Science.gov

Sample records for major ions volatile

  1. Major Odorants Released as Urinary Volatiles by Urinary Incontinent Patients

    PubMed Central

    Pandey, Sudhir Kumar; Kim, Ki-Hyun; Choi, Si On; Sa, In Young; Oh, Soo Yeon

    2013-01-01

    In this study, volatile urinary components were collected using three different types of samples from patients suffering from urinary incontinence (UI): (1) urine (A); (2) urine + non-used pad (B); and (3) urine + used pad (C). In addition, urine + non-used pad (D) samples from non-patients were also collected as a reference. The collection of urinary volatiles was conducted with the aid of a glass impinger-based mini-chamber method. Each of the four sample types (A through D) was placed in a glass impinger and incubated for 4 hours at 37 °C. Ultra pure air was then passed through the chamber, and volatile urine gas components were collected into Tedlar bags at the other end. These bag samples were then analyzed for a wide range of VOCs and major offensive odorants (e.g., reduced sulfur compounds (RSCs), carbonyls, trimethylamine (TMA), ammonia, etc.). Among the various odorants, sulfur compounds (methanethiol and hydrogen sulfide) and aldehydes (acetaldehyde, butylaldehyde, and isovaleraldehyde) were detected above odor threshold and predicted to contribute most effectively to odor intensity of urine incontinence. PMID:23823973

  2. Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds.

    PubMed

    Park, J-H; Goldstein, A H; Timkovsky, J; Fares, S; Weber, R; Karlik, J; Holzinger, R

    2013-08-01

    Numerous volatile organic compounds (VOCs) exist in Earth's atmosphere, most of which originate from biogenic emissions. Despite VOCs' critical role in tropospheric chemistry, studies for evaluating their atmosphere-ecosystem exchange (emission and deposition) have been limited to a few dominant compounds owing to a lack of appropriate measurement techniques. Using a high-mass resolution proton transfer reaction-time of flight-mass spectrometer and an absolute value eddy-covariance method, we directly measured 186 organic ions with net deposition, and 494 that have bidirectional flux. This observation of active atmosphere-ecosystem exchange of the vast majority of detected VOCs poses a challenge to current emission, air quality, and global climate models, which do not account for this extremely large range of compounds. This observation also provides new insight for understanding the atmospheric VOC budget. PMID:23929979

  3. Identification and Quantification of Oxidoselina-1,3,7(11)-Trien-8-One and Cyanidin-3-Glucoside as One of the Major Volatile and Non-Volatile Low-Molecular-Weight Constituents in Pitanga Pulp.

    PubMed

    Josino Soares, Denise; Pignitter, Marc; Ehrnhöfer-Ressler, Miriam Margit; Walker, Jessica; Montenegro Brasil, Isabella; Somoza, Veronika

    2015-01-01

    The pulp of pitanga (Eugenia uniflora L.) is used to prepare pitanga juice. However, there are no reports on the identification and quantification of the main constituents in pitanga pulp. The aim of this study was to identify and quantify the major volatile and non-volatile low-molecular-weight constituents of the pulp. Isolation of volatile compounds was performed by solvent-assisted flavor evaporation technique. Characterization of the main volatile and non-volatile constituents was performed by GC-MS, LC-MS and NMR spectroscopy. For quantitative measurements, the main volatile compound needed to be isolated from pitanga pulp to obtain a commercially not available reference standard. Cyanidin-3-glucoside was determined as one of the most abundant non-volatile pulp compound yielding 53.8% of the sum of the intensities of all ions detected by LC-MS. Quantification of cyanidin-3-glucoside in pitanga pulp resulted in a concentration of 344 ± 66.4 μg/mL corresponding to 688 ± 133 μg/g dried pulp and 530 ± 102 μg/g fruit. For the volatile fraction, oxidoselina-1,3,7(11)-trien-8-one was identified as the main volatile pulp constituent (27.7% of the sum of the intensities of all ions detected by GC-MS), reaching a concentration of 89.0 ± 16.9 μg/mL corresponding to 1.34 ± 0.25 μg/g fresh pulp and 1.03 ± 0.19 μg/g fruit. The results provide quantitative evidence for the occurrence of an anthocyanin and an oxygenated sesquiterpene as one of the major volatile and non-volatile low-molecular-weight compounds in pitanga pulp. PMID:26394146

  4. Identification and Quantification of Oxidoselina-1,3,7(11)-Trien-8-One and Cyanidin-3-Glucoside as One of the Major Volatile and Non-Volatile Low-Molecular-Weight Constituents in Pitanga Pulp

    PubMed Central

    Ehrnhöfer-Ressler, Miriam Margit; Walker, Jessica; Montenegro Brasil, Isabella; Somoza, Veronika

    2015-01-01

    The pulp of pitanga (Eugenia uniflora L.) is used to prepare pitanga juice. However, there are no reports on the identification and quantification of the main constituents in pitanga pulp. The aim of this study was to identify and quantify the major volatile and non-volatile low-molecular-weight constituents of the pulp. Isolation of volatile compounds was performed by solvent-assisted flavor evaporation technique. Characterization of the main volatile and non-volatile constituents was performed by GC-MS, LC-MS and NMR spectroscopy. For quantitative measurements, the main volatile compound needed to be isolated from pitanga pulp to obtain a commercially not available reference standard. Cyanidin-3-glucoside was determined as one of the most abundant non-volatile pulp compound yielding 53.8% of the sum of the intensities of all ions detected by LC-MS. Quantification of cyanidin-3-glucoside in pitanga pulp resulted in a concentration of 344 ± 66.4 μg/mL corresponding to 688 ± 133 μg/g dried pulp and 530 ± 102 μg/g fruit. For the volatile fraction, oxidoselina-1,3,7(11)-trien-8-one was identified as the main volatile pulp constituent (27.7% of the sum of the intensities of all ions detected by GC-MS), reaching a concentration of 89.0 ± 16.9 μg/mL corresponding to 1.34 ± 0.25 μg/g fresh pulp and 1.03 ± 0.19 μg/g fruit. The results provide quantitative evidence for the occurrence of an anthocyanin and an oxygenated sesquiterpene as one of the major volatile and non-volatile low-molecular-weight compounds in pitanga pulp. PMID:26394146

  5. Majority ion heating near the ion-ion hybrid layer in tokamaks

    SciTech Connect

    Phillips, C.K.; Hosea, J.C.; Ignat, D.; Majeski, R.; Rogers, J.H.; Schilling, G.; Wilson, J.R.

    1995-08-01

    Efficient direct majority ion heating in a deuterium-tritium (D-T) reactor-grade plasma via absorption of fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) is discussed. Majority ion heating results from resonance overlap between the cyclotron layers and the D-T ion-ion hybrid layer in hot, dense plasmas for fast waves launched with high parallel wavenumbers. Analytic and numerical models are used to explore the regime in ITER plasmas.

  6. Ion mobility spectrometry for detection of skin volatiles

    PubMed Central

    Ruzsanyi, Veronika; Mochalski, Pawel; Schmid, Alex; Wiesenhofer, Helmut; Klieber, Martin; Hinterhuber, Hartmann; Amann, Anton

    2012-01-01

    Volatile organic compounds (VOCs) released by humans through their skin were investigated in near real time using ion mobility spectrometry after gas chromatographic separation with a short multi-capillary column. VOCs typically found in a small nitrogen flow covering the skin are 3-methyl-2-butenal, 6-methylhept-5-en-2-one, sec-butyl acetate, benzaldehyde, octanal, 2-ethylhexanol, nonanal and decanal at volume fractions in the low part per billion-(ppb) range. The technique presented here may contribute to elucidating some physiological processes occurring in the human skin. PMID:23217311

  7. Major constituents and anthelmintic activity of volatile oils from leaves and flowers of Cymbopogon martini Roxb.

    PubMed

    Nirmal, S A; Girme, A S; Bhalke, R D

    2007-11-01

    The major volatile constituents of leaves and flowers of Cymbopogon martini from the volatile oil obtained by steam distillation were identified by GC/MS. Five constituents were identified from the volatile oil of leaves and flowers, which constituted about 82.49 and 75.63% of the total amount, respectively. A monoterpene, piperitone (6.00%), was identified in the flowers of C. martini; in addition, flowers were found to contain more olefinic terpenes, namely geraniol (69.63%), compared with leaves (53.41%). Leaves contain bicyclic monoterpene, nerol (24.76%) and alpha-pinene (4.32%). Anthelmintic activity of these oils was evaluated on adult Indian earthworms Pheretima posthuma and results showed that the volatile oil of C. martini flower required less time to cause paralysis and death of the earthworms. PMID:17987504

  8. Majority ion heating near the ion-ion hybrid layer in tokamaks

    SciTech Connect

    Phillips, C.K.; Hosea, J.C.; Ignat, D.; Majeski, R.; Rogers, J.H.; Schilling, G.; Wilson, J.R.

    1996-02-01

    Efficient direct majority ion heating in a deuterium-tritium (D-T) reactor-grade plasma via absorption of fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) is discussed. Majority ion heating results from resonance overlap between the cyclotron layers and the D-T ion-ion hybrid layer in hot, dense plasmas for fast waves launched with high parallel wavenumbers. Analytic and numerical models are used to explore the regime in ITER plasmas. {copyright} {ital 1996 American Institute of Physics.}

  9. Volatile signals of the major histocompatibility complex in male mouse urine.

    PubMed

    Singer, A G; Beauchamp, G K; Yamazaki, K

    1997-03-18

    Variation in the genes of the major histocompatibility complex (MHC) contributes to unique individual odors (odortypes) in mice, as demonstrated by the ability of trained mice in a Y-maze olfactometer to discriminate nearly identical inbred mice that differ genetically only at the MHC (MHC congenic mice), while they cannot distinguish genetically identical inbred mice. Similar distinctions are possible with urine, a substance that is involved in many facets of mouse chemical communication. This paper reports results supporting the hypothesis that the MHC-determined urinary odor is composed of a mixture of volatile carboxylic acids occurring in relative concentrations that are characteristic of the odortype. Y-maze behavioral testing of urine fractions from anion exchange chromatography indicates that volatile acids are necessary and sufficient to convey MHC odortype information. Diethyl ether extracts, which are expected to contain the more volatile, less polar organic acids, were also discriminable in the Y-maze olfactometer. Ether extracts of 12 different urine samples from each of two panels of MHC congenic mice were analyzed by gas chromatography. No compounds unique to urine of either genotype were detected, but compounds did appear to occur in characteristic ratios in most of the samples of each type. Nonparametric statistical analysis of the gas chromatographic data showed that eight of the peaks occurred in significantly different relative concentrations in the congenic samples. One of the peaks was shown to represent phenylacetic acid, which has implications for the mechanism of the MHC specification of odortype. PMID:9122173

  10. Toxicity of major geochemical ions to freshwater species

    EPA Science Inventory

    Extensive testing regarding the toxicity of major geochemical ions to Ceriodaphnia dubia, Hyalella azteca, and Pimephales promelas will be presented. For C. dubia, tests of single salts and binary mixtures in various dilution waters demonstrated multiple mechanisms of toxicity an...

  11. Antifungal activities of major tea leaf volatile constituents toward Colletorichum camelliae Massea.

    PubMed

    Zhang, Zheng-Zhu; Li, Ying-Bo; Qi, Li; Wan, Xiao-Chun

    2006-05-31

    A crude glycosidic fraction was prepared from fresh tea leaves and treated with the crude tea enzyme, fractions of cis-3-hexenol, linalool oxide I (cis-furanoid), linalool oxide II (trans-furanoid), linalool, methyl salicylate, geraniol, benzyl alcohol, and 2-phenylethanol were monitored to be the major aglycone moieties by analyzing the released volatiles. The amount of the released aglycone moieties is 5.8 times higher than those in free form. For investigation of the functions of the glycosidically bound form aroma constituents in tea leaves, their antifungal activities were determined by antifungal assay. Geraniol, linalool, methyl salicylate, benzyl alcohol, and 2-phenylethanol exhibited significant antifungal activities toward Colletorichum camelliae Massea, although cis-3-hexenol and linalool oxides showed weaker activities by comparison. Among them, geraniol was shown to be the most potential antifungal substance with a MIC value of 440 microg/mL. The crude glycosidic fraction prepared from tea leaves also exhibited significant antifungal activities in a wide range of concentrations from 2 to 25 mg/mL in a PDA medium. It was deduced that the glycosidically bound volatiles are formed and stored in the intact tissue of tea leaf and hydrolyzed by the actions of both the endogenous and the exogenous glycosidases to release volatiles as antifungal substances when exposed to Colletorichum camelliae Massea. The results suggested that the higher content of the bound form geraniol in tea leaves of var. sinensis might be responsible for their stronger antipathogen properties toward tea leaf blight, as opposed to those of var. assamica. PMID:16719518

  12. Major Volatiles from MSL SAM Evolved Gas Analyses: Yellowknife Bay Through Lower Mount Sharp

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Archer, P. D., Jr.; Sutter, B.; Franz, H. B.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Niles, P. B.; Stern, J. C.; Freissinet, C.; Glavin, D. P.; Atreya, S. K.; Bish, D. L.; Blake, D. F.; Mahaffy, P. R.; Navarro-Gonzalez, R.; McKay, C. P.; Wilhelm, M. B.

    2015-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of <150 µm fines from five sites at Gale Crater. Three were in Yellowknife Bay: the Rocknest aeolian bedform ("RN") and drilled Sheepbed mudstone from sites John Klein ("JK") and Cumberland ("CB"). One was drilled from the Windjana ("WJ") site on a sandstone of the Kimberly formation investigated on route to Mount Sharp. Another was drilled from the Confidence Hills ("CH") site on a sandstone of the Murray Formation at the base of Mt. Sharp (Pahrump Hills). Outcrops are sedimentary rocks that are largely of fluvial or lacustrine origin, with minor aeolian deposits.. SAM's evolved gas analysis (EGA) mass spectrometry detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments. The identity and evolution temperature (T) of evolved gases can support CheMin mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with XRD (e.g., X-ray amorphous phases). They can also give constraints on sample organic chemistry. Here, we discuss trends in major evolved volatiles from SAM EGA analyses to date.

  13. Assessment of ambient volatile organic compounds (VOCs) near major roads in urban Nanjing, China

    NASA Astrophysics Data System (ADS)

    Wang, P.; Zhao, W.

    2008-08-01

    Volatile organic compounds (VOCs) are a major component of atmospheric pollutants in Nanjing, a large city in the east of China. Accordingly, 12-h diurnal monitoring for ten consecutive days was performed adjacent to major roads in five districts, ca.1.5 m above ground level, in April, July and October 2006, and January 2007. The most numerous species of VOCs (benzene, toluene, ethylbenzene, m/ p-xylene, o-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, tetrachloromethane, trichloroethane and tetrachloroethane) were selected as the target pollutants for this field study of atmospheric distribution. The eleven VOCs were mostly found in gas phase due to their high vapor pressures. Gas-phase concentrations ranged between 0.6 and 67.9 μg m - 3 . Simultaneously, the levels of those VOCs measured near major roads were associated slightly with their regional background level. For all these areas, as expected, the high traffic area was the highest in terms of concentration. A positive correlation was also found between the VOC levels and traffic density. Our studies also provided VOC distribution, and vertical/horizontal profiles. The results show that traffic-related exposure to VOCs in major road microenvironments is higher than elsewhere and poses a potential threat to pedestrians, commuters, and traffic-exposed workers.

  14. A volatile organic analyzer for Space Station: Description and evaluation of a gas chromatography/ ion mobility

    NASA Technical Reports Server (NTRS)

    Limero, Thomas F.; James, John T.

    1994-01-01

    A Volatile Organic Analyzer (VOA) is being developed as an essential component of the Space Station's Environmental Health System (EHS) air quality monitoring strategy to provide warning to the crew and ground personnel if volatile organic compounds exceed established exposure limits. The short duration of most Shuttle flights and the relative simplicity of the contaminant removal mechanism have lessened the concern about crew exposure to air contaminants on the Shuttle. However, the longer missions associated with the Space Station, the complex air revitalization system and the proposed number of experiments have led to a desire for real-time monitoring of the contaminants in the Space Station atmosphere. Achieving the performance requirements established for the VOA within the Space Station resource (e.g., power, weight) allocations led to a novel approach that joined a gas chromatograph (GC) to an ion mobility spectrometer (IMS). The authors of this paper will discuss the rational for selecting the GC/IMS technology as opposed to the more established gas chromatography/mass spectrometry (GC/MS) for the foundation of the VOA. The data presented from preliminary evaluations will demonstrate the versatile capability of the GC/IMS to analyze the major contaminants expected in the Space Station atmosphere. The favorable GC/IMS characteristics illustrated in this paper included excellent sensitivity, dual-mode operation for selective detection, and mobility drift times to distinguish co-eluting GC peaks. Preliminary studies have shown that the GC/IMS technology can meet surpass the performance requirements of the Space Station VOA.

  15. Modeling interactions in major ion toxicity to Ceriodaphnia dubia

    EPA Science Inventory

    Various anthopogenic activities can cause exposures of freshwater systems to greatly elevated concentrations of major ions (Na, K, Ca, Mg, Cl, SO4, HCO3) with widely-varying compositions. A data set on the acute toxicity of single salts and binary salt mixtures to Ceriodaphnia d...

  16. Modeling interactions in major ion toxicity to Ceriodaphnia dubia (presentation)

    EPA Science Inventory

    Various anthropogenic activities can cause exposures of freshwater systems to greatly elevated concentrations of major ions (Na, K, Ca, Mg, Cl, SO4, HCO3) with widely-varying compositions. A data set on the acute toxicity of single salts and binary salt mixtures to Ceriodaphnia d...

  17. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    SciTech Connect

    Daisey, J.M.

    1991-11-01

    There is considerable interest in the ``unattached`` fraction of radon progeny in indoor air because of its significance to the estimation of the risks of radon exposure. Because of its high mobility in air, the unattached fraction is more efficiently deposited in the respiratory tract. Variation in the diameter of the ``unattached`` fraction and in its diffusion coefficient can be due to clustering of other atmospheric species around the {sup 218}PoO{sub 2}{sup +} ion. The purpose of this study was to investigate the potential for the formation of clusters of vapor phase organic compounds, found in indoor air, around the {sup 218}PoO{sub 2}{sup +} ion and to determine which were most likely to form clusters. A secondary purpose was to provide a compilation of measurements of indoor organic compounds for future experiments and theoretical calculations by the radon research community. The classical charged liquid droplet theory (Thomson equation) was used to estimate the Gibbs free energy of ion-induced nucleation and to provide an indication of the indoor organic compounds most likely to undergo ion-induced nucleation. Forty-four volatile and semi-volatile organic compounds out of the more than 300 which have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the {sup 218}PoO{sub 2}{sup +} ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones and the acetates) and the semi-volatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos).

  18. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    SciTech Connect

    Daisey, J.M.

    1991-11-01

    There is considerable interest in the unattached'' fraction of radon progeny in indoor air because of its significance to the estimation of the risks of radon exposure. Because of its high mobility in air, the unattached fraction is more efficiently deposited in the respiratory tract. Variation in the diameter of the unattached'' fraction and in its diffusion coefficient can be due to clustering of other atmospheric species around the {sup 218}PoO{sub 2}{sup +} ion. The purpose of this study was to investigate the potential for the formation of clusters of vapor phase organic compounds, found in indoor air, around the {sup 218}PoO{sub 2}{sup +} ion and to determine which were most likely to form clusters. A secondary purpose was to provide a compilation of measurements of indoor organic compounds for future experiments and theoretical calculations by the radon research community. The classical charged liquid droplet theory (Thomson equation) was used to estimate the Gibbs free energy of ion-induced nucleation and to provide an indication of the indoor organic compounds most likely to undergo ion-induced nucleation. Forty-four volatile and semi-volatile organic compounds out of the more than 300 which have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the {sup 218}PoO{sub 2}{sup +} ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones and the acetates) and the semi-volatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos).

  19. Effects of light and copper ions on volatile aldehydes of milk and milk fractions

    SciTech Connect

    Jeno, W.; Bassette, R.; Crang, R.E.

    1988-09-01

    Raw, laboratory-pasteurized and plant-pasteurized homogenized milks were exposed to copper ions (5 ppm), to sunlight or fluorescent light and the effects determined on the composition of volatile aldehydes. The greatest change due to copper treatment was an increase in n-hexanal; acetaldehyde showed the least response in each of the sources of milk. The responses were similar from all three sources of milk with laboratory-pasteurized milk samples showing the greatest responses for each aldehyde analyzed. Similar milk samples exposed to sunlight also showed an increase in volatile aldehydes from all milk sources but with the greatest response being acetaldehyde and n-pentanal components. The milk fraction most susceptible to changes in the presence of light was neutralized whey, whereas resuspended cream was most susceptible to copper exposure. Overall, dialyzed whey appeared to be influenced more than other milk fractions by both light and copper ions.

  20. Identification and quantification of volatile organic compounds using systematic single-ion chromatograms

    SciTech Connect

    Tsuchiya, Yoshio; Kanabus-Kaminska, J.M.

    1996-12-31

    In order to determine the background level of volatile organic compounds (VOCs) in Canadian indoor air, a method of identification and quantification at a level of 0.3 {micro}g/m{sup 3} using systematic single-ion chromatograms (SICs) has been developed. The compounds selected for measurement included several halogenated compounds, oxygen compounds, terpenes, and C8 to C16 n-alkanes. Air samples were taken in 3-layered sorbent tubes and trapped compounds were thermally desorbed into the helium stream of a gas chromatograph/mass spectrometer (GC/MS) analytical system. Total quantities of volatile organic compounds (TVOCs) were measured using a flame ionization detector (FID). Individual compounds were analyzed by a GC/MS. For the identification of compounds in the main stream GC effluent, both the specific GC retention and mass spectra were used. About 50 selected SICs were routinely extracted from a total ion chromatogram (TIC) to detect and quantify compounds. For each compound, a single representative ion was selected. The specific retention was calculated from the elution time on the SIC. For quantification, ion counts under a peak in the SIC were measured. The single-ion MS response factor for some of the compounds was experimentally determined using a dynamic reference procedure.

  1. The major-ion composition of Silurian seawater

    USGS Publications Warehouse

    Brennan, S.T.; Lowenstein, T.K.

    2002-01-01

    One-hundred fluid inclusions in Silurian marine halite were analyzed in order to determine the major-ion composition of Silurian seawater. The samples analyzed were from three formations in the Late Silurian Michigan Basin, the A-1, A-2, and B Evaporites of the Salina Group, and one formation in the Early Silurian Canning Basin (Australia), the Mallowa Salt of the Carribuddy Group. The results indicate that the major-ion composition of Silurian seawater was not the same as present-day seawater. The Silurian ocean had lower concentrations of Mg2+, Na+, and SO2-4, and much higher concentrations of Ca2+ relative to the ocean's present-day composition. Furthermore, Silurian seawater had Ca2+ in excess of SO2-4. Evaporation of Silurian seawater of the composition determined in this study produces KC1-type potash minerals that lack the MgSO4-type late stage salts formed during the evaporation of present-day seawater. The relatively low Na+ concentrations in Silurian seawater support the hypothesis that oscillations in the major-ion composition of the oceans are primarily controlled by changes in the flux of mid-ocean ridge brine and riverine inputs and not global or basin-scale, seawater-driven dolomitization. The Mg2+/Ca2+ ratio of Silurian seawater was ~1.4, and the K+/Ca2+ ratio was ~0.3, both of which differ from the present-day counterparts of 5 and 1, respectively. Seawaters with Mg2+/Ca2+ 2 (e.g., modern seawater) facilitate the precipitation of aragonite and high-magnesian calcite. Therefore, the early Paleozoic calcite seas were likely due to the low Mg2+/Ca2+ ratio of seawater, not the pCO2 of the Silurian atmosphere. Copyright ?? 2002 Elsevier Science Ltd.

  2. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent; Kellogg, James; Jaeger, Ferzan; Raaen, Eric; Tan, Florence

    2014-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.

  3. Volatilization of PM2.5 Inorganic Ions in a Filter Pack System with Backup Filter and Denuders

    NASA Astrophysics Data System (ADS)

    Kim, C.; Choi, Y.; Ghim, Y.

    2012-12-01

    Concentrations of PM2.5 inorganic ions were measured at the rooftop of the 5-story building on the hill (37.02oN, 127.16oE, 167 m above sea level) in the Global Campus of Hankuk University of Foreign Studies, about 35 km southeast of downtown Seoul, Korea. The measurements were made four times during one-year span between 2011 and 2012 by considering the climate of Korea with distinct seasonal variations: July 29 to August 26 (summer); September 14 to October 13 (fall); November 28 to January 4 (winter); February 14 to May 31 (spring). A filter pack system was composed of PM2.5 cyclone, two annular denuders, Teflon filter, nylon filter, and an annular denuder, in series. Two annular denuders were to remove acidic and basic gases prior to collecting particles on the Teflon filter. Nylon filter and an annular denuder were to back up the Teflon filter by absorbing acidic and basic gases, respectively, which were volatilized from collected particles on the Teflon filter. Samplings were made for 24 hours every day. Extracts from filters and denuders were analyzed by ion chromatography to measure concentrations of anions (SO42-, NO3-, Cl-) and cations (Ca2+, Mg2+, NH4+, Na+, K+). The amounts of ionic species absorbed at the backup nylon filter and denuder were examined in terms of meteorological parameters, the amounts of gases removed in front of the Teflon filter, and the amounts of particulate ions collected on the Teflon filter. Major factors to affect the volatilization from particles collected on the Teflon filter were discussed.

  4. Major ion correlation in groundwater of Kancheepuram Region, South India.

    PubMed

    Rajmohan, N; Elango, L; Ramachandran, S; Natarajan, M

    2003-01-01

    Groundwater samples were collected from both dugwells and borewells in an intensively irrigated area of Kancheepuram Taluk, Tamil Nadu. pH, EC and TDS of groundwater samples were measured in the site. The collected samples were analysed in the laboratory for Ca, Mg, Na, K, Cl, HCO3, CO3, SO4, NO3, P-PO4 and Si-SiO2. The results are used for inter elemental correlation analysis which indicates that most of the elements having good correlation. Piper Trilinear diagram is used to find out the hydrochemical type of groundwater which shows that most of them are CaHCO3 and the remaining are CaMgCl type. Hydrochemical characteristics of groundwater indicate that silicate weathering reaction is a probable source for high concentration of major ions. PMID:14723276

  5. Common volatiles are major attractants for neonate larvae of the specialist flea beetle Altica koreana (Coleoptera: Chrysomelidae)

    NASA Astrophysics Data System (ADS)

    Xue, Huai-Jun; Yang, Xing-Ke

    2008-07-01

    Olfactory stimuli play an important role in the host searching of larval phytophagous insects. Previous studies indicate that larvae that have to find feeding sites after hatching are generally attracted to host volatiles. However, there are few studies on the olfactory responses of neonate larvae to host volatiles in cases when those larvae hatched on the host plant. In the present study, we determined the olfactory responses of neonate larvae of the specialist flea beetle, Altica koreana Ogloblin, to host and six non-host plants, using a static-air “arena.” Larvae responded significantly to the host plant Potentilla chinensis Ser. and five of six non-host plants, compared to the control. Larvae did not prefer the host plant over the non-host plants (except Artemisia sp.) when offered a choice. Additionally, odours of a non-host plant, which were unattractive to neonate larvae, may have masked the attractive odour of the host plant. These results indicate that common volatiles can play a major role in attracting larvae of this specialist to plants, but attraction to such odours may not be the major mechanism of host choice.

  6. Multi-Capillary Column-Ion Mobility Spectrometry of Volatile Metabolites Emitted by Saccharomyces Cerevisiae

    PubMed Central

    Halbfeld, Christoph; Ebert, Birgitta E.; Blank, Lars M.

    2014-01-01

    Volatile organic compounds (VOCs) produced during microbial fermentations determine the flavor of fermented food and are of interest for the production of fragrances or food additives. However, the microbial synthesis of these compounds from simple carbon sources has not been well investigated so far. Here, we analyzed the headspace over glucose minimal salt medium cultures of Saccharomyces cerevisiae using multi-capillary column-ion mobility spectrometry (MCC-IMS). The high sensitivity and fast data acquisition of the MCC-IMS enabled online analysis of the fermentation off-gas and 19 specific signals were determined. To four of these volatile compounds, we could assign the metabolites ethanol, 2-pentanone, isobutyric acid, and 2,3-hexanedione by MCC-IMS measurements of pure standards and cross validation with thermal desorption–gas chromatography-mass spectrometry measurements. Despite the huge biochemical knowledge of the biochemistry of the model organism S. cerevisiae, only the biosynthetic pathways for ethanol and isobutyric acid are fully understood, demonstrating the considerable lack of research of volatile metabolites. As monitoring of VOCs produced during microbial fermentations can give valuable insight into the metabolic state of the organism, fast and non-invasive MCC-IMS analyses provide valuable data for process control. PMID:25197771

  7. The Major-ion Composition of Permian Seawater

    SciTech Connect

    Lowenstein, T K.; Timofeeff, Michael N.; Kovalevych, Volodymyr M.; Horita, Juske

    2005-01-01

    The major-ion (Mg{sup 2+}, Ca{sup 2+}, Na{sup +}, K{sup +}, SO{sub 4}{sup 2-}, and Cl{sup -}) composition of Permian seawater was determined from chemical analyses of fluid inclusions in marine halites. New data from the Upper Permian San Andres Formation of Texas (274--272 Ma) and Salado Formation of New Mexico (251 Ma), analyzed by the environmental scanning electron microscopy (ESEM) X-ray energy-dispersive spectrometry (EDS) method, along with published chemical compositions of fluid inclusions in Permian marine halites from North America (two formations of different ages) and the Central and Eastern European basins (eight formations of four different ages) show that Permian seawater shares chemical characteristics with modern seawater, including SO{sub 4}{sup 2-} > Ca{sup 2+} at the point of gypsum precipitation, evolution into Mg{sup 2+}-Na{sup +}-K{sup +}-SO{sub 4}{sup 2-}-Cl{sup -} brines, and Mg{sup 2+}/K{sup +} ratios {approx} 5. Permian seawater, however, is slightly depleted in SO{sub 4}{sup 2-} and enriched in Ca{sup 2+}, although modeling results do not rule out Ca{sup 2+} concentrations close to those in present-day seawater. Na{sup +} and Mg{sup 2+} in Permian seawater are close to (slightly below) their concentrations in modern seawater. Permian and modern seawater are both classified as aragonite seas, with Mg{sup 2+}/Ca{sup 2+} ratios >2, conditions favorable for precipitation of aragonite and magnesian calcite as ooids and cements. The chemistry of Permian seawater was modeled using the chemical composition of brine inclusions for three periods: Lower Permian Asselian-Sakmarian (296--283 Ma), Lower Permian Artinskian-Kungurian (283--274 Ma), and Upper Permian Tatarian (258--251 Ma). Parallel changes in the chemistry of brine inclusions from equivalent age evaporites in North America, Central Europe, and Eastern Europe show that seawater underwent secular variations in chemistry over the 50 million years of the Permian. Modeled SO{sub 4}{sup 2

  8. Major-ion chemistry of the Rocky Mountain snowpack, USA

    USGS Publications Warehouse

    Turk, J.T.; Taylor, H.E.; Ingersoll, G.P.; Tonnessen, K.A.; Clow, D.W.; Mast, M.A.; Campbell, D.H.; Melack, J.M.

    2001-01-01

    During 1993-97, samples of the full depth of the Rocky Mountain snowpack were collected at 52 sites from northern New Mexico to Montana and analyzed for major-ion concentrations. Concentrations of acidity, sulfate, nitrate, and calcium increased from north to south along the mountain range. In the northern part of the study area, acidity was most correlated (negatively) with calcium. Acidity was strongly correlated (positively) with nitrate and sulfate in the southern part and for the entire network. Acidity in the south exceeded the maximum acidity measured in snowpack of the Sierra Nevada and Cascade Mountains. Principal component analysis indicates three solute associations we characterize as: (1) acid (acidity, sulfate, and nitrate), (2) soil (calcium, magnesium, and potassium), and (3) salt (sodium, chloride, and ammonium). Concentrations of acid solutes in the snowpack are similar to concentrations in nearby wetfall collectors, whereas, concentrations of soil solutes are much higher in the snowpack than in wetfall. Thus, dryfall of acid solutes during the snow season is negligible, as is gypsum from soils. Snowpack sampling offers a cost-effective complement to sampling of wetfall in areas where wetfall is difficult to sample and where the snowpack accumulates throughout the winter. Copyright ?? 2001 .

  9. Revalidation of the Volatile Organic Analyzer Following a Major On-Orbit Maintenance Activity

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; James, John T.

    2007-01-01

    The Volatile Organic Analyzer (VOA) contributes to the assessment of air quality aboard the International Space Station (ISS) by identifying and quantifying target airborne volatile organic contaminants in the module air. This on-orbit contaminant monitoring capability becomes particularly important during an air quality degradation event such as a system leak. During several ISS air quality degradations, the VOA has generated near real-time data that was used to make decisions or to better understand the contingency. The VOA was operational from January 2002 through June 2003, during which time it was validated by comparing VOA data to simultaneously acquired grab sample containers (GSCs). In January 2003, one of the two analytical channels of the VOA was shutdown because of a component failure, but a redundant channel continued to supply the necessary analytical data. In June 2003, the sole remaining channel was deactivated. Initial assessments of the channel shutdowns pointed to failed fuses or heaters, but neither was considered repairable on orbit. In 2005, it was determined that failed fuses could be replaced on orbit and the crew conducted a diagnostic procedure to identify the failed component. The crew discovered that both channels incurred failed fuses, which lead to a subsequent on orbit maintenance activity and return of the VOA to operational status in December 2005. The VOA has been providing data on the ISS atmosphere since its reactivation in 2005 and this paper will present the VOA data collected during 2006. Special emphasis will be placed upon the revalidation of the repaired VOA using GSCs as well as a summary of the diagnostic and repair procedures.

  10. A Volatile Organic Analyzer for Space Station - Description and evaluation of a gas chromatography/ion mobility spectrometer

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Brokenshire, John; Cumming, Colin; Overton, ED; Carney, Ken; Cross, Jay; Eiceman, Gary; James, John

    1992-01-01

    An on-board Volatile Organic Analyzer (VOA), an essential component of the Environmental Health System (EHS) air-quality monitoring strategy, is described. The strategy is aimed at warning the crew and ground personnel if volatile compounds exceed safe exposure limits. The VOA uses a combination of gas chromatography (GC) and ion-mobility spectrometry (IMS) for environmental monitoring and analysis. It is concluded that the VOA dual-mode detection capability and the ion mobilities in the drift region are unique features that can assist in the resolution of coeluting GC peaks. The VOA is capable of accurately identifying and quantifying target compounds in a complex mixture.

  11. Ethylene and 1-MCP regulate major volatile biosynthetic pathways in apple fruit.

    PubMed

    Yang, Xiaotang; Song, Jun; Du, Lina; Forney, Charles; Campbell-Palmer, Leslie; Fillmore, Sherry; Wismer, Paul; Zhang, Zhaoqi

    2016-03-01

    The effects of ethylene and 1-methylcyclopropene (1-MCP) on apple fruit volatile biosynthesis and gene expression were investigated. Statistical analysis identified 17 genes that changed significantly in response to ethylene and 1-MCP treatments. Genes encoding branched-chain amino acid aminotransferase (BCAT), aromatic amino acid aminotransferase (ArAT) and amino acid decarboxylases (AADC) were up-regulated during ripening and further enhanced by ethylene treatment. Genes related to fatty acid synthesis and metabolism, including acyl-carrier-proteins (ACPs), malonyl-CoA:ACP transacylase (MCAT), acyl-ACP-desaturase (ACPD), lipoxygenase (LOX), hydroperoxide lyase (HPL), alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC2), β-oxidation, acyl-CoA synthetase (ACS), enoyl-CoA hydratase (ECHD), acyl-CoA dehydrogenase (ACAD), and alcohol acyltransferases (AATs) also increased during ripening and in response to ethylene treatment. Allene oxide synthase (AOS), alcohol dehydrogenase 1 (ADH1), 3-ketoacyl-CoA thiolase and branched-chain amino acid aminotransferase 2 (BCAT2) decreased in ethylene-treated fruit. Treatment with 1-MCP and ethylene generally produced opposite effects on related genes, which provides evidence that regulation of these genes is ethylene dependent. PMID:26471562

  12. Migration of volatile organic compounds from attached garages to residences: a major exposure source.

    PubMed

    Batterman, Stuart; Jia, Chunrong; Hatzivasilis, Gina

    2007-06-01

    Vehicle garages often contain high concentrations of volatile organic compounds (VOCs) that may migrate into adjoining residences. This study characterizes VOC concentrations, exposures, airflows, and source apportionments in 15 single-family houses with attached garages in southeast Michigan. Fieldwork included inspections to determine possible VOC sources, deployment of perfluorocarbon tracer (PFT) sources in garages and occupied spaces, and measurements of PFT, VOC, and CO(2) concentrations over a 4-day period. Air exchange rates (AERs) averaged 0.43+/-0.37 h(-1) in the houses and 0.77+/-0.51 h(-1) in the garages, and air flows from garages to houses averaged 6.5+/-5.3% of the houses' overall air exchange. A total of 39 VOC species were detected indoors, 36 in the garage, and 20 in ambient air. Garages showed high levels of gasoline-related VOCs, e.g., benzene averaged 37+/-39 microg m(-3). Garage/indoor ratios and multizone IAQ models show that nearly all of the benzene and most of the fuel-related aromatics in the houses resulted from garage sources, confirming earlier reports that suggested the importance of attached garages. Moreover, doses of VOCs such as benzene experienced by non-smoking individuals living in houses with attached garages are dominated by emissions in garages, a result of exposures occurring in both garage and house microenvironments. All of this strongly suggests the need to better control VOC emissions in garages and contaminant migration through the garage-house interface. PMID:17350611

  13. Determination of volatile fatty acids in landfill leachates by ion-exclusion chromatography.

    PubMed

    Yamamoto, Atsushi; Yasuhara, Akio; Kodama, Shuji; Matsunaga, Akinobu; Suzuki, Shigeru; Mohri, Shino; Yamada, Masato

    2004-03-01

    An ion-exclusion chromatographic method with on-line desalinization for the determination of volatile fatty acids in landfill leachates is described. Highly sensitive conductivity detection of the organic acids was achieved by using dilute p-hydroxybenzoic acid solution as an eluent. Interference with mineral acids was reduced by treatment with barium chloride solution prior to desalinization. A silver-loaded cation-exchange guard column for the desalinization was installed in series with the analytical column to avoid the contamination of organic acids. This method features detection limits of 0.01 mg L(-1) formic acid, 0.02 mg L(-1) acetic acid, 0.05 mg L(-1) propionic acid, and 0.1 mg L(-1) butyric acid, respectively, with an injection of 20 microL sample. Application of the on-line desalinization LC method is illustrated for leachate samples from a Japanese sanitary landfill. PMID:15334921

  14. Making healthier or killing enemies? Bacterial volatile-elicited plant immunity plays major role upon protection of Arabidopsis than the direct pathogen inhibition.

    PubMed

    Sharifi, Rouhallah; Ryu, Choong-Min

    2016-01-01

    Bacterial volatiles protect plants either by directly inhibiting a pathogenic fungus or by improving the defense capabilities of plants. The effect of bacterial volatiles on fungal growth was dose-dependent. A low dosage did not have a noticeable effect on Botrytis cinerea growth and development, but was sufficient to elicit induced resistance in Arabidopsis thaliana. Bacterial volatiles displayed negative effects on biofilm formation on a polystyrene surface and in in planta leaf colonization of B. cinerea. However, bacterial volatile-mediated induced resistance was the major mechanism mediating protection of plants from B. cinerea. It was responsible for more than 90% of plant protection in comparison with direct fungal inhibition. Our results broaden our knowledge of the role of bacterial volatiles in plant protection. PMID:27574539

  15. Making healthier or killing enemies? Bacterial volatile-elicited plant immunity plays major role upon protection of Arabidopsis than the direct pathogen inhibition

    PubMed Central

    Sharifi, Rouhallah; Ryu, Choong-Min

    2016-01-01

    ABSTRACT Bacterial volatiles protect plants either by directly inhibiting a pathogenic fungus or by improving the defense capabilities of plants. The effect of bacterial volatiles on fungal growth was dose-dependent. A low dosage did not have a noticeable effect on Botrytis cinerea growth and development, but was sufficient to elicit induced resistance in Arabidopsis thaliana. Bacterial volatiles displayed negative effects on biofilm formation on a polystyrene surface and in in planta leaf colonization of B. cinerea. However, bacterial volatile-mediated induced resistance was the major mechanism mediating protection of plants from B. cinerea. It was responsible for more than 90% of plant protection in comparison with direct fungal inhibition. Our results broaden our knowledge of the role of bacterial volatiles in plant protection. PMID:27574539

  16. VOLATILE ORGANIC COMPOUNDS IN 600 U.S. HOMES: MAJOR SOURCES OF PERSONAL EXPOSURE

    EPA Science Inventory

    The USEPA carried out the Total Exposure Assessment Methodology (TEAM) Study (1980-85) on 600 subjects in five cities representing a total population of more than 700,000 persons. Personal exposures to all prevalent target compounds exceeded outdoor concentrations. Major sources ...

  17. Major ion toxicity of six produced waters to three freshwater species: Application of ion toxicity models and TIE procedures

    SciTech Connect

    Tietge, J.E.; Hockett, J.R.; Evans, J.M.

    1997-10-01

    Previous research to characterize the acute toxicity of major ions to freshwater organisms resulted in the development of statistical toxicity models for three freshwater species (Ceriodaphnia dubia, Pimephales promelas, and Daphnia magna). These ion toxicity models estimate the toxicity of seven major ions utilizing logistic regression. In this study, the ion toxicity models were used in conjunction with Phase 1 toxicity identification evaluation (TIE) procedures to evaluate the contribution of major ion toxicity to the total toxicity of six produced water samples ranging in total salinity from 1.7 to 58.1 g/L. Initial toxicities of all six samples were compared to the model predictions. Four produced waters were found to have toxicity consistent with toxicity attributable to major ion concentrations only. Two produced waters were found to exhibit more toxicity than expected from ion concentrations alone. These samples were subjected to Phase 1 TIE procedures. Toxicities were reduced by specific Phase 1 TIE manipulations to those predicted by the ion toxicity models. Mock effluents were used to verify the results. The combination of the ion toxicity models with Phase 1 TIE procedures successfully quantified the toxicity due to major ions in six produced water samples.

  18. Volatile organic compounds in 600 US homes: major sources of personal exposure

    SciTech Connect

    Wallace, L.; Clayton, C.A.

    1987-05-01

    The USEPA carried out the Total Exposure Assessment Methodology (TEAM) Study (1980-85) on 600 subjects in five cities representing a total population of more than 700,000 persons. Personal exposures to all prevalent target compounds exceeded outdoor concentrations. Major sources were smoking (benzene, styrene, xylenes, and octane); using hot water (chloroform); wearing dry-cleaned clothes (tetrachloroethylene); and using moth crystals or room air deodorants (para-dichlorobenzene). Eleven of 14 occupations also showed elevated exposures to one or more chemicals (particularly aromatics). Auto related activities (lengthy commuting, filling gas tanks) were associated with increased exposures to several aromatics. Breath concentrations were significantly associated with personal air exposures but not with outdoor concentrations. Residence in major chemical-manufacturing and petroleum-refining areas did not significantly affect personal exposures.

  19. Evaluation of NO+ reagent ion chemistry for online measurements of atmospheric volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Koss, Abigail R.; Warneke, Carsten; Yuan, Bin; Coggon, Matthew M.; Veres, Patrick R.; de Gouw, Joost A.

    2016-07-01

    NO+ chemical ionization mass spectrometry (NO+ CIMS) can achieve fast (1 Hz and faster) online measurement of trace atmospheric volatile organic compounds (VOCs) that cannot be ionized with H3O+ ions (e.g., in a PTR-MS or H3O+ CIMS instrument). Here we describe the adaptation of a high-resolution time-of-flight H3O+ CIMS instrument to use NO+ primary ion chemistry. We evaluate the NO+ technique with respect to compound specificity, sensitivity, and VOC species measured compared to H3O+. The evaluation is established by a series of experiments including laboratory investigation using a gas-chromatography (GC) interface, in situ measurement of urban air using a GC interface, and direct in situ measurement of urban air. The main findings are that (1) NO+ is useful for isomerically resolved measurements of carbonyl species; (2) NO+ can achieve sensitive detection of small (C4-C8) branched alkanes but is not unambiguous for most; and (3) compound-specific measurement of some alkanes, especially isopentane, methylpentane, and high-mass (C12-C15) n-alkanes, is possible with NO+. We also demonstrate fast in situ chemically specific measurements of C12 to C15 alkanes in ambient air.

  20. The major-ion composition of Carboniferous seawater

    NASA Astrophysics Data System (ADS)

    Holt, Nora M.; García-Veigas, Javier; Lowenstein, Tim K.; Giles, Peter S.; Williams-Stroud, Sherilyn

    2014-06-01

    The major-ion chemistry (Na+, Mg2+, Ca2+, K+, SO42-, and Cl-) of Carboniferous seawater was determined from chemical analyses of fluid inclusions in marine halites, using the cryo scanning electron microscopy (Cryo-SEM) X-ray energy-dispersive spectrometry (EDS) technique. Fluid inclusions in halite from the Mississippian Windsor and Mabou Groups, Shubenacadie Basin, Nova Scotia, Canada (Asbian and Pendleian Substages, 335.5-330 Ma), and from the Pennsylvanian Paradox Formation, Utah, USA, (Desmoinesian Stage 309-305 Ma) contain Na+-Mg2+-K+-Ca2+-Cl- brines, with no measurable SO42-, which shows that the Carboniferous ocean was a “CaCl2 sea”, relatively enriched in Ca2+ and low in SO42- with equivalents Ca2+ > SO42- + HCO3-. δ34S values from anhydrite in the Mississippian Shubenacadie Basin (13.2-14.0 ‰) and the Pennsylvanian Paradox Formation (11.2-12.6 ‰) support seawater sources. Br in halite from the Shubenacadie Basin (53-111 ppm) and the Paradox Basin (68-147 ppm) also indicate seawater parentages. Carboniferous seawater, modeled from fluid inclusions, contained ∼22 mmol Ca2+/kg H2O (Mississippian) and ∼24 mmol Ca2+/kg H2O (Pennsylvanian). Estimated sulfate concentrations are ∼14 mmol SO42-/kg H2O (Mississippian), and ∼12 mmol SO42-/kg H2O (Pennsylvanian). Calculated Mg2+/Ca2+ ratios are 2.5 (Mississippian) and 2.3 (Pennsylvanian), with an estimated range of 2.0-3.2. The fluid inclusion record of seawater chemistry shows a long period of CaCl2 seas in the Paleozoic, from the Early Cambrian through the Carboniferous, when seawater was enriched in Ca2+ and relatively depleted in SO42-. During this ∼200 Myr interval, Ca2+ decreased and SO42- increased, but did not cross the Ca2+-SO42- chemical divide to become a MgSO4 sea (when SO42- in seawater became greater than Ca2+) until the latest Pennsylvanian or earliest Permian (∼309-295 Ma). Seawater remained a MgSO4 sea during the Permian and Triassic, for ∼100 Myr. Fluid inclusions also record

  1. Volatile Metabolites

    PubMed Central

    Rowan, Daryl D.

    2011-01-01

    Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243

  2. A method for measuring semi- and non-volatile organic halogens by combustion ion chromatography.

    PubMed

    Miyake, Yuichi; Kato, Mika; Urano, Kohei

    2007-01-12

    Recent studies have shown that various semi- and non-volatile organohalogen compounds are ubiquitous in the environment: these include halogenated dioxins including chlorinated dioxins, other persistent organic pollutants (POPs), brominated flame retardants (BFRs), and perfluorooctane sulfonate (PFOS). However, monitoring and assessment of these compounds by the analyses of individual compounds and their isomers is onerous because of their low environmental concentrations and large number of compounds. In this study, we have developed a new method that is capable of screening and monitoring an array of organohalogen compounds efficiently by combustion ion chromatography (CIC) - the new analyzer that serially connects combustion furnace and ion chromatograph. Analyzer performance was evaluated in terms of its applicability, reproducibility, and sensitivity as limit of detection (LOD). Recoveries of organochlorine, organobromine, and organoiodine compounds by the CIC were between 97 and 105%; those of organofluorine compounds were from 86 to 91%. In all cases, the relative standard deviation of five analyses was 4% or smaller. The analyzer would exhibit good sensitivity for various environmental matrices (e.g., 2.8-31ng-X/g-soil, 1.4-16ng-X/L-water, and 9.2-100ng-X/m3N-gas). The method is fast and can provide information regarding the occurrence of organohalogen compounds within 1 or 2 days after sampling. Applicability of the new method for the assessment of contamination in flue gas and fly ash was also demonstrated. Our results show that the method is efficient to investigate emission sources and areas contaminated by organohalogen compounds. PMID:17109873

  3. Volatile composition of Brassica oleracea L. var. costata DC leaves using solid-phase microextraction and gas chromatography/ion trap mass spectrometry.

    PubMed

    de Pinho, Paula Guedes; Valentão, Patrícia; Gonçalves, Rui F; Sousa, Carla; Andrade, Paula B

    2009-08-01

    Volatile and semi-volatile components of internal and external leaves of Brassica oleracea L. var. costata DC, grown under different fertilization regimens, were determined by headspace solid-phase microextraction (HS-SPME) combined with gas chromatography/ion trap mass spectrometry (GC/ITMS). Forty-one volatiles and non-volatile components were formally identified and thirty others were tentatively identified. Qualitative and quantitative differences were noticed between internal and external leaves. In general, internal leaves exhibited more aldehydes and sulfur volatile compounds than external ones, and less ketone, terpenes and norisoprenoid compounds. The fertilization regimens influenced considerably the volatile profile. Fertilizations with higher levels of sulfur produced Brassica leaves with more sulfur volatiles. In opposition, N and S fertilization led to leaves with lower levels of norisoprenoids and terpenes. PMID:19579264

  4. Characteristics of major secondary ions in typical polluted atmospheric aerosols during autumn in central Taiwan.

    PubMed

    Fang, Guor-Cheng; Lin, Shih-Chieh; Chang, Shih-Yu; Lin, Chuan-Yao; Chou, Charles-C K; Wu, Yun-Jui; Chen, Yu-Chieh; Chen, Wei-Tzu; Wu, Tsai-Lin

    2011-06-01

    In autumn of 2008, the chemical characteristics of major secondary ionic aerosols at a suburban site in central Taiwan were measured during an annually occurring season of high pollution. The semicontinuous measurement system measured major soluble inorganic species, including NH(4)(+), NO(3)(-), and SO(4)(2-), in PM(10) with a 15 min resolution time. The atmospheric conditions, except for the influences of typhoons, were dominated by the local sea-land breeze with clear diurnal variations of meteorological parameters and air pollutant concentrations. To evaluate secondary aerosol formation at different ozone levels, daily ozone maximum concentration (O(3,daily max)) was used as an index of photochemical activity for dividing between the heavily polluted period (O(3,daily max) ≧80 ppb) and the lightly polluted period (O(3,daily max)<80 ppb). The concentrations of PM(10), NO(3)(-), SO(4)(2-), NH(4)(+) and total major ions during the heavily polluted period were 1.6, 1.9, 2.4, 2.7 and 2.3 times the concentrations during the lightly polluted period, respectively. Results showed that the daily maximum concentrations of PM(10) occurred around midnight and the daily maximum ozone concentration occurred during daytime. The average concentration of SO(2) was higher during daytime, which could be explained by the transportation of coastal industry emissions to the sampling site. In contrast, the high concentration of NO(2) at night was due to the land breeze flow that transport inland urban air masses toward this site. The simulations of breeze circulations and transitions were reflected in transports and distributions of these pollutants. During heavily polluted periods, NO(3)(-) and NH(4)(+) showed a clear diurnal variations with lower concentrations after midday, possibly due to the thermal volatilization of NH(4)NO(3) during daytime and transport of inland urban plume at night. The diurnal variation of PM(10) showed the similar pattern to that of NO(3)(-) and NH(4

  5. Elevated major ion concentrations inhibit larval mayfly growth and development.

    PubMed

    Johnson, Brent R; Weaver, Paul C; Nietch, Christopher T; Lazorchak, James M; Struewing, Katherine A; Funk, David H

    2015-01-01

    Anthropogenic disturbances, including those from developing energy resources, can alter stream chemistry significantly by elevating total dissolved solids. Field studies have indicated that mayflies (Order Ephemeroptera) are particularly sensitive to high total dissolved solids. In the present study, the authors measured 20-d growth and survivorship of larval Neocloeon triangulifer exposed to a gradient of brine salt (mixed NaCl and CaCl2 ) concentrations. Daily growth rates were reduced significantly in all salt concentrations above the control (363 µS cm(-1) ) and larvae in treatments with specific conductance >812 µS cm(-1) were in comparatively earlier developmental stages (instars) at the end of the experiment. Survivorship declined significantly when specific conductance was >1513 µS cm(-1) and the calculated 20-d 50% lethal concentration was 2866 µS cm(-1) . The present study's results provide strong experimental evidence that elevated ion concentrations similar to those observed in developing energy resources, such as oil and gas drilling or coal mining, can adversely affect sensitive aquatic insect species. PMID:25307284

  6. Silencing of the olfactory co-receptor gene in Dendroctonus armandi leads to EAG response declining to major host volatiles.

    PubMed

    Zhang, Ranran; Gao, Guanqun; Chen, Hui

    2016-01-01

    In this study, a polymerase chain reaction (PCR) based on homology genes of Orco was utilized to identify DarmOrco, which is essential for olfaction in D. armandi. The results showed that DarmOrco shares significant sequence homology with Orco proteins had known in other insects. Quantitative real-time PCR (qRT-PCR) analysis suggested that DarmOrco was abundantly expressed in adult D. armandi; by contrast, DarmOrco showed trace amounts of expression level in other stages. Of different tissues, DarmOrco expression level was the highest in the antennae. In order to understand the functional significance of Orco, we injected siRNA of DarmOrco into the conjunctivum between the second and third abdominal segments, and evaluated its expression after siRNA injected for 24 h, 48 h and 72 h. The results of qRT-PCR demonstrated that the reduction of mRNA expression level was significant (~80%) in DarmOrco siRNA-treated D. armandi than in water-injected and non-injected controls. The electroantennogram responses of females and males to 11 major volatiles of its host, were also reduced (30~68% for females; 16~70% for males) in siRNA-treated D. armandi compared with the controls. These results suggest that DarmOrco is crucial in mediating odorant perception. PMID:26979566

  7. Silencing of the olfactory co-receptor gene in Dendroctonus armandi leads to EAG response declining to major host volatiles

    NASA Astrophysics Data System (ADS)

    Zhang, Ranran; Gao, Guanqun; Chen, Hui

    2016-03-01

    In this study, a polymerase chain reaction (PCR) based on homology genes of Orco was utilized to identify DarmOrco, which is essential for olfaction in D. armandi. The results showed that DarmOrco shares significant sequence homology with Orco proteins had known in other insects. Quantitative real-time PCR (qRT-PCR) analysis suggested that DarmOrco was abundantly expressed in adult D. armandi; by contrast, DarmOrco showed trace amounts of expression level in other stages. Of different tissues, DarmOrco expression level was the highest in the antennae. In order to understand the functional significance of Orco, we injected siRNA of DarmOrco into the conjunctivum between the second and third abdominal segments, and evaluated its expression after siRNA injected for 24 h, 48 h and 72 h. The results of qRT-PCR demonstrated that the reduction of mRNA expression level was significant (~80%) in DarmOrco siRNA-treated D. armandi than in water-injected and non-injected controls. The electroantennogram responses of females and males to 11 major volatiles of its host, were also reduced (30~68% for females; 16~70% for males) in siRNA-treated D. armandi compared with the controls. These results suggest that DarmOrco is crucial in mediating odorant perception.

  8. Silencing of the olfactory co-receptor gene in Dendroctonus armandi leads to EAG response declining to major host volatiles

    PubMed Central

    Zhang, Ranran; Gao, Guanqun; Chen, Hui

    2016-01-01

    In this study, a polymerase chain reaction (PCR) based on homology genes of Orco was utilized to identify DarmOrco, which is essential for olfaction in D. armandi. The results showed that DarmOrco shares significant sequence homology with Orco proteins had known in other insects. Quantitative real-time PCR (qRT-PCR) analysis suggested that DarmOrco was abundantly expressed in adult D. armandi; by contrast, DarmOrco showed trace amounts of expression level in other stages. Of different tissues, DarmOrco expression level was the highest in the antennae. In order to understand the functional significance of Orco, we injected siRNA of DarmOrco into the conjunctivum between the second and third abdominal segments, and evaluated its expression after siRNA injected for 24 h, 48 h and 72 h. The results of qRT-PCR demonstrated that the reduction of mRNA expression level was significant (~80%) in DarmOrco siRNA-treated D. armandi than in water-injected and non-injected controls. The electroantennogram responses of females and males to 11 major volatiles of its host, were also reduced (30~68% for females; 16~70% for males) in siRNA-treated D. armandi compared with the controls. These results suggest that DarmOrco is crucial in mediating odorant perception. PMID:26979566

  9. Textural characterization, major and volatile element quantification and Ar-Ar systematics of spherulites in the Rocche Rosse obsidian flow, Lipari, Aeolian Islands: a temperature continuum growth model

    NASA Astrophysics Data System (ADS)

    Clay, P. L.; O'Driscoll, B.; Gertisser, R.; Busemann, H.; Sherlock, S. C.; Kelley, S. P.

    2013-02-01

    Spherulitic textures in the Rocche Rosse obsidian flow (Lipari, Aeolian Islands, Italy) have been characterized through petrographic, crystal size distribution (CSD) and in situ major and volatile elemental analyses to assess the mode, temperature and timescales of spherulite formation. Bulk glass chemistry and spherulite chemistry analyzed along transects across the spherulite growth front/glass boundary reveal major-oxide and volatile (H2O, CO2, F, Cl and S) chemical variations and heterogeneities at a ≤5 μm scale. Numerous bulk volatile data in non-vesicular glass (spatially removed from spherulitic textures) reveal homogenous distributions of volatile concentrations: H2O (0.089 ± 0.012 wt%), F (950 ± 40 ppm) and Cl (4,100 ± 330 ppm), with CO2 and S consistently below detection limits suggesting either complete degassing of these volatiles or an originally volatile-poor melt. Volatile concentrations across the spherulite boundary and within the spherulitic textures are highly variable. These observations are consistent with diffusive expulsion of volatiles into melt, leaving a volatile-poor rim advancing ahead of anhydrous crystallite growth, which is envisaged to have had a pronounced effect on spherulite crystallization dynamics. Argon concentrations dissolved in the glass and spherulites differ by a factor of ~20, with Ar sequestered preferentially in the glass phase. Petrographic observation, CSD analysis, volatile and Ar data as well as diffusion modeling support continuous spherulite nucleation and growth starting at magmatic (emplacement) temperatures of ~790-825 °C and progressing through the glass transition temperature range ( T g ~ 750-620 °C), being further modified in the solid state. We propose that nucleation and growth rate are isothermally constant, but vary between differing stages of spherulite growth with continued cooling from magmatic temperatures, such that there is an evolution from a high to a low rate of crystallization and low

  10. Influence of extraction methodologies on the analysis of five major volatile aromatic compounds of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) grown in Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infusions of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) have been commonly used in folk medicine in Thailand and other Asian countries. This study focuses on a systematic comparison of two extraction methods for major volatile aromatic compounds (VACs) of citronella g...

  11. The major volatile compound 2-phenylethanol from the biocontrol yeast Pichia anomala inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is a globally distributed fungus and an important food contaminant because it produces the most potent natural carcinogenic compound known as aflatoxin (AF) B1. The major volatile from a yeast strain, Pichia anomala WRL-076 was identified by SPEM-GC/MS analysis to be 2-phenylethan...

  12. Relationships determining the toxicity of major ion mixtures to Ceriodaphnia dubia

    EPA Science Inventory

    Significant impacts to aquatic systems can occur due to increases in major ions (Na, K, Ca, Mg, Cl, SO4, HCO3) from various anthropogenic activities, these impacts varying with both the specific combination of ions that are elevated and the chemistry of the background water. A s...

  13. Inconsistent relationships between major ions and water stable isotopes in Antarctic snow under different accumulation environments

    NASA Astrophysics Data System (ADS)

    Hoshina, Yu; Fujita, Koji; Iizuka, Yoshinori; Motoyama, Hideaki

    2016-03-01

    Major ions, stable oxygen isotopes (δ18O), and accumulation rates are analyzed using high temporal resolution data from shallow ice cores and snow pits from East and West Antarctica. Seasonal cycles of major ions and δ18O are well preserved at sites with an accumulation rate threshold of >100 kg m-2 a-1 and calm wind conditions. The seasonal cycle is unclear at sites with high wind speeds, even if the accumulation rate is greater than the threshold. To eliminate the influences of different source regions on major ion and δ18O signals in ice cores, we calculate correlation coefficients between annually averaged major ion concentrations and δ18O, and then compare these with accumulation rates and other geographical variables such as latitude, elevation, and distance from the coast. We find that accumulation rates are highly correlated with elevation and the 10-m snow temperature, and that major ions and δ18O are negatively correlated at low accumulation sites in inland Antarctica. Negative correlations could reflect inconsistent accumulation due to a large inter-annual variability in the accumulation rate. The results show that the relationships between major ions and δ18O may not reflect climatic signatures, and could be a result of the unique characteristics of this arid environment.

  14. A flowing atmospheric pressure afterglow as an ion source coupled to a differential mobility analyzer for volatile organic compound detection.

    PubMed

    Bouza, Marcos; Orejas, Jaime; López-Vidal, Silvia; Pisonero, Jorge; Bordel, Nerea; Pereiro, Rosario; Sanz-Medel, Alfredo

    2016-05-23

    Atmospheric pressure glow discharges have been widely used in the last decade as ion sources in ambient mass spectrometry analyses. Here, an in-house flowing atmospheric pressure afterglow (FAPA) has been developed as an alternative ion source for differential mobility analysis (DMA). The discharge source parameters (inter-electrode distance, current and helium flow rate) determining the atmospheric plasma characteristics have been optimized in terms of DMA spectral simplicity with the highest achievable sensitivity while keeping an adequate plasma stability and so the FAPA working conditions finally selected were: 35 mA, 1 L min(-1) of He and an inter-electrode distance of 8 mm. Room temperature in the DMA proved to be adequate for the coupling and chemical analysis with the FAPA source. Positive and negative ions for different volatile organic compounds were tested and analysed by FAPA-DMA using a Faraday cup as a detector and proper operation in both modes was possible (without changes in FAPA operational parameters). The FAPA ionization source showed simpler ion mobility spectra with narrower peaks and a better, or similar, sensitivity than conventional UV-photoionization for DMA analysis in positive mode. Particularly, the negative mode proved to be a promising field of further research for the FAPA ion source coupled to ion mobility, clearly competitive with other more conventional plasmas such as corona discharge. PMID:27141552

  15. Identification of volatile chemical signatures from plastic explosives by SPME-GC/MS and detection by ion mobility spectrometry.

    PubMed

    Lai, Hanh; Leung, Alfred; Magee, Matthew; Almirall, José R

    2010-04-01

    This study demonstrates the use of solid-phase microextraction (SPME) to extract and pre-concentrate volatile signatures from static air above plastic explosive samples followed by detection using ion mobility spectrometry (IMS) optimized to detect the volatile, non-energetic components rather than the energetic materials. Currently, sample collection for detection by commercial IMS analyzers is conducted through swiping of suspected surfaces for explosive particles and vapor sampling. The first method is not suitable for sampling inside large volume areas, and the latter method is not effective because the low vapor pressure of some explosives such as RDX and PETN make them not readily available in the air for headspace sampling under ambient conditions. For the first time, headspace sampling and detection of Detasheet, Semtex H, and C-4 is reported using SPME-IMS operating under one universal setting with limits of detection ranging from 1.5 to 2.5 ng for the target volatile signatures. The target signature compounds n-butyl acetate and the taggant DMNB are associated with untagged and tagged Detasheet explosives, respectively. Cyclohexanone and DMNB are associated with tagged C-4 explosives. DMNB is associated with tagged Semtex H explosives. Within 10 to 60 s of sampling, the headspace inside a glass vial containing 1 g of explosive, more than 20 ng of the target signatures can be extracted by the SPME fiber followed by IMS detection. PMID:20229010

  16. Major, Trace, and Volatile (CO2, H2O, S, F, and Cl) Elements from 1000+ Hawaiian Olivine-hosted Melt Inclusions Reveal the Dynamics of Crustal Recycling

    NASA Astrophysics Data System (ADS)

    Marske, J. P.; Hauri, E. H.; Trusdell, F.; Garcia, M. O.; Pietruszka, A. J.

    2015-12-01

    Global cycling of volatile elements (H2O, CO2, F, S, Cl) via subduction to deep mantle followed by entrainment and melting within ascending mantle plumes is an enigmatic process that controls key aspects of hot spot volcanism (i.e. melting rate, magma supply, degassing, eruptive style). Variations in radiogenic isotope ratios (e.g.187Os/188Os) at hot spots such as Hawaii reveal magmatic processes within deep-seated mantle plumes (e.g. mantle heterogeneity, lithology, and melt transport). Shield-stage lavas from Hawaii likely originate from a mixed plume source containing peridotite and recycled oceanic crust (pyroxenite) based on variations of radiogenic isotopes. Hawaiian lavas display correlations among isotopes, major and trace elements [1] that might be expected to have an expression in the volatile elements. To investigate this link, we present Os isotopic ratios (n=51), and major, trace, and volatile elements from 1003 olivine-hosted melt inclusions (MI) and their host minerals from tephra from Koolau, Mauna Loa, Hualalai, Kilauea, and Loihi volcanoes. The data show a strong correlation between MI volatile contents and incompatible trace element ratios (La/Yb) with Os isotopes of the same host olivines and reveal large-scale volatile heterogeneity and zonation exists within the Hawaiian plume. 'Loa' chain lavas, which are thought to originate from greater proportions of recycled oceanic crust/pyroxenite, have MIs with lower H2O, S, F, and Cl contents compared to 'Kea' chain lavas that were derived from more peridotite-rich sources. The depletion of volatile elements in the 'Loa' volcano MIs can be explained if they tapped an ancient dehydrated oceanic crust component within the Hawaiian plume. Higher extents of melting beneath 'Loa' volcanoes can also explain these depletions. The presence of dehydrated recycled mafic material in the plume source suggests that subduction effectively devolatilizes part of the oceanic crust. These results are similar to the

  17. Volatile production in nonice materials on Solar System bodies with tenuous atmospheres by ion bombardment - Laboratory results

    NASA Astrophysics Data System (ADS)

    Hibbitts, C. A.; Thevuthasan, S.; Shutthanandan, V.; Orlando, T.; Hansen, G. B.; McCord, T. B.

    2003-05-01

    Volatiles, inferred to be trapped in nonice materials, have been discovered on the Jovian satellites and in IDPs [McCord et al., 1998; Hibbitts et al., 2000; Flynn et al., 2002]. In general, these types of volatiles may be produced through high-energy ion bombardment of Solar System bodies that have tenuous atmospheres, from the Moon to the Saturnian satellites and beyond. The surfaces of these bodies are continually bombarded by a combination of cosmic, solar, and planetary magnetospheric radiation including UV, keV protons and Helium nuclei, and more massive keV to MeV ions. The Moon's surface contains Fe-oxides that may release water products under bombardment by solar wind protons. Many classes of asteroids and the outer planets' satellites appear to contain clays or other OH-bearing materials that could release water-products as well under bombardment. Also, organic material, likely present on surfaces other than the Moon, may participate in bombardment reactions to form carbon monoxide or dioxide. Results from our laboratory experiments conducted at the Environmental Molecular Sciences Laboratory (EMSL) accelerator facility, Pacific Northwest National Laboratory (PNNL) show that volatiles are produced during MeV ion irradiation of these types of materials. We bombarded clays, oxyhydroxides, ilmenite, and carbon-doped samples with MeV hydrogen, deuterium, oxygen, and sulfur ions at current densities of 100 to 1000 namps ( 1E12 to 1E13 ions/cm2/sec) over several minutes. Ohmic heating and outgassing of trapped atmospheric gases was minimal at the lower flux levels. Most of the irradiation effects are non-thermal and are due to ionization and momentum transfer processes. Proton or deuteron bombardment of ilmenite produces water-related molecules that are quickly released into the vacuum chamber and detected by mass spectrometry. The bombardment of carbon-doped clays appears to produce CO. This process occurs independently of any reduction of FeO involved in

  18. Effects of environmentally relevant mixtures of major ions on a freshwater mussel.

    PubMed

    Ciparis, Serena; Phipps, Andrew; Soucek, David J; Zipper, Carl E; Jones, Jess W

    2015-12-01

    The Clinch and Powell Rivers (Virginia, USA) support diverse mussel assemblages. Extensive coal mining occurs in both watersheds. In large reaches of both rivers, major ion concentrations are elevated and mussels have been extirpated or are declining. We conducted a laboratory study to assess major ion effects on growth and survival of juvenile Villosa iris. Mussels were exposed to pond water and diluted pond water with environmentally relevant major ion mixtures for 55 days. Two treatments were tested to mimic low-flow concentrations of Ca(2+), Mg(2+), [Formula: see text] , [Formula: see text] , K(+) and Cl(-) in the Clinch and Powell Rivers, total ion concentrations of 419 mg/L and 942 mg/L, respectively. Mussel survival (>90%) and growth in the two treatments showed little variation, and were not significantly different than in diluted pond water (control). Results suggest that major ion chronic toxicity is not the primary cause for mussel declines in the Clinch and Powell Rivers. PMID:26412268

  19. ANALYSIS OF AMBIENT POLAR VOLATILE ORGANIC COMPOUNDS USING CHEMICAL IONIZATION -- ION TRAP DETECTOR

    EPA Science Inventory

    The current approach to measuring trace levels of volatile organic compounds (VOCs) in ambient air requires cryogenic trapping of the analytes, followed by thermal desorption and low-temperature refocussing onto a column for analysis by capillary gas chromatography/mass spectrome...

  20. Ultrafiltration behavior of major ions (Na, Ca, Mg, F, Cl, and SO4) in natural waters.

    PubMed

    Guo, L; Hunt, B J; Santschi, P H

    2001-04-01

    Aquatic colloids, including macromolecules and microparticles, with sizes ranging between 1 nm to 1 micron, play important roles in the mobility and bioavailability of heavy metals and other contaminants in natural waters. Cross-flow ultrafiltration has become one of the most commonly used techniques for isolating aquatic colloids. However, the ultrafiltration behavior of chemical species remains poorly understood. We report here the permeation behavior of major ions (Na, Ca, Mg, F, Cl, and SO4) in natural waters during ultrafiltration using an Amicon 1 kDa ultrafiltration membrane (S10N1). Water samples across a salinity gradient of 0-20@1000 were collected from the Trinity River and Galveston Bay. The permeation behavior of major ions was well predicted by a permeation model, resulting in a constant permeation coefficient for each ion. The value of the model-derived permeation coefficient (Pc) was 0.99 for Na, 0.97 for Cl, and 0.95 for F, respectively, in Trinity River waters. Values of Pc close to 1 indicate that retention of Na, Cl, and F by the 1 kDa membrane during ultrafiltration was indeed minimal (< 1-5%). In contrast, significant (14-36%) retention was observed for SO4, Ca, and Mg in Trinity River waters, with a Pc value of 0.64, 0.82, and 0.86 for SO4, Ca and Mg, respectively. However, these retained major ions can further permeate through the 1 kDa membrane during diafiltration with ultrapure water. The selective retention of major ions during ultrafiltration may have important implications for the measurement of chemical and physical speciation of trace elements when using cross-flow ultrafiltration membranes to separate colloidal species from natural waters. Our results also demonstrate that the percent retention of major ions during ultrafiltration decreases with increasing salinity or ionic strength. This retention is largely attributed to electrostatic repulsion by the negatively charged cartridge membrane. PMID:11317897

  1. Interactive toxicity of major ion salts: Comparisons among species and between acute and chronic endpoints

    EPA Science Inventory

    Increased concentrations of major ions (Na, K, Ca, Mg, Cl, SO4, HCO3) in freshwater systems can result from a variety of anthropogenic activities, and can adversely affect aquatic organisms if the increase is sufficiently severe. Laboratory tests have indicated that the toxicity...

  2. Mesocosm Community Response Sensitivities to Specific Conductivity Comprised of Different Major Ions

    EPA Science Inventory

    Traditional toxicity test assays have been used to evaluate the relative sensitivity to different major ion mixtures as a proxy for understanding what the response of aquatic species growing in their natural environment would be during exposure to specific conductivity stress ema...

  3. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses. PMID:26583448

  4. On-site Rapid Detection of Trace Non-volatile Inorganic Explosives by Stand-alone Ion Mobility Spectrometry via Acid-enhanced Evaporization

    PubMed Central

    Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang

    2014-01-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones. PMID:25318960

  5. On-site rapid detection of trace non-volatile inorganic explosives by stand-alone ion mobility spectrometry via acid-enhanced evaporization.

    PubMed

    Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang

    2014-01-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones. PMID:25318960

  6. On-site Rapid Detection of Trace Non-volatile Inorganic Explosives by Stand-alone Ion Mobility Spectrometry via Acid-enhanced Evaporization

    NASA Astrophysics Data System (ADS)

    Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang

    2014-10-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones.

  7. Major-ion and selected trace-metal chemistry of the Biscayne Aquifer, Southeast Florida

    USGS Publications Warehouse

    Radell, M.J.; Katz, B.G.

    1991-01-01

    The major-ion and selected trace-metal chemistry of the Biscayne aquifer was characterized as part of the Florida Ground-Water Quality Monitoring Network Program, a multiagency cooperative effort concerned with delineating baseline water quality for major aquifer systems in the State. The Biscayne aquifer is unconfined and serves as the sole source of drinking water for more than 3 million people in southeast Florida. The Biscayne aquifer consists of highly permeable interbedded limestone and sandstone of Pleistocene and Pliocene age underlying most of Dade and Broward Counties and parts of Palm Beach and Monroe Counties. The high permeability is largely caused by extensive carbonate dissolution. Water sampled from 189 wells tapping the Biscayne aquifer was predominantly a calcium bicarbonate type with some mixed types occurring in coastal areas and near major canals. Major - ion is areally uniform throughout the aquifer. According to nonparametric statistical tests of major ions and dissolved solids, the concentrations of calcium, sodium, bicarbonate, and dissolved solids increased significantly with well depth ( 0.05 significance level ), probably a result of less circulation at depth. Potassium and nitrate concentrations decreased significantly with depth. Although the source of recharge to the aquifer varies seasonally, there was no statistical difference in the concentration of major ions in pared water samples from 27 shallow wells collected during wet and dry seasons. Median concentrations for barium, chromium, copper, lead, and manganese were below maximum or secondary maximum contaminant levels set by the US Environmental Protection Agency. The median iron concentration only slightly exceeded the secondary maximum contaminant level. The concentration of barium was significantly related (0.05 significance level) to calcium and bicarbonate concentration. No distinct areal pattern or vertical distribution of the selected trace metals was evident in water from

  8. Major Ion Content of Aerosols from Denali Base Camp during Summer 2013

    NASA Astrophysics Data System (ADS)

    Wake, C. P.; Burakowski, E. A.; Osterberg, E. C.

    2014-12-01

    Aerosol samples were collected on Teflon filters at a site up-glacier from Denali Base Camp (2380 m) in Denali National Park, Alaska during May and June of 2013 using an autonomous aerosol sampler powered by solar panels and batteries. The samples were analyzed for major ions via ion chromatography. Surface and fresh snow samples were also collected over the same time period and analyzed for major ions. Ion concentrations in the aerosol samples are completely dominated by NH4+ (mean concentration of 6.6 nmol/m3) and SO4= (mean concentration of 4.0 nmol/m3). Overall, the ion burden in aerosol samples from Denali Base Camp was much lower compared to aerosol samples collected from the Denali National Park and Trapper Creek IMPROVE sites over the same time period. In contrast to the aerosol chemistry, the snow chemistry is more balanced, with NH4+, Ca2+, and Na+ dominating the cation concentrations and NO3-, Cl-, and SO4= dominating the anion concentrations. The higher levels of Ca2+, Na+, and Cl- in the snow (relative to NH4+ and SO4=) compared to relative concentrations in the aerosol samples suggest that dry deposition of sea salt and dust are important contributors to the major ion signals preserved in the snow. This has important ramifications for improving our understanding of the reconstruction of North Pacific climate variability and change from glaciochemical records currently being developed from the 208 m ice cores recovered from the Mt. Hunter plateau (3900 m) during the summer of 2013.

  9. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen.

    PubMed

    Huang, Mengsu; Sanchez-Moreiras, Adela M; Abel, Christian; Sohrabi, Reza; Lee, Sungbeom; Gershenzon, Jonathan; Tholl, Dorothea

    2012-03-01

    Flowers have a high risk of pathogen attack because of their rich nutrient and moisture content, and high frequency of insect visitors. We investigated the role of (E)-β-caryophyllene in floral defense against a microbial pathogen. This sesquiterpene is a common volatile compound emitted from flowers, and is a major volatile released from the stigma of Arabidopsis thaliana flowers. Arabidopsis thaliana lines lacking a functional (E)-β-caryophyllene synthase or constitutively overexpressing this gene were challenged with Pseudomonas syringae pv. tomato DC3000, which is a bacterial pathogen of brassicaceous plants. Flowers of plant lines lacking (E)-β-caryophyllene emission showed greater bacterial growth on their stigmas than did wild-type flowers, and their seeds were lighter and misshapen. By contrast, plant lines with ectopic (E)-β-caryophyllene emission from vegetative parts were more resistant than wild-type plants to pathogen infection of leaves, and showed reduced cell damage and higher seed production. Based on in vitro experiments, (E)-β-caryophyllene seems to act by direct inhibition of bacterial growth, rather than by triggering defense signaling pathways. (E)-β-Caryophyllene thus appears to serve as a defense against pathogens that invade floral tissues and, like other floral volatiles, may play multiple roles in defense and pollinator attraction. PMID:22187939

  10. Development and validation of automatic HS-SPME with a gas chromatography-ion trap/mass spectrometry method for analysis of volatiles in wines.

    PubMed

    Paula Barros, Elisabete; Moreira, Nathalie; Elias Pereira, Giuliano; Leite, Selma Gomes Ferreira; Moraes Rezende, Claudia; Guedes de Pinho, Paula

    2012-11-15

    An automated headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-ion trap/mass spectrometry (GC-IT/MS) was developed in order to quantify a large number of volatile compounds in wines such as alcohols, ester, norisoprenoids and terpenes. The procedures were optimized for SPME fiber selection, pre-incubation temperature and time, extraction temperature and time, and salt addition. A central composite experimental design was used in the optimization of the extraction conditions. The volatile compounds showed optimal extraction using a DVB/CAR/PDMS fiber, incubation of 5 ml of wine with 2g NaCl at 45 °C during 5 min, and subsequent extraction of 30 min at the same temperature. The method allowed the identification of 64 volatile compounds. Afterwards, the method was validated successfully for the most significant compounds and was applied to study the volatile composition of different white wines. PMID:23158309

  11. DATA QUALIFICATION REPORT: MAJOR ION AND PH DATA FOR USE ON THE YUCCA MOUNTAIN PROJECT

    SciTech Connect

    C. WILSON; D.M. JENKINS; T. STEINBORN; R. WEMHEUER

    2000-08-23

    This data qualification report uses technical assessment and corroborating data methods according to Attachment 2 of AP-SIII.2Q, Rev. 0, ICN 2, ''Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data'', to qualify major ion and pH data. This report was prepared in accordance with Data Qualification Plan TDP-NBS-GS-00003 1, Revision 2. Additional reports will be prepared to address isotopic and precipitation-related data. Most of the data considered in this report were acquired and developed by the U.S. Geological Survey (USGS). The data qualification team considers the sampling and analytical protocols employed by the USGS over the time period of data acquisition to be state-of-the-art. The sample collection methodologies have evolved with no significant change that could affect the quality of the data considered in this report into the currently used Hydrologic Procedures that support the Yucca Mountain Project-approved USGS Quality Assurance Program Plan. Consequently, for USGS data, the data collection methods, documentation, and results are reasonable and appropriate in view of standard practice at the time the data were collected. A small number of data sets were collected by organizations other than the USGS and were reviewed along with the other major ion and pH data using corroborating data methods. Hydrochemical studies reviewed in this qualification report indicate that the extent and quality of corroborating data are sufficient to support qualification of both USGS and non-USGS major ion and pH data for generalized hydrochemical studies. The corroborating data included other major ion and pH data, isotope data, and independent hydrological data. Additionally, the analytical adequacy of the major ion data was supported by a study of anion-cation charge balances. Charge balance errors for USGS and non-USGS data were under 10% and acceptable for all data. This qualification report addresses the specific major ion data sets

  12. Product ion distributions for the reactions of NO+ with some physiologically significant volatile organosulfur and organoselenium compounds obtained using a selective reagent ionization time-of-flight mass spectrometer

    PubMed Central

    Mochalski, Paweł; Unterkofler, Karl; Španěl, Patrik; Smith, David; Amann, Anton

    2014-01-01

    RATIONALE The reactions of NO+ with volatile organic compounds (VOCs) in Selective Reagent Ionization Time-of-Flight Mass Spectrometry (SRI-TOF-MS) reactors are relatively poorly known, inhibiting their use for trace gas analysis. The rationale for this product ion distribution study was to identify the major product ions of the reactions of NO+ ions with 13 organosulfur compounds and 2 organoselenium compounds in an SRI-TOF-MS instrument and thus to prepare the way for their analysis in exhaled breath, in skin emanations and in the headspace of urine, blood and cell and bacterial cultures. METHODS Product ion distributions have been investigated by a SRI-TOF-MS instrument at an E/N in the drift tube reactor of 130 Td for both dry air and humid air (4.9% absolute humidity) used as the matrix gas. The investigated species were five monosulfides (dimethyl sulfide, ethyl methyl sulfide, methyl propyl sulfide, allyl methyl sulfide and methyl 5-methyl-2-furyl sulfide), dimethyl disulfide, dimethyl trisulfide, thiophene, 2-methylthiophene, 3-methylthiophene, methanethiol, allyl isothiocyanate, dimethyl sulfoxide, and two selenium compounds – dimethyl selenide and dimethyl diselenide. RESULTS Charge transfer was seen to be the dominant reaction mechanism in all reactions under study forming the M+ cations. For methanethiol and allyl isothiocyanate significant fractions were also observed of the stable adduct ions NO+M, formed by ion-molecule association, and [M–H]+ ions, formed by hydride ion transfer. Several other minor product channels are seen for most reactions indicating that the nascent excited intermediate (NOM)+* adduct ions partially fragment along other channels, most commonly by the elimination of neutral CH3, CH4 and/or C2H4 species that are probably bound to an NO molecule. Humidity had little effect on the product ion distributions. CONCLUSIONS The findings of this study are of particular importance for data interpretation in studies of volatile

  13. ICRH of JET and LHD Majority Ions at Their Fundamental Cyclotron Frequency

    SciTech Connect

    Krasilnikov, A. V.; Kaschuck, Yu. A.; Amosov, V. N.; Van Eester, D.; Lerche, E.; Mailloux, J.; Stamp, M.; Jachmich, S.; Leggate, H.; Walden, A.; Mayoral, M.-L.; Santala, M.; Kiptily, V.; Popovichev, S.; Vdovin, V.; Biewer, T.; Crombe, K.; Esposito, B.

    2007-09-28

    Results of the experimental studies of ICRH at the fundamental cyclotron frequency of the majority deuterons in JET plasmas with near-tangential deuteron neutral beam injection (NBI) are presented. 1D, 2D and 3D ICRH modeling indicated that several ITER relevant mechanisms of heating may occur simultaneously in this heating scheme: fundamental ion cyclotron resonance heating of majority and beam D ions, impurity ion heating and electron heating due to Landau damping and TTMP. These mechanisms were studied in JET experiments with a {approx}90% D, 5% H plasma including traces of Be and Ar. Up to 2MW of ICRH power was applied at 25 MHz to NBI heated plasmas. In most of the discharges the toroidal magnetic field strength was 3.3T, but in one it was equal to 3.6T. The E{sub +} component of the electric field governs the ion cyclotron heating of not too fast particles. The Doppler shifted RF absorption of the beam deuterons away from the cold resonance at which E{sub +} is small was exploited to enhance the RF power absorption efficiency. Fundamental ICRH experiments were also carried out in LHD hydrogen plasma with high energy hydrogen NBI. ICRH was performed at 38MHz with injected power <1 MW. The effect of fundamental ICRH was clearly demonstrated in both machines.

  14. Predicting the Rejection of Major Seawater Ions by Spiral-Wound Nanofiltration Membranes.

    PubMed

    Fridman-Bishop, Noga; Nir, Oded; Lahav, Ori; Freger, Viatcheslav

    2015-07-21

    Seawater nanofiltration (SWNF) generates a softened permeate stream and a retentate stream in which the multivalent ions accumulate, offering opportunities for practical utilization of both streams. This study presents an approach to simulation of SWNF including all major seawater ions (Na(+), Cl(-), Ca(2+), Mg(2+), and SO4(2-)) based on the Nernst-Planck equation, and uses it for permeate and retentate streams composition prediction. The number of degrees of freedom in the system was reduced by assuming a very high ionic permeability for Na(+), which only weakly affected the other parameters in the system. Two alternatives were examined to analyze the importance of concentration dependence of ion permeabilities: The assumption of constant ion permeabilities resulted in a reasonable fit with experimental data. However, for the permeate composition the overall fit was significantly improved (P < 0.0001) when the permeabilities of Ca(2+) and Mg(2+) were allowed to depend on the ratio of their total concentration to Na(+). This type of dependence emphasizes the strong interaction of divalent ions with the membrane and its effect on the membrane fixed charge through screening or charge reversal. When this effect was included, model predictions closely matched the experimental results obtained, corroborating the phenomenological approach proposed in this study. PMID:26107401

  15. Corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry for monitoring of volatile organic compounds.

    PubMed

    Sabo, Martin; Matejčík, Štefan

    2012-06-19

    We demonstrate the application of corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry (CD IMS-oaTOF) for volatile organic compounds (VOCs) monitoring. Two-dimensional (2D) IMS-oaTOF spectra of VOCs were recorded in nearly real time. The corona discharge atmospheric pressure chemical ionization (APCI) source was operated in positive mode in nitrogen and air. The CD ion source generates in air H(3)O(+)(H(2)O)(n) and NO(+). The NO(+) offers additional possibility for selective ionization and for an increase of the sensitivity of monoaromatic compounds. In addition to H(3)O(+)(H(2)O)(n) and NO(+), we have carried out ionization of VOCs using acetone as dopant gas ((CH(3))(2)COH(+)). Sixteen model VOCs (tetrahydrofuran, butanol, n-propanol, iso-propano, acetone, methanol, ethanol, toluene, benzene, amomnia, dioxan, triethylamine, acetonitrile, formaldehyde, m-xylene, 2,2,2-trifluoroethylamine) were tested using these ionization techniques. PMID:22594852

  16. Sources and cycling of major ions and nutrients in Devils Lake, North Dakota

    USGS Publications Warehouse

    Lent, R.M.

    1994-01-01

    Devils Lake is a saline lake in a large, closed drainage basin in northeastern North Dakota. Previous studies determined that major-ion and nutrient concentrations in Devils Lake are strongly affected by microbially mediated sulfate reduction and dissolution of sulfate and carbonate minerals in the bottom sediments. These studies documented substantial spatial variability in the magnitude of calculated benthic fluxes coincident with the horizontal salinity gradient in Devils Lake. The purpose of the present study is to evaluate seasonal variability in benthic-flux rates, and to understand the effect of these fluxes on the major- chemistries in Devils Lake between May and October 1991. During the study period, the water column was well mixed, and specific conductance, pH, and temperature did not vary with depth. Dissolved oxygen was enriched near the lake surface due to photosynthesis. Major-ion concentrations and nutrient concentrations did not vary with depth. Because the water-quality data were obtained during open-water periods, the vertical profiles reflect well-mixed conditions. However, the first and last profiles for the study period did document near-bottom maxima of major cations. Secchi-disk depth varied from 0.82 meter on May 7, 1991, to 2.13 meters on June 5, 1991. The mean Secchi-disk depth during the study period was 1.24 meters. Seasonal variations in Secchi-disk depths were attributed to variations in primary productivity and phytoplankton communities. Nutrient cycles in Devils Lake were evaluated using gross primary productivity rate data, sediment trap data, and major-ion and nutrient benthic-flux rate data. Gross primary productivity rate was smallest in May (0.076 gram of carbon per square meter per day) and largest in September (1.8 grams of carbon per square meter per day). Average gross primary productivity for the study period was 0.87 gram of carbon per square meter per day. Average gross primary productivity is consistent with historic

  17. Major Ion concentrations in the new NEEM ice core in Greenland

    NASA Astrophysics Data System (ADS)

    Wegner, A.; Azuma, K. G.; Hirabayashi, M.; Schmidt, K.; Hansson, M.; Twarloh, B.

    2012-12-01

    The drilling of the new deep ice core in NEEM (77.45°N 51.06°W) was terminated in 2010. Using a continuous flow analysis system (CFA), discrete samples were filled and analyzed for major ion concentrations (Na, K, Mg, Ca, Cl, SO_4 and NO_3) using Ion Chromatography (IC). The samples were measured at Alfred Wegener Institute for Polar and Marine Research (Germany) and National Institute of Polar Research (Japan). Here we present preliminary results of the major Ion concentrations. We found highest variations in concentrations of Calcium and Magnesium which are mainly originating from terrestrial sources with concentrations between 5-10 ppb and 4 ppb during the Holocene compared to 800 ppb and 80 ppb during the LGM. This is in line with measurements of particulate dust concentrations. Sulphate concentrations closely follow DO events and vary between 25 ppb during the Holocene and ~400 ppb during the LGM. Sodium concentrations vary between ~ 8 ppb during the Holocene and up to 100 ppb during the LGM. We discuss influences of changes in the source areas and atmospheric transport intensity on the different time scales.

  18. Mars heavy ion precipitating flux as measured by Mars Atmosphere and Volatile EvolutioN

    NASA Astrophysics Data System (ADS)

    Leblanc, F.; Modolo, R.; Curry, S.; Luhmann, J.; Lillis, R.; Chaufray, J. Y.; Hara, T.; McFadden, J.; Halekas, J.; Eparvier, F.; Larson, D.; Connerney, J.; Jakosky, B.

    2015-11-01

    In the absence of an intrinsic dipole magnetic field, Mars' O+ planetary ions are accelerated by the solar wind. Because of their large gyroradius, a population of these planetary ions can precipitate back into Mars' upper atmosphere with enough energy to eject neutrals into space via collision. This process, referred to as sputtering, may have been a dominant atmospheric loss process during earlier stages of our Sun. Yet until now, a limited number of observations have been possible; Analyzer of Space Plasmas and Energetic Atoms-3/Mars Express observed such a precipitation only during extreme conditions, suggesting that sputtering might be not as intense as theoretically predicted. Here we describe one example of precipitation of heavy ions during quiet solar conditions. Between November 2014 and April 2015, the average precipitating flux is significant and in agreement with predictions. From these measured precipitating fluxes, we estimate that a maximum of 1.0 × 1024 O/s could have been lost due to sputtering.

  19. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries.

    PubMed

    Li, Jia; Wang, Guangxu; Xu, Zhenming

    2016-06-01

    The recycling of spent lithium-ion batteries brings benefits to both economic and environmental terms, but it can also lead to contaminants in a workshop environment. This study focused on metals, non-metals and volatile organic compounds generated by the discharging and dismantling pretreatment processes which are prerequisite for recycling spent lithium-ion batteries. After discharging in NaCl solution, metal contents in supernate and concentrated liquor were detected. Among results of condition #2, #3, #4 and #5, supernate and concentrated liquor contain high levels of Na, Al, Fe; middle levels of Co, Li, Cu, Ca, Zn; and low levels of Mn, Sn, Cr, Zn, Ba, K, Mg, V. The Hg, Ag, Cr and V are not detected in any of the analyzed supernate. 10wt% NaCl solution was a better discharging condition for high discharge efficiency, less possible harm to environment. To collect the gas released from dismantled LIB belts, a set of gas collecting system devices was designed independently. Two predominant organic vapour compounds were dimethyl carbonate (4.298mgh(-1)) and tert-amylbenzene (0.749mgh(-1)) from one dismantled battery cell. To make sure the concentrations of dimethyl carbonate under recommended industrial exposure limit (REL) of 100mgL(-1), for a workshop on dismantling capacity of 1000kg spent LIBs, the minimum flow rate of ventilating pump should be 235.16m(3)h(-1). PMID:27021697

  20. Mineral dust and major ion concentrations in snowpit samples from the NEEM site, Greenland

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Ho; Hwang, Heejin; Hong, Sang Bum; Hur, Soon Do; Choi, Sung-Deuk; Lee, Jeonghoon; Hong, Sungmin

    2015-11-01

    Polar ice sheets conserve atmospheric aerosols at the time of snowfall, which can be used to reconstruct past climate and environmental conditions. We investigated mineral dust and major ion records in snowpit samples obtained from the northwestern Greenland ice sheet near the North Greenland Eemian Ice Drilling (NEEM) camp in June 2009. We analyzed the samples for mineral dust concentrations as well as stable water isotopes (δ18O, δD, and deuterium excess) and major ions (Cl-, SO42-, methanesulfonic acid (MSA), Na+, and Ca2+). Seasonal δ18O and δD cycles indicate that the snowpit samples covered a six-year period from spring 2003 to early summer 2009. Concentrations of mineral dust, nss-Ca2+, and nss-SO42- showed seasonal deposition events with maxima in the winter-spring layers. On the other hand, the Cl-/Na+ ratio and the concentrations of MSA exhibited maxima in the summer layers, making them useful indicators for the summer season. Moreover, an anomalous atmospheric mineral dust event was recorded at a depth of 165-170 cm corresponding to late winter 2005 to spring 2006. A back trajectory analysis suggests that a major contributor to the Greenland aerosol was an air mass passing over the Canadian Arctic and North America. Several trajectories point to Asian regions as a dust source. The mineral dust deposited at NEEM was strongly influenced by long-range atmospheric transport and dust input from arid source areas in northern China and Mongolia.

  1. The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus.

    PubMed

    Hua, Sui Sheng T; Beck, John J; Sarreal, Siov Bouy L; Gee, Wai

    2014-05-01

    Aspergillus flavus is a ubiquitous saprophyte that is able to produce the most potent natural carcinogenic compound known as aflatoxin B1 (AFB1). This toxin frequently contaminates crops including corn, cotton, peanuts, and tree nuts causing substantial economic loss worldwide. Consequently, more than 100 countries have strict regulations limiting AFB1 in foodstuffs and feedstuffs. Plants and microbes are able to produce volatile compounds that act as a defense mechanism against other organisms. Pichia anomala strain WRL-076 is a biocontrol yeast currently being tested to reduce AF contamination of tree nuts in California. We used the SPME-GC/MS analysis and identified the major volatile compound produced by this strain to be 2-phenylethanol (2-PE). It inhibited spore germination and AF production of A. flavus. Inhibition of AF formation by 2-PE was correlated with significant down regulation of clustering AF biosynthesis genes as evidenced by several to greater than 10,000-fold decrease in gene expression. In a time-course analysis we found that 2-PE also altered the expression patterns of chromatin modifying genes, MYST1, MYST2, MYST3, gcn5, hdaA and rpdA. The biocontrol capacity of P. anomala can be attributed to the production of 2-PE, which affects spore germination, growth, toxin production, and gene expression in A. flavus. PMID:24504634

  2. Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China

    NASA Astrophysics Data System (ADS)

    Wang, Yanxin; Guo, Qinghai; Su, Chunli; Ma, Teng

    2006-09-01

    SummaryKarst water is the most important source of water supply for Shanxi province, northern China. The Shentou springs are representative of the 19 major karst springs at Shanxi. The total area of the Shentou karst water system is 5316 km 2, the Middle Ordovician limestone being its major karst aquifer. In this study, data about the strontium isotope geochemistry and major ion hydrochemistry were analyzed to understand the flow patterns and hydrogeochemical processes of karst water at Shentou. The contour map of TDS value of karst water and that of Sr concentration are similar, showing the general tendency of increase from the northern, western and southern boundary to the discharge area. The average values of 87Sr/ 86Sr ratios of karst water decrease from recharge (0.7107) to discharge area (0.7102), evolving towards those of limestone hostrocks. Comparison of 87Sr/ 86Sr ratios with Sr content suggests that isotopic compositions of some karst water samples from the recharge and flow through area should be the result of interaction between aquifer limestone matrix and strontium-poor recharge waters of meteoric origin. However, for samples from the discharge area that are plotted above the mixing line, mixing with groundwater in the Quaternary aquifers with high 87Sr/ 86Sr ratios may be another factor controlling Sr isotope chemistry. Two major groundwater flow paths were discerned from hydrogeological and geochemical data. Along both flow paths, the 87Sr/ 86Sr ratios of karst water show a general tendency of decrease. Geochemical modeling of the major ion geochemistry of karst water using PHREEQC also indicates that the chemistry of springs should be affected by the incorporation of groundwater in Quaternary aquifer. The effect of the mixing action on the spring hydrochemistry in flow path 1 is more remarkable than that in flow path 2, according to different mixing ratios in both paths (30% in flow path 1 and 5% in flow path 2).

  3. Quantitative analysis of volatile organic compounds using ion mobility spectra and cascade correlation neural networks

    NASA Technical Reports Server (NTRS)

    Harrington, Peter DEB.; Zheng, Peng

    1995-01-01

    Ion Mobility Spectrometry (IMS) is a powerful technique for trace organic analysis in the gas phase. Quantitative measurements are difficult, because IMS has a limited linear range. Factors that may affect the instrument response are pressure, temperature, and humidity. Nonlinear calibration methods, such as neural networks, may be ideally suited for IMS. Neural networks have the capability of modeling complex systems. Many neural networks suffer from long training times and overfitting. Cascade correlation neural networks train at very fast rates. They also build their own topology, that is a number of layers and number of units in each layer. By controlling the decay parameter in training neural networks, reproducible and general models may be obtained.

  4. Mobilization of major inorganic ions during experimental diagenesis of characterized peats

    USGS Publications Warehouse

    Bailey, A.M.; Cohen, A.D.; Orem, W.H.; Blackson, J.H.

    2000-01-01

    Laboratory experiments were undertaken to study changes in concentrations of major inorganic ions during simulated burial of peats to about 1.5 km. Cladium, Rhizophora, and Cyrilla peats were first analyzed to determine cation distributions among fractions of the initial materials and minerals in residues from wet oxidation. Subsamples of the peats (80 g) were then subjected to increasing temperatures and pressures in steps of 5??C and 300 psi at 2-day intervals and produced solutions collected. After six steps, starting from 30??C and 300 psi, a final temperature of 60??C and a final pressure of 2100 psi were achieved. The system was then allowed to stand for an additional 2 weeks at 60??C and 2100 psi. Treatments resulted in highly altered organic solids resembling lignite and expelled solutions of systematically varying compositions. Solutions from each step were analyzed for Na+, Ca2+, Mg2+, total dissolved Si (Si(T)), Cl-, SO42-, and organic acids and anions (OAAs). Some data on total dissolved Al (Al(T)) were also collected. Mobilization of major ions from peats during these experiments is controlled by at least three processes: (1) loss of dissolved ions in original porewater expelled during compaction, (2) loss of adsorbed cations as adsorption sites are lost during modification of organic solids, and (3) increased dissolution of inorganic phases at later steps due to increased temperatures (Si(T)) and increased complexing by OAAs (Al(T)). In general, results provide insight into early post-burial inorganic changes occurring during maturation of terrestrial organic matter. (C) 2000 Elsevier Science B.V. All rights reserved.

  5. Evaluation of nutrients and major ions in streams-implications of different timescale procedures.

    PubMed

    Chaussê, Thais Carvalho Cerqueira; Dos Santos Brandão, Camila; da Silva, Lenilda Pita; Salamim Fonseca Spanghero, Pedro Enrico; da Silva, Daniela Mariano Lopes

    2016-01-01

    Small watersheds are characterized by a high degree of sensitivity to changes observed in their environment, making them important sampling and management units. Due to this high sensitivity, several studies have shown that intensive collecting may be more effective in these systems compared to other timescale procedures. The aim of this study was to evaluate the concentration of organic and inorganic nutrients and major ions dissolved in two small watersheds with different land uses to determine whether there are differences between these watersheds with different levels of impact and to identify the most appropriate timescale procedure for the variables under analysis. Therefore, monthly, daily, and hourly samples were taken in the two streams in the northeast of Brazil. One of the streams is located in an undisturbed area (environmental protected area) (S1) and one in a disturbed area (S2). The results showed significant differences for conductivity, temperature, pH, dissolved oxygen (%), sodium (Na(+)), and chloride (Cl(-)) ions and higher values presented in the anthropogenic stream. Dissolved inorganic nitrogen (DIN) in S2 mainly comprised ammonium (NH4 (+)), while nitrate (NO3 (-)) predominated in S1. The considerable increase in the concentration of NO3 (-) and dilution of Na(+) and Cl(-) after rain in April in S1 shows how precipitation may change the chemical composition of the water in a 1-day period. No changes were observed in the concentrations of major ions and nutrients that could be related to the cyclical variation of the hours during the day in both small watersheds. Daily collections allow better monitoring of the dynamics of streams and greater robustness of the data. PMID:26681182

  6. Major ion chemistry and weathering processes in the Midyan Basin, northwestern Saudi Arabia.

    PubMed

    Ghrefat, Habes A; Batayneh, Awni; Zaman, Haider; Zumlot, Taisser; Elawadi, Eslam; Nazzal, Yousef

    2013-10-01

    Chemical characteristics of 72 groundwater samples collected from Midyan Basin have been studied to evaluate major ion chemistry together with the geochemical and weathering processes controlling the water composition. Water chemistry of the study area is mainly dominated by Na, Ca, SO4, and Cl. The molar ratios of (Ca + Mg)/total cations, (Na + K)/total cations, (Ca + Mg)/(Na + K), (Ca + Mg)/(HCO3 + SO4), (Ca + Mg)/HCO3, and Na/Cl reveal that water chemistry of the Midyan Basin is controlled by evaporite dissolution (gypsum and/or anhydrite, and halite), silicate weathering, and minor contribution of carbonate weathering. The studied groundwater samples are largely undersaturated with respect to dolomite, gypsum, and anhydrite. These waters are capable of dissolving more of these minerals under suitable physicochemical conditions. PMID:23609922

  7. Geochemical processes in the Onyx River, Wright Valley, Antarctica: Major ions, nutrients, trace metals

    NASA Astrophysics Data System (ADS)

    Green, William J.; Stage, Brian R.; Preston, Adam; Wagers, Shannon; Shacat, Joseph; Newell, Silvia

    2005-02-01

    We present data on major ions, nutrients and trace metals in an Antarctic stream. The Onyx River is located in Wright Valley (77-32 S; 161-34 E), one of a group of ancient river and glacier-carved landforms that comprise the McMurdo Dry Valleys of Antarctica. The river is more than 30 km long and is the largest of the glacial meltwater streams that characterize this relatively ice-free region near the Ross Sea. The complete absence of rainfall in the region and the usually small contributions of glacially derived tributaries to the main channel make this a comparatively simple system for geochemical investigation. Moreover, the lack of human impacts, past or present, provides an increasingly rare window onto a pristine aquatic system. For all major ions and silica, we observe increasing concentrations with distance from Lake Brownworth down to the recording weir near Lake Vanda. Chemical weathering rates are unexpectedly high and may be related to the rapid dissolution of ancient carbonate deposits and to the severe physical weathering associated with the harsh Antarctic winter. Of the nutrients, nitrate and dissolved reactive phosphate appear to have quite different sources. Nitrate is enriched in waters near the Lower Wright Glacier and may ultimately be derived from stratospheric sources; while phosphate is likely to be the product of chemical weathering of valley rocks and soils. We confirm the work of earlier investigations regarding the importance of the Boulder Pavement as a nutrient sink. Dissolved Mn, Fe, Ni, Cu, and Cd are present at nanomolar levels and, in all cases, the concentrations of these metals are lower than in average world river water. We hypothesize that metal uptake and exchange with particulate phases along the course of the river may serve as a buffer for the dissolved load. Concurrent study of these three solute classes points out significant differences in the mechanisms and sites of their removal from the Onyx River.

  8. Time study of trace elements and major ions during two cloud events at the Mt. Brocken

    NASA Astrophysics Data System (ADS)

    Plessow, K.; Acker, K.; Heinrichs, H.; Möller, D.

    Cloud water investigations have been performed at the highest elevation of Central Germany in 1997. Results of extensive trace element measurements are presented. Besides conductivity, pH, liquid water content and major ions the data set includes 49 minor and trace elements. Estimation of crustal enrichment factors (EFs) provides an indication of the anthropogenic contributions to the cloud water concentrations. The variation of cloud composition with time has been illustrated for two selected events with different air mass origins. The chemical composition of the cloud condensation nuclei on which the droplets grow mainly determines the cloud water chemistry. For a cloud event in June 1997 the concentrations of the crustally derived elements Si, Al, Fe, Ti, Ce, La and Nd follow each other closely. The fact that SO 42-, NO 3- and NH 4+ are only moderately correlated with the particular pollutants with high enrichment factors such as Cd, Sb, Pb, Zn, Cu, As, Bi, Sn, Mo, Ni, Tl and V indicates that their source regions are more widespread. During an event in October 1997 the time trends for most minor and trace elements follow rather closely those for the major ions NH 4+, SO 42- and NO 3-. Back trajectories show that the transport from continental and marine European sources was the likely cause of the sample concentrations. EFs of trace elements in cloud water samples during the June and October event show a strong correlation with those obtained for urban particulate matter. Although both events are influenced by air masses of different origin, there is a good agreement between the EF signatures.

  9. Solar Ion Processing of Major Element Surface Compositions of Mature Mare Soils: Insights from Combined XPS and Analytical TEM Observations

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Dukes, C.; Keller, L. P.; Baragiola, R.

    2012-01-01

    Solar wind ions are capable of altering the sur-face chemistry of the lunar regolith by a number of mechanisms including preferential sputtering, radiation-enhanced diffusion and sputter erosion of space weathered surfaces containing pre-existing compositional profiles. We have previously reported in-situ ion irradiation experiments supported by X-ray photoelectron spectroscopy (XPS) and analytical TEM that show how solar ions potentially drive Fe and Ti reduction at the monolayer scale as well as the 10-100 nm depth scale in lunar soils [1]. Here we report experimental data on the effect of ion irradiation on the major element surface composition in a mature mare soil.

  10. Major Ion Chemistry and Mixing Proportions of Nitrate Sources in Urban Groundwater

    NASA Astrophysics Data System (ADS)

    Munster, J.; Hanson, G. N.; Bokuniewicz, H.

    2007-05-01

    Working with Dr. Gilbert Hanson has allowed me to apply general mixing equations to identification of nonpoint sources of groundwater contamination. These methods have not commonly been used in hydrologic studies, as they involve a more classical petrologic approach, one which Dr. Hanson has pioneered. Our drinking water supplies are becoming more susceptible to contamination and knowing the chemistry of contaminate sources will yield precise determination of potential sources to groundwater and allow government agencies to adopt policies to reduce or prevent contamination. The geochemistry of soil water from below fertilized turfgrass sites and of sewage from septic tank/cesspools was used to place constraints on the sources of nitrate in groundwater of an unconsolidated aquifer in Suffolk County, Long Island, New York, USA. Twenty four sewage samples were acquired from Suffolk County Public Works. Soil water samples, from suction lysimeters, were acquired monthly during 2003, totaling 70 samples. We found that soil water concentrations were elevated in Ca, Mg and SO4 relative to sewage and sewage had higher concentrations of Cl, N-NO3, PO4, Na and K. This difference in the major ion chemistry allows identification of the source signatures in groundwater. We then compared the source signatures to 28 groundwater wells on binary ion diagrams of SO4, Cl and N- NO3 and created a cation sorption model for Na, Ca, Mg and K, in order to model cation concentrations on binary ion diagrams. These diagrams allow estimates of the relative contributions of each source to each well. Groundwater wells plotted according to their major land use and show that wells of similar land use have similar geochemistry and similar source contributions. The estimates of source contributions show that the proportions of soil water and sewage increase as residential land use increases. Although volumetric source proportions to groundwater wells are similar for soil water and sewage within a

  11. Major ion chemistry of the Son River, India: Weathering processes, dissolved fluxes and water quality assessment

    NASA Astrophysics Data System (ADS)

    Maharana, Chinmaya; Gautam, Sandeep Kumar; Singh, Abhay Kumar; Tripathi, Jayant K.

    2015-08-01

    River Son, draining diverse lithologies in the subtropical climate of the peninsular sub-basin of the Ganga basin, is one of the major tributaries of the Ganga River. The chemistry of major ions in the surface water of the Son River was studied in detail to determine various source(s) and processes controlling its water chemistry, seasonal and spatial variations in water chemistry, dissolved fluxes and chemical denudation rate (CDR). The study shows that Ca2+, Mg2+ and HCO 3- are major ionic species in the river water. Most of the measured parameters exhibit a relatively lower concentration in the post-monsoon as compared to pre-monsoon season. The water chemistry highlights the influence of continental weathering aided by secondary contributions from ground water, saline/alkaline soils and anthropogenic activities in the catchment. Results also reflect the dominance of carbonate weathering over silicate weathering in controlling water composition. The Son River delivers about 4.2 million tons of dissolved loads annually to the Ganga River, which accounts for ˜6% of the total annual load carried by the Ganga River to the Bay of Bengal. The average CDR of the Son River is 59.5 tons km -2 yr -1, which is less than the reported 72 tons km -2 yr -1 of the Ganga River and higher than the global average of 36 tons km -2 yr -1. The water chemistry for the pre-monsoon and post-monsoon periods shows a strong seasonal control on solute flux and CDR values. The water chemistry indicates that the Son River water is good to excellent in quality for irrigation and also suitable for drinking purposes.

  12. Development and validation of models predicting the toxicity of major seawater ions to the mysid shrimp, Americamysis bahia.

    PubMed

    Pillard, David A; DuFresne, Doree L; Mickley, Mike C

    2002-10-01

    The concentration and balance of major ions that comprise total dissolved solids (TDS) can influence the toxicity of effluents discharged to freshwater and marine environments. An additional complicating factor in waters released to saltwater systems is the effluent salinity since the toxicity of major ions changes with the salinity of the test solution. A study was conducted to evaluate the toxicity of six major seawater ions (bicarbonate, borate, calcium, magnesium, potassium, and sulfate) to the mysid shrimp, Americamysis bahia, at salinities of 10 and 20/1000. Logistic regression models were developed to predict organism survival at deficient and excess concentrations of the ions. Calcium and potassium caused significant mortality to mysid shrimp in both excess and deficient (relative to artificial seawater) solutions. Bicarbonate, borate, and magnesium displayed significant toxicity only in excess concentrations, while sulfate had no adverse impacts at any of the concentrations tested. As the salinity of the test solutions decreased, mysid shrimp tolerated increasingly lower calcium and potassium concentrations. Similarly, as salinity increased, the upper tolerance levels of calcium, potassium, and magnesium also increased. The models developed during these studies, and similar models developed by other researchers, were used to evaluate 11 actual effluents with unexplained toxicity that might be associated with TDS ions. The models correctly identified calcium as the primary toxicant in 9 of the 11 effluents. These results indicate the models can be used as an important tool to identify toxicity associated with major seawater ions. PMID:12371489

  13. Determination of the volatile fraction of Polygonum bistorta L. at different growing stages and evaluation of its antimicrobial activity against two major honeybee (Apis mellifera) pathogens.

    PubMed

    Cecotti, Roberto; Carpana, Emanuele; Falchero, Luca; Paoletti, Renato; Tava, Aldo

    2012-02-01

    The composition of the volatile fraction of Polygonum bistorta L. (also known as bistort or snakeroot) was investigated. Fresh aerial parts of this plant species were collected in the Western Italian Alps during the summer at three different phenological stages, namely vegetative, flowering, and fruiting, and steam-distilled in a Clevenger-type apparatus. The oils accounted for 0.004 to 0.010% of the fresh plant material, and their compositions were determined by GC/FID and GC/MS. The composition of the oils during the vegetative period varied both in quantity and quality; several classes of compounds were found with a predominance of alcohols in the vegetative phase, terpenes and linear-chained saturated hydrocarbons in the flowering phase, while saturated aliphatic acids and their methyl esters were predominant in fruiting phase. The most abundant compounds were 3-methylbut-3-en-1-ol in the vegetative phase, linalool in the flowering phase, and dodecanoic acid and its methyl ester in the fruiting phase. The obtained essential oils were then tested against two major bee pathogens, i.e., Paenibacillus larvae and Melissococcus plutonius, and against a reference bacterial species, Bacillus subtilis. Data were compared to those obtained with reference standards used against those pathogens such as the essential oils obtained from leaves and bark of Cinnamomum zeylanicum (cinnamon), and the antibiotic oxytetracyclin. PMID:22344911

  14. PCBs and OCPs on a east-to-west transect: the importance of major currents and net volatilization for PCBs in the Atlantic Ocean.

    PubMed

    Lohmann, Rainer; Klanova, Jana; Kukucka, Petr; Yonis, Shifra; Bollinger, Kevyn

    2012-10-01

    Air-water exchange gradients of selected polychlorinated biphenyl (PCB) congeners across a large section of the tropical Atlantic suggested net volatilization of PCBs to the atmosphere. Only for the higher chlorinated PCB 153 and hexachlorobenzene (HCB) were gradients near equilibrium detected. The use of passive samplers also enabled the detection of dichlorodiphenyltrichloroethane (DDT) and its transformation products across the tropical Atlantic, indicating net deposition. There were clear differences between the southern and northern hemisphere apparent in terms of atmospheric concentrations: Once the ship moved from the southern into the northern hemisphere air, concentrations of HCB and other organochlorine pesticides increased several-fold. For large swaths of the tropical Atlantic Ocean, neither PCB nor organochlorine pesticide dissolved concentrations varied much longitudinally, probably due to efficient mixing by ocean currents. In selected samples, dissolved concentrations reflected the influence of river plumes and major ocean currents far away from the continents. Dissolved concentrations of PCBs 28, 52, 101, 118, and HCB increased in the Amazon plume and the Gulf Stream. While the Amazon plume flushed only a few kg of PCBs and HCB, the Gulf Stream is potentially delivering tons of PCBs into the North Atlantic annually. PMID:22303957

  15. Influence of extraction methodologies on the analysis of five major volatile aromatic compounds of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) grown in Thailand.

    PubMed

    Chanthai, Saksit; Prachakoll, Sujitra; Ruangviriyachai, Chalerm; Luthria, Devanand L

    2012-01-01

    This paper deals with the systematic comparison of extraction of major volatile aromatic compounds (VACs) of citronella grass and lemongrass by classical microhydrodistillation (MHD), as well as modern accelerated solvent extraction (ASE). Sixteen VACs were identified by GC/MS. GC-flame ionization detection was used for the quantification of five VACs (citronellal, citronellol, geraniol, citral, and eugenol) to compare the extraction efficiency of the two different methods. Linear range, LOD, and LOQ were calculated for the five VACs. Intraday and interday precisions for the analysis of VACs were determined for each sample. The extraction recovery, as calculated by a spiking experiment with known standards of VACs, by ASE and MHD ranged from 64.9 to 91.2% and 74.3 to 95.2%, respectively. The extraction efficiency of the VACs was compared for three solvents of varying polarities (hexane, dichloromethane, and methanol), seven different temperatures (ranging from 40 to 160 degrees C, with a gradual increment of 20 degrees C), five time periods (from 1 to 10 min), and three cycles (1, 2, and 3 repeated extractions). Optimum extraction yields of VACs were obtained when extractions were carried out for 7 min with dichloromethane and two extraction cycles at 120 degrees C. The results showed that the ASE technique is more efficient than MHD, as it results in improved yields and significant reduction in extraction time with automated extraction capabilities. PMID:22816268

  16. Evaluation of environmental factors affecting yields of major dissolved ions of streams in the United States

    USGS Publications Warehouse

    Peters, Norman E.

    1984-01-01

    The seven major dissolved ions in streams-sodium, potassium, magnesium, calcium, chloride, sulfate, and bicarbonate and their sum dissolved solids from 56 basins in the conterminous United States and Hawaii were correlated with bedrock type, annual precipitation, population density, and average stream temperature of their respective basins through multiple linear-regression equations to predict annual yields. The study was restricted to basins underlain by limestone, sandstone, or crystalline rock. Depending on the constituent, yields ranged from about 10 to 100,000 kilograms per square kilometer. Predicted yields were within 1 order of magnitude of measured yields. The most important factor in yield prediction was annual precipitation, which accounted for 58 to 71 percent of all yields. Rock type was second in importance. Yields of magnesium, calcium, bicarbonate, and dissolved solids from limestone basins were 4 to 10 times larger than those from sandstone or crystalline basins as a result of carbonate weathering. Population density was an ineffective indicator of all constituents except sodium and chloride; it accounted for 13 percent of the annual sodium yield and 20 percent of the annual chloride yield. Average stream temperature was significant only for calcium and bicarbonate in limestone basins. Its relationship with yields was consistently negative. Either carbonate dissolution increases at low temperatures, or weathering in northern basins, which contain glacial deposits and have the lowest stream temperatures, is greater than in southern basins. Average ion contributions from atmospheric deposition accounted for 30 percent of the sodium and chloride and 60 percent of the sulfate in annual yields. The amount of sulfate derived from atmospheric contributions was higher in sandstone and crystalline basins (65 and 80 percent, respectively) than limestone basins (38 percent). This disparity is attributed to the lack of available sulfate in crystalline rock

  17. Seasonal Variability of Major Ions and δ13CDIC in Permafrost Watersheds of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Lehn, G. O.; Jacobson, A. D.; Douglas, T. A.; McClelland, J. W.; Khosh, M. S.; Barker, A. J.

    2011-12-01

    Models and observations predict that climate change will have more severe effects at higher latitudes. Many effects may already be underway. Increasing temperatures are expected to thaw permafrost soils, changing the hydrology and biogeochemistry of Arctic watersheds. These changes are particularly important because permafrost thaw could destabilize a large carbon reservoir, potentially leading to sizable greenhouse gas emissions. Tracking soil thaw and concomitant changes in carbon export are therefore critical to predicting feedbacks between Arctic climate change and global warming. As the climate warms, the seasonally thawed active layer will extend into deeper, previously frozen, mineral-rich soils, increasing the signal of chemical weathering in streams. Historical methods of monitoring active layer thaw depth are labor intensive and may not capture the heterogeneity of Arctic soils, whereas stream geochemistry provides a unique opportunity to integrate signals across vast spatial distances. We present major ion geochemistry and δ13C of dissolved inorganic carbon (DIC) variations that relate to seasonal changes in permafrost thaw depths. Samples were collected from six watersheds on the North Slope of Alaska. All rivers drain continuous permafrost but three drain tussock tundra-dominated watersheds and three drain bare bedrock catchments with minor tundra influences. Water samples were collected from April until October in 2009 and 2010. The major ion and δ13CDIC trends of tundra streams suggest that silicate weathering dominates during the spring melt while carbonate weathering dominates as the active layer deepens in the summer. In tundra streams, early season δ13CDIC values indicate carbonic acid-silicate weathering. Summer δ13CDIC values indicate carbonic acid-carbonate weathering. In both cases, carbonic acid forms from CO2 produced by the microbial decomposition of C3 organic matter. Bedrock streams have nearly constant δ13CDIC values and high

  18. Feasibility of halogen determination in noncombustible inorganic matrices by ion chromatography after a novel volatilization method using microwave-induced combustion.

    PubMed

    Pereira, Rodrigo M; Costa, Vanize C; Hartwig, Carla A; Picoloto, Rochele S; Flores, Erico M M; Duarte, Fabio A; Mesko, Marcia F

    2016-01-15

    A microwave-induced combustion (MIC) system based on the volatilization process was applied for subsequent halogen determination from noncombustible inorganic matrices. Portland cement samples were selected to demonstrate the feasibility of the proposed method, allowing the subsequent determination of Cl and F by ion chromatography (IC). Samples were mixed with high-purity microcrystalline cellulose, wrapped with a polyethylene film and combusted in quartz closed vessels pressurized with oxygen (20bar). Water and NH4OH (10, 25 or 50m mol L(-1)) were evaluated for Cl and F absorption, but water was selected, using 5min of reflux after volatilization. Final solutions were also suitable for analysis by pontentiometry with ion-selective electrode (ISE) for both analytes, and no difference was found when comparing the results with IC. The accuracy of the proposed method for Cl was evaluated by analysis of certified reference materials (CRMs), and agreement with certified values ranged from 98% to 103%. Results were also compared to those using the procedure recommended by the American Society of Testing and Materials (ASTM) for the determination of total chlorides (C114-13), and no difference was found. Volatilization by MIC using a mixture of cement, cellulose and a biological CRM was carried out in order to evaluate the accuracy for F, and recovery was about 96%. The proposed method allowed suitable limits of detection for Cl and F by IC (99 and 18mg kg(-1), respectively) for routine analysis of cement. Using the proposed method, a relatively low standard deviation (<7%), high throughput (up to eight samples can be processed in less than 30min) and lower generation of laboratory effluents, when compared to the ASTM method, were obtained. Therefore, the method for volatilization of Cl and F by MIC and subsequent determination by IC can be proposed as a suitable alternative for cement analysis. PMID:26592579

  19. EXPERIMENTAL EFFECTS OF CONDUCTIVITY AND MAJOR IONS ON STREAM PERIPHYTON - abstract

    EPA Science Inventory

    Our study examined if specific conductivities comprised of different ions associated with resource extraction affected stream periphyton assemblages, which are important sources of primary production. Sixteen artificial streams were dosed with two ion recipes intended to mimic so...

  20. Wet precipitation of major ions, polonium-210, and organic carbon in a metropolitan city, Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Yan, G.; Kim, G.

    2011-12-01

    An extensive survey of chemical constituents in precipitation including dissolved organic carbon, dissolved nitrogen, major ions, trace elements, and radionuclides was conducted in a representative urban environment of Seoul over one-year period from 2009 to 2010. The sources for these chemical species were apportioned by applying principal component analysis (PCA) in association with commonly acknowledged key tracers, such as Na, K, Ca, and V. The fossil fuel combustion (especially coal) was shown to be the dominant source for most constituents being investigated, with biomass burning being recognized as another significant source. With the aid of air mass backward trajectory analyses, we concluded that the primary fraction of the chemical species in our precipitation samples originated locally in Korea, albeit the frequent long-range transport from the eastern and northeastern China might contribute substantially. Overall, our study suggests the significant role of human activities in altering the atmospheric environment of Seoul and presumably most urban areas around the world, highlighting its profound environmental implications, such as health risks posed by excessive polonium-210, enhanced rainwater acidity from organic acids, and radiative forcing by organic aerosols.

  1. Cometary coma ions. [which occur when water is the major constituent

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.

    1974-01-01

    For comets whose nuclei are composed of water ice conglomerates it is shown that the ion H3O(+) can predominate to distances of 5000 km in the subsolar direction. Beyond this distance H2O(+) is the most important ion. The crossover point is a sensitive function of the rate of evaporation from the nucleus. The presence of ammonia or metals such as sodium, in concentrations greater than 0.1% H2O, can lead to NH4(+) and Na(+) ions.

  2. The general description of major ion concentrations in groundwater of Latvia

    NASA Astrophysics Data System (ADS)

    Kalvāns, A.; Delina, A.

    2012-04-01

    Latvia is situated at the North central part of the Baltic sedimentary basin where the crystalline basement is found in depth between 0.6 to 2 km. Three large aquifer complexes with distinct chemical composition of groundwater are identified: the stagnant water exchange zone where Na-Ca-Cl brine is found; the slow water exchange zone where Na-Ca-Cl-SO4 brackish water is found and active water exchange zone where the freshwater resides. These are separated by distinct regional aquicludes. The composition of the Cl- dominated brines at the base of sedimentary basin is characterised by shift from Na+ towards Ca++ as dominant cation, partially associated with depth of the aquifer and the strength of the brine. The concentration of SO4-- here is inversely linked to the concentration of Ca++ and, according to geochemical modelling, often is close to the solubility limit of the gypsum. The major ion concentrations in the E and W part of the territory are rather different. Therefore two different initial sources of the formation brine were suggested. Alternatively the observations can be explained by different thermal histories of different parts of the basin, affecting the rate of albitization - exchange of the Na for Ca in the solution due to water-rock interaction. The groundwater composition in the slow exchange zone can be nicely explained by the mixing of freshwater and brine residing deeper in the presence of gypsum during some but no all stages of mixing. In some shallow parts of the zone still bound by the Narva regional aquiclude freshwater is found. The question is posted - could this be a paleogroundwater originating from the extensive continental glaciations that override the territory several times during the Pleistocene? Initial isotope studies presented elsewhere seems to give negative answer to this question. The active water exchange zone is characterised by fresh Ca-Mg-HCO3 water with exceptions in cases where gypsum are abundant in sedimentary rocks and

  3. Determination of microbial volatile organic compounds from Staphylococcus pasteuri against Tuber borchii using solid-phase microextraction and gas chromatography/ion trap mass spectrometry.

    PubMed

    Barbieri, E; Gioacchini, A M; Zambonelli, A; Bertini, L; Stocchi, V

    2005-01-01

    The mycelium of Tuber borchii Vittad., a commercial truffle species, is used as a model system for in vitro ectomycorrhizal synthesis, infected seedling production and biotechnological applications. Our fungal cultures were accidentally contaminated with a Staphylococcus pasteuri strain, showing a strong antifungal activity against T. borchii mycelium. In order to identify the antifungal volatile agents produced by S. pasteuri, solid-phase microextraction (SPME) with gas chromatography and mass spectrometry (GC/MS) was used. Using this method 65 microbial volatile organic compounds (MVOCs), synthesized by this bacterium in either single or in fungal-bacterial dual culture, were identified. SPME combined with GC/MS may be a useful method for the determination of MVOCs involved in the antifungal activity. These results showed that bacteria with unusual biological activities could be a major problem during large-scale production of inoculum for truffle-infected seedling. PMID:16259047

  4. Resection is a major repair pathway of heavy ion-induced DNA lesions

    NASA Astrophysics Data System (ADS)

    Durante, Marco; Averbeck, Nicole; Taucher-Scholz, Gisela

    Space radiation include densely ionizing heavy ions, which can produce clustered DNA damage with high frequency in human cells. Repair of these complex lesions is generally assumed to be more difficult than for simple double-strand breaks. We show here that human cells use break resection with increasing frequency after exposure to heavy ions. Resection can lead to misrepair of the DNA lesion, via microhomology mediated end-joining. Resection can therefore be responsible for the increased effectiveness of heavy ions in the induction of mutations and genetic late effects.

  5. Evidence for Extremely Large Lava Flows on Ontong Java Plateau from High Precision Measurements of Volatiles and Major Elements in Natural Glasses

    NASA Astrophysics Data System (ADS)

    Michael, P. J.

    2004-12-01

    Magmas of Ontong Java Plateau (OJP) display little geochemical variation, having only a few widely dispersed magma types (Mahoney et al. , 1993). (Here we define magma type as all lavas that have evolved by similar extents of melting of a similar mantle source, and have undergone similar polybaric fractionation histories). In this study, we use high precision microprobe measurements of Cl, K, S, H2O, CO2 and major elements in glasses to show that magmas from widespread locations on OJP are identical in composition and are probably from the same eruption and quite possibly from the same series of lava flows. By same eruption, we mean the quasi-continuous issuance of magma from a continuous chamber over a time period that is insufficient for further differentiation or assimilation. By same lava flow, we mean lavas that have issued from the same or nearby vents and were part of a sequence that that was continuously molten at the surface or beneath a crust. Cl concentrations are controlled by assimilation that takes place fairly late at shallow levels in the magma chamber. The amount of assimilation and Cl content of assimilated material control Cl contents of magmas, and are expected to be highly variable in this stochastic process. It is inconceivable that magmas erupted at different times would have precisely the same Cl content, even if they have the same major element chemistry from identical cotectic evolution. The clearest case of distant lavas being from the same eruption is the Kroenke-type lavas from ODP holes 1187A and 1185B, about 140 km apart. The lavas form roughly 150 flow units of about 1 meter average thickness, which we feel are multiple surges of lava from a quasi-continuous eruption. Glass compositions (major elements and volatiles) do not vary more than analytical uncertainties within each hole. Differences between the two holes are also less than analytical uncertainties. Averages of 4 samples from each of the two holes are: Cl 750 vs 732 ppm; s

  6. Effect of enzyme activity and frozen storage on jalapeño pepper volatiles by selected ion flow tube-mass spectrometry.

    PubMed

    Azcarate, Carolina; Barringer, Sheryl A

    2010-01-01

    Samples of unblanched (fresh), stannous chloride-treated, or blanched jalapeño peppers were measured for real-time generation of lipoxygenase-derived volatiles during 10 min after tissue disruption. Volatiles were also measured before and after 1.5, 2.5, 3, 6, and 9 mo of frozen storage at -15 °C. The concentration of all lipoxygenase-derived compounds was significantly higher in unblanched jalapeño peppers compared to enzyme inhibited peppers. The maximum concentration of (Z)-3-hexenal, (E)-2-hexenal, and hexanal was detected at about 1.2, 1.5, and 1.5 min after tissue disruption, respectively. A decrease in (Z)-3-hexenal and an increase in dimethyl sulfide and methylbutanal occurred in blanched compared to stannous chloride-treated peppers due to heat. Frozen storage resulted in no major changes in the lipoxygenase-derived volatiles of whole and pureed blanched peppers after 9 mo. However, in whole unblanched peppers a gradual decrease of (Z)-3-hexenal, (E)-2-hexenal, hexanal, hexenol, and hexanol was observed over time; whereas in pureed unblanched peppers these compounds increased, reached maximum concentration, and then decreased. Similarly, the minor volatiles 2-pentenal, 1-penten-3-one, (E)-2-heptenal, (E)-2-octenal, and (E)-2-nonenal showed an initial increase followed by a decline in both whole and pureed unblanched peppers. Tissue disruption increased generation and degradation rates during frozen storage. The compounds (E,Z)-2,6-nonadienal, n-propyl aldehyde, 2-isobutyl-3-methoxypyrazine, and a mixture of terpenes decreased in unblanched and blanched frozen samples, while nonanal and methylbutanal increased only in unblanched samples. PMID:21535582

  7. DIRECT TRACE ANALYSIS OF VOLATILE ORGANIC COMPOUNDS IN AIR USING ION TRAP MASS SPECTROMETERS WITH FILTERED NOISE FIELDS

    EPA Science Inventory

    Two ion trap mass spectrometers and direct air sampling interfaces are being evaluated in the laboratory for monitoring toxic air pollutants in real time. he mass spectrometers are the large, laboratory-based Finnigan MAT ion trap (ITMS) and the compact, field-deployable Teledyne...

  8. [Major ion chemistry of surface water in the upper reach of Shule River Basin and the possible controls ].

    PubMed

    Zhou, Jia-xin; Ding, Yong-jian; Zeng, Guo-xiong; Wu, Jin-kui; Qin, Jia

    2014-09-01

    To analyze the major ion chemistry of water in the upper reach of the Shule River Basin and possible controls, samples of river water, groundwater, precipitation, melt water were collected and methods including descriptive statistics, Gibbs Figure, Piper Triangular diagrams of anions and cations were comprehensive used. Results showed that the major ion compositions and hydrochemical types were significantly different in different waters such as stream water, groundwater and precipitation. The total dissolved solid (TDS) in the river water ranges between 51.7 to 432. 3 mgL-1 with an average of 177.7 mgL-1. The major cations of river water are Ca2+ and Mg2+, accounting for 45% and 31% of the cations respectively. Meanwhile, HCO(3)- constituted about 75% of the anions. The hydrochemical type of river water is HCO(-)(3)-Ca2+-Mg2+. Owing to the interaction between the river and layer, the concentration of SO(2-)4 is relatively higher. Comparing major ion concentrations of the river water with local groundwater and precipitation, concentrations of the river water ranged between precipitation and groundwater but were much closer to the concentration of groundwater, indicating that the surface water was recharged by a mixture of precipitation and groundwater while groundwater is dominant. The chemical composition of surface water samples located in the middle and a bit upper of Gibbs model, which indicates that the major chemical process of river water is controlled by rock weathering and evaporation-crystallization but rock weathering plays a much more important role. PMID:25518647

  9. Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia, Daphnia magna and Pimephales promelas (fathead minnows)

    SciTech Connect

    Mount, D.R.; Gulley, D.D.; Hockett, J.R.; Garrison, T.D.; Evans, J.M.

    1997-10-01

    Toxicity of fresh waters with high total dissolved solids has been shown to be dependent on the specific ionic composition of the water. To provide a predictive tool to assess toxicity attributable to major ions, the authors tested the toxicity of over 2,900 ion solutions using the daphnids, Ceriodaphnia dubia and Daphnia magna, and fathead minnows (Pimephales promelas). Multiple logistic regression was used to relate ion composition to survival for each of the three test species. In general, relative ion toxicity was K{sup +} > HCO{sub 3}{sup {minus}} {approx} Mg{sup 2+} > Cl{sup {minus}} > SO{sub 4}{sup 2{minus}}; Na{sup +} and Ca{sup 2+} were not significant variables in the regressions, suggesting that the toxicity of Na{sup +} and Ca{sup 2+} salts was primarily attributable to the corresponding anion. For C. dubia and D. magna, toxicity of Cl{sup {minus}}, SO{sub 4}{sup 2{minus}}, and K{sup +} was reduced in solutions enriched with more than one cation. Final regression models showed a good quality of fit to the data (R{sup 2} = 0.767--0.861). Preliminary applications of these models to field-collected samples indicated a high degree of accuracy for the C. dubia model, while the D. magna and fathead minnow models tended to overpredict ion toxicity. Studies of oil and gas produced waters, irrigation drain waters, shale oil leachates, sediment pore waters, and industrial process waters have shown toxicity caused by elevated concentrations of common ions.

  10. Discrimination of Swiss cheese from 5 different factories by high impact volatile organic compound profiles determined by odor activity value using selected ion flow tube mass spectrometry and odor threshold.

    PubMed

    Taylor, Kaitlyn; Wick, Cheryl; Castada, Hardy; Kent, Kyle; Harper, W James

    2013-10-01

    Swiss cheese contains more than 200 volatile organic compounds (VOCs). Gas chromatography-mass spectrometry has been utilized for the analysis of volatile compounds in food products; however, it is not sensitive enough to measure VOCs directly in the headspace of a food at low concentrations. Selected ion flow tube mass spectrometry (SIFT-MS) provides a basis for determining the concentrations of VOCs in the head space of the sample in real time at low concentration levels of parts per billion/trillion by volume. Of the Swiss cheese VOCs, relatively few have a major impact on flavor quality. VOCs with odor activity values (OAVs) (concentration/odor threshold) greater than one are considered high-impact flavor compounds. The objective of this study was to utilize SIFT-MS concentrations in conjunction with odor threshold values to determine OAVs thereby identifying high-impact VOCs to use for differentiating Swiss cheese from five factories and identify the factory variability. Seventeen high-impact VOCs were identified for Swiss cheese based on an OAV greater than one in at least 1 of the 5 Swiss cheese factories. Of these, 2,3-butanedione was the only compound with significantly different OAVs in all factories; however, cheese from any pair of factories had multiple statistically different compounds based on OAV. Principal component analysis using soft independent modeling of class analogy statistical differentiation plots, with all of the OAVs, showed differentiation between the 5 factories. Overall, Swiss cheese from different factories was determined to have different OAV profiles utilizing SIFT-MS to determine OAVs of high impact compounds. PMID:24106758

  11. Environmental isotopes and major ions for tracing leachate contamination from a municipal landfill in Metro Manila, Philippines.

    PubMed

    Castañeda, S S; Sucgang, R J; Almoneda, R V; Mendoza, N D S; David, C P C

    2012-08-01

    The surface water and groundwater sources in the vicinity of a major municipal landfill in Metro Manila, Philippines were investigated to determine contamination by landfill leachate. Tritium, stable isotopes of hydrogen and oxygen, and major ions in the leachate and freshwater within the landfill environment were determined. The leachate contained elevated tritium activities and high concentrations of sodium, chloride, potassium, and calcium. The concentrations of tritium and the leachate related ions in the affected surface water were significantly higher than the non-impacted water and correlated strongly with distance from the leachate source, following a negative exponential relationship, providing evidence of leachate transport along the affected surface water. Enrichment in deuterium was exhibited by leachate in the holding pond but not by the effluent leachate. The stable isotope signature of leachate is masked in the surface water due to dilution by stream water. Dilution similarly masked the effect of leachate in the shallow groundwater which was strongly influenced by precipitation. Evidence of leachate contamination in the deep groundwater was sporadic. In isolated cases, elevated tritium concentrations coincided with enrichment in deuterium. In the same case, leachate related ions, Na, Ca, Mg, and Cl, varied with rainfall but generally increased from 2003 to 2009. The effect on the groundwater of methane produced within the landfill was seen in the depletion in deuterium in groundwater in the drier months. PMID:22343499

  12. A major host plant volatile, 1-octen-3-ol, contributes to mating in the legume pod borer, Maruca vitrata (Fabricius) (Lepidoptera: Crambidae)

    NASA Astrophysics Data System (ADS)

    Bendera, M.; Ekesi, S.; Ndung'u, M.; Srinivasan, R.; Torto, B.

    2015-10-01

    Previous studies on the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae), a serious pest of cowpea, Vigna unguiculata (L.) Walp. (Fabales: Fabaceae), in sub-Saharan Africa have focused on sex pheromones, but the role of the host plant on sexual behavior has not been explored. We investigated this interaction in the laboratory using behavioral assays and chemical analyses. We found that the presence of cowpea seedlings and a dichloromethane extract of the leaf increased coupling in the legume pod borer by 33 and 61 %, respectively, compared to the control, suggesting the involvement of both contact and olfactory cues. We used coupled gas chromatography-electroantennographic detection (GC/EAD) and GC-mass spectrometry (GC/MS) to identify compounds from the cowpea leaf extract, detected by M. vitrata antenna. We found that the antennae of the insect consistently detected four components, with 1-octen-3-ol identified as a common and dominant component in both the volatiles released by the intact cowpea plant and leaf extract. We therefore investigated its role in the coupling of M. vitrata. In dose-response assays, 1-octen-3-ol increased coupling in M. vitrata with increasing dose of the compound compared to the control. Our results suggest that the cowpea volatile 1-octen-3-ol contributes to M. vitrata sexual behavior.

  13. A major host plant volatile, 1-octen-3-ol, contributes to mating in the legume pod borer, Maruca vitrata (Fabricius) (Lepidoptera: Crambidae).

    PubMed

    Bendera, M; Ekesi, S; Ndung'u, M; Srinivasan, R; Torto, B

    2015-10-01

    Previous studies on the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae), a serious pest of cowpea, Vigna unguiculata (L.) Walp. (Fabales: Fabaceae), in sub-Saharan Africa have focused on sex pheromones, but the role of the host plant on sexual behavior has not been explored. We investigated this interaction in the laboratory using behavioral assays and chemical analyses. We found that the presence of cowpea seedlings and a dichloromethane extract of the leaf increased coupling in the legume pod borer by 33 and 61 %, respectively, compared to the control, suggesting the involvement of both contact and olfactory cues. We used coupled gas chromatography-electroantennographic detection (GC/EAD) and GC-mass spectrometry (GC/MS) to identify compounds from the cowpea leaf extract, detected by M. vitrata antenna. We found that the antennae of the insect consistently detected four components, with 1-octen-3-ol identified as a common and dominant component in both the volatiles released by the intact cowpea plant and leaf extract. We therefore investigated its role in the coupling of M. vitrata. In dose-response assays, 1-octen-3-ol increased coupling in M. vitrata with increasing dose of the compound compared to the control. Our results suggest that the cowpea volatile 1-octen-3-ol contributes to M. vitrata sexual behavior. PMID:26280704

  14. A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Kovalenko, Igor; Zdyrko, Bogdan; Magasinski, Alexandre; Hertzberg, Benjamin; Milicev, Zoran; Burtovyy, Ruslan; Luzinov, Igor; Yushin, Gleb

    2011-10-01

    The identification of similarities in the material requirements for applications of interest and those of living organisms provides opportunities to use renewable natural resources to develop better materials and design better devices. In our work, we harness this strategy to build high-capacity silicon (Si) nanopowder-based lithium (Li)-ion batteries with improved performance characteristics. Si offers more than one order of magnitude higher capacity than graphite, but it exhibits dramatic volume changes during electrochemical alloying and de-alloying with Li, which typically leads to rapid anode degradation. We show that mixing Si nanopowder with alginate, a natural polysaccharide extracted from brown algae, yields a stable battery anode possessing reversible capacity eight times higher than that of the state-of-the-art graphitic anodes.

  15. Tropical Greenhouse Measurements of Volatile Organic Compounds Using Switchable Reagent Ion Proton-Transfer-Reaction Time-of-Flight Mass Spectromety (PTR-TOF-MS)

    NASA Astrophysics Data System (ADS)

    Veres, P.; Auld, J.; Williams, J.

    2012-04-01

    In this presentation, we will summarize the results of measurements made in an approximately 1300 m3 tropical greenhouse at the Johannes Gutenberg University botanical garden in Mainz Germany conducted over a one month period. The greenhouse is home to a large variety of plant species from hot and humid regions of the world. The greenhouse is also host to several crops such as Cocoa and Cola Nut as well as ornamental plants. A particular focus of the species maintained are those which are considered ant plants, or plants which have an intimate relationship with ants in tropical habitats. Volatile organic compounds (VOCs) were measured using a Switchable Reagent Ion Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-TOF-MS) using H3O+, NO+, and O2+ ion chemistry. Measurements will be presented both for primary emissions observed in the closed greenhouse atmosphere as well as the oxidation products observed after the introduction of ambient ozone. The high resolving power (5000 m/Δm) of the time-of-flight instrument allows for the separation of isobaric species. In particular, both isoprene (68.1170 amu) and furan (68.0740 amu) were observed and separated as primary emissions during this study. The significance of this will be discussed in terms of both atmospheric implications as well as with respect to previous measurements of isoprene obtained using quadrupole PTR-MS where isobaric separation of these compounds is not possible. Additionally observed species (e.g. Methanol, Acetaldehyde, MVK and MEK) will be discussed in detail with respect to their behavior as a function of light, temperature and relative humidity. The overall instrument performance of the PTR-TOF-MS technique using the H3O+, NO+, and O2+ primary ions for the measurement of VOCs will be evaluated.

  16. Behavioral responses of the leafhopper, Cicadulina storeyi China, a major vector of maize streak virus, to volatile cues from intact and leafhopper-damaged maize.

    PubMed

    Oluwafemi, Sunday; Bruce, Toby J A; Pickett, John A; Ton, Jurriaan; Birkett, Michael A

    2011-01-01

    The chemical ecology of the leafhopper, Cicadulina storeyi China (Homoptera: Cicadellidae), an important vector of Maize Streak Virus (MSV), was studied with a view to developing novel leafhopper control strategies in sub-Saharan Africa. Choice tests using a Y-tube olfactometer revealed that odors from uninfested maize seedlings (Zea mays cv. Delprim) were significantly more attractive to C. storeyi than odors from C. storeyi-infested seedlings. Headspace samples of volatile organic compounds (VOCs) collected from 10 to 12 day-old uninfested seedlings were more attractive than those collected from infested seedlings. While VOCs collected from uninfested maize seedlings were attractive, VOCs collected from C. storeyi-infested seedlings were significantly repellent. Analysis of the collected VOCs by gas chromatography (GC) and coupled GC-mass spectrometry (GC-MS) led to the identification of myrcene, linalool, (E)-2-decen-1-ol, and decanal from uninfested seedlings, and (Z)-3-hexenyl acetate, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate, benzyl acetate, indole, geranyl acetate, (E)-caryophyllene, α-bergamotene, (E)-β-farnesene, β-sesquiphellandrene, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) from infested seedlings. Of these, methyl salicylate, (E)-caryophyllene, (E)-β-farnesene, and TMTT were identified previously as volatile semiochemicals involved in plant defense against other sucking insect pests. When tested individually for behavioral activity, all compounds were repellent for C. storeyi. Moreover, when these induced VOCs were added to the blend of VOCs from uninfested maize seedlings, a shift from attraction to repellency was observed. Addition of methyl salicylate, (E)-β-farnesene, or TMTT resulted in a choice for the solvent control (i.e., repulsion), whereas addition of (E)-caryophyllene resulted in no reduction in host VOC attractiveness. These results show that VOCs induced in maize have the potential to be exploited

  17. Statistical generation of training sets for measuring NO3(-), NH4(+) and major ions in natural waters using an ion selective electrode array.

    PubMed

    Mueller, Amy V; Hemond, Harold F

    2016-05-18

    Knowledge of ionic concentrations in natural waters is essential to understand watershed processes. Inorganic nitrogen, in the form of nitrate and ammonium ions, is a key nutrient as well as a participant in redox, acid-base, and photochemical processes of natural waters, leading to spatiotemporal patterns of ion concentrations at scales as small as meters or hours. Current options for measurement in situ are costly, relying primarily on instruments adapted from laboratory methods (e.g., colorimetric, UV absorption); free-standing and inexpensive ISE sensors for NO3(-) and NH4(+) could be attractive alternatives if interferences from other constituents were overcome. Multi-sensor arrays, coupled with appropriate non-linear signal processing, offer promise in this capacity but have not yet successfully achieved signal separation for NO3(-) and NH4(+)in situ at naturally occurring levels in unprocessed water samples. A novel signal processor, underpinned by an appropriate sensor array, is proposed that overcomes previous limitations by explicitly integrating basic chemical constraints (e.g., charge balance). This work further presents a rationalized process for the development of such in situ instrumentation for NO3(-) and NH4(+), including a statistical-modeling strategy for instrument design, training/calibration, and validation. Statistical analysis reveals that historical concentrations of major ionic constituents in natural waters across New England strongly covary and are multi-modal. This informs the design of a statistically appropriate training set, suggesting that the strong covariance of constituents across environmental samples can be exploited through appropriate signal processing mechanisms to further improve estimates of minor constituents. Two artificial neural network architectures, one expanded to incorporate knowledge of basic chemical constraints, were tested to process outputs of a multi-sensor array, trained using datasets of varying degrees of

  18. Volatile content and distribution in the Azorean mantle plume

    NASA Astrophysics Data System (ADS)

    Costa, K.; Parman, S. W.; Saal, A. E.; Kelley, K. A.; Shimizu, N.; Nunes, J. C.; Rose-Koga, E. F.

    2012-12-01

    In order to assess pre-eruptive volatile contents of magmas in the central Azores, we have measured major element, trace element, and volatile contents of olivine hosted melt inclusions. Seventy tephra samples were collected from Sao Jorge, Pico and Faial islands. Three samples yielded naturally glassy melt inclusions, while five samples produced crystallized melt inclusions that were rehomogenized with either a one atmosphere furnace or a heating stage. The melt inclusions were analyzed for major elements, volatiles, and trace elements by electron microprobe, secondary ion mass spectrometry (SIMS), and laser ablation ICP-MS, respectively. Olivine host crystals for the melt inclusions are Fo77-88. Melt inclusions compositionally are alkali basalts with Mg #50-68, 40-51wt% SiO2, and 0.82-1.63wt% K2O (corrected for post-entrapment olivine crystallization), which is consistent with existing whole-rock data. They are trace element enriched with 19.3-49.9ppm La and 3.22-4.33 La/Sm. Volatile contents are 270-2509ppm CO2, 0.06-1.52wt% H2O, 120-1465ppm F, 30-2298ppm S, and 28-727ppm Cl. Volatile to trace element ratios are 8.4-46.5 CO2/Nb, 7-220 H2O/Ce, 2.1-42.4 F/Nd, 4-381 S/Dy, and 0.002-0.084 Cl/K. Correlation between Cl and F precludes seawater contamination as a source for the high volatile content. These data suggest that the HIMU component of the Azorean mantle plume is volatile rich, which is consistent with previously published volatile data from other HIMU sources, such as the Austral Islands plume (Lassiter et. al., 2002).

  19. One-year observations of size distribution characteristics of major aerosol constituents at a coastal receptor site in Hong Kong - Part 1: Inorganic ions and oxalate

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Huang, X. H. H.; Yu, J. Z.

    2014-01-01

    Size distribution data of major aerosol constituents are essential in source apportioning of visibility degradation, testing and verification of air quality models incorporating aerosols. We report here one-year observations of mass size distributions of major inorganic ions (sulfate, nitrate, chloride, ammonium, sodium, potassium, magnesium and calcium) and oxalate at a coastal suburban receptor site in Hong Kong, China. A total of 43 sets of size segregated samples in the size range of 0.056-18 μm were collected from March 2011 to February 2012. The size distributions of sulfate, ammonium, potassium and oxalate were characterized by a dominant droplet mode with a mass mean aerodynamic diameter (MMAD) in the range of ~0.7-0.9 μm. Oxalate had a slightly larger MMAD than sulfate on days with temperatures above 22 °C as a result of the process of volatilization and repartitioning. Nitrate was mostly dominated by the coarse mode but enhanced presence in fine mode was detected on winter days with lower temperature and lower concentrations of sea salt and soil particles. This data set reveals an inversely proportional relationship between the fraction of nitrate in the fine mode and product of the sum of sodium and calcium in equivalent concentrations and the dissociation constant of ammonium nitrate (i.e., (1/[Na+] + 2[Ca2+]) × (1/Ke')). The seasonal variation observed for sea salt aerosol abundance, with lower values in summer and winter, is possibly linked with the lower marine salinities in these two seasons. Positive matrix factorization was applied to estimate the relative contributions of local formation and transport to the observed ambient sulfate level through the use of the combined datasets of size-segregated sulfate and select gaseous air pollutants. On average, the regional/super-regional transport of air pollutants was the dominant source at this receptor site, especially on high sulfate days, while local formation processes contributed approximately

  20. One-year observations of size distribution characteristics of major aerosol constituents at a coastal receptor site in Hong Kong - Part 1: Inorganic ions and oxalate

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Huang, X. H. H.; Yu, J. Z.

    2014-09-01

    Size distribution data of major aerosol constituents are essential in source apportioning of visibility degradation, testing and verification of air quality models incorporating aerosols. We report here 1-year observations of mass size distributions of major inorganic ions (sulfate, nitrate, chloride, ammonium, sodium, potassium, magnesium and calcium) and oxalate at a coastal suburban receptor site in Hong Kong, China. A total of 43 sets of size-segregated samples in the size range of 0.056-18 μm were collected from March 2011 to February 2012. The size distributions of sulfate, ammonium, potassium and oxalate were characterized by a dominant droplet mode with a mass mean aerodynamic diameter (MMAD) in the range of ~ 0.7-0.9 μm. Oxalate had a slightly larger MMAD than sulfate on days with temperatures above 22 °C as a result of the process of volatilization and repartitioning. Nitrate was mostly dominated by the coarse mode but enhanced presence in fine mode was detected on winter days with lower temperature and lower concentrations of sea salt and soil particles. This data set reveals an inversely proportional relationship between the fraction of nitrate in the fine mode and product of the sum of sodium and calcium in equivalent concentrations and the dissociation constant of ammonium nitrate (i.e., (1/([Na+] + 2[Ca2+]) × (1/Ke')) when Pn_fine is significant (> 10%). The seasonal variation observed for sea salt aerosol abundance, with lower values in summer and winter, is possibly linked with the lower marine salinities in these two seasons. Positive matrix factorization was applied to estimate the relative contributions of local formation and transport to the observed ambient sulfate level through the use of the combined data sets of size-segregated sulfate and select gaseous air pollutants. On average, the regional/super-regional transport of air pollutants was the dominant source at this receptor site, especially on high-sulfate days while local formation

  1. Relationships between groundwater contamination and major-ion chemistry in a karst aquifer

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.

    1990-11-01

    Groundwater contamination was examined within a rural setting of the Inner Bluegrass Karst Region of central Kentucky where potential contaminant sources include soil-organic matter, organic and inorganic fertilizer, and septic-tank effluent. To evaluate controls on groundwater contamination, data on nitrate concentrations and indicator bacteria in water from wells and springs were compared with physical and chemical attributes of the groundwater system. Bacterial densities greater than the recommended limit were found in all springs and approximately half of the wells, whereas nitrate concentrations >45 mg l -1 were restricted to 20% of the springs and 10% of the wells. Nitrate concentrations varied markedly in closely spaced wells and springs, which indicates that land use is not the primary control on groundwater contamination. Groundwater contamination is related to the distribution of chemical water types in the study area. All Ca subtype water was contaminated with nitrate and bacteria. Ca subtype water occurs in the shallow, rapidly circulating groundwater zone, which is most susceptible to contamination. The similarity in nitrate concentrations between local springs, major springs, and wells that contain Ca subtype water indicates that the occurrence of large conduits is not the main control on nitrate and bacterial contamination of groundwater. Temporal fluctuations in nitrate concentrations of Ca subtype water are attributed to seasonal fluctuations in recharge and in plant growth. Ca-Mg water subtype was generally not contaminated, and Na-HCO 3 and Na-Cl water types were not contaminated. Ca-Mg water subtype, and Na-HCO 3 and Na-Cl water types are associated with longer residence times and reducing conditions, which allow bacterial die-off and denitrification, respectively. Differences in residence time and reducing conditions among the chemical water types and subtypes are attributed to variations in rock permeability and to the occurrence of horizontal

  2. A novel method for the determination of three volatile organic compounds in exhaled breath by solid-phase microextraction-ion mobility spectrometry.

    PubMed

    Allafchian, Ali Reza; Majidian, Zahra; Ielbeigi, Vahideh; Tabrizchi, Mahmoud

    2016-01-01

    A method was carried out for the quantitative determination of the concentrations of volatile organic compounds (VOCs) using solid-phase microextraction and ion mobility spectrometry (SPME-IMS). This method was optimized and evaluated. The best results were obtained at sorption temperature 70 °C, desorption temperature 200 °C, and extraction time 15 min. Under the optimized conditions, the linear dynamic range was found to be 0.01-4.0 ppb (R(2) > 0.995), 2.3-400 ppm (R(2) > 0.994), and 2.5-76 ppb (R(2) > 0.998) for acetone, acetaldehyde, and acetonitrile, respectively. The detection limits for acetone, acetaldehyde, and acetonitrile were 0.001 ppb, 0.18 ppm, and 0.22 ppb, respectively. As a practical application, the method was applied for the determination of acetone, acetaldehyde, and acetonitrile in human breath matrix. Therefore, the proposed method was found to be effective and simple enough to be strongly recommended for real sample analysis. PMID:26558761

  3. Self-Volatilization Approach to Mesoporous Carbon Nanotube/Silver Nanoparticle Hybrids: The Role of Silver in Boosting Li Ion Storage.

    PubMed

    Jiang, Hao; Zhang, Haoxuan; Fu, Yao; Guo, Shaojun; Hu, Yanjie; Zhang, Ling; Liu, Yu; Liu, Honglai; Li, Chunzhong

    2016-01-26

    One of the biggest challenging issues of carbon nanomaterials for Li ion batteries (LIBs) is that they show low initial Coulombic efficiency (CE), leading to a limited specific capacity. Herein, we demonstrate a simple template self-volatilization strategy for in situ synthesis of mesoporous carbon nanotube/Ag nanoparticle (NP) hybrids (Ag-MCNTs) to boost the LIBs' performance. The key concept of Ag-MCNTs for enhancing LIBs is that a small trace of Ag NPs on MCNTS can greatly restrict the formation of a thicker solid electrolyte interphase film, which has been well verified by both transmission electron microscopy results and quantum density functional theory calculations, leading to the highest initial CE in all the reported carbon nanomaterials. This uncovered property of Ag NPs from Ag-MCNTs makes them exhibit a very high reversible capacity of 1637 mAh g(-1) after 400 discharge/charge cycles at 100 mA g(-1), approximately 5 times higher than the theoretical value of a graphite anode (372 mAh g(-1)), excellent rate capability, and long cycle life. PMID:26691283

  4. Landscape controls on dissolved nutrients, organic matter and major ions in a suburbanizing watershed

    NASA Astrophysics Data System (ADS)

    Daley, M. L.; McDowell, W. H.

    2010-12-01

    Understanding the relative importance of anthropogenic and natural landscape features that drive spatial variability in water quality is a central challenge in studying the biogeochemistry of heterogeneous landscapes. We quantified the average annual flux and concentration of dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON), dissolved organic carbon (DOC), phosphate-P (PO4-P), sodium (Na+) and chloride (Cl-) at ~40 stream sites in three major (51 to 903 km2) NH basins. We used GIS to quantify anthropogenic (e.g. human population density, % impervious surface cover and % agriculture) and natural (e.g. % forest, % wetlands and soil C:N) landscape features for each sub-basin and then employed multiple-regression analysis to relate water quality parameters to landscape characteristics. Anthropogenic features were strong predictors of DIN flux and Na+ and Cl- concentrations, whereas wetland cover (a natural feature) was a significant, but weak predictor of DOC (r2=0.26, p<0.01) and DON (r2 = 0.14, p<0.05) flux. Anthropogenic features could not explain a significant amount of variance in DON or DOC flux. Mean PO4-P concentrations were surprisingly low (<0.015 mg P/L) when compared to the larger range in mean DIN concentrations (0.03 to 0.96 mg/L) and consequently no landscape characteristics could explain a significant amount of spatial variability in PO4-P flux or concentration. Human population density was the single best predictor of DIN flux (r2=0.76, p<0.01), and together with % impervious surface and % agriculture explained 86% (p<0.01) of the total variance. Among all sites, % road pavement was a strong predictor of stream Na+ and Cl- concentrations (r2 = 0.75 to 0.78, p<0.01) and % impervious surface was a stronger predictor (r2 = 0.86 to 0.92, p<0.01) among a subset of sites. Our results suggest that DIN and DON result from different sources in the landscape and although sources of DON and DOC are similar, DON and DOC concentrations respond

  5. Emissions of volatile organic compounds (VOCs) from oil and natural gas activities: compositional comparison of 13 major shale basins via NOAA airborne measurements

    NASA Astrophysics Data System (ADS)

    Gilman, J.; Lerner, B. M.; Aikin, K. C.; De Gouw, J. A.; Koss, A.; Yuan, B.; Warneke, C.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Graus, M.; Tokarek, T. W.; Isaacman-VanWertz, G. A.; Sueper, D.; Worsnop, D. R.

    2015-12-01

    The recent and unprecedented increase in natural gas production from shale formations is associated with a rise in the production of non-methane volatile organic compounds (VOCs) including natural gas plant liquids (e.g., ethane, propane, and butanes) and liquid lease condensate (e.g., pentanes, hexanes, aromatics and cycloalkanes). Since 2010, the production of natural gas liquids and the amount of natural gas vented/flared has increased by factors of ~1.28 and 1.57, respectively (U.S. Energy and Information Administration), indicating an increasingly large potential source of hydrocarbons to the atmosphere. Emission of VOCs may affect local and regional air quality due to the potential to form tropospheric ozone and organic particles as well as from the release of toxic species such as benzene and toluene. The 2015 Shale Oil and Natural Gas Nexus (SONGNex) campaign studied emissions from oil and natural gas activities across the central United States in order to better understand their potential air quality and climate impacts. Here we present VOC measurements from 19 research flights aboard the NOAA WP-3D over 11 shale basins across 8 states. Non-methane hydrocarbons were measured using an improved whole air sampler (iWAS) with post-flight analysis via a custom-built gas chromatograph-mass spectrometer (GC-MS). The whole air samples are complimented by higher-time resolution measurements of methane (Picarro spectrometer), ethane (Aerodyne spectrometer), and VOCs (H3O+ chemical ionization mass spectrometer). Preliminary analysis show that the Permian Basin on the New Mexico/Texas border had the highest observed VOC mixing ratios for all basins studied. We will utilize VOC enhancement ratios to compare the composition of methane and VOC emissions for each basin and the associated reactivities of these gases with the hydroxyl radical, OH, as a proxy for potential ozone formation.

  6. Primary emissions and secondary formation of volatile organic compounds from natural gas production in five major U.S. shale plays

    NASA Astrophysics Data System (ADS)

    Gilman, J.; Lerner, B. M.; Warneke, C.; Graus, M.; Lui, R.; Koss, A.; Yuan, B.; Murphy, S. M.; Alvarez, S. L.; Lefer, B. L.; Min, K. E.; Brown, S. S.; Roberts, J. M.; Osthoff, H. D.; Hatch, C. D.; Peischl, J.; Ryerson, T. B.; De Gouw, J. A.

    2014-12-01

    According to the U.S. Energy and Information Administration (EIA), domestic production of natural gas from shale formations is currently at the highest levels in U.S. history. Shale gas production may also result in the production of natural gas plant liquids (NGPLs) such as ethane and propane as well as natural gas condensate composed of a complex mixture of non-methane hydrocarbons containing more than ~5 carbon atoms (e.g., hexane, cyclohexane, and benzene). The amounts of natural gas liquids and condensate produced depends on the particular reservoir. The source signature of primary emissions of hydrocarbons to the atmosphere within each shale play will therefore depend on the composition of the raw natural gas as well as the industrial processes and equipment used to extract, separate, store, and transport the raw materials. Characterizing the primary emissions of VOCs from natural gas production is critical to assessing the local and regional atmospheric impacts such as the photochemical formation of ozone and secondary formation of organic aerosol. This study utilizes ground-based measurements of a full suite of volatile organic compounds (VOCs) in two western U.S. basins, the Uintah (2012-2014 winter measurements only) and Denver-Julesburg (winter 2011 and summer 2012), and airborne measurements over the Haynesville, Fayetteville, and Marcellus shale basins (summer 2013). By comparing the observed VOC to propane enhancement ratios, we show that each basin has a unique VOC source signature associated with oil and natural gas operations. Of the shale basins studied, the Uintah basin had the largest overall VOC to propane enhancement ratios while the Marcellus had the lowest. For the western basins, we will compare the composition of oxygenated VOCs produced from photochemical oxidation of VOC precursors and contrast the oxygenated VOC mixture to a "typical" summertime urban VOC mixture. The relative roles of alkanes, alkenes, aromatics, and cycloalkanes as

  7. The Calcium Goes Meow: Effects of Ions and Glycosylation on Fel d 1, the Major Cat Allergen.

    PubMed

    Ligabue-Braun, Rodrigo; Sachett, Liana Guimarães; Pol-Fachin, Laércio; Verli, Hugo

    2015-01-01

    The major cat allergen, Fel d 1, is a structurally complex protein with two N-glycosylation sites that may be filled by different glycoforms. In addition, the protein contains three putative Ca2+ binding sites. Since the impact of these Fel d 1 structure modifications on the protein dynamics, physiology and pathology are not well established, the present work employed computational biology techniques to tackle these issues. While conformational effects brought upon by glycosylation were identified, potentially involved in cavity volume regulation, our results indicate that only the central Ca2+ ion remains coordinated to Fel d 1 in biological solutions, impairing its proposed role in modulating phospholipase A2 activity. As these results increase our understanding of Fel d 1 structural biology, they may offer new support for understanding its physiological role and impact into cat-promoted allergy. PMID:26134118

  8. Likelihood and objective Bayesian modeling of acidity and major ions in rainfall using a bivariate pseudo-Gamma distribution

    NASA Astrophysics Data System (ADS)

    Mohsin, Muhammad; Kazianka, Hannes; Pilz, Jürgen

    2013-04-01

    Modeling the acidity in rainfall at certain locations is a complex task because of different environmental conditions for different rainfall regimes and the large variability in the covariates involved. In this paper, concentration of acidity and major ions in the rainfall in UK is analyzed by assuming a bivariate pseudo-Gamma distribution. The model parameters are estimated by using the maximum likelihood method and the goodness of fit is checked. Furthermore, the non-informative Jeffreys prior for the distribution parameters is derived and a hybrid Gibbs sampling strategy is proposed to sample the corresponding posterior for conducting an objective Bayesian analysis. Finally, related quantities such as the deposition flux density are derived where the general pattern of the observed data appears to follow the fitted densities closely.

  9. The Calcium Goes Meow: Effects of Ions and Glycosylation on Fel d 1, the Major Cat Allergen

    PubMed Central

    Pol-Fachin, Laércio; Verli, Hugo

    2015-01-01

    The major cat allergen, Fel d 1, is a structurally complex protein with two N-glycosylation sites that may be filled by different glycoforms. In addition, the protein contains three putative Ca2+ binding sites. Since the impact of these Fel d 1 structure modifications on the protein dynamics, physiology and pathology are not well established, the present work employed computational biology techniques to tackle these issues. While conformational effects brought upon by glycosylation were identified, potentially involved in cavity volume regulation, our results indicate that only the central Ca2+ ion remains coordinated to Fel d 1 in biological solutions, impairing its proposed role in modulating phospholipase A2 activity. As these results increase our understanding of Fel d 1 structural biology, they may offer new support for understanding its physiological role and impact into cat-promoted allergy. PMID:26134118

  10. Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal

    SciTech Connect

    Sarin, M.M.; Krishnaswami, S.; Dilli, K.; Somayajulu, B.L.K. ); Moore, W.S. )

    1989-05-01

    The Ganga-Brahmaputra, one of the worlds's largest river systems, is first in terms of sediment transport and fourth in terms of water discharge. A detailed and systematic study of the major ion chemistry of these rivers and their tributaries, as well as the clay mineral composition of the bed sediments has been conducted. The chemistry of the highland rivers are all dominated by carbonate weathering; (Ca + Mg) and HCO{sub 3} account for about 80% of the cations and anions. In the lowland rivers, HCO{sub 3} excess over (Ca + Mg) and a relatively high contribution of (Na + K) to the total cations indicate that silicate weathering and/or contributions from alkaline/saline soils and ground waters could be important sources of major ions to these waters. The chemistry of the Ganga and the Yamuna in the lower reaches is by and large dictated by the chemistry of their tributaries and their mixing proportions. The highland rivers weather acidic rocks, whereas the others flow initially through basic effusives. The Ganga-Brahmaputra river system transports about 130 million tons of dissolved salts to the Bay of Bengal, which is nearly 3% of the global river flux to the oceans. The chemical denudation rates for the Ganga and the Brahmaputra basins are about 72 and 105 tons{center dot}km{sup {minus}2}{center dot}yr{sup {minus}1}, respectively, which are factors of 2 to 3 higher than the global average. The high denudation rate, particularly in the Brahmaputra, is attributable to high relief and heavy rainfall.

  11. Electron impact and chemical ionization mass spectral analysis of a volatile uranyl derivative

    SciTech Connect

    Reutter, D.J.; Hardy, D.R.

    1981-01-01

    Quadrupole mass spectral analysis of the volatile uranium ligand complex bis (1,1,1,5,5,5-hexafluoro-2,4-pentanedionato) dioxouranium-di-n-butyl sulfoxide is described utilizing electron impact (EI) and methane chemical ionization (CI) ion sources. All major ions are tentatively identified and the potential usefulness of this complex for determining uranium isotope /sup 235/U//sup 238/U abundance is demonstrated.

  12. Hexahydrated magnesium ions bind in the deep major groove and at the outer mouth of A-form nucleic acid duplexes.

    SciTech Connect

    Robinson, H.; Gao, Y.-G.; Sanishvili, R.; Joachimiak, A.; Wang, A. H.-J.; Univ. of Illinois; Northwestern Univ.

    2000-01-01

    Magnesium ions play important roles in the structure and function of nucleic acids. Whereas the tertiary folding of RNA often requires magnesium ions binding to tight places where phosphates are clustered, the molecular basis of the interactions of magnesium ions with RNA helical regions is less well understood. We have refined the crystal structures of four decamer oligonucleotides, d(ACCGGCCGGT), r(GCG)d(TATACGC), r(GC)d(GTATACGC) and r(G)d(GCGTATACGC) with bound hexahydrated magnesium ions at high resolution. The structures reveal that A-form nucleic acid has characteristic [Mg(H2O)6]2+ binding modes. One mode has the ion binding in the deep major groove of a GpN step at the O6/N7 sites of guanine bases via hydrogen bonds. Our crystallographic observations are consistent with the recent NMR observations that in solution [Co(NH3)6]3+, a model ion of [Mg(H2O)6]2+, binds in an identical manner. The other mode involves the binding of the ion to phosphates, bridging across the outer mouth of the narrow major groove. These [Mg(H2O)6]2+ ions are found at the most negative electrostatic potential regions of A-form duplexes. We propose that these two binding modes are important in the global charge neutralization, and therefore stability, of A-form duplexes.

  13. Trophic dynamics of shrinking Subarctic lakes: naturally eutrophic waters impart resilience to rising nutrient and major ion concentrations.

    PubMed

    Lewis, Tyler L; Heglund, Patricia J; Lindberg, Mark S; Schmutz, Joel A; Schmidt, Joshua H; Dubour, Adam J; Rover, Jennifer; Bertram, Mark R

    2016-06-01

    Shrinking lakes were recently observed for several Arctic and Subarctic regions due to increased evaporation and permafrost degradation. Along with lake drawdown, these processes often boost aquatic chemical concentrations, potentially impacting trophic dynamics. In particular, elevated chemical levels may impact primary productivity, which may in turn influence populations of primary and secondary consumers. We examined trophic dynamics of 18 shrinking lakes of the Yukon Flats, Alaska, that had experienced pronounced increases in nutrient (>200 % total nitrogen, >100 % total phosphorus) and ion concentrations (>100 % for four major ions combined) from 1985-1989 to 2010-2012, versus 37 stable lakes with relatively little chemical change over the same period. We found that phytoplankton stocks, as indexed by chlorophyll concentrations, remained unchanged in both shrinking and stable lakes from the 1980s to 2010s. Moving up the trophic ladder, we found significant changes in invertebrate abundance across decades, including decreased abundance of five of six groups examined. However, these decadal losses in invertebrate abundance were not limited to shrinking lakes, occurring in lakes with stable surface areas as well. At the top of the food web, we observed that probabilities of lake occupancy for ten waterbird species, including adults and chicks, remained unchanged from the period 1985-1989 to 2010-2012. Overall, our study lakes displayed a high degree of resilience to multi-trophic cascades caused by rising chemical concentrations. This resilience was likely due to their naturally high fertility, such that further nutrient inputs had little impact on waters already near peak production. PMID:26857253

  14. The major-ion composition of Cenozoic seawater: the past 36 million years from fluid inclusions in marine halite

    USGS Publications Warehouse

    Brennan, Sean T.; Lowenstein, Tim K.; Cendon, Dioni I.

    2013-01-01

    Fluid inclusions from ten Cenozoic (Eocene-Miocene) marine halites are used to quantify the major-ion composition (Mg2+, Ca2+, K+, Na+, SO42−, and Cl−) of seawater over the past 36 My. Criteria used to determine a seawater origin of the halites include: (1) stratigraphic, sedimentologic, and paleontologic observations; (2) Br− in halite; (3) δ34S of sulfate minerals; (4) 87Sr/86Sr of carbonates and sulfates; and (5) fluid inclusion brine compositions and evaporation paths, which must overlap from geographically separated basins of the same age to confirm a “global” seawater chemical signal. Changes in the major-ion chemistry of Cenozoic seawater record the end of a systematic, long term (>150 My) shift from the Ca2+-rich, Mg2+- and SO42−-poor seawater of the Mesozoic (“CaCl2 seas”) to the “MgSO4 seas” (with higher Mg2+ and SO42−>Ca2+) of the Cenozoic. The major ion composition of Cenozoic seawater is calculated for the Eocene-Oligocene (36-34 Ma), Serravallian-Tortonian (13.5-11.8 Ma) and the Messinian (6-5 Ma), assuming chlorinity (565 mmolal), salinity, and the K+ concentration (11 mmolal) are constant and the same as in modern seawater. Fluid inclusions from Cenozoic marine halites show that the concentrations of Mg2+and SO42− have increased in seawater over the past 36 My and the concentration of Ca2+ has decreased. Mg2+ concentrations increased from 36 mmolal in Eocene-Oligocene seawater (36-34 Ma) to 55 mmolal in modern seawater. The Mg2+/Ca2+ ratio of seawater has risen from ∼2.3 at the end of the Eocene, to 3.4 and 4.0, respectively, at 13.5 to 11.8 Ma and 6 to 5 Ma, and to 5 in modern seawater. Eocene-Oligocene seawater (36-34 Ma) has estimated ranges of SO42− = 14–23 mmolal and Ca2+ = 11–20 mmolal. If the (Ca2+)(SO42−) product is assumed to be the same as in modern seawater (∼300 mmolal2), Eocene-Oligocene seawater had Ca2+ ∼16 mmolal and SO42− ∼19 mmolal. The same estimates of Ca2+ and SO42− for Serravallian

  15. Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Sarin, M. M.; Krishnaswami, S.; Dilli, K.; Somayajulu, B. L. K.; Moore, W. S.

    1989-05-01

    The Ganga-Brahmaputra, one of the world's largest river systems, is first in terms of sediment transport and fourth in terms of water discharge. A detailed and systematic study of the major ion chemistry of these rivers and their tributaries, as well as the clay mineral composition of the bed sediments has been conducted. The chemistry of the highland rivers (upper reaches of the Ganga, the Yamuna, the Brahmaputra, the Gandak and the Ghaghra) are all dominated by carbonate weathering; (Ca + Mg) and HCO 3 account for about 80% of the cations and anions. In the lowland rivers (the Chambal, the Betwa and the Ken), HCO 3 excess over (Ca + Mg) and a relatively high contribution of (Na + K) to the total cations indicate that silicate weathering and/or contributions from alkaline/saline soils and groundwaters could be important sources of major ions to these waters. The chemistry of the Ganga and the Yamuna in the lower reaches is by and large dictated by the chemistry of their tributaries and their mixing proportions. Illite is the dominant clay mineral (about 80%) in the bedload sediments of the highland rivers. Kaolinite and chlorite together constitute the remaining 20% of the clays. In the Chambal, Betwa and Ken, smectite accounts for about 80% of the clays. This difference in the clay mineral composition of the bed sediments is a reflection of the differences in the geology of their drainage basins. The highland rivers weather acidic rocks, whereas the others flow initially through basic effusives. The Ganga-Brahmaputra river system transports about 130 million tons of dissolved salts to the Bay of Bengal, which is nearly 3% of the global river flux to the oceans. The chemical denudation rates for the Ganga and the Brahmaputra basins are about 72 and 105 tons· km -· yr -1, respectively, which are factors of 2 to 3 higher than the global average. The high denudation rate, particularly in the Brahmaputra, is attributable to high relief and heavy rainfall.

  16. Predicting the toxicity of major ions in seawater to mysid shrimp (Mysidopsis bahia), sheepshead minnow (Cyprinodon variegatus), and inland silverside minnow (Menidia beryllina)

    SciTech Connect

    Pillard, D.A.; DuFresne, D.L.; Caudle, D.D.; Tietge, J.E.; Evans, J.M.

    2000-01-01

    Although marine organisms are naturally adapted to salinities well above those of freshwater, elevated concentrations of specific ions have been shown to cause adverse effects on some saltwater species. Because some ions are also physiologically essential, a deficiency of these ions can also cause significant effects. To provide a predictive tool to assess toxicity associated with major ions, mysid shrimp (Mysidopsis bahia), sheepshead minnows (Cyprinodon variegatus), and inland silverside minnows (Menidia beryllina) were exposed to saline solutions containing calcium, magnesium, potassium, strontium, bicarbonate, borate, bromide, and sulfate at concentrations above and below what would be found in seawater. Solution salinity was maintained at approximately 31% by increasing or decreasing sodium and chloride concentrations. Logistic regression models were developed with both the ion molar concentrations and ion activity. Toxicity to all three species was observed when either a deficiency or an excess of potassium and calcium occurred. Significant mortality occurred in all species when exposed to excess concentrations of magnesium, bicarbonate, and borate. The response to the remaining ions varied with species. Sheepshead minnows were the most tolerant of both deficient and elevated levels of the different ions. Mysid shrimp and inland silverside minnows demonstrated similar sensitivities to several ions, but silverside minnow response was more variable. As a result, the logistic models that predict inland silverside minnow survival generally were less robust than for the other two species.

  17. Hydro-chemical evolution of groundwater and mixing between aquifers: a statistical approach based on major ions

    NASA Astrophysics Data System (ADS)

    Sun, Linhua; Gui, Herong

    2015-03-01

    Geochemical analysis is a useful tool in hydrogeological assessment, particularly in constructing a conceptual model of a hydrogeological system. In this study, major ion concentrations of 53 groundwater samples from the coal-bearing aquifer in the Qidong coal mine, northern Anhui Province of China have been processed by statistical analysis for understanding either hydro-chemical characteristics or hydrological evolution, which will be useful for the safety of coal mining. The results suggest that most of the samples are Na-SO4 and Na-HCO3 types, and their hydro-chemical compositions are mainly controlled by dissolution of more soluble minerals (e.g. calcite) and weathering of silicate minerals (e.g. plagioclase). Two groups of samples have been subdivided by quantile and scatter plots of factor scores, one is related to different degrees of water-rock interactions and another is related to groundwater mixing. Moreover, four end members have been identified and the mixing calculation suggests that the groundwater samples affected by mixing have 20-100 % contribution from the loose layer aquifer (LA), and therefore, groundwater from the LA in the coal mine should be taken seriously during coal mining. The study demonstrated that statistical analysis is useful for connecting the hydrochemistry of groundwater with hydrological evolution of the aquifer.

  18. Tracing groundwater input into Lake Vanda, Wright Valley, Antarctica using major ions, stable isotopes and noble gas

    NASA Astrophysics Data System (ADS)

    Dowling, C. B.; Poreda, R. J.; Snyder, G. T.

    2008-12-01

    The McMurdo Dry Valleys (MDV), Antarctica, is the largest ice-free region on Antarctica. Lake Vanda, located in central Wright Valley, is the deepest lake among the MDV lakes. It has a relatively fresh water layer above 50 m with a hypersaline calcium-chloride brine below (50-72 m). The Onyx River is the only stream input into Lake Vanda. It flows westward from the coastal Lower Wright Glacier and discharges into Lake Vanda. Suggested by the published literature and this study, there has been and may still be groundwater input into Lake Vanda. Stable isotopes, major ions, and noble gas data from this study coupled with previously published data indicate that the bottom waters of Lake Vanda have had significant contributions from a deep groundwater system. The dissolved gas of the bottom waters of Lake Vanda display solubility concentrations rather than the Ar-enriched dissolved gas seen in the Taylor Valley lakes (such as Lake Bonney). The isotopic data indicate that the bottom calcium-chloride-brine of Lake Vanda has undergone very little evaporation. The calcium-chloride chemistry of the groundwater that discharges into Lake Vanda most likely results from the chemical weathering and dissolution of cryogenic evaporites (antarcticite and gypsum) within the glacial sediments of Wright Valley. The high calcium concentrations of the brine have caused gypsum to precipitate on the lake bottom. Our work also supports previous physical and chemical observations suggesting that the upper portion actively circulates and the hypersaline bottom layer does not. The helium and calcium chloride values are concentrated at the bottom, with a very narrow transition layer between it and the above fresh water. If the freshwater layer did not actively circulate, then diffusion over time would have caused the helium and calcium chloride to slowly permeate upwards through the water column.

  19. Variability of Near-stream, Sub-surface Major-ion and Tracer Concentrations in an Acid Mine Drainage Environment

    NASA Astrophysics Data System (ADS)

    Bencala, K. E.; Kimball, B. A.; Runkel, R. L.

    2006-12-01

    In acid mine drainage environments, tracer-injection and synoptic sampling approaches provide tools for making operational estimates of solute loading within a stream segment. Identifying sub-surface contaminant sources remains a challenge both for characterization of in-stream metal loading and hydrological process research. There is a need to quantitatively define the character and source of contaminants entering streams from ground-water pathways, as well as the potential for changes in water chemistry and contaminant concentrations along these flow paths crossing the sediment-water interface. Complicating the identification of inflows is the mixing of solute sources which may occur in the `near-stream' subsurface areas and specifically along hyporheic exchange flows (HEFs). In Mineral Creek (Silverton, Colorado), major-ion (SO42-, Cl-, Na+, Ca2+, Mg2+) meter-scale sampling shows that subsurface inflows and likely HEFs occur in a hydro- geochemical setting of significant, one order-of-magnitude, spatial variation in the solute concentrations. Transient Storage Models (TSMs) are a tool for interpreting the in-stream responses of solute transport in streams influenced by hyporheic exchange flows. Simulations using the USGS TSM code OTIS are interpreted as suggesting that in Mineral Creek the strong concentration `tailing' of bromide following the tracer injection occurred, at least in part, from HEFs in a hydro - solute transport setting of likely multiple, dispersed and mixed sources of water along a 64 m sub-reach of the nominally gaining stream. In acid mine drainage environments, the ability to distinguish between local and deep solute sources is critical in modeling reactive transport along the stream, as well as in identifying the geochemical evolution of dispersed, subsurface inflows thorough the catchment.

  20. The volatile compound BinBase mass spectral database

    PubMed Central

    2011-01-01

    Background Volatile compounds comprise diverse chemical groups with wide-ranging sources and functions. These compounds originate from major pathways of secondary metabolism in many organisms and play essential roles in chemical ecology in both plant and animal kingdoms. In past decades, sampling methods and instrumentation for the analysis of complex volatile mixtures have improved; however, design and implementation of database tools to process and store the complex datasets have lagged behind. Description The volatile compound BinBase (vocBinBase) is an automated peak annotation and database system developed for the analysis of GC-TOF-MS data derived from complex volatile mixtures. The vocBinBase DB is an extension of the previously reported metabolite BinBase software developed to track and identify derivatized metabolites. The BinBase algorithm uses deconvoluted spectra and peak metadata (retention index, unique ion, spectral similarity, peak signal-to-noise ratio, and peak purity) from the Leco ChromaTOF software, and annotates peaks using a multi-tiered filtering system with stringent thresholds. The vocBinBase algorithm assigns the identity of compounds existing in the database. Volatile compound assignments are supported by the Adams mass spectral-retention index library, which contains over 2,000 plant-derived volatile compounds. Novel molecules that are not found within vocBinBase are automatically added using strict mass spectral and experimental criteria. Users obtain fully annotated data sheets with quantitative information for all volatile compounds for studies that may consist of thousands of chromatograms. The vocBinBase database may also be queried across different studies, comprising currently 1,537 unique mass spectra generated from 1.7 million deconvoluted mass spectra of 3,435 samples (18 species). Mass spectra with retention indices and volatile profiles are available as free download under the CC-BY agreement (http

  1. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat.

    PubMed

    Mandal, Sanchita; Thangarajan, Ramya; Bolan, Nanthi S; Sarkar, Binoy; Khan, Naser; Ok, Yong Sik; Naidu, Ravi

    2016-01-01

    Ammonia (NH3) volatilization is a major nitrogen (N) loss from the soil, especially under tropical conditions, NH3 volatilization results in low N use efficiency by crops. Incubation experiments were conducted using five soils (pH 5.5-9.0), three N sources such as, urea, di-ammonium phosphate (DAP), and poultry manure (PM) and two biochars such as, poultry litter biochar (PL-BC) and macadamia nut shell biochar (MS-BC). Ammonia volatilization was higher at soil with higher pH (pH exceeding 8) due to the increased hydroxyl ions. Among the N sources, urea recorded the highest NH3 volatilization (151.6 mg kg(-1)soil) followed by PM (124.2 mg kg(-1)soil) and DAP (99 mg kg(-1)soil). Ammonia volatilization was reduced by approximately 70% with PL-BC and MS-BC. The decreased NH3 volatilization with biochars is attributed to multiple mechanisms such as NH3 adsorption/immobilization, and nitrification. Moreover, biochar increased wheat dry weight and N uptake as high as by 24.24% and 76.11%, respectively. This study unravels the immense potential of biochar in decreasing N volatilization from soils and simultaneously improving use efficiency by wheat. PMID:25959224

  2. SPME-GC-MS versus Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) analyses for the study of volatile compound generation and oxidation status during dry fermented sausage processing.

    PubMed

    Olivares, Alicia; Dryahina, Kseniya; Navarro, José Luis; Smith, David; Spanĕl, Patrik; Flores, Mónica

    2011-03-01

    The use of selected ion flow tube mass spectrometry (SIFT-MS) and gas chromatography-mass spectrometry together with solid phase microextraction (GC-MS-SPME) has been compared in the analysis of volatile compounds during dry fermented sausage processing. Thus, the headspace (HS) of samples of dry fermented sausages with different fat contents was analyzed during their manufacture using both techniques, and significant and positive correlations were found between SIFT-MS and SPME-GC-MS measurements for the compounds pentanal, hexanal, 2-heptenal, octanal, 2-nonenal, 2-butanone, 2-pentanone, ethanol, acetic acid, and hexanoic acid. The oxidative status of fermented sausages during processing was also evaluated, and a significant correlation was obtained between the HS concentration of lipid autoxidation volatile compounds measured by SIFT-MS and SPME-GC-MS and the level of thiobarbituric acid reactive substances (TBARS) in the sausage. The hexanal measured by SIFT-MS resulted in a higher correlation coefficient (r = 0.936) than that obtained using SPME-GC-MS (r = 0.927). SIFT-MS is shown to be a fast, real time analytical technique for monitoring changes in the profile of volatile compounds in dry fermented sausages during processing and a useful tool to evaluate the oxidative status of meat products. PMID:21294565

  3. Estimates of average major ion concentrations in bulk precipitation at two high-altitude sites near the continental divide in Southwestern Colorado

    USGS Publications Warehouse

    Reddy, M.M.; Claassen, H.C.

    1985-01-01

    The composition of bulk precipitation from two high-altitude sites, established in 1971 near the Continental Divide in southwestern Colorado, has been monitored by season during the past decade. Calcium ions are the predominant cationic species; sulfate is the major anionic constituent. Bulk precipitation major ion concentrations exhibit log-normal distributions. Representative mean and standard deviation values for the major inorganic ionic species present in bulk precipitation have been calculated for three years of consecutive seasons. Standard deviations for all species, except nitrate, are similar. For two years of data grouped into quarters, deviations from mean values fall well within the plus or minus two standard deviation limit. There does not seem to be a systematic deviation from the mean concentration values, with respect to either ionic component or season.

  4. Major ions, nutrients, and trace elements in the Mississippi River near Thebes, Illinois, July through September 1993

    USGS Publications Warehouse

    Taylor, Howard E.; Antweiler, Ronald C.; Brinton, Terry I.; Roth, David A.; Moody, John A.

    1994-01-01

    Extensive flooding in the upper Mississippi River Basin during summer 1993 had a significant effect on the water quality of the Mississippi River. To evaluate the change in temporal distribution and transport of dissolved constituents in the Mississippi River, six water samples were collected by a discharge-weighted method from July through September 1993 near Thebes, Illinois. Sampling at this location provided water-quality information from the upper Mississippi, the Missouri, and the Illinois River Basins. Dissolved major constituents that were analyzed in each of the samples included bicarbonate, calcium (Ca), carbonate (CO3), chloride (C1), dissolved organic carbon, magnesium (Mg), potassium (K), silica (SiO2) , sodium (Na), and sulfate (SO4). Dissolved nutrients included ammonium ion (NH4), nitrate (NO3), nitrite (NO2), and orthophosphate (PO4). Dissolved trace elements included aluminum (A1), arsenic (As), barium (Ba), boron (B), beryllium (Be), bromide (Br), cadmium (Cd), chromium (Cr), cobalt, (Co), copper (Cu), fluoride (F), iron (Fe), lead, lithium (Li), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), strontium (Sr), thallium, uranium (U), vanadium (V), and zinc (Zn). Other physical properties of water that were measured included specific conductance, pH and suspended-sediment concentration (particle size, less than 63 micrometers). Results of this study indicated that large quantifies of dissolved constituents were transported through the river system. Generally, pH, alkalinity, and specific conductance and the concentrations of B, Br, Ca, C1, Cr, K, Li, Mg, Mo, Na, SO4, Sr, U, and V increased as water discharge decreased, while concentrations of F, Hg, and suspended sediment sharply decreased as water discharge decreased after the crest of the flood. Concentrations of other constituents, such as A1, As, Ba, Be, Co, Cu, Ni, NO3, NO2, NH4, PO 4, and SiO2, varied with time as discharge decreased after the crest of the flood. For most

  5. Principal Locations of Major-Ion, Trace-Element, Nitrate, and Escherichia coli Loading to Emigration Creek, Salt Lake County, Utah, October 2005

    USGS Publications Warehouse

    Kimball, Briant A.; Runkel, Robert L.; Walton-Day, Katherine

    2008-01-01

    Housing development and recreational activity in Emigration Canyon have increased substantially since 1980, perhaps causing an observed decrease in water quality of this northern Utah stream located near Salt Lake City. To identify reaches of the stream that contribute to water-quality degradation, a tracer-injection and synoptic-sampling study was done to quantify mass loading of major ions, trace elements, nitrate, and Escherichia coli (E. coli) to the stream. The resulting mass-loading profiles for major ions and trace elements indicate both geologic and anthropogenic inputs to the stream, principally from tributary and spring inflows to the stream at Brigham Fork, Burr Fork, Wagner Spring, Emigration Tunnel Spring, Blacksmith Hollow, and Killyon Canyon. The pattern of nitrate loading does not correspond to the major-ion and trace-element loading patterns. Nitrate levels in the stream did not exceed water-quality standards at the time of synoptic sampling. The majority of nitrate mass loading can be considered related to anthropogenic input, based on the field settings and trends in stable isotope ratios of nitrogen. The pattern of E. coli loading does not correspond to the major-ion, trace-element, or nitrate loading patterns. The majority of E. coli loading was related to anthropogenic sources based on field setting, but a considerable part of the loading also comes from possible animal sources in Killyon Canyon, in Perkins Flat, and in Rotary Park. In this late summer sampling, E. coli concentrations only exceeded water-quality standards in limited sections of the study reach. The mass-loading approach used in this study provides a means to design future studies and to evaluate the loading on a catchment scale.

  6. Origin of Volatiles in Earth: Indigenous Versus Exogenous Sources Based on Highly Siderophile, Volatile Siderophile, and Light Volatile Elements

    NASA Technical Reports Server (NTRS)

    Righter, K.; Danielson, L.; Pando, K. M.; Marin, N.; Nickodem, K.

    2015-01-01

    Origin of Earth's volatiles has traditionally been ascribed to late accretion of material after major differentiation events - chondrites, comets, ice or other exogenous sources. A competing theory is that the Earth accreted its volatiles as it was built, thus water and other building blocks were present early and during differentiation and core formation (indigenous). Here we discuss geochemical evidence from three groups of elements that suggests Earth's volatiles were acquired during accretion and did not require additional sources after differentiation.

  7. Comparing Single species Toxicity Tests to Mesocosm Community-Level Responses to Total Dissolved Solids Comprised of Different Major Ions

    EPA Science Inventory

    Total Dissolved Solids (TDS) dosing studies representing different sources of ions were conducted from 2011-2015. Emergence responses in stream mesocosms were compared to single-species exposures using a whole effluent testing (WET) format and an ex-situ method (single species te...

  8. A Test of a Major-ion Toxicity Model to Predict the Toxicity of Coal Bed Methane Product Waters to Aquatic Biota

    NASA Astrophysics Data System (ADS)

    Forbes, M. B.; Meyer, J. S.

    2003-12-01

    Coal bed methane (CBM) accounts for about 7.5% of the total natural gas production in the United States, and the Powder River Basin (PRB) in Montana and Wyoming has recently become a major production area. During CBM extraction, a coal seam is partially de-watered to relieve hydraulic pressure, thus causing methane gas to desorb. Some of this water (called product water) is discharged on the land surface and allowed to run into local drainages in the PRB. Due to the massive amounts of product water being discharged (rates up to 64,000 L/day per well), studies are needed to examine the potential effects on aquatic organisms. Additionally, models to predict such effects would be useful regulatory screening tools. To that end, we tested the ability of a multivariate logistic regression model of the toxicity of major inorganic ions (i.e., Na+, K+, Ca2+, Mg2+, Cl-, HCO3-, SO42-) to predict the acute toxicity of CBM-related waters to two aquatic invertebrates (Ceriodaphnia dubia and Daphnia magna) and fathead minnows (Pimephales promelas). First, we entered water chemistry data for several CBM product and receiving waters from the PRB into the major-ion model. Then we compared the model's predicted survival to the survival of the three species in toxicity tests we had previously conducted with those waters. For the majority of CBM product water and stream water samples in which CBM product water constituted the entire flow of the stream, the major-ion model consistently under-predicted survival by >50%. Therefore, from a regulatory standpoint, this model is conservative for detecting toxicity of CBM product waters (i.e., it over-predicts toxicity). Although the model appeared to be an excellent predictor of survival for receiving waters that contained no inputs from CBM processing (i.e., the difference between predicted and observed survival was <=10%), the majority of those cases were inconclusive tests of the model because the predicted and observed survival were

  9. Quantify the loss of major ions induced by CO2 enrichment and nitrogen addition in subtropical model forest ecosystems

    NASA Astrophysics Data System (ADS)

    Liu, Juxiu; Zhang, Deqiang; Huang, Wenjuan; Zhou, Guoyi; Li, Yuelin; Liu, Shizhong

    2014-04-01

    Previous studies have reported that atmospheric CO2 enrichment would increase the ion concentrations in the soil water. However, none of these studies could exactly quantify the amount of ion changes in the soil water induced by elevated CO2 and all of these experiments were carried out only in the temperate areas. Using an open-top chamber design, we studied the effects of CO2 enrichment alone and together with nitrogen (N) addition on soil water chemistry in the subtropics. Three years of exposure to an atmospheric CO2 concentration of 700 ppm resulted in accelerated base cation loss via leaching water below the 70 cm soil profile. The total of base cation (K+ + Na+ + Ca2+ + Mg2+) loss in the elevated CO2 treatment was higher than that of the control by 220%, 115%, and 106% in 2006, 2007, and 2008, respectively. The N treatment decreased the effect of high CO2 treatment on the base cation loss in the leachates. Compared to the control, N addition induced greater metal cation (Al3+ and Mn2+) leaching loss in 2008 and net Al3+ and Mn2+ loss in the high N treatment increased by 100% and 67%, respectively. However, the CO2 treatment decreased the effect of high N treatment on the metal cation loss. Changes of ion export followed by the exposure to the elevated CO2, and N treatments were related to both ion concentrations and leached water amount. We hypothesize that forests in subtropical China might suffer from nutrient limitation and some poisonous metal activation in plant biomass under future global change.

  10. Atmospheric trace element and major ion concentrations over the eastern Mediterranean Sea: Identification of anthropogenic source regions

    NASA Astrophysics Data System (ADS)

    Güllü, Gülen; Doğan, Güray; Tuncel, Gürdal

    Concentrations of elements and ions measured in aerosol samples collected from March 1992 to the end of December 1993 were investigated to identify source regions affecting chemical composition of aerosols in the eastern Mediterranean atmosphere. Collected samples were analyzed for approximately 40 elements and ions using a combination of atomic absorption spectrometry, instrumental neutron activation analysis, ion chromatography and colorimetry. Statistical techniques, such as enrichment factors and a non-parametric bootstrapped potential source contribution function, were applied on the data set to determine main source types and source regions of anthropogenic particles in the eastern Mediterranean basin. Source regions of two previously defined anthropogenic components, namely a long-range transported component and a local pollution component, were identified. The main source areas for pollutants reaching the eastern Mediterranean basin were determined as southern and western parts of Turkey, central and eastern regions of Ukraine, east of Belarus, Greece, Georgia, Romania, coastal areas along France and Spain and coastal areas around the Black Sea, Russia. More distant source regions in the South of UK and Sweden, the central part of Algeria, the northeastern part of Turkey, Russia, Germany, Hungary, Czech Republic, Bosnia and Herzegovina, and coastal areas of Egypt, Israel and Italy do affect aerosol composition in the eastern Mediterranean, but transport from these regions cannot account for the highest 20% of the measured pollutant concentrations.

  11. The study of capacity fading processes of Li-ion batteries: major factors that play a role

    NASA Astrophysics Data System (ADS)

    Markovsky, B.; Rodkin, A.; Cohen, Y. S.; Palchik, O.; Levi, E.; Aurbach, D.; Kim, H.-J.; Schmidt, M.

    In this work, we studied the impact of some factors on the behavior of practical electrodes of Li-ion batteries. These included elevated temperatures (45-80 °C), prolonged storage of Li-ion cells, and additives in the electrolyte solution. The Li-ion battery systems studied included negative electrodes (anodes) comprising of mesocarbon microbeads (MCMB) and mesocarbon fibers (MCF), and Li xCoO 2 positive electrodes (cathodes) in an ethylene carbonate (EC)/ethyl-methyl carbonate (EMC) (1:2)/LiPF 6 1 M solution. Vinylene carbonate (VC) and a Li-organo-borate complex (Li-OBC) were tested as additives. It is shown that the electrochemical response of Li-C negative electrodes depends on the structure of the surface films controlling their behavior, which change upon storage, temperature, and cycling. We established that impedance of these electrodes increased with storage time due to the enrichment of the surface films by LiF and other fluorine-containing species. The capacity fading of the Li xCoO 2 electrodes in cycling/storage processes at elevated temperatures relates mostly to surface phenomena, whereas the bulk structural characteristics of the electrodes do not change.

  12. A high-resolution time-of-flight chemical ionization mass spectrometer utilizing hydronium ions (H3O+ ToF-CIMS) for measurements of volatile organic compounds in the atmosphere

    NASA Astrophysics Data System (ADS)

    Yuan, Bin; Koss, Abigail; Warneke, Carsten; Gilman, Jessica B.; Lerner, Brian M.; Stark, Harald; de Gouw, Joost A.

    2016-07-01

    Proton transfer reactions between hydronium ions (H3O+) and volatile organic compounds (VOCs) provide a fast and highly sensitive technique for VOC measurements, leading to extensive use of proton-transfer-reaction mass spectrometry (PTR-MS) in atmospheric research. Based on the same ionization approach, we describe the development of a high-resolution time-of-flight chemical ionization mass spectrometer (ToF-CIMS) utilizing H3O+ as the reagent ion. The new H3O+ ToF-CIMS has sensitivities of 100-1000 cps ppb-1 (ion counts per second per part-per-billion mixing ratio of VOC) and detection limits of 20-600 ppt at 3σ for a 1 s integration time for simultaneous measurements of many VOC species of atmospheric relevance. The ToF analyzer with mass resolution (m/Δm) of up to 6000 allows the separation of isobaric masses, as shown in previous studies using similar ToF-MS. While radio frequency (RF)-only quadrupole ion guides provide better overall ion transmission than ion lens system, low-mass cutoff of RF-only quadrupole causes H3O+ ions to be transmitted less efficiently than heavier masses, which leads to unusual humidity dependence of reagent ions and difficulty obtaining a humidity-independent parameter for normalization. The humidity dependence of the instrument was characterized for various VOC species and the behaviors for different species can be explained by compound-specific properties that affect the ion chemistry (e.g., proton affinity and dipole moment). The new H3O+ ToF-CIMS was successfully deployed on the NOAA WP-3D research aircraft for the SONGNEX campaign in spring of 2015. The measured mixing ratios of several aromatics from the H3O+ ToF-CIMS agreed within ±10 % with independent gas chromatography measurements from whole air samples. Initial results from the SONGNEX measurements demonstrate that the H3O+ ToF-CIMS data set will be valuable for the identification and characterization of emissions from various sources, investigation of secondary

  13. Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: a case study from northwestern Saudi Arabia.

    PubMed

    Zaidi, Faisal K; Nazzal, Yousef; Jafri, Muhammad Kamran; Naeem, Muhammad; Ahmed, Izrar

    2015-10-01

    Assessment of groundwater quality is of utmost significance in arid regions like Saudi Arabia where the lack of present-day recharge and high evaporation rates coupled with increasing groundwater withdrawal may restrict its usage for domestic or agricultural purposes. In the present study, groundwater samples collected from agricultural farms in Hail (15 samples), Al Jawf (15 samples), and Tabuk (30 samples) regions were analyzed for their major ion concentration. The objective of the study was to determine the groundwater facies, the main hydrochemical process governing the groundwater chemistry, the saturation index with respect to the principal mineral phases, and the suitability of the groundwater for irrigational use. The groundwater samples fall within the Ca-Cl type, mixed Ca-Mg-Cl type, and Na-Cl type. Evaporation and reverse ion exchange appear to be the major processes controlling the groundwater chemistry though reverse ion exchange process is the more dominating factor. The various ionic relationships confirmed the reverse ion exchange process where the Ca and Mg in the aquifer matrix have been replaced by Na at favorable exchange sites. This phenomenon has accounted for the dominance of Ca and Mg ions over Na ion at all the sites. The process of reverse ion exchange was further substantiated by the use of modified Piper diagram (Chadha's classification) and the chloro-alkaline indices. Evaporation as a result of extreme aridity has resulted in the groundwater being oversaturated with aragonite/calcite and dolomite as revealed by the saturation indices. The groundwater samples were classified as safe (less than 10) in terms of sodium adsorption ratio (SAR) values, good (less than 1.25) in terms of residual sodium carbonate (RSC) values, and safe to moderate (between 0 and 3) in terms of Mg hazard for irrigation purposes. Though the high salinity groundwater in the three regions coupled with low SAR values are good for the soil structure, it can have a

  14. Parallel single-species and stream mesocosm exposures for grading major ion effects in doses mimicking energy extraction produced waters

    EPA Science Inventory

    Excess TDS/Major Ionic Stress/Elevated Conductivities appeared increasing in streams in Central and Eastern Appalachia. Direct discharges from permitted point sources and regional interest in setting eco-based effluent guidelines/aquatic life criteria, as well as potential differ...

  15. Analysis of the volatile compounds in Senecio scandens Buch-Ham by gas chromatography-tandem mass spectrometry based on diversified scan technologies.

    PubMed

    Li, Sensen; Su, Yue; Guo, Yinlong

    2011-01-01

    Static headspace gas chromatography-tandem mass spectrometry was used to identify volatile compounds from Senecio scandens Buch-Ham. The elemental composition of compounds was confirmed by exploiting the tandem mass spectra of isotopic peaks from the precursor ion. Some isomers were well distinguished by the diversified scan technologies of tandem mass spectrometry (MS/MS). The MS/MS included a product ion scan, a precursor ion scan and a neutral loss scan. The results showed that 46 volatile compounds were completely identified, and the great of majority compounds were α-pinene (11.93%), n-caproaldehyde (9.02%) and dehydrosabinene (6.22%). This qualitative method is convenient and accurate and can be considered as a complementary identification method for the qualitative analysis of volatile compounds in complex samples. PMID:22006636

  16. The major ion, 87Sr/86Sr, and δ11B geochemistry of groundwater in the Wyodak-Anderson coal bed aquifer (Powder River Basin, Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Lemarchand, Damien; Jacobson, Andrew D.; Cividini, Damien; Chabaux, François

    2015-11-01

    We developed a multicomponent, 1D advective transport model that describes the downgradient evolution of solute concentrations, 87Sr/86Sr ratios, and δ11B values in the Wyodak-Anderson Coal Bed (WACB) aquifer located in the Powder River Basin, Wyoming, USA. The purpose of the study was to evaluate the chemical vulnerability of groundwater to potential environmental change stemming from the extraction of coal bed methane and shale gas. Model calculations demonstrate that coupling between microbial activity and the dissolved carbonate system controls major ion transport in the WACB aquifer. The analysis of 87Sr/86Sr ratios further reveals the importance of ion-exchange reactions. Similarly, δ11B data emphasize the significance of pH-dependent surface reactions and demonstrate the vulnerability of the aquifer to the long-term acidification of recharge water.

  17. CHARACTERISTICS OF ACIDITY AND MAJOR ION CONCENTRATION OF SNOWFALL, SNOWPACK AND SNOWMELT WATER IN THE TEMPERATE SNOW AREA

    NASA Astrophysics Data System (ADS)

    Asaoka, Yoshihiro; Takeuchi, Yukari

    This paper describes the acidity and main ion concentration of snowfall, snowpack and snowmelt water in the temperate snow area. In order to understand the variation of snow water quality and its relationship among snow, snowpack and snowmelt, snow monitoring and chemical measurement were conducted from December 2008 to March 2009 at Tohkamachi experiment site. As a result, the both of snowfall and snowmelt were high acidity and their average were around 4.6 and 5.0, individually. However, high frequencies of rainfall and snowmelt occurrence during winter decrease the high acidity of snowpack and snowmelt water since they prevent the chemical matter from depositing in the snowpack layer. Moreover, it is suspected that the soil component from Eurasia continent contained in the snow particle also decrease the high acidity of snowfall and snowpack.

  18. The use of laboratory-determined ion exchange parameters in the predictive modelling of field-scale major cation migration in groundwater over a 40-year period.

    PubMed

    Carlyle, Harriet F; Tellam, John H; Parker, Karen E

    2004-01-01

    An attempt has been made to estimate quantitatively cation concentration changes as estuary water invades a Triassic Sandstone aquifer in northwest England. Cation exchange capacities and selectivity coefficients for Na(+), K(+), Ca(2+), and Mg(2+) were measured in the laboratory using standard techniques. Selectivity coefficients were also determined using a method involving optimized back-calculation from flushing experiments, thus permitting better representation of field conditions; in all cases, the Gaines-Thomas/constant cation exchange capacity (CEC) model was found to be a reasonable, though not perfect, first description. The exchange parameters interpreted from the laboratory experiments were used in a one-dimensional reactive transport mixing cell model, and predictions compared with field pumping well data (Cl and hardness spanning a period of around 40 years, and full major ion analyses in approximately 1980). The concentration patterns predicted using Gaines-Thomas exchange with calcite equilibrium were similar to the observed patterns, but the concentrations of the divalent ions were significantly overestimated, as were 1980 sulphate concentrations, and 1980 alkalinity concentrations were underestimated. Including representation of sulphate reduction in the estuarine alluvium failed to replicate 1980 HCO(3) and pH values. However, by including partial CO(2) degassing following sulphate reduction, a process for which there is 34S and 18O evidence from a previous study, a good match for SO(4), HCO(3), and pH was attained. Using this modified estuary water and averaged values from the laboratory ion exchange parameter determinations, good predictions for the field cation data were obtained. It is concluded that the Gaines-Thomas/constant exchange capacity model with averaged parameter values can be used successfully in ion exchange predictions in this aquifer at a regional scale and over extended time scales, despite the numerous assumptions inherent in

  19. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: Laboratory studies and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Holden, A. A.; Haque, S. E.; Mayer, K. U.; Ulrich, A. C.

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840 × 106 m3 and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~ 375 mg L- 1) and Na (~ 575 mg L- 1) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides — in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present

  20. Analysis of secondary organic aerosol using a Micro-Orifice Volatilization Impactor (MOVI) coupled to an ion trap mass spectrometer with atmospheric pressure chemical ionization (APCI-IT/MS)

    NASA Astrophysics Data System (ADS)

    Brueggemann, M.; Vogel, A.; Hoffmann, T.

    2012-04-01

    We describe the development and characterization of a Micro-Orifice Volatilization Impactor (MOVI) which is coupled to an ion trap mass spectrometer with atmospheric pressure chemical ionization (APCI-IT/MS), and its application in laboratory and field measurements. The MOVI-APCI-IT/MS allows the quantification of organic acids and other oxidation products of volatile organic compounds (VOCs) in secondary organic aerosols (SOA) on a semi-continuous basis. Furthermore, the vapor pressure and saturation concentration of the particle components can be estimated. The MOVI was first described in 2010 by Yatavelli and Thornton (Yatavelli and Thornton, 2010). It is a single stage, multi-nozzle impactor with 100 nozzles, each having a diameter of 150 μm. At a flow-rate of 10 L·min-1 air is drawn through the MOVI and particles are collected on a deposition plate. The cut-point diameter (d50, diameter of 50% collection efficiency) is at 130 nm. A low pressure-drop of only 5.3% of atmospheric pressure behind the nozzles allows collecting not only low-volatile but even semi-volatile compounds, which are an important part of SOA. After collecting particles hydrocarbon-free synthetic air is led over the collection surface into the APCI-IT/MS and the collection surface is heated up to 120 ° C in less than 200 s, volatilizing the sampled SOA. The vaporized compounds are transferred into the ion source and subsequently analyzed by mass spectrometry. Due to the soft ionization at atmospheric pressure the obtained mass spectra show only low fragmentations and can easily be interpreted. In laboratory experiments the MOVI-APCI-IT/MS was used for the chemical analysis of SOA generated from α-pinene-ozonolysis in a smog chamber. The limit of detection was found at 7.3 ng for pinic acid. The vapor pressure log p0 and the saturation concentration C25* for pinic acid were calculated from the desorption temperature using the method presented by Faulhaber et al. (Faulhaber et al., 2009

  1. [Composition characteristics and source analysis of major ions in four small lake-watersheds on the Tibetan Plateau, China].

    PubMed

    Li, He; Li, Jun; Liu, Xiao-Long; Yang, Xi; Zhang, Wei; Wang, Jie; Niu, Ying-Quan

    2015-02-01

    To investigate the ionic compositions of small lake-watersheds on the Tibetan Plateau, water samples from the brackish lakes (Pung Co (lake), Angrenjin Co and Dajia Co), the freshwater lake (Daggyaima Co), their inflowing rivers and the hot spring (Dagejia Geothermal Field), were collected during July-August 2013. The results showed that the major anions and cations of the brackish lakes were HCO3-, SO4(2-) and Na+, respectively, and the hydrochemical types were HCO3-SO4-Na and HCO3-Na. The major anions and cations of the inflowing rivers and the freshwater lake were HCO3-, SO4(2-) and Ca2+, Mg2+, respectively, and the hydrochemical types were HCO3-Ca, HCO3-Ca-Mg, HCO3-Mg-Ca, HCO3-SO4-Ca and SO4-HCO3- Ca. The major anions and cations of the hot spring were HCO3- and Na+, respectively, and the hydrochemical type was HCO3-Na. Water chemistry in the brackish lakes was primarily dominated by evaporation-crystallization processes, while the inflowing rivers and the freshwater lake were mainly influenced by carbonate weathering, and the hot spring was mainly controlled by hot water-granite interaction. Ca2+ was preferentially removed over Mg2+ from the water when carbonate minerals precipitation occured, which resulted in the high Mg2+/Ca2+ molar ratios of the brackish lakes. In the contribution of cation compositions, the largest contribution was carbonate weathering (54% - 79%), followed by silicate weathering (13% -29%) and evaperite dissolution (4% -23%), and the smallest was atmospheric input (3% - 7%). PMID:26031067

  2. Chemical weathering in the plain and peninsular sub-basins of the Ganga: Impact on major ion chemistry and elemental fluxes

    NASA Astrophysics Data System (ADS)

    Rai, Santosh K.; Singh, Sunil K.; Krishnaswami, S.

    2010-04-01

    Concentrations of major ions, Sr and 87Sr/ 86Sr have been measured in the Gomti, the Son and the Yamuna, tributaries of the Ganga draining its peninsular and plain sub-basins to determine their contribution to the water chemistry of the Ganga and silicate and carbonate erosion of the Ganga basin. The results show high concentrations of Na and Sr in the Gomti, the Yamuna and the Ganga (at Varanasi) with much of the Na in excess of Cl. The use of this 'excess Na' (Na∗ = Na riv - Cl riv) a common index of silicate weathering yield values of ˜18 tons km -2 yr -1 for silicate erosion rate (SER) in the Gomti and the Yamuna basins. There are however, indications that part of this Na∗ can be from saline/alkaline soils abundant in their basins, raising questions about its use as a proxy to determine SER of the Ganga plain. Independent estimation of SER based on dissolved Si as a proxy give an average value of ˜5 tons km -2 yr -1 for the peninsular and the plain drainages, several times lower than that derived using Na∗. The major source of uncertainty in this estimate is the potential removal of Si from rivers by biological and chemical processes. The Si based SER and CER (carbonate erosion rate) are also much lower than that in the Himalayan sub-basin of the Ganga. The lower relief, runoff and physical erosion in the peninsular and the plain basins relative to the Himalayan sub-basin and calcite precipitation in them all could be contributing to their lower erosion rates. Budget calculations show that the Yamuna, the Son and Gomti together account for ˜75% Na, 41% Mg and ˜53% Sr and 87Sr of their supply to the Ganga from its major tributaries, with the Yamuna dominating the contribution. The results highlight the important role of the plain and peninsular sub-basins in determining the solute and Sr isotope budgets of the Ganga. The study also shows that the anthropogenic contribution accounts for ⩽10% of the major ion fluxes of the Ganga at Rajmahal during high

  3. Application of δ(18)O, δ(13)CDIC, and major ions to evaluate micropollutant sources in the Bay of Vidy, Lake Geneva.

    PubMed

    Halder, Janine; Pralong, Charles; Bonvin, Florence; Lambiel, Frederic; Vennemann, Torsten W

    2016-01-01

    Waters were sampled monthly from a profile at the wastewater outlet and a reference point in the Bay of Vidy (Lake Geneva) for a year. The samples were analyzed for (18)O/(16)O of water, (13)C/(12)C of dissolved inorganic carbon (DIC), major ions, and selected micropollutant concentrations. δ(18)O values, combined with the major ion concentrations, allowed discharged waste and storm-drainage water to be traced within the water column. On the basis of δ(18)O values, mole fractions of wastewater (up to 45 %), storm-drainage (up to 16 %), and interflowing Rhône River water (up to 34 %) could be determined. The results suggest that the stormwater fractions do not influence micropollutant concentrations in a measurable way. In contrast, the Rhône River interflow coincides with elevated concentrations of Rhône River-derived micropollutants in some profiles. δ(13)C values of DIC suggest that an increase in micropollutant concentrations at the sediment-water interface could be related to remineralization processes or resuspension. PMID:25358053

  4. Conference on Planetary Volatiles

    NASA Technical Reports Server (NTRS)

    Hrametz, K.; Kofler, L.

    1982-01-01

    Initial and present volatile inventories and distributions in the Earth, other planets, meteorites, and comets; observational evidence on the time history of volatile transfer among reservoirs; and volatiles in planetary bodies, their mechanisms of transport, and their relation to thermal, chemical, geological and biological evolution were addressed.

  5. Conference on Planetary Volatiles

    NASA Technical Reports Server (NTRS)

    Pepin, R. O. (Compiler); Oconnell, R. (Compiler)

    1982-01-01

    Initial and present volatile inventories and distributions in the Earth, other planets, meteorites, and comets; observational evidence on the time history of volatile transfer among reservoirs; and volatiles in planetary bodies, their mechanisms of transport, and their relation to thermal, chemical, geological and biological evolution are addressed.

  6. A one-year record of carbonaceous components and major ions in aerosols from an urban kerbside location in Oporto, Portugal.

    PubMed

    Custódio, Danilo; Cerqueira, Mário; Alves, Célia; Nunes, Teresa; Pio, Casimiro; Esteves, Valdemar; Frosini, Daniele; Lucarelli, Franco; Querol, Xavier

    2016-08-15

    PM2.5 aerosol samples were collected from January 2013 to January 2014 on the kerbside of a major arterial route in the city of Oporto, Portugal, and later analyzed for carbonaceous fractions and water soluble ions. The average concentrations of organic carbon (OC), elemental carbon (EC) and water soluble organic carbon (WSOC) in the aerosol were 6.2μg/m(3), 5.0μg/m(3) and 3.8μg/m(3), respectively, and fit within the range of values that have been observed close to major roads in Europe, Asia and North America. On average, carbonaceous matter accounted for 56% of the gravimetrically measured PM2.5 mass. The three carbon fractions exhibited a similar seasonal variation, with high concentrations in late autumn and in winter, and low concentrations in spring. SO4(2-) was the dominant water soluble ion, followed by NO3(-), NH4(+), Cl(-), Na(+), K(+), oxalate, Ca(2+), Mg(2+), formate, methanesulfonate and acetate. Some of these ions exhibited a clear seasonal trend during the study period. The average OC/EC ratio for the entire set of samples was 1.28±0.61, which was consistent with a significant influence of vehicle exhaust emissions on aerosol composition. On the other hand, the average WSOC/OC ratio was 0.67±0.23, reflecting the influence of other emitting sources. WSOC was highly correlated with nssK(+), a tracer of biomass combustion, and was not correlated with nssSO4(2-), a species associated with secondary processes, suggesting that the main source of WSOC was biomass burning. Most of the SO4(2-) was anthropogenic in origin and was closely associated with NH4(+), pointing to the formation of secondary aerosols. Na(+), Cl(-) and methanesulfonate were clearly associated with marine sources while NO3(-) was related with combustion of both fossil and non-fossil fuels. Mixed sources explained the occurrence of the other water soluble ions. PMID:27110993

  7. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: laboratory studies and reactive transport modeling.

    PubMed

    Holden, A A; Haque, S E; Mayer, K U; Ulrich, A C

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840×10(6) m(3) and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~375 mg L(-1)) and Na (~575 mg L(-1)) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides - in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present

  8. Effect of γ-irradiation on the volatile compounds of medicinal herb, Paeoniae Radix

    NASA Astrophysics Data System (ADS)

    Shim, Sung-Lye; Hwang, In-Min; Ryu, Keun-Young; Jung, Min-Seok; Seo, Hye-young; Kim, Hee-Yeon; Song, Hyun-Pa; Kim, Jae-Hun; Lee, Ju-Woon; Byun, Myung-Woo; Kwon, Joong-Ho; Kim, Kyong-Su

    2009-07-01

    A study was carried out to find the effect of γ-irradiation on contents of volatile compounds from medicinal herb, Paeoniae Radix ( Paenia albiflora Pallas var. trichocarpa Bunge). The volatile compounds of control, 1, 3, 5 and 10 kGy irradiated samples were extracted by simultaneous steam distillation and extraction (SDE) method and analyzed by gas chromatograph-mass spectrometer. The major volatile compounds were paeonol, ( E)-carveol, ( E, E)-2,4-octadienal, methyl salicylate, myrtanol and eugenol acetate. Volatile compounds belonging to chemical classes of acids, alcohols, aldehydes, esters, hydrocarbons and miscellaneous were identified in all experimental samples. The types of volatile compounds in irradiated samples were similar to those of non-irradiated sample and the concentrations of these compounds differed between treatments. 1,3-Bis (1,1-dimethylethyl)-benzene was identified by using the selected ion monitoring (GC/MS-SIM) mode. The concentration of this compound increased with the increase of irradiation dose level. These results suggest that it could be used as the base data for the effect of γ-irradiation on medicinal herb.

  9. Current status of fluoride volatility method development

    SciTech Connect

    Uhlir, J.; Marecek, M.; Skarohlid, J.

    2013-07-01

    The Fluoride Volatility Method is based on a separation process, which comes out from the specific property of uranium, neptunium and plutonium to form volatile hexafluorides whereas most of fission products (mainly lanthanides) and higher transplutonium elements (americium, curium) present in irradiated fuel form nonvolatile tri-fluorides. Fluoride Volatility Method itself is based on direct fluorination of the spent fuel, but before the fluorination step, the removal of cladding material and subsequent transformation of the fuel into a powdered form with a suitable grain size have to be done. The fluorination is made with fluorine gas in a flame fluorination reactor, where the volatile fluorides (mostly UF{sub 6}) are separated from the non-volatile ones (trivalent minor actinides and majority of fission products). The subsequent operations necessary for partitioning of volatile fluorides are the condensation and evaporation of volatile fluorides, the thermal decomposition of PuF{sub 6} and the finally distillation and sorption used for the purification of uranium product. The Fluoride Volatility Method is considered to be a promising advanced pyrochemical reprocessing technology, which can mainly be used for the reprocessing of oxide spent fuels coming from future GEN IV fast reactors.

  10. Major-ion chemistry, δ13C and 87Sr/86Sr as indicators of hydrochemical evolution and sources of salinity in groundwater in the Yuncheng Basin, China

    NASA Astrophysics Data System (ADS)

    Currell, Matthew J.; Cartwright, Ian

    2011-06-01

    Processes controlling hydrogeochemistry in the Yuncheng Basin, China, were characterised using major-ion chemistry, 87Sr/86Sr ratios and δ13C values. Evapotranspiration during recharge increased solute concentrations by factors of ˜5-50 in deep palaeowaters, while higher degrees of evapotranspiration have occurred in shallow, modern groundwater. Aquifer sediments (loess) contain approximately 15 weight% calcite; trends in groundwater HCO3 concentrations and δ13C values (ranging from -16.4 to -8.2‰) indicate that carbonate weathering is a significant source of DIC. Groundwater 87Sr/86Sr ratios (0.7110-0.7162, median of 0.7116) are similar to those in both loess carbonate (0.7109-0.7116) and local rainfall (0.7112), and are significantly lower than Sr in aquifer silicates (0.7184-0.7251). Despite evidence for substantial carbonate dissolution, groundwater is generally Ca-poor (< 10% of total cations) and Na-rich, due to cation exchange. Saturation with respect to carbonate minerals occurs during or soon after recharge (all calcite and dolomite saturation indices are positive). Subsequent carbonate dissolution in the deep aquifer must occur as a second-stage process, in response to Ca loss (by ion exchange) and/or via incongruent dissolution of dolomite and impure calcite. The latter is consistent with positive correlations between δ13C values and Mg/Ca and Sr/Ca ratios ( r 2 = 0.32 and 0.34).

  11. Aquifer wise seasonal variations and spatial distribution of major ions with focus on fluoride contamination-Pandharkawada block, Yavatmal district, Maharashtra, India.

    PubMed

    Pandith, Madhnure; Malpe, D B; Rao, A D; Rao, P N

    2016-02-01

    Seasonal variations in groundwater reveal lesser concentrations of major ions except NO3(-) during post-monsoon seasons in shallow aquifers as compared to deeper aquifers. The F(-) concentration from deeper aquifers is high in both seasons and shows a moderate positive relationship with weathering depth and is >5 mg/L in compound lava flow. Groundwater is mainly a Ca-HCO3 type in shallow aquifers and mixed type in deeper aquifers. Fluoride shows a positive correlation with pH, Na(+), HCO3(-) in shallow aquifers and an inverse correlation with Ca(2+) and HCO3(-) from deeper aquifers in both seasons. Approximately 45% of the samples are not suitable for drinking from both aquifers but suitable for irrigation purposes. Rock-water interaction, moderate alkalinity, sluggish movement, and higher residence time are the main causes for high F(-) in deeper aquifers as compared to shallow aquifers. As recommendations, drinking water requirement may be met from shallow aquifers/surface water and fluoride rich groundwater for other purposes. Most effective defluoridation techniques like ion exchange and reverse osmosis may be adopted along with integrated fluorosis mitigation measures and rooftop rainwater harvesting. Supplementary calcium and phosphorous rich food should be provided to children and creating awareness about safe drinking water habits, side effects of high F(-), and NO3(-) rich groundwater, improving oral hygiene conditions are other measures. PMID:26728981

  12. First Identification of 5,11-Dideoxytetrodotoxin in Marine Animals, and Characterization of Major Fragment Ions of Tetrodotoxin and Its Analogs by High Resolution ESI-MS/MS

    PubMed Central

    Yotsu-Yamashita, Mari; Abe, Yuka; Kudo, Yuta; Ritson-Williams, Raphael; Paul, Valerie J.; Konoki, Keiichi; Cho, Yuko; Adachi, Masaatsu; Imazu, Takuya; Nishikawa, Toshio; Isobe, Minoru

    2013-01-01

    Even though tetrodotoxin (TTX) is a widespread toxin in marine and terrestrial organisms, very little is known about the biosynthetic pathway used to produce it. By describing chemical structures of natural analogs of TTX, we can start to identify some of the precursors that might be important for TTX biosynthesis. In the present study, an analog of TTX, 5,11-dideoxyTTX, was identified for the first time in natural sources, the ovary of the pufferfish and the pharynx of a flatworm (planocerid sp. 1), by comparison with totally synthesized (−)-5,11-dideoxyTTX, using high resolution ESI-LC-MS. Based on the presence of 5,11-dideoxyTTX together with a series of known deoxy analogs, 5,6,11-trideoxyTTX, 6,11-dideoxyTTX, 11-deoxyTTX, and 5-deoxyTTX, in these animals, we predicted two routes of stepwise oxidation pathways in the late stages of biosynthesis of TTX. Furthermore, high resolution masses of the major fragment ions of TTX, 6,11-dideoxyTTX, and 5,6,11-trideoxyTTX were also measured, and their molecular formulas and structures were predicted to compare them with each other. Although both TTX and 5,6,11-trideoxyTTX give major fragment ions that are very close, m/z 162.0660 and 162.1020, respectively, they are distinguishable and predicted to be different molecular formulas. These data will be useful for identification of TTXs using high resolution LC-MS/MS. PMID:23924959

  13. Major ion chemistry and dissolved inorganic carbon cycling in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China.

    PubMed

    Zhang, Shurong; Lu, X X; Sun, Huiguo; Han, Jingtai; Higgitt, David Laurence

    2009-04-01

    Major ion chemistry and dissolved inorganic carbon system (DIC, mainly HCO3(-) and gaseous CO2) in the Luodingjiang River, a mountainous tributary of the Zhujiang (Pearl River), China, were examined based on a seasonal and spatial sampling scheme in 2005. The diverse distribution of lithology and anthropogenic impacts in the river basin provided the basic idea to assess the effects of lithology vs. human activities on water chemistry and carbon biogeochemistry in river systems. Major ions showed great spatial variations, with higher concentrations of total dissolved solids (TDS) and DIC in the regions with carbonate rocks and clastic sedimentary rocks, while lower in the regions with metamorphic sandstones and schists as well as granites. pCO2 at all sampling sites was oversaturated in June, ranging with a factor from 1.6 to 18.8 of the atmospheric concentration, reflecting the enhanced contribution from baseflow and interflow influx as well as in situ oxidation of organic matter. However, in April and December, undersaturated pCO2 was found in some shallow, clean rivers in the upstream regions. delta13C of DIC has a narrow range from -9.07 to -13.59 per thousand, which was more depleted in the regions with metamorphic rocks and granites than in the carbonate regions. Seasonally, it was slightly more depleted in the dry season (December) than in the wet season (June). The results suggested that lithological variability had a dominant control on spatial variations of water chemistry and carbon geochemistry in river systems. Besides, anthropogenic activities, such as agricultural and urban activities and in-stream damming, as well as river physical properties, such as water depth and transparency, also indicated their impacts. The seasonal variations likely reflected the changes of hydrological regime, as well as metabolic processes in the river. PMID:19185905

  14. Assessment of major ions and heavy metals in groundwater: a case study from Guangzhou and Zhuhai of the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Lu, Yintao; Tang, Changyuan; Chen, Jianyao; Yao, Hong

    2016-06-01

    Anthropogenic activities in the Pearl River Delta (PRD) have caused a deterioration of groundwater quality over the past twenty years as a result of rapid urbanization and industrial development. In this study, the hydrochemical characteristics, quality, and sources of heavy metals in the groundwater of the PRD were investigated. Twenty-five groundwater samples were collected and analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), δ18O, δ2H, major ions, and heavy metals. The groundwater was slightly acidic and presented TDS values that ranged from 35.5 to 8,779.3 mg·L-1. The concentrations of the major ions followed the order Cl->HCO 3 - >Na+>SO 4 2- >NO 3 - >NH 4 + >Ca2+>K+>Mg2+>Fe2+/3+>Al3+. Ca-Mg-HCO3 and Na-K-HCO3 were the predominant types of facies, and the chemical composition of the groundwater was primarily controlled by chemical weathering of the basement rocks, by mixing of freshwater and seawater and by anthropogenic activities. The heavy metal pollution index (HPI) indicated that 64% of the samples were in the low category, 16% were in the medium category and 20% were in the high category, providing further evidence that this groundwater is unsuitable for drinking. Lead, arsenic, and manganese were mainly sourced from landfill leachate; cadmium from landfill leachate and agricultural wastes; mercury from the discharge of leachate associated with mining activities and agricultural wastes; and chromium primarily from industrial wastes. According to the irrigation water quality indicators, the groundwater in the PRD can be used for irrigation in most farmland without strong negative impacts. However, approximately 9 million people in the Guangdong Province are at risk due to the consumption of untreated water. Therefore, we suggest that treating the groundwater to achieve safer levels is necessary.

  15. Integrated Chemical and Microorganism Monitoring of Air Using Gas Chromatography/Ion Mobility Spectometry: Toward an Expanded-Use Volatile Organic Analyzer (VOA)

    NASA Technical Reports Server (NTRS)

    Eiceman, G. A.

    1999-01-01

    The work described in this research program originated with the choice by NASA of an ion mobility spectrometer for air quality monitoring on-board the international spacestation. Though the gas chromatograph-ion mobility spectrometer analyzer known as VOA met or exceeded expectations, limitations in the basic understanding of response and the utilization of foundational principles into usable technology was considered unacceptable. In this research program, a comprehensive model for the origins of mobility spectra was proposed, tested and verified. The principles considered responsible for the appearance of mobility spectra have now been elucidated through this project. This understanding has been applied in automated identification of mobility spectra using neural networks and routine procedures for this now exist. Finally, the limitation on linear range has been shown to be a technical limitation and not a fundamental limitation so that a hardware component was crafted to extend the linear range of a mobility spectrometer by 10X. This project has led to one Ph.D. dissertation and one MS thesis. In addition, over ten public presentations at professional meetings and six journal publications have resulted from this program of research. The findings are so plentiful that total analysis of the findings may require four to six years or more. The findings confirm that the decision to use VOA was sound and that the chemical and physical principles of mobility spectrometry are both understandable and predictable.

  16. Extreme times for volatility processes

    NASA Astrophysics Data System (ADS)

    Masoliver, Jaume; Perelló, Josep

    2007-04-01

    Extreme times techniques, generally applied to nonequilibrium statistical mechanical processes, are also useful for a better understanding of financial markets. We present a detailed study on the mean first-passage time for the volatility of return time series. The empirical results extracted from daily data of major indices seem to follow the same law regardless of the kind of index thus suggesting an universal pattern. The empirical mean first-passage time to a certain level L is fairly different from that of the Wiener process showing a dissimilar behavior depending on whether L is higher or lower than the average volatility. All of this indicates a more complex dynamics in which a reverting force drives volatility toward its mean value. We thus present the mean first-passage time expressions of the most common stochastic volatility models whose approach is comparable to the random diffusion description. We discuss asymptotic approximations of these models and confront them to empirical results with a good agreement with the exponential Ornstein-Uhlenbeck model.

  17. Direct analysis of volatile organic compounds in human breath using a miniaturized cylindrical ion trap mass spectrometer with a membrane inlet.

    PubMed

    Riter, Leah S; Laughlin, Brian C; Nikolaev, Eugene; Cooks, R Graham

    2002-01-01

    Membrane introduction mass spectrometry (MIMS) coupled to a miniature mass spectrometer equipped with a cylindrical ion trap (CIT) analyzer was used to monitor the flavor components, 3-phenyl-2-propenal and methyl salicylate, found in cinnamon and wintergreen candies, respectively, directly from human breath. The poly(dimethylsiloxane) (PDMS) membrane was operated in a trap-and-release mode, where the temperature of the membrane was cycled during the experiments, which permitted temporal resolution of the two compounds of interest, facilitating their observation in the complex sample. Under these thermally driven conditions, the 10-90% rise times for both compounds are similar (15 s for methyl salicylate, 17 s for 3-phenyl-2-propenal), but the difference in diffusivity means that the signal for 3-phenyl-2-propenal is delayed and the 10% point occurs 6 s later than that for wintergreen. Additional specificity needed for complex samples was gained by using tandem mass spectrometry. PMID:12478583

  18. Determination of nanogram per liter concentrations of volatile organic compounds in water by capillary gas chromatography and selected ion monitoring mass spectrometry and its use to define groundwater flow directions in Edwards Aquifer, Texas

    USGS Publications Warehouse

    Buszka, P.M.; Rose, D.L.; Ozuna, G.B.; Groschen, G.E.

    1995-01-01

    A method has been developed to measure nanogram per liter amounts of selected volatile organic compounds (VOCs) including dichlorodifluoromethane, trichlorofluoromethane, cis-1,2-dichloroethene, trichloroethene, tetrachloroethene, and the isomers of dichlorobenzene in water. The method uses purge-and-trap techniques on a 100 mL sample, gas chromatography with a megabore capillary column, and electron impact, selected ion monitoring mass spectrometry. Minimum detection levels for these compounds ranged from 1 to 4 ng/L in water. Recoveries from organic-free distilled water and natural groundwater ranged from 70.5% for dichlorodifluoromethane to 107.8% for 1,4-dichlorobenzene. Precision was generally best for cis-1,2-dichloroethene, tetrachloroethene, and the dichlorobenzene isomers and worst for dichlorodifluoromethane and trichlorofluoromethane. Blank data indicated persistent, trace-level introduction of dichlorodifluoromethane, 1,4-dichlorobenzene, and tetrachloroemene to samples during storage and shipment at concentrations less than the method reporting limits. The largest concentrations of the selected VOCs in 27 water samples from the Edwards aquifer near San Antonio, TX, were from confined-zone wells near an abandoned landfill. The results defined a zone of water with no detectable VOCs in nearly all of the aquifer west of San Antonio and from part of the confined zone beneath San Antonio.

  19. The effect of H2O gas on volatilities of planet-forming major elements. I - Experimental determination of thermodynamic properties of Ca-, Al-, and Si-hydroxide gas molecules and its application to the solar nebula

    NASA Technical Reports Server (NTRS)

    Hashimoto, Akihiko

    1992-01-01

    The vapor pressures of Ca(OH)2(g), Al(OH)3(g), and Si(OH)4(g) molecules in equilibrium with solid calcium-, aluminum, and silicon-oxides, respectively, were determined, and were used to derive the heats of formation and entropies of these species, which are expected to be abundant under the currently postulated physical conditions in the primordial solar nebula. These data, in conjunction with thermodynamic data from literature, were used to calculate the relative abundances of M, MO(x), and M(OH)n gas species and relative volatilities of Fe, Mg, Si, Ca, and Al for ranges of temperature, total pressure, and H/O abundance ratio corresponding to the plausible ranges of physical conditions in the solar nebula. The results are used to explain how Ca and Al could have evaporated from Ca,Al-rich inclusions in carbonaceous chondrites, while Si, Mg, and Fe condensed onto them during the preaccretion alteration of CAIs.

  20. Volatile organic compound emissions from silage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols with other impor...

  1. Food price volatility

    PubMed Central

    Gilbert, C. L.; Morgan, C. W.

    2010-01-01

    The high food prices experienced over recent years have led to the widespread view that food price volatility has increased. However, volatility has generally been lower over the two most recent decades than previously. Variability over the most recent period has been high but, with the important exception of rice, not out of line with historical experience. There is weak evidence that grains price volatility more generally may be increasing but it is too early to say. PMID:20713400

  2. Characterization of major-ion chemistry and nutrients in headwater streams along the Appalachian National Scenic Trail and within adjacent watersheds, Maine to Georgia

    USGS Publications Warehouse

    Argue, Denise M.; Pope, Jason P.; Dieffenbach, Fred

    2012-01-01

    An inventory of water-quality data on field parameters, major ions, and nutrients provided a summary of water quality in headwater (first- and second-order) streams within watersheds along the Appalachian National Scenic Trail (Appalachian Trail). Data from 1,817 sampling sites in 831 catchments were used for the water-quality summary. Catchment delineations from NHDPlus were used as the fundamental geographic units for this project. Criteria used to evaluate sampling sites for inclusion were based on selected physical attributes of the catchments adjacent to the Appalachian Trail, including stream elevation, percentage of developed land cover, and percentage of agricultural land cover. The headwater streams of the Appalachian Trail are generally dilute waters, with low pH, low acid neutralizing capacity (ANC), and low concentrations of nutrients. The median pH value was slightly acidic at 6.7; the median specific conductance value was 23.6 microsiemens per centimeter, and the median ANC value was 98.7 milliequivalents per liter (μeq/L). Median concentrations of cations (calcium, magnesium, sodium, and potassium) were each less than 1.5 milligrams per liter (mg/L), and median concentrations of anions (bicarbonate, chloride, fluoride, sulfate, and nitrate) were less than 10 mg/L. Differences in water-quality constituent levels along the Appalachian Trail may be related to elevation, atmospheric deposition, geology, and land cover. Spatial variations were summarized by ecological sections (ecosections) developed by the U.S. Forest Service. Specific conductance, pH, ANC, and concentrations of major ions (calcium, chloride, magnesium, sodium, and sulfate) were all negatively correlated with elevation. The highest elevation ecosections (White Mountains, Blue Ridge Mountains, and Allegheny Mountains) had the lowest pH, ANC, and concentrations of major ions. The lowest elevation ecosections (Lower New England and Hudson Valley) generally had the highest pH, ANC, and

  3. Lunar apatite with terrestrial volatile abundances.

    PubMed

    Boyce, Jeremy W; Liu, Yang; Rossman, George R; Guan, Yunbin; Eiler, John M; Stolper, Edward M; Taylor, Lawrence A

    2010-07-22

    The Moon is thought to be depleted relative to the Earth in volatile elements such as H, Cl and the alkalis. Nevertheless, evidence for lunar explosive volcanism has been used to infer that some lunar magmas exsolved a CO-rich and CO(2)-rich vapour phase before or during eruption. Although there is also evidence for other volatile species on glass spherules, until recently there had been no unambiguous reports of indigenous H in lunar rocks. Here we report quantitative ion microprobe measurements of late-stage apatite from lunar basalt 14053 that document concentrations of H, Cl and S that are indistinguishable from apatites in common terrestrial igneous rocks. These volatile contents could reflect post-magmatic metamorphic volatile addition or growth from a late-stage, interstitial, sulphide-saturated melt that contained approximately 1,600 parts per million H(2)O and approximately 3,500 parts per million Cl. Both metamorphic and igneous models of apatite formation suggest a volatile inventory for at least some lunar materials that is similar to comparable terrestrial materials. One possible implication is that portions of the lunar mantle or crust are more volatile-rich than previously thought. PMID:20651686

  4. Low molecular weight (C1-C10) monocarboxylic acids, dissolved organic carbon and major inorganic ions in alpine snow pit sequence from a high mountain site, central Japan

    NASA Astrophysics Data System (ADS)

    Kawamura, Kimitaka; Matsumoto, Kohei; Tachibana, Eri; Aoki, Kazuma

    2012-12-01

    Snowpack samples were collected from a snow pit sequence (6 m in depth) at the Murodo-Daira site near the summit of Mt. Tateyama, central Japan, an outflow region of Asian dusts. The snow samples were analyzed for a homologous series of low molecular weight normal (C1-C10) and branched (iC4-iC6) monocarboxylic acids as well as aromatic (benzoic) and hydroxy (glycolic and lactic) acids, together with major inorganic ions and dissolved organic carbon (DOC). The molecular distributions of organic acids were characterized by a predominance of acetic (range 7.8-76.4 ng g-1-snow, av. 34.8 ng g-1) or formic acid (2.6-48.1 ng g-1, 27.7 ng g-1), followed by propionic acid (0.6-5.2 ng g-1, 2.8 ng g-1). Concentrations of normal organic acids generally decreased with an increase in carbon chain length, although nonanoic acid (C9) showed a maximum in the range of C5-C10. Higher concentrations were found in the snowpack samples containing dust layer. Benzoic acid (0.18-4.1 ng g-1, 1.4 ng g-1) showed positive correlation with nitrate (r = 0.70), sulfate (0.67), Na+ (0.78), Ca2+ (0.86) and Mg+ (0.75), suggesting that this aromatic acid is involved with anthropogenic sources and Asian dusts. Higher concentrations of Ca2+ and SO42- were found in the dusty snow samples. We found a weak positive correlation (r = 0.43) between formic acid and Ca2+, suggesting that gaseous formic acid may react with Asian dusts in the atmosphere during long-range transport. However, acetic acid did not show any positive correlations with major inorganic ions. Hydroxyacids (0.03-5.7 ng g-1, 1.5 ng g-1) were more abundant in the granular and dusty snow. Total monocarboxylic acids (16-130 ng g-1, 74 ng g-1) were found to account for 1-6% of DOC (270-1500 ng g-1, 630 ng g-1) in the snow samples.

  5. Volatile Analyzer for Lunar Polar Missions

    NASA Technical Reports Server (NTRS)

    Gibons, Everett K.; Pillinger, Colin T.; McKay, David S.; Waugh, Lester J.

    2011-01-01

    One of the major questions remaining for the future exploration of the Moon by humans concerns the presence of volatiles on our nearest neighbor in space. Observational studies, and investigations involving returned lunar samples and using robotic spacecraft infer the existence of volatile compounds particularly water [1]. It seems very likely that a volatile component will be concentrated at the poles in circumstances where low-temperatures exist to provide cryogenic traps. However, the full inventory of species, their concentration and their origin and sources are unknown. Of particular importance is whether abundances are sufficient to act as a resource of consumables for future lunar expeditions especially if a long-term base involving humans is to be established. To address some of these issues requires a lander designed specifically for operation at a high-lunar latitude. A vital part of the payload needs to be a volatile analyzer such as the Gas Analysis Package specifically designed for identification quantification of volatile substances and collecting information which will allow the origin of these volatiles to be identified [1]. The equipment included, particularly the gas analyzer, must be capable of operation in the extreme environmental conditions to be encountered. No accurate information yet exists regarding volatile concentration even for sites closer to the lunar equator (because of contamination). In this respect it will be important to understand (and thus limit) contamination of the lunar surface by extraneous material contributed from a variety of sources. The only data for the concentrations of volatiles at the poles comes from orbiting spacecraft and whilst the levels at high latitudes may be greater than at the equator, the volatile analyzer package under consideration will be designed to operate at the highest specifications possible and in a way that does not compromise the data.

  6. Assessment of spatial variability of major-ion concentrations and del oxygen-18 values in surface snow, Upper Fremont Glacier, Wyoming, USA

    USGS Publications Warehouse

    Naftz, D.L.; Schuster, P.F.; Reddy, M.M.

    1994-01-01

    One hundred samples were collected from the surface of the Upper Fremont Glacier at equally spaced intervals defined by an 8100m2 snow grid to asesss the significance of lateral variability in major-ion concentrations and del oxygen-18 values. Comparison of the observed variability of each chemical constituent to the variability expected by measurement error indicated substantial lateral variability with the surface-snow layer. Results of the nested ANOVA indicate most of the variance for every constituent is in the values grouped at the two smaller geographic scales (between 506m2 and within 506m2 sections). The variance data from the snow grid were used to develop equations to evaluate the significance of both positive and negative concentration/value peaks of nitrate and del oxygen-18 with depth, in a 160m ice core. Values of del oxygen-18 in the section from 110-150m below the surface consistently vary outside the expected limits and possibly represents cooler temperatures during the Little Ice Age from about 1810 to 1725 A.D. -from Authors

  7. A BENCH SCALE STUDY ON BIODEGRADATION AND VOLATILIZATION OF ETHYLBENZOATE IN AQUIFERS. (R825549C039)

    EPA Science Inventory

    Experiments were conducted to investigate the fate of ethylbenzoate and soil microorganisms in shallow aquifers. Biodegradation and volatilization have been identified as the major mechanisms in attenuating ethylbenzoate in contaminated soils. The rate of volatilization was ex...

  8. Semi-continuous mass closure of the major components of fine particulate matter in Riverside, CA

    NASA Astrophysics Data System (ADS)

    Grover, Brett D.; Eatough, Norman L.; Woolwine, Woods R.; Cannon, Justin P.; Eatough, Delbert J.; Long, Russell W.

    The application of newly developed semi-continuous aerosol monitors allows for the measurement of all the major species of PM 2.5 on a 1-h time basis. Temporal resolution of both non-volatile and semi-volatile species is possible. A suite of instruments to measure the major chemical species of PM 2.5 allows for semi-continuous mass closure. A newly developed dual-oven Sunset carbon monitor is used to measure non-volatile organic carbon, semi-volatile organic carbon and elemental carbon. Inorganic species, including sulfate and nitrate, can be measured with an ion chromatograph based sampler. Comparison of the sum of the major chemical species in an urban aerosol with mass measured by an FDMS resulted in excellent agreement. Linear regression analysis resulted in a zero-intercept slope of 0.98±0.01 with an R2=0.86. One-hour temporal resolution of the major species of PM 2.5 may reduce the uncertainty in receptor based source apportionment modeling, will allow for better forecasting of PM 2.5 episodes, and may lead to increased understanding of related health effects.

  9. Polycyclic aromatic hydrocarbons (PAHs) in ambient aerosols from Beijing: characterization of low volatile PAHs by positive-ion atmospheric pressure photoionization (APPI) coupled with Fourier transform ion cyclotron resonance.

    PubMed

    Jiang, Bin; Liang, Yongmei; Xu, Chunming; Zhang, Jingyi; Hu, Miao; Shi, Quan

    2014-05-01

    Aromatic fractions derived from aerosol samples were characterized by gas chromatography and mass spectrometry (GC-MS), high temperature simulated distillation (SIMDIS), and positive-ion atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), respectively. It was found that about 27 wt % compounds in aromatic fractions could not be eluted from a GC column and some large molecule PAHs were neglected in GC-MS analysis. APPI FT-ICR MS was proven to be a powerful approach for characterizing the molecular composition of aromatics, especially for the large molecular species. An aromatic sample from Beijing urban aerosol was successfully characterized by APPI FT-ICR MS. Results showed that most abundant aromatic compounds in PM2.5 (particles with aerodynamic diameter ≤ 2.5 μm) were highly condensed hydrocarbons with 4-8 aromatic rings and their homologues with very short alkyl chains. Furthermore, heteroatom-containing hydrocarbons were found as the significant components of the aromatic fractions: O1, O2, N1, and S1 class species with 10-28 DBEs (double bond equivalents) and 14-38 carbon numbers were identified by APPI FT-ICR MS. The heteroatom PAHs had similar DBEs and carbon number distribution as regular PAHs. PMID:24702199

  10. Volatile Organic Compounds in Uremia

    PubMed Central

    Seifert, Luzia; Slodzinski, Rafael; Jankowski, Joachim; Zidek, Walter; Westhoff, Timm H.

    2012-01-01

    Background Although “uremic fetor” has long been felt to be diagnostic of renal failure, the compounds exhaled in uremia remain largely unknown so far. The present work investigates whether breath analysis by ion mobility spectrometry can be used for the identification of volatile organic compounds retained in uremia. Methods Breath analysis was performed in 28 adults with an eGFR ≥60 ml/min per 1.73 m2, 26 adults with chronic renal failure corresponding to an eGFR of 10–59 ml/min per 1.73 m2, and 28 adults with end-stage renal disease (ESRD) before and after a hemodialysis session. Breath analysis was performed by ion mobility spectrometryafter gas-chromatographic preseparation. Identification of the compounds of interest was performed by thermal desorption gas chromatography/mass spectrometry. Results Breath analyses revealed significant differences in the spectra of patients with and without renal failure. Thirteen compounds were chosen for further evaluation. Some compounds including hydroxyacetone, 3-hydroxy-2-butanone and ammonia accumulated with decreasing renal function and were eliminated by dialysis. The concentrations of these compounds allowed a significant differentiation between healthy, chronic renal failure with an eGFR of 10–59 ml/min, and ESRD (p<0.05 each). Other compounds including 4-heptanal, 4-heptanone, and 2-heptanone preferentially or exclusively occurred in patients undergoing hemodialysis. Conclusion Impairment of renal function induces a characteristic fingerprint of volatile compounds in the breath. The technique of ion mobility spectrometry can be used for the identification of lipophilic uremic retention molecules. PMID:23049998

  11. Volatile composition and aroma activity of guava puree before and after thermal and dense phase carbon dioxide treatments.

    PubMed

    Plaza, Maria Lourdes; Marshall, Maurice R; Rouseff, Russell Lee

    2015-02-01

    Volatiles from initially frozen, dense phase carbon dioxide (DPCD)- and thermally treated guava purees were isolated by solid phase microextraction (SPME), chromatographically separated and identified using a combination of gas chromatography-mass spectrometry (GC-MS), GC-olfactometry (GC-O), and GC-pulsed flame photometric detector (GC-PFPD, sulfur mode). Fifty-eight volatiles were identified using GC-MS consisting of: 6 aldehydes, 2 acids, 15 alcohols, 6 ketones, 21 esters, and 8 terpenes. Eleven volatiles were newly identified in guava puree. Hexanal was the most abundant volatile in all 3 types of guava puree. Ten sulfur compounds were identified using GC-PFPD of which 3 possessed aroma activity and 3 were not previously reported in guava puree. Both treatments profoundly reduced total sulfur peak areas and produced different peak patterns compared to control. Thermal treatment reduced total sulfur peak area 47.9% compared to a loss of 34.7% with DPCD treatment. Twenty-six volatiles possessed aroma activity. (Z)-3-Hexenyl hexanoate was the major contributor to the aroma of the freshly thawed and DPCD-treated guava puree. DPCD treatment reduced total MS ion chromatogram (MS TIC) peak area 35% but produced a GC-O aroma profile very similar to control. Whereas thermal treatment reduced total TIC peak area only 8.7% compared to control but produced a 35% loss in total GC-O peak intensities. PMID:25588413

  12. Major ion chemistry in the headwaters of the Yamuna river system:. Chemical weathering, its temperature dependence and CO 2 consumption in the Himalaya

    NASA Astrophysics Data System (ADS)

    Dalai, T. K.; Krishnaswami, S.; Sarin, M. M.

    2002-10-01

    The Yamuna river and its tributaries in the Himalaya constitute the Yamuna River System (YRS). The YRS basin has a drainage area and discharge comparable in magnitude to those of the Bhagirathi and the Alaknanda rivers, which merge to form the Ganga at the foothills of the Himalaya. A detailed geochemical study of the YRS was carried out to determine: (i) the relative significance of silicate, carbonate and evaporite weathering in contributing to its major ion composition; (ii) CO 2 consumption via silicate weathering; and (iii) the factors regulating chemical weathering of silicates in the basin. The results show that the YRS waters are mildly alkaline, with a wide range of TDS, ˜32 to ˜620 mg l-1. In these waters, the abundances of Ca, Mg and alkalinity, which account for most of TDS, are derived mainly from carbonates. Many of the tributaries in the lower reaches of the Yamuna basin are supersaturated with calcite. In addition to carbonic acid, sulphuric acid generated by oxidation of pyrites also seems to be supplying protons for chemical weathering. Silicate weathering in YRS basin contributes, on average, ˜25% (molar basis) of total cations on a basin wide scale. Silicate weathering, however, does not seem to be intense in the basin as evident from low Si/(Na*+K) in the waters, ˜1.2 and low values of chemical index of alteration (CIA) in bed sediments, ˜60. CO 2 drawdown resulting from silicate weathering in the YRS basin in the Himalaya during monsoon ranges between (4 to 7) × 10 5 moles km -2 y -1. This is higher than that estimated for the Ganga at Rishikesh for the same season. The CO 2 consumption rates in the Yamuna and the Ganga basins in the Himalaya are higher than the global average value, suggesting enhanced CO 2 drawdown in the southern slopes of the Himalaya. The impact of this enhanced drawdown on the global CO 2 budget may not be pronounced, as the drainage area of the YRS and the Ganga in the Himalaya is small. The CO 2 drawdown by

  13. Diurnal variations of carbonaceous components, major ions, and stable carbon and nitrogen isotope ratios in suburban aerosols from northern vicinity of Beijing

    NASA Astrophysics Data System (ADS)

    He, Nannan; Kawamura, Kimitaka; Kanaya, Yugo; Wang, Zifa

    2015-12-01

    We report diurnal variations of organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and major ions as well as stable carbon and nitrogen isotope ratios (δ13C and δ15N) in ambient aerosols at a suburban site (Mangshan), 40 km north of Beijing, China. We found that aerosol chemical compositions were largely controlled by the air mass transport from Beijing in daytime with southerly winds and by relatively fresh air mass in nighttime from the northern forest areas with northerly winds. Higher concentrations of aerosol mass and total carbon were obtained in daytime. Further, higher OC/EC ratios were recorded in daytime (4.0 ± 1.7) than nighttime (3.2 ± 0.7), suggesting that OC is formed by photochemical oxidation of gaseous precursors in daytime. Contributions of WSOC to OC were slightly higher in daytime (38%) than nighttime (34%), possibly due to secondary formation of WSOC in daytime. We also found higher concentrations of Ca2+ in daytime, which was originated from the construction dust in Beijing area and transported to the sampling site. δ13C ranged from -25.3 to -21.2‰ (ave. -23.5 ± 0.9‰) in daytime and -29.0 to -21.4‰ (-24.0 ± 1.5‰) in nighttime, suggesting that Mangshan aerosols were more influenced by fossil fuel combustion products in daytime and by terrestrial C3 plants in nighttime. This study suggests that daytime air mass delivery from megacity Beijing largely influence the air quality at the receptor site in the north together with photochemical processing of organic aerosols during the atmospheric transport, whereas the Mangshan site is covered with relatively clean air masses at night.

  14. Diurnal variations of carbonaceous components, major ions, and stable carbon and nitrogen isotope ratios in suburban aerosols from northern vicinity of Beijing

    NASA Astrophysics Data System (ADS)

    He, Nannan; Kawamura, Kimitaka; Kanaya, Yugo; Wang, Zifa

    2015-12-01

    We report diurnal variations of organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and major ions as well as stable carbon and nitrogen isotope ratios (δ13C and δ15N) in ambient aerosols at a suburban site (Mangshan), 40 km north of Beijing, China. We found that aerosol chemical compositions were largely controlled by the air mass transport from Beijing in daytime with southerly winds and by relatively fresh air mass in nighttime from the northern forest areas with northerly winds. Higher concentrations of aerosol mass and total carbon were obtained in daytime. Further, higher OC/EC ratios were recorded in daytime (4.0 ± 1.7) than nighttime (3.2 ± 0.7), suggesting that OC is formed by photochemical oxidation of gaseous precursors in daytime. Contributions of WSOC to OC were slightly higher in daytime (38%) than nighttime (34%), possibly due to secondary formation of WSOC in daytime. We also found higher concentrations of Ca2+ in daytime, which was originated from the construction dust in Beijing area and transported to the sampling site. δ13C ranged from -25.3 to -21.2‰ (ave. -23.5 ± 0.9‰) in daytime and -29.0 to -21.4‰ (-24.0 ± 1.5‰) in nighttime, suggesting that Mangshan aerosols were more influenced by fossil fuel combustion products in daytime and by terrestrial C3 plants in nighttime. This study suggests that daytime air mass delivery from megacity Beijing largely influence the air quality at the receptor site in the north together with photochemical processing of organic aerosols during the atmospheric transport, whereas the Mangshan site is covered with relatively clean air masses at night.

  15. Confirmation of diosmetin 3-O-glucuronide as major metabolite of diosmin in humans, using micro-liquid-chromatography-mass spectrometry and ion mobility mass spectrometry.

    PubMed

    Silvestro, Luigi; Tarcomnicu, Isabela; Dulea, Constanta; Attili, Nageswara Rao B N; Ciuca, Valentin; Peru, Dan; Rizea Savu, Simona

    2013-10-01

    Diosmin is a flavonoid often administered in the treatment of chronic venous insufficiency, hemorrhoids, and related affections. Diosmin is rapidly hydrolized in the intestine to its aglicone, diosmetin, which is further metabolized to conjugates. In this study, the development and validations of three new methods for the determination of diosmetin, free and after enzymatic deconjugation, and of its potential glucuronide metabolites, diosmetin-3-O-glucuronide, diosmetin-7-O-glucuronide, and diosmetin-3,7-O-glucuronide from human plasma and urine are presented. First, the quantification of diosmetin, free and after deconjugation, was carried out by high-performance liquid chromatography coupled with tandem mass spectrometry, on an Ascentis RP-Amide column (150 × 2.1 mm, 5 μm), in reversed-phase conditions, after enzymatic digestion. Then glucuronide metabolites from plasma were separated by micro-liquid chromatography coupled with tandem mass spectrometry on a HALO C18 (50 × 0.3 mm, 2.7 μm, 90 Å) column, after solid-phase extraction. Finally, glucuronides from urine were measured using a Discovery HSF5 (100 × 2.1 mm, 5 μm) column, after simple dilution with mobile phase. The methods were validated by assessing linearity, accuracy, precision, low limit of quantification, selectivity, extraction recovery, stability, and matrix effects; results in agreement with regulatory (Food and Drug Administration and European Medicines Agency) guidelines acceptance criteria were obtained in all cases. The methods were applied to a pharmacokinetic study with diosmin (450 mg orally administered tablets). The mean C max of diosmetin in plasma was 6,049.3 ± 5,548.6 pg/mL. A very good correlation between measured diosmetin and glucuronide metabolites concentrations was obtained. Diosmetin-3-O-glucuronide was identified as a major circulating metabolite of diosmetin in plasma and in urine, and this finding was confirmed by supplementary experiments with differential ion

  16. Seasonal hydrology drives rapid shifts in the flux and composition of dissolved and particulate organic carbon and major and trace ions in the Fraser River, Canada

    NASA Astrophysics Data System (ADS)

    Voss, B. M.; Peucker-Ehrenbrink, B.; Eglinton, T. I.; Spencer, R. G. M.; Bulygina, E.; Galy, V.; Lamborg, C. H.; Ganguli, P. M.; Montluçon, D. B.; Marsh, S.; Gillies, S. L.; Fanslau, J.; Epp, A.; Luymes, R.

    2015-10-01

    Rapid changes in the volume and sources of discharge during the spring freshet lead to pronounced variations in biogeochemical properties in snowmelt-dominated river basins. We used daily sampling during the onset of the freshet in the Fraser River (southwestern Canada) in 2013 to identify rapid changes in the flux and composition of dissolved material, with a focus on dissolved organic matter (DOM). Previous time series sampling (at twice monthly frequency) of dissolved inorganic species in the Fraser River has revealed smooth seasonal transitions in concentrations of major ions and tracers of water and dissolved load sources between freshet and base flow periods. In contrast, daily sampling reveals a significant increase in dissolved organic carbon (DOC) concentration (200 to 550 μmol L-1) occurring over a matter of days, accompanied by a shift in DOM optical properties, indicating a transition towards higher molecular weight, more aromatic DOM composition. Comparable changes in DOM composition, but not concentration, occur at other times of year, underscoring the role of seasonal climatology in DOM cycling. A smaller data set of total and dissolved Hg concentrations also showed variability during the spring freshet period, although dissolved Hg dynamics appear to be driven by factors beyond DOM as characterized here. The time series records of DOC and particulate organic carbon (POC) concentrations indicate that the Fraser River exports 0.25-0.35 % of its annual basin net primary productivity. The snowmelt-dominated hydrology, forested land cover, and minimal reservoir impoundment of the Fraser River may influence the DOC yield of the basin, which is high relative to the nearby Columbia River and of similar magnitude to that of the Yukon River to the north. Anticipated warming and decreased snowfall due to climate changes in the region may cause an overall decrease in DOM flux from the Fraser River to the coastal ocean in coming decades

  17. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; Kroll, J. H.; Worsnop, D.; Thornton, J. A.

    2015-02-01

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25-50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of

  18. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A. J.; Daumit, K. E.; Hunter, J. F.; Kroll, J. H.; Worsnop, D. R.; Thornton, J. A.

    2015-07-01

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO-HR-ToF-CIMS are highly correlated with, and explain at least 25-50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of

  19. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGESBeta

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A. J.; Daumit, K. E.; Hunter, J. F.; et al

    2015-07-16

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  20. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGESBeta

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; et al

    2015-02-18

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  1. Aerosol volatility in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    during spring and autumn 2008. Results from the aerosol mass spectrometry indicate that the non-volatile residual consists of nitrate and organic compounds, especially during autumn. These compounds may be low-volatile organic nitrates or salts. During winter and spring the non-volatile core (black carbon removed) correlated markedly with carbon monoxide, which is a tracer of anthropogenic emissions. Due to this, the non-volatile residual may also contain other pollutants in addition to black carbon. Thus, it seems that the amount of different compounds in submicron aerosol particles varies with season and as a result the chemical composition of the non-volatile residual changes within a year. This work was supported by University of Helsinki three-year research grant No 490082 and Maj and Tor Nessling Foundation grant No 2010143. Aalto et al., (2001). Physical characterization of aerosol particles during nucleation events. Tellus B, 53, 344-358. Jayne, et al., (2000). Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol., 33(1-2), 49-70. Kalberer et al., (2004). Identification of Polymers as Major Components of Atmospheric Organic Aerosols. Science, 303, 1659-1662. Smith et al., (2010). Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. P. Natl. Acad. Sci., 107(15). Vesala et al., (1998). Long-term field measurements of atmosphere-surface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends Heat, Mass Mom. Trans., 4, 17-35. Wehner et al., (2002). Design and calibration of a thermodenuder with an improved heating unit to measure the size-dependent volatile fraction of aerosol particles. J. Aerosol Sci., 33, 1087-1093.

  2. ANTIOXIDANT ACTIVITY AND CHARACTERIZATION OF VOLATILE CONSTITUENTS OF TAHEEBO

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatiles were isolated from the dried inner bark of Tabebuia impetiginosa using steam distillation under reduced pressure followed by continuous liquid-liquid extraction. The extract was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The major volatile const...

  3. PREDICTING THE TOXICITY OF MAJOR IONS IN SEAWATER TO MYSID SHRIMP (MYSIDOPSIS BAHIA), SHEEPSHEAD MINNOW (CYPRINODON VARIEGATUS), AND INLAND SILVERSIDE MINNOW (MENIDIA BERYLLINA)

    EPA Science Inventory

    Although marine organisms are naturally adapted to salinities well above those of freshwater, elevated concentrations of specific ions have been shown to cause adverse effects on some saltwater species. Because some ions are also physiologically essential, a deficiency of these i...

  4. Volatile halocarbons in water

    SciTech Connect

    Kroneld, R.

    1986-11-01

    Volatile halocarbons in drinking water have attracted increasing attention during recent years. These substances are also found in body fluids. All disinfectant chemicals used in water treatment seem to produce by-products. Of particular concern are the following substances from the use of various disinfectants according to US EPA: chlorine, bromine and iodine, and chlorine dioxide. The aim of the present study was to follow the formation and occurrence of volatile halocarbons in different types of water.

  5. Microbial Small Talk: Volatiles in Fungal–Bacterial Interactions

    PubMed Central

    Schmidt, Ruth; Etalo, Desalegn W.; de Jager, Victor; Gerards, Saskia; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2016-01-01

    There is increasing evidence that volatile organic compounds (VOCs) play an important role in the interactions between fungi and bacteria, two major groups of soil inhabiting microorganisms. Yet, most of the research has been focused on effects of bacterial volatiles on suppression of plant pathogenic fungi whereas little is known about the responses of bacteria to fungal volatiles. In the current study we performed a metabolomics analysis of volatiles emitted by several fungal and oomycetal soil strains under different nutrient conditions and growth stages. The metabolomics analysis of the tested fungal and oomycetal strains revealed different volatile profiles dependent on the age of the strains and nutrient conditions. Furthermore, we screened the phenotypic responses of soil bacterial strains to volatiles emitted by fungi. Two bacteria, Collimonas pratensis Ter291 and Serratia plymuthica PRI-2C, showed significant changes in their motility, in particular to volatiles emitted by Fusarium culmorum. This fungus produced a unique volatile blend, including several terpenes. Four of these terpenes were selected for further tests to investigate if they influence bacterial motility. Indeed, these terpenes induced or reduced swimming and swarming motility of S. plymuthica PRI-2C and swarming motility of C. pratensis Ter291, partly in a concentration-dependent manner. Overall the results of this work revealed that bacteria are able to sense and respond to fungal volatiles giving further evidence to the suggested importance of volatiles as signaling molecules in fungal–bacterial interactions. PMID:26779150

  6. Volatile terpenoids from aeciospores of Cronartium fusiforme.

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Weete, J. D.; Walkinshaw, C. H.

    1973-01-01

    Identification of the terpenoids present in the volatile fraction from aeciospores of the gall rust fungus Cronartium fusiforme. The major monoterpenoid hydrocarbons found to be present with only traces of camphene include alpha-pinene, beta-pinene, delta(3)-carene, myrcene, linonene, beta-phellandrene, and delta-terpinene. A number of monoterpenoid alcohols, acyclic sesquiterpenes, and aromatic compounds were also present.

  7. Theoretical predictions of volatile bearing phases and volatile resources in some carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Ganguly, Jibamitra; Saxena, Surendra K.

    1989-01-01

    Carbonaceous chondrites are usually believed to be the primary constituents of near-Earth asteroids and Phobos and Diemos, and are potential resources of fuels which may be exploited for future planetary missions. The nature and abundances are calculated of the major volatile bearing and other phases, including the vapor phase that should form in C1 and C2 type carbonaceous chondrites as functions of pressure and temperature. The results suggest that talc, antigorite plus or minus magnesite are the major volatile bearing phases and are stable below 400 C at 1 bar in these chondritic compositions. Simulated heating of a kilogram of C2 chondrite at fixed bulk composition between 400 and 800 C at 1 bar yields about 135 gm of volatile, which is made primarily of H2O, H2, CH4, CO2 and CO. The relative abundances of these volatile species change as functions of temperature, and on a molar basis, H2 becomes the most dominant species above 500 C. In contrast, Cl chondrites yield about 306 gm of volatile under the same condition, which consist almost completely of 60 wt percent H2O and 40 wt percent CO2. Preliminary kinetic considerations suggest that equilibrium dehydration of hydrous phyllosilicates should be attainable within a few hours at 600 C. These results provide the framework for further analyses of the volatile and economic resource potentials of carbonaceous chondrites.

  8. Occurrence and Origin of Methane in Relation to Major Ion Concentrations in Groundwater Wells of the Denver-Julesburg and Piceance Basins of Colorado

    NASA Astrophysics Data System (ADS)

    Rogers, J. D.; Sherwood, O.; Lackey, G.; Burke, T. L.; Osborn, S. G.; Ryan, J. N.

    2014-12-01

    The rapid expansion of unconventional oil and gas development in North America has generated intense public concerns about potential impacts to groundwater quality. To address these concerns, we examined geochemical data from a publicly available Colorado Oil and Gas Conservation Commission (COGCC) database. The data consist of over 17,000 samples from 4,756 unique surface and groundwater locations collected since 1990, representing one of the most extensive databases of groundwater quality in relation to oil and gas development anywhere. Following rigorous data QA/QC, we classified groundwater samples with respect to major ion composition and compared the assigned water "types" along with other geochemical parameters to methane concentrations and carbon isotopes in the Denver-Julesburg (DJ) and Piceance Basins in Colorado. 88% of samples with elevated methane (defined as > 1 mg L-1) were classified as Na-HCO3 type in the DJ basin and 78% were classified as either Na-HCO3 or Na-Cl type in the Piceance basin. Of the elevated methane samples, 96% and 69% in the DJ and Piceance basins respectively had microbial gas signatures, as determined by d13C values < - 60 ‰. Samples with elevated methane concentrations had higher pH, higher concentrations of chloride and sodium and lower concentrations of calcium in both the DJ and Piceance Basin. Elevated methane concentrations were predominately microbial in origin and correlated to indicators of increased water-rock interactions and anaerobic groundwater conditions, indicating that methane observed in these groundwater samples are largely a result of natural processes. Rare occurrences of stray thermogenic gas (d13C > 55 ‰, gas wetness > 5 % C2+ hydrocarbons) were most frequently associated with the Na-HCO3 water type in the DJ basin (67% of occurrences) and were randomly distributed across water types in the Piceance Basin. Investigation of natural and anthropogenic causes for the presence of methane is ongoing, using

  9. Relationships between volatile and non-volatile metabolites and attributes of processed potato flavour.

    PubMed

    Morris, Wayne L; Shepherd, Tom; Verrall, Susan R; McNicol, James W; Taylor, Mark A

    2010-10-01

    Although the flavour of processed potatoes (Solanum tuberosum L.) is important to consumers, the blend of volatile and non-volatile metabolites that impact on flavour attributes is not well-defined. Additionally, it is important to understand how potato flavour changes during storage. In this study, quantitative descriptive analysis of potato samples by a trained taste panel was undertaken, comparing tubers from S. tuberosum group Phureja with those from S. tuberosum group Tuberosum, both at harvest and following storage. The cooked tuber volatile profile was analysed by solid phase micro extraction followed by gas chromatography-mass spectrometry analysis in sub-samples of the tubers that were assessed by taste panels. A range of non-volatile metabolites including the major umami compounds, glycoalkaloids and sugars was also measured in tuber sub-samples. Correlation and principal component analyses revealed differences between the potato cultivars and storage conditions and demonstrated associations of metabolites with the different sensory attributes. PMID:20678781

  10. Evaluation of γ-radiation on green tea odor volatiles

    NASA Astrophysics Data System (ADS)

    Fanaro, G. B.; Duarte, R. C.; Araújo, M. M.; Purgatto, E.; Villavicencio, A. L. C. H.

    2011-01-01

    The aim of this study was to evaluate the gamma radiation effects on green tea odor volatiles in green tea at doses of 0, 5, 10, 15 and 20 kGy. The volatile organic compounds were extracted by hydrodistillation and analyzed by GC/MS. The green tea had a large influence on radiation effects, increasing the identified volatiles in relation to control samples. The dose of 10 kGy was responsible to form the majority of new odor compounds following by 5 and 20 kGy. However, the dose of 5 kGy was the dose that degraded the majority of volatiles in non-irradiated samples, following by 20 kGy. The dose of 15 kGy showed has no effect on odor volatiles. The gamma radiation, at dose up to 20 kGy, showed statistically no difference between irradiated and non irradiated green tea on odors compounds.

  11. Volatile compound formation during argan kernel roasting.

    PubMed

    El Monfalouti, Hanae; Charrouf, Zoubida; Giordano, Manuela; Guillaume, Dominique; Kartah, Badreddine; Harhar, Hicham; Gharby, Saïd; Denhez, Clément; Zeppa, Giuseppe

    2013-01-01

    Virgin edible argan oil is prepared by cold-pressing argan kernels previously roasted at 110 degrees C for up to 25 minutes. The concentration of 40 volatile compounds in virgin edible argan oil was determined as a function of argan kernel roasting time. Most of the volatile compounds begin to be formed after 15 to 25 minutes of roasting. This suggests that a strictly controlled roasting time should allow the modulation of argan oil taste and thus satisfy different types of consumers. This could be of major importance considering the present booming use of edible argan oil. PMID:23472454

  12. Effects of temperature and soil type on ammonia volatilization from slow-release nitrogen fertilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia (NH3) volatilization is the major pathway for mineral nitrogen (N) loss from N sources applied to soils. The information on NH3 volatilization from slow-release N fertilizers is limited. Ammonia volatilization, over a 78-d period, from four slow-release N fertilizers with different proportio...

  13. REDUCTION OF INGESTION EXPOSURE TO TRIHALOMETHANES DUE TO VOLATILIZATION. (R825362)

    EPA Science Inventory

    Ingestion of tap water is one of the principal exposure
    pathways for disinfection byproducts (DBPs). One major
    class of DBPs, trihalomethanes (THM), are highly volatile,
    and volatilization will tend to lower ingestion exposures.
    This study quantifies volatilization...

  14. Lunar volatiles: balancing science and resource development

    NASA Astrophysics Data System (ADS)

    Crider, Dana

    In the context of human exploration of the moon, the volatiles postulated to exist at the lunar poles have value as resources as well as scientific significance. Once sustained human operations commence on the moon, society will move from a paradigm in which examination of planetary materials has been unconstrained to one where use of those materials will support habitability and further exploration. A framework for the scientific investigation of lunar volatiles that allows for eventual economic exploitation can guide both activities and resolve the conflicts that will inevitably develop if the postulated lunar volatiles prove to be both extant and accessible. Scientific constraints on the framework include characterization at both poles of the isotopes, elements, and molecules in the volatiles, their relative and absolute abundances, and their horizontal and vertical distribution. A subset of this data is necessary in order to assess, develop, and initiate resource exploitation. In addition, the scientific record of volatiles in the cold traps can be contaminated by the cold-trapping of migrating volatiles released from operations elsewhere on the moon even if the indigenous, cold-trapped volatiles are not utilized. Possible decision points defining the transition from science-dominated to exploitation-dominated use include technology limits in the 70K environment, evolving science priorities (funding), and the resolution of major science issues. Inputs to policy development include any North vs. South Pole differences in volatile characteristics and the suitability of the volatiles to enable further scientific exploration of the moon. In the absence of national sovereignty on the moon, enforcement of any framework is an open question, particularly if science and commercial interests are in competition. The framework, processes, and precedent set by how we as a society choose to handle the scientific bounty and resource promise of lunar volatiles may eventually

  15. Volatiles of Chrysanthemum zawadskii var. latilobum K

    PubMed Central

    Chang, Kyung-Mi; Kim, Gun-Hee

    2012-01-01

    The volatile aroma constituents of Chrysanthemum zawadskii var. latilobum K. were separated by hydro distillation extraction (HDE) method using a Clevenger-type apparatus, and analyzed by gas chromatography-mass spectrometry (GC/MS). The yield of C. zawadskii var. latilobum K. flower essential oil (FEO) was 0.12% (w/w) and the color was light green. Fifty-five volatile chemical components, which make up 88.38% of the total aroma composition, were tentatively characterized. C. zawadskii var. latilobum K. FEOs contained 27 hydrocarbons, 12 alcohols, 7 ketones, 4 esters, 1 aldehyde, 1 amine, and 3 miscellaneous components. The major functional groups were terpene alcohol and ketone. Borneol (12.96), (±)-7-epi-amiteol (12.60), and camphor (10.54%) were the predominant volatiles. These compounds can be used in food and pharmaceutical industries due to their active bio-functional properties. PMID:24471090

  16. Volatiles of Chrysanthemum zawadskii var. latilobum K.

    PubMed

    Chang, Kyung-Mi; Kim, Gun-Hee

    2012-09-01

    The volatile aroma constituents of Chrysanthemum zawadskii var. latilobum K. were separated by hydro distillation extraction (HDE) method using a Clevenger-type apparatus, and analyzed by gas chromatography-mass spectrometry (GC/MS). The yield of C. zawadskii var. latilobum K. flower essential oil (FEO) was 0.12% (w/w) and the color was light green. Fifty-five volatile chemical components, which make up 88.38% of the total aroma composition, were tentatively characterized. C. zawadskii var. latilobum K. FEOs contained 27 hydrocarbons, 12 alcohols, 7 ketones, 4 esters, 1 aldehyde, 1 amine, and 3 miscellaneous components. The major functional groups were terpene alcohol and ketone. Borneol (12.96), (±)-7-epi-amiteol (12.60), and camphor (10.54%) were the predominant volatiles. These compounds can be used in food and pharmaceutical industries due to their active bio-functional properties. PMID:24471090

  17. Major depression

    MedlinePlus

    Depression - major; Depression - clinical; Clinical depression; Unipolar depression; Major depressive disorder ... Doctors do not know the exact causes of depression. It is believed that chemical changes in the ...

  18. Analyses of Plant UDP-Dependent Glycosyltransferases to Identify Their Volatile Substrates Using Recombinant Proteins.

    PubMed

    Kamiyoshihara, Yusuke; Tieman, Denise M; Klee, Harry J

    2016-01-01

    Glycosylation is one of major modifications for plant secondary metabolites. In the case of volatile compounds, glycosylation makes them nonvolatile and odorless. Identification of UDP-dependent glycosyltransferases responsible for volatile glycosylation is essential to understand the regulatory mechanism of volatile release from plant tissues. Here, we describe an efficient protocol to find possible combinations of volatiles/glycosyltransferases using tomato (Solanum lycopersicum) enzymes expressed in Escherichia coli. The presented method requires a basic gas chromatography system and conventional laboratory tools. PMID:26577791

  19. Volatile aldehydes in libraries and archives

    NASA Astrophysics Data System (ADS)

    Fenech, Ann; Strlič, Matija; Kralj Cigić, Irena; Levart, Alenka; Gibson, Lorraine T.; de Bruin, Gerrit; Ntanos, Konstantinos; Kolar, Jana; Cassar, May

    2010-06-01

    Volatile aldehydes are produced during degradation of paper-based materials. This may result in their accumulation in archival and library repositories. However, no systematic study has been performed so far. In the frame of this study, passive sampling was carried out at ten locations in four libraries and archives. Despite the very variable sampling locations, no major differences were found, although air-filtered repositories were found to have lower concentrations while a non-ventilated newspaper repository exhibited the highest concentrations of volatile aldehydes (formaldehyde, acetaldehyde, furfural and hexanal). Five employees in one institution were also provided with personal passive samplers to investigate employees' exposure to volatile aldehydes. All values were lower than the presently valid exposure limits. The concentration of volatile aldehydes, acetic acid, and volatile organic compounds (VOCs) in general was also compared with that of outdoor-generated pollutants. It was evident that inside the repository and particularly inside archival boxes, the concentration of VOCs and acetic acid was much higher than the concentration of outdoor-generated pollutants, which are otherwise more routinely studied in connection with heritage materials. This indicates that further work on the pro-degradative effect of VOCs on heritage materials is necessary and that monitoring of VOCs in heritage institutions should become more widespread.

  20. Mechanism of Formation of the Major Estradiol Product Ions Following Collisional Activation of the Molecular Anion in a Tandem Quadrupole Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wooding, Kerry M.; Barkley, Robert M.; Hankin, Joseph A.; Johnson, Christopher A.; Bradford, Andrew P.; Santoro, Nanette; Murphy, Robert C.

    2013-10-01

    The importance of the mass spectral product ion structure is highlighted in quantitative assays, which typically use multiple reaction monitoring (MRM), and in the discovery of novel metabolites. Estradiol is an important sex steroid whose quantitation and metabolite identification using tandem mass spectrometry has been widely employed in numerous clinical studies. Negative electrospray ionization tandem mass spectrometry of estradiol (E2) results in several product ions, including the abundant m/z 183 and 169. Although m/z 183 is one of the most abundant product ions used in many quantitative assays, the structure of m/z 183 has not been rigorously examined. We suggest a structure for m/z 183 and a mechanism of formation consistent with collision induced dissociation (CID) of E2 and several stable isotopes ([D4]-E2, [13C6]-E2, and [D1]-E2). An additional product ion from E2, namely m/z 169, has also been examined. MS3 experiments indicated that both m/z 183 and m/z 169 originate from only E2 [M - H]- m/z 271. These ions, m/z 183 and m/z 169, were also present in the collision induced decomposition mass spectra of other prominent estrogens, estrone (E1) and estriol (E3), indicating that these two product ions could be used to elucidate the estrogenic origin of novel metabolites. We propose two fragmentation schemes to explain the CID data and suggest a structure of m/z 183 and m/z 169 consistent with several isotopic variants and high resolution mass spectrometric measurements.

  1. Speciation of the major inorganic salts in atmospheric aerosols of Beijing, China: Measurements and comparison with model

    NASA Astrophysics Data System (ADS)

    Tang, Xiong; Zhang, Xiaoshan; Ci, Zhijia; Guo, Jia; Wang, Jiaqi

    2016-05-01

    In the winter and summer of 2013-2014, we used a sampling system, which consists of annular denuder, back-up filter and thermal desorption set-up, to measure the speciation of major inorganic salts in aerosols and the associated trace gases in Beijing. This sampling system can separate volatile ammonium salts (NH4NO3 and NH4Cl) from non-volatile ammonium salts ((NH4)2SO4), as well as the non-volatile nitrate and chloride. The measurement data was used as input of a thermodynamic equilibrium model (ISORROPIA II) to investigate the gas-aerosol equilibrium characteristics. Results show that (NH4)2SO4, NH4NO3 and NH4Cl were the major inorganic salts in aerosols and mainly existed in the fine particles. The sulfate, nitrate and chloride associated with crustal ions were also important in Beijing where mineral dust concentrations were high. About 19% of sulfate in winter and 11% of sulfate in summer were associated with crustal ions and originated from heterogeneous reactions or direct emissions. The non-volatile nitrate contributed about 33% and 15% of nitrate in winter and summer, respectively. Theoretical thermodynamic equilibrium calculations for NH4NO3 and NH4Cl suggest that the gaseous precursors were sufficient to form stable volatile ammonium salts in winter, whereas the internal mixing with sulfate and crustal species were important for the formation of volatile ammonium salts in summer. The results of the thermodynamic equilibrium model reasonably agreed with the measurements of aerosols and gases, but large discrepancy existed in predicting the speciation of inorganic ammonium salts. This indicates that the assumption on crustal species in the model was important for obtaining better understanding on gas-aerosol partitioning and improving the model prediction.

  2. Ion Mobility Spectrometry (IMS) and Mass Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.

    2010-04-20

    In a media of finite viscosity, the Coulomb force of external electric field moves ions with some terminal speed. This dynamics is controlled by “mobility” - a property of the interaction potential between ions and media molecules. This fact has been used to separate and characterize gas-phase ions in various modes of ion mobility spectrometry (IMS) developed since 1970. Commercial IMS devices were introduced in 1980-s for field detection of volatile traces such as explosives and chemical warfare agents. Coupling to soft-ionization sources, mass spectrometry (MS), and chromatographic methods in 1990-s had allowed IMS to handle complex samples, enabling new applications in biological and environmental analyses, nanoscience, and other areas. Since 2003, the introduction of commercial systems by major instrument vendors started bringing the IMS/MS capability to broad user community. The other major development of last decade has been the differential IMS or “field asymmetric waveform IMS” (FAIMS) that employs asymmetric time-dependent electric field to sort ions not by mobility itself, but by the difference between its values in strong and weak electric fields. Coupling of FAIMS to conventional IMS and stacking of conventional IMS stages have enabled two-dimensional separations that dramatically expand the power of ion mobility methods.

  3. Theoretical predictions of volatile bearing phases and volatile resources in some carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Ganguly, Jibamitra; Saxena, Surendra K.

    1989-01-01

    Results are presented from theoretical calculations to predict the modal abundances and compositions of the major mineral phases and the vapor phase that could develop in the bulk compositions of carbonaceous chondrites. The abundances and compositions are obtained as functions of temperature and pressure. The calculations are used to evaluate the volatile and mineralogical resource potential of C1 and C2 carbonaceous chondrites.

  4. Monitoring plant bioremediation of volatile organic compounds (VOCs) using open path Fourier transform infrared (FT-IR) spectrometry

    SciTech Connect

    Hoffman, R.M.; Visser, V.P.; Davis, L.C.; Erickson, L.E.; Muralidharan, N.; Hammaker, R.M.; Fateley, W.G.

    1994-12-31

    This study addresses a viable and natural solution to the elimination of volatile organic compounds (VOCs), which are pollutants, through the bioremediation process. Plants and associated rhizosphere bacteria have the ability to bioremediate both volatile and non-volatile organic compounds. For volatile compounds, intersystem transfer by transpiration may be a matter for concern when plants interact with such materials. The authors have monitored, using FT-IR, the potential transfer from subsurface water in the presence of toluene-adapted alfalfa plants. These experiments show that the plants and/or their associated micro-organisms effectively degrade toluene so that potential intersystem transfer of VOCs by transpiration may be quite manageable with adapted plants. Presently, the authors are monitoring 1,1,1-trichloroethane (TCA), chloroform (CHCl{sub 3}), and, trichloroethylene (TCE) from the subsurface water and the gas phase above the plants. TCA does not show an indication of degradation, whereas TCE does. Methane is produced in the groundwater but not transferred to the atmosphere, indicating the presence of a consortium of methanogens and methanotrophs in this soil. The TCE presumably is the substrate for methane production based on chloride ion accumulation. The majority of the TCE must be degraded aerobically to yield CO{sub 2} in the vadose zone. The FT-IR spectrometer can quickly determine and analyze contaminants in the gas phase, groundwater and plant tissue.

  5. Detection of rare species of volatile organic selenium metabolites in male golden hamster urine.

    PubMed

    Kwak, Jae; Ohrnberger, Sarah A; Valencak, Teresa G

    2016-07-01

    Selenium has been considered as an essential trace element in mammals and its intake comes mainly from food. Mammals can metabolize both inorganic and organic species, and urinary excretion is the primary elimination route of selenium. Selenosugars and trimethylselenonium ion have been identified as major urinary metabolites. Other metabolites have been reported, but they were detected in some studies and not in others. Still, a large portion of the ingested selenium eliminated from the body is unknown. Volatile selenium species may account for a certain portion of the unknown species since they can easily be lost during sample analyses. While we analyzed male golden hamster urine in search of potential volatile pheromone(s), four volatile selenium compounds were detected. They were dimethyl selenenylsulfide, dimethyl diselenide, dimethyl bis(thio)selenide, and dimethyl selenodisulfide. When the urine samples were aged and dried for 48 h, dimethyl selenodisulfide tended to increase, while others decreased. The increase might be due to the formation of dimethyl selenodisulfide via reaction of dimethyl diselenide and dimethyl trisulfide whose concentration increased as urine aged. To our knowledge, dimethyl bis(thio)selenide and dimethyl selenodisulfide have never been demonstrated in urine. It remains to be determined whether these species are common metabolites in other animals or hamster-specific. PMID:27129975

  6. Volatile Selenium Flux in the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Diaz, X.; Johnson, W. P.

    2006-12-01

    Volatilization of selenium has been proven to be the major source of selenium vapor from oceans and estuaries and it may be the major mechanism of permanent selenium removal from the Great Salt Lake (other than brine shrimp harvest). However, the volatilization flux of selenium from the Great Salt Lake has not been previously measured due to challenges of analysis in this hyper-saline environment. This work presents results from recent field studies examining the spatial distribution of volatile selenium (geographical and with depth) in the South Arm (main body) of the Great Salt Lake. The analyses involved collection of volatile selenium in a cryo-focusing trap system via sparging with helium. The cryo-trapped volatile selenium was digested with nitric acid and analyzed by ICP-MS. The results show concentrations of volatile selenium that are much greater than values reported for marine estuaries and oceans. Volatile selenium flux to the atmosphere was determined using mass transport equations corrected to simulate the highly saline environment of the South Arm of the Great Salt Lake.

  7. Analysis of volatile organic compounds from illicit cocaine samples

    SciTech Connect

    Robins, W.H.; Wright, B.W.

    1994-07-01

    Detection of illicit cocaine hydrochloride shipments can be improved if there is a greater understanding of the identity and quantity of volatile compounds present. This study provides preliminary data concerning the volatile organic compounds detected in a limited Set of cocaine hydrochloride samples. In all cases, cocaine was one of the major volatile compounds detected. Other tropeines were detected in almost all samples. Low concentrations of compounds that may be residues of processing solvents were observed in some samples. The equilibrium emissivity of. cocaine from cocaine hydrochloride was investigated and a value of 83 parts-per-trillion was determined.

  8. biogenic aerosol precursors: volatile amines from agriculture

    NASA Astrophysics Data System (ADS)

    Kuhn, Uwe; Sintermann, Jörg; Spirig, Christoph; Ammann, Christof; Neftel, Albrecht

    2010-05-01

    Information on the occurrence of volatile biogenic amines in the atmosphere is marginal. This group of N-bearing organic compounds are assumed to be a small, though significant component of the atmospheric N-cycle, but are not accounted for in global assessments due to the scarceness of available data. There is increasing evidence for an important role of biogenic amines in the formation of new particulate matter, as well as for aerosol secondary growth. Volatile amines are ubiquitously formed by biodegradation of organic matter, and agriculture is assumed to dominantly contribute to their atmospheric burden. Here we show that the mixing ratios of volatile amines within livestock buildings scale about 2 orders of magnitude lower than NH3, confirming the few literature data available (e.g., Schade and Crutzen, J. Atm. Chem. 22, 319-346, 1995). Flux measurements after manure application in the field, mixing ratios in the headspace of manure storage pools, and concentrations in distilled manure all indicate major depletion of amines relative to NH3 during manure processing. We conclude that the agricultural source distribution of NH3 and amines is not similar. While for NH3 the spreading of manure in the field dominates agricultural emissions, the direct release from livestock buildings dominates the budget of volatile biogenic amines.

  9. PERTURBATION OF VOLTAGE-SENSITIVE Ca2+ CHANNEL FUNCTION BY VOLATILE ORGANIC SOLVENTS.

    EPA Science Inventory

    The mechanisms underlying the acute neurophysiological and behavioral effects of volatile organic compounds (VOCs) remain to be elucidated. However, the function of neuronal ion channels is perturbed by VOCs. The present study examined effects of toluene (TOL), trichloroethylene ...

  10. ANALYSIS OF VOLATILES AND SEMIVOLATILES BY DIRECT AQUEOUS INJECTION

    EPA Science Inventory

    Direct aqueous injection analysis (DAI) with gas chromatographic separation and ion trap mass spectral detection was used to analyze aqueous samples for g/L levels of 54 volatile and semivolatile compounds, and problematic non-purgeables and non-extractables. The method reduces ...

  11. Statistical Analysis of Major Ion and Trace Element Geochemistry of Water, 1986-2006, at Seven Wells Transecting the Freshwater/Saline-Water Interface of the Edwards Aquifer, San Antonio, Texas

    USGS Publications Warehouse

    Mahler, Barbara J.

    2008-01-01

    This report by the U.S. Geological Survey, in cooperation with the San Antonio Water System, describes the results of a statistical analysis of major ion and trace element geochemistry of water at seven wells transecting the freshwater/saline-water interface of the Edwards aquifer in San Antonio, Texas, either over time or in response to variations in hydrologic conditions. The data used in this report were collected during 1986-2006. The seven monitoring wells are screened at different depths in the aquifer at three sites that form a generally north-to-south transect. The three wells of the southern site and the deeper of the two middle-site wells are open to the freshwater/saline-water transition zone, which contains saline water. The shallower well of the middle site and the two wells of the northern site are open to the freshwater zone. Mean specific conductance (SC) values were greater at transition-zone wells than at freshwater-zone wells, but SC did not vary systematically with depth. Concentrations of all major ions except bicarbonate were greater at transition-zone wells than at freshwater-zone wells, but concentrations tended to be more variable at freshwater-zone wells. Mean molar ratios of magnesium:calcium, sulfate:chloride, and sodium:chloride were similar at transition-zone wells and freshwater-zone wells. Concentrations of trace elements for many water samples at the seven transect wells were below the laboratory analytical reporting level. Detections of trace elements were more frequent at transition-zone wells, and mean concentrations of cadmium, chromium, copper, lead, and silver were elevated at transition-zone wells relative to freshwater-zone wells. All strong correlations between SC and major ions were positive, and in general there were more and stronger correlations between SC and major ions in the water from the freshwater-zone wells than from the transition-zone wells. Except for the shallowest transition-zone well, the transition

  12. Volatilization of Mercury By Bacteria

    PubMed Central

    Magos, L.; Tuffery, A. A.; Clarkson, T. W.

    1964-01-01

    Volatilization of mercury has been observed from various biological media (tissue homogenates, infusion broth, plasma, urine) containing mercuric chloride. That micro-organisms were responsible was indicated by the finding that the rates of volatilization were highly variable, that a latent period often preceded volatilization, that toluene inhibited the process, and that the capacity to volatilize mercury could be transferred from one biological medium to another. Two species of bacteria when isolated and cultured from these homogenates were able to volatilize mercury. Two other bacteria, one of which was isolated from the local water supply, were also highly active. The volatile mercury was identified as mercury vapour. The importance of these findings in relation to the storage of urine samples prior to mercury analysis is discussed. PMID:14249899

  13. Immune Modulation by Volatile Anesthetics.

    PubMed

    Stollings, Lindsay M; Jia, Li-Jie; Tang, Pei; Dou, Huanyu; Lu, Binfeng; Xu, Yan

    2016-08-01

    Volatile general anesthetics continue to be an important part of clinical anesthesia worldwide. The impact of volatile anesthetics on the immune system has been investigated at both mechanistic and clinical levels, but previous studies have returned conflicting findings due to varied protocols, experimental environments, and subject species. While many of these studies have focused on the immunosuppressive effects of volatile anesthetics, compelling evidence also exists for immunoactivation. Depending on the clinical conditions, immunosuppression and activation due to volatile anesthetics can be either detrimental or beneficial. This review provides a balanced perspective on the anesthetic modulation of innate and adaptive immune responses as well as indirect effectors of immunity. Potential mechanisms of immunomodulation by volatile anesthetics are also discussed. A clearer understanding of these issues will pave the way for clinical guidelines that better account for the impact of volatile anesthetics on the immune system, with the ultimate goal of improving perioperative management. PMID:27286478

  14. Predicting the emission of volatile organic compounds from silage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major VOC emission source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols wit...

  15. Major Links.

    ERIC Educational Resources Information Center

    Henderson, Tona

    1995-01-01

    Provides electronic mail addresses for resources and discussion groups related to the following academic majors: art, biology, business, chemistry, computer science, economics, health sciences, history, literature, math, music, philosophy, political science, psychology, sociology, and theater. (AEF)

  16. Classification of Volatile Engine Particles

    SciTech Connect

    Cheng, Mengdawn

    2013-01-01

    Volatile particles cannot be detected at the engine exhaust by an aerosol detector. They are formed when the exhaust is mixed with ambient air downstream. Lack of a precise definition of volatile engine particles has been an impediment to engine manufacturers and regulatory agencies involved in the development of an effective control strategy. It is beyond doubt that volatile particles from combustion sources contribute to the atmospheric particulate burden, and the effect of that contribution is a critical issue in the ongoing research in the areas of air quality and climate change. A new instrument, called volatile particle separator (VPS), has been developed. It utilizes a proprietary microporous metallic membrane to separate particles from vapors. VPS data were used in the development of a two-parameter function to quantitatively classify, for the first time, the volatilization behavior of engine particles. The value of parameter A describes the volatilization potential of an aerosol. A nonvolatile particle has a larger A-value than a volatile one. The value of parameter k, an effective evaporation energy barrier, is found to be much smaller for small engine particles than that for large engine particles. The VPS instrument provides a means beyond just being a volatile particle remover; it enables a numerical definition to characterize volatile engine particles.

  17. Genome-Wide Association Mapping for Tomato Volatiles Positively Contributing to Tomato Flavor

    PubMed Central

    Zhang, Jing; Zhao, Jiantao; Xu, Yao; Liang, Jing; Chang, Peipei; Yan, Fei; Li, Mingjun; Liang, Yan; Zou, Zhirong

    2015-01-01

    Tomato volatiles, mainly derived from essential nutrients and health-promoting precursors, affect tomato flavor. Taste volatiles present a major challenge for flavor improvement and quality breeding. In this study, we performed genome-wide association studies (GWAS) to investigate potential chromosome regions associated with the tomato flavor volatiles. We observed significant variation (1200x) among the selected 28 most important volatiles in tomato based on their concentration and odor threshold importance across our sampled accessions. Using 174 tomato accessions, GWAS identified 125 significant associations (P < 0.005) among 182 SSR markers and 28 volatiles (27 volatiles with at least one significant association). Several significant associations were co-localized in previously identified quantitative trait loci (QTL). This result provides new potential candidate loci affecting the metabolism of several volatiles. PMID:26640472

  18. Major depression.

    PubMed

    Bentley, Susan M; Pagalilauan, Genevieve L; Simpson, Scott A

    2014-09-01

    Major depression is a common, disabling condition seen frequently in primary care practices. Non-psychiatrist ambulatory providers are increasingly responsible for diagnosing, and primarily managing patients suffering from major depressive disorder (MDD). The goal of this review is to help primary care providers to understand the natural history of MDD, identify practical tools for screening, and a thoughtful approach to management. Clinically challenging topics like co-morbid conditions, treatment resistant depression and pharmacotherapy selection with consideration to side effects and medication interactions, are also covered. PMID:25134869

  19. Arsenic(III, V) adsorption on a goethite-based adsorbent in the presence of major co-existing ions: Modeling competitive adsorption consistent with spectroscopic and molecular evidence

    NASA Astrophysics Data System (ADS)

    Kanematsu, Masakazu; Young, Thomas M.; Fukushi, Keisuke; Green, Peter G.; Darby, Jeannie L.

    2013-04-01

    Adsorption of the two oxyanions, arsenate (As(V)) and arsenite (As(III)), on a common goethite-based granular porous adsorbent is studied in the presence of major co-existing ions in groundwater (i.e., phosphate, silicic acid, sulfate, carbonate, magnesium, and calcium) and predicted using the extended triple layer model (ETLM), a dipole modified single-site triple layer surface complexation model consistent with spectroscopic and molecular evidence. Surface species of all ions were selected according to the previous ETLM studies and published experimental spectroscopic/theoretical molecular information. The adsorption equilibrium constants for all ions were determined using adsorption data obtained in single-solute systems. The adsorption equilibrium constants referenced to the site-occupancy standard state (indicated by Kθ) were compared with those for goethite in the literature if available. The values of these constants for the goethite-based adsorbent are found to be close to the values for goethite previously studied. These "constrained" adsorption equilibrium constants determined in single-solute systems were used in the ETLM to predict the competitive interactions of As(III, V) with the co-existing ions in binary-solute systems. The ETLM is capable of predicting As(III, V) adsorption in the presence of oxyanions (phosphate, silicic acid, sulfate, and carbonate). This study presents the first successful and systematic prediction of the competitive interactions of As(III, V) with these oxyanions using the ETLM. The ETLM prediction of surface (and aqueous) speciation also provides insights into the distinct adsorption behavior of As(III, V) in the presence of the oxyanions. Magnesium and calcium significantly enhanced As(V) adsorption at higher pH values, while they had little effect on As(III) adsorption. The enhanced adsorption of As(V), however, could not be predicted by the ETLM using the surface species proposed in previous ETLM studies. Further studies

  20. Areal distribution of selected trace elements, salinity, and major ions in shallow ground water, Tulare Basin, Southern San Joaquin Valley, California

    USGS Publications Warehouse

    Fujii, Roger; Swain, W.C.

    1995-01-01

    The distribution of salinity and selected trace elements in shallow ground water in the Tulare Basin, California, was assessed to evaluate potential problems related to disposal in evaporation ponds of irrigation drain water containing elevated concentrations of selenium and other trace elements. The constituents of primary concern were selenium, arsenic, and salinity; uranium, boron, and molybdenum also were evaluated. Samples from 117 shallow wells were analyzed, and the results for samples from 110 of the wells were interpreted in relation to surficial geology, sediment depositional environment, soil characteristics, and hydrologic processes to determine the geochemical and hydrologic factors affecting the distribution of these constituents in ground water. In general, shallow ground water in areas where concentrations of salinity and most trace elements are elevated is influenced primarily by sediments derived from marine sedimentary rocks originating in the Coast Range, San Emigdio Mountains, and Tehachapi Mountains, and probably by unusual exposures of similar marine formations in the Sierra Nevada. Ground water in areas where concentrations of salinity and trace elements are significantly lower generally is influenced by igneous and metamorphic rocks exposed in the Sierra Nevada. In addition to sources of sediments, evaporation of shallow ground water, as indicated by isotopic enrichment of oxygen-18 and deuterium, increases salinity and concentrations of conservative trace elements such as selenium (under oxidizing conditions) and boron. Redox conditions affect the oxidation state of all trace elements of concern, except boron, and were found to be a major influence on trace-element solubility. Under oxidized conditions, selenate predominates and behaves conservatively, and arsenate predominates and is affected by sorption reactions that can limit arsenic solubility. Under reduced conditions, selenium is reduced to insoluble elemental selenium and arsenite

  1. Major Andre

    ERIC Educational Resources Information Center

    Henisch, B. A.; Henisch, H. K.

    1976-01-01

    If most Revolutionary era people seem two-dimensional their lives simpler to understand than ours, it may be only that history, with the benefit of hindsight, clarifies. Examines a profile of Major John Andre, the British liaison officer in Benedict Arnold's plan to surrender West Point, as both hero and villain to show the complexity of early…

  2. Aroma volatiles in tangerine hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile compounds are well known to contribute to food flavor. In a breeding program, the knowledge of the identity and quantity of volatile compounds may help selecting fruit with desirable eating quality. Many studies report which compounds are responsible for orange juice flavor and aroma, but...

  3. Production of bioactive volatiles by different Burkholderia ambifaria strains.

    PubMed

    Groenhagen, Ulrike; Baumgartner, Rita; Bailly, Aurélien; Gardiner, Amber; Eberl, Leo; Schulz, Stefan; Weisskopf, Laure

    2013-07-01

    Increasing evidence indicates that volatile compounds emitted by bacteria can influence the growth of other organisms. In this study, the volatiles produced by three different strains of Burkholderia ambifaria were analysed and their effects on the growth of plants and fungi, as well as on the antibiotic resistance of target bacteria, were assessed. Burkholderia ambifaria emitted highly bioactive volatiles independently of the strain origin (clinical environment, rhizosphere of pea, roots of maize). These volatile blends induced significant biomass increase in the model plant Arabidopsis thaliana as well as growth inhibition of two phytopathogenic fungi (Rhizoctonia solani and Alternaria alternata). In Escherichia coli exposed to the volatiles of B. ambifaria, resistance to the aminoglycoside antibiotics gentamicin and kanamycin was found to be increased. The volatile blends of the three strains were similar, and dimethyl disulfide was the most abundant compound. Sulfur compounds, ketones, and aromatic compounds were major groups in all three volatile profiles. When applied as pure substance, dimethyl disulfide led to increased plant biomass, as did acetophenone and 3-hexanone. Significant fungal growth reduction was observed with high concentrations of dimethyl di- and trisulfide, 4-octanone, S-methyl methanethiosulphonate, 1-phenylpropan-1-one, and 2-undecanone, while dimethyl trisulfide, 1-methylthio-3-pentanone, and o-aminoacetophenone increased resistance of E. coli to aminoglycosides. Comparison of the volatile profile produced by an engineered mutant impaired in quorum-sensing (QS) signalling with the corresponding wild-type led to the conclusion that QS is not involved in the regulation of volatile production in B. ambifaria LMG strain 19182. PMID:23832658

  4. Volatile chemical reagent detector

    DOEpatents

    Chen, Liaohai; McBranch, Duncan; Wang, Rong; Whitten, David

    2004-08-24

    A device for detecting volatile chemical reagents based on fluorescence quenching analysis that is capable of detecting neutral electron acceptor molecules. The device includes a fluorescent material, a contact region, a light source, and an optical detector. The fluorescent material includes at least one polymer-surfactant complex. The polymer-surfactant complex is formed by combining a fluorescent ionic conjugated polymer with an oppositely charged surfactant. The polymer-surfactant complex may be formed in a polar solvent and included in the fluorescent material as a solution. Alternatively, the complex may be included in the fluorescent material as a thin film. The use of a polymer-surfactant complex in the fluorescent material allows the device to detect both neutral and ionic acceptor molecules. The use of a polymer-surfactant complex film allows the device and the fluorescent material to be reusable after exposing the fluorescent material to a vacuum for limited time.

  5. VOLATILIZATION OF ORGANIC POLLUTANTS FROM WATER

    EPA Science Inventory

    The volatilization of organic environmental contaminants from water bodies to the atmosphere was investigated. The general aim was to elucidate the factors that control the volatilization process and develop predictive methods for calculating volatilization rates for various comp...

  6. Biofiltration of volatile organic compounds.

    PubMed

    Malhautier, Luc; Khammar, Nadia; Bayle, Sandrine; Fanlo, Jean-Louis

    2005-07-01

    The removal of volatile organic compounds (VOCs) from contaminated airstreams has become a major air pollution concern. Improvement of the biofiltration process commonly used for the removal of odorous compounds has led to a better control of key parameters, enabling the application of biofiltration to be extended also to the removal of VOCs. Moreover, biofiltration, which is based on the ability of micro-organisms to degrade a large variety of compounds, proves to be economical and environmentally viable. In a biofilter, the waste gas is forced to rise through a layer of packed porous material. Thus, pollutants contained in the gaseous effluent are oxidised or converted into biomass by the action of microorganisms previously fixed on the packing material. The biofiltration process is then based on two principal phenomena: (1) transfer of contaminants from the air to the water phase or support medium, (2) bioconversion of pollutants to biomass, metabolic end-products, or carbon dioxide and water. The diversity of biofiltration mechanisms and their interaction with the microflora mean that the biofilter is defined as a complex and structured ecosystem. As a result, in addition to operating conditions, research into the microbial ecology of biofilters is required in order better to optimise the management of such biological treatment systems. PMID:15803311

  7. Ion Trap Mass Spectrometry

    SciTech Connect

    Eiden, Greg C.

    2005-09-01

    This chapter describes research conducted in a few research groups in the 1990s in which RF quadrupole ion trap mass spectrometers were coupled to a powerful atomic ion source, the inductively coupled plasma used in conventional ICP-MS instruments. Major section titles for this chapter are: RF Quadrupole Ion Traps Features of RF Quadrupole Ion Trap Mass Spectrometers Selective Ion Trapping methods Inductively Coupled Plasma Source Ion Trap Mass Spectrometers

  8. Subduction and volatile recycling in Earth's mantle

    NASA Technical Reports Server (NTRS)

    King, S. D.; Ita, J. J.; Staudigel, H.

    1994-01-01

    The subduction of water and other volatiles into the mantle from oceanic sediments and altered oceanic crust is the major source of volatile recycling in the mantle. Until now, the geotherms that have been used to estimate the amount of volatiles that are recycled at subduction zones have been produced using the hypothesis that the slab is rigid and undergoes no internal deformation. On the other hand, most fluid dynamical mantle flow calculations assume that the slab has no greater strength than the surrounding mantle. Both of these views are inconsistent with laboratory work on the deformation of mantle minerals at high pressures. We consider the effects of the strength of the slab using two-dimensional calculations of a slab-like thermal downwelling with an endothermic phase change. Because the rheology and composition of subducting slabs are uncertain, we consider a range of Clapeyron slopes which bound current laboratory estimates of the spinel to perovskite plus magnesiowustite phase transition and simple temperature-dependent rheologies based on an Arrhenius law diffusion mechanism. In uniform viscosity convection models, subducted material piles up above the phase change until the pile becomes gravitationally unstable and sinks into the lower mantle (the avalanche). Strong slabs moderate the 'catastrophic' effects of the instabilities seen in many constant-viscosity convection calculations; however, even in the strongest slabs we consider, there is some retardation of the slab descent due to the presence of the phase change.

  9. Detection of signature volatiles for cariogenic microorganisms.

    PubMed

    Hertel, M; Preissner, R; Gillissen, B; Schmidt-Westhausen, A M; Paris, S; Preissner, S

    2016-02-01

    The development of a breath test by the identification of volatile organic compounds (VOCs) emitted by cariogenic bacteria is a promising approach for caries risk assessment and early caries detection. The aim of the present study was to investigate the volatile profiles of three major cariogenic bacteria and to assess whether the obtained signatures were species-specific. Therefore, the headspaces above cultures of Streptococcus mutans, Lactobacillus salivarius and Propionibacterium acidifaciens were analysed after 24 and 48 h of cultivation using gas chromatography and mass spectrometry. A volatile database was queried for the obtained VOC profiles. Sixty-four compounds were detected within the analysed culture headspaces and were absent (36) or at least only present in minor amounts (28) in the control headspace. For S. mutans 18, for L. salivarius three and for P. acidifaciens five compounds were found to be unique signature VOCs. Database matching revealed that the identified signatures of all bacteria were unique. Furthermore, 13 of the 64 detected substances have not been previously reported to be emitted by bacteria or fungi. Specific VOC signatures were found in all the investigated bacteria cultures. The obtained results encourage further research to investigate the transferability to in vivo conditions towards the development of a breath test. PMID:26610336

  10. Volatile phytochemicals as mosquito semiochemicals

    PubMed Central

    Nyasembe, Vincent O.; Torto, Baldwyn

    2014-01-01

    Plant biochemical processes result in the release of an array of volatile chemical substances into the environment, some of which are known to play important plant fitness enhancing functions, such as attracting pollinators, thermal tolerance of photosynthesis, and defense against herbivores. Cunningly, phytophagous insects have evolved mechanisms to utilize these volatiles to their own advantage, either to colonize a suitable host for feeding, reproduction and oviposition or avoid an unsuitable one. The volatile compounds involved in plant–insect chemical interactions have been widely exploited in the management of agricultural pests. On the other hand, use of plant volatiles in the management of medically important insects is limited, mainly due to paucity of information on their role in disease vector–plant interactions. To date, a total of 29 plant volatile compounds from various chemical classes, including phenols, aldehydes, alcohols, ketones and terpenes, have been identified as mosquito semiochemicals. In this review, we present highlights of mosquito–plant interactions, the available evidence of nectar feeding, with particular emphasis on sources of plant attractants, methods of plant volatile collection and the candidate plant volatile compounds that attract mosquitoes to nectar sources. We also highlight the potential application of these phytochemical attractants in integrated mosquito management. PMID:25383131