Science.gov

Sample records for major oxidant sensor

  1. TRPA1 is a major oxidant sensor in murine airway sensory neurons

    PubMed Central

    Bessac, Bret F.; Sivula, Michael; von Hehn, Christian A.; Escalera, Jasmine; Cohn, Lauren; Jordt, Sven-Eric

    2008-01-01

    Sensory neurons in the airways are finely tuned to respond to reactive chemicals threatening airway function and integrity. Nasal trigeminal nerve endings are particularly sensitive to oxidants formed in polluted air and during oxidative stress as well as to chlorine, which is frequently released in industrial and domestic accidents. Oxidant activation of airway neurons induces respiratory depression, nasal obstruction, sneezing, cough, and pain. While normally protective, chemosensory airway reflexes can provoke severe complications in patients affected by inflammatory airway conditions like rhinitis and asthma. Here, we showed that both hypochlorite, the oxidizing mediator of chlorine, and hydrogen peroxide, a reactive oxygen species, activated Ca2+ influx and membrane currents in an oxidant-sensitive subpopulation of chemosensory neurons. These responses were absent in neurons from mice lacking TRPA1, an ion channel of the transient receptor potential (TRP) gene family. TRPA1 channels were strongly activated by hypochlorite and hydrogen peroxide in primary sensory neurons and heterologous cells. In tests of respiratory function, Trpa1–/– mice displayed profound deficiencies in hypochlorite- and hydrogen peroxide–induced respiratory depression as well as decreased oxidant-induced pain behavior. Our results indicate that TRPA1 is an oxidant sensor in sensory neurons, initiating neuronal excitation and subsequent physiological responses in vitro and in vivo. PMID:18398506

  2. TRPA1 is a major oxidant sensor in murine airway sensory neurons.

    PubMed

    Bessac, Bret F; Sivula, Michael; von Hehn, Christian A; Escalera, Jasmine; Cohn, Lauren; Jordt, Sven-Eric

    2008-05-01

    Sensory neurons in the airways are finely tuned to respond to reactive chemicals threatening airway function and integrity. Nasal trigeminal nerve endings are particularly sensitive to oxidants formed in polluted air and during oxidative stress as well as to chlorine, which is frequently released in industrial and domestic accidents. Oxidant activation of airway neurons induces respiratory depression, nasal obstruction, sneezing, cough, and pain. While normally protective, chemosensory airway reflexes can provoke severe complications in patients affected by inflammatory airway conditions like rhinitis and asthma. Here, we showed that both hypochlorite, the oxidizing mediator of chlorine, and hydrogen peroxide, a reactive oxygen species, activated Ca(2+) influx and membrane currents in an oxidant-sensitive subpopulation of chemosensory neurons. These responses were absent in neurons from mice lacking TRPA1, an ion channel of the transient receptor potential (TRP) gene family. TRPA1 channels were strongly activated by hypochlorite and hydrogen peroxide in primary sensory neurons and heterologous cells. In tests of respiratory function, Trpa1(-/-) mice displayed profound deficiencies in hypochlorite- and hydrogen peroxide-induced respiratory depression as well as decreased oxidant-induced pain behavior. Our results indicate that TRPA1 is an oxidant sensor in sensory neurons, initiating neuronal excitation and subsequent physiological responses in vitro and in vivo. PMID:18398506

  3. Oxidative Stress and Major Depression

    PubMed Central

    Verma, Akhilesh Kumar; Srivastava, Mona; Srivastava, Ragini

    2014-01-01

    Background: Major causative factor for major depression is inflammation, autoimmune tissue damage and prolonged psychological stress, which leads to oxidative stress. The aim of this study was to know the association of free radicals and antioxidant status in subjects suffering from major depression. Materials and Methods: Sixty patients diagnosed as a case of unipolar depression as per DSM IV, fulfilling the inclusion and exclusion criteria were compared with 40 healthy age and sex matched controls. The sera of both the groups were collected taking aseptic precautions and were evaluated for the markers of oxidative stress and for the antioxidants. The age group of the sample and the controls was between 18-60 y, both males and females were equally represented in the groups. Results: A significantly high level of malondialdehyde (MDA) was found in the patients with major depression (1.95 ± 1.04 mmol/L) as compared to healthy controls (0.366 ± 0.175 mmol/L) (p < 0.0001). The serum level of nitrite was found to be lower in cases (23.18 ± 12.08 μmol/L) in comparison to controls (26.18 ± 8.68 μmol/L) (p = 0.1789). Similarly the serum level of ascorbic acid and superoxide dismutase (SOD) were significantly below as compared to healthy controls (all p < 0.0001). Ceruloplasmin levels were also depressed in cases (p = 0.3943). Conclusion: The study concluded that in the absence of known oxidative injury causative agents, the lowered levels of antioxidants and higher levels of MDA implicate the high degree of oxidative stress in unipolar depression. PMID:25653939

  4. Ultrafast graphene oxide humidity sensors.

    PubMed

    Borini, Stefano; White, Richard; Wei, Di; Astley, Michael; Haque, Samiul; Spigone, Elisabetta; Harris, Nadine; Kivioja, Jani; Ryhänen, Tapani

    2013-12-23

    Sensors allow an electronic device to become a gateway between the digital and physical worlds, and sensor materials with unprecedented performance can create new applications and new avenues for user interaction. Graphene oxide can be exploited in humidity and temperature sensors with a number of convenient features such as flexibility, transparency and suitability for large-scale manufacturing. Here we show that the two-dimensional nature of graphene oxide and its superpermeability to water combine to enable humidity sensors with unprecedented response speed (∼30 ms response and recovery times). This opens the door to various applications, such as touchless user interfaces, which we demonstrate with a 'whistling' recognition analysis. PMID:24206232

  5. Chemical Sensors Based on Metal Oxide Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  6. Reduced graphene oxide molecular sensors.

    PubMed

    Robinson, Jeremy T; Perkins, F Keith; Snow, Eric S; Wei, Zhongqing; Sheehan, Paul E

    2008-10-01

    We demonstrate reduced graphene oxide as the active material for high-performance molecular sensors. Sensors are fabricated from exfoliated graphene oxide platelets that are deposited to form an ultrathin continuous network. These graphene oxide networks are tunably reduced toward graphene by varying the exposure time to a hydrazine hydrate vapor. The conductance change of the networks upon exposure to trace levels of vapor is measured as a function of the chemical reduction. The level of reduction affects both the sensitivity and the level of 1/ f noise. The sensors are capable of detecting 10 s exposures to simulants of the three main classes of chemical-warfare agents and an explosive at parts-per-billion concentrations. PMID:18763832

  7. Indium oxide based fiber optic SPR sensor

    NASA Astrophysics Data System (ADS)

    Shukla, Sarika; Sharma, Navneet K.

    2016-05-01

    Surface plasmon resonance based fiber optic sensor using indium oxide layer is presented and theoretically studied. It has been found that with increase in thickness of indium oxide layer beyond 170 nm, the sensitivity of SPR sensor decreases. 170 nm thick indium oxide layer based SPR sensor holds maximum sensitivity.

  8. Sensor/ROIC Integration using Oxide Bonding

    SciTech Connect

    Ye, Zhenyu; /Fermilab

    2009-02-01

    We explore the Ziptronix Direct Bond Interconnect (DBI) technology [2] for the integration of sensors and readout integrated circuits (ROICs) for high energy physics. The technology utilizes an oxide bond to form a robust mechanical connection between layers which serves to assist with the formation of metallic interlayer connections. We report on testing results of sample sensors bonded to ROICs and thinned to 100 {micro}m.

  9. Biomaterial based sulphur di oxide gas sensor

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Sarkar, A.

    2013-06-01

    Biomaterials are getting importance in the present research field of sensors. In this present paper performance of biomaterial based gas sensor made of gum Arabica and garlic extract had been studied. Extract of garlic clove with multiple medicinal and chemical utility can be proved to be useful in sensing Sulphur di Oxide gas. On exposure to Sulphur di Oxide gas the material under observation suffers some temporary structural change, which can be observed in form of amplified potentiometric change through simple electronic circuitry. Exploiting this very property a potentiometric gas sensor of faster response and recovery time can be designed. In this work sensing property of the said material has been studied through DC conductance, FTIR spectrum etc.

  10. All-Optical Graphene Oxide Humidity Sensors

    PubMed Central

    Lim, Weng Hong; Yap, Yuen Kiat; Chong, Wu Yi; Ahmad, Harith

    2014-01-01

    The optical characteristics of graphene oxide (GO) were explored to design and fabricate a GO-based optical humidity sensor. GO film was coated onto a SU8 polymer channel waveguide using the drop-casting technique. The proposed sensor shows a high TE-mode absorption at 1550 nm. Due to the dependence of the dielectric properties of the GO film on water content, this high TE-mode absorption decreases when the ambient relative humidity increases. The proposed sensor shows a rapid response (<1 s) to periodically interrupted humid air flow. The transmission of the proposed sensor shows a linear response of 0.553 dB/% RH in the range of 60% to 100% RH. PMID:25526358

  11. Sensor materials for an intravascular fiber optic nitric oxide sensor

    NASA Astrophysics Data System (ADS)

    Soller, Babs R.; Parikh, Bhairavi R.; Stahl, Russell F.

    1996-04-01

    Nitric oxide (NO) is an important regulatory molecule in physiological processes including neurotransmission and the control of blood pressure. It is produced in excess during septic shock, the profound hypotensive state which accompanies severe infections. In-vivo measurement of NO would enhance the understanding of its varied biological roles. Our goal is the development of an intravascular fiber-optic sensor for the continuous measurement of NO. This study evaluated nitric oxide sensitive compounds as potential sensing materials in the presence and absence of oxygen. Using absorption spectroscopy we studied both the Fe II and Fe III forms of three biologically active hemes known to rapidly react with NO: hemoglobin, myoglobin, and cytochrome-c. The Fe II forms of hemoglobin and myoglobin and the Fe III form of cytochrome-c were found to have the highest sensitivity to NO. Cytochrome c (Fe III) is selective for NO even at high oxygen levels, while myoglobin is selective only under normal oxygen levels. NO concentrations as low as 1 (mu) M can be detected with our fiber-optic spectrometer using cytochrome c, and as low as 300 nM using myoglobin. Either of these materials would be adequate to monitor the increase in nitric oxide production during the onset of septic shock.

  12. Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors.

    PubMed

    Moon, Hi Gyu; Shim, Young-Soek; Kim, Do Hong; Jeong, Hu Young; Jeong, Myoungho; Jung, Joo Young; Han, Seung Min; Kim, Jong Kyu; Kim, Jin-Sang; Park, Hyung-Ho; Lee, Jong-Heun; Tuller, Harry L; Yoon, Seok-Jin; Jang, Ho Won

    2012-01-01

    One of the top design priorities for semiconductor chemical sensors is developing simple, low-cost, sensitive and reliable sensors to be built in handheld devices. However, the need to implement heating elements in sensor devices, and the resulting high power consumption, remains a major obstacle for the realization of miniaturized and integrated chemoresistive thin film sensors based on metal oxides. Here we demonstrate structurally simple but extremely efficient all oxide chemoresistive sensors with ~90% transmittance at visible wavelengths. Highly effective self-activation in anisotropically self-assembled nanocolumnar tungsten oxide thin films on glass substrate with indium-tin oxide electrodes enables ultrahigh response to nitrogen dioxide and volatile organic compounds with detection limits down to parts per trillion levels and power consumption less than 0.2 microwatts. Beyond the sensing performance, high transparency at visible wavelengths creates opportunities for their use in transparent electronic circuitry and optoelectronic devices with avenues for further functional convergence. PMID:22905319

  13. Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors

    PubMed Central

    Moon, Hi Gyu; Shim, Young-Soek; Kim, Do Hong; Jeong, Hu Young; Jeong, Myoungho; Jung, Joo Young; Han, Seung Min; Kim, Jong Kyu; Kim, Jin-Sang; Park, Hyung-Ho; Lee, Jong-Heun; Tuller, Harry L.; Yoon, Seok-Jin; Jang, Ho Won

    2012-01-01

    One of the top design priorities for semiconductor chemical sensors is developing simple, low-cost, sensitive and reliable sensors to be built in handheld devices. However, the need to implement heating elements in sensor devices, and the resulting high power consumption, remains a major obstacle for the realization of miniaturized and integrated chemoresistive thin film sensors based on metal oxides. Here we demonstrate structurally simple but extremely efficient all oxide chemoresistive sensors with ~90% transmittance at visible wavelengths. Highly effective self-activation in anisotropically self-assembled nanocolumnar tungsten oxide thin films on glass substrate with indium-tin oxide electrodes enables ultrahigh response to nitrogen dioxide and volatile organic compounds with detection limits down to parts per trillion levels and power consumption less than 0.2 microwatts. Beyond the sensing performance, high transparency at visible wavelengths creates opportunities for their use in transparent electronic circuitry and optoelectronic devices with avenues for further functional convergence. PMID:22905319

  14. Tin Oxide Microheater for Chemical Sensors

    NASA Astrophysics Data System (ADS)

    Gharesi, Mohsen; Ansari, Mohammad

    2016-03-01

    Tin oxide is the main material utilized for the fabrication of chemical sensing pellets which operate at elevated temperatures. The heating is commonly carried out with ruthenium dioxide resistors. Here, a tin oxide-based microheater is developed for microsensor applications. These microheaters are fabricated on 0.5 mm thick alumina substrates using spray pyrolysis technique. The optimum SnO2 heaters have a sheet resistivity in the 40-70 Ω/a range. Ohmic Ag/SnO2 contacts are formed by silver paste printing followed by an appropriate thermal annealing, which provide connections to the external circuitry. Durability tests are carried out on several samples; the long-term performance of the fabricated devices is satisfactory. The method allows the elimination of the expensive ruthenium dioxide from the structure of generic gas sensors.

  15. Zinc oxide thin film acoustic sensor

    SciTech Connect

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah; Mansour, Hazim Louis

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  16. Zinc oxide thin film acoustic sensor

    NASA Astrophysics Data System (ADS)

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Mansour, Hazim Louis; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah

    2013-12-01

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  17. Porous Nickel Oxide Film Sensor for Formaldehyde

    NASA Astrophysics Data System (ADS)

    Cindemir, U.; Topalian, Z.; Österlund, L.; Granqvist, C. G.; Niklasson, G. A.

    2014-11-01

    Formaldehyde is a volatile organic compound and a harmful indoor pollutant contributing to the "sick building syndrome". We used advanced gas deposition to fabricate highly porous nickel oxide (NiO) thin films for formaldehyde sensing. The films were deposited on Al2O3 substrates with prefabricated comb-structured electrodes and a resistive heater at the opposite face. The morphology and structure of the films were investigated with scanning electron microscopy and X-ray diffraction. Porosity was determined by nitrogen adsorption isotherms with the Brunauer-Emmett-Teller method. Gas sensing measurements were performed to demonstrate the resistive response of the sensors with respect to different concentrations of formaldehyde at 150 °C.

  18. Characterizations of Three Major Cysteine Sensors of Keap1 in Stress Response

    PubMed Central

    Saito, Ryota; Hiramoto, Keiichiro; Asami, Soichiro; Naganuma, Eriko; Suda, Hiromi; Iso, Tatsuro; Yamamoto, Hirotaka; Morita, Masanobu; Baird, Liam; Furusawa, Yuki; Negishi, Takaaki; Ichinose, Masakazu

    2015-01-01

    The Keap1-Nrf2 system plays a central role in cytoprotection against electrophilic/oxidative stresses. Although Cys151, Cys273, and Cys288 of Keap1 are major sensor cysteine residues for detecting these stresses, it has not been technically feasible to evaluate the functionality of Cys273 or Cys288, since Keap1 mutants that harbor substitutions in these residues and maintain the ability to repress Nrf2 accumulation do not exist. To overcome this problem, we systematically introduced amino acid substitutions into Cys273/Cys288 and finally identified Cys273Trp and Cys288Glu mutations that do not affect Keap1's ability to repress Nrf2 accumulation. Utilizing these Keap1 mutants, we generated stable murine embryonic fibroblast (MEF) cell lines and knock-in mouse lines. Our analyses with the MEFs and peritoneal macrophages from the knock-in mice revealed that three major cysteine residues, Cys151, Cys273, and Cys288, individually and/or redundantly act as sensors. Based on the functional necessity of these three cysteine residues, we categorized chemical inducers of Nrf2 into four classes. Class I and II utilizes Cys151 and Cys288, respectively, while class III requires all three residues (Cys151/Cys273/Cys288), while class IV inducers function independently of all three of these cysteine residues. This study thus demonstrates that Keap1 utilizes multiple cysteine residues specifically and/or collaboratively as sensors for the detection of a wide range of environmental stresses. PMID:26527616

  19. Gallium Oxide Nanostructures for High Temperature Sensors

    SciTech Connect

    Chintalapalle, Ramana V.

    2015-04-30

    Gallium oxide (Ga2O3) thin films were produced by sputter deposition by varying the substrate temperature (Ts) in a wide range (Ts=25-800 °C). The structural characteristics and electronic properties of Ga2O3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga2O3 films. XRD and SEM analyses indicate that the Ga2O3 films grown at lower temperatures were amorphous while those grown at Ts≥500 oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga2O3 films at Ts=300-800 °C. The electronic structure determination indicated that the nanocrystalline Ga2O3films exhibit a band gap of ~5 eV. Tungsten (W) incorporated Ga2O3 films were produced by co-sputter deposition. W-concentration was varied by the applied sputtering-power. No secondary phase formation was observed in W-incorporated Ga2O3 films. W-induced effects were significant on the structure and electronic properties of Ga2O3 films. The band gap of Ga2O3 films without W-incorporation was ~5 eV. Oxygen sensor characteristics evaluated using optical and electrical methods indicate a faster response in W-doped Ga2O3 films compared to intrinsic Ga2O3 films. The results demonstrate the applicability of both intrinsic and W-doped Ga-oxide films for oxygen sensor application at temperatures ≥700 °C.

  20. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors

    PubMed Central

    Wang, Chengxiang; Yin, Longwei; Zhang, Luyuan; Xiang, Dong; Gao, Rui

    2010-01-01

    Conductometric semiconducting metal oxide gas sensors have been widely used and investigated in the detection of gases. Investigations have indicated that the gas sensing process is strongly related to surface reactions, so one of the important parameters of gas sensors, the sensitivity of the metal oxide based materials, will change with the factors influencing the surface reactions, such as chemical components, surface-modification and microstructures of sensing layers, temperature and humidity. In this brief review, attention will be focused on changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors mentioned above. PMID:22294916

  1. Optimal Sensor Selection for Classifying a Set of Ginsengs Using Metal-Oxide Sensors.

    PubMed

    Miao, Jiacheng; Zhang, Tinglin; Wang, You; Li, Guang

    2015-01-01

    The sensor selection problem was investigated for the application of classification of a set of ginsengs using a metal-oxide sensor-based homemade electronic nose with linear discriminant analysis. Samples (315) were measured for nine kinds of ginsengs using 12 sensors. We investigated the classification performances of combinations of 12 sensors for the overall discrimination of combinations of nine ginsengs. The minimum numbers of sensors for discriminating each sample set to obtain an optimal classification performance were defined. The relation of the minimum numbers of sensors with number of samples in the sample set was revealed. The results showed that as the number of samples increased, the average minimum number of sensors increased, while the increment decreased gradually and the average optimal classification rate decreased gradually. Moreover, a new approach of sensor selection was proposed to estimate and compare the effective information capacity of each sensor. PMID:26151212

  2. Optimal Sensor Selection for Classifying a Set of Ginsengs Using Metal-Oxide Sensors

    PubMed Central

    Miao, Jiacheng; Zhang, Tinglin; Wang, You; Li, Guang

    2015-01-01

    The sensor selection problem was investigated for the application of classification of a set of ginsengs using a metal-oxide sensor-based homemade electronic nose with linear discriminant analysis. Samples (315) were measured for nine kinds of ginsengs using 12 sensors. We investigated the classification performances of combinations of 12 sensors for the overall discrimination of combinations of nine ginsengs. The minimum numbers of sensors for discriminating each sample set to obtain an optimal classification performance were defined. The relation of the minimum numbers of sensors with number of samples in the sample set was revealed. The results showed that as the number of samples increased, the average minimum number of sensors increased, while the increment decreased gradually and the average optimal classification rate decreased gradually. Moreover, a new approach of sensor selection was proposed to estimate and compare the effective information capacity of each sensor. PMID:26151212

  3. Identification of Major Planktonic Sulfur Oxidizers in Stratified Freshwater Lake

    PubMed Central

    Kojima, Hisaya; Watanabe, Tomohiro; Iwata, Tomoya; Fukui, Manabu

    2014-01-01

    Planktonic sulfur oxidizers are important constituents of ecosystems in stratified water bodies, and contribute to sulfide detoxification. In contrast to marine environments, taxonomic identities of major planktonic sulfur oxidizers in freshwater lakes still remain largely unknown. Bacterioplankton community structure was analyzed in a stratified freshwater lake, Lake Mizugaki in Japan. In the clone libraries of 16S rRNA gene, clones very closely related to a sulfur oxidizer isolated from this lake, Sulfuritalea hydrogenivorans, were detected in deep anoxic water, and occupied up to 12.5% in each library of different water depth. Assemblages of planktonic sulfur oxidizers were specifically analyzed by constructing clone libraries of genes involved in sulfur oxidation, aprA, dsrA, soxB and sqr. In the libraries, clones related to betaproteobacteria were detected with high frequencies, including the close relatives of Sulfuritalea hydrogenivorans. PMID:24695535

  4. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  5. Oxidized Lipoprotein as a Major Vessel Cell Proliferator in Oxidized Human Serum

    PubMed Central

    Noguchi, Noriko

    2016-01-01

    Oxidative stress is correlated with the incidence of several diseases such as atherosclerosis and cancer, and oxidized biomolecules have been determined as biomarkers of oxidative stress; however, the detailed molecular relationship between generated oxidation products and the promotion of diseases has not been fully elucidated. In the present study, to clarify the role of serum oxidation products in vessel cell proliferation, which is related to the incidence of atherosclerosis and cancer, the major vessel cell proliferator in oxidized human serum was investigated. Oxidized human serum was prepared by free radical exposure, separated using gel chromatography, and then each fraction was added to several kinds of vessel cells including endothelial cells and smooth muscle cells. It was found that a high molecular weight fraction in oxidized human serum specifically induced vessel cell proliferation. Oxidized lipids were contained in this high molecular weight fraction, while cell proliferation activity was not observed in oxidized lipoprotein-deficient serum. Oxidized low-density lipoproteins induced vessel cell proliferation in a concentration-dependent manner. Taken together, these results indicate that oxidized lipoproteins containing lipid oxidation products function as a major vessel cell proliferator in oxidized human serum. These findings strongly indicate the relevance of determination of oxidized lipoproteins and lipid oxidation products in the diagnosis of vessel cell proliferation-related diseases such as atherosclerosis and cancer. PMID:27483438

  6. Application of a Nitric Oxide Sensor in Biomedicine

    PubMed Central

    Saldanha, Carlota; Lopes de Almeida, José Pedro; Silva-Herdade, Ana Santos

    2014-01-01

    In the present study, we describe the biochemical properties and effects of nitric oxide (NO) in intact and dysfunctional arterial and venous endothelium. Application of the NO electrochemical sensor in vivo and in vitro in erythrocytes of healthy subjects and patients with vascular disease are reviewed. The electrochemical NO sensor device applied to human umbilical venous endothelial cells (HUVECs) and the description of others NO types of sensors are also mentioned. PMID:25587407

  7. Development of metal oxide impregnated stilbite thick film ethanol sensor

    NASA Astrophysics Data System (ADS)

    Mahabole, M. P.; Lakhane, M. A.; Choudhari, A. L.; Khairnar, R. S.

    2016-05-01

    This paper presents the study of the sensing efficiency of Titanium oxide/ Stilbite and Copper oxide /Stilbite composites towards detection of hazardous pollutants like ethanol. Stilbite based composites are prepared by physically mixing zeolite with metal oxides namely TiO2 and CuO with weight ratios of 25:75, 50:50 and 75:25. The resulting sensor materials are characterized by X-ray diffraction and Fourier Transform Infrared Spectroscopy techniques. Composite sensors are fabricated in the form of thick film by using screen printing technique. The effect of metal oxide concentration on various ethanol sensing parameters such as operating temperature, maximum uptake capacity and response/recovery time are investigated. The results indicate that metal oxide impregnated stilbite composites have great potential as low temperature ethanol sensor.

  8. Tutorial Review: Electrochemical Nitric Oxide Sensors for Physiological Measurements

    PubMed Central

    Privett, Benjamin J.; Shin, Jae Ho; Schoenfisch, Mark H.

    2013-01-01

    Summary The important biological roles of nitric oxide (NO) have prompted the development of analytical techniques capable of sensitive and selective detection of NO. Electrochemical sensing, more than any other NO-detection method, embodies the parameters necessary for quantifying NO in challenging physiological environments such as blood and the brain. Herein, we provide a broad overview of the field of electrochemical NO sensors, including design, fabrication, and analytical performance characteristics. Both electrochemical sensors and biological applications are detailed. PMID:20502795

  9. Novel Nanostructured Zinc Oxide Ammonia Gas Sensor

    NASA Astrophysics Data System (ADS)

    Kumari, Surbhi; Sahare, P. D.; Gupta, Meenakshi; Kapoor, J. C.

    2011-12-01

    In the present study, we report a novel and easy technique to synthesize a ZnO nanostructured porous network using activated carbon (AC) that is used as a sensor material for an interacting gas at room temperature. The formation of the material was confirmed by XRD and HRTEM image. The porous nature of the synthesized ZnO could be used to incorporate a laser dyes into it which makes it more fluorescent material. Broad absorption/excitation band(s) in laser dye (Stilbene) helps to get it excited over a range and broad fluorescent emission that enhances the sensitivity on integration. The changes in the intensities of the absorption/emission spectra of sensitized ZnO on interaction with gas molecules could be used to fabricate a gas sensor working at room temperature.

  10. Acetone sensor based on zinc oxide hexagonal tubes

    SciTech Connect

    Hastir, Anita Singh, Onkar Anand, Kanika Singh, Ravi Chand

    2014-04-24

    In this work hexagonal tubes of zinc oxide have been synthesized by co-precipitation method. For structural, morphological, elemental and optical analysis synthesized powders were characterized by using x-ray diffraction, field emission scanning microscope, EDX, UV-visible and FTIR techniques. For acetone sensing thick films of zinc oxide have been deposited on alumina substrate. The fabricated sensors exhibited maximum sensing response towards acetone vapour at an optimum operating temperature of 400°C.

  11. Nitrogen oxide -- Sensors and systems for engine management

    SciTech Connect

    Hiller, J.M.; Bryan, W.L.; Miller, C.E.

    1997-06-24

    The goal of this Cooperative Research and Development (CRADA) effort is to further develop sensors and sensor systems in order to meet current and anticipated air emissions requirements due to the operation of Defense Program facilities and the emission standards imposed on new vehicles operating in this country. Specific objectives of this work are to be able to measure and control on-line and in real-time, emissions, engine operation, air-to-fuel intake ratios, and throttle/accelerator positions in future models of consumer automobiles. Sensor and application specific integrated circuit developments within Lockheed Martin Energy Systems are applicable to the monitoring and engine controls needed by General Motors. In the case of emissions sensors, base technology in thick/thin film sensors and optical systems will be further developed to address the combination of high temperature and accumulated deposits expected in the exhaust stream. Other technologies will also be explored to measure fuel-to-air ratios and technologies such as fiber optic and acoustic wave devices that are applicable to the combustion sensing on an individual base. Two non-contact rotary position sensors have been developed for use in control-by-wire throttle control applications. The two CRADA developed sensors consist of a non-contact, differential capacitance position transducer and a custom complementary metal oxide semiconductor (C-MOS) application specific integrated circuit (ASIC) suitable for use in both passenger and engine compartments.

  12. The Application of Metal Oxide Nanomaterials for Chemical Sensor Development

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.

    2007-01-01

    NASA Glenn Research Center (GRC) has been developing miniature chemical sensors for a variety of applications including fire detection, emissions monitoring, fuel leak detection, and environmental monitoring. Smart Lick and Stick sensor technology which integrates a sensor array, electronics, telemetry, and power into one microsystem are being developed. These microsystems require low power consumption for long-term aerospace applications. One approach to decreasing power consumption is the use of nanotechnology. Nanocrystalline tin oxide (SnO2) carbon monoxide (CO) sensors developed previously by this group have been successfully used for fire detection and emissions monitoring. This presentation will briefly review the overall NASA GRC chemical sensor program and discuss our further effort in nanotechnology applications. New carbon dioxide (CO2) sensing material using doped nanocrystalline SnO2 will be discussed. Nanocrystalline SnO2 coated solid electrolyte CO2 sensors and SnO2 nanorod and nanofiber hydrogen (H2) sensors operated at reduced or room temperatures will also be discussed.

  13. Cysteine redox sensor in PKGIa enables oxidant-induced activation.

    PubMed

    Burgoyne, Joseph R; Madhani, Melanie; Cuello, Friederike; Charles, Rebecca L; Brennan, Jonathan P; Schröder, Ewald; Browning, Darren D; Eaton, Philip

    2007-09-01

    Changes in the concentration of oxidants in cells can regulate biochemical signaling mechanisms that control cell function. We have found that guanosine 3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) functions directly as a redox sensor. The Ialpha isoform, PKGIalpha, formed an interprotein disulfide linking its two subunits in cells exposed to exogenous hydrogen peroxide. This oxidation directly activated the kinase in vitro, and in rat cells and tissues. The affinity of the kinase for substrates it phosphorylates was enhanced by disulfide formation. This oxidation-induced activation represents an alternate mechanism for regulation along with the classical activation involving nitric oxide and cGMP. This mechanism underlies cGMP-independent vasorelaxation in response to oxidants in the cardiovascular system and provides a molecular explantion for how hydrogen peroxide can operate as an endothelium-derived hyperpolarizing factor. PMID:17717153

  14. Highly sensitive nonenzymatic glucose sensor based on electrospun copper oxide-doped nickel oxide composite microfibers.

    PubMed

    Cao, Fei; Guo, Shu; Ma, Huiyan; Yang, Guocheng; Yang, Shengxue; Gong, Jian

    2011-10-30

    An improved nonenzymatic glucose sensor based on copper oxide-doped nickel oxide composite microfibers (CuO-NiO-MFs) modified fluorine tin oxide (FTO) electrode was prepared by electrospinning and calcination technologies without using any immobilization. The results of cyclic voltammetry (CV) and chronoamperometry demonstrated that the CuO-NiO-MFs modified electrode displayed much higher electrocatalytic activity than the nickel oxide microfibers (NiO-MFs) modified electrode toward glucose. The nonenzymatic glucose sensor based on CuO-NiO-MFs showed the highest sensitivity of 3165.53 μA mM(-1)cm(-2) with the lowest detection limit of 1 × 10(-9)M (signal/noise ratio (S/N)=3) in the nonenzymatic glucose sensors that have been reported in the literature. Additionally, its application for detecting glucose concentration of human serum sample showed good agreement with the results obtained from automatic biochemical analyzer. PMID:22063533

  15. Zinc oxide nanowires on carbon microfiber as flexible gas sensor

    NASA Astrophysics Data System (ADS)

    Tonezzer, M.; Lacerda, R. G.

    2012-03-01

    In the past years, zinc oxide nanowires (ZnO NWs) have been proven to be an excellent material for gas sensors. In this work, we used ZnO nanowires in a novel architecture integrated on a carbon microfiber (μC) textile. This innovative design permits us to obtain mechanical flexibility, while the absence of any lithographic technique allows a large-area and low-cost fabrication of gas sensors. The performances of the devices are investigated for both oxidizing and reducing gases. The nano-on-micro structure of the sensor provides a high surface-to-volume ratio, leading to a fast and intense response for both oxygen (O2) and hydrogen (H2) gases. The sensor response has an optimum temperature condition at 280 °C with a response value of 10 for oxygen and 11 for hydrogen. The limit of detection (LoD) has been found to be 2 and 4 ppm for oxygen and hydrogen, respectively. Additionally, the sensor response and recovery time is small being less than 10 s for both O2 and H2.

  16. Effect of Electrode Configuration on Nitric Oxide Gas Sensor Behavior.

    PubMed

    Cui, Ling; Murray, Erica P

    2015-01-01

    The influence of electrode configuration on the impedancemetric response of nitric oxide (NO) gas sensors was investigated for solid electrochemical cells [Au/yttria-stabilized zirconia (YSZ)/Au)]. Fabrication of the sensors was carried out at 1050 °C in order to establish a porous YSZ electrolyte that enabled gas diffusion. Two electrode configurations were studied where Au wire electrodes were either embedded within or wrapped around the YSZ electrolyte. The electrical response of the sensors was collected via impedance spectroscopy under various operating conditions where gas concentrations ranged from 0 to 100 ppm NO and 1%-18% O₂ at temperatures varying from 600 to 700 °C. Gas diffusion appeared to be a rate-limiting mechanism in sensors where the electrode configuration resulted in longer diffusion pathways. The temperature dependence of the NO sensors studied was independent of the electrode configuration. Analysis of the impedance data, along with equivalent circuit modeling indicated the electrode configuration of the sensor effected gas and ionic transport pathways, capacitance behavior, and NO sensitivity. PMID:26404312

  17. Electrospray-printed nanostructured graphene oxide gas sensors.

    PubMed

    Taylor, Anthony P; Velásquez-García, Luis F

    2015-12-18

    We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors' response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ∼5 × 10(-4) T) at ∼1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems. PMID:26579701

  18. Effect of Electrode Configuration on Nitric Oxide Gas Sensor Behavior

    PubMed Central

    Cui, Ling; Murray, Erica P.

    2015-01-01

    The influence of electrode configuration on the impedancemetric response of nitric oxide (NO) gas sensors was investigated for solid electrochemical cells [Au/yttria-stabilized zirconia (YSZ)/Au)]. Fabrication of the sensors was carried out at 1050 °C in order to establish a porous YSZ electrolyte that enabled gas diffusion. Two electrode configurations were studied where Au wire electrodes were either embedded within or wrapped around the YSZ electrolyte. The electrical response of the sensors was collected via impedance spectroscopy under various operating conditions where gas concentrations ranged from 0 to 100 ppm NO and 1%–18% O2 at temperatures varying from 600 to 700 °C. Gas diffusion appeared to be a rate-limiting mechanism in sensors where the electrode configuration resulted in longer diffusion pathways. The temperature dependence of the NO sensors studied was independent of the electrode configuration. Analysis of the impedance data, along with equivalent circuit modeling indicated the electrode configuration of the sensor effected gas and ionic transport pathways, capacitance behavior, and NO sensitivity. PMID:26404312

  19. Fabrication and characterization of metal oxide nanowire sensors.

    PubMed

    Shen, Guozhen

    2008-01-01

    Trace detection of chemicals and biological species like industrial gases, proteins, drug molecules, and chemical warfare agents, is an important issue to human health and safety. Central to this issue is the development of high sensitivity, high selectivity, high stability and rapid detection chemical and bio-sensors. With special geometry and chemical and physical properties, one-dimensional (1-D) metal oxide nanostructures have become the promising candidates for chemical and biosensing applications in recent years. Here, we intend to provide an overview on this interesting and important field. In the first part, the patents for rational synthesis of 1-D metal oxide nanostructures on a large scale will be introduced. The patents on chemical and biosensors built on 1-D metal oxide nanostructures are then introduced in the second part. Finally, we provide a review of the recent development of electronic nose systems using 1-D metal oxide nanostructures, which show great potential for the improvement of sensing abilities. PMID:19076050

  20. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    PubMed Central

    Gu, Haoshuang; Wang, Zhao; Hu, Yongming

    2012-01-01

    Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO) nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D) nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors. PMID:22778599

  1. High angular sensitivity thin film tin oxide sensor

    NASA Astrophysics Data System (ADS)

    Kaur, Davinder; Madaan, Divya; Sharma, V. K.; Kapoor, A.

    2016-05-01

    We present theoretical anlaysis of a thin film SnO2 (Tin Oxide) sensor for the measurement of variation in the refractive index of the bulk media. It is based on lossy mode resonance between the absorbing thin film lossy modes and the evanescent wave. Also the addition of low index dielectric matching layer between the prism and the lossy waveguiding layer future increase the angular sensitivity and produce an efficient refractive index sensor. The angular interrogation is done and obtained sensitivity is 110 degree/RIU. Theoretical analysis of the proposed sensor based on Fresnel reflection coefficients is presented. This enhanced sensitivity will further improve the monitoring of biomolecular interactions and the higher sensitivity of the proposed configurations makes it to be a much better option to be employed for biosensing applications.

  2. Nanostructured Tungsten Oxide Composite for High-Performance Gas Sensors.

    PubMed

    Chen, Siyuan Feng; Aldalbahi, Ali; Feng, Peter Xianping

    2015-01-01

    We report the results of composite tungsten oxide nanowires-based gas sensors. The morphologic surface, crystallographic structures, and chemical compositions of the obtained nanowires have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman scattering, respectively. The experimental measurements reveal that each wire consists of crystalline nanoparticles with an average diameter of less than 250 nm. By using the synthesized nanowires, highly sensitive prototypic gas sensors have been designed and fabricated. The dependence of the sensitivity of tungsten oxide nanowires to the methane and hydrogen gases as a function of time has been obtained. Various sensing parameters such as sensitivity, response time, stability, and repeatability were investigated in order to reveal the sensing ability. PMID:26512670

  3. Nanostructured Tungsten Oxide Composite for High-Performance Gas Sensors

    PubMed Central

    Feng-Chen, Siyuan; Aldalbahi, Ali; Feng, Peter Xianping

    2015-01-01

    We report the results of composite tungsten oxide nanowires-based gas sensors. The morphologic surface, crystallographic structures, and chemical compositions of the obtained nanowires have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman scattering, respectively. The experimental measurements reveal that each wire consists of crystalline nanoparticles with an average diameter of less than 250 nm. By using the synthesized nanowires, highly sensitive prototypic gas sensors have been designed and fabricated. The dependence of the sensitivity of tungsten oxide nanowires to the methane and hydrogen gases as a function of time has been obtained. Various sensing parameters such as sensitivity, response time, stability, and repeatability were investigated in order to reveal the sensing ability. PMID:26512670

  4. An Electrochemical Glucose Sensor Based on Zinc Oxide Nanorods.

    PubMed

    Marie, Mohammed; Mandal, Sanghamitra; Manasreh, Omar

    2015-01-01

    A glucose electrochemical sensor based on zinc oxide (ZnO) nanorods was investigated. The hydrothermal sol-gel growth method was utilized to grow ZnO nanorods on indium tin oxide-coated glass substrates. The total active area of the working electrode was 0.3 × 0.3 cm2 where titanium metal was deposited to enhance the contact. Well aligned hexagonal structured ZnO nanorods with a diameter from 68 to 116 nm were obtained. The excitonic peak obtained from the absorbance spectroscopy was observed at ~370 nm. The dominant peak of Raman spectroscopy measurement was at 440 cm(-1), matching with the lattice vibration of ZnO. The uniform distribution of the GOx and Nafion membrane that has been done using spin coating technique at 4000 rotations per minute helps in enhancing the ion exchange and increasing the sensitivity of the fabricated electrochemical sensor. The amperometric response of the fabricated electrochemical sensor was 3 s. The obtained sensitivity of the fabricated ZnO electrochemical sensor was 10.911 mA/mM·cm2 and the lower limit of detection was 0.22 µM. PMID:26263988

  5. Miniaturized metal oxide pH sensors for bacteria detection.

    PubMed

    Uria, Naroa; Abramova, Natalia; Bratov, Andrey; Muñoz-Pascual, Francesc-Xavier; Baldrich, Eva

    2016-01-15

    It is well known that the metabolic activity of some microorganisms results in changes of pH of the culture medium, a phenomenon that can be used for detection and quantification of bacteria. However, conventional glass electrodes that are commonly used for pH measurements are bulky, fragile and expensive, which hinders their application in miniaturized systems and encouraged to the search for alternatives. In this work, two types of metal oxide pH sensors have been tested to detect the metabolic activity of the bacterium Escherichia coli (E. coli). These pH sensors were produced on silicon chips with platinum metal contacts, onto which thin layers of IrOx or Ta2O5 were incorporated by two different methods (electrodeposition and e-beam sputtering, respectively). In order to facilitate measurement in small sample volumes, an Ag/AgCl pseudo-reference was also screen-printed in the chip and was assayed in parallel to an external Ag/AgCl reference electrode. As it is shown, the developed sensors generated results indistinguishable from those provided by a conventional glass pH-electrode but could be operated in significantly smaller sample volumes. After optimization of the detection conditions, the metal oxide sensors are successfully applied for detection of increasing concentrations of viable E. coli, with detection of less than 10(3)cfu mL(-1) in undiluted culture medium in just 5h. PMID:26592620

  6. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring

    PubMed Central

    Fine, George F.; Cavanagh, Leon M.; Afonja, Ayo; Binions, Russell

    2010-01-01

    Metal oxide semiconductor gas sensors are utilised in a variety of different roles and industries. They are relatively inexpensive compared to other sensing technologies, robust, lightweight, long lasting and benefit from high material sensitivity and quick response times. They have been used extensively to measure and monitor trace amounts of environmentally important gases such as carbon monoxide and nitrogen dioxide. In this review the nature of the gas response and how it is fundamentally linked to surface structure is explored. Synthetic routes to metal oxide semiconductor gas sensors are also discussed and related to their affect on surface structure. An overview of important contributions and recent advances are discussed for the use of metal oxide semiconductor sensors for the detection of a variety of gases—CO, NOx, NH3 and the particularly challenging case of CO2. Finally a description of recent advances in work completed at University College London is presented including the use of selective zeolites layers, new perovskite type materials and an innovative chemical vapour deposition approach to film deposition. PMID:22219672

  7. Electrospray-printed nanostructured graphene oxide gas sensors

    NASA Astrophysics Data System (ADS)

    Taylor, Anthony P.; Velásquez-García, Luis F.

    2015-12-01

    We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors’ response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ˜5 × 10-4 T) at ˜1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems.

  8. Possible role of adrenomedullin and nitric oxide in major depression.

    PubMed

    Akpinar, Abdullah; Yaman, Gozde Bacik; Demirdas, Arif; Onal, Suleyman

    2013-10-01

    Adrenomedullin (ADM) and nitric oxide (NO) have been implicated in the pathogenesis of certain psychiatric disorders such as schizophrenia and bipolar disorder. ADM induces vasorelaxation by activating adenylate cyclase and stimulating the release of NO. These two molecules are known to influence cerebral activity. In this study, we aimed to examine the serum levels of ADM and NO in patients with major depression (MD). We enrolled 50 patients with MD and 50 healthy control subjects. The diagnosis of MD was established on the basis of a structured clinical interview using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). The severity of depressive symptoms was evaluated using Hamilton's 17-item Depression Rating Scale. The mean serum levels of ADM and NO in patients with MD were significantly higher than those in healthy subjects (p=0.001, for both). The severity of psychomotor retardation in patients with MD was significantly correlated with the ADM (r=0.37, p=0.007) and NO levels (r=0.29, p=0.038). The patients with obvious psychomotor retardation had significantly higher levels of ADM and NO than did the patients with no psychomotor retardation (p=0.025, p=0.030). A significantly positive correlation was found between ADM and NO levels in patients with MD (r=0.79, p=0.001). Serum levels of ADM and NO levels were not correlated with the severity or duration of depression or depressive symptoms (except psychomotor retardation). In conclusion, our study indicates that serum levels of ADM and NO are elevated in patients with MD and that increased serum levels of ADM and NO may be associated with psychomotor retardation. The ADM-NO system may serve as a new target in the treatment of patients with MD and psychomotor retardation. PMID:23867466

  9. New fabrication of zinc oxide nanostructure thin film gas sensors

    NASA Astrophysics Data System (ADS)

    Hendi, A. A.; Alorainy, R. H.

    2014-02-01

    The copper doped zinc oxide thin films have been prepared by sol-gel spin coating method. The structural and morphology properties of the Cu doped films were characterized by X-ray diffraction and atomic force microscope. XRD studies confirm the chemical structure of the ZnO films. The optical spectra method were used to determined optical constants and dispersion energy parameters of Cu doped Zno thin films. The optical band gap of undoped ZnO was found to be 3.16 eV. The Eg values of the films were changed with Cu doping. The refractive index dispersion of Cu doped ZnO films obeys the single oscillator model. The dispersion energy and oscillator energy values of the ZnO films were changed with Cu doping. The Cu doped ZnO nanofiber-based NH3 gas sensors were fabricated. The sensor response of the sensors was from 464.98 to 484.61 when the concentration of NH3 is changed 6600-13,300 ppm. The obtained results indicate that the response of the ZnO film based ammonia gas sensors can be controlled by copper content.

  10. Indium tin oxide for solid-state image sensors

    NASA Astrophysics Data System (ADS)

    Weijtens, Christianus Hermanus L.

    Solid State Image Sensors (SSIS) which convert light into an electrical signal are introduced and transparent conductive materials and their deposition methods are reviewed as a solution to imager problems. The development of basic tools to enable replacement of poly-Si by Indium Tin Oxide (ITO) in SSIS is addressed. The installation and optimization of deposition equipment, the development of deposition and process technology of ITO, and the implementation and application of ITO in an image sensor are studied. Deposition rate and homogeneity and morphology and parameters like gas composition, power, pressure and substrate temperature are considered. Scope is limited to a first generation frame transfer imager with only one ITO layer although some concepts of an all ITO imager are discussed. The sensor used is a redesign of the accordion imager. All requirements imposed on ITO were met and the usefulness of the developed technology was demonstrated by implementing ITO in an imager. The characteristics of a constructed frame-transfer image sensor in which half the gates in the light sensitive part were replaced by ITO gates are discussed.

  11. Mars Atmospheric Oxidant Sensor (MAOS): An In-Situ Heterogeneous Chemistry Analysis

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Quinn, R. C.; Grunthaner, F. J.; Hecht, M. H.; Buehler, M. G.; McKay, C. P.; Ricco, A. J.

    2002-01-01

    We describe a chemometric array sensor, the Mars Atmospheric Oxidant Sensor (MAOS) that is designed to measure the oxidation rate of thin films on the martian surface. MAOS will discriminate among leading hypotheses for oxidant production. Additional information is contained in the original extended abstract.

  12. Highly selective gas sensor arrays based on thermally reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Lipatov, Alexey; Varezhnikov, Alexey; Wilson, Peter; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander

    2013-05-01

    The electrical properties of reduced graphene oxide (rGO) have been previously shown to be very sensitive to surface adsorbates, thus making rGO a very promising platform for highly sensitive gas sensors. However, poor selectivity of rGO-based gas sensors remains a major problem for their practical use. In this paper, we address the selectivity problem by employing an array of rGO-based integrated sensors instead of focusing on the performance of a single sensing element. Each rGO-based device in such an array has a unique sensor response due to the irregular structure of rGO films at different levels of organization, ranging from nanoscale to macroscale. The resulting rGO-based gas sensing system could reliably recognize analytes of nearly the same chemical nature. In our experiments rGO-based sensor arrays demonstrated a high selectivity that was sufficient to discriminate between different alcohols, such as methanol, ethanol and isopropanol, at a 100% success rate. We also discuss a possible sensing mechanism that provides the basis for analyte differentiation.

  13. Batch fabrication of metal oxide sensors on micro-hotplates

    NASA Astrophysics Data System (ADS)

    Barborini, E.; Vinati, S.; Leccardi, M.; Repetto, P.; Bertolini, G.; Rorato, O.; Lorenzelli, L.; Decarli, M.; Guarnieri, V.; Ducati, C.; Milani, P.

    2008-05-01

    We report the parallel fabrication of miniaturized chemical sensors by the direct integration of nanostructured transition metal oxide films onto micro-hotplate platforms based on micromachined suspended membranes. This has been achieved by local deposition on a 10 × 10 membrane wafer of a supersonic cluster beam through a microfabricated auto-aligning silicon shadow mask. The sensing properties of the obtained devices were tested with respect to various gaseous species. For reducing and oxidizing species such as ethanol and NO2, very good performance in terms of linearity and sensitivity was observed. These results demonstrate the feasibility of the coupling of a bottom-up nanofabrication technique such as supersonic cluster beam deposition to a top-down microfabricated platform for a direct and parallel integration methodology of nanomaterials in MEMS.

  14. Reversibility of heme-nitric oxide reactions for use in an inhaled nitric oxide sensor

    NASA Astrophysics Data System (ADS)

    Parikh, Bhairavi R.; Soller, Babs R.; Rencus, Tal

    1997-06-01

    Nitric Oxide is a simple gaseous compound which serves as a regulatory molecule in a number of physiological processes. Due to its biological role as a potent local vasodilator,there has been widespread interest in the therapeutic use of gaseous nitric oxide a selective pulmonary vasodilator. Our goal is the development of a sensor for the direct and continuous measurement of inhaled nitric oxide concentrations. This study evaluated the reversibility of potential sensing compounds upon reaction with nitric oxide. Previously, absorption spectroscopy was used to study the sensitivity of the Fe II, Fe III and oxygenated forms of three biologically active hemes known to rapidly react with NO: hemoglobin, myoglobin, and cytochrome-c. This study focused on the photo-reversibility of the hem's reaction with nitric oxide. Hemoglobin, myoglobin and cytochrome-c in the Fe III state reversibly reacted with nitric oxide. Hemoglobin and myoglobin in the Fe II state non-reversibly reacted with nitric oxide to form an unstable product. Cytochrome-c (FeII) does not react with nitric oxide. The oxy forms of hemoglobin and myoglobin react with nitric oxide to form their respective met forms, unreversible via photolysis. For all reversible reactions, photolysis was gradual and complete within five minutes.

  15. Surface oxidation - A major sink for water on Mars

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.

    1976-01-01

    Surface oxidation irreversibly removes both oxygen and hydrogen from the Martian atmosphere at a rate of 10 million-100 billion per square centimeter per second. This rate corresponds to a net loss of 100 to 100,000 grams per square centimeter of H2O, if it is assumed that the loss rate is uniform over geologic time. Heretofore, exospheric escape was considered to be the principal irreversible sink for H2O, but the loss rate was estimated to be only 100 million per square centimeter per second. It is possible that surface oxidation may have had a minor effect on the supply of H2O in the regolith and polar caps.

  16. A 3D scaffold for ultra-sensitive reduced graphene oxide gas sensors.

    PubMed

    Yun, Yong Ju; Hong, Won G; Choi, Nak-Jin; Park, Hyung Ju; Moon, Seung Eon; Kim, Byung Hoon; Song, Ki-Bong; Jun, Yongseok; Lee, Hyung-Kun

    2014-06-21

    An ultra-sensitive gas sensor based on a reduced graphene oxide nanofiber mat was successfully fabricated using a combination of an electrospinning method and graphene oxide wrapping through an electrostatic self-assembly, followed by a low-temperature chemical reduction. The sensor showed excellent sensitivity to NO2 gas. PMID:24839129

  17. Gas sensing performance of nano zinc oxide sensors

    NASA Astrophysics Data System (ADS)

    Sharma, Shiva; Chauhan, Pratima

    2016-04-01

    We report nano Zinc Oxide (ZnO) synthesized by sol-gel method possessing the crystallite size which varies from 25.17 nm to 47.27 nm. The Scanning electron microscope (SEM) image confirms the uniform distribution of nanograins with high porosity. The Energy dispersion X-ray (EDAX) spectrum gives the atomic composition of Zn and O in ZnO powders and confirms the formation of nano ZnO particles. These factors reveals that Nano ZnO based gas sensors are highly sensitive to Ammonia gas (NH3) at room temperature, indicating the maximum response 86.8% at 800 ppm with fast response time and recovery time of 36 sec and 23 sec respectively.

  18. Development of calcium zirconate-based hydrogen sensors with oxide reference electrodes for molten aluminum

    NASA Astrophysics Data System (ADS)

    Krishnan, Vivek

    Hydrogen is a major cause of gas porosity in aluminum and is frequently removed from the melt prior to casting. The degassing process can be better controlled if the hydrogen content in the melt is known. Thus, gas sensors which can make continuous in situ measurements in molten aluminum are needed. Current online hydrogen sensing systems are complex designs which are prohibitively expensive. Solid electrolyte based potentiometric sensors have been developed as an attractive alternate. These sensors have traditionally used a gas phase as the reference electrode. The present design has a condensed-phase reference electrode to avoid the need for transport of the reference gas into and out of the melt. The use of an oxide rather than a hydride phase reference is expected to considerably lower device cost and improve shelf life and reliability. The sensor element consists of a solid electrolyte tube based on 10 mol% Indoped CaZrO3, which was synthesized using both solid oxide and oxalate co-precipitation techniques. Precursor oxalate powders prepared using polymeric surfactants (PEG) were characterized using SEM, XRD, FTIR and particle size analysis. PEG was found to reduce particle size and also influence the process of perovskite formation. The oxalate co-precipitation technique enabled powder synthesis at reduced processing time and temperature. Closed-one-end tubes were slip cast and densified for use as solid electrolytes. Impedance spectroscopy and D.C. resistance measurements were made at temperatures between 650 and 900°C. Undoped CaZrO3 was found to be a p-type conductor in air. Indoped CaZrO3 acted as a proton conductor in air and argon+H2O, whereas the material was found to be a p-type conductor in pure argon. While bulk conduction was found to be homogenous with activation energies matching those from D.C. measurements, conduction across the grain boundary was found to be heterogeneous. Potentiometric sensors using In-doped CaZrO3 as the electrolyte, and

  19. CSA doped polypyrrole-zinc oxide thin film sensor

    NASA Astrophysics Data System (ADS)

    Chougule, M. A.; Jundale, D. M.; Raut, B. T.; Sen, Shashwati; Patil, V. B.

    2013-02-01

    The polypyrrole-zinc oxide (PPy-ZnO) hybrid sensor doped with different weight ratios of camphor sulphonic acid (CSA) were prepared by spin coating technique. These CSA doped PPy-ZnO hybrids were characterized by field emission scanning electron microscope (FESEM) and fourier transform infrared (FTIR) which proved the formation of polypyrrole, PPy-ZnO and the interaction between polypyrrole - ZnO (PPy-ZnO) hybrid with CSA doping. The gas sensing properties of the PPy-ZnO hybrid films doped with CSA have been studied for oxidizing (NO2) as well as reducing (H2S, NH3, CH4OH and CH3OH) gases at room temperature. We demonstrate that CSA doped PPy-ZnO hybrid films are highly selective to NO2 along with high-sensitivity at low concentration (80% to 100 ppm) and better stability, which suggested that the CSA doped PPy-ZnO hybrid films are potential candidate for NO2 detection at room temperature.

  20. Material characteristics and equivalent circuit models of stacked graphene oxide for capacitive humidity sensors

    NASA Astrophysics Data System (ADS)

    Han, Kook In; Kim, Seung Du; Yang, Woo Seok; Kim, Hyeong Seok; Shin, Myunghun; Kim, Jong Pil; Lee, In Gyu; Cho, Byung Jin; Hwang, Wan Sik

    2016-03-01

    The oxidation properties of graphene oxide (GO) are systematically correlated with their chemical sensing properties. Based on an impedance analysis, the equivalent circuit models of the capacitive sensors are established, and it is demonstrated that capacitive operations are related to the degree of oxidation. This is also confirmed by X-ray diffraction and Raman analysis. Finally, highly sensitive stacked GO sensors are shown to detect humidity in capacitive mode, which can be useful in various applications requiring low power consumption.

  1. Metal/Metal Oxide Differential Electrode pH Sensors

    NASA Technical Reports Server (NTRS)

    West, William; Buehler, Martin; Keymeulen, Didier

    2007-01-01

    Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.

  2. Contrasts in Oxidative Potential and Other Particulate Matter Characteristics Collected Near Major Streets and Background Locations

    PubMed Central

    Janssen, Nicole A.H.; Fischer, Paul H.; Kos, Gerard P.A.; Weijers, Ernie P.; Cassee, Flemming R.; van der Zee, Saskia C.; de Hartog, Jeroen J.; Brunekreef, Bert; Hoek, Gerard

    2011-01-01

    Background: Measuring the oxidative potential of airborne particulate matter (PM) may provide a more health-based exposure measure by integrating various biologically relevant properties of PM into a single predictor of biological activity. Objectives: We aimed to assess the contrast in oxidative potential of PM collected at major urban streets and background locations, the associaton of oxidative potential with other PM characteristics, and the oxidative potential in different PM size fractions. Methods: Measurements of PM with aerodynamic diameter ≤ 10 μm (PM10), PM with aerodynamic diameter ≤ 2.5 μm (PM2.5), soot, elemental composition, and oxidative potential of PM were conducted simultaneously in samples from 8 major streets and 10 urban and suburban background locations in the Netherlands. Six 1-week measurements were performed at each location over a 6-month period in 2008. Oxidative potential was measured as the ability to generate hydroxyl radicals in the presence of hydrogen peroxide in all PM10 samples and a subset of PM2.5 samples. Results: The PM10 oxidative potential of samples from major streets was 3.6 times higher than at urban background locations, exceeding the contrast for PM mass, soot, and all measured chemical PM characteristics. The contrast between major streets and suburban background locations was even higher (factor of 6.5). Oxidative potential was highly correlated with soot, barium, chromium, copper, iron, and manganese. Oxidative potential of PM10 was 4.6 times higher than the oxidative potential of PM2.5 when expressed per volume unit and 3.1 times higher when expressed per mass unit. Conclusions: The oxidative potential of PM near major urban roads was highly elevated compared with urban and suburban background locations, and the contrast was greater than that for any other measured PM characteristic. PMID:22015682

  3. Nanoporous metal oxides thin-films as "chemical reactive layers" for magnetoelastic sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Rong

    Freestanding magnetoelastic sensors are good candidates for in situ analysis of gases. After coating magnetoelastic ribbons with suitable nanoporous thin films, chemical reactive layers (CRL), sensitivity and specificity of the sensor for targeted gas increases. This thesis addresses two major aspects concerning magnetoelastic sensing of gases. The first aspect relates to developing methodology to measure mass of gas adsorbed from frequency shifts. Effective Young's modulus of the sensor coated with porous thin-films suffers large changes upon mass loading. This study demonstrates that changes in Young's modulus produced upon mass loading can be eliminated from the relationship between the magnitude of mass loaded and shifts in resonant frequency using the Two Different Length Sensors method. Sensitivity of the sensor not only depends on its properties but also depends on the nature of material being loaded and on its mass. Results show that sensitivity for the same sensor can range between 214 Hz/mg for mass loads of Au to 438,809 Hz/mg for acetone. The second aspect of this research deals with the development of CRL for ethylene sensing. Nanoporous metal oxides (TiO2 and SiO 2) surface modified with metals Pt(0) and metal ions Pt(II), Pd(II), Ag(I) were synthesized and evaluated as potential candidates. These materials were evaluated as ethylene adsorbents. We also studied the gain in weight upon ethylene adsorption and the nature of their chemical interaction with ethylene. Results from these studies showed that ethylene is completely mineralized (CO2+H2O) upon exposure to Pt(0)-modified TiO2 cermets. TiO2 modified with Pd(II) and Pt(II) oxidizes a fraction of ethylene to carboxylic and carboxylate species, causing adsorption of ethylene to be partially irreversible at room temperature. Ag(I)-doped materials react with ethylene to form surface complexes with sigma bonding character. Adsorption of ethylene is reversible process in this case. While the adsorption

  4. Temperature-independent sensors based on perovskite-type oxides

    SciTech Connect

    Zaza, F.; Frangini, S.; Masci, A.; Leoncini, J.; Pasquali, M.; Luisetto, I.; Tuti, S.

    2014-06-19

    The need of energy security and environment sustainability drives toward the development of energy technology in order to enhance the performance of internal combustion engines. Gas sensors play a key role for controlling the fuel oxygen ratio and monitoring the pollution emissions. The perovskite-type oxides can be synthesized for an extremely wide variety of combinations of chemical elements, allowing to design materials with suitable properties for sensing application. Lanthanum strontium ferrites, such as La{sub 0.7}Sr{sub 0.3}FeO{sub 3}, are suitable oxygen sensing materials with temperature-independence conductivity, but they have low chemical stability under reducing conditions. The addition of aluminum into the perovskite structure improves the material properties in order to develop suitable oxygen sensing probes for lean burn engine control systems. Perovskite-type oxides with formula (La{sub 0.7}Sr{sub 0.3})(Al{sub x}Fe{sub 1−x})O{sub 3} was synthesized by the citrate-nitrate combustion synthesis method. XRD analyses, show that it was synthesized a phase-pure powder belonging to the perovskite structure. Aluminum affects both the unit cell parameters, by shrinking the unit cell, and the powder morphology, by promoting the synthesis of particles with small crystallite size and large specific surface area. The partial substitution of iron with aluminum improves the chemical stability under reducing gas conditions and modulates the oxygen sensitivity by affecting the relative amount of Fe{sup 4+} and Fe{sup 3+}, as confirmed from TPR profiles. In the same time, the addition of aluminum does not affects the temperature-independent properties of lanthanum strontium ferrites. Indeed, the electrical measurements show that (La{sub 0.7}Sr{sub 0.3})(Al{sub x}Fe{sub 1−x})O{sub 3} perovskites have temperature-independence conductivity from 900 K.

  5. Temperature-independent sensors based on perovskite-type oxides

    NASA Astrophysics Data System (ADS)

    Zaza, F.; Frangini, S.; Leoncini, J.; Luisetto, I.; Masci, A.; Pasquali, M.; Tuti, S.

    2014-06-01

    The need of energy security and environment sustainability drives toward the development of energy technology in order to enhance the performance of internal combustion engines. Gas sensors play a key role for controlling the fuel oxygen ratio and monitoring the pollution emissions. The perovskite-type oxides can be synthesized for an extremely wide variety of combinations of chemical elements, allowing to design materials with suitable properties for sensing application. Lanthanum strontium ferrites, such as La0.7Sr0.3FeO3, are suitable oxygen sensing materials with temperature-independence conductivity, but they have low chemical stability under reducing conditions. The addition of aluminum into the perovskite structure improves the material properties in order to develop suitable oxygen sensing probes for lean burn engine control systems. Perovskite-type oxides with formula (La0.7Sr0.3)(AlxFe1-x)O3 was synthesized by the citrate-nitrate combustion synthesis method. XRD analyses, show that it was synthesized a phase-pure powder belonging to the perovskite structure. Aluminum affects both the unit cell parameters, by shrinking the unit cell, and the powder morphology, by promoting the synthesis of particles with small crystallite size and large specific surface area. The partial substitution of iron with aluminum improves the chemical stability under reducing gas conditions and modulates the oxygen sensitivity by affecting the relative amount of Fe4+ and Fe3+, as confirmed from TPR profiles. In the same time, the addition of aluminum does not affects the temperature-independent properties of lanthanum strontium ferrites. Indeed, the electrical measurements show that (La0.7Sr0.3)(AlxFe1-x)O3 perovskites have temperature-independence conductivity from 900 K.

  6. Development of anion- and nitric oxide-selective chemical sensors and biosensors

    NASA Astrophysics Data System (ADS)

    Barker, Susan Lynn Ritenour

    1999-11-01

    The biological roles of chloride, nitrite, and nitric oxide create the need for techniques which can provide fast, sensitive, and selective detection of these analytes. Small sensor size is advantageous in biological applications, and the coupling of fluorescence transduction with optical fiber technology has allowed the preparation of micrometer and submicromter sized chemical sensors and biosensors with good selectivity, fast response times, and excellent signal to noise ratios, which are utilized for in vitro and cellular applications. Micrometer and submicrometer size fiber optic nitrite and chloride sensors have been prepared, based on immobilized metalloporphyrins, using the ion correlation principle, and characterized with respect to selectivity, sensitivity, and reproducibility. The chloride sensors were applied in vitro to rat conceptuses. The hemoprotein cytochrome c' and the heme domain of soluble guanylate cyclase (sGC) have been labeled with a fluorescent dye and utilized for intensity and fluorescence lifetime-based nitric oxide sensing. Ratiometric fiber optic sensors have been prepared by attaching the dye-labeled cytochrome c' or heme domain of sGC to the fiber along with reference dye spheres. In addition, the fluorescence lifetime of the dye-labeled cytochrome c' in solution has been monitored. A second class of nitric oxide sensors has also been developed. These are dye-based chemical sensors with a response based on the interaction of nitric oxide with a fluorophore adsorbed on a gold surface. Such chemical sensors have the advantage of commercially available components and long-term stability. The nitric oxide bio- and chemical sensors have excellent signal to noise ratios and linear responses down to low micromolar nitric oxide. The various sensors show minimal interference from numerous other chemicals that are commonly found in the cellular environment. In addition, the sensors have low micromolar limits of detection, subsecond response

  7. Facile synthesis of cobalt oxide/reduced graphene oxide composites for electrochemical capacitor and sensor applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Toan; Nguyen, Van Hoa; Deivasigamani, Ranjith Kumar; Kharismadewi, Dian; Iwai, Yoshio; Shim, Jae-Jin

    2016-03-01

    Reduced graphene oxide sheets decorated with cobalt oxide nanoparticles (Co3O4/rGO) were produced using a hydrothermal method without surfactants. Both the reduction of GO and the formation of Co3O4 nanoparticles occurred simultaneously under this condition. At the same current density of 0.5 A g-1, the Co3O4/rGO nanocomposites exhibited much a higher specific capacitance (545 F g-1) than that of bare Co3O4 (100 F g-1). On the other hand, for the detection of H2O2, the peak current of Co3O4/rGO was 4 times higher than that of Co3O4. Moreover, the resulting composite displayed a low detection limit of 0.62 μM and a high sensitivity of 28,500 μA mM-1cm-2 for the H2O2 sensor. These results suggest that the Co3O4/rGO nanocomposite is a promising material for both supercapacitor and non-enzymatic H2O2 sensor applications.

  8. Microfluidic Electrochemical Sensor for On-line Monitoring of Aerosol Oxidative Activity

    PubMed Central

    Sameenoi, Yupaporn; Koehler, Kirsten; Shapiro, Jeff; Boonsong, Kanokporn; Sun, Yele; Collett, Jeffrey; Volckens, John; Henry, Charles S.

    2012-01-01

    Particulate matter (PM) air pollution has a significant impact on human morbidity and mortality; however, the mechanisms of PM-induced toxicity are poorly defined. A leading hypothesis states that airborne PM induces harm by generating reactive oxygen species (ROS) in and around human tissues, leading to oxidative stress. We report here, a system employing a microfluidic electrochemical sensor coupled directly to a Particle-into-Liquid-Sampler (PILS) system to measure aerosol oxidative activity in an on-line format. The oxidative activity measurement is based on the dithiothreitol assay (DTT assay) where after oxidized by PM, the remaining reduced DTT was analyzed by the microfluidic sensor. The sensor consists of an array of working, reference, and auxiliary electrodes fabricated in a poly(dimethylsiloxane) (PDMS)-based microfluidic device. Cobalt (II) phthalocyanine (CoPC)-modified carbon paste was used as the working electrode material allowing selective detection of reduced DTT. The electrochemical sensor was validated off-line against the traditional DTT assay using filter samples taken from urban environments and biomass burning events. After off-line characterization, the sensor was coupled to a PILS to enable on-line sampling/analysis of aerosol oxidative activity. Urban dust and industrial incinerator ash samples were aerosolized in an aerosol chamber and analyzed for their oxidative activity. The on-line sensor reported DTT consumption rates (oxidative activity) in good correlation with aerosol concentration (R2 from 0.86–.97) with a time-resolution of approximately 3 minutes. PMID:22651886

  9. Multi-Sensor Observations of Earthquake Related Atmospheric Signals over Major Geohazard Validation Sites

    NASA Technical Reports Server (NTRS)

    Ouzounov, D.; Pulinets, S.; Davindenko, D.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    We are conducting a scientific validation study involving multi-sensor observations in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several atmospheric and environmental parameters, which we found, are associated with the earthquakes, namely: thermal infrared radiation, outgoing long-wavelength radiation, ionospheric electron density, and atmospheric temperature and humidity. For first time we applied this approach to selected GEOSS sites prone to earthquakes or volcanoes. This provides a new opportunity to cross validate our results with the dense networks of in-situ and space measurements. We investigated two different seismic aspects, first the sites with recent large earthquakes, viz.- Tohoku-oki (M9, 2011, Japan) and Emilia region (M5.9, 2012,N. Italy). Our retrospective analysis of satellite data has shown the presence of anomalies in the atmosphere. Second, we did a retrospective analysis to check the re-occurrence of similar anomalous behavior in atmosphere/ionosphere over three regions with distinct geological settings and high seismicity: Taiwan, Japan and Kamchatka, which include 40 major earthquakes (M>5.9) for the period of 2005-2009. We found anomalous behavior before all of these events with no false negatives; false positives were less then 10%. Our initial results suggest that multi-instrument space-borne and ground observations show a systematic appearance of atmospheric anomalies near the epicentral area that could be explained by a coupling between the observed physical parameters and earthquake preparation processes.

  10. Integrating Metal-Oxide-Decorated CNT Networks with a CMOS Readout in a Gas Sensor

    PubMed Central

    Lee, Hyunjoong; Lee, Sanghoon; Kim, Dai-Hong; Perello, David; Park, Young June; Hong, Seong-Hyeon; Yun, Minhee; Kim, Suhwan

    2012-01-01

    We have implemented a tin-oxide-decorated carbon nanotube (CNT) network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC) was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 μm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures. PMID:22736966

  11. Acetone Sensing Properties of a Gas Sensor Composed of Carbon Nanotubes Doped With Iron Oxide Nanopowder

    PubMed Central

    Tan, Qiulin; Fang, Jiahua; Liu, Wenyi; Xiong, Jijun; Zhang, Wendong

    2015-01-01

    Iron oxide (Fe2O3) nanopowder was prepared by a precipitation method and then mixed with different proportions of carbon nanotubes. The composite materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. A fabricated heater-type gas sensor was compared with a pure Fe2O3 gas sensor under the influence of acetone. The effects of the amount of doping, the sintering temperature, and the operating temperature on the response of the sensor and the response recovery time were analyzed. Experiments show that doping of carbon nanotubes with iron oxide effectively improves the response of the resulting gas sensors to acetone gas. It also reduces the operating temperature and shortens the response recovery time of the sensor. The response of the sensor in an acetone gas concentration of 80 ppm was enhanced, with good repeatability. PMID:26569253

  12. Integrating metal-oxide-decorated CNT networks with a CMOS readout in a gas sensor.

    PubMed

    Lee, Hyunjoong; Lee, Sanghoon; Kim, Dai-Hong; Perello, David; Park, Young June; Hong, Seong-Hyeon; Yun, Minhee; Kim, Suhwan

    2012-01-01

    We have implemented a tin-oxide-decorated carbon nanotube (CNT) network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC) was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 μm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures. PMID:22736966

  13. CO responses of sensors based on cerium oxide thick films prepared from clustered spherical nanoparticles.

    PubMed

    Izu, Noriya; Matsubara, Ichiro; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2013-01-01

    Various types of CO sensors based on cerium oxide (ceria) have been reported recently. It has also been reported that the response speed of CO sensors fabricated from porous ceria thick films comprising nanoparticles is extremely high. However, the response value of such sensors is not suitably high. In this study, we investigated methods of improving the response values of CO sensors based on ceria and prepared gas sensors from core-shell ceria polymer hybrid nanoparticles. These hybrid nanoparticles have been reported to have a unique structure: The core consists of a cluster of ceria crystallites several nanometers in size. We compared the characteristics of the sensors based on thick films prepared from core-shell nanoparticles with those of sensors based on thick films prepared from conventionally used precipitated nanoparticles. The sensors prepared from the core-shell nanoparticles exhibited a resistance that was ten times greater than that of the sensors prepared from the precipitated nanoparticles. The response values of the gas sensors based on the core-shell nanoparticles also was higher than that of the sensors based on the precipitated nanoparticles. Finally, improvements in sensor response were also noticed after the addition of Au nanoparticles to the thick films used to fabricate the two types of sensors. PMID:23529123

  14. A 3D scaffold for ultra-sensitive reduced graphene oxide gas sensors

    NASA Astrophysics Data System (ADS)

    Yun, Yong Ju; Hong, Won G.; Choi, Nak-Jin; Park, Hyung Ju; Moon, Seung Eon; Kim, Byung Hoon; Song, Ki-Bong; Jun, Yongseok; Lee, Hyung-Kun

    2014-05-01

    An ultra-sensitive gas sensor based on a reduced graphene oxide nanofiber mat was successfully fabricated using a combination of an electrospinning method and graphene oxide wrapping through an electrostatic self-assembly, followed by a low-temperature chemical reduction. The sensor showed excellent sensitivity to NO2 gas.An ultra-sensitive gas sensor based on a reduced graphene oxide nanofiber mat was successfully fabricated using a combination of an electrospinning method and graphene oxide wrapping through an electrostatic self-assembly, followed by a low-temperature chemical reduction. The sensor showed excellent sensitivity to NO2 gas. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00332b

  15. A pH Sensor Based on a Stainless Steel Electrode Electrodeposited with Iridium Oxide

    ERIC Educational Resources Information Center

    Martinez, C. C. M.; Madrid, R. E.; Felice, C. J.

    2009-01-01

    A simple procedure to make an iridium oxide (IrO[subscript 2]) electrodeposited pH sensor, that can be used in a chemical, biomedical, or materials laboratory, is presented here. Some exercises, based on this sensor, that can be used to teach important concepts in the field of biomedical, biochemical, tissue, or materials engineering, are also…

  16. A New Approach to Joining Dissimilar Ceramic Oxides for Chemical Sensors

    NASA Astrophysics Data System (ADS)

    Zhuiykov, Serge

    2009-05-01

    Conventional joining of dissimilar oxides for sensing electrodes (SE) of chemical sensors has been pivotal to the development of various sensors and is vital to their further development. However, it is shown that the uncertainty (of a fundamental nature) in the properties of dissimilar oxides in SE causes the determination of their sensing characteristics to be ambiguous. Characteristics are different for such controlled parameters as pyrolysis temperature, crystal structure, particle's morphology and size, chemical and phase composition, the coefficient of thermal expansion (CTE), surface architecture, the bulk and surface stoichiometry and type and conductivity of additives. Here, we provide an alternative approach for joining dissimilar metal-oxides for chemical sensors SE. The approach relies on the development of at least one transient liquid oxide phase on the ceramic-SE interface. These results constitute key points relevant to selection oxides for joining, sintering temperatures and heating/cooling temperature rates.

  17. A New Approach to Joining Dissimilar Ceramic Oxides for Chemical Sensors

    SciTech Connect

    Zhuiykov, Serge

    2009-05-23

    Conventional joining of dissimilar oxides for sensing electrodes (SE) of chemical sensors has been pivotal to the development of various sensors and is vital to their further development. However, it is shown that the uncertainty (of a fundamental nature) in the properties of dissimilar oxides in SE causes the determination of their sensing characteristics to be ambiguous. Characteristics are different for such controlled parameters as pyrolysis temperature, crystal structure, particle's morphology and size, chemical and phase composition, the coefficient of thermal expansion (CTE), surface architecture, the bulk and surface stoichiometry and type and conductivity of additives. Here, we provide an alternative approach for joining dissimilar metal-oxides for chemical sensors SE. The approach relies on the development of at least one transient liquid oxide phase on the ceramic-SE interface. These results constitute key points relevant to selection oxides for joining, sintering temperatures and heating/cooling temperature rates.

  18. Amperometric Nitric Oxide Sensors with Enhanced Selectivity Over Carbon Monoxide via Platinum Oxide Formation Under Alkaline Conditions

    PubMed Central

    Meyerhoff, Mark E.

    2013-01-01

    An improved planar amperometric nitric oxide (NO) sensor with enhanced selectivity over carbon monoxide (CO), a volatile interfering species for NO sensors that has been largely overlooked until recently, is described. Formation of an oxide film on the inner platinum working electrode via anodic polarization using an inner alkaline electrolyte solution provides the basis for improved selectivity. Cyclic voltammetry reveals that formation of oxidized Pt film inhibits adsorption of CO to the electrode surface, which is a necessary initial step in the electrocatalytic oxidation of CO on Pt. Previous NO gas sensors that employ internal electrolyte solutions have been assembled using acidic internal solutions, that inhibit the formation of a dense platinum oxide film on the working electrode surface. It is demonstrated herein that increasing the internal electrolyte pH promotes oxidized platinum film formation, resulting in improved selectivity over CO. Selectivity coefficients (log KNO,j) for sensors assembled with internal solutions at various pH values range from −0.08 at pH 2.0 to −2.06 at pH 11.7 with average NO sensitivities of 1.24 nA/μM and LOD of <1 nM. PMID:24067100

  19. Atmospheric Signals Associated with Major Earthquakes. A Multi-Sensor Approach. Chapter 9

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Pulinets, Sergey; Hattori, Katsumi; Kafatos, Menas; Taylor, Patrick

    2011-01-01

    We are studying the possibility of a connection between atmospheric observation recorded by several ground and satellites as earthquakes precursors. Our main goal is to search for the existence and cause of physical phenomenon related to prior earthquake activity and to gain a better understanding of the physics of earthquake and earthquake cycles. The recent catastrophic earthquake in Japan in March 2011 has provided a renewed interest in the important question of the existence of precursory signals preceding strong earthquakes. We will demonstrate our approach based on integration and analysis of several atmospheric and environmental parameters that were found associated with earthquakes. These observations include: thermal infrared radiation, radon! ion activities; air temperature and humidity and a concentration of electrons in the ionosphere. We describe a possible physical link between atmospheric observations with earthquake precursors using the latest Lithosphere-Atmosphere-Ionosphere Coupling model, one of several paradigms used to explain our observations. Initial results for the period of2003-2009 are presented from our systematic hind-cast validation studies. We present our findings of multi-sensor atmospheric precursory signals for two major earthquakes in Japan, M6.7 Niigata-ken Chuetsu-oki of July16, 2007 and the latest M9.0 great Tohoku earthquakes of March 11,2011

  20. UV Light and Gas Sensing Properties of Hybrid Sensor Based on Indium-Tin-Oxide Nanocrystals.

    PubMed

    Koo, J E; Lee, S T; Chang, J H

    2015-01-01

    We proposed a hybrid sensor which is able to detect both UV light and gas species. The sensor was fabricated by screen printing using indium-tin-oxide (ITO) nanocrystals. To improve the UV sensitivity, high temperature annealing (600 degrees C) under an external pressure (0.2 MPa) was applied. We could observe room temperature operation of the sensor under the simultaneous stimulation of UV light and CH4 gas. This is indicating that an improved fire warning is possible by using the proposed hybrid sensor. PMID:26328423

  1. Cobalt Oxide Nanosheet and CNT Micro Carbon Monoxide Sensor Integrated with Readout Circuit on Chip

    PubMed Central

    Dai, Ching-Liang; Chen, Yen-Chi; Wu, Chyan-Chyi; Kuo, Chin-Fu

    2010-01-01

    The study presents a micro carbon monoxide (CO) sensor integrated with a readout circuit-on-a-chip manufactured by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and a post-process. The sensing film of the sensor is a composite cobalt oxide nanosheet and carbon nanotube (CoOOH/CNT) film that is prepared by a precipitation-oxidation method. The structure of the CO sensor is composed of a polysilicon resistor and a sensing film. The sensor, which is of a resistive type, changes its resistance when the sensing film adsorbs or desorbs CO gas. The readout circuit is used to convert the sensor resistance into the voltage output. The post-processing of the sensor includes etching the sacrificial layers and coating the sensing film. The advantages of the sensor include room temperature operation, short response/recovery times and easy post-processing. Experimental results show that the sensitivity of the CO sensor is about 0.19 mV/ppm, and the response and recovery times are 23 s and 34 s for 200 ppm CO, respectively. PMID:22294897

  2. Quantitative Analysis of Major Phytochemicals in Orthodox tea (Camellia sinensis), Oxidized under Compressed Air Environment.

    PubMed

    Panda, Brajesh Kumar; Datta, Ashis Kumar

    2016-04-01

    This study describes major changes in phytochemical composition of orthodox tea (Camellia sinensis var. Assamica) oxidized under compressed air (CA). The experiments for oxidation were conducted under air pressure (101, 202, and 303 kPa) for 150 min. Relative change in the concentrations of caffeine, catechins, theaflavins (TF), and thearubigins (TR) were analyzed. Effect of CA pressure was found to be nonsignificant in regulating caffeine concentration during oxidation. But degradation in different catechins as well as formation of different TF was significantly affected by CA pressure. At high CA pressure, TF showed highest peak value. TR was found to have slower rate of formation during initial phase of oxidation than TF. Even though the rate of TR formation was significantly influenced by CA, a portion of catechins remained unoxidized at end of oxidation. Except caffeine, the percent change in rate of formation or degradation were more prominent at 202 kPa. PMID:26970442

  3. Low-temperature capacitive sensor based on perovskite oxides

    SciTech Connect

    Zaza, F. Serra, E.; Caprioli, F.; Orio, G.; Pasquali, M.

    2015-06-23

    Energy, environmental and social issues drive towards the green political economy and the development of advanced technologies, promoting renewable energy sources, improving energy conversion efficiency and reducing exhaust gas emissions. The development of sustainable technologies requires strategic research in the area of gas sensors for monitoring air quality, controlling gas emissions and optimizing combustion processes. Solid state sensors are the most attractive one because of their simplicity in function, small size and low cost. The aim of this work is to synthetize and characterize strontium titanate and test its sensing performance. The prepared sensor device shows significant sensitivity and response rate at room-temperature. However, because of the low recovery rate, the regeneration of the sensor has to be made at high temperature for promoting the decomposition of the carbonates formed on the perovkite surface.

  4. Low-temperature capacitive sensor based on perovskite oxides

    NASA Astrophysics Data System (ADS)

    Zaza, F.; Orio, G.; Serra, E.; Caprioli, F.; Pasquali, M.

    2015-06-01

    Energy, environmental and social issues drive towards the green political economy and the development of advanced technologies, promoting renewable energy sources, improving energy conversion efficiency and reducing exhaust gas emissions. The development of sustainable technologies requires strategic research in the area of gas sensors for monitoring air quality, controlling gas emissions and optimizing combustion processes. Solid state sensors are the most attractive one because of their simplicity in function, small size and low cost. The aim of this work is to synthetize and characterize strontium titanate and test its sensing performance. The prepared sensor device shows significant sensitivity and response rate at room-temperature. However, because of the low recovery rate, the regeneration of the sensor has to be made at high temperature for promoting the decomposition of the carbonates formed on the perovkite surface.

  5. Leukotriene C4 is the major trigger of stress-induced oxidative DNA damage

    PubMed Central

    Dvash, Efrat; Har-Tal, Michal; Barak, Sara; Meir, Ofir; Rubinstein, Menachem

    2015-01-01

    Endoplasmic reticulum (ER) stress and major chemotherapeutic agents damage DNA by generating reactive oxygen species (ROS). Here we show that ER stress and chemotherapy induce leukotriene C4 (LTC4) biosynthesis by transcriptionally upregulating and activating the enzyme microsomal glutathione-S-transferase 2 (MGST2) in cells of non-haematopoietic lineage. ER stress and chemotherapy also trigger nuclear translocation of the two LTC4 receptors. Acting in an intracrine manner, LTC4 then elicits nuclear translocation of NADPH oxidase 4 (NOX4), ROS accumulation and oxidative DNA damage. Mgst2 deficiency, RNAi and LTC4 receptor antagonists abolish ER stress- and chemotherapy-induced ROS and oxidative DNA damage in vitro and in mouse kidneys. Cell death and mouse morbidity are also significantly attenuated. Hence, MGST2-generated LTC4 is a major mediator of ER stress- and chemotherapy-triggered oxidative stress and oxidative DNA damage. LTC4 inhibitors, commonly used for asthma, could find broad clinical use in major human pathologies associated with ER stress-activated NOX4. PMID:26656251

  6. Enhanced and selective ammonia sensing of reduced graphene oxide based chemo resistive sensor at room temperature

    NASA Astrophysics Data System (ADS)

    Kumar, Ramesh; Kaur, Amarjeet

    2016-05-01

    The reduced graphene oxide thin films were fabricated by using the spin coating method. The reduced graphene oxide samples were characterised by Raman studies to obtain corresponding D and G bands at 1360 and 1590 cm-1 respectively. Fourier transform infra-red (FTIR) spectra consists of peak corresponds to sp2 hybridisation of carbon atoms at 1560 cm-1. The reduced graphene oxide based chemoresistive sensor exhibited a p-type semiconductor behaviour in ambient conditions and showed good sensitivity to different concentration of ammonia from 25 ppm to 500 ppm and excellent selectivity at room temperature. The sensor displays selectivity to several hazardous vapours such as methanol, ethanol, acetone and hydrazine hydrate. The sensor demonstrated a sensitivity of 9.8 at 25 ppm concentration of ammonia with response time of 163 seconds.

  7. Patterned electrode-based amperometric gas sensor for direct nitric oxide detection within microfluidic devices.

    PubMed

    Cha, Wansik; Tung, Yi-Chung; Meyerhoff, Mark E; Takayama, Shuichi

    2010-04-15

    This article describes a thin amperometric nitric oxide (NO) sensor that can be microchannel embedded to enable direct real-time detection of NO produced by cells cultured within the microdevice. A key for achieving the thin ( approximately 1 mm) planar sensor configuration required for sensor-channel integration is the use of gold/indium-tin oxide patterned electrode directly on a porous polymer membrane (pAu/ITO) as the base working electrode. The electrochemically deposited Au-hexacyanoferrate layer on pAu/ITO is used to catalyze NO oxidation to nitrite at lower applied potentials (0.65-0.75 V vs Ag/AgCl) and stabilize current output. Furthermore, use of a gas-permeable membrane to separate internal sensor compartments from the sample phase imparts excellent NO selectivity over common interfering agents (e.g., nitrite, ascorbate, ammonia, etc.) present in culture media and biological fluids. The optimized sensor design reversibly detects NO down to the approximately 1 nM level in stirred buffer and <10 nM in flowing buffer when integrated within a polymeric microfluidic device. We demonstrate utility of the channel-embedded sensor by monitoring NO generation from macrophages cultured within non-gas-permeable microchannels, as they are stimulated with endotoxin. PMID:20329749

  8. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well. PMID:22319407

  9. Highly Stretchable and Ultrasensitive Strain Sensor Based on Reduced Graphene Oxide Microtubes-Elastomer Composite.

    PubMed

    Tang, Yongchao; Zhao, Zongbin; Hu, Han; Liu, Yang; Wang, Xuzhen; Zhou, Shanke; Qiu, Jieshan

    2015-12-16

    Strain sensors with excellent flexibility, stretchability, and sensitivity have attracted increasing interests. In this paper, a highly stretchable and ultrasensitive strain sensor based on reduced graphene oxide microtubes-elastomer is fabricated by a template induced assembly and followed a polymer coating process. The sensors can be stretched in excess of 50% of its original length, showing long-term durability and excellent selectivity to a specific strain under various disturbances. The sensitivity of this sensor is as high as 630 of gauge factor under 21.3% applied strain; more importantly, it can be easily modulated to accommodate diverse requirements. Implementation of the device for gauging muscle-induced strain in several biological systems shows reproducibility and different responses in the form of resistance or current change. The developed strain sensors show great application potential in fields of biomechanical systems, communications, and other related areas. PMID:26595114

  10. Oxidation of Hydrocarbons on the Surface of Tin Dioxide Chemical Sensors

    PubMed Central

    Teterycz, Helena; Halek, Patryk; Wiśniewski, Kamil; Halek, Grzegorz; Koźlecki, Tomasz; Polowczyk, Izabela

    2011-01-01

    The paper presents the results of our investigation on the effect of the molecular structure of organic vapors on the characteristics of resistive chemical gas sensors. The sensors were based on tin dioxide and prepared by means of thick film technology. The electrical and catalytic examinations showed that the abstraction of two hydrogen atoms from the organic molecule and formation of a water in result of reaction with a chemisorbed oxygen ion, determine the rate of oxidation reactions, and thus the sensor performance. The rate of the process depends on the order of carbon atoms and Lewis acidity of the molecule. Therefore, any modification of the surface centers of a sensor material, modifies not only the sensor sensitivity, but also its selectivity. PMID:22163855

  11. Gas sensors based on one dimensional nanostructured metal-oxides: a review.

    PubMed

    Arafat, M M; Dinan, B; Akbar, Sheikh A; Haseeb, A S M A

    2012-01-01

    Recently one dimensional (1-D) nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO(2), TiO(2), In(2)O(3), WO(x), AgVO(3), CdO, MoO(3), CuO, TeO(2) and Fe(2)O(3). Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research. PMID:22969344

  12. Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review

    PubMed Central

    Arafat, M. M.; Dinan, B.; Akbar, Sheikh A.; Haseeb, A. S. M. A.

    2012-01-01

    Recently one dimensional (1-D) nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO2, TiO2, In2O3, WOx, AgVO3, CdO, MoO3, CuO, TeO2 and Fe2O3. Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research. PMID:22969344

  13. Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

    2008-01-01

    Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

  14. Aptamer-modified anodized aluminum oxide-based capacitive sensor for the detection of bisphenol A

    NASA Astrophysics Data System (ADS)

    Kang, Bongkeun; Kim, Joo Hyoung; Kim, Soyoun; Yoo, Kyung-Hwa

    2011-02-01

    We describe a rapid, sensitive, and low-cost method to detect bisphenol A (BPA) using an anodized aluminum oxide-based capacitive sensor. BPA is detected by measuring the change in capacitance caused by the biospecific binding of BPA with a BPA aptamer that is immobilized on the electrode surface. For a solution containing 100 pM BPA, the capacitance decreased by approximately 3%. In addition, we fabricated a capacitive sensor array and demonstrated that BPA in environmental samples can be measured using our capacitive sensor.

  15. Biomedical Detection via Macro- and Nano-Sensors Fabricated with Metallic and Semiconducting Oxides

    PubMed Central

    Hahm, Jong-In

    2013-01-01

    Originally developed as gas sensors, the benefits of metallic and semiconducting oxide materials are now being realized in other areas of sensing, such as chemical, environmental, and biomedical monitoring and detection. Metallic and semiconducting oxides have continuously expanded their roles to date, and have also established their significance in biosensing by utilizing a variety of modes for signal generation and detection mechanism. These sensors are typically based either on their optical, electrochemical, electrical, gravimetric, acoustic, and magnetic properties for signal transduction. This article reviews such biosensors that employ metallic and semiconducting oxides as active sensing elements to detect nucleic acids, proteins, cells, and a variety of important biomarkers, both in thin film and one-dimensional forms. Specific oxide materials (Mx Oy ) examined comprehensively in this article include M = Fe, Cu, Si, Zn, Sn, In. The derivatives of these oxide materials resulting from incorporation of dopants are examined as well. The crystalline structures and unique properties that may be exploited for various biosensing applications are discussed, and recent efforts investigating the feasibility of using these oxide materials in biosensor technology are described. Key biosensor characteristics resulting from reduced dimensionality are overviewed under the motif of planar and one-dimensional sensors. This article also provides insight into current challenges facing biosensor applications for metallic and semiconducting oxides. In addition, future outlook in this particular field as well as different impacts on biology and medicine are addressed. PMID:23627064

  16. Growth of indium oxide nanowalls on patterned conducting substrates: towards direct fabrication of gas sensors.

    PubMed

    Chen, Changlong; Wei, Yuling; Sun, Guoxin; Shao, Baiqi

    2012-05-01

    Nanowall materials are ideal two-dimensional structures with high surface-to-volume ratios and open edge geometries. We first report on the growth and characterization of indium oxide nanowalls on transparent and conducting indium tin oxide substrates. The nanosheets that compose the nanowalls are single-crystalline and are approximately 8 nm in thickness. The density and the lateral dimensions of the nanosheets on the substrate can be controlled by the growth time. Adopting a bridgework-like strategy, we directly construct indium oxide nanowall gas sensors on the patterned indium tin oxide substrates. The pattern lines on the substrates are etched using transparent plastic adhesive tape as shadow mask, which is both simple and cheap in comparison with the conventional photolithography technique. The sensors exhibit fast response/recovery behavior and good reproducibility to NO(2) gas under mild testing conditions, such as room temperature, ambient pressure, dry air background, and 1.5 V dc bias, and can achieve a detection limit as low as 50 ppb. We propose an assumption that the gas adsorption is composed of deep adsorption and probe adsorption to explain the interesting gas-sensing behavior of the indium oxide nanowalls. We suggest that the work reported herein, including the facile growth of indium oxide nanowalls, the bridgework-like strategy to directly construct electronic devices, and the high gas-sensing performance of the indium oxide nanowalls sensors, is a significant step towards the real applications of novel semiconductor nanostructures. PMID:22328146

  17. Integration of MEMS with nanostructured metal-oxide materials for improved sensors for volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Chandra, Sudhir; Pandya, Hardik; Vyas, Anoop

    2012-10-01

    The primary aim of the present work is to lower the operating temperature of the metal-oxide based sensors for detection of volatile organic compounds (VOCs) without compromising the sensitivity of the device. For this purpose, nanostructured oxides of ITO, Cu and Zn have been explored. The oxides of Cu and Zn have been synthesized by a novel process of thermal oxidation of the respective metal layers in air ambient without using any seed or catalyst layer. On the other hand, nanostructured ITO was obtained by RF magnetron sputtering process. For the heating of the sensing layer, a Ni microheater has been integrated on the sensor chip. Micro-electro-mechanical Systems (MEMS) technology has been adopted for the fabrication of the complete sensor for achieving the desired operating temperature at reduced power level. The sensor was extensively tested for a variety of VOCs such as acetone, methanol, ethanol and IPA. The issues involved in integrating nanostructured oxides with MEMS technology are also addressed.

  18. Treatment-Resistant Major Depression: Rationale for NMDA Receptors as Targets and Nitrous Oxide as Therapy

    PubMed Central

    Zorumski, Charles F.; Nagele, Peter; Mennerick, Steven; Conway, Charles R.

    2015-01-01

    Major depressive disorder (MDD) remains a huge personal and societal encumbrance. Particularly burdensome is a virulent subtype of MDD, treatment resistant major depression (TMRD), which afflicts 15–30% of MDD patients. There has been recent interest in N-methyl-d-aspartate receptors (NMDARs) as targets for treatment of MDD and perhaps TMRD. To date, most pre-clinical and clinical studies have focused on ketamine, although psychotomimetic and other side effects may limit ketamine’s utility. These considerations prompted a recent promising pilot clinical trial of nitrous oxide, an NMDAR antagonist that acts through a mechanism distinct from that of ketamine, in patients with severe TRMD. In this paper, we review the clinical picture of TRMD as a subtype of MDD, the evolution of ketamine as a fast-acting antidepressant, and clinical and basic science studies supporting the possible use of nitrous oxide as a rapid antidepressant. PMID:26696909

  19. Mitochondria DNA Change and Oxidative Damage in Clinically Stable Patients with Major Depressive Disorder

    PubMed Central

    Chang, Cheng-Chen; Jou, Shaw-Hwa; Lin, Ta-Tsung

    2015-01-01

    Background To compare alterations of mitochondria DNA (mtDNA) copy number, single nucleotide polymorphisms (SNPs), and oxidative damage of mtDNA in clinically stable patients with major depressive disorder (MDD). Methods Patients met DSM-IV diagnostic criteria for MDD were recruited from the psychiatric outpatient clinic at Changhua Christian Hospital, Taiwan. They were clinically stable and their medications had not changed for at least the preceding two months. Exclusion criteria were substance-induced psychotic disorder, eating disorder, anxiety disorder or illicit substance abuse. Comparison subjects did not have any major psychiatric disorder and they were medically healthy. Peripheral blood leukocytes were analyzed to compare copy number, SNPs and oxidative damage of mtDNA between the two groups. Results 40 MDD patients and 70 comparison subjects were collected. The median age of the subjects was 42 years and 38 years in MDD and comparison groups, respectively. Leukocyte mtDNA copy number of MDD patients was significantly lower than that of the comparison group (p = 0.037). MDD patients had significantly higher mitochondrial oxidative damage than the comparison group (6.44 vs. 3.90, p<0.001). After generalized linear model adjusted for age, sex, smoking, family history, and psychotropic use, mtDNA copy number was still significantly lower in the MDD group (p<0.001). MtDNA oxidative damage was positively correlated with age (p<0.001) and MDD (p<0.001). Antipsychotic use was negatively associated with mtDNA copy number (p = 0.036). Limitations The study is cross-sectional with no longitudinal follow up. The cohort is clinically stable and generalizability of our result to other cohort should be considered. Conclusions Our study suggests that oxidative stress and mitochondria may play a role in the pathophysiology of MDD. More large-scale studies are warranted to assess the interplay between oxidative stress, mitochondria dysfunction and MDD. PMID:25946463

  20. Sensor Array Devices Utilizing Nano-structured Metal-oxides for Hazardous Gas Detection

    NASA Astrophysics Data System (ADS)

    Andio, Mark A.

    Methane and carbon monoxide are two hazardous gases which require continuous monitoring by gas sensors in underground coal mines for explosion prevention and toxicity, respectively. This work explored implementing miniaturized gas sensors in this area to simultaneously detect both gases for benefits of increased portability and reduced power consumption of the chemiresistive gas sensor device. The focus of this research was to understand how the particle size, morphology, and microstructure of the metaloxide film affected the gas sensor performance to the two gases of interest on miniaturized gas sensor devices in the form of microhotplate platforms. This was done through three main research studies. The first was conducted by growing SnO2 nanowires from SnO 2 particles using an Au-catalyst. Growth conditions including temperature, time, and oxygen partial pressure were explored to determine the formation aspects of the SnO2 nanowires. Gas sensor studies were completed that provided evidence that the SnO2 nanowires increased detection to a fixed concentration of carbon monoxide compared to SnO2 particles without nano-structure formation. A second research study was performed to compare the gas sensor performance of SnO2 nanoparticles, hierarchical particles, and micron-size particles. The nanoparticles were developed into an ink and deposited via ink-jet printing on the microhotplate substrates to control the microstructure of the metal-oxide film. By preventing agglomeration of the nanoparticle film, the SnO2 nanoparticles displayed similar gas sensor performance to methane and carbon monoxide as the hierarchical particles. Both nano-structures had much higher gas sensor response than the micron-size particles which confirms the surface area of the metal-oxide film is critical for reaction of the analyte gas at the surface. The last research study presented in the dissertation describes an oxide nanoparticle array developed for detecting methane and carbon

  1. Performance and stress analysis of metal oxide films for CMOS-integrated gas sensors.

    PubMed

    Filipovic, Lado; Selberherr, Siegfried

    2015-01-01

    The integration of gas sensor components into smart phones, tablets and wrist watches will revolutionize the environmental health and safety industry by providing individuals the ability to detect harmful chemicals and pollutants in the environment using always-on hand-held or wearable devices. Metal oxide gas sensors rely on changes in their electrical conductance due to the interaction of the oxide with a surrounding gas. These sensors have been extensively studied in the hopes that they will provide full gas sensing functionality with CMOS integrability. The performance of several metal oxide materials, such as tin oxide (SnO2), zinc oxide (ZnO), indium oxide (In2O3) and indium-tin-oxide (ITO), are studied for the detection of various harmful or toxic cases. Due to the need for these films to be heated to temperatures between 250°C and 550°C during operation in order to increase their sensing functionality, a considerable degradation of the film can result. The stress generation during thin film deposition and the thermo-mechanical stress that arises during post-deposition cooling is analyzed through simulations. A tin oxide thin film is deposited using the efficient and economical spray pyrolysis technique, which involves three steps: the atomization of the precursor solution, the transport of the aerosol droplets towards the wafer and the decomposition of the precursor at or near the substrate resulting in film growth. The details of this technique and a simulation methodology are presented. The dependence of the deposition technique on the sensor performance is also discussed. PMID:25815445

  2. Performance and Stress Analysis of Metal Oxide Films for CMOS-Integrated Gas Sensors

    PubMed Central

    Filipovic, Lado; Selberherr, Siegfried

    2015-01-01

    The integration of gas sensor components into smart phones, tablets and wrist watches will revolutionize the environmental health and safety industry by providing individuals the ability to detect harmful chemicals and pollutants in the environment using always-on hand-held or wearable devices. Metal oxide gas sensors rely on changes in their electrical conductance due to the interaction of the oxide with a surrounding gas. These sensors have been extensively studied in the hopes that they will provide full gas sensing functionality with CMOS integrability. The performance of several metal oxide materials, such as tin oxide (SnO2), zinc oxide (ZnO), indium oxide (In2O3) and indium-tin-oxide (ITO), are studied for the detection of various harmful or toxic cases. Due to the need for these films to be heated to temperatures between 250 °C and 550 °C during operation in order to increase their sensing functionality, a considerable degradation of the film can result. The stress generation during thin film deposition and the thermo-mechanical stress that arises during post-deposition cooling is analyzed through simulations. A tin oxide thin film is deposited using the efficient and economical spray pyrolysis technique, which involves three steps: the atomization of the precursor solution, the transport of the aerosol droplets towards the wafer and the decomposition of the precursor at or near the substrate resulting in film growth. The details of this technique and a simulation methodology are presented. The dependence of the deposition technique on the sensor performance is also discussed. PMID:25815445

  3. Two alanine aminotranferases link mitochondrial glycolate oxidation to the major photorespiratory pathway in Arabidopsis and rice.

    PubMed

    Niessen, Markus; Krause, Katrin; Horst, Ina; Staebler, Norma; Klaus, Stephanie; Gaertner, Stefanie; Kebeish, Rashad; Araujo, Wagner L; Fernie, Alisdair R; Peterhansel, Christoph

    2012-04-01

    The major photorespiratory pathway in higher plants is distributed over chloroplasts, mitochondria, and peroxisomes. In this pathway, glycolate oxidation takes place in peroxisomes. It was previously suggested that a mitochondrial glycolate dehydrogenase (GlcDH) that was conserved from green algae lacking leaf-type peroxisomes contributes to photorespiration in Arabidopsis thaliana. Here, the identification of two Arabidopsis mitochondrial alanine:glyoxylate aminotransferases (ALAATs) that link glycolate oxidation to glycine formation are described. By this reaction, the mitochondrial side pathway produces glycine from glyoxylate that can be used in the glycine decarboxylase (GCD) reaction of the major pathway. RNA interference (RNAi) suppression of mitochondrial ALAAT did not result in major changes in metabolite pools under standard conditions or enhanced photorespiratroy flux, respectively. However, RNAi lines showed reduced photorespiratory CO(2) release and a lower CO(2) compensation point. Mitochondria isolated from RNAi lines are incapable of converting glycolate to CO(2), whereas simultaneous overexpression of GlcDH and ALAATs in transiently transformed tobacco leaves enhances glycolate conversion. Furthermore, analyses of rice mitochondria suggest that the side pathway for glycolate oxidation and glycine formation is conserved in monocotyledoneous plants. It is concluded that the photorespiratory pathway from green algae has been functionally conserved in higher plants. PMID:22268146

  4. Protective Effect of Plantago major Extract against t-BOOH-Induced Mitochondrial Oxidative Damage and Cytotoxicity.

    PubMed

    Mello, Joyce C; Gonzalez, Mariano V D; Moraes, Vivian W R; Prieto, Tatiana; Nascimento, Otaciro R; Rodrigues, Tiago

    2015-01-01

    Plantago major L. produces several chemical substances with anti-inflammatory and analgesic activities and its use in the treatment of oral and throat inflammation in popular medicine is well described. In this study, the antioxidant potential of the Plantago major hydroethanolic extract was screened and its protective action was evaluated against t-BOOH-induced oxidative stress. The extract was obtained by fractionated percolation using 50% ethanolic solution and, after drying, suspended in dimethyl sulfoxide. The chromatographic profile of crude extract was obtained with the identification of some phytochemical markers and the total phenols and flavonoids were quantified. The scavenger activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) radicals was determined and the antioxidant activity in biological systems was evaluated in isolated rat liver mitochondria and HepG2 cells. The extract exhibited a significant free radical scavenger activity at 0.1 mg/mL, and decreased the ROS (reactive oxygen species) generation in succinate-energized mitochondria. Such an effect was associated with the preservation of the intrinsic antioxidant defenses (reduced glutathione and NAD(P)H) against the oxidation by t-BOOH, and also to the protection of membranes from lipid oxidation. The cytoprotective effect of PmHE against t-BOOH induced cell death was also shown. These findings contribute to the understanding of the health benefits attributed to P. major. PMID:26404215

  5. Exhaled nitric oxide monitoring by quantum cascade laser: comparison with chemiluminescent and electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Mandon, Julien; Högman, Marieann; Merkus, Peter J. F. M.; van Amsterdam, Jan; Harren, Frans J. M.; Cristescu, Simona M.

    2012-01-01

    Fractional exhaled nitric oxide (FENO) is considered an indicator in the diagnostics and management of asthma. In this study we present a laser-based sensor for measuring FENO. It consists of a quantum cascade laser (QCL) combined with a multi-pass cell and wavelength modulation spectroscopy for the detection of NO at the sub-part-per-billion by volume (ppbv, 1∶10-9) level. The characteristics and diagnostic performance of the sensor were assessed. A detection limit of 0.5 ppbv was demonstrated with a relatively simple design. The QCL-based sensor was compared with two market sensors, a chemiluminescent analyzer (NOA 280, Sievers) and a portable hand-held electrochemical analyzer (MINO®, Aerocrine AB, Sweden). FENO from 20 children diagnosed with asthma and treated with inhaled corticosteroids were measured. Data were found to be clinically acceptable within 1.1 ppbv between the QCL-based sensor and chemiluminescent sensor and within 1.7 ppbv when compared to the electrochemical sensor. The QCL-based sensor was tested on healthy subjects at various expiratory flow rates for both online and offline sampling procedures. The extended NO parameters, i.e. the alveolar region, airway wall, diffusing capacity, and flux were calculated and showed a good agreement with the previously reported values.

  6. Microwatt-Powered, Low-Cost, Printed Graphene Oxide Humidity Sensors for Distributed Network Applications

    NASA Astrophysics Data System (ADS)

    Taylor, Anthony P.; Velásquez-García, Luis F.

    2015-12-01

    We report the design, fabrication, and characterization of novel conductometric humidity sensors that employ an ultrathin film of graphene oxide (GO) nanoflakes as transducing element. The GO film is deposited with a shadow mask using an electrospray emitter operated at atmospheric pressure; no post treatments-including annealing or doping- were applied to the GO sensors. The Van der Pauw electrode structure used in the sensor had 50 μm linewidths separated by 600 μm and was fabricated with the lift-off metallization technique. In dynamic humidity tests conducted at atmospheric pressure, the sensor tracks the response of a commercial sensor and reacts to changes in humidity in less than 500 ms. There is a quadratic dependence of the relative humidity on the sensor resistance for the relative humidity range between 3% and 63%, with more than a three-fold change in resistance over the range. The power consumption of the sensor is less than 30 μW while drawing 7 μA, and less than 15 μW while drawing 5 μA. Our devices are promising candidates for deployment in a distributed sensor network due to their low cost, small size, and low power consumption.

  7. Polyaniline-graphene oxide nanocomposite sensor for quantification of calcium channel blocker levamlodipine.

    PubMed

    Jain, Rajeev; Sinha, Ankita; Khan, Ab Lateef

    2016-08-01

    A novel polyaniline-graphene oxide nanocomposite (PANI/GO/GCE) sensor has been fabricated for quantification of a calcium channel blocker drug levamlodipine (LAMP). Fabricated sensor has been characterized by electrochemical impedance spectroscopy, square wave and cyclic voltammetry, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The developed PANI/GO/GCE sensor has excellent analytical performance towards electrocatalytic oxidation as compared to PANI/GCE, GO/GCE and bare GCE. Under optimized experimental conditions, the fabricated sensor exhibits a linear response for LAMP for its oxidation over a concentration range from 1.25μgmL(-1) to 13.25μgmL(-1) with correlation coefficient of 0.9950 (r(2)), detection limit of 1.07ngmL(-1) and quantification limit of 3.57ngmL(-1). The sensor shows an excellent performance for detecting LAMP with reproducibility of 2.78% relative standard deviation (RSD). The proposed method has been successfully applied for LAMP determination in pharmaceutical formulation with a recovery from 99.88% to 101.75%. PMID:27157745

  8. Theoretical modeling of a self-referenced dual mode SPR sensor utilizing indium tin oxide film

    NASA Astrophysics Data System (ADS)

    Srivastava, Sachin K.; Verma, Roli; Gupta, Banshi D.

    2016-06-01

    A prism based dual mode SPR sensor was theoretically modeled to work as a self-referenced sensor in spectral interrogation scheme. Self-referenced sensing was achieved by sandwiching an indium tin oxide thin film in between the prism base and the metal layer. The proposed sensor possesses two plasmon modes similar to long and short range SPRs (LR- and SR-SPRs) and we have analogically used LRSPR and SRSPR for them. However, these modes do not possess usual long range character due to the losses introduced by the imaginary part of indium tin oxide (ITO) dielectric function. One of the two plasmon modes responds to change in analyte refractive index while the other remains fixed. The influence of various design parameters on the performance of the sensor was evaluated. The performance of the proposed sensor was compared, via control simulations, with established dual mode geometries utilizing silicon dioxide (SiO2), Teflon AF-1600 and Cytop. The design parameters of the established geometries were optimized to obtain self-referenced sensing operation. Trade-offs between the resonance spectral width, minimum reflectivity, shift in resonance wavelength and angle of incidence were examined for optimal design. The present study will be useful in the fabrication of self-referenced sensors where the ambient conditions are not quite stable.

  9. Gas Sensors Based on Tin Oxide Nanoparticles Synthesized from a Mini-Arc Plasma Source

    DOE PAGESBeta

    Lu, Ganhua; Huebner, Kyle L.; Ocola, Leonidas E.; Gajdardziska-Josifovska, Marija; Chen, Junhong

    2006-01-01

    Minimore » aturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS). The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM) for morphology and defects, energy dispersive X-ray (EDX) spectroscopy for elemental composition, electron diffraction for crystal structure, and X-ray photoelectron spectroscopy (XPS) for surface composition. Nonagglomerated rutile tin oxide ( SnO 2 ) nanoparticles as small as a few nm have been produced. Larger particles bear a core-shell structure with a metallic core and an oxide shell. The nanoparticles are then assembled onto an e-beam lithographically patterned interdigitated electrode using electrostatic force to fabricate the gas sensor. The nanoparticle sensor exhibits a fast response and a good sensitivity when exposed to 100 ppm ethanol vapor in air.« less

  10. Development of Resistance-Based pH Sensor Using Zinc Oxide Nanorods.

    PubMed

    Copal, Vernalyn C; Tuico, Anthony R; Mendoza, Jamie P; Ferrolino, John Paul R; Vergara, Christopher Jude T; Salvador, Arnel A; Estacio, Elmer S; Somintac, Armando S

    2016-06-01

    The resistance-based pH sensing capability of ZnO nanorods was presented in this study. Interdigitated finger structures of nickel/gold (Ni/Au) electrodes were fabricated on the substrates prior to the sensing material. The effect of varying electrode widths was also considered. Zinc oxide (ZnO) film, as seed layer, was deposited via spray pyrolysis, and zinc oxide nanorods (ZnO-NRs) were grown via low temperature chemical bath deposition. Resistance measurements have shown plausible difference in varying pH of a test solution. The sensor was found reasonably more appreciable in sensing acidic solutions. The electrode widths were also found to relay substantial consequence in the resistance-based sensor. The least electrode-width design has shown a significant increase in the sensitivity of the sensor, with higher initial resistance and greater range of response. PMID:27427677

  11. Oxidative Stress Is Not a Major Contributor to Somatic Mitochondrial DNA Mutations

    PubMed Central

    Itsara, Leslie S.; Kennedy, Scott R.; Fox, Edward J.; Yu, Selina; Hewitt, Joshua J.; Sanchez-Contreras, Monica; Cardozo-Pelaez, Fernando; Pallanck, Leo J.

    2014-01-01

    The accumulation of somatic mitochondrial DNA (mtDNA) mutations is implicated in aging and common diseases of the elderly, including cancer and neurodegenerative disease. However, the mechanisms that influence the frequency of somatic mtDNA mutations are poorly understood. To develop a simple invertebrate model system to address this matter, we used the Random Mutation Capture (RMC) assay to characterize the age-dependent frequency and distribution of mtDNA mutations in the fruit fly Drosophila melanogaster. Because oxidative stress is a major suspect in the age-dependent accumulation of somatic mtDNA mutations, we also used the RMC assay to explore the influence of oxidative stress on the somatic mtDNA mutation frequency. We found that many of the features associated with mtDNA mutations in vertebrates are conserved in Drosophila, including a comparable somatic mtDNA mutation frequency (∼10−5), an increased frequency of mtDNA mutations with age, and a prevalence of transition mutations. Only a small fraction of the mtDNA mutations detected in young or old animals were G∶C to T∶A transversions, a signature of oxidative damage, and loss-of-function mutations in the mitochondrial superoxide dismutase, Sod2, had no detectable influence on the somatic mtDNA mutation frequency. Moreover, a loss-of-function mutation in Ogg1, which encodes a DNA repair enzyme that removes oxidatively damaged deoxyguanosine residues (8-hydroxy-2′-deoxyguanosine), did not significantly influence the somatic mtDNA mutation frequency of Sod2 mutants. Together, these findings indicate that oxidative stress is not a major cause of somatic mtDNA mutations. Our data instead suggests that somatic mtDNA mutations arise primarily from errors that occur during mtDNA replication. Further studies using Drosophila should aid in the identification of factors that influence the frequency of somatic mtDNA mutations. PMID:24516391

  12. Oxidative stress is not a major contributor to somatic mitochondrial DNA mutations.

    PubMed

    Itsara, Leslie S; Kennedy, Scott R; Fox, Edward J; Yu, Selina; Hewitt, Joshua J; Sanchez-Contreras, Monica; Cardozo-Pelaez, Fernando; Pallanck, Leo J

    2014-02-01

    The accumulation of somatic mitochondrial DNA (mtDNA) mutations is implicated in aging and common diseases of the elderly, including cancer and neurodegenerative disease. However, the mechanisms that influence the frequency of somatic mtDNA mutations are poorly understood. To develop a simple invertebrate model system to address this matter, we used the Random Mutation Capture (RMC) assay to characterize the age-dependent frequency and distribution of mtDNA mutations in the fruit fly Drosophila melanogaster. Because oxidative stress is a major suspect in the age-dependent accumulation of somatic mtDNA mutations, we also used the RMC assay to explore the influence of oxidative stress on the somatic mtDNA mutation frequency. We found that many of the features associated with mtDNA mutations in vertebrates are conserved in Drosophila, including a comparable somatic mtDNA mutation frequency (∼10(-5)), an increased frequency of mtDNA mutations with age, and a prevalence of transition mutations. Only a small fraction of the mtDNA mutations detected in young or old animals were G∶C to T∶A transversions, a signature of oxidative damage, and loss-of-function mutations in the mitochondrial superoxide dismutase, Sod2, had no detectable influence on the somatic mtDNA mutation frequency. Moreover, a loss-of-function mutation in Ogg1, which encodes a DNA repair enzyme that removes oxidatively damaged deoxyguanosine residues (8-hydroxy-2'-deoxyguanosine), did not significantly influence the somatic mtDNA mutation frequency of Sod2 mutants. Together, these findings indicate that oxidative stress is not a major cause of somatic mtDNA mutations. Our data instead suggests that somatic mtDNA mutations arise primarily from errors that occur during mtDNA replication. Further studies using Drosophila should aid in the identification of factors that influence the frequency of somatic mtDNA mutations. PMID:24516391

  13. A Room Temperature Nitric Oxide Gas Sensor Based on a Copper-Ion-Doped Polyaniline/Tungsten Oxide Nanocomposite

    PubMed Central

    Wang, Shih-Han; Shen, Chi-Yen; Su, Jian-Ming; Chang, Shiang-Wen

    2015-01-01

    The parts-per-billion-level nitric oxide (NO) gas sensing capability of a copper-ion-doped polyaniline/tungsten oxide nanocomposite (Cu2+/PANI/WO3) film coated on a Rayleigh surface acoustic wave device was investigated. The sensor developed in this study was sensitive to NO gas at room temperature in dry nitrogen. The surface morphology, dopant distribution, and electric properties were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, and Hall effect measurements, respectively. The Cu2+/PANI/WO3 film exhibited high NO gas sensitivity and selectivity as well as long-term stability. At 1 ppb of NO, a signal with a frequency shift of 4.3 ppm and a signal-to-noise ratio of 17 was observed. The sensor exhibited distinct selectivity toward NO gas with no substantial response to O2, NH3 and CO2 gases. PMID:25811223

  14. Chemiresistive gas sensors employing solution-processed metal oxide quantum dot films

    SciTech Connect

    Liu, Huan Xu, Songman; Li, Min; Shao, Gang; Zhang, Wenkai; Wei, Wendian; He, Mingze; Song, Huaibing; Gao, Liang; Song, Haisheng; Tang, Jiang

    2014-10-20

    We report low-temperature chemiresistive gas sensors based on tin oxide colloidal quantum dots (CQDs), in which the benefits of CQDs such as extremely small crystal size, solution-processability, and tunable surface activity are exploited to enhance the gas-sensing effect. The sensor fabrication is simply employing spin-coating followed by a solid-state ligand exchange treatment at room temperature in air ambient. The optimal gas sensor exhibited rapid and significant decrease in resistance upon H{sub 2}S gas exposure when operated at 70 °C, and it was fully recoverable upon gas release. We observed a power law correlation between the sensor response and H{sub 2}S gas concentration, and the sensing mechanism was discussed using the completely depletion model with a flat band diagram.

  15. Deodorant Characteristics of Breath Odor Occurred from Favorite Foods Using Metal Oxide Gas Sensors

    NASA Astrophysics Data System (ADS)

    Seto, Shuichi; Oyabu, Takashi; Cai, Kuiqian; Katsube, Teruaki

    Three types of metal oxide gas sensors were adopted to detect the degree of breath odor. Various sorts of information are included in the odor. Each sensor has different sensitivities to gaseous chemical substances and the sensitivities also differ according to human behaviors, for example taking a meal, teeth-brushing and drinking something. There is also a possibility that the sensor can detect degrees of daily fatigue. Sensor sensitivities were low for the expiration of the elderly when the subject drank green tea. In this study, it is thought that the odor system can be incorporated into a healing robot. The robot can communicate with the elderly using several words and also connect to Internet. As for the results, the robot can identify basic human behaviors and recognize the living conditions of the resident. Moreover, it can also execute a kind of information retrieval through the Internet. Therefore, it has healing capability for the aged, and can also receive and transmit information.

  16. Is Nitrate radical a major oxidant of elemental mercury in the atmosphere?

    NASA Astrophysics Data System (ADS)

    Luria, M.; Obrist, D.; Peleg, M.; Matveev, V.; Tas, E.

    2012-12-01

    Nitrate radicals (NO3) play a major role in the nighttime atmospheric oxidation of VOC. The radicals are produced throughout the reaction between O3 and NO2 and are removed via a sequence of homogeneous and heterogeneous reactions. Nitrate radicals reach significant levels only at night and mostly under conditions of low humidity (Asaf et al, 2009, 2010 and references therein). Because of its very high photolysis rate, daytime levels are extremely low, and thus are insignificant in atmospheric oxidation processes. The reaction of Hg with NO3 has not been sufficiently investigated; a value of 4x10-15 cm3 molec-1 s-1 (Sommar et al 1997) is most commonly used. Its importance for the atmospheric mercury chemistry was discussed by Mao el al., (2008) who examined the potential oxidation of mercury by the most common atmospheric oxidants applying the best available rate coefficients. According to their report, the uncertainty in the oxidation capacity of O3 is very large (a factor of 20). If the lower limit is applied, as suggested by Calvert and Lindberg (2005), oxidation by O3 is nearly negligible and, NO3 radicals, at typical nighttime levels, are responsible for the bulk of the Hg oxidation. Obviously this is true in the absence of reactive halogen compounds (RHC, Peleg et al., 2008). The most common method of measuring nitrate radicals is the differential optical absorption system (DOAS) technique. In a recent study performed at an urban semi arid site (Jerusalem, Israel; Asaf et al., 2009, 2010) it was found that nitrate levels could reach levels of up to 800 ppt, significantly higher than ever reported in the past. They further demonstrated that under the conditions prevailed; nitrate radicals are at least as important as the hydroxyl radicals in the overall oxidation capacity of VOC in the atmosphere. Side by side measurements of Nitrate radicals using the DOAS technique and speciated mercury compounds (Total, Particulate and Reactive gaseous) were performed

  17. Evaluation of a nitric-oxide-compensated carbon monoxide fire sensor

    SciTech Connect

    Litton, C.D.; Conti, R.S. ); Tabacchi, J.G.; Grace, R. )

    1993-01-01

    This US Bureau of Mines report describes the results of two large-scale tests conducted to evaluate a prototype nitric oxide (NO)-compensated carbon monoxide (CO) fire sensor, developed by Carnegie Mellon Research Institute (CMRI). In the tests, small coal fires were allowed to develop in the presence of diesel exhaust at relatively low ventilation airflows. These tests compared the response of the CMRI fire sensor with that of other fire sensors, including the Bureau's diesel-discriminating smoke detector. During the tests, CO, NO, and smoke levels were continuously monitored in order to determine the sensor alarm times and gas levels as the fire developed. The data indicated that the NO-compensated CO fire sensor was capable of suppressing the CO produced by a diesel engine and that the sensor responded reliably to the CO produced from the test fires. The tests also showed that the Bureau's diesel-discriminating smoke detector alarmed earlier than the prototype NO-compensated CO fire sensor.

  18. Zinc Oxide-Multi Walled Carbon Nanotubes Nanocomposites for Carbon Monoxide Gas Sensor Application.

    PubMed

    Alharbi, Najlaa D; Ansari, M Shahnawaze; Salah, Numan; Khayyat, Suzan A; Khan, Zishan H

    2016-01-01

    Zinc oxide (ZnO)/multi walled carbon nanotubes (MWCNTs) composites based sensors with different ZnO concentrations were fabricated to improve carbon monoxide (CO) gas sensing properties in comparison to the sensors based on bare MWCNTs. To study the structure, morphology and elemental composition of the resultant products, X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and Energy dispersive X-ray spectroscopy (EDS) were carried out. It has been observed that as the concentration of ZnO is increased more and more ZnO nanoparticles in the form of nodes get attached to MWCNTs resulting the reduction in average diameter of MWCNTs. The typical response of ZnO/MWCNTs composites based gas sensors for different CO concentrations (40, 100, 140 and 200 ppm) was studied by using very advanced sensing setup attached to I-V measurement system. Different sensing parameters such as: resistive response, sensitivity and response time were estimated at room temperature for all the fabricated sensors. The results indicated that the sensor based on nanocomposite which has 30 mg ZnO dispersed on 20 mg MWCNTs showing highest sensitivity and fastest response. All the sensors showed response times ranging from 8 to 23 seconds. The sensing mechanism behind the sensors based on ZnO/MWCNTs nanocomposites for CO gas at room temperature is also discussed in the present report. PMID:27398472

  19. Synthesis of Metal Oxide Nanomaterials for Chemical Sensors by Molecular Beam Epitaxy

    SciTech Connect

    Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai

    2013-12-01

    Since the industrial revolution, detection and monitoring of toxic matter, chemical wastes, and air pollutants has become an important environmental issue. Thus, it leads to the development of chemical sensors for various environmental applications. The recent disastrous oil spills over the near-surface of ocean due to the offshore drilling emphasize the use of chemical sensors for prevention and monitoring of the processes that might lead to these mishaps.1, 2 Chemical sensors operated on a simple principle that the sensing platform undergoes a detectable change when exposed to the target substance to be sensed. Among all the types of chemical sensors, solid state gas sensors have attracted a great deal of attention due to their advantages such as high sensitivity, greater selectivity, portability, high stability and low cost.3, 4 Especially, semiconducting metal oxides such as SnO2, TiO2, and WO3 have been widely used as the active sensing platforms in solid state gas sensors.5 For the enhanced properties of solid state gas sensors, finding new sensing materials or development of existing materials will be needed. Thus, nanostructured materials such as nanotubes,6-8 nanowires,9-11 nanorods,12-15 nanobelts,16, 17 and nano-scale thin films18-23 have been synthesized and studied for chemical sensing applications.

  20. Fabrication and Evaluation of a Graphene Oxide-Based Capacitive Humidity Sensor

    PubMed Central

    Feng, Jinfeng; Kang, Xiaoxu; Zuo, Qingyun; Yuan, Chao; Wang, Weijun; Zhao, Yuhang; Zhu, Limin; Lu, Hanwei; Chen, Juying

    2016-01-01

    In this study, a CMOS compatible capacitive humidity sensor structure was designed and fabricated on a 200 mm CMOS BEOL Line. A top Al interconnect layer was used as an electrode with a comb/serpent structure, and graphene oxide (GO) was used as sensing material. XRD analysis was done which shows that GO sensing material has a strong and sharp (002) peak at about 10.278°, whereas graphite has (002) peak at about 26°. Device level CV and IV curves were measured in mini-environments at different relative humidity (RH) level, and saturated salt solutions were used to build these mini-environments. To evaluate the potential value of GO material in humidity sensor applications, a prototype humidity sensor was designed and fabricated by integrating the sensor with a dedicated readout ASIC and display/calibration module. Measurements in different mini-environments show that the GO-based humidity sensor has higher sensitivity, faster recovery time and good linearity performance. Compared with a standard humidity sensor, the measured RH data of our prototype humidity sensor can match well that of the standard product. PMID:26938538

  1. Fabrication and Evaluation of a Graphene Oxide-Based Capacitive Humidity Sensor.

    PubMed

    Feng, Jinfeng; Kang, Xiaoxu; Zuo, Qingyun; Yuan, Chao; Wang, Weijun; Zhao, Yuhang; Zhu, Limin; Lu, Hanwei; Chen, Juying

    2016-01-01

    In this study, a CMOS compatible capacitive humidity sensor structure was designed and fabricated on a 200 mm CMOS BEOL Line. A top Al interconnect layer was used as an electrode with a comb/serpent structure, and graphene oxide (GO) was used as sensing material. XRD analysis was done which shows that GO sensing material has a strong and sharp (002) peak at about 10.278°, whereas graphite has (002) peak at about 26°. Device level CV and IV curves were measured in mini-environments at different relative humidity (RH) level, and saturated salt solutions were used to build these mini-environments. To evaluate the potential value of GO material in humidity sensor applications, a prototype humidity sensor was designed and fabricated by integrating the sensor with a dedicated readout ASIC and display/calibration module. Measurements in different mini-environments show that the GO-based humidity sensor has higher sensitivity, faster recovery time and good linearity performance. Compared with a standard humidity sensor, the measured RH data of our prototype humidity sensor can match well that of the standard product. PMID:26938538

  2. Calmodulin and STIM proteins: Two major calcium sensors in the cytoplasm and endoplasmic reticulum.

    PubMed

    Marshall, Christopher B; Nishikawa, Tadateru; Osawa, Masanori; Stathopulos, Peter B; Ikura, Mitsuhiko

    2015-04-24

    The calcium (Ca(2+)) ion is a universal signalling messenger which plays vital physiological roles in all eukaryotes. To decode highly regulated intracellular Ca(2+) signals, cells have evolved a number of sensor proteins that are ideally adapted to respond to a specific range of Ca(2+) levels. Among many such proteins, calmodulin (CaM) is a multi-functional cytoplasmic Ca(2+) sensor with a remarkable ability to interact with and regulate a plethora of structurally diverse target proteins. CaM achieves this 'multi-talented' functionality through two EF-hand domains, each with an independent capacity to bind targets, and an adaptable flexible linker. By contrast, stromal interaction molecule-1 and -2 (STIMs) have evolved for a specific role in endoplasmic reticulum (ER) Ca(2+) sensing using EF-hand machinery analogous to CaM; however, whereas CaM structurally adjusts to dissimilar binding partners, STIMs use the EF-hand machinery to self-regulate the stability of the Ca(2+) sensing domain. The molecular mechanisms underlying the Ca(2+)-dependent signal transduction by CaM and STIMs have revealed a remarkable repertoire of actions and underscore the flexibility of nature in molecular evolution and adaption to discrete Ca(2+) levels. Recent genomic sequencing efforts have uncovered a number of disease-associated mutations in both CaM and STIM1. This article aims to highlight the most recent key structural and functional findings in the CaM and STIM fields, and discusses how these two Ca(2+) sensor proteins execute their biological functions. PMID:25998729

  3. Color attributes and oxidative stability of longissimus lumborum and psoas major muscles from Nellore bulls.

    PubMed

    Canto, Anna C V C S; Costa-Lima, Bruno R C; Suman, Surendranath P; Monteiro, Maria Lucia G; Viana, Fernanda M; Salim, Ana Paula A A; Nair, Mahesh N; Silva, Teofilo J P; Conte-Junior, Carlos A

    2016-11-01

    The influence of muscle source on color stability of fresh beef from purebred Bos indicus cattle was investigated. Longissimus lumborum (LL) and psoas major (PM) muscles obtained from twelve (n=12) Nellore bull carcasses (24h post-mortem) were fabricated into 2.54-cm steaks, aerobically packaged, and stored at 4°C for nine days. Steaks were analyzed on day 0 for proximate composition and myoglobin concentration, whereas pH, instrumental color, metmyoglobin reducing activity (MRA), lipid oxidation, and protein oxidation were evaluated on days 0, 3, 6, and 9. LL steaks exhibited greater (P<0.05) redness, color stability, and MRA than PM counterparts. On the other hand, PM steaks demonstrated greater (P<0.05) myoglobin content, lipid oxidation, and protein oxidation than LL steaks. These results indicated the critical influence of muscle source on discoloration of fresh beef from Bos indicus animals and suggested the necessity to engineer muscle-specific strategies to improve color stability and marketability of beef from Bos indicus cattle. PMID:27236337

  4. Zinc oxide-chitosan nanobiocomposite for urea sensor

    NASA Astrophysics Data System (ADS)

    Solanki, Pratima R.; Kaushik, Ajeet; Ansari, Anees A.; Sumana, G.; Malhotra, B. D.

    2008-10-01

    Zinc oxide (ZnO)-chitosan (CH) nanobiocomposite film onto indium-tin-oxide (ITO) coated glass has been used to immobilize urease (Urs) and glutamate dehydrogenase (GLDH) for urea detection. The presence of ZnO nanoparticles in CH results in its increased surface area and enhanced electron transfer kinetics. The Urs-GLDH/CH-ZnO/ITO bioelectrode characterized using electrochemical, Fourier transform infrared, and scanning electron microscopy studies exhibit linearity of 5-100mg/dl, detection limit of 3mg/dl, response time of 10s, reproducibility as 20 times, and shelf life of 3months. The low Michaelis-Menten constant (Km) value (4.92mg/dl) indicates enhanced affinity of enzyme with nanobiocomposite.

  5. Micro-encapsulated sensors for in vivo assessment of the oxidative stress in aquatic organisms

    NASA Astrophysics Data System (ADS)

    Sadovoy, Anton; Teh, Cathleen; Escobar, Marco; Meglinski, Igor; Korzh, Vladimir

    2011-10-01

    Oxidative stress results from an imbalance between the production and detoxification of reactive oxygen spices (ROS). ROS are natural byproducts of normal metabolism of oxygen and have important roles in cell signaling and homeostasis. Many heart related diseases like heart failure and myocardial infarction develop as a result of oxidative stress. Current treatment cannot improve the progressive decline in heart function experienced by all patients. Therefore heart failure is the cause of around 25% of all deaths in the Asia Pacific region. Thus any step taken to address the oxidative stress problem is essential for enhancing human health and improve their quality of life. Current approach is dedicated to develop micron-size oxidation stress-sensor for in-vivo measuring level of ROS in KillerRed expressing transgenic zebrafish larvae. Central to our investigation is the light-inducible heart failure animal model we developed in zebrafish that expressed KillerRed in the heart. By utilizing the photosensitizer properties of KillerRed to produce ROS upon green light illumination, heart failure can be repeatedly induced in a non-invasive manner. Importantly, the use of this biological platform permits the development of physiologically sensitive ROS sensor and identifies efficient antioxidants that improve heart contractility. The biosensor approach is based on utilizing biocompatible polyelectrolyte microcapsules as a carry of fluorescent dyes sensitive to amount of reactive oxygen spices. Microcapsule prevents dye diffusion in tissue that makes use toxic dyes possible. Microcapsule's wall is permeable for environment with size less than 500 Da. The oxidation stress-sensors are injected directly in zebrafish pericardium with further circulation along blood system. Detecting of ROS is obtained by using laser scanning microscopy by illuminating oxidation stress-sensors and detecting changing excitation signal from the fluorescent dye.

  6. Micro-encapsulated sensors for in vivo assessment of the oxidative stress in aquatic organisms

    NASA Astrophysics Data System (ADS)

    Sadovoy, Anton; Teh, Cathleen; Escobar, Marco; Meglinski, Igor; Korzh, Vladimir

    2012-03-01

    Oxidative stress results from an imbalance between the production and detoxification of reactive oxygen spices (ROS). ROS are natural byproducts of normal metabolism of oxygen and have important roles in cell signaling and homeostasis. Many heart related diseases like heart failure and myocardial infarction develop as a result of oxidative stress. Current treatment cannot improve the progressive decline in heart function experienced by all patients. Therefore heart failure is the cause of around 25% of all deaths in the Asia Pacific region. Thus any step taken to address the oxidative stress problem is essential for enhancing human health and improve their quality of life. Current approach is dedicated to develop micron-size oxidation stress-sensor for in-vivo measuring level of ROS in KillerRed expressing transgenic zebrafish larvae. Central to our investigation is the light-inducible heart failure animal model we developed in zebrafish that expressed KillerRed in the heart. By utilizing the photosensitizer properties of KillerRed to produce ROS upon green light illumination, heart failure can be repeatedly induced in a non-invasive manner. Importantly, the use of this biological platform permits the development of physiologically sensitive ROS sensor and identifies efficient antioxidants that improve heart contractility. The biosensor approach is based on utilizing biocompatible polyelectrolyte microcapsules as a carry of fluorescent dyes sensitive to amount of reactive oxygen spices. Microcapsule prevents dye diffusion in tissue that makes use toxic dyes possible. Microcapsule's wall is permeable for environment with size less than 500 Da. The oxidation stress-sensors are injected directly in zebrafish pericardium with further circulation along blood system. Detecting of ROS is obtained by using laser scanning microscopy by illuminating oxidation stress-sensors and detecting changing excitation signal from the fluorescent dye.

  7. Zinc-oxide nanorod/copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin

    2014-11-01

    A novel p- n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current-voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 °C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 °C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 °C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  8. Leukocyte Telomere Length in Major Depression: Correlations with Chronicity, Inflammation and Oxidative Stress - Preliminary Findings

    PubMed Central

    Wolkowitz, Owen M.; Mellon, Synthia H.; Epel, Elissa S.; Lin, Jue; Dhabhar, Firdaus S.; Su, Yali; Reus, Victor I.; Rosser, Rebecca; Burke, Heather M.; Kupferman, Eve; Compagnone, Mariana; Nelson, J. Craig; Blackburn, Elizabeth H.

    2011-01-01

    Background Depression is associated with an unusually high rate of aging-related illnesses and early mortality. One aspect of “accelerated aging” in depression may be shortened leukocyte telomeres. When telomeres critically shorten, as often occurs with repeated mitoses or in response to oxidation and inflammation, cells may die. Indeed, leukocyte telomere shortening predicts early mortality and medical illnesses in non-depressed populations. We sought to determine if leukocyte telomeres are shortened in Major Depressive Disorder (MDD), whether this is a function of lifetime depression exposure and whether this is related to putative mediators, oxidation and inflammation. Methodology Leukocyte telomere length was compared between 18 unmedicated MDD subjects and 17 controls and was correlated with lifetime depression chronicity and peripheral markers of oxidation (F2-isoprostane/Vitamin C ratio) and inflammation (IL-6). Analyses were controlled for age and sex. Principal Findings The depressed group, as a whole, did not differ from the controls in telomere length. However, telomere length was significantly inversely correlated with lifetime depression exposure, even after controlling for age (p<0.05). Average telomere length in the depressed subjects who were above the median of lifetime depression exposure (≥9.2 years' cumulative duration) was 281 base pairs shorter than that in controls (p<0.05), corresponding to approximately seven years of “accelerated cell aging.” Telomere length was inversely correlated with oxidative stress in the depressed subjects (p<0.01) and in the controls (p<0.05) and with inflammation in the depressed subjects (p<0.05). Conclusions These preliminary data indicate that accelerated aging at the level of leukocyte telomeres is proportional to lifetime exposure to MDD. This might be related to cumulative exposure to oxidative stress and inflammation in MDD. This suggest that telomere shortening does not antedate depression and is

  9. The Genome of Nitrospina gracilis Illuminates the Metabolism and Evolution of the Major Marine Nitrite Oxidizer

    PubMed Central

    Lücker, Sebastian; Nowka, Boris; Rattei, Thomas; Spieck, Eva; Daims, Holger

    2012-01-01

    In marine systems, nitrate is the major reservoir of inorganic fixed nitrogen. The only known biological nitrate-forming reaction is nitrite oxidation, but despite its importance, our knowledge of the organisms catalyzing this key process in the marine N-cycle is very limited. The most frequently encountered marine NOB are related to Nitrospina gracilis, an aerobic chemolithoautotrophic bacterium isolated from ocean surface waters. To date, limited physiological and genomic data for this organism were available and its phylogenetic affiliation was uncertain. In this study, the draft genome sequence of N. gracilis strain 3/211 was obtained. Unexpectedly for an aerobic organism, N. gracilis lacks classical reactive oxygen defense mechanisms and uses the reductive tricarboxylic acid cycle for carbon fixation. These features indicate microaerophilic ancestry and are consistent with the presence of Nitrospina in marine oxygen minimum zones. Fixed carbon is stored intracellularly as glycogen, but genes for utilizing external organic carbon sources were not identified. N. gracilis also contains a full gene set for oxidative phosphorylation with oxygen as terminal electron acceptor and for reverse electron transport from nitrite to NADH. A novel variation of complex I may catalyze the required reverse electron flow to low-potential ferredoxin. Interestingly, comparative genomics indicated a strong evolutionary link between Nitrospina, the nitrite-oxidizing genus Nitrospira, and anaerobic ammonium oxidizers, apparently including the horizontal transfer of a periplasmically oriented nitrite oxidoreductase and other key genes for nitrite oxidation at an early evolutionary stage. Further, detailed phylogenetic analyses using concatenated marker genes provided evidence that Nitrospina forms a novel bacterial phylum, for which we propose the name Nitrospinae. PMID:23439773

  10. Origin of major donor states in In–Ga–Zn oxide

    SciTech Connect

    Nakashima, Motoki; Oota, Masashi; Ishihara, Noritaka; Nonaka, Yusuke; Hirohashi, Takuya; Takahashi, Masahiro; Yamazaki, Shunpei; Obonai, Toshimitsu; Hosaka, Yasuharu; Koezuka, Junichi

    2014-12-07

    To clarify the origin of the major donor states in indium gallium zinc oxide (IGZO), we report measurement results and an analysis of several physical properties of IGZO thin films. Specifically, the concentration of H atoms and O vacancies (V{sub O}), carrier concentration, and conductivity are investigated by hard X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, thermal desorption spectroscopy, and Hall effect measurements. The results of these experiments suggest that the origin of major donor states is H occupancy of V{sub O} sites. Furthermore, we use first-principles calculations to investigate the influence of the coexistence of V{sub O} and H in crystalline InGaO{sub 3}(ZnO){sub m} (m = 1). The results indicate that when H is trapped in V{sub O}, a stable complex is created that serves as a shallow-level donor.

  11. Origin of major donor states in In-Ga-Zn oxide

    NASA Astrophysics Data System (ADS)

    Nakashima, Motoki; Oota, Masashi; Ishihara, Noritaka; Nonaka, Yusuke; Hirohashi, Takuya; Takahashi, Masahiro; Yamazaki, Shunpei; Obonai, Toshimitsu; Hosaka, Yasuharu; Koezuka, Junichi

    2014-12-01

    To clarify the origin of the major donor states in indium gallium zinc oxide (IGZO), we report measurement results and an analysis of several physical properties of IGZO thin films. Specifically, the concentration of H atoms and O vacancies (VO), carrier concentration, and conductivity are investigated by hard X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, thermal desorption spectroscopy, and Hall effect measurements. The results of these experiments suggest that the origin of major donor states is H occupancy of VO sites. Furthermore, we use first-principles calculations to investigate the influence of the coexistence of VO and H in crystalline InGaO3(ZnO)m (m = 1). The results indicate that when H is trapped in VO, a stable complex is created that serves as a shallow-level donor.

  12. A review of peripheral biomarkers in major depression: the potential of inflammatory and oxidative stress biomarkers.

    PubMed

    Lopresti, Adrian L; Maker, Garth L; Hood, Sean D; Drummond, Peter D

    2014-01-01

    Biomarkers are regularly used in medicine to provide objective indicators of normal biological processes, pathogenic processes or pharmacological responses to therapeutic interventions, and have proved invaluable in expanding our understanding and treatment of medical diseases. In the field of psychiatry, assessment and treatment has, however, primarily relied on patient interviews and questionnaires for diagnostic and treatment purposes. Biomarkers in psychiatry present a promising addition to advance the diagnosis, treatment and prevention of psychiatric diseases. This review provides a summary on the potential of peripheral biomarkers in major depression with a specific emphasis on those related to inflammatory/immune and oxidative stress/antioxidant defences. The complexities associated with biomarker assessment are reviewed specifically around their collection, analysis and interpretation. Focus is placed on the potential of peripheral biomarkers to aid diagnosis, predict treatment response, enhance treatment-matching, and prevent the onset or relapse of major depression. PMID:24104186

  13. Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks

    NASA Astrophysics Data System (ADS)

    Ponzoni, Andrea; Comini, Elisabetta; Sberveglieri, Giorgio; Zhou, Jun; Deng, Shao Zhi; Xu, Ning Sheng; Ding, Yong; Wang, Zhong Lin

    2006-05-01

    Three-dimensional (3D) tungsten oxide nanowire networks have been demonstrated as a high-surface area material for building ultrasensitive and highly selective gas sensors. Utilizing the 3D hierarchical structure of the networks, high sensitivity has been obtained towards NO2, revealing the capability of the material to detect concentration as low as 50ppb (parts per billion). The distinctive selectivity at different working temperatures is observed for various gases. The results highlight that the nanobelts (nanowires) technology can be adopted for the development of gas sensors with performances suitable for practical applications.

  14. Mars Atmospheric Oxidant Sensor (MAOS): An In-Situ Heterogeneous Chemistry Analysis

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Quinn, R. C.; Grunthaner, F. J.; Hecht, M. H.; Buehler, M. G.; McKay, C. P.; Ricco, A. J.

    2001-01-01

    We describe a chemometric array sensor, the Mars Atmospheric Oxidant Sensor (MAOS, pronounced "mouse '') that is designed measure the oxidation rate of thin films on the martian surface. We select films that are sensitive to particular types of oxidants, that represent key elements in the martian soil, or that emulate prebiotic materials. Concern that naturally arising martian oxidants may have destroyed evidence of ancient life on Mars was raised by the Viking mission in the 1970's. The possibility that oxidants may limit the viability of biologica1 habitats is particularly timely in light of recent suggestions of contemporary flowing water on Mars. By controlling the temperature of the films, as well as their exposure to dust and ultraviolet light, MAOS will discriminate among leading hypotheses for oxidant production. MAOS weighs 55 grams, fits in a 6 x 7 x 2 cm envelope, and uses 250 mW power. Much of the enabling technology was developed for the MOx experiment, lost on the Russian Mars '96 mission.

  15. Detection of chlorinated methanes by tin oxide gas sensors.

    PubMed

    Park, S H; Son, Y C; Shaw, B R; Creasy, K E; Suib, S L

    2001-08-01

    Tin oxide thin films prepared by thermal oxidation of Sn films were used for the detection of chlorinated methanes (CH2Cl2, CHCl3 and CCl4). This resulted in better chemical selectivity, sensitivity, response speed and detection limit than seen with previous detectors. The temperature dependence of the sensing of 1% CCl4 gas was studied and the best sensing behavior was observed at 300 degrees C. The films showed different chemical selectivity in both speed and direction of sensing response to each gas and were stable for more than 3 weeks under operating conditions. The films showed rapid gas sensing (<40 s to reach 90% of full response) and low detection limits (< 4 ppm CCl4). The role of oxygen in the detection of chlorinated methanes and in resistance changes without chlorinated methanes was also studied. The changes at the surface of the film after gas sensing were examined using scanning electron microscopy with energy-dispersive X-ray spectrometry. PMID:11534610

  16. 3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Cao, Yang; Chen, Yong; Zhou, Yang; Huang, Qingyou

    2015-12-01

    3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N2 adsorption-desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM-1 cm-2, and a possible mechanism was also given in the paper.

  17. Shortened telomere length in white matter oligodendrocytes in major depression: potential role of oxidative stress.

    PubMed

    Szebeni, Attila; Szebeni, Katalin; DiPeri, Timothy; Chandley, Michelle J; Crawford, Jessica D; Stockmeier, Craig A; Ordway, Gregory A

    2014-10-01

    Telomere shortening is observed in peripheral mononuclear cells from patients with major depressive disorder (MDD). Whether this finding and its biological causes impact the health of the brain in MDD is unknown. Brain cells have differing vulnerabilities to biological mechanisms known to play a role in accelerating telomere shortening. Here, two glia cell populations (oligodendrocytes and astrocytes) known to have different vulnerabilities to a key mediator of telomere shortening, oxidative stress, were studied. The two cell populations were separately collected by laser capture micro-dissection of two white matter regions shown previously to demonstrate pathology in MDD patients. Cells were collected from brain donors with MDD at the time of death and age-matched psychiatrically normal control donors (N = 12 donor pairs). Relative telomere lengths in white matter oligodendrocytes, but not astrocytes, from both brain regions were significantly shorter for MDD donors as compared to matched control donors. Gene expression levels of telomerase reverse transcriptase were significantly lower in white matter oligodendrocytes from MDD as compared to control donors. Likewise, the gene expression of oxidative defence enzymes superoxide dismutases (SOD1 and SOD2), catalase (CAT) and glutathione peroxidase (GPX1) were significantly lower in oligodendrocytes from MDD as compared to control donors. No such gene expression changes were observed in astrocytes from MDD donors. These findings suggest that attenuated oxidative stress defence and deficient telomerase contribute to telomere shortening in oligodendrocytes in MDD, and suggest an aetiological link between telomere shortening and white matter abnormalities previously described in MDD. PMID:24967945

  18. Parallels between major depressive disorder and Alzheimer's disease: role of oxidative stress and genetic vulnerability.

    PubMed

    Rodrigues, Roberto; Petersen, Robert B; Perry, George

    2014-10-01

    The thesis of this review is that oxidative stress is the central factor in major depressive disorder (MDD) and Alzheimer's disease (AD). The major elements involved are inflammatory cytokines, the hypothalamic-pituitary axis, the hypothalamic-pituitary gonadal, and arginine vasopressin systems, which induce glucocorticoid and "oxidopamatergic" cascades when triggered by psychosocial stress, severe life-threatening events, and mental-affective and somatic diseases. In individuals with a genomic vulnerability to depression, these cascades may result in chronic depression-anxiety-stress spectra, resulting in MDD and other known depressive syndromes. In contrast, in subjects with genomic vulnerability to AD, oxidative stress-induced brain damage triggers specific antioxidant defenses, i.e., increased levels of amyloid-β (Aβ) and aggregation of hyper-phosphorylated tau, resulting in paired helical filaments and impaired functions related to the ApoEε4 isoform, leading to complex pathological cascades culminating in AD. Surprisingly, all the AD-associated molecular pathways mentioned in this review have been shown to be similar or analogous to those found in depression, including structural damage, i.e., hippocampal and frontal cortex atrophy. Other interacting molecular signals, i.e., GSK-3β, convergent survival factors (brain-derived neurotrophic factor and heat shock proteins), and transition redox metals are also mentioned to emphasize the vast array of intermediates that could interact via comparable mechanisms in both MDD and AD. PMID:24927694

  19. Redox Active Thiol Sensors of Oxidative and Nitrosative Stress

    PubMed Central

    2012-01-01

    Abstract Significance: The reactivity of the thiol in the side chain of cysteines is exploited by bacterial regulatory proteins that sense and respond to reactive oxygen and nitrogen species. Recent Advances: Charged residues and helix dipoles diminish the pKa of redox active cysteines, resulting in a thiolate that is stabilized by neighboring polar amino acids. The reaction of peroxides with thiolates generates a sulfenic acid (–SOH) intermediate that often gives rise to a reversible disulfide bond. Peroxide-induced intramolecular and intermolecular disulfides and intermolecular mixed disulfides modulate the signaling activity of members of the LysR/OxyR, MarR/OhrR, and RsrA family of transcriptional regulators. Thiol-dependent regulators also help bacteria resist the nitrosative and nitroxidative stress. −SOHs, mixed disulfides, and S-nitrosothiols are some of the post-translational modifications induced by nitrogen oxides in the thiol groups of OxyR and SsrB bacterial regulatory proteins. Sulfenylation, disulfide bond formation, S-thiolation, and S-nitrosylation are reversible modifications amenable to feedback regulation by antioxidant and antinitrosative repair systems. The structural and functional changes engaged in the thiol-dependent sensing of reactive species have been adopted by several regulators to foster bacterial virulence during exposure to products of NADPH phagocyte oxidase and inducible nitric oxide synthase. Critical Issues: Investigations with LysR/OxyR, MarR/OhrR, and RsrA family members have helped in an understanding of the mechanisms by which thiols in regulatory proteins react with reactive species, thereby activating antioxidant and antinitrosative gene expression. Future Directions: To define the determinants that provide selectivity of redox active thiolates for some reactive species but not others is an important challenge for future investigations. Antioxid. Redox Signal. 17, 1201–1214. PMID:22257022

  20. A wafer-level liquid cavity integrated amperometric gas sensor with ppb-level nitric oxide gas sensitivity

    NASA Astrophysics Data System (ADS)

    Gatty, Hithesh K.; Stemme, Göran; Roxhed, Niclas

    2015-10-01

    A miniaturized amperometric nitric oxide (NO) gas sensor based on wafer-level fabrication of electrodes and a liquid electrolyte chamber is reported in this paper. The sensor is able to detect NO gas concentrations of the order of parts per billion (ppb) levels and has a measured sensitivity of 0.04 nA ppb-1 with a response time of approximately 12 s. A sufficiently high selectivity of the sensor to interfering gases such as carbon monoxide (CO) and to ammonia (NH3) makes it potentially relevant for monitoring of asthma. In addition, the sensor was characterized for electrolyte evaporation which indicated a sensor operation lifetime allowing approximately 200 measurements.

  1. Heterogeneous metal-oxide nanowire micro-sensor array for gas sensing

    NASA Astrophysics Data System (ADS)

    DeMeo, Dante; MacNaughton, Sam; Wang, Zhilong; Zhang, Xinjie; Sonkusale, Sameer; Vandervelde, Thomas E.

    2014-04-01

    Vanadium oxide, manganese oxide, tungsten oxide, and nickel oxide nanowires were investigated for their applicability as chemiresistive gas sensors. Nanowires have excellent surface-to-volume ratios which yield higher sensitivities than bulk materials. Sensing elements consisting of these materials were assembled in an array to create an electronic nose platform. Dielectrophoresis was used to position the nanomaterials onto a microfabricated array of electrodes, which was subsequently mounted onto a leadless chip carrier and printed circuit board for rapid testing. Samples were tested in an enclosed chamber with vapors of acetone, isopropanol, methanol, and aqueous ammonia. The change in resistance of each assembly was measured. Responses varied between nanowire compositions, each demonstrating unique and repeatable responses to different gases; this enabled direct detection of the gases from the ensemble response. Sensitivities were calculated based on the fractional resistance change in a saturated environment and ranged from 6 × 10-4 to 2 × 10-5%change ppm-1.

  2. Sniffing lung cancer related biomarkers using an oxidized graphene SAW sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Xin-Fang; Zhang, Zheng-Wei; He, Yan-Lan; Liu, Yi-Xing; Li, Shuang; Fang, Jing-Yue; Zhang, Xue-Ao; Peng, Gang

    2016-04-01

    Decane is one of the volatile organic compounds (VOCs) in human breath. Successful detection of decane in human breath has vast prospects for early lung cancer diagnosis. In this paper, a novel detecting device based on a filter surface acoustic wave (SAW) gas sensor is presented. SAW sensors coated with a thin oxidized graphene film were used to detect decane in parts per million (ppm) concentrations. Control and signal detection circuits were designed using a vector network analyzer with a detection resolution of insertion loss down to 0.0001 dB. The results showed that the SAW sensor could respond quickly with great sensitivity when exposed to 0.2 ppm decane. This device shows tremendous potential in medical diagnosis and environmental assessment.

  3. Microfluidic amperometric sensor for analysis of nitric oxide in whole blood.

    PubMed

    Hunter, Rebecca A; Privett, Benjamin J; Henley, W Hampton; Breed, Elise R; Liang, Zhe; Mittal, Rohit; Yoseph, Benyam P; McDunn, Jonathan E; Burd, Eileen M; Coopersmith, Craig M; Ramsey, J Michael; Schoenfisch, Mark H

    2013-06-18

    Standard photolithographic techniques and a nitric oxide (NO) selective xerogel polymer were utilized to fabricate an amperometric NO microfluidic sensor with low background noise and the ability to analyze NO levels in small sample volumes (~250 μL). The sensor exhibited excellent analytical performance in phosphate buffered saline, including a NO sensitivity of 1.4 pA nM(-1), a limit of detection (LOD) of 840 pM, and selectivity over nitrite, ascorbic acid, acetaminophen, uric acid, hydrogen sulfide, ammonium, ammonia, and both protonated and deprotonated peroxynitrite (selectivity coefficients of -5.3, -4.2, -4.0, -5.0, -6.0, -5.8, -3.8, -1.5, and -4.0, respectively). To demonstrate the utility of the microfluidic NO sensor for biomedical analysis, the device was used to monitor changes in blood NO levels during the onset of sepsis in a murine pneumonia model. PMID:23692300

  4. Respiration sensor made from indium tin oxide-coated conductive fabrics

    NASA Astrophysics Data System (ADS)

    Kim, Sun Hee; Lee, Joo Hyeon; Jee, Seung Hyun

    2015-02-01

    Conductive fabrics with new properties and applications have been the subject of extensive research over the last few years, with wearable respiration sensors attracting much attention. Different methods can be used to obtain fabrics that are electrically conducting, an essential property for various applications. For instance, fabrics can be coated with conductive polymers. Here, indium tin oxide (ITO)-coated conductive fabrics with cross-linked polyvinyl alcohol (C-PVA) were prepared using a doctor-blade. The C-PVA was employed in the synthesis to bind ITO on the fabrics with the highest possible mechanical strength. The feasibility of a respiration sensor prepared using the ITO-coated conductive fabric was investigated. The ITO-coated conductive fabric with the C-PVA was demonstrated to have a high potential for use in respiration sensors.

  5. Characterization of Solid Oxide Fuel Cell Components Using Electromagnetic Model-Based Sensors

    SciTech Connect

    Zilberstein, Vladimir; Craven, Chris; Goldfine, Neil

    2004-12-28

    In this Phase I SBIR, the contractor demonstrated a number of capabilities of model-based sensors such as MWM sensors and MWM-Arrays. The key results include (1) porosity/microstructure characterization for anodes, (2) potential for cathode material characterization, (3) stress measurements in nickel and cobalt, and (4) potential for stress measurements in non-magnetic materials with a ferromagnetic layer. In addition, potential applications for manufacturing quality control of nonconductive layers using interdigitated electrode dielectrometers have been identified. The results indicate that JENTEK's MWM technology can be used to significantly reduce solid oxide fuel cell production and operating costs in a number of ways. Preliminary investigations of solid oxide fuel cell health monitoring and scale-up issues to address industry needs have also been performed.

  6. Low Working-Temperature Acetone Vapor Sensor Based on Zinc Nitride and Oxide Hybrid Composites.

    PubMed

    Qu, Fengdong; Yuan, Yao; Guarecuco, Rohiverth; Yang, Minghui

    2016-06-01

    Transition-metal nitride and oxide composites are a significant class of emerging materials that have attracted great interest for their potential in combining the advantages of nitrides and oxides. Here, a novel class of gas sensing materials based on hybrid Zn3 N2 and ZnO composites is presented. The Zn3 N2 /ZnO (ZnNO) composites-based sensor exhibits selectivity and high sensitivity toward acetone vapor, and the sensitivity is dependent on the nitrogen content of the composites. The ZnNO-11.7 described herein possesses a low working temperature of 200 °C. The detection limit (0.07 ppm) is below the diabetes diagnosis threshold (1.8 ppm). In addition, the sensor shows high reproducibility and long-term stability. PMID:27145332

  7. Diode-laser-based ultraviolet absorption sensor for nitric oxide

    NASA Astrophysics Data System (ADS)

    Hanna, S. F.; Barron-Jimenez, R.; Anderson, T. N.; Lucht, R. P.; Caton, J. A.; Walther, T.

    2002-07-01

    An all-solid-state continuous-wave laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. The single-mode, tunable output of a 10-mW, 395-nm external-cavity diode laser (ECDL) is sum-frequency-mixed with the output of a 115-mW, frequency-doubled, diode-pumped Nd:YAG laser in a beta-barium-borate crystal to produce 40 nW of tunable radiation at 226.8 nm. The wavelength of the 395-nm ECDL is then scanned over NO absorption lines to produce fully resolved absorption spectra. Initial results from mixtures of NO in nitrogen in a room-temperature gas cell are discussed. The estimated NO detection limit of the system for a demonstrated absorption sensitivity of 2×10-3 is 0.2 ppm per meter of path length for 300 K gas. The estimated accuracy of the measurements is ±10%.

  8. An electrochemical acetylcholine sensor based on lichen-like nickel oxide nanostructure.

    PubMed

    Sattarahmady, N; Heli, H; Vais, R Dehdari

    2013-10-15

    Lichen-like nickel oxide nanostructure was synthesized by a simple method and characterized. The nanostructure was then applied to modify a carbon paste electrode and for the fabrication of a sensor, and the electrocatalytic oxidation of acetylcholine (ACh) on the modified electrode was investigated. The electrocatalytic efficiency of the nickel oxide nanostructure was compared with nickel micro- and nanoparticles, and the lichen-like nickel oxide nanostructure showed the highest efficiency. The mechanism and kinetics of the electrooxidation process were investigated by cyclic voltammetry, steady-state polarization curve and chronoamperometry. The catalytic rate constant and the charge transfer coefficient of ACh electrooxidation by the active nickel species, and the diffusion coefficient of ACh were reported. A sensitive and time-saving hydrodynamic amperometry method was developed for the determination of ACh. ACh was determined with a sensitivity of 392.4 mA M⁻¹ cm⁻² and a limit of detection of 26.7 μM. The sensor had the advantages of simple fabrication method without using any enzyme or reagent and immobilization step, high electrocatalytic activity, very high sensitivity, long-term stability, and antifouling surface property toward ACh and its oxidation product. PMID:23685316

  9. Mesostructured tin oxide as sensitive material for C(2)H(5)OH sensor.

    PubMed

    Wang, Yu-De; Ma, Chun-Lai; Wu, Xing-Hui; Sun, Xiao-Dan; Li, Heng-De

    2002-07-01

    Mesostructured tin oxide with high specific surface area was synthesized using cationic surfactant (cetyltrimethylammonium bromide, CTAB: CH(3)(CH(2))(15)N(+)(CH(3))(3)Br(-)) as the organic template and hydrous tin chloride (SnCl(4).5H(2)O) and NH(4)OH as the inorganic precursors under acidic conditions at ambient temperature. Thermogravimetric analysis (TGA), Fourier transformed infrared (FTIR), X-ray diffraction analysis (XRD), X-ray photoelectron spectrum (XPS) and N(2)-sorption isotherms were used to characterize the mesostructured tin oxide that was formed at room temperature as well as calcined at different temperature. The surface area of mesostructured tin oxide calcined at 400 degrees C is 136 m(2) g(-1). The indirect heating sensor using this material as sensitive body was fabricated on an alumna tube with Au electrodes and platinum wires. Electrical and sensing properties of such a sensor were investigated. It was found that the mesostructured tin oxide with high surface area had higher sensitivity to C(2)H(5)OH and selectivity to gasoline than commercial sample of polycrystalline tin(IV) oxide. PMID:18968691

  10. Oxidation of CuSn alloy nanotree and application for gas sensors

    NASA Astrophysics Data System (ADS)

    Kaneko, Naoto; Shimizu, Tomohiro; Tada, Yoshihiro; Shingubara, Shoso

    2016-06-01

    The CuSn alloy nanotree formed by DC electroplating is a true three-dimensional (3D) structure with many branches that separate the trunk perpendicularly. We carried out the oxidation of CuSn nanotrees in atmosphere in order to study the possibility of such nanotrees for application to sensors. It was confirmed that the oxygen concentration in the CuSn nanotree oxide increased with temperature and reached 40 at. % at 350 °C. The optical reflectance spectra of the CuSn nanotree oxide formed at 250 °C showed a 3–4% reflectance in the wavelength range between 400 and 900 nm, and its behavior differed from those of Cu and Sn oxides formed at 250 °C. The temperature dependence of electrical resistivity for the CuSn nanotree oxide showed a typical semiconductor behavior. By the introduction of H2, O2, N2, and CO gases into the chamber, the resistance of the CuSn nanotree oxide responded against H2 most sensitively, as well as against O2 and CO gases. From the resistance change tendency, it is strongly suggested that the CuSn nanotree oxide is a p-type semiconductor, because it shows an increase in conductivity caused by the adsorption of a negative charge such as O‑. However, the conductivity decreases with the adsorption of a positive charge such as H+. The present study suggests the high potential of the CuSn nanotree oxide as a gas sensor, since it has a very high surface-to-volume ratio.

  11. Discriminating among different tea leaves using an operating temperature-modulated tin oxide gas sensor

    NASA Astrophysics Data System (ADS)

    Rastkhadiv, Ali; Jenabi, Amin; Souri, Asma

    2016-03-01

    We report distinguishing different types of tea leaves from each other based on their aroma using a thermal shock-induced generic tin oxide gas sensor. The sensor used in this work consists of a microheater and a tin oxide pellet, both connected to outside circuitry with noble metal contacts. The heater is powered with a series of narrow high magnitude voltage impulses of predetermined thermal impacts adjusted to produce step-like temperature rises of different magnitudes on the gas sensitive pellet. The sensor is exposed to aromas collected from various types of tea leaves at different concentrations. Within 4.5 s, nine 500 ms-wide voltage pulses, each as high as 9.3 V in magnitude, are applied to the microheater. Each pulse causes a step-like temperature jump on the pellet temperature. The transient responses recorded for different tea leaves look different even after amplitude normalization. The sensor profiles are recorded, digitized, and compared with the database of previous experiences. A heuristically defined high dimensional feature vector is automatically generated for each analyte. Classifications are graphically achieved in a 3-D feature space after applying principle component analysis for dimension reduction.

  12. Origin of high photoconductive gain in fully transparent heterojunction nanocrystalline oxide image sensors and interconnects.

    PubMed

    Jeon, Sanghun; Song, Ihun; Lee, Sungsik; Ryu, Byungki; Ahn, Seung-Eon; Lee, Eunha; Kim, Young; Nathan, Arokia; Robertson, John; Chung, U-In

    2014-11-01

    A technique for invisible image capture using a photosensor array based on transparent conducting oxide semiconductor thin-film transistors and transparent interconnection technologies is presented. A transparent conducting layer is employed for the sensor electrodes as well as interconnection in the array, providing about 80% transmittance at visible-light wavelengths. The phototransistor is a Hf-In-Zn-O/In-Zn-O heterostructure yielding a high quantum-efficiency in the visible range. PMID:25219518

  13. Successive ionic layer deposition (SILD) as a new sensor technology: synthesis and modification of metal oxides

    NASA Astrophysics Data System (ADS)

    Korotcenkov, G.; Tolstoy, V.; Schwank, J.

    2006-07-01

    In this paper, we have discussed both peculiarities and advantages of successive ionic layer deposition (SILD) methods for the synthesis and modification of metal oxides. For these purposes, the results of research into the design of SILD technology suitable for preparing porous nanostructure SnO2 films and the surface modification of SnO2 films deposited by spray pyrolysis have been analysed. It has been shown that this new method can be used for the deposition of metal oxides and for noble metals. A great deal of interest in the SILD method may be generated by the method's simplicity, cheapness, and ability to deposit thin nanostructure films on rough surfaces. The SILD method essentially consists of successive treatments of both conductive and dielectric substrates by solutions of various salts, which form poorly soluble compounds at the substrate surface. It has been found that SILD technology is an effective method for improving gas sensor parameters. For example, it has been established that surface modification by Pd and Ag using SILD technology improves the gas response of SnO2-based sensors to reducing gases, and depresses their sensitivity to oxidizing gases. This article was presented at the 13th International Conference on Sensors and Their Applications, held in Chatham, Kent, on 6-7 September 2005.

  14. Nanostructured Metal Oxide Gas Sensors, a Survey of Applications Carried out at SENSOR Lab, Brescia (Italy) in the Security and Food Quality Fields

    PubMed Central

    Ponzoni, Andrea; Comini, Elisabetta; Concina, Isabella; Ferroni, Matteo; Falasconi, Matteo; Gobbi, Emanuela; Sberveglieri, Veronica; Sberveglieri, Giorgio

    2012-01-01

    In this work we report on metal oxide (MOX) based gas sensors, presenting the work done at the SENSOR laboratory of the CNR-IDASC and University of Brescia, Italy since the 80s up to the latest results achieved in recent times. In particular we report the strategies followed at SENSOR during these 30 years to increase the performance of MOX sensors through the development of different preparation techniques, from Rheotaxial Growth Thermal Oxidation (RGTO) to nanowire technology to address sensitivity and stability, and the development of electronic nose systems and pattern recognition techniques to address selectivity. We will show the obtained achievement in the context of selected applications such as safety and security and food quality control. PMID:23235445

  15. Quantum cascade laser-based sensor system for nitric oxide detection

    NASA Astrophysics Data System (ADS)

    Tittel, Frank K.; Allred, James J.; Cao, Yingchun; Sanchez, Nancy P.; Ren, Wei; Jiang, Wenzhe; Jiang, Dongfang; Griffin, Robert J.

    2015-01-01

    Sensitive detection of nitric oxide (NO) at ppbv concentration levels has an important impact in diverse fields of applications including environmental monitoring, industrial process control and medical diagnostics. For example, NO can be used as a biomarker of asthma and inflammatory lung diseases such as chronic obstructive pulmonary disease. Trace gas sensor systems capable of high sensitivity require the targeting of strong rotational-vibrational bands in the mid-IR spectral range. These bands are accessible using state-of-the-art high heat load (HHL) packaged, continuous wave (CW), distributed feedback (DFB) quantum cascade lasers (QCLs). Quartz-enhanced photoacoustic spectroscopy (QEPAS) permits the design of fast, sensitive, selective, and compact sensor systems. A QEPAS sensor was developed employing a room-temperature CW DFB-QCL emitting at 5.26 μm with an optical excitation power of 60 mW. High sensitivity is achieved by targeting a NO absorption line at 1900.08 cm-1 free of interference by H2O and CO2. The minimum detection limit of the sensor is 7.5 and 1 ppbv of NO with 1and 100 second averaging time respectively . The sensitivity of the sensor system is sufficient for detecting NO in exhaled human breath, with typical concentration levels ranging from 24.0 ppbv to 54.0 ppbv.

  16. Organic-on-silicon complementary metal-oxide-semiconductor colour image sensors.

    PubMed

    Lim, Seon-Jeong; Leem, Dong-Seok; Park, Kyung-Bae; Kim, Kyu-Sik; Sul, Sangchul; Na, Kyoungwon; Lee, Gae Hwang; Heo, Chul-Joon; Lee, Kwang-Hee; Bulliard, Xavier; Satoh, Ryu-Ichi; Yagi, Tadao; Ro, Takkyun; Im, Dongmo; Jung, Jungkyu; Lee, Myungwon; Lee, Tae-Yon; Han, Moon Gyu; Jin, Yong Wan; Lee, Sangyoon

    2015-01-01

    Complementary metal-oxide-semiconductor (CMOS) colour image sensors are representative examples of light-detection devices. To achieve extremely high resolutions, the pixel sizes of the CMOS image sensors must be reduced to less than a micron, which in turn significantly limits the number of photons that can be captured by each pixel using silicon (Si)-based technology (i.e., this reduction in pixel size results in a loss of sensitivity). Here, we demonstrate a novel and efficient method of increasing the sensitivity and resolution of the CMOS image sensors by superposing an organic photodiode (OPD) onto a CMOS circuit with Si photodiodes, which consequently doubles the light-input surface area of each pixel. To realise this concept, we developed organic semiconductor materials with absorption properties selective to green light and successfully fabricated highly efficient green-light-sensitive OPDs without colour filters. We found that such a top light-receiving OPD, which is selective to specific green wavelengths, demonstrates great potential when combined with a newly designed Si-based CMOS circuit containing only blue and red colour filters. To demonstrate the effectiveness of this state-of-the-art hybrid colour image sensor, we acquired a real full-colour image using a camera that contained the organic-on-Si hybrid CMOS colour image sensor. PMID:25578322

  17. Nitric Oxide-Related Biological Pathways in Patients with Major Depression

    PubMed Central

    Baranyi, Andreas; Amouzadeh-Ghadikolai, Omid; Rothenhäusler, Hans-Bernd; Theokas, Simon; Robier, Christoph; Baranyi, Maria; Koppitz, Michael; Reicht, Gerhard; Hlade, Peter; Meinitzer, Andreas

    2015-01-01

    Background Major depression is a well-known risk factor for cardiovascular diseases and increased mortality following myocardial infarction. However, biomarkers of depression and increased cardiovascular risk are still missing. The aim of this prospective study was to evaluate, whether nitric-oxide (NO) related factors for endothelial dysfunction, such as global arginine bioavailability, arginase activity, L-arginine/ADMA ratio and the arginine metabolites asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) might be biomarkers for depression-induced cardiovascular risk. Methods In 71 in-patients with major depression and 48 healthy controls the Global Arginine Bioavailability Ratio (GABR), arginase activity (arginine/ornithine ratio), the L-arginine/ADMA ratio, ADMA, and SDMA were determined by high-pressure liquid chromatography. Psychiatric and laboratory assessments were obtained at baseline at the time of in-patient admittance and at the time of hospital discharge. Results The ADMA concentrations in patients with major depression were significantly elevated and the SDMA concentrations were significantly decreased in comparison with the healthy controls. Even after a first improvement of depression, ADMA and SDMA levels remained nearly unchanged. In addition, after a first improvement of depression at the time of hospital discharge, a significant decrease in arginase activity, an increased L-arginine/ADMA ratio and a trend for increased global arginine bioavailability were observed. Conclusions Our study results are evidence that in patients with major depression ADMA and SDMA might be biomarkers to indicate an increased cardiovascular threat due to depression-triggered NO reduction. GABR, the L-arginine/ADMA ratio and arginase activity might be indicators of therapy success and increased NO production after remission. PMID:26581044

  18. Oxidation of diclofenac by aqueous chlorine dioxide: identification of major disinfection byproducts and toxicity evaluation.

    PubMed

    Wang, Yingling; Liu, Haijin; Liu, Guoguang; Xie, Youhai

    2014-03-01

    Diclofenac (DCF), a synthetic non-steroidal anti-inflammatory drug, is one of the most frequently detected pharmaceuticals in the aquatic environment. In this work, the mechanism and toxicity of DCF degradation by ClO2 under simulated water disinfection conditions were investigated. Experimental results indicate that rapid and significant oxidation of DCF occurred within the first few minutes; however, its mineralization process was longer than its degradation process. UPLC-MS and (1)H NMR spectroscopy were performed to identify major disinfection byproducts that were generated in three tentative degradation routes. The two main routes were based on initial decarboxylation of DCF on the aliphatic chain and hydroxylation of the phenylacetic acid moiety at the C-4 position. Subsequently, the formed aldehyde intermediates were the starting point for further multistep degradation involving decarboxylation, hydroxylation, and oxidation reactions of CN bond cleavage. The third route was based on transient preservation of chlorinated derivatives resulting from electrophilic attack by chlorine on the aromatic ring, which similarly underwent CN bond cleavage. Microtox bioassay was employed to evaluate the cytotoxicity of solutions treated by ClO2. The formation of more toxic mid-byproducts during the ClO2 disinfection process poses a potential risk to consumers. PMID:24388821

  19. Analyzing the kinetic response of tin oxide-carbon and tin oxide-CNT composites gas sensors for alcohols detection

    NASA Astrophysics Data System (ADS)

    Kamble, Vinayak; Umarji, Arun

    2015-03-01

    Tin oxide nanoparticles are synthesized using solution combustion technique and tin oxide - carbon composite thick films are fabricated with amorphous carbon as well as carbon nanotubes (CNTs). The x-ray diffraction, Raman spectroscopy and porosity measurements show that the as-synthesized nanoparticles are having rutile phase with average crystallite size ˜7 nm and ˜95 m2/g surface area. The difference between morphologies of the carbon doped and CNT doped SnO2 thick films, are characterized using scanning electron microscopy and transmission electron microscopy. The adsorption-desorption kinetics and transient response curves are analyzed using Langmuir isotherm curve fittings and modeled using power law of semiconductor gas sensors.

  20. Analyzing the kinetic response of tin oxide-carbon and tin oxide-CNT composites gas sensors for alcohols detection

    SciTech Connect

    Kamble, Vinayak Umarji, Arun

    2015-03-15

    Tin oxide nanoparticles are synthesized using solution combustion technique and tin oxide – carbon composite thick films are fabricated with amorphous carbon as well as carbon nanotubes (CNTs). The x-ray diffraction, Raman spectroscopy and porosity measurements show that the as-synthesized nanoparticles are having rutile phase with average crystallite size ∼7 nm and ∼95 m{sup 2}/g surface area. The difference between morphologies of the carbon doped and CNT doped SnO{sub 2} thick films, are characterized using scanning electron microscopy and transmission electron microscopy. The adsorption-desorption kinetics and transient response curves are analyzed using Langmuir isotherm curve fittings and modeled using power law of semiconductor gas sensors.

  1. Zinc oxide nanoparticle-doped nanoporous solgel fiber as a humidity sensor with enhanced sensitivity and large linear dynamic range.

    PubMed

    Aneesh, R; Khijwania, Sunil K

    2013-08-01

    An all-optical humidity sensor based on direct and exhaustive guided-mode attenuation in an in-house developed zinc oxide (ZnO) nanoparticle-immobilized bare solgel fiber is reported. The main objective of the present work is to enhance the sensitivity considerably while realizing a throughout linear response over a wide dynamic range. The developed sensor is characterized and performance characteristics of the sensor are compared with an optical fiber humidity sensor employing an evanescent wave absorption scheme in a straight and uniform probe, with ZnO nanoparticles-immobilized solgel film as humidity sensing cladding. Sensor response is observed to be linear over a wide dynamic range of 5%-95% relative humidity (RH). The observed linear sensitivity is 0.0103/% RH, which is ~9 times higher than the sensor employing the evanescent wave absorption scheme. In addition, sensor response is observed to be very fast, highly reversible, and repeatable. PMID:23913070

  2. NO gas sensing at room temperature using single titanium oxide nanodot sensors created by atomic force microscopy nanolithography

    PubMed Central

    Hong, Li-Yang

    2016-01-01

    Summary In this work, the fabrication of single titanium oxide nanodot (ND) resistive sensors for NO gas sensing at room temperature is reported. Two atomic force microscopy nanolithography methods, nanomachining and nano-oxidation, are employed. A single titanium nanowire (NW) is created first along with contact electrodes and a single titanium oxide ND is subsequently produced in the NW. Gas sensing is realized by the photo-activation and the photo-recovery approaches. It is found that a sensor with a smaller ND has better performance than a larger one. A response of 31%, a response time of 91 s, and a recovery time of 184 s have been achieved at a concentration of 10 ppm for a ND with a size of around 80 nm. The present work demonstrates the potential application of single metal oxide NDs for gas sensing with a performance that is comparable with that of metal oxide nanowire gas sensors. PMID:27547622

  3. BIOCHEMISTRY OF MOBILE ZINC AND NITRIC OXIDE REVEALED BY FLUORESCENT SENSORS

    PubMed Central

    Pluth, Michael D.; Tomat, Elisa; Lippard, Stephen J.

    2010-01-01

    Biologically mobile zinc and nitric oxide (NO) are two prominent examples of inorganic compounds involved in numerous signaling pathways in living systems. In the past decade, a synergy of regulation, signaling, and translocation of these two species has emerged in several areas of human physiology, providing additional incentive for developing adequate detection systems for Zn(II) ions and NO in biological specimens. Fluorescent probes for both of these bioinorganic analytes provide excellent tools for their detection, with high spatial and temporal resolution. We review the most widely used fluorescent sensors for biological zinc and nitric oxide, together with promising new developments and unmet needs of contemporary Zn(II) and NO biological imaging. The interplay between zinc and nitric oxide in the nervous, cardiovascular, and immune systems is highlighted to illustrate the contributions of selective fluorescent probes to the study of these two important bioinorganic analytes. PMID:21675918

  4. Photon synthesis of iron oxide thin films for thermo-photo-chemical sensors

    NASA Astrophysics Data System (ADS)

    Mulenko, S. A.; Petrov, Yu. N.; Gorbachuk, N. T.

    2012-09-01

    Ultraviolet photons of KrF-laser (248 nm) and of photodiode (360 nm) were used for the synthesis of iron oxide thin films with variable thickness, stoichiometry and electrical properties. The reactive pulsed laser deposition (RPLD) method was based on KrF-laser and photon-induced chemical vapor deposition (PCVD) was based on a photodiode. Deposited films demonstrated semiconductor properties with variable band gap (Eg). The film thickness (50-140 nm) and Eg depended on the laser pulse number, oxygen and iron carbonyl vapor pressure in the deposition chamber, and exposure time to the substrate surface with ultraviolet (UV) radiation. Sensing characteristics strongly depended on electrical and structural properties of such thin films. Iron oxide films were deposited on <1 0 0> Si substrate and had large thermo electromotive force (e.m.f.) coefficient (S) and high photosensitivity (F). The largest value of the S coefficient obtained by RPLD was about 1.65 mV/K in the range 270-290 K and by PCVD was about 1.5 mV/K in the range 280-322 K. The largest value F obtained by RPLD and PCVD was about 44 Vc/W and 40 Vc/W, accordingly, for white light at power density (I ≅ 0.006 W/cm2). It was shown that the S coefficient and F strongly depended on Eg. Moreover, these films were tested as chemical sensors: the largest sensitivity of NO molecules was at the level of 3 × 1012 cm-3. Our results showed that RPLD and PCVD were used to synthesize semiconductor iron oxide thin films with different sensing properties. So iron oxide thin films synthesized by UV photons are up-to-date materials for multi-parameter sensors: thermo-photo-chemical sensors operating at moderate temperature.

  5. Temperature-modulated graphene oxide resistive humidity sensor for indoor air quality monitoring

    NASA Astrophysics Data System (ADS)

    de Luca, A.; Santra, S.; Ghosh, R.; Ali, S. Z.; Gardner, J. W.; Guha, P. K.; Udrea, F.

    2016-02-01

    In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary-metal-oxide-semiconductor (CMOS) micro-electro-mechanical-system (MEMS) micro-hotplate technology for the monitoring and control of indoor air quality (IAQ). GO powder is obtained by chemical exfoliation, dispersed in water and deposited via ink-jet printing onto a low power micro-hotplate. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) show the typical layered and wrinkled morphology of the GO. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red (FTIR) spectroscopy indicate that the GO flakes possess a significant number of oxygen containing functional groups (epoxy, carbonyl, hydroxyl) extremely attractive for humidity detection. Electro-thermal characterisation of the micro-hotplates shows a thermal efficiency of 0.11 mW per °C, resulting in a sensor DC power consumption of only 2.75 mW at 50 °C. When operated in an isothermal mode, the sensor response is detrimentally affected by significant drift, hysteretic behaviour, slow response/recovery times and hence poor RH level discrimination. Conversely, a temperature modulation technique coupled with a differential readout methodology results in a significant reduction of the sensor drift, improved linear response with a sensitivity of 0.14 mV per %, resolution below 5%, and a maximum hysteresis of +/-5% response and recovery times equal to 189 +/- 49 s and 89 +/- 5 s, respectively. These performance parameters satisfy current IAQ monitoring requirements. We have thus demonstrated the effectiveness of integrating GO on a micro-hotplate CMOS-compatible platform enabling temperature modulation schemes to be easily applied in order to achieve compact, low power, low cost humidity IAQ monitoring.In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary-metal-oxide

  6. Nano-porous indium oxide transistor sensor for the detection of ethanol vapours at room temperature

    NASA Astrophysics Data System (ADS)

    Seetha, M.; Mangalaraj, D.

    2012-01-01

    Porous indium oxide thin film prepared by the dip coating technique has been used in the construction of a field effect transistor. The coating solution was prepared from indium chloride precursor. The average particle size of the dip coated thin film was found to be 25 nm. Scanning electron microscopic images show the porous nature of the film, and the root mean square roughness of the film calculated using atomic force microscope was 24 nm. A transistor has been constructed by evaporating metal Aluminium as source and drain electrodes on the indium oxide active layer and employing the silicon substrate itself as a gate. The sensor response of the constructed transistor was tested with ethanol, ammonia and acetone vapours. The sensor showed good response to ethanol vapours even at 5-ppm level, and the time for response and recovery of the gas was nearly 1 min. Response to ammonia and acetone was comparatively poor. When the gate voltage was increased from 0 to 300 mV, a considerable increase in the source-drain current was observed. As the temperature of the sensing element increased, response to ethanol vapours also increased. There was nearly a linear variation in the transistor response for 100 ppm of ethanol vapours when the gate voltage was swept from 0 to 300 mV. The sensor response of the transistor increases with the gas concentration. The constructed transistor was found to be selectively sensitive to ethanol; therefore it can be implemented to work as a breath alcohol checker.

  7. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    NASA Astrophysics Data System (ADS)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  8. Fast Response and High Sensitivity ZnO/glass Surface Acoustic Wave Humidity Sensors Using Graphene Oxide Sensing Layer

    PubMed Central

    Xuan, Weipeng; He, Mei; Meng, Nan; He, Xingli; Wang, Wenbo; Chen, Jinkai; Shi, Tianjin; Hasan, Tawfique; Xu, Zhen; Xu, Yang; Luo, J. K.

    2014-01-01

    We report ZnO/glass surface acoustic wave (SAW) humidity sensors with high sensitivity and fast response using graphene oxide sensing layer. The frequency shift of the sensors is exponentially correlated to the humidity change, induced mainly by mass loading effect rather than the complex impedance change of the sensing layer. The SAW sensors show high sensitivity at a broad humidity range from 0.5%RH to 85%RH with < 1 sec rise time. The simple design and excellent stability of our GO-based SAW humidity sensors, complemented with full humidity range measurement, highlights their potential in a wide range of applications. PMID:25425458

  9. Effect of temperature on oxidative stress induced by lead in the leaves of Plantago major L.

    NASA Astrophysics Data System (ADS)

    Balakhnina, Tamara I.; Borkowska, Aneta; Nosalewicz, Magdalena; Nosalewicz, Artur; Włodarczyk, Teresa M.; Kosobryukhov, Anatoly A.; Fomina, Irina R.

    2016-07-01

    Fluctuation of the summer day-time temperatures in the mid-latitudes in a range from 16 to 30°C should not have irreversible negative effects on plants, but may influence metabolic processes including the oxidative stress. To test the effect of moderately high temperature on oxidative stress induced by lead in the leaves of Plantago major L.; the plants were incubated in a water solution of 0, 150, 450, and 900 μM Pb (NO3)2 at 20 and 28°C. Plant reactions were evaluated by the content of thiobarbituric acid reactive substances and ascorbate peroxidase and glutathione reductase activities in leaves after 2, 24, 48, and 72 h. The Pb concentration in the leaves rose with the increase in the Pb content and was higher at 20°C. The increase in stomatal resistance caused by Pb was higher at 28°C. The contents of TBARS increased after 2 h of plant exposure to Pb and the increase was the highest at 900 μM Pb, 28°C. The AsP activity increased up to 50% after 24 h of Pb-treatment at 28°C; the highest increase in glutathione reductase activity was observed after 72 h at 20°C. Thus, the moderately high temperature 28°C compared with optimal 20°C caused a decrease in Pb accumulation in Plantago leaves but amplified the negative effects of lead, especially in the beginning of stress development.

  10. Peptide-assembled graphene oxide as a fluorescent turn-on sensor for lipopolysaccharide (endotoxin) detection.

    PubMed

    Lim, Seng Koon; Chen, Peng; Lee, Fook Loy; Moochhala, Shabbir; Liedberg, Bo

    2015-09-15

    Lipopolysaccharide (LPS) is a toxic inflammatory stimulator released from the outer cell membrane of Gram-negative bacteria, known to be directly related to, for example, septic shock, that causes millions of casualties annually. This number could potentially be lowered significantly if specific, sensitive, and more simply applicable LPS biosensors existed. In this work, we present a facile, sensitive and selective LPS sensor, developed by assembling tetramethylrhodamine-labeled LPS-binding peptides on graphene oxide (GO). The fluorescence of the dye-labeled peptide is quenched upon interaction with GO. Specific binding to LPS triggers the release of the peptide-LPS complex from GO, resulting in fluorescence recovery. This fluorescent turn-on sensor offers an estimated limit of detection of 130 pM, which is the lowest ever reported among all synthetic LPS sensors to date. Importantly, this sensor is applicable for detection of LPS in commonly used clinical injectable fluids, and it enables selective detection of LPS from different bacterial strains as well as LPS on the membrane of living E. coli. PMID:26303386

  11. Anodic aluminum oxide and carbon nanotube-based nanostructured materials for hydrogen sensors

    NASA Astrophysics Data System (ADS)

    Rumiche, Francisco

    Hydrogen is envisioned as one of the most attractive and sustainable energy systems to power future generations. Because of their particular surface characteristics and distinctive physical properties nanoscale materials are promising candidates for the development of high performance hydrogen sensors, essential components to ensure the safe operation of the infrastructure and to facilitate the public acceptance of hydrogen technologies. This investigation is dedicated to the development of anodic aluminum oxide (AAO) and double wall carbon nanotube (DWNT)-based nanostructured materials for high performance hydrogen sensors. It addresses the controlled synthesis of nanostructures with defined geometries and sizes, study of physical and electronic properties, and the integration into functional hydrogen sensing devices. Compared to current palladium thin film sensors and nanostructured devices the AAO-based nanostructure exhibits faster response times without compromising sensitivity and selectivity. Performance of developed DWNT-based nanostructures is comparable to that for high performance hydrogen sensors fabricated with SWNTs, but with potential improvement in mechanical and thermal resistance associated to the double layer structure.

  12. Oxidization without substrate unfolding triggers proteolysis of the peroxide-sensor, PerR.

    PubMed

    Ahn, Bo-Eun; Baker, Tania A

    2016-01-01

    Peroxide operon regulator (PerR) is a broadly conserved hydrogen peroxide sensor in bacteria, and oxidation of PerR at its regulatory metal-binding site is considered irreversible. Here, we tested whether this oxidation specifically targets PerR for proteolysis. We find that oxidizing conditions stimulate PerR degradation in vivo, and LonA is the principal AAA+ (ATPases associated with diverse cellular activities) protease that degrades PerR. Degradation of PerR by LonA is recapitulated in vitro, and biochemical dissection of this degradation reveals that the presence of regulatory metal and PerR-binding DNA dramatically extends the half-life of the protein. We identified a LonA-recognition site critical for oxidation-controlled PerR turnover. Key residues for LonA-interaction are exposed to solvent in PerR lacking metal, but are buried in the metal-bound form. Furthermore, one residue critical for Lon recognition is also essential for specific DNA-binding by PerR, thus explaining how both the metal and DNA ligands prevent PerR degradation. This ligand-controlled allosteric mechanism for protease recognition provides a compelling explanation for how the oxidation-induced conformational change in PerR triggers degradation. Interestingly, the critical residues recognized by LonA and exposed by oxidation do not function as a degron, because they are not sufficient to convert a nonsubstrate protein into a LonA substrate. Rather, these residues are a conformation-discriminator sequence, which must work together with other residues in PerR to evoke efficient degradation. This mechanism provides a useful example of how other proteins with only mild or localized oxidative damage can be targeted for degradation without the need for extensive oxidation-dependent protein denaturation. PMID:26677871

  13. Carbon dioxide sensing mechanisms of an electrocatalytic sensor/cell based on a tungsten stabilized bismuth oxide solid electrolyte

    NASA Astrophysics Data System (ADS)

    Shoemaker, Erika Leigh

    This work describes the specific O2/CO2 sensing mechanisms of a solid-state, thick-film, electrocatalytic cermet (ceramic/metallic) gas sensor based on a tungsten stabilized bismuth oxide (WBO) solid electrolyte. The sensors embody the same configuration of classical planar oxygen sensors with two catalytic electrodes sandwiching an oxygen ion conducting solid electrolyte and a buried metal oxide reference. The technique of cyclic voltammetry is used where a cyclic voltage is ramped across the electrodes to promote electrochemical reactions on the surface of the sensor. These reactions alter the ionic current flow through the solid electrolyte, generating voltage-current related responses (voltammograms) which are gas specific. The WBO sensors have the identical configuration of previously investigated sensors of this type based on a yttria stabilized zirconia (YSZ) solid electrolyte which show good response to O 2 but do not respond to CO2 to any degree. This dissertation examines the specific function of each solid electrolyte layer and relates them to both the WBO sensors ability to respond uniquely to CO2 and the YSZ sensors incapability to respond to CO2. The research suggests that the tungsten component of the WBO electrolyte along with the porosity of the WBO layer together are responsible for the unique CO 2 response of this sensor.

  14. Electrocatalytic oxidation of Epinephrine and Norepinephrine at metal oxide doped phthalocyanine/MWCNT composite sensor

    PubMed Central

    Mphuthi, Ntsoaki G.; Adekunle, Abolanle S.; Ebenso, Eno E.

    2016-01-01

    Glassy carbon electrode (GCE) was modified with metal oxides (MO = Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, and the electrocatalytic properties were studied. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using FTIR, Raman and SEM techniques. The electrodes were characterized using cyclic voltammetry (CV) technique. The electrocatalytic behaviour of the electrode towards epinephrine (EP) and norepinephrine (NE) oxidation was investigated using CV and DPV. Result showed that GCE-MWCNT/Fe3O4/2,3-Nc, GCE-MWCNT/Fe3O429H,31H-Pc, GCE-MWCNT/ZnO/2,3-Nc and GCE-MWCNT/ZnO/29H,31H-Pc electrodes gave enhanced EP and NE current response. Stability study indicated that the four GCE-MWCNT/MO/Pc modified electrodes were stable against electrode fouling effect with the percentage NE current drop of 5.56–5.88% after 20 scans. GCE-MWCNT/Fe3O4/29H,31H-Pc gave the lowest limit of detection (4.6 μM) towards EP while MWCNT/ZnO/29H,31H-Pc gave the lowest limit of detection (1.7 μM) towards NE. The limit of detection and sensitivity of the electrodes compared well with literature. Electrocatalytic oxidation of EP and NE on GCE-MWCNT/MO/Pc electrodes was diffusion controlled with some adsorption of electro-oxidation reaction intermediates products. The electrodes were found to be electrochemically stable, reusable and can be used for the analysis of EP and NE in real life samples. PMID:27245690

  15. Electrocatalytic oxidation of Epinephrine and Norepinephrine at metal oxide doped phthalocyanine/MWCNT composite sensor.

    PubMed

    Mphuthi, Ntsoaki G; Adekunle, Abolanle S; Ebenso, Eno E

    2016-01-01

    Glassy carbon electrode (GCE) was modified with metal oxides (MO = Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, and the electrocatalytic properties were studied. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using FTIR, Raman and SEM techniques. The electrodes were characterized using cyclic voltammetry (CV) technique. The electrocatalytic behaviour of the electrode towards epinephrine (EP) and norepinephrine (NE) oxidation was investigated using CV and DPV. Result showed that GCE-MWCNT/Fe3O4/2,3-Nc, GCE-MWCNT/Fe3O429H,31H-Pc, GCE-MWCNT/ZnO/2,3-Nc and GCE-MWCNT/ZnO/29H,31H-Pc electrodes gave enhanced EP and NE current response. Stability study indicated that the four GCE-MWCNT/MO/Pc modified electrodes were stable against electrode fouling effect with the percentage NE current drop of 5.56-5.88% after 20 scans. GCE-MWCNT/Fe3O4/29H,31H-Pc gave the lowest limit of detection (4.6 μM) towards EP while MWCNT/ZnO/29H,31H-Pc gave the lowest limit of detection (1.7 μM) towards NE. The limit of detection and sensitivity of the electrodes compared well with literature. Electrocatalytic oxidation of EP and NE on GCE-MWCNT/MO/Pc electrodes was diffusion controlled with some adsorption of electro-oxidation reaction intermediates products. The electrodes were found to be electrochemically stable, reusable and can be used for the analysis of EP and NE in real life samples. PMID:27245690

  16. Electrocatalytic oxidation of Epinephrine and Norepinephrine at metal oxide doped phthalocyanine/MWCNT composite sensor

    NASA Astrophysics Data System (ADS)

    Mphuthi, Ntsoaki G.; Adekunle, Abolanle S.; Ebenso, Eno E.

    2016-06-01

    Glassy carbon electrode (GCE) was modified with metal oxides (MO = Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, and the electrocatalytic properties were studied. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using FTIR, Raman and SEM techniques. The electrodes were characterized using cyclic voltammetry (CV) technique. The electrocatalytic behaviour of the electrode towards epinephrine (EP) and norepinephrine (NE) oxidation was investigated using CV and DPV. Result showed that GCE-MWCNT/Fe3O4/2,3-Nc, GCE-MWCNT/Fe3O429H,31H-Pc, GCE-MWCNT/ZnO/2,3-Nc and GCE-MWCNT/ZnO/29H,31H-Pc electrodes gave enhanced EP and NE current response. Stability study indicated that the four GCE-MWCNT/MO/Pc modified electrodes were stable against electrode fouling effect with the percentage NE current drop of 5.56–5.88% after 20 scans. GCE-MWCNT/Fe3O4/29H,31H-Pc gave the lowest limit of detection (4.6 μM) towards EP while MWCNT/ZnO/29H,31H-Pc gave the lowest limit of detection (1.7 μM) towards NE. The limit of detection and sensitivity of the electrodes compared well with literature. Electrocatalytic oxidation of EP and NE on GCE-MWCNT/MO/Pc electrodes was diffusion controlled with some adsorption of electro-oxidation reaction intermediates products. The electrodes were found to be electrochemically stable, reusable and can be used for the analysis of EP and NE in real life samples.

  17. A compact QCL based methane and nitrous oxide sensor for environmental and medical applications.

    PubMed

    Jahjah, Mohammad; Ren, Wei; Stefański, Przemysław; Lewicki, Rafał; Zhang, Jiawei; Jiang, Wenzhe; Tarka, Jan; Tittel, Frank K

    2014-05-01

    A methane (CH4) and nitrous oxide (N2O) sensor based on a sensitive, selective and well established technique of quartz enhanced photoacoustic spectroscopy (QEPAS) was developed for environmental and biomedical measurements. A thermoelectrically cooled (TEC) distributed feedback quantum cascade laser (DFB-QCL), capable of continuous wave (CW) mode hop free emission in the 7.83 μm wavelength range, was used as an excitation source. For the targeted CH4 and N2O absorption lines located at 1275.04 cm(-1) and 1275.49 cm(-1) detection limits (1σ) of 13 ppbv and 6 ppbv were achieved with a 1 second data acquisition time, respectively. Environmental data of CH4 and N2O mixing ratios acquired using the QEPAS sensor system are also reported. PMID:24427770

  18. Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide

    NASA Astrophysics Data System (ADS)

    Wang, Youqing; Shen, Changyu; Lou, Weimin; Shentu, Fengying; Zhong, Chuan; Dong, Xinyong; Tong, Limin

    2016-07-01

    A fiber optic relative humidity (RH) sensor based on the tilted fiber Bragg grating (TFBG) coated with graphene oxide (GO) film was presented. Amplitudes of the cladding mode resonances of the TFGB varies with the water sorption and desorption processes of the GO film, because of the strong interactions between the excited backward propagating cladding modes and the GO film. By detecting the transmission intensity changes of the cladding mode resonant dips at the wavelength of 1557 nm, the maximum sensitivity of 0.129 dB/%RH with a linear correlation coefficient of 99% under the RH range of 10-80% was obtained. The Bragg mode of TFBG can be used as power or wavelength references, since it is inherently insensitive to RH changes. In addition, the proposed humidity sensor shows a good performance in repeatability and stability.

  19. DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Ling; Yang, Chih-Feng; Agarwal, Vinay; Kim, Taehoon; Sonkusale, Sameer; Busnaina, Ahmed; Chen, Michelle; Dokmeci, Mehmet R.

    2010-03-01

    We present integration of single-stranded DNA (ss-DNA)-decorated single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry as nanoscale chemical sensors. SWNTs were assembled onto CMOS circuitry via a low voltage dielectrophoretic (DEP) process. Besides, bare SWNTs are reported to be sensitive to various chemicals, and functionalization of SWNTs with biomolecular complexes further enhances the sensing specificity and sensitivity. After decorating ss-DNA on SWNTs, we have found that the sensing response of the gas sensor was enhanced (up to ~ 300% and ~ 250% for methanol vapor and isopropanol alcohol vapor, respectively) compared with bare SWNTs. The SWNTs coupled with ss-DNA and their integration on CMOS circuitry demonstrates a step towards realizing ultra-sensitive electronic nose applications.

  20. DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry.

    PubMed

    Chen, Chia-Ling; Yang, Chih-Feng; Agarwal, Vinay; Kim, Taehoon; Sonkusale, Sameer; Busnaina, Ahmed; Chen, Michelle; Dokmeci, Mehmet R

    2010-03-01

    We present integration of single-stranded DNA (ss-DNA)-decorated single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry as nanoscale chemical sensors. SWNTs were assembled onto CMOS circuitry via a low voltage dielectrophoretic (DEP) process. Besides, bare SWNTs are reported to be sensitive to various chemicals, and functionalization of SWNTs with biomolecular complexes further enhances the sensing specificity and sensitivity. After decorating ss-DNA on SWNTs, we have found that the sensing response of the gas sensor was enhanced (up to approximately 300% and approximately 250% for methanol vapor and isopropanol alcohol vapor, respectively) compared with bare SWNTs. The SWNTs coupled with ss-DNA and their integration on CMOS circuitry demonstrates a step towards realizing ultra-sensitive electronic nose applications. PMID:20139486

  1. Helical graphene oxide fibers as a stretchable sensor and an electrocapillary sucker.

    PubMed

    Hua, Chunfei; Shang, Yuanyuan; Li, Xiying; Hu, Xiaoyang; Wang, Ying; Wang, Xinchang; Zhang, Yingjiu; Li, Xinjian; Duan, Huiling; Cao, Anyuan

    2016-05-19

    Fibers made from carbon nanotubes or graphene are strong and conductive; encoding helical structures into these fibers may render useful properties such as high stretchability. Here, we directly spin freestanding graphene oxide (GO) films into helical fibers consisting of uniformly arranged loops with tunable diameters, under controlled environmental humidity. Reduced GO fibers with a helical shape are stretched elastically with a reversible electrical resistance change for many strain cycles. Stretchable temperature sensors built on helical fibers work at large strains (up to 50%) and high temperature (up to 300 °C), with a reliable deformation-independent response. The GO fibers also contain through-channels inside with suitable pore size, which can take up an aqueous electrolyte quickly under a low bias, resulting in a fiber-shaped, on-off switchable electrocapillary sucker. Our multifunctional helical and hollow GO fibers have potential applications in stretchable fiber-shaped sensors, actuators and nano-fluid systems. PMID:27147483

  2. Characterization of Anodic Aluminum Oxide Membrane with Variation of Crystallizing Temperature for pH Sensor.

    PubMed

    Yeo, Jin-Ho; Lee, Sung-Gap; Jo, Ye-Won; Jung, Hye-Rin

    2015-11-01

    We fabricated electrolyte-dielectric-metal (EDM) device incorporating a high-k Al2O3 sensing membrane from a porous anodic aluminum oxide (AAO) using a two step anodizing process for pH sensors. In order to change the properties of the AAO template, the crystallizing temperature was varied from 400 degrees C to 700 degrees C over 2 hours. The structural properties were observed by field emission scanning electron microscopy (FE-SEM). The pH sensitivity increased with an increase in the crystallizing temperature from 400 degrees C to 600 degrees C. However at 700 degrees C, deformation occurred. The porous AAO sensor with a crystallizing temperature of 600 degrees C displayed the good sensitivity and long-term stability and the values were 55.7 mV/pH and 0.16 mV/h, respectively. PMID:26726567

  3. Zinc oxide nanowire-poly(methyl methacrylate) dielectric layers for polymer capacitive pressure sensors.

    PubMed

    Chen, Yan-Sheng; Hsieh, Gen-Wen; Chen, Shih-Ping; Tseng, Pin-Yen; Wang, Cheng-Wei

    2015-01-14

    Polymer capacitive pressure sensors based on a dielectric composite layer of zinc oxide nanowire and poly(methyl methacrylate) show pressure sensitivity in the range of 2.63 × 10(-3) to 9.95 × 10(-3) cm(2) gf(-1). This represents an increase of capacitance change by as much as a factor of 23 over pristine polymer devices. An ultralight load of only 10 mg (corresponding to an applied pressure of ∼0.01 gf cm(-2)) can be clearly recognized, demonstrating remarkable characteristics of these nanowire-polymer capacitive pressure sensors. In addition, optical transmittance of the dielectric composite layer is approximately 90% in the visible wavelength region. Their low processing temperature, transparency, and flexible dielectric film makes them a highly promising means for flexible touching and pressure-sensing applications. PMID:25494204

  4. Fire Detection Using tin Oxide Gas Sensors Installed in an Indoor Space

    NASA Astrophysics Data System (ADS)

    Shibata, Shin-Ichi; Higashino, Tsubasa; Sawada, Ayako; Oyabu, Takashi; Takei, Yoshinori; Nanto, Hidehito; Toko, Kiyoshi

    Many lives and facilities were lost by fire. Especially, there are many damages to elderly, toddlers and babies. In Japan, number of deaths over 65 years old reached to 53% in 2004. Number of over 81 years olds went to 20%. It takes for the elderly person more time to sense fire and also to evacuate to safe places. Although it is important to prevent the fire, it also needs to inform the fire breaking as early as possible. Human sense decreases with age and it is difficult to perceive the fire at an early stage. It is desired to develop a higher sensitive element for fire and its system which can detect fire at an early stage. In this experiment, tin oxide gas sensors were adopted to detect a smoldering fire at the early stage. Most common case of fire is the smoldering fire. The reliability of the sensor is higher and it is adopted in a gas alarm detector. The sensor can also detect slight amount of odor molecule. In our previous experiment, it became obvious that it was better to install the sensor to the ceiling to detect odor components generating from smoldering fire. Therefore, five sensors were installed in the ceiling away from each other and the method to detect the fire was examined. As a result, a characteristic was newly derived by adding the sensor outputs for one minute. The sensor output was input every 0.1s. The characteristic is called as the integrated characteristic. After that, the differential characteristic was derived using the integrated characteristic. The fire was determined using the differential characteristics. The materials causing a smoldering fire were woodchip, wallpaper and carpet as subjects. The system could detect the fire in several minutes for whole materials. The sensor is effective to detect the smoldering fire at an early stage. It is necessary to detect a cigarette smoke to distinguish as non fire. In this study, the discrimination was also examined using a quadratic function (ax2+b). The coefficients a and b were

  5. Helical graphene oxide fibers as a stretchable sensor and an electrocapillary sucker

    NASA Astrophysics Data System (ADS)

    Hua, Chunfei; Shang, Yuanyuan; Li, Xiying; Hu, Xiaoyang; Wang, Ying; Wang, Xinchang; Zhang, Yingjiu; Li, Xinjian; Duan, Huiling; Cao, Anyuan

    2016-05-01

    Fibers made from carbon nanotubes or graphene are strong and conductive; encoding helical structures into these fibers may render useful properties such as high stretchability. Here, we directly spin freestanding graphene oxide (GO) films into helical fibers consisting of uniformly arranged loops with tunable diameters, under controlled environmental humidity. Reduced GO fibers with a helical shape are stretched elastically with a reversible electrical resistance change for many strain cycles. Stretchable temperature sensors built on helical fibers work at large strains (up to 50%) and high temperature (up to 300 °C), with a reliable deformation-independent response. The GO fibers also contain through-channels inside with suitable pore size, which can take up an aqueous electrolyte quickly under a low bias, resulting in a fiber-shaped, on-off switchable electrocapillary sucker. Our multifunctional helical and hollow GO fibers have potential applications in stretchable fiber-shaped sensors, actuators and nano-fluid systems.Fibers made from carbon nanotubes or graphene are strong and conductive; encoding helical structures into these fibers may render useful properties such as high stretchability. Here, we directly spin freestanding graphene oxide (GO) films into helical fibers consisting of uniformly arranged loops with tunable diameters, under controlled environmental humidity. Reduced GO fibers with a helical shape are stretched elastically with a reversible electrical resistance change for many strain cycles. Stretchable temperature sensors built on helical fibers work at large strains (up to 50%) and high temperature (up to 300 °C), with a reliable deformation-independent response. The GO fibers also contain through-channels inside with suitable pore size, which can take up an aqueous electrolyte quickly under a low bias, resulting in a fiber-shaped, on-off switchable electrocapillary sucker. Our multifunctional helical and hollow GO fibers have potential

  6. Temperature-modulated graphene oxide resistive humidity sensor for indoor air quality monitoring.

    PubMed

    De Luca, A; Santra, S; Ghosh, R; Ali, S Z; Gardner, J W; Guha, P K; Udrea, F

    2016-02-28

    In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary-metal-oxide-semiconductor (CMOS) micro-electro-mechanical-system (MEMS) micro-hotplate technology for the monitoring and control of indoor air quality (IAQ). GO powder is obtained by chemical exfoliation, dispersed in water and deposited via ink-jet printing onto a low power micro-hotplate. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) show the typical layered and wrinkled morphology of the GO. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red (FTIR) spectroscopy indicate that the GO flakes possess a significant number of oxygen containing functional groups (epoxy, carbonyl, hydroxyl) extremely attractive for humidity detection. Electro-thermal characterisation of the micro-hotplates shows a thermal efficiency of 0.11 mW per °C, resulting in a sensor DC power consumption of only 2.75 mW at 50 °C. When operated in an isothermal mode, the sensor response is detrimentally affected by significant drift, hysteretic behaviour, slow response/recovery times and hence poor RH level discrimination. Conversely, a temperature modulation technique coupled with a differential readout methodology results in a significant reduction of the sensor drift, improved linear response with a sensitivity of 0.14 mV per %, resolution below 5%, and a maximum hysteresis of ±5%; response and recovery times equal to 189 ± 49 s and 89 ± 5 s, respectively. These performance parameters satisfy current IAQ monitoring requirements. We have thus demonstrated the effectiveness of integrating GO on a micro-hotplate CMOS-compatible platform enabling temperature modulation schemes to be easily applied in order to achieve compact, low power, low cost humidity IAQ monitoring. PMID:26842731

  7. Synthesis and Evaluation of the Anti-Oxidant Capacity of Curcumin Glucuronides, the Major Curcumin Metabolites

    PubMed Central

    Choudhury, Ambar K.; Raja, Suganya; Mahapatra, Sanjata; Nagabhushanam, Kalyanam; Majeed, Muhammed

    2015-01-01

    Curcumin metabolites namely curcumin monoglucuronide and curcumin diglucuronide were synthesized using an alternative synthetic approach. The anti-oxidant potential of these curcumin glucuronides was compared with that of curcumin using DPPH scavenging method and Oxygen Radical Absorbance Capacity (ORAC) assay. The results show that curcumin monoglucuronide exhibits 10 fold less anti-oxidant activity (DPPH method) and the anti-oxidant capacity of curcumin diglucuronide is highly attenuated compared to the anti-oxidant activity of curcumin. PMID:26783957

  8. Brain nitric oxides synthase in major pelvic ganglia of aged (LETO) and diabetic (OLETF) rats.

    PubMed

    Salama, N; Tamura, M; Tsuruo, Y; Ishimura, K; Kagawa, S

    2002-01-01

    This study was conducted to evaluate the effects of aging and diabetes mellitus (DM) on brain nitric oxide synthase (bNOS) expression in major pelvic ganglia (MPG) of rats. Otsuka Long Evans Tokushima Fatty rats (12, 30, and 70 weeks old), which are genetic models with non-insulin-dependent DM (NIDDM), and age-matched nondiabetic Long Evans Tokushima Otsuka controls were used. The MPG of all rats in this study were subjected to cryo-sectioning and staining with bNOS polyclonal AB and rhodamine-conjugated rabbit IgG. Fluorescence intensities of the stained neurons were assessed in randomly selected fields per each specimen. Animals of both groups revealed significant decline in the staining intensity of their neurons with aging and the progress of DM, but diabetic rats showed more decline than controls. In conclusion, both aging and NIDDM could decrease bNOS expression in rat MPG. However, NIDDM has a more evident effect than aging on that expression. The decrease in bNOS may cause a disturbance in functions of the target pelvic structures of these ganglia under both conditions. PMID:12230824

  9. Nitric oxide inhibits cruzipain, the major papain-like cysteine proteinase from Trypanosoma cruzi.

    PubMed

    Venturini, G; Salvati, L; Muolo, M; Colasanti, M; Gradoni, L; Ascenzi, P

    2000-04-13

    Nitric oxide (NO) is a pluripotent regulatory molecule showing, among others, an antiparasitic activity. Moreover, NO inhibits cysteine proteinase action by nitrosylating the Cys catalytic residue. In the present study, the inhibitory effect of the substrate N-alpha-benzyloxycarbonyl-L-phenylalanyl-L-arginine-(7-amino-4-methyl coumarin) and of NO on the catalytic activity of cruzipain, the major papain-like cysteine proteinase from Trypanosoma cruzi (the hemoflagellate protozoan parasite which causes the American trypanosomiasis), is reported. In particular, NO-donors S-nitroso-glutathione (GSNO), (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR-3), 3-morpholinosydnonimine (SIN-1), S-nitroso-acetyl-penicillamine (SNAP), and sodium nitroprusside (SNP) dose-dependently inhibited cruzipain, this effect being likely attributable to the S-nitrosylation of the Cys25 catalytic residue. These results were analyzed in parallel with those concerning the inhibitory effect of the substrate and of NO on the catalytic activity of falcipain, the cruzipain-homologous cysteine proteinase from Plasmodium falciparum. The modulation of the cruzipain and falcipain activity by NO may be relevant in developing new strategies against T. cruzi and P. falciparum in human host. As a whole, the NO-mediated S-nitrosylation of pathogenic viral, bacterial, fungal, and parasitic cysteine proteinases may represent a general mechanism of antimicrobial and antiparasitic host defences. PMID:10753643

  10. Review of transcranial photobiomodulation for major depressive disorder: targeting brain metabolism, inflammation, oxidative stress, and neurogenesis.

    PubMed

    Cassano, Paolo; Petrie, Samuel R; Hamblin, Michael R; Henderson, Theodore A; Iosifescu, Dan V

    2016-07-01

    We examined the use of near-infrared and red radiation (photobiomodulation, PBM) for treating major depressive disorder (MDD). While still experimental, preliminary data on the use of PBM for brain disorders are promising. PBM is low-cost with potential for wide dissemination; further research on PBM is sorely needed. We found clinical and preclinical studies via PubMed search (2015), using the following keywords: "near-infrared radiation," "NIR," "low-level light therapy," "low-level laser therapy," or "LLLT" plus "depression." We chose clinically focused studies and excluded studies involving near-infrared spectroscopy. In addition, we used PubMed to find articles that examine the link between PBM and relevant biological processes including metabolism, inflammation, oxidative stress, and neurogenesis. Studies suggest the processes aforementioned are potentially effective targets for PBM to treat depression. There is also clinical preliminary evidence suggesting the efficacy of PBM in treating MDD, and comorbid anxiety disorders, suicidal ideation, and traumatic brain injury. Based on the data collected to date, PBM appears to be a promising treatment for depression that is safe and well-tolerated. However, large randomized controlled trials are still needed to establish the safety and effectiveness of this new treatment for MDD. PMID:26989758

  11. Fluorescence and visual detection of fluoride ions using a photoluminescent graphene oxide paper sensor

    NASA Astrophysics Data System (ADS)

    Chen, Xiaochun; Yu, Shaoming; Yang, Liang; Wang, Jianping; Jiang, Changlong

    2016-07-01

    The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F- on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F- can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F- in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F- has been successfully developed. The paper sensor showed high sensitivity for aqueous F-, and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes.The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F- on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F- can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F- in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism

  12. Metal Oxide Sensors for Electronic Noses and Their Application to Food Analysis

    PubMed Central

    Berna, Amalia

    2010-01-01

    Electronic noses (E-noses) use various types of electronic gas sensors that have partial specificity. This review focuses on commercial and experimental E-noses that use metal oxide semi-conductors. The review covers quality control applications to food and beverages, including determination of freshness and identification of contaminants or adulteration. Applications of E-noses to a wide range of foods and beverages are considered, including: meat, fish, grains, alcoholic drinks, non-alcoholic drinks, fruits, milk and dairy products, olive oils, nuts, fresh vegetables and eggs. PMID:22319332

  13. Highly Sensitive and Fast Response Colorimetric Humidity Sensors Based on Graphene Oxides Film.

    PubMed

    Chi, Hong; Liu, Yan Jun; Wang, FuKe; He, Chaobin

    2015-09-16

    Uniform graphene oxide (GO) film for optical humidity sensing was fabricated by dip-coating technique. The resulting GO thin film shows linear optical shifts in the visible range with increase of humidity in the whole relative humidity range (from dry state to 98%). Moreover, GO films exhibit ultrafast sensing to moisture within 250 ms because of the unique atomic thinness and superpermeability of GO sheets. The humidity sensing mechanism was investigated using XRD and computer simulation. The ultrasensitive humidity colorimetric properties of GOs film may enable many potential applications such as disposable humidity sensors for packaging, health, and environmental monitoring. PMID:26305842

  14. Metal-oxide-semiconductor field effect transistor humidity sensor using surface conductance

    NASA Astrophysics Data System (ADS)

    Song, Seok-Ho; Yang, Hyun-Ho; Han, Chang-Hoon; Ko, Seung-Deok; Lee, Seok-Hee; Yoon, Jun-Bo

    2012-03-01

    This letter presents a metal-oxide-semiconductor field effect transistor based humidity sensor which does not use any specific materials to sense the relative humidity. We simply make use of the low pressure chemical vapor deposited (LPCVD) silicon dioxide's surface conductance change. When the gate is biased and then floated, the electrical charge in the gate is dissipated through the LPCVD silicon dioxide's surface to the surrounding ground with a time constant depending on the surface conductance which, in turn, varies with humidity. With this method, extremely high sensitivity was achieved—the charge dissipation speed increased thousand times as the relative humidity increased.

  15. Metal oxide sensors for electronic noses and their application to food analysis.

    PubMed

    Berna, Amalia

    2010-01-01

    Electronic noses (E-noses) use various types of electronic gas sensors that have partial specificity. This review focuses on commercial and experimental E-noses that use metal oxide semi-conductors. The review covers quality control applications to food and beverages, including determination of freshness and identification of contaminants or adulteration. Applications of E-noses to a wide range of foods and beverages are considered, including: meat, fish, grains, alcoholic drinks, non-alcoholic drinks, fruits, milk and dairy products, olive oils, nuts, fresh vegetables and eggs. PMID:22319332

  16. A Sensitive Sensor Cell Line for the Detection of Oxidative Stress Responses in Cultured Human Keratinocytes

    PubMed Central

    Hofmann, Ute; Priem, Melanie; Bartzsch, Christine; Winckler, Thomas; Feller, Karl-Heinz

    2014-01-01

    In the progress of allergic and irritant contact dermatitis, chemicals that cause the generation of reactive oxygen species trigger a heat shock response in keratinocytes. In this study, an optical sensor cell line based on cultured human keratinocytes (HaCaT cells) expressing green fluorescent protein (GFP) under the control of the stress-inducible HSP70B' promoter were constructed. Exposure of HaCaT sensor cells to 25 μM cadmium, a model substance for oxidative stress induction, provoked a 1.7-fold increase in total glutathione and a ∼300-fold induction of transcript level of the gene coding for heat shock protein HSP70B'. An extract of Arnica montana flowers resulted in a strong induction of the HSP70B' gene and a pronounced decrease of total glutathione in keratinocytes. The HSP70B' promoter-based sensor cells conveniently detected cadmium-induced stress using GFP fluorescence as read-out with a limit of detection of 6 μM cadmium. In addition the sensor cells responded to exposure of cells to A. montana extract with induction of GFP fluorescence. Thus, the HaCaT sensor cells provide a means for the automated detection of the compromised redox status of keratinocytes as an early indicator of the development of human skin disorders and could be applied for the prediction of skin irritation in more complex in vitro 3D human skin models and in the development of micro-total analysis systems (μTAS) that may be utilized in dermatology, toxicology, pharmacology and drug screenings. PMID:24967604

  17. Investigation of the electrode kinetics in a solid oxide fuel cell and an oxygen sensor

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Rajesh

    This dissertation investigates the electrode kinetics in a solid oxide fuel cell and an oxygen sensor. The first chapter describes the basics of fuel cell and motivation behind the studies. The second chapter investigates the dependence of cathodic charge transfer reaction resistance (Rct), on three-phase boundary length (lTPB) at various temperatures and oxygen partial pressures ( pO2 ). Impedance spectra were obtained using three-electrode configuration on discs having cathodes with definite lTPB to investigate the La0.8Sr0.2MnO3 (LSM)-Y 0.16Zr0.84O2 (YSZ), platinum (Pt)-YSZ and La 0.8Sr0.2CoO3 (LSC)-Ce0.8Sm0.2 O2 (SDC) half cell reactions at temperatures between 650--800°C and pO2 between 10-3 to 1 atm. For LSM-YSZ and Pt-YSZ, 1/Rct varies linearly with lTPB. LSC-SDC system did not show any specific dependence between R ct and lTPB. The third chapter examines the use of an electrolyte supported cell with externally applied voltage to determine the single electrode overpotential and extending the parameters derived to that of an anode supported fuel cell having thin film electrolyte operating under a chemical potential gradient. Spatial distributions of the electrochemical potential of electrons (ϕ) and oxygen ions ( m˜O-2 ), and chemical potential of oxygen ( mO2 ) for these two cases were obtained. Under fuel cell operating conditions, ϕ, m˜O-2 and mO2 , decreases monotonically from higher value to lower value. For electrolyte supported cell under externally applied voltage mO2 does not vary monotonically; it reaches values above or below that of the boundary values, leading to development of internal electromotive forces (EMFs), which can in turn affect the activity of the interface. The fourth chapter describes design microfabrication and characterization of a series connected potentiometric oxygen sensor. A drawback of potentiometric sensors in general is that the output signal is low when the ratio of the partial pressures at the two electrodes is low

  18. Deficiency of NPGPx, an oxidative stress sensor, leads to obesity in mice and human

    PubMed Central

    Chang, Yi-Cheng; Yu, Yu-Hsiang; Shew, Jin-Yuh; Lee, Wei-Jei; Hwang, Juey-Jen; Chen, Yen-Hui; Chen, Yet-Ran; Wei, Pei-Chi; Chuang, Lee-Ming; Lee, Wen-Hwa

    2013-01-01

    Elevated oxidative stress is closely associated with obesity. Emerging evidence shows that instead of being a consequence of obesity, oxidative stress may also contribute to fat formation. Nonselenocysteine-containing phospholipid hydroperoxide glutathione peroxidase (NPGPx) is a conserved oxidative stress sensor/transducer and deficiency of NPGPx causes accumulation of reactive oxygen species (ROS). In this communication, we show that NPGPx was highly expressed in preadipocytes of adipose tissue. Deficiency of NPGPx promoted preadipocytes to differentiate to adipocytes via ROS-dependent dimerization of protein kinase A regulatory subunits and activation of CCAAT/enhancer-binding protein beta (C/EBPβ). This enhanced adipogenesis was alleviated by antioxidant N-acetylcysteine (NAC). Consistently, NPGPx-deficient mice exhibited markedly increased fat mass and adipocyte hypertrophy, while treatment with NAC ablated these phenotypes. Furthermore, single nucleotide polymorphisms (SNPs) in human NPGPx gene, which correlated with lower NPGPx expression level in adipose tissue, were associated with higher body mass index (BMI) in several independent human populations. These results indicate that NPGPx protects against fat accumulation in mice and human via modulating ROS, and highlight the importance of targeting redox homeostasis in obesity management. Deficiency of the glutathione peroxidase NPGPx increases ROS levels in preadipocytes and promotes adipocyte differentiation via increasing oxidative stress and consequent increased fat mass and adipocyte hypertrophy. PMID:23828861

  19. Fluorescence and visual detection of fluoride ions using a photoluminescent graphene oxide paper sensor.

    PubMed

    Chen, Xiaochun; Yu, Shaoming; Yang, Liang; Wang, Jianping; Jiang, Changlong

    2016-07-14

    The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F(-) on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F(-) can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F(-) in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F(-) has been successfully developed. The paper sensor showed high sensitivity for aqueous F(-), and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes. PMID:27376510

  20. Laser Doppler blood flow complementary metal oxide semiconductor imaging sensor with analog on-chip processing

    SciTech Connect

    Gu Quan; Hayes-Gill, Barrie R.; Morgan, Stephen P

    2008-04-20

    A 4x4 pixel array with analog on-chip processing has been fabricated within a 0.35 {mu}m complementary metal oxide semiconductor process as a prototype sensor for laser Doppler blood flow imaging. At each pixel the bandpass and frequency weighted filters necessary for processing laser Doppler blood flow signals have been designed and fabricated. Because of the space constraints of implementing an accurate {omega}{sup 0.5} filter at the pixel level, this has been approximated using the ''roll off'' of a high-pass filter with a cutoff frequency set at 10 kHz. The sensor has been characterized using a modulated laser source. Fixed pattern noise is present that is demonstrated to be repeatable across the array and can be calibrated. Preliminary blood flow results on a finger before and after occlusion demonstrate that the sensor array provides the potential for a system that can be scaled to a larger number of pixels for blood flow imaging.

  1. Fiber optic humidity sensor based on the graphene oxide/PVA composite film

    NASA Astrophysics Data System (ADS)

    Wang, Youqing; Shen, Changyu; Lou, Weimin; Shentu, Fengying

    2016-08-01

    Fiber optic humidity sensor based on an in-fiber Mach-Zehnder interferometer (MZI) coated with graphene oxide (GO)/PVA composite film was investigated. The MZI is constructed of two waist-enlarged tapers. The length between two waist-enlarged tapers is 20 mm. By comparing the experiment results of MZI coated with different GO/PVA composite films, composite film formed by the ratio of 0.3 g PVA mixed with 10 ml GO dispersion shows a better performance of relative humidity sensing. By using the molecular structure model of the composited GO/PVA, the operation mechanism between GO/PVA composite film and water molecules was illustrated. The sensitivity of 0.193 dB/%RH with a linear correlation coefficient of 99.1% and good stability under the relative humidity range of 25-80% was obtained. Temperature effect on the proposed fiber optic humidity sensor was also considered and analyzed. According to the repetitive experimental results, the proposed humidity sensor shows a good repeatability.

  2. Spin electronic magnetic sensor based on functional oxides for medical imaging

    NASA Astrophysics Data System (ADS)

    Solignac, A.; Kurij, G.; Guerrero, R.; Agnus, G.; Maroutian, T.; Fermon, C.; Pannetier-Lecoeur, M.; Lecoeur, Ph.

    2015-09-01

    To detect magnetic signals coming from the body, in particular those produced by the electrical activity of the heart or of the brain, the development of ultrasensitive sensors is required. In this regard, magnetoresistive sensors, stemming from spin electronics, are very promising devices. For example, tunnel magnetoresistance (TMR) junctions based on MgO tunnel barrier have a high sensitivity. Nevertheless, TMR also often have high level of noise. Full spin polarized materials like manganite La0.67Sr0.33MnO3 (LSMO) are attractive alternative candidates to develop such sensors because LSMO exhibits a very low 1/f noise when grown on single crystals, and a TMR response has been observed with values up to 2000%. This kind of tunnel junctions, when combined with a high Tc superconductor loop, opens up possibilities to develop full oxide structures working at liquid nitrogen temperature and suitable for medical imaging. In this work, we investigated on LSMO-based tunnel junctions the parameters controlling the overall system performances, including not only the TMR ratio, but also the pinning of the reference layer and the noise floor. We especially focused on studying the effects of the quality of the barrier, the interface and the electrode, by playing with materials and growth conditions.

  3. Microfluidic Amperometric Sensor for Analysis of Nitric Oxide in Whole Blood

    PubMed Central

    Hunter, Rebecca A.; Privett, Benjamin J.; Henley, W. Hampton; Breed, Elise R.; Liang, Zhe; Mittal, Rohit; Yoseph, Benyam P.; McDunn, Jonathan E.; Burd, Eileen M.; Coopersmith, Craig M.; Ramsey, J. Michael; Schoenfisch, Mark H.

    2013-01-01

    Standard photolithographic techniques and a nitric oxide (NO) selective xerogel polymer were utilized to fabricate an amperometric NO microfluidic sensor with low background noise and the ability to analyze NO levels in small sample volumes (~250 μL). The sensor exhibited excellent analytical performance in phosphate buffered saline, including a NO sensitivity of 1.4 pA nM−1, a limit of detection (LOD) of 840 pM, and selectivity over nitrite, ascorbic acid, acetaminophen, uric acid, hydrogen sulfide, ammonium, ammonia, and both protonated and deprotonated peroxynitrite (selectivity coefficients of −5.3, −4.2, −4.0, −5.0, −6.0, −5.8, −3.8, −1.5, and −4.0 respectively). To demonstrate the utility of the microfluidic NO sensor for biomedical analysis, the device was used to monitor changes in blood NO levels during the onset of sepsis in a murine pneumonia model. PMID:23692300

  4. Graphene-zinc oxide nanorods nanocomposite based sensor for voltammetric quantification of tizanidine in solubilized system

    NASA Astrophysics Data System (ADS)

    Jain, Rajeev; Dhanjai; Sinha, Ankita

    2016-04-01

    A new graphene/zinc oxide nanorods modified glassy carbon electrode (GR/ZnORs/GCE) based electrochemical sensor has been developed for the sensitive determination tizanidine (TZ) in solubilized system. The fabricated sensor was characterized by various electrochemical methods. Different kinetic parameters affecting the monitored electrocatalytic response were investigated and optimized for tizanidine determination at fabricated GR/ZnORs/GCE sensor and successfully compared with the results obtained at GR/SiO2/GCE, GR/GCE and at bare GCE. Under optimized conditions the square wave current is linear over the concentration range 0.80 ng mL-1 to 10.0 μg mL-1 with detection limit and quantification limit of 0.10 ng mL-1 and 3.45 ng mL-1 respectively. The applicability of proposed method is further extended to in vitro determination of the drug in pharmaceutical formulation with an acceptable recovery from 97.89% to 101.09%.

  5. Fabrication of Back-Side Illuminated Complementary Metal Oxide Semiconductor Image Sensor Using Compliant Bump

    NASA Astrophysics Data System (ADS)

    Naoya Watanabe,; Isao Tsunoda,; Takayuki Takao,; Koichiro Tanaka,; Tanemasa Asano,

    2010-04-01

    We fabricated a back-side illuminated (BSI) complementary metal oxide semiconductor (CMOS) image sensor in which a very-thin BSI photodiode array chip was stacked on a CMOS read-out circuit chip by compliant bumps. Cone-shaped bumps made of Au were prepared as the compliant bumps. The base diameter was 10-12 μm and the height was 9-10 μm. To fabricate the BSI CMOS image sensor, we developed a novel thin-chip assembly process. The key features of the process are as follows: preparation of a photodiode array wafer and a CMOS read-out circuit wafer, Au cone bump formation, bonding to support glass, thinning of the photodiode array wafer to 21 μm, through silicon via (TSV) formation using Cu electroplating, formation of back-side electrodes, transfer of the photodiode array wafer to a polymer support tape, dicing of the photodiode array wafer, separation of support tape, formation of Ni-Au bumps, dicing of CMOS read-out circuit wafer, and three-dimensional (3D) chip-stacking. The BSI CMOS image sensor thus fabricated has the following specifications: number of active pixels is 16,384 (128 × 128), photodiode size is approximately 18 μm square, photodiode pitch is 24 μm, and fill factor is approximately 55%. No defects were observed in the obtained image frames.

  6. Fabrication of Back-Side Illuminated Complementary Metal Oxide Semiconductor Image Sensor Using Compliant Bump

    NASA Astrophysics Data System (ADS)

    Watanabe, Naoya; Tsunoda, Isao; Takao, Takayuki; Tanaka, Koichiro; Asano, Tanemasa

    2010-04-01

    We fabricated a back-side illuminated (BSI) complementary metal oxide semiconductor (CMOS) image sensor in which a very-thin BSI photodiode array chip was stacked on a CMOS read-out circuit chip by compliant bumps. Cone-shaped bumps made of Au were prepared as the compliant bumps. The base diameter was 10-12 µm and the height was 9-10 µm. To fabricate the BSI CMOS image sensor, we developed a novel thin-chip assembly process. The key features of the process are as follows: preparation of a photodiode array wafer and a CMOS read-out circuit wafer, Au cone bump formation, bonding to support glass, thinning of the photodiode array wafer to 21 µm, through silicon via (TSV) formation using Cu electroplating, formation of back-side electrodes, transfer of the photodiode array wafer to a polymer support tape, dicing of the photodiode array wafer, separation of support tape, formation of Ni-Au bumps, dicing of CMOS read-out circuit wafer, and three-dimensional (3D) chip-stacking. The BSI CMOS image sensor thus fabricated has the following specifications: number of active pixels is 16,384 (128 ×128), photodiode size is approximately 18 µm square, photodiode pitch is 24 µm, and fill factor is approximately 55%. No defects were observed in the obtained image frames.

  7. Amperometric Non-Enzymatic Hydrogen Peroxide Sensor Based on Aligned Zinc Oxide Nanorods

    PubMed Central

    Al-Hardan, Naif H.; Abdul Hamid, Muhammad Azmi; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim

    2016-01-01

    Zinc oxide (ZnO) nanorods (NRs) have been synthesized via the hydrothermal process. The NRs were grown over a conductive glass substrate. A non-enzymatic electrochemical sensor for hydrogen peroxide (H2O2), based on the prepared ZnO NRs, was examined through the use of current-voltage measurements. The measured currents, as a function of H2O2 concentrations ranging from 10 μM to 700 μM, revealed two distinct behaviours and good performance, with a lower detection limit (LOD) of 42 μM for the low range of H2O2 concentrations (first region), and a LOD of 143.5 μM for the higher range of H2O2 concentrations (second region). The prepared ZnO NRs show excellent electrocatalytic activity. This enables a measurable and stable output current. The results were correlated with the oxidation process of the H2O2 and revealed a good performance for the ZnO NR non-enzymatic H2O2 sensor. PMID:27367693

  8. Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes

    PubMed Central

    2014-01-01

    We present a useful ammonia gas sensor based on chemically reduced graphene oxide (rGO) sheets by self-assembly technique to create conductive networks between parallel Au electrodes. Negative graphene oxide (GO) sheets with large sizes (>10 μm) can be easily electrostatically attracted onto positive Au electrodes modified with cysteamine hydrochloride in aqueous solution. The assembled GO sheets on Au electrodes can be directly reduced into rGO sheets by hydrazine or pyrrole vapor and consequently provide the sensing devices based on self-assembled rGO sheets. Preliminary results, which have been presented on the detection of ammonia (NH3) gas using this facile and scalable fabrication method for practical devices, suggest that pyrrole-vapor-reduced rGO exhibits much better (more than 2.7 times with the concentration of NH3 at 50 ppm) response to NH3 than that of rGO reduced from hydrazine vapor. Furthermore, this novel gas sensor based on rGO reduced from pyrrole shows excellent responsive repeatability to NH3. Overall, the facile electrostatic self-assembly technique in aqueous solution facilitates device fabrication, the resultant self-assembled rGO-based sensing devices, with miniature, low-cost portable characteristics and outstanding sensing performances, which can ensure potential application in gas sensing fields. PMID:24917701

  9. A 1,2-propylene oxide sensor utilizing cataluminescence on CeO2 nanoparticles.

    PubMed

    Liu, Hongmei; Zhang, Yantu; Zhen, Yanzhong; Ma, Yuan; Zuo, Weiwei

    2014-12-01

    A simple and sensitive gas sensor was proposed for the determination of 1,2-propylene oxide (PO) based on its cataluminescence (CTL) by oxidation in the air on the surface of CeO2 nanoparticles. The luminescence characteristics and optimal conditions were investigated in detail. Under optimized conditions, the linear range of the CTL intensity versus the concentration of PO was 10-150 ppm, with a correlation coefficient (r) of 0.9974 and a limit of detection (S/N = 3) of 0.9 ppm. The relative standard deviation for 40 ppm PO was 1.2% (n = 7). There was no or only weak response to common foreign substances including acetone, formaldehyde, ethyl acetate, acetic acid, chloroform, propanol, carbon tetrachloride, ether and methanol. There was no significant change in the catalytic activity of the sensor for 100 h. The proposed method was simple and sensitive, with a potential of detecting PO in the environment and industry. PMID:24802092

  10. [Applicability of semi-conductor zinc oxide gas sensors to detection of low ozone concentrations in pressurized modules].

    PubMed

    Eremeev, S I; Krychenkov, D A

    2005-01-01

    Gas analyzers employ a variety of physical-chemical processes including photocalorimetry, electrochemistry, thermal catalysis and others. Most of the analyzers are designed with certain drawbacks like insufficient serviceability of electrochemical or catalytic thermal sensor and, consequently, the requirement of periodic replacement and calibration, the necessity of periodic resupply of expendables (photocalorimetric) etc. utilization of these systems in pressurized modules is complicated because of the necessity of regular resupply and coordination of experiment duration with gas-analyzer maintenance operations. The problem can be resolved by introduction of semi-conductor gas sensors functioning on the principle of reactivity of metal-oxide conduction to a measuring substance. A zinc oxide semi-conductor sensor was tested for ozone with calculation of the dependence of wanted signal on substance concentration. The tests were performed in steady and pulsed mode of sensor operation. PMID:16193928

  11. UV-Assisted Alcohol Sensors using Gallium Nitride Nanowires Functionalized with Zinc Oxide and Tin Dioxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bajpai, Ritu

    The motivation behind this work has been to address two of the most challenging issues posed to semiconductor gas sensors--- tuning the device selectivity and sensitivity to a wide variety of gases. In a chemiresistor type nanowire sensor, the sensitivity and selectivity depend on the interaction of different chemical analytes with the nanowire surface. Constrained by the surface properties of the nanowire material, most nanowire sensors can detect only specific type of analytes. In order to make a nano-sensor array for a wide range of analytes, there is a need to tune the device sensitivity and selectivity towards different chemicals. Employing the inherent advantages of nanostructure based sensing such as large surface area, miniature size, low power consumption, and nmol/mol (ppb) sensitivity, an attempt has been made to propose a device with tunable selectivity and sensitivity. The idea proposed in this work is to functionalize GaN nanowires which have relatively inactive surface properties (i.e., with no chemiresistive sensitivity to different classes of organic vapors), with analyte dependent active metal oxides. The selectivity of the sensor devices is controlled independent of the surface properties of the nanowire itself. It is the surface properties of the functionalizing metal oxides which determine the selectivity of these sensors. Further facilitated by the proposed fabrication technique, these sensors can be easily tuned to detect different gases. The prototype developed in this work is that of a UV assisted alcohol sensor using GaN nanowires functionalized with ZnO and SnO2 nanoparticles. As opposed to the widely demonstrated metal oxide based sensors assisted by elevated temperature, the operation of photoconductive semiconductor sensor devices such as those fabricated in this work, can also be assisted by UV illumination at room temperature. Temperature assisted sensing requires an integrated on-chip heater, which could impose constraints on the

  12. Synthesis of nanometric iron oxide films by RPLD and LCVD for thermo-photo sensors

    NASA Astrophysics Data System (ADS)

    Mulenko, S. A.; Gorbachuk, N. T.

    2011-11-01

    Iron oxide films were deposited on <100> Si substrates by reactive pulsed laser deposition (RPLD) using a KrF laser (248 nm). These films were deposited too by laser (light) chemical vapor deposition (LCVD) using continuous ultraviolet photodiode radiation (360 nm). The deposited films demonstrated semiconducting properties. These films had large thermo-electromotive force (e.m.f.) coefficient ( S) and high photosensitivity ( F). For films deposited by RPLD the S coefficient varied in the range 0.8-1.65 mV/K at 205-322 K. This coefficient depended on the band gap ( E g ) of the semiconductor films, which varied in the range 0.43-0.93 eV. The largest F value found was 44 Vc/W for white light at power density I≅0.006 W/cm2. Using LCVD, iron oxide films were deposited from iron carbonyl vapor. For these films, the S coefficient varied in the range -0.5 to 1.5 mV/K at 110-330 K. The S coefficient depended on E g of the semiconductor films, which varied in the range 0.44-0.51 eV. The largest F value of these films was about 40 Vc/W at the same I≅0.006 W/cm2. Our results showed that RPLD and LCVD can be used to synthesize iron oxide thin films with variable stoichiometry and, consequently, with different values of E g . These films have large S coefficient and high photosensitivity F and therefore can be used as multi-parameter sensors: thermo-photo sensors.

  13. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors.

    PubMed

    Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon

    2016-08-10

    We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics. PMID:27430635

  14. A MEMS based acetone sensor incorporating ZnO nanowires synthesized by wet oxidation of Zn film

    NASA Astrophysics Data System (ADS)

    Behera, Bhagaban; Chandra, Sudhir

    2015-01-01

    In this work, we report a simple and efficient method for synthesis of ZnO nanowires by thermal oxidation of Zn film and their integration with MEMS technologies to fabricate a sensor for acetone vapour detection. ZnO nanowires were prepared by thermal oxidation of sputter deposited Zn film. The nanostructured ZnO was characterized by x-ray diffraction, a scanning electron microscope and room temperature photoluminescence measurements. The ZnO nanowires synthesis process was integrated with MEMS technologies to obtain a sensor for volatile organic compounds, incorporating an on-chip Ni microheater and an interdigited electrode structure. To reduce the heat loss from the on-chip microheater, the sensor was made on a thin silicon diaphragm obtained via a modified reactive ion etching process. This resulted in considerable power saving during sensor operation. For this, a three-mask process was used. The performance of the microheater was simulated on COMSOL and validated experimentally. The sensor has been tested for acetone vapour sensing and the operating parameters were optimized. The sensor has the ability to detect acetone vapour at 5 parts per million (ppm) concentrations when operated at 100 °C. The sensor consumed only 36 mW power and showed a high-sensitivity value of 26.3% for 100 ppm of acetone vapour.

  15. Oxidative Stress Survival in a Clinical Saccharomyces cerevisiae Isolate Is Influenced by a Major Quantitative Trait Nucleotide

    PubMed Central

    Diezmann, Stephanie; Dietrich, Fred S.

    2011-01-01

    One of the major challenges in characterizing eukaryotic genetic diversity is the mapping of phenotypes that are the cumulative effect of multiple alleles. We have investigated tolerance of oxidative stress in the yeast Saccharomyces cerevisiae, a trait showing phenotypic variation in the population. Initial crosses identified that this is a quantitative trait. Microorganisms experience oxidative stress in many environments, including during infection of higher eukaryotes. Natural variation in oxidative stress tolerance is an important aspect of response to oxidative stress exerted by the human immune system and an important trait in microbial pathogens. A clinical isolate of the usually benign yeast S. cerevisiae was found to survive oxidative stress significantly better than the laboratory strain. We investigated the genetic basis of increased peroxide survival by crossing those strains, phenotyping 1500 segregants, and genotyping of high-survival segregants by hybridization of bulk and single segregant DNA to microarrays. This effort has led to the identification of an allele of the transcription factor Rds2 as contributing to stress response. Rds2 has not previously been associated with the survival of oxidative stress. The identification of its role in the oxidative stress response here is an example of a specific trait that appears to be beneficial to Saccharomyces cerevisiae when growing as a pathogen. Understanding the role of this fungal-specific transcription factor in pathogenicity will be important in deciphering how fungi infect and colonize the human host and could eventually lead to a novel drug target. PMID:21515583

  16. Recommended values of the thermophysical properties of eight alloys, their major constituents and oxides

    NASA Technical Reports Server (NTRS)

    Touloukian, Y. S.

    1967-01-01

    Reference work provides in tabular and graphical form the thermophysical properties of basic alloys, their constituents and oxides. This is useful for personnel who deal with extreme temperature environments.

  17. Iron-sulfur clusters as biological sensors: the chemistry of reactions with molecular oxygen and nitric oxide.

    PubMed

    Crack, Jason C; Green, Jeffrey; Thomson, Andrew J; Le Brun, Nick E

    2014-10-21

    Iron-sulfur cluster proteins exhibit a range of physicochemical properties that underpin their functional diversity in biology, which includes roles in electron transfer, catalysis, and gene regulation. Transcriptional regulators that utilize iron-sulfur clusters are a growing group that exploit the redox and coordination properties of the clusters to act as sensors of environmental conditions including O2, oxidative and nitrosative stress, and metabolic nutritional status. To understand the mechanism by which a cluster detects such analytes and then generates modulation of DNA-binding affinity, we have undertaken a combined strategy of in vivo and in vitro studies of a range of regulators. In vitro studies of iron-sulfur cluster proteins are particularly challenging because of the inherent reactivity and fragility of the cluster, often necessitating strict anaerobic conditions for all manipulations. Nevertheless, and as discussed in this Account, significant progress has been made over the past decade in studies of O2-sensing by the fumarate and nitrate reduction (FNR) regulator and, more recently, nitric oxide (NO)-sensing by WhiB-like (Wbl) and FNR proteins. Escherichia coli FNR binds a [4Fe-4S] cluster under anaerobic conditions leading to a DNA-binding dimeric form. Exposure to O2 converts the cluster to a [2Fe-2S] form, leading to protein monomerization and hence loss of DNA binding ability. Spectroscopic and kinetic studies have shown that the conversion proceeds via at least two steps and involves a [3Fe-4S](1+) intermediate. The second step involves the release of two bridging sulfide ions from the cluster that, unusually, are not released into solution but rather undergo oxidation to sulfane (S(0)) subsequently forming cysteine persulfides that then coordinate the [2Fe-2S] cluster. Studies of other [4Fe-4S] cluster proteins that undergo oxidative cluster conversion indicate that persulfide formation and coordination may be more common than previously

  18. Respiratory Burst Enzymes, Pro-Oxidants and Antioxidants Status in Bangladeshi Population with β-Thalassemia Major

    PubMed Central

    Hossain, Md. Faruk; Ismail, Md.; Tanu, Arifur Rahman; Shekhar, Hossain Uddin

    2015-01-01

    Background: Oxidative stress is intimately associated with many diseases, including β-thalassemia. Aim: The study was to estimate the status of respiratory burst enzymes, pro-oxidants, and antioxidants in β-thalassemia major patients in Bangladesh and to compare with apparently healthy individuals. Materials and Methods: A total of 49 subjects were recruited which included 25 patients (age range 5 to 40 years) with β-thalassemia major and 24 controls (age and sex matched). Superoxide dismutase (SOD) and catalase (CAT) represented respiratory burst enzymes; malondialdehyde (MDA), lipid hydroperoxide (LHP), and xanthine oxidase (XO) were measured as pro-oxidants; and glutathione S transferase (GST), vitamin C (Vit.C), and glutathione (GSH) were the measured antioxidants. Results: The activity of SOD was significantly (P < 0.001) increased by about 79% and the activity of CAT was significantly (P < 0.001) decreased by more than 34% in the blood of β-thalassemia major patients compared to the control group. The content of pro-oxidants such as MDA, LHP, and XO was significantly (P < 0.001) higher in patients by about 228%, 241.3% and 148.1% respectively compared to control group. The level of GSH and Vit.C were significantly (P = 0.000) decreased in patients by about 59% and 81% versus the healthy group, respectively; and GST activity was significantly (P < 0.001) declined by 44.25% in patients group. Conclusion: β-thalassemia major patients demonstrate raised oxidative stress compared to healthy subjects. PMID:26199921

  19. Neutrophilic Fe-Oxidizing Bacteria Are Abundant at the Loihi Seamount Hydrothermal Vents and Play a Major Role in Fe Oxide Deposition

    PubMed Central

    Emerson, David; Moyer, Craig L.

    2002-01-01

    A number of hydrothermal vent sites exist on the summit of the Loihi Seamount, a shield volcano that is part of the Hawaiian archipelago. The vents are 1,100 to 1,325 m below the surface and range in temperature from slightly above ambient (10°C) to high temperature (167°C). The vent fluid is characterized by high concentrations of CO2 (up to 17 mM) and Fe(II) (up to 268 μM), but there is a general paucity of H2S. Most of the vents are surrounded by microbial mats that have a gelatinous texture and are heavily encrusted with rust-colored Fe oxides. Visually, the Fe oxides appeared homogeneous. However, light microscopy revealed that the oxides had different morphologies, which fell into three classes: (i) sheaths, (ii) twisted or irregular filaments, and (iii) amorphous oxides. A morphological analysis of eight different samples indicated that the amorphous oxides were overall the most abundant; however, five sites had >50% sheaths and filamentous oxides. These latter morphologies are most likely the direct result of microbial deposition. Direct cell counts revealed that all of the oxides had abundant microbial populations associated with them, from 6.9 × 107 to 5.3 × 108 cells per ml of mat material. At most sites, end point dilution series for lithotrophic Fe oxidizers were successful out to dilutions of 10−6 and 10−7. A pure culture was obtained from a 10−7 dilution tube; this strain, JV-1, was an obligate, microaerophilic Fe oxidizer that grew at 25 to 30°C. A non-cultivation-based molecular approach with terminal-restriction fragment length polymorphism also indicated the common presence of Fe-oxidizing bacteria at Loihi. Together, these results indicate that Fe-oxidizing bacteria are common at the Loihi Seamount and probably play a major role in Fe oxidation. A review of the literature suggests that microbially mediated Fe oxidation at hydrothermal vents may be important globally. PMID:12039770

  20. Fast Responsive Gas Sensor of Vertically Aligned Fluorine-Doped Tin Oxide Nanorod Thin Film

    NASA Astrophysics Data System (ADS)

    Cho, Chan-Woo; Lee, Jong-Heun; Riu, Doh-Hyung; Kim, Chang-Yeoul

    2012-04-01

    We prepared fluorine-doped tin oxide (FTO) nanorod films and a conventional FTO thin film for the application of a semiconducting gas sensor by spray pyrolysis method. The lengths of FTO nanorods (FTON, 100 and 500 nm) were controlled by changing deposition times, and FTO thin film (FTOT) was also prepared as a reference. The gas sensitivity test shows FTON with long nanorods had higher sensitivity for both hydrogen and ethanol gases but slow response and recovery times, despite an advantage of the higher gas sensitivity. FTO nanorod film with short length about 100 nm showed relatively lower sensitivity, but fast gas response and recovery characteristics. The fast response and recovery for the analyte gases are attributed to the conductance of FTO nanorods, which is closely related to the diameter and length of nanorods.

  1. High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films

    SciTech Connect

    Mu, Haichuan; Zhang, Zhiqiang; Wang, Keke; Xie, Haifen; Zhao, Xiaojing; Liu, Feng

    2014-07-21

    Zinc oxide (ZnO) thin films with various thicknesses were fabricated by Atomic Layer Deposition on Chemical Vapor Deposition grown graphene films and their response to formaldehyde has been investigated. It was found that 0.5 nm ZnO films modified graphene sensors showed high response to formaldehyde with the resistance change up to 52% at the concentration of 9 parts-per-million (ppm) at room temperature. Meanwhile, the detection limit could reach 180 parts-per-billion (ppb) and fast response of 36 s was also obtained. The high sensitivity could be attributed to the combining effect from the highly reactive, top mounted ZnO thin films, and high conductive graphene base network. The dependence of ZnO films surface morphology and its sensitivity on the ZnO films thickness was also investigated.

  2. Alternating Current Dielectrophoresis Optimization of Pt-Decorated Graphene Oxide Nanostructures for Proficient Hydrogen Gas Sensor.

    PubMed

    Wang, Jianwei; Rathi, Servin; Singh, Budhi; Lee, Inyeal; Joh, Han-Ik; Kim, Gil-Ho

    2015-07-01

    Alternating current dielectrophoresis (DEP) is an excellent technique to assemble nanoscale materials. For efficient DEP, the optimization of the key parameters like peak-to-peak voltage, applied frequency, and processing time is required for good device. In this work, we have assembled graphene oxide (GO) nanostructures mixed with platinum (Pt) nanoparticles between the micro gap electrodes for a proficient hydrogen gas sensors. The Pt-decorated GO nanostructures were well located between a pair of prepatterned Ti/Au electrodes by controlling the DEP technique with the optimized parameters and subsequently thermally reduced before sensing. The device fabricated using the DEP technique with the optimized parameters showed relatively high sensitivity (∼10%) to 200 ppm hydrogen gas at room temperature. The results indicates that the device could be used in several industry applications, such as gas storage and leak detection. PMID:26042360

  3. Non-Enzymatic Glucose Sensor Based on 3D Graphene Oxide Hydrogel Crosslinked by Various Diamines.

    PubMed

    Hoa, Le Thuy; Hur, Seung Hyun

    2015-11-01

    The non-enzymatic glucose sensor was fabricated by well-controlled and chemically crosslinked graphene oxide hydrogels (GOHs). By using various diamines such as ethylenediamine (EDA), p-phenylene diamine (pPDA) and o-phenylene diamine (oPDA) that have different amine to amine distance, we can control the structures of GOHs such as surface area and pore volume. The pPDA-GOH fabricated by pPDA exhibited the largest surface area and pore volume due to its longest amine to amine distance, which resulted in highest sensitivity in glucose and other monosaccharide sensing such as fructose (C6H12O6), galactose (C6H12O6) and sucrose (C12H22O11). It also showed fast and wide range glucose sensing ability in the amperometric test, and an excellent selectivity toward other interference species such as an Ascorbic acid. PMID:26726578

  4. Analyzer for measurement of nitrogen oxide concentration by ozone content reduction in gas using solid state chemiluminescent sensor

    NASA Astrophysics Data System (ADS)

    Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.

    2014-05-01

    Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01

  5. Stable and very sensitive gas sensor based on novel mixed-metal oxides

    NASA Astrophysics Data System (ADS)

    Comini, Elisabetta; Faglia, Guido; Sberveglieri, Giorgio

    2004-03-01

    The material properties of the nano-structured materials show remarkable improvement or deviation from the properties exhibited by the coarser grained material. These unique properties are attributed to the significant increase in grain boundary area due to the small grain size. The possibility to manipulate the properties of a nanosized thin film simply through annealing appears to be of widespread interest for material science. In the gas sensing field of application there is a great effort in reducing the grain dimension and increasing the surface area exposed to the interaction with gaseous species. One of the strategies used is the addition of a second element, which can inhibit the grain growth. Furthermore, there may be a coexistence of two phases and one phase can act as a receptor while the other can act as transducers and an effect on film porosity is also expected, depending on the extent of oxide segregation from the nanosized film. Thin films made of Mo-Ti, Mo-W, Ti-W, Ti-Nb mixed oxides were achieved by reactive sputtering, assisted by thermal treatments. These layers were characterized by means of the electrical measurements in presence of different pollutants and alcohols and with the Kelvin probe at different working temperatures; the good sensing capabilities registered with these mixed oxide compared to their single oxides have to be ascribed to the nanosized structure of these layers. In particular different p-type sensing materials were produced, the opposite behavior of these layer is attractive to ease data processing in sensors arrays.

  6. Detection of nitrite and nitrate ions in water by graphene oxide as a potential fluorescence sensor

    NASA Astrophysics Data System (ADS)

    Tang, Ing Hua; Sundari, Rita; Lintang, Hendrik O.; Yuliati, Leny

    2016-02-01

    In this study, graphene oxide (GO) was used as a new fluorescence sensor for detection of nitrite (NO2-) and nitrate (NO3-) ions. The GO was synthesized via an improved Hummers’ method, and the properties of GO were examined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscope (TEM). The XRD pattern showed the presence of (002) plane at 2θ of 9.5o while the FTIR spectrum showed the presence of C-OH, C=O, C=C, C-O chemical bonds in the GO. The layer structure of the GO was confirmed from the TEM image. The sensing performance of the GO for NO2- and NO3- was evaluated by monitoring the emission sites of the GO at 567 nm, which was corresponded to the oxygen functional groups. Fluorescence quenching was observed, suggesting that the GO interacted well with both NO2- and NO3- ions. The linear Stern-Volmer plots were obtained in the concentration range of 1-10 mM, indicating the potential ability of the GO as the fluorescence sensor. The quenching constants for the detections of NO2- and NO3- were 4.8 × 10-2 and 1.2 × 10-2 mM-1, respectively, suggesting that the GO has greater sensitivity towards the NO2- than the NO3- ion.

  7. Label free selective detection of estriol using graphene oxide-based fluorescence sensor

    NASA Astrophysics Data System (ADS)

    Kushwaha, H. S.; Sao, Reshma; Vaish, Rahul

    2014-07-01

    Water-soluble and fluorescent Graphene oxide (GO) is biocompatible, easy, and economical to synthesize. Interestingly, GO is also capable of quenching fluorescence. On the basis of its fluorescence and quenching abilities, GO has been reported to serve as an energy acceptor in a fluorescence resonance energy transfer (FRET) sensor. GO-based FRET biosensors have been widely reported for sensing of proteins, nucleic acid, ATP (Adenosine triphosphate), etc. GO complexes with fluorescent dyes and enzymes have been used to sense metal ions. Graphene derivatives have been used for sensing endocrine-disrupting chemicals like bisphenols and chlorophenols with high sensitivity and good reproducibility. On this basis, a novel GO based fluorescent sensor has been successfully designed to detect estriol with remarkable selectivity and sensitivity. Estriol is one of the three estrogens in women and is considered to be medically important. Estriol content of maternal urine or plasma acts as an important screening marker for estimating foetal growth and development. In addition, estriol is also used as diagnostic marker for diseases like breast cancer, osteoporosis, neurodegenerative and cardiovascular diseases, insulin resistance, lupus erythematosus, endometriosis, etc. In this present study, we report for the first time a rapid, sensitive with detection limit of 1.3 nM, selective and highly biocompatible method for label free detection of estriol under physiological conditions using fluorescence assay.

  8. Enzyme-free glucose sensor based on Au nanobouquet fabricated indium tin oxide electrode.

    PubMed

    Lee, Jin-Ho; El-Said, Waleed Ahmed; Oh, Byung-Keun; Choi, Jeong-Woo

    2014-11-01

    In this study, we demonstrated a simple, rapid and inexpensive fabrication method to develop a novel gold nanobouquet structure fabricated indium tin oxide (GNB/ITO) electrode based on electrochemical deposition of gold ions onto ITO substrate. The morphology of the fabricated electrode surface was characterized by scanning electron microscopy (SEM) to confirm the GNB formation. Enzyme-free detection of glucose using a GNB/ITO electrode was described with high sensitivity and selectivity based on cyclic voltammetry assay. The results demonstrate a linear relation within wide concentration range (500 nM to 10 mM) of glucose, with a correlation coefficient of 0.988. The interference effect of uric acid was effectively avoided for the detection of glucose (1 μM to 10 mM). Moreover, the developed sensor was applied to determine the concentration of glucose in the presence of human serum to indicate the ability of GNB/ITO electrodes in real samples. Hence, newly developed GNB/ITO electrode has potential application in enzyme-free glucose sensor with highly sensitivity and selectivity. PMID:25958541

  9. Sensitivity and Response of Polyvinyl Alcohol/Tin Oxide Nanocomposite Multilayer Thin Film Sensors.

    PubMed

    Sriram, G; Dhineshbabu, N R; Nithyavathy, N; Saminathan, K; Kaler, K V I S; Rajendran, V

    2016-01-01

    Nanocrystalline Tin Oxide (SnO₂) is Non-Stoichiometric in Nature with Functional Properties Suitable for gas sensing. In this study, SnO₂nanoparticles were prepared by the sol-gel technique, which were then characterised using X-ray diffraction. The nanoparticles showed tetragonal structure with an average crystallite size of 18 nm. The stretching and vibration modes of SnO₂were confirmed using Fourier transform infrared spectroscopy. The size of SnO₂ nanoparticles was determined using particle size analyser, which was found be 60 ± 10 nm on average. The surface morphology of the nanoparticles was investigated using scanning electron microscope, which showed irregular-sized agglomerated SnO₂nanostructures. In addition, primary particle size was evaluated using high-resolution transmission electron microscopy, which was found to be 50 nm on average. The polyvinyl alcohol/SnO₂ composite thin film was prepared on a glass substrate using spin-coating method. The values of band gap energy and electrical conductance of 13-layer thin film were found to be 2.96 eV and 0.0505 mho, respectively. Sulfur dioxide (SO₂) was suitably tailored to verify the sensor response over a concentration range of 10-70 ppm at room temperature. The performance, response, and recovery time of sensors were increased by increasing the layers of the thin film. PMID:27398561

  10. Mitochondrial oxidative phosphorylation: tissue oxygen sensor for regulation of coronary flow.

    PubMed

    Nuutinen, E M; Wilson, D F; Erecińska, M

    1984-01-01

    The observation that mitochondrial oxidative phosphorylation in vivo is dependent on oxygen tension throughout the physiological range (Wilson et al., 1979a , 1979b ) has made this metabolic pathway the most probable candidate for the tissue oxygen sensor in the regulation of local blood flow. We have utilized the oxygen dependent regulatory system for coronary blood flow to examine this possibility. Alterations in coronary flow were induced by: 1. Varied work load; 2. Infusion of Amytal (an inhibitor of mitochondrial respiration); 3. Infusion of DNP; 4. Hypoxia. Increased work load caused increased coronary flow with no decrease in effluent oxygen tension while Amytal infusion and hypoxia caused vasodilation with increased and decreased O2 tension respectively. This indicates that oxygen tension per se cannot be responsible for the observed vasodilation. Tissue energy metabolism was evaluated by measuring metabolite levels in hearts which were freeze-clamped in each state of perfusion. In all four methods of vasodilation, a decrease in cellular energy state ratio ([ATP]f/[ADP]f[Pi]) expressed as the calculated ratio of free adenine nucleotides, was observed for conditions which increased flow. Systematic variation of work load, Amytal or DNP concentration resulted in quantitatively the same correlation between tissue [ATP]f/[ADP]f[Pi] and coronary flow. It is concluded that mitochondrial oxidative phosphorylation is the oxygen sensor for the regulation of coronary blood flow by tissue oxygen tension. Infusion of adenosine, a known coronary vasodilator, induced vasodilation which was completely blocked by theophylline.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6731096

  11. Nickel-oxide film as an AR coating of Si window for IR sensor packaging

    NASA Astrophysics Data System (ADS)

    Shim, Hyunbin; Kim, Dongsoo; Kang, Ingu; Kim, Jinkwan; Lee, Hee Chul

    2013-06-01

    An infrared (IR) transparent window is necessary for the IR sensor package. The most commonly used materials for IR transparent window are germanium (Ge) and silicon (Si). Ge has excellent optical properties but also the disadvantage of expensive price. Si has merits such as inexpensive cost and CMOS process compatibility but it has lower transmittance in the range of LWIR region than Ge. Therefore, an alternative anti-reflection (AR) coating is necessary to increase the transmittance of Si as an IR transparent window in the LWIR region. A simple single layer antireflection coating was newly designed on the silicon window for the infrared sensor package. Among the various materials, nickel oxide (NiO) was selected as an AR coating material due to its suitable optical properties and simple process. NiO film was deposited onto the double sided polished Si wafer by reactive rf sputtering with Ni target in an environment of Ar and O2 mixed gas. The thickness of the NiO film was determined by Essential Macleod simulation. FT-IR was used to measure the transmittance of the samples in the LWIR region. After the nickel oxide film was sputtered onto the double sides of the silicon wafer, the measured transmittance of the Si wafer was increased over 20% in the LWIR region compared with that of uncoated Si wafer. Additionally, annealing effect on the transmittance of NiO coated Si wafer was studied. By increasing the annealing temperature from 300° to 700°, an additional increase of transmittance was achieved.

  12. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia

    PubMed Central

    Fan, Jing; Kamphorst, Jurre J; Mathew, Robin; Chung, Michelle K; White, Eileen; Shlomi, Tomer; Rabinowitz, Joshua D

    2013-01-01

    Mammalian cells can generate ATP via glycolysis or mitochondrial respiration. Oncogene activation and hypoxia promote glycolysis and lactate secretion. The significance of these metabolic changes to ATP production remains however ill defined. Here, we integrate LC-MS-based isotope tracer studies with oxygen uptake measurements in a quantitative redox-balanced metabolic flux model of mammalian cellular metabolism. We then apply this approach to assess the impact of Ras and Akt activation and hypoxia on energy metabolism. Both oncogene activation and hypoxia induce roughly a twofold increase in glycolytic flux. Ras activation and hypoxia also strongly decrease glucose oxidation. Oxidative phosphorylation, powered substantially by glutamine-driven TCA turning, however, persists and accounts for the majority of ATP production. Consistent with this, in all cases, pharmacological inhibition of oxidative phosphorylation markedly reduces energy charge, and glutamine but not glucose removal markedly lowers oxygen uptake. Thus, glutamine-driven oxidative phosphorylation is a major means of ATP production even in hypoxic cancer cells. PMID:24301801

  13. Integrated Bio-Imaging Sensor Array with Complementary Metal-Oxide-Semiconductor Cascode Source-Drain Follower

    NASA Astrophysics Data System (ADS)

    Hirokazu Matsumoto,; Junichi Tsukada,; Hiroaki Ozawa,; Shigeyasu Uno,; Kazuo Nakazato,; Nao Terasaki,; Noritaka Yamamoto,; Takashi Hiraga,; Masako Iwai,; Masae Konno,; Kohsuke Ito,; Yasunori Inoue,

    2010-04-01

    A new bio-imaging sensor with photosystem I (PSI) of Thermosynechococcus elongatus and complementary metal-oxide-semiconductor (CMOS) circuits is demonstrated. Photons are converted into electrons by PSI, and electrons are detected as an electric signal by a CMOS integrated circuit. For a sensor circuit, a 4 × 4 sensor array with a CMOS source-drain follower is designed and fabricated by a standard CMOS process. An extended-gate electrode and an SU-8 passivation layer are formed on a CMOS chip by a post-CMOS process, and PSI is electrostatically fixed on the electrode. A 3× 4 image of the pattern of light illuminated on a chip is taken with the sensor array, where four cells are used as reference cells.

  14. Integrated Bio-Imaging Sensor Array with Complementary Metal-Oxide-Semiconductor Cascode Source-Drain Follower

    NASA Astrophysics Data System (ADS)

    Matsumoto, Hirokazu; Tsukada, Junichi; Ozawa, Hiroaki; Uno, Shigeyasu; Nakazato, Kazuo; Terasaki, Nao; Yamamoto, Noritaka; Hiraga, Takashi; Iwai, Masako; Konno, Masae; Ito, Kohsuke; Inoue, Yasunori

    2010-04-01

    A new bio-imaging sensor with photosystem I (PSI) of Thermosynechococcus elongatus and complementary metal-oxide-semiconductor (CMOS) circuits is demonstrated. Photons are converted into electrons by PSI, and electrons are detected as an electric signal by a CMOS integrated circuit. For a sensor circuit, a 4 ×4 sensor array with a CMOS source-drain follower is designed and fabricated by a standard CMOS process. An extended-gate electrode and an SU-8 passivation layer are formed on a CMOS chip by a post-CMOS process, and PSI is electrostatically fixed on the electrode. A 3×4 image of the pattern of light illuminated on a chip is taken with the sensor array, where four cells are used as reference cells.

  15. Endonuclease IV Is the major apurinic/apyrimidinic endonuclease in Mycobacterium tuberculosis and is important for protection against oxidative damage.

    PubMed

    Puri, Rupangi Verma; Singh, Nisha; Gupta, Rakesh K; Tyagi, Anil K

    2013-01-01

    During the establishment of an infection, bacterial pathogens encounter oxidative stress resulting in the production of DNA lesions. Majority of these lesions are repaired by base excision repair (BER) pathway. Amongst these, abasic sites are the most frequent lesions in DNA. Class II apurinic/apyrimidinic (AP) endonucleases play a major role in BER of damaged DNA comprising of abasic sites. Mycobacterium tuberculosis, a deadly pathogen, resides in the human macrophages and is continually subjected to oxidative assaults. We have characterized for the first time two AP endonucleases namely Endonuclease IV (End) and Exonuclease III (XthA) that perform distinct functions in M.tuberculosis. We demonstrate that M.tuberculosis End is a typical AP endonuclease while XthA is predominantly a 3'→5' exonuclease. The AP endonuclease activity of End and XthA was stimulated by Mg(2+) and Ca(2+) and displayed a preferential recognition for abasic site paired opposite to a cytosine residue in DNA. Moreover, End exhibited metal ion independent 3'→5' exonuclease activity while in the case of XthA this activity was metal ion dependent. We demonstrate that End is not only a more efficient AP endonuclease than XthA but it also represents the major AP endonuclease activity in M.tuberculosis and plays a crucial role in defense against oxidative stress. PMID:23936515

  16. Towards a reliable and high sensitivity O₂-independent glucose sensor based on Ir oxide nanoparticles.

    PubMed

    Campbell, H B; Elzanowska, H; Birss, V I

    2013-04-15

    The primary goal of this work is the development of a rapidly responding, sensitive, and biocompatible Ir oxide (IrOx)-based glucose sensor that regenerates solely via IrOx-mediation in both O₂-free and aerobic environments. An important discovery is that, for films composed of IrOx nanoparticles, Nafion® and glucose oxidase (GOx), a Michaelis-Menten constant (K'(m)) of 20-30 mM is obtained in the case of dual-regeneration (O₂ and IrOx), while K'(m) values are much smaller (3-5 mM) when re-oxidation of GOx occurs only through IrOx-mediation. These smaller K'(m) values indicate that the regeneration of GOx via direct electron transfer to the IrOx nanoparticles is more rapid than to O₂. Small K'(m) values, which are obtained more commonly when Nafion® is not present in the films, are also important for the accurate measurement of low glucose concentrations under hypoglycemic conditions. In this work, the sensing film was also optimized for miniaturization. Depending on the IrOx and GOx surface loadings and the use of sonication before film deposition, the i(max) values ranged from 5 to 225 μA cm⁻², showing very good sensitivity down to 0.4 mM glucose. PMID:23261690

  17. Fibre optic chemical sensor based on graphene oxide-coated long period grating

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Cai, Qi; Sun, Zhongyuan; Xu, Baojian; Zhao, Jianlong; Zhang, Lin; Chen, Xianfeng

    2016-05-01

    In this work, a graphene oxide-coated long period fibre grating (GO-LPG) is proposed for chemical sensing application. Graphene oxide (GO) has been deposited on the surface of long period grating to form a sensing layer which significantly enhances the interaction between LPG propagating light and the surrounding-medium. The sensing mechanism of GO-LPG relies on the change of grating resonance intensity against surrounding-medium refractive index (SRI). The proposed GO-LPG has been used to measure the concentrations of sugar aqueous solutions. The refractive index sensitivities with 99.5 dB/RIU in low refractive index region (1.33-1.35) and 320.6 dB/RIU in high index region (1.42-1.44) have been achieved, showing an enhancement by a factor of 3.2 and 6.8 for low and high index regions, respectively. The proposed GO-LPG can be further extended to the development of optical biochemical sensor with advantages of high sensitivity, real-time and label-free sensing.

  18. Electrochemical enzyme-less urea sensor based on nano-tin oxide synthesized by hydrothermal technique.

    PubMed

    Ansari, S G; Fouad, H; Shin, Hyung-Shik; Ansari, Z A

    2015-12-01

    Nano-Tin oxide was synthesized using hydrothermal method at 150 °C for 6 h and then thin films were deposited by electrophoretic method at an optimized voltage of 100 V for 5 min on electropolished aluminum substrate. Spherical particles of about 30-50 nm diameters are observed with partial agglomeration when observed under electron microscope, which are tetragonal rutile structure. XPS results showed peaks related to Sn 4d, Sn 3d, O 1s & C 1s with spin-orbit splitting of 8.4 eV for Sn 3d. Feasibility studies of enzyme less urea sensing characteristics of nano-tin oxide thin films are exhibited herein. The deposited films have been used for enzyme less urea sensing from 1 to 20 mM concentration in buffer solution. The sensors were characterized electrochemically to obtain cyclic voltammogram as a function of urea concentration and scan rate. The sensitivity is estimated as 18.9 μA/mM below 5 mM and 2.31 μA/mM above 5 mM with a limit of detection of 0.6 mM. PMID:26381425

  19. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    PubMed Central

    Konduru, Tharun; Rains, Glen C.; Li, Changying

    2015-01-01

    A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage. PMID:25587975

  20. A customized metal oxide semiconductor-based gas sensor array for onion quality evaluation: system development and characterization.

    PubMed

    Konduru, Tharun; Rains, Glen C; Li, Changying

    2015-01-01

    A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage. PMID:25587975

  1. Dimensionality aspects of nano micro integrated metal oxide based early stage leak detection room temperature hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Deshpande, Sameer Arun

    Detection of explosive gas leaks such as hydrogen (H2) becomes key element in the wake of counter-terrorism threats, introduction of hydrogen powered vehicles and use of hydrogen as a fuel for space explorations. In recent years, a significant interest has developed on metal oxide nanostructured sensors for the detection of hydrogen gas. Gas sensors properties such as sensitivity, selectivity and response time can be enhanced by tailoring the size, the shape, the structure and the surface of the nanostructures. Sensor properties (sensitivity, selectivity and response time) are largely modulated by operating temperature of the device. Issues like instability of nanostructures at high temperature, risk of hydrogen explosion and high energy consumption are driving the research towards detection of hydrogen at low temperatures. At low temperatures adsorption of O2- species on the sensor surface instead of O- (since O- species reacts easily with hydrogen) result in need of higher activation energy for hydrogen and adsorbed species interaction. This makes hydrogen detection at room temperature a challenging task. Higher surface area to volume ratio (resulting higher reaction sites), enhanced electronic properties by varying size, shape and doping foreign impurities (by modulating space charge region) makes nanocrystalline materials ideal candidate for room temperature gas sensing applications. In the present work various morphologies of nanostructured tin oxide (SnO 2) and indium (In) doped SnO2 and titanium oxide (titania, TiO2) were synthesized using sol-gel, hydrothermal, thermal evaporation techniques and successfully integrated with the micro-electromechanical devices H2 at ppm-level (as low as 100ppm) has been successfully detected at room temperature using the SnO2 nanoparticles, SnO2 (nanowires) and TiO2 (nanotubes) based MEMS sensors. While sensor based on indium doped tin oxide showed the highest sensitivity (S =Ra/Rg= 80000) and minimal response time (10sec

  2. Examination of zinc oxide, copper chromium oxide, and copper scandium oxide properties for use in transparent electronics and chemical sensors

    NASA Astrophysics Data System (ADS)

    Sadik, Patrick

    Greater progress in the field of TCO (transparent oxide semiconductor) research has been hampered by a lack of availability of p-type candidates. Though the n-type TCO's are well documented and easily produced only one well documented oxide has spurred continued efforts at producing robust, p-type behavior, namely ZnO. Though p-ZnO has been produced, a coterminous research effort into improving the film qualities of lesser known naturally p-type TCO's could prove fruitful. Thus, this research has examined the thin film properties of two delafossites, CuCr1-xMgxO 2 and CuSc1-xMgxO2 as well as the surface properties of ZnO. The delafossites, CuCr1-xMgxO2 and CuSc 1-xMgxO2 have been shown to have the superlative properties of high conductivities (220 S cm-1 and 70 S cm-1) and high transparencies in 400 nm thick films of ˜40% and ˜80% throughout the visible spectrum. We have also been the first to describe a near band edge photo-luminescence in CuSc1-x MgxO2 for 0.00< x<0.03, opening the possibility of creating delafossite active layer light emitting diodes. The greatest challenge in creating viable pn-junctions between the delafossites and ZnO is preventing an in situ reaction between CuCr1-xMgxO 2 and ZnO that creates a (Mg/Cu)Cr2O4 spinel interface. We have found that a strategy of using a CuCr1-xMgxO 2/CuSc1-xMgxO2/ZnO on c-Al2O 3 in two ways may allow the growth of either a buffer/p/n or a p/i/n structure. Specifically, growing CuCrO2 at 700°C as a 100 nm nucleation layer followed by a 750°C growth of CuSc1-xMg xO2 and a 400°C growth of ZnO secures an epitaxial growth for the entire structure despite large lattice mismatches between c-Al2O3/CuCrO2 (8.7%) and CuCrO 2/CuScO2 (7.7%). This combined research takes the first steps in making robust pn-heterojunctions possible. Also, in an effort to progress an understanding of the surface chemistry of ZnO we provide results showing marked difference in the chemisorptions of dodecane thiol upon Zn- and O

  3. Fenton oxidation to remediate PAHs in contaminated soils: A critical review of major limitations and counter-strategies.

    PubMed

    Usman, M; Hanna, K; Haderlein, S

    2016-11-01

    Fenton oxidation constitutes a viable remediation strategy to remove polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. This review is intended to illustrate major limitations associated with this process like acidification, PAH unavailability, and deterioration of soil quality along with associated factors, followed by a critical description of various developments to overcome these constraints. Considering the limitation that its optimal pH is around 3, traditional Fenton treatment could be costly, impractical in soil due to the high buffering capacity of soils and associated hazardous effects. Use of various chelating agents (organic or inorganic) allowed oxidation at circumneutral pH but factors like higher oxidant demand, cost and toxicity should be considered. Another alternative is the use of iron minerals that can catalyze Fenton-like oxidation over a wide range of pH, but mobility of these particles in soils (i.e. saturated and unsaturated zones) should be investigated prior to in-situ applications. The PAH-unavailability is the crucial limitation hindering their effective degradation. Research data is compiled describing various strategies to address this issue like the use of availability enhancement agents, extraction or thermal pretreatment. Last section of this review is devoted to describe the effects of various developments in Fenton treatment onto soil quality and native microbiota. Finally, research gaps are discussed to suggest future directions in context of applying Fenton oxidation to remediate contaminated soils. PMID:27341118

  4. Novel alkaline-reduced cuprous oxide/graphene nanocomposites for non-enzymatic amperometric glucose sensor application.

    PubMed

    Yazid, Siti Nur Akmar Mohd; Isa, Illyas Md; Hashim, Norhayati

    2016-11-01

    This paper presents the fabrication of a highly sensitive and selective glucose sensor based on cuprous oxide/graphene nanocomposites-modified glassy carbon electrode (Cu2O/graphene/GCE). The Cu2O/graphene nanocomposites were synthesized based on a simple and straightforward chemical reduction process in alkaline aqueous solution using sodium carbonate as reductant. The size and shape of Cu2O nanoparticles on graphene sheets can be controlled by changing the amount of graphene oxide added during reaction. The electrochemical properties of Cu2O/graphene/GCE in 0.1M phosphate buffer solution were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. It was found that the pH, concentration of supporting electrolyte, and scan rate had very crucial effect on the sensitivity of prepared sensor towards glucose oxidation. At an applied potential of +0.50V, the Cu2O/graphene/GCE presented a high sensitivity of 1330.05μAmM(-1)cm(-2) and fast response (within 3s). The amperometric non-enzymatic glucose sensor developed had a linear relationship from 0.01mM to 3.0mM glucose and detection limit of 0.36μM. In the presence of ascorbic acid, uric acid, dopamine, chloride and citrate ion and other carbohydrates, the interferences were negligible. The proposed sensor was successfully applied for the determination of glucose concentration in real human blood samples. PMID:27524043

  5. The Oxidative State of LDL is the Major Determinant of Anti/Prooxidant Effect of Coffee on Cu Catalysed Peroxidation.

    PubMed

    Carru, Ciriaco; Pasciu, Valeria; Sotgia, Salvatore; Zinellu, Angelo; Nicoli, Maria Cristina; Deiana, Luca; Tadolini, Bruna; Sanna, Bastiano; Masala, Bruno; Pintus, Gianfranco

    2011-01-01

    Antioxidants exert contrasting effect on low density lipoprotein (LDL) oxidation catalysed by metals, acting as pro-oxidants under select in vitro conditions. Through our study on the effect of coffee on LDL oxidation, we identified the parameters governing this phenomenon, contributing to the comprehension of its mechanism and discovering significant implications for correct alimentary recommendations. By measuring conjugated diene formation, we have analysed the quantitative and qualitative effects exerted by an extract of roasted coffee on LDL oxidation triggered by copper sulphate. When the relative effects of different coffee concentrations were plotted against the lag time (LT) of control LDL (C-LDL), the apparently random experimental data arranged in sensible patterns: by increasing the LT the antioxidant activity of coffee decreased progressively to become prooxidant. The critical LT, at which coffee switches from antioxidant to prooxidant, increased by increasing coffee concentration. Also the contrasting results obtained following a delayed addition of coffee to the assay, arranged in a simple pattern when referred to the LT of C-LDL: the prooxidant effect decreased to become antioxidant as the LT of C-LDL increased. The dependence of coffee effect on the LT of C-LDL was influenced by LDL but not by metal catalyst concentration. These novel findings point to the oxidative state of LDL as a major parameter controlling the anti/prooxidant effect of coffee and suggest the LT of C-LDL as a potent analytical tool to express experimental data when studying the action exerted by a compound on LDL oxidation. PMID:21633665

  6. Laser-induced breakdown spectroscopy of major and minor oxides in steel slags: Influence of detection geometry and signal normalization

    NASA Astrophysics Data System (ADS)

    Ahamer, C. M.; Eschlböck-Fuchs, S.; Kolmhofer, P. J.; Rössler, R.; Huber, N.; Pedarnig, J. D.

    2016-08-01

    Slag from secondary metallurgy in industrial steel production is analyzed by laser-induced breakdown spectroscopy (LIBS). The major oxides CaO, Al2O3, MgO, SiO2, FeO, MnO, and TiO2 are determined by calibration-free LIBS (CF-LIBS) method. For the minor oxide P2O5 calibration curves are established and the limits of detection (LOD) and the root-mean squared errors of prediction (RMSEP) are determined. The optical emission of the laser-induced plasma is measured for different detection geometries and varying sample position relative to the focal plane of the laser beam. LIBS spectra, plasma parameters, and analytical results are very similar for light collection with optical fibres close to the plasma ("direct detection") and at remote position ("collinear detection"). With collinear detection, the CF-LIBS calculated oxide concentrations are insensitive to sample position along the optical axis over wide range. The detection limits and the prediction errors of minor P2O5 depend on the major slag element used for signal normalization. With Mg and Si as internal reference elements the LOD values are 0.31 wt% and 0.07 wt%, respectively. The RMSEP values are lowest for signal normalization to Si. Calculations of the optical emission of ideal plasma support the experimental preference for Si as reference element in the phosphorous calibration.

  7. Nuclear Cytoplasmic Trafficking of Proteins is a Major Response of Human Fibroblasts to Oxidative Stress

    PubMed Central

    Baqader, Noor O.; Radulovic, Marko; Crawford, Mark; Stoeber, Kai; Godovac-Zimmermann, Jasminka

    2014-01-01

    We have used a subcellular spatial razor approach based on LC–MS/MS-based proteomics with SILAC isotope labeling to determine changes in protein abundances in the nuclear and cytoplasmic compartments of human IMR90 fibroblasts subjected to mild oxidative stress. We show that response to mild tert-butyl hydrogen peroxide treatment includes redistribution between the nucleus and cytoplasm of numerous proteins not previously associated with oxidative stress. The 121 proteins with the most significant changes encompass proteins with known functions in a wide variety of subcellular locations and of cellular functional processes (transcription, signal transduction, autophagy, iron metabolism, TCA cycle, ATP synthesis) and are consistent with functional networks that are spatially dispersed across the cell. Both nuclear respiratory factor 2 and the proline regulatory axis appear to contribute to the cellular metabolic response. Proteins involved in iron metabolism or with iron/heme as a cofactor as well as mitochondrial proteins are prominent in the response. Evidence suggesting that nuclear import/export and vesicle-mediated protein transport contribute to the cellular response was obtained. We suggest that measurements of global changes in total cellular protein abundances need to be complemented with measurements of the dynamic subcellular spatial redistribution of proteins to obtain comprehensive pictures of cellular function. PMID:25133973

  8. Redox Modulation of Cellular Signaling and Metabolism Through Reversible Oxidation of Methionine Sensors in Calcium Regulatory Proteins

    SciTech Connect

    Bigelow, Diana J.; Squier, Thomas C.

    2005-01-17

    Adaptive responses associated with environmental stressors are critical to cell survival. These involve the modulation of central signaling protein functions through site-specific and enzymatically reversible oxidative modifications of methionines to coordinate cellular metabolism, energy utilization, and calcium signaling. Under conditions when cellular redox and antioxidant defenses are overwhelmed, the selective oxidation of critical methionines within selected protein sensors functions to down-regulate energy metabolism and the further generation of reactive oxygen species (ROS). Mechanistically, these functional changes within protein sensors take advantage of the helix-breaking character of methionine sulfoxide. Thus, depending on either the ecological niche of the organism or the cellular milieu of different organ systems, cellular metabolism can be fine-tuned to maintain optimal function in the face of variable amounts of collateral oxidative damage. The sensitivity of several calcium regulatory proteins to oxidative modification provides cellular sensors that link oxidative stress to cellular response and recovery. Calmodulin (CaM) is one such critical calcium regulatory protein, which is functionally sensitive to methionine oxidation. Helix destabilization resulting from the oxidation of either Met{sup 144} or Met{sup 145} results in the nonproductive association between CaM and target proteins. The ability of oxidized CaM to stabilize its target proteins in an inhibited state with an affinity similar to that of native (unoxidized) CaM permits this central regulatory protein to function as a cellular rheostat that down-regulates energy metabolism in response to oxidative stress. Likewise, oxidation of a methionine within a critical switch region of the regulatory protein phospholamban is expected to destabilize the phosphorylationdependent helix formation necessary for the release of enzyme inhibition, resulting in a down-regulation of the Ca-ATPase in

  9. A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine.

    PubMed

    Hosseini, Hadi; Ahmar, Hamid; Dehghani, Ali; Bagheri, Akbar; Tadjarodi, Azadeh; Fakhari, Ali Reza

    2013-04-15

    A novel electrochemical sensor based on Au-SH-SiO₂ nanoparticles supported on metal-organic framework (Au-SH-SiO₂@Cu-MOF) has been developed for electrocatalytic oxidation and determination of L-cysteine. The Au-SH-SiO₂@Cu-MOF was characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction and cyclic voltammetry. The electrochemical behavior of L-cysteine at the Au-SH-SiO₂@Cu-MOF was investigated by cyclic voltammetry. The Au-SH-SiO₂@Cu-MOF showed a very efficient electrocatalytic activity for the oxidation of L-cysteine in 0.1 M phosphate buffer solution (pH 5.0). The oxidation overpotentials of L-cysteine decreased significantly and their oxidation peak currents increased dramatically at Au-SH-SiO₂@Cu-MOF. The potential utility of the sensor was demonstrated by applying it to the analytical determination of L-cysteine concentration. The results showed that the electrocatalytic current increased linearly with the L-cysteine concentration in the range of 0.02-300 μM and the detection limit was 0.008 μM. Finally, the sensor was applied to determine L-cysteine in water and biological samples. PMID:23228494

  10. Hydrogen Sensor Based on Yttria-Stabilized Zirconia Electrolyte and Tin-Doped Indium Oxide Sensing Electrode

    SciTech Connect

    Martin, L P; Glass, R S

    2004-03-26

    A solid state electrochemical sensor has been developed for hydrogen leak detection in ambient air. The sensor uses an yttria-stabilized electrolyte with a tin-doped indium oxide sensing electrode and a Pt reference electrode. Excellent sensitivity, and response time of one second or less, are reported for hydrogen gas over the concentration range of 0.03 to 5.5% in air. Cross-sensitivity to relative humidity and to CO{sub 2} are shown to be low. The response to methane, a potentially significant source of interference for such a sensor, is significantly less than that for hydrogen. The sensor shows good reproducibility and was unaffected by thermal cycling over the course of this investigation. The effects of sensing electrode thickness and thermal aging are also reported, and the sensing mechanism is discussed. The sensor is intended for use in vehicles powered by hydrogen fuel cells and hydrogen internal combustion engines. Those vehicles will use and/or store significant quantities of hydrogen, and will require safety sensor for monitoring potential hydrogen leakage in order to ensure passenger safety.

  11. Nitric oxide formation by lymphatic bulb and valves is a major regulatory component of lymphatic pumping

    PubMed Central

    Gasheva, Olga Yu.; Zawieja, David C.

    2011-01-01

    Microscopic lymphatics produce nitric oxide (NO) during contraction as flow shear activates the endothelial cells. The valve leaflets and bulbous valve housing contain a large amount of endothelial nitric oxide synthase (eNOS) due both to many endothelial cells and increased expression of eNOS. Direct NO measurements indicate the valve area has a 30–50% higher NO concentration ([NO]) than tubular regions although both regions generate equivalent relative increases in [NO] with each contraction. We hypothesize that 1) the greater eNOS and [NO] of the bulb region would have greater effects to lower pumping activity of the overall lymphatic than occurs in tubular regions and 2), the elevated [NO] in the bulb region may be because of high NO production in the valve leaflets that diffuses to the wall of the bulb. Measurement of [NO] with a micropipette inside the lymphatic bulb revealed the valve leaflets generate ∼50% larger [NO] than the bulb wall in the in vivo rat mesenteric lymphatics. The valves add NO to the lymph that quickly diffuses to the bulb wall. Bradykinin locally released iontophoretically from a micropipette on both bulbs and tubes increased the [NO] in a dose-dependent manner up to ∼50%, demonstrating agonist activation of the NO pathway. However, pumping output determined by contraction frequency and stroke volume decreased much more for the bulb than tubular areas in response to the bradykinin. In effect, NO generation by the bulb area and its valves limits the pumped flow of the total lymphatic by lowering frequency and stroke volume of individual contractions. PMID:21890688

  12. Studies of oxidative stress mechanisms using a morphine / ascorbate animal model and novel N-stearoyl cerebroside and laurate sensors.

    PubMed

    Broderick, P A

    2008-01-01

    The field of oxidative stress, free radicals, cellular defense and antioxidants is a burgeoning field of research. An important biomarker of oxidative stress is ascorbate and alterations in ascorbate have been shown to be a reliable measure of oxidative stress mechanisms. The purpose of this pharmacological study was to assess changes in ascorbate in a morphine/ascorbate animal model using novel sensors which selectively detect electrochemical signals for ascorbate, dopamine (DA) and serotonin (5-HT). Studies were also performed to show reversal of morphine-induced effects by the opioid antagonist, naloxone. In vivo studies were modeled after (Enrico et al. 1997, 1998) in which the oxidative biomarker, ascorbate, was reported to compensate for free radicals produced by morphine-induced increases in DA and 5-HT. In vivo studies consisted of inserting the Laurate sensor in ventrolateral nucleus accumbens (vlNAcc), in anesthetized male, Sprague-Dawley rats. In separate studies, laboratory rats were injected with (1) ascorbate, (5-35 mg/kg, ip) or (2) dehydroascorbate (DHA) (20-100 mg/kg, ip). In another study, (3) morphine sulfate (10-20 mg/kg, sc) was injected followed by a single injection of naloxone (5 mg/kg, ip) in the same animal. Results showed that in vlNAcc, (1) neither ascorbate nor DHA injections produced ascorbate release, (2) morphine significantly increased DA and 5-HT release, but did not alter ascorbate release, and (3) naloxone significantly reversed the increased DA and 5-HT release produced by morphine. Moreover, the sensors, N-stearoyl cerebroside and laurate were studied in vitro, in separate studies, in order to assess selective and separate electrochemical detection of ascorbate, DA and 5-HT, neuromolecules involved in oxidative stress mechanisms. In vitro studies consisted of pretreatment of each sensor with a solution of phosphotidylethanolamine (PEA) and bovine serum albumin (BSA) which simulates the lipid/protein composition of brain. Each

  13. Multilayered metal oxide thin film gas sensors obtained by conventional and RF plasma-assisted laser ablation

    NASA Astrophysics Data System (ADS)

    Mitu, B.; Marotta, V.; Orlando, S.

    2006-04-01

    Multilayered thin films of In 2O 3 and SnO 2 have been deposited by conventional and RF plasma-assisted reactive pulsed laser ablation, with the aim to evaluate their behaviour as toxic gas sensors. The depositions have been carried out by a frequency doubled Nd-YAG laser ( λ = 532 nm, τ = 7 ns) on Si(1 0 0) substrates, in O 2 atmosphere. The thin films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrical resistance measurements. A comparison of the electrical response of the simple (indium oxide, tin oxide) and multilayered oxides to toxic gas (nitric oxide, NO) has been performed. The influence on the structural and electrical properties of the deposition parameters, such as substrate temperature and RF power is reported.

  14. Enhanced electrochemiluminescence of CdSe quantum dots composited with graphene oxide and chitosan for sensitive sensor.

    PubMed

    Wang, Teng; Zhang, Shengyi; Mao, Changjie; Song, Jiming; Niu, Helin; Jin, Baokang; Tian, Yupeng

    2012-01-15

    A novel strategy for the enhancement of electrochemiluminescence (ECL) was developed by combining CdSe quantum dots (QDs) with graphene oxide-chitosan (GO-CHIT). The ECL sensor fabricated with CdSe QDs/GO-CHIT composite exhibited high ECL intensity, good biocompatibility and long-term stability, and was used to detect of cytochrome C (Cyt C). The results show that the ECL sensor has high sensitivity for Cyt C with the linear range from 4.0 to 324 μM and the detection limit of 1.5 μM. Furthermore, the ECL sensor can selectively sense Cyt C from glucose and bovine serum albumin (BSA). PMID:22099955

  15. Complementary Metal Oxide Semiconductor Based Multimodal Sensor for In vivo Brain Function Imaging with a Function for Simultaneous Cell Stimulation

    NASA Astrophysics Data System (ADS)

    Tagawa, Ayato; Mitani, Masahiro; Minami, Hiroki; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2010-04-01

    We have developed a multimodal complementary metal oxide semiconductor (CMOS) sensor device embedded with Au electrodes for fluorescent imaging and cell stimulation in the deep brain of mice. The Au electrodes were placed on the pixel array of the image sensor. Windows over the photodiodes were opened in the electrode area for simultaneous fluorescent imaging and cell stimulation in the same area of the brain tissue. The sensor chip was shaped like a shank and was packaged by two packaging methods for high strength or minimal invasion. The experimental results showed that the 90 ×90 µm2 Au electrodes with windows were capable of injecting theta burst stimulation (TBS)-like current pulses at 0.2-1 mA in a saline solution. We successfully demonstrated that fluorescent imaging and TBS-like current injection can be simultaneously performed in the electrode area of a brain phantom.

  16. Complementary Metal Oxide Semiconductor Based Multimodal Sensor for In vivo Brain Function Imaging with a Function for Simultaneous Cell Stimulation

    NASA Astrophysics Data System (ADS)

    Ayato Tagawa,; Masahiro Mitani,; Hiroki Minami,; Toshihiko Noda,; Kiyotaka Sasagawa,; Takashi Tokuda,; Jun Ohta,

    2010-04-01

    We have developed a multimodal complementary metal oxide semiconductor (CMOS) sensor device embedded with Au electrodes for fluorescent imaging and cell stimulation in the deep brain of mice. The Au electrodes were placed on the pixel array of the image sensor. Windows over the photodiodes were opened in the electrode area for simultaneous fluorescent imaging and cell stimulation in the same area of the brain tissue. The sensor chip was shaped like a shank and was packaged by two packaging methods for high strength or minimal invasion. The experimental results showed that the 90 × 90 μm2 Au electrodes with windows were capable of injecting theta burst stimulation (TBS)-like current pulses at 0.2-1 mA in a saline solution. We successfully demonstrated that fluorescent imaging and TBS-like current injection can be simultaneously performed in the electrode area of a brain phantom.

  17. A Sensor System Based on Semi-Conductor Metal Oxide Technology for In Situ Detection of Coal Fired Combustion Gases

    SciTech Connect

    Brent Marquis

    2007-05-31

    Sensor Research and Development Corporation (SRD) proposed a two-phase program to develop a robust, autonomous prototype analyzer for in situ, real-time detection, identification, and measurement of coal-fired combustion gases and perform field-testing at an approved power generation facility. SRD developed and selected sensor materials showing selective responses to carbon monoxide, carbon dioxide, nitric oxide, nitrogen dioxide, ammonia, sulfur dioxide and hydrogen chloride. Sensor support electronics were also developed to enable prototype to function in elevated temperatures without any issues. Field-testing at DOE approved facility showed the ability of the prototype to detect and estimate the concentration of combustion by-products accurately with relatively low false-alarm rates at very fast sampling intervals.

  18. Close-To-Practice Assessment Of Meat Freshness With Metal Oxide Sensor Microarray Electronic Nose

    NASA Astrophysics Data System (ADS)

    Musatov, V. Yu.; Sysoev, V. V.; Sommer, M.; Kiselev, I.

    2009-05-01

    In this report we estimate the ability of KAMINA e-nose, based on a metal oxide sensor (MOS) microarray and Linear Discriminant Analysis (LDA) pattern recognition, to evaluate meat freshness. The received results show that, 1) one or two exposures of standard meat samples to the e-nose are enough for the instrument to recognize the fresh meat prepared by the same supplier with 100% probability; 2) the meat samples of two kinds, stored at 4° C and 25° C, are mutually recognized at early stages of decay with the help of the LDA model built independently under the e-nose training to each kind of meat; 3) the 3-4 training cycles of exposure to meat from different suppliers are necessary for the e-nose to build a reliable LDA model accounting for the supplier factor. This study approves that the MOS e-nose is ready to be currently utilised in food industry for evaluation of product freshness. The e-nose performance is characterized by low training cost, a confident recognition power of various product decay conditions and easy adjustment to changing conditions.

  19. Close-To-Practice Assessment Of Meat Freshness With Metal Oxide Sensor Microarray Electronic Nose

    SciTech Connect

    Musatov, V. Yu.; Sysoev, V. V.; Sommer, M.; Kiselev, I.

    2009-05-23

    In this report we estimate the ability of KAMINA e-nose, based on a metal oxide sensor (MOS) microarray and Linear Discriminant Analysis (LDA) pattern recognition, to evaluate meat freshness. The received results show that, 1) one or two exposures of standard meat samples to the e-nose are enough for the instrument to recognize the fresh meat prepared by the same supplier with 100% probability; 2) the meat samples of two kinds, stored at 4 deg. C and 25 deg. C, are mutually recognized at early stages of decay with the help of the LDA model built independently under the e-nose training to each kind of meat; 3) the 3-4 training cycles of exposure to meat from different suppliers are necessary for the e-nose to build a reliable LDA model accounting for the supplier factor. This study approves that the MOS e-nose is ready to be currently utilised in food industry for evaluation of product freshness. The e-nose performance is characterized by low training cost, a confident recognition power of various product decay conditions and easy adjustment to changing conditions.

  20. Effect of Electrode Composition and Microstructure on Impedancemetric Nitric Oxide Sensors based on YSZ Electrolyte

    SciTech Connect

    Woo, L Y; Martin, L P; Glass, R S; Wang, W; Jung, S; Gorte, R J; Murray, E P; Novak, R F; Visser, J H

    2007-04-02

    The role of metal (Au, Pt, and Ag) electrodes in YSZ electrolyte-based impedancemetric nitric oxide (NO) sensors is investigated using impedance spectroscopy and equivalent circuit analysis. The test cell consists of a rectangular block of porous YSZ with two metal wire loop electrodes, both exposed to the same atmosphere. Of the electrode materials, only Au was sensitive to changes in NO concentration. The impedance behavior of porous Au electrodes in a slightly different configuration was compared with dense Au electrodes and was also insensitive to NO. Ag showed no sensitivity to either O{sub 2} or NO, and the measured impedances occurred at frequencies > 10 kHz, which are typically associated with ionic conduction in YSZ. Pt and porous Au showed sensitivity to O{sub 2}, which was quantified using power-law exponents that suggest electrochemical rate-determining mechanisms occurring at the triple phase boundary. The behavior of the dense Au suggests different rate-determining processes (e.g., diffusion or adsorption) for the O{sub 2} reaction. Although the exact mechanism is not determined, the composition and microstructure of the metal electrode seem to alter the rate-limiting step of the interfering O{sub 2} reaction. Impedance behavior of the O{sub 2} reaction that is limited by processes occurring away from the triple phase boundary may be crucial for impedancemetric NO sensing.

  1. Reduced Graphene Oxide Modified the Interdigitated Chain Electrode for an Insulin Sensor.

    PubMed

    Yagati, Ajay Kumar; Park, Jinsoo; Cho, Sungbo

    2016-01-01

    Insulin is a key regulator in glucose homeostasis and its deficiency or alternations in the human body causes various types of diabetic disorders. In this paper, we present the development of a reduced graphene oxide (rGO) modified interdigitated chain electrode (ICE) for direct capacitive detection of insulin. The impedance properties of rGO-ICE were characterized by equivalent circuit modeling. After an electrochemical deposition of rGO on ICE, the electrode was modified with self-assembled monolayers and insulin antibodies in order to achieve insulin binding reactions. The impedance spectra and capacitances were measured with respect to the concentrations of insulin and the capacitance change (ΔC) was analyzed to quantify insulin concentration. The antibody immobilized electrode showed an increment of ΔC according to the insulin concentration in human serum ranging from 1 ng/mL to 10 µg/mL. The proposed sensor is feasible for label-free and real-time measuring of the biomarker and for point-of-care diagnosis. PMID:26784202

  2. Reduced Graphene Oxide Modified the Interdigitated Chain Electrode for an Insulin Sensor

    PubMed Central

    Yagati, Ajay Kumar; Park, Jinsoo; Cho, Sungbo

    2016-01-01

    Insulin is a key regulator in glucose homeostasis and its deficiency or alternations in the human body causes various types of diabetic disorders. In this paper, we present the development of a reduced graphene oxide (rGO) modified interdigitated chain electrode (ICE) for direct capacitive detection of insulin. The impedance properties of rGO-ICE were characterized by equivalent circuit modeling. After an electrochemical deposition of rGO on ICE, the electrode was modified with self-assembled monolayers and insulin antibodies in order to achieve insulin binding reactions. The impedance spectra and capacitances were measured with respect to the concentrations of insulin and the capacitance change (ΔC) was analyzed to quantify insulin concentration. The antibody immobilized electrode showed an increment of ΔC according to the insulin concentration in human serum ranging from 1 ng/mL to 10 µg/mL. The proposed sensor is feasible for label-free and real-time measuring of the biomarker and for point-of-care diagnosis. PMID:26784202

  3. NPGPx (GPx7): a novel oxidative stress sensor/transmitter with multiple roles in redox homeostasis

    PubMed Central

    Chen, Yi-Ing; Wei, Pei-Chi; Hsu, Jye-Lin; Su, Fang-Yi; Lee, Wen-Hwa

    2016-01-01

    NPGPx (GPx7) is a member of the glutathione peroxidase (GPx) family without any GPx activity. GPx7 displays a unique function which serves as a stress sensor/transmitter to transfer the signal to its interacting proteins by shuttling disulfide bonds in response to various stresses. In this review, we focus on the exceptional structural and biochemical features of GPx7 compared to other 7 family members and described how GPx7 regulates the diverse signaling targets including GRP78, PDI, CPEB2, and XRN2, and their different roles in unfolded protein response, oxidative stress, and non-targeting siRNA stress response, respectively. The phenotypes associated with GPx7 deficiency in mouse or human including ROS accumulations, highly elevated cancer incidences, auto-immune disorders, and obesity are also revealed in this paper. Finally, we compare GPx8 with GPx7, which shares the highest structural similarity but different biological roles in stress response. These insights have thus provided a more comprehensive understanding of the role of GPx7 in the maintenance of redox homeostasis. PMID:27186289

  4. Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide: application for logic gate operations.

    PubMed

    Liu, Xiaoqing; Aizen, Ruth; Freeman, Ronit; Yehezkeli, Omer; Willner, Itamar

    2012-04-24

    Graphene oxide (GO) is implemented as a functional matrix for developing fluorescent sensors for the amplified multiplexed detection of DNA, aptamer-substrate complexes, and for the integration of predesigned DNA constructs that activate logic gate operations. Fluorophore-labeled DNA strands acting as probes for two different DNA targets are adsorbed onto GO, leading to the quenching of the luminescence of the fluorophores. Desorption of the probes from the GO, through hybridization with the target DNAs, leads to the fluorescence of the respective label. By coupling exonuclease III, Exo III, to the system, the recycling of the target DNAs is demonstrated, and this leads to the amplified detection of the DNA targets (detection limit 5 × 10(-12) M). Similarly, adsorption of fluorophore-functionalized aptamers against thrombin or ATP onto the GO leads to the desorption of the aptamer-substrate complexes from GO and to the triggering of the luminescence corresponding to the respective fluorophore, thus, allowing the multiplexed analysis of the aptamer-substrate complexes. By designing functional fluorophore-labeled DNA constructs and their interaction with GO, in the presence (or absence) of nucleic acids, or two different substrates for aptamers, as inputs, the activation of the "OR" and "AND" logic gates is demonstrated. PMID:22404375

  5. Leishmania major Telomerase TERT Protein Has a Nuclear/Mitochondrial Eclipsed Distribution That Is Affected by Oxidative Stress

    PubMed Central

    Campelo, Riward; Díaz Lozano, Isabel; Figarella, Katherine; Osuna, Antonio

    2014-01-01

    In its canonical role the reverse transcriptase telomerase recovers the telomeric repeats that are lost during DNA replication. Other locations and activities have been recently described for the telomerase protein subunit TERT in mammalian cells. In the present work, using biochemistry, molecular biology, and electron microscopy techniques, we found that in the human parasite Leishmania major, TERT (and telomerase activity) shared locations between the nuclear, mitochondrial, and cytoplasmic compartments. Also, some telomerase activity and TERT protein could be found in ∼100-nm nanovesicles. In the mitochondrial compartment, TERT appears to be mainly associated with the kinetoplast DNA. When Leishmania cells were exposed to H2O2, TERT changed its relative abundance and activity between the nuclear and mitochondrial compartments, with the majority of activity residing in the mitochondrion. Finally, overexpression of TERT in Leishmania transfected cells not only increased the parasitic cell growth rate but also increased their resistance to oxidative stress. PMID:25312950

  6. Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors

    NASA Astrophysics Data System (ADS)

    Wang, Gongming; Lu, Xihong; Zhai, Teng; Ling, Yichuan; Wang, Hanyu; Tong, Yexiang; Li, Yat

    2012-05-01

    We report a seed-mediated hydrothermal growth of free-standing nickel hydroxide [Ni(OH)2] and nickel oxide (NiO) nanoflake arrays and their implementation as electrodes for non-enzymatic glucose sensors. Ni(OH)2 nanoflakes were converted into porous NiO nanoflakes upon thermal annealing in air at temperatures of 300 °C or above. NiO nanoflake-arrayed sensors achieve an excellent glucose sensitivity of ~8500 μA cm-2 mM-1 and a low detection limit of 1.2 μM glucose at an applied bias of 0.5 V vs. Ag/AgCl. The fabrication of the nanoflake electrode avoids the use of polymer binders representing additional advantage over the conventional powder based glucose sensors. Furthermore, they show good specificity to glucose in the presence of ascorbic acid, d-lactose and d-fructose.We report a seed-mediated hydrothermal growth of free-standing nickel hydroxide [Ni(OH)2] and nickel oxide (NiO) nanoflake arrays and their implementation as electrodes for non-enzymatic glucose sensors. Ni(OH)2 nanoflakes were converted into porous NiO nanoflakes upon thermal annealing in air at temperatures of 300 °C or above. NiO nanoflake-arrayed sensors achieve an excellent glucose sensitivity of ~8500 μA cm-2 mM-1 and a low detection limit of 1.2 μM glucose at an applied bias of 0.5 V vs. Ag/AgCl. The fabrication of the nanoflake electrode avoids the use of polymer binders representing additional advantage over the conventional powder based glucose sensors. Furthermore, they show good specificity to glucose in the presence of ascorbic acid, d-lactose and d-fructose. Electronic supplementary information (ESI) available: Electrochemical characterization and TGA analysis. See DOI: 10.1039/c2nr30302g

  7. A simple equivalent circuit model to represent microstructure effects on the response of semiconducting oxide-based gas sensors

    NASA Astrophysics Data System (ADS)

    Chabanis, Gilles; Parkin, Ivan P.; Williams, David E.

    2003-01-01

    We show that the effects of microstructure on the response of gas-sensitive resistors based on semiconducting oxides can be understood in a pragmatic and practically useful way using a simple three-element resistance network, in which only one of the elements is gas-sensitive. This model, with the gas-sensitive resistance showing a simple form of response consistent with surface reaction models, displays the power-law response to variation of gas concentration (Pg) shown by practical devices: G = Ag Pgbeta, where G is (R - R0)/R0 for resistance increase or (sigma - sigma0)/sigma0 for conductance increase. The observations that beta varies widely between preparations, is different for different gases on the same sensor, and changes with change of the relative humidity of the gas, are simply explained as being due to changes in the relative values of the resistors in the network, related to the microstructure. The model predicts that, for a range of sensor preparations responding to a given gas, Ag and beta should be correlated. The predictions are confirmed by measurements of the response of a wide range of microstructures of sensors of both tin dioxide and chromium titanium oxide to toluene, ethanol and carbon monoxide in atmospheres of varying relative humidity. We show that the correlation of Ag and beta is a powerful tool for discovering subtle effects on the sensor response. These include: effects due to gas concentration gradients within the sensing layer, effects of variation in microstructure throughout the sensing layer, the extent of sintering of the material in the finished sensor, and whether water vapour acts on the sensor surface synergistically or independently of the reactive gas being measured.

  8. Relevance of the two-component sensor protein CiaH to acid and oxidative stress responses in Streptococcus pyogenes

    PubMed Central

    2014-01-01

    Background The production of virulence proteins depends on environmental factors, and two-component regulatory systems are involved in sensing these factors. We previously established knockout strains in all suspected two-component regulatory sensor proteins of the emm1 clinical strain of S. pyogenes and examined their relevance to acid stimuli in a natural atmosphere. In the present study, their relevance to acid stimuli was re-examined in an atmosphere containing 5% CO2. Results The spy1236 (which is identical to ciaHpy) sensor knockout strain showed significant growth reduction compared with the parental strain in broth at pH 6.0, suggesting that the Spy1236 (CiaHpy) two-component sensor protein is involved in acid response of S. pyogenes. CiaH is also conserved in Streptococcus pneumoniae, and it has been reported that deletion of the gene for its cognate response regulator (ciaRpn) made the pneumococcal strains more sensitive to oxidative stress. In this report, we show that the spy1236 knockout mutant of S. pyogenes is more sensitive to oxidative stress than the parental strain. Conclusions These results suggest that the two-component sensor protein CiaH is involved in stress responses in S. pyogenes. PMID:24673808

  9. Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential.

    PubMed

    Mu, Ying; Jia, Dongling; He, Yayun; Miao, Yuqing; Wu, Hai-Long

    2011-02-15

    Development of fast and sensitive sensors for glucose determination is important in food industry, clinic diagnostics, biotechnology and many other areas. In these years, considerable attention has been paid to develop non-enzymatic electrodes to solve the disadvantages of the enzyme-modified electrodes, such as instability, high cost, complicated immobilization procedure and critical operating situation et al. Nano nickel oxide (NiO) modified non-enzymatic glucose sensors with enhanced sensitivity were investigated. Potential scanning nano NiO modified carbon paste electrodes up to high potential in alkaline solution greatly increases the amount of redox couple Ni(OH)(2)/NiOOH derived from NiO, and thus improves their electrochemical properties and electrocatalytical performance toward the oxidation of glucose. The non-enzymatic sensors response quickly to glucose and the response time is less than 5s, demonstrating excellent electrocatalytical activity and assay performance. The calibration plot is linear over the wide concentration range of 1-110 μM with a sensitivity of 43.9 nA/μM and a correlation coefficient of 0.998. The detection limit of the electrode was found to be 0.16 μM at a signal-to-noise ratio of 3. The proposed non-enzymatic sensors can be used for the assay of glucose in real sample. PMID:21167705

  10. A graphene oxide-peptide fluorescence sensor tailor-made for simple and sensitive detection of matrix metalloproteinase 2.

    PubMed

    Feng, Duan; Zhang, Yangyang; Feng, Tingting; Shi, Wen; Li, Xiaohua; Ma, Huimin

    2011-10-14

    A graphene oxide-peptide based fluorescence sensor has been developed for matrix metalloproteinase 2 (MMP2), and its applicability has been demonstrated by monitoring the concentration of MMP2 secreted by HeLa cells, revealing that HeLa cells with a density of 5.48 × 10(5) cells per mL can produce 22 nM in cell culture media in 24 h. PMID:21892449

  11. Acetate represents a major product of heptanoate and octanoate beta-oxidation in hepatocytes isolated from neonatal piglets.

    PubMed Central

    Lin, X; Adams, S H; Odle, J

    1996-01-01

    An experiment was conducted to explore the nature of the radiolabel distribution in acid-soluble products (ASPs) resulting from the oxidation of [1-14C]C7:0 or C8:0 by isolated piglet hepatocytes. The differences between odd and even chain-length and the impacts of valproate and malonate upon the rate of beta-oxidation and ASP characteristics were tested. A minor amount of fatty acid carboxyl carbon (< or = 10% of organic acids identified by radio-HPLC) accumulated in ketone bodies regardless of chain-length or inhibitor used. In all cases, acetate represented the major reservoir of carboxyl carbon, accounting for 60-70% of radiolabel in identified organic acids. Cells given [1-14C]C7:0 accumulated 85% more carboxyl carbon in Krebs cycle intermediates when compared with C8:0, while accumulation in acetate was unaffected. The results are consistent with the hypothesis that anaplerosis from odd-carbon fatty acids affects the oxidative fate of fatty acid carbon. The piglet appears unique in that non-ketogenic routes of fatty acid carbon flow (i.e. acetogenesis) predominate in the liver of this species. PMID:8761477

  12. PARALLELS BETWEEN MAJOR DEPRESSIVE DISORDER AND ALZHEIMER’S DISEASE: ROLE OF OXIDATIVE STRESS AND GENETIC VULNERABILITY

    PubMed Central

    Rodrigues, Roberto; Petersen, Robert B.

    2014-01-01

    The thesis of this review is that oxidative stress is the central factor in major depressive disorder (MDD) and Alzheimer’s disease (AD). The major elements involved are inflammatory cytokines, the hypothalamic pituitary axis, the hypothalamic pituitary gonadal, and arginine vasopressin systems, which induce glucocorticoid and “oxidopamatergic” cascades when triggered by psychosocial stress, severe life threatening events, and mental-affective and somatic diseases. In individuals with a genomic vulnerability to depression these cascades may result in chronic depression-anxiety-stress spectra, resulting in MDD and other known depressive syndromes. In contrast, in subjects with genomic vulnerability to Alzheimer’s disease, oxidative stress-induced brain damage triggers specific antioxidant defenses, i.e. increased levels of amyloid-β (Aβ) and aggregation of hyper-phosphorylated tau, resulting in paired helical filaments and impaired functions related to the ApoEε4 isoform, leading to complex pathological cascades culminating in AD. Surprisingly, all the AD associated molecular pathways mentioned in this review have been shown to be similar or analogous to those found in depression, including structural damage, i.e. hippocampal and frontal cortex atrophy. Other interacting molecular signals, i.e. GSK-3β, convergent survival factors (brain-derived neurotrophic factor and heat shock proteins), and transition-redox metals are also mentioned to emphasize the vast array of intermediates that could interact via comparable mechanisms in both MDD and AD. PMID:24927694

  13. Zinc oxide induces the stringent response and major reorientations in the central metabolism of Bacillus subtilis.

    PubMed

    Luche, Sylvie; Eymard-Vernain, Elise; Diemer, Hélène; Van Dorsselaer, Alain; Rabilloud, Thierry; Lelong, Cécile

    2016-03-01

    Microorganisms, such as bacteria, are one of the first targets of nanoparticles in the environment. In this study, we tested the effect of two nanoparticles, ZnO and TiO2, with the salt ZnSO4 as the control, on the Gram-positive bacterium Bacillus subtilis by 2D gel electrophoresis-based proteomics. Despite a significant effect on viability (LD50), TiO2 NPs had no detectable effect on the proteomic pattern, while ZnO NPs and ZnSO4 significantly modified B. subtilis metabolism. These results allowed us to conclude that the effects of ZnO observed in this work were mainly attributable to Zn dissolution in the culture media. Proteomic analysis highlighted twelve modulated proteins related to central metabolism: MetE and MccB (cysteine metabolism), OdhA, AspB, IolD, AnsB, PdhB and YtsJ (Krebs cycle) and XylA, YqjI, Drm and Tal (pentose phosphate pathway). Biochemical assays, such as free sulfhydryl, CoA-SH and malate dehydrogenase assays corroborated the observed central metabolism reorientation and showed that Zn stress induced oxidative stress, probably as a consequence of thiol chelation stress by Zn ions. The other patterns affected by ZnO and ZnSO4 were the stringent response and the general stress response. Nine proteins involved in or controlled by the stringent response showed a modified expression profile in the presence of ZnO NPs or ZnSO4: YwaC, SigH, YtxH, YtzB, TufA, RplJ, RpsB, PdhB and Mbl. An increase in the ppGpp concentration confirmed the involvement of the stringent response during a Zn stress. All these metabolic reorientations in response to Zn stress were probably the result of complex regulatory mechanisms including at least the stringent response via YwaC. PMID:26211718

  14. UV-Assisted Alcohol Sensors using Gallium Nitride Nanowires Functionalized with Zinc Oxide and Tin Dioxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bajpai, Ritu

    The motivation behind this work has been to address two of the most challenging issues posed to semiconductor gas sensors--- tuning the device selectivity and sensitivity to a wide variety of gases. In a chemiresistor type nanowire sensor, the sensitivity and selectivity depend on the interaction of different chemical analytes with the nanowire surface. Constrained by the surface properties of the nanowire material, most nanowire sensors can detect only specific type of analytes. In order to make a nano-sensor array for a wide range of analytes, there is a need to tune the device sensitivity and selectivity towards different chemicals. Employing the inherent advantages of nanostructure based sensing such as large surface area, miniature size, low power consumption, and nmol/mol (ppb) sensitivity, an attempt has been made to propose a device with tunable selectivity and sensitivity. The idea proposed in this work is to functionalize GaN nanowires which have relatively inactive surface properties (i.e., with no chemiresistive sensitivity to different classes of organic vapors), with analyte dependent active metal oxides. The selectivity of the sensor devices is controlled independent of the surface properties of the nanowire itself. It is the surface properties of the functionalizing metal oxides which determine the selectivity of these sensors. Further facilitated by the proposed fabrication technique, these sensors can be easily tuned to detect different gases. The prototype developed in this work is that of a UV assisted alcohol sensor using GaN nanowires functionalized with ZnO and SnO2 nanoparticles. As opposed to the widely demonstrated metal oxide based sensors assisted by elevated temperature, the operation of photoconductive semiconductor sensor devices such as those fabricated in this work, can also be assisted by UV illumination at room temperature. Temperature assisted sensing requires an integrated on-chip heater, which could impose constraints on the

  15. Spherulitic copper–copper oxide nanostructure-based highly sensitive nonenzymatic glucose sensor

    PubMed Central

    Das, Gautam; Tran, Thao Quynh Ngan; Yoon, Hyon Hee

    2015-01-01

    In this work, three different spherulitic nanostructures Cu–CuOA, Cu–CuOB, and Cu–CuOC were synthesized in water-in-oil microemulsions by varying the surfactant concentration (30 mM, 40 mM, and 50 mM, respectively). The structural and morphological characteristics of the Cu–CuO nanostructures were investigated by ultraviolet–visible (UV–vis) spectroscopy, X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy techniques. The synthesized nanostructures were deposited on multiwalled carbon nanotube (MWCNT)-modified indium tin oxide (ITO) electrodes to fabricate a nonenzymatic highly sensitive amperometric glucose sensor. The performance of the ITO/MWCNT/Cu–CuO electrodes in the glucose assay was examined by cyclic voltammetry and chronoamperometric studies. The sensitivity of the sensor varied with the spherulite type; Cu–CuOA, Cu–CuOB, and Cu–CuOC exhibited a sensitivity of 1,229, 3,012, and 3,642 µA mM−1·cm−2, respectively. Moreover, the linear range is dependent on the structure types: 0.023–0.29 mM, 0.07–0.8 mM, and 0.023–0.34 mM for Cu–CuOA, Cu–CuOB, and Cu–CuOC, respectively. An excellent response time of 3 seconds and a low detection limit of 2 µM were observed for Cu–CuOB at an applied potential of +0.34 V. In addition, this electrode was found to be resistant to interference by common interfering agents such as urea, cystamine, L-ascorbic acid, and creatinine. The high performance of the Cu–CuO spherulites with nanowire-to-nanorod outgrowths was primarily due to the high surface area and stability, and good three-dimensional structure. Furthermore, the ITO/MWCNT/Cu–CuOB electrode applied to real urine and serum sample showed satisfactory performance. PMID:26346651

  16. Spherulitic copper-copper oxide nanostructure-based highly sensitive nonenzymatic glucose sensor.

    PubMed

    Das, Gautam; Tran, Thao Quynh Ngan; Yoon, Hyon Hee

    2015-01-01

    In this work, three different spherulitic nanostructures Cu-CuOA, Cu-CuOB, and Cu-CuOC were synthesized in water-in-oil microemulsions by varying the surfactant concentration (30 mM, 40 mM, and 50 mM, respectively). The structural and morphological characteristics of the Cu-CuO nanostructures were investigated by ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy techniques. The synthesized nanostructures were deposited on multiwalled carbon nanotube (MWCNT)-modified indium tin oxide (ITO) electrodes to fabricate a nonenzymatic highly sensitive amperometric glucose sensor. The performance of the ITO/MWCNT/Cu-CuO electrodes in the glucose assay was examined by cyclic voltammetry and chronoamperometric studies. The sensitivity of the sensor varied with the spherulite type; Cu-CuOA, Cu-CuOB, and Cu-CuOC exhibited a sensitivity of 1,229, 3,012, and 3,642 µA mM(-1)·cm(-2), respectively. Moreover, the linear range is dependent on the structure types: 0.023-0.29 mM, 0.07-0.8 mM, and 0.023-0.34 mM for Cu-CuOA, Cu-CuOB, and Cu-CuOC, respectively. An excellent response time of 3 seconds and a low detection limit of 2 µM were observed for Cu-CuOB at an applied potential of +0.34 V. In addition, this electrode was found to be resistant to interference by common interfering agents such as urea, cystamine, L-ascorbic acid, and creatinine. The high performance of the Cu-CuO spherulites with nanowire-to-nanorod outgrowths was primarily due to the high surface area and stability, and good three-dimensional structure. Furthermore, the ITO/MWCNT/Cu-CuOB electrode applied to real urine and serum sample showed satisfactory performance. PMID:26346651

  17. On-line sensor monitoring for chemical contaminant attenuation during UV/H2O2 advanced oxidation process.

    PubMed

    Yu, Hye-Weon; Anumol, Tarun; Park, Minkyu; Pepper, Ian; Scheideler, Jens; Snyder, Shane A

    2015-09-15

    A combination of surrogate parameters and indicator compounds were measured to predict the removal efficiency of trace organic compounds (TOrCs) using low pressure (LP)-UV/H2O2 advanced oxidation process (AOP), engaged with online sensor-based monitoring system. Thirty-nine TOrCs were evaluated in two distinct secondary wastewater effluents in terms of estimated photochemical reactivity, as a function of the rate constants of UV direct photolysis (kUV) and hydroxyl radical (OH) oxidation (kOH). The selected eighteen TOrCs were classified into three groups that served as indicator compounds: Group 1 for photo-susceptible TOrCs but with minor degradation by OH oxidation (diclofenac, fluoxetine, iohexol, iopamidol, iopromide, simazine and sulfamethoxazole); Group 2 for TOrCs susceptible to both direct photolysis and OH oxidation (benzotriazole, diphenhydramine, ibuprofen, naproxen and sucralose); and Group 3 for photo-resistant TOrCs showing dominant degradation by OH oxidation (atenolol, carbamazepine, DEET, gemfibrozil, primidone and trimethoprim). The results indicate that TOC (optical-based measurement), UVA254 or UVT254 (UV absorbance or transmittance at 254 nm), and total fluorescence can all be used as suitable on-line organic surrogate parameters to predict the attenuation of TOrCs. Furthermore, the automated real-time monitoring via on-line surrogate sensors and equipped with the developed degradation profiles between sensor response and a group of TOrCs removal can provide a diagnostic tool for process control during advanced treatment of reclaimed waters. PMID:26074188

  18. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO{sub 2} gas sensor applications

    SciTech Connect

    Hoa, Nguyen Duc; Duy, Nguyen Van; Hieu, Nguyen Van

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Mesoporous WO{sub 3} nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO{sub 3} sensor exhibited a high performance to NO{sub 2} gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxide (NO{sub 2}) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO{sub 2}. In addition, the developed sensor exhibited selective detection of low NO{sub 2} concentration in ammonia and ethanol at a low temperature of approximately 150 °C.

  19. Studies of Reduced Graphene Oxide and Graphite Oxide in the Aspect of Their Possible Application in Gas Sensors

    PubMed Central

    Drewniak, Sabina; Muzyka, Roksana; Stolarczyk, Agnieszka; Pustelny, Tadeusz; Kotyczka-Morańska, Michalina; Setkiewicz, Maciej

    2016-01-01

    The paper presents the results of investigations on resistance structures based on graphite oxide (GRO) and graphene oxide (rGO). The subject matter of the investigations was thaw the sensitivity of the tested structures was affected by hydrogen, nitrogen dioxide and carbon dioxide. The experiments were performed at a temperature range from 30 °C to 150 °C in two carrier gases: nitrogen and synthetic air. The measurements were also aimed at characterization of the graphite oxide and graphene oxide. In our measurements we used (among others) techniques such as: Atomic Force Microscopy (AFM); Scanning Electron Microscopy (SEM); Raman Spectroscopy (RS); Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Microscopy (XPS). The data resulting from the characterizations of graphite oxide and graphene oxide have made it possible to interpret the obtained results from the point of view of physicochemical changes occurring in these structures. PMID:26784198

  20. Studies of Reduced Graphene Oxide and Graphite Oxide in the Aspect of Their Possible Application in Gas Sensors.

    PubMed

    Drewniak, Sabina; Muzyka, Roksana; Stolarczyk, Agnieszka; Pustelny, Tadeusz; Kotyczka-Morańska, Michalina; Setkiewicz, Maciej

    2015-01-01

    The paper presents the results of investigations on resistance structures based on graphite oxide (GRO) and graphene oxide (rGO). The subject matter of the investigations was thaw the sensitivity of the tested structures was affected by hydrogen, nitrogen dioxide and carbon dioxide. The experiments were performed at a temperature range from 30 °C to 150 °C in two carrier gases: nitrogen and synthetic air. The measurements were also aimed at characterization of the graphite oxide and graphene oxide. In our measurements we used (among others) techniques such as: Atomic Force Microscopy (AFM); Scanning Electron Microscopy (SEM); Raman Spectroscopy (RS); Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Microscopy (XPS). The data resulting from the characterizations of graphite oxide and graphene oxide have made it possible to interpret the obtained results from the point of view of physicochemical changes occurring in these structures. PMID:26784198

  1. Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and L-lactate detection.

    PubMed

    Hu, Ai-Ling; Liu, Yin-Huan; Deng, Hao-Hua; Hong, Guo-Lin; Liu, Ai-Lin; Lin, Xin-Hua; Xia, Xing-Hua; Chen, Wei

    2014-11-15

    A novel fluorescent hydrogen peroxide sensor was developed based on the peroxidase-like activity of cupric oxide nanoparticles. Cupric oxide nanoparticles effectively catalyzed the decomposition of hydrogen peroxide into hydroxyl radicals. Then terephthalic acid was oxidized by hydroxyl radical to form a highly fluorescent product. The linear range of hydrogen peroxide estimated to be 5.0 × 10(-6)-2.0 × 10(-4)M with a detection limit of 3.4 × 10(-7)M. Moreover, this detection system enabled the sensing of analytes which can enzymatically generate hydrogen peroxide. By coupling the oxidation of glucose or L-lactate catalyzed by their corresponding oxidase enzymes with terephthalic acid oxidation catalyzed by cupric oxide nanoparticles, sensitive assays of glucose and l-lactate with detection limits of 1.0 × 10(-6) and 4.5 × 10(-8)M were realized. The successful applications of this approach in human serum samples have also been demonstrated. PMID:24912038

  2. In vivo 1H MRS study of potential associations between glutathione, oxidative stress and anhedonia in major depressive disorder

    PubMed Central

    Lapidus, Kyle A.B.; Gabbay, Vilma; Mao, Xiangling; Johnson, Amy; Murrough, James W.; Mathew, Sanjay J.; Shungu, Dikoma C.

    2014-01-01

    Inflammation and oxidative stress are important mechanisms that have been implicated in the pathophysiology of major depressive disorder (MDD). Glutathione (GSH) is the most abundant antioxidant in human tissue, and a key index of antioxidant capacity and, hence, of oxidative stress. The aims of this investigation were to examine possible relationships between occipital GSH and dimensional measures of depressive symptom severity, including anhedonia – the reduced capacity to experience pleasure – and fatigue. We hypothesized that the magnitude of anhedonia and fatigue will be negatively correlated with occipital GSH levels in subjects with MDD and healthy controls (HC). Data for eleven adults with MDD and ten age- and sex-matched HC subjects were included in this secondary analysis of data from a previously published study. In vivo levels of GSH in a 3 cm × 3 cm × 2 cm voxel of occipital cortex were obtained by proton magnetic resonance spectroscopy (1H MRS) on a 3T MR system, using the standard J-edited spin-echo difference technique. Anhedonia was assessed by combining interest items from depression and fatigue rating scales, and fatigue by use of the multidimensional fatigue inventory. Across the full sample of participants, anhedonia severity and occipital GSH levels were negatively correlated (r = −0.55, p = 0.01). No associations were found between fatigue severity and GSH in this sample. These preliminary findings are potentially consistent with a pathophysiological role for GSH and oxidative stress in anhedonia and MDD. Larger studies in anhedonic depressed patients are indicated. PMID:24704328

  3. In vivo (1)H MRS study of potential associations between glutathione, oxidative stress and anhedonia in major depressive disorder.

    PubMed

    Lapidus, Kyle A B; Gabbay, Vilma; Mao, Xiangling; Johnson, Amy; Murrough, James W; Mathew, Sanjay J; Shungu, Dikoma C

    2014-05-21

    Inflammation and oxidative stress are important mechanisms that have been implicated in the pathophysiology of major depressive disorder (MDD). Glutathione (GSH) is the most abundant antioxidant in human tissue, and a key index of antioxidant capacity and, hence, of oxidative stress. The aims of this investigation were to examine possible relationships between occipital GSH and dimensional measures of depressive symptom severity, including anhedonia - the reduced capacity to experience pleasure - and fatigue. We hypothesized that the magnitude of anhedonia and fatigue will be negatively correlated with occipital GSH levels in subjects with MDD and healthy controls (HC). Data for eleven adults with MDD and ten age- and sex-matched HC subjects were included in this secondary analysis of data from a previously published study. In vivo levels of GSH in a 3cm×3cm×2cm voxel of occipital cortex were obtained by proton magnetic resonance spectroscopy ((1)H MRS) on a 3T MR system, using the standard J-edited spin-echo difference technique. Anhedonia was assessed by combining interest items from depression and fatigue rating scales, and fatigue by use of the multidimensional fatigue inventory. Across the full sample of participants, anhedonia severity and occipital GSH levels were negatively correlated (r=-0.55, p=0.01). No associations were found between fatigue severity and GSH in this sample. These preliminary findings are potentially consistent with a pathophysiological role for GSH and oxidative stress in anhedonia and MDD. Larger studies in anhedonic depressed patients are indicated. PMID:24704328

  4. Electrochemical detection of nitric oxide production in perfused pig coronary artery: comparison of the performances of two electrochemical sensors.

    PubMed

    Villeneuve, N; Bedioui, F; Voituriez, K; Avaro, S; Vilaine, J P

    1998-08-01

    In situ direct measurement of nitric oxide (NO) in biological media is now possible by means of electrochemical detection. In the literature, there are principally two amperometric approaches based on the direct oxidation of NO either on a sensor made from platinum/ iridium (Pt/Ir) alloy coated with a three-layered membrane or on a nickel porphyrin and Nafion-coated carbon fiber electrode. Nonetheless, the exact nature of the experimental amperometric signal obtained with the Pt/Ir system was never authenticated as being related to NO. This study compared responses of two sensors to the inhibition effect of Nomega-nitro-L-arginine (L-NA) as the amperometric signals produced by 5-hydroxytryptamine (5-HT) on isolated pig coronary preparations. These amperometric signals could be attributed to NO only for the nickel porphyrin and Nafion-coated carbon fiber electrode. Indeed, voltammetric characterization of the electrochemical response demonstrated only variations of the baseline current upon additions of either SNAP or NO on the Pt/Ir electrode instead of anodic peak current displayed at 0.63-0.75 V for the other system. Nitrites induced baseline current variations with the Pt/Ir electrode, similar to those obtained with S-nitroso-N-acetyl-dl-penicillamine (SNAP) or NO. This study highlights the potential hazards and pitfalls that may be associated with the use of a Pt/Ir sensor calibrated with SNAP solutions for the detection of NO production in various biological systems. PMID:10100498

  5. Highly sensitive nonenzymatic glucose sensor based on nickel nanoparticle-attapulgite-reduced graphene oxide-modified glassy carbon electrode.

    PubMed

    Shen, Zongxu; Gao, Wenyu; Li, Pei; Wang, Xiaofang; Zheng, Qing; Wu, Hao; Ma, Yuehui; Guan, Weijun; Wu, Songmei; Yu, Yu; Ding, Kejian

    2016-10-01

    In this article, a fast and sensitive nonenzymatic glucose sensor is reported utilizing a glassy carbon electrode modified by synthesizing nanocomposites of nickel nanoparticle-attapulgite-reduced graphene oxide (Ni NPs/ATP/RGO). A facile one-step electrochemical co-deposition approach is adopted to synthesize Ni NPs-ATP-RGO nanocomposites via electrochemical reduction of mixed precursor solution containing graphene oxide (GO), attapulgite (ATP) and nickel cations (Ni(2+)) at the cathode potentials. This strategy results in simultaneous depositions of ATP, cathodic reduction of Ni(2+) into nickel nanoparticles under acidic conditions, and in situ reduction of GO. The as-prepared NiNPs/ATP/RGO-based glucose sensor exhibits outstanding performance for enzymeless glucose sensing with sensitivity (1414.4 μAmM(-1)cm(-2)), linear range (1-710μM) and detection limit (0.37μM). What is more, the sensor has excellent stability and selectivity against common interferences in real sample. PMID:27474298

  6. ZIRCONIA-BASED MIXED POTENTIAL CARBON MONOXIDE/HYDROCARBON SENSORS WITH LANTHANUM MAGNESIUM OXIDE, AND TERBIUM-DOPED YTTRIUM STABILIZED ZIRCONIA ELECTRODES

    SciTech Connect

    E. L. BROSHA; R. MUKUNDAN; ET AL

    2000-10-01

    We have investigated the performance of dual metal oxide electrode mixed potential sensors in an engine-out, dynamometer environment. Sensors were fabricated by sputtering thin films of LaMnO{sub 3} and Tb-doped YSZ onto YSZ electrolyte. Au gauze held onto the metal oxide thin films with Au ink was used for current collection. The exhaust gas from a 4.8L, V8 engine operated in open loop, steady-state mode around stoichiometry at 1500 RPM and 50 Nm. The sensor showed a stable EMF response (with no hysteresis) to varying concentrations of total exhaust gas HC content. The sensor response was measured at 620 and 670 C and shows temperature behavior characteristic of mixed potential-type sensors. The results of these engine-dynamometer tests are encouraging; however, the limitations associated with Au current collection present the biggest impediment to automotive use.

  7. Gas sensors based on carbon nanoflake/tin oxide composites for ammonia detection.

    PubMed

    Lee, Soo-Keun; Chang, Daeic; Kim, Sang Wook

    2014-03-15

    Carbon nanoflake (CNFL) was obtained from graphite pencil by using the electrochemical method and the CNFL/SnO2 composite material assessed its potential as an ammonia gas sensor. A thin film resistive gas sensor using the composite material was manufactured by the drop casting method, and the sensor was evaluated to test in various ammonia concentrations and operating temperatures. Physical and chemical characteristics of the composite material were assessed using SEM, TEM, SAED, EDS and Raman spectroscopy. The composite material having 10% of SnO2 showed 3 times higher sensor response and better repeatability than the gas sensor using pristine SnO2 nano-particle at the optimal temperature of 350°C. PMID:24473403

  8. A Fully Integrated and Miniaturized Heavy-metal-detection Sensor Based on Micro-patterned Reduced Graphene Oxide.

    PubMed

    Xuan, Xing; Hossain, Md Faruk; Park, Jae Yeong

    2016-01-01

    For this paper, a fully integrated and highly miniaturized electrochemical sensor was designed and fabricated on a silicon substrate. A solvothermal-assisted reduced graphene oxide named "TRGO" was then successfully micro-patterned using a lithography technique, followed by the electrodeposition of bismuth (Bi) on the surface of the micro-patterned TRGO for the electrochemical detection of heavy metal ions. The fully integrated electrochemical micro-sensor was then measured and evaluated for the detection of cadmium and lead-heavy metal ions in an acetic-acid buffered solution using the square wave anodic stripping voltammetry (SWASV) technique. The fabricated micro-sensor exhibited a linear detection range of 1.0 μg L(-1) to 120.0 μg L(-1) for both of the metal ions, and detection limits of 0.4 μg L(-1) and 1.0 μg L(-1) were recorded for the lead and cadmium (S/N = 3), respectively. Drinking-water samples were used for the practical assessment of the fabricated micro-sensor, and it showed an acceptable detection performance regarding the metal ions. PMID:27616629

  9. Temperature-Dependent Abnormal and Tunable p-n Response of Tungsten Oxide--Tin Oxide Based Gas Sensors.

    PubMed

    Li, Han; Xie, Wuyuan; Ye, Tianjie; Liu, Bin; Xiao, Songhua; Wang, Chenxia; Wang, Yanrong; Li, Qiuhong; Wang, Taihong

    2015-11-11

    We observed the sensing response of temperature-dependent abnormal p-n transitions in WO3-SnO2 hybrid hollow sphere based gas sensors for the first time. The sensors presented a normal n-type response to ethanol at elevated temperatures but abnormal p-type responses in a wide range of operation temperatures (room temperature to about 95 °C). By measuring various reducing gases and applying complex impedance plotting techniques, we demonstrated the abnormal p-type sensing behavior to be a pseudo-response resulting from the reaction between target gas and adsorbed water on the material surface. The temperature-controlled n-p switch is ascribed to the competition of intrinsic and extrinsic sensing behaviors, which resulted from the reaction of target gas with adsorbed oxygen ions and protons from adsorbed water, respectively. The former can modulate the intrinsic conductivity of the sensor by changing the electron concentration of the sensing materials, while the latter can regulate the conduction of the water layer, which contributes to the total conductivity as an external part. The hollow and hybrid nanostructures facilitated the observation of extrinsic sensing behaviors due to its large-area active sites and abundant oxygen vacancies, which could enhance the adsorption of water. This work might give new insight into gas sensing mechanisms and opens up a promising way to develop practical temperature and humidity controllable gas sensors with little power consumption based on the extrinsic properties. PMID:26495911

  10. Murine hepatic aldehyde dehydrogenase 1a1 is a major contributor to oxidation of aldehydes formed by lipid peroxidation

    PubMed Central

    Makia, Ngome L.; Bojang, Pasano; Falkner, K. Cameron; Conklin, Daniel J.; Prough, Russell A.

    2015-01-01

    Reactive lipid aldehydes are implicated in the pathogenesis of various oxidative stress-mediated diseases, including non-alcoholic steatohepatitis, atherosclerosis, Alzheimer’s and cataract. In the present study, we sought to define which hepatic Aldh isoform plays a major role in detoxification of lipid-derived aldehydes, such as acrolein and HNE by enzyme kinetic and gene expression studies. The catalytic efficiencies for metabolism of acrolein by Aldh1a1 was comparable to that of Aldh3a1 (Vmax/Km = 23). However, Aldh1a1 exhibits far higher affinity for acrolein (Km = 23.2 μM) compared to Aldh3a1 (Km = 464 μM). Aldh1a1 displays a 3-fold higher catalytic efficiency for HNE than Aldh3a1 (218 vs 69 ml/min/mg). The endogenous Aldh1a1 gene was highly expressed in mouse liver and a liver-derived cell line (Hepa-1c1c7) compared to Aldh2, Aldh1b1 and Aldh3a1. Aldh1a1 mRNA levels was 34-fold and 73-fold higher than Aldh2 in mouse liver and Hepa-1c1c7 cells respectively. Aldh3a1 gene was absent in mouse liver, but moderately expressed in Hepa-1c1c7 cells compared to Aldh1a1. We demonstrated that knockdown of Aldh1a1 expression by siRNA caused Hepa-1c1c7 cells to be more sensitive to acrolein-induced cell death and resulted in increased accumulation of acrolein-protein adducts and caspase 3 activation. These results indicate that Aldh1a1 plays a major role in cellular defense against oxidative damage induced by reactive lipid aldehydes in mouse liver. We also noted that hepatic Aldh1a1 mRNA levels were significantly increased (≈ 3 fold) in acrolein-fed mice compared to control. In addition, hepatic cytosolic ALDH activity was induced by acrolein when 1 mM NAD+ was used as cofactor, suggesting an Aldh1a1-protective mechanism against acrolein toxicity in mice liver. Thus, mechanisms to induce Aldh1a1 gene expression may provide a useful rationale for therapeutic protection against oxidative stress-induced pathologies. PMID:21256123

  11. A colorimetric sensor based on anodized aluminum oxide (AAO) substrate for the detection of nitroaromatics.

    SciTech Connect

    Liu, Y.; Wang, H. H.; Indacochea, J. E.; Wang, M. L.

    2011-12-15

    Simple and low cost colorimetric sensors for explosives detection were explored and developed. Anodized aluminum oxide (AAO) with large surface area through its porous structure and light background color was utilized as the substrate for colorimetric sensors. Fabricated thin AAO films with thickness less than {approx} 500 nm allowed us to observe interference colors which were used as the background color for colorimetric detection. AAO thin films with various thickness and pore-to-pore distance were prepared through anodizing aluminum foils at different voltages and times in dilute sulfuric acid. Various interference colors were observed on these samples due to their difference in structures. Accordingly, suitable anodization conditions that produce AAO samples with desired light background colors for optical applications were obtained. Thin film interference model was applied to analyze the UV-vis reflectance spectra and to estimate the thickness of the AAO membranes. We found that the thickness of produced AAO films increased linearly with anodization time in sulfuric acid. In addition, the growth rate was higher for AAO anodized using higher voltages. The thin film interference formulism was further validated with a well established layer by layer deposition technique. Coating poly(styrene sulfonate) sodium salt (PSS) and poly(allylamine hydrochloride) (PAH) layer by layer on AAO thin film consistently shifted its surface color toward red due to the increase in thickness. The red shift of UV-vis reflectance was correlated quantitatively to the number of layers been assembled. This sensitive red shift due to molecular attachment (increase in thickness) on AAO substrate was applied toward nitroaromatics detection. Aminopropyltrimethoxysilane (APTS) which can be attached onto AAO nanowells covalently through silanization and attract TNT molecules was coated and applied for TNT detection. UV-vis spectra of AAO with APTS shifted to the longer wavelength side due to

  12. An amperometric sensor for detection of tryptophan based on a pristine multi-walled carbon nanotube/graphene oxide hybrid.

    PubMed

    Han, Junfeng; Wang, Qingqing; Zhai, Junfeng; Han, Lei; Dong, Shaojun

    2015-08-01

    We report the fabrication of a novel amperometric sensor for tryptophan (Trp) based on a pristine multi-walled carbon nanotube/graphene oxide (pMWCNT/GO) hybrid obtained through the sonication of pMWCNTs in an aqueous solution of GO. The results of transmission electron microscopy and electrochemical impedance spectroscopy demonstrate the successful formation and the excellent charge transfer ability of the resulting hybrid. Compared with the commonly used acid-treated MWCNTs and GO, the resulting hybrid exhibits better electrocatalytic activity towards the oxidation of Trp, which is attributed to the synergistic effect of MWCNTs and GO. The current-time curve reveals that the catalytic oxidation current is linearly dependent on Trp concentration in the range of 50 nM to 4.25 μM with a detection limit of 8 nM (S/N = 3). In addition, the proposed sensor is successfully employed to detect Trp in the real samples with satisfactory results. PMID:26065906

  13. Low-temperature and solution-processed indium tin oxide films and their applications in flexible transparent capacitive pressure sensors

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Chen, Sujie; Wang, Nana; Ye, Zhizhen; Qi, Hang; Guo, Xiaojun; Jin, Yizheng

    2016-04-01

    It is of great interest to fabricate indium tin oxide (ITO) films by solution-based techniques at low temperatures. Here, we combined the use of colloidal ITO nanoflowers synthesized by the strategy of limited ligand protection and oxygen plasma treatment which effectively remove the surface ligands of ITO nanocrystals to meet this goal. These efforts led to high-quality ITO films with resistivity as low as 2.33 × 10-2 Ω cm, which is the best result for solution-processed ITO nanocrystal films deposited at temperatures lower than 200 °C. The annealing-free processing allowed us to deposit ITO nanoflower films onto plastic substrates and apply them in flexible capacitive pressure sensors. The single-pixel device showed decent sensitivity and reproducibility, and the arrayed sensors exhibited good spatial resolution.

  14. Highly sensitive sensors for alkali metal ions based on complementary-metal-oxide-semiconductor-compatible silicon nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Jun; Agarwal, Ajay; Buddharaju, Kavitha D.; Singh, Navab; Gao, Zhiqiang

    2007-06-01

    Highly sensitive sensors for alkali metal ions based on complementary-metal-oxide- semiconductor-compatible silicon nanowires (SiNWs) with crown ethers covalently immobilized on their surface are presented. A densely packed organic monolayer terminated with amine groups is introduced to the SiNW surface via hydrosilylation. Amine-modified crown ethers, acting as sensing elements, are then immobilized onto the SiNWs through a cross-linking reaction with the monolayer. The crown ether-functionalized SiNWs recognize Na+ and K+ according to their complexation ability to the crown ethers. The SiNW sensors are highly selective and capable of achieving an ultralow detection limit down to 50nM, over three orders of magnitude lower than that of conventional crown ether-based ion-selective electrodes.

  15. Portable oxidative stress sensor: dynamic and non-invasive measurements of extracellular H₂O₂ released by algae.

    PubMed

    Koman, Volodymyr B; Santschi, Christian; von Moos, Nadia R; Slaveykova, Vera I; Martin, Olivier J F

    2015-06-15

    Reactive oxygen species (ROS) generated by aerobic organisms are essential for physiological processes such as cell signaling, apoptosis, immune defense and oxidative stress mechanisms. Unbalanced oxidant/antioxidant budgets are involved in many diseases and, therefore, the sensitive measurement of ROS is of great interest. Here, we present a new device for the real-time monitoring of oxidative stress by measuring one of the most stable ROS, namely hydrogen peroxide (H2O2). This portable oxidative stress sensor contains the heme protein cytochrome c (cyt c) as sensing element whose spectral response enables the detection of H2O2 down to a detection limit of 40 nM. This low detection limit is achieved by introducing cyt c in a random medium, enabling multiscattering that enhances the optical trajectory through the cyt c spot. A contact microspotting technique is used to produce reproducible and reusable cyt c spots which are stable for several days. Experiments in static and microfluidic regimes, as well as numerical simulations demonstrate the suitability of the cyt c/H2O2 reaction system for the real-time sensing of the kinetics of biological processes without H2O2 depletion in the measurement chamber. As an example, we detect the release of H2O2 from the green alga Chlamydomonas reinhardtii exposed to either 180 nM functionalized CdSe/ZnS core shell quantum dots, or to 10 mg/l TiO2 nanoparticles. The continuous measurement of extracellular H2O2 by this optical sensor with high sensitivity is a promising new means for real-time cytotoxicity tests, the investigation of oxidative stress and other physiological cell processes. PMID:25588702

  16. Data-driven Modeling of Metal-oxide Sensors with Dynamic Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Gosangi, Rakesh; Gutierrez-Osuna, Ricardo

    2011-09-01

    We present a data-driven probabilistic framework to model the transient response of MOX sensors modulated with a sequence of voltage steps. Analytical models of MOX sensors are usually built based on the physico-chemical properties of the sensing materials. Although building these models provides an insight into the sensor behavior, they also require a thorough understanding of the underlying operating principles. Here we propose a data-driven approach to characterize the dynamical relationship between sensor inputs and outputs. Namely, we use dynamic Bayesian networks (DBNs), probabilistic models that represent temporal relations between a set of random variables. We identify a set of control variables that influence the sensor responses, create a graphical representation that captures the causal relations between these variables, and finally train the model with experimental data. We validated the approach on experimental data in terms of predictive accuracy and classification performance. Our results show that DBNs can accurately predict the dynamic response of MOX sensors, as well as capture the discriminatory information present in the sensor transients.

  17. Odour Mapping Under Strong Backgrounds With a Metal Oxide Sensor Array

    NASA Astrophysics Data System (ADS)

    Ziyatdinov, Andrey; Calvo, José María Blanco; Lechón, Miguel; Bermúdez i Badia, Sergi; Verschure, Paul F. M. J.; Marco, Santiago; Perera, Alexandre

    2011-09-01

    This work describes the data from navigation experiments with the mobile robot, equipped with the sensor array of three MOX gas sensors. Performed four series of measurements aim to explore the capabilities of sensor array to build the odour map with one or two odour sources in the wind tunnel space. It was demonstrated that the method based on Independent Component Analysis (ICA) is able to discriminate two odour sources, that in future can be used in the surge-and-cast robot navigation algorithm.

  18. Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium

    NASA Astrophysics Data System (ADS)

    Tabassum, Rana; Gupta, Banshi D.

    2016-01-01

    We present an experimental study on a surface plasmon resonance (SPR) based fiber optic hydrogen gas sensor employing a palladium doped zinc oxide nanocomposite (ZnO(1-x)Pd x , 0 ≤ x ≤ 0.85) layer over the silver coated unclad core of the fiber. Palladium doped zinc oxide nanocomposites (ZnO(1-x)Pd x ) are prepared by a chemical route for different composition ratios and their structural, morphological and hydrogen sensing properties are investigated experimentally. The sensing principle involves the absorption of hydrogen gas by ZnO(1-x)Pd x , altering its dielectric function. The change in the dielectric constant is analyzed in terms of the red shift of the resonance wavelength in the visible region of the electromagnetic spectrum. To check the sensing capability of sensing probes fabricated with varying composition ratio (x) of nanocomposite, the SPR curves are recorded typically for 0% H2 and 4% H2 in N2 atmosphere for each fabricated probe. On changing the concentration of hydrogen gas from 0% to 4%, the red shift in the SPR spectrum confirms the change in dielectric constant of ZnO(1-x)Pd x on exposure to hydrogen gas. It is noted that the shift in the SPR spectrum increases monotonically up to a certain fraction of Pd in zinc oxide, beyond which it starts decreasing. SEM images and the photoluminescence (PL) spectra reveal that Pd dopant atoms substitutionally incorporated into the ZnO lattice profoundly affect its defect levels; this is responsible for the optimal composition of ZnO(1-x)Pd x to sense the hydrogen gas. The sensor is highly selective to hydrogen gas and possesses high sensitivity. Since optical fiber sensing technology is employed along with the SPR technique, the present sensor is capable of remote sensing and online monitoring of hydrogen gas.

  19. Ultrasensitive Strain Sensor Produced by Direct Patterning of Liquid Crystals of Graphene Oxide on a Flexible Substrate.

    PubMed

    Coskun, M Bulut; Akbari, Abozar; Lai, Daniel T H; Neild, Adrian; Majumder, Mainak; Alan, Tuncay

    2016-08-31

    Ultrasensitive flexible strain sensors were developed through the combination of shear alignment of a high concentration graphene oxide (GO) dispersion with fast and precise patterning of multiple rectangular features on a flexible substrate. Resistive changes in the reduced GO films were investigated under various uniaxial strain cycles ranging from 0.025 to 2%, controlled with a motorized nanopositioning stage. The devices uniquely combine a very small detection limit (0.025%) and a high gauge factor with a rapid fabrication process conducive to batch production. PMID:27490520

  20. Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor.

    PubMed

    Ah Lee, Seung; Ou, Xiaoze; Lee, J Eugene; Yang, Changhuei

    2013-06-01

    We demonstrate a silo-filter (SF) complementary metal-oxide semiconductor (CMOS) image sensor for a chip-scale fluorescence microscope. The extruded pixel design with metal walls between neighboring pixels guides fluorescence emission through the thick absorptive filter to the photodiode of a pixel. Our prototype device achieves 13 μm resolution over a wide field of view (4.8 mm × 4.4 mm). We demonstrate bright-field and fluorescence longitudinal imaging of living cells in a compact, low-cost configuration. PMID:23722754

  1. Ultra-Sensitive Humidity Sensor Based on Optical Properties of Graphene Oxide and Nano-Anatase TiO2

    PubMed Central

    Ghadiry, Mahdiar; Gholami, Mehrdad; Lai, C. K.; Ahmad, Harith; Chong, W. Y.

    2016-01-01

    Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH) causes the cladding refractive index (RI) to increase due to cladding water absorption. However, if graphene oxide (GO) is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO) and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO) are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time) of the device, reveals a great linearity in a wide range of RH (35% to 98%) and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications. PMID:27101247

  2. Ultra-Sensitive Humidity Sensor Based on Optical Properties of Graphene Oxide and Nano-Anatase TiO2.

    PubMed

    Ghadiry, Mahdiar; Gholami, Mehrdad; Lai, C K; Ahmad, Harith; Chong, W Y

    2016-01-01

    Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH) causes the cladding refractive index (RI) to increase due to cladding water absorption. However, if graphene oxide (GO) is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO) and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO) are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time) of the device, reveals a great linearity in a wide range of RH (35% to 98%) and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications. PMID:27101247

  3. High-Resolution p-Type Metal Oxide Semiconductor Nanowire Array as an Ultrasensitive Sensor for Volatile Organic Compounds.

    PubMed

    Cho, Soo-Yeon; Yoo, Hae-Wook; Kim, Ju Ye; Jung, Woo-Bin; Jin, Ming Liang; Kim, Jong-Seon; Jeon, Hwan-Jin; Jung, Hee-Tae

    2016-07-13

    The development of high-performance volatile organic compound (VOC) sensor based on a p-type metal oxide semiconductor (MOS) is one of the important topics in gas sensor research because of its unique sensing characteristics, namely, rapid recovery kinetics, low temperature dependence, high humidity or thermal stability, and high potential for p-n junction applications. Despite intensive efforts made in this area, the applications of such sensors are hindered because of drawbacks related to the low sensitivity and slow response or long recovery time of p-type MOSs. In this study, the VOC sensing performance of a p-type MOS was significantly enhanced by forming a patterned p-type polycrystalline MOS with an ultrathin, high-aspect-ratio (∼25) structure (∼14 nm thickness) composed of ultrasmall grains (∼5 nm size). A high-resolution polycrystalline p-type MOS nanowire array with a grain size of ∼5 nm was fabricated by secondary sputtering via Ar(+) bombardment. Various p-type nanowire arrays of CuO, NiO, and Cr2O3 were easily fabricated by simply changing the sputtering material. The VOC sensor thus fabricated exhibited higher sensitivity (ΔR/Ra = 30 at 1 ppm hexane using NiO channels), as well as faster response or shorter recovery time (∼30 s) than that of previously reported p-type MOS sensors. This result is attributed to the high resolution and small grain size of p-type MOSs, which lead to overlap of fully charged zones; as a result, electrical properties are predominantly determined by surface states. Our new approach may be used as a route for producing high-resolution MOSs with particle sizes of ∼5 nm within a highly ordered, tall nanowire array structure. PMID:27304752

  4. Alumina and silicon oxide/nitride sidewall passivation for P- and N-type sensors

    NASA Astrophysics Data System (ADS)

    Christophersen, M.; Fadeyev, V.; Phlips, B. F.; Sadrozinski, H. F.-W.; Parker, C.; Ely, S.; Wright, J. G.

    2013-01-01

    Silicon detectors normally have an inactive region along the perimeter of the sensor. In this paper we describe a "scribe, cleave, and passivate" (SCP) technique for the fabrication of slim edges in a post processing with finished detectors. The scribing was done by laser-scribing and etching. After scribing and cleaving steps, the sidewalls are passivated with a dielectric. We present results for n- and p-type sensors with different sidewall passivations. The leakage current depends strongly on the type of sidewall passivation. An alumina passivation leads to very low leakage currents for p-type sensors because of a negative interface charge. For n-type sensors, a hydrogenated silicon nitride shows the lowest leakage currents. Furthermore, we applied the technique to large area n-type single-sided strip detectors (cleaving length up to 3.5 cm).

  5. Modeling The Influence Of H{sub 2}O On Metal Oxide Sensor Responses To CO

    SciTech Connect

    Fort, A.; Mugnaini, M.; Pasquini, I.; Rocchi, S.; Vignoli, V.

    2009-05-23

    It is well know that the relative humidity largely affects the response of MOX gas sensors to the target gases. The influence of water vapor on MOX sensor operation has been deeply studied and many results can be found in the literature. Nevertheless the effect of water was not incorporated in the sensor models presented up to now. In this work the authors propose, on the basis of experimental evidence, a simplified model for SnO{sub 2} sensors, able to account for the water contribution, when the target gas is CO. The authors start from a model already presented and tested for dry gases (CO and O{sub 2}), and add the water contribution, assuming that the direct reaction between CO and water can be neglected.

  6. Er3+, Yb3+ doped yttrium oxide phosphor as a temperature sensor

    NASA Astrophysics Data System (ADS)

    Mahata, Manoj Kumar; Kumari, Astha; Rai, Vineet Kumar; Kumar, Kaushal

    2013-06-01

    The rare earth ions doped upconversion phosphors as temperature sensor need intensive investigation because of its wide range of potential applications. Here the Y2O3:Yb3+,Er3+ phosphor is synthesized via combustion synthesis and its upconversion emission is studied using 976 nm diode laser excitation source. The emission band intensities at 522 and 550 nm are found to be thermally coupled and it leads to conclude that the sample can act as a temperature sensor.

  7. Thermogravimetric study of oxidation of a PdCr alloy used for high-temperature sensors

    NASA Technical Reports Server (NTRS)

    Boyd, Darwin L.; Zeller, Mary V.

    1994-01-01

    In this study, the oxidation of Pd-13 weight percent Cr, a candidate alloy for high-temperature strain gages, was investigated by thermogravimetry. Although the bulk alloy exhibits linear electrical resistivity versus temperature and stable resistivity at elevated temperatures, problems attributed to oxidation occur when this material is fabricated into strain gages. In this work, isothermal thermogravimetry (TG) was used to study the oxidation kinetics. Results indicate that the oxidation of Pd-13 weight percent Cr was approximately parabolic in time at 600 C but exhibited greater passivation from 700 to 900 C. At 1100 C, the oxidation rate again increased.

  8. Potentiometric chemical sensors from lignin-poly(propylene oxide) copolymers doped by carbon nanotubes.

    PubMed

    Rudnitskaya, Alisa; Evtuguin, Dmitry V; Costa, Luis C; Graça, M Pedro F; Fernandes, António J S; Correia, M Rosario P; Gomes, M Teresa S R; Oliveira, J A B P

    2013-01-21

    Hardwood and softwood lignins obtained from industrial sulphite and kraft and laboratory oxygen-organosolv pulping processes were employed in co-polymerization with tolylene 2,4-diisocyanate terminated poly(propylene glycol). The obtained lignin-based polyurethanes were doped with 0.72 w/w% of multiwall carbon nanotubes (MWCNTs) with the aim of increasing their electrical conductivity to the levels suitable for sensor applications. Effects of the polymer doping with MWCNTs were assessed using electrical impedance (EIS) and UV-Resonance Raman (UV-RR) spectroscopy. Potentiometric sensors were prepared by drop casting of liquid polymer on the surface of carbon glass or platinum electrodes. Lignin-based sensors displayed a very low or no sensitivity to all alkali, alkali-earth and transition metal cations ions except Cr(VI) at pH 2. Response to Cr(VI) values of 39, 50 and 53 mV pX(-1) for the sensors based on kraft, organosolv and lignosulphonate lignins, respectively, were observed. Redox sensitivity values close to the theoretical values of 20 and 21 mV pX(-1) for organosolv and lignosulphonate based sensors respectively were detected in the Cr(III)/Cr(VI) solutions while a very low response was observed in the solutions containing Fe(CN)(6)(3-/4-). Conducting composite lignin-based polyurethanes doped with MWCNTs were suggested as being promising materials for Cr(VI)-sensitive potentiometric sensors. PMID:23162814

  9. High Sensitive Sensor Fabricated by Reduced Graphene Oxide/Polyvinyl Butyral Nanofibers for Detecting Cu (II) in Water

    PubMed Central

    Ding, Rui; Luo, Zhimin; Ma, Xiuling; Fan, Xiaoping; Xue, Liqun; Lin, Xiuzhu; Chen, Sheng

    2015-01-01

    Graphene oxide (GO)/polyvinyl butyral (PVB) nanofibers were prepared by a simple electrospinning technique with PVB as matrix and GO as a functional nanomaterial. GO/PVB nanofibers on glassy carbon electrode (GCE) were reduced through electrochemical method to form reduced graphene oxide (RGO)/PVB nanofibers. The morphology and structure of GO/PVB nanofiber were studied by scanning election microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR). RGO/PVB modified GCE was used for fabricating an electrochemical sensor for detecting Cu (II) in water. The analysis results showed that RGO/PVB modified GCE had good analytical results with the linear range of 0.06–2.2 μM, detection limit of 4.10 nM (S/N = 3), and the sensitivity of 103.51 μA·μM−1·cm−2. PMID:25694783

  10. Reusable fluorescent sensor for captopril based on energy transfer from photoluminescent graphene oxide self-assembly multilayers to silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Xiangying; Liu, Bin; Li, Shuchun; Li, Fang

    2016-05-01

    In this work we designed a self-assembly multilayers, in which photoluminescent graphene oxide was employed as a fluorescence probe. This multilayers film can effectively recognize captopril by resonance energy transfer from graphite oxide to silver nanoparticles. A new interfacial sensing method for captopril with high signal to noise ratio was established, by means of that multilayers was quenched by silver nanoparticles and subsequently recovered by adding captopril. The linear relation between intensity and captopril concentration was good, and the detection limit was found to be 0.1578 μM. Also, this novel detection platform demonstrated intriguing reusable properties, and the sensor could be repeated more than ten times without obviously losing its sensing performance.

  11. Reusable fluorescent sensor for captopril based on energy transfer from photoluminescent graphene oxide self-assembly multilayers to silver nanoparticles.

    PubMed

    Sun, Xiangying; Liu, Bin; Li, Shuchun; Li, Fang

    2016-05-15

    In this work we designed a self-assembly multilayers, in which photoluminescent graphene oxide was employed as a fluorescence probe. This multilayers film can effectively recognize captopril by resonance energy transfer from graphite oxide to silver nanoparticles. A new interfacial sensing method for captopril with high signal to noise ratio was established, by means of that multilayers was quenched by silver nanoparticles and subsequently recovered by adding captopril. The linear relation between intensity and captopril concentration was good, and the detection limit was found to be 0.1578 μM. Also, this novel detection platform demonstrated intriguing reusable properties, and the sensor could be repeated more than ten times without obviously losing its sensing performance. PMID:26945122

  12. TRACE-P OH and HO2 Measurements with the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) on the DC-8

    NASA Technical Reports Server (NTRS)

    Brune, William H.; Martinez-Harder, Monica; Harder, Hartwig

    2004-01-01

    The Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) measures OH and HO2 from the NASA DC-8. This instrument detects OH by laser induced fluorescence (LIF) in detection chambers at low pressure and detects HO2 by chemical conversion with NO followed by LIF detection. The demonstrated detection limit (S/N=2, 5 min.) for OH is about 0.005 pptv (1x10(exp 6)/cu cm at 2 km altitude) and for HO2 is 0.05 pptv (1x10(exp 6)/cu cm at 2 km altitude). We will use ATHOS to measure OH, HO2, and HO2/OH during TRACE- P, analyze these results by comparing them against fundamental relationships and computer models, and publish the analyses. TRACE-P HO(x), measurements will help develop a clearer picture of the atmospheric oxidation and 0 3 production that occur as Asian pollution spreads across the Pacific Ocean.

  13. Nitrous Oxide Emission Flux Measurements for Ecological Systems with an Open-Path Quantum Cascade Laser-Based Sensor

    NASA Astrophysics Data System (ADS)

    Tao, L.; Sun, K.; Cavigelli, M. A.; Gelfand, I.; Zenone, T.; Cui, M.; Miller, D. J.; Khan, M. A.; Zondlo, M. A.

    2012-12-01

    The ambient concentration of nitrous oxide (N2O), the fourth most abundant greenhouse gas, is rapidly increasing with emissions from both natural and anthropogenic sources [1]. Soil and aquatic areas are important sources and sinks for N2O due to complicated biogenic processes. However, N2O emissions are poorly constrained in space and time, despite its importance to global climate change and ozone depletion. We report our recent N2O emission measurements with an open-path quantum cascade laser (QCL)-based sensor for ecological systems. The newly emergent QCLs have been used to build compact, sensitive trace gas sensors in the mid-IR spectral region. A compact open-path QCL based sensor was developed to detect atmospheric N2O and CO at ~ 4.5 μm using wavelength modulation spectroscopy (WMS) to achieve a sensitivity of 0.26 ppbv of N2O and 0.24 ppbv of CO in 1 s with a power consumption of ~50 W [2]. This portable sensor system has been used to perform N2O emission flux measurement both with a static flux chamber and on an eddy covariance (EC) flux tower. In the flux chamber measurements, custom chambers were used to host the laser sensor, while gas samples for gas chromatograph (GC) were collected at the same time in the same chamber for validation and comparison. Different soil treatments have been applied in different chambers to study the relationship between N2O emission and the amount of fertilizer (and water) addition. Measurements from two methods agreed with each other (95% or higher confidence interval) for emission flux results, while laser sensor gave measurements with a much high temporal resolution. We have also performed the first open-path eddy covariance N2O flux measurement at Kellogg research station, Michigan State University for a month in June, 2012. Our sensor was placed on a 4-meter tower in a corn field and powered by batteries (connected with solar panels). We have observed the diurnal cycle of N2O flux. During this deployment, an inter

  14. Tantalum oxide honeycomb architectures for the development of a non-enzymatic glucose sensor with wide detection range.

    PubMed

    Suneesh, P V; Chandhini, K; Ramachandran, T; Nair, Bipin G; Satheesh Babu, T G

    2013-12-15

    Tantalum oxide honeycomb nanostructures (THNS) were fabricated by electrochemical anodisation of tantalum in H2SO4-HF medium. XRD analysis showed that annealing of THNS at 400 °C improves the crystallinity. HRSEM and AFM results illustrated that nanopores with an average diameter of 30 nm were uniformly distributed and the pore size reduced to 24 nm and 18 nm during subsequent electrodeposition of Pt and CuO. Electrodeposited Pt and CuO exhibited face centered cubic (fcc) and monoclinic crystal structure respectively. Cyclic voltammetric studies revealed that, on the hybrid material electrooxidation of glucose occurs at a lower potential (0.45 V). The sensor exhibited linear response to glucose up to 31 mM, fast response time (<3 s) and a low detection limit of 1 μM (S/N=3). The sensor is free of interference from ascorbic acid, uric acid, dopamine and acetaminophen. Sensor was used to analyze glucose in blood serum samples. PMID:23911662

  15. Anion sensing and interfering behaviors of electrolyte-insulator-semiconductor sensors with nitrogen plasma-treated samarium oxide

    NASA Astrophysics Data System (ADS)

    Ye, Yu-Ren; Wang, Jer-Chyi; Chan, Ya-Ting

    2015-04-01

    In this article, we demonstrate a samarium oxide (Sm2O3) electrolyte-insulator-semiconductor (EIS) sensor with nitrogen plasma immersion ion implantation (PIII) treatment for anion sensing and interfering characterization. Chloride (Cl-), nitrite (NO2-), and nitrate (NO3-) ions were detected, and the sensitivity was about 49.75 mV/pCl, 53.8 mV/pNO2, and 56.19 mV/pNO3, respectively. Ion sensitivity was enhanced with the increase in ionic radius of the target ion. Titration was performed to analyze the interference of anions. To assess interferences from these ions (Cl-, NO2-, and NO3-), selectivity coefficients obtained by fixed interference method (FIM) measurements were presented. In result, the coefficients indicate that the interference can be ignored. Furthermore, characteristics of drift demonstrates that the sample exhibits long-term stability for significantly lower drift of chloride, nitrite, and nitrate ions, respectively. The Sm2O3 EIS sensor with nitrogen PIII treatment exhibits superior anion sensitivity, selectivity, and stability; therefore, this sensor is suitable for future biosensing applications.

  16. Honeycomb-like Porous Carbon-Cobalt Oxide Nanocomposite for High-Performance Enzymeless Glucose Sensor and Supercapacitor Applications.

    PubMed

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming; Manikandan, Arumugam; Lo, An-Ya; Chueh, Yu-Lun

    2015-07-29

    Herein, we report the preparation of Pongam seed shells-derived activated carbon and cobalt oxide (∼2-10 nm) nanocomposite (PSAC/Co3O4) by using a general and facile synthesis strategy. The as-synthesized PSAC/Co3O4 samples were characterized by a variety of physicochemical techniques. The PSAC/Co3O4-modified electrode is employed in two different applications such as high performance nonenzymatic glucose sensor and supercapacitor. Remarkably, the fabricated glucose sensor is exhibited an ultrahigh sensitivity of 34.2 mA mM(-1) cm(-2) with a very low detection limit (21 nM) and long-term durability. The PSAC/Co3O4 modified stainless steel electrode possesses an appreciable specific capacitance and remarkable long-term cycling stability. The obtained results suggest the as-synthesized PSAC/Co3O4 is more suitable for the nonenzymatic glucose sensor and supercapacitor applications outperforming the related carbon based modified electrodes, rendering practical industrial applications. PMID:26125456

  17. Photochemical Synthesis of Shape-Controlled Nanostructured Gold on Zinc Oxide Nanorods as Photocatalytically Renewable Sensors.

    PubMed

    Xu, Jia-Quan; Duo, Huan-Huan; Zhang, Yu-Ge; Zhang, Xin-Wei; Fang, Wei; Liu, Yan-Ling; Shen, Ai-Guo; Hu, Ji-Ming; Huang, Wei-Hua

    2016-04-01

    Biosensors always suffer from passivation that prevents their reutilization. To address this issue, photocatalytically renewable sensors composed of semiconductor photocatalysts and sensing materials have emerged recently. In this work, we developed a robust and versatile method to construct different kinds of renewable biosensors consisting of ZnO nanorods and nanostructured Au. Via a facile and efficient photochemical reduction, various nanostructured Au was obtained successfully on ZnO nanorods. As-prepared sensors concurrently possess excellent sensing capability and desirable photocatalytic cleaning performance. Experimental results demonstrate that dendritic Au/ZnO composite has the strongest surface-enhanced Raman scattering (SERS) enhancement, and dense Au nanoparticles (NPs)/ZnO composite has the highest electrochemical activity, which was successfully used for electrochemical detection of NO release from cells. Furthermore, both of the SERS and electrochemical sensors can be regenerated efficiently for renewable applications via photodegrading adsorbed probe molecules and biomolecules. Our strategy provides an efficient and versatile method to construct various kinds of highly sensitive renewable sensors and might expand the application of the photocatalytically renewable sensor in the biosensing area. PMID:26928162

  18. Assessing the diagnostic information in the response patterns of a temperature-modulated tin oxide gas sensor

    NASA Astrophysics Data System (ADS)

    Hosseini-Golgoo, S. M.; Hossein-Babaei, F.

    2011-03-01

    The transient response patterns of a tin oxide chemoresistive gas sensor, temperature-modulated by the application of staircase voltage waveforms to its microheater, to five different volatile organic compounds were compared with respect to their target gas discriminating features. These patterns were divided into a number of segments, each corresponding to a temperature transition at the surface of the tin oxide pallet. The effectiveness of the gas discriminating information content of each segment was quantitatively assessed utilizing Fisher's discriminant ratio calculations in a 3D feature space. It was established that the amount of the useful information in a response segment depended on the corresponding temperature transition; larger pallet temperature transitions rendered more diagnostic information. Similar assessments were carried out for the different combinations of these segments. The results facilitated, for the first time, a comparative analysis of the levels of the correlated (redundant) and uncorrelated information in the different response segments. It was shown that the response segments occurring at or near the nominal operating temperature of the sensor contained most of the effective information, while those at low temperatures contained mostly the redundant or indiscriminative information. The results help minimize the temperature modulation duration required for gas recognition.

  19. Functionalized zinc oxide nanorod with ionophore-membrane coating as an intracellular Ca2+ selective sensor

    NASA Astrophysics Data System (ADS)

    Asif, M. H.; Fulati, A.; Nur, O.; Willander, M.; Brännmark, Cecilia; Strâlfors, Peter; Börjesson, Sara I.; Elinder, Fredrik

    2009-07-01

    The tip of a borosilicate glass capillary with functionalized hexagonal ZnO nanorods was used to make a sensitive electrochemical intracellular Ca2+ sensor. To adjust the sensor for Ca2+ measurements with sufficient selectivity and stability, polyvinylchloride membrane containing Ca2+ ionophores were coated on the surface. The membrane covered ZnO nanorods exhibited a Ca2+-dependent electrochemical potential difference versus an Ag/AgCl reference electrode. The potential difference was linear over a large concentration range (100 nM-10 mM). The measurements of Ca2+ concentrations using our ZnO nanorods sensor in human fat cells or in frog egg cells were consistent with values of Ca2+ concentrations reported in the literature. This nanoelectrode device paves the way to measurements of intracellular biochemical species in specific locations within single living cells.

  20. Detection of nitric oxide and nitroxyl with benzoresorufin-based fluorescent sensors.

    PubMed

    Apfel, Ulf-Peter; Buccella, Daniela; Wilson, Justin J; Lippard, Stephen J

    2013-03-18

    A new family of benzoresorufin-based copper complexes for fluorescence detection of NO and HNO is reported. The copper complexes, CuBRNO1-3, elicit 1.5-4.8-fold emission enhancement in response to NO and HNO. The three sensors differ in the nature of the metal-binding site. The photophysical properties of these sensors are investigated with assistance from density functional theory calculations. The fluorescence turn-on observed upon reaction with HNO is an unexpected result that is discussed in detail. The utility of the new sensors for detecting HNO and NO in HeLa cells and RAW 264.7 macrophages is demonstrated. PMID:23461436

  1. Intracellular antioxidant enzymes are not globally upregulated during hibernation in the major oxidative tissues of the 13-lined ground squirrel Spermophilus tridecemlineatus.

    PubMed

    Page, Melissa M; Peters, Craig W; Staples, James F; Stuart, Jeffrey A

    2009-01-01

    Hibernating mammals exhibit oxidative stress resistance in brain, liver and other tissues. In many animals, cellular oxidative stress resistance is associated with enhanced expression of intracellular antioxidant enzymes. Intracellular antioxidant capacity may be upregulated during hibernation to protect against oxidative damage associated with the ischemia-reperfusion that occurs during transitions between torpor and arousal. We tested the hypothesis that the 13-lined ground squirrel (Spermophilus tridecemlineatus), upregulates intracellular antioxidant enzymes in major oxidative tissues during hibernation. The two major intracellular isoforms of superoxide dismutase (MnSOD and CuZnSOD), which catalyze the first step in superoxide detoxification, were quantified in heart, brain and liver tissue using immunodetection and an in-gel activity assay. However, no differences in SOD protein expression or activity were found between active and hibernating squirrels. Measurements of glutathione peroxidase and glutathione reductase, which catalyze hydrogen peroxide removal, were not broadly upregulated during hibernation. The activity of catalase, which catalyzes an alternative hydrogen peroxide detoxification pathway, was higher in heart and brain of torpid squirrels, but lower in liver. Taken together, these data do not support the hypothesis that hibernation is associated with enhanced oxidative stress resistance due to an upregulation of intracellular antioxidant enzymes in the major oxidative tissues. PMID:18948223

  2. Synthesis of nanometric iron and chromium oxide films by reactive pulsed laser deposition for photo-thermo sensors

    NASA Astrophysics Data System (ADS)

    Mulenko, S. A.

    2011-02-01

    Films based on oxides of transitional metals have semiconducting properties that make them up-to-date materials for functional electronics. The reactive pulsed laser deposition (RPLD) allows the control of thickness and stoichiometry of deposits in order to obtain semiconductor structures with accurately tailored thickness and band gap. It is very important to study electrical, structural and optical properties of these semiconducting nanometric films, as sensing characteristics strongly depend on these properties. We deposited iron oxide (Fe2O3-X; 0 <= x <= 1) and chromium oxide (Cr3-XO3-Y; 0 <= x <= 2; 0 <= y <= 2) films on <100> Si substrate by RPLD using a KrF laser. The deposited nanometric films (thickness 50-200 nm) of iron and chromium oxides have large thermo electromotive force (e.m.f.) coefficient (S). The S coefficient of iron oxide films varied in the range 0.8-1.65 mV/K in the temperature range 210-322 K. The maximum value of the S coefficient (1.65mV/K) was measured in the temperature range 270-290 K. The largest photosensitivity (F) of iron oxides films was about 44 Vc/W for white light at power density (I) of about 6×10-3 W/cm2. As regards chromium oxide films, the S coefficient varied in the range 0.30-4.5 mV/K in the temperature range 210-333 K, with the maximum of 3.5-4.5 mV/K in the temperature range 270-290 K. The largest photosensitivity of chromium oxide films was about 2.5 Vc/W at I≅6×10-3 W/cm2. Our results show that RPLD is a very simple procedure to synthesize of iron and chromium oxide nanometric films with variable stoichiometry and, consequently, with different values of their band gap result in variable the S coefficient and the photosensitivity (F). The deposited films present large thermo e.m.f. coefficient and high photosensitivity that make them up-to-date materials for photo-thermo sensors.

  3. Synthesis of nanometric iron and chromium oxide films by reactive pulsed laser deposition for photo-thermo sensors

    NASA Astrophysics Data System (ADS)

    Mulenko, S. A.

    2010-07-01

    Films based on oxides of transitional metals have semiconducting properties that make them up-to-date materials for functional electronics. The reactive pulsed laser deposition (RPLD) allows the control of thickness and stoichiometry of deposits in order to obtain semiconductor structures with accurately tailored thickness and band gap. It is very important to study electrical, structural and optical properties of these semiconducting nanometric films, as sensing characteristics strongly depend on these properties. We deposited iron oxide (Fe2O3-X; 0 <= x <= 1) and chromium oxide (Cr3-XO3-Y; 0 <= x <= 2; 0 <= y <= 2) films on <100> Si substrate by RPLD using a KrF laser. The deposited nanometric films (thickness 50-200 nm) of iron and chromium oxides have large thermo electromotive force (e.m.f.) coefficient (S). The S coefficient of iron oxide films varied in the range 0.8-1.65 mV/K in the temperature range 210-322 K. The maximum value of the S coefficient (1.65mV/K) was measured in the temperature range 270-290 K. The largest photosensitivity (F) of iron oxides films was about 44 Vc/W for white light at power density (I) of about 6×10-3 W/cm2. As regards chromium oxide films, the S coefficient varied in the range 0.30-4.5 mV/K in the temperature range 210-333 K, with the maximum of 3.5-4.5 mV/K in the temperature range 270-290 K. The largest photosensitivity of chromium oxide films was about 2.5 Vc/W at I≅6×10-3 W/cm2. Our results show that RPLD is a very simple procedure to synthesize of iron and chromium oxide nanometric films with variable stoichiometry and, consequently, with different values of their band gap result in variable the S coefficient and the photosensitivity (F). The deposited films present large thermo e.m.f. coefficient and high photosensitivity that make them up-to-date materials for photo-thermo sensors.

  4. The Role of Oxidative Stress in the Longevity and Insecticide Resistance Phenotype of the Major Malaria Vectors Anopheles arabiensis and Anopheles funestus.

    PubMed

    Oliver, Shüné V; Brooke, Basil D

    2016-01-01

    Oxidative stress plays numerous biological roles, both functional and pathological. The role of oxidative stress in various epidemiologically relevant biological traits in Anopheles mosquitoes is not well established. In this study, the effects of oxidative stress on the longevity and insecticide resistance phenotype in the major malaria vector species An. arabiensis and An. funestus were examined. Responses to dietary copper sulphate and hydrogen peroxide were used as proxies for the oxidative stress phenotype by determining the effect of copper on longevity and hydrogen peroxide lethal dose. Glutathione peroxidase and catalase activities were determined colorimetrically. Oxidative burden was quantified as protein carbonyl content. Changes in insecticide resistance phenotype were monitored by WHO bioassay. Insecticide resistant individuals showed an increased capacity for coping with oxidative stress, mediated by increased glutathione peroxidase and catalase activity. This effect was observed in both species, as well as in laboratory strains and F1 individuals derived from wild-caught An. funestus mothers. Phenotypic capacity for coping with oxidative stress was greatest in strains with elevated Cytochrome P450 activity. Synergism of oxidative stress defence enzymes by dietary supplementation with haematin, 3-Amino-1, 2, 4-triazole and Sodium diethyldithiocarbamate significantly increased pyrethroid-induced mortality in An. arabiensis and An. funestus. It is therefore concluded that defence against oxidative stress underlies the augmentation of the insecticide resistance phenotype associated with multiple blood-feeding. This is because multiple blood-feeding ultimately leads to a reduction of oxidative stress in insecticide resistant females, and also reduces the oxidative burden induced by DDT and pyrethroids, by inducing increased glutathione peroxidase activity. This study highlights the importance of oxidative stress in the longevity and insecticide resistance

  5. The Role of Oxidative Stress in the Longevity and Insecticide Resistance Phenotype of the Major Malaria Vectors Anopheles arabiensis and Anopheles funestus

    PubMed Central

    Oliver, Shüné V.; Brooke, Basil D.

    2016-01-01

    Oxidative stress plays numerous biological roles, both functional and pathological. The role of oxidative stress in various epidemiologically relevant biological traits in Anopheles mosquitoes is not well established. In this study, the effects of oxidative stress on the longevity and insecticide resistance phenotype in the major malaria vector species An. arabiensis and An. funestus were examined. Responses to dietary copper sulphate and hydrogen peroxide were used as proxies for the oxidative stress phenotype by determining the effect of copper on longevity and hydrogen peroxide lethal dose. Glutathione peroxidase and catalase activities were determined colorimetrically. Oxidative burden was quantified as protein carbonyl content. Changes in insecticide resistance phenotype were monitored by WHO bioassay. Insecticide resistant individuals showed an increased capacity for coping with oxidative stress, mediated by increased glutathione peroxidase and catalase activity. This effect was observed in both species, as well as in laboratory strains and F1 individuals derived from wild-caught An. funestus mothers. Phenotypic capacity for coping with oxidative stress was greatest in strains with elevated Cytochrome P450 activity. Synergism of oxidative stress defence enzymes by dietary supplementation with haematin, 3-Amino-1, 2, 4-triazole and Sodium diethyldithiocarbamate significantly increased pyrethroid-induced mortality in An. arabiensis and An. funestus. It is therefore concluded that defence against oxidative stress underlies the augmentation of the insecticide resistance phenotype associated with multiple blood-feeding. This is because multiple blood-feeding ultimately leads to a reduction of oxidative stress in insecticide resistant females, and also reduces the oxidative burden induced by DDT and pyrethroids, by inducing increased glutathione peroxidase activity. This study highlights the importance of oxidative stress in the longevity and insecticide resistance

  6. Zinc-oxide optical sensor for highly sensitive refractive index sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Qiankun; Liu, Jing

    2016-02-01

    We proposed a ZnO nanorod array based optical sensor for highly sensitive refractive index (RI) detection. The sensor was fabricated by sequentially growing a seed layer and ZnO nanorod array at the endface of an optical fiber. The light coupled into the optical fiber is partially reflected at the seed layer and nanorod arry-air interface, respectively, generating an interference spectrum. When the RI of the media filled among the ZnO nanorods changes, the light path between the two reflective surfaces changes, resulting in the shift of the interference spectrum. Therefore, by monitoring the interference shift, it is able to detect the RI change. The advantages of the sensor are that 1) small size and low cost; 2) easy access to analytes and integration with micro-fluidic system; 3) easy fabrication; 4) highly sensitive. Experiments demonstrated that the proposed sensor can detect the RI change caused by exposing it to various vapor-phase analytes, leading to a potential capability of gas sensing.

  7. Thin film mixed potential nitrogen oxide sensor development for stationary reciprocating engine applications.

    SciTech Connect

    Brosha, E. L.; Mukundan, R.; Lujan, R.; Garzon, F. H.

    2004-01-01

    Mixed potential sensors using thin film Mg-doped LaCrO{sub 3} working electrodes, Pt counter electrodes, and thin film YSZ electrolytes on Al{sub 2}O{sub 3} polycrystalline substrates were prepared and studied at 600 and 650 C in 10.4% O{sub 2}/N{sub 2} balance and in air atmospheres for NO, NO{sub 2}, CO, and hydrocarbon responses. The lanthanum chromite-based sensors showed preferential sensitivity to NO{sub 2} with cross sensitivity to CO and nonmethane hydrocarbons such as C{sub 3}H{sub 6} and C{sub 3}H{sub 8}. In contrast, sensors with spinel NiCr{sub 2}O{sub 4} working electrodes show minimal sensitivity to NO{sub 2}. The use of a heated Pt black pre-catalyst upstream to the sensor was demonstrated and the use of this pre-catalyst effectively removed the CO and hydrocarbon response however more work needs to be done to understand the NO/NO{sub 2} chemistry post catalyst. Studies conducted for up to 800 hrs at 600 C show minimal aging in these devices.

  8. Characterization of free-standing PEDOT:PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors.

    PubMed

    Taccola, Silvia; Greco, Francesco; Zucca, Alessandra; Innocenti, Claudia; Fernández, César de Julián; Campo, Giulio; Sangregorio, Claudio; Mazzolai, Barbara; Mattoli, Virgilio

    2013-07-10

    In this study, a new simple, fast, and inexpensive technique for the preparation of free-standing nanocomposite ultrathin films based on the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and embedding iron oxide nanoparticles (NPs) is presented. These nanofilms were fabricated by a single step of spin-coated assisted deposition in conjunction with a release technique ("supporting layer technique") to detach them from the substrate. Free-standing nanofilms can be easily transferred onto several substrates due to their high conformability, preserving their functionalities. The effect of the addition of iron oxide nanoparticles on the structural and functional properties of the PEDOT:PSS nanofilms is investigated through topography, thickness, magnetic, magneto-optical activity, and conductivity characterizations. PEDOT:PSS and PEDOT:PSS/iron oxide NP nanofilms were tested as resistive humidity sensors. Their sensitivity to humidity was found to increase with increasing nanoparticle concentration. On the basis of these results, it is expected that these composites may furnish inexpensive and reliable means for relative humidity detection. PMID:23802632

  9. A novel voltammetric sensor based on carbon nanotubes and nanoparticles of antimony tin oxide for the determination of ractopamine.

    PubMed

    Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet

    2016-02-01

    An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with carbon nanotubes (CNTs) and nanoparticles of antimony tin oxide (ATO). The surface layer was characterized by scanning electronmicroscopy (SEM), energy dispersive X-ray diffraction method (EDX) and ATR FT-IR spectroscopy. The proposed electrode was assessed in respect to the electro-oxidation of ractopamine. Compared with a bare GCE and a GCE electrode modified with CNTs, the ATONPs/CNTs/GCE exhibited a great catalytic activity towards the oxidation of ractopamine with a well-defined anodic peak at 600 mV. The current response was linear with the concentration of ractopamine over the range from 10 to 240 nM with a detection limit of 3.3 nM. The proposed electrode enabled the selective determination of ractopamine in the presence of high concentrations of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The proposed electrode was successfully applied for the determination of ractopamine in feed and urine samples. The sensitive and selective determination of ractopamine makes the developed method of great interest for monitoring its therapeutic use and doping control purposes. PMID:26652385

  10. A Chloroplast Light-Regulated Oxidative Sensor for Moderate Light Intensity in Arabidopsis[C][W

    PubMed Central

    Dangoor, Inbal; Peled-Zehavi, Hadas; Wittenberg, Gal; Danon, Avihai

    2012-01-01

    The transition from dark to light involves marked changes in the redox reactions of photosynthetic electron transport and in chloroplast stromal enzyme activity even under mild light and growth conditions. Thus, it is not surprising that redox regulation is used to dynamically adjust and coordinate the stromal and thylakoid compartments. While oxidation of regulatory proteins is necessary for the regulation, the identity and the mechanism of action of the oxidizing pathway are still unresolved. Here, we studied the oxidation of a thylakoid-associated atypical thioredoxin-type protein, ACHT1, in the Arabidopsis thaliana chloroplast. We found that after a brief period of net reduction in plants illuminated with moderate light intensity, a significant oxidation reaction of ACHT1 arises and counterbalances its reduction. Interestingly, ACHT1 oxidation is driven by 2-Cys peroxiredoxin (Prx), which in turn eliminates peroxides. The ACHT1 and 2-Cys Prx reaction characteristics in plants further indicated that ACHT1 oxidation is linked with changes in the photosynthetic production of peroxides. Our findings that plants with altered redox poise of the ACHT1 and 2-Cys Prx pathway show higher nonphotochemical quenching and lower photosynthetic electron transport infer a feedback regulatory role for this pathway. PMID:22570442

  11. Iron oxide nanoparticles as magnetic relaxation switching (MRSw) sensors: Current applications in nanomedicine.

    PubMed

    Alcantara, David; Lopez, Soledad; García-Martin, María Luisa; Pozo, David

    2016-07-01

    Since pioneering work in the early 60s on the development of enzyme electrodes the field of sensors has evolved to different sophisticated technological platforms. Still, for biomedical applications, there are key requirements to meet in order to get fast, low-cost, real-time data acquisition, multiplexed and automatic biosensors. Nano-based sensors are one of the most promising healthcare applications of nanotechnology, and prone to be one of the first to become a reality. From all nanosensors strategies developed, Magnetic Relaxation Switches (MRSw) assays combine several features which are attractive for nanomedical applications such as safe biocompatibility of magnetic nanoparticles, increased sensitivity/specificity measurements, possibility to detect analytes in opaque samples (unresponsive to light-based interferences) and the use of homogeneous setting assay. This review aims at presenting the ongoing progress of MRSw technology and its most important applications in clinical medicine. PMID:26949164

  12. A 128 × 128 Pixel Complementary Metal Oxide Semiconductor Image Sensor with an Improved Pixel Architecture for Detecting Modulated Light Signals

    NASA Astrophysics Data System (ADS)

    Yamamoto, Koji; Oya, Yu; Kagawa, Keiichiro; Nunoshita, Masahiro; Ohta, Jun; Watanabe, Kunihiro

    A complementary metal oxide semiconductor (CMOS) image sensor for the detection of modulated light under background illumination has been developed. When an object is illuminated by a modulated light source under background illumination the sensor enables the object alone to be captured. This paper describes improvements in pixel architecture for reducing fixed pattern noise (FPN) and improving the sensitivity of the image sensor. The improved 128 × 128 pixel CMOS image sensor with a column parallel analog-to-digital converter (ADC) circuit was fabricated using 0.35-mm CMOS technology. The resulting captured images are shown and the properties of improved pixel architecture are described. The image sensor has FPN of 1/28 that of the previous image sensor and an improved pixel architecture comprising a common in-pixel amp and a correlated double sampling (CDS) circuit. The use of a split photogate increases the sensitivity of the image sensor to 1.3 times that of the previous image sensor.

  13. Nitrogen dioxide sensing properties of sprayed tungsten oxide thin film sensor: Effect of film thickness.

    PubMed

    Ganbavle, V V; Mohite, S V; Agawane, G L; Kim, J H; Rajpure, K Y

    2015-08-01

    We report a study on effect of film thickness on NO2 sensing properties of sprayed WO3 thin films. WO3 thin films varying in thicknesses are deposited onto the glass substrates by simple spray pyrolysis technique by varying the volume of spray solution.Thin film gas sensors are characterized by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and photoluminescence (PL) techniques to study their physical properties. Film having thickness 745nm has shown highest gas response of 97% with 12 and 412s response and recovery times, respectively towards 100ppm NO2 concentration. Gas response of 20% is observed towards 10ppm NO2 at 200°C operating temperature. Sensitivity of the optimal sensor is 0.83%/ppm when operating at 200°C with 10ppm lower detection limit. The response of the sensor is reproducible and WO3 films are highly selective towards NO2 in presence of mist of various interfering gases viz. H2S, NH3, LPG, CO and SO2. PMID:25898119

  14. Using Optical Oxygen Sensors and Injection Experiments to Determine in situ Microbial Rate Constants for Methane Oxidation and Heterotrophic Respiration in a Boreal Bog and Fen

    NASA Astrophysics Data System (ADS)

    Waldo, N.; Moorberg, C.; Waldrop, M. P.; Turetsky, M. R.; Neumann, R. B.

    2015-12-01

    Wetlands are the largest natural source of methane to the atmosphere, and play a key role in feedback cycles to climate change. In recognition of this, many researchers are developing process-based models of wetland methane emissions at various scales. In these models, the three key biogeochemical reactions are methane production, methane oxidation, and heterotrophic respiration, and they are modeled using Michaelis-Menten kinetics. The majority of Michaelis-Menten rate constants used in models are based on experiments involving slurries of peat incubated in vials. While these slurries provide a highly controlled setting, they are different from in situ conditions in multiple ways; notably they lack live plants and the centimeter-scale heterogeneities that exist in the field. To determine rate constants in a system more representative of in situ conditions, we extracted peat cores intact from a bog and fen located in the Bonanza Creek Experimental Forest near Fairbanks, Alaska and part of the Alaska Peatland Experiment (APEX) research program. Into those cores we injected water with varying concentrations of methane and oxygen at multiple depths. We used planar oxygen sensors installed on the peat cores to collect high resolution, two dimensional oxygen concentration data during the injections and used oxygen consumption rates under various conditions to calculate rate constants. Results were compared to a similar but smaller set of injection experiments conducted against planar oxygen sensors installed in the bog. Results will inform parametrization of microbial processes in wetland models, improving estimates of methane emissions both under current climate conditions and in the future.

  15. Ratiometric, filter-free optical sensor based on a complementary metal oxide semiconductor buried double junction photodiode.

    PubMed

    Yung, Ka Yi; Zhan, Zhiyong; Titus, Albert H; Baker, Gary A; Bright, Frank V

    2015-07-16

    We report a complementary metal oxide semiconductor integrated circuit (CMOS IC) with a buried double junction (BDJ) photodiode that (i) provides a real-time output signal that is related to the intensity ratio at two emission wavelengths and (ii) simultaneously eliminates the need for an optical filter to block Rayleigh scatter. We demonstrate the BDJ platform performance for gaseous NH3 and aqueous pH detection. We also compare the BDJ performance to parallel results obtained by using a slew scanned fluorimeter (SSF). The BDJ results are functionally equivalent to the SSF results without the need for any wavelength filtering or monochromators and the BDJ platform is not prone to errors associated with source intensity fluctuations or sensor signal drift. PMID:26073812

  16. Metal-metal oxide pH sensor: The effect of anions and aeration on pH measurements

    SciTech Connect

    Payer, J.H.; Fink, K.; Song, I.

    1997-12-01

    The pH of a solution is one of the most important parameters used for characterizing an electrolyte during corrosion processes. This work examines the electrochemical growth of iridium oxide electrodes for use as a pH sensor and further evaluates the usefulness of these probes in a variety of solutions with sulfur-containing anions. Electrodes were grown and calibrated according to reports in the literature and exposed to sulfate-, sulfite-, bisulfite-, and thiosulfate-containing solutions in various concentrations. No effect of changes in sulfate and sulfite ion concentration were observed, however, significant changes in the calibration behavior of the electrodes was observed after the exposure to the solutions with bisulfite and thiosulfate ions.

  17. Metal-oxide thin-film transistor-based pH sensor with a silver nanowire top gate electrode

    NASA Astrophysics Data System (ADS)

    Yoo, Tae-Hee; Sang, Byoung-In; Wang, Byung-Yong; Lim, Dae-Soon; Kang, Hyun Wook; Choi, Won Kook; Lee, Young Tack; Oh, Young-Jei; Hwang, Do Kyung

    2016-04-01

    Amorphous InGaZnO (IGZO) metal-oxide-semiconductor thin-film transistors (TFTs) are one of the most promising technologies to replace amorphous and polycrystalline Si TFTs. Recently, TFT-based sensing platforms have been gaining significant interests. Here, we report on IGZO transistor-based pH sensors in aqueous medium. In order to achieve stable operation in aqueous environment and enhance sensitivity, we used Al2O3 grown by using atomic layer deposition (ALD) and a porous Ag nanowire (NW) mesh as the top gate dielectric and electrode layers, respectively. Such devices with a Ag NW mesh at the top gate electrode rapidly respond to the pH of solutions by shifting the turn-on voltage. Furthermore, the output voltage signals induced by the voltage shifts can be directly extracted by implantation of a resistive load inverter.

  18. LABORATORY EVALUATION OF A MICROFLUIDIC ELECTROCHEMICAL SENSOR FOR AEROSOL OXIDATIVE LOAD

    PubMed Central

    Koehler, Kirsten; Shapiro, Jeffrey; Sameenoi, Yupaporn; Henry, Charles; Volckens, John

    2014-01-01

    Human exposure to particulate matter (PM) air pollution is associated with human morbidity and mortality. The mechanisms by which PM impacts human health are unresolved, but evidence suggests that PM intake leads to cellular oxidative stress through the generation of reactive oxygen species (ROS). Therefore, reliable tools are needed for estimating the oxidant generating capacity, or oxidative load, of PM at high temporal resolution (minutes to hours). One of the most widely reported methods for assessing PM oxidative load is the dithiothreitol (DTT) assay. The traditional DTT assay utilizes filter-based PM collection in conjunction with chemical analysis to determine the oxidation rate of reduced DTT in solution with PM. However, the traditional DTT assay suffers from poor time resolution, loss of reactive species during sampling, and high limit of detection. Recently, a new DTT assay was developed that couples a Particle-Into-Liquid-Sampler with microfluidic-electrochemical detection. This ‘on-line’ system allows high temporal resolution monitoring of PM reactivity with improved detection limits. This study reports on a laboratory comparison of the traditional and on-line DTT approaches. An urban dust sample was aerosolized in a laboratory test chamber at three atmospherically-relevant concentrations. The on-line system gave a stronger correlation between DTT consumption rate and PM mass (R2 = 0.69) than the traditional method (R2 = 0.40) and increased precision at high temporal resolution, compared to the traditional method. PMID:24711675

  19. Disposable all-solid-state pH and glucose sensors based on conductive polymer covered hierarchical AuZn oxide.

    PubMed

    Kim, Dong-Min; Cho, Seong Je; Cho, Chul-Ho; Kim, Kwang Bok; Kim, Min-Yeong; Shim, Yoon-Bo

    2016-05-15

    Poly(terthiophene benzoic acid) (pTBA) layered-AuZn alloy oxide (AuZnOx) deposited on the screen printed carbon electrode (pTBA/AuZnOx/SPCE) was prepared to create a disposable all-solid-state pH sensor at first. Further, FAD-glucose oxidase (GOx) was immobilized onto the pTBA/AuZnOx/SPCE to fabricate a glucose sensor. The characterizations of the sensor probe reveal that AuZnOx forms a homogeneous hierarchical structure, and that the polymerized pTBA layer on the alloy oxide surface captures GOx covalently. The benzoic acid group of pTBA coated on the probe layer synergetically improved the pH response of the alloy oxide and provide chemical binding sites to enzyme, which resulted in a Nernstian behavior (59.2 ± 0.5 mV/pH) in the pH range of 2-13. The experimental parameters affecting the glucose analysis were studied in terms of pH, temperature, humidity, and interferences. The sensor exhibited a fast response time <1s and a dynamic range between 30 and 500 mg/dL glucose with a detection limit of 17.23 ± 0.32 mg/dL. The reliabilities of the disposable pH and glucose sensors were examined for biological samples. PMID:26703994

  20. A novel tridentate bis(phosphinic acid)phosphine oxide based europium(III)-selective Nafion membrane luminescent sensor.

    PubMed

    Sainz-Gonzalo, F J; Popovici, C; Casimiro, M; Raya-Barón, A; López-Ortiz, F; Fernández, I; Fernández-Sánchez, J F; Fernández-Gutiérrez, A

    2013-10-21

    A new europium(III) membrane luminescent sensor based on a new tridentate bis(phosphinic acid)phosphine oxide (3) system has been developed. The synthesis of this new ligand is described and its full characterization by NMR, IR and elemental analyses is provided. The luminescent complex formed between europium(III) chloride and ligand 3 was evaluated in solution, observing that its spectroscopic and chemical characteristics are excellent for measuring in polymer inclusion membranes. Included in a Nafion membrane, all the parameters (ligand and ionic additives) that can affect the sensitivity and selectivity of the sensing membrane as well as the instrumental conditions were carefully optimized. The best luminescence signal (λexc = 229.06 nm and λem = 616.02 nm) was exhibited by the sensing film having a Nafion : ligand composition of 262.3 : 0.6 mg mL(-1). The membrane sensor showed a short response time (t95 = 5.0 ± 0.2 min) and an optimum working pH of 5.0 (25 mM acetate buffer solution). The membrane sensor manifested a good selectivity toward europium(III) ions with respect to other trivalent metals (iron, chromium and aluminium) and lanthanide(III) ions (lanthanum, samarium, terbium and ytterbium), although a small positive interference of terbium(III) ions was observed. It provided a linear range from 1.9 × 10(-8) to 5.0 × 10(-6) M with a very low detection limit (5.8 × 10(-9) M) and sensitivity (8.57 × 10(-7) a.u. per M). The applicability of this sensing film has been demonstrated by analyzing different kinds of spiked water samples obtaining recovery percentages of 95-97%. PMID:23967443

  1. Combination of a Sample Pretreatment Microfluidic Device with a Photoluminescent Graphene Oxide Quantum Dot Sensor for Trace Lead Detection.

    PubMed

    Park, Minsu; Ha, Hyun Dong; Kim, Yong Tae; Jung, Jae Hwan; Kim, Shin-Hyun; Kim, Do Hyun; Seo, Tae Seok

    2015-11-01

    A novel trace lead ion (Pb(2+)) detection platform by combining a microfluidic sample pretreatment device with a DNA aptamer linked photoluminescent graphene oxide quantum dot (GOQD) sensor was proposed. The multilayered microdevice included a microchamber which was packed with cation exchange resins for preconcentrating metal ions. The sample loading and recovery were automatically actuated by a peristaltic polydimethylsiloxane micropump with a flow rate of 84 μL/min. Effects of the micropump actuation time, metal ion concentration, pH, and the volumes of the sample and eluent on the metal ion capture and preconcentration efficiency were investigated on a chip. The Pb(2+) samples whose concentrations ranged from 0.48 nM to 1.2 μM were successfully recovered with a preconcentration factor value between 4 and 5. Then, the preconcentrated metal ions were quantitatively analyzed with a DNA aptamer modified GOQD. The DNA aptamer on the GOQD specifically captured the target Pb(2+) which can induce electron transfer from GOQD to Pb(2+) upon UV irradiation, thereby resulting in the fluorescence quenching of the GOQD. The disturbing effect of foreign anions on the Pb(2+) detection and the spiked Pb(2+) real samples were also analyzed. The proposed GOQD metal ion sensor exhibited highly sensitive Pb(2+) detection with a detection limit of 0.64 nM and a dynamic range from 1 to 1000 nM. The on-chip preconcentration of the trace metal ions from a large-volume sample followed by the metal ion detection by the fluorescent GOQD sensor can provide an advanced platform for on-site water pollution screening. PMID:26456631

  2. Oxidative DNA adducts and DNA-protein cross-links are the major DNA lesions induced by arsenite.

    PubMed

    Bau, Da-Tian; Wang, Tsu-Shing; Chung, Chiao-Hui; Wang, Alexander S S; Wang, Alexander S S; Jan, Kun-Yan

    2002-10-01

    Arsenic is recognized to be a nonmutagenic carcinogen because it induces DNA damage only at very high concentrations. However, many more DNA strand breaks could be detected by digesting the DNA of arsenite-treated cells with endonuclease III, formamidopyrimidine-DNA glycosylase, and proteinase K. By doing so, arsenite could be shown to induce DNA damage in human cells within a pathologically meaningful concentration range. Oxidized guanine products were detected in all arsenite-treated human cells examined. DNA-protein cross-links were also detected in arsenite-treated NB4 and HL60 cells. In human umbilical vein endothelial cells, the induction of oxidized guanine products by arsenite was sensitive to inhibitors of nitric oxide (NO) synthase but not to oxidant modulators, whereas the opposite result was obtained in vascular smooth muscle cells. On the other hand, the arsenite-induced oxidized guanine products and DNA-protein cross-links in NB4 and HL60 cells were sensitive to modulators of calcium, NO synthase, oxidant, and myeloperoxidase. Therefore, although oxidized guanine products were detected in all the human cells treated with arsenite, the pathways could be different in different cell types. Because the sensitivity and the mechanism of arsenic intoxication are cell specific, it is important that target tissues and target cells are used for investigations. It is also important that pathologically or pharmacologically meaningful concentrations of arsenic are used. This is because in most cases we are dealing with the chronic effect rather than acute toxicity. PMID:12426126

  3. A label-free colorimetric sensor for Pb2+ detection based on the acceleration of gold leaching by graphene oxide.

    PubMed

    Shi, Xinhao; Gu, Wei; Zhang, Cuiling; Zhao, Longyun; Peng, Weidong; Xian, Yuezhong

    2015-03-14

    In this work, we developed a novel, label-free, colorimetric sensor for Pb(2+) detection based on the acceleration of gold leaching by graphene oxide (GO) at room temperature. Gold nanoparticles (AuNPs) can be dissolved in a thiosulfate (S2O3(2-)) aqueous environment in the presence of oxygen; however, the leaching rate is very slow due to the high activation energy (27.99 kJ mol(-1)). In order to enhance the reaction rate, some accelerators should be added. In comparison with the traditional accelerators (metal ions or middle ligands), we found that GO could efficiently accelerate the gold leaching reaction. Kinetic data demonstrate that the dissolution rate of gold in the Pb(2+)-S2O3(2-)-GO system is 5 times faster than that without GO at room temperature. In addition, the effects of surface modification and the nanoparticle size on the etching of AuNPs were investigated. Based on the GO-accelerated concentration-dependent colour changes of AuNPs, a colorimetric sensor for Pb(2+) detection was developed with a linear range from 0.1 to 20 μM and the limit of detection (LOD) was evaluated to be 0.05 μM. This colorimetric assay is simple, low-cost, label-free, and has numerous potential applications in the field of environmental chemistry. PMID:25656247

  4. A graphene oxide-based FRET sensor for rapid and sensitive detection of matrix metalloproteinase 2 in human serum sample.

    PubMed

    Song, Erqun; Cheng, Dan; Song, Yang; Jiang, Mingdong; Yu, Jifei; Wang, Yunyun

    2013-09-15

    Graphene oxide (GO) has been widely used to develop fluorescence resonance energy transfer (FRET) biosensors for tumor markers (e.g., matrix metalloproteinases, MMPs) due to its superior fluorescence quenching capacity and unique adsorption characteristics for biomolecules. In this study, fluorescein isothiocyanate-labeled peptide (Pep-FITC) was assembled onto the GO surface through covalent binding to construct a GO-Pep-FITC FRET sensor for sensitive, rapid, and accurate detection of MMP-2 in complex serum samples. Compared to similar GO-based FRET sensors fabricated through physical adsorption, the as prepared ones via covalent binding are significantly more stable under physiological conditions, enabling their detection of MMP-2 with high sensitivity (detection limit: 2.5ng/mL). More importantly, it allows for rapid MMP-2 detection (within 3h) even in complex biological samples with satisfactory accuracy and the relative standard deviation ≤7.03%. Our studies further suggest that such a platform developed here for sensitive, rapid, and accurate detection of biomarkers holds great promise for clinical diagnosis of protease-related diseases. PMID:23623988

  5. Experimental and theoretical studies on localized surface plasmon resonance based fiber optic sensor using graphene oxide coated silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Nayak, Jeeban Kumar; Parhi, Purnendu; Jha, Rajan

    2016-07-01

    An optical fiber based refractive index sensor using graphene oxide (GO) encapsulated silver nanoparticles (AgNPs) is reported. The AgNPs are encapsulated with a very thin layer of GO as it controls the inter-particle distance thereby preventing aggregation. The encapsulation also enhances the colloidal stability and prevents the oxidation of the AgNPs by separating them from direct contact with the aqueous medium. High-resolution transmission electron microscopy results support the formation of 1 nm thick GO around AgNPs of an average size of 35 nm. A Raman spectrometer and a UV–VIS spectrometer have been used to characterize and study the synthesized nanoparticles along with GO. Further, Raman spectra support a 64.72% increase in D-peak intensity and a 52.91% increase in G-peak intensity of the GO-encapsulated AgNPs (GOE-AgNPs) with respect to GO. Further, the GOE-AgNPs are immobilized on the core of functionalized plastic-cladded silica fiber. FESEM confirms the immobilization of the GOE-AgNPs on the fiber core. We observed that the peak absorbance changes by 87.55% with a 0.05 change in the refractive index. The sensitivity of the proposed fiber sensor is found to be 0.9406 ΔA/RIU along with a resolution of 12.8  ×  {{10}-4} RIU. MATLAB is used to calculate the absorbance of the AgNPs by considering the bound and free electron contribution along with the size-dependent dispersion of the nanoparticles. We found that the simulation results are in good agreement with the experimental results.

  6. Magnetically aligned iron oxide/gold nanoparticle-decorated carbon nanotube hybrid structure as a humidity sensor.

    PubMed

    Lee, Jaewook; Mulmi, Suresh; Thangadurai, Venkataraman; Park, Simon S

    2015-07-22

    Functionalized carbon nanotubes (f-CNTs), particularly CNTs decorated with nanoparticles (NPs), are of great interest because of their synergic effects, such as surface-enhanced Raman scattering, plasmonic resonance energy transfer, magnetoplasmonic, magnetoelectric, and magnetooptical effects. In general, research has focused on a single type of NP, such as a metal or metal oxide, that has been modified on a CNT surface. In this study, however, a new strategy is introduced for the decoration of two different NP types on CNTs. In order to improve the functionality of modified CNTs, we successfully prepared binary NP-decorated CNTs, namely, iron oxide/gold (Au) NP-decorated CNTs (IA-CNTs), which were created through two simple reactions in deionized water, without high temperature, high pressure, or harsh reducing agents. The physicochemical properties of IA-CNTs were characterized by ultraviolet/visible spectroscopy, Fourier transform infrared spectroscopy, a superconducting quantum interference device, scanning electron microscopy, and transmission electron microscopy. In this study, IA-CNTs were utilized to detect humidity. Magnetic IA-CNTs were aligned on interdigitated platinum electrodes under external magnetic fields to create a humidity-sensing channel, and its electrical conductivity was monitored. As the humidity increased, the electrical resistance of the sensor also increased. In comparison with various gases, for example, H2, O2, CO, CO2, SO2, and dry air, the IA-CNT-based humidity sensor exhibited high-selectivity performances. IA-CNTs also responded to heavy water (D2O), and it was established that the humidity detection mechanism had D2O-sensing capabilities. Further, the humidity from human out-breathing was also successfully detected by this system. In conclusion, these unique IA-CNTs exhibited potential application as gas detection materials. PMID:26112318

  7. Chemical Gated Field Effect Transistor by Hybrid Integration of One-Dimensional Silicon Nanowire and Two-Dimensional Tin Oxide Thin Film for Low Power Gas Sensor.

    PubMed

    Han, Jin-Woo; Rim, Taiuk; Baek, Chang-Ki; Meyyappan, M

    2015-09-30

    Gas sensors based on metal-oxide-semiconductor transistor with the polysilicon gate replaced by a gas sensitive thin film have been around for over 50 years. These are not suitable for the emerging mobile and wearable sensor platforms due to operating voltages and powers far exceeding the supply capability of batteries. Here we present a novel approach to decouple the chemically sensitive region from the conducting channel for reducing the drive voltage and increasing reliability. This chemically gated field effect transistor uses silicon nanowire for the current conduction channel with a tin oxide film on top of the nanowire serving as the gas sensitive medium. The potential change induced by the molecular adsorption and desorption allows the electrically floating tin oxide film to gate the silicon channel. As the device is designed to be normally off, the power is consumed only during the gas sensing event. This feature is attractive for the battery operated sensor and wearable electronics. In addition, the decoupling of the chemical reaction and the current conduction regions allows the gas sensitive material to be free from electrical stress, thus increasing reliability. The device shows excellent gas sensitivity to the tested analytes relative to conventional metal oxide transistors and resistive sensors. PMID:26381613

  8. Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes.

    PubMed

    Hayat, Akhtar; Haider, Waqar; Raza, Yousuf; Marty, Jean Louis

    2015-10-01

    A sensitive and selective colorimetric method based on the incorporation of zinc oxide nanoparticles (ZnO NPs) on the surface of carbon nanotubes (CNTs) was shown to posses synergistic peroxidase like activity for the detection of cholesterol. The proposed nanocomposite catalyzed the oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) in the presence of hydrogen peroxide (H2O2) to produce a green colored product which can be monitored at 405 nm. H2O2 is the oxidative product of cholesterol in the presence of cholesterol oxidase. Therefore, the oxidation of cholesterol can be quantitatively related to the colorimetric response by combining these two reactions. Under the optimal experimental conditions, the colorimetric response was proportional to the concentration of cholesterol in the range of 0.5-500 nmol/L, with a detection limit of 0.2 nmol/L. The applicability of the proposed assays was demonstrated for the determination of cholesterol in milk powder samples with good recovery results. PMID:26078143

  9. MOF Thin Film-Coated Metal Oxide Nanowire Array: Significantly Improved Chemiresistor Sensor Performance.

    PubMed

    Yao, Ming-Shui; Tang, Wen-Xiang; Wang, Guan-E; Nath, Bhaskar; Xu, Gang

    2016-07-01

    A strategy for combining metal oxides and metal-organic frameworks is proposed to design new materials for sensing volatile organic compounds, for the first time. The prepared ZnO@ZIF-CoZn core-sheath nanowire arrays show greatly enhanced performance not only on its selectivity but also on its response, recovery behavior, and working temperature. PMID:27153113

  10. Low temperature tin oxide (SnO2) nanowire gas sensor

    NASA Astrophysics Data System (ADS)

    Johari, Anima; Bhatnagar, M. C.; Rana, V.

    2012-10-01

    In present work, we report the synthesis of SnO2 nanowires on gold catalyzed silicon substrate and implementation of these grown SnO2 nanowires as a sensing element for methanol sensing. The SnO2 nanowires were synthesized by using thermal evaporation method. The growth of SnO2 nanowires was carried out on gold catalyzed silicon (Au/Si) substrate by thermal evaporation of a mixture of SnO2 and graphite powders in Argon (Ar) ambience at a temperature of 1050°C. The growth of SnO2 nanowires takes place at atmospheric pressure. The surface morphology study reveals the growth of SnO2 nanowires (diameter~ 300 nm, length~ 50 μm) on the Au coated silicon substrate. The XRD analysis concludes that synthesized SnO2 nanostructures show polycrystalline nature with tetragonal rutile structure. The vapor-liquid-solid (VLS) growth mechanism of SnO2 nanowires were also confirmed by EDX spectra. The SnO2 nanowires were used to fabricate single SnO2 nanowire based methanol gas sensor. The result reveals that the device exhibit the resistance change from 23 MΩ to 10 KΩ upon exposing to 200 ppm concentration of methanol gas at 100°C. This sensing behaviour offers a suitable application of the SnO2 nanowire sensor for detection of methanol gas.

  11. Metal oxide gas sensor drift compensation using a two-dimensional classifier ensemble.

    PubMed

    Liu, Hang; Chu, Renzhi; Tang, Zhenan

    2015-01-01

    Sensor drift is the most challenging problem in gas sensing at present. We propose a novel two-dimensional classifier ensemble strategy to solve the gas discrimination problem, regardless of the gas concentration, with high accuracy over extended periods of time. This strategy is appropriate for multi-class classifiers that consist of combinations of pairwise classifiers, such as support vector machines. We compare the performance of the strategy with those of competing methods in an experiment based on a public dataset that was compiled over a period of three years. The experimental results demonstrate that the two-dimensional ensemble outperforms the other methods considered. Furthermore, we propose a pre-aging process inspired by that applied to the sensors to improve the stability of the classifier ensemble. The experimental results demonstrate that the weight of each multi-class classifier model in the ensemble remains fairly static before and after the addition of new classifier models to the ensemble, when a pre-aging procedure is applied. PMID:25942640

  12. Characterization study of an intensified complementary metal-oxide-semiconductor active pixel sensor

    NASA Astrophysics Data System (ADS)

    Griffiths, J. A.; Chen, D.; Turchetta, R.; Royle, G. J.

    2011-03-01

    An intensified CMOS active pixel sensor (APS) has been constructed for operation in low-light-level applications: a high-gain, fast-light decay image intensifier has been coupled via a fiber optic stud to a prototype "VANILLA" APS, developed by the UK based MI3 consortium. The sensor is capable of high frame rates and sparse readout. This paper presents a study of the performance parameters of the intensified VANILLA APS system over a range of image intensifier gain levels when uniformly illuminated with 520 nm green light. Mean-variance analysis shows the APS saturating around 3050 Digital Units (DU), with the maximum variance increasing with increasing image intensifier gain. The system's quantum efficiency varies in an exponential manner from 260 at an intensifier gain of 7.45 × 103 to 1.6 at a gain of 3.93 × 101. The usable dynamic range of the system is 60 dB for intensifier gains below 1.8 × 103, dropping to around 40 dB at high gains. The conclusion is that the system shows suitability for the desired application.

  13. Synthesis of Ultrastable Ag Nanoplates/Polyethylenimine-Reduced Graphene Oxide and Its Application as a Versatile Electrochemical Sensor.

    PubMed

    Wang, Jindi; Zhang, Guoxin; Sun, Wanxia; Sun, Jingsong; Luo, Liang; Chang, Zheng; Sun, Xiaoming

    2016-07-25

    Investigations on Ag nanostructures/reduced graphene oxide composites have been frequently reported, yet the morphology control of those loaded Ag nanocrystals is still challenging. We herein develop a facile method to grow triangular Ag nanoplates (AgP) on polyethylenimine-modified reduced graphene oxide (AgP/PEI-rGO). The AgP/PEI-rGO hybrids show unexpected high stability against chloride ions (Cl(-) ) and hydrogen peroxide (H2 O2 ), which is possibly due to the strong interaction between surface Ag atoms with the amine groups of PEI. In the chronoamperometry measurements for detecting H2 O2 , N2 H4 , and NaNO2 , the AgP/PEI-rGO hybrid shows very wide linear ranges (usually 10(-6) -10(-2)  mol L(-1) for H2 O2 , N2 H4 , and NaNO2 ) and low detection limits (down to ≈1×10(-7)  mol L(-1) ), which demonstrate the promising electrochemical sensor applications of these metal/graphene hybrids with well-defined morphologies and facets. In addition, this strategy could be extended to the deposition of other noble metals on rGO with controlled morphologies. PMID:27362916

  14. Electrochemical sensor for Isoniazid based on the glassy carbon electrode modified with reduced graphene oxide-Au nanomaterials.

    PubMed

    Guo, Zhuo; Wang, Ze-Yu; Wang, Hui-Hua; Huang, Guo-Qing; Li, Meng-Meng

    2015-12-01

    A sensitive electrochemical sensor has been fabricated to detect Isoniazid (INZ) using reduced graphene oxide (RGO) and Au nanocomposites (RGO-Au). RGO-Au nanocomposites were synthesized by a solution-based approach of chemical co-reduction of Au(III) and graphene oxide (GO), and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and Fourier transform infrared (FT-IR). The Au nanoparticles separate the RGO sheets in the precipitate and prevent RGO sheets from aggregation upon π-π stacking interactions. RGO-Au nanocomposites were used to modify the glassy carbon electrode (GCE). The electrochemical properties of RGO-Au/GCE were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and the RGO-Au/GCE exhibited remarkably strong electrocatalytic activities towards INZ. Under the optimized conditions, there was linear relationships between the peak currents and the concentrations in the range of 1.0×10(-7)M to 1.0×10(-3)M for INZ, with the limit of detection (LOD) (based on S/N=3) of 1.0×10(-8)M for INZ. PMID:26354255

  15. Metabolism of prostaglandin F2 alpha in Zellweger syndrome. Peroxisomal beta-oxidation is a major importance for in vivo degradation of prostaglandins in humans.

    PubMed Central

    Diczfalusy, U; Kase, B F; Alexson, S E; Björkhem, I

    1991-01-01

    We have recently shown in vitro that the peroxisomal fraction of a rat liver homogenate has the highest capacity to beta-oxidize prostaglandins. In order to evaluate the relative importance of peroxisomes for this conversion also in vivo, we administered [3H]prostaglandin F2 alpha to an infant suffering from Zellweger syndrome, a congenital disorder characterized by the absence of intact peroxisomes. As a control, labeled compound was administered to two healthy volunteers. Urine was collected, fractionated on a SEP-PAK C18 cartridge, and subjected to reversed-phase high-performance liquid chromatography. The Zellweger patient was found to excrete prostaglandin metabolites considerably less polar than those of the control subjects. The major urinary metabolite in the control subjects was practically absent in the urine from the Zellweger patient. The major urinary prostaglandin F2 alpha metabolite from the Zellweger patient was identified as an omega-oxidized C20-prostaglandin, 9,11-dihydroxy-15-oxoprost-5-ene-1,20-dioic acid. The major urinary prostaglandin F2 alpha metabolite from the control subjects had chromatographic properties of a tetranor (C16) prostaglandin, in accordance with earlier published data. The present results, in combination with our previous in vitro data, indicate that peroxisomal beta-oxidation is of major importance for in vivo chain shortening of prostaglandins. PMID:1885782

  16. Optical sensors based on metal oxide nanowires for UV/IR detection

    NASA Astrophysics Data System (ADS)

    Pau, Jose Luis; García Nuñez, Carlos; García Marín, Antonio; Ruiz, Eduardo; Piqueras, Juan

    2013-05-01

    Metal oxide nanowires (NWs) present high stability and excellent optical, electrical and mechanical properties. Their synthesis is cost-effective since they can be produced by means of conventional ovens using vapor phase transport or direct metal oxidation. In this work, n-type ZnO and p-type CuO NWs are deposited on pre-patterned electrodes of Aldoped ZnO (AZO) by dielectrophoresis. Performance of devices fabricated from single and multiple NWs are compared. Highly selective UV detection is demonstrated in n-type ZnO NW photoconductors with high external gains in the 0.09-1×108 range and slow time responses, both effects induced by surface effects. In contrast, n-p-n AZO/ CuO NW/AZO heterostructures show lower gains but faster optical responses, mainly limited by device parasitics. Given the CuO bandgap (1.2 eV), the results are quite promising for the development of hybrid metal oxide detection structures in imaging and photovoltaic applications.

  17. SufB intein of Mycobacterium tuberculosis as a sensor for oxidative and nitrosative stresses

    PubMed Central

    Topilina, Natalya I.; Green, Cathleen M.; Jayachandran, Pradeepa; Kelley, Danielle S.; Stanger, Matthew J.; Piazza, Carol Lyn; Nayak, Sasmita; Belfort, Marlene

    2015-01-01

    Inteins are mobile genetic elements that self-splice at the protein level. Mycobacteria have inteins inserted into several important genes, including those corresponding to the iron-sulfur cluster assembly protein SufB. Curiously, the SufB inteins are found primarily in mycobacterial species that are potential human pathogens. Here we discovered an exceptional sensitivity of Mycobacterium tuberculosis SufB intein splicing to oxidative and nitrosative stresses when expressed in Escherichia coli. This effect results from predisposition of the intein’s catalytic cysteine residues to oxidative and nitrosative modifications. Experiments with a fluorescent reporter system revealed that reactive oxygen species and reactive nitrogen species inhibit SufB extein ligation by forcing either precursor accumulation or N-terminal cleavage. We propose that splicing inhibition is an immediate, posttranslational regulatory response that can be either reversible, by inducing precursor accumulation, or irreversible, by inducing N-terminal cleavage, which may potentially channel mycobacteria into dormancy under extreme oxidative and nitrosative stresses. PMID:26240361

  18. Formaldehyde gas sensor based on nanostructured nickel oxide and the microstructure effects on its response

    NASA Astrophysics Data System (ADS)

    Lahem, D.; Lontio, F. R.; Delcorte, A.; Bilteryst, L.; Debliquy, M.

    2016-03-01

    NiO nanostructures can be used as a promising material for semiconductor gas sensor to detect formaldehyde at low concentrations (< 1 ppm). Here, the effect of the morphology of the synthesized NiO nanostructures on gas sensing properties is studied and discussed. NiO nanostructures have been synthesized by thermal decomposition of precursors obtained by two different chemical precipitation methods and a sol-gel technique. Thick films of the synthesized NiO nanostructures were deposited by spray coating on alumina substrates fitted with gold interdigitated electrodes and a platinum heater. The gas sensing properties of those NiO films were studied for low concentrations of formaldehyde gas at different working temperatures. A clear difference in response characteristics was observed between the samples prepared by different synthesis routes.

  19. A portable hypergolic oxidizer vapor sensor for NASA's Space Shuttle program

    NASA Technical Reports Server (NTRS)

    Helms, W. R.

    1978-01-01

    The design and performance characteristics of an electrochemical NO2 sensor selected by NASA for the space shuttle program is described. The instrument consists of a sample pump, an electrochemical cell, and control and display electronics. The pump pushes the sample through the electrochemical cell where the vapors are analyzed and an output proportional to the NO2 concentration is produced. The output is displayed on a panel meter, and is also available at a recorder jack. The electrochemical cell is made up of a polypropylene chamber covered with teflon membrane faceplates. Plantinum electrodes are bonded to the faceplates, and the sensing and counter electrodes are potentiostatically controlled at -200 mV with respect to the reference electrode. The cell is filled with electrolyte, consisting of 13.5 cc of 23% solution of KOH.

  20. Spectroscopic and computational study of the major oxidation products formed during the reaction of two quercetin conformers with a free radical

    NASA Astrophysics Data System (ADS)

    Mendoza-Wilson, Ana María; Santacruz-Ortega, Hisila; Balandrán-Quintana, René R.

    2011-10-01

    The goal of this research was to determine whether there are differences between the major oxidation products formed during the reaction of quercetin unhydrate (QUH) or quercetin dihydrate (QDH) with the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH rad ), as well as to identify some properties of these products. The study was carried out employing spectroscopic and computational methods, in order to know the effect of different conformations of quercetin on the mechanism of free radical scavenging. The results demonstrated that although the same oxidation products may be formed from QUH and QDH, their properties and the predominant product were different in each. The o-quinone was the predominant oxidation product of QUH, whereas in QDH it was established an equilibrium between o-quinone and extended p-quinone.

  1. Poly(ethylene oxide)-silica hybrids entrapping sensitive dyes for biomedical optical pH sensors: Molecular dynamics and optical response

    NASA Astrophysics Data System (ADS)

    Fabbri, Paola; Pilati, Francesco; Rovati, Luigi; McKenzie, Ruel; Mijovic, Jovan

    2011-06-01

    Polymer-silica hybrid nanocomposites prepared by sol-gel process based on triethoxisilane-terminated poly(ethylene oxide) chains and tetraethoxysilane as silica precursor, doped with organic pH sensitive dyes, have been prepared and their suitability for use as sensors coupled with plastic optic fibers has been evaluated. Sensors were prepared by immobilizing a drop of the hybrid materials onto the tip of a multi-mode poly(methyl methacrylate) optical fiber. The performance of the optical sensor in terms of sensitivity and response time was tested in different experimental conditions, and was found to be markedly higher than analogous sensors present on the market. The very fast kinetic of the hybrid's optical response was supported by studies performed at the molecular level by broadband dielectric relaxation spectroscopy (DRS), investigated over a wide range of frequency and temperature, showing that poly(ethylene oxide) chains maintain their dynamics even when covalently bonded to silica domains, which decrease the self-association interactions and promote motions of polymer chain segments. Due to the fast response kinetic observed, these pH optical sensors result suitable for the fast-detection of biomedical parameters, i.e. fast esophageous pH-metry.

  2. Effect of ultraviolet radiation exposure on room-temperature hydrogen sensitivity of nanocrystalline doped tin oxide sensor incorporated into microelectromechanical systems device

    SciTech Connect

    Shukla, Satyajit; Agrawal, Rajnikant; Cho, Hyoung J.; Seal, Sudipta; Ludwig, Lawrence; Parish, Clyde

    2005-03-01

    The effect of ultraviolet (UV) radiation exposure on the room-temperature hydrogen (H{sub 2}) sensitivity of nanocrystalline indium oxide (In{sub 2}O{sub 3})-doped tin oxide (SnO{sub 2}) thin-film gas sensor is investigated in this article. The present sensor is incorporated into microelectromechanical systems device using sol-gel dip-coating technique. The present sensor exhibits a very high sensitivity, as high as 65 000-110 000, at room temperature, for 900 ppm of H{sub 2} under the dynamic test condition without UV exposure. The H{sub 2} sensitivity is, however, observed to reduce to 200 under UV radiation, which is contrary to the literature data, where an enhanced room-temperature gas sensitivity has been reported under UV radiation. The observed phenomenon is attributed to the reduced surface coverage by the chemisorbed oxygen ions under UV radiation, which is in consonance with the prediction of the constitutive equation, proposed recently by the authors, for the gas sensitivity of nanocrystalline semiconductor oxide thin-film sensors.

  3. Crystal Structure of Oxidative Stress Sensor Keap1 in Complex with Selective Autophagy Substrate p62

    NASA Astrophysics Data System (ADS)

    Kurokawa, Hirofumi

    Keap1, an adaptor protein of cullin-RING ubiquitin ligase complex, represses cytoprotective transcription factor Nrf2 in an oxidative stress-dependent manner. The accumulation of selective autophagy substrate p62 also activates Nrf2 target genes, but the detailed mechanism has not been elucidated. Crystal structure of Keap1-p62 complex revealed the structural basis for the Nrf2 activation in which Keap1 is inactivated by p62. The accumulation of p62 is observed in hepatocellular carcinoma. The activation of Nrf2 target genes, including detoxifying enzymes and efflux transporters, by p62 may protect the cancer cells from anti-cancer drugs.

  4. Ultrasensitive mass sensor fully integrated with complementary metal-oxide-semiconductor circuitry

    SciTech Connect

    Forsen, E.; Abadal, G.; Ghatnekar-Nilsson, S.; Teva, J.; Verd, J.; Sandberg, R.; Svendsen, W.; Perez-Murano, F.; Esteve, J.; Figueras, E.; Campabadal, F.; Montelius, L.; Barniol, N.; Boisen, A.

    2005-07-25

    Nanomechanical resonators have been monolithically integrated on preprocessed complementary metal-oxide-semiconductor (CMOS) chips. Fabricated resonator systems have been designed to have resonance frequencies up to 1.5 MHz. The systems have been characterized in ambient air and vacuum conditions and display ultrasensitive mass detection in air. A mass sensitivity of 4 ag/Hz has been determined in air by placing a single glycerine drop, having a measured weight of 57 fg, at the apex of a cantilever and subsequently measuring a frequency shift of 14.8 kHz. CMOS integration enables electrostatic excitation, capacitive detection, and amplification of the resonance signal directly on the chip.

  5. Graphene Oxide-Assisted Liquid Phase Exfoliation of Graphite into Graphene for Highly Conductive Film and Electromechanical Sensors.

    PubMed

    Tung, Tran Thanh; Yoo, Jeongha; Alotaibi, Faisal K; Nine, Md J; Karunagaran, Ramesh; Krebsz, Melinda; Nguyen, Giang T; Tran, Diana N H; Feller, Jean-Francois; Losic, Dusan

    2016-06-29

    Here, we report a new method to prepare graphene from graphite by the liquid phase exfoliation process with sonication using graphene oxide (GO) as a dispersant. It was found that GO nanosheets act a as surfactant to the mediated exfoliation of graphite into a GO-adsorbed graphene complex in the aqueous solution, from which graphene was separated by an additional process. The preparation of isolated graphene from a single to a few layers is routinely achieved with an exfoliation yield of up to higher than 40% from the initial graphite material. The prepared graphene sheets showed a high quality (C/O ∼ 21.5), low defect (ID/IG ∼ 0.12), and high conductivity (6.2 × 10(4) S/m). Moreover, the large lateral size ranging from 5 to 10 μm of graphene, which is believed to be due to the shielding effect of GO avoiding damage under ultrasonic jets and cavitation formed by the sonication process. The thin graphene film prepared by the spray-coating technique showed a sheet resistance of 668 Ω/sq with a transmittance of 80% at 550 nm after annealing at 350 °C for 3 h. The transparent electrode was even greater with the resistance only 66.02 Ω when graphene is deposited on an interdigitated electrode (1 mm gap). Finally, a flexible sensor based on a graphene spray-coating polydimethylsiloxane (PDMS) is demonstrated showing excellent performance working under human touch pressure (<10 kPa). The graphene prepared by this method has some distinct properties showing it as a promising material for applications in electronics including thin film coatings, transparent electrodes, wearable electronics, human monitoring sensors, and RFID tags. PMID:27268515

  6. A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions.

    PubMed

    Lee, Sohee; Oh, Jiseop; Kim, Dongwon; Piao, Yuanzhe

    2016-11-01

    We report an analytical assessment of an iron oxide (Fe2O3)/graphene (G) nanocomposite electrode used in combination with in situ plated bismuth (Bi) working as an electrochemical sensor for the determination of trace Zn(2+), Cd(2+), and Pb(2+). The as-synthesized nanocomposites were characterized by transmission electron microscopy, scanning electron microscopy, thermo-gravimetric analyzer, and X-ray diffraction. The electrochemical properties of the Fe2O3/G/Bi composite modified electrode were investigated. Differential pulse anodic stripping voltammetry was applied for the detection of metal ions. Due to the synergetic effect between graphene and the Fe2O3 nanoparticles, the modified electrode showed improved electrochemical catalytic activity high sensitivity toward trace heavy metal ions. Several parameters such as the preconcentration potential, bismuth concentration, preconcentration time, and pH were carefully optimized to determine the target metal ions. Under optimized conditions, the linear range of the electrode was 1-100μgL(-1) for Zn(2+), Cd(2+), and Pb(2+), and the detection limits were 0.11μgL(-1), 0.08μgL(-1), and 0.07μgL(-1), respectively (S/N =3). Repeatability (% RSD) was found to be 1.68% for Zn(2+), 0.92% for Cd(2+), and 1.69% for Pb(2+) for single sensor with 10 measurements and 0.89% for Zn(2+), 1.15% for Cd(2+), and 0.91% for Pb(2+) for 5 different electrodes. The Fe2O3/G/Bi composite electrode was successfully applied to the analysis of trace metal ions in real samples. The solventless thermal decomposition method applied to the simple and easy synthesis of nanocomposite electrode materials can be extended to the synthesis of nanocomposites and promising electrode materials for the determination of heavy metal ions. PMID:27591647

  7. A miniature porous aluminum oxide-based flow-cell for online water quality monitoring using bacterial sensor cells.

    PubMed

    Yagur-Kroll, Sharon; Schreuder, Erik; Ingham, Colin J; Heideman, René; Rosen, Rachel; Belkin, Shimshon

    2015-02-15

    The use of live bacterial reporters as sensing entities in whole-cell biosensors allows the investigation of the biological effects of a tested sample, as well as the bioavailability of its components. Here we present a proof of concept for a new design for online continuous water monitoring flow-cell biosensor, incorporating recombinant reporter bacteria, engineered to generate an optical signal (fluorescent or bioluminescent) in the presence of the target compound(s). At the heart of the flow-cell is a disposable chip made of porous aluminum oxide (PAO), which retains the sensor microorganisms on its rigid planar surface, while its high porosity allows an undisturbed access both to the sample and to essential nutrients. The ability of the bacterial reporters to detect model toxic chemicals was first demonstrated using a "naked" PAO chip placed on solid agar, and later in a chip encased in a specially designed flow-through configuration which enables continuous on-line monitoring. The applicability of the PAO chip to simultaneous online detection of diverse groups of chemicals was demonstrated by the incorporation of a 6-member sensor array into the flow-through chip. The selective response of the array was also confirmed in spiked municipal wastewater effluents. Sensing activity was retained by the bacteria after 12-weeks storage of freeze-dried biochips, demonstrating the biochip potential as a simple minimal maintenance "plug-in" cartridge. This low-cost and easy to handle PAO-based flow-cell biosensor may serve as a basis for a future platform for water quality monitoring. PMID:25441411

  8. Lead sensors development and antimicrobial activities based on graphene oxide/carbon nanotube/poly(O-toluidine) nanocomposite.

    PubMed

    Khan, Aftab Aslam Parwaz; Khan, Anish; Rahman, Mohammed M; Asiri, Abdullah M; Oves, Mohammad

    2016-08-01

    Graphene oxide/carbon nanotube/poly (O-toluidine) (GO-CNT-POT) nanocomposite was prepared by a situ polymerization method and characterized by X-ray powder diffractometry (XRD) and scanning electron microscopy (SEM). The antibacterial activity of the obtained GO-CNT-POT nanocomposite was also evaluated against Gram positive bacteria Bacillus subtilis, Gram negative bacteria Escherichia coli and antibiotics (Amoxicillin) using the agar plate. The antibacterial study showed that the GO-CNT-POT was found to be most effective against both B. subtilis and E. coli respectively which was significant compared to the amoxicillin and the simultaneously GO-CNT-POT nanocomposite were fabricated onto glassy carbon electrode (GCE) using conducting coating binders by I-V technique, where the total analytical parameters were measured for the development of sensitive lead sensors (Pb(2+)). The GO-CNT-POT nanocomposite were deposited on flat-GCE (surface area: ∼0.0316cm(2)) to result in a sensor that has a fast response to selective Pb(2+) ions in buffer system. Features including sensitivity, detection limit, reproducibility, linear dynamic range, selectivity, and electrochemical performances were investigated in details with the GO-CNT-POT nanocomposite fabricated GCE electrodes. The calibration plot is linear (r(2): 0.9907) over the large concentration range (0.1nM to 1.0mM). The sensitivity and detection limit is calculated as 8.53164μAcm(-2)μM(-1) and 89.0 pM (at a signal-to-noise-ratio, SNR of 3) respectively. PMID:27112981

  9. HO(x) Measurements in PEM Tropics B with the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS)

    NASA Technical Reports Server (NTRS)

    Brune, William H.

    2001-01-01

    The primary objective of PEM Tropics B was to study the processes responsible for the production and loss of tropospheric ozone over the tropical Pacific. This region of the globe contains very clean air as well as aged, polluted air that was advected from both the Asian and American continents. Understanding ozone requires understanding of HO(x) (HO(x) = OH + HO2) chemistry, since the reaction between H02 and NO leads to ozone production and the production of OH often requires ozone loss. In addition, OH is the atmosphere's primary oxidant. Since most atmospheric oxidation is thought to occur in the tropical lower troposphere, measurements during PEM Tropics B should provide an important test of the OH abundances and distributions. Thus, understanding and thoroughly testing HO(x) processes was an important objective of PEM Tropics B. Several issues need to be tested, One is HO, production rates and sources, since HO,, production directly affects ozone production and loss. Another is HO(x) behavior in and around clouds, since HO(x) is lost to cloud particles, but convection may bring HO(x) precursors from near the surface to the upper troposphere. A third is the rise and fall of HO(x) at sunrise and sunset, since these variations give strong indications of the important sources and sinks of HO(x). Making and interpreting high-quality OH and H02 measurements from the NASA DC-8 during PEM Tropics B is the objective of this research effort.

  10. Highly sensitive detection for proteins using graphene oxide-aptamer based sensors

    NASA Astrophysics Data System (ADS)

    Gao, Li; Li, Qin; Li, Raoqi; Yan, Lirong; Zhou, Yang; Chen, Keping; Shi, Haixia

    2015-06-01

    In recent years, the detection of proteins by using bare graphene oxide (GO) to quench the fluorescence of fluorescein-labeled aptamers has been reported. However, the proteins can be adsorbed on the surface of bare GO to prevent the sensitivity from further being improved. In order to solve this problem, polyethylene glycol (PEG)-protected GO was used to prevent the proteins using thrombin as an example from nonspecific binding. The detection limit was improved compared to bare GO under the optimized ratio of GO to PEG concentration. The results show that our method is a promising technique for the detection of proteins.In recent years, the detection of proteins by using bare graphene oxide (GO) to quench the fluorescence of fluorescein-labeled aptamers has been reported. However, the proteins can be adsorbed on the surface of bare GO to prevent the sensitivity from further being improved. In order to solve this problem, polyethylene glycol (PEG)-protected GO was used to prevent the proteins using thrombin as an example from nonspecific binding. The detection limit was improved compared to bare GO under the optimized ratio of GO to PEG concentration. The results show that our method is a promising technique for the detection of proteins. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01187f

  11. Sensing behaviour of tin doped chromium oxide gas sensor toward ethanol

    NASA Astrophysics Data System (ADS)

    Kohli, Nipin; Singh, Onkar; Singh, Ravi Chand

    2012-11-01

    In this paper, the enhancement of gas sensing response due to addition of tin into Cr2O3 has been reported. Sn-doped Cr2O3 nanoparticles have been prepared by a co-precipitation method and characterised by X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray analysis. X-ray diffraction studies revealed the substitution of Cr3+ ions by Sn4+ ions. Field emission scanning electron microscopy images exhibited presence of clusters and agglomerates on the surface. The concentration of tin, used as dopant, was varied from 1 to 5 wt.% and its effect on gas sensing response has been studied. Synthesised powders were applied as thick film onto alumina substrate and tested for ethanol sensing at different operating temperatures and all the sensors gave an optimum response at 250 ∘C. The activation energy of conduction for all the samples was estimated using Arrhenius plots and it was observed that the sample doped with 4 wt.% Sn possesses minimum activation energy, and interestingly this sample gave the best sensing response in the lot.

  12. Irreversible phase transitions in doped metal oxides as temperature sensors in explosions

    NASA Astrophysics Data System (ADS)

    Eilers, Hergen; Gunawidjaja, Ray; Myint, Thandar; Lightstone, James

    2011-06-01

    The temperature of post-detonation fireballs produced by advanced energetic formulations is commonly determined using optical methods such as pyrometry and spectral line fitting. These methods provide an average temperature mostly from the surface of the fireball. However, for many applications the ability to probe the internal temperature and temperature gradients within the fireball is highly desirable. One method that has shown promise is seeding micron to nano-sized temperature sensors into the fireball which can be collected and analyzed post-detonation. In this work, disordered Eu3+-doped nanoparticles were subjected to various heat treatments, incl. furnace, T-Jump, pulsed laser, and explosive heating. This treatment leads to irreversible phase transitions which are monitored by the Eu dopants. Optical signatures such as the ratio of electric and magnetic dipole transition intensities, energy level splitting, FWHM, etc. are evaluated to monitor the phase transitions. Also, the kinetics of particle growth is evaluated as an indicator for the time-dependence of the heating process. The information is used to establish a correlation with the temperature profile. Temperature profiles collected from a series of lab-based tests and small-scale detonations of an aluminized explosive will be presented. This work was supported by the Defense Threat Reduction Agency.

  13. Nanostructured zinc oxide films synthesized by successive chemical solution deposition for gas sensor applications

    SciTech Connect

    Lupan, O. Chow, L.; Shishiyanu, S.; Monaico, E.; Shishiyanu, T.; Sontea, V.; Roldan Cuenya, B.; Naitabdi, A.; Park, S.; Schulte, A.

    2009-01-08

    Nanostructured ZnO thin films have been deposited using a successive chemical solution deposition method. The structural, morphological, electrical and sensing properties of the films were studied for different concentrations of Al-dopant and were analyzed as a function of rapid photothermal processing temperatures. The films were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron and micro-Raman spectroscopy. Electrical and gas sensitivity measurements were conducted as well. The average grain size is 240 and 224 A for undoped ZnO and Al-doped ZnO films, respectively. We demonstrate that rapid photothermal processing is an efficient method for improving the quality of nanostructured ZnO films. Nanostructured ZnO films doped with Al showed a higher sensitivity to carbon dioxide than undoped ZnO films. The correlations between material compositions, microstructures of the films and the properties of the gas sensors are discussed.

  14. Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au-Ag-Au nanostructure for lead(II) ion detection

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Nur Hasiba; Bakar, Ahmad Ashrif A.; Yaacob, Mohd Hanif; Mahdi, Mohd Adzir; Zan, Mohd Saiful Dzulkefly; Shaari, Sahbudin

    2016-01-01

    We demonstrate the enhancement of surface plasmon resonance (SPR) technique by implementing a multi-metallic layers of Au-Ag-Au nanostructure in the chitosan-graphene oxide (CS-GO) SPR sensor for lead(II) ion detection. The performance of the sensor is analyzed via SPR measurements, from which the sensitivity, signal-to-noise ratio and repeatability are determined. The nanostructure layers are characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). We showed that the proposed structure has increased the shift in the SPR angle up to 3.5° within the range of 0.1-1 ppm due to the enhanced evanescent field at the sensing layer-analyte interface. This sensor also exhibits great repeatability which benefits from the stable multi-metallic nanostructure. The SNR value of 0.92 for 5 ppm lead(II) ion solution and reasonable linearity range up to that concentration shows that the tri-metallic CS-GO SPR sensor gives a good response towards the lead(II) ion solution. The CS-GO SPR sensor is also sensitive to at least a 10-5 change in the refractive index. The results prove that our proposed tri-metallic CS-GO SPR sensor demonstrates a strong performance and reliability for lead(II) ion detection in accordance with the standardized lead safety level for wastewater.

  15. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption.

    PubMed

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%-95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors. PMID:27455263

  16. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption

    PubMed Central

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%–95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors. PMID:27455263

  17. Urine glucose analysis with functionalized graphene oxide as a material for amperometric sensor.

    PubMed

    Kim, Hye-youn; Jang, Kuk-Jin; Lee, Min-Ho

    2013-01-01

    New functionalized graphene oxide (FGO) was systematically coated on the fabricated Au-PCB for the detection of glucose in urine. The electrical response of FGO-Au-PCB exhibited a wide linearity of 1.7∼44.4 mM of glucose levels and a constant variables was less than 3% of the previously performed multiple measurements. The practical application has been demonstrated by measuring the electrical response against glucose in urine samples. In addition, our findings show similar improvement in urine glucose; within each current level, there were significant improvements in urine glucose. Comparison between the urine glucose and blood glucose showed no significant different level from the same subjects. PMID:24110736

  18. Enhanced Sensitivity of Anti-Symmetrically Structured Surface Plasmon Resonance Sensors with Zinc Oxide Intermediate Layers

    PubMed Central

    Tu, Yi-Chen; Huang, Teng-Yi; Chiu, Nan-Fu

    2014-01-01

    We report a novel design wherein high-refractive-index zinc oxide (ZnO) intermediary layers are used in anti-symmetrically structured surface plasmon resonance (SPR) devices to enhance signal quality and improve the full width at half maximum (FWHM) of the SPR reflectivity curve. The surface plasmon (SP) modes of the ZnO intermediary layer were excited by irradiating both sides of the Au film, thus inducing a high electric field at the Au/ZnO interface. We demonstrated that an improvement in the ZnO (002) crystal orientation led to a decrease in the FWHM of the SPR reflectivity curves. We optimized the design of ZnO thin films using different parameters and performed analytical comparisons of the ZnO with conventional chromium (Cr) and indium tin oxide (ITO) intermediary layers. The present study is based on application of the Fresnel equation, which provides an explanation and verification for the observed narrow SPR reflectivity curve and optical transmittance spectra exhibited by (ZnO/Au), (Cr/Au), and (ITO/Au) devices. On exposure to ethanol, the anti-symmetrically structured showed a huge electric field at the Au/ZnO interface and a 2-fold decrease in the FWHM value and a 1.3-fold larger shift in angle interrogation and a 4.5-fold high-sensitivity shift in intensity interrogation. The anti-symmetrically structured of ZnO intermediate layers exhibited a wider linearity range and much higher sensitivity. It also exhibited a good linear relationship between the incident angle and ethanol concentration in the tested range. Thus, we demonstrated a novel and simple method for fabricating high-sensitivity, high-resolution SPR biosensors that provide high accuracy and precision over relevant ranges of analyte measurement. PMID:24361929

  19. Enhanced sensitivity of anti-symmetrically structured surface plasmon resonance sensors with zinc oxide intermediate layers.

    PubMed

    Chiu, Nan-Fu; Tu, Yi-Chen; Huang, Teng-Yi

    2013-01-01

    We report a novel design wherein high-refractive-index zinc oxide (ZnO) intermediary layers are used in anti-symmetrically structured surface plasmon resonance (SPR) devices to enhance signal quality and improve the full width at half maximum (FWHM) of the SPR reflectivity curve. The surface plasmon (SP) modes of the ZnO intermediary layer were excited by irradiating both sides of the Au film, thus inducing a high electric field at the Au/ZnO interface. We demonstrated that an improvement in the ZnO (002) crystal orientation led to a decrease in the FWHM of the SPR reflectivity curves. We optimized the design of ZnO thin films using different parameters and performed analytical comparisons of the ZnO with conventional chromium (Cr) and indium tin oxide (ITO) intermediary layers. The present study is based on application of the Fresnel equation, which provides an explanation and verification for the observed narrow SPR reflectivity curve and optical transmittance spectra exhibited by (ZnO/Au), (Cr/Au), and (ITO/Au) devices. On exposure to ethanol, the anti-symmetrically structured showed a huge electric field at the Au/ZnO interface and a 2-fold decrease in the FWHM value and a 1.3-fold larger shift in angle interrogation and a 4.5-fold high-sensitivity shift in intensity interrogation. The anti-symmetrically structured of ZnO intermediate layers exhibited a wider linearity range and much higher sensitivity. It also exhibited a good linear relationship between the incident angle and ethanol concentration in the tested range. Thus, we demonstrated a novel and simple method for fabricating high-sensitivity, high-resolution SPR biosensors that provide high accuracy and precision over relevant ranges of analyte measurement. PMID:24361929

  20. Is oxidative status influenced by dietary carotenoid and physical activity after moult in the great tit (Parus major)?

    PubMed

    Vaugoyeau, Marie; Decencière, Beatriz; Perret, Samuel; Karadas, Filiz; Meylan, Sandrine; Biard, Clotilde

    2015-07-01

    In the context of sexual and natural selection, an allocation trade-off for carotenoid pigments may exist because of their obligate dietary origin and their role both in the antioxidant and immune systems and in the production of coloured signals in various taxa, particularly birds. When birds have expended large amounts of carotenoids to feather growth such as after autumn moult, bird health and oxidative status might be more constrained. We tested this hypothesis in a bird species with carotenoid-based plumage colour, by manipulating dietary carotenoids and physical activity, which can decrease antioxidant capacity and increase reactive oxygen metabolite (ROM) concentration. Great tits were captured after moult and kept in aviaries, under three treatments: physical handicap and dietary supplementation with carotenoids, physical handicap and control diet, and no handicap and control diet. We measured plasma composition (antioxidant capacity, ROM concentration, and vitamin A, vitamin E and total carotenoid concentrations), immune system activation (blood sedimentation) and stress response (heterophil/lymphocyte ratio) and predicted that handicap treatment should influence these negatively and carotenoid supplementation positively. Coloration of yellow feathers was also measured. Carotenoid supplementation increased total plasma carotenoid concentration, decreased feather carotenoid chroma and marginally increased ROM concentration. Handicap increased blood sedimentation only in males but had no clear influence on oxidative stress, which contradicted previous studies. Further studies are needed to investigate how physical activity and carotenoid availability might interact and influence oxidative stress outside the moult period, and their combined potential influence on attractiveness and reproductive investment later during the breeding season. PMID:25964421

  1. Novel solid-state route to nanostructured tin, zinc and cerium oxides as potential materials for sensors.

    PubMed

    Diaz, C; Platoni, S; Molina, A; Valenzuela, M L; Geaney, H; O'Dwyer, C

    2014-09-01

    Solid-state sensor nanostructured materials (SnO2, ZnO and CeO2) have been prepared by pyrolysis of macromolecular complexes: PSP-co-4-PVP x (SnCl2)n, PSP-co-4-PVP x (ZnCl2)n and PSP-co-4-PVP x (Ce(NO3)3)n in several molar ratios under air at 800 degrees C. The as-prepared nanostructured SnO2 exhibits morphologies and particle sizes which are dependent upon the molar ratio of the SnCl2:PSP-co-4-PVP. When a larger weight fraction of the inorganic salt in the precursor mixture is used (1:10 > 1:5 > 1.1) larger crystalline crystals are found for each oxide. For ZnO and CeO2 agglomerates of morphologies from the respective hexagonal and cubic structures were observed with typical sizes of 30-50 nm in both cases for a precursor mixture ratio of 1:1. PMID:25924326

  2. Preparation of graphene oxide doped eggshell membrane bioplatform modified Prussian blue nanoparticles as a sensitive hydrogen peroxide sensor.

    PubMed

    Mohammad-Rezaei, Rahim; Razmi, Habib; Dehgan-Reyhan, Sajjad

    2014-06-01

    This study describes the preparation and characterization of graphene oxide doped eggshell membrane (GO-ESM) as a novel electrochemical bioplatform for electroanalytical purposes. The GO-ESM bioplatform was prepared by incorporation of GO nano-sheets into the ESM via a facile sonication procedure. Field emission scanning electron microscopy and X-ray diffraction powder techniques were used to characterize the developed bioplatform. The electrochemistry of GO-ESM was investigated by decorating it on the surface of carbon ceramic electrode (CCE) by an O-ring. The GO-ESM platform was modified with Prussian blue (PB) via a facile dip-coating method. Then the resulted modified electrode (PB|GO-ESM|CCE) was used as a novel hydrogen peroxide electrochemical sensor. The fabricated electrode responds efficiently to H2O2 over the concentration range 125nM-195μM with a detection limit of 31nM (S/N=3) and sensitivity 8.8μAμM(-1)cm(-2). The PB|GO-ESM|CCE has been successfully applied to determination of H2O2 content in spiked milk samples. Due to good stability, environmental friendly, cheapness, nontoxic, well behaved electrochemical properties, and biocompatibility, the fabricated bioplatform has the promising future for practical applications. PMID:24742966

  3. Reduced graphene oxide-functionalized high electron mobility transistors for novel recognition pattern label-free DNA sensors.

    PubMed

    Zhang, Xiaohui; Zhang, Yue; Liao, Qingliang; Song, Yu; Ma, Siwei

    2013-12-01

    We designed and constructed reduced graphene oxide (rGO) functionalized high electron mobility transistor (HEMT) for rapid and ultra-sensitive detection of label-free DNA in real time. The micrometer sized rGO sheets with structural defects helped absorb DNA molecules providing a facile and robust approach to functionalization. DNA was immobilized onto the surface of HEMT gate through rGO functionalization, and changed the conductivity of HEMT. The real time monitor and detection of DNA hybridization by rGO functionalized HEMT presented interesting current responses: a "two steps" signal enhancement in the presence of target DNA; and a "one step" signaling with random DNA. These two different recognition patterns made the HEMT capable of specifically detecting target DNA sequence. The working principle of the rGO functionalized HEMT can be demonstrated as the variation of the ambience charge distribution. Furthermore, the as constructed DNA sensors showed excellent sensitivity of detect limit at 0.07 fM with linear detect range from 0.1 fM to 0.1 pM. The results indicated that the HEMT functionalized with rGO paves a new avenue to design novel electronic devices for high sensitive and specific genetic material assays in biomedical applications. PMID:23828864

  4. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    SciTech Connect

    Lu, Y.; Fung, S.; Wang, Q.; Horsley, D. A.; Tang, H.; Boser, B. E.; Tsai, J. M.; Daneman, M.

    2015-06-29

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  5. A reagentless non-enzymatic hydrogen peroxide sensor presented using electrochemically reduced graphene oxide modified glassy carbon electrode.

    PubMed

    Mutyala, Sankararao; Mathiyarasu, Jayaraman

    2016-12-01

    Herein, we report a simple, facile and reproducible non-enzymatic hydrogen peroxide (H2O2) sensor using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The modified electrode was characterized by Fourier transform infrared (FT-IR), UV-Visible, scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Cyclic voltammetric (CV) analysis revealed that ERGO/GCE exhibited virtuous charge transfer properties for a standard redox systems and showed excellent performance towards electroreduction of H2O2. Amperometric study using ERGO/GCE showed high sensitivity (0.3μA/μM) and faster response upon the addition of H2O2 at an applied potential of -0.25V vs. Ag/AgCl. The detection limit is assessed to be 0.7μM (S/N=3) and the time to reach a stable study state current is <3s for a linear range of H2O2 concentration (1-16μM). In addition, the modified electrode exhibited good reproducibility and long-term stability. PMID:27612728

  6. A novel label-free optical cysteine sensor based on the competitive oxidation reaction catalyzed by G-quadruplex halves.

    PubMed

    Su, Haichao; Qiao, Fengmin; Duan, Ruihuan; Chen, Lijian; Ai, Shiyun

    2013-05-15

    A sensitive and selective colorimetric detection method for Cysteine (Cys) was established in this paper. The detection mechanism is based on the oxidation of Cys by H2O2, which prevents the catalysis of the 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS)-H2O2 reaction by G-quadruplex halves. With the addition of Cys, the amount of the blue-green-colored free-radical cation (ABTS(·+)) was reduced. The absorbance of ABTS(+) at 421nm weakened as the color of the solution changed from blue-green to colorless. The concentration of Cys can be determined by monitoring this competitive reaction with the naked eye or using a UV-vis spectrometer. The calibration curve showed that the net absorption value at 421nm linearly increased over the Cys concentration range of 0.005-100μM with a detection limit of 5nM. Furthermore, amino acids other than Cys cannot mediate the color change under the identical conditions because of the absence of thiol groups, thereby suggesting the selectivity towards Cys of the proposed method. The optical sensor is high selective, which is important for the determination of Cys in serum samples. The assay shows great potential for its practical application as a disease-associated indicator which could satisfy the need for amino acid determination in fields such as food processing, biochemistry, pharmaceuticals, and clinical analysis. PMID:23333922

  7. Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays.

    PubMed

    Chua, Jay Huiyi; Chee, Ru-Ern; Agarwal, Ajay; Wong, She Mein; Zhang, Guo-Jun

    2009-08-01

    Arrays of highly ordered silicon nanowire (SiNW) clusters are fabricated using complementary metal-oxide semiconductor (CMOS) field effect transistor-compatible technology, and the ultrasensitive, label-free, electrical detection of cardiac biomarker in real time using the array sensor is presented. The successful detection of human cardiac troponin-T (cTnT) has been demonstrated in an assay buffer solution of concentration down to 1 fg/mL, as well as in an undiluted human serum environment of concentration as low as 30 fg/mL. The high specificity, selectivity, and swift response time of the SiNWs to the presence of ultralow concentrations of a target protein in a biological analyte solution, even in the presence of a high total protein concentration, paves the way for the development of a medical diagnostic system for point-of-care application that is able to provide an early and accurate indication of cardiac cellular necrosis. PMID:20337397

  8. Tyrosinase conjugated reduced graphene oxide based biointerface for bisphenol A sensor.

    PubMed

    Reza, K Kamil; Ali, Md Azahar; Srivastava, Saurabh; Agrawal, Ved Varun; Biradar, A M

    2015-12-15

    We have fabricated a nanocomposite of reduced graphene oxide (rGO) sheets and chitosan (Cn) polymer based highly sensitive electrochemical biosensor for detection of bisphenol A (BPA). The two-dimensional structure and chemical functionality of rGO and Cn provide an excellent electrode surface for loading of tyrosinase enzyme molecules. This rGO-Cn nanocomposite is capable of effectively utilizing their superior conductivity, larger effective surface area and superior electrochemical performance due to its synergistic effect between rGO and Cn. The structural, morphological and electrochemical characterizations of nanocomposite sheets have been performed by electron microscopy, X-ray diffraction, FTIR and Potentiostat/Galvanostat techniques. This fabricated biosensor is sensitive to nanomolar (0.74 nM) concentration of BPA and detection time is 10s compared to conventional BPA ELISA kit (0.3 µg/L and 2.5h). The rGO-Cn based biosensor exhibits a higher sensitivity (83.3 µA nM(-1) cm(-2)), wider linearity (0.01-50 µM) with good selectivity towards BPA. This biosensor is capable to quantify real sample of BPA using packaged drinking water bottles. This rGO-Cn nanocomposite sheets emerges as a potential electrode material for detection of other estrogenic substrate. PMID:26201981

  9. Reduced graphene oxide filled poly(dimethyl siloxane) based transparent stretchable, and touch-responsive sensors

    NASA Astrophysics Data System (ADS)

    Ponnamma, Deepalekshmi; Sadasivuni, Kishor Kumar; Cabibihan, John-John; Yoon, W. Jong; Kumar, Bijandra

    2016-04-01

    The ongoing revolution in touch panel technology and electronics demands the need for thin films, which are flexible, stretchable, conductive, and highly touch responsive. In this regard, conductive elastomer nanocomposites offer potential solutions for these stipulations; however, viability is limited to the poor dispersion of conductive nanomaterials such as graphene into the matrix. Here, we fabricated a reduced graphene oxide (rGO) and poly(dimethylsiloxane) (PDMS) elastomer based transparent and flexible conductive touch responsive film by dispersing rGO honeycombs uniformly into PDMS elastomer through an ionic liquid (IL) modification. Pursuing a simple, scalable, and safe method of solution casting, this provides a versatile and creative design of a transparent and stretchable rGO/IL-PDMS capacitive touch responsive, where rGO acts as a sensing element. This transparent film with ˜70% transmittance exhibits approximately a five times faster response in comparison to rGO/PDMS film, with negligible degradation over time. The performance of this touch screen film is expected to have applications in the emerging field of foldable electronics.

  10. Ultrasensitive DNA sensor based on gold nanoparticles/reduced graphene oxide/glassy carbon electrode.

    PubMed

    Benvidi, Ali; Firouzabadi, Afsaneh Dehghani; Moshtaghiun, Seyed Mohammad; Mazloum-Ardakani, Mohammad; Tezerjani, Marzieh Dehghan

    2015-09-01

    We have designed a simple and novel electrochemical biosensor based on glassy carbon electrode (GCE) for DNA detection. GCE was modified with reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) by the electrochemical method, which is helpful for immobilization of thiolated bioreceptors. The electrode modification processes were characterized by scanning electron microscopy (SEM) and electrochemical methods. Then a single-stranded DNA (ssDNA) probe for BRCA1 5382 insC mutation detection was immobilized on the modified electrode for a specific time. The experimental conditions, such as probe immobilization time and target DNA (complementary DNA) hybridization time and temperature with probe DNA, were optimized using electrochemical methods. The electrochemical response for DNA hybridization and synthesis was measured using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. The calibration graph contains two linear ranges; the first part is in the range of 3.0×10(-20) to 1.0×10(-12)M, and the second segment part is in the range of 1.0×10(-12) to 1.0×10(-7)M. The biosensor showed excellent selectivity for the detection of the complementary sequences from noncomplementary sequences, so it can be used for detection of breast cancer. PMID:25988596

  11. Detection of Matrilysin Activity Using Polypeptide Functionalized Reduced Graphene Oxide Field-Effect Transistor Sensor.

    PubMed

    Chen, Hu; Chen, Peng; Huang, Jingfeng; Selegård, Robert; Platt, Mark; Palaniappan, Alagappan; Aili, Daniel; Tok, Alfred Iing Yoong; Liedberg, Bo

    2016-03-15

    A novel approach for rapid and sensitive detection of matrilysin (MMP-7, a biomarker involved in the degradation of various macromolecules) based on a polypeptide (JR2EC) functionalized reduced graphene oxide (rGO) field effect transistor (FET) is reported. MMP-7 specifically digests negatively charged JR2EC immobilized on rGO, thereby modulating the conductance of rGO-FET. The proposed assay enabled detection of MMP-7 at clinically relevant concentrations with a limit of detection (LOD) of 10 ng/mL (400 pM), attributed to the significant reduction of the net charge of JR2EC upon digestion by MMP-7. Quantitative detection of MMP-7 in human plasma was further demonstrated with a LOD of 40 ng/mL, illustrating the potential for the proposed methodology for tumor detection and carcinoma diagnostic (e.g., lung cancer and salivary gland cancer). Additionally, excellent specificity of the proposed assay was demonstrated using matrix metallopeptidase 1 (MMP-1), a protease of the same family. With appropriate selection and modification of polypeptides, the proposed assay could be extended for detection of other enzymes with polypeptide digestion capability. PMID:26887256

  12. NOx Sensor Development

    SciTech Connect

    Woo, L Y; Glass, R S

    2010-11-01

    . Briefly, impedancemetric operation has shown the potential to overcome the drawbacks of other approaches, including higher sensitivity towards NO{sub x}, better long-term stability, potential for subtracting out background interferences, total NO{sub x} measurement, and lower cost materials and operation. Past LLNL research and development efforts have focused on characterizing different sensor materials and understanding complex sensing mechanisms. Continued effort has led to improved prototypes with better performance, including increased sensitivity (to less than 5 ppm) and long-term stability, with more appropriate designs for mass fabrication, including incorporation of an alumina substrate with an imbedded heater. Efforts in the last year to further improve sensor robustness have led to successful engine dynamometer testing with prototypes mounted directly in the engine manifold. Previous attempts had required exhaust gases to be routed into a separate furnace for testing due to mechanical failure of the sensor from engine vibrations. A more extensive cross-sensitivity study was also undertaken this last year to examine major noise factors including fluctuations in water, oxygen, and temperature. The quantitative data were then used to develop a strategy using numerical algorithms to improve sensor accuracy. The ultimate goal is the transfer of this technology to a supplier for commercialization. Due to the recent economic downturn, suppliers are demanding more comprehensive data and increased performance analysis before committing their resources to take the technology to market. Therefore, our NO{sub x} sensor work requires a level of technology development more thorough and extensive than ever before. The objectives are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) exhaust gas monitoring; (2) Explore and characterize novel

  13. Chemical sensors

    SciTech Connect

    Janata, J.; Josowicz, M.; DeVaney, D.M. )

    1994-06-15

    This review of chemical sensors contains the following topics of interest: books and reviews; reviews of sensors by their type; fabrication and selectivity; data processing; thermal sensors; mass sensors (fabrication, gas sensors, and liquid sensors); electrochemical sensors (potentiometric sensors, amperometric sensors, and conductometric sensors); and optical sensors (fabrication, liquid sensors, biosensors, and gas sensors). 795 refs., 1 tab.

  14. A survey and analysis of commercially available hydrogen sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    1992-01-01

    The performance requirements for hydrogen detection in aerospace applications often exceed those of more traditional applications. In order to ascertain the applicability of existing hydrogen sensors to aerospace applications, a survey was conducted of commercially available point-contact hydrogen sensors, and their operation was analyzed. The operation of the majority of commercial hydrogen sensors falls into four main categories: catalytic combustion, electrochemical, semiconducting oxide sensors, and thermal conductivity detectors. The physical mechanism involved in hydrogen detection for each main category is discussed in detail. From an understanding of the detection mechanism, each category of sensor is evaluated for use in a variety of space and propulsion environments. In order to meet the needs of aerospace applications, the development of point-contact hydrogen sensors that are based on concepts beyond those used in commercial sensors is necessary.

  15. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis.

    PubMed

    Madrigal-Matute, Julio; Fernandez-Garcia, Carlos-Ernesto; Blanco-Colio, Luis Miguel; Burillo, Elena; Fortuño, Ana; Martinez-Pinna, Roxana; Llamas-Granda, Patricia; Beloqui, Oscar; Egido, Jesus; Zalba, Guillermo; Martin-Ventura, José Luis

    2015-09-01

    To assess the potential association between TRX-1/PRX-1 and NADPH oxidase (Nox) activity in vivo and in vitro, TRX-1/PRX-1 levels were assessed by ELISA in 84 asymptomatic subjects with known phagocytic NADPH oxidase activity and carotid intima-media thickness (IMT). We found a positive correlation between TRX-1/PRX-1 and NADPH oxidase-dependent superoxide production (r=0.48 and 0.47; p<0.001 for both) and IMT (r=0.31 and 0.36; p<0.01 for both) adjusted by age and sex. Moreover, asymptomatic subjects with plaques have higher PRX-1 and TRX plasma levels (p<0.01 for both). These data were confirmed in a second study in which patients with carotid atherosclerosis showed higher PRX-1 and TRX plasma levels than healthy subjects (p<0.001 for both). In human atherosclerotic plaques, the NADPH oxidase subunit p22phox colocalized with TRX-1/PRX-1 in macrophages (immunohistochemistry). In monocytes and macrophages, phorbol 12-myristate 13-acetate (PMA) induced NADPH activation and TRX-1/PRX-1 release to the extracellular medium, with a concomitant decrease in their intracellular levels, which was reversed by the NADPH inhibitor apocynin (Western blot). In loss-of-function experiments, genetic silencing of the NADPH oxidase subunit Nox2 blocked PMA-induced intracellular TRX-1/PRX-1 downregulation in macrophages. Furthermore, the PMA-induced release of TRX-1/PRX-1 involves the modulation of their redox status and exosome-like vesicles. TRX-1/PRX-1 levels are associated with NADPH oxidase-activity in vivo and in vitro. These data could suggest a coordinated antioxidant response to oxidative stress in atherothrombosis. PMID:26117319

  16. A "turn-on" fluorescent microbead sensor for detecting nitric oxide.

    PubMed

    Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae

    2015-01-01

    Nitric oxide (NO) is a messenger molecule involved in numerous physical and pathological processes in biological systems. Therefore, the development of a highly sensitive material able to detect NO in vivo is a key step in treating cardiovascular and a number of types of cancer-related diseases, as well as neurological dysfunction. Here we describe the development of a fluorescent probe using microbeads to enhance the fluorescence signal. Microbeads are infused with the fluorophore, dansyl-piperazine (Ds-pip), and quenched when the fluorophore is coordinated with a rhodium (Rh)-complex, ie, Rh2(AcO(-))4(Ds-pip). In contrast, they are able to fluoresce when the transition-metal complex is replaced by NO. To confirm the "on/off" mechanism for detecting NO, we investigated the structural molecular properties using the Fritz Haber Institute ab initio molecular simulations (FHI-AIMS) package. According to the binding energy calculation, NO molecules bind more strongly and rapidly with the Rh-core of the Rh-complex than with Ds-pip. This suggests that NO can bond strongly with the Rh-core and replace Ds-pip, even though Ds-pip is already near the Rh-core. However, the recovery process takes longer than the quenching process because the recovery process needs to overcome the energy barrier for formation of the transition state complex, ie, NO-(AcO(-))4-(Ds-pip). Further, we confirm that the Rh-complex with the Ds-pip structure has too small an energy gap to give off visible light from the highest unoccupied molecular orbital/lowest unoccupied molecular orbital energy level. PMID:25565808

  17. Molecular imprinting method for fabricating novel glucose sensor: polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles.

    PubMed

    Farid, Mohammad Masoudi; Goudini, Leila; Piri, Farideh; Zamani, Abbasali; Saadati, Fariba

    2016-03-01

    An enzyme free glucose sensor was prepared by a molecular imprinting method (MIP). The procedure was developed by in situ preparation of a new polyvinyl acetate (PVA) electrode reinforced by MnO2/CuO loaded on graphene oxide (GO) nanoparticles (PVA/MnO2@GO/CuO). The nanocomposite was modified in the presence of glucose and then imprinted. A carbone paste method with voltammetry was used in the fabrication of the sensor from prepared MIP nanocomposite. PVA/MnO2@GO/CuO electrode was characterized by X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Electrocatalytic activity of the electrode toward glucose oxidation was then investigated by cyclic voltammetry in alkaline medium. The results show that the response of PVA/MnO2@GO/CuO MIP is much higher than PVA/MnO2@GO/CuO non-imprinted electrode toward glucose oxidation. The detection limit was 53μM, and the sensor responses are linear for concentrations from 0.5 to 4.4mM. Relative standard deviations for intra- and inter-day determination were less than 6.0%. The relative recoveries for different samples were 96%. PMID:26471527

  18. Beta particle detection efficiency of the radiation sensor made from a mixture of polyaniline and titanium oxide

    NASA Astrophysics Data System (ADS)

    Tamura, M.; Miyata, H.; Katsumata, M.; Matsuda, K.; Ueno, T.; Ito, D.; Suzuki, T.

    2016-08-01

    We developed a new real-time radiation sensor using an organic semiconductor and measured its β-particle detection sensitivity. This sensor is fabricated by simply combining a p-type semiconductor, polyaniline (Pani), with an n-type semiconductor, TiO2, and processing the compound. Since Pani and TiO2 are both inexpensive materials, the sensor can be fabricated at a lower cost than inorganic semiconductor sensors. The signal of each fabricated sensor was measured by a charge sensitive ADC for the irradiation of β-particles. The response signal data of the ADC for each irradiation was measured to calculate the detection efficiency of the detector. The maximum detection efficiency measured as β-particle sensitivity of the sensor was 1%. This β-particle sensitivity is higher than that reported of Pani sensors in the past.

  19. Intercomparison of six fast-response sensors for the eddy-covariance flux measurement of nitrous oxide over agricultural grassland

    NASA Astrophysics Data System (ADS)

    Nemitz, Eiko; Famulari, Daniela; Ibrom, Andreas; Vermeulen, Alex; Hensen, Arjan; van den Bulk, Pim; Loubet, Benjamin; Laville, Patricia; Mammarella, Ivan; Haapanala, Sami; Lohila, Annalea; Laurila, Tuomas; Eva, Rabot; Laborde, Marie; Cowan, Nicholas; Anderson, Margaret; Helfter, Carole

    2015-04-01

    Nitrous oxide (N2O) is the third most important greenhouse gas and its terrestrial budget remains poorly constraint, with bottom up and top down estimates of country emissions often disagreeing by more than a factor of two. Whilst the measurements of the biosphere / atmosphere exchange of CO2 with micrometeorological methods is commonplace, emissions of CH4 and N2O are more commonly measured with enclosure techniques due to limitations in fast-response sensors with good signal-to-noise characteristics. Recent years have seen the development of a range of instruments based on optical spectroscopy. This started in the early 1990s with instruments based on lead salt lasers, which had temperamental long-term characteristics. More recent developments in quantum cascade lasers has lead to increasingly stable instruments, initially based on pulsed, later on continuous wave lasers. Within the context of the European FP7 Infrastructure Project InGOS ('Integrated non-CO2 Greenhouse gas Observing System'), we conducted an intercomparison of six fast response sensors for N2O: three more or less identical instruments based on off-axis Integrated Cavity Optical Spectrocopy (ICOS) (Los Gatos Research Inc.) and three instruments based on quantum cascade laser absorption spectrometry (Aerodyne Research Inc.): one older generation pulsed instrument (p-QCL) and two of the latest generation of compact continuous wave instruments (cw-QCL), operating at two different wavelengths. One of the ICOS instruments was operated with an inlet drier. In addition, the campaign was joined by a relaxed eddy-accumulation system linked to a FTIR spectrometer (Ecotech), a gradient system based on a home-built slower QCL (INRA Orleans) and a fast chamber system. Here we present the results of the study and a detailed examination of the various corrections and errors of the different instruments. Overall, with the exception of the older generation QCL, the average fluxes based on the different fast

  20. Annual sulfate budgets for Dutch lowland peat polders: The soil is a major sulfate source through peat and pyrite oxidation

    NASA Astrophysics Data System (ADS)

    Vermaat, Jan E.; Harmsen, Joop; Hellmann, Fritz A.; van der Geest, Harm G.; de Klein, Jeroen J. M.; Kosten, Sarian; Smolders, Alfons J. P.; Verhoeven, Jos T. A.; Mes, Ron G.; Ouboter, Maarten

    2016-02-01

    Annual sulfate mass balances have been constructed for four low-lying peat polders in the Netherlands, to resolve the origin of high sulfate concentrations in surface water, which is considered a water quality problem, as indicated amongst others by the absence of sensitive water plant species. Potential limitation of these plants to areas with low sulfate was analyzed with a spatial match-up of two large databases. The peat polders are generally used for dairy farming or nature conservation, and have considerable areas of shallow surface water (mean 16%, range 6-43%). As a consequence of continuous drainage, the peat in these polders mineralizes causing subsidence rates generally ranging between 2 and 10 mm y-1. Together with pyrite oxidation, this peat mineralization the most important internal source of sulfate, providing an estimated 96 kg SO4 ha-1 mm-1 subsidence y-1. External sources are precipitation and water supplied during summer to compensate for water shortage, but these were found to be minor compared to internal release. The most important output flux is discharge of excess surface water during autumn and winter. If only external fluxes in and out of a polder are evaluated, inputs average 37 ± 9 and exports 169 ± 17 kg S ha-1 y-1. During summer, when evapotranspiration exceeds rainfall, sulfate accumulates in the unsaturated zone, to be flushed away and drained off during the wet autumn and winter. In some polders, upward seepage from early Holocene, brackish sediments can be a source of sulfate. Peat polders export sulfate to the regional water system and the sea during winter drainage. The available sulfate probably only plays a minor role in the oxidation of peat: we estimate that this is less than 10% whereas aerobic mineralization is the most important. Most surface waters in these polders have high sulfate concentrations, which generally decline during the growing season when aquatic sediments are a sink. In the sediment, this sulfur is

  1. Transcriptomic analysis of submergence-tolerant and sensitive Brachypodium distachyon ecotypes reveals oxidative stress as a major tolerance factor.

    PubMed

    Rivera-Contreras, Irma Karla; Zamora-Hernández, Teresa; Huerta-Heredia, Ariana Arlene; Capataz-Tafur, Jacqueline; Barrera-Figueroa, Blanca Estela; Juntawong, Piyada; Peña-Castro, Julián Mario

    2016-01-01

    When excessive amounts of water accumulate around roots and aerial parts of plants, submergence stress occurs. To find the integrated mechanisms of tolerance, we used ecotypes of the monocot model plant Brachypodium distachyon to screen for genetic material with contrasting submergence tolerance. For this purpose, we used a set of previously studied drought sensitive/tolerant ecotypes and the knowledge that drought tolerance is positively associated with submergence stress. We decided to contrast aerial tissue transcriptomes of the ecotype Bd21 14-day-old plants as sensitive and ecotype Bd2-3 as tolerant after 2 days of stress under a long-day photoperiod. Gene ontology and the grouping of transcripts indicated that tolerant Bd2-3 differentially down-regulated NITRATE REDUCTASE and ALTERNATIVE OXIDASE under stress and constitutively up-regulated HAEMOGLOBIN, when compared with the sensitive ecotype, Bd21. These results suggested the removal of nitric oxide, a gaseous phytohormone and concomitant reactive oxygen species as a relevant tolerance determinant. Other mechanisms more active in tolerant Bd2-3 were the pathogen response, glyoxylate and tricarboxylic acid cycle integration, and acetate metabolism. This data set could be employed to design further studies on the basic science of plant tolerance to submergence stress and its biotechnological application in the development of submergence-tolerant crops. PMID:27282694

  2. Transcriptomic analysis of submergence-tolerant and sensitive Brachypodium distachyon ecotypes reveals oxidative stress as a major tolerance factor

    PubMed Central

    Rivera-Contreras, Irma Karla; Zamora-Hernández, Teresa; Huerta-Heredia, Ariana Arlene; Capataz-Tafur, Jacqueline; Barrera-Figueroa, Blanca Estela; Juntawong, Piyada; Peña-Castro, Julián Mario

    2016-01-01

    When excessive amounts of water accumulate around roots and aerial parts of plants, submergence stress occurs. To find the integrated mechanisms of tolerance, we used ecotypes of the monocot model plant Brachypodium distachyon to screen for genetic material with contrasting submergence tolerance. For this purpose, we used a set of previously studied drought sensitive/tolerant ecotypes and the knowledge that drought tolerance is positively associated with submergence stress. We decided to contrast aerial tissue transcriptomes of the ecotype Bd21 14-day-old plants as sensitive and ecotype Bd2-3 as tolerant after 2 days of stress under a long-day photoperiod. Gene ontology and the grouping of transcripts indicated that tolerant Bd2-3 differentially down-regulated NITRATE REDUCTASE and ALTERNATIVE OXIDASE under stress and constitutively up-regulated HAEMOGLOBIN, when compared with the sensitive ecotype, Bd21. These results suggested the removal of nitric oxide, a gaseous phytohormone and concomitant reactive oxygen species as a relevant tolerance determinant. Other mechanisms more active in tolerant Bd2-3 were the pathogen response, glyoxylate and tricarboxylic acid cycle integration, and acetate metabolism. This data set could be employed to design further studies on the basic science of plant tolerance to submergence stress and its biotechnological application in the development of submergence-tolerant crops. PMID:27282694

  3. Label-free colorimetric sensor for ultrasensitive detection of heparin based on color quenching of gold nanorods by graphene oxide.

    PubMed

    Fu, Xiuli; Chen, Lingxin; Li, Jinhua; Lin, Meng; You, Huiyan; Wang, Wenhai

    2012-04-15

    A novel label-free colorimetric strategy was developed for ultrasensitive detection of heparin by using the super color quenching capacity of graphene oxide (GO). Hexadecyltrimethylammonium bromide (CTAB)-stabilized gold nanorods (AuNRs) could easily self-assembly onto the surface of GO through electrostatic interaction, resulting in decrease of the surface plasmon resonance (SPR) absorption and consequent color quenching change of the AuNRs from deep to light. Polycationic protamine was used as a medium for disturbing the electrostatic interaction between AuNRs and GO. The AuNRs were prevented from being adsorbed onto the surface of GO because of the stronger interaction between protamine and GO, showing a native color of the AuNRs. On the contrary, in the presence of heparin, which was more easily to combine with protamine, the AuNRs could self-assembly onto the surface of GO, resulting in the native color disappearing of AuNRs. As the concentration of heparin increased, the color of AuNRs would gradually fade until almost colorless. The amounts of self-assembly AuNRs were proportional to the concentration of heparin, and thereby the changes in the SPR absorption and color had been used to monitor heparin levels. Under optimized conditions, good linearity was obtained in a range of 0.02-0.28 μg/mL (R=0.9957), and a limit of detection was 5 ng/mL. The simultaneous possession of high sensitivity and selectivity, simplicity, rapidity, and visualization enabled this sensor to be potentially applicable for ultrasensitive and rapid on-site detection toward trace heparin. PMID:22387039

  4. Transition metal substituted SrTiO3 perovskite oxides as promising functional materials for oxygen sensor

    NASA Astrophysics Data System (ADS)

    Misra, Sunasira

    2012-07-01

    Modern industries employ several gases as process fluids. Leakage of these gases in the operating area could lead to undesirable consequences. Even in chemical industries, which use large quantities of inert gases in confined areas, accidental leakage of these process gases would result in the reduction of oxygen partial pressure in atmospheric air. For instance, large amounts of gaseous nitrogen and argon are used in pharmaceutical industries, gas filling/bottling plants, operating area of Fast Breeder reactors, etc. Fall of concentration of oxygen in air below 17% could lead to life risk (Asphyxiation) of the working personnel that has to be checked well in advance. Further, when the leaking gas is of explosive nature, its damage potential would be very high if its concentration level in air increases beyond its lower explosive limit. Surveillance of the ambient within these industries at the critical areas and also in the environment around them for oxygen therefore becomes highly essential. Sensitive and selective gas sensors made of advanced materials are required to meet this demand of monitoring environmental pollution. The perovskite class of oxides (ABO3) is chemically stable even at high temperatures and can tolerate large levels of dopants without phase transformations. The electronic properties of this parent functional material can be tailored by adding appropriate dopants that exhibit different valence states. Aliovalent transition metal substituted SrTiO3 perovskites are good mixed ionic and electronic conductors and potential candidates for sensing oxygen at percentage level exploiting their oxygen pressure dependent electrical conductivity. This paper presents the preparation, study of electrical conductivity and oxygen-sensing characteristics of iron and cobalt substituted SrTiO3.

  5. Improvement of Toluene Selectivity via the Application of an Ethanol Oxidizing Catalytic Cell Upstream of a YSZ-Based Sensor for Air Monitoring Applications

    PubMed Central

    Sato, Tomoaki; Breedon, Michael; Miura, Norio

    2012-01-01

    The sensing characteristics of a yttria-stabilized zirconia (YSZ)-based sensor utilizing a NiO sensing-electrode (SE) towards toluene (C7H8) and interfering gases (C3H6, H2, CO, NO2 and C2H5OH) were evaluated with a view to selective C7H8 monitoring in indoor atmospheres. The fabricated YSZ-based sensor showed preferential responses toward 480 ppb C2H5OH, rather than the target 50 ppb C7H8 at an operational temperature of 450 °C under humid conditions (RH ≃ 32%). To overcome this limitation, the catalytic activity of Cr2O3, SnO2, Fe2O3 and NiO powders were evaluated for their selective ethanol oxidation ability. Among these oxides, SnO2 was found to selectively oxidize C2H5OH, thus improving C7H8 selectivity. An inline pre-catalytic cell loaded with SnO2 powder was installed upstream of the YSZ-based sensor utilizing NiO-SE, which enabled the following excellent abilities by selectively catalyzing common interfering gases; sensitive ppb level detection of C7H8 lower than the established Japanese Guideline value; low interferences from 50 ppb C3H6, 500 ppb H2, 100 ppb CO, 40 ppb NO2, as well as 480 ppb C2H5OH. These operational characteristics are all indicative that the developed sensor may be suitable for real-time C7H8 concentration monitoring in indoor environments. PMID:22666053

  6. Major and trace element variations in oxide and titanate minerals in the West Kimberley lamproites, Western Australia

    NASA Astrophysics Data System (ADS)

    Jaques, A. L.

    2016-04-01

    New data are presented for groundmass chromian spinel, perovskite, ilmenite, and K-Ti-Ba-rich phases from the Miocene olivine and leucite lamproites of the West Kimberley region. The spinels range from early Ti-Al-Mg chromite through Ti-Mg chromite to Ti-chromite and, in Ellendale 4 and 9, Ti-Cr magnetite and Ti-magnetite. Most crystallized at 850-1220 °C and fO2 ~ MW + 1-2 log units except for Ellendale 4 and 9 spinels which underwent marked late oxidation at ~650-750 °C with fO2 increasing sharply to ~FMQ + 2-3 log units. Perovskite is ubiquitous in the olivine lamproites and the Walgidee Hills (WH) lamproite. Compositional features of the perovskite are a wide range in Cr, and high Sr, Nb, Th, and LREE contents with highly fractionated REE patterns (La/YbCN ~ 750-3000). Perovskite from WH defines an evolutionary trend of enrichment in Na, Sr, Y, Nb, U and REE, and depletion in Cr, Fe, and Th with magma fractionation. Late crystallizing WH perovskite shows a decrease in LREE due to relative depletion of LREE in residual magma by extended crystallization of perovskite (and apatite). Priderite ((K,Ba)(Ti,Fe3+)8O16) has low Mg and V, and a range in Cr contents which decrease with magma evolution. Jeppeite ((K,Ba)2(Ti,Fe)6O13), has higher Sr and Nb content than priderite. Both contain low Y and REEs. Wadeite (K2ZrSi3O9), a ubiquitous groundmass phase, has high Sc, Rb and Hf contents, and strongly LREE-depleted REE patterns with positive Ce anomalies. Noonkanbahite, a late crystallizing phase in WH, has low Cr and Ni, and high Sr, Nb and Y contents. REE patterns for noonkanbahite display high HREE, depleted MREE, enriched La-Ce-Pr, and a positive Eu anomaly.

  7. Wireless sensors and sensor networks for homeland security applications

    PubMed Central

    Potyrailo, Radislav A.; Nagraj, Nandini; Surman, Cheryl; Boudries, Hacene; Lai, Hanh; Slocik, Joseph M.; Kelley-Loughnane, Nancy; Naik, Rajesh R.

    2012-01-01

    New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers. PMID:23175590

  8. Muscle antioxidant (vitamin E) and major fatty acid groups, lipid oxidation and retail colour of meat from lambs fed a roughage based diet with flaxseed or algae.

    PubMed

    Ponnampalam, Eric N; Burnett, Viv F; Norng, Sorn; Hopkins, David L; Plozza, Tim; Jacobs, Joe L

    2016-01-01

    The effect of feeding flaxseed or algae supplements to lambs on muscle antioxidant potential (vitamin E), major fatty acid groups, lipid oxidation and retail colour was investigated. Lambs (n=120) were randomly allocated to one of 4 dietary treatments according to liveweight and fed the following diets for eight weeks: Annual ryegrass hay [60%]+subterranean clover hay [40%] pellets=Basal diet; Basal diet with flaxseed (10.7%)=Flax; Basal diet with algae (1.8%)=Algae; Basal diet with flaxseed (10.7%) and algae (1.8%)=FlaxAlgae. Flaxseed or algae supplementation significantly affected major fatty acid groups in muscle. The addition of algae (average of Algae and FlaxAlgae) resulted in lower vitamin E concentration in muscle (P<0.003; 1.0 vs 1.3mg/kg of muscle) compared with lambs fed a diet without algae (average of Basal and Flax). Increasing muscle EPA+DHA by algae supplementation significantly increased lipid oxidation, but retail display colour of fresh meat was not affected. PMID:26409038

  9. Impact of Genetic Polymorphism of methylenetetrahydrofolate reductase C677T on Development of Hyperhomocysteinemia and Related Oxidative Changes in Egyptian β-Thalassemia Major Patients

    PubMed Central

    Abd-Elmawla, Mai A.; Rizk, Sherine M.; Youssry, Ilham; Shaheen, Amira A.

    2016-01-01

    Background β-thalasemia major (β-TM) patients often suffer from various vascular complications together with increased oxidative stress. Hyperhomocysteinemia (Hhcy) has been defined as a risk factor for these complications. Genetic polymorphism of methylenetetrahydrofolate reductase (MTHFR) C677T has been shown to cause Hhcy particularly in individuals with low B-vitamins. However, the status of homocysteine (hcy) in β-TM has not yet been adequately defined. Aim To evaluate the genetic polymorphism of MTHFR C677T among β-TM patients and its prospective contribution to Hhcy and related oxidative changes. Subjects and Methods Genotyping for MTHFR C677T was done by PCR-RFLP technique. Plasma hcy, vitamin B12, folate, malondialdehyde (MDA), total antioxidant capacity (TAC), oxidized low density lipoprotein (oxLDL), total nitric oxide (NOx) and lipid profile were determined in 66 β-TM patients and 66 control subjects of matched age and sex. Results The prevalence of MTHFR 677TT genotype was significant among β-TM patients (12%) compared to (3%) controls (OR = 4.9, 95%CI:1.2–24.2,P = 0.03). A strong association between Hhcy and MTHFR TT genotype was observed (OR = 7.7, 95%CI:2.8–20.9) where all β-TM patients with TT genotype were hyperhomocystienemic (≥ 15 μmol/l) and having sub-optimal folate level than those with CT or CC genotypes. Hyperhomocystienemic patients have suffered from increased oxidative stress characterized by significant increase in plasma MDA and oxLDL, and a significant reduction of plasma TAC and total NOx. Lipid profile of those patients was severely affected indicated by reduction in HDL and HDL/LDL and elevation in atherogenic index as compared with CC genotype. Other measured parameters were not significantly different among β-TM patients with different MTHFR genotypes. Conclusion This study suggests that Egyptian β-TM patients with MTHFR 677TT genotype could be at increasing risk of developing Hhcy particularly with folate

  10. CdTe quantum dots@luminol as signal amplification system for chrysoidine with chemiluminescence-chitosan/graphene oxide-magnetite-molecularly imprinting sensor

    NASA Astrophysics Data System (ADS)

    Duan, Huimin; Li, Leilei; Wang, Xiaojiao; Wang, Yanhui; Li, Jianbo; Luo, Chuannan

    2016-01-01

    A sensitive chemiluminescence (CL) sensor based on chemiluminescence resonance energy transfer (CRET) in CdTe quantum dots@luminol (CdTe QDs@luminol) nanomaterials combined with chitosan/graphene oxide-magnetite-molecularly imprinted polymer (Cs/GM-MIP) for sensing chrysoidine was developed. CdTe QDs@luminol was designed to not only amplify the signal of CL but also reduce luminol consumption in the detection of chrysoidine. On the basis of the abundant hydroxy and amino, Cs and graphene oxide were introduced into the GM-MIP to improve the adsorption ability. The adsorption capacities of chrysoidine by both Cs/GM-MIP and non-imprinted polymer (Cs/GM-NIP) were investigated, and the CdTe QDs@luminol and Cs/GM-MIP were characterized by UV-vis, FTIR, SEM and TEM. The proposed sensor can detect chrysoidine within a linear range of 1.0 × 10- 7 - 1.0 × 10- 5 mol/L with a detection limit of 3.2 × 10- 8 mol/L (3δ) due to considerable chemiluminescence signal enhancement of the CdTe quantum dots@luminol detector and the high selectivity of the Cs/GM-MIP system. Under the optimal conditions of CL, the CdTe QDs@luminol-Cs/GM-MIP-CL sensor was used for chrysoidine determination in samples with satisfactory recoveries in the range of 90-107%.

  11. Ultrasensitive detection of lead ion sensor based on gold nanodendrites modified electrode and electrochemiluminescent quenching of quantum dots by electrocatalytic silver/zinc oxide coupled structures.

    PubMed

    Li, Meng; Kong, Qingkun; Bian, Zhaoquan; Ma, Chao; Ge, Shenguang; Zhang, Yan; Yu, Jinghua; Yan, Mei

    2015-03-15

    A signal-off electrochemiluminescence (ECL) DNA sensor based on gold nanodendrites (Au NDs) modified indium tin oxide (ITO) electrode for the detection of lead ion (Pb(2+)) was developed. Well-defined Au NDs were prepared on ITO electrode using low-potential synthesis, assisted by ethylenediamine. Based on Pb(2+)-specific deoxyribozyme, the silver/zinc oxide (Ag/ZnO) with coupled structure, prepared by one-pot method, was close to the surface of the electrode to catalyze the reduction of part of H2O2, the coreactant for cathodic ECL emission, leading to a decrease of ECL intensity. In addition, taking advantage of the larger surface area to capture a large amount of capture probe as well as excellent conductivity of Au NDs, the sensor could detect Pb(2+) quantitatively in a wider range, and performed excellent selectivity. Furthermore, such simple and sensitive DNA sensor was successfully applied for the detection of Pb(2+) in lake water and human serum samples, respectively. PMID:25461155

  12. A sensitive and selective chemiluminescence sensor for the determination of dopamine based on silanized magnetic graphene oxide-molecularly imprinted polymer

    NASA Astrophysics Data System (ADS)

    Duan, Huimin; Li, Leilei; Wang, Xiaojiao; Wang, Yanhui; Li, Jianbo; Luo, Chuannan

    2015-03-01

    Based on silanized magnetic graphene oxide-molecularly imprinted polymer (Si-MG-MIP), a sensitive and selective chemiluminescence sensor for dopamine measurement was developed. Si-MG-MIP, in which silanes was introduced to improve the mass transfer, graphene oxide was employed to improve absorption capacity, Fe3O4 nanoparticles were applied for separation easily and molecularly imprinted polymer was used to improve selectivity, demonstrated the advantages of the sensor. All the composites were confirmed by SEM, TEM, XRD and FTIR. Under the optimal conditions of chemiluminescence, dopamine could be assayed in the range of 8.0-200.0 ng/mL with a correlation coefficient of linear regression of 0.9970. The detection limit was 1.5 ng/mL (3δ) and the precision for 11 replicate detections of 80.0 ng/mL dopamine was 3.4% (RSD). When the sensor was applied in determining dopamine in actual samples, recovery ranged from 94% to 110%, which revealed that the results were satisfactory.

  13. A photoelectrochemical sensor based on nickel hydroxyl-oxide modified n-silicon electrode for hydrogen peroxide detection in an alkaline solution.

    PubMed

    Li, Huaixiang; Hao, Wenlong; Hu, Jinchao; Wu, Hongyan

    2013-09-15

    A novel photoelectrochemical hydrogen peroxide (H2O2) sensor was constructed with platinum (Pt) and nickel hydroxyl-oxide (NiOOH) double layers modified n-silicon electrode (NiOOH/Pt/n-n(+)-Si). About 40nm Pt layer and about 100nm Ni layer were successively coated on the front surface of n-n(+)-Si (111) wafers by vacuum evaporating. A stable layer of NiOOH was formed through oxidation of the Ni layer on the coated silicon wafer by the electrochemical method. The surface of modified electrode was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The NiOOH/Pt/n-n(+)-Si electrode has been used for determination of H2O2 with a two-electrode cell in the absence of reference electrode by photocurrent measurement at a zero bias. The photoelectrochemical sensor showed a good linear response to H2O2 concentrations in a range from 1.0×10(-5) to 6×10(-5)M with a determination limit (S/N=3) of 2.2μM. The NiOOH/Pt/n-n(+)-Si electrode exhibited excellent reproducibility and stability. Particularly, the facile measurement requirements made this novel modified electrode promising for the development of outdoor H2O2 sensors. PMID:23584227

  14. Using "dioscorea batatas bean"-like silver nanoparticles based localized surface plasmon resonance to enhance the fluorescent signal of zinc oxide quantum dots in a DNA sensor.

    PubMed

    Chu, Chengchao; Shen, Lei; Ge, Shenguang; Ge, Lei; Yu, Jinghua; Yan, Mei; Song, Xianrang

    2014-11-15

    We reported here the preparation of "dioscorea batatas bean"-like silver nanoparticles (AgNPs) and the unique structure provided the AgNPs good localized surface plasmon resonance (LSPR) property. In addition, zinc oxide quantum dots (ZnO QDs) were also synthesized and found with good fluorescent property. Furthermore, the ZnO QDs decorated exfoliated graphene oxide (EGO-ZnO) was prepared via electrostatic interaction. The named nanomaterials were applied in a LSPR-induced fluorescent DNA sensor. To fabricate the DNA sensor, the EGO-ZnO was modified on the silica glass as the supporter for the capture probe ssDNA, and the complementary ssDNA was labeled on the surface of the AgNPs. After the hybridization step by step, the AgNPs was fastened on the surface of the EGO-ZnO, and the fluorescent intensity of the EGO-ZnO increased as a result. The prepared DNA sensor enabled the target ssDNA to be detected in the concentration range of 10(-19)-10(-14)M, and the limit of detection was 4.3 × 10(-20)M. PMID:24912034

  15. A sensitive and selective chemiluminescence sensor for the determination of dopamine based on silanized magnetic graphene oxide-molecularly imprinted polymer.

    PubMed

    Duan, Huimin; Li, Leilei; Wang, Xiaojiao; Wang, Yanhui; Li, Jianbo; Luo, Chuannan

    2015-03-15

    Based on silanized magnetic graphene oxide-molecularly imprinted polymer (Si-MG-MIP), a sensitive and selective chemiluminescence sensor for dopamine measurement was developed. Si-MG-MIP, in which silanes was introduced to improve the mass transfer, graphene oxide was employed to improve absorption capacity, Fe3O4 nanoparticles were applied for separation easily and molecularly imprinted polymer was used to improve selectivity, demonstrated the advantages of the sensor. All the composites were confirmed by SEM, TEM, XRD and FTIR. Under the optimal conditions of chemiluminescence, dopamine could be assayed in the range of 8.0-200.0 ng/mL with a correlation coefficient of linear regression of 0.9970. The detection limit was 1.5 ng/mL (3δ) and the precision for 11 replicate detections of 80.0 ng/mL dopamine was 3.4% (RSD). When the sensor was applied in determining dopamine in actual samples, recovery ranged from 94% to 110%, which revealed that the results were satisfactory. PMID:25574658

  16. Major potassium conductance in type I hair cells from rat semicircular canals: characterization and modulation by nitric oxide.

    PubMed

    Chen, J W; Eatock, R A

    2000-07-01

    Mammalian vestibular organs have two types of hair cell, type I and type II, which differ morphologically and electrophysiologically. Type I hair cells alone express an outwardly rectifying current, I(K, L), which activates at relatively negative voltages. We used whole cell and patch configurations to study I(K,L) in hair cells isolated from the sensory epithelia of rat semicircular canals. I(K,L) was potassium selective, blocked by 4-aminopyridine, and permeable to internal cesium. It activated with sigmoidal kinetics and was half-maximally activated at -74.5 +/- 1.6 mV (n = 35; range -91 to -50 mV). It was a very large conductance (91 +/- 8 nS at -37 mV; 35 nS/pF for a cell of average size). Patch recordings from type I cells revealed a candidate ion channel with a conductance of 20-30 pS. Because I(K,L) was activated at the resting potential, the cells had low input resistances (R(m)): median 25 MOmega at -67 mV versus 1.3 GOmega for type II cells. Consequently, injected currents comparable to large transduction currents (300 pA) evoked small (oxide (NO) is an ion channel modulator that is present in vestibular epithelia. Four different NO donors, applied externally, inhibited the I(K,L) conductance at -67 mV, with mean effects ranging from 33 to 76%. The NO donor sodium nitroprusside inhibited channel activity in patches when they were cell

  17. Picosecond pulsed laser deposition of metal-oxide sensing layers with controllable porosity for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Kekkonen, Ville; Chaudhuri, Saumyadip; Clarke, Fergus; Kaisto, Juho; Liimatainen, Jari; Pandian, Santhosh Kumar; Piirto, Jarkko; Siltanen, Mikael; Zolotukhin, Aleksey

    2016-03-01

    Recent results of properties and performance of {WO}_3 gas sensing layers produced by industrial picosecond pulsed laser deposition process developed by Picodeon Ltd Oy are presented in this paper. {WO}_3 layers with controllable porosity and nanostructure were successfully deposited on commercial sensor platforms, and basic measurements to characterize their performance as gas sensors gave promising results.

  18. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo

    PubMed Central

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-01-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully. PMID:25640000

  19. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo.

    PubMed

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-01-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully. PMID:25640000

  20. Flow injection measurements of S-nitrosothiols species in biological samples using amperometric nitric oxide sensor and soluble organoselenium catalyst reagent

    PubMed Central

    Huang, Chuncui; Brisbois, Elizabeth

    2011-01-01

    A novel flow injection analysis (FIA) system suitable for measurement of S-nitrosothiols (RSNOs) in blood plasma is described. In the proposed (FIA) system, samples and standards containing RSNO species are injected into a buffer carrier stream that is mixed with the reagent stream containing 3,3′-dipropionicdiselenide (SeDPA) and glutathione (GSH). SeDPA has been shown previously to catalytically decompose RSNOs in the presence of a reducing agent, such as GSH, to produce nitric oxide (NO). The liberated NO is then detected downstream by an amperometric NO sensor. This sensor is prepared using an electropolymerized m-phenylenediamine (m-PD)/resorcinol and Nafion composite films at the surface of a platinum electrode. Using optimized flow rates and reagent concentrations, detection of various RSNOs at levels in the range of 0.25–20 μM is possible. For plasma samples, detection of background sensor interference levels within the samples must first be carried out using an identical FIA arrangement, but without the added SeDPA and GSH reagents. Subtraction of this background sensor current response allows good analytical recovery of RSNOs spiked into animal plasma samples, with recoveries in the range of 90.4–101.0%. PMID:21416401

  1. Development of novel low-temperature selective hydrogen gas sensors made of palladium/oxide or nitride capped Magnesium-transition metal hydride films

    NASA Astrophysics Data System (ADS)

    Tang, Yu Ming

    Palladium capped Mg-based transition metal alloy film (Pd/Mg-TM) is a potentially useful hydrogen gas (H2) sensing material, which can operate at low temperature for detection of H2 leakage in an environment to ensure safe use and storage of the gas. The Pd layer catalytically dissociates hydrogen molecules, and the hydrogen atoms produced can enter (hydridation) or be detached (dehydridation) from the alloy layer. These processes are reversible, such that the film is switchable between a metal state and a hydride state, giving rise to substantial changes in its optical transmittance/reflectance and electrical resistivity. Unlike a conventional metal-oxide (MOx) H2 sensor, hydridation of an Mg-TM film is associated with relatively low enthalpy, and hence can perform at temperature much lower than the operation temperature of an MOx sensor (typically around 500°C or above). As such, an Mg-TM based sensor does not experience undesired annealing effect during operation, and hence is much more stable and durable. Furthermore, the detection selectivity of a Pd/Mg-TM film versus other reducing gases is superior to most conventional MOx-type hydrogen sensors. In this project, we systematically investigated the H2 sensing properties of Pd/Mg-TM films.

  2. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-02-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully.

  3. Fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Hesse, J.; Sohler, W.

    1984-01-01

    A survey of the developments in the field of fiber optics sensor technology is presented along with a discussion of the advantages of optical measuring instruments as compared with electronic sensors. The two primary types of fiber optics sensors, specifically those with multiwave fibers and those with monowave fibers, are described. Examples of each major sensor type are presented and discussed. Multiwave detectors include external and internal fiber optics sensors. Among the monowave detectors are Mach-Zender interferometers, Michelson interferometers, Sagnac interferometers (optical gyroscopes), waveguide resonators, and polarimeter sensors. Integrated optical sensors and their application in spectroscopy are briefly discussed.

  4. Fabrication of SnO2-Reduced Graphite Oxide Monolayer-Ordered Porous Film Gas Sensor with Tunable Sensitivity through Ultra-Violet Light Irradiation

    PubMed Central

    Xu, Shipu; Sun, Fengqiang; Yang, Shumin; Pan, Zizhao; Long, Jinfeng; Gu, Fenglong

    2015-01-01

    A new graphene-based composite structure, monolayer-ordered macroporous film composed of a layer of orderly arranged macropores, was reported. As an example, SnO2-reduced graphite oxide monolayer-ordered macroporous film was fabricated on a ceramic tube substrate under the irradiation of ultra-violet light (UV), by taking the latex microsphere two-dimensional colloid crystal as a template. Graphite oxide sheets dispersed in SnSO4 aqueous solution exhibited excellent affinity with template microspheres and were in situ incorporated into the pore walls during UV-induced growth of SnO2. The growing and the as-formed SnO2, just like other photocatalytic semiconductor, could be excited to produce electrons and holes under UV irradiation. Electrons reduced GO and holes adsorbed corresponding negative ions, which changed the properties of the composite film. This film was directly used as gas-sensor and was able to display high sensitivity in detecting ethanol gas. More interestingly, on the basis of SnO2-induced photochemical behaviours, this sensor demonstrated tunable sensitivity when UV irradiation time was controlled during the fabrication process and post in water, respectively. This study provides efficient ways of conducting the in situ fabrication of a semiconductor-reduced graphite oxide film device with uniform surface structure and controllable properties. PMID:25758292

  5. Effect of Pore Size and Film Thickness on Gold-Coated Nanoporous Anodic Aluminum Oxide Substrates for Surface-Enhanced Raman Scattering Sensor

    PubMed Central

    Kassu, Aschalew; Farley, Carlton; Sharma, Anup; Kim, Wonkyu; Guo, Junpeng

    2015-01-01

    A sensitive surface enhanced Raman scattering chemical sensor is demonstrated by using inexpensive gold-coated nanoporous anodic aluminum oxide substrates. To optimize the performance of the substrates for sensing by the Surface-enhanced Raman scattering (SERS) technique, the size of the nanopores is varied from 18 nm to 150 nm and the gold film thickness is varied from 30 nm to 120 nm. The sensitivity of gold-coated nanoporous surface enhanced Raman scattering sensor is characterized by detecting low concentrations of Rhodamine 6G laser dye molecules. The morphology of the SERS substrates is characterized by atomic force microscopy. Optical properties of the nanoporous SERS substrates including transmittance, reflectance, and absorbance are also investigated. Relative signal enhancement is plotted for a range of substrate parameters and a detection limit of 10−6 M is established. PMID:26633402

  6. Merocyanine 540 adsorbed on polyethylenimine-functionalized graphene oxide nanocomposites as a turn-on fluorescent sensor for bovine serum albumin.

    PubMed

    Bayraktutan, Tuğba; Meral, Kadem

    2016-08-17

    Graphene oxide (GO)-based fluorescence sensors are attractive and versatile tools for various sensing applications. Herein, we report the photophysical properties of merocyanine 540 (MC540) in an aqueous dispersion including graphene oxide (GO) and GO chemically functionalized with branched polyethylenimine (PEI), and the application of a novel designed MC540/PEI-GO system for BSA (bovine serum albumin) detection. Initially, the negatively charged GO surface was modified using PEI to form high positively charged PEI-GO nanocomposites via the amine groups of PEI. Later, to form MC540/PEI-GO system, MC540 molecules were assembled on PEI-GO nanocomposites having an attractive surface for negatively charged functional materials. The interaction of MC540 molecules with PEI-GO nanocomposites in aqueous dispersion led to a change in the photophysical properties of the dye. The variations in the photophysical properties of MC540 were spectroscopically characterized and explained. It was determined that the interaction of MC540 with GO sheets and PEI-GO nanocomposites strongly quenched the fluorescence of the dye. However, the quenching effect of the PEI-GO nanocomposites on the fluorescence of MC540 was specifically prevented by the addition of BSA, in which the fluorescence of MC540 was nearly recovered. By using the PEI-GO nanocomposites-based fluorescence platform, BSA has been detected with a LOD (limit of detection) of 7.45 nM, which is one of the best applications among BSA sensors to date. The designed sensor system was easily applied for the detection of BSA in commonly used biological media and clinical injectable fluids. Consequently, we suggest a simple, fast, sensitive and selective BSA sensor designed by assembling MC540 molecules on PEI-GO nanocomposites. PMID:27503125

  7. A disposable chronocoulometric sensor for heavy metal ions using a diaminoterthiophene-modified electrode doped with graphene oxide.

    PubMed

    Choi, Seung-Min; Kim, Dong-Min; Jung, Ok-Sang; Shim, Yoon-Bo

    2015-09-10

    The rapid simultaneous determination of cadmium, lead, copper, and mercury ions is performed by employing a disposable sensor modified with graphene oxide (GO) doped diaminoterthiophene (GO/DTT) for chronocoulometry (CC). The performances of CC with and without pre-deposition in two opposite potential step directions were compared with square wave anodic stripping voltammetry (SWASV) under various conditions. The surface of the GO/DTT modified screen print carbon electrode (SPCE) was characterized by SEM, EDXS, and electrochemical impedance spectroscopy (EIS). Experimental variables that affect the response signal such as the pH, deposition time, type of supporting electrolyte, concentration of DTT, content ratio of GO to DTT, and Nafion content were optimized. Interference effects due to other heavy metal ions were also investigated. The dynamic ranges of SWASV and CC were between 1 ng mL(-1) and 2.5 μg mL(-1) and between 1 ng mL(-1) and 10 μg mL(-1), respectively. The detection limits for Cd(2+), Pb(2+), Cu(2+), Hg(2+) ions were 1.9 ± 0.4 ng mL(-1), 2.8 ± 0.6 ng mL(-1), 0.8 ± 0.2 ng mL(-1), and 2.6 ± 0.9 ng mL(-1) for the CC stripping method; 2.6 ± 0.2 ng mL(-1), 0.5 ± 0.1 ng mL(-1), 1.8 ± 0.3 ng mL(-1), and 3.2 ± 0.3 ng mL(-1) for the CC deposition method; and 7.1 ± 0.9, 1.9 ± 0.3, 0.4 ± 0.1, and 0.7 ± 0.1 ng mL(-1) for SWASV. The reliability of the method for point-of-analysis was evaluated by analyzing a urine standard reference material and some water samples. PMID:26388477

  8. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    SciTech Connect

    Chen, Kevin

    2014-08-31

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers, rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100oC have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800oC. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest

  9. The conserved Trp114 residue of thioredoxin reductase 1 has a redox sensor-like function triggering oligomerization and crosslinking upon oxidative stress related to cell death

    PubMed Central

    Xu, J; Eriksson, S E; Cebula, M; Sandalova, T; Hedström, E; Pader, I; Cheng, Q; Myers, C R; Antholine, W E; Nagy, P; Hellman, U; Selivanova, G; Lindqvist, Y; Arnér, E S J

    2015-01-01

    The selenoprotein thioredoxin reductase 1 (TrxR1) has several key roles in cellular redox systems and reductive pathways. Here we discovered that an evolutionarily conserved and surface-exposed tryptophan residue of the enzyme (Trp114) is excessively reactive to oxidation and exerts regulatory functions. The results indicate that it serves as an electron relay communicating with the FAD moiety of the enzyme, and, when oxidized, it facilitates oligomerization of TrxR1 into tetramers and higher multimers of dimers. A covalent link can also be formed between two oxidized Trp114 residues of two subunits from two separate TrxR1 dimers, as found both in cell extracts and in a crystal structure of tetrameric TrxR1. Formation of covalently linked TrxR1 subunits became exaggerated in cells on treatment with the pro-oxidant p53-reactivating anticancer compound RITA, in direct correlation with triggering of a cell death that could be prevented by antioxidant treatment. These results collectively suggest that Trp114 of TrxR1 serves a function reminiscent of an irreversible sensor for excessive oxidation, thereby presenting a previously unrecognized level of regulation of TrxR1 function in relation to cellular redox state and cell death induction. PMID:25611390

  10. Sensor technology

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M.

    1988-01-01

    The objective is to provide necessary expertise and technology to advance space remote sensing of terrestrial, planetary, and galactic phenomena through the use of electromagnetic and electro-optic properties of gas, liquid, and solid state materials technology. The Sensor Technology Program is divided into two subprograms: a base research and development part and a Civil Space Technology Initiative (CSTI) part. The base research and development consists of research on artificially grown materials such as quantum well and superlattice structure with the potential for new and efficient means for detecting electromagnetic phenomena. Research is also being done on materials and concepts for detector components and devices for measuring high energy phenomena such as UV, X-, and gamma rays that are required observables in astrophysis and solar physics missions. The CSTI program is more mission driven and is balanced among four major disciplines: detector sensors; submillimeter wave sensors; LIDAR/DIAL sensors; and cooler technology.

  11. The major pelvic ganglion is the main source of nitric oxide synthase-containing nerve fibers in penile erectile tissue of the rat.

    PubMed

    Ding, Y Q; Wang, Y Q; Qin, B Z; Li, J S

    1993-12-24

    The possible implication of nitric oxide synthase (NOS) in penile erection was examined by utilizing NADPH histochemistry in the rat. NADPH histochemistry indicated that the major pelvic ganglion (MPG), a well-known origin of nerve fibers supplying the external genitalia, contained many NOS-positive neurons. On the other hand, NOS-positive nerve fibers in penile erectile tissue observed in the walls of both arteries and veins, as well as in intrinsic smooth muscles. The retrograde tracing study with Fluoro-Gold (FG) in combination with NADPH histochemistry revealed that almost all MPG neurons which were retrogradely labeled with FG injected into the penile crura were NOS-positive. Thus, the MPG was considered to be the main source of NOS-positive nerve fibers in penile erectile tissue. PMID:7512245

  12. Polymerase chain reaction detection and inducible nitric-oxide synthase expression of Leishmania major in mice inoculated by two different routes

    PubMed Central

    Mahmoud, Abeer E; Attia, Rasha AH; Eldeek, Hanan EM; Farrag, Haiam Mohammed Mahmoud; Makboul, Rania

    2016-01-01

    Introduction: Leishmania major needs a sensitive and specific method for proper diagnosis. This study aims to study the course and histopathology of L. major in certain tissues of experimentally infected BALB/c mice after subcutaneous (sc) and intraperitoneal (ip) inoculation. Materials and Methods: After infecting BALB/c mice using sc and ip inoculation, the histopathology was studied. The kinetoplastic DNA polymerase chain reaction (PCR) for its molecular detection and detect the inducible nitric-oxide synthase (iNOS) pattern during the first 3 months of infection. Result: PCR could detect the presence of L. major in all spleens, lymph nodes, and skin ulcers by both inoculation routes while (33%) and (42%) of livers were positive after sc and ip routes, respectively. Chronic inflammatory cell infiltrates with capsulitis was found in the spleen, lymph nodes, and liver. Granulomas were found in the spleen and liver. There was a statistically significant difference in iNOS expression along the experiment in the spleen and lymph nodes by both routes and in the liver by ip only. Apart from the liver, iNOS could not be detected on the 2nd week postinfection and was high after 1 month for both routes in all samples; a moderate decrease at 2 months and the highest decrease were detected after 3 months. Conclusions: L. major inoculation by both routes produce visceral disease in mice, and kinetoplastic DNA PCR can detect its presence from the 2nd week up to the 3rd month postinfection. The iNOS expression was high at 1 and 2 months and remained throughout the 3 months of the experiment; which plays an important role in the disease course and control. PMID:26998433

  13. Metal Oxides and Ion-Exchanging Surfaces as pH Sensors in Liquids: State-of-the-Art and Outlook

    PubMed Central

    Kurzweil, Peter

    2009-01-01

    Novel applications of online pH determinations at temperatures from -35 °C to 130 °C in technical and biological media, which are all but ideal aqueous solutions, require new approaches to pH monitoring. The glass electrode, introduced nearly hundred years ago, and chemical sensors based on field effect transistors (ISFET) show specific drawbacks with respect to handling and long-time stability. Proton sensitive metal oxides seem to be a promising and alternative to the state-of-the-art measuring methods, and might overcome some problems of classical hydrogen electrodes and reference electrodes. PMID:22408563

  14. Involvement of major components from Sporothrix schenckii cell wall in the caspase-1 activation, nitric oxide and cytokines production during experimental sporotrichosis.

    PubMed

    Gonçalves, Amanda Costa; Maia, Danielle Cardoso Geraldo; Ferreira, Lucas Souza; Monnazzi, Luis Gustavo Silva; Alegranci, Pâmela; Placeres, Marisa Campos Polesi; Batista-Duharte, Alexander; Carlos, Iracilda Zeppone

    2015-02-01

    Sporotrichosis is a chronic infection caused by the dimorphic fungus Sporothrix schenckii, involving all layers of skin and the subcutaneous tissue. The role of innate immune toll-like receptors 2 and 4 in the defense against this fungus has been reported, but so far, there were no studies on the effect of cell wall major components over the cytosolic oligo-merization domain (NOD)-like receptors, important regulators of inflammation and responsible for the maturation of IL-1β and IL-18, whose functions are dependents of the caspase-1 activation, that can participate of inflammasome. It was evaluated the percentage of activation of caspase-1, the production of IL-1β, IL-18, IL-17, IFN-γ and nitric oxide in a Balb/c model of S. schenckii infection. It was observed a decreased activity of caspase-1 during the fourth and sixth weeks of infection accompanied by reduced secretion of the cytokines IL-1β, IL-18 and IL-17 and high production of nitric oxide. IFN-γ levels were elevated during the entire time course of infection. This temporal reduction in caspase-1 activity coincides exactly with the reported period of fungal burden associated with a transitory immunosuppression induced by this fungus and detected in similar infection models. These results indicate the importance of interaction between caspase-1, cytokines IL-1β and IL-18 in the host defense against S. schenckii infection, suggesting a participation the inflammasome in this response. PMID:25205196

  15. Muti-component nanocomposite of nickel and manganese oxides with enhanced stability and catalytic performance for non-enzymatic glucose sensors

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Cai, Daoping; Wang, Chenxia; Liu, Bin; Wang, Lingling; Liu, Yuan; Li, Han; Wang, Yanrong; Li, Qiuhong; Wang, Taihong

    2016-06-01

    A muti-component nanocomposite of nickel and manganese oxides with a uniformly dispersed microspherical structure has been fabricated by a hydrothermal synthesis method. The as-prepared nanocomposite has been employed as a sensing material for non-enzymatic glucose detection and shown excellent electrocatalytic activity, such as high sensitivities of 82.44 μA mM‑1 cm‑2 and 27.92 μA mM‑1 cm‑2 over the linear range of 0.1–1 mM and 1–4.5 mM, respectively, a low detection limit of 0.2 μM and a fast response time of <3 s. Moreover, satisfactory specificity and excellent stability have also been achieved. The results demonstrate that a muti-component nanocomposite of nickel and manganese oxides has great potential applications as glucose sensors.

  16. Thermal Studies of New Precursors to Indium-tin Oxides for Use as Sensor Materials in the Detection of NO(x)

    NASA Technical Reports Server (NTRS)

    Goldsby, J. C.; Kacik, T.; Hockensmith, C. M.

    1999-01-01

    Control of combustion product emissions in both sub and super-sonic jet engines can be facilitated by measurement of NO(x) levels with metal oxide sensors, In2O3, metal-doped SnO2, and SnO, (as well as other materials) show resistivity changes in the presence of NO(x), but often their sensitivity, stability, and selectivity are low. This study was designed to develop new synthetic pathways to precursors that produce high purity, two phase In2O3-SnO2. The precursors were formed by complexation of tin with any oxide ligands to give the ammonium salt (NH4). Thermal studies of these precursors were carried out by thermal gravimetry (TG) and differential scanning calorimetry (DSC). Further studies by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR) were also conducted.

  17. Muti-component nanocomposite of nickel and manganese oxides with enhanced stability and catalytic performance for non-enzymatic glucose sensors.

    PubMed

    Wang, Dandan; Cai, Daoping; Wang, Chenxia; Liu, Bin; Wang, Lingling; Liu, Yuan; Li, Han; Wang, Yanrong; Li, Qiuhong; Wang, Taihong

    2016-06-24

    A muti-component nanocomposite of nickel and manganese oxides with a uniformly dispersed microspherical structure has been fabricated by a hydrothermal synthesis method. The as-prepared nanocomposite has been employed as a sensing material for non-enzymatic glucose detection and shown excellent electrocatalytic activity, such as high sensitivities of 82.44 μA mM(-1) cm(-2) and 27.92 μA mM(-1) cm(-2) over the linear range of 0.1-1 mM and 1-4.5 mM, respectively, a low detection limit of 0.2 μM and a fast response time of <3 s. Moreover, satisfactory specificity and excellent stability have also been achieved. The results demonstrate that a muti-component nanocomposite of nickel and manganese oxides has great potential applications as glucose sensors. PMID:27181988

  18. Neisseria meningitidis Lacking the Major Porins PorA and PorB Is Viable and Modulates Apoptosis and the Oxidative Burst of Neutrophils.

    PubMed

    Peak, Ian R; Chen, Adrienne; Jen, Freda E-C; Jennings, Courtney; Schulz, Benjamin L; Saunders, Nigel J; Khan, Arshad; Seifert, H Steven; Jennings, Michael P

    2016-08-01

    The bacterial pathogen Neisseria meningitidis expresses two major outer-membrane porins. PorA expression is subject to phase-variation (high frequency, random, on-off switching), and both PorA and PorB are antigenically variable between strains. PorA expression is variable and not correlated with meningococcal colonisation or invasive disease, whereas all naturally-occurring strains express PorB suggesting strong selection for expression. We have generated N. meningitidis strains lacking expression of both major porins, demonstrating that they are dispensable for bacterial growth in vitro. The porAB mutant strain has an exponential growth rate similar to the parental strain, as do the single porA or porB mutants, but the porAB mutant strain does not reach the same cell density in stationary phase. Proteomic analysis suggests that the double mutant strain exhibits compensatory expression changes in proteins associated with cellular redox state, energy/nutrient metabolism, and membrane stability. On solid media, there is obvious growth impairment that is rescued by addition of blood or serum from mammalian species, particularly heme. These porin mutants are not impaired in their capacity to inhibit both staurosporine-induced apoptosis and a phorbol 12-myristate 13-acetate-induced oxidative burst in human neutrophils suggesting that the porins are not the only bacterial factors that can modulate these processes in host cells. PMID:26562068

  19. Auger electron spectroscopy study of oxidation of a PdCr alloy used for high-temperature sensors

    NASA Technical Reports Server (NTRS)

    Boyd, Darwin L.; Zeller, Mary V.; Vargas-Aburto, Carlos

    1993-01-01

    A Pd-13 wt. percent Cr solid solution is a promising high-temperature strain gage alloy. In bulk form it has a number of properties that are desirable in a resistance strain gage material, such as a linear electrical resistance versus temperature curve to 1000 C and stable electrical resistance in air at 1000 C. However, unprotected fine wire gages fabricated from this alloy perform well only to 600 C. At higher temperatures severe oxidation degrades their electrical performance. In this work Auger electron spectroscopy was used to study the oxidation chemistry of the alloy wires and ribbons. Results indicate that the oxidation is caused by a complex mechanism that is not yet fully understood. As expected, during oxidation, a layer of chromium oxide is formed. This layer, however, forms beneath a layer of metallic palladium. The results of this study have increased the understanding of the oxidation mechanism of Pd-13 wt. percent Cr.

  20. Nano-assemblies consisting of Pd/Pt nanodendrites and poly (diallyldimethylammonium chloride)-coated reduced graphene oxide on glassy carbon electrode for hydrogen peroxide sensors.

    PubMed

    Zhang, Yanyan; Zhang, Cong; Zhang, Di; Ma, Min; Wang, Weizhen; Chen, Qiang

    2016-01-01

    Non-enzymatic hydrogen peroxide (H2O2) sensors were fabricated on the basis of glassy carbon (GC) electrode modified with palladium (Pd) core-platinum (Pt) nanodendrites (Pt-NDs) and poly (diallyldimethylammonium chloride) (PDDA)-coated reduced graphene oxide (rGO). A facile wet-chemical method was developed for preparing Pd core-Pt nanodendrites. In this approach, the growth of Pt NDs was directed by Pd nanocrystal which could be regarded as seed. The PDDA-coated rGO could form uniform film on the surface of GC electrode, which provided a support for Pd core- Pt NDs adsorption by self-assembly. The morphologies of the nanocomposites were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (spectrum). Electrocatalytic ability of the nanocomposites was evaluated by cyclic voltammetry and chronoamperometric methods. The sensor fabricated by Pd core-Pt NDs/PDDA-rGO/GCE exhibited high sensitivity (672.753 μA mM(-1) cm(-2)), low detection limit (0.027 μM), wider linear range (0.005-0.5mM) and rapid response time (within 5s). Besides, it also exhibited superior reproducibility, excellent anti-interference performance and long-term stability. The present work could afford a viable method and efficient platform for fabricating all kinds of amperometric sensors and biosensors. PMID:26478428

  1. Sensitive detection of nitric oxide using a 5.26 μm external cavity quantum cascade laser based QEPAS sensor

    NASA Astrophysics Data System (ADS)

    Tittel, Frank K.; Dong, Lei; Lewicki, Rafal; Lee, George; Peralta, Adjani; Spagnolo, Vincenzo

    2012-01-01

    The development and performance of a continuous wave (CW), thermoelectrically cooled (TEC) external cavity quantum cascade laser (EC-QCL) based sensor for quantitative measurements of nitric oxide (NO) concentrations in exhaled breath will be reported. Human breath contains ~ 400 different chemical species, usually at ultra low concentration levels, which can serve as biomarkers for the identification and monitoring of human diseases or wellness states. By monitoring exhaled NO concentration levels, a fast non-invasive diagnostic method for treatment of patients with asthma and chronic obstructive pulmonary disease (COPD) is feasible. The NO concentration measurements are performed with a 2f wavelength modulation based quartz enhanced photoacoustic spectroscopy (QEPAS) technique, which is very suitable for real time breath measurements, due to the fast gas exchange inside a compact QEPAS gas cell (<5 mm3 typical volume). In order to target the optimal interference free NO R (6.5) absorption doublet at 1900.08 cm-1(λ~5.263 μm) a Daylight Solutions Inc. widely tunable, mode-hop free 100 mW EC-QCL was used. The sensor reference channel includes a 10 cm long reference cell, filled with a 0.5% NO in N2 at 150 Torr, which is used for line-locking purpose. A minimum detection limit (1σ) for the EC-QCL based line locked NO sensor is ~5 ppbv with a 1 sec update time by a custom built control QCL compatible electronics unit.

  2. Metal oxide nanostructures synthesized on flexible and solid substrates and used for catalysts, UV detectors, and chemical sensors

    NASA Astrophysics Data System (ADS)

    Willander, Magnus; Sadollahkhani, Azar; Echresh, Ahmad; Nur, Omer

    2014-03-01

    In this paper we demonstrate the visibility of the low temperature chemical synthesis for developing device quality material grown on flexible and solid substrates. Both colorimetric sensors and UV photodetectors will be presented. The colorimetric sensors developed on paper were demonstrated for heavy metal detection, in particular for detecting copper ions in aqueous solutions. The demonstrated colorimetric copper ion sensors developed here are based on ZnO@ZnS core-shell nanoparticles (CSNPs). These sensors demonstrated an excellent low detection limit of less than 1 ppm of copper ions. Further the colorimetric sensors operate efficiently in a wide pH range between 4 and 11, and even in turbulent water. The CSNPs were additionally used as efficient photocatalytic degradation element and were found to be more efficient than pure ZnO nanoparticles (NPs). Also p-NiO/n-ZnO thin film/nanorods pn junctions were synthesized by a two-step synthesis process and were found to act as efficient UV photodetectors. Additionally we show the effect of the morphology of different CuO nanostructures on the efficiency of photo catalytic degradation of Congo red organic dye.

  3. Validation of In-Situ Iron-Manganese Oxide Coated Stream Pebbles as Sensors for Arsenic Source Monitoring

    NASA Astrophysics Data System (ADS)

    Blake, J.; Peters, S. C.; Casteel, A.

    2013-12-01

    Locating nonpoint source contaminant fluxes can be challenging due to the inherent heterogeneity of source and of the subsurface. Contaminants such as arsenic are a concern for drinking water quality and ecosystem health. Arsenic contamination can be the result of several natural and anthropogenic sources, and therefore it can be difficult to trace and identify major areas of arsenic in natural systems. Identifying a useful source indicator for arsenic is a crucial step for environmental remediation efforts. Previous studies have found iron-manganese oxide coated streambed pebbles as useful source indicators due to their high attraction for heavy metals in water. In this study, pebbles, surface water at baseflow and nearby rocks were sampled from the Pennypack Creek and its tributaries, in southwestern Pennsylvania, to test the ability of coated streambed pebbles as environmental source indicators for arsenic. Quartz pebbles, 5-7 cm in diameter, were sampled to minimize elemental contamination from rock chemistry. In addition, quartz provides an excellent substrate for iron and manganese coatings to form. These coatings were leached from pebbles using 4M nitric acid with 0.1% concentrated hydrochloric acid. Following sample processing, analyses were performed using an ICP-MS and the resulting data were spatially organized using ArcGIS software. Arsenic, iron and manganese concentrations in the leachate are normalized to pebble surface area and each location is reported as a ratio of arsenic to iron and manganese. Results suggest that iron-manganese coated stream pebbles are useful indicators of arsenic location within a watershed.

  4. Cyclic Nanostructures of Tungsten Oxide (WO3)n  (n = 2–6) as NOx Gas Sensor: A Theoretical Study

    PubMed Central

    Izadyar, Mohammad; Jamsaz, Azam

    2014-01-01

    Today's WO3-based gas sensors have received a lot of attention, because of important role as a sensitive layer for detection of the small quantities of  NOx. In this research, a theoretical study has been done on the sensing properties of different cyclic nanoclusters of (WO3)n  (n = 2–6) for NOx  (x = 1,2) gases. Based on the calculated adsorption energies by B3LYP and X3LYP functionals, from the different orientations of  NOx molecule on the tungsten oxide clusters, O–N⋯W was preferred. Different sizes of the mentioned clusters have been analyzed and W2O6 cluster was chosen as the best candidate for NOx detection from the energy viewpoint. Using the concepts of the chemical hardness and electronic charge transfer, some correlations between the energy of adsorption and interaction energy have been established. These analyses confirmed that the adsorption energy will be boosted with charge transfer enhancement. However, the chemical hardness relationship is reversed. Finally, obtained results from the natural bond orbital and electronic density of states analysis confirmed the electronic charge transfer from the adsorbates to WO3 clusters and Fermi level shifting after adsorption, respectively. The last parameter confirms that the cyclic clusters of tungsten oxide can be used as NOx gas sensors. PMID:25544841

  5. An electrochemical sensor for gallic acid based on Fe₂O₃/electro-reduced graphene oxide composite: Estimation for the antioxidant capacity index of wines.

    PubMed

    Gao, Feng; Zheng, Delun; Tanaka, Hidekazu; Zhan, Fengping; Yuan, Xiaoning; Gao, Fei; Wang, Qingxiang

    2015-12-01

    A highly sensitive electrochemical sensor for gallic acid (GA), an important polyphenolic compound, was fabricated using the hybrid material of chitosan (CS), fishbone-shaped Fe2O3 (fFe2O3), and electrochemically reduced graphene oxide (ERGO) as the sensing matrix. The electrochemical characterization experiments showed that the CS-fFe2O3-ERGO modified glassy carbon electrode (CS-fFe2O3-ERGO/GCE) had large surface area, excellent electronic conductivity and high stability. The GA presented a superior electrochemical response on CS-fFe2O3-ERGO/GCE in comparison with the single-component modified electrode. The electrochemical mechanism and optimal test conditions of GA on the electrode surface were carefully investigated. Under the optimal conditions, the oxidation peak currents in differential pulse voltammetry (DPV) experiments exhibited a good linear relationship with the logarithmic values of GA concentration over the range from 1.0×10(-6)M to 1.0×10(-4)M. Based on signal-to-noise (S/N) characteristic of 3, the detection limit was estimated to be 1.5×10(-7)M. The proposed sensor has also been applied for estimating the antioxidant capacity index of real samples of red and white wines. PMID:26354265

  6. Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites.

    PubMed

    Jiang, Jingjing; Du, Xuezhong

    2014-10-01

    Sensitive electrochemical sensors were fabricated with reduced graphene oxide-supported Au@Pd (Au@Pd-RGO) nanocomposites by one-step synthesis for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) with low detection limits and wide concentration ranges. From the Au@Pd-RGO-modified electrodes, well-separated oxidation peaks and enhanced peak currents of AA, DA, and UA were observed owing to the superior conductivity of RGO and the excellent catalytic activity of Au@Pd nanoparticles. For individual detection, the linear responses of AA, DA, and UA were in the concentration ranges of 0.1-1000, 0.01-100, and 0.02-500 μM with detection limits of 0.02, 0.002, and 0.005 μM (S/N = 3), respectively. For simultaneous detection by synchronous change of the concentrations of AA, DA, and UA, the linear response ranges were 1-800, 0.1-100, and 0.1-350 μM with detection limits of 0.28, 0.024, and 0.02 μM (S/N = 3), respectively. The fabricated sensors were further applied to the detection of AA, DA, and UA in urine samples. The Au@Pd-RGO nanocomposites have promising applications in highly sensitive and selective electrochemical sensing. PMID:25137352

  7. Portable Electronic Nose System for Identification of Synthesized Gasoline Using Metal Oxide Gas Sensor and Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Kim, Young Wung; Park, Hong Bae; Lee, In Soo; Cho, Jung Hwan

    2011-09-01

    This paper describes a portable electronic nose (e-nose) system for use in the identification of synthesized gasoline, comprised of a single semiconductor type of gas sensor and pattern recognition neural networks. The designed e-nose system consists of a one-chip microcontroller, a pre-concentrator, and a gas sensor. Two different neural networks, a multilayer perceptron (MLP) neural network and a fuzzy ARTMAP neural network were applied to discriminate synthesized gasoline from normal gasoline. The results of the classification showed 100% and 85% recognition rates for the training data set and testing data set, respectively.

  8. Reusable sensor based on high magnetization carboxyl-modified graphene oxide with intrinsic hydrogen peroxide catalytic activity for hydrogen peroxide and glucose detection.

    PubMed

    Yang, Hung-Wei; Hua, Mu-Yi; Chen, Shi-Lian; Tsai, Rung-Ywan

    2013-03-15

    We propose a new strategy to improve the enzyme stability, construction and sensitivity of a multifunctional sensor. An exfoliated graphene oxide sheet with carboxyl-long-chains (GO-CLC) was prepared in one step from primitive graphite via Friedel-Crafts acylation. Magnetic nanoparticles, glucose oxidase (GOD) and poly[aniline-co-N-(1-one-butyric acid) aniline] (SPAnH) were then incorporated to form an electrochemical film (SPAnH-HMGO-CLC-GOD) for the detection of hydrogen peroxide (H(2)O(2)) and glucose. The GO and Fe(3)O(4) have intrinsic hydrogen peroxide catalytic activity and the activity will be enhanced by the combination of SPAnH coating and induces an amplification of electrochemical reduction current. This response can be used as a glucose sensor by tracing the released H(2)O(2) after enzymatic reaction of bound GOD. Our sensor was linear within the range from 0.01 mM to 1mM H(2)O(2) and 0.1mM to 1.4mM glucose, with high sensitivities of 4340.6 μA mM(-1) cm(-2) and 1074.6 μA mM(-1) cm(-2), respectively. The relative standard deviations (RSD) were 5.4% for H(2)O(2) detection and 5.8% for glucose detection. The true detecting range was 0.4-40 mM for H(2)O(2) and 4-56 mM for glucose, which multiplied by 40-fold of dilution. This sensor based on the catalysis of organic SPAnH and the enzymatic activity of GOD can be used for both H(2)O(2) and glucose sensing in potential clinical, environmental and industrial applications. PMID:22959012

  9. An ultrasensitive method of real time pH monitoring with complementary metal oxide semiconductor image sensor.

    PubMed

    Devadhasan, Jasmine Pramila; Kim, Sanghyo

    2015-02-01

    CMOS sensors are becoming a powerful tool in the biological and chemical field. In this work, we introduce a new approach on quantifying various pH solutions with a CMOS image sensor. The CMOS image sensor based pH measurement produces high-accuracy analysis, making it a truly portable and user friendly system. pH indicator blended hydrogel matrix was fabricated as a thin film to the accurate color development. A distinct color change of red, green and blue (RGB) develops in the hydrogel film by applying various pH solutions (pH 1-14). The semi-quantitative pH evolution was acquired by visual read out. Further, CMOS image sensor absorbs the RGB color intensity of the film and hue value converted into digital numbers with the aid of an analog-to-digital converter (ADC) to determine the pH ranges of solutions. Chromaticity diagram and Euclidean distance represent the RGB color space and differentiation of pH ranges, respectively. This technique is applicable to sense the various toxic chemicals and chemical vapors by situ sensing. Ultimately, the entire approach can be integrated into smartphone and operable with the user friendly manner. PMID:25597802

  10. Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Jiang, Jingjing; Du, Xuezhong

    2014-09-01

    Sensitive electrochemical sensors were fabricated with reduced graphene oxide-supported Au@Pd (Au@Pd-RGO) nanocomposites by one-step synthesis for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) with low detection limits and wide concentration ranges. From the Au@Pd-RGO-modified electrodes, well-separated oxidation peaks and enhanced peak currents of AA, DA, and UA were observed owing to the superior conductivity of RGO and the excellent catalytic activity of Au@Pd nanoparticles. For individual detection, the linear responses of AA, DA, and UA were in the concentration ranges of 0.1-1000, 0.01-100, and 0.02-500 μM with detection limits of 0.02, 0.002, and 0.005 μM (S/N = 3), respectively. For simultaneous detection by synchronous change of the concentrations of AA, DA, and UA, the linear response ranges were 1-800, 0.1-100, and 0.1-350 μM with detection limits of 0.28, 0.024, and 0.02 μM (S/N = 3), respectively. The fabricated sensors were further applied to the detection of AA, DA, and UA in urine samples. The Au@Pd-RGO nanocomposites have promising applications in highly sensitive and selective electrochemical sensing.Sensitive electrochemical sensors were fabricated with reduced graphene oxide-supported Au@Pd (Au@Pd-RGO) nanocomposites by one-step synthesis for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) with low detection limits and wide concentration ranges. From the Au@Pd-RGO-modified electrodes, well-separated oxidation peaks and enhanced peak currents of AA, DA, and UA were observed owing to the superior conductivity of RGO and the excellent catalytic activity of Au@Pd nanoparticles. For individual detection, the linear responses of AA, DA, and UA were in the concentration ranges of 0.1-1000, 0.01-100, and 0.02-500 μM with detection limits of 0.02, 0.002, and 0.005 μM (S/N = 3), respectively. For simultaneous detection by synchronous change of the

  11. Major benzophenone concentrations and influence of food consumption among the general population in Korea, and the association with oxidative stress biomarker.

    PubMed

    Kim, Bokyung; Kwon, Bareum; Jang, Sol; Kim, Pan-Gyi; Ji, Kyunghee

    2016-09-15

    Benzophenones (BPs) have been used as sunscreen agents and as ultraviolet stabilizers in plastic surface coatings for food packaging. However, few studies have been performed to examine the level of human exposure to BPs and the potential sources of such exposure. We evaluated the exposure levels to six major BPs (BP-1, BP-2, BP-3, BP-4, BP-8, and 4-hydroxybenzophenone (4-OH-BP)) among the adult population in two cities in Korea, and investigated the potential dietary sources of the BPs. Urinary levels of malondialdehyde (MDA) as an oxidative stress biomarker as well as their association with the levels of BPs were also analyzed. Among the six BPs analyzed, 4-OH-BP, BP-1, BP-3, and BP-4 were detected in 77%, 49%, 27%, and 21% of the population, respectively. BP concentrations were relatively higher in younger (people in their 20s and 30s) cosmetic users and leaner women. Even after the adjustment of age, body mass index, and cosmetic use, the consumption of frozen storage food, instant noodles, and instant coffee was significantly correlated with urinary BPs, and these associations were sex-dependent. No significant correlation was observed between the levels of BPs and levels of MDA. The results of the present study will be useful for developing plans of public health management of BPs. PMID:27208722

  12. Major depression

    MedlinePlus

    Depression - major; Depression - clinical; Clinical depression; Unipolar depression; Major depressive disorder ... Doctors do not know the exact causes of depression. It is believed that chemical changes in the ...

  13. Constructing heterostructure on highly roughened caterpillar-like gold nanotubes with cuprous oxide grains for ultrasensitive and stable nonenzymatic glucose sensor.

    PubMed

    Chen, Anran; Ding, Yu; Yang, Zhimao; Yang, Shengchun

    2015-12-15

    In this study, a metal-metal oxide heterostructure was designed and constructed by growing cuprous oxide (Cu2O) grains on highly surface roughened caterpillar-like Au nanotubes (CLGNs) for ultrasensitive, selective and stable nonenzymatic glucose biosensors. The Cu2O grains are tightly anchored to the surface of CLGNs by the spines, resulting in a large increase in the contact area between Cu2O grains and the CLGNs, which facilitates the electron transport between metal and metal oxide and improves the sensitivity and stability of the sensors. The electron transfer coefficient (α) and electron transfer rate constant (ks) for redox reaction of Cu2O-CLGNs/GCE are found to be 0.50114 and 3.24±0.1 s(-1), respectively. The biosensor shows a linear response to glucose over a concentration range of 0.1-5mM and a high sensitivity of 1215.7 µA mM(-1) cm(-2) with a detection limit of 1.83 μM. Furthermore, the Cu2O-CLGNs biosensor exhibited strong anti-interference capability against uric acid (UA), ascorbic acid (AA), potassium chloride (KCl) and sodium ascorbate (SA), as well as a high stability and repeatability. Our current research indicates that the Cu2O-CLGNs hybrid electrode is a promising choice for constructing nonenzyme based electrochemical biosensors. PMID:26258877

  14. Evidence of a rearrangement of the surface structure in titanium phthalocyanine sensors induced by the interaction with nitrogen oxides molecules

    SciTech Connect

    Generosi, A.; Paci, B.; Albertini, V. Rossi; Perfetti, P.; Paoletti, A.M.; Pennesi, G.; Rossi, G.; Caminiti, R.

    2005-10-31

    Thin-film samples of titanium phthalocyanine, a sensor of environmental pollutants, were studied by time resolved energy-dispersive x-ray reflectivity (EDXR). This original method demonstrated to be an ideal tool to follow the evolution of the films morphology upon gas exposure, in situ, also allowing an unexpected response of the sensors to be detected. Indeed, while the increase in thickness showed the characteristic feature of a 'breathing-like' expansion, already observed in other metal-Pc, the curve of roughness versus exposure time exhibited a peak. This effect, in some cases evident by observation with the naked eye the EDXR data, was attributed to a surface structure rearrangement process.

  15. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  16. Modeling the dark current histogram induced by gold contamination in complementary-metal-oxide-semiconductor image sensors

    NASA Astrophysics Data System (ADS)

    Domengie, F.; Morin, P.; Bauza, D.

    2015-07-01

    We propose a model for dark current induced by metallic contamination in a CMOS image sensor. Based on Shockley-Read-Hall kinetics, the expression of dark current proposed accounts for the electric field enhanced emission factor due to the Poole-Frenkel barrier lowering and phonon-assisted tunneling mechanisms. To that aim, we considered the distribution of the electric field magnitude and metal atoms in the depth of the pixel. Poisson statistics were used to estimate the random distribution of metal atoms in each pixel for a given contamination dose. Then, we performed a Monte-Carlo-based simulation for each pixel to set the number of metal atoms the pixel contained and the enhancement factor each atom underwent, and obtained a histogram of the number of pixels versus dark current for the full sensor. Excellent agreement with the dark current histogram measured on an ion-implanted gold-contaminated imager has been achieved, in particular, for the description of the distribution tails due to the pixel regions in which the contaminant atoms undergo a large electric field. The agreement remains very good when increasing the temperature by 15 °C. We demonstrated that the amplification of the dark current generated for the typical electric fields encountered in the CMOS image sensors, which depends on the nature of the metal contaminant, may become very large at high electric field. The electron and hole emissions and the resulting enhancement factor are described as a function of the trap characteristics, electric field, and temperature.

  17. Kinetics of nitric oxide and oxygen gases on porous Y-stabilized ZrO2-based sensors.

    PubMed

    Killa, Sajin; Cui, Ling; Murray, Erica P; Mainardi, Daniela S

    2013-01-01

    Using impedance spectroscopy the electrical response of sensors with various porous Y-stabilized ZrO2 (YSZ) microstructures was measured for gas concentrations containing 0-100 ppm NO with 10.5%O2 at temperatures ranging from 600-700 °C. The impedance response increased substantially as the sensor porosity increased from 46%-50%. Activation energies calculated based on data from the impedance measurements increased in magnitude (97.4-104.9 kJ/mol for 100 ppm NO) with respect to increasing YSZ porosity. Analysis of the oxygen partial pressure dependence of the sensors suggested that dissociative adsorption was the dominant rate limiting. The PWC/DNP theory level was used to investigate the gas-phase energy barrier of the 2NO+O2 → 2NO2 reaction on a 56-atom YSZ/Au model cluster using Density Functional Theory and Linear Synchronous Transit/Quadratic Synchronous Transit calculations. The reaction path shows oxygen surface reactions that begin with NO association with adsorbed O2 on a Zr surface site, followed by O2 dissociative adsorption, atomic oxygen diffusion, and further NO2 formation. The free energy barrier was calculated to be 181.7 kJ/mol at PWC/DNP. A qualitative comparison with the extrapolated data at 62% ± 2% porosity representing the YSZ model cluster indicates that the calculated barriers are in reasonable agreement with experiments, especially when the RPBE functional is used. PMID:23959196

  18. Major metabolite of F2-isoprostane in urine may be a more sensitive biomarker of oxidative stress than isoprostane itself1234

    PubMed Central

    Dorjgochoo, Tsogzolmaa; Gao, Yu-Tang; Chow, Wong-Ho; Shu, Xiao-ou; Yang, Gong; Cai, Qiuyin; Rothman, Nathaniel; Cai, Hui; Li, Honglan; Deng, Xinqing; Franke, Adrian; Roberts, L Jackson; Milne, Ginger; Zheng, Wei; Dai, Qi

    2012-01-01

    Background: There is limited literature on the contributors to isoprostane metabolite 2,3-dinor-5,6-dihydro-15-F2t-isoprostane (15-F2t-IsoP-M) compared with F2-isoprostanes (F2-IsoPs) as an oxidative stress biomarker. Objective: The objective of this study was to investigate whether plasma concentrations of antioxidants, urinary excretion rates of polyphenols, and antioxidants in food and dietary supplements are attributable to both urinary F2-IsoP and 15-F2t-IsoP-M concentrations. Design: Dietary intake information and blood and urine samples were obtained from 845 healthy middle-aged and elderly female participants of the Shanghai Women's Health Study. Urinary isoprostanes (F2-IsoPs and 15-F2t-IsoP-M) were measured and adjusted for creatinine concentrations. Results: Urinary 15-F2t-IsoP-M and F2-IsoP concentrations were lower in subjects who used a multivitamin. Lower F2-IsoP concentrations were observed in ginseng users, whereas lower concentrations of 15-F2t-IsoP-M were shown in subjects who used a vitamin E supplement. Plasma concentrations of several antioxidants (ie, β-carotenes, both trans and cis β-carotenes, lycopene other than trans, 5-cis and 7-cis isomers, cis anhydrolutein, and cis β-cryptoxanthin) were inversely associated with 15-F2t-IsoP-M but not with F2-IsoPs, whereas β-, γ-, and δ-tocopherols were positively associated with 15-F2t-IsoP-M but not with F2-IsoPs. Urinary polyphenol quercetin was positively associated with both F2-IsoPs and 15-F2t-IsoP-M. Conclusion: The results suggest that the F2-IsoP major metabolite 15-F2t-IsoP-M may be a more sensitive marker of endogenous oxidative stress status than are F2-IsoPs in the assessment of effects of antioxidants on age-related diseases. PMID:22760572

  19. Ramp Slope Built-in-Self-Calibration Scheme for Single-Slope Column Analog-to-Digital Converter Complementary Metal-Oxide-Semiconductor Image Sensor

    NASA Astrophysics Data System (ADS)

    Ham, Seogheon; Jung, Wunki; Lee, Dongmyung; Lee, Yonghee; Han, Gunhee

    2006-02-01

    The conversion gain of a single-slope analog-to-digital converter (ADC) suffers from the process and frequency variations. This ADC gain variation eventually limits the performance of image signal processing (ISP) in a complementary metal-oxide-semiconductor (CMOS) image sensor (CIS). This paper proposes a ramp slope built-in-self-calibration (BISC) scheme for a CIS. The CIS with the proposed BISC was fabricated with a 0.35-μm CMOS process. The measurement results show that the proposed architecture effectively calibrates the ramp slope against the process and the clock frequency variation. The silicon area overhead is less than 0.7% of the full chip area.

  20. Chemical bath deposition growth and characterization of zinc oxide nanostructures on plain and platinum-coated glass substrates for hydrogen peroxide gas sensor application

    NASA Astrophysics Data System (ADS)

    Jamasali, Y. D. J.; Alguno, A. C.

    2015-06-01

    Growth of zinc oxide on plain and Pt-coated glass substrate via chemical bath deposition technique (CBD) were studied. Aqueous solutions of ammonium hydroxide (NH4OH) and zinc sulfate (ZnSO4) were used as the precursor substances in the synthesis. Ultraviolet-visible spectroscopy (UV-Vis) was performed to determine the energy band gap and X-ray diffraction (XRD) to examine crystallinity. Sensitivity measurements were carried out in order to examine its potential to be fabricated as hydrogen peroxide (H2O2) gas sensor. Experimental results in the sensitivity experiment show that in the presence of H2O2 gas, the resistance of ZnOincrease which can be used as the basis for H2O-2 detection. UV-Vis showed variation of energy band gap values but were all near the generally accepted value. XRD spectra further verify that ZnOwere indeed synthesized.

  1. New miniaturized exhaled nitric oxide sensor based on a high Q/V mid-infrared 1D photonic crystal cavity.

    PubMed

    Conteduca, D; Dell'Olio, F; Ciminelli, C; Armenise, M N

    2015-03-20

    A high Q/V mid-infrared 1D photonic crystal cavity in chalcogenide glass AMTIR-1 (Ge33As12Se55) resonating at λR=5.26  μm has been proposed as a key element of a sensor able to evaluate the nitric oxide (NO) concentration in the exhaled breath, namely fraction exhaled NO. The cavity design has been carried out through 3D finite-element method simulations. A Q-factor of 1.1×104 and a mode volume V=0.8  (λ/n)3, corresponding to a Q/V ratio of 1.4×104(λ/n)-3, have been obtained with a resonance transmission coefficient T=15%. A sensitivity of 10 ppb has been calculated with reference to the photothermal physical property of the material. Such a result is lower than the state-of-the-art of NO sensors proposed in literature, where hundreds of parts per trillion-level detection seem to have been achieved, but comparable with the performance obtained by commercial devices. The main advantages of the new device are in terms of footprint (=150  μm2), smaller at least 1 order of magnitude than those in literature, fast response time (only few seconds), and potential low cost. Such properties make possible in a handheld device the sensor integration in a multi-analysis system for detecting the presence of several trace gases, improving prevention, and reducing the duration of drug treatment for asthma and viral infections. PMID:25968502

  2. Synthesis and Characterizations of Novel Ca-Mg-Ti-Fe-Oxides Based Ceramic Nanocrystals and Flexible Film of Polydimethylsiloxane Composite with Improved Mechanical and Dielectric Properties for Sensors

    PubMed Central

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Azrin Shah, Nabila Farhana; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Armalcolite, a rare ceramic mineral and normally found in the lunar earth, was synthesized by solid-state step-sintering. The in situ phase-changed novel ceramic nanocrystals of Ca-Mg-Ti-Fe based oxide (CMTFOx), their chemical reactions and bonding with polydimethylsiloxane (PDMS) were determined by X-ray diffraction, infrared spectroscopy, and microscopy. Water absorption of all the CMTFOx was high. The lower dielectric loss tangent value (0.155 at 1 MHz) was obtained for the ceramic sintered at 1050 °C (S1050) and it became lowest for the S1050/PDMS nanocomposite (0.002 at 1 MHz) film, which was made by spin coating at 3000 rpm. The excellent flexibility (static modulus ≈ 0.27 MPa and elongation > 90%), viscoelastic property (tanδ = E″/E′: 0.225) and glass transition temperature (Tg: −58.5 °C) were obtained for S1050/PDMS film. Parallel-plate capacitive and flexible resistive humidity sensors have been developed successfully. The best sensing performance of the present S1050 (3000%) and its flexible S1050/PDMS composite film (306%) based humidity sensors was found to be at 100 Hz, better than conventional materials. PMID:26927116

  3. Synthesis and Characterizations of Novel Ca-Mg-Ti-Fe-Oxides Based Ceramic Nanocrystals and Flexible Film of Polydimethylsiloxane Composite with Improved Mechanical and Dielectric Properties for Sensors.

    PubMed

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Shah, Nabila Farhana Azrin; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Armalcolite, a rare ceramic mineral and normally found in the lunar earth, was synthesized by solid-state step-sintering. The in situ phase-changed novel ceramic nanocrystals of Ca-Mg-Ti-Fe based oxide (CMTFOx), their chemical reactions and bonding with polydimethylsiloxane (PDMS) were determined by X-ray diffraction, infrared spectroscopy, and microscopy. Water absorption of all the CMTFOx was high. The lower dielectric loss tangent value (0.155 at 1 MHz) was obtained for the ceramic sintered at 1050 °C (S1050) and it became lowest for the S1050/PDMS nanocomposite (0.002 at 1 MHz) film, which was made by spin coating at 3000 rpm. The excellent flexibility (static modulus ≈ 0.27 MPa and elongation > 90%), viscoelastic property (tanδ = E″/E': 0.225) and glass transition temperature (Tg: -58.5 °C) were obtained for S1050/PDMS film. Parallel-plate capacitive and flexible resistive humidity sensors have been developed successfully. The best sensing performance of the present S1050 (3000%) and its flexible S1050/PDMS composite film (306%) based humidity sensors was found to be at 100 Hz, better than conventional materials. PMID:26927116

  4. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers

    NASA Astrophysics Data System (ADS)

    Hoidn, Oliver R.; Seidler, Gerald T.

    2015-08-01

    We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2-6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ˜20% quantum efficiency at 2.6 keV with ˜190 eV resolution and a 100 kHz maximum detection rate. The detector platform's useful intrinsic energy resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.

  5. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers.

    PubMed

    Hoidn, Oliver R; Seidler, Gerald T

    2015-08-01

    We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2-6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform's useful intrinsic energy resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry. PMID:26329247

  6. The potential of operando XAFS for determining the role and structure of noble metal additives in metal oxide based gas sensors

    NASA Astrophysics Data System (ADS)

    Grunwaldt, Jan-Dierk; Hübner, Michael; Koziej, Dorota; Barsan, Nicolae; Weimar, Udo

    2013-04-01

    Noble metal additives significantly improve the performance of SnO2 based sensors. Recently, it has been found that X-ray absorption spectroscopy is an excellent tool to identify their structure under sensing conditions, despite of the low concentrations and the rather thin (50 μm) and highly porous layers. For this purpose a new in situ approach has been established and here we highlight the potential with an overview on the results of Pd-, Pt-, and Au-additives in SnO2-based sensors at work. Emphasis was laid on recording the structure (by XANES and EXAFS) and performance at the same time. In contrast to earlier studies, Pd- and Pt-additives were observed to be in oxidized and finely dispersed state under sensing conditions excluding a spillover from metallic noble metal particles. However, Au was mainly present as metallic particles in the sensing SnO2-layer. For the Pt- and Au-doped SnO2-layers high energy-resolved fluorescence detected X-ray absorption spectra (HERFD-XAS) were recorded not only to minimize the lifetime-broadening but also to eliminate the Au- and Pt-fluorescence effectively and to record range-extended EXAFS.

  7. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.

    PubMed

    Sayago, Isabel; Matatagui, Daniel; Fernández, María Jesús; Fontecha, José Luis; Jurewicz, Izabela; Garriga, Rosa; Muñoz, Edgar

    2016-02-01

    A Love-wave device with graphene oxide (GO) as sensitive layer has been developed for the detection of chemical warfare agent (CWA) simulants. Sensitive films were fabricated by airbrushing GO dispersions onto Love-wave devices. The resulting Love-wave sensors detected very low CWA simulant concentrations in synthetic air at room temperature (as low as 0.2 ppm for dimethyl-methylphosphonate, DMMP, a simulant of sarin nerve gas, and 0.75 ppm for dipropylene glycol monomethyl ether, DPGME, a simulant of nitrogen mustard). High responses to DMMP and DPGME were obtained with sensitivities of 3087 and 760 Hz/ppm respectively. Very low limit of detection (LOD) values (9 and 40 ppb for DMMP and DPGME, respectively) were calculated from the achieved experimental data. The sensor exhibited outstanding sensitivity, good linearity and repeatability to all simulants tested. The detection mechanism is here explained in terms of hydrogen bonding formation between the tested CWA simulants and GO. PMID:26653465

  8. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers

    SciTech Connect

    Hoidn, Oliver R.; Seidler, Gerald T.

    2015-08-15

    We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2–6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform’s useful intrinsic energy resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.

  9. Development of a reduced-graphene-oxide based superparamagnetic nanocomposite for the removal of nickel (II) from an aqueous medium via a fluorescence sensor platform.

    PubMed

    Nandi, Debabrata; Saha, Indranil; Ray, Suprakas Sinha; Maity, Arjun

    2015-09-15

    Reduced-graphene-oxide based superparamagnetic nanocomposite (GC) was fabricated and applied for the remediation of Ni(II) from an aqueous medium. The as-prepared GC was extensively characterized by Raman, TEM, AFM, SEM-EDX, SQUID, and BET analyses. Quantitative immobilization of Ni(II) in an aqueous solution by the fluorescent sensor platform of GC was explored at varying pH, doses, contact times, and temperatures. The pseudo-second-order kinetics equation governed the overall sorption process at optimized pH of 5 (±0.2). The superior monolayer sorption capacity was 228mgg(-1) at 300K. Negative ΔG(0) indicated the spontaneous sorption nature, whereas the positive ΔH(0) resulted from an increase in entropy (positive ΔS(0)) at the solid-liquid interface during the endothermic reaction. The lower enthalpy agreed with the relatively high regeneration (approximately 91%) of the GC by 0.1M HCl, because of the formation of stable tetrahedral complex. The physisorption was well corroborated by calculated sorption energy (EDR ∼7kJmol(-1)) and the nature of the Stern-Volmer plot of the fluorescence-quenching data with reaction time. The GC played a pivotal role as a static fluorescent sensor platform (fluorophore) for Ni(II) adsorption. Magnetic property also indicated that GC could be easily separated from fluids by exploiting its superparamagnetic property. PMID:26004571

  10. A novel enzyme-free amperometric sensor for hydrogen peroxide based on Nafion/exfoliated graphene oxide-Co3O4 nanocomposite.

    PubMed

    Ensafi, Ali A; Jafari-Asl, M; Rezaei, B

    2013-01-15

    Electrochemical detection of H(2)O(2) was investigated on a Nafion/exfoliated graphene oxide/Co(3)O(4) nanocomposite (Nafion/EGO/Co(3)O(4)) coated glassy carbon electrode. The morphological characterization was examined by scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy. The modified electrode showed well defined and stable redox couples signal in both alkaline and natural aqueous solutions with excellent electrocatalytic activity for oxidation of hydrogen peroxide. The response of the modified electrode to H(2)O(2) was examined using amperometry (at 0.76 V vs. Ag/AgCl reference electrode) in a phosphate buffer solution (pH 7.4). The detection limit was 0.3 μmol L(-1) with a linearity of up to four orders of magnitude and a sensitivity of 560 μA mmol(-1)Lcm(-2). The response time of the electrode to achieve 95% of the steady-state current was recorded at 4s. The ability of the sensor for routine analyses was demonstrated by the detection of H(2)O(2) presents in milk samples with appreciable recovery values. In addition, the Nafion/EGO/Co(3)O(4)-GCE showed good selectivity for H(2)O(2) detection in the presence of ascorbic acid, uric acid, and glucose. The attractive analytical performances such as remarkable catalytic activity, good reproducibility, long term stability, and facile preparation method made this novel nanocomposite electrode promising for the development of effective H(2)O(2) sensor. PMID:23200394

  11. Highly sensitive nonenzymatic glucose and H2O2 sensor based on Ni(OH)2/electroreduced graphene oxide--multiwalled carbon nanotube film modified glass carbon electrode.

    PubMed

    Gao, Wei; Tjiu, Weng Weei; Wei, Junchao; Liu, Tianxi

    2014-03-01

    In this article, a nonenzymatic sensor based on Ni(OH)2/electroreduced graphene oxide (ERGO)-multiwalled carbon nanotube (MWNT) nanocomposites is fabricated via convenient electrodeposition of Ni(OH)2 nanoparticles on ERGO-MWNT film modified glass carbon electrode (GCE). Graphene oxide (GO) sheets can serve as surfactants to stabilize the dispersion of pristine MWNTs in aqueous solution, rendering a fine coverage of ERGO-MWNT film on GCE during the fabrication process. MWNTs perform as conducting bridges between ERGO sheets to enhance the electron transfer rate in the substrate. By combining the advantages of ERGO and MWNTs, together with electrocatalytic effect of Ni(OH)2 nanoparticles, the well-designed nanocomposites exhibit excellent sensing behavior towards glucose and hydrogen peroxide (H2O2). The linear detection ranges for glucose and H2O2 are 10-1500 µM and 10 µM-9050 µM while the detection limits are 2.7 µM and 4.0 µM, respectively. Furthermore, a very high sensitivity is achieved with 2042 µAm M(-1) cm(-2) estimated for glucose and 711 µAm M(-1) cm(-2) for H2O2. These results suggest that Ni(OH)2/ERGO-MWNT nanocomposites thus easily prepared through a green electrochemical method are promising electrode materials for biosensing. Additionally, good recoveries of analytes in real samples like urine and milk confirm the reliability of the prepared sensor in practical applications. PMID:24468400

  12. Sensor systems for precise location of depleted uranium in soil and for enhancing the recovery of both zero valence and uranium oxides

    SciTech Connect

    Etheridge, J.A.; Monts, D.L.; Su, Y.; Waggoner, C.A.

    2007-07-01

    Depleted uranium (DU) has been the primary material used for the past two decades by the US military in armor piercing rounds. Domestic firing ranges that have been used for DU training purposes are located around the country and vary with regard to soil type, depth of vadose zone, and extent of contamination with other types of projectiles. A project is underway to develop a set of sensor systems to locate expended DU rounds and to process soil and debris to recover the material. Reactivity of zero valence DU material, even in dry sandy soils, results in rapid oxidation and diffusion of uranium minerals within the soil column. Detection techniques must be robust for both metallic and uranyl species. Radiological sensor techniques including both gamma spectroscopy and prompt gamma neutron analysis are being used in conjunction with electromagnetic imaging to locate the DU for excavation. Detection limits for both zero valence DU (ZVDU) and oxidized material will be discussed. Applicability of active and passive optical methods, such as spectral imaging and fluorescence spectroscopy, will be discussed as aids for achieving clean soil margins while excavating DU materials. Instrumentation selection for controlling processing equipment used to separate ZVDU and uranyl species from contaminated soil and debris will also be discussed. Preliminary findings for use of sodium iodide detectors and multichannel analyzer software are discussed for locating 25 and 105 mm DU penetrators. Optimum detector height of 15 cm (six inches) and detection depths up to 15 cm are discussed. A comparison of detector response of the Geonics EM61 MKII electromagnetic induction unit for DU and ferrous materials is reported. Difficulty of locating small DU penetrators using the one meter detection coil and differences in detector response for target orientation relative to the detection coil are reported. (authors)

  13. Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combustion Exhaust Streams

    SciTech Connect

    Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

    2006-12-31

    An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the

  14. Modeling the dark current histogram induced by gold contamination in complementary-metal-oxide-semiconductor image sensors

    SciTech Connect

    Domengie, F. Morin, P.; Bauza, D.

    2015-07-14

    We propose a model for dark current induced by metallic contamination in a CMOS image sensor. Based on Shockley-Read-Hall kinetics, the expression of dark current proposed accounts for the electric field enhanced emission factor due to the Poole-Frenkel barrier lowering and phonon-assisted tunneling mechanisms. To that aim, we considered the distribution of the electric field magnitude and metal atoms in the depth of the pixel. Poisson statistics were used to estimate the random distribution of metal atoms in each pixel for a given contamination dose. Then, we performed a Monte-Carlo-based simulation for each pixel to set the number of metal atoms the pixel contained and the enhancement factor each atom underwent, and obtained a histogram of the number of pixels versus dark current for the full sensor. Excellent agreement with the dark current histogram measured on an ion-implanted gold-contaminated imager has been achieved, in particular, for the description of the distribution tails due to the pixel regions in which the contaminant atoms undergo a large electric field. The agreement remains very good when increasing the temperature by 15 °C. We demonstrated that the amplification of the dark current generated for the typical electric fields encountered in the CMOS image sensors, which depends on the nature of the metal contaminant, may become very large at high electric field. The electron and hole emissions and the resulting enhancement factor are described as a function of the trap characteristics, electric field, and temperature.

  15. Functionalized graphene oxide quantum dot-PVA hydrogel: a colorimetric sensor for Fe2+, Co2+ and Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Baruah, Upama; Chowdhury, Devasish

    2016-04-01

    Functionalized graphene oxide quantum dots (GOQDs)-poly(vinyl alcohol) (PVA) hybrid hydrogels were prepared using a simple, facile and cost-effective strategy. GOQDs bearing different surface functional groups were introduced as the cross-linking agent into the PVA matrix thereby resulting in gelation. The four different types of hybrid hydrogels were prepared using graphene oxide, reduced graphene oxide, ester functionalized graphene oxide and amine functionalized GOQDs as cross-linking agents. It was observed that the hybrid hydrogel prepared with amine functionalized GOQDs was the most stable. The potential applicability of using this solid sensing platform has been subsequently explored in an easy, simple, effective and sensitive method for optical detection of M2+ (Fe2+, Co2+ and Cu2+) in aqueous media involving colorimetric detection. Amine functionalized GOQDs-PVA hybrid hydrogel when put into the corresponding solution of Fe2+, Co2+ and Cu2+ renders brown, orange and blue coloration respectively of the solution detecting the presence of Fe2+, Co2+ and Cu2+ ions in the solution. The minimum detection limit observed was 1 × 10-7 M using UV-visible spectroscopy. Further, the applicability of the sensing material was also tested for a mixture of co-existing ions in solution to demonstrate the practical applicability of the system. Insight into the probable mechanistic pathway involved in the detection process is also being discussed.

  16. Evaluation of cerium doped tin oxide nanoparticles as a sensitive sensor for selective detection and extraction of cobalt

    NASA Astrophysics Data System (ADS)

    Khan, Sher Bahadar; Asiri, Abdullah M.; Rahman, Mohammed M.; Marwani, Hadi M.; Alamry, Khalid A.

    2015-06-01

    Chemo-sensor technology demands to design a single, preconcentrator based sensing system having higher sensitivity, sufficient selectivity and efficient removal of metal ions with simple operating and recognition methodology. Here we effectively deliberated Ce doped SnO2 nanoparticles based sensing system which can be exploited for the recognition and extraction of Co(II) ions in a single step by strong interaction between Ce doped SnO2 nanoparticles and Co(II). The sensing ability of Ce doped SnO2 nanoparticles were deliberated for a selective removal of cobalt using inductively coupled plasma-optical emission spectrometry. The sensing ability of Ce doped SnO2 is studied for various metal ions, such as Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II) and Zn(II) but the designed sensor was most selective toward Co(II) which was 5000 time more sensitive to Co(II) rather than different interfering metal ions. In addition, the desorption study for regeneration of Ce doped SnO2 nanoparticles was carried out. This novel approach provides a new route for simultaneous detection and removal of Co(II) in a single step and can be a time and cost alternative tool for environmental safety.

  17. Structural insights into the role of iron–histidine bond cleavage in nitric oxide-induced activation of H-NOX gas sensor proteins

    PubMed Central

    Herzik, Mark A.; Jonnalagadda, Rohan; Kuriyan, John; Marletta, Michael A.

    2014-01-01

    Heme-nitric oxide/oxygen (H-NOX) binding domains are a recently discovered family of heme-based gas sensor proteins that are conserved across eukaryotes and bacteria. Nitric oxide (NO) binding to the heme cofactor of H-NOX proteins has been implicated as a regulatory mechanism for processes ranging from vasodilation in mammals to communal behavior in bacteria. A key molecular event during NO-dependent activation of H-NOX proteins is rupture of the heme–histidine bond and formation of a five-coordinate nitrosyl complex. Although extensive biochemical studies have provided insight into the NO activation mechanism, precise molecular-level details have remained elusive. In the present study, high-resolution crystal structures of the H-NOX protein from Shewanella oneidensis in the unligated, intermediate six-coordinate and activated five-coordinate, NO-bound states are reported. From these structures, it is evident that several structural features in the heme pocket of the unligated protein function to maintain the heme distorted from planarity. NO-induced scission of the iron–histidine bond triggers structural rearrangements in the heme pocket that permit the heme to relax toward planarity, yielding the signaling-competent NO-bound conformation. Here, we also provide characterization of a nonheme metal coordination site occupied by zinc in an H-NOX protein. PMID:25253889

  18. Microfabricated Formaldehyde Gas Sensors

    PubMed Central

    Flueckiger, Jonas; Ko, Frank K.; Cheung, Karen C.

    2009-01-01

    Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors. This paper also investigates the promise of polymer-based sensors for low-temperature, low-power operation. PMID:22291561

  19. Sirtuin-3 Is Expressed by Enteric Neurons but It Does not Play a Major Role in Their Regulation of Oxidative Stress

    PubMed Central

    Bubenheimer, Rebecca K.; Brown, Isola A. M.; Fried, David E.; McClain, Jonathon L.; Gulbransen, Brian D.

    2016-01-01

    Gut inflammation contributes to the development of gut motility disorders in part by disrupting the function and survival of enteric neurons through mechanisms that involve oxidative stress. How enteric neurons regulate oxidative stress is still poorly understood. Importantly, how neuron autonomous antioxidant mechanisms contribute to the susceptibility of enteric neurons to oxidative stress in disease is not known. Here, we discover that sirtuin-3 (Sirt3), a key regulator of oxidative stress and mitochondrial metabolism, is expressed by neurons in the enteric nervous system (ENS) of the mouse colon. Given the important role of Sirt3 in the regulation of neuronal oxidative stress in the central nervous system (CNS), we hypothesized that Sirt3 plays an important role in the cell autonomous regulation of oxidative stress by enteric neurons and that a loss of Sirt3 increases neuronal vulnerability during intestinal inflammation. We tested our hypothesis using a combination of traditional immunohistochemistry, oxidative stress measurements and in vivo and ex vivo measures of GI motility in healthy and inflamed wild-type (wt) and Sirt3 null (Sirt3−/−) mice. Our results show that Sirt3 is widely expressed by neurons throughout the myenteric plexus of the mouse colon. However, the deletion of Sirt3 had surprisingly little effect on gut function and susceptibility to inflammation. Likewise, neither the genetic ablation of Sirt3 nor the inhibition of Sirt3 with antagonists had a significant effect on neuronal oxidative stress. Therefore, we conclude that Sirt3 contributes very little to the overall regulation of neuronal oxidative stress in the ENS. The functional relevance of Sirt3 in enteric neurons is still unclear but our data show that it is an unlikely candidate to explain neuronal vulnerability to oxidative stress during inflammation. PMID:27047337

  20. Preparation of graphene oxide-wrapped carbon sphere@silver spheres for high performance chlorinated phenols sensor.

    PubMed

    Gan, Tian; Lv, Zhen; Sun, Junyong; Shi, Zhaoxia; Liu, Yanming

    2016-01-25

    A template-activated strategy was developed to construct core/shell structured carbon sphere@silver composite based on one-pot hydrothermal treatment. The CS@Ag possessed a uniform three-dimensional interconnected microstructure with an enlarged surface area and catalytic activity, which was further mechanically protected by graphene oxide (GO) nanolayers to fabricate intriguing configuration, which was beneficial for efficiently preventing the aggregation and oxidation of AgNPs and improving the electrical conductivity through intimate contact. By immobilizing this special material on electrode surface, the CS@Ag@GO was further used for sensitive determination of chlorinated phenols including 2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol. The tailored structure, fast electron transfer ability and facile preparation of CS@Ag@GO made it a promising electrode material for practical applications in phenols sensing. PMID:26476305

  1. In-situ measurements of alloy oxidation/corrosion/erosion using a video camera and proximity sensor with microcomputer control

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.

    1984-01-01

    Two noncontacting and nondestructive, remotely controlled methods of measuring the progress of oxidation/corrosion/erosion of metal alloys, exposed to flame test conditions, are described. The external diameter of a sample under test in a flame was measured by a video camera width measurement system. An eddy current proximity probe system, for measurements outside of the flame, was also developed and tested. The two techniques were applied to the measurement of the oxidation of 304 stainless steel at 910 C using a Mach 0.3 flame. The eddy current probe system yielded a recession rate of 0.41 mils diameter loss per hour and the video system gave 0.27.

  2. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2

    PubMed Central

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02–0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe. PMID:27143876

  3. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2.

    PubMed

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02-0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe. PMID:27143876

  4. Glucose sensor based on an electrochemical reduced graphene oxide-poly(L-lysine) composite film modified GC electrode.

    PubMed

    Hua, Liang; Wu, Xiaqin; Wang, Rong

    2012-12-21

    A convenient and environmentally friendly method of fabricating glucose biosensors is proposed. Glucose oxidase (GOD) was immobilized on electrochemically reduced graphene oxide (ERGO) which was adsorbed on the poly-L-lysine (PLL) modified glassy carbon electrode after being immersed in GO solution for 4 h. The electrochemical behaviors of GOD/ERGO/PLL/GC electrode have been investigated by cyclic voltammetry. Direct electron transfer between GOD immobilized with ERGO/PLL and GC electrode was observed. Moreover, the GOD/ERGO/PLL/GC electrode exhibited excellent electrocatalytic activity for the detection of glucose with a linear range from 0.25 to 5 mmol L(-1). PMID:23082313

  5. Redox-sensitive TP53INP1 SUMOylation as an oxidative stress sensor to activate TP53

    PubMed Central

    Bonacci, Thomas; Peuget, Sylvain; Soubeyran, Philippe; Iovanna, Juan; Dusetti, Nelson J

    2014-01-01

    Oxidative stress-induced sumoylation of TP53INP1 (tumor protein p53-induced nuclear protein 1) is essential to enhance the TP53 response. Sumoylation of TP53INP1 on the K113 residue, which is mediated by protein inhibitor of activated STAT 3 (PIAS3) and chromobox homolog 4 (CBX4) and removed by SUMO1/sentrin specific peptidase (SENP1, 2 and 6), favors its interaction with TP53 in the nucleus and enhances TP53-induced gene expression. PMID:27308354

  6. Hierarchical SnO2 nanospheres: bio-inspired mineralization, vulcanization, oxidation techniques, and the application for NO sensors.

    PubMed

    Wang, Lei; Chen, Yuejiao; Ma, Jianmin; Chen, Libao; Xu, Zhi; Wang, Taihong

    2013-01-01

    Controllable synthesis and surface engineering of nanomaterials are of strategic importance for tailoring their properties. Here, we demonstrate that the synthesis and surface adjustment of highly stable hierarchical of SnO2 nanospheres can be realized by biomineralization, vulcanization and oxidation techniques. Furthermore, we reveal that the highly stable hierarchical SnO2 nanospheres ensure a remarkable sensitivity towards NO gas with fast response and recovery due to their high crystallinity and special structure. Such technique acquiring highly stable hierarchical SnO2 nanospheres offers promising potential for future practical applications in monitoring the emission from waste incinerators and combustion process of fossil fuels. PMID:24336171

  7. Hierarchical SnO2 Nanospheres: Bio-inspired Mineralization, Vulcanization, Oxidation Techniques, and the Application for NO Sensors

    PubMed Central

    Wang, Lei; Chen, Yuejiao; Ma, Jianmin; Chen, Libao; Xu, Zhi; Wang, Taihong

    2013-01-01

    Controllable synthesis and surface engineering of nanomaterials are of strategic importance for tailoring their properties. Here, we demonstrate that the synthesis and surface adjustment of highly stable hierarchical of SnO2 nanospheres can be realized by biomineralization, vulcanization and oxidation techniques. Furthermore, we reveal that the highly stable hierarchical SnO2 nanospheres ensure a remarkable sensitivity towards NO gas with fast response and recovery due to their high crystallinity and special structure. Such technique acquiring highly stable hierarchical SnO2 nanospheres offers promising potential for future practical applications in monitoring the emission from waste incinerators and combustion process of fossil fuels. PMID:24336171

  8. Hierarchical SnO2 Nanospheres: Bio-inspired Mineralization, Vulcanization, Oxidation Techniques, and the Application for NO Sensors

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Chen, Yuejiao; Ma, Jianmin; Chen, Libao; Xu, Zhi; Wang, Taihong

    2013-12-01

    Controllable synthesis and surface engineering of nanomaterials are of strategic importance for tailoring their properties. Here, we demonstrate that the synthesis and surface adjustment of highly stable hierarchical of SnO2 nanospheres can be realized by biomineralization, vulcanization and oxidation techniques. Furthermore, we reveal that the highly stable hierarchical SnO2 nanospheres ensure a remarkable sensitivity towards NO gas with fast response and recovery due to their high crystallinity and special structure. Such technique acquiring highly stable hierarchical SnO2 nanospheres offers promising potential for future practical applications in monitoring the emission from waste incinerators and combustion process of fossil fuels.

  9. A Solid-State Thin-Film Ag/AgCl Reference Electrode Coated with Graphene Oxide and Its Use in a pH Sensor

    PubMed Central

    Kim, Tae Yong; Hong, Sung A; Yang, Sung

    2015-01-01

    In this study, we describe a novel solid-state thin-film Ag/AgCl reference electrode (SSRE) that was coated with a protective layer of graphene oxide (GO). This layer was prepared by drop casting a solution of GO on the Ag/AgCl thin film. The potential differences exhibited by the SSRE were less than 2 mV for 26 days. The cyclic voltammograms of the SSRE were almost similar to those of a commercial reference electrode, while the diffusion coefficient of Fe(CN)63− as calculated from the cathodic peaks of the SSRE was 6.48 × 10−6 cm2/s. The SSRE was used in conjunction with a laboratory-made working electrode to determine its suitability for practical use. The average pH sensitivity of this combined sensor was 58.5 mV/pH in the acid-to-base direction; the correlation coefficient was greater than 0.99. In addition, an integrated pH sensor that included the SSRE was packaged in a secure digital (SD) card and tested. The average sensitivity of the chip was 56.8 mV/pH, with the correlation coefficient being greater than 0.99. In addition, a pH sensing test was also performed by using a laboratory-made potentiometer, which showed a sensitivity of 55.4 mV/pH, with the correlation coefficient being greater than 0.99. PMID:25789490

  10. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles.

    PubMed

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R; Goicoechea, Hector C

    2014-07-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1-30.0 μM and 30.0-330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. PMID:24857472

  11. Long-Term Major Clinical Outcomes in Patients With Long Chain Fatty Acid Oxidation Disorders Before and After Transition to Triheptanoin Treatment—A Retrospective Chart Review

    PubMed Central

    Vockley, Jerry; Marsden, Deborah; McCracken, Elizabeth; DeWard, Stephanie; Barone, Amanda; Hsu, Kristen; Kakkis, Emil

    2015-01-01

    Background Long chain fatty acid oxidation disorders (LC-FAOD) are caused by defects in the metabolic pathway that converts stored long-chain fatty acids into energy, leading to a deficiency in mitochondrial energy production during times of physiologic stress and fasting. Severe and potentially life threatening clinical manifestations include rhabdomyolysis, hypoglycemia, hypotonia/weakness, cardiomyopathy and sudden death. We present the largest cohort of patients to date treated with triheptanoin, a specialized medium odd chain (C7) triglyceride, as a novel energy source for the treatment of LC-FAOD. Methods This was a retrospective, comprehensive medical record review study of data from 20 of a total 24 patients with LC-FAOD who were treated for up to 12.5 years with triheptanoin, as part of a compassionate use protocol. Clinical outcomes including hospitalization event rates, number of hospitalization days/year, and abnormal laboratory values were determined for the total period of the study before and after triheptanoin treatment, as well as for specified periods before and after initiation of triheptanoin treatment. Other events of interest were documented including rhabdomyolysis, hypoglycemia, and cardiomyopathy. Results LC-FAOD in these 20 subjects was associated with 320 hospitalizations from birth to the end date of study. The mean hospitalization days/year decreased significantly by 67% during the period after triheptanoin initiation (n=15; 5.76 vs 17.55 vs; P=0.0242) and a trend toward a 35% lower hospitalization event rate was observed in the period after triheptanoin initiation compared with the before-treatment period (n=16 subjects >6 months of age; 1.26 vs 1.94; P=0.1126). The hypoglycemia event rate per year in 9 subjects with hypoglycemia problems declined significantly by 96% (0.04 vs 0.92; P=0.0091) and related hospitalization days/year were also significantly reduced (n=9; 0.18 vs 8.42; P=0.0257). The rhabdomyolysis hospital event rate in 11

  12. Major Links.

    ERIC Educational Resources Information Center

    Henderson, Tona

    1995-01-01

    Provides electronic mail addresses for resources and discussion groups related to the following academic majors: art, biology, business, chemistry, computer science, economics, health sciences, history, literature, math, music, philosophy, political science, psychology, sociology, and theater. (AEF)

  13. Low cost, ultra-thin films of reduced graphene oxide-Ag nanoparticle hybrids as SERS based excellent dye sensors

    NASA Astrophysics Data System (ADS)

    Kavitha, C.; Bramhaiah, K.; John, Neena S.; Ramachandran, B. E.

    2015-06-01

    We have employed low cost-thin films of reduced graphene oxide (rGO) with Ag nanoparticle hybrids as surface enhanced Raman scattering (SERS) substrates. The hybrids are prepared by a simple one step liquid/liquid interface method. These hybrid films offer SERS hotspots to detect Rhodamine 6G (R6G) molecules till 1 nM concentration with 1 second accumulation time. The enhancement factor is of the order 108. This excellent SERS enhancement is due to coupled mechanism of surface plasmon, charge transfer and molecular resonances of Ag and R6G along with the synergic effect contributed by rGO and Ag nanoparticles in the hybrid thin film.

  14. Development of silver/gold nanocages onto indium tin oxide glass as a reagentless plasmonic mercury sensor.

    PubMed

    Huang, Daodan; Hu, Tingting; Chen, Na; Zhang, Wei; Di, Junwei

    2014-05-12

    We demonstrate the utilization of silver/gold nanocages (Ag/Au NCs) deposited onto transparent indium tin oxide (ITO) film glass as the basis of a reagentless, simple and inexpensive mercury probe. The localized surface plasmon resonance (LSPR) peak wavelength was located at ∼800 nm. By utilizing the redox reaction between Hg(2+) ions and Ag atoms that existed in Ag/Au NCs, the LSPR peak of Ag/Au NCs was blue-shifted. Thus, we develop an optical sensing probe for the detection of Hg(2+) ions. The LSPR peak changes were lineally proportional to the concentration of Hg(2+) ions over the range from 10 ppb to 0.5 ppm. The detection limit was ∼5 ppb. This plasmonic probe shows good selectivity and high sensitivity. The proposed optical probe is successfully applied to the sensing of Hg(2+) in real samples. PMID:24767150

  15. Core and grain boundary sensitivity of tungsten-oxide sensor devices by molecular beam assisted particle deposition

    NASA Astrophysics Data System (ADS)

    Huelser, T. P.; Lorke, A.; Ifeacho, P.; Wiggers, H.; Schulz, C.

    2007-12-01

    In this study, we investigate the synthesis of WO3 and WOx (2.6≥x≤2.8) by adding different concentrations of tungsten hexafluoride (WF6) into a H2/O2/Ar premixed flame within a low-pressure reactor equipped with a particle-mass spectrometer (PMS). The PMS results show that mean particle diameters dp between 5 and 9 nm of the as-synthesized metal-oxides can be obtained by varying the residence time and precursor concentration in the reactor. This result is further validated by N2 adsorption measurements on the particle surface, which yielded a 91 m2/g surface area, corresponding to a spherical particle diameter of 9 nm (Brunauer-Emmett-Teller technique). H2/O2 ratios of 1.6 and 0.63 are selected to influence the stoichiometry of the powders, resulting in blue-colored WOx and white WO3 respectively. X-ray diffraction (XRD) analysis of the as-synthesized materials indicates that the powders are mostly amorphous, and the observed broad reflexes can be attributed to the orthorhombic structure of β-WO3. Thermal annealing at 973 K for 3 h in air resulted in crystalline WO3 comprised of both monoclinic and orthorhombic phases. The transmission electron microscope micrograph analysis shows that the particles exhibit spherical morphology with some degree of agglomeration. Impedance spectroscopy is used for the electrical characterization of tungsten-oxide thin films with a thickness of 50 nm. Furthermore, the temperature-dependent gas-sensing properties of the material deposited on interdigital capacitors are investigated. Sensitivity experiments reveal two contributions to the overall sensitivity, which result from the surface and the core of each particle.

  16. Virtual Sensor Test Instrumentation

    NASA Technical Reports Server (NTRS)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  17. Utilization of reduced graphene oxide/cadmium sulfide-modified carbon cloth for visible-light-prompt photoelectrochemical sensor for copper (II) ions.

    PubMed

    Foo, C Y; Lim, H N; Pandikumar, A; Huang, N M; Ng, Y H

    2016-03-01

    A newly developed CdS/rGO/CC electrode was prepared based on a flexible carbon cloth (CC) substrate with cadmium sulfide (CdS) nanoparticles and reduced graphene oxide (rGO). The CdS was synthesized using an aerosol-assisted chemical vapor deposition (AACVD) method, and the graphene oxide was thermally reduced on the modified electrode surface. The existence of rGO in the CdS-modified electrode increased the photocurrent intensity of the CdS/rGO/CC-modified electrode by three orders of magnitude, compared to that of the CdS/ITO electrode and two orders of magnitude higher than the CdS/CC electrode. A new visible-light-prompt photoelectrochemical sensor was developed based on the competitive binding reaction of Cu(2+) and CdS on the electrode surface. The results showed that the effect of the Cu(2+) on the photocurrent response was concentration-dependent over the linear ranges of 0.1-1.0 μM and 1.0-40.0 μM with a detection limit of 0.05 μM. The results of a selectivity test showed that this modified electrode has a high response toward Cu(2+) compared to other heavy metal ions. The proposed CdS/rGO/CC electrode provided a significantly high potential current compared to other reported values, and could be a practical tool for the fast, sensitive, and selective determination of Cu(2+). PMID:26595899

  18. Monolithic integration of a silicon nanowire field-effect transistors array on a complementary metal-oxide semiconductor chip for biochemical sensor applications.

    PubMed

    Livi, Paolo; Kwiat, Moria; Shadmani, Amir; Pevzner, Alexander; Navarra, Giulio; Rothe, Jörg; Stettler, Alexander; Chen, Yihui; Patolsky, Fernando; Hierlemann, Andreas

    2015-10-01

    We present a monolithic complementary metal-oxide semiconductor (CMOS)-based sensor system comprising an array of silicon nanowire field-effect transistors (FETs) and the signal-conditioning circuitry on the same chip. The silicon nanowires were fabricated by chemical vapor deposition methods and then transferred to the CMOS chip, where Ti/Pd/Ti contacts had been patterned via e-beam lithography. The on-chip circuitry measures the current flowing through each nanowire FET upon applying a constant source-drain voltage. The analog signal is digitized on chip and then transmitted to a receiving unit. The system has been successfully fabricated and tested by acquiring I-V curves of the bare nanowire-based FETs. Furthermore, the sensing capabilities of the complete system have been demonstrated by recording current changes upon nanowire exposure to solutions of different pHs, as well as by detecting different concentrations of Troponin T biomarkers (cTnT) through antibody-functionalized nanowire FETs. PMID:26348408

  19. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes.

    PubMed

    Jeon, Won-Yong; Choi, Young-Bong; Kim, Hyug-Han

    2015-01-01

    Disposable screen-printed nickel/carbon composites on indium tin oxide (ITO) electrodes (DSPNCE) were developed for the detection of glucose without enzymes. The DSPNCE were prepared by screen-printing the ITO substrate with a 50 wt% nickel/carbon composite, followed by curing at 400 °C for 30 min. The redox couple of Ni(OH)₂/NiOOH was deposited on the surface of the electrodes via cyclic voltammetry (CV), scanning from 0-1.5 V for 30 cycles in 0.1 M NaOH solution. The DSPNCE were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. The resulting electrical currents, measured by CV and chronoamperometry at 0.65 V vs. Ag/AgCl, showed a good linear response with glucose concentrations from 1.0-10 mM. Also, the prepared electrodes showed no interference from common physiologic interferents such as uric acid (UA) or ascorbic acid (AA). Therefore, this approach allowed the development of a simple, disposable glucose biosensor. PMID:26690438

  20. A comparative study on surface morphological investigations of ferric oxide for LPG and opto-electronic humidity sensors

    NASA Astrophysics Data System (ADS)

    Singh, Satyendra; Verma, Nidhi; Yadav, B. C.; Prakash, Rajiv

    2012-09-01

    In the present work nanostructured ferric oxides were synthesized via hydroxide precipitation method without using any surfactant and size selection medium. The surface morphologies and structure of samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The structural analysis confirmed the formation of Fe2O3 with α-phase and rhombohedral structure. Optical and thermal properties were investigated by using UV-visible absorption spectroscopy and differential scanning calorimetry (DSC) techniques. Pelletizations of materials were done using hydraulic press and these pellets were investigated with the exposition of liquefied petroleum gas. Variations in resistance of the pellet with time for different concentrations of LPG were recorded at room temperature (27 °C). The maximum value of average sensitivity was found ˜5 for 5 vol.% of LPG. Our results show that the LPG sensing behavior was inspired by the different kinds of surface morphologies of Fe2O3 and inferred that the spherical porous nanoparticles synthesized via hydroxide precipitation process (S-3) had best response to LPG.