet, N; Zmirou-Navier, D; Le Bot, B; Chevrier, C; Deguen, S; Annesi-Maesano, I; Blanchard, O

    2016-06-01

    Over the last decades, the prevalence of childhood respiratory conditions has dramatically increased worldwide. Considering the time spent in enclosed spaces, indoor air pollutants are of major interest to explain part of this increase. This study aimed to measure the concentrations of pollutants known or suspected to affect respiratory health that are present in dwellings in order to assess children's exposure. Measurements were taken in 150 homes with at least one child, in Brittany (western France), to assess the concentrations of 18 volatile organic compounds (among which four aldehydes and four trihalomethanes) and nine semi-volatile organic compounds (seven phthalates and two synthetic musks). In addition to descriptive statistics, a principal component analysis (PCA) was used to investigate grouping of contaminants. Formaldehyde was highly present and above 30 μg/m(3) in 40% of the homes. Diethyl phthalate, diisobutyl phthalate, and dimethylphthalate were quantified in all dwellings, as well as Galaxolide and Tonalide. For each chemical family, the groups appearing in the PCA could be interpreted in term of sources. The high prevalence and the levels of these compounds, with known or suspected respiratory toxicity, should question regulatory agencies to trigger prevention and mitigation actions. PMID:26010323

  8. Deodorization of garlic breath volatiles by food and food components.

    PubMed

    Munch, Ryan; Barringer, Sheryl A

    2014-04-01

    The ability of foods and beverages to reduce allyl methyl disulfide, diallyl disulfide, allyl mercaptan, and allyl methyl sulfide on human breath after consumption of raw garlic was examined. The treatments were consumed immediately following raw garlic consumption for breath measurements, or were blended with garlic prior to headspace measurements. Measurements were done using a selected ion flow tube-mass spectrometer. Chlorophyllin treatment demonstrated no deodorization in comparison to the control. Successful treatments may be due to enzymatic, polyphenolic, or acid deodorization. Enzymatic deodorization involved oxidation of polyphenolic compounds by enzymes, with the oxidized polyphenols causing deodorization. This was the probable mechanism in raw apple, parsley, spinach, and mint treatments. Polyphenolic deodorization involved deodorization by polyphenolic compounds without enzymatic activity. This probably occurred for microwaved apple, green tea, and lemon juice treatments. When pH is below 3.6, the enzyme alliinase is inactivated, which causes a reduction in volatile formation. This was demonstrated in pH-adjusted headspace measurements. However, the mechanism for volatile reduction on human breath (after volatile formation) is unclear, and may have occurred in soft drink and lemon juice breath treatments. Whey protein was not an effective garlic breath deodorant and had no enzymatic activity, polyphenolic compounds, or acidity. Headspace concentrations did not correlate well to breath treatments. PMID:24592995

  9. Effects of bedding material on ammonia volatilization in a broiler house

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia volatilization from poultry house bedding material is a major production issues because the buildup of ammonia within the facilities is a human health issue and can negatively impact the performance of the birds. Major operational cost is associated with the ventilation of poultry houses to ...

  10. Volatile halogenated hydrocarbons in foods

    SciTech Connect

    Miyahara, Makoto; Toyoda, Masatake; Saito, Yukio

    1995-02-01

    Volatile halogenated organic compounds were determined in foods. Statistical treatment of the data for 13 sampled from 20 families living in suburban Tokyo (Saitama prefecture) indicated that the foods were contaminated by water pollution and/or substances introduced by the process of food production. Butter and margarine were contaminated by chlorinated ethylene, ethane, and related compounds released by dry cleaning and other operations. Soybean sprouts and tofu (soybean curd) contained chloroform and related trihalomethanes absorbed during the production process. 27 refs., 6 figs., 5 tabs.

  11. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.; Wong, Gregory K.

    2011-03-01

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  12. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.

    2009-02-10

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  13. Volatiles Which Increase Magma Viscosity

    NASA Astrophysics Data System (ADS)

    Webb, S.

    2015-12-01

    The standard model of an erupting volcano is one in which the viscosity of a decompressing magma increases as the volatiles leave the melt structure to form bubbles. It has now been observed that the addition of the "volatiles" P, Cl and F result in an increase in silicate melt viscosity. This observation would mean that the viscosity of selected degassing magmas would decrease rather than increase. Here we look at P, Cl and F as three volatiles which increase viscosity through different structural mechanisms. In all three cases the volatiles increase the viscosity of peralkaline composition melts, but appear to always decrease the viscosity of peraluminous melts. Phosphorus causes the melt to unmix into a Na-P rich phase and a Na-poor silicate phase. Thus as the network modifying Na (or Ca) are removed to the phosphorus-rich melt, the matrix melt viscosity increases. With increasing amounts of added phosphorus (at network modifying Na ~ P) the addition of further phosphorus causes a decrease in viscosity. The addition of chlorine to Fe-free aluminosilicate melts results in an increase in viscosity. NMR data on these glass indicates that the chlorine sits in salt-like structures surrounded by Na and/or Ca. Such structures would remove network-modifying atoms from the melt structure and thus result in an increase in viscosity. The NMR spectra of fluorine-bearing glasses shows that F takes up at least 5 different structural positions in peralkaline composition melts. Three of these positions should result in a decrease in viscosity due to the removal of bridging oxygens. Two of the structural positons of F, however, should result in an increase in viscosity as they require the removal of network-modifying atoms from the melt structure (with one of the structures being that observed for Cl). This would imply that increasing amounts of F might result in an increase in viscosity. This proposed increase in viscosity with increasing F has now been experimentally confirmed.

  14. Method for volatility measurements on polydisperse aerosol

    NASA Astrophysics Data System (ADS)

    Schmid, Otmar; Hagen, Donald E.; Whitefield, Philip D.; Hopkins, Alfred R.; Eimer, Ben

    2000-08-01

    We describe a method for measuring the amount of volatile material in the aerosol phase using a thermal discriminator. This method, which requires the measurement of the particle size distributions of the heated (through discriminator) and non-heated (bypassing discriminator) sample aerosol, includes the effects due to both particle loss and partially volatile aerosols. Tests with polydisperse internally mixed, i.e. partially volatile, aerosol (not shown here) indicate a high degree of accuracy of this method even for ultrafine particles.

  15. Electroantennogram and behavioral responses of Cotesia plutellae to plant volatiles.

    PubMed

    Yang, Guang; Zhang, You-Nan; Gurr, Geoff M; Vasseur, Liette; You, Min-Sheng

    2016-04-01

    Plant volatiles have been demonstrated to play an important role in regulating the behavior of Cotesia plutellae, a major larval parasitoid of the diamondback moth (DBM), Plutella xylostella, but little is currently known about the function of each volatile and their mixtures. We selected 13 volatiles of the DBM host plant, a cruciferous vegetable, to study the electroantennogram (EAG) and behavioral responses of C. plutellae. EAG responses to each of the compounds generally increased with concentration. Strong EAG responses were to 100 μL/mL of trans-2-hexenal, benzaldehyde, nonanal and cis-3-hexenol, and 10 μL/mL of trans-2-hexenal and benzaldehyde with the strongest response provoked by trans-2-hexenal at 100 μL/mL. In the Y-tube olfactometer, C. plutellae, was significantly attracted by 1 μL/mL of trans-2-hexenal and benzaldehyde. β-caryophyllene, cis-3-hexenol or trans-2-hexenal significantly attracted C. plutellae at 10 μL/mL, while nonanal, benzyl alcohol, cis-3-hexenol or benzyl cyanide at 100 μL/mL significantly attracted C. plutellae. Trans-2-hexenal significantly repelled C. plutellae at 100 μL/mL. EAG of C. plutellae showed strong responses to all mixtures made of five various compounds with mixtures 3 (trans-2-hexenal, benzaldehyde, nonanal, cis-3-hexenol, benzyl cyanide, farnesene, eucalyptol) and 4 (trans-2-hexenal, benzaldehyde, benzyl alcohol, (R)-(+)-limonene, β-ionone, farnesene, eucalyptol) significantly attracting C. plutellae. These findings demonstrate that the behavior of C. plutellae can be affected either by individual compounds or mixtures of plant volatiles, suggesting a potential of using plant volatiles to improve the efficiency of this parasitoid for biocontrol of P. xylostella. PMID:26711914

  16. Development of a new semi-volatile organic compound sampler

    SciTech Connect

    Sioutas, C.; Koutrakis, P.; Burton, R.M.

    1994-12-31

    A new sampler has been developed to sample semi-volatile organic compounds. The sampler utilizes the principle of virtual impactor to efficiently separate the particulate from the gas phases of organic compounds. The virtual impactor consists of a slit-shaped nozzle where the aerosol is accelerated, and another slit-shaped nozzle that collects the particulate phase of organics (plus a small and known fraction of the gas phase). The acceleration slit is 0.023 cm wide, the collection slit is 0.035 cm wide, and both slits are 11 cm long. The virtual impactor`s 50% cutpoint has been determined experimentally to be 0.12 {micro}m. In addition, interstage losses have been determined (in all configurations tested, particle losses ranged from 5--15%). The impactor`s sampling flow rate is 284 liters/minute, with a corresponding pressure drop of 100 inches H{sub 2}O. Higher or lower sampling flow rates can be achieved by increasing or decreasing the length of the slits. Tests for volatilization losses have been conducted by generating organic aerosols of known volatility, and comparing the impactor`s collection to that of a filter pack sampling in parallel. The experiments demonstrated negligible volatilization losses (< 5%) for the compounds tried. Particles are collected on a filter connected to the minor flow of the impactor, followed by a sorbent bed to collect material that volatilized from the particles. The organic gas phases is collected on a sorbent bed, connected to the major flow of the impactor.

  17. First Evidence of a Volatile Sex Pheromone in Lady Beetles

    PubMed Central

    Fassotte, Bérénice; Fischer, Christophe; Durieux, Delphine; Lognay, Georges; Haubruge, Eric; Francis, Frédéric; Verheggen, François J.

    2014-01-01

    To date, volatile sex pheromones have not been identified in the Coccinellidae family; yet, various studies have suggested that such semiochemicals exist. Here, we collected volatile chemicals released by virgin females of the multicolored Asian lady beetle, Harmonia axyridis (Pallas), which were either allowed or not allowed to feed on aphids. Virgin females in the presence of aphids, exhibited “calling behavior”, which is commonly associated with the emission of a sex pheromone in several Coleoptera species. These calling females were found to release a blend of volatile compounds that is involved in the remote attraction (i.e., from a distance) of males. Gas Chromatography-Mass Spectrometry (GC-MS) analyses revealed that (–)-β-caryophyllene was the major constituent of the volatile blend (ranging from 80 to 86%), with four other chemical components also being present; β-elemene, methyl-eugenol, α-humulene, and α-bulnesene. In a second set of experiments, the emission of the five constituents identified from the blend was quantified daily over a 9-day period after exposure to aphids. We found that the quantity of all five chemicals significantly increased across the experimental period. Finally, we evaluated the activity of a synthetic blend of these chemicals by performing bioassays which demonstrated the same attractive effect in males only. The results confirm that female H. axyridis produce a volatile sex pheromone. These findings have potential in the development of more specific and efficient biological pest-control management methods aimed at manipulating the behavior of this invasive lady beetle. PMID:25514321

  18. First evidence of a volatile sex pheromone in lady beetles.

    PubMed

    Fassotte, Bérénice; Fischer, Christophe; Durieux, Delphine; Lognay, Georges; Haubruge, Eric; Francis, Frédéric; Verheggen, François J

    2014-01-01

    To date, volatile sex pheromones have not been identified in the Coccinellidae family; yet, various studies have suggested that such semiochemicals exist. Here, we collected volatile chemicals released by virgin females of the multicolored Asian lady beetle, Harmonia axyridis (Pallas), which were either allowed or not allowed to feed on aphids. Virgin females in the presence of aphids, exhibited "calling behavior", which is commonly associated with the emission of a sex pheromone in several Coleoptera species. These calling females were found to release a blend of volatile compounds that is involved in the remote attraction (i.e., from a distance) of males. Gas Chromatography-Mass Spectrometry (GC-MS) analyses revealed that (-)-β-caryophyllene was the major constituent of the volatile blend (ranging from 80 to 86%), with four other chemical components also being present; β-elemene, methyl-eugenol, α-humulene, and α-bulnesene. In a second set of experiments, the emission of the five constituents identified from the blend was quantified daily over a 9-day period after exposure to aphids. We found that the quantity of all five chemicals significantly increased across the experimental period. Finally, we evaluated the activity of a synthetic blend of these chemicals by performing bioassays which demonstrated the same attractive effect in males only. The results confirm that female H. axyridis produce a volatile sex pheromone. These findings have potential in the development of more specific and efficient biological pest-control management methods aimed at manipulating the behavior of this invasive lady beetle. PMID:25514321

  19. NATURAL EMISSIONS OF NON-METHANE VOLATILE ORGANIC COMPOUNDS, CARBON MONOXIDE, AND OXIDES OF NITROGEN FROM NORTH AMERICA

    EPA Science Inventory

    The magnitudes, distributions, controlling processes and uncertainties associated with North American natural emissions of oxidant precursors are reviewed. Natural emissions are repsonsible for a major portion of the compounds, including non-methane volatile organic compounds (N...

  20. Conference on Deep Earth and Planetary Volatiles

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The following topics are covered in the presented papers: (1) rare gases systematics and mantle structure; (2) volatiles in the earth; (3) impact degassing of water and noble gases from silicates; (4) D/H ratios and H2O contents of mantle-derived amphibole megacrysts; (5) thermochemistry of dense hydrous magnesium silicates; (6) modeling of the effect of water on mantle rheology; (7) noble gas isotopes and halogens in volatile-rich inclusions in diamonds; (8) origin and loss of the volatiles of the terrestrial planets; (9) structure and the stability of hydrous minerals at high pressure; (10) recycling of volatiles at subduction zones and various other topics.

  1. Regolith Volatile Recovery at Simulated Lunar Environments

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Paulsen, Gale; Zacny, Kris; Schmidt, Sherry; Boucher, Dale

    2016-01-01

    Lunar Polar Volatiles: Permanently shadowed craters at the lunar poles contain water, 5 wt according to LCROSS. Interest in water for ISRU applications. Desire to ground truth water using surface prospecting e.g. Resource Prospector and RESOLVE. How to access subsurface water resources and accurately measure quantity. Excavation operations and exposure to lunar environment may affect the results. Volatile capture tests: A series a ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations. Sample removal and transfer. Volatiles loss during sampling operations. Concept of operations, Instrumentation. This presentation is a progress report on volatiles capture results from these tests with lunar polar drill prototype hardware.

  2. [Solidification of volatile oil with graphene oxide].

    PubMed

    Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai; Sun, E; Xu, Yi-Hao

    2015-02-01

    To evaluate the properties of solidifying volatile oil with graphene oxide, clove oil and zedoary turmeric oil were solidified by graphene oxide. The amount of graphene oxide was optimized with the eugenol yield and curcumol yield as criteria. Curing powder was characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The effects of graphene oxide on dissolution in vitro and thermal stability of active components were studied. The optimum solidification ratio of graphene oxide to volatile oil was 1:1. Dissolution rate of active components had rare influence while their thermal stability improved after volatile oil was solidified. Solidifying herbal volatile oil with graphene oxide deserves further study. PMID:25975033

  3. Release of volatiles from possible Martian analogs

    NASA Technical Reports Server (NTRS)

    Kotra, R. K.; Gibson, E. K.; Urbancic, M. A.

    1982-01-01

    Viking data suggest the presence of volatile-rich materials in the Martian regolith. The thermal stabilities of mineral phases and their volatile release profiles were studied in detail in our laboratory. Thermal analysis, combined with mass spectrometry, was applied to the study of the behavior of carbonates, sulfates, hydrates, and clays. The results indicate that these techniques are useful in the preliminary mineralogical characterizations of volatile-rich minerals. However, our results also indicate that great care must be taken in the incorporation into planetary probes of such methods as hearing rates, pressure, composition of atmospheres, grain size, etc., because these factors effect volatile release.

  4. Non-volatile, solid state bistable electrical switch

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor)

    1994-01-01

    A bistable switching element is made of a material whose electrical resistance reversibly decreases in response to intercalation by positive ions. Flow of positive ions between the bistable switching element and a positive ion source is controlled by means of an electrical potential applied across a thermal switching element. The material of the thermal switching element generates heat in response to electrical current flow therethrough, which in turn causes the material to undergo a thermal phase transition from a high electrical resistance state to a low electrical resistance state as the temperature increases above a predetermined value. Application of the electrical potential in one direction renders the thermal switching element conductive to pass electron current out of the ion source. This causes positive ions to flow from the source into the bistable switching element and intercalate the same to produce a non-volatile, low resistance logic state. Application of the electrical potential in the opposite direction causes reverse current flow which de-intercalates the bistable logic switching element and produces a high resistance logic state.

  5. Volatile Release From The Siberian Traps Inferred From Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Black, Benjamin A.; Elkins-Tanton, Linda T.; Rowe, Michael C.; Ukstins Peate, Ingrid

    2010-05-01

    The Siberian Traps Large Igneous Province is one of the largest known continental flood volcanic provinces in the Phanerozoic. The quantification of volatile degassing is particularly important because the Siberian Traps have often been invoked as a possible trigger for the end-Permian mass extinction (e.g. Campbell et al., 1992; Wignall, 2001). Volatile degassing provides a crucial mechanism to link mafic volcanic eruption with global environmental change. Mafic flood basalt magmas are expected to have low volatile contents (similar to mid-ocean ridge basalts). However, Siberian Traps magmas were chambered in and erupted through a thick sedimentary basin and may have interacted with, and obtained volatiles from, sedimentary lithologies such as limestone, coal, and evaporite. Melt inclusions from the Siberian Traps provide insight into the potential total volatile budget throughout the evolution of the large igneous province. These droplets of trapped melt may preserve volatile species that would otherwise have degassed at the time of eruption. We present data from the analysis of more than 100 melt inclusions, including both homogenized inclusions and rare glassy inclusions with low crystallinity. Many melt inclusions from tuffs and flows near the base of the Siberian Traps sequence are substantially enriched in chlorine and fluorine compared to Deccan Traps and Laki melt inclusions (Self et al., 2008; Thordarson et al., 1996). These inclusions record chlorine concentrations up to ~1400 ppm, and fluorine concentrations up to ~5000 ppm. Olivines from the Maymechinsky suite, recognized as the last extrusive products of Siberian Traps volcanism, contain melt inclusions with maximum sulfur concentrations in the range of ~5000 ppm and substantial concentrations of chlorine. Intrusive igneous rocks from the province also display significant volatile contents. A sill from the Ust-Ilimsk region yielded plagioclase-hosted melt inclusions which contain chlorine and fluorine

  6. Volatile Release from the Siberian Traps Inferred from Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Black, B. A.; Elkins-Tanton, L. T.; Rowe, M. C.; Ukstins Peate, I.

    2009-12-01

    The Siberian Traps Large Igneous Province is one of the largest known continental flood volcanic provinces in the Phanerozoic. The quantification of volatile degassing is particularly important because the Siberian Traps have often been invoked as a possible trigger for the end-Permian mass extinction (e.g. Campbell et al., 1992; Wignall, 2001). Volatile degassing provides a crucial mechanism to link mafic volcanic eruption to global environmental change. Mafic flood basalt magmas are expected to have low volatile contents (similar to mid-ocean ridge basalts). However, Siberian Traps magmas were chambered in and erupted through a thick sedimentary basin and may have interacted with, and obtained volatiles from, sedimentary lithologies such as limestone, coal, and evaporite. Melt inclusions from the Siberian Traps provide insight into the potential total volatile budget throughout the evolution of the large igneous province. These droplets of trapped melt may preserve volatile species that would otherwise have degassed at the time of eruption (Thordarson et al., 1996). Mafic pyroclastic deposits from the lowermost Arydzhangsky suite (basal Siberian Traps) contain clinopyroxene phenocrysts hosting melt inclusions. Electron microprobe analysis of clinopyroxene-hosted re-homogenized melt inclusions indicates maximum measured concentrations of up to 1500 - 2000 ppm sulfur, 500 - 760 ppm chlorine, and 1900 - 2400 ppm fluorine. Olivines from the Maymechinsky suite, recognized as the last extrusive products of Siberian Traps volcanism, contain melt inclusions with maximum sulfur concentrations in the range of 5000 ppm, and less substantial concentrations of chlorine and fluorine. Intrusive igneous rocks from the province also display significant volatile contents. A sill from the Ust-Ilimsk region yielded plagioclase-hosted melt inclusions which contain chlorine and fluorine concentrations nearing one weight percent. Visscher et al. (2004) proposed that chlorofluorocarbon

  7. Configuration of Pluto's Volatile Ices

    NASA Astrophysics Data System (ADS)

    Grundy, William M.; Binzel, R. P.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Ennico, K.; Jennings, D. E.; Howett, C. J. A.; Linscott, I. R.; Lunsford, A. W.; Olkin, C. B.; Parker, A. H.; Parker, J. Wm; Protopapa, S.; Reuter, D. C.; Singer, K. N.; Spencer, J. R.; Stern, S. A.; Tsang, C. C. C.; Verbiscer, A. J.; Weaver, H. A.; Young, L. A.; Berry, K.; Buie, M. W.; Stansberry, J. A.

    2015-11-01

    We report on near-infrared remote sensing by New Horizons' Ralph instrument (Reuter et al. 2008, Space Sci. Rev. 140, 129-154) of Pluto's N2, CO, and CH4 ices. These especially volatile ices are mobile even at Pluto's cryogenic surface temperatures. Sunlight reflected from these ices becomes imprinted with their characteristic spectral absorption bands. The detailed appearance of these absorption features depends on many aspects of local composition, thermodynamic state, and texture. Multiple-scattering radiative transfer models are used to retrieve quantitative information about these properties and to map how they vary across Pluto's surface. Using parameter maps derived from New Horizons observations, we investigate the striking regional differences in the abundances and scattering properties of Pluto's volatile ices. Comparing these spatial patterns with the underlying geology provides valuable constraints on processes actively modifying the planet's surface, over a variety of spatial scales ranging from global latitudinal patterns to more regional and local processes within and around the feature informally known as Sputnik Planum. This work was supported by the NASA New Horizons Project.

  8. Organic aerosol volatility parameterizations and their impact on atmospheric composition and climate

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Bauer, S.

    2015-12-01

    Despite their importance and ubiquity in the atmosphere, organic aerosols are still very poorly parameterized in global models. This can be explained by two reasons: first, a very large number of unconstrained parameters are involved in accurate parameterizations, and second, a detailed description of semi-volatile organics is computationally very expensive. Even organic aerosol properties that are known to play a major role in the atmosphere, namely volatility and aging, are poorly resolved in global models, if at all. Studies with different models and different parameterizations have not been conclusive on whether the additional complexity improves model simulations, but the added diversity of the different host models used adds an unnecessary degree of variability in the evaluation of results that obscures solid conclusions. Here we will present a thorough study of the most popular organic aerosol parameterizations with regard to volatility in global models, studied within the same host global model, the GISS ModelE2: primary and secondary organic aerosols both being non-volatile, secondary organic aerosols semi-volatile (2-product model), and all organic aerosols semi-volatile (volatility-basis set). We will also present results on the role aerosol microphysical calculations play on organic aerosol concentrations. The changes in aerosol distribution as a result of the different parameterizations, together with their role on gas-phase chemistry and climate, will be presented.

  9. Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition.

    PubMed

    Mathieu, Sandrine; Cin, Valeriano Dal; Fei, Zhangjun; Li, Hua; Bliss, Peter; Taylor, Mark G; Klee, Harry J; Tieman, Denise M

    2009-01-01

    The unique flavour of a tomato fruit is the sum of a complex interaction among sugars, acids, and a large set of volatile compounds. While it is generally acknowledged that the flavour of commercially produced tomatoes is inferior, the biochemical and genetic complexity of the trait has made breeding for improved flavour extremely difficult. The volatiles, in particular, present a major challenge for flavour improvement, being generated from a diverse set of lipid, amino acid, and carotenoid precursors. Very few genes controlling their biosynthesis have been identified. New quantitative trait loci (QTLs) that affect the volatile emissions of red-ripe fruits are described here. A population of introgression lines derived from a cross between the cultivated tomato Solanum lycopersicum and its wild relative, S. habrochaites, was characterized over multiple seasons and locations. A total of 30 QTLs affecting the emission of one or more volatiles were mapped. The data from this mapping project, combined with previously collected data on an IL population derived from a cross between S. lycopersicum and S. pennellii populations, were used to construct a correlational database. A metabolite tree derived from these data provides new insights into the pathways for the synthesis of several of these volatiles. One QTL is a novel locus affecting fruit carotenoid content on chromosome 2. Volatile emissions from this and other lines indicate that the linear and cyclic apocarotenoid volatiles are probably derived from separate carotenoid pools. PMID:19088332

  10. Non-volatile memory based on transition metal perovskite oxide resistance switching

    NASA Astrophysics Data System (ADS)

    Nian, Yibo

    Driven by the non-volatile memory market looking for new advanced materials, this dissertation focuses on the study of non-volatile resistive random access memory (RRAM) based on transition metal perovskite oxides. Pr0.7Ca0.3MnO3 (PCMO), one of the representative materials in this family, has demonstrated a large range of resistance change when short electrical pulses with different polarity are applied. Such electrical-pulse-induced resistance (EPIR), with attractive features such as fast response, low power, high-density and non-volatility, makes PCMO and related materials promising candidates for non-volatile RRAM application. The objective of this work is to investigate, optimize and understand the properties of this universal EPIR behavior in transition metal perovskite oxide, represented by PCMO thin film devices. The research work includes fabrication of PCMO thin film devices, characterization of these EPIR devices as non-volatile memories, and investigation of their resistive switching mechanisms. The functionality of this perovskite oxide RRAM, including pulse magnitude/width dependence, power consumption, retention, endurance and radiation-hardness has been investigated. By studying the "shuttle tail" in hysteresis switching loops of oxygen deficient devices, a diffusion model with oxygen ions/vacancies as active agents at the metal/oxide interface is proposed for the non-volatile resistance switching effect in transition metal perovskite oxide thin films. The change of EPIR switching behavior after oxygen/argon ion implantation also shows experiment support for the proposed model. Furthermore, the universality, scalability and comparison with other non-volatile memories are discussed for future application.

  11. Marine Vibrio Species Produce the Volatile Organic Compound Acetone

    PubMed Central

    Nemecek-Marshall, M.; Wojciechowski, C.; Kuzma, J.; Silver, G. M.; Fall, R.

    1995-01-01

    While screening aerobic, heterotrophic marine bacteria for production of volatile organic compounds, we found that a group of isolates produced substantial amounts of acetone. Acetone production was confirmed by gas chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The major acetone producers were identified as nonclinical Vibrio species. Acetone production was maximal in the stationary phase of growth and was stimulated by addition of l-leucine but not the other common amino acids, suggesting that leucine degradation leads to acetone formation. Acetone production by marine vibrios may contribute to the dissolved organic carbon associated with phytoplankton, and some of the acetone produced may be volatilized to the atmosphere. PMID:16534920

  12. On-Plant Volatile Analysis Utilizing Solid-Phase Microextraction and a New Volatile Collection Technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile emission of plants is typically measured by removal of the plant-part, transportation to a laboratory, and subsequent volatile analyses via a number of accepted methodologies. Studies performed by our laboratory have shown the volatile emission of removed plant parts are essentially identic...

  13. Volatiles in Submarine HIMU Basalts from the Austral Islands, South Pacific

    NASA Astrophysics Data System (ADS)

    Nichols, A. R.; Hanyu, T.; Shimizu, K.; Dosso, L.

    2014-12-01

    Submarine basalts have been collected from the slopes of Rurutu and Tubuai in the Austral Islands, South Pacific with the manned submersible Shinkai 6500. Previous work on the bulk radiogenic isotope and trace element chemistry of these samples suggests that the basalts were generated from a HIMU reservoir derived from an ancient subducted slab that was entrained and mixed with the depleted asthenospheric mantle. Olivines and glasses from the submarine basalts show lower 3He/4He than MORB, similar to subaerial basalts from these islands. Sixteen glass chips from the same submarine samples have now undergone in-situ analysis for major elements (including S and Cl) by EPMA, trace elements by LA-ICP-MS, H2O and CO2 by FTIR, and bulk volatile analysis (S, Cl, F) by ion chromatography combined with pyrohydrolysis. H2O ranges from 0.62-2.44 wt%, while CO2 is below detection (<20 ppm). S measured by EPMA ranges from 612-1889 ppm and by bulk analysis from 582-1301 ppm and, with the exception of one sample, concentrations agree well. Cl measured by EPMA ranges from 151-538 ppm, and by bulk analysis from 188-980 ppm. The higher values suggest that the bulk samples may be contaminated by seawater; otherwise Cl correlates strongly with incompatible elements. F measured in the bulk samples ranges from 221-1243 ppm. S correlates positively with FeO and Cu, but not with incompatible elements, suggesting sulfide saturation. While the highest H2O contents may reflect late-stage hydration and are oversaturated at the depth of collection, the low H2O contents (11 samples with 0.62-0.96 wt%) are undersaturated, and there is a positive correlation between the H2O contents of all chips and their incompatible element concentrations. This suggests that H2O/Ce and Cl/Ce filtered for shallow level processes may reflect source compositions, providing constraints on volatiles in the sources of Rurutu and Tubuai, and indications about the efficiency of subduction-related volatile-loss in the

  14. The role of volatiles in the reduction of iron oxides

    NASA Astrophysics Data System (ADS)

    Sohn, Il

    With iron ore reduction processes using coal-ore pellets or mixtures, it is possible that volatiles from the coals can contribute to the overall reduction. By identifying the possible reducing species in the volatiles as H2/CO and simulating these constituents, the rates for H2 and CO were investigated in the temperature and reduction range of interest where hydrogen was the major reductant and studied in detail. In the initial stages of the present study, the fundamentals of hydrogen reduction of fine powder were found to be a complex mechanism of chemical kinetics and mass transfer. Complete uniform reduction for porous and dense iron ores were not observed contrary to existing work regarding this subject. Morphological observations of iron ores reduced at low and high temperatures showed a topochemical receding interface to be dominating with an intermediate region developing for higher temperature samples indicating the importance of pore mass transfer at the later stages of reduction. Although the activation energy of 50˜56 kJ/mole for these powder samples were comparable to the literature values for solely chemical kinetics controlled reactions, the reaction rates were not proportional to sample weight and also did not exhibit complete uniform internal reduction. The calculated mass transfer rates were comparable to the observed rate which suggested that bulk mass transfer is important to the mixed-control. The reaction rate at the mixed control regime was found to be first order with respect to hydrogen partial pressure. Results of reducing iron oxide powders in a mixture of He-40%H2 -5%CO and H2-1%H2S showed that H2S and CO which is involved with the volatiles does not affect the rate at the reduction range of interest indicating the role of volatiles is dominated by the hydrogen reduction. The single composite pellet experiments at 900 and 1000°C showed significant fixed carbon reduction to occur above 1000°C. Depending upon the type of carbon reductant

  15. Citrus Leaf Volatiles as Affected by Developmental Stage and Genetic Type

    PubMed Central

    Azam, Muhammad; Jiang, Qian; Zhang, Bo; Xu, Changjie; Chen, Kunsong

    2013-01-01

    Major volatiles from young and mature leaves of different citrus types were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. A total of 123 components were identified form nine citrus cultivars, including nine aldehydes, 19 monoterpene hydrocarbons, 27 oxygenated monoterpenes, 43 sesquiterpene hydrocarbons, eight oxygenated sesquiterpenes, two ketones, six esters and nine miscellaneous. Young leaves produced higher amounts of volatiles than mature leaves in most cultivars. The percentage of aldehyde and monoterpene hydrocarbons increased, whilst oxygenated monoterpenes and sesquiterpenes compounds decreased during leaf development. Linalool was the most abundant compound in young leaves, whereas limonene was the chief component in mature ones. Notably, linalool content decreased, while limonene increased, during leaf development in most cultivars. Leaf volatiles were also affected by genetic types. A most abundant volatile in one or several genotypes can be absent in another one(s), such as limonene in young leaves of lemon vs. Satsuma mandarin and β-terpinene in mature leaves of three genotypes vs. the other four. Compositional data was subjected to multivariate statistical analysis, and variations in leaf volatiles were identified and clustered into six groups. This research determining the relationship between production of major volatiles from different citrus varieties and leaf stages could be of use for industrial and culinary purposes. PMID:23994837

  16. Comparative study of volatile oil content and antimicrobial activity of pecan cultivars growing in Egypt.

    PubMed

    El Hawary, Seham S; Zaghloul, Soumaya S; El Halawany, Ali M; El Bishbishy, Mahitab H

    2013-11-01

    The volatile oils obtained from the leaves of four pecan cultivars growing in Egypt were evaluated for their chemical composition and antimicrobial activity. The selected cultivars (cv.) were Carya illinoinensis (Wangneh.) K. Koch. cv. Wichita, C. illinoinensis cv. Western Schley, C. illinoinensis cv. Cherokee, and C. illinoinensis cv. Sioux. The gas chromatography-mass spectrometry analyses revealed that the volatile oils from samples of the different cultivars differ in composition and percentage of their components. β-Curcumene was found as the major constituent of the cv. Wichita oil, whereas germacrene D was the major component of cv. Sioux, cv. Cherokee, and cv. Western Schley. The antimicrobial activity was assayed using the Kirby-Bauer Method by measuring the zone of inhibition of growth. All volatile oils displayed an antimicrobial activity against the tested bacterial strains. On the other hand, only the volatile oil of cv. Wichita showed an antifungal effect on Aspergillus flavus. This work has identified candidates of volatile oils for future in vivo studies to develop antibiotic substitutes for the diminution of human and animal pathogenic bacteria. Nevertheless, the variations of the volatile oil components and antimicrobial potencies of the different studied cultivars, necessitate identifying the cultivars used in future studies. PMID:24180553

  17. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  18. Antimicrobial activity of volatile components and various extracts of the red alga Jania rubens.

    PubMed

    Karabay-Yavasoglu, N Ulku; Sukatar, Atakan; Ozdemir, Guven; Horzum, Zerrin

    2007-02-01

    The methanol, dichloromethane, hexane, chloroform and volatile oil extracts of the red alga Jania rubens were tested in vitro for their antimicrobial activity (five Gram-positive, four Gram-negative bacteria and Candida albicans ATCC 10239). GC-MS analysis of the volatile components of J. rubens identified 40 compounds which constituted 77.53% of the total. The volatile components of J. rubens consisted of n-docosane (6.35%), n-eicosane (5.77%) and n-tetratriacontane (5.58%) as major components. The methanol and chloroform extracts (4 mg/disc) showed more potent antimicrobial activity than the hexane and dichloromethane extracts and the volatile oil of J. rubens. PMID:17128433

  19. Capillary gas chromatography determination of volatile organic acids in rain and fog samples

    SciTech Connect

    Kawamura, K.; Kaplan, I.R.

    1984-08-01

    A fused silica capillary gas chromatography technique is described for the determination of volatile acids (C/sub 1/-C/sub 7/) in rain samples using p-bromophenacyl esters. As the sensitivity of this method is high (GC detection limit is ca. 10 pmol), a small volume of rain (25-50 mL) or fog (1-2 mL) is needed. Spiked experiments showed that the measured concentrations of volatile acids in the spiked rain samples linearly increased with a slope of approx.1 in proportion to the concentrations of volatile acids added in the rainwater. Repeated analyses of rain samples showed that relative standard deviations are less than or equal to 18% for C/sub 1/, C/sub 2/, and C/sub 3/ acids, which are the major volatile acids.

  20. Influence of volatile terpenes on the capacity of leaves to uptake and detoxify ozone. (Invited)

    NASA Astrophysics Data System (ADS)

    Loreto, F.; Fares, S.

    2009-12-01

    Tropospheric ozone is considered the most dangerous air pollutant for plant ecosystems, and its concentration is increasing throughout the earth. Oxidative damage takes place when ozone penetrates inside the leaves through the stomata and the cuticles. The latest guidelines suggest considering the dose entering stomata to evaluate ozone risk on vegetation. We have shown that this metric may not consider important detoxification mechanisms activated by the production of volatile antioxidants, especially terpenes. We review here how volatile terpenes may increase ozone uptake by leaves yet reducing the risk of damage to internal leaf structures. We also argue that volatile terpene production by plants phases-in with episodes on high ozone whereas other detoxification mechanisms are phased-out. Our results suggests that volatile isoprenoids play a major role in determining the capacity of ozone removal and detoxification by vegetation.

  1. Volatility and composition of aerosols in tropical stratosphere and TTL over Biak, Indonesia

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Shibata, T.; Hara, K.; Hasebe, F.

    2014-12-01

    Number concentration and volatility of aerosols in the Tropical Tropopause Layer (TTL) over Biak (1.2 oS, 136.1 oE) were observed using balloon-borne dual optical particle counters (OPC) in January 2011, 2012, and 2013. One OPC observed number concentration of ambient aerosols and another OPC had an inlet with a thermo denuder, whose temperature were set at 100 to 300 oC, in order to observe volatility. The results suggest that major composition of aerosol change with altitude, from sulfate in upper troposphere to sulfuric acid in stratosphere through TTL region. The ratios of number concentrations of un-volatile aerosol, to those of ambient aerosol in sub-micrometer size range are few percent in stratosphere and several percent in TTL. In addition, un-volatile aerosol concentrations were similar to the concentration of ice particle in sub-visible cirrus.

  2. The Effect of pH and Temperature on Cabbage Volatiles During Storage.

    PubMed

    Akpolat, Hacer; Barringer, Sheryl Ann

    2015-08-01

    During storage of shredded cabbage, characteristic sulfurous volatile compounds are formed affecting cabbage aroma both negatively and positively. Selected ion flow tube-mass spectrometry (SIFT-MS) was used to measure the concentration of cabbage volatiles during storage. The volatile levels of cabbage samples were measured at pH 3.3 to 7.4 at 4 °C for 14 d, and pH 3.3 at 25 °C for 5 d in order to determine the effect of pH and temperature. Aroma intensity, best aroma, freshness, and off odor were evaluated in a sensory test of the samples at 4 °C. The desirable volatile allyl isothiocyanate was lower in high pH samples (pH 7.4 and 6.4), whereas higher concentrations were detected in low pH samples (pH 3.3 and 4.6). Lipoxygenase volatiles, which produce a fresh green and leafy aroma in cabbage, were generated in very low amounts at any pH value. High pH samples generated significantly higher concentrations of off odors such as dimethyl sulfide, dimethyl disulfide, dimethyl trisulfide, and methanethiol. Sensory tests showed that higher pH samples had significantly stronger off odor and lower desirable cabbage aroma than lower pH samples. Thus, sensory results matched the volatile results in that samples at higher pH levels formed the highest amount of undesirable volatiles and the least amount of desirable volatiles. Storage at 25 °C produced similar concentrations of allyl isothiocyanate, but significantly higher levels of off odors, than at 4 °C. Shredded cabbage products should be stored in low pH dressings to minimize formation of off odors and maximize formation of characteristic, desirable cabbage odor. PMID:26121908

  3. Ambient orchard volatiles from California almonds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The volatile emissions of various plant parts of almonds have been studied via various techniques in the past. These analyses have typically been performed on single cultivars and hence may not be representative of the volatiles found in an entire almond orchard. Recent reports suggest some almond v...

  4. Fixture For Sampling Volatile Materials In Containers

    NASA Technical Reports Server (NTRS)

    Melton, Donald; Pratz, Earl Howard

    1995-01-01

    Fixture based on T-connector enables mass-spectrometric analysis of volatile contents of cylindrical containers without exposing contents to ambient conditions. Used to sample volatile contents of pressurized containers, contents of such enclosed processing systems as gas-phase reactors, gases in automotive emission systems, and gas in hostile environments.

  5. VOLATILIZED LUBRICANT EMISSIONS FROM STEEL ROLLING OPERATIONS

    EPA Science Inventory

    The report gives results of a study of the volatilization of lubricants used in steel rolling. Data from nine steel mills were used to: define the volatilized portion of lubricants used in rolling; and prepare total oil, grease, and hydraulic material balances for actual and typi...

  6. Belief biases and volatility of assets

    NASA Astrophysics Data System (ADS)

    Lei-Sun, Wen-Zou, Hui

    2014-10-01

    Based on an overlapping generation model, this paper introduces the noise traders with belief biases and rational traders. With an equilibrium analysis, this paper examines the volatility of risky asset. The results show that the belief biases, the probability of economy state, and the domain capability are all the factors that have effects on the volatility of the market.

  7. Analyzing volatile compounds in dairy products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile compounds give the first indication of the flavor in a dairy product. Volatiles are isolated from the sample matrix and then analyzed by chromatography, sensory methods, or an electronic nose. Isolation may be performed by solvent extraction or headspace analysis, and gas chromatography i...

  8. ION CHROMATOGRAPHY OF ANIONS

    EPA Science Inventory

    A Dionex Model 10 Ion Chromatograph was evaluated for the measurement of anionic species in water. The theoretical effect of hydrogen ion activity (pH) on the elution time of phosphate and arsenate was tested and empirical selectivity coefficients were determined for the major pr...

  9. Volatile Exchange between Undamaged Plants - a New Mechanism Affecting Insect Orientation in Intercropping

    PubMed Central

    Ninkovic, Velemir; Dahlin, Iris; Vucetic, Andja; Petrovic-Obradovic, Olivera; Glinwood, Robert; Webster, Ben

    2013-01-01

    Changes in plant volatile emission can be induced by exposure to volatiles from neighbouring insect-attacked plants. However, plants are also exposed to volatiles from unattacked neighbours, and the consequences of this have not been explored. We investigated whether volatile exchange between undamaged plants affects volatile emission and plant-insect interaction. Consistently greater quantities of two terpenoids were found in the headspace of potato previously exposed to volatiles from undamaged onion plants identified by mass spectrometry. Using live plants and synthetic blends mimicking exposed and unexposed potato, we tested the olfactory response of winged aphids, Myzus persicae. The altered potato volatile profile deterred aphids in laboratory experiments. Further, we show that growing potato together with onion in the field reduces the abundance of winged, host-seeking aphids. Our study broadens the ecological significance of the phenomenon; volatiles carry not only information on whether or not neighbouring plants are under attack, but also information on the emitter plants themselves. In this way responding plants could obtain information on whether the neighbouring plant is a competitive threat and can accordingly adjust their growth towards it. We interpret this as a response in the process of adaptation towards neighbouring plants. Furthermore, these physiological changes in the responding plants have significant ecological impact, as behaviour of aphids was affected. Since herbivore host plants are potentially under constant exposure to these volatiles, our study has major implications for the understanding of how mechanisms within plant communities affect insects. This knowledge could be used to improve plant protection and increase scientific understanding of communication between plants and its impact on other organisms. PMID:23922710

  10. Space-weathering processes and products on volatile-rich asteroids

    NASA Astrophysics Data System (ADS)

    Britt, D.; Schelling, P.; Consolmagno, G.; Bradley, T.

    2014-07-01

    Space weathering is a generic term for the effects on atmosphereless solid bodies in the solar system from a range of processes associated with direct exposure to the space environment. These include impact processes (shock, vaporization, fragmentation, heating, melting, and ejecta formation), radiation damage (from galactic and solar cosmic rays), solar-wind effects (irradiation, ion implantation, and sputtering), and the chemical reactions driven by these processes. The classic example of space weathering is the formation of the lunar spectral red slope associated with the production of nanophase Fe (npFe0) in the dusty lunar regolith (C.R. Chapman, 2004, Annual Review of Earth & Planet. Sci. 32, C.M. Pieters, 2000, MAPS 35). Similar npFe0 has been recovered from asteroid (25143) Itokawa and some asteroid classes do exhibit modest spectral red slopes (T. Noguchi, 2011, Science 333). Space weathering can be thought of as driven by a combination of the chemical environment of space (hard vacuum, low oxygen fugacity, solar-wind implantation of hydrogen) along with thermal energy supplied by micrometeorite impacts. The forward modeling of space weathering as thermodynamically-driven decomposition of common rock-forming minerals suggests the production of a range of daughter products: (1) The silicate products typically lose oxygen, other volatile elements (i.e., sulfur and sodium), and metallic cations, producing minerals that are typically more disordered and less optically active than the original parent materials. (2) The decomposed metallic cations form in nano-sized blebs including npFe0, on the surfaces or in condensing rims of mineral grains. This creates a powerful optical component as seen in the lunar red slope. Surfaces with exposed npFe0 are an ideal environment for catalyzing further reactions. (3) The liberated volatile elements and gases (O, S, Na) may form an observable exosphere (e.g., Moon and Mercury) and can either escape from the body or

  11. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, Gregory D.; Moore, Glenn A.; Stone, Mark L.; Reagen, William K.

    1995-01-01

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

  12. Volatile hydrocarbons in pharmaceutical solutions

    SciTech Connect

    Kroneld, R. )

    1991-07-01

    Volatile pollutants such as hydrocarbons have, during many years, been analysed in small concentrations in air, water, food, pharmaceutical solutions, and human blood and tissues. It has also been shown that such substances have unexpected consequences for cell cultures and scientific experiments. These substances also accumulate in patients receiving haemodialysis and these patients are exposed to quite high concentrations. The knowledge of the toxicity of such compounds has led to the development of maximum limit concentrations with the aim to decrease the exposure of humans. This paper discusses the problems of human exposure in general and especially through pharmaceutical solutions, and the possibilities of eliminating such compounds with the aim of decreasing the exposure as a hygienic challenge.

  13. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.

    1995-08-29

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.

  14. Lunar Volatiles: An Earth-Moon Perspective

    NASA Technical Reports Server (NTRS)

    Jones, John H.

    2011-01-01

    It has generally been accepted that the Moon is depleted in volatile elements. However, the recent discovery of measurable water in lunar glasses and apatites suggests that volatiles are not as depleted as was once thought. And, in fact, some authors have claimed that water contents of the lunar and terrestrial mantles are similar. Moderately volatile alkali elements may have a bearing on this issue. In general, bulk Moon alkalis are depleted relative to the bulk silicate Earth. Although the bulk lunar chemical composition is difficult to reconstruct, good correlations of alkali elements with refractory lithophile incompatible trace elements make this conclusion robust. These observations have been taken to mean that the Moon overall is depleted in volatiles relative to the Earth. Since water is more volatile than any of the alkali elements, presumably this conclusion is true for water, or even more so.

  15. IN-HOUSE REFORMULATION AND EVALUATION OF MAJOR MANUFACTURER'S VEHICLE REFINISHING COATINGS

    EPA Science Inventory

    The goal is to develop high quality vehicle refinishing paint formulations that contain much less toxi and volatile solvents than the major manufacturer's Federal compliant and California complaint coatings. The reformulated coatings being developed will maintain or improve upo...

  16. SELECTION GUIDE FOR VOLATILIZATION TECHNOLOGIES FOR WATER TREATMENT

    EPA Science Inventory

    The guide presents a methodology for evaluating applicability of volatilization technologies for removing volatile organics from water. The volatilization technologies assessed in the study include: surface sprayers, surface aerators, bubble columns, cooling towers, steam strippe...

  17. It's Major! College Major Selection & Success

    ERIC Educational Resources Information Center

    Byers, Jenny; Mattern, Krista D.; Shaw, Emily J.; Springall, Robert

    2011-01-01

    Presented at the College Board National Forum, October 26, 2011. Choosing a college major is challenging enough, without stopping to consider the impact it has on a student's college experience and career choice. To provide support during this major decision, participants in this session will develop strategies to facilitate students in making an…

  18. Volatile components in defensive spray of the hog-nosed skunk,Conepatus mesoleucus.

    PubMed

    Wood, W F; Fisher, C O; Graham, G A

    1993-04-01

    GC-MS analysis of the anal sac secretion from the hog-nosed skunk,Conepatus mesoleucus, showed two major volatile components, (E)-2-butene-1-thiol and (E)-S-2-butenyl thioacetate. Minor volatile components identified from this secretion were phenylmethanethiol, 2-methylquinoline, 2-quinolinemethanethiol, and bis[(E)-2-butenyl] disulfide. 3-Methyl-1-butanethiol, a major component in the defensive spray of the striped skunk,Mephitis mephitis, and the spotted skunk,Spilogale putorius, was absent from this secretion. PMID:24249022

  19. Volatile fingerprints of seeds of four species indicate the involvement of alcoholic fermentation, lipid peroxidation, and Maillard reactions in seed deterioration during ageing and desiccation stress

    PubMed Central

    Colville, Louise

    2012-01-01

    The volatile compounds released by orthodox (desiccation-tolerant) seeds during ageing can be analysed using gas chromatography–mass spectrometry (GC-MS). Comparison of three legume species (Pisum sativum, Lathyrus pratensis, and Cytisus scoparius) during artificial ageing at 60% relative humidity and 50 °C revealed variation in the seed volatile fingerprint between species, although in all species the overall volatile concentration increased with storage period, and changes could be detected prior to the onset of viability loss. The volatile compounds are proposed to derive from three main sources: alcoholic fermentation, lipid peroxidation, and Maillard reactions. Lipid peroxidation was confirmed in P. sativum seeds through analysis of malondialdehyde and 4-hydroxynonenal. Volatile production by ageing orthodox seeds was compared with that of recalcitrant (desiccation-sensitive) seeds of Quercus robur during desiccation. Many of the volatiles were common to both ageing orthodox seeds and desiccating recalcitrant seeds, with alcoholic fermentation forming the major source of volatiles. Finally, comparison was made between two methods of analysis; the first used a Tenax adsorbent to trap volatiles, whilst the second used solid phase microextraction to extract volatiles from the headspace of vials containing powdered seeds. Solid phase microextraction was found to be more sensitive, detecting a far greater number of compounds. Seed volatile analysis provides a non-invasive means of characterizing the processes involved in seed deterioration, and potentially identifying volatile marker compounds for the diagnosis of seed viability loss. PMID:23175670

  20. On the mechanisms controlling the formation and properties of volatile particles in aircraft wakes

    NASA Astrophysics Data System (ADS)

    Yu, Fangqun; Turco, Richard P.; Kärcher, Bernd; Schröder, Franz P.

    New observations taken in aircraft wakes, including the DLR ATTAS, provide strong constraints on models of aircraft plume aerosols. Using a comprehensive microphysics code, we have performed sensitivity studies to identify the key microphysical mechanisms acting in such plumes. Analysis of these simulations reveals that the largest volatile plume particles—those most likely to contribute to the background abundance of condensation nuclei—are dominated by ion-mode particles when chemiions are included. Moreover, such modeling demonstrates that standard treatments of plume microphysics—in the absence of chemiions—fails to explain field measurements. The principal factor controlling the population of ultrafine plume particles is the number of chemiions emitted by the aircraft engines. Since the ions are a byproduct of the combustion itself, and their abundance in the exhaust stream is controlled by ion-ion recombination, the initial ion concentrations—and so the eventual emission indices for ion-mode particles—are expected to be relatively invariant. Our results indicate that reductions in fuel sulfur content, while not likely to lower the total number of volatile particles emitted, would decrease the size of the ion-mode particles in fresh aircraft wakes, reducing their atmospheric lifetimes and potential environmental effects.

  1. From Purgatory to Paradise: The Volatile Life of Hawaiian Magma

    NASA Astrophysics Data System (ADS)

    Marske, J. P.; Hauri, E. H.; Trusdell, F.; Garcia, M. O.; Pietruszka, A. J.

    2014-12-01

    Variations in radiogenic isotope ratios and magmatic volatile abundances (e.g., CO2 or H2O) in Hawaiian lavas reveal key processes within a deep-seated mantle plume (e.g., mantle heterogeneity, source lithology, partial melting, and magma degassing). Shield-stage Hawaiian lavas likely originate from a mixed plume source containing peridotite and recycled oceanic crust (pyroxenite) based on variations of radiogenic isotopes (e.g., 206Pb/204Pb). The mantle source region may also be heterogeneous with respect to volatile contents, yet the link between pre-eruptive volatile budgets and mantle source lithology in the Hawaiian plume is poorly constrained due to shallow magmatic degassing and mixing. Here, we use a novel approach to investigate this link using Os isotopic ratios, and major, trace, and volatile elements in olivines and mineral-hosted melt inclusions (MIs) from 34 samples from Koolau, Mauna Loa, Hualalai, Kilauea, and Loihi. These samples reveal a strong correlation between volatile contents in olivine-hosted MIs and Os isotopes of the same olivines, in which lavas that originated from greater proportions of recycled oceanic crust/pyroxenite (i.e. 'Loa' chain volcanoes: Koolau, Mauna Loa, Loihi) have MIs with the lower H2O, F, and Cl contents than 'Kea' chain volcanoes (i.e. Kilauea) that contain greater amounts of peridotite in the source region. No correlation is observed with CO2 or S. The depletion of fluid-mobile elements (H2O, F, and Cl) in 'Loa' chain volcanoes indicates ancient dehydrated oceanic crust is a plume component that controls much of the compositional variation of Hawaiian Volcanoes. The presence of dehydrated recycled mafic material in the plume source suggests that subduction effectively devolatilizes the mafic part of the oceanic crust. These results are similar to the observed shifts in H2O/Ce ratios near the Easter and Samoan hotspots [1,2]. Thus, it appears that multiple hotspots may record relative H2O depletions and possibly other

  2. Acidic volatiles and the Mars Soil

    NASA Astrophysics Data System (ADS)

    Banin, A.; Han, F. X.; Kan, I.; Cicelsky, A.

    1997-06-01

    Large portions of Mars' surface are covered with deposits of fine, homogeneous, weathered dusty-soil material. Nanophase iron oxides, silicate mineraloids, and salts prevail in the soil. The mode of formation of this somewhat peculiar type of soil is still far from being clear. One scenario suggests that weathering took place during early epochs when Mars may have been ``warm and wet.'' The properties of the soil are not easily reconciled with this scenario. We propose another possible scenario that attributes, in part, the peculiar nature of the Martian dust and soil to a relatively ``young'' weathering product formed during the last few hundreds of millions of years in a process that involves acidic volatiles. We tested this hypothesis in an experimental study of the first step of acidolytic weathering of a partly palagonitized volcanic tephra of hawaiitic lava origin, using sulfuric, hydrochloric and nitric acids and their mixtures. The tephra effectively ``neutralize'' the added acidity. The protonic acidity added to the tephra attacks the primary minerals, releasing Fe, Al, and Mg, which control the pH, acting as Lewis-acid species of varying acid strengths. The full amount of acidity added to the tephra is stored in it, but only a very small fraction is preserved as the original protonic acidity. The majority of the added sulfate and chloride were present as salts and easily solubilized minerals. Well-crystallized sulfate salt minerals of aluminum and calcium were detected by powder X ray diffractometry, whereas secondary magnesium and iron minerals were not detected, due probably to lack of crystallinity. The presence of gypsum (CaSO4.2H2O) and alunogen (Al2(SO4)3.17H2O) is probably responsible for the observed increased hygroscopicity of the acidified tephra and their tendency to form hardened crusts. We suggest that if this mechanism is of importance on Mars, then the chemically weathered component of the Martian soil consists of a salt-rich mineral

  3. Volatile Exsolution Experiments: Sampling Exsolved Magmatic Fluids

    NASA Astrophysics Data System (ADS)

    Tattitch, B.; Blundy, J. D.

    2015-12-01

    In magmatic arcs the conditions of volatile exsolution exert a direct control on the composition of exsolved magmatic volatiles phases (MVPs), as well as on their parental magmas. The ability to accurately assess the exchange of major and trace elements between MVPs and magmas is key to understanding the evolution of arc magmas. The trace element signatures measured in arc volcanoes, fumaroles, and hydrothermal ore deposits are greatly influenced by the role of MVPs. In order to investigate the interplay and evolution of melts and MVPs we need experimental methods to simulate MVP exsolution that impose minimal external constraints on their equilibration. Previous experiments have focused on evaluating the exchange of elements between aqueous fluids and silicate melts under equilibrium conditions[1,2]. However, the large mass proportion of fluid to melt in these experiment designs is unrealistic. As a result, the idealized compositions of the aqueous fluids may exert a strong control on melt compositions for which they are out of equilibrium, especially at low melt fractions. In contrast, other experiments have focused on the melt during crystallization but must calculate MVP compositions by mass balance[3]. In order to investigate MVPs and magmas during this critical period of MVP exsolution, we present a new two-stage fluid-melt experimental design. Stage one experiments generate super-liquidus hydrous melts using Laguna del Maule rhyolites and dactites, as analogues for ascending arc magmas. Stage two experiments allow aliquots of stage one melt/glass to crystallize and exsolve MVPs. The design then uses pressure cycling to promote infiltration of in-situ fractured quartz[4] and traps the MVPs as synthetic fluid inclusions. We present results from trial stage 2 experiments, which produced synthetic fluid inclusions consistent with literature values of fluid-melt Cl partitioning[5] and of sufficient size for LA-ICPMS analysis. Trace element partitioning for Li, Na

  4. Breath measurements as volatile organic compound biomarkers.

    PubMed Central

    Wallace, L; Buckley, T; Pellizzari, E; Gordon, S

    1996-01-01

    A brief review of the uses of breath analysis in studies of environmental exposure to volatile organic compounds (VOCs) is provided. The U.S. Environmental Protection Agency's large-scale Total Exposure Assessment Methodology Studies have measured concentrations of 32 target VOCs in the exhaled breath of about 800 residents of various U.S. cities. Since the previous 12-hr integrated personal air exposures to the same chemicals were also measured, the relation between exposure and body burden is illuminated. Another major use of the breath measurements has been to detect unmeasured pathways of exposure; the major impact of active smoking on exposure to benzene and styrene was detected in this way. Following the earlier field studies, a series of chamber studies have provided estimates of several important physiological parameters. Among these are the fraction, f, of the inhaled chemical that is exhaled under steady-state conditions and the residence times. tau i in several body compartments, which may be associated with the blood (or liver), organs, muscle, and fat. Most of the targeted VOCs appear to have similar residence times of a few minutes, 30 min, several hours, and several days in the respective tissue groups. Knowledge of these parameters can be helpful in estimating body burden from exposure or vice versa and in planning environmental studies, particularly in setting times to monitor breath in studies of the variation with time of body burden. Improvements in breath methods have made it possible to study short-term peak exposure situations such as filling a gas tank or taking a shower in contaminated water. PMID:8933027

  5. Analysis of volatile organic compounds of ‘Fuji’ apples following electron beam irradiation and storage

    NASA Astrophysics Data System (ADS)

    Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su

    2012-08-01

    The volatile organic compounds of non-irradiated and electron-beam irradiated 'Fuji' apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph-mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated 'Fuji' apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of 'Fuji' apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds.

  6. Biogenic volatile organic compound emissions during BEARPEX 2009 measured by eddy covariance and flux-gradient similarity methods

    NASA Astrophysics Data System (ADS)

    Park, J.-H.; Fares, S.; Weber, R.; Goldstein, A. H.

    2012-09-01

    The Biosphere Effects on AeRosols and Photochemistry EXperiment (BEARPEX) took place in Blodgett Forest, a Ponderosa pine forest in the Sierra Nevada Mountains of California, during summer 2009. We deployed a Proton Transfer Reaction - Mass Spectrometer (PTR-MS) to measure fluxes and concentrations of biogenic volatile organic compounds (BVOCs). Eighteen ion species including the major BVOC expected at the site were measured sequentially at 5 heights to observe their vertical gradient from the forest floor to above the canopy. Fluxes of the 3 dominant BVOCs methanol, 2-Methyl-3-butene-2-ol (MBO), and monoterpenes, were measured above the canopy by the eddy covariance method. Canopy scale fluxes were also determined by the flux-gradient similarity method (K-theory). A universal K (Kuniv) was determined as the mean of individual K's calculated from the measured fluxes divided by vertical gradients for methanol, MBO, and monoterpenes. This Kuniv was then multiplied by the gradients of each observed ion species to compute their fluxes. The flux-gradient similarity method showed very good agreement with the Eddy Covariance method. Fluxes are presented for all measured species and compared to historical measurements from the same site, and used to test emission algorithms used to model fluxes at the regional scale. MBO was the dominant emission observed followed by methanol, monoterpenes, acetone, and acetaldehyde. The flux-gradient similarity method is shown to be a useful, and we recommend its use especially in experimental conditions when fast measurement of BVOC species is not available.

  7. The ESA Lunar Lander and the search for Lunar Volatiles

    NASA Astrophysics Data System (ADS)

    Morse, A. D.; Barber, S. J.; Pillinger, J. M.; Sheridan, S.; Wright, I. P.; Gibson, E. K.; Merrifield, J. A.; Waltham, N. R.; Waugh, L. J.; Pillinger, C. T.

    2011-10-01

    Following the Apollo era the moon was considered a volatile poor body. Samples collected from the Apollo missions contained only ppm levels of water formed by the interaction of the solar wind with the lunar regolith [1]. However more recent orbiter observations have indicated that water may exist as water ice in cold polar regions buried within craters at concentrations of a few wt. % [2]. Infrared images from M3 on Chandrayaan-1 have been interpreted as showing the presence of hydrated surface minerals with the ongoing hydroxyl/water process feeding cold polar traps. This has been supported by observation of ephemeral features termed "space dew" [3]. Meanwhile laboratory studies indicate that water could be present in appreciable quantities in lunar rocks [4] and could also have a cometary source [5]. The presence of sufficient quantities of volatiles could provide a resource which would simplify logistics for long term lunar missions. The European Space Agency (ESA's Directorate of Human Spaceflight and Operations) have provisionally scheduled a robotic mission to demonstrate key technologies to enable later human exploration. Planned for launch in 2018, the primary aim is for precise automated landing, with hazard avoidance, in zones which are almost constantly illuminated (e.g. at the edge of the Shackleton crater at the lunar south pole). These regions would enable the solar powered Lander to survive for long periods > 6 months, but require accurate navigation to within 200m. Although landing in an illuminated area, these regions are close to permanently shadowed volatile rich regions and the analysis of volatiles is a major science objective of the mission. The straw man payload includes provision for a Lunar Volatile and Resources Analysis Package (LVRAP). The authors have been commissioned by ESA to conduct an evaluation of possible technologies to be included in L-VRAP which can be included within the Lander payload. Scientific aims are to demonstrate the

  8. Kinetics of volatile extraction from carbonaceous chondrites: Dehydration of talc

    NASA Technical Reports Server (NTRS)

    Bose, Kunal; Ganguly, Jibamitra

    1991-01-01

    Carbonaceous chondrites are believed to be the primary constituents of near-Earth asteroids and Phobos and Deimos, and are potential resources of fuels that may be exploited for future planetary missions. Calculations of equilibrium phase relations suggest that talc (Ta) and antigorite (Ant) are likely to be the major hydrous phases in the C1 and C2 meteorites (Ganguly and Saxena, 1989), which constitute the most volatile rich classes of carbonaceous chondrites. The dehydration kinetics of talc are studied as a function of temperature, grain size, composition and fluid fugacity, as part of a systematic study of the reaction kinetics of the volatile bearing phases that are either known or likely to be present in carbonaceous chondrites. The dehydration kinetics were investigated at 1 bar, 775 to 875 C by monitoring the in-situ weight loss as a function of time of a natural talc. The talc platelets had a dimension of 0.8 to 1 micron. The run durations varied from 233.3 hours at 775 C (48 percent dehydration) to 20.8 hours at 875 C (80 pct. dehydration). The results can be adequately represented by a given rate equation. Theoretical analysis suggests that the reduction in the concentration of H2O in the environment of dehydrating talc, as would be encountered in processing chondritic materials, will have negligible effect on the rate of dehydration, unless there is a change of reaction mechanism owing to the presence of other volatile species.

  9. Mercury Polar Volatiles: Complex Hydrocarbons vs Water Ice

    NASA Astrophysics Data System (ADS)

    Neumann, G. A.; Mazarico, E.; Zuber, M. T.; Smith, D. E.; Paige, D. A.; Solomon, S. C.; Ernst, C. M.; Barnouin, O. S.; Mao, D.

    2012-12-01

    Radiometric measurements by MLA elucidate the emplacement and sequestration of volatiles on Mercury, repeatedly imaged by Earth-based radar. We have reported [Neumann et al., 2012, LPSC, #2651] the presence of MLA-dark deposits coinciding with many of the radar-bright regions thought to indicate the presence of subsurface ice. Thermal models [Paige et al., 2012, LPSC, #2875] suggest that at certain latitudes, maximum temperatures exceed the regime of stability of surface water ice, but average subsurface temperatures allow its persistence there against sublimation. At the highest latitudes, where radar signatures fill large portions of polar craters, measurements by MLA are at the noise limit for measuring reflectance; however, several profiles have been obtained with useful energy data. We explore the working hypothesis that dark, complex organics (common in asteroids & comets) overly water ice, providing an important constraint on thermal models of polar regions. Repeated profiles are being acquired in the extended mission in order to more clearly delineate the boundaries of volatile deposits. A good sampling of craters over the appropriate latitude range will further constrain the composition of volatiles. We will report on further mapping in the MESSENGER Extended Mission to the coldest north polar regions, where the majority of ices lie.

  10. Microdistillation and analysis of volatiles from eight ornamental Salvia taxa.

    PubMed

    Tabanca, Nurhayat; Demirci, Betul; Turner, Jimmy L; Pounders, Cecil; Demirci, Fatih; Başer, Kemal Hüsnü Can; Wedge, David E

    2010-09-01

    Volatile compounds from seven Salvia species and one interspecific hybrid growing at the Dallas Arboretum and Botanical Garden, Texas, US. Salvia coccinea, S. farinacea, S. greggii, S. leucantha, S. longispicata x farinacea, S. madrensis, S. roemeriana and S. splendens were investigated for their chemical compositions using a microdistillation technique. Volatiles were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). One hundred and twenty seven compounds were identified representing 94.3-99.7% of the oils. The major components in each of the seven species were as follows: S. coccinea (Z)-3-hexenal (31%), viridiflorol (19%); S. farinacea 1-octen-3-ol (30%) and (Z)-3-hexenal (23%); S. greggii 1,8-cineole (22%), borneol (17%), camphene (11%) and alpha-pinene (10%); S. leucantha limonene (35%) and alpha-pinene (17%); S. longispicata x farinacea 1-octen-3-ol (50%) and (Z)-3-hexenal (24%); S. madrensis (Z)-3-hexenal (53%); S. roemeriana limonene (49%) and alpha-pinene (20%); and S. splendens (Z)-3-hexenal (36%), 2,5-dimethoxy-p-cymene (19%) and linalool (11%). The microdistillation method was fast, practical and a useful technique that enabled the isolation of the volatiles in samples when only limited quantities were available. PMID:20923001

  11. Electrochemical generation of volatile form of cadmium and its in situ trapping in a graphite furnace

    NASA Astrophysics Data System (ADS)

    Nováková, Eliška; Rychlovský, Petr; Resslerová, Tina; Hraníček, Jakub; Červený, Václav

    2016-03-01

    This publication describes the combination of flow-through electrochemical generation (EcVG) of cadmium volatile form with its in situ trapping in a graphite furnace atomizer. Three cathode materials (Pt, Pb, and Ti) and four potentially suitable electrolytes (HCl, H2SO4, HCOOH and NaCl) were tested. Automated sampling equipment for the graphite furnace atomizer with an untreated fused silica capillary was used for the introduction of the cadmium volatile form into the iridium-treated graphite furnace. The limit of detection (LOD) of the electrochemical Cd volatile form generation with in situ collection was 1.0 ng ml- 1 (concentration LOD) or 1.5 ng (absolute LOD). The efficiency of the method was estimated and discussed. The effect of selected concomitant ions was evaluated and the accuracy of the proposed method was established by determination of the Cd content in the NIST SRM 1643e certified reference material.

  12. Bacterial volatiles promote growth in Arabidopsis

    PubMed Central

    Ryu, Choong-Min; Farag, Mohamed A.; Hu, Chia-Hui; Reddy, Munagala S.; Wei, Han-Xun; Paré, Paul W.; Kloepper, Joseph W.

    2003-01-01

    Several chemical changes in soil are associated with plant growth-promoting rhizobacteria (PGPR). Some bacterial strains directly regulate plant physiology by mimicking synthesis of plant hormones, whereas others increase mineral and nitrogen availability in the soil as a way to augment growth. Identification of bacterial chemical messengers that trigger growth promotion has been limited in part by the understanding of how plants respond to external stimuli. With an increasing appreciation of how volatile organic compounds signal plants and serve in plant defense, investigations into the role of volatile components in plant–bacterial systems now can follow. Here, we present chemical and plant-growth data showing that some PGPR release a blend of volatile components that promote growth of Arabidopsis thaliana. In particular, the volatile components 2,3-butanediol and acetoin were released exclusively from two bacterial strains that trigger the greatest level of growth promotion. Furthermore, pharmacological applications of 2,3-butanediol enhanced plant growth whereas bacterial mutants blocked in 2,3-butanediol and acetoin synthesis were devoid in this growth-promotion capacity. The demonstration that PGPR strains release different volatile blends and that plant growth is stimulated by differences in these volatile blends establishes an additional function for volatile organic compounds as signaling molecules mediating plant–microbe interactions. PMID:12684534

  13. Enhanced life ion source for germanium and carbon ion implantation

    SciTech Connect

    Hsieh, Tseh-Jen; Colvin, Neil; Kondratenko, Serguei

    2012-11-06

    Germanium and carbon ions represent a significant portion of total ion implantation steps in the process flow. Very often ion source materials that used to produce ions are chemically aggressive, especially at higher temperatures, and result in fast ion source performance degradation and a very limited lifetime [B.S. Freer, et. al., 2002 14th Intl. Conf. on Ion Implantation Technology Proc, IEEE Conf. Proc., p. 420 (2003)]. GeF{sub 4} and CO{sub 2} are commonly used to generate germanium and carbon beams. In the case of GeF{sub 4} controlling the tungsten deposition due to the de-composition of WF{sub 6} (halogen cycle) is critical to ion source life. With CO{sub 2}, the materials oxidation and carbon deposition must be controlled as both will affect cathode thermionic emission and anti-cathode (repeller) efficiencies due to the formation of volatile metal oxides. The improved ion source design Extended Life Source 3 (Eterna ELS3) together with its proprietary co-gas material implementation has demonstrated >300 hours of stable continuous operation when using carbon and germanium ion beams. Optimizing cogas chemistries retard the cathode erosion rate for germanium and carbon minimizes the adverse effects of oxygen when reducing gas is introduced for carbon. The proprietary combination of hardware and co-gas has improved source stability and the results of the hardware and co-gas development are discussed.

  14. Selenium detoxification by volatilization and precipitation in aquatic plants

    SciTech Connect

    Fan, T.W.M.; Higashi, R.M.

    1995-12-31

    The narrow margin of requirement and toxicity for selenium makes it a difficult pollution problem to solve. Selenium bioaccumulation has been a major threat to wildlife in California and is becoming a major concern in the San Francisco Bay/Estuaries. Despite the past efforts in Se nutrition, chemistry, and remediation, its toxicity and detoxification mechanism(s) in wildlife, particularly primary producers, is still unclear, due to a lack of understanding in Se biochemistry. This is becoming a critical issue in assessing Se risk and remediation. To address this gap, the authors have been characterizing Se speciation and its linkage to detoxification mechanism(s) of two indigenous aquatic plants, duckweed (Lemna minor) and a microphyte (Chlorella). Using GT-MS analysis, they found that Chlorella monocultures transformed Se oxyanions into volatile dimethylselenide and dimethyidiselenide and into insoluble So at extremely high Se (up to 750 ppm) concentrations. This alga did not accumulate selenomethionine which is among the most toxic forms of Se to wildlife. Dimethylsulfide was also volatilized, consistent with the hypothesis that dimethylsulfide/dimethylselenide emissions share a similar biochemical pathway. Se-treated Chlorella biomass released dimethylsulfide/dimethylselenide upon alkaline hydrolysis, suggesting the presence of dimethylsulfonium and dimethylselenonium propionates. Dimethylsulfoniumpropionate is known as an osmoprotectant in marine phytoplankton and as a major contributor to global biogenic dimethylsulfide emissions. Dimethylselenoniumpropionate has not been identified previously and may be a byproduct of dimethylsulfoniumpropionate synthesis. The unusual Se tolerance of Chlorella may be due to its ability to volatilize and precipitate Se. Such activities may be utilized for in situ Se bioremediation. Similar investigations with duckweed is underway.

  15. Identification of Major Histocompatibility Complex-Regulated Body Odorants by Statistical Analysis of a Comparative Gas Chromatography/Mass Spectrometry Experiment

    SciTech Connect

    Willse, Alan R.; Belcher, Ann; Preti, George; Wahl, Jon H.; Thresher, Miranda; Yang, Peter; Yamazaki, Kunio; Beauchamp, Gary

    2005-04-15

    Gas chromatography (GC), combined with mass spectrometry (MS) detection, is a powerful analytical technique that can be used to separate, quantify, and identify volatile compounds in complex mixtures. This paper examines the application of GC-MS in a comparative experiment to identify volatiles that differ in concentration between two groups. A complex mixture might comprise several hundred or even thousands of volatile compounds. Because their number and location in a chromatogram generally are unknown, and because components overlap in populous chromatograms, the statistical problems offer significant challenges beyond traditional two-group screening procedures. We describe a statistical procedure to compare two-dimensional GC-MS profiles between groups, which entails (1) signal processing: baseline correction and peak detection in single ion chromatograms; (2) aligning chromatograms in time; (3) normalizing differences in overall signal intensities; and (4) detecting chromatographic regions that differ between groups. Compared to existing approaches, the proposed method is robust to errors made at earlier stages of analysis, such as missed peaks or slightly misaligned chromatograms. To illustrate the method, we identify differences in GC-MS chromatograms of ether-extracted urine collected from two nearly identical inbred groups of mice, to investigate the relationship between odor and genetics of the major histocompatibility complex.

  16. Ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  17. Flower volatiles, crop varieties and bee responses.

    PubMed

    Klatt, Björn K; Burmeister, Carina; Westphal, Catrin; Tscharntke, Teja; von Fragstein, Maximilian; von Fragstein, Maximillian

    2013-01-01

    Pollination contributes to an estimated one third of global food production, through both the improvement of the yield and the quality of crops. Volatile compounds emitted by crop flowers mediate plant-pollinator interactions, but differences between crop varieties are still little explored. We investigated whether the visitation of crop flowers is determined by variety-specific flower volatiles using strawberry varieties (Fragaria x ananassa Duchesne) and how this affects the pollination services of the wild bee Osmia bicornis L. Flower volatile compounds of three strawberry varieties were measured via headspace collection. Gas chromatography showed that the three strawberry varieties produced the same volatile compounds but with quantitative differences of the total amount of volatiles and between distinct compounds. Electroantennographic recordings showed that inexperienced females of Osmia bicornis had higher antennal responses to all volatile compounds than to controls of air and paraffin oil, however responses differed between compounds. The variety Sonata was found to emit a total higher level of volatiles and also higher levels of most of the compounds that evoked antennal responses compared with the other varieties Honeoye and Darselect. Sonata also received more flower visits from Osmia bicornis females under field conditions, compared with Honeoye. Our results suggest that differences in the emission of flower volatile compounds among strawberry varieties mediate their attractiveness to females of Osmia bicornis. Since quality and quantity of marketable fruits depend on optimal pollination, a better understanding of the role of flower volatiles in crop production is required and should be considered more closely in crop-variety breeding. PMID:23977347

  18. Measurement of non-volatile particle number size distribution

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.

    2015-06-01

    An experimental methodology was developed to measure the non-volatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a non-volatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol, OA (40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a non-volatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon (BC) with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type

  19. Magmatic volatiles in explosive rhyolitic eruptions

    SciTech Connect

    Eichelberger, J.C.; Westrich, H.R.

    1981-07-01

    Obsidian clasts in rhyolitic tephra deposits preserve preeruption magmatic volatile contents, providing a direct means for determining the volatile content of explosively erupted magmas. Small to moderate volume Plinian eruptions (10/sup -3/ to 10/sup -1/ km/sup 3/) appear to be driven by 0.5--1.0 wt.% volatiles, consisting dominantly of H/sub 2/O with minor CO/sub 2/. Analysis of obsidian from eruptive sequences consisting of tephra and flows indicates that this hydrous magma abruptly overlies magma with only 0.1--0.2 wt.% H/sub 2/O.

  20. Securing non-volatile memory regions

    SciTech Connect

    Faraboschi, Paolo; Ranganathan, Parthasarathy; Muralimanohar, Naveen

    2013-08-20

    Methods, apparatus and articles of manufacture to secure non-volatile memory regions are disclosed. An example method disclosed herein comprises associating a first key pair and a second key pair different than the first key pair with a process, using the first key pair to secure a first region of a non-volatile memory for the process, and using the second key pair to secure a second region of the non-volatile memory for the same process, the second region being different than the first region.

  1. Malaria Parasites Produce Volatile Mosquito Attractants

    PubMed Central

    Kelly, Megan; Su, Chih-Ying; Schaber, Chad; Crowley, Jan R.; Hsu, Fong-Fu; Carlson, John R.

    2015-01-01

    ABSTRACT The malaria parasite Plasmodium falciparum contains a nonphotosynthetic plastid organelle that possesses plant-like metabolic pathways. Plants use the plastidial isoprenoid biosynthesis pathway to produce volatile odorants, known as terpenes. In this work, we describe the volatile chemical profile of cultured malaria parasites. Among the identified compounds are several plant-like terpenes and terpene derivatives, including known mosquito attractants. We establish the molecular identity of the odorant receptors of the malaria mosquito vector Anopheles gambiae, which responds to these compounds. The malaria parasite produces volatile signals that are recognized by mosquitoes and may thereby mediate host attraction and facilitate transmission. PMID:25805727

  2. Concentrations of Volatiles in the Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Taylor, Jeff; Taylor, Larry; Duke, Mike

    2007-01-01

    To set lower and upper limits on the overall amounts and types of volatiles released during heating of polar regolith, we examined the data for equatorial lunar regolith and for the compositions of comets. The purpose, specifically, was to answer these questions: 1. Upper/Lower limits and 'best guess' for total amount of volatiles (by weight %) released from lunar regolith up to 150C 2. Upper/Lower limit and 'best guess' for composition of the volatiles released from the lunar regolith by weight %

  3. Modelling of volatility in monetary transmission mechanism

    SciTech Connect

    Dobešová, Anna; Klepáč, Václav; Kolman, Pavel; Bednářová, Petra

    2015-03-10

    The aim of this paper is to compare different approaches to modeling of volatility in monetary transmission mechanism. For this purpose we built time-varying parameter VAR (TVP-VAR) model with stochastic volatility and VAR-DCC-GARCH model with conditional variance. The data from three European countries are included in the analysis: the Czech Republic, Germany and Slovakia. Results show that VAR-DCC-GARCH system captures higher volatility of observed variables but main trends and detected breaks are generally identical in both approaches.

  4. Isidis basin - Site of ancient volatile-rich debris layer

    NASA Technical Reports Server (NTRS)

    Grizzaffi, Patricia; Schultz, Peter H.

    1989-01-01

    The differentiation of the Martian Isidis impact basin's interior plains into hillocky terrains with isolated mounds arranged in arctuate chains, and ridged terrains with systems of parallel curvilinear ridges, is presently suggested to reflect the deposition and subsequent removal of a thick layer of material within the basin. The process of terrestrial ice-cover dissintegration, which yields such landforms as moraines, kames, and eskers, furnishes a possible analog to the Isidis features; Viking orbiter images show Martian ridges with similar characteristics, suggesting that the Isidis layer may have been only part of a more general deposition period that coincided with one of major outflow channel formation involving the release of subsurface volatiles.

  5. Isidis basin - Site of ancient volatile-rich debris layer

    NASA Astrophysics Data System (ADS)

    Grizzaffi, P.; Schultz, P. H.

    1989-02-01

    The differentiation of the Martian Isidis impact basin's interior plains into hillocky terrains with isolated mounds arranged in arctuate chains, and ridged terrains with systems of parallel curvilinear ridges, is presently suggested to reflect the deposition and subsequent removal of a thick layer of material within the basin. The process of terrestrial ice-cover dissintegration, which yields such landforms as moraines, kames, and eskers, furnishes a possible analog to the Isidis features; Viking orbiter images show Martian ridges with similar characteristics, suggesting that the Isidis layer may have been only part of a more general deposition period that coincided with one of major outflow channel formation involving the release of subsurface volatiles.

  6. Outgassing and degradation of polyimide induced by swift heavy ion irradiation at cryogenic temperature

    SciTech Connect

    Severin, D.; Balanzat, E.; Ensinger, W.; Trautmann, C.

    2010-07-15

    Polyimide foils were irradiated with energetic Kr (740 MeV) and Pb (890 MeV) ions at cryogenic temperature (12 K). Beam-induced degradation processes were monitored by residual gas analysis and online infrared spectroscopy. The outgassing components observed at low irradiation temperatures differ in quantity but are similar in mass distribution to those identified at room temperature exposure. Besides CO as major volatile fragment, a significant contribution of short hydrocarbons like C{sub 2}H{sub x} is released. In situ infrared spectroscopy indicates accumulation of CO and CO{sub 2} molecules at 12 K in the foils. During heat-up cycles, most of these frozen gases become mobile and outgas at a temperature between 35 and 55 K. The study is motivated by the application of polyimide foils as insulating material in high radiation environment of the future accelerator facility for antiproton and ion research (FAIR).

  7. Rhythmic emission of floral volatiles from Rosa damascena semperflorens cv. 'Quatre Saisons'.

    PubMed

    Picone, Joanne M; Clery, Robin A; Watanabe, Naoharu; MacTavish, Hazel S; Turnbull, Colin G N

    2004-07-01

    The control of rhythmic emission of floral volatiles emitted from Rosa damascena semperflorens cv. 'Quatre Saisons' throughout floral development under various light regimes was studied. 2-Phenylethanol was the major volatile emitted in addition to monoterpenols, oxidised monoterpenols, monoterpenes and aromatic compounds. All detected volatiles were emitted rhythmically, with maximum peaks coinciding 8-10 h into a 12-h photoperiod. For some compounds a secondary, nocturnal peak was apparent. The primary and secondary maxima both occurred at approximately 24-h intervals. Rhythms appeared to be regulated endogenously: rhythmic emission continued upon exposure to continuous light or continuous darkness, and a phase shift in emission was induced upon inversion of the photoperiod. Additionally, emission continued after flower excision. A similar profile of free volatiles was stored within the floral tissue, together with glycosidic forms of 2-phenylethanol (>99% beta-D-glucoside), benzyl alcohol, citronellol and geraniol. Regression analysis indicated a significant decrease in glycosylated 2-phenylethanol through the photoperiod. These results suggest that glycosylated volatiles stored within petals may be a source of rhythmically emitted volatiles. PMID:15054660

  8. Mechanisms of volatile production from sulfur-containing amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Uk Ahn, Dong; Joo Lee, Eun; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Sulfur-containing amino acids were used to study the mechanisms of off-odor production in meat by irradiation. Irradiation not only increased the amounts of volatiles but also produced many new volatiles from sulfur-containing amino acid monomers. We speculate that the majority of the volatiles were the direct radiolytic products of the side chains, but Strecker degradation as well as deamination and decarboxylation of radiolytic products were also involved in the production of volatile compounds from sulfur amino acids. The volatile compounds produced in amino acids were not only the primary products of irradiation, but also the products of secondary chemical reactions after the primary compounds were produced. Cysteine and methionine produced odor characteristics similar to that of the irradiated meat, but the amounts of sulfur volatiles from methionine were far greater than that of cysteine. Although the present study was carried out using an amino acid model system, the information can be applied to the quality indexes of irradiated meats as well as other food products.

  9. Volatile Anesthetics and AKI: Risks, Mechanisms, and a Potential Therapeutic Window

    PubMed Central

    Fukazawa, Kyota

    2014-01-01

    AKI is a major clinical problem with extremely high mortality and morbidity. Kidney hypoxia or ischemia-reperfusion injury inevitably occurs during surgery involving renal or aortic vascular occlusion and is one of the leading causes of perioperative AKI. Despite the growing incidence and tremendous clinical and financial burden of AKI, there is currently no effective therapy for this condition. The pathophysiology of AKI is orchestrated by renal tubular and endothelial cell necrosis and apoptosis, leukocyte infiltration, and the production and release of proinflammatory cytokines and reactive oxygen species. Effective management strategies require multimodal inhibition of these injury processes. Despite the past theoretical concerns about the nephrotoxic effects of several clinically utilized volatile anesthetics, recent studies suggest that modern halogenated volatile anesthetics induce potent anti-inflammatory, antinecrotic, and antiapoptotic effects that protect against ischemic AKI. Therefore, the renal protective properties of volatile anesthetics may provide clinically useful therapeutic intervention to treat and/or prevent perioperative AKI. In this review, we outline the history of volatile anesthetics and their effect on kidney function, briefly review the studies on volatile anesthetic-induced renal protection, and summarize the basic cellular mechanisms of volatile anesthetic-mediated protection against ischemic AKI. PMID:24511126

  10. SOA Precursors: A Comparison of Semi-Volatile and Water Soluble Organic Gases During SOAS

    NASA Astrophysics Data System (ADS)

    Carlton, A. M. G.; Sareen, N.; Turpin, B. J.

    2014-12-01

    It is well-established that a major pathway for secondary organic aerosol (SOA) formation is via the partitioning of semi-volatile products of gas-phase photochemical reactions into preexisting organic particulate matter. Semi-volatile partitioning theory is widely used while modeling SOA. Despite its significance, parameterizations based solely on this formation pathway are unable to reproduce trends in SOA mass, particularly high atmospheric O/C ratios and enrichment of organic aerosol aloft. Recent studies have also highlighted the importance of formation of SOA through reactions of water-soluble organic gases (WSOG) in atmospheric waters (clouds, fogs, and wet aerosols). In order to understand the relative magnitude of potential precursors to SOA via both formation pathways, we modeled semi-volatile and WSOG concentrations during the Secondary Organic and Aerosol Study (SOAS) conducted in Brent, Alabama during June-July 2013. CMAQ 5.0.1 is used to predict mixing ratios of semi-volatile gases and WSOG over the continental US for a 10 day time period during SOAS. Our modeling results indicate that WSOG concentrations are an order of magnitude greater, on average, than the sum of semi-volatile gases. Interestingly, concentrations of semi-volatile gases increase aloft, unlike concentrations of WSOG. These results suggest that the potential for SOA formation from WSOG was high, and provide support for efforts to accurately model that multiphase chemistry in order to develop more effective air quality management strategies.

  11. Prediction of stream volatilization coefficients

    USGS Publications Warehouse

    Rathbun, Ronald E.

    1990-01-01

    Equations are developed for predicting the liquid-film and gas-film reference-substance parameters for quantifying volatilization of organic solutes from streams. Molecular weight and molecular-diffusion coefficients of the solute are used as correlating parameters. Equations for predicting molecular-diffusion coefficients of organic solutes in water and air are developed, with molecular weight and molal volume as parameters. Mean absolute errors of prediction for diffusion coefficients in water are 9.97% for the molecular-weight equation, 6.45% for the molal-volume equation. The mean absolute error for the diffusion coefficient in air is 5.79% for the molal-volume equation. Molecular weight is not a satisfactory correlating parameter for diffusion in air because two equations are necessary to describe the values in the data set. The best predictive equation for the liquid-film reference-substance parameter has a mean absolute error of 5.74%, with molal volume as the correlating parameter. The best equation for the gas-film parameter has a mean absolute error of 7.80%, with molecular weight as the correlating parameter.

  12. Investigation of the volatile constituents of different Gynura species from two Chinese origins by SPME/GC-MS.

    PubMed

    Chen, Jian; Adams, An; Mangelinckx, Sven; Ren, Bing-Ru; Li, Wei-lin; Wang, Zheng-tao; De Kimpe, Norbert

    2012-05-01

    GC-MS analyses of the volatile constituents obtained by solid phase microextraction (SPME) of two Gynura species, i.e., G. divaricata and G. bicolor, collected from Nanjing and Nanping areas in the east of China, enabled the identification of more than 50 different components. Generally, a higher contents of sesquiterpene compounds such as beta-caryophyllene, alpha-caryophyllene and alpha-copaene were found in G. bicolor than in G. divaricata, regardless of their origin. Qualitatively, the detected major volatiles of G. bicolor and G. divaricata originating from Nanjing were the same, i.e., beta-caryophyllene, alpha-caryophyllene, alpha-copaene, alpha-pinene and beta-pinene. The volatile profile of a third species, G. medica, also originating from Nanjing was different with sesquiterpenes gamma-cadinene, beta-caryophyllene, elixene and monoterpene limonene as the major components. The volatile profiles of G. bicolor and G. divaricata originating from Nanping were more diverse. For both species beta-caryophyllene, alpha-copaene and limonene were the major volatiles, but G. bicolor also produced gamma-caryophyllene and carvone as major constituents, whereas for G. divariata o-cymene was detected. Overall, these results indicate that the biosynthesis of volatiles by Gynura species is not only species related, but is also possibly influenced by the local environmental conditions of growth. PMID:22799100

  13. Influence of sporophore development, damage, storage, and tissue specificity on the enzymic formation of volatiles in mushrooms (Agaricus bisporus).

    PubMed

    Combet, Emilie; Henderson, Janey; Eastwood, Daniel C; Burton, Kerry S

    2009-05-13

    The enzymic oxidation of the polyunsaturated fatty acid-linoleic acid leads, in fungi, to the formation of a unique class of nonconjugated hydroperoxides, which are cleaved to form eight-carbon volatiles characteristic of mushroom and fungal flavor. However, the enzymes involved in this biosynthetic pathway, the bioavailability of the fatty acid substrate, and the occurrence of the reaction products (hydroperoxides and eight-carbon volatiles) are not fully understood. This study investigated the lipids, fatty acids, and hydroperoxide levels, as well as eight-carbon volatile variations in the fungal model Agaricus bisporus, according to four parameters: sporophore development, postharvest storage, tissue type, and damage. Eight-carbon volatiles were measured using solid phase microextraction and gas chromatography-mass spectrometry. Tissue disruption had a major impact on the volatile profile, both qualitatively and quantitatively; 3-octanone was identified as the main eight-carbon volatile in whole and sliced sporophore, an observation overlooked in previous studies due to the use of tissue disruption and solvent extraction for analysis. Fatty acid oxidation and eight-carbon volatile emissions decreased with sporophore development and storage, and differed according to tissue type. The release of 1-octen-3-ol and 3-octanone by incubation of sporophore tissue homogenate with free linoleic acid was inhibited by acetylsalicylic acid, providing evidence for the involvement of a heme-dioxygenase in eight-carbon volatile production. PMID:19326947

  14. Correction for volatile fractionation in ascending magmas: noble gas abundances in primary mantle melts

    NASA Astrophysics Data System (ADS)

    Burnard, Pete

    2001-09-01

    Accurate relative noble gas abundances of mantle-derived melts are required in order to further understand the distribution of noble gases in the mantle and fractionation of noble gases during the melting process. Noble gas relative abundances in the majority of oceanic basalts are highly fractionated, at least in part due to late stage, solubility controlled fractionation. Noble gas concentrations in the volatile phase (≡ noble gas:CO 2 ratio) will vary systematically during solubility controlled degassing of a magma. This contribution models the noble gas concentrations in the volatile phase during degassing at different pressures and vesicularities in order to develop a method for correcting fractionation resulting from magmatic degassing, and thereby estimate the "initial" (pre-degassing) noble gas compositions. Correcting for fractionation during magmatic degassing requires: a) a method for determining the volatile fractionation trajectory during degassing; and b) one well constrained mantle volatile composition with which to "fix" the extrapolation. The trajectory of volatile fractionation can be estimated by sequential crushing of basaltic glasses. Vesicles grow during ascent, therefore large vesicles trap early (less fractionated) volatiles while small vesicles trap late (fractionated) volatiles. Sequential crushing of basaltic glasses releases volatiles from progressively smaller vesicles, thereby allowing the fractionation trajectory resulting from degassing to be determined on individual samples. The production rate of both 21Ne and 4He in the mantle is a function of U concentration only, resulting in a constant 21Ne/ 4He production ratio in the mantle which can be used to "fix" the degassing fractionation trajectory determined by sequential crushing. This correction then allows fractionation of 4He from 40Ar prior to degassing to be assessed. This method is illustrated using multiple crushes of a single basaltic glass from the mid-Atlantic Ridge that

  15. Reduction of volatile acidity of acidic wines by immobilized Saccharomyces cerevisiae cells.

    PubMed

    Vilela, A; Schuller, D; Mendes-Faia, A; Côrte-Real, M

    2013-06-01

    Excessive volatile acidity in wines is a major problem and is still prevalent because available solutions are nevertheless unsatisfactory, namely, blending the filter-sterilized acidic wine with other wines of lower volatile acidity or using reverse osmosis. We have previously explored the use of an empirical biological deacidification procedure to lower the acetic acid content of wines. This winemaker's enological practice, which consists in refermentation associated with acetic acid consumption by yeasts, is performed by mixing the acidic wine with freshly crushed grapes, musts, or marc from a finished wine fermentation. We have shown that the commercial strain Saccharomyces cerevisiae S26 is able to decrease the volatile acidity of acidic wines with a volatile acidity higher than 1.44 g L(-1) acetic acid, with no detrimental impact on wine aroma. In this study, we aimed to optimize the immobilization of S26 cells in alginate beads for the bioreduction of volatile acidity of acidic wines. We found that S26 cells immobilized in double-layer alginate-chitosan beads could reduce the volatile acidity of an acidic wine (1.1 g L(-1) acetic acid, 12.5 % (v/v) ethanol, pH 3.12) by 28 and 62 % within 72 and 168 h, respectively, associated with a slight decrease in ethanol concentration (0.7 %). Similar volatile acidity removal efficiencies were obtained in medium with high glucose concentration (20 % w/v), indicating that this process may also be useful in the deacidification of grape musts. We, therefore, show that immobilized S. cerevisiae S26 cells in double-layer beads are an efficient alternative to improve the quality of wines with excessive volatile acidity. PMID:23361840

  16. Volatile Growth Inhibitors Produced by Aromatic Shrubs.

    PubMed

    Muller, C H; Muller, W H; Haines, B L

    1964-01-31

    Root growth of Cucumis and Avena seedlings is inhibited by volatile materials produced by leaves of Salvia leucophylla, S. apiana, and Artemisia californica. The toxic substance may be deposited when dew condenses on affected seedlings in the field. PMID:17833745

  17. Microwave spectra of some volatile organic compounds

    NASA Technical Reports Server (NTRS)

    White, W. F.

    1975-01-01

    A computer-controlled microwave (MRR) spectrometer was used to catalog reference spectra for chemical analysis. Tables of absorption frequency, peak absorption intensity, and integrated intensity are included for 26 volatile organic compounds, all but one of which contain oxygen.

  18. Volatile Solvent Use among Western Australian Adolescents.

    ERIC Educational Resources Information Center

    Carroll, Annemaree; Houghton, Stephen; Odgers, Peta

    1998-01-01

    Semistructured interviews were conducted with 40 adolescents who reported inhaling volatile solvents. All were aware of the short-term health risks involved in use, and most reported experiencing ill effects. Offers suggestions for intervention. (Author/GCP)

  19. TOXIC ORGANIC VOLATILIZATION FROM LAND TREATMENT SYSTEMS

    EPA Science Inventory

    Methodology was evaluated for estimating volatilization of toxic organic chemicals from unsaturated soils. Projections were compared with laboratory data for simulated rapid infiltration wastewater treatment systems receiving primary municipal wastewater spiked with a suite of 18...

  20. Reactive flash volatilization of fluid fuels

    DOEpatents

    Schmidt, Lanny D.; Dauenhauer, Paul J.; Dreyer, Bradon J.; Salge, James R.

    2013-01-08

    The invention provides methods for the production of synthesis gas. More particularly, various embodiments of the invention relate to systems and methods for volatilizing fluid fuel to produce synthesis gas by using a metal catalyst on a solid support matrix.

  1. VOLATILE ORGANIC COMPOUNDS AS EXPOSURE BIOMARKERS

    EPA Science Inventory

    Alveolar breath sampling and analysis can be extremely useful in exposure assessment studies involving volatile organic compounds (VOCs). Over recent years scientists from the US Environmental Protection Agency's National Exposure Research Laboratory have developed and refined...

  2. Release of volatile mercury from vascular plants

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Puerner, N. J.; Speitel, T. W.

    1974-01-01

    Volatile, organic solvent soluble mercury has been found in leaves and seeds of several angiosperms. Leaves of garlic vine, avocado, and haole-koa release mercury in volatile form rapidly at room temperature. In garlic vine, the most active release is temperature dependent, but does not parallel the vapor-pressure temperature relationship for mercury. Mercury can be trapped in nitric-perchloric acid digestion fluid, or n-hexane, but is lost from the hexane unless the acid mixture is present. Seeds of haole-koa also contain extractable mercury but volatility declines in the series n-hexane (90%), methanol (50%), water (10%). This suggests that reduced volatility may accompany solvolysis in the more polar media.

  3. Stable Local Volatility Calibration Using Kernel Splines

    NASA Astrophysics Data System (ADS)

    Coleman, Thomas F.; Li, Yuying; Wang, Cheng

    2010-09-01

    We propose an optimization formulation using L1 norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances the calibration accuracy with the model complexity. Motivated by the support vector machine learning, the unknown local volatility function is represented by a kernel function generating splines and the model complexity is controlled by minimizing the 1-norm of the kernel coefficient vector. In the context of the support vector regression for function estimation based on a finite set of observations, this corresponds to minimizing the number of support vectors for predictability. We illustrate the ability of the proposed approach to reconstruct the local volatility function in a synthetic market. In addition, based on S&P 500 market index option data, we demonstrate that the calibrated local volatility surface is simple and resembles the observed implied volatility surface in shape. Stability is illustrated by calibrating local volatility functions using market option data from different dates.

  4. Long-memory volatility in derivative hedging

    NASA Astrophysics Data System (ADS)

    Tan, Abby

    2006-10-01

    The aim of this work is to take into account the effects of long memory in volatility on derivative hedging. This idea is an extension of the work by Fedotov and Tan [Stochastic long memory process in option pricing, Int. J. Theor. Appl. Finance 8 (2005) 381-392] where they incorporate long-memory stochastic volatility in option pricing and derive pricing bands for option values. The starting point is the stochastic Black-Scholes hedging strategy which involves volatility with a long-range dependence. The stochastic hedging strategy is the sum of its deterministic term that is classical Black-Scholes hedging strategy with a constant volatility and a random deviation term which describes the risk arising from the random volatility. Using the fact that stock price and volatility fluctuate on different time scales, we derive an asymptotic equation for this deviation in terms of the Green's function and the fractional Brownian motion. The solution to this equation allows us to find hedging confidence intervals.

  5. Attraction of the gypsy moth to volatile organic compounds (VOCs) of damaged Dahurian larch.

    PubMed

    Li, Jing; Valimaki, Sanna; Shi, Juan; Zong, Shixiang; Luo, Youqing; Heliovaara, Kari

    2012-01-01

    Olfactory responses of the gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae), a major defoliator of deciduous trees, were examined in Inner Mongolia, China. We studied whether the gypsy moth adults are attracted by the major volatile organic compounds (VOCs) of damaged Larix gmelinii (Dahurian larch) foliage and compared the attractiveness of the plant volatiles with that of the synthetic sex pheromone. Our results indicated that the VOCs of the Dahurian larch were effective in attracting gypsy moth males especially during the peak flight period. The VOCs also attracted moths significantly better than the sex pheromone of the moth. Our study is the first trial to show the responses of adult gypsy moths to volatile compounds emitted from a host plant. Electroantennogram responses of L. gmelinii volatiles on gypsy moths supported our field observations. A synergistic effect between host plant volatiles and sex pheromone was also obvious, and both can be jointly applied as a new attractant method or population management strategy of the gypsy moth. PMID:23016284

  6. [Extraction and determination of volatile constituents in leaves of Eucalyptus citriodora].

    PubMed

    Tian, Yuhong; Liu, Xiongmin; Zhou, Yonghong; Guo, Zhanjing

    2005-11-01

    The volatile constituents in leaves of Eucalyptus citriodora, including oil fraction and water-soluble fraction, were extracted and determined. Oil fraction of volatile components was obtained through steam distillation. Ether was used as the solvent to extract the water-soluble fraction of volatile compounds from the liquid left after steam distillation in order to know the quantity and constituents of volatile compounds dissolved in the water phase. The oil yield in the oil fraction was 1.36%, and the oil yield in the water-soluble fraction was 0.48% (both on fresh weight basis). Both oil fraction and water-soluble fraction were analyzed by gas chromatography-mass spectrometry (GC-MS) method. The results showed that 37 compounds (97.36%) in the oil fraction and 10 compounds (82.05%) in the water-soluble fraction were identified. There were 12 hydrocarbon compounds and 25 oxygenated compounds identified in oil fraction. The major constituents in oil fraction were citronellal (57.00%), followed by citronellol (15.89%) and citronellyl acetate (15.33%). Alcohols dominated the compounds in water-soluble fraction. cis-p-Menthane-3, 8-diol (53.43%) and trans-p-menthane-3, 8-diol (16. 48%) were found to be the major compounds, which have the activity to repel insects. It is concluded that the comprehensive utilization value of leaves of Eucalyptus citriodora was enhanced owing to the extraction of water-soluble volatile components. PMID:16498999

  7. Effect of γ-irradiation on volatile compounds of dried Welsh onion ( Allium fistulosum L.)

    NASA Astrophysics Data System (ADS)

    Gyawali, Rajendra; Seo, Hye-Young; Lee, Hyun-Ju; Song, Hyun-Pa; Kim, Dong-Ho; Byun, Myung-Woo; Kim, Kyong-Su

    2006-02-01

    The volatile compounds of γ-irradiated dried Welsh onion were isolated by simultaneous distillation-extraction (SDE) technique and then analyzed by gas chromatography-mass spectrometry (GC-MS) along with their non-irradiated counterparts. A total of 35 volatile compounds were identified in non-irradiated and 1 kGy irradiated samples and 36 volatile compounds were identified in 3, 5, 10 and 20 kGy irradiated samples so far belong to chemical classes of acid, alcohol, aldehyde, ester, furan, ketone and S-containing compound. S-containing compounds were detected as major volatile compounds of all experimental samples. Though the content of several compounds was increased after irradiation, content of major S-containing compounds was found to decreased in the process. Application of high-dose irradiation if required for microbial decontamination of dried Welsh onion is feasible as it enhanced the total concentration of volatile compounds by 31.60% and 24.85% at 10 and 20 kGy, respectively.

  8. Semi-volatile secondary organic aerosol in urban atmospheres: meeting a measurement challenge

    NASA Astrophysics Data System (ADS)

    Eatough, Delbert J.; Long, Russell W.; Modey, William K.; Eatough, Norman L.

    Ammonium nitrate and semi-volatile organic compounds are significant components of fine particles in urban atmospheres. These components, however, are not properly determined with current US EPA accepted methods such as the PM 2.5 FRM or other single filter samplers due to significant losses of semi-volatile material (SVM) from particles collected on the filter during sampling. Continuous PM 2.5 mass measurements are attempted using methods such as the R&P TEOM monitor. This method, however, heats the sample to remove particle-bound water which also results in evaporation of SVM. Research at Brigham Young University has resulted in samplers for both the integrated and continuous measurement of total PM 2.5, including the SVM. The PC-BOSS is a charcoal diffusion denuder based sampler for the determination of fine particulate chemical composition including the semi-volatile organic material. The RAMS is a modified TEOM monitor which includes diffusion denuders and Nafion dryers to remove gas phase material which can be absorbed by a charcoal sorbent filter. The RAMS then uses a "sandwich filter" consisting of a conventional particle collecting Teflon coated TX40 filter, followed by an activated charcoal sorbent filter which retains any semi-volatile ammonium nitrate or organic material lost from the particles collected on the TEOM monitor Teflon coated filter, thus allowing for determination of total PM 2.5 mass including the SVM. Recent research conducted by Brigham Young University using these two samplers has indicated the following about semi-volatile organic aerosol: The majority of semi-volatile fine particulate organic material is secondary organic aerosol. This semi-volatile organic aerosol is not retained on the heated filter of a regular TEOM monitor and hence is not measured by this sampling technique. In addition, secondary ammonium nitrate is also lost. Much of the semi-volatile organic aerosol is also lost during sampling from single filter samplers

  9. Volatile Emissions from Compressed Tissue

    PubMed Central

    Dini, Francesca; Capuano, Rosamaria; Strand, Tillan; Ek, Anna-Christina; Lindgren, Margareta; Paolesse, Roberto; Di Natale, Corrado; Lundström, Ingemar

    2013-01-01

    Since almost every fifth patient treated in hospital care develops pressure ulcers, early identification of risk is important. A non-invasive method for the elucidation of endogenous biomarkers related to pressure ulcers could be an excellent tool for this purpose. We therefore found it of interest to determine if there is a difference in the emissions of volatiles from compressed and uncompressed tissue. The ultimate goal is to find a non-invasive method to obtain an early warning for the risk of developing pressure ulcers for bed-ridden persons. Chemical analysis of the emissions, collected in compresses, was made with gas-chromatography – mass spectrometry and with a chemical sensor array, the so called electronic nose. It was found that the emissions from healthy and hospitalized persons differed significantly irrespective of the site. Within each group there was a clear difference between the compressed and uncompressed site. Peaks that could be certainly deemed as markers of the compression were, however, not identified. Nonetheless, different compounds connected to the application of local mechanical pressure were found. The results obtained with GC-MS reveal the complexity of VOC composition, thus an array of non-selective chemical sensors seems to be a suitable choice for the analysis of skin emission from compressed tissues; it may represent a practical instrument for bed side diagnostics. Results show that the adopted electronic noses are likely sensitive to the total amount of the emission rather than to its composition. The development of a gas sensor-based device requires then the design of sensor receptors adequate to detect the VOCs bouquet typical of pressure. This preliminary experiment evidences the necessity of studies where each given person is followed for a long time in a ward in order to detect the insurgence of specific VOCs pattern changes signalling the occurrence of ulcers. PMID:23874929

  10. On the chemistry of mantle and magmatic volatiles on Mercury

    NASA Astrophysics Data System (ADS)

    Zolotov, Mikhail Yu.

    2011-03-01

    The surface of Mercury contains ancient volcanic features and signs of pyroclastic activity related to unknown magmatic volatiles. Here, the nature of possible magmatic volatiles (H, S, C, Cl, and N) is discussed in the contexts of formation and evolution of the planet, composition and redox state of its mantle, solubility in silicate melts, chemical mechanisms of magma degassing, and thermochemical equilibria in magma and volcanic gases. The low-FeO content in surface materials (<6 wt%) evaluated with remote sensing methods corresponds to less than 2.3 fO2 log units below the iron-wüstite buffer. These redox conditions imply restricted involvement of hydrous species in nebular and accretion processes, and a limited loss of S, Cl, and N during formation and evolution of the planet. Reduced conditions correspond to high solubilities of these elements in magma and do not favor degassing. Major degassing and pyroclastic activity would require oxidation of melts in near-surface conditions. Low-pressure oxidation of graphite in moderately oxidized magmas causes formation of low-solubility CO. Decompression of reduced N-saturated melts involves oxidation of nitride melt complexes and could cause N2 degassing. Putative assimilation of oxide (FeO, TiO2, and SiO2) rich rocks in magma chambers could have caused major degassing through oxidation of graphite and S-, Cl- and N-bearing melt complexes. However, crustal rocks may never have been oxidized, and sulfides, graphite, chlorides, and nitrides could remain in crystallized rocks. Chemical equilibrium models show that N2, CO, S2, CS2, S2Cl, Cl, Cl2, and COS could be among the most abundant volcanic gases on Mercury. Though, these speciation models are restricted by uncertain redox conditions, unknown volatile content in magma, and the adopted chemical degassing mechanism.

  11. Yellow Starthistle (Centaurea solstitialis) volatile composition under elevated temperature and CO2 in the field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change is already occurring and may affect biogenic volatile organic compounds (VOCs) involved in plant communication. Whether climate change will promote expansion of invasive species is still unclear. Centaurea solstitialis (yellow starthistle) is a major invasive weed in western No...

  12. VOLATILE ORGANIC COMPOUNDS AND ISOPRENE OXIDATION PRODUCTS AT A TEMPERATE DECIDUOUS FOREST SITE

    EPA Science Inventory

    Biogenic volatile compounds (BVOCs) and their role in atmospheric oxidant formation were investigated at a forest site near Oak Ridge, Tennessee, as part of the Nashville Southern Oxidants Study (SOS) in July 1995. Of 98 VOCs detected, a major fraction were anthropogenic VOCs suc...

  13. Alcohol, volatile fatty acid, phenol, and methane emissions from dairy cows and fresh manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are approximately 2.5 million dairy cows in California. Emission inventories list dairy cows and their waste as the major source of regional air pollutants, but data on their actual emissions remain sparse, particularly for smog-forming volatile organic compounds (VOC) and greenhouse gases (GH...

  14. Proton Transfer Rate Coefficient Measurements of Selected Volatile Organic Molecules

    NASA Astrophysics Data System (ADS)

    Brooke, G.; Popović, S.; Vušković, L.

    2002-05-01

    We have developed an apparatus based on the selected ion flow tube (SIFT)footnote D. Smith and N.G. Adams, Ads. At. Mol. Phys. 24, 1 (1987). that allows the study of proton transfer between various positive ions and volatile organic molecules. Reactions in the flow tube occur at pressures of approximately 300 mTorr, eliminating the requirement of thermal beam production. The proton donor molecule H_3O^+ has been produced using several types of electrical discharges in water vapor, such as a capacitively coupled RF discharge and a DC hollow cathode discharge. Presently we are developing an Asmussen-type microwave cavity discharge using the components of a standard microwave oven that has the advantages of simple design and operation, as well as low cost. We will be presenting the results of the microwave cavity ion source to produce H_3O^+, and compare it to the other studied sources. In addition, we will be presenting a preliminary measurement of the proton transfer rate coefficient in the reaction of H_3O^+ with acetone and methanol.

  15. A Model Membrane Protein for Binding Volatile Anesthetics

    PubMed Central

    Ye, Shixin; Strzalka, Joseph; Churbanova, Inna Y.; Zheng, Songyan; Johansson, Jonas S.; Blasie, J. Kent

    2004-01-01

    Earlier work demonstrated that a water-soluble four-helix bundle protein designed with a cavity in its nonpolar core is capable of binding the volatile anesthetic halothane with near-physiological affinity (0.7 mM Kd). To create a more relevant, model membrane protein receptor for studying the physicochemical specificity of anesthetic binding, we have synthesized a new protein that builds on the anesthetic-binding, hydrophilic four-helix bundle and incorporates a hydrophobic domain capable of ion-channel activity, resulting in an amphiphilic four-helix bundle that forms stable monolayers at the air/water interface. The affinity of the cavity within the core of the bundle for volatile anesthetic binding is decreased by a factor of 4–3.1 mM Kd as compared to its water-soluble counterpart. Nevertheless, the absence of the cavity within the otherwise identical amphiphilic peptide significantly decreases its affinity for halothane similar to its water-soluble counterpart. Specular x-ray reflectivity shows that the amphiphilic protein orients vectorially in Langmuir monolayers at higher surface pressure with its long axis perpendicular to the interface, and that it possesses a length consistent with its design. This provides a successful starting template for probing the nature of the anesthetic-peptide interaction, as well as a potential model system in structure/function correlation for understanding the anesthetic binding mechanism. PMID:15465862

  16. Modeling the Stability of Volatile Deposits in Lunar Cold Traps

    NASA Technical Reports Server (NTRS)

    Crider, D. H.; Vondrak, R. R.

    2002-01-01

    There are several mechanisms acting at the cold traps that can alter the inventory of volatiles there. Primarily, the lunar surface is bombarded by meteoroids which impact, melt, process, and redistribute the regolith. Further, solar wind and magnetospheric ion fluxes are allowed limited access onto the regions in permanent shadow. Also, although cold traps are in the permanent shadow of the Sun, there is a small flux of radiation incident on the regions from interstellar sources. We investigate the effects of these space weathering processes on a deposit of volatiles in a lunar cold trap through simulations. We simulate the development of a column of material near the surface of the Moon resulting from space weathering. This simulation treats a column of material at a lunar cold trap and focuses on the hydrogen content of the column. We model space weathering processes on several time and spatial scales to simulate the constant rain of micrometeoroids as well as sporadic larger impactors occurring near the cold traps to determine the retention efficiency of the cold traps. We perform the Monte Carlo simulation over many columns of material to determine the expectation value for hydrogen content of the top few meters of soil for comparison with Lunar Prospector neutron data.

  17. Studies of volatiles and organic materials in early terrestrial and present-day outer solar system environments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Chyba, Christopher F.; Khare, B. N.

    1991-01-01

    A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.

  18. Headspace solid-phase microextraction for the determination of volatile and semi-volatile pollutants in water and air.

    PubMed

    Llompart, M; Li, K; Fingas, M

    1998-10-16

    In this work we report the use of solid-phase microextraction (SPME) to extract and concentrate water-soluble volatile as well as semi-volatile pollutants. Both methods of exposing the SPME fibre were utilised: immersion in the aqueous solution (SPME) and in the headspace over the solution (HSSPME). The proposed HSSPME procedure was compared to conventional static headspace (HS) analysis for artificially spiked water as well as real water samples, which had been, equilibrated with various oil and petroleum products. Both techniques gave similar results but HSSPME was much more sensitive and exhibited better precision. Detection limits were found to be in the sub-ng/ml level, with precision better than 5% R.S.D. in most cases. To evaluate the suitability of SPME for relatively high contamination level analysis, the proposed HSSPME method was applied to the screening of run-off water samples that had heavy oil suspended in them from a tire fire incident. HSSPME results were compared with liquid--liquid extraction. Library searches were conducted on the resulting GC-MS total ion chromatograms to determine the types of compounds found in such samples. Both techniques found similar composition in the water samples with the exception of alkylnaphthalenes that were detected only by HSSPME. A brief study was carried out to assess using SPME for air monitoring. By sampling and concentrating the volatile organic compounds in the coating of the SPME fibre without any other equipment, this new technique is useful as an alternative to active air monitoring by means of sampling pumps and sorbent tubes. PMID:9818428

  19. [Determination of volatile constituents in guanxin suhe wan by gas chromatography-mass spectrometry].

    PubMed

    Sun, Xiu-yan; Wu, Jian-bing; Wang, Su-juan

    2002-07-01

    The volatile constituents of Guanxin Suhe Wan and its ingredient drugs were analyzed by gas chromatography-mass spectrometry. Two compounds, borneol and benzyl benzoate were determined by selected ion monitoring with methyl salicylate as the internal standard. The recoveries of borneol and benzyl benzoate were 91.7% and 89.7% with the RSDs of 5.6% and 2.3%, respectively. PMID:12541931

  20. The Age of Majority.

    ERIC Educational Resources Information Center

    Council of State Governments, Lexington, KY.

    During the past 2 years state laws lowering the age of majority to 18 and other statutes that confer some majority rights on minors have considerably altered the status of young people in our society. In 7 states, the age of majority has been lowered in an effort to relieve young people of the minority disabilities originally intended to protect…

  1. Mechanisms of the Immunological Effects of Volatile Anesthetics: A Review.

    PubMed

    Yuki, Koichi; Eckenhoff, Roderic G

    2016-08-01

    Volatile anesthetics (VAs) have been in clinical use for a very long time. Their mechanism of action is yet to be fully delineated, but multiple ion channels have been reported as targets for VAs (canonical VA targets). It is increasingly recognized that VAs also manifest effects outside the central nervous system, including on immune cells. However, the literature related to how VAs affect the behavior of immune cells is very limited, but it is of interest that some canonical VA targets are reportedly expressed in immune cells. Here, we review the current literature and describe canonical VA targets expressed in leukocytes and their known roles. In addition, we introduce adhesion molecules called β2 integrins as noncanonical VA targets in leukocytes. Finally, we propose a model for how VAs affect the function of neutrophils, macrophages, and natural killer cells via concerted effects on multiple targets as examples. PMID:27308954

  2. Gas chromatographic analysis of volatiles in fluid and gas inclusions.

    PubMed

    Andrawes, F; Holzer, G; Roedder, E; Gibson, E K; Oro, J

    1984-01-01

    Most geological samples and some synthetic materials contain fluid inclusions. These inclusions preserve for us tiny samples of the liquid and/or the gas phase that was present during formation, although in some cases they may have undergone significant changes from the original material. Studies of the current composition of the inclusions provide data on both the original composition and the change since trapping. These conclusions are seldom larger than 1 millimeter in diameter. The composition varies from a single major compound (e.g., water) in a single phase to a very complex mixture in one or more phases. The concentration of some of the compounds present may be at trace levels. We present here some analyses of inclusion on a variety of geological samples, including diamonds. We used a sample crusher and a gas chromatography-mass spectrometry (GC-MS) system to analyze for organic and inorganic volatiles present as major to trace constituents in inclusions. The crusher is a hardened stainless-steel piston cylinder apparatus with tungsten carbide crushing surfaces, and is operated in a pure helium atmosphere at a controlled temperature. Samples ranging from 1 mg to 1 g were crushed and the released volatiles were analyzed using multi-chromatographic columns and detectors, including the sensitive helium ionization detector. Identification of the GC peaks was carried out by GC-MS. This combination of procedures has been shown to provide geochemically useful information on the processes involved in the history of the samples analyzed. PMID:11541990

  3. Microparticles containing lemongrass volatile oil: preparation, characterization and thermal stability.

    PubMed

    Weisheimer, V; Miron, D; Silva, C B; Guterres, S S; Schapoval, E E S

    2010-12-01

    Lemongrass volatile oil (LVO) is an important ingredient in cosmetics, presenting antimicrobial properties, in particular antifungal activity, and it is a promising raw material for the development of pharmaceutical products. However, its volatility and susceptibility to degradation are the major drawbacks for the use of Cymbopogon citratus oil in pharmaceutical compounding. Thus, the aim of this work was to develop and to characterize microparticles containing this oil viewing the stabilization of LVO. Two techniques of preparation were evaluated; spray drying and precipitation, and two encapsulation materials, beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) were tested. The microparticles were characterized in terms of content of water, yield, percentage of inclusion, infrared spectroscopy. Morphology was evaluated by scanning electronic microscopy. Studies of stability were also conducted. The content of citral (neral and geranial), major component of the oil, present in microparticles was assayed by a validated HPLC method. The percentage of inclusion of LVO into the microparticles was 56-60% and 26-29% using beta-CD and HP-beta-CD, respectively. The results showed that the use of the beta-CD as encapsulant material was more efficient. Additionally, an increased inclusion of lemongrass oil was observed with the precipitation technique. PMID:21284257

  4. Volatile compounds and antioxidative activity of Porophyllum tagetoides extracts.

    PubMed

    Jimenez, M; Guzman, A P; Azuara, E; Garcia, O; Mendoza, M R; Beristain, C I

    2012-03-01

    Porophyllum tagetoides is an annual warm-weather herb that has an intense typical smell. Its leaves are commonly used in soup preparation and traditional medicine for treatment of inflammatory diseases. Its volatile compounds and antioxidant properties were evaluated in crude, aqueous and ethanol leaf extract and an oil emulsion using different antioxidant assays in vitro, such as: DPPH radical scavenging activity, redox potential, polyphenol content, reducing power and optical density. A high antioxidative activity was found when comparing leaves with stems. The crude extract from leaves showed a very high reducing power (2.88 ± 0.20 O.D.) and DPPH radical-scavenging activity (54.63 ± 4.80%), in concordance with a major concentration of vitamin C (23.97 ± 0.36 mg/100 g). Instead, the highest polyphenol content (264.54 ± 2.17 mg GAE/g of sample) and redox potential (561.23 ± 0.15 mV) were found by the ethanol and aqueous extract, respectively. Aldehydes and terpenes such as nonanal, decanal, trans-pineno, β-myrcene and D-limonene were the major volatiles found. This study suggests that Porophyllum tagetoides extracts could be used as antioxidants. PMID:22318745

  5. Gas chromatographic analysis of volatiles in fluid and gas inclusions

    USGS Publications Warehouse

    Andrawes, F.; Holzer, G.; Roedder, E.; Gibson, E.K., Jr.; Oro, J.

    1984-01-01

    Most geological samples and some synthetic materials contain fluid inclusions. These inclusions preserve for us tiny samples of the liquid and/or the gas phase that was present during formation, although in some cases they may have undergone significant changes from the original material. Studies of the current composition of the inclusions provide data on both the original composition and the change since trapping. These inclusions are seldom larger than 1 millimeter in diameter. The composition varies from a single major compound (e.g., water) in a single phase to a very complex mixture in one or more phases. The concentration of some of the compounds present may be at trace levels. We present here some analyses of inclusions in a variety of geological samples, including diamonds. We used a sample crusher and a gas chromatography-mass spectrometry (GC-MS) system to analyze for organic and inorganic volatiles present as major to trace constituents in inclusions. The crusher is a hardened stainless-steel piston cylinder apparatus with tungsten carbide crusing surfaces, and is operated in a pure helium atmosphere at a controlled temperature. Samples ranging from 1 mg to 1 g were crushed and the released volatiles were analyzed using multi-chromatographic columns and detectors, including the sensitive helium ionization detector. Identification of the GC peaks was carried out by GC-MS. This combination of procedures has been shown to provide geochemically useful information on the process involved in the history of the samples analyzed. ?? 1984.

  6. Structure of the martian ionosphere as revealed by the Neutral Gas and Ion Mass Spectrometer during the first two years of the MAVEN mission

    NASA Astrophysics Data System (ADS)

    Benna, Mehdi; Yelle, Roger; Grebowsky, Joseph; Fox, Jane L.; Mahaffy, Paul

    2016-07-01

    We report the results of the observations of the ionosphere of Mars by the Neutral Gas and Ion Mass Spectrometer (NGIMS). These observations were conducted during the first two years of the Mars Atmosphere and Volatile Evolution mission (MAVEN), which also cover a full Martian year. The NGIMS observations revealed the spatial and temporal structures in the density distributions of major and several minor ion species (H_2^+, H_3^+, He^+, O_2^+, C^+, CH^+, N^+, NH^+, O^+, OH^+, H_2O^+, H_3O^+, N_2^+/CO^+, CO^+/HOC^+/N_2H^+, NO^+, HNO^+, O_2^+, HO_2^+, Ar^+, ArH^+, CO_2^+, and OCOH^+). Dusk/dawn and day/night asymmetries in the density distributions were also observed for nearly all ion species. Additionally, NGIMS revealed the presence of a persistent metal layer below 140 km. This layer was accessible for measurement during the MAVEN's "deep-dip" campaigns.

  7. Potential for Measurement of Trace Volatile Organic Compounds in Closed Environments Using Gas Chromatograph/Differential Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Cheng, Patti

    2007-01-01

    For nearly 3.5 years, the Volatile Organic Analyzer (VOA) has routinely analyzed the International Space Station (ISS) atmosphere for a target list of approximately 20 volatile organic compounds (VOCs). Additionally, an early prototype of the VOA collected data aboard submarines in two separate trials. Comparison of the data collected on ISS and submarines showed a surprising similarity in the atmospheres of the two environments. Furthermore, in both cases it was demonstrated that the VOA data can detect hardware issues unrelated to crew health. Finally, it was also clear in both operations that the VOA s size and resource consumption were major disadvantages that would restrict its use in the future. The VOA showed the value of measuring VOCs in closed environments, but it had to be shrunk if it was to be considered for future operations in these environments that are characterized by cramped spaces and limited resources. The Sionex Microanalyzer is a fraction of the VOA s size and this instrument seems capable of maintaining or improving upon the analytical performance of the VOA. The two design improvements that led to a smaller, less complex instrument are the Microanalyzer s use of recirculated air as the gas chromatograph s carrier gas and a micromachined detector. Although the VOA s ion mobility spectrometer and the Microanalyzer s differential mobility spectrometer (DMS) are related detector technologies, the DMS was more amenable to micromachining. This paper will present data from the initial assessment of the Microanalyzer. The instrument was challenged with mixtures that simulated the VOCs typically detected in closed-environment atmospheres.

  8. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China.

    PubMed

    Shan, Linan; He, Yunfeng; Chen, Jie; Huang, Qian; Wang, Hongcai

    2015-12-01

    Ammonia (NH3) volatilization is a major pathway of nitrogen (N) loss from soil-crop systems. As vegetable cultivation is one of the most important agricultural land uses worldwide, a deeper understanding of NH3 volatilization is necessary in vegetable production systems. We therefore conducted a 3-year (2010-2012) field experiment to characterize NH3 volatilization and evaluate the effect of different N fertilizer treatments on this process during the growth period of Chinese cabbage. Ammonia volatilization rate, rainfall, soil water content, pH, and soil NH4(+) were measured during the growth period. The results showed that NH3 volatilization was significantly and positively correlated to topsoil pH and NH4(+) concentration. Climate factors and fertilization method also significantly affected NH3 volatilization. Specifically, organic fertilizer (OF) increased NH3 volatilization by 11.77%-18.46%, compared to conventional fertilizer (CF, urea), while organic-inorganic compound fertilizer (OIF) reduced NH3 volatilization by 8.82%-12.67% compared to CF. Furthermore, slow-release fertilizers had significantly positive effects on controlling NH3 volatilization, with a 60.73%-68.80% reduction for sulfur-coated urea (SCU), a 71.85%-78.97% reduction for biological Carbon Power® urea (BCU), and a 77.66%-83.12% reduction for bulk-blend controlled-release fertilizer (BBCRF) relative to CF. This study provides much needed baseline information, which will help in fertilizer choice and management practices to reduce NH3 volatilization and encourage the development of new strategies for vegetable planting. PMID:26702964

  9. A temporal record of pre-eruptive magmatic volatile contents at Campi Flegrei: Insights from texturally-constrained apatite analyses

    NASA Astrophysics Data System (ADS)

    Stock, Michael J.; Isaia, Roberto; Humphreys, Madeleine C. S.; Smith, Victoria C.; Pyle, David M.

    2016-04-01

    Apatite is capable of incorporating all major magmatic volatile species (H2O, CO2, S, Cl and F) into its crystal structure. Analysis of apatite volatile contents can be related to parental magma compositions through the application of pressure and temperature-dependent exchange reactions (Piccoli and Candela, 1994). Once included within phenocrysts, apatite inclusions are isolated from the melt and preserve a temporal record of magmatic volatile contents in the build-up to eruption. In this work, we measured the volatile compositions of apatite inclusions, apatite microphenocrysts and pyroxene-hosted melt inclusions from the Astroni 1 eruption of Campi Flegrei, Italy (Stock et al. 2016). These data are coupled with magmatic differentiation models (Gualda et al., 2012), experimental volatile solubility data (Webster et al., 2014) and thermodynamic models of apatite compositional variations (Piccoli and Candela, 1994) to decipher pre-eruptive magmatic processes. We find that apatite halogen/OH ratios decreased through magmatic differentiation, while melt inclusion F and Cl concentrations increased. Melt inclusion H2O contents are constant at ~2.5 wt%. These data are best explained by volatile-undersaturated differentiation over most of the crystallisation history of the Astroni 1 melt, with melt inclusion H2O contents reset at shallow levels during ascent. Given the high diffusivity of volatiles in apatite (Brenan, 1993), the preservation of volatile-undersaturated melt compositions in microphenocrysts suggests that saturation was only achieved 10 - 103 days before eruption. We suggest that late-stage transition into a volatile-saturated state caused an increase in magma chamber overpressure, which ultimately triggered the Astroni 1 eruption. This has major implications for monitoring of Campi Flegrei and other similar volcanic systems. Piccoli and Candela, 1994. Am. J. of Sc., 294, 92-135. Stock et al., 2016, Nat. Geosci. Gualda et al., 2012. J. Pet., 53, 875

  10. EDITORIAL: Non-volatile memory based on nanostructures Non-volatile memory based on nanostructures

    NASA Astrophysics Data System (ADS)

    Kalinin, Sergei; Yang, J. Joshua; Demming, Anna

    2011-06-01

    that limiting the current during electroforming leads to the coexistence of two resistance switching modes in TiO2 memristive devices [2]. They also present spectromicroscopic observations and modelling results for the Joule heating during switching, providing insights into the ON/OFF switching process [3]. Researchers in Korea have examined in detail the mechanism of electronic bipolar resistance switching in the Pt/TiO2/Pt structure and show that degradation in switching performance of this system can be explained by the modified distribution of trap densities [4]. The issue also includes studies of TiO2 that demonstrate analog memory, synaptic plasticity, and spike-timing-dependent plasticity functions, work that contributes to the development of neuromorphic devices that have high efficiency and low power consumption [5]. In addition to enabling a wide range of data storage and logic applications, electroresistive non-volatile memories invite us to re-evaluate the long-held paradigms in the condensed matter physics of oxides. In the past three years, much attention has been attracted to polarization-mediated electronic transport [6, 7] and domain wall conduction [8] as the key to the next generation of electronic and spintronic devices based on ferroelectric tunnelling barriers. Typically local probe experiments are performed on an ambient scanning probe microscope platform under conditions of high voltage stresses, conditions highly conducive to electrochemical reactions. Recent experiments [9-13] suggest that ionic motion can heavily contribute to the measured responses and compete with purely physical mechanisms. Electrochemical effects can also be expected in non-ferroelectric materials such as manganites and cobaltites, as well as for thick ferroelectrics under high-field conditions, as in capacitors and tunnelling junctions where the ionic motion could be a major contributor to electric field-induced strain. Such strain, in turn, can affect the effective

  11. Volatiles released by endophytic Pseudomonas fluorescens promoting the growth and volatile oil accumulation in Atractylodes lancea.

    PubMed

    Zhou, Jia-Yu; Li, Xia; Zheng, Jiao-Yan; Dai, Chuan-Chao

    2016-04-01

    Atractylodes lancea is a well-known, but endangered, Chinese medicinal plant whose volatile oils are its main active components. As the volatile oil content in cultivated A. lancea is much lower than that in the wild herb, the application of microbes or related elicitors to promote growth and volatile oil accumulation in the cultivated herb is an important area of research. This study demonstrates that the endophytic bacterium Pseudomonas fluorescens ALEB7B isolated from the geo-authentic A. lancea can release several nitrogenous volatiles, such as formamide and N,N-dimethyl-formamide, which significantly promote the growth of non-infected A. lancea. Moreover, the main bacterial volatile benzaldehyde significantly promotes volatile oil accumulation in non-infected A. lancea via activating plant defense responses. Notably, the bacterial nitrogenous volatiles cannot be detected in the A. lancea - Pseudomonas fluorescens symbiont while the benzaldehyde can be detected, indicating the nitrogenous volatiles or their precursors may have been consumed by the host plant. This study firstly demonstrates that the interaction between plant and endophytic bacterium is not limited to the commonly known physical contact, extending the ecological functions of endophyte in the phytosphere and deepening the understandings about the symbiotic interaction. PMID:26874622

  12. Identification of volatiles in leaves of Alpinia zerumbet 'Variegata' using headspace solid-phase microextraction-gas chromatography-mass spectrometry.

    PubMed

    Chen, Jian Yan; Ye, Zheng Mei; Huang, Tian Yi; Chen, Xiao Dan; Li, Yong Yu; Wu, Shao Hua

    2014-07-01

    Alpinia zerumbet 'Variegata' is an aromatic medicinal plant, its foliage producing an intense, unique fragrant odor. This study identified 46 volatile compounds in the leaf tissue of this plant using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The major compounds included 1, 8-cineole (43.5%), p-cymene (14.7%), humulene (5.5%), camphor (5.3%), linalool (4.7%), (E)-methyl cinnamate (3.8%), gamma-cadinene (3.3%), humulene oxide II (2.1%) and a-terpineol (1.5%). The majority of the volatiles were terpenoids of which oxygenated monoterpenes were the most abundant, accounting for 57.2% of the total volatiles. Alcohols made up the largest (52.8%) and aldehydes the smallest (0.2%) portions of the volatiles. Many bioactive compounds were present in the volatiles. PMID:25230513

  13. Assimilation of volatiles from ripe apples by Sporidiobolus salmonicolor and Tilletiopsis washingtonensis.

    PubMed

    Vishniac, H S; Anderson, J A; Filonow, A B

    1997-10-01

    Sporidiobolus salmonicolor ATCC 623 and Tilletiopsis washingtonensis NRRL Y-2555 grew on carbon resources provided as volatiles by ripe 'Golden Delicious' apples. This ability was not correlated with the reported natural habitats of the 21 species (26 strains) tested. Ethylene, the major volatile produced, was not utilized but butyl acetate, hexyl acetate and hexyl-2-methyl-butanoate (identified by GC-MS) were. These yeasts also assimilated ethanol, butanol, hexanol (Tilletiopsis excepted), acetate, propionate, butyrate and ethyl acetate at appropriately low concentrations. Ethanol and acetate aside, this is the first report of such assimilations by any yeast. PMID:9403105

  14. Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission.

    PubMed

    Vucetic, Andja; Dahlin, Iris; Petrovic-Obradovic, Olivera; Glinwood, Robert; Webster, Ben; Ninkovic, Velemir

    2014-01-01

    Volatile interactions between unattacked plants can lead to changes in their volatile emissions. Exposure of potato plants to onion plant volatiles results in increased emission of 2 terpenoids, (E)-nerolidol and TMTT. We investigated whether this is detectable by the ladybird Coccinella septempunctata. The odor of onion-exposed potato was significantly more attractive to ladybirds than that of unexposed potato. Further, a synthetic blend mimicking the volatile profile of onion-exposed potato was more attractive than a blend mimicking that of unexposed potato. When presented individually, TMTT was attractive to ladybirds whereas (E)-nerolidol was repellent. Volatile exchange between unattacked plants and consequent increased attractiveness for ladybirds may be a mechanism that contributes to the increased abundance of natural enemies in complex plant habitats. PMID:25763628

  15. Volatile Organic Compound Analysis in Istanbul

    NASA Astrophysics Data System (ADS)

    Ćapraz, Ö.; Deniz, A.; Öztürk, A.; Incecik, S.; Toros, H.; Coşkun, M.

    2012-04-01

    Volatile Organic Compound Analysis in Istanbul Ö. Çapraz1, A. Deniz1,3, A. Ozturk2, S. Incecik1, H. Toros1 and, M. Coskun1 (1) Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of Meteorology, 34469, Maslak, Istanbul, Turkey. (2) Istanbul Technical University, Faculty of Chemical and Metallurgical, Chemical Engineering, 34469, Maslak, Istanbul, Turkey. (3) Marmara Clean Air Center, Ministry of Environment and Urbanization, Nişantaşı, 34365, İstanbul, Turkey. One of the major problems of megacities is air pollution. Therefore, investigations of air quality are increasing and supported by many institutions in recent years. Air pollution in Istanbul contains many components that originate from a wide range of industrial, heating, motor vehicle, and natural emissions sources. VOC, originating mainly from automobile exhaust, secondhand smoke and building materials, are one of these compounds containing some thousands of chemicals. In spite of the risks to human health, relatively little is known about the levels of VOC in Istanbul. In this study, ambient air quality measurements of 32 VOCs including hydrocarbons, halogenated hydrocarbons and carbonyls were conducted in Kağıthane (Golden Horn) region in Istanbul during the winter season of 2011 in order to develop the necessary scientific framework for the subsequent developments. Kağıthane creek valley is the source part of the Golden Horn and one of the most polluted locations in Istanbul due to its topographical form and pollutant sources in the region. In this valley, horizontal and vertical atmospheric motions are very weak. The target compounds most commonly found were benzene, toluene, xylene and ethyl benzene. Concentrations of total hydrocarbons ranged between 1.0 and 10.0 parts per billion, by volume (ppbv). Ambient air levels of halogenated hydrocarbons appeared to exhibit unique spatial variations and no single factor seemed to explain trends for this group of

  16. Optimal directional volatile transport in retronasal olfaction

    PubMed Central

    Ni, Rui; Michalski, Mark H.; Brown, Elliott; Doan, Ngoc; Zinter, Joseph; Ouellette, Nicholas T.; Shepherd, Gordon M.

    2015-01-01

    The ability of humans to distinguish the delicate differences in food flavors depends mostly on retronasal smell, in which food volatiles entrained into the airway at the back of the oral cavity are transported by exhaled air through the nasal cavity to stimulate the olfactory receptor neurons. Little is known whether food volatiles are preferentially carried by retronasal flow toward the nasal cavity rather than by orthonasal flow into the lung. To study the differences between retronasal and orthonasal flow, we obtained computed tomography (CT) images of the orthonasal airway from a healthy human subject, printed an experimental model using a 3D printer, and analyzed the flow field inside the airway. The results show that, during inhalation, the anatomical structure of the oropharynx creates an air curtain outside a virtual cavity connecting the oropharynx and the back of the mouth, which prevents food volatiles from being transported into the main stream toward the lung. In contrast, during exhalation, the flow preferentially sweeps through this virtual cavity and effectively enhances the entrainment of food volatiles into the main retronasal flow. This asymmetrical transport efficiency is also found to have a nonmonotonic Reynolds number dependence: The asymmetry peaks at a range of an intermediate Reynolds number close to 800, because the air curtain effect during inhalation becomes strongest in this range. This study provides the first experimental evidence, to our knowledge, for adaptations of the geometry of the human oropharynx for efficient transport of food volatiles toward the olfactory receptors in the nasal cavity. PMID:26553982

  17. Optimal directional volatile transport in retronasal olfaction.

    PubMed

    Ni, Rui; Michalski, Mark H; Brown, Elliott; Doan, Ngoc; Zinter, Joseph; Ouellette, Nicholas T; Shepherd, Gordon M

    2015-11-24

    The ability of humans to distinguish the delicate differences in food flavors depends mostly on retronasal smell, in which food volatiles entrained into the airway at the back of the oral cavity are transported by exhaled air through the nasal cavity to stimulate the olfactory receptor neurons. Little is known whether food volatiles are preferentially carried by retronasal flow toward the nasal cavity rather than by orthonasal flow into the lung. To study the differences between retronasal and orthonasal flow, we obtained computed tomography (CT) images of the orthonasal airway from a healthy human subject, printed an experimental model using a 3D printer, and analyzed the flow field inside the airway. The results show that, during inhalation, the anatomical structure of the oropharynx creates an air curtain outside a virtual cavity connecting the oropharynx and the back of the mouth, which prevents food volatiles from being transported into the main stream toward the lung. In contrast, during exhalation, the flow preferentially sweeps through this virtual cavity and effectively enhances the entrainment of food volatiles into the main retronasal flow. This asymmetrical transport efficiency is also found to have a nonmonotonic Reynolds number dependence: The asymmetry peaks at a range of an intermediate Reynolds number close to 800, because the air curtain effect during inhalation becomes strongest in this range. This study provides the first experimental evidence, to our knowledge, for adaptations of the geometry of the human oropharynx for efficient transport of food volatiles toward the olfactory receptors in the nasal cavity. PMID:26553982

  18. The reduction of iron oxides by volatiles in a rotary hearth furnace process: Part III. The simulation of volatile reduction in a multi-layer rotary hearth furnace process

    NASA Astrophysics Data System (ADS)

    Sohn, I.; Fruehan, R. J.

    2006-04-01

    For reduction of iron oxides by volatiles from coal, the major reductant was found to be H2, and it can affect the overall reduction of iron oxides. In this study, the reduction by actual volatiles of composite pellets at 1000 °C was studied. The volatile reduction of the hand-packed Fe2O3/coal composite pellet as it is devolatilizing out of the pellet was found to be negligible. However, the reduction of iron oxide pellets at the top layer by volatiles from the bottom layers of a three-layer pellet geometry was observed to be about 15 pct. From the morphological observations of partially reduced pellets and the computed rates of bulk mass transfer, volatile reduction appears to be controlled by a mixed-controlled mechanism of bulk gas mass transfer and the limited-mixed control reduction kinetics. Using the reduction rate obtained from the single pellet experiments with pure hydrogen and extrapolating this rate to an H2 partial pressure corresponding to the H2 from the volatiles, an empirical relationship was obtained to approximately predict the amount of volatile reduction up to 20 pct.

  19. The reduction of iron oxides by volatiles in a rotary hearth furnace process: Part III. The simulation of volatile reduction in a multi-layer rotary hearth furnace process

    SciTech Connect

    Sohn, I.; Fruehan, R.J.

    2006-04-15

    For reduction of iron oxides by volatiles from coal, the major reductant was found to be H{sub 2, and it can affect the overall reduction of iron oxides. In this study, the reduction by actual volatiles of composite pellets at 1000{sup o}C was studied. The volatile reduction of the hand-packed Fe{sub 2}O{sub 3}/Coal composite pellet as it is devolatilizing out of the pellet was found to be negligible. However, the reduction of iron oxide pellets at the top layer by volatiles from the bottom layers of a three-layer pellet geometry was observed to be about 15 pct. From the morphological observations of partially reduced pellets and the computed rates of bulk mass transfer, volatile reduction appears to be controlled by a mixed-controlled mechanism of bulk gas mass transfer and the limited-mixed control reduction kinetics. Using the reduction rate obtained from the single pellet experiments with pure hydrogen and extrapolating this rate to an H{sub 2 partial pressure corresponding to the H{sub 2 from the volatiles, an empirical relationship was obtained to approximately predict the amount of volatile reduction up to 20 pct.

  20. Mechanisms involved in cardiac sensitization by volatile anesthetics: general applicability to halogenated hydrocarbons?

    PubMed

    Himmel, Herbert M

    2008-01-01

    An increased sensitivity of the heart to catecholamines or cardiac sensitization is a recognized risk during acute human exposure to halogenated hydrocarbons used as solvents, foam-blowing or fire-extinguishing agents, refrigerants, and aerosol propellants. Although cardiac sensitization to such "industrial" halocarbons can result in serious arrhythmia and death, research into its mechanistic basis has been limited, whereas the literature on volatile anesthetics (e.g., halothane, chloroform) is comparably extensive. A review of the literature on halocarbons and related volatile anesthetics was conducted. The available experimental evidence suggests that volatile anesthetics at physiologically relevant concentrations interact predominantly with the main repolarizing cardiac potassium channels hERG and I(Ks), as well as with calcium and sodium channels at slightly higher concentrations. On the level of the heart, inhibition of these ion channels is prone to alter both action potential shape (triangulation) and electrical impulse conduction, which may facilitate arrhythmogenesis by volatile anesthetics per se and is potentiated by catecholamines. Action potential triangulation by regionally heterogeneous inhibition of calcium and potassium channels will facilitate catecholamine-induced afterdepolarizations, triggered activity, and enhanced automaticity. Inhibition of cardiac sodium channels will reduce conduction velocity and alter refractory period; this is potentiated by catecholamines and promotes reentry arrhythmias. Other cardiac and/or neuronal mechanisms might also contribute to arrhythmogenesis. The few scattered in vitro data available for halocarbons (e.g., FC-12, halon 1301, trichloroethylene) suggest inhibition of cardiac sodium (conduction), calcium and potassium channels (triangulation), extraneuronal catecholamine reuptake, and various neuronal ion channels. Therefore, it is hypothesized that halocarbons promote cardiac sensitization by similar

  1. Hydropower major rehabilitation projects

    SciTech Connect

    Norlin, J.A.

    1995-12-31

    The Corps of Engineers has developed an active Major Rehabilitation Program to handle large, long duration restoration projects. These projects are funded by specific appropriations and subsequently are required to have detailed rehabilitation plans to justify the work. The emphasis of the Major Rehabilitation Program is correcting reliability problems. Papers that were presented at Waterpower `93 discussed the basic concepts that are required in preparing a Major Rehabilitation Evaluation Report. This paper will cover the current status of each of the current major rehabilitation projects that the Corps of Engineers has in progress.

  2. Aroma profile and volatiles odor activity along gold cultivar pineapple flesh.

    PubMed

    Montero-Calderón, Marta; Rojas-Graü, María Alejandra; Martín-Belloso, Olga

    2010-01-01

    Physicochemical attributes, aroma profile, and odor contribution of pineapple flesh were studied for the top, middle, and bottom cross-sections cut along the central axis of Gold cultivar pineapple. Relationships between volatile and nonvolatile compounds were also studied. Aroma profile constituents were determined by headspace solid-phase microextraction at 30 °C, followed by gas chromatography/mass spectrometry analysis. A total of 20 volatile compounds were identified and quantified. Among them, esters were the major components which accounted for 90% of total extracted aroma. Methyl butanoate, methyl 2-methyl butanoate, and methyl hexanoate were the 3 most abundant components representing 74% of total volatiles in pineapple samples. Most odor active contributors were methyl and ethyl 2-methyl butanoate and 2,5-dimethyl 4-methoxy 3(2H)-furanone (mesifuran). Aroma profile components did not vary along the fruit, but volatile compounds content significantly varied (P < 0.05) along the fruit, from 7560 to 10910 μg/kg, from the top to the bottom cross-sections of the fruit, respectively. In addition, most odor-active volatiles concentration increased from the top to the bottom 3rd of the fruit, concurrently with soluble solids content (SSC) and titratable acidity (TA) differences attributed to fruitlets distinct degree of ripening. Large changes in SSC/TA ratio and volatiles content throughout the fruit found through this study are likely to provoke important differences among individual fresh-cut pineapple trays, compromising consumer perception and acceptance of the product. Such finding highlighted the need to include volatiles content and SSC/TA ratio and their variability along the fruit as selection criteria for pineapples to be processed and quality assessment of the fresh-cut fruit. PMID:21535624

  3. Measurement of the temperature dependent partitioning of semi-volatile organics onto aerosol near roadways

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Brook, J.; Staebler, R. M.; Evans, G. J.; Jeong, C.; Sheppard, A.; Lu, G.; Gordon, M.; Mihele, C.

    2010-12-01

    The volatility of the organic aerosol fraction has received a great deal of attention recently in light of new volatility-based modelling approaches and due to the inability of current models to fully account for secondary organic aerosol (SOA). In this regard, evaporation of primary organic aerosol species and their subsequent oxidation may contribute significantly to SOA downwind of sources. This implies that moderate ambient temperature fluctuations can significantly increase or decrease the aerosol bound fraction of semi-volatile and intermediate volatility (SVOC + IVOC) compounds. In order to examine the importance of these more volatile organic components, a temperature controlled inlet was developed with the ability to heat and cool the aerosol in 2 C increments to 15 C above or below ambient temperature. The inlet was coupled to an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and deployed on a mobile platform upwind and downwind of a major Southern Ontario highway as part of the Fast Evolution of Vehicle Emissions near Roadways (FEVER 2010) campaign. Preliminary results suggest that changes in temperature of 5-10 C can alter the partitioning of volatile organic aerosol components by up to 30%. Although the largest affect was observed 10-13 meters downwind of the vehicle emissions, a measurable affect was observed beyond 500 m and in aerosol upwind of the highway. These results suggest that a significant pool of semi-volatile organics exist, which can condense onto particles at slightly lower temperatures or evaporate to the gas phase and be further oxidized. The nature of these organic species at locations upwind and downwind of vehicle emissions will be discussed.

  4. Production of multiply charged ion beams from solid substances with the mVINIS ion source

    SciTech Connect

    Draganic, I.; Dobrosavljevic, A.; Nedeljkovic, T.; Siljegovic, M.

    2006-03-15

    The mVINIS ion source has enabled us to obtain multiply charged ion beams from gases as well as from solid materials. The solid substance ion beams were produced by using two techniques: (a) the evaporation of metals by using the inlet system based on a minioven and (b) the metal-ions-from-volatile-compounds method (MIVOC) by using the modified gas inlet system. Great efforts were made in the production of high current stable ion beams of solids with relatively high melting points (over 1000 deg. C). The B{sup 3+} ion-beam current of over 300 {mu}A was one of the most intensive beams extracted until now. The obtained multiply charged ion-beam spectra of solid substances (B, Fe, and Zn) are presented as well as some of the corresponding experimental results achieved during the modification of polymers, carbon materials, and fullerenes.

  5. Geosmin and Related Volatiles in Bioreactor-Cultured Streptomyces citreus CBS 109.60

    PubMed Central

    Pollak, F. C.; Berger, R. G.

    1996-01-01

    Streptomyces citreus CBS 109.60 produced geosmin and a complex pattern of other volatile compounds during cultivation in a 2.5-liter laboratory bioreactor. Volatiles were isolated from disrupted cells, from the culture medium, and from the waste air of the bioreactor by adsorption on Lewatit OC 1064MD. Quantitative and qualitative analyses were carried out using capillary gas chromatography and coupled gas chromatography-mass spectroscopy. S. citreus produced 56 volatile compounds, which were mainly terpenoids but also included aliphatic ketones, alcohols, esters, pyrazines, furan(on)es, and aromatic types during the growth phase. The major components were geosmin and a germacradienol. A biosynthetic pathway for geosmin including eudesmanolides is proposed. PMID:16535293

  6. Volatiles as Chemosystematic Markers for Distinguishing Closely Related Species within the Pinus mugo Complex.

    PubMed

    Celiński, Konrad; Bonikowski, Radosław; Wojnicka-Półtorak, Aleksandra; Chudzińska, Ewa; Maliński, Tomasz

    2015-08-01

    Headspace solid-phase microextraction (HS-SPME) coupled to GC/MS analysis was used to identify the constituents of pine-needle volatiles differentiating three closely-related pine species within the Pinus mugo complex, i.e., P. uncinata Ramond ex DC., P. uliginosa G.E.Neumann ex Wimm., and P. mugo Turra. Moreover, chemosystematic markers were proposed for the three analyzed pine species. The major constituents of the pine-needle volatiles were α-pinene (28.4%) and bornyl acetate (10.8%) for P. uncinata, δ-car-3-ene (21.5%) and α-pinene (16.1%) for P. uliginosa, and α-pinene (20%) and δ-car-3-ene (18.1%) for P. mugo. This study is the first report on the application of the composition of pine-needle volatiles for the reliable identification of closely-related pine species within the Pinus mugo complex. PMID:26265572

  7. Velamo do campo: its volatile constituents, secretory elements, and biological activity.

    PubMed

    El Babili, Fatiha; Roques, Christine; Haddioui, Laila; Bellvert, Floriant; Bertrand, Cédric; Chatelain, Christian

    2012-07-01

    The volatile components from Croton campestris root bark were localized by an anatomical study and analyzed by gas chromatography-mass spectrometry for the first time. The roots of this plant showed secretory cells. These volatile constituents, isolated from the dichloromethane extract by hydrodistillation, were analyzed by gas chromatography-mass spectrometry. We found 69 components. They were characterized, and the major constituents of crude oil root barks were spathulenol (23.3%) and borneol (18.7%). Growth inhibitory activity of the active compounds in solution was evaluated by measuring minimal inhibitory concentrations using a broth micromethod. The minimal inhibitory concentration of root bark volatile constituents was 1.56 μg/mL for Staphylococcus aureus, 3.125 μg/mL for Candida albicans, and 6.25 μg/mL for Aspergillusniger. PMID:22612296

  8. Different isolation methods for determination of composition of volatiles from Nigella damascena L. seeds.

    PubMed

    Wajs, Anna; Bonikowski, Radoslaw; Kalemba, Danuta

    2009-11-01

    Volatile organic compounds (VOCs) from seeds of Nigella damascena L. were isolated using different techniques. The yield, as well as the qualitative and quantitative composition of the oils, was strongly influenced by the isolation method. In the hydrodistilled essential oil, the major components were the sesquiterpene hydrocarbons beta-elemene (59.1%), beta-selinene (12.8%) and alpha-selinene (12.6%). Conventional solvent extraction, followed by hydrodistillation, resulted in a volatile oil with a different composition than that of the hydrodistilled oil. The extracted oils predominantly contained sesquiterpene hydrocarbons, but also methyl anthranilate derivatives. By means of HS-SPME, it was possible to analyze not only sesquiterpenes and anthranilates, but also monoterpenes and the most volatile compounds, for example, the lower fatty acid (butyric, capronic) esters, which determine the characteristic sweet scent of N. damascena seeds. Using all testing methods, 55 compounds were identified, 40 of which are new for N. damascena seed VOCs. PMID:19967995

  9. Organic Aerosol Volatility Parameterizations and Their Impact on Atmospheric Composition and Climate

    NASA Technical Reports Server (NTRS)

    Tsigaridis, Kostas; Bauer, Susanne E.

    2015-01-01

    Despite their importance and ubiquity in the atmosphere, organic aerosols are still very poorly parameterized in global models. This can be explained by two reasons: first, a very large number of unconstrained parameters are involved in accurate parameterizations, and second, a detailed description of semi-volatile organics is computationally very expensive. Even organic aerosol properties that are known to play a major role in the atmosphere, namely volatility and aging, are poorly resolved in global models, if at all. Studies with different models and different parameterizations have not been conclusive on whether the additional complexity improves model simulations, but the added diversity of the different host models used adds an unnecessary degree of variability in the evaluation of results that obscures solid conclusions. Aerosol microphysics do not significantly alter the mean OA vertical profile or comparison with surface measurements. This might not be the case for semi-volatile OA with microphysics.

  10. Tricks, tips, and literature review on the adapted vaporize system to deliver volatile agents during cardiopulmonary bypass

    PubMed Central

    Nigro Neto, Caetano; De Simone, Francesco; Cassarà, Luigi; Dos Santos Silva, Carlos Gustavo; Maranhão Cardoso, Thiago Augusto Almeida; Carcò, Francesco; Zangrillo, Alberto; Landoni, Giovanni

    2016-01-01

    Background: Recently, evidence of cardio-protection and reduction in mortality due to the use of volatile agents during cardiac surgery led to an increase in their use during cardiopulmonary bypass (CPB). These findings seem to be enhanced when the volatile agents are used during all the surgical procedure, including the CPB period. Aims: Since the administration of volatile agents through CPB can be beneficial to the patients, we decided to review the use of volatile agents vaporized in the CPB circuit and to summarize some tricks and tips of this technique using our 10-year experience of Brazilian and Italian centers with a large volume of cardiac surgeries. Study Setting: Hospital. Methods: A literature review. Results: During the use of the volatile agents in CPB, it is very important to analyze all gases that come in and go out of the membrane oxygenators. The proper monitoring of inhaled and exhaled fraction of the gas allows not only monitoring of anesthesia level, but also the detection of possible leakage in the circuit. Any volatile agent in the membrane oxygenator is supposed to pollute the operating theater. This is the major reason why proper scavenging systems are always necessary when this technique is used. Conclusion: While waiting for industry upgrades, we recommend that volatile agents should be used during CPB only by skilled perfusionists and physicians with the aim to reduce postoperative morbidity and mortality. PMID:27052063

  11. Volatile fractionation and tektite source material

    NASA Astrophysics Data System (ADS)

    Walter, L. S.

    1989-09-01

    The arguments used by Love and Woronow (1988) to assess the role played in the origin of bediasites by extensive volatile fractionation are critically examined. Using the ratios of 'refractory' oxides, CaO, Al2O3, and MgO, to the 'volatile' oxides, Na2O and K2O, these authors concluded that vapor fractionation did not play a significant role. In this paper, experimental evidence is presented that shows that the assumption of volatility for the alkali elements (as least with respect to silica) to be not valid under the conditions under which tektites formed. It is shown that the results of vapor fractionation in experiments on glasses of tektite composition are approximately parallel the trends seen in bediasite analysis.

  12. Redistribution of volatiles during lunar metamorphism

    NASA Technical Reports Server (NTRS)

    Cirlin, E. H.; Housley, R. M.

    1980-01-01

    Thermal release profiles of Pb, Zn, and Cd in sample 66095 (highly shocked breccia with melt rock matrix) showed that these volatiles were mostly present on the surface of the grains. Zn in rusty grains from 66095 was also mostly surface Zn, probably from sphalerite in grain boundaries and cracks. Simulation experiments of volatile transfer showed that Fe, FeCl2, iron phosphide, and troilite (FeS) can be produced and transported during subsolidus reactions. These results suggest that volatiles, rust, schreibersite, and possible siderophiles which are observed in lunar highland samples might have been redistributed during disequilibrium thermal metamorphism in hot ejecta blankets, and were not necessarily introduced by volcanic activity or meteoritic addition.

  13. Catalyst for Oxidation of Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    Wood, George M. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); Schyryer, Jacqueline L. (Inventor); DAmbrosia, Christine M. (Inventor)

    2000-01-01

    Disclosed is a process for oxidizing volatile organic compounds to carbon dioxide and water with the minimal addition of energy. A mixture of the volatile organic compound and an oxidizing agent (e.g. ambient air containing the volatile organic compound) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  14. Volatile components and continental material of planets

    NASA Technical Reports Server (NTRS)

    Florenskiy, K. P.; Nikolayeva, O. V.

    1986-01-01

    It is shown that the continental material of the terrestrial planets varies in composition from planet to planet according to the abundances and composition of true volatiles (H20, CO2, etc.) in the outer shells of the planets. The formation of these shells occurs very early in a planet's evolution when the role of endogenous processes is indistinct and continental materials are subject to melting and vaporizing in the absence of an atmosphere. As a result, the chemical properties of continental materials are related not only to fractionation processes but also to meltability and volatility. For planets retaining a certain quantity of true volatile components, the chemical transformation of continental material is characterized by a close interaction between impact melting vaporization and endogeneous geological processes.

  15. Volatile compounds in shergottite and nakhlite meteorites

    NASA Technical Reports Server (NTRS)

    Gooding, James L.; Aggrey, Kwesi E.; Muenow, David W.

    1990-01-01

    Since discovery of apparent carbonate carbon in Nakhla, significant evidence has accumulated for occurrence of volatile compounds in shergotties and nakhlites. Results are presented from a study of volatile compounds in three shergottites, one nakhlite, and three eucrite control samples. Shergotties ALHA77005, EETA79001, and Shergotty, and the nakhlite Nakhla, all contain oxidized sulfur (sulfate) of preterrestrial origin; sulfur oxidation is most complete in EETA79001/Lith-C. Significant bulk carbonate was confirmed in Nakhla and trace carbonate was substantiated for EETA79001, all of which appears to be preterrestrial in origin. Chlorine covaries with oxidized sulfur, whereas carbonate and sulfate are inversely related. These volatile compounds were probably formed in a highly oxidizing, aqueous environment sometime in the late stage histories of the rocks that are now represented as meteorites. They are consistent with the hypothesis that shergottite and nakhlite meteorites originated on Mars and that Mars has supported aqueous geochemistry during its history.

  16. Volatile fractionation and tektite source material

    NASA Technical Reports Server (NTRS)

    Walter, Louis S.

    1989-01-01

    The arguments used by Love and Woronow (1988) to assess the role played in the origin of bediasites by extensive volatile fractionation are critically examined. Using the ratios of 'refractory' oxides, CaO, Al2O3, and MgO, to the 'volatile' oxides, Na2O and K2O, these authors concluded that vapor fractionation did not play a significant role. In this paper, experimental evidence is presented that shows that the assumption of volatility for the alkali elements (as least with respect to silica) to be not valid under the conditions under which tektites formed. It is shown that the results of vapor fractionation in experiments on glasses of tektite composition are approximately parallel the trends seen in bediasite analysis.

  17. Volatile species retention during metallic fuel casting

    NASA Astrophysics Data System (ADS)

    Fielding, Randall S.; Porter, Douglas L.

    2013-10-01

    Metallic nuclear fuels are candidate transmutation fuel forms for advanced fuel cycles. Through the operation of the Experimental Breeder Reactor II metallic nuclear fuels have been shown to be robust and easily manufactured. However, concerns have been raised concerning loss of americium during the casting process because of its high vapor pressure. In order to address these concerns a gaseous diffusion model was developed and a series of experiments using both manganese and samarium as surrogates for americium were conducted. The modeling results showed that volatility losses can be controlled to essentially no losses with a modest overpressure. Experimental results also showed volatile species retention down to no detectable losses through overpressure, and although the loss values varied from the model results the same trend was seen. Based on these results it is very probable that americium losses through volatility can be controlled to no detectable losses through application of a modest overpressure during casting.

  18. Volatile Species Retention During Metallic Fuel Casting

    SciTech Connect

    Randall S. Fielding; Douglas L. Proter

    2013-10-01

    Metallic nuclear fuels are candidate transmutation fuel forms for advanced fuel cycles. Through the operation of the Experimental Breeder Reactor II metallic nuclear fuels have been shown to be robust and easily manufactured. However, concerns have been raised concerning loss of americium during the casting process because of its high vapor pressure. In order to address these concerns a gaseous diffusion model was developed and a series of experiments using both manganese and samarium as surrogates for americium were conducted. The modeling results showed that volatility losses can be controlled to essentially no losses with a modest overpressure. Experimental results also showed volatile species retention down to no detectable losses through overpressure, although the loss values varied from the model results the same trend was seen. Bases on these results it is very probably that americium losses through volatility can be controlled to no detectable losses through application of a modest overpressure during casting.

  19. The volatility of stock market prices.

    PubMed

    Shiller, R J

    1987-01-01

    If the volatility of stock market prices is to be understood in terms of the efficient markets hypothesis, then there should be evidence that true investment value changes through time sufficiently to justify the price changes. Three indicators of change in true investment value of the aggregate stock market in the United States from 1871 to 1986 are considered: changes in dividends, in real interest rates, and in a direct measure of intertemporal marginal rates of substitution. Although there are some ambiguities in interpreting the evidence, dividend changes appear to contribute very little toward justifying the observed historical volatility of stock prices. The other indicators contribute some, but still most of the volatility of stock market prices appears unexplained. PMID:17769311

  20. Attraction of pea moth Cydia nigricana to pea flower volatiles.

    PubMed

    Thöming, Gunda; Knudsen, Geir K

    2014-04-01

    The pea moth Cydia nigricana causes major crop losses in pea (Pisum sativum) production. We investigated attraction of C. nigricana females to synthetic pea flower volatiles in a wind tunnel and in the field. We performed electroantennogram analysis on 27 previously identified pea plant volatiles, which confirmed antennal responses to nine of the compounds identified in pea flowers. A dose-dependent response was found to eight of the compounds. Various blends of the nine pea flower volatiles eliciting antennal responses were subsequently studied in a wind tunnel. A four-compound blend comprising hexan-1-ol, (E)-2-hexen-1-ol, (Z)-β-ocimene and (E)-β-ocimene was equally attractive to mated C. nigricana females as the full pea flower mimic blend. We conducted wind-tunnel tests on different blends of these four pea flower compounds mixed with a headspace sample of non-flowering pea plants. By considering the effects of such green leaf background odour, we were able to identify (Z)- and (E)-β-ocimene as fundamental for host location by the pea moths, and hexan-1-ol and (E)-2-hexen-1-ol as being of secondary importance in that context. In the field, the two isomers of β-ocimene resulted in trap catches similar to those obtained with the full pea flower mimic and the four-compound blend, which clearly demonstrated the prime significance of the β-ocimenes as attractants of C. nigricana. The high level of the trap catches of female C. nigricana noted in this first field experiment gives a first indication of the potential use of such artificial kairomones in pea moth control. PMID:24508043

  1. Changes in dark chocolate volatiles during storage.

    PubMed

    Nightingale, Lia M; Cadwallader, Keith R; Engeseth, Nicki J

    2012-05-01

    Chocolate storage is critical to the quality of the final product. Inadequate storage, especially with temperature fluctuations, may lead to a change in crystal structure, which may eventually cause fat bloom. Bloom is the main cause of quality loss in the chocolate industry. The impact of various storage conditions on the flavor quality of dark chocolate was determined. Dark chocolate was stored in different conditions leading to either fat or sugar bloom and analyzed at 0, 4, and 8 weeks of storage. Changes in chocolate flavor were determined by volatile analysis and descriptive sensory evaluation. Results were analyzed by analysis of variance (ANOVA), cluster analysis, principal component analysis (PCA), and linear partial least-squares regression analysis (PLS). Volatile concentration and loss were significantly affected by storage conditions. Chocolates stored at high temperature were the most visually and texturally compromised, but volatile concentrations were affected the least, whereas samples stored at ambient, frozen, and high relative humidity conditions had significant volatile loss during storage. It was determined that high-temperature storage caused a change in crystal state due to the polymorphic shift to form VI, leading to an increase in sample hardness. Decreased solid fat content (SFC) during high-temperature storage increased instrumentally determined volatile retention, although no difference was detected in chocolate flavor during sensory analysis, possibly due to instrumental and sensory sampling techniques. When all instrumental and sensory data had been taken into account, the storage condition that had the least impact on texture, surface roughness, grain size, lipid polymorphism, fat bloom formation, volatile concentrations, and sensory attributes was storage at constant temperature and 75% relative humidity. PMID:22482444

  2. Volatilization of EPTC: Simulation and measurement

    SciTech Connect

    Baker, J.M.; Koskinen, W.C.; Dowdy, R.H.

    1996-01-01

    Many of the organic chemicals used in agricultural production are susceptible to loss from the soil surface to the atmosphere by volatilization. Adequate prediction of the impact of these chemicals on the environment thus requires consideration of both downward movement through the soil to groundwater and upward movement in the gas phase to the atmosphere. We developed a method to mechanistically simulate volatilization within the framework of a conventionally formulated solute transport model and used it to simulate the gas-phase losses of EPTC, a commonly used volatile herbicide. The model considers efflux of a trace gas at the sod surface to be a process of unsteady diffusion, interrupted intermittently by dispersive events that can be thought of as eddies at the innermost scale. Model results were compared to measurements of volatilization during the first 7 d following application of EPTC, conducted with a Bowen ratio system in a 17-ha field at Rosemount, MN. The measurements indicated a relatively large initial flux (ca. 150 g ha{sup -1} h{sup -1}) that rapidly decreased to negligible levels within a day following application. The model agreed reasonably well on the first day, if a measured value for Henry`s constant was used rather than a value estimated from the saturation vapor pressure and the solubility. However, on subsequent days the model considerably overestimated volatilization, regardless of the Henry`s constant that was used. It is likely that hysteresis in sorption/desorption, particularly as surface soil dries following herbicide incorporation, may be the primary reason why volatile losses are lower than might be predicted on the basis of equilibrium partitioning theory. 42 refs., 5 figs., 1 tab.

  3. Volatilization and Precipitation of Tellurium by Aerobic, Tellurite-Resistant Marine Microbes▿ †

    PubMed Central

    Ollivier, Patrick R. L.; Bahrou, Andrew S.; Marcus, Sarah; Cox, Talisha; Church, Thomas M.; Hanson, Thomas E.

    2008-01-01

    Microbial resistance to tellurite, an oxyanion of tellurium, is widespread in the biosphere, but the geochemical significance of this trait is poorly understood. As some tellurite resistance markers appear to mediate the formation of volatile tellurides, the potential contribution of tellurite-resistant microbial strains to trace element volatilization in salt marsh sediments was evaluated. Microbial strains were isolated aerobically on the basis of tellurite resistance and subsequently examined for their capacity to volatilize tellurium in pure cultures. The tellurite-resistant strains recovered were either yeasts related to marine isolates of Rhodotorula spp. or gram-positive bacteria related to marine strains within the family Bacillaceae based on rRNA gene sequence comparisons. Most strains produced volatile tellurides, primarily dimethyltelluride, though there was a wide range of the types and amounts of species produced. For example, the Rhodotorula spp. produced the greatest quantities and highest diversity of volatile tellurium compounds. All strains also produced methylated sulfur compounds, primarily dimethyldisulfide. Intracellular tellurium precipitates were a major product of tellurite metabolism in all strains tested, with nearly complete recovery of the tellurite initially provided to cultures as a precipitate. Different strains appeared to produce different shapes and sizes of tellurium containing nanostructures. These studies suggest that aerobic marine yeast and Bacillus spp. may play a greater role in trace element biogeochemistry than has been previously assumed, though additional work is needed to further define and quantify their specific contributions. PMID:18849455

  4. Comparative study of the volatiles' composition of healthy and larvae-infested Artemisia ordosica.

    PubMed

    Zhang, Hui; Zong, Shixiang; Luo, Youqing; Wang, Tao; Wang, Jinlin; Cao, Chuanjian

    2013-01-01

    Volatiles emitted by healthy Artemisia ordosica (Asteraceae) and plants infested with larvae of Sphenoptera sp. (Coleoptera: Buprestidae) or Holcocerus artemisiae (Lepidoptera: Cossidae) were obtained using a dynamic headspace method and analysed by automatic thermal desorption/gas chromatography/mass spectrometry (ATD/GC/MS). Twenty-eight major compounds were identified, and qualitative and quantitative differences were compared. The novel green leaf volatiles 2-hexenal, (Z)-3-hexen-1-ol, 2-hexen-1-ol 1-hexanol, and (Z)-3-hexen-1-ol acetate, the terpenoids alpha-copaene, beta-cedrene, and (E,E)-alpha-farnesene, and the ester methyl salicylate were present in all infested plants. Volatiles from healthy plants were dominated by D-limonene (32.14%), beta-pinene (16.63%), beta-phellandrene (16.06%), and sabinene (12.88%). Volatiles from Sphenoptera sp. larvae-infested plants were dominated by D-limonene (24.74%), beta-pinene (21.05%), alpha-pinene (19.39%), and sabinene (11.64%), whereas volatiles from H. artemisiae larvae-infested plants were dominated by D-limonene (31.76%), sabinene (18.49%), ocimene (15.93%), and beta-phellandrene (10.59%). In addition to the qualitative variation, a larvae-induced quantitative change in the proportion of terpenoids in the blends was also a noticeable feature. PMID:23659167

  5. Flowerhead volatile oil composition of soilless culture-grown Chrysanthemum balsamita L.

    PubMed

    Hassanpouraghdam, M B

    2009-01-01

    Hydrodistilled flowerhead volatile oil composition of soilless culture-grown Chrysanthemum balsamita L. was studied for its components by GC/MS. Thirty-one constituents were quantified, comprising 94.08% of the oil. Oxygenated monoterpenes (78%) and sesquiterpenes (sesquiterpene hydrocarbons and oxygenated sesquiterpenes) (14.88%) were the major classes of identified components occurring in higher proportions. The predominant constituents of the volatile oil were carvone (52.01%), alpha-thujone (11.04%), (E)-beta-farnesene (3.91%), limonene (2.7%) and delta-cadinol (2.18%). Five sesquiterpenoidal components, namely gamma-gurjunene (1.74%), (Z, E)-farnesol (1.16%), delta-cadinene (1.14%), alpha-cedrene (1.11%) and beta-copaene-4-alpha-ol (0.44%) were identified for the first time from the volatile oil of costmary. Considering volatile oil components, the chemical profile of flowerhead volatile oil of soilless culture-grown C. balsamita L. was comparable with previously reported wild- and field- grown plants of C. balsamita L. PMID:19401923

  6. Changes in flavor volatile composition of oolong tea after panning during tea processing.

    PubMed

    Sheibani, Ershad; Duncan, Susan E; Kuhn, David D; Dietrich, Andrea M; Newkirk, Jordan J; O'Keefe, Sean F

    2016-05-01

    Panning is a processing step used in manufacturing of some varieties of oolong tea. There is limited information available on effects of panning on oolong tea flavors. The goal of this study was to determine effects of panning on flavor volatile compositions of oolong using Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-Olfactometry (GC-O). SDE and SPME techniques were applied for extraction of volatiles in panned and unpanned teas. A total of 190 volatiles were identified from SDE and SPME extractions using GC-MS and GC-O. There were no significant differences (P > 0.05) in aldehyde or terpene contents of unpanned and panned tea. However, alcohols, ketones, acids and esters contents were significantly reduced by panning. Among 12 major volatiles previously used for identification and quality assessment of oolong tea, trans nerolidol, 2- hexenal, benzaldehyde, indole, gernaiol, and benzenacetaldehyde contents were significantly decreased (P < 0.05) by panning. Panning increased (P < 0.05) contents of linalool oxide, cis jasmone, and methyl salicylate. The GC-O study also showed an increase of aroma active compounds with sweet descriptions and decrease of aroma active compounds with fruity and smoky descriptions after panning. Panning significantly changes the volatile compositions of the tea and created new aroma active compounds. Results from this study can be used in quality assessment of panned oolong tea. PMID:27247775

  7. Olfactory responses of banana weevil predators to volatiles from banana pseudostem tissue and synthetic pheromone.

    PubMed

    Tinzaara, W; Gold, C S; Dicke, M; van Huis, A

    2005-07-01

    As a response to attack by herbivores, plants can emit a variety of volatile substances that attract natural enemies of these insect pests. Predators of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) such as Dactylosternum abdominale (Coleoptera: Hydrophilidae) and Pheidole megacephala (Hymenoptera: Formicidae), are normally found in association with weevil-infested rotten pseudostems and harvested stumps. We investigated whether these predators are attracted to such environments in response to volatiles produced by the host plant, by the weevil, or by the weevil plant complex. We evaluated predator responses towards volatiles from banana pseudostem tissue (synomones) and the synthetic banana weevil aggregation pheromone Cosmolure+ in a two-choice olfactometer. The beetle D. abdominale was attracted to fermenting banana pseudostem tissue and Cosmolure+, whereas the ant P. megacephala was attracted only to fermented pseudostem tissue. Both predators were attracted to banana pseudostem tissue that had been damaged by weevil larvae irrespective of weevil presence. Adding pheromone did not enhance predator response to volatiles from pseudostem tissue fed on by weevils. The numbers of both predators recovered with pseudostem traps in the field from banana mats with a pheromone trap were similar to those in pseudostem traps at different distance ranges from the pheromone. Our study shows that the generalist predators D. abdominale and P. megacephala use volatiles from fermented banana pseudostem tissue as the major chemical cue when searching for prey. PMID:16222791

  8. Volatile-bearing phases in carbonaceous chondrites: Compositions, modal abundance, and reaction kinetics

    NASA Technical Reports Server (NTRS)

    Ganguly, Jibamitra

    1990-01-01

    The spectral and density characteristics of Phobos and Deimos (the two small natural satellites of Mars) strongly suggest that a significant fraction of the near-earth asteroids are made of carbonaceous chondrites, which are rich in volatile components and, thus, could serve as potential resources for propellants and life supporting systems in future planetary missions. However, in order to develop energy efficient engineering designs for the extraction of volatiles, knowledge of the nature and modal abundance of the minerals in which the volatiles are structurally bound and appropriate kinetic data on the rates of the devolatilization reactions is required. Theoretical calculations to predict the modal abundances and compositions of the major volatile-bearing and other mineral phases that could develop in the bulk compositions of C1 and C2 classes (the most volatile rich classes among the carbonaceous chondrites) were performed as functions of pressure and temperature. The rates of dehydration of talc at 585, 600, 637, and 670 C at P(total) = 1 bar were determine for the reaction: Talc = 3 enstatite + quartz + water. A scanning electron microscopic study was conducted to see if the relative abundance of phases can be determined on the basis of the spectral identification and x ray mapping. The results of this study and the other studies within the project are discussed.

  9. The Influence of Spices on the Volatile Compounds of Cooked Beef Patty.

    PubMed

    Jung, Samooel; Jo, Cheorun; Kim, Il Suk; Nam, Ki Chang; Ahn, Dong Uk; Lee, Kyung Heang

    2014-01-01

    The aim of this study is to examine the influences of spices on the amounts and compositions of volatile compounds released from cooked beef patty. Beef patty with 0.5% of spice (nutmeg, onion, garlic, or ginger powder, w/w) was cooked by electronic pan until they reached an internal temperature of 75℃. A total of 46 volatile compounds (6 alcohols, 6 aldehydes, 5 hydrocarbons, 6 ketones, 9 sulfur compounds, and 14 terpenes) from cooked beef patties were detected by using purgeand- trap GC/MS. The addition of nutmeg, onion, or ginger powder significantly reduced the production of the volatile compounds via lipid oxidation in cooked beef patty when compared to those from the control. Also, the addition of nutmeg and garlic powder to beef patty generated a lot of trepans or sulfur volatile compounds, respectively. From these results, the major proportion by chemical classes such as alcohols, aldehydes, hydrocarbons, ketones, sulfur compounds, and terpenes was different depending on the spice variations. The results indicate that addition of spices to the beef patty meaningfully changes the volatile compounds released from within. Therefore, it can be concluded that spices can interact with meat aroma significantly, and thus, the character of each spice should be considered before adding to the beef patty. PMID:26760934

  10. Distribution of volatile composition in 'marion' ( rubus species hyb) blackberry pedigree.

    PubMed

    Du, Xiaofen; Finn, Chad; Qian, Michael C

    2010-02-10

    The distribution of volatile constituents in ancestral genotypes of 'Marion' blackberry's pedigree was investigated over two growing seasons. Each genotype in the pedigree had a specific volatile composition. Red raspberry was dominated by norisoprenoids, lactones, and acids. 'Logan' and 'Olallie' also had a norisoprenoid dominance but at much lower concentrations. The concentration of norisoprenoids in other blackberry genotypes was significantly lower. Terpenes and furanones were predominant in wild 'Himalaya' blackberry, whereas terpenes were the major volatiles in 'Santiam'. 'Marion', a selection from 'Chehalem' and 'Olallie', contained almost all of the volatile compounds in its pedigree at moderate amount. The chiral isomeric ratios of 11 pairs of compounds were also studied. Strong chiral isomeric preference was observed for most of the chiral compounds, and each cultivar had its unique chiral isomeric distribution. An inherent pattern was observed for some volatile compounds in the 'Marion' pedigree. Raspberry and 'Logan' had a very high concentration of beta-ionone, but was reduced by half in 'Olallie' and by another half in 'Marion' as the crossing proceeded. A high content of linalool in 'Olallie' and a low content in 'Chehalem' resulted in a moderate content of linalool in their progeny 'Marion'. However, the concentration of furaneol in 'Marion' was higher than in its parents. A high content of (S)-linalool in 'Olallie' and a racemic content of (S)-,(R)-linalool in 'Chehalem' resulted in a preference for the (S)-form in 'Marion'. PMID:20055446

  11. Trophic Complexity and the Adaptive Value of Damage-Induced Plant Volatiles

    PubMed Central

    Kaplan, Ian

    2012-01-01

    Indirect plant defenses are those facilitating the action of carnivores in ridding plants of their herbivorous consumers, as opposed to directly poisoning or repelling them. Of the numerous and diverse indirect defensive strategies employed by plants, inducible volatile production has garnered the most fascination among plant-insect ecologists. These volatile chemicals are emitted in response to feeding by herbivorous arthropods and serve to guide predators and parasitic wasps to their prey. Implicit in virtually all discussions of plant volatile-carnivore interactions is the premise that plants “call for help” to bodyguards that serve to boost plant fitness by limiting herbivore damage. This, by necessity, assumes a three-trophic level food chain where carnivores benefit plants, a theoretical framework that is conceptually tractable and convenient, but poorly depicts the complexity of food-web dynamics occurring in real communities. Recent work suggests that hyperparasitoids, top consumers acting from the fourth trophic level, exploit the same plant volatile cues used by third trophic level carnivores. Further, hyperparasitoids shift their foraging preferences, specifically cueing in to the odor profile of a plant being damaged by a parasitized herbivore that contains their host compared with damage from an unparasitized herbivore. If this outcome is broadly representative of plant-insect food webs at large, it suggests that damage-induced volatiles may not always be beneficial to plants with major implications for the evolution of anti-herbivore defense and manipulating plant traits to improve biological control in agricultural crops. PMID:23209381

  12. Potential Signatures of Semi-volatile Compounds Associated With Nuclear Processing

    SciTech Connect

    Probasco, Kathleen M.; Birnbaum, Jerome C.; Maughan, A. D.

    2002-06-01

    Semi-volatile chemicals associated with nuclear processes (e.g., the reprocessing of uranium to produce plutonium for nuclear weapons, or the separation of actinides from processing waste streams), can provide sticky residues or signatures that will attach to piping, ducting, soil, water, or other surface media. Volatile compounds, that are more suitable for electro-optical sensing, have been well studied. However, the semi-volatile compounds have not been well documented or studied. A majority of these semi-volatile chemicals are more robust than typical gaseous or liquid chemicals and can have lifetimes of several weeks, months, or years in the environment. However, large data gaps exist concerning these potential signature compounds and more research is needed to fill these data gaps so that important signature information is not overlooked or discarded. This report investigates key semi-volatile compounds associated with nuclear separations, identifies available chemical and physical properties, and discusses the degradation products that would result from hydrolysis, radiolysis and oxidation reactions on these compounds.

  13. The volatile metabolome of grapevine roots: first insights into the metabolic response upon phylloxera attack.

    PubMed

    Lawo, Nora C; Weingart, Georg J F; Schuhmacher, Rainer; Forneck, Astrid

    2011-09-01

    Many plant species respond to herbivore attack by an increased formation of volatile organic compounds. In this preliminary study we analysed the volatile metabolome of grapevine roots [Teleki 5C (Vitis berlandieri Planch. × Vitis riparia Michx.)] with the aim to gain insight into the interaction between phylloxera (Daktulosphaira vitifoliae Fitch; Hemiptera: Phylloxeridae) and grapevine roots. In the first part of the study, headspace solid phase microextraction (HS-SPME) coupled to gas chromatography - mass spectrometry (GC-MS) was used to detect and identify volatile metabolites in uninfested and phylloxera-infested root tips of the grapevine rootstock Teleki 5C. Based on the comparison of deconvoluted mass spectra with spectra databases as well as experimentally derived retention indices with literature values, 38 metabolites were identified, which belong to the major classes of plant volatiles including C6-compounds, terpenes (including modified terpenes), aromatic compounds, alcohols and n-alkanes. Based on these identified metabolites, changes in root volatiles were investigated and resulted in metabolite profiles caused by phylloxera infestation. Our preliminary data indicate that defence related pathways such as the mevalonate and/or alternative isopentenyl pyrophosphate-, the lipoxygenase- (LOX) as well as the phenylpropanoid pathway are affected in root galls as a response to phylloxera attack. PMID:21764593

  14. The volatile metabolome of grapevine roots: First insights into the metabolic response upon phylloxera attack

    PubMed Central

    Lawo, Nora C.; Weingart, Georg J.F.; Schuhmacher, Rainer; Forneck, Astrid

    2011-01-01

    Many plant species respond to herbivore attack by an increased formation of volatile organic compounds. In this preliminary study we analysed the volatile metabolome of grapevine roots [Teleki 5C (Vitis berlandieri Planch. × Vitis riparia Michx.)] with the aim to gain insight into the interaction between phylloxera (Daktulosphaira vitifoliae Fitch; Hemiptera: Phylloxeridae) and grapevine roots. In the first part of the study, headspace solid phase microextraction (HS-SPME) coupled to gas chromatography – mass spectrometry (GC–MS) was used to detect and identify volatile metabolites in uninfested and phylloxera-infested root tips of the grapevine rootstock Teleki 5C. Based on the comparison of deconvoluted mass spectra with spectra databases as well as experimentally derived retention indices with literature values, 38 metabolites were identified, which belong to the major classes of plant volatiles including C6-compounds, terpenes (including modified terpenes), aromatic compounds, alcohols and n-alkanes. Based on these identified metabolites, changes in root volatiles were investigated and resulted in metabolite profiles caused by phylloxera infestation. Our preliminary data indicate that defence related pathways such as the mevalonate and/or alternative isopentenyl pyrophosphate-, the lipoxy