These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

The search for Majorana neutrinos  

NASA Astrophysics Data System (ADS)

In the Standard Model of strong and electroweak interactions, neutrinos are strictly massless due to the absence of the right-handed chiral states and the requirement of gauge invariance and renormalizability. However, recent neutrino oscillation experiments have provided strong evidence that neutrinos are massive and their flavors defined with respect to the charged leptons oscillate, presenting a pressing need for physics beyond the Standard Model. We do not know the nature of mass generation; in particular, we do not know if neutrinos are of Dirac or Majorana type-the former preserves lepton number and the latter violates it by two units. Although the prevailing theoretical prejudice prefers Majorana neutrinos, experimentally testing the Dirac or Majorana nature of neutrinos is of fundamental importance. The unambiguous proof of the existence of a Majorana neutrino is the observation of a lepton number violating process. Since neutrinos interact so weakly and leave no trace in ordinary detectors, the only appropriate signatures must involve two like-sign charged leptons for a process that violates lepton number by two units. To establish the Majorana nature of neutrinos definitively many low energy and collider processes that probe Majorana neutrino masses over many orders of magnitude, from sub-electron-volt to hundreds of giga-electron-volt have been studied.

Atre, Anupama

2007-12-01

2

Majorana neutrinos and long range forces  

E-print Network

We establish that forces mediated by the exchange of a pair of Majorana neutrinos differ from those due to Dirac neutrino exchange. In the interior of stars, there would be an additional distinction. Indeed, low energy Dirac neutrinos are bound by the stellar medium whereas Majorana neutrinos are not. Therefore, the forces associated to Majorana exchange are unshielded by the stellar medium. We point out implications for the recently raised problem of the self--energy of compact stars.

Grifols, J A; Toldrà, R

1996-01-01

3

Double Beta Decay and Majorana Neutrino  

Microsoft Academic Search

This review consists of three parts: Various properties of the quantized neutrino fields are summarized in part I from the viewpoint that a Dirac neutrino consists of two Majorana neutrinos with a degenerate mass but with opposite CP sings. It is shown why the Dirac neutrino has a freedom of the phase transformation to guarantee the lepton number conservation, while

Masaru Doi; Tsuneyuki Kotani; Eiichi Takasugi

1985-01-01

4

Neutrinos  

E-print Network

In these lectures the following topics are considered: historical remarks and general properties, Dirac and Majorana neutrino masses, effective lagrangian approach, the seesaw mechanism, the number of active left-hauded neutrino species, the light neutrino mass matrix, the direct measurement of neutrino masses, double beta decay, neutrino oscillations in vacuum and neutrino oscillations in matter.

J. Bernabeu

2000-12-22

5

Baryogenesis through mixing of heavy Majorana neutrinos  

Microsoft Academic Search

A mechanism is presented in which the mixing of right-handed heavy Majorana neutrinos creates a CP-asymmetric universe. When these Majorana neutrinos subsequently decay more leptons than anti leptons are produced. Due to a resonance phenomenon the lepton asymmetry created by this new mechanism can exceed by a few orders of magnitude any lepton asymmetry originating from direct decays. The asymmetry

Marion Flanz; Emmanuel A. Paschos; Utpal Sarkar; Jan Weiss

1996-01-01

6

Matter effects on Majorana neutrino phases  

E-print Network

We consider the effect of ambient matter on the Majorana phase of neutrinos. We find that this can lead to an observable signal if a neutrino oscillation experiment could be performed where the source and the detector are at appropriately different matter densities. We illustrate the situation using a beta beam neutrino source as an example and show that a 5 sigma signal for the matter modification of the Majorana phase could be possible in a 5-year run.

Amitava Raychaudhuri; Shashank M. Shalgar

2005-03-01

7

Baryogenesis through mixing of heavy Majorana neutrinos  

Microsoft Academic Search

We review the scenario of baryogenesis through leptogenesis induced by the out-of-equilibrium decays of heavy neutrinos. We pay special attention to the resonant phenomenon of CP violation through mixing of two nearly degenerate heavy Majorana neutrinos and show how unitarity and CPT invariance is maintained within the resummation approach. An important consequence of this is that the leptogenesis scale may

Apostolos Pilaftsis

1998-01-01

8

Search for Majorana neutrinos in B- ? ?+ ?- ?- decays.  

PubMed

A search for heavy Majorana neutrinos produced in the B- ? ?+ ?- ?- decay mode is performed using 3??fb(-1) of integrated luminosity collected with the LHCb detector in pp collisions at center-of-mass energies of 7 and 8 TeV at the LHC. Neutrinos with masses in the range 250 to 5000 MeV and lifetimes from zero to 1000 ps are probed. In the absence of a signal, upper limits are set on the branching fraction B(B- ? ?+ ?- ?-) as functions of neutrino mass and lifetime. These limits are on the order of 10(-9) for short neutrino lifetimes of 1 ps or less. Limits are also set on the coupling between the muon and a possible fourth-generation neutrino. PMID:24745405

Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Bauer, T; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, C; Cenci, R; Charles, M; Charpentier, P; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dorosz, P; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, C; Falabella, A; Färber, C; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, P; Gianelle, A; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Y; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Hafkenscheid, T W; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Manzali, M; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morandin, M

2014-04-01

9

Search for Majorana Neutrinos in B-??+?-?- Decays  

NASA Astrophysics Data System (ADS)

A search for heavy Majorana neutrinos produced in the B-??+?-?- decay mode is performed using 3 fb-1 of integrated luminosity collected with the LHCb detector in pp collisions at center-of-mass energies of 7 and 8 TeV at the LHC. Neutrinos with masses in the range 250 to 5000 MeV and lifetimes from zero to 1000 ps are probed. In the absence of a signal, upper limits are set on the branching fraction B(B-??+?-?-) as functions of neutrino mass and lifetime. These limits are on the order of 10-9 for short neutrino lifetimes of 1 ps or less. Limits are also set on the coupling between the muon and a possible fourth-generation neutrino.

Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dorosz, P.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Falabella, A.; Färber, C.; Farinelli, C.; Farry, S.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Hafkenscheid, T. W.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Huse, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Kochebina, O.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luisier, J.; Luo, H.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.

2014-04-01

10

Searches for Majorana neutrinos in $B^-$ decays  

Microsoft Academic Search

Searches for heavy Majorana neutrinos in $B^{-}$ decays in final states containing hadrons plus a $\\\\mu^- \\\\mu^-$ pair have been performed using 0.41 fb$^{-1}$ of data collected with the LHCb detector in proton-proton collisions at a center-of-mass energy of 7 TeV. The $D^+ \\\\mu^- \\\\mu^-$ and $D^{\\\\ast +} \\\\mu^- \\\\mu^-$ final states can arise from the presence of virtual Majorana

R Aaij; C Abellan Beteta; B Adeva; M Adinolfi; C Adrover; A Affolder; Z Ajaltouni; J Albrecht; F Alessio; M Alexander; G Alkhazov; P Alvarez Cartelle; A A Alves; S Amato; Y Amhis; J Anderson; R B Appleby; O Aquines Gutierrez; F Archilli; L Arrabito; A Artamonov; M Artuso; E Aslanides; G Auriemma; S Bachmann; J J Back; D S Bailey; V Balagura; W Baldini; R J Barlow; C Barschel; S Barsuk; W Barter; A Bates; C Bauer; Th Bauer; A Bay; I Bediaga; S Belogurov; K Belous; I Belyaev; E Ben-Haim; M Benayoun; G Bencivenni; S Benson; J Benton; R Bernet; M-O Bettler; M van Beuzekom; A Bien; S Bifani; T Bird; A Bizzeti; P M Bjørnstad; T Blake; F Blanc; C Blanks; J Blouw; S Blusk; A Bobrov; V Bocci; A Bondar; N Bondar; W Bonivento; S Borghi; A Borgia; T J V Bowcock; C Bozzi; T Brambach; J van den Brand; J Bressieux; D Brett; M Britsch; T Britton; N H Brook; H Brown; A Büchler-Germann; I Burducea; A Bursche; J Buytaert; S Cadeddu; O Callot; M Calvi; M Calvo Gomez; A Camboni; P Campana; A Carbone; G Carboni; R Cardinale; A Cardini; L Carson; K Carvalho Akiba; G Casse; M Cattaneo; Ch Cauet; M Charles; Ph Charpentier; N Chiapolini; K Ciba; X Cid Vidal; G Ciezarek; P E L Clarke; M Clemencic; H V Cliff; J Closier; C Coca; V Coco; J Cogan; P Collins; A Comerma-Montells; F Constantin; A Contu; A Cook; M Coombes; G Corti; G A Cowan; R Currie; C D'Ambrosio; P David; I De Bonis; S De Capua; M De Cian; F De Lorenzi; J M De Miranda; L De Paula; P De Simone; D Decamp; M Deckenhoff; H Degaudenzi; L Del Buono; C Deplano; D Derkach; O Deschamps; F Dettori; J Dickens; H Dijkstra; P Diniz Batista; F Domingo Bonal; S Donleavy; F Dordei; A Dosil Suárez; D Dossett; A Dovbnya; F Dupertuis; R Dzhelyadin; A Dziurda; S Easo; U Egede; V Egorychev; S Eidelman; D van Eijk; F Eisele; S Eisenhardt; R Ekelhof; L Eklund; Ch Elsasser; D Elsby; D Esperante Pereira; A Falabella; E Fanchini; C Färber; G Fardell; C Farinelli; S Farry; V Fave; V Fernandez Albor; M Ferro-Luzzi; S Filippov; C Fitzpatrick; M Fontana; F Fontanelli; R Forty; M Frank; C Frei; M Frosini; S Furcas; A Gallas Torreira; D Galli; M Gandelman; P Gandini; Y Gao; J-C Garnier; J Garofoli; J Garra Tico; L Garrido; D Gascon; C Gaspar; R Gauld; N Gauvin; M Gersabeck; T Gershon; Ph Ghez; V Gibson; V V Gligorov; C Göbel; D Golubkov; A Golutvin; A Gomes; H Gordon; M Grabalosa Gándara; R Graciani Diaz; L A Granado Cardoso; E Graugés; G Graziani; A Grecu; E Greening; S Gregson; B Gui; E Gushchin; Yu Guz; T Gys; C Hadjivasiliou; G Haefeli; C Haen; S C Haines; T Hampson; S Hansmann-Menzemer; R Harji; N Harnew; J Harrison; P F Harrison; T Hartmann; J He; V Heijne; K Hennessy; P Henrard; J A Hernando Morata; E van Herwijnen; E Hicks; K Holubyev; P Hopchev; W Hulsbergen; P Hunt; T Huse; R S Huston; D Hutchcroft; D Hynds; V Iakovenko; P Ilten; J Imong; R Jacobsson; A Jaeger; M Jahjah Hussein; E Jans; F Jansen; P Jaton; B Jean-Marie; F Jing; M John; D Johnson; C R Jones; B Jost; M Kaballo; S Kandybei; M Karacson; T M Karbach; J Keaveney; I R Kenyon; U Kerzel; T Ketel; A Keune; B Khanji; Y M Kim; M Knecht; R Koopman; P Koppenburg; A Kozlinskiy; L Kravchuk; K Kreplin; M Kreps; G Krocker; P Krokovny; F Kruse; K Kruzelecki; M Kucharczyk; T Kvaratskheliya; V N La Thi; D Lacarrere; G Lafferty; A Lai; D Lambert; R W Lambert; E Lanciotti; G Lanfranchi; C Langenbruch; T Latham; C Lazzeroni; R Le Gac; J van Leerdam; J-P Lees; R Lefévre; A Leflat; J Lefrançois; O Leroy; T Lesiak; L Li; L Li Gioi; M Lieng; M Liles; R Lindner; C Linn; B Liu; G Liu; J von Loeben; J H Lopes; E Lopez Asamar; N Lopez-March; H Lu; J Luisier; F Machefert; I V Machikhiliyan; F Maciuc; O Maev; J Magnin; S Malde; R M D Mamunur; G Manca; G Mancinelli; N Mangiafave; U Marconi; R Märki; J Marks; G Martellotti; A Martens; L Martin; A Martín Sánchez; D Martinez Santos; A Massafferri; Z Mathe; C Matteuzzi; M Matveev; E Maurice; B Maynard; A Mazurov; G McGregor; R McNulty; M Meissner; M Merk; J Merkel; R Messi; S Miglioranzi; D A Milanes; M-N Minard; J Molina Rodriguez; S Monteil; D Moran; P Morawski; I Mous; F Muheim; K Müller; R Muresan; B Muryn; B Muster; M Musy; J Mylroie-Smith; P Naik; T Nakada; R Nandakumar; I Nasteva; M Nedos; M Needham; N Neufeld; A D Nguyen; C Nguyen-Mau; M Nicol; V Niess; N Nikitin; A Nomerotski; A Novoselov; A Oblakowska-Mucha; V Obraztsov; S Oggero; S Ogilvy; O Okhrimenko; R Oldeman; M Orlandea; J M Otalora Goicochea; P Owen; K Pal; J Palacios; A Palano; M Palutan; J Panman; A Papanestis; M Pappagallo; C Parkes; C J Parkinson; G Passaleva; G D Patel; M Patel; S K Paterson; G N Patrick; C Patrignani; C Pavel-Nicorescu; A Pazos Alvarez; A Pellegrino; G Penso; M Pepe Altarelli; S Perazzini; D L Perego; E Perez Trigo; A Pérez-Calero Yzquierdo; P Perret; M Perrin-Terrin; G Pessina; A Petrella; A Petrolini; A Phan; E Picatoste Olloqui; B Pie Valls; B Pietrzyk; T Pila?; D Pinci; R Plackett; S Playfer; M Plo Casasus; G Polok; A Poluektov; E Polycarpo

2012-01-01

11

Geometry of Majorana neutrino and new symmetries  

E-print Network

Experimental observation of Majorana fermion matter gives a new impetus to the understanding of the Lorentz symmetry and its extension, the geometrical properties of the ambient space-time structure, matter--antimatter symmetry and some new ways to understand the baryo-genesis problem in cosmology. Based on the primordial Majorana fermion matter assumption, we discuss a possibility to solve the baryo-genesis problem through the the Majorana-Diraco genesis in which we have a chance to understand creation of Q(em) charge and its conservation in our D=1+3 Universe after the Big Bang. In the Majorana-Diraco genesis approach there appears a possibility to check the proton and electron non-stability on the very low energy scale. In particle physics and in our space-time geometry, the Majorana nature of the neutrino can be related to new types of symmetries which are lying beyond the binary Cartan-Killing-Lie algebras/superalgebras. This can just support a conjecture about the non-completeness of the SM in terms of binary Cartan--Killing--Lie symmetries/supersymmetries. As one of the very important applications of such new ternary symmetries could be related with explanation of the nature of the three families and three colour symmetry. The Majorana neutrino can directly indicate the existence of a new extra-dimensional geometry and thanks to new ternary space-time symmetries, could lead at high energies to the unextraordinary phenomenological consequences.

G. G. Volkov

2006-07-30

12

Majorana neutrino masses from neutrinoless double beta decay and cosmology  

Microsoft Academic Search

When three Majorana neutrinos describe the solar and atmospheric neutrino data via oscillations, a nonzero measurement of neutrinoless double beta (0???) decay can determine the sum of neutrino masses ?m? if the solar solution has small-angle mixing, and place a lower bound on ?m? for large-angle solar mixing. If in addition a nonzero ?m? is deduced from cosmology, the neutrino

V. Barger; K. Whisnant

1999-01-01

13

Selected Topics in Majorana Neutrino Physics  

E-print Network

Starting from the original Majorana's article of 1937, the see-saw mechanism is illustrated, first for one and later for three neutrino generations, and neutrinoless double beta decay is considered. Neutrino mixing and oscillations in three flavors are described. The Yukawa couplings to the Higgs field of quarks and leptons are considered, their transformation properties under the corresponding flavor groups are spelled out and the principle of Minimal Flavor Violation is illustrated, in connection with possible new physics beyond the Standard Theory. The idea that the Yukawa couplings may be the vacuum expectation value of some new fields is introduced and natural extrema of potentials which are invariant under quark and lepton flavor groups are characterized. A recent result indicating large mixing of almost degenerate neutrinos is derived from the heavy lepton invariance under flavor ${\\cal O}(3)$.

Luciano Maiani

2014-08-06

14

Neutrino Majorana Masses from String Theory Instanton Effects  

Microsoft Academic Search

Finding a plausible origin for right-handed neutrino Majorana masses in semirealistic compactifications of string theory remains one of the most difficult problems in string phenomenology. We argue that right-handed neutrino Majorana masses are induced by non-perturbative instanton effects in certain classes of string compactifications in which the $U(1)_{B-L}$ gauge boson has a St\\\\\\

L. E. Ibanez; Angel M. Uranga

2006-01-01

15

CP violation and baryogenesis due to heavy Majorana neutrinos  

Microsoft Academic Search

We analyze the scenario of baryogenesis through leptogenesis induced by the out-of-equilibrium decays of heavy Majorana neutrinos and pay special attention to CP violation. Extending a recently proposed resummation formalism for two-fermion mixing to decay amplitudes, we calculate the resonant phenomenon of CP violation due to the mixing of two nearly degenerate heavy Majorana neutrinos. Solving numerically the relevant Boltzmann

Apostolos Pilaftsis

1997-01-01

16

Discriminating Majorana Neutrino Textures in the light of Baryon Asymmetry  

E-print Network

We study all possible texture zeros in the Majorana neutrino mass matrix which are allowed from neutrino oscillation as well as cosmology data when the charged lepton mass matrix is assumed to take the diagonal form. Considering two different possible values of the lightest neutrino mass giving rise to quasi-degenerate and hierarchical light neutrino mass spectrum respectively, we write down the Majorana CP phases as a function of the Dirac CP phase using the constraints coming from vanishing or equality of elements in a particular texture zero mass matrix. We constrain texture zero mass matrices from the requirement of producing correct baryon asymmetry through the mechanism of leptogenesis. Adopting a type I seesaw framework, we consider the CP violating out of equilibrium decay of the lightest right handed neutrino as the source of lepton asymmetry. Apart from discriminating between the texture zero mass matrices and light neutrino mass hierarchy, we also constrain the Dirac CP phase so that the observed b...

Borah, Manikanta; Das, Mrinal Kumar

2015-01-01

17

Experimental constraints on the masses and mixings of Majorana neutrinos  

SciTech Connect

Data on neutrino oscillations, the end-point spectrum of ..beta..-decay, and the rate of neutrinoless double ..beta..-decay can be combined to give constraints on the masses and mixings of Majorana neutrinos. An illustrative example is given and its consistency with present theoretical models is discussed.

Wolfenstein, L.

1983-01-01

18

Can Gravity Distinguish between Dirac and Majorana Neutrinos?  

SciTech Connect

We show that spin-gravity interaction can distinguish between Dirac and Majorana neutrino wave packets propagating in a Lense-Thirring background. Using time-independent perturbation theory and the gravitational phase to generate a perturbation Hamiltonian with spin-gravity coupling, we show that the associated matrix element for the Majorana neutrino differs significantly from its Dirac counterpart. This difference can be demonstrated through significant gravitational corrections to the neutrino oscillation length for a two-flavor system, as shown explicitly for SN 1987A.

Singh, Dinesh; Mobed, Nader [Department of Physics, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); Papini, Giorgio [Department of Physics, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); Prairie Particle Physics Institute, Regina, Saskatchewan, S4S 0A2 (Canada); International Institute for Advanced Scientific Studies, 89019 Vietri sul Mare (Saudi Arabia) (Italy)

2006-07-28

19

Effects of heavy Majorana neutrinos in semileptonic heavy quark decays  

NASA Astrophysics Data System (ADS)

The experimental observation of lepton number violating (LNV) processes, where the total lepton number is violated by two units (?L = 2), represents the most appropriate way to address the question of the nature of the neutrinos as Majorana or Dirac particles. LNV processes mediated by the exchange of heavy Majorana neutrinos, such as three-body decays of ? leptons and charged pseudoscalar mesons, have been widely studied. In this work we study the contribution of heavy Majorana neutrinos in LNV four-body semileptonic decays of neutral B mesons and top quarks. We focus in a scenario where a single heavy neutrino can enhance the decay rates of these processes via the resonant mechanism. Using current bounds on heavy neutrino mixings, we find that the branching ratios of these processes can be at the level of 10-6 to 10-7. These decay modes seem to be at the reach of the current and forthcoming experiment, and their experimental search can provide complementary constraints on masses and mixings of heavy Majorana neutrinos.

Delepine, D.; López Castro, G.; Quintero, N.

2012-08-01

20

Interaction of Dirac and Majorana neutrinos with weak gravitational fields  

SciTech Connect

In this paper the interaction of high energy neutrinos with weak gravitational fields is briefly explored. The form of the graviton-neutrino vertex is motivated from Lorentz and gauge invariance and the nonrelativistic interpretations of the neutrino-gravitational form factors are obtained. We comment on the renormalization conditions, the preservation of the weak equivalence principle and the definition of the neutrino mass radius. We associate the neutrino-gravitational form factors with specific angular momentum states. Based on Feynman diagrams, spin-statistics, CP invariance and symmetries of the angular momentum states in the graviton-neutrino vertex, we deduce differences between the Majorana and Dirac cases. It is then proved that in spite of the theoretical differences between the two cases, as far as experiments are considered, they would be virtually indistinguishable for any space-time geometry satisfying the weak-field condition. We then calculate the transition gravitational form factors for the neutrino by evaluating the relevant Feynman diagrams at 1-loop and estimate a neutrino transition mass radius. The form factor is seen to depend on the momentum transfer very weakly. It is also seen that the neutrino transition mass radius is smaller than the typical neutrino charge radius by a couple of orders of magnitude.

Menon, A.; Thalapillil, Arun M. [Michigan Center for Theoretical Physics and Department of Physics, University of Michigan, 500 East University Avenue, Michigan 48109-1120 (United States); Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 (United States)

2008-12-01

21

New Stringy Instanton Effects And Neutrino Majorana Masses  

SciTech Connect

D-brane instantons can generate open string couplings in the superpotential which violate global abelian symmetries and are therefore perturbatively forbidden. After discussing the main ingredients, focussing for concretenes on Type IIA orientifold compactifications, we exemplify the computation of instanton-induced Majorana mass terms for right-handed neutrinos in a local SU(5) GUT-like model. In particular, we show that the instanton allows for naturally engineering the intermediate scale of the Majorana masses, thereby realizing the seesaw mechanism for neutrinos.

Cvetic, M.; Richter, R.; Weigand, T. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104-6396 (United States)

2007-10-03

22

Neutrinos  

E-print Network

This document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos.

A. de Gouvea; K. Pitts; K. Scholberg; G. P. Zeller; J. Alonso; A. Bernstein; M. Bishai; S. Elliott; K. Heeger; K. Hoffman; P. Huber; L. J. Kaufman; B. Kayser; J. Link; C. Lunardini; B. Monreal; J. G. Morfin; H. Robertson; R. Tayloe; N. Tolich; K. Abazajian; T. Akiri; C. Albright; J. Asaadi; K. S Babu; A. B. Balantekin; P. Barbeau; M. Bass; A. Blake; A. Blondel; E. Blucher; N. Bowden; S. J. Brice; A. Bross; B. Carls; F. Cavanna; B. Choudhary; P. Coloma; A. Connolly; J. Conrad; M. Convery; R. L. Cooper; D. Cowen; H. da Motta; T. de Young; F. Di Lodovico; M. Diwan; Z. Djurcic; M. Dracos; S. Dodelson; Y. Efremenko; T. Ekelof; J. L. Feng; B. Fleming; J. Formaggio; A. Friedland; G. Fuller; H. Gallagher; S. Geer; M. Gilchriese; M. Goodman; D. Grant; G. Gratta; C. Hall; F. Halzen; D. Harris; M. Heffner; R. Henning; J. L. Hewett; R. Hill; A. Himmel; G. Horton-Smith; A. Karle; T. Katori; E. Kearns; S. Kettell; J. Klein; Y. Kim; Y. K. Kim; Yu. Kolomensky; M. Kordosky; Yu. Kudenko; V. A. Kudryavtsev; K. Lande; K. Lang; R. Lanza; K. Lau; H. Lee; Z. Li; B. R. Littlejohn; C. J. Lin; D. Liu; H. Liu; K. Long; W. Louis; K. B. Luk; W. Marciano; C. Mariani; M. Marshak; C. Mauger; K. T. McDonald; K. McFarland; R. McKeown; M. Messier; S. R. Mishra; U. Mosel; P. Mumm; T. Nakaya; J. K. Nelson; D. Nygren; G. D. Orebi Gann; J. Osta; O. Palamara; J. Paley; V. Papadimitriou; S. Parke; Z. Parsa; R. Patterson; A. Piepke; R. Plunkett; A. Poon; X. Qian; J. Raaf; R. Rameika; M. Ramsey-Musolf; B. Rebel; R. Roser; J. Rosner; C. Rott; G. Rybka; H. Sahoo; S. Sangiorgio; D. Schmitz; R. Shrock; M. Shaevitz; N. Smith; M. Smy; H. Sobel; P. Sorensen; A. Sousa; J. Spitz; T. Strauss; R. Svoboda; H. A. Tanaka; J. Thomas; X. Tian; R. Tschirhart; C. Tully; K. Van Bibber; R. G. Van de Water; P. Vahle; P. Vogel; C. W. Walter; D. Wark; M. Wascko; D. Webber; H. Weerts; C. White; H. White; L. Whitehead; R. J. Wilson; L. Winslow; T Wongjirad; E. Worcester; M. Yokoyama; J. Yoo; E. D. Zimmerman

2013-10-16

23

CP violation with Majorana neutrinos in K meson decays  

NASA Astrophysics Data System (ADS)

We study the possibility of having CP asymmetries in the decay K ± ? ? ? ? ± ? ± ( ? = e, ?). This decay violates Lepton Number by two units and occurs only if there are Majorana particles that mediate the transition. Even though the absolute rate is highly suppressed by current bounds, we search for Majorana neutrino scenarios where the CP asymmetry arising from the lepton sector could be sizeable. This is indeed the case if there are two or more Majorana neutrinos with similar masses in the range around 102 MeV. In particular, the asymmetry is potentially near unity if two neutrinos are nearly degenerate, in the sense ? m N ˜ ? N . The full decay, however, may be difficult to detect not only because of the suppression caused by the heavy-to-light lepton mixing, but also because of the long lifetime of the heavy neutrino, which would induce large space separation between the two vertices where the charge leptons are produced. This particular problem should be less serious in heavier meson decays, as they involve heavier neutrinos with shorter lifetimes.

Dib, Claudio O.; Campos, Miguel; Kim, C. S.

2015-02-01

24

Tachyonic Majorana neutrinos or neutrino spin-to-orbital angular momentum conversion in OPERA  

E-print Network

The new data release of OPERA - CNGS experiment, obtained with a shorter spill of protons, confirms the tachyionic behavior expected from the phenomenological model of a Majorana neutrino with a fictitious imaginary mass term acquired during the propagation in the Earth's crust, recently presented by us. We performed numerical simulations of neutrino event detections to compare the properties of these Majorana tachyons with the new OPERA results, finding a good agreement. The possibility of spin-to orbital angular momentum conversion that is expected to give a negative squared mass in a medium, is also briefly discussed.

M. Laveder; F. Tamburini

2011-11-18

25

Search for Majorana neutrinos with the SNO+ detector at SNOLAB  

NASA Astrophysics Data System (ADS)

The SNO+ experiment is adapting the Sudbury Neutrino Observatory (SNO) detector, in order to use isotope-loaded liquid scintillator as the active medium. SNO+ has multiple scientific goals, the main one being the search for neutrinoless double beta decay, the most promising signature for the possible Majorana character of neutrinos and for the absolute neutrino mass. Measurements of neutrinos from the Sun, the Earth, Supernovae and nuclear reactors are additional goals of the experiment. The detector consists of a 12m diameter spherical vessel, filled with 780 tonnes of Tellurium-loaded liquid scintillator, and surrounded by about 9500 PMTs. It is shielded by a large volume of ultra-pure water and the underground location at SNOLAB, Canada. This talk will review the Physics goals and current status of SNO+.

Maio, A.; SNO+ collaboration

2015-02-01

26

Model independent explorations of Majorana neutrino mass origins  

NASA Astrophysics Data System (ADS)

The recent observation of nonzero neutrino mass is the first concrete indication of physics beyond the Standard Model. Their properties, unique among the other fermions, leads naturally to the idea of a Majorana neutrino mass term. Despite the strong theoretical prejudice toward this concept, it must be tested experimentally. This is indeed possible in the context of next generation experiments. Unfortunately, the scale of neutrino mass generation may be too large to explore directly, but useful information may still be extracted from independent experimental channels. Here I survey various model independent probes of Majorana neutrino mass origins. A brief introduction to the concepts relevant to the analysis is followed by a discussion of the physical ranges of neutrino mass and mixing parameters within the context of standard and non-standard interactions. Armed with this, I move on to systematically analyze the properties of radiatively generated neutrino masses induced by nonrenormalizable lepton number violating effective operators of mass dimensions five through eleven. By fitting these to the observed light mass scale, I extract predictions for neutrino mixing as well as neutrinoless double beta decay, rare meson/tau decays and collider phenomenology. I find that many such models are already constrained by current data and many more will be probed in the near future. I then move on demonstrate the utility of a low scale see saw mechanism via a viable 3+2+1 sterile neutrino model that satisfies all oscillation data as well as solves problems associated with supernova kicks and heavy element nucleosynthesis. From this I extract predictions for tritium and neutrinoless double beta decay searches. This is supplemented throughout by descriptions of practical limitations in addition to suggestions for future work.

Jenkins, James Phearl, Jr.

27

Transition magnetic moments of Majorana neutrinos in supersymmetry without R-parity in light of neutrino oscillations  

E-print Network

The transition magnetic moments of Majorana neutrinos are calculated in grand unified theory (GUT) constrained Minimal Supersymmetric Standard Model (MSSM) with explicit R-parity violation. It is assumed that neutrinos acquire masses via one-loop (quark-squark and lepton-slepton) radiative corrections. The mixing of squarks, sleptons, and quarks is considered explicitly. The connection between neutrino magnetic moments and the entries of neutrino mass matrix is studied. The current upper limits on neutrino magnetic moments are deduced from the elements of phenomenological neutrino mass matrix, which is reconstructed using the neutrino oscillation data and the lower bound on the neutrinoless double beta decay half-life. Further, the results for transitional magnetic moments of Majorana neutrinos are presented for the cases of inverted and normal hierarchy of neutrino masses and different SUSY scenarios. The largest values are of the order of 10^{-17} in units of Bohr magneton.

Marek Gozdz; Wieslaw A. Kaminski; Fedor Simkovic; Amand Faessler

2006-06-07

28

Neutrinos  

PubMed Central

Neutrinos represent a new “window” to the Universe, spanning a large range of energy. We discuss the science of neutrino astrophysics and focus on two energy regimes. At “lower” energies (?1 MeV), studies of neutrinos born inside the sun, or produced in interactions of cosmic rays with the atmosphere, have allowed the first incontrovertible evidence that neutrinos have mass. At energies typically one thousand to one million times higher, sources further than the sun (both within the Milky Way and beyond) are expected to produce a flux of particles that can be detected only through neutrinos. PMID:10588680

Besson, Dave; Cowen, Doug; Selen, Mats; Wiebusch, Christopher

1999-01-01

29

Constraints from neutrino oscillation experiments on the effective Majorana mass in neutrinoless double beta-decay  

Microsoft Academic Search

We determine the possible values of the effective Majorana neutrino mass $| |= |\\\\sum_j U_{ej}^2 m_j|$ in the different phenomenologically viable three and four-neutrino scenarios. The quantities $U_{\\\\alpha j}$ ($\\\\alpha = e,\\\\mu,\\\\tau,...$) denote the elements of the neutrino mixing matrix and the Majorana neutrino masses $m_j$ ($j=1,2,3,...$) are ordered as $m_1 < m_2 < ... $ Assuming $m_1 \\\\ll m_3$

S. M. Bilenky; S. T. Petcov

1999-01-01

30

Majorana neutrino masses and the neutrinoless double-beta decay  

Microsoft Academic Search

Neutrinoless double-beta decay is forbidden in the Standard Model of electroweak and strong interaction but allowed in most\\u000a Grand Unified Theories (GUTs). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has\\u000a a mass is neutrinoless double-beta decay allowed. Apart from one claim that the neutrinoless double-beta decay in 76Ge is measured, one has

A. Faessler

2006-01-01

31

Laser photons acquire circular polarization by interacting with a Dirac or Majorana neutrino beam  

NASA Astrophysics Data System (ADS)

It is shown that for the reason of neutrinos being left-handed and their gauge-couplings being parity-violated, linearly polarized photons acquire their circular polarization by interacting with neutrinos. Calculating the ratio of linear and circular polarizations of laser photons interacting with either Dirac or Majorana neutrino beam, we obtain this ratio for the Dirac neutrino case, which is about twice less than the ratio for the Majorana neutrino case. Based on this ratio, we discuss the possibility of using advanced laser facilities and the T2K neutrino experiment to measure the circular polarization of laser beams interacting with neutrino beams in ground laboratories. This could be an additional and useful way to gain some insight into the physics of neutrinos, for instance their Dirac or Majorana nature.

Mohammadi, Rohoollah; Xue, She-Sheng

2014-04-01

32

Laser photons acquire circular polarization by interacting with a Dirac or Majorana neutrino beam  

E-print Network

It is shown that for the reason of neutrinos being left-handed and their gauge-couplings being parity-violated, linearly polarized photons acquire their circular polarization by interacting with neutrinos. Calculating the ratio of linear and circular polarizations of laser photons interacting with either Dirac or Majorana neutrino beam, we obtain this ratio for the Dirac neutrino case, which is about twice less than the ratio for the Majorana neutrino case. Based on this ratio, we discuss the possibility of using advanced laser facilities and the T2K neutrino experiment to measure the circular polarization of laser beams interacting with neutrino beams in ground laboratories. This could be an additional and useful way to gain some insight into the physics of neutrinos, for instance their Dirac or Majorana nature.

Rohoollah Mohammadi; She-Sheng Xue

2014-03-14

33

Neutrino physics  

Microsoft Academic Search

In the present lectures the following topics are considered: general properties of neutrinos, neutrino mass phenomenology (Dirac and Majorana masses), neutrino masses in the simplest extensions of the standard model (including the seesaw mech- anism), neutrino oscillations in vacuum, neutrino oscillations in matter (the MSW effect) in 2- and 3-flavour schemes, implications of CP, T and CPT symmetries for neutrino

E. Kh

34

Massive neutrinos and neutrino oscillations  

Microsoft Academic Search

The theory of neutrino mixing and neutrino oscillations, as well as the properties of massive neutrinos (Dirac and Majorana), are reviewed. More specifically, the following topics are discussed in detail: (i) the possible types of neutrino mass terms; (ii) oscillations of neutrinos (iii) the implications of CP invariance for the mixing and oscillations of neutrinos in vacuum; (iv) possible varieties

S. M. Bilenky; S. T. Petcov

1987-01-01

35

Majorana phases, CP violation, sterile neutrinos and neutrinoless double-beta decay  

NASA Astrophysics Data System (ADS)

CP violation plays a crucial role in the generation of the baryon asymmetry in the Universe. Within this context we investigate the possibility of CP violation in the lepton sector caused by Majorana neutrino mixing. Focus is put on the model including 1 sterile neutrino. Both cases of normal and inverted neutrino mass spectrum are considered. We address the question whether the Majorana phases can be measured in the neutrinoless double-beta decay experiments with sensitivity to the effective Majorana neutrino mass of the order of 10-2 eV.

Babi?, Andrej; Šimkovic, Fedor

2013-12-01

36

Majorana phases, CP violation, sterile neutrinos and neutrinoless double-beta decay  

SciTech Connect

CP violation plays a crucial role in the generation of the baryon asymmetry in the Universe. Within this context we investigate the possibility of CP violation in the lepton sector caused by Majorana neutrino mixing. Focus is put on the model including 1 sterile neutrino. Both cases of normal and inverted neutrino mass spectrum are considered. We address the question whether the Majorana phases can be measured in the neutrinoless double-beta decay experiments with sensitivity to the effective Majorana neutrino mass of the order of 10{sup ?2} eV.

Babi?, Andrej [Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 842 48 Bratislava (Slovakia); Šimkovic, Fedor [Bogoliubov Laboratory of Theoretical Physics, JINR, Joliot-Curie 6, 141980 Dubna, Moscow region, Russia and Institute of Experimental and Applied Physics, Czech Technical University, CZ-128 00 Prague (Czech Republic)

2013-12-30

37

Majorana Neutrinos, Neutrino Mass Spectrum and the || ~ 0.001 eV Frontier in Neutrinoless Double Beta Decay  

E-print Network

If future neutrino oscillation experiments show that the neutrino mass spectrum is with normal ordering, m1 | > 0.01 eV give negative results, the next frontier in the quest for neutrinoless double beta-decay will correspond to || ~ 0.001 eV. Assuming that massive neutrinos are Majorana particles and their exchange is the dominant mechanism generating neutrinoless double beta-decay, we analise the conditions under which ||, in the case of three neutrino mixing and neutrino mass spectrum with normal ordering, would satisfy || > 0.001 eV. We consider the specific cases of i) normal hierarchical neutrino mass spectrum, ii) of relatively small value of the CHOOZ angle theta13 as well as iii) the general case of spectrum with normal ordering, partial hierarchy and a value of theta13 close to the existing upper limit. We study the ranges of the lightest neutrino mass m1 and/or of sin^2 theta13, for which ||> 0.001 eV and discuss the phenomenological implications of such scenarios. We provide also an estimate of || when the three neutrino masses and the neutrino mixing originate from neutrino mass term of Majorana type for the (left-handed) flavour neutrinos and m1 Ue1^2 + m2 U_e2^2 + m3 Ue3^2 =0, but there does not exist a symmetry which forbids the neutrinoless double beta-decay.

S. Pascoli; S. T. Petcov

2007-11-30

38

Heavy Majorana neutrinos from W? fusion at hadron colliders  

NASA Astrophysics Data System (ADS)

Vector boson fusion processes become increasingly more important at higher collider energies and for probing larger mass scales due to collinear logarithmic enhancements of the cross section. In this context, we revisit the production of a hypothetic heavy Majorana neutrino ( N) at hadron colliders. Particular attention is paid to the fusion process W? ? N? ±. We systematically categorize the contributions from a photon initial state in the elastic, inelastic, and deeply inelastic channels. Comparing with the leading channel via the Drell-Yan production ? W * ? N? ± at NNLO in QCD, we find that the W? fusion process becomes relatively more important at higher scales, surpassing the DY mechanism at m N ˜ 1 TeV (770 GeV), at the 14 TeV LHC (100 TeV VLHC). We investigate the inclusive heavy Majorana neutrino signal, including QCD corrections, and quantify the Standard Model backgrounds at future hadron colliders. We conclude that, with the currently allowed mixing | V ?N |2 < 6 × 10-3, a 5 ? discovery can be made via the same-sign dimuon channel for m N = 530 (1070) GeV at the 14 TeV LHC (100 TeV VLHC) after 1 ab-1. Reversely, for m N = 500 GeV and the same integrated luminosity, a mixing | V ?N |2 of the order 1.1 × 10-3 (2.5 × 10-4) may be probed.

Alva, Daniel; Han, Tao; Ruiz, Richard

2015-02-01

39

Uncertainties in neutrinoless $\\beta \\beta $ decay transition matrix elements within mechanisms involving light Majorana neutrinos, classical Majorons and sterile neutrinos  

E-print Network

In the PHFB model, uncertainties in the nuclear transition matrix elements for the neutrinoless double-$\\beta $ decay of $\\ ^{94,96}$Zr, $^{98,100}$Mo, $^{104}$Ru, $^{110}$Pd, $^{128,130}$Te and $^{150}$Nd isotopes within mechanisms involving light Majorana neutrinos, classical Majorons and sterile neutrinos are statistically estimated by considering sets of sixteen (twenty-four) matrix elements calculated with four different parametrization of the pairing plus multipolar type of effective two-body interaction, two sets of form factors and two (three) different parameterizations of Jastrow type of short range correlations. In the mechanisms involving the light Majorana neutrinos and classical Majorons, the maximum uncertainty is about 15% and in the scenario of sterile neutrinos, it varies in between approximately 4 (9)%--20 (36)% without(with) Jastrow short range correlations with Miller-Spencer parametrization, depending on the considered mass of the sterile neutrinos.

Rath, P K; Chaturvedi, K; Lohani, P; Raina, P K; Hirsch, J G

2013-01-01

40

The phenomenology of neutrinos with Majorana mass terms and standard-model interactions derived in the charge-parity basis  

E-print Network

(abridged) The physical mechanisms that make a neutrino with standard-model (SM) weak interactions a "lepton-number conservation (LNC) violating" neutrino such as the Majorana neutrino are analysed in a basis of two Majorana states that have opposite charge-parity ("charge-parity basis"). A small Majorana mass that is larger than any Dirac mass makes the neutrino not a Majorana but a "pseudo-Majorana" particle that has no definite chirality and therefore has a different phenomenology than the physical neutrino. A combination of a large Majorana and Dirac mass of nearly equal value makes the neutrino a Majorana neutrino. However if this Majorana neutrino has SM interactions, its weak transition amplitudes squared are a factor 2 smaller than the ones observed for the physical neutrino. Only with a small Dirac mass that is larger than any Majorana mass (and in the massless case), the physical neutrino's phenomenology is correctly predicted by the SM. Such a mass combination makes the neutrino a Dirac- or (the most likely possibility for the physical neutrino) Pontecorvo's pseudo-Dirac particle which features neutrino-antineutrino oscillations, that violate LNC. Pseudo-Dirac neutrinos enable a completely negligible rate for neutrinoless double-beta decay if there is no Majorana-mass independent decay mechanism. Off-diagonal components of the mass matrix in the charge-parity basis make the neutrino a mixture of Dirac field with a different particle and anti-particle mass (i.e. a mass that violates CPT invariance) and a pseudo-Dirac field. Such a neutrino leads to a phenomenology similar to the one with additional generations of sterile neutrinos.

R. Plaga

2012-12-14

41

Probing the Majorana nature of the neutrino with neutrinoless double beta decay  

E-print Network

Neutrinoless double beta decay (NDBD) is the only experiment that could probe the Majorana nature of the neutrino. Here we study the theoretical implications of NDBD for models yielding tri-bimaximal lepton mixing like A4 and S4.

S. Morisi

2009-10-14

42

Search for Majorana Neutrinos in B[superscript ?] ? ?[superscript +]?[superscript ?]?[superscript ?] Decays  

E-print Network

A search for heavy Majorana neutrinos produced in the B[superscript ?] ? ?[superscript +]?[superscript ?]?[superscript ?] decay mode is performed using 3??fb[superscript ?1] of integrated luminosity collected with the LHCb ...

Counts, Ian Thomas Hunt

43

Search for Majorana neutrinos with the first two years of EXO-200 data  

E-print Network

Many extensions of the Standard Model of particle physics suggest that neutrinos should be Majorana-type fermions, but this assumption is difficult to confirm. Observation of neutrinoless double-beta decay ($0\

EXO-200 Collaboration; :; J. B. Albert; D. J. Auty; P. S. Barbeau; E. Beauchamp; D. Beck; V. Belov; C. Benitez-Medina; J. Bonatt; M. Breidenbach; T. Brunner; A. Burenkov; G. F. Cao; C. Chambers; J. Chaves; B. Cleveland; M. Coon; A. Craycraft; T. Daniels; M. Danilov; S. J. Daugherty; C. G. Davis; J. Davis; R. DeVoe; S. Delaquis; T. Didberidze; A. Dolgolenko; M. J. Dolinski; M. Dunford; W. Fairbank Jr.; J. Farine; W. Feldmeier; P. Fierlinger; D. Fudenberg; G. Giroux; R. Gornea; K. Graham; G. Gratta; C. Hall; S. Herrin; M. Hughes; M. J. Jewell; X. S. Jiang; A. Johnson; T. N. Johnson; S. Johnston; A. Karelin; L. J. Kaufman; R. Killick; T. Koffas; S. Kravitz; A. Kuchenkov; K. S. Kumar; D. S. Leonard; F. Leonard; C. Licciardi; Y. H. Lin; R. MacLellan; M. G. Marino; B. Mong; D. Moore; R. Nelson; A. Odian; I. Ostrovskiy; C. Ouellet; A. Piepke; A. Pocar; C. Y. Prescott; A. Rivas; P. C. Rowson; M. P. Rozo; J. J. Russell; A. Schubert; D. Sinclair; S. Slutsky; E. Smith; V. Stekhanov; M. Tarka; T. Tolba; D. Tosi; K. Twelker; P. Vogel; J. -L. Vuilleumier; A. Waite; J. Walton; T. Walton; M. Weber; L. J. Wen; U. Wichoski; J. D. Wright; L. Yang; Y. -R. Yen; O. Ya. Zeldovich; Y. B. Zhao

2014-06-04

44

Decay and Decoupling of heavy Right-handed Majorana Neutrinos in the L-R model  

E-print Network

Heavy right-handed neutrinos are of current interest. The interactions and decay of such neutrinos determine their decoupling epoch during the evolution of the universe. This in turn affects various observable features like the energy density, nucleosynthesis, CMBR spectrum, galaxy formation, and baryogenesis. Here, we consider reduction of right-handed electron-type Majorana neutrinos, in the left-right symmetric model, by the WR+ - WR- channel and the channel originating from an anomaly, involving the SU(2)R gauge group, as well as decay of such neutrinos. We study the reduction of these neutrinos for different ranges of left-right model parameters, and find that, if the neutrino mass exceeds the right-handed gauge boson mass, then the neutrinos never decouple for realistic values of the parameters, but, rather, decay in equilibrium. Because there is no out-of-equilibrium decay, no mass bounds can be set for the neutrinos.

Paramita Adhya; D. Rai Chaudhuri; Amitava Raychaudhuri

2001-05-29

45

Arbitrary mass Majorana neutrinos in neutrinoless double beta decay  

NASA Astrophysics Data System (ADS)

We revisit the mechanism of neutrinoless double beta (0 ? ? ? ) decay mediated by the exchange with the heavy Majorana neutrino N of arbitrary mass mN , slightly mixed ˜UeN with the electron neutrino ?e . By assuming the dominance of this mechanism, we update the well-known 0 ? ? ? -decay exclusion plot in the mN-UeN plane taking into account recent progress in the calculation of nuclear matrix elements within quasiparticle random phase approximation and improved experimental bounds on the 0 ? ? ? -decay half-life of Ge 76 and Xe 136 . We also consider the known formula approximating the mN dependence of the 0 ? ? ? -decay nuclear matrix element in a simple explicit form. We analyze its accuracy and specify the corresponding parameters, allowing one to easily calculate the 0 ? ? ? -decay half-life for arbitrary mN for all the experimentally interesting isotopes without resorting to real nuclear structure calculations.

Faessler, Amand; González, Marcela; Kovalenko, Sergey; Šimkovic, Fedor

2014-11-01

46

Determining Majorana nature of neutrino from nucleon decays and n -n ¯ oscillations  

NASA Astrophysics Data System (ADS)

We show that the discovery of baryon number violation in two processes, with at least one obeying the selection rule ? (B -L )=±2 , can determine the Majorana character of neutrinos. Thus, observing p ?e+?0 and n ?e-?+ decays, or p ?e+?0 and n -n ¯ oscillations, or n ?e-?+ and n -n ¯ oscillations would establish that neutrinos are Majorana particles. We discuss this in a model-independent effective operator approach.

Babu, K. S.; Mohapatra, Rabindra N.

2015-01-01

47

The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment  

SciTech Connect

The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0{nu}{beta}{beta}), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0{nu}{beta}{beta} search will be given as well as an overview of present status and future perpectives of experiments.

Bellini, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma I-00185 (Italy) and INFN - Sezione di Roma, Roma I-00185 (Italy)

2012-11-20

48

Majorana neutrinos production at LHeC in an effective approach  

E-print Network

We investigate the possibility of detecting Majorana neutrinos at the Large Hadron-electron Collider (LHeC), an electron-proton collision mode at CERN. We study the $l_j^{+} + 3 jets$ ($l_j\\equiv e ,\\mu ,\\tau$) final states which are, due to leptonic number violation, a clear signature for intermediate Majorana neutrino contributions. Such signals are not possible if the heavy neutrinos have Dirac nature. The interactions between Majorana neutrinos and the Standard Model (SM) particles are obtained from an effective lagrangian approach. We present our results for the total cross section as a function of the neutrino mass, the effective couplings and the new physics scale. We also show the discovery region as a function of the Majorana neutrino mass and the effective couplings. Our results show that the LHeC may be able to discover Majorana neutrinos with masses lower than $700$ GeV and $1300$ GeV for electron beams settings of $E_e=50$ GeV and $E_e=150$ GeV, respectively.

Lucía Duarte; Gabriel A. González-Sprinberg; Oscar Alfredo Sampayo

2015-03-24

49

Majorana neutrinos production at LHeC in an effective approach  

NASA Astrophysics Data System (ADS)

We investigate the possibility of detecting Majorana neutrinos at the Large Hadron-electron Collider, an electron-proton collision mode at CERN. We study the lj++3 jets (lj?e ,? ,? ) final states that are, due to leptonic number violation, a clear signature for intermediate Majorana neutrino contributions. Such signals are not possible if the heavy neutrinos have Dirac nature. The interactions between Majorana neutrinos and the Standard Model particles are obtained from an effective Lagrangian approach. We present our results for the total cross section as a function of the neutrino mass, the effective couplings, and the new physics scale. We also show the discovery region as a function of the Majorana neutrino mass and the effective couplings. Our results show that the Large Hadron-electron Collider may be able to discover Majorana neutrinos with masses lower than 700 and 1300 GeV for electron beams settings of Ee=50 GeV and Ee=150 GeV , respectively.

Duarte, Lucía; González-Sprinberg, Gabriel A.; Sampayo, Oscar A.

2015-03-01

50

A Combined Limit on the Neutrino Mass from Neutrinoless Double-Beta Decay and Constraints on Sterile Majorana Neutrinos  

E-print Network

We present a framework to combine data from the latest neutrinoless double-beta decay experiments for multiple isotopes and derive a limit on the effective neutrino mass using the experimental energy distributions. The combined limits on the effective mass range between 130-310 meV, where the spread is due to different model calculations of nuclear matrix elements (NMEs). The statistical consistency (p values) between this result and the signal observation claimed by the Heidelberg-Moscow experiment is derived. The limits on the effective mass are also evaluated in a (3+1) sterile neutrino model, assuming all neutrinos are Majorana particles.

Guzowski, Pawel; Evans, Justin; Karagiorgi, Georgia; McCabe, Nathan; Soldner-Rembold, Stefan

2015-01-01

51

Comment on the light-heavy majorana neutrino mechanism in no-neutrino double beta decay  

SciTech Connect

We review the cancellation mechanism between light and heavy neutrinos in no-neutrino double beta decay, and the limits on the mass and mixing angle for the heavy neutrino. We emphasize that the effective mass for no-neutrino double beta decay varies with atomic weight, being heavier the lighter the parent nucleus. A search for double beta decay in /sup 48/Ca will be an excellent test of this mechanism.

Rosen, S.P.

1984-01-01

52

The quest for neutrinoless double beta decay: Pseudo-Dirac, Majorana, and sterile neutrinos  

NASA Astrophysics Data System (ADS)

In this paper we analyze the neutrinoless double beta decay predictions in some scenarios with admixture of pseudo-Dirac and Majorana neutrinos in the 3 and 3+1 neutrino frameworks. We found that some of the cases can be falsifiable in near-term and future generation of neutrinoless double beta decay experiments even for the normal neutrino mass hierarchy. In the 3+1 framework we consider the sterile neutrino with a mass of the order of 1 eV. The complementarity between cosmological constraints and the future sensitivity for the next generations of the neutrinoless double beta decay searches is exploited.

Meroni, A.; Peinado, E.

2014-09-01

53

Magnetic moment of the majorana neutrino in the left-right symmetric model  

SciTech Connect

Corrections to the neutrino magnetic dipole moment from the singly charged Higgs bosons h{sup ({+-})} and {delta}-tilde{sup (}{+-}) were calculated within the left-right symmetric model involving Majorana neutrinos. It is shown that, if the h{sup ({+-})} and {delta}-tilde{sup (}{+-}) bosons lie at the electroweak scale, the contributions from Higgs sector are commensurate with the contribution of charged gauge bosons or may even exceed it. The behavior of the neutrino flux inmatter and in amagnetic field was studied. It was found that resonance transitions between light and heavy neutrinos are forbidden.

Boyarkin, O. M., E-mail: oboyarkin@tut.by; Boyarkina, G. G. [Maxim Tank Belarusian State Pedagogical University (Belarus)] [Maxim Tank Belarusian State Pedagogical University (Belarus)

2013-04-15

54

The quest for neutrinoless double beta decay: Pseudo-Dirac, Majorana and sterile neutrinos  

E-print Network

In this paper we analyze the neutrinoless double beta decay predictions in some scenarios with admixture of pseudo-Dirac and Majorana neutrinos in the 3 and 3+1 neutrino frameworks. We found that some of the cases can be falsifiable in near-term and future generations of neutrinoless double beta decay experiments even for the normal neutrino mass hierarchy. In the 3+1 framework we consider the sterile neutrino with a mass of the order of 1 eV. The complementarity between cosmological constraints and the future sensitivity for the next generations of the neutrinoless double beta decay searches is exploited.

A. Meroni; E. Peinado

2014-11-09

55

The Majorana neutrino masses, neutrinoless double beta decay and nuclear matrix elements  

E-print Network

The effective Majorana neutrino mass is evaluated by using the latest results of neutrino oscillation experiments. The problems of the neutrino mass spectrum,absolute mass scale of neutrinos and the effect of CP phases are addressed. A connection to the next generation of the neutrinoless double beta decay (0nbb-decay) experiments is discussed. The calculations are performed for 76Ge, 100Mo, 136Xe and 130Te by using the advantage of recently evaluated nuclear matrix elements with significantly reduced theoretical uncertainty. An importance of observation of the 0nbb-decay of several nuclei is stressed.

S. M. Bilenky; Amand Faessler; F. Simkovic

2004-06-28

56

Neutrino Physics  

E-print Network

The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac) of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end.

Gil-Botella, I

2013-01-01

57

Fermion Masses from Six Dimensions and Implications for Majorana Neutrinos  

E-print Network

In these notes, we review the main results of our approach to fermion masses. The marge mass ratios between fermions, confronted with a unique breaking mechanism leading to vector bosons masses, led us to consider the possibility that they result from the overlap of fermion wave functions. Such overlaps vary indeed very strongly if the observed fermion families in 4 dimensions originate in a single family in 6 dimensions, through localized wave functions. This framework leads in a natural way to large mass ratios and small mixing angles between quarks. What came as a surprise is that if we impose that neutrinos behave as 2-component ("Majorana") particles in 4D, a completely different situation is obtained for them. Instead of diagonal mass matrices, anti-diagonal ones emerge and lead to a generic prediction of combined inverted hierarchy, large mixing angles in the leptonic sector, and a suppression of neutrinoless-double beta decay placing it at the lower limit of the inverted hierarchy branch, a challenging situation for on-going and planned experiments. Our approach predicted the size of the $\\theta_{13}$ mixing angle before its actual measurement. Possible signals at colliders are only briefly evoked.

J-M Frère; M Libanov; S Mollet; S Troitsky

2014-09-29

58

Particle physics: The hunt for Majorana neutrinos hots up  

NASA Astrophysics Data System (ADS)

Finding that neutrinos are their own antiparticles would revolutionize particle physics. A high-sensitivity technique accelerates the search for the nuclear-decay process that would enable such a discovery. See Article p.229

Wark, David

2014-06-01

59

Study Majorana neutrino contribution to B-meson semi-leptonic rare decays  

NASA Astrophysics Data System (ADS)

B-meson semi-leptonic rare decays are sensitive to new physics beyond standard model. We study the B-??-?+?- process and investigate the Majorana neutrino contribution besides the standard model contribution to its decay width. The standard model predictions are estimated with Heavy Quark Symmetry and Lattice QCD, perturbative QCD and QCD Light Cone Sum Rule. The constraints on the Majorana neutrino mass and mixing parameter are obtained from this decay channel with the latest LHCb data. Utilizing the best fits for the parameters, we study the lepton number violating decay B-??+?-?-, and find its branching ratio is roughly consistent with the LHCb data reported recently.

Wang, Ying; Bao, Shou-Shan; Li, Zuo-Hong; Zhu, Nan; Si, Zong-Guo

2014-09-01

60

Determining Majorana Nature of Neutrino from Nucleon Decays and n-nbar oscillations  

E-print Network

We show that discovery of baryon number violation in two processes with at least one obeying the selection rule \\Delta (B-L) = \\pm 2 can determine the Majorana character of neutrinos. Thus observing p \\to e^+ \\pi^0 and n \\to e^- \\pi^0 decays, or p \\to e^+ \\pi^0 and n-nbar oscillations, or n \\to e^- \\pi^+ and n-nbar oscillations would establish that neutrinos are Majorana particles. We discuss this in a model-independent effective operator approach.

K. S. Babu; Rabindra N. Mohapatra

2014-08-04

61

Back-to-back pair correlation of Majorana neutrinos with transit magnetic moments  

SciTech Connect

The pair production of Majorana neutrinos with transit magnetic moments from the annihilation of charged particles in colliding experiments is discussed using the Pauli interaction, through which the neutral neutrinos with magnetic moments can be probed by the photon. The pair of neutrinos with different flavors are produced due to the transit magnetic moment coupling. We discuss the correlations of flavors in pairs produced back-to-back in the center of the mass frame, where the angular distribution peaks at {theta}={pi}/2 with respect to the beam direction. We demonstrate that the flavor mixing angle can be inferred by measuring the flavor correlation in pairs.

Lee, Hyun Kyu [Department of Physics, Hanyang University, Seoul 133-791, Korea and Asia Pacific Center for Theoretical Physics, Pohang 790-784 (Korea, Republic of)

2011-10-01

62

Back-to-back pair correlation of Majorana neutrinos with transit magnetic moments  

E-print Network

The pair production of Majorana neutrinos with transit magnetic moments from the annihilation of charged particles in colliding experiments is discussed using the Pauli interaction, through which the neutral neutrinos but with magnetic moments can be probed by photon. The pair of neutrinos with different flavors are produced due to the transit magnetic moment coupling. We discuss the correlations of flavors in pairs produced back-to-back in the center of mass frame, where the angular distribution peaks at $\\theta=\\pi/2$ with respect to the beam direction. We demonstrate that the flavor mixing angle can be inferred by measuring the flavor correlation in pairs.

Hyun Kyu Lee

2011-09-27

63

Search for Majorana neutrinos in $B^- \\to \\pi^+\\mu^-\\mu^-$ decays  

E-print Network

A search for heavy Majorana neutrinos produced in the $B^- \\to \\pi^+\\mu^-\\mu^-$ decay mode is performed using 3 fb$^{-1}$ of integrated luminosity collected with the LHCb detector in $pp$ collisions at center-of-mass energies of 7 TeV and 8 TeV at the LHC. Neutrinos with masses in the range 250-5000 MeV and lifetimes from zero to 1000 ps are probed. In the absence of a signal, upper limits are set on the branching fraction ${\\cal{B}}(B^- \\to \\pi^+\\mu^-\\mu^-)$ as functions of neutrino mass and lifetime. These limits are on the order of $10^{-9}$ for short neutrino lifetimes of 1 ps or less. Limits are also set on the coupling between the muon and a possible fourth-generation neutrino.

Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Bauer, Thomas; Bay, Aurelio; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Callot, Olivier; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carranza-Mejia, Hector; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coca, Cornelia; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bonis, Isabelle; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dorosz, Piotr; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farry, Stephen; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Fitzpatrick, Conor; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gordon, Hamish; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Hafkenscheid, Tom; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hartmann, Thomas; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre

2014-01-01

64

Phenomenology of neutrino oscillations  

Microsoft Academic Search

This review is focused on neutrino mixing and neutrino oscillations in the light of the recent experimental developments. After discussing possible types of neutrino mixing for Dirac and Majorana neutrinos and considering in detail the phenomenology of neutrino oscillations in vacuum and matter, we review all existing evidence and indications in favour of neutrino oscillations that have been obtained in

W. Grimus; C. Giunti

1999-01-01

65

Search for Majorana neutrinos with the first two years of EXO-200 data  

NASA Astrophysics Data System (ADS)

Many extensions of the standard model of particle physics suggest that neutrinos should be Majorana-type fermions--that is, that neutrinos are their own anti-particles--but this assumption is difficult to confirm. Observation of neutrinoless double-? decay (0???), a spontaneous transition that may occur in several candidate nuclei, would verify the Majorana nature of the neutrino and constrain the absolute scale of the neutrino mass spectrum. Recent searches carried out with 76Ge (the GERDA experiment) and 136Xe (the KamLAND-Zen and EXO (Enriched Xenon Observatory)-200 experiments) have established the lifetime of this decay to be longer than 1025 years, corresponding to a limit on the neutrino mass of 0.2-0.4 electronvolts. Here we report new results from EXO-200 based on a large 136Xe exposure that represents an almost fourfold increase from our earlier published data sets. We have improved the detector resolution and revised the data analysis. The half-life sensitivity we obtain is 1.9 × 1025 years, an improvement by a factor of 2.7 on previous EXO-200 results. We find no statistically significant evidence for 0??? decay and set a half-life limit of 1.1 × 1025 years at the 90 per cent confidence level. The high sensitivity holds promise for further running of the EXO-200 detector and future 0??? decay searches with an improved Xe-based experiment, nEXO.

The Exo-200 Collaboration; Albert, J. B.; Auty, D. J.; Barbeau, P. S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C.; Bonatt, J.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G. F.; Chambers, C.; Chaves, J.; Cleveland, B.; Coon, M.; Craycraft, A.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Davis, C. G.; Davis, J.; Devoe, R.; Delaquis, S.; Didberidze, T.; Dolgolenko, A.; Dolinski, M. J.; Dunford, M.; Fairbank, W., Jr.; Farine, J.; Feldmeier, W.; Fierlinger, P.; Fudenberg, D.; Giroux, G.; Gornea, R.; Graham, K.; Gratta, G.; Hall, C.; Herrin, S.; Hughes, M.; Jewell, M. J.; Jiang, X. S.; Johnson, A.; Johnson, T. N.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Killick, R.; Koffas, T.; Kravitz, S.; Kuchenkov, A.; Kumar, K. S.; Leonard, D. S.; Leonard, F.; Licciardi, C.; Lin, Y. H.; MacLellan, R.; Marino, M. G.; Mong, B.; Moore, D.; Nelson, R.; Odian, A.; Ostrovskiy, I.; Ouellet, C.; Piepke, A.; Pocar, A.; Prescott, C. Y.; Rivas, A.; Rowson, P. C.; Rozo, M. P.; Russell, J. J.; Schubert, A.; Sinclair, D.; Slutsky, S.; Smith, E.; Stekhanov, V.; Tarka, M.; Tolba, T.; Tosi, D.; Twelker, K.; Vogel, P.; Vuilleumier, J.-L.; Waite, A.; Walton, J.; Walton, T.; Weber, M.; Wen, L. J.; Wichoski, U.; Wright, J. D.; Yang, L.; Yen, Y.-R.; Ya. Zeldovich, O.; Zhao, Y. B.

2014-06-01

66

Search for Majorana neutrinos with the first two years of EXO-200 data.  

PubMed

Many extensions of the standard model of particle physics suggest that neutrinos should be Majorana-type fermions-that is, that neutrinos are their own anti-particles-but this assumption is difficult to confirm. Observation of neutrinoless double-? decay (0???), a spontaneous transition that may occur in several candidate nuclei, would verify the Majorana nature of the neutrino and constrain the absolute scale of the neutrino mass spectrum. Recent searches carried out with (76)Ge (the GERDA experiment) and (136)Xe (the KamLAND-Zen and EXO (Enriched Xenon Observatory)-200 experiments) have established the lifetime of this decay to be longer than 10(25)?years, corresponding to a limit on the neutrino mass of 0.2-0.4?electronvolts. Here we report new results from EXO-200 based on a large (136)Xe exposure that represents an almost fourfold increase from our earlier published data sets. We have improved the detector resolution and revised the data analysis. The half-life sensitivity we obtain is 1.9?×?10(25)?years, an improvement by a factor of 2.7 on previous EXO-200 results. We find no statistically significant evidence for 0??? decay and set a half-life limit of 1.1?×?10(25)?years at the 90 per cent confidence level. The high sensitivity holds promise for further running of the EXO-200 detector and future 0??? decay searches with an improved Xe-based experiment, nEXO. PMID:24896189

2014-06-12

67

Probing Majorana neutrinos in the regime of the normal mass hierarchy  

NASA Astrophysics Data System (ADS)

An approach to developing a feasible neutrinoless double beta decay experiment capable of probing Majorana masses in the regime of the nondegenerate normal neutrino mass hierarchy is proposed. For such an experiment, this study suggests that Te130 is likely the best choice of candidate isotope and that metal-loaded liquid scintillator likely represents the best choice of detector technology. An evaluation of the required loading, scintillator properties and detector configuration is presented. While further development of Te-loaded liquid scintillator is required, recent progress in this area suggests that this task may not be insurmountable. This could open the door for a future experiment of unparalleled sensitivity that might be accommodated in a volume of the order of 10-20 kilotons. To the best of our knowledge, this is the first time that a potentially practical experimental approach to exploring Majorana neutrino masses in the nondegenerate normal hierarchy has been suggested.

Biller, Steven D.

2013-04-01

68

Probing the Majorana neutrinos and their CP violation in decays of charged scalar mesons $\\pi, K, D, D_s, B, B_c$  

E-print Network

Some of the outstanding questions of particle physics today concern the neutrino sector, in particular whether there are more neutrinos than those already known and whether they are Dirac or Majorana particles. Some scenarios with additional Majorana neutrinos, sterile under electroweak interactions, could also provide explanations for the Dark Matter and the Baryon Asymmetry of the Universe. There are different ways to explore these issues. In this article we describe neutrino-mediated decays of charged pseudoscalar mesons such as $\\pi^{\\pm}$, $K^{\\pm}$ and $B^{\\pm}$, in scenarios where extra neutrinos are heavy and can be on their mass shell. We discuss semileptonic and leptonic decays of such kinds. We investigate possible ways of using these decays in order to distinguish between the Dirac and Majorana character of neutrinos. Further, we argue that there are significant possibilities of detecting CP violation in such decays when there are at least two almost degenerate Majorana neutrinos involved. This la...

Cvetic, Gorazd; Kim, C S; Zamora-Saa, Jilberto

2015-01-01

69

Quasidegeneracy of Majorana neutrinos and the origin of large leptonic mixing  

NASA Astrophysics Data System (ADS)

We propose that the observed large leptonic mixing may just reflect a quasidegeneracy of three Majorana neutrinos. The limit of exact degeneracy of Majorana neutrinos is not trivial, as leptonic mixing and even C P violation may occur. We conjecture that the smallness of |U13|, when compared to the other elements of UP M N S, may be related to the fact that, in the limit of exact mass degeneracy, the leptonic mixing matrix necessarily has a vanishing element. We show that the lifting of the mass degeneracy can lead to the measured value of |U13| while at the same time accommodating the observed solar and atmospheric mixing angles. In the scenario we consider for the breaking of the mass degeneracy, there is only one C P violating phase, already present in the limit of exact degeneracy, which upon the lifting of the degeneracy generates both Majorana and Dirac-type C P violation in the leptonic sector. We analyze some of the correlations among physical observables and point out that, in most of the cases considered, the implied strength of leptonic Dirac-type C P violation is large enough to be detected in the next round of experiments.

Branco, G. C.; Rebelo, M. N.; Silva-Marcos, J. I.; Wegman, Daniel

2015-01-01

70

Neutrinos in Nuclear Physics  

E-print Network

Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

R. D. McKeown

2014-12-03

71

Neutrino Physics (theory)  

Microsoft Academic Search

Nonzero neutrino masses are the first definitive need to extend the standard model. After reviewing the basic framework, I describe the status of some of the major issues, including tests of the basic framework of neutrino masses and mixings; the question of Majorana vs. Dirac; the spectrum, mixings, and number of neutrinos; models, with special emphasis on constraints from typical

Paul Langacker

2005-01-01

72

Connecting Dirac and Majorana neutrino mass matrices in the minimal left-right symmetric model.  

PubMed

Probing the origin of neutrino mass by disentangling the seesaw mechanism is one of the central issues of particle physics. We address it in the minimal left-right symmetric model and show how the knowledge of light and heavy neutrino masses and mixings suffices to determine their Dirac Yukawa couplings. This in turn allows one to make predictions for a number of high and low energy phenomena, such as decays of heavy neutrinos, neutrinoless double beta decay, electric dipole moments of charged leptons, and neutrino transition moments. We also discuss a way of reconstructing the neutrino Dirac Yukawa couplings at colliders such as the LHC. PMID:25167249

Nemevšek, Miha; Senjanovi?, Goran; Tello, Vladimir

2013-04-12

73

Are neutrinos their own antiparticles?  

SciTech Connect

We explain the relationship between Majorana neutrinos, which are their own antiparticles, and Majorana neutrino masses. We point out that Majorana masses would make the neutrinos very distinctive particles, and explain why many theorists strongly suspect that neutrinos do have Majorana masses. The promising approach to confirming this suspicion is to seek neutrinoless double beta decay. We introduce a toy model that illustrates why this decay requires nonzero neutrino masses, even when there are both right-handed and left-handed weak currents.

Kayser, Boris; /Fermilab

2009-03-01

74

Neutrino Experiments  

SciTech Connect

Recent studies of neutrino oscillations have established the existence of finite neutrino masses and mixing between generations of neutrinos. The combined results from studies of atmospheric neutrinos, solar neutrinos, reactor antineutrinos and neutrinos produced at accelerators paint an intriguing picture that clearly requires modification of the standard model of particle physics. These results also provide clear motivation for future neutrino oscillation experiments as well as searches for direct neutrino mass and nuclear double-beta decay. I will discuss the program of new neutrino oscillation experiments aimed at completing our knowledge of the neutrino mixing matrix.

McKeown, R. D. [W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States)

2010-08-04

75

Nuclear matrix elements for 0 ? ? ? decays with light or heavy Majorana-neutrino exchange  

NASA Astrophysics Data System (ADS)

We compute the nuclear matrix elements (NMEs) corresponding to the neutrinoless double beta (0 ? ? ? ) decays of nuclei which attract current experimental interest. We concentrate on ground-state-to-ground-state decay transitions mediated by light (l-NMEs) or heavy (h-NMEs) Majorana neutrinos. The computations are done in realistic single-particle model spaces using the proton-neutron quasiparticle random-phase approximation (pnQRPA) with two-nucleon interactions based on the Bonn one-boson-exchange G matrix. Both the l-NMEs and the h-NMEs include the appropriate short-range correlations, nucleon form factors, and higher-order nucleonic weak currents. In addition, both types of NMEs are corrected for the isospin symmetry by the recently proposed method in which the particle-particle proton-neutron interaction parameter (gpp) is decomposed into isoscalar (gppT =0) and isovector (gppT =1) parts. A detailed analysis of the l-NMEs and the h-NMEs is performed to benchmark our computer code and to compare with other recent calculations which produce h-NMEs that are in tension with each other.

Hyvärinen, Juhani; Suhonen, Jouni

2015-02-01

76

NEXT, high-pressure xenon gas experiments for ultimate sensitivity to Majorana neutrinos  

E-print Network

In this paper we describe an innovative type of Time Projection Chamber (TPC), which uses high-pressure xenon gas (HPXe) and electroluminescence amplification of the ionization charge as the basis of a apparatus capable of fully reconstructing the energy and topological signal of rare events. We will discuss a specific design of such HPXe TPC, the NEXT-100 detector, that will search for neutrinoless double beta decay using 100-150 kg of xenon enriched in the isotope Xe-136. NEXT-100 is currently under construction, after completion of an accelerated and very successful R&D period. It will be installed at the Laboratorio Subterr\\'aneo de Canfranc (LSC), in Spain. The commissioning run is expected for late 2013 or early 2014. We will also present physics arguments that suggest that the HPXe technology can be extrapolated to the next-to-next generation (e.g, a fiducial mass of 1 ton of target), which will fully explore the Majorana nature of the neutrino if the mass hierarchy is inverse.

Gomez-Cadenas, J J; Monrabal, F

2012-01-01

77

NEXT, high-pressure xenon gas experiments for ultimate sensitivity to Majorana neutrinos  

E-print Network

In this paper we describe an innovative type of Time Projection Chamber (TPC), which uses high-pressure xenon gas (HPXe) and electroluminescence amplification of the ionization charge as the basis of an apparatus capable of fully reconstructing the energy and topological signature of rare events. We will discuss a specific design of such HPXe TPC, the NEXT-100 detector, that will search for neutrinoless double beta decay events using 100-150 kg of xenon enriched in the isotope Xe-136. NEXT-100 is currently under construction, after completion of an accelerated and very successful R&D period. It will be installed at the Laboratorio Subterr\\'aneo de Canfranc (LSC), in Spain. The commissioning run is expected for late 2013 or early 2014. We will also present physics arguments that suggest that the HPXe technology can be extrapolated to the next-to-next generation (e.g, a fiducial mass of 1 ton of target), which will fully explore the Majorana nature of the neutrino if the mass hierarchy is inverse.

J. J. Gómez-Cadenas; J. Martín-Albo; F. Monrabal; for the NEXT Collaboration

2012-11-21

78

NEXT, high-pressure xenon gas experiments for ultimate sensitivity to Majorana neutrinos  

NASA Astrophysics Data System (ADS)

In this paper we describe an innovative type of Time Projection Chamber (TPC), which uses high-pressure xenon gas (HPXe) and electroluminescence amplification of the ionization charge as the basis of an apparatus capable of fully reconstructing the energy and topological signature of rare events. We will discuss a specific design of such HPXe TPC, the NEXT-100 detector, that will search for ??0? events using 100-150 kg of xenon enriched in the isotope 136Xe. NEXT-100 is currently under construction, after completion of an accelerated and very successful R&D period. It will be installed at the Laboratorio Subterr&aposaneo de Canfranc (LSC), in Spain. The commissioning run is expected for late 2013 or early 2014. We will also present physics arguments that suggest that the HPXe technology can be extrapolated to the next-to-next generation (e.g, a fiducial mass of 1 ton of target), which will fully explore the Majorana nature of the neutrino if the mass hierarchy is inverse.

Gómez-Cadenas, J. J.; Martín-Albo, J.; Monrabal, F.

2012-11-01

79

Constraints on TeV Scale Majorana Neutrino Phenomenology from the Vacuum Stability of the Higgs  

NASA Astrophysics Data System (ADS)

The vacuum stability condition of the Standard Model (SM) Higgs potential with mass in the range of 124-127 GeV puts an upper bound on the Dirac mass of the neutrinos. We study this constraint with the right-handed neutrino masses up to TeV scale. The heavy neutrinos contribute to ?L = 2 processes like neutrinoless double beta decay and same-sign-dilepton (SSD) production in the colliders. The vacuum stability criterion also restricts the light-heavy neutrino mixing and constrains the branching ratio (BR) of lepton flavor-violating process, like ??e? mediated by the heavy neutrinos. We show that neutrinoless double beta decay with a lifetime 1025 years can be observed if the lightest heavy neutrino mass is <4.5 TeV. We show that the vacuum stability condition and the experimental bound on ??e ? together put a constrain on heavy neutrino mass MR>3.3 TeV. Finally we show that the observation of SSDs associated with jets at the LHC needs much larger luminosity than available at present. We have estimated the possible maximum cross-section for this process at the LHC and show that with an integrated luminosity 100 fb-1 it may be possible to observe the SSD signals as long as MR < 400 GeV.

Chakrabortty, Joydeep; Das, Moumita; Mohanty, Subhendra

2013-04-01

80

Cosmic Neutrinos  

SciTech Connect

I recall the place of neutrinos in the electroweak theory and summarize what we know about neutrino mass and flavor change. I next review the essential characteristics expected for relic neutrinos and survey what we can say about the neutrino contribution to the dark matter of the Universe. Then I discuss the standard-model interactions of ultrahigh-energy neutrinos, paying attention to the consequences of neutrino oscillations, and illustrate a few topics of interest to neutrino observatories. I conclude with short comments on the remote possibility of detecting relic neutrinos through annihilations of ultrahigh-energy neutrinos at the Z resonance.

Quigg, Chris; /Fermilab /CERN

2008-02-01

81

Neutrino Oscillations with Reactor Neutrinos  

E-print Network

Prospect measurements of neutrino oscillations with reactor neutrinos are reviewed in this document. The following items are described: neutrinos oscillations status, reactor neutrino experimental strategy, impact of uncertainties on the neutrino oscillation sensitivity and, finally, the experiments in the field. This is the synthesis of the talk delivered during the NOW2006 conference at Otranto (Italy) during September 2006.

Anatael Cabrera

2007-02-22

82

Neutrino Magnetic Moments and Electromagnetic Leptogenesis  

SciTech Connect

We analyze the connection between neutrino magnetic moments and neutrino masses. Electroweak radiative corrections to the neutrino mass are used to derive naturalness upper bounds on neutrino magnetic moments, generated by physics above the electroweak scale. For Dirac (Majorana) neutrinos the bound is several orders of magnitude stronger (weaker) than present experimental limits. The discovery of a neutrino magnetic moment near the present experimental sensitivity would thus suggest that neutrinos are Majorana particles. We also outline a new baryogenesis-via-leptogenesis scenario where the lepton asymmetry is generated by CP violating decays of heavy right handed neutrinos via electromagnetic dipole moment couplings.

Bell, Nicole F. [School of Physics, University of Melbourne, Victoria 3010 (Australia)

2009-12-17

83

Observables in Neutrino Mass Spectroscopy Using Atoms  

E-print Network

The process of collective de-excitation of atoms in a metastable level into emission mode of a single photon plus a neutrino pair, called radiative emission of neutrino pair (RENP), is sensitive to the absolute neutrino mass scale, to the neutrino mass hierarchy and to the nature (Dirac or Majorana) of massive neutrinos. We investigate how the indicated neutrino mass and mixing observables can be determined from the measurement of the corresponding continuous photon spectrum taking the example of a transition between specific levels of the Yb atom. The possibility of determining the nature of massive neutrinos and, if neutrinos are Majorana fermions, of obtaining information about the Majorana phases in the neutrino mixing matrix, is analyzed in the cases of normal hierarchical, inverted hierarchical and quasi-degenerate types of neutrino mass spectrum. We find, in particular, that the sensitivity to the nature of massive neutrinos depends critically on the atomic level energy difference relevant in the RENP.

D. N. Dinh; S. T. Petcov; N. Sasao; M. Tanaka; M. Yoshimura

2013-01-17

84

Fundamental Neutrinos Properties  

NASA Astrophysics Data System (ADS)

After about six decades since the discovery of the neutrino, we have started to understand the role of neutrinos in our world. The discoveries of oscillations of atmospheric, solar, accelerator and reactor neutrinos have opened a new excited era in neutrino physics and represents a big step forward in our knowledge of neutrino properties. The observed small neutrino masses have profound implications for our understanding of the Universe and are now a major focus in astro, particle and nuclear physics and in cosmology. The physics community worldwide is embarking on the challenging problem, finding whether neutrinos are indeed Majorana particles (i.e., identical to its own antiparticle) as many particle models suggest or Dirac particles (i.e., is different from its antiparticle). The search for the 0? ? ?-decay represents the new frontiers of neutrino physics, allowing to determine the Majorana nature of neutrinos and to fix the neutrino mass scale and possible CP violation effects, which could explain the matter-antimatter asymmetry in the Universe.

Šimkovic, Fedor

85

B-L Neutrinos  

E-print Network

Neutrino masses and mixings are analyzed in terms of left-handed fields and a 6x6 complex symmetric mass matrix whose singular values are the neutrino masses. An angle theta_nu characterizes the kind of the neutrinos, with theta_nu=0 for Dirac neutrinos and theta_nu=pi/2 for Majorana neutrinos. At theta_nu = 0 baryon-minus-lepton number is conserved. If theta_nu is approximately zero, the six neutrino masses coalesce into three nearly degenerate pairs. Thus the tiny mass differences exhibited in the solar and atmospheric neutrino experiments are naturally explained by the approximate conservation of B-L. Neutrinos are nearly Dirac fermions. This B-L model leads to these predictions: neutrinos oscillate mainly between flavor eigenfields and sterile eigenfields, and so the appearance of neutrinos and antineutrinos is suppressed; neutrinos may well be of cosmological importance; in principle the disappearance of the tau neutrino should be observable; and neutrinoless double-beta decay is suppressed by an extra factor of 10^(-5) and so will not be seen in the Heidelberg/Moscow, IGEX, GENIUS, or CUORE experiments.

Kevin Cahill

2000-06-19

86

The Neutrino Mass Window for Baryogenesis  

Microsoft Academic Search

Interactions of heavy Majorana neutrinos in the thermal phase of the early universe may be the origin of the cosmological matter-antimatter asymmetry. This mech- anism of baryogenesis implies stringent constraints on light and heavy Majorana neutrino masses. We derive an improved upper bound on the CP asymmetry in heavy neutrino decays which, together with the kinetic equations, yields an upper

W. Buchmuller; P. Di Bari

87

The neutrino mass window for baryogenesis  

Microsoft Academic Search

Interactions of heavy Majorana neutrinos in the thermal phase of the early universe may be the origin of the cosmological matter–antimatter asymmetry. This mechanism of baryogenesis implies stringent constraints on light and heavy Majorana neutrino masses. We derive an improved upper bound on the CP asymmetry in heavy neutrino decays which, together with the kinetic equations, yields an upper bound

Wilfried Buchmüller; P. Di Bari; Michael Plümacher

2003-01-01

88

Search for Heavy Majorana Neutrinos in ?[superscript ±]?[superscript ±] + just and e[superscript ±]e[superscript ±] + jets events in pp collisions at ?s = 7 TeV  

E-print Network

A search is performed for heavy Majorana neutrinos (N) using an event signature defined by two same-sign charged leptons of the same flavour and two jets. The data correspond to an integrated luminosity of 4.98 fb[superscript ...

Apyan, Aram

89

Sterile neutrinos?  

E-print Network

The notion of sterile neutrinos is discussed. The schemes of mixing of four massive neutrinos, which imply the existence of sterile neutrinos, are briefly considered. Several model independent methods that allow to reveal possible transitions of solar neutrinos into sterile states are presented.

S. M. Bilenky; C. Giunti

1999-05-05

90

No-neutrino double beta decay: more than one neutrino  

SciTech Connect

Interference effects between light and heavy Majorana neutrinos in the amplitude for no-neutrino double beta decay are discussed. The effects include an upper bound on the heavy neutrino mass, and an A dependence for the effective mass extracted from double beta decay. Thus the search for the no-neutrino decay mode should be pursued in several nuclei, and particularly in Ca/sup 48/, where the effective mass may be quite large.

Rosen, S.P.

1983-01-01

91

Solar Neutrinos  

E-print Network

Present results and future measurements of solar neutrinos are discussed. The results to date indicate that solar electron neutrinos are changing to other active types and that transitions solely to sterile neutrinos are disfavored. The flux of $^{8}B$ solar neutrinos produced in the Sun, inferred assuming only active neutrino types, is found to be in very good agreement with solar model calculations. Future measurements will focus on greater accuracy for charged current and neutral current sensitive reactions to provide more accurate measurements of neutrino flavour change and further studies of day-night flux differences and spectral shape. Other experiments sensitive to lower energy solar neutrinos will be in operation soon.

A. B. McDonald

2002-09-21

92

Neutrino physics  

SciTech Connect

The field of neutrino physics has expanded greatly in recent years with the discovery that neutrinos change flavor and therefore have mass. Although there are many neutrino physics results since the last DIS workshop, these proceedings concentrate on recent neutrino physics results that either add to or depend on the understanding of Deep Inelastic Scattering. They also describe the short and longer term future of neutrino DIS experiments.

Harris, Deborah A.; /Fermilab

2008-09-01

93

Neutrino tomography  

NASA Astrophysics Data System (ADS)

Neutrinos are produced in weak interactions as states with definite flavor—electron, muon, or tau—and these flavor states are superpositions of states of different mass. As a neutrino propagates through space, the different mass eigenstates interfere, resulting in time-dependent flavor oscillation. Though matter is transparent to neutrinos, the flavor oscillation probability is modified when neutrinos travel through matter. Herein, we present an introduction to neutrino propagation through matter in a manner accessible to advanced undergraduate students. As an interesting application, we consider neutrino propagation through matter with a piecewise-constant density profile. This scenario has relevance in neutrino tomography, in which the density profile of matter, like the Earth's interior, can be probed via a broad-spectrum neutrino beam. We provide an idealized example to demonstrate the principle of neutrino tomography.

Millhouse, Margaret A.; Latimer, David C.

2013-09-01

94

Neutrino masses and Neutrinoless Double Beta Decay: Status and expectations  

Microsoft Academic Search

Two most outstanding questions are puzzling the world of neutrino Physics: the possible Majorana nature of neutrinos and their absolute mass scale. Direct neutrino mass measurements and neutrinoless double beta decay (0nuDBD) are the present strategy to solve the puzzle. Neutrinoless double beta decay violates lepton number by two units and can occurr only if neutrinos are massive Majorana particles.

Oliviero Cremonesi

2010-01-01

95

Neutrino unification.  

PubMed

Present neutrino data are consistent with neutrino masses arising from a common seed at some "neutrino unification" scale M(X). Such a simple theoretical ansatz naturally leads to quasidegenerate neutrinos that could lie in the electron-volt range with neutrino mass splittings induced by renormalization effects associated with supersymmetric thresholds. In such a scheme the leptonic analog of the Cabibbo angle straight theta(middle dot in circle) describing solar neutrino oscillations is nearly maximal. Its exact value is correlated with the smallness of straight theta(reactor). The two leading mass-eigenstate neutrinos present in nu(e) form a pseudo-Dirac neutrino, avoiding conflict with neutrinoless double beta decay. PMID:11328005

Chankowski, P H; Ioannisian, A N; Pokorski, S; Valle, J W

2001-04-16

96

Neutrino Detectors  

NASA Astrophysics Data System (ADS)

The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water ?erenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

97

Generic lepton mass matrices and neutrino oscillations  

E-print Network

Several intriguing aspects of neutrino oscillation phenomenology like the origin of small neutrino masses, the absolute neutrino mass scale, the neutrino mass hierarchy, i.e. normal or inverted and the nature of neutrinos, i.e. Dirac or Majorana, etc. have been addressed from a general perspective. We show how the fundamental considerations of unitary transformations, naturalness and seesaw mechanism suffices to determine the texture structure of fermion Yukawa couplings and discuss the significance of the effective mass in 0{\

Rohit Verma

2014-02-10

98

Neutrino Lensing  

E-print Network

Due to the intrinsic properties of neutrinos, the gravitational lens effect for neutrino should be more colorful and meaningful than the normal lens effect of photon. Other than the oscillation experiments operated at terrestrial laboratory, in principle, we can propose a completely new astrophysical method to determine not only the nature of gravity and spacetime of lens objects but also the mixing parameters of neutrinos by analyzing neutrino trajectories near the central objects. However, compared with the contemporaneous telescopes through the observation of the electromagnetic radiation, the angular, energy and time resolution of the neutrino telescopes are still comparatively poor, we just concentrate on the two classical tests of general relativity, i.e. the angular deflection and time delay of neutrino by a lens object as a preparative work in this paper. In addition, some simple properties of neutrino lensing are investigated.

Luo Xin-Lian

2009-09-28

99

Neutrino mass and gauge structure of weak interactions  

SciTech Connect

Topics include: neutrino mass experiments, Majorana neutrinos/relic neutrinos, cosmology/astrophysics, e/..mu.. asymmetry, structure of weak interactions/neutrinos and symmetries, double beta decay, and neutrino oscillations. The papers presented are entered in the data base separately. (WHK)

Barger, V.; Cline, D. (eds.)

1983-01-01

100

Lepton textures and neutrino oscillations  

NASA Astrophysics Data System (ADS)

A systematic analysis of the textures arising in lepton mass matrices have been carried out using unitary transformations and condition of naturalness for the Dirac and Majorana neutrino possibilities. It is observed that the recent three neutrino oscillation data together with the effective mass in neutrinoless double beta decay provide vital clues in predicting the general structures of these lepton mass matrices.

Verma, Rohit

2014-08-01

101

Lepton textures and neutrino oscillations  

E-print Network

Systematic analyses of the textures arising in lepton mass matrices have been carried out using unitary transformations and condition of naturalness for the Dirac and Majorana neutrino possibilities. It is observed that the recent three neutrino oscillation data together with the effective mass in neutrinoless double beta decay provide vital clues in predicting the general structures of these lepton mass matrices.

Rohit Verma

2014-06-03

102

Evidence for Majorana Neutrinos: Dawn of a new era in spacetime structure  

E-print Network

We show that Majorana particles belong to the Wigner class of fermions in which the charge conjugation and the parity operators commute, rather than anticommute. Rigorously speaking, Majorana spinors do not satisfy the Dirac equation [a result originally due to M. Kirchbach, which we re-render here]. Instead, they satisfy a different wave equation, which we derive. This allows us to reconcile St\\"uckelberg-Feynman interpretation with the Majorana construct. We present several new properties of neutral particle spinors and argue that discovery of Majorana particles constitutes dawn of a new era in spacetime structure.

D. V. Ahluwalia

2002-12-16

103

Neutrino Masses and Flavor Oscillations  

E-print Network

This essay is intended to provide a brief description of the peculiar properties of neutrinos within and beyond the standard theory of weak interactions. The focus is on the flavor oscillations of massive neutrinos, from which one has achieved some striking knowledge about their mass spectrum and flavor mixing pattern. The experimental prospects towards probing the absolute neutrino mass scale, possible Majorana nature and CP-violating effects will also be addressed.

Wang, Yifang

2015-01-01

104

Neutrino factory  

NASA Astrophysics Data System (ADS)

The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that ?13>0 . The measured value of ?13 is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO ? Design Study consortium. EURO ? coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO ? baseline accelerator facility will provide 1 021 muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R. J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A. C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

2014-12-01

105

Solar neutrinos before and after Neutrino 2004  

Microsoft Academic Search

We compare, using a three neutrino analysis, the allowed neutrino oscillation parameters and solar neutrino ?uxes determined by the experimental data available Before and After Neutrino 2004. New data available after Neutrino 2004 include reflned Kam- LAND and gallium measurements. We use six difierent approaches to analyzing the Kam- LAND data. We present detailed results using all the available neutrino

John N. Bahcall; Maria C. Gonzalez-Garciabc; C. N. Yang

106

Atmospheric neutrinos and discovery of neutrino oscillations  

PubMed Central

Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. PMID:20431258

Kajita, Takaaki

2010-01-01

107

Neutrino Observatories  

NSDL National Science Digital Library

This online article, from Cosmic Horizons: Astronomy at the Cutting Edge, takes an in-depth look at the new generation of astronomy equipment. It provides an overview of the discovery of neutrinos, subatomic particles, and their role in the developing field of physics, studies that showed that nuclear reactions, including those that power the stars, produce an enormous number of neutrinos, the creation of neutrino observatories deep underground and the stunning and unexpected advances these observatories have already made.

108

CP violation in neutrino oscillation and leptogenesis.  

PubMed

We study the correlation between CP violation in neutrino oscillations and leptogenesis in the framework with two heavy Majorana neutrinos and three light neutrinos. Among three unremovable CP phases, a heavy Majorana phase contributes to leptogenesis. We show how the heavy Majorana phase contributes to Jarlskog determinant J as well as neutrinoless double beta decay by identifying a low energy CP-violating phase which signals the CP-violating phase for leptogenesis. For some specific cases of the Dirac mass term of neutrinos, a direct relation between lepton number asymmetry and J is obtained. We also study the effect coming from the phases which are not related to leptogenesis. PMID:12484996

Endoh, T; Kaneko, S; Kang, S K; Morozumi, T; Tanimoto, M

2002-12-01

109

Massive neutrinos in particle physics and astrophysics  

SciTech Connect

The concepts of Majorana and Dirac neutrinos are reviewed from an operational point of view and survey the experimental search for neutrino mass. Also reviewed are the work of Mikheyev and Smirnov on the enhancement of neutrino oscillations via the mechanism of Wolfenstein matter oscillations. Results of an extensive computation of MSW effects in the sun are described. 41 refs., 6 figs.

Rosen, S.P.

1986-01-01

110

Small neutrino masses from supersymmetry breaking  

Microsoft Academic Search

An alternative to the conventional seesaw mechanism is proposed to explain the origin of small neutrino masses in supersymmetric theories. The masses and couplings of the right-handed neutrino field are suppressed by supersymmetry breaking, in a way similar to the suppression of the Higgs doublet mass mu. New mechanisms for light Majorana and Dirac neutrinos arise, depending on the degree

Nima Arkani-Hamed; Lawrence Hall; Hitoshi Murayama; David Smith; Neal Weiner

2001-01-01

111

The United Families of Massive Neutrinos of the Different Nature  

E-print Network

At the availability of a non - zero mass, the same neutrino regardless of whether it refers to Dirac or Majorana fermions, must possess simultaneously each of the anapole and electric dipole moments. Their interaction with field of emission can also lead to the longitudinal polarized neutrinos elastic scattering on a spinless nucleus. Using the process cross section, the united equation has been obtained between the anapole and electric dipole form factors of Dirac and Majorana neutrinos. It corresponds in the nature to the coexistence of neutrinos of both types. As a consequence, each of Dirac neutrinos testifies in favor of the existence of a kind of the Majorana neutrino. They constitute herewith the united families of massive neutrinos of a different nature. Therefore, any of earlier measured properties of neutrinos may serve as a certain indication to the existence simultaneously both of Dirac and of Majorana neutrinos. All findings are confirmed also by the comparatively new laboratory restrictions on t...

Sharafiddinov, R S

2004-01-01

112

Neutrino Telescopes  

SciTech Connect

Neutrino telescopes complement gamma ray telescopes in the observations of energetic astronomical sources as well as in searching for the dark matter. This paper gives the status of the current generation neutrino telescopes projects: Baikal, AMANDA, NESTOR, NEMO and ANTARES with particular emphasis on the ANTARES telescope in the Mediterranean Sea.

Carr, John [Centre de Physiques des Particules de Marseille, IN2P3/CNRS (France)

2005-02-21

113

Solar Neutrinos Before and After Neutrino 2004  

Microsoft Academic Search

We compare, using a three neutrino analysis, the allowed neutrino oscillation parameters and solar neutrino fluxes determined by the experimental data available Before and After Neutrino 2004. New data available after Neutrino 2004 include refined KamLAND and gallium measurements. We use six different approaches to analyzing the KamLAND data. We present detailed results using all the available neutrino and anti-neutrino

John N. Bahcall; Maria C. Gonzalez-Garcia; Carlos Pena-Garay

2004-01-01

114

The Gran Sasso Laboratory and Neutrinos  

SciTech Connect

After a brief survey of the experimental programme of the INFN Gran Sasso National Laboratory, I summarize the status of neutrino physics. I then focus on two frontier challenges. 1. The possible solution of the mass spectrum hierarchy problem with the observation of neutrinos from a supernova explosion; 2. The establishment of the nature of neutrinos, whether they are Dirac or Majorana particles, with neutrino-less double-beta decay.

Bettini, Alessandro [University of Padua-G. Galilei Physics Department- and INFN. Via Marzolo 8 35131 Padova (Italy); Laboratorio Subterraneo de Canfranc. Canfranc, Huesca (Spain)

2008-01-24

115

Pseudo-dirac neutrinos: a challenge for neutrino telescopes.  

PubMed

Neutrinos may be pseudo-Dirac states, such that each generation is actually composed of two maximally mixed Majorana neutrinos separated by a tiny mass difference. The usual active neutrino oscillation phenomenology would be unaltered if the pseudo-Dirac splittings are deltam(2) less, similar 10(-12) eV(2); in addition, neutrinoless double beta decay would be highly suppressed. However, it may be possible to distinguish pseudo-Dirac from Dirac neutrinos using high-energy astrophysical neutrinos. By measuring flavor ratios as a function of L/E, mass-squared differences down to deltam(2) approximately 10(-18) eV(2) can be reached. We comment on the possibility of probing cosmological parameters with neutrinos. PMID:14753977

Beacom, John F; Bell, Nicole F; Hooper, Dan; Learned, John G; Pakvasa, Sandip; Weiler, Thomas J

2004-01-01

116

Radiative Emission of Neutrino Pairs in Atoms and Light Sterile Neutrinos  

E-print Network

The process of Radiative Emission of Neutrino Pair (RENP) in atoms is sensitive to the absolute neutrino mass scale, the type of spectrum neutrino masses obey and the nature - Dirac or Majorana - of massive neutrinos. We analyse the possibility to test the hypothesis of existence of neutrinos with masses at the eV scale coupled to the electron in the weak charged lepton current in an RENP experiment. The presence of eV scale neutrinos in the neutrino mixing is associated with the existence of sterile neutrinos which mix with the active flavour neutrinos. At present there are a number of hints for active-sterile neutrino oscillations driven by $\\Delta m^2 \\sim 1~{\\rm eV^2}$. We perform a detailed analysis of the RENP phenomenology within the "3 + 1" scheme with one sterile neutrino.

D. N. Dinh; S. T. Petcov

2015-01-22

117

Radiative emission of neutrino pairs in atoms and light sterile neutrinos  

NASA Astrophysics Data System (ADS)

The process of Radiative Emission of Neutrino Pair (RENP) in atoms is sensitive to the absolute neutrino mass scale, the type of spectrum neutrino masses obey and the nature - Dirac or Majorana - of massive neutrinos. We analyse the possibility to test the hypothesis of existence of neutrinos with masses at the eV scale coupled to the electron in the weak charged lepton current in an RENP experiment. The presence of eV scale neutrinos in the neutrino mixing is associated with the existence of sterile neutrinos which mix with the active flavour neutrinos. At present there are a number of hints for active-sterile neutrino oscillations driven by ?m2 ? 1 eV2. We perform a detailed analysis of the RENP phenomenology within the " 3 + 1" scheme with one sterile neutrino.

Dinh, D. N.; Petcov, S. T.

2015-03-01

118

Gauge Trimming of Neutrino Masses  

SciTech Connect

We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses.

Chen, Mu-Chun; /Fermilab /UC, Irvine; de Gouvea, Andre; /Northwestern U. /Fermilab; Dobrescu, Bogdan A.; /Fermilab

2006-12-01

119

Ultrahigh Energy Tau Neutrinos  

E-print Network

We study ultrahigh energy astrophysical neutrinos and the contribution of tau neutrinos from neutrino oscillations, relative to the contribution of the other flavors. We show the effect of tau neutrino regeneration and tau energy loss as they propagate through the Earth. We consider a variety of neutrino fluxes, such as cosmogenic neutrinos and neutrinos that originate in Active Galactic Nuclei. We discuss signals of tau neutrinos in detectors such as IceCube, RICE and ANITA.

J. Jones; I. Mocioiu; M. H. Reno; I Sarcevic

2005-07-30

120

Impact of the Neutrino Magnetic Moment on the Neutrino Fluxes and the Electron Fraction in core-collapse Supernovae  

E-print Network

We explore the effect of the neutrino magnetic moment on neutrino scattering with matter in a core-collapse Supernova. We study the impact both on the neutrino fluxes and on the electron fraction. We find that sizeable modifications require very large magnetic moments both for Dirac and Majorana neutrinos.

A. B. Balantekin; C. Volpe; J. Welzel

2007-07-27

121

Neutrinoless double-beta decay with three or four neutrino mixing  

Microsoft Academic Search

Considering the scheme with mixing of three neutrinos and a mass hierarchy that can accommodate the results of solar and atmospheric neutrino experiments, it is shown that the results of solar neutrino experiments imply a lower bound for the effective Majorana mass in neutrinoless double-beta decay, under the natural assumptions that massive neutrinos are Majorana particles and there are no

Carlo Giunti

2000-01-01

122

Neutrino Mixing from SUSY breaking  

E-print Network

We propose a mechanism to generate the neutrino mixing matrix from supersymmetric threshold corrections. Flavor violating soft breaking terms induce flavor changing self-energies that give a finite renormalization to the mixing matrix. The described threshold corrections get enhanced in case of quasi-degenerate neutrino masses. In this scenario, we adjust potentially arbitrary soft breaking parameters in a way to reproduce the observed neutrino mixing at one loop working with non-minimal flavor violating soft parameters. To incorporate small neutrino masses already at tree-level via a type I seesaw mechanism, we extend the Minimal Supersymmetric Standard Model with singlet Majorana neutrinos. The radiative corrections do not decouple with the scale of Supersymmetry and persist when the spectrum is shifted to higher values. Moreover, the mixing matrix renormalization with flavor-changing self-energies is not restricted to supersymmetric theories and give similar results in any theory with new flavor structures...

Hollik, Wolfgang G

2015-01-01

123

Solar Neutrinos and the Decaying Neutrino Hypothesis  

E-print Network

We explore, mostly using data from solar neutrino experiments, the hypothesis that the neutrino mass eigenstates are unstable. We find that, by combining $^8$B solar neutrino data with those on $^7$Be and lower-energy solar neutrinos, one obtains a mostly model-independent bound on both the $\

Jeffrey M. Berryman; Andre de Gouvea; Daniel Hernandez

2014-11-02

124

Solar Neutrinos  

E-print Network

Experimental work with solar neutrinos has illuminated the properties of neutrinos and tested models of how the sun produces its energy. Three experiments continue to take data, and at least seven are in various stages of planning or construction. In this review, the current experimental status is summarized, and future directions explored with a focus on the effects of a non-zero theta-13 and the interesting possibility of directly testing the luminosity constraint. Such a confrontation at the few-percent level would provide a prediction of the solar irradiance tens of thousands of years in the future for comparison with the present-day irradiance. A model-independent analysis of existing low-energy data shows good agreement between the neutrino and electromagnetic luminosities at the +/- 20 % level.

R. G. H. Robertson

2006-02-05

125

Neutrino masses, neutrino oscillations, and cosmological implications  

NASA Technical Reports Server (NTRS)

Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.

Stecker, F. W.

1982-01-01

126

Nefarious Neutrinos Alex George  

E-print Network

Nefarious Neutrinos Alex George University of Pittsburgh Nefarious Neutrinos Alex George University of Pittsburgh #12;Introduction · My research is conducted through the Neutrino Group at Pitt · Neutrino physics is a sub physics (particle lepton Introduction My research is conducted through the Neutrino physics

Fygenson, Deborah Kuchnir

127

Neutrinos and Symmetries  

E-print Network

Three facets of symmetries in neutrino physics are briefly reviewed: i) The SO(5) symmetry of the neutrino mass and and its connection to the see-saw mechanism; ii) Flavor SU(N) symmetries of dense, self-interacting neutrino gases in astrophysical settings; iii) The neutrino mixing angle theta13 and possible CP-violation in the neutrino sector.

A. B. Balantekin

2009-10-09

128

Decaying Dirac neutrinos  

Microsoft Academic Search

Constraints on Dirac-neutrino decay into invisible particles are surveyed. Neutrino lifetimes short enough to explain the solar-neutrino problem are allowed by present terrestrial and cosmological measurements. A model in which Dirac neutrinos can have such short lifetimes is proposed. The recently resurrected 17-keV neutrino is incorporated into this model.

A. Acker; S. Pakvasa; J. Pantaleone

1992-01-01

129

A Bound on Neutrino Masses From Baryogenesis  

Microsoft Academic Search

Properties of neutrinos, the lightest of all elementary particles, may be the origin of the entire matter-antimatter asymmetry of the universe. This requires that neu- trinos are Majorana particles, which are equal to their antiparticles, and that their masses are sufficiently small. Leptogenesis, the theory explaining the cosmic matter- antimatter asymmetry, predicts that all neutrino masses are smaller than 0.2

W. Buchmuller; P. Di Bari; M. Plumacher

130

A bound on neutrino masses from baryogenesis  

Microsoft Academic Search

Properties of neutrinos, the lightest of all elementary particles, may be the origin of the entire matter–antimatter asymmetry of the universe. This requires that neutrinos are Majorana particles, which are equal to their antiparticles, and that their masses are sufficiently small. Leptogenesis, the theory explaining the cosmic matter–antimatter asymmetry, predicts that all neutrino masses are smaller than 0.2 eV, which will

W. Buchmuller; P. Di Bari; M. Plumacher

2002-01-01

131

Electromagnetic properties of neutrinos  

E-print Network

A short review on electromagnetic properties of neutrinos is presented. In spite of many efforts in the theoretical and experimental studies of neutrino electromagnetic properties, they still remain one of the main puzzles related to neutrinos.

Carlo Giunti; Alexander Studenikin

2010-06-08

132

Vanishing effective mass of the neutrinoless double beta decay including light sterile neutrinos  

E-print Network

Light sterile neutrinos with masses at the sub-eV or eV scale are hinted by current experimental and cosmological data. Assuming the Majorana nature of these hypothetical particles, we discuss their effects in the neutrinoless double beta decay by exploring the implications of a vanishing effective Majorana neutrino mass. Allowed ranges of neutrino masses, mixing angles and Majorana CP-violating phases are illustrated in some instructive cases for both normal and inverted mass hierarchies of three active neutrinos.

Y. F. Li; Si-shuo Liu

2011-11-28

133

Neutrinos: in and out of the standard model  

SciTech Connect

The particle physics Standard Model has been tremendously successful in predicting the outcome of a large number of experiments. In this model Neutrinos are massless. Yet recent evidence points to the fact that neutrinos are massive particles with tiny masses compared to the other particles in the Standard Model. These tiny masses allow the neutrinos to change flavor and oscillate. In this series of Lectures, I will review the properties of Neutrinos In the Standard Model and then discuss the physics of Neutrinos Beyond the Standard Model. Topics to be covered include Neutrino Flavor Transformations and Oscillations, Majorana versus Dirac Neutrino Masses, the Seesaw Mechanism and Leptogenesis.

Parke, Stephen; /Fermilab

2006-07-01

134

Neutrinos: Theory and Phenomenology  

SciTech Connect

The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

Parke, Stephen

2013-10-22

135

Gravity triggered neutrino condensates  

SciTech Connect

In this work we use the Schwinger-Dyson equations to study the possibility that an enhanced gravitational attraction triggers the formation of a right-handed neutrino condensate, inducing dynamical symmetry breaking and generating a Majorana mass for the right-handed neutrino at a scale appropriate for the seesaw mechanism. The composite field formed by the condensate phase could drive an early epoch of inflation. We find that to the lowest order, the theory does not allow dynamical symmetry breaking. Nevertheless, thanks to the large number of matter fields in the model, the suppression by additional powers in G of higher order terms can be compensated, boosting them up to their lowest order counterparts. This way chiral symmetry can be broken dynamically and the infrared mass generated turns out to be in the expected range for a successful seesaw scenario.

Barenboim, Gabriela [Departament de Fisica Teorica and IFIC, Universitat de Valencia-CSIC, E-46100, Burjassot (Spain)

2010-11-01

136

The Intermediate Neutrino Program  

E-print Network

The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

C. Adams; J. R. Alonso; A. M. Ankowski; J. A. Asaadi; J. Ashenfelter; S. N. Axani; K. Babu; C. Backhouse; H. R. Band; P. S. Barbeau; N. Barros; A. Bernstein; M. Betancourt; M. Bishai; E. Blucher; J. Bouffard; N. Bowden; S. Brice; C. Bryan; L. Camilleri; J. Cao; J. Carlson; R. E. Carr; A. Chatterjee; M. Chen; S. Chen; M. Chiu; E. D. Church; J. I. Collar; G. Collin; J. M. Conrad; M. R. Convery; R. L. Cooper; D. Cowen; H. Davoudiasl; A. De Gouvea; D. J. Dean; G. Deichert; F. Descamps; T. DeYoung; M. V. Diwan; Z. Djurcic; M. J. Dolinski; J. Dolph; B. Donnelly; D. A. Dwyer; S. Dytman; Y. Efremenko; L. L. Everett; A. Fava; E. Figueroa-Feliciano; B. Fleming; A. Friedland; B. K. Fujikawa; T. K. Gaisser; M. Galeazzi; D. C. Galehouse; A. Galindo-Uribarri; G. T. Garvey; S. Gautam; K. E. Gilje; M. Gonzalez-Garcia; M. C. Goodman; H. Gordon; E. Gramellini; M. P. Green; A. Guglielmi; R. W. Hackenburg; A. Hackenburg; F. Halzen; K. Han; S. Hans; D. Harris; K. M. Heeger; M. Herman; R. Hill; A. Holin; P. Huber; D. E. Jaffe; R. A. Johnson; J. Joshi; G. Karagiorgi; L. J. Kaufman; B. Kayser; S. H. Kettell; B. J. Kirby; J. R. Klein; Yu. G. Kolomensky; R. M. Kriske; C. E. Lane; T. J. Langford; A. Lankford; K. Lau; J. G. Learned; J. Ling; J. M. Link; D. Lissauer; L. Littenberg; B. R. Littlejohn; S. Lockwitz; M. Lokajicek; W. C. Louis; K. Luk; J. Lykken; W. J. Marciano; J. Maricic; D. M. Markoff; D. A. Martinez Caicedo; C. Mauger; K. Mavrokoridis; E. McCluskey; D. McKeen; R. McKeown; G. Mills; I. Mocioiu; B. Monreal; M. R. Mooney; J. G. Morfin; P. Mumm; J. Napolitano; R. Neilson; J. K. Nelson; M. Nessi; D. Norcini; F. Nova; D. R. Nygren; G. D. Orebi Gann; O. Palamara; Z. Parsa; R. Patterson; P. Paul; A. Pocar; X. Qian; J. L. Raaf; R. Rameika; G. Ranucci; H. Ray; D. Reyna; G. C. Rich; P. Rodrigues; E. Romero Romero; R. Rosero; S. D. Rountree; B. Rybolt; M. C. Sanchez; G. Santucci; D. Schmitz; K. Scholberg; D. Seckel; M. Shaevitz; R. Shrock; M. B. Smy; M. Soderberg; A. Sonzogni; A. B. Sousa; J. Spitz; J. M. St. John; J. Stewart; J. B. Strait; G. Sullivan; R. Svoboda; A. M. Szelc; R. Tayloe; M. A. Thomson; M. Toups; A. Vacheret; M. Vagins; R. G. Van de Water; R. B. Vogelaar; M. Weber; W. Weng; M. Wetstein; C. White; B. R. White; L. Whitehead; D. W. Whittington; M. J. Wilking; R. J. Wilson; P. Wilson; D. Winklehner; D. R. Winn; E. Worcester; L. Yang; M. Yeh; Z. W. Yokley; J. Yoo; B. Yu; J. Yu; C. Zhang

2015-03-23

137

The Intermediate Neutrino Program  

E-print Network

The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

Adams, C; Ankowski, A M; Asaadi, J A; Ashenfelter, J; Axani, S N; Babu, K; Backhouse, C; Band, H R; Barbeau, P S; Barros, N; Bernstein, A; Betancourt, M; Bishai, M; Blucher, E; Bouffard, J; Bowden, N; Brice, S; Bryan, C; Camilleri, L; Cao, J; Carlson, J; Carr, R E; Chatterjee, A; Chen, M; Chen, S; Chiu, M; Church, E D; Collar, J I; Collin, G; Conrad, J M; Convery, M R; Cooper, R L; Cowen, D; Davoudiasl, H; De Gouvea, A; Dean, D J; Deichert, G; Descamps, F; DeYoung, T; Diwan, M V; Djurcic, Z; Dolinski, M J; Dolph, J; Donnelly, B; Dwyer, D A; Dytman, S; Efremenko, Y; Everett, L L; Fava, A; Figueroa-Feliciano, E; Fleming, B; Friedland, A; Fujikawa, B K; Gaisser, T K; Galeazzi, M; Galehouse, D C; Galindo-Uribarri, A; Garvey, G T; Gautam, S; Gilje, K E; Gonzalez-Garcia, M; Goodman, M C; Gordon, H; Gramellini, E; Green, M P; Guglielmi, A; Hackenburg, R W; Hackenburg, A; Halzen, F; Han, K; Hans, S; Harris, D; Heeger, K M; Herman, M; Hill, R; Holin, A; Huber, P; Jaffe, D E; Johnson, R A; Joshi, J; Karagiorgi, G; Kaufman, L J; Kayser, B; Kettell, S H; Kirby, B J; Klein, J R; Kolomensky, Yu G; Kriske, R M; Lane, C E; Langford, T J; Lankford, A; Lau, K; Learned, J G; Ling, J; Link, J M; Lissauer, D; Littenberg, L; Littlejohn, B R; Lockwitz, S; Lokajicek, M; Louis, W C; Luk, K; Lykken, J; Marciano, W J; Maricic, J; Markoff, D M; Caicedo, D A Martinez; Mauger, C; Mavrokoridis, K; McCluskey, E; McKeen, D; McKeown, R; Mills, G; Mocioiu, I; Monreal, B; Mooney, M R; Morfin, J G; Mumm, P; Napolitano, J; Neilson, R; Nelson, J K; Nessi, M; Norcini, D; Nova, F; Nygren, D R; Gann, G D Orebi; Palamara, O; Parsa, Z; Patterson, R; Paul, P; Pocar, A; Qian, X; Raaf, J L; Rameika, R; Ranucci, G; Ray, H; Reyna, D; Rich, G C; Rodrigues, P; Romero, E Romero; Rosero, R; Rountree, S D; Rybolt, B; Sanchez, M C; Santucci, G; Schmitz, D; Scholberg, K; Seckel, D; Shaevitz, M; Shrock, R; Smy, M B; Soderberg, M; Sonzogni, A; Sousa, A B; Spitz, J; John, J M St; Stewart, J; Strait, J B; Sullivan, G; Svoboda, R; Szelc, A M; Tayloe, R; Thomson, M A; Toups, M; Vacheret, A; Vagins, M; Van de Water, R G; Vogelaar, R B; Weber, M; Weng, W; Wetstein, M; White, C; White, B R; Whitehead, L; Whittington, D W; Wilking, M J; Wilson, R J; Wilson, P; Winklehner, D; Winn, D R; Worcester, E; Yang, L; Yeh, M; Yokley, Z W; Yoo, J; Yu, B; Yu, J; Zhang, C

2015-01-01

138

The Intermediate Neutrino Program  

E-print Network

The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

C. Adams; J. R. Alonso; A. M. Ankowski; J. A. Asaadi; J. Ashenfelter; S. N. Axani; K. Babu; C. Backhouse; H. R. Band; P. S. Barbeau; N. Barros; A. Bernstein; M. Betancourt; M. Bishai; E. Blucher; J. Bouffard; N. Bowden; S. Brice; C. Bryan; L. Camilleri; J. Cao; J. Carlson; R. E. Carr; A. Chatterjee; M. Chen; S. Chen; M. Chiu; E. D. Church; J. I. Collar; G. Collin; J. M. Conrad; M. R. Convery; R. L. Cooper; D. Cowen; H. Davoudiasl; A. De Gouvea; D. J. Dean; G. Deichert; F. Descamps; T. DeYoung; M. V. Diwan; Z. Djurcic; M. J. Dolinski; J. Dolph; B. Donnelly; D. A. Dwyer; S. Dytman; Y. Efremenko; L. L. Everett; A. Fava; E. Figueroa-Feliciano; B. Fleming; A. Friedland; B. K. Fujikawa; T. K. Gaisser; M. Galeazzi; D. C. Galehouse; A. Galindo-Uribarri; G. T. Garvey; S. Gautam; K. E. Gilje; M. Gonzalez-Garcia; M. C. Goodman; H. Gordon; E. Gramellini; M. P. Green; A. Guglielmi; R. W. Hackenburg; A. Hackenburg; F. Halzen; K. Han; S. Hans; D. Harris; K. M. Heeger; M. Herman; R. Hill; A. Holin; P. Huber; D. E. Jaffe; R. A. Johnson; J. Joshi; G. Karagiorgi; L. J. Kaufman; B. Kayser; S. H. Kettell; B. J. Kirby; J. R. Klein; Yu. G. Kolomensky; R. M. Kriske; C. E. Lane; T. J. Langford; A. Lankford; K. Lau; J. G. Learned; J. Ling; J. M. Link; D. Lissauer; L. Littenberg; B. R. Littlejohn; S. Lockwitz; M. Lokajicek; W. C. Louis; K. Luk; J. Lykken; W. J. Marciano; J. Maricic; D. M. Markoff; D. A. Martinez Caicedo; C. Mauger; K. Mavrokoridis; E. McCluskey; D. McKeen; R. McKeown; G. Mills; I. Mocioiu; B. Monreal; M. R. Mooney; J. G. Morfin; P. Mumm; J. Napolitano; R. Neilson; J. K. Nelson; M. Nessi; D. Norcini; F. Nova; D. R. Nygren; G. D. Orebi Gann; O. Palamara; Z. Parsa; R. Patterson; P. Paul; A. Pocar; X. Qian; J. L. Raaf; R. Rameika; G. Ranucci; H. Ray; D. Reyna; G. C. Rich; P. Rodrigues; E. Romero Romero; R. Rosero; S. D. Rountree; B. Rybolt; M. C. Sanchez; G. Santucci; D. Schmitz; K. Scholberg; D. Seckel; M. Shaevitz; R. Shrock; M. B. Smy; M. Soderberg; A. Sonzogni; A. B. Sousa; J. Spitz; J. M. St. John; J. Stewart; J. B. Strait; G. Sullivan; R. Svoboda; A. M. Szelc; R. Tayloe; M. A. Thomson; M. Toups; A. Vacheret; M. Vagins; R. G. Van de Water; R. B. Vogelaar; M. Weber; W. Weng; M. Wetstein; C. White; B. R. White; L. Whitehead; D. W. Whittington; M. J. Wilking; R. J. Wilson; P. Wilson; D. Winklehner; D. R. Winn; E. Worcester; L. Yang; M. Yeh; Z. W. Yokley; J. Yoo; B. Yu; J. Yu; C. Zhang

2015-04-01

139

Ultra High Energy Neutrino Astronomy  

E-print Network

The short review of theoretical aspects of ultra high energy (UHE) neutrinos and superGZK neutrinos. The sources and diffuse fluxes of UHE neutrinos are discussed. Much attention is given to comparison of the cascade and cosmic ray upper bounds for diffuse neutrino fluxes. Cosmogenic neutrinos and neutrinos from the mirror mater are considered as superGZK neutrinos.

V. Berezinsky

2005-05-11

140

Sterile neutrinos as dark matter  

SciTech Connect

The simplest model that can accommodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed or sterile neutrinos. This model has been studied extensively in the context of the hot dark matter scenario. We reexamine this model and find that hot, warm, and cold dark matter are all possibilities. We focus on the case where sterile neutrinos are the dark matter. Since their only direct coupling is to left-handed or active neutrinos, the most efficient production mechanism is via neutrino oscillations. If the production rate is always less than the expansion rate, then these neutrinos will never be in thermal equilibrium. However, they may still play a significant role in the dynamics of the Universe and possibly provide the missing mass necessary for closure. We consider a single generation of neutrino fields ({nu}{sub L}, {nu}{sub R}) with a Dirac mass, {mu}, and a Majorana mass for the right-handed components only, M. For M {much_gt} {mu} we show that the number density of sterile neutrinos is proportional to {mu}{sup 2}/M so that the energy density today is independent of M. However M is crucial in determining the large scale structure of the Universe. In particular, M {approx_equal} 0.1--1.0 key leads to warm dark matter and a structure formation scenario that may have some advantages over both the standard hot and cold dark matter scenarios.

Dodelson, S. [Fermi National Accelerator Lab., Batavia, IL (United States); Widrow, L.M. [Queen`s Univ., Kingston, ON (Canada). Dept. of Physics]|[Toronto Univ., ON (Canada). Canadian Inst. for Theoretical Astrophysics

1993-03-01

141

Muons and Neutrinos 2007  

E-print Network

This paper is the written version of the rapporteur talk on Section HE-2, muons and neutrinos, presented at the 30th International Cosmic Ray Conference, Merida, Yucatan, July 11, 2007. Topics include atmospheric muons and neutrinos, solar neutrinos and astrophysical neutrinos as well as calculations and instrumentation related to these topics.

Thomas K. Gaisser

2008-01-29

142

Neutrino oscillations in matter  

Microsoft Academic Search

The effect of coherent forward scattering must be taken into account when considering the oscillations of neutrinos traveling through matter. In particular, for the case of massless neutrinos for which vacuum oscillations cannot occur, oscillations can occur in matter if the neutral current has an off-diagonal piece connecting different neutrino types. Applications discussed are solar neutrinos and a proposed experiment

L. Wolfenstein

1978-01-01

143

Underground neutrino astronomy  

SciTech Connect

A review is made of possible astronomical neutrino sources detectable with underground facilities. Comments are made about solar neutrinos and gravitational-collapse neutrinos, and particular emphasis is placed on ultra-high-energy astronomical neutrino sources. An appendix mentions the exotic possibility of monopolonium.

Schramm, D.N.

1983-02-01

144

Measuring Atmospheric Neutrino Oscillations with Neutrino Telescopes  

E-print Network

Neutrino telescopes with large detection volumes can demonstrate that the current indications of neutrino oscillation are correct or if a better description can be achieved with non-standard alternatives. Observations of contained muons produced by atmospheric neutrinos can better constrain the allowed region for oscillations or determine the relevant parameters of non-standard models. We analyze the possibility of neutrino telescopes measuring atmospheric neutrino oscillations. We suggest adjustments to improve this potential. An addition of four densely-instrumented strings to the AMANDA II detector makes observations feasible. Such a configuration is competitive with current and proposed experiments.

Ivone F. M. Albuquerque; George F. Smoot

2001-03-28

145

Measuring atmospheric neutrino oscillations with neutrino telescopes  

SciTech Connect

Neutrino telescopes with large detection volumes can demonstrate whether the current indications of neutrino oscillation are correct or if a better description can be achieved with nonstandard alternatives. Observations of contained muons produced by atmospheric neutrinos can better constrain the allowed region for oscillations or determine the relevant parameters of nonstandard models. We analyze the possibility of neutrino telescopes measuring atmospheric neutrino oscillations. We suggest adjustments to improve this potential. An addition of four densely instrumented strings to the AMANDA II detector makes oscillation observations feasible. Such a configuration is competitive with current and proposed experiments.

Albuquerque, Ivone F. M.; Smoot, George F.

2001-09-01

146

Light right-handed neutrinos: + an incursion in cosmology  

E-print Network

Light right-handed neutrinos: why not? + an incursion in cosmology R. Barbieri "Neutrinos in Venice to include neutrino masses L(!-mass) = Li"! i jNjv+NiMi jNj L(!-mass) = (!T NT ) 0 "v "vM ! N with , N each 3-vectors and , M 3x3 matrices 3 alternatives for the light neutrinos: 1 - 3 light Majorana neu's ( M large

Abbondandolo, Alberto

147

Supernova neutrinos  

SciTech Connect

Results are presented from a series of general relativistic stellar evolution calculations of the first 20 s in the lives of young neutron stars born in Type II supernovae. The study focuses on neutrino emissions from these protoneutron stars as they neutronize and cool. It is found that the central object in SN 1987A has a baryon mass between 1.2 and 1.7 solar mass and a best-fit gravitational mass between 1.3 and 1.5 solar masses. Also, simulations of stellar mass black hole formation by accretion onto protoneutron star intermediaries are presented. 61 references.

Burrows, A.

1988-11-01

148

Measuring anisotropies in the cosmic neutrino background  

NASA Astrophysics Data System (ADS)

Neutrino capture on tritium has emerged as a promising method for detecting the cosmic neutrino background (C ? B ). We show that relic neutrinos are captured most readily when their spin vectors are antialigned with the polarization axis of the tritium nuclei and when they approach along the direction of polarization. As a result, C ? B observatories may measure anisotropies in the cosmic neutrino velocity and spin distributions by polarizing the tritium targets. A small dipole anisotropy in the C ? B is expected due to the peculiar velocity of the lab frame with respect to the cosmic frame and due to late-time gravitational effects. The PTOLEMY experiment, a tritium observatory currently under construction, should observe a nearly isotropic background. This would serve as a strong test of the cosmological origin of a potential signal. The polarized-target measurements may also constrain nonstandard neutrino interactions that would induce larger anisotropies and help discriminate between Majorana versus Dirac neutrinos.

Lisanti, Mariangela; Safdi, Benjamin R.; Tully, Christopher G.

2014-10-01

149

Experimental Neutrino Physics: Final Report  

SciTech Connect

Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

Lane, Charles E.; Maricic, Jelena

2012-09-05

150

Neutrino mass, a status report  

SciTech Connect

Experimental approaches to neutrino mass include kinematic mass measurements, neutrino oscillation searches at rectors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing.

Robertson, R.G.H.

1993-08-01

151

Neutrino Nucleosynthesis in Supernovae  

SciTech Connect

Neutrino nucleosynthesis is an important synthesis process for light elements in supernovae. One important physics input of neutrino nucleosynthesis is cross sections of neutrino-nucleus reactions. The cross sections of neutrino-{sup 12}C and {sup 4}He reactions are derived using new shell model Hamiltonians. With the new cross sections, light element synthesis of a supernova is investigated. The appropriate range of the neutrino temperature for supernovae is constrained to be between 4.3 MeV and 6.5 MeV from the {sup 11}B abundance in Galactic chemical evolution. Effects by neutrino oscillations are also discussed.

Yoshida, Takashi [Division of Theoretical Astronomy, National Astronomical Observatory of Japan (Japan); Suzuki, Toshio [Department of Physics, College of Humanities and Sciences, Nihon University (Japan); Chiba, Satoshi [Advanced Science Research Center, Japan Atomic Energy Agency (Japan); Kajino, Toshitaka [Division of Theoretical Astronomy, National Astronomical Observatory of Japan (Japan); Department of Astronomy, Graduate School of Science, University of Tokyo (Japan); Yokomakura, Hidekazu; Kimura, Keiichi [Department of Physics, Graduate School of Science, Nagoya University (Japan); Takamura, Akira [Department of Mathematics, Toyota National College of Technology (Japan); Hartmann, Dieter H. [Department of Physics and Astronomy, Clemson University (United States)

2009-05-04

152

Neutrino Physics at Fermilab  

ScienceCinema

Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

Niki Saoulidou

2010-01-08

153

Solar Neutrinos: History  

NSDL National Science Digital Library

This site, authored by John Bahcall of the School of Natural Sciences, offers several articles about neutrinos, the neutrino oscillations, and the sun. The page is structured in this fashion: a historical overview of solar models, a theoretical description of solar neutrinos, an experimental description of solar neutrinos, an explanation of how the sun shines, and the evolution of neutrino astronomy. The page links users to pdfs of useful papers concerning these topics. This is a useful resource for those looking for a comprehensive history of solar neutrinos.

Bahcall, John

154

Neutrinos in Physics and Astrophysics  

Microsoft Academic Search

The observed flavor oscillations of solar and atmospheric neutrinos determine several elements of the leptonic mixing matrix, but leave open the small mixing angle Theta13, a possible CP-violating phase, the mass ordering, the absolute mass scale mnu,and the Dirac vs. Majorana property. Progress will be made by long-baseline, tritium endpoint, and 2beta decay experiments. The best constraint on mnu obtains

Georg G. Raffelt

2003-01-01

155

Spin Polarization Type Dependence of the Neutrino Mass and Nature  

E-print Network

The interaction of longitudinal and transversal polarized neutrinos (antineutrinos) with the field of a nucleus is investigated at the account of their rest mass, charge, magnetic, anapole and electric dipole moments. The compound structure of cross sections in these processes has the sharply expressed features and generalities for any lepton as well as for a massive Majorana neutrino. A new influence of truly neutral neutrino masses on the elastic scattering by nuclei of an electric charge has been discovered which testifies in favor of the existence of fundamental differences both in the nature and in the masses of longitudinal and transversal neutrinos of Majorana.

B. S. Yuldashev; R. S. Sharafiddinov

2013-07-17

156

Astroparticle physics with solar neutrinos  

PubMed Central

Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. PMID:21558758

NAKAHATA, Masayuki

2011-01-01

157

Introduction to sterile neutrinos  

E-print Network

Model-building issues raised by the prospect of light sterile neutrinos are discussed in a pedagogical way. I first review the na\\"{\\i}ve proposal that sterile neutrinos be identified with ``right handed neutrinos''. A critical discussion of the simple expedient of adding three gauge singlet fermions to the usual minimal standard model matter content is followed by an examination of right handed neutrinos in extended theories. I introduce the terminology of ``fully sterile'' and ``weakly sterile'' to classify varieties usually conflated under the sterile neutrino banner. After introducing the concepts of ``technical naturalness'' and plain ``naturalness'', the unbearable lightness of being a sterile neutrino is confronted. This problem is used to motivate mirror neutrinos, whose connection with pairwise maximal mixing is emphasised. Some brief remarks about phenomenology are made throughout. The impossibility of identifying the sole sterile neutrino of the currently favoured $2 + 2$ and $3 + 1$ phenomenologic...

Volkas, R R

2002-01-01

158

Neutrino masses and mixings  

SciTech Connect

Theoretical prejudices, cosmology, and neutrino oscillation experiments all suggest neutrino mass are far below present direct experimental limits. Four interesting scenarios and their implications are discussed: (1) a 17 keV {nu}{sub {tau}}, (2) a 30 ev {nu}{sub {tau}} making up the dark matter, (3) a 10{sup {minus}3} ev {nu}{sub {mu}} to solve the solar neutrino problem, and (4) a three-neutrino MSW solution.

Wolfenstein, L.

1991-12-31

159

Solar neutrinos - Eclipse effect  

E-print Network

It is pointed out that the enhancement of the solar neutrino rate in a real time detector like Super-Kamioka, SNO or Borexino due to neutrino oscillations in the moon during a partial or total solar eclipse may be observable. The enhancement is calculated as a function of the neutrino parameters in the case of three flavor mixing. This enhancement if seen, can further help to determine the neutrino parameters.

Mohan Narayan; G. Rajasekaran; Rahul Sinha

1997-03-12

160

Neutrino Oscillation Physics  

SciTech Connect

To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

Kayser, Boris

2012-06-01

161

Geo-neutrino Observation  

SciTech Connect

Observations of geo-neutrinos measure radiogenic heat production within the earth, providing information on the thermal history and dynamic processes of the mantle. Two detectors currently observe geo-neutrinos from underground locations. Other detection projects in various stages of development include a deep ocean observatory. This paper presents the current status of geo-neutrino observation and describes the scientific capabilities of the deep ocean observatory, with emphasis on geology and neutrino physics.

Dye, S. T. [University of Hawaii at Manoa, Honolulu, Hawaii 96822 (United States); Hawaii Pacific University, Kaneohe, Hawaii 96744 (United States); Alderman, M.; Batygov, M.; Learned, J. G.; Matsuno, S.; Mahoney, J. M.; Pakvasa, S.; Rosen, M.; Smith, S.; Varner, G. [University of Hawaii at Manoa, Honolulu, Hawaii 96822 (United States); McDonough, W. F. [University of Maryland, College Park, Maryland 20742 (United States)

2009-12-17

162

Phenomenological Analysis of Hybrid Textures of Neutrinos  

E-print Network

We present a comprehensive phenomenological analysis of the allowed hybrid textures of neutrinos. Out of a total of sixty hybrid textures with one equality between the elements of neutrino mass matrix and one texture zero only twenty three are found to be viable at 99% C.L. whereas the earlier analysis found fifty four to be viable. We examine the phenomenological implications of the allowed hybrid textures including Majorana type CP-violating phases, 1-3 mixing angle and Dirac type CP-violating phase, $\\delta$. We, also, obtain lower bound on effective Majorana mass for all the allowed hybrid textures.

S. Dev; Surender Verma; Shivani Gupta

2010-02-23

163

Solar Neutrino Spectroscopy  

NASA Astrophysics Data System (ADS)

Since the pioneering experiment of R. Davis et al., which started neutrino astronomy by measuring the solar neutrinos via the inverse beta decay reaction on 37Cl, all solar neutrino experiments find a considerably lower flux than expected by standard solar models. This finding is generally called the solar neutrino problem. Many attempts have been made to explain this result by altering the solar models, or assuming different nuclear cross sections for fusion processes assumed to be the energy sources in the sun. There have been performed numerous experiments recently to investigate the different possibilities to explain the solar neutrino problem. These experiments covered solar physics with helioseismology, nuclear cross section measurements, and solar neutrino experiments. Up to now no convincing explanation based on "standard" physics was suggested. However, assuming nonstandard neutrino properties, i.e. neutrino masses and mixing as expected in most extensions of the standard theory of elementary particle physics, natural solutions for the solar neutrino problem can be found. It appears that with this newly invented neutrino astronomy fundamental information on astrophysics as well as elementary particle physics are tested uniquely. In this contribution an attempt is made to review the situation of the neutrino astronomy for solar neutrino spectroscopy and discuss the future prospects in this field.

Feilitzsch, F. v.

1999-01-01

164

Neutrino Magnetic Moment  

E-print Network

Current experimental and observational limits on the neutrino magnetic moment are reviewed. Implications of the recent results from the solar and reactor neutrino experiments for the value of the neutrino magnetic moment are discussed. It is shown that spin-flavor precession in the Sun is suppressed.

A. B. Balantekin

2006-01-13

165

Solar Neutrinos Kamioka Observatory  

E-print Network

Solar neutrinos are produced by nuclear reaction chains in the central core of the sun. The solar of the nuclear reactions, the opacity of the sun, and so on. The largest fraction of the solar neutrinos the CNO cycle. In the pp-chain, the following #12;ve nuclear reactions produce neutrinos: p + p ! d + e

Tokyo, University of

166

The United Families of Massive Neutrinos of a Different Nature  

E-print Network

At the availability of a nonzero mass, the same neutrino regardless of whether it refers to Dirac or Majorana fermions, must possess simultaneously each of the anapole and electric dipole moments. Their interaction with the field of emission can also lead to the elastic scattering of the longitudinal polarized neutrinos on a spinless nucleus. Using the cross section of a process, the united equation has been obtained between the anapole and electric dipole form factors of Dirac and Majorana neutrinos. It corresponds in nature to the coexistence of neutrinos of both types. As a consequence, each Dirac neutrino testifies in favor of the existence of a kind of Majorana neutrino. They constitute herewith the united families of massive neutrinos of a different nature. Therefore, any of the earlier measured properties of neutrinos may serve as a certain indication of the existence simultaneously of both Dirac and Majorana neutrinos. All findings are also confirmed by the comparatively new laboratory restrictions on the self-masses of these fermions. Thereby they state that electromagnetic gauge invariance must have a new structure, which depends on nature of the inertial mass and says that P-symmetry of a particle is basically violated at the expense of its rest mass.

Rasulkhozha S. Sharafiddinov

2010-09-24

167

THE UNITED FAMILIES OF MASSIVE NEUTRINOS OF THE DIFFERENT NATURE  

E-print Network

At the availability of a non- zero mass, the same neutrino regardless of whether it refers to Dirac or Majorana fermions, must possess simultaneously each of the anapole and electric dipole moments. Their interaction with field of emission can also lead to the longitudinal polarized neutrinos elastic scattering on a spinless nucleus. Using the process cross section, the united equation has been obtained between the anapole and electric dipole form factors of Dirac and Majorana neutrinos. It corresponds in the nature to the coexistence of neutrinos of both types. As a consequence, each of Dirac neutrinos testifies in favor of the existence of a kind of the Majorana neutrino. They constitute herewith the united families of massive neutrinos of a different nature. Therefore, any of earlier measured properties of neutrinos may serve as a certain indication to the existence simultaneously both of Dirac and of Majorana neutrinos. All findings are confirmed also by the comparatively new laboratory restrictions on these fermions self masses. Thereby they state that electromagnetic gauge invariance must have a new structure

Rasulkhozha S. Sharafiddinov

2005-01-01

168

Tachyonic neutrinos and the neutrino masses  

E-print Network

With a recent claim of superluminal neutrinos shown to be in error, 2012 may not be a propitious time to consider the evidence that one or more neutrinos may indeed be tachyons. Nevertheless, there are a growing number of observations that continue to suggest this possibility -- albeit with an $m_{\

Robert Ehrlich

2012-12-05

169

Neutrino Observations from the Sudbury Neutrino Observatory  

E-print Network

The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D$_{2}$O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar $\

A. W. P. Poon; for the SNO Collaboration

2001-10-07

170

Neutrino observations from the Sudbury Neutrino Observatory  

SciTech Connect

The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O'Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

2001-09-24

171

Low Temperature Detectors for Neutrino Physics  

NASA Astrophysics Data System (ADS)

Recent years have witnessed many exciting breakthroughs in neutrino physics. The detection of neutrino oscillations has proved that neutrinos are massive particles but the assessment of their absolute mass scale is still an outstanding challenge in today particle physics and cosmology. Due to their abundance as big-bang relics, massive neutrinos strongly affect the large-scale structure and dynamics of the universe. In addition, the knowledge of the scale of neutrino masses, together with their hierarchy pattern, is invaluable to clarify the origin of fermion masses beyond the Higgs mechanism. The mass hierarchy is not the only missing piece in the puzzle. Theories of neutrino mass generation call into play Majorana neutrinos and there are experimental observations pointing to the existence of sterile neutrinos in addition to the three ones weakly interacting. Since low temperature detectors were first proposed for neutrino physics experiments in 1984, there have been impressive technical progresses: today this technique offers the high energy resolution and scalability required for leading edges and competitive experiments addressing the still open questions.

Nucciotti, A.

2014-09-01

172

Supernova Neutrino Detection  

E-print Network

A core-collapse supernova will produce an enormous burst of neutrinos of all flavors in the few-tens-of-MeV range. Measurement of the flavor, time and energy structure of a nearby core-collapse neutrino burst will yield answers to many physics and astrophysics questions. The neutrinos left over from past cosmic supernovae are also observable, and their detection will improve knowledge of core collapse rates and average neutrino emission. This review describes experimental techniques for detection of core-collapse neutrinos, as well as the sensitivities of current and future detectors.

Kate Scholberg

2012-05-27

173

Neutrinos and Mass  

NSDL National Science Digital Library

This week's In the News highlights neutrinos and the recent discovery that neutrinos have mass -- a discovery that has forced physicists to rethink the behavior of elementary particles. The seven resources provided discuss various aspects of the topic. First hypothesized by Wolfgang Pauli in 1931, the existence of neutrinos was not proven until 1956, by Drs. Frederick Reines and Clyde Cowan of the Los Alamos National Laboratory. In a collaborative effort between Japan and the US (at the Kamioka Neutrino Observatory), scientists recently reported their findings at a Neutrino Conference in Japan.

Harris, Kathryn Louise.

174

Neutrinos from AGN  

NASA Technical Reports Server (NTRS)

The great penetrating power of neutrinos makes them ideal probe of astrophysical sites and conditions inaccessible to other forms of radiation. These are the centers of stars (collapsing or not) and the centers of Active Galactic Nuclei (AGN). It has been suggested that AGN presented a very promising source of high energy neutrinos, possibly detectable by underwater neutrino detectors. This paper reviews the evolution of ideas concerning the emission of neutrinos from AGN in view of the more recent developments in gamma-ray astronomy and their implications for the neutrino emission from these class of objects.

Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)

2000-01-01

175

The Sudbury Neutrino Observatory  

NSDL National Science Digital Library

The size of a ten-story building, 6800 feet underground at the Creighton mine in Ontario; the Sudbury Neutrino Observatory is a telescope built to study neutrinos and the core of the sun. Students can learn how Cherenkov Radiation is produced and used to detect neutrino properties. Scientists can read the newly published paper dealing with the measurement of Total Active 8B Solar Neutrino Flux using NaCl, as well as other published papers and Conference Proceedings. The site also offers illustrations such as neutrinos striking heavy water and the attractive Double-Ring Event.

176

Mass determination of neutrinos  

NASA Technical Reports Server (NTRS)

A time-energy correlation method has been developed to determine the signature of a nonzero neutrino mass in a small sample of neutrinos detected from a distant source. The method is applied to the Kamiokande II (Hirata et al., 1987) and IMB (Bionta et al., 1987) observations of neutrino bursts from SN 1987A. Using the Kamiokande II data, the neutrino rest mass is estimated at 2.8 + 2.0, - 1.4 eV and the initial neutrino pulse is found to be less than 0.3 sec full width, followed by an emission tail lasting at least 10 sec.

Chiu, Hong-Yee

1988-01-01

177

Long range forces induced by neutrinos at finite temperature  

E-print Network

We revisit and extend previous work on neutrino mediated long range forces in a backround at finite temperature. For Dirac neutrinos, we correct existing results. We also give new results concerning spin-dependent as well as spin-independent long range forces associated to Majorana neutrinos. An interesting outcome of the investigation is that, for both types of neutrinos whether massless or not, the effect of the relic neutrino heat bath is to convert those forces into attractive ones in the supra-millimeter scale while they stay repulsive within the sub-millimeter scale.

Ferrer, F; Nowakowski, M

1999-01-01

178

Long range forces induced by neutrinos at finite temperature  

E-print Network

We revisit and extend previous work on neutrino mediated long range forces in a backround at finite temperature. For Dirac neutrinos, we correct existing results. We also give new results concerning spin-dependent as well as spin-independent long range forces associated to Majorana neutrinos. An interesting outcome of the investigation is that, for both types of neutrinos whether massless or not, the effect of the relic neutrino heat bath is to convert those forces into attractive ones in the supra-millimeter scale while they stay repulsive within the sub-millimeter scale.

F. Ferrer; J. A. Grifols; M. Nowakowski

1998-06-22

179

Mass of the Neutrino and Its Axial - Vector Electromagnetic Nature  

E-print Network

The neutrino possesses the anapole and electric dipole moments. Their interaction with field of emission can also lead to the neutrino elastic scattering by spinless nuclei. In this letter we present some implications implied from the processes cross sections. One of them states that there exists a hard connection between the neutrino magnetic and anapole moments. The equation for the anapole and electric dipole form factors is also obtained. They define the electronic neutrino axial - vector moments. All findings are generalized to the case of a Majorana neutrino.

Sharafiddinov, R S

2003-01-01

180

Effect of transition magnetic moments on collective supernova neutrino oscillations  

SciTech Connect

We study the effect of Majorana transition magnetic moments on the flavor evolution of neutrinos and antineutrinos inside the core of Type-II supernova explosions. We find non-trivial collective oscillation effects relating neutrinos and antineutrinos of different flavors, even if one restricts the discussion to Majorana transition electromagnetic moment values that are not much larger than those expected from standard model interactions and nonzero neutrino Majorana masses. This appears to be, to the best of our knowledge, the only potentially observable phenomenon sensitive to such small values of Majorana transition magnetic moments. We briefly comment on the effect of Dirac transition magnetic moments and on the consequences of our results for future observations of the flux of neutrinos of different flavors from a nearby supernova explosion.

Gouvêa, André de; Shalgar, Shashank, E-mail: degouvea@northwestern.edu, E-mail: shashank@northwestern.edu [Department of Physics and Astronomy, Northwestern University, Evanston IL 60208-3112 (United States)

2012-10-01

181

MASS OF THE NEUTRINO AND ITS AXIAL- VECTOR ELECTROMAGNETIC NATURE  

E-print Network

The neutrino possesses the anapole and electric dipole moments. Their interaction with field of emission can also lead to the neutrino elastic scattering by spinless nuclei. In this letter we present some implications implied from the processes cross sections. One of them states that there exists a hard connection between the neutrino magnetic and anapole moments. The equation for the anapole and electric dipole form factors is also obtained. They define the electronic neutrino axial- vector moments. All findings are generalized to the case of a Majorana neutrino. 1 According to the standard electroweak theory of elementary particles, the neutrinos are strictly massless. At the same time a consistent theoretical generalization of the SU(2)L?U(1) model predicts the existence of a massive Dirac neutrino. Herewith the neutrino interaction with virtual photon is and axial-described by the vertex operator ?µ containing the vector ?V µ vector ?A µ parts:

Rasulkhozha S. Sharafiddinov

2004-01-01

182

Democratic Neutrino Theory  

E-print Network

New theory of neutrino masses and mixing is introduced. This theory is based on a simple S_3 symmetric democratic neutrino mass matrix, and predicts the neutrino mass spectrum of normal ordering. Taking into account the matter effect and proper averaging of the oscillations, this theory agrees with the variety of atmospheric, solar and accelerator neutrino data. Moreover, the absolute scale of the neutrino masses m of 0.03 eV is determined in this theory, using the atmospheric neutrino oscillation data. In case of tiny perturbations in the democratic mass matrix only one this scale parameter m allows to explain the mentioned above neutrino results, and the theory has huge predictive power.

Dmitry Zhuridov

2014-05-21

183

Collective neutrino oscillations in supernovae  

SciTech Connect

In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

Duan, Huaiyu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

2014-06-24

184

A New Neutrino Oscillation  

SciTech Connect

Starting in the late 1960s, neutrino detectors began to see signs that neutrinos, now known to come in the flavors electron ({nu}{sub e}), muon ({nu}{sub {mu}}), and tau ({nu}{sub {tau}}), could transform from one flavor to another. The findings implied that neutrinos must have mass, since massless particles travel at the speed of light and their clocks, so to speak, don't tick, thus they cannot change. What has since been discovered is that neutrinos oscillate at two distinct scales, 500 km/GeV and 15,000 km/GeV, which are defined by the baseline (L) of the experiment (the distance the neutrino travels) divided by the neutrino energy (E). Neutrinos of one flavor can oscillate into neutrinos of another flavor at both L/E scales, but the amplitude of these oscillations is different for the two scales and depends on the initial and final flavor of the neutrinos. The neutrino states that propogate unchanged in time, the mass eigenstates {nu}1, {nu}2, {nu}3, are quantum mechanical mixtures of the electron, muon, and tau neutrino flavors, and the fraction of each flavor in a given mass eigenstate is controlled by three mixing angles and a complex phase. Two of these mixing angles are known with reasonable precision. An upper bound exists for the third angle, called {theta}{sub 13}, which controls the size of the muon neutrino to electron neutrino oscillation at an L/E of 500 km/GeV. The phase is completely unknown. The existence of this phase has important implications for the asymmetry between matter and antimatter we observe in the universe today. Experiments around the world have steadily assembled this picture of neutrino oscillation, but evidence of muon neutrino to electron neutrino oscillation at 500 km/GeV has remained elusive. Now, a paper from the T2K (Tokai to Kamioka) experiment in Japan, reports the first possible observation of muon neutrinos oscillating into electron neutrinos at 500 km/GeV. They see 6 candidate signal events, above an expected background of 1.5 events. The probability that the 6 events are all background is only about 0.7%. Stated differently, this is a 2.7{sigma} indication that the parameter that controls the oscillation, the neutrino mixing angle {theta}{sub 13}, is nonzero, just shy of the 3{sigma} requirement to claim 'evidence for.' Nevertheless, this experiment provides the strongest indication to date that this oscillation actually occurs in nature.

Parke, Stephen J.; /Fermilab

2011-07-01

185

Neutrinoless double beta decay with pseudo Dirac neutrinos  

Microsoft Academic Search

The lepton number violation for neutrinoless double beta decay may only have a negligible effect on the neutrino mass generation. In this case the neutrinoless double beta decay can not verify the Majorana nature of neutrinos even if it is confirmed in the future. For illustration we propose a model to realize a significant neutrinoless double beta decay with pseudo

Pei-Hong Gu

2011-01-01

186

NEXT: Neutrino Experiment with high pressure Xenon gas TPC  

Microsoft Academic Search

The search of the neutrinoless double-? decay address the major Physics goals of revealing the nature of the neutrino and setting an absolute scale for its mass. The observation of a positive ??0? signal, the unique signature of Majorana neutrinos, would have deep consequences in particle physics and cosmology. Therefore, any claim of observing a positive signal shall require extremely

Nadia Yahlali; M. Ball; S. Cárcel; J. Díaz; A. Gil; J. J. Gómez Cadenas; J. Martín-Albo; F. Monrabal; L. Serra; M. Sorel

2010-01-01

187

Unification of Massive Neutrinos of a Different Nature  

Microsoft Academic Search

At the availability of a non - zero mass, the same neutrino regardless of whether it refers to Dirac or Majorana fermions, must possess simultaneously each of the anapole and electric dipole moments. Their interaction with field of emission can also lead to the longitudinal polarized neutrinos elastic scattering on a spinless nucleus. Using the process cross section, the united

Rasulkhozha S. Sharafiddinov

2005-01-01

188

Spin Polarization Type Dependence of the Neutrino Mass and Nature  

Microsoft Academic Search

The interaction with field of a nucleus of longitudinal and transversal neutrinos (antineutrinos) have been investigated at the account of their rest mass, charge, magnetic, anapole and electric dipole moments. Compound structure of these processes cross sections has sharply expressed features and generalities for any lepton as well as for a massive Majorana neutrino. A new influence of truly neutral

B. S. Yuldashev; R. S. Sharafiddinov

2005-01-01

189

The United Families of Massive Neutrinos of a Different Nature  

Microsoft Academic Search

At the availability of a nonzero mass, the same neutrino regardless of whether it refers to Dirac or Majorana fermions, must possess simultaneously each of the anapole and electric dipole moments. Their interaction with the field of emission can also lead to the elastic scattering of the longitudinal polarized neutrinos on a spinless nucleus. Using the cross section of a

Rasulkhozha S. Sharafiddinov

2006-01-01

190

Power law enhancement of neutrino mixing angles in extra dimensions  

E-print Network

We study the renormalization of the $llHH$-type Majorana neutrino mass operator in a scenario where there is a compactified extra dimension and the fields involved correspond to only the standard model particles and their Kaluza-Klein excitations. We observe that in a two flavour scenario, where one of the neutrinos is necessarily $\

Gautam Bhattacharyya; Srubabati Goswami; Amitava Raychaudhuri

2002-07-10

191

Effective Theories of Neutrino Masses  

NASA Astrophysics Data System (ADS)

The importance of improving the bounds on those effective non-standard neutrino interactions (NSI) which are a signal of all fermionic-mediated Seesaws is stressed: they are revealed as non-unitarity of the leptonic mixing matrix, and at experimental reach for seesaw scales ? O(TeV). Some recent activity in the literature on other - theoretically not well motivated - ill-constrained NSI are also summarized. Furthermore, the status of the simplest Seesaw scenario with only two heavy neutrinos is reviewed. This model happens to be a explicit realization of the effective Minimal Flavour Violation approach. We derive the scalar potential for the fields whose background values are the Yukawa couplings of that model, and explore its minima. The Majorana character plays a distinctive role: the minimum of the potential allows for large mixing angles - in contrast to the simplest quark case - and predicts a maximal Majorana phase. This points in turn to a strong correlation between neutrino mass hierarchy and mixing pattern.

Gavela, M. B.

2013-02-01

192

Atmospheric neutrino oscillations and tau neutrinos in ice  

E-print Network

The main goal of the IceCube Deep Core Array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show here that cascade measurements in the Ice Cube Deep Core Array can provide strong evidence for tau neutrino appearance in atmospheric neutrino oscillations. A careful study of these tau neutrinos is crucial, since they constitute an irreducible background for astrophysical neutrino detection.

Gerardo Giordano; Olga Mena; Irina Mocioiu

2010-04-20

193

SuperGZK neutrinos  

E-print Network

The sources and fluxes of superGZK neutrinos, $E>10^{20}$ eV, are discussed. The fluxes of {\\em cosmogenic neutrinos}, i.e. those produced by ultra-high energy cosmic rays (UHECR) interacting with CMB photons, are calculated in the models, which give the good fit to the observed flux of UHECR. The best fit given in no-evolutionary model with maximum acceleration energy $E_{\\rm max}=1\\times 10^{21}$ eV results in very low flux of superGZK neutrinos an order of magnitude lower than the observed flux of UHECR. The predicted neutrino flux becomes larger and observable by next generation detectors at energies $10^{20} - 10^{21}$ eV in the evolutionary models with $E_{\\rm max}=1\\times 10^{23}$ eV. The largest cosmogenic neutrino flux is given in models with very flat generation spectrum, e.g. $\\propto E^{-2}$. The neutrino energies are naturally high in the models of {\\em superheavy dark matter and topological defects}. Their fluxes can also be higher than those of cosmogenic neutrinos. The largest fluxes are given by {\\em mirror neutrinos}, oscillating into ordinary neutrinos. Their fluxes obey some theoretical upper limit which is very weak, and in practice these fluxes are most efficiently limited now by observations of radio emission from neutrino-induced showers.

V. Berezinsky

2005-09-22

194

MINOS Sterile Neutrino Search  

SciTech Connect

The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the {nu}{sub {mu}} {yields} V{sub {tau}} transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling {approx}2.5 x 10{sup 20} protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

Koskinen, David Jason; /University Coll. London

2009-09-01

195

Sudbury Neutrino Observatory  

SciTech Connect

This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in January 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical {sup 37}Cl and {sup 71}Ga experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun.

Beier, E.W.

1992-03-01

196

Neutrino Mixing and CP Phase Correlations  

E-print Network

A special form of the $3 \\times 3$ Majorana neutrino mass matrix derivable from $\\mu - \\tau$ interchange symmetry accompanied by a generalized $CP$ transformation was obtained many years ago. It predicts $\\theta_{23} = \\pi/4$ as well as $\\delta_{CP} = \\pm \\pi/2$, with $\\theta_{13} \

Ma, Ernest; Popov, Oleg

2015-01-01

197

Why Are Neutrinos Light? -- An Alternative  

SciTech Connect

We review the recent proposal that neutrinos are light because their masses are proportional to a low scale, f, of lepton flavor symmetry breaking. This mechanism is testable because the resulting pseudo-Goldstone bosons, of mass m_G, couple strongly with the neutrinos, affecting the acoustic oscillations during the eV era of the early universe that generate the peaks in the CMB radiation. Characteristic signals result over a very wide range of (f, m_G) because of a change in the total relativistic energy density and because the neutrinos scatter rather than free-stream. Thermodynamics allows a precise calculation of the signal, so that observations would not only confirm the late-time neutrino mass mechanism, but could also determine whether the neutrino spectrum is degenerate, inverted or hierarchical and whether the neutrinos are Dirac or Majorana. The flavor symmetries could also give light sterile states. If the masses of the sterile neutrinos turn on after the MeV era, the LSND oscillations can be explained without upsetting big bang nucleosynthesis, and, since the sterile states decay to lighter neutrinos and pseudo-Goldstones, without giving too much hot dark matter.

Hall, Lawrence J.; Oliver, Steven J.

2004-09-23

198

Testing the Bimodal/Schizophrenic Neutrino Hypothesis in Neutrinoless Double Beta Decay and Neutrino Telescopes  

E-print Network

The standard assumption is that all three neutrino mass states are either Dirac or Majorana. However, it was recently suggested by Allaverdi, Dutta and one of the authors (R.N.M.) that mixed, or bimodal, flavor neutrino scenarios are conceivable and are consistent with all known observations (these were called "schizophrenic" in the ADM paper). In that case each individual mass eigenstate can be either Dirac or Majorana, so that the flavor eigenstates are "large" admixtures of both. An example of this "bimodal" situation is to consider one mass state as a Dirac particle (with a sterile partner), while the other two are of Majorana type. Since only Majorana particles contribute to neutrinoless double beta decay, the usual dependence of this observable on the neutrino mass is modified within this scenario. We study this in detail and, in particular, generalize the idea for all possible bimodal combinations. Inevitably, radiative corrections will induce a pseudo-Dirac nature to the Dirac states at the one-loop level, and the effects of the pseudo-Dirac mass splitting will show up in the flavor ratios of neutrinos from distant cosmological sources. Comparison of the effective mass in neutrinoless double beta decay as well as flavor ratios at neutrino telescopes, for different pseudo-Dirac cases and with their usual phenomenology, can distinguish the different bimodal possibilities.

James Barry; Rabindra N. Mohapatra; Werner Rodejohann

2011-06-27

199

Neutrinos and Collider Physics  

E-print Network

We review the collider phenomenology of neutrino physics and the synergetic aspects at energy, intensity and cosmic frontiers to test the new physics behind the neutrino mass mechanism. In particular, we focus on seesaw models within the minimal setup as well as with extended gauge and/or Higgs sectors, and on supersymmetric neutrino mass models with seesaw mechanism and with $R$-parity violation. In the simplest Type-I seesaw scenario with sterile neutrinos, we summarize and update the current experimental constraints on the sterile neutrino mass and its mixing with the active neutrinos. We also discuss the future experimental prospects of testing the seesaw mechanism at colliders and in related low-energy searches for rare processes, such as lepton flavor violation and neutrinoless double beta decay. The implications of the discovery of lepton number violation at the LHC for leptogenesis are also studied.

Deppisch, Frank F; Pilaftsis, Apostolos

2015-01-01

200

Solar neutrino detection  

E-print Network

More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

Lino Miramonti

2009-01-22

201

Spectroscopy of Solar Neutrinos  

E-print Network

In the last years, liquid-scintillator detectors have opened a new window for the observation of low-energetic astrophysical neutrino sources. In 2007, the solar neutrino experiment Borexino began its data-taking in the Gran Sasso underground laboratory. High energy resolution and excellent radioactive background conditions in the detector allow the first-time spectroscopic measurement of solar neutrinos in the sub-MeV energy regime. The experimental results of the Beryllium-7 neutrino flux measurements as well as the prospects for the detection of solar Boron-8, pep and CNO neutrinos are presented in the context of the currently discussed ambiguities in solar metallicity. In addition, the potential of the future SNO+ and LENA experiments for high-precision solar neutrino spectroscopy will be outlined.

Wurm, Michael; Goeger-Neff, Marianne; Lachenmaier, Tobias; Lewke, Timo; Meindl, Quirin; Moellenberg, Randoplh; Oberauer, Lothar; Potzel, Walter; Tippmann, Marc; Traunsteiner, Christoph; Winter, Juergen

2010-01-01

202

Neutrinos from Gamma Ray Bursts  

E-print Network

We show that the detection of neutrinos from a typical gamma ray burst requires a kilometer-scale detector. We argue that large bursts should be visible with the neutrino telescopes under construction. We emphasize the 3 techniques by which neutrino telescopes can perform this search: by triggering on i) bursts of muons from muon neutrinos, ii) muons from air cascades initiated by high energy gamma rays and iii) showers made by relatively low energy ($\\simeq 100\\,\\mev$) electron neutrinos. Timing of neutrino-photon coincidences may yield a measurement of the neutrino mass to order $10^{-5}$~eV, an interesting range in light of the solar neutrino anomaly.

F. Halzen; G. Jaczko

1996-02-07

203

Neutrino Oscillation Studies with Reactors  

E-print Network

Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

Vogel, Petr; Zhang, Chao

2015-01-01

204

Neutrino Oscillation Studies with Reactors  

E-print Network

Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

Petr Vogel; Liangjian Wen; Chao Zhang

2015-03-03

205

The AMANDA Neutrino Detector  

Microsoft Academic Search

The first stage of the AMANDA High Energy Neutrino Detector at the South Pole, the 302 PMT array AMANDA-B with an expected effective area for TeV neutrinos of ~104m2, has been taking data since 1997. Progress with calibration, investigation of ice properties, as well as muon and neutrino data analysis are described. The next stage 20-string detector AMANDA-II with ~800PMTs

R. Wischnewski; E. Andrés; P. Askebjer; S. Barwick; R. Bay; L. Bergström; A. Biron; J. Booth; O. Botner; A. Bouchta; S. Carius; M. Carlson; W. Chinowsky; D. Chirkin; D. Cowen; C. Costa; E. Dalberg; T. De Young; J. Edsjo; P. Ekström; A. Goobar; L. Gray; A. Hallgren; F. Halzen; R. Hardtke; Y. He; G. Hill; P. Hulth; S. Hundertmark; J. Jacobsen; V. Kandhadai; A. Karle; J. Kim; H. Leich; M. Leuthold; P. Lindahl; T. Liss; I. Liubarsky; P. Loaiza; D. Lowder; P. Marciniewski; T. Miller; P. Miocinovic; P. Mock; R. Morse; M. Newcomer; P. Niessen; D. Nygren; C. Pérez de los Heros; R. Porrata; P. Price; G. Przybylski; W. Rhode; S. Richter; J. Rodriguez; P. Romenesko; D. Ross; H. Rubinstein; T. Schmidt; E. Schneider; R. Schwarz; U. Schwendicke; G. Smoot; M. Solarz; V. Sorin; C. Spiering; P. Steffen; R. Stokstad; O. Streicher; L. Thollander; T. Thon; S. Tilav; C. Walck; C. Wiebusch; K. Woschnagg; W. Wu; G. Yodh; S. Young

1999-01-01

206

The AMANDA Neutrino Detector  

SciTech Connect

The first stage of the AMANDA High Energy Neutrino Detectorat the South Pole, the 302 PMT array AMANDA-B with an expected effectivearea for TeV neutrinos of similar to 10(4) m(2), has been taking datasince 1997. Progress with calibration, investigation of ice properties,as well as muon and neutrino data analysis are described. The next stage20-string detector AMANDA-II with similar to 800 PMTs will be completedin spring 2000.

Wischnewski, R.; Andres, E.; Askebjer, P.; Barwick, S.; Bay, R.; Bergstrom, L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson, M.; Chinowsky, W.; Chirkin, D.; Cowen, D.; Costa, C.; Dalberg,E.; Deyoung, T.; Edsjo, J.; Ekstrom, P.; Goobar, A.; Gray, L.; Hallgren,A.; Halzen, F.; Hardtke, R.; He, Y.; Hill, G.; Hulth, P.; Hundertmark,S.; Jacobsen, J.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold,M.; Lindahl, P.; Liss, T.; Liubarsky, I.; Loaiza, P.; Lowder, D.; Marciniewski, P.; Miller, T.; Miocinovic, P.; Mock, P.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren, D.; de, los, Heros, CP.; Porrata, R.; Price, P.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering,C.; Steffen, P.; Stokstad, R.; Streicher, O.; Thollander, L.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch, C.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

1999-08-23

207

Neutrinos: Nature's Ghosts?  

SciTech Connect

Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

Lincoln, Don

2013-06-18

208

Neutrinos: Nature's Ghosts?  

ScienceCinema

Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

Lincoln, Don

2014-08-12

209

Introduction to sterile neutrinos  

NASA Astrophysics Data System (ADS)

Model-building issues raised by the prospect of light sterile neutrinos are discussed in a pedagogical way. I first review the naive proposal that sterile neutrinos be identified with “right handed neutrinos”. A critical discussion of the simple expedient of adding three gauge singlet fermions to the usual minimal standard model matter content is followed by an examination of right handed neutrinos in extended theories. I introduce the terminology of “fully sterile” and “weakly sterile” to classify varieties usually conflated under the sterile neutrino banner. After introducing the concepts of “technical naturalness” and plain “naturalness”, the unbearable lightness of being a sterile neutrino is confronted. This problem is used to motivate mirror neutrinos, whose connection with pairwise maximal mixing is emphasised. Some brief remarks about phenomenology are made throughout. The impossibility of identifying the sole sterile neutrino of the currently favoured 2 + 2 and 3 + 1 phenomenological constructs as a lone gauge singlet fermion added to the minimal standard model is explained. Finally, I remark on the beauty and subtlety of light sterile neutrino cosmology.

Volkas, R. R.

2002-07-01

210

Introduction to sterile neutrinos  

E-print Network

Model-building issues raised by the prospect of light sterile neutrinos are discussed in a pedagogical way. I first review the na\\"{\\i}ve proposal that sterile neutrinos be identified with ``right handed neutrinos''. A critical discussion of the simple expedient of adding three gauge singlet fermions to the usual minimal standard model matter content is followed by an examination of right handed neutrinos in extended theories. I introduce the terminology of ``fully sterile'' and ``weakly sterile'' to classify varieties usually conflated under the sterile neutrino banner. After introducing the concepts of ``technical naturalness'' and plain ``naturalness'', the unbearable lightness of being a sterile neutrino is confronted. This problem is used to motivate mirror neutrinos, whose connection with pairwise maximal mixing is emphasised. Some brief remarks about phenomenology are made throughout. The impossibility of identifying the sole sterile neutrino of the currently favoured $2 + 2$ and $3 + 1$ phenomenological constructs as a lone gauge singlet fermion added to the minimal standard model is explained. Finally, I remark on the beauty and subtlety of light sterile neutrino cosmology.

Raymond R. Volkas

2001-11-26

211

Neutrino-nucleus interactions  

SciTech Connect

The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

Gallagher, H.; /Tufts U.; Garvey, G.; /Los Alamos; Zeller, G.P.; /Fermilab

2011-01-01

212

Molybdenum solar neutrino experiment  

SciTech Connect

The goal of the molybdenum solar neutrino experiment is to deduce the /sup 8/B solar neutrino flux, averaged over the past several million years, from the concentration of /sup 98/Tc in a deeply buried molybdenum deposit. The experiment is important to an understanding of stellar processes because it will shed light on the reason for the discrepancy between theory and observation of the chlorine solar neutrino experiment. Possible reasons for the discrepancy may lie in the properties of neutrinos (neutrino oscillations or massive neutrinos) or in deficiencies of the standard solar model. The chlorine experiment only measures the /sup 8/B neutrino flux in current times and does not address possible temporal variations in the interior of the sun, which are also not considered in the standard model. In the molybdenum experiment, we plan to measure /sup 98/Tc (4.2 Myr), also produced by /sup 8/B neutrinos, and possibly /sup 97/Tc (2.6 Myr), produced by lower energy neutrinos.

Wolfsberg, K.; Cowan, G.A.; Bryant, E.A.; Daniels, K.S.; Downey, S.W.; Haxton, W.C.; Niesen, V.G.; Nogar, N.S.; Miller, C.M.; Rokop, D.J.

1984-01-01

213

Multimessenger Astronomy and Neutrinos  

NASA Astrophysics Data System (ADS)

Neutrinos play a very important role in multimessenger astronomy. In this talk, I start with a simple argument on how bright the Universe is in both photons and neutrinos. It is remarkable that one can easily show that the neutrinos, especially those emitted from past core-collapse supernovae, form the brightest radiation component in the Universe, ever emitted from astrophysical sources. The detection of this cosmic supernova neutrino background has not been made yet, but is almost guaranteed in the near future. Thus, I review theoretical predictions of the supernova neutrino background, and the latest upper limits experimentally obtained on its flux. Then I discuss prospects of detecting supernova neutrinos from nearby galaxies. With upcoming Mton detectors, or hopefully with a multi-Mton detector, one could study not only supernova neutrinos but also a true stellar death rate, hidden black-hole formation, etc. Finally, I discuss detectability of high-energy neutrinos and implications for underlying supernova-gamma-ray burst connection. Detecting neutrinos will not only give unique diagnostics but also help find gravitational waves.

Ando, Shin'ichiro

2013-04-01

214

Bolometric detection of neutrinos  

NASA Technical Reports Server (NTRS)

Elastic neutrino scattering off electrons in crystalline silicon at 1-10 mK results in measurable temperature changes in macroscopic amounts of material, even for low-energy (less than 0.41-MeV) pp neutrinos from the sun. New detectors for bolometric measurement of low-energy neutrino interactions, including coherent nuclear elastic scattering, are proposed. A new and more sensitive search for oscillations of reactor antineutrinos is practical (about 100 kg of Si), and would lay the groundwork for a more ambitious measurement of the spectrum of pp, Be-7, and B-8 solar neutrinos, and of supernovae anywhere in the Galaxy (about 10 tons of Si).

Cabrera, B.; Krauss, L. M.; Wilczek, F.

1985-01-01

215

Neutrino Masses and Leptogenesis from Extra Fermions  

NASA Astrophysics Data System (ADS)

Generation of the neutrino masses and leptogenesis (LG) in the standard model extended by the heavy Majorana fermions is considered. Classification of LG scenarios according to the new fermion mass spectra is given, where singlet-triplet LG is considered for the first time. The upper bound on the CP asymmetry relevant for LG with hierarchical heavy neutrinos (Davidson-Ibarra bound) is revised, and shown that in the case of one massless neutrino it essentially depends on the type of the light neutrino mass hierarchy. The resonant scenarios, which help to avoid the problem of extremely high reheating temperature in the early universe, are discussed. In particular, we present new simplified, generalized and detailed formulation of freed LG, which violates Davidson-Ibarra bound in a special class of models.

Zhuridov, Dmitry V.

2013-08-01

216

Massive neutrinos and invisible axion minimally connected  

NASA Astrophysics Data System (ADS)

We survey a few minimal scalar extensions of the standard electroweak model that provide a simple setup for massive neutrinos in connection with an invisible axion. The presence of a chiral U (1 ) à la Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical solution to the strong C P problem and an axion as a dark matter candidate. We paradigmatically apply such a renormalizable framework to type-II seesaw and to two viable models for neutrino oscillations where the neutrino masses arise at one and two loops, respectively. We comment on the naturalness of the effective setups as well as on their implications for vacuum stability and electroweak baryogenesis.

Bertolini, Stefano; Di Luzio, Luca; Kolešová, Helena; Malinský, Michal

2015-03-01

217

Extremely high energy cosmic neutrinos and relic neutrinos  

SciTech Connect

I review the essentials of ultrahigh-energy neutrino interactions, show how neutral-current detection and flavor tagging can enhance the scientific potential of neutrino telescopes, and sketch new studies on neutrino encounters with dark matter relics and on gravitational lensing of neutrinos.

Quigg, Chris; /Fermilab /CERN

2006-03-01

218

High Energy Neutrinos with a Mediterranean Neutrino Telescope  

SciTech Connect

The high energy neutrino detection by a km{sup 3} Neutrino Telescope placed in the Mediterranean sea provides a unique tool to both determine the diffuse astrophysical neutrino flux and the neutrino nucleon cross section in the extreme kinematical region, which could unveil the presence of new physics. Here is performed a brief analysis of possible NEMO site performances.

Borriello, E.; /Naples U. /INFN, Naples /Valencia U., IFIC; Cuoco, A.; /Aarhus U.; Mangano, G.; /Naples U. /INFN, Naples; Miele, G.; /Naples U. /INFN, Naples /Valencia U.,; Pastor, Sergio; /Valencia U., IFIC; Pisanti, O.; /Naples U. /INFN, Naples; Serpico, Pasquale Dario; /Fermilab

2007-09-01

219

Long range neutrino forces in the cosmic relic neutrino background  

E-print Network

Neutrinos mediate long range forces among macroscopic bodies in vacuum. When the bodies are placed in the neutrino cosmic background, these forces are modified. Indeed, at distances long compared to the scale $T^{-1}$, the relic neutrinos completely screen off the 2-neutrino exchange force, whereas for small distances the interaction remains unaffected.

Ferrer, F; Nowakowski, M

2000-01-01

220

Long range neutrino forces in the cosmic relic neutrino background  

E-print Network

Neutrinos mediate long range forces among macroscopic bodies in vacuum. When the bodies are placed in the neutrino cosmic background, these forces are modified. Indeed, at distances long compared to the scale $T^{-1}$, the relic neutrinos completely screen off the 2-neutrino exchange force, whereas for small distances the interaction remains unaffected.

F. Ferrer; J. A. Grifols; M. Nowakowski

1999-06-23

221

Effect of neutrino magnetic moment on solar neutrino observations  

Microsoft Academic Search

Neutrino spin precession effects in the magnetic field of the Sun are considered as an explanation of the outcome of Davis' solar neutrino experiments. Theoretically, it is possible to account for a neutrino magnetic moment only as the result of the interaction of the electromagnetic field with charged particles into which the neutrino can transform virtually. The currently accepted theory

Arturo Cisneros

1971-01-01

222

Diagnostic potential of cosmic-neutrino absorption spectroscopy  

SciTech Connect

Annihilation of extremely energetic cosmic neutrinos on the relic-neutrino background can give rise to absorption lines at energies corresponding to formation of the electroweak gauge boson Z{sup 0}. The positions of the absorption dips are set by the masses of the relic neutrinos. Suitably intense sources of extremely energetic (10{sup 21} - 10{sup 25}-eV) cosmic neutrinos might therefore enable the determination of the absolute neutrino masses and the flavor composition of the mass eigenstates. Several factors--other than neutrino mass and composition--distort the absorption lines, however. We analyze the influence of the time-evolution of the relic-neutrino density and the consequences of neutrino decay. We consider the sensitivity of the lineshape to the age and character of extremely energetic neutrino sources, and to the thermal history of the Universe, reflected in the expansion rate. We take into account Fermi motion arising from the thermal distribution of the relic-neutrino gas. We also note the implications of Dirac vs. Majorana relics, and briefly consider unconventional neutrino histories. We ask what kinds of external information would enhance the potential of cosmic-neutrino absorption spectroscopy, and estimate the sensitivity required to make the technique a reality.

Barenboim, Gabriela; /Valencia U.; Mena Requejo, Olga; Quigg, Chris; /Fermilab

2004-12-01

223

Summary of neutrino presentations  

SciTech Connect

This summary is divided into two sections. First, we concentrate on conventional neutrino physics interpreted in the context of standard electroweak theory. Second, we discuss double beta decay where gross violations of the predictions of the theory might appear, and also we discuss specific searches for consequences of finite neutrino mass. 11 figs., 5 tabs.

White, D.H.

1988-01-01

224

Neutrino Physics (Rapporteur talk)  

NASA Astrophysics Data System (ADS)

Papers related to neutrino physics, submitted in the categories NU-EX (experimental results), NU-IN (methods, techniques, and instrumentation) and NU-TH (theory, model, and simulations) are reviewed with a brief introduction on the current understanding of neutrino masses and mixings.

Nakahata, Masayuki

2014-10-01

225

Reactor monitoring with Neutrinos  

NASA Astrophysics Data System (ADS)

The fundamental knowledge on neutrinos acquired in the recent years open the possibility of applied neutrino physics. Among it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable to IAEA in charge of the control of nuclear power plants. Several efforts worldwide have already started.

Cribier, Michel

2011-12-01

226

Reactor Monitoring with Neutrinos  

E-print Network

The fundamental knowledge on neutrinos acquired in the recent years open the possibility of applied neutrino physics. Among it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable to IAEA in charge of the control of nuclear power plants. Several efforts worldwide have already started.

M. Cribier

2007-04-06

227

Neutrino masses and oscillations  

Microsoft Academic Search

A report on neutrino masses, mixing and oscillations, made in Dubna at the symposium dedicated to 100 years of the Rutherford's discovery of atomic nucleus, is presented. We start with the hypothesis of neutrino which was proposed by W. Pauli in December 1930 in order to solve some problems of nuclei (the problem of spin of $^{7}N_{14}$ and other nuclei

S. M. Bilenky

2011-01-01

228

Monte Carlo Neutrino Oscillations  

E-print Network

We demonstrate that the effects of matter upon neutrino propagation may be recast as the scattering of the initial neutrino wavefunction. Exchanging the differential, Schrodinger equation for an integral equation for the scattering matrix S permits a Monte Carlo method for the computation of S that removes many of the numerical difficulties associated with direct integration techniques.

James P. Kneller; Gail C. McLaughlin

2005-09-29

229

Measurements of neutrino mass  

SciTech Connect

Direct experimental information of neutrino mass as derived from the study of nuclear and elementary-particle weak decays is reviewed. Topics include tritium beta decay; the /sup 3/He-T mass difference; electron capture decay of /sup 163/Ho and /sup 158/Tb; and limits on massive neutrinos from cosmology. 38 references. (WHK)

Robertson, R.G.H.

1985-01-01

230

Neutrino Astronomy Scott Wilbur  

E-print Network

radiation as it travels through the ice Photomultipliers pick up the Cherenkov radiation and can infer the direction of travel To select only neutrino events, only tracks coming through the Earth are kept #12;TheV protons, which should be created with neutrinos, have been seen Can be used to observe possible dark

Golwala, Sunil

231

Neutrino propagation in media: Flavor-, helicity-, and pair correlations  

E-print Network

Neutrinos propagating in media (matter and electromagnetic fields) undergo flavor and helicity oscillations, where helicity transitions are instigated both by electromagnetic fields and matter currents. In addition, it has been shown that correlations between neutrinos and antineutrinos of opposite momentum can build up in anisotropic media. We re-derive the neutrino equations of motion in the mean-field approximation for homogeneous yet anisotropic media, confirming previous results except for a small correction in the Majorana case. Furthermore, we derive the mean-field Hamiltonian induced by neutrino electromagnetic interactions. We also provide a phenomenological discussion of pair correlations in comparison with helicity correlations.

Kartavtsev, A; Vogel, H

2015-01-01

232

Summary: Neutrinos and nonaccelerator physics  

SciTech Connect

This paper contains brief synopsis of the following major topics discussed in the neutrino and nonaccelerator parallel sessions: dark matter; neutrino oscillations at accelerators and reactors; gamma-ray astronomy; double beta decay; solar neutrinos; and the possible existence of a 17-KeV neutrino. (LSP)

Hoffman, C.M.

1991-01-01

233

Physics and Astrophysics of Neutrinos  

Microsoft Academic Search

Observations of neutrinos being emitted by the supernova SN1987A, star neutrinos, and atmospheric neutrinos by means of underground detectors have provided new insights into astronomy. These observations have brought to light new unresolved phenomena such as the solar neutrino problem, spurring investigative studies among particle physicists and astrophysicists. Today, intense interaction and continual cooperation between specialists in the field of

Masataka Fukugita; Atsuto Suzuki

1994-01-01

234

Coherent scattering of cosmic neutrinos  

NASA Technical Reports Server (NTRS)

It is shown that cosmic neutrino scattering can be non-negligible when coherence effects previously neglected are taken into account. The coherent neutrino scattering cross section is derived and the neutrino index of refraction evaluated. As an example of coherent neutrino scattering, a detector using critical reflection is described which in principle can detect the low energy cosmic neutrino background allowed by the measured cosmological red shift.

Opher, R.

1974-01-01

235

Neutrino masses and Neutrinoless Double Beta Decay: Status and expectations  

E-print Network

Two most outstanding questions are puzzling the world of neutrino Physics: the possible Majorana nature of neutrinos and their absolute mass scale. Direct neutrino mass measurements and neutrinoless double beta decay (0nuDBD) are the present strategy to solve the puzzle. Neutrinoless double beta decay violates lepton number by two units and can occurr only if neutrinos are massive Majorana particles. A positive observation would therefore necessarily imply a new regime of physics beyond the standard model, providing fundamental information on the nature of the neutrinos and on their absolute mass scale. After the observation of neutrino oscillations and given the present knowledge of neutrino masses and mixing parameters, a possibility to observe 0nuDBDD at a neutrino mass scale in the range 10-50 meV could actually exist. This is a real challenge faced by a number of new proposed projects. Present status and future perpectives of neutrinoless double-beta decay experimental searches is reviewed. The most important parameters contributing to the experimental sensitivity are outlined. A short discussion on nuclear matrix element calculations is also given. Complementary measurements to assess the absolute neutrino mass scale (cosmology and single beta decays) are also discussed.

Oliviero Cremonesi

2010-02-07

236

Neutrinoless Double Beta Decay and Neutrino Masses  

E-print Network

Neutrinoless double beta decay is a promising test for lepton number violating physics beyond the standard model of particle physics. There is a deep connection between this decay and the phenomenon of neutrino masses. In particular, we will discuss the relation between neutrinoless double beta decay and Majorana neutrino masses provided by the so-called Schechter--Valle theorem in a quantitative way. Furthermore, we will present an experimental cross check to discriminate neutrinoless double beta decay from unknown nuclear background using only one isotope, i.e., within one experiment.

Michael Duerr

2012-06-04

237

Neutrinos: Nature's Identity Thieves?  

SciTech Connect

The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

Lincoln, Don

2013-07-11

238

Neutrino time travel  

E-print Network

We discuss causality properties of extra-dimensional theories allowing for effectively superluminal bulk shortcuts. Such shortcuts for sterile neutrinos have been discussed as a solution to the puzzling LSND and MiniBooNE neutrino oscillation results. We focus here on the sub-category of asymmetrically warped brane spacetimes and argue that scenarios with two extra dimensions may allow for timelike curves which can be closed via paths in the extra-dimensional bulk. In principle sterile neutrinos propagating in the extra dimension may be manipulated in a way to test the chronology protection conjecture experimentally.

James Dent; Heinrich Päs; Sandip Pakvasa; Thomas J. Weiler

2007-12-09

239

Neutrino mass experiments  

SciTech Connect

The current status of the experimental search for neutrino mass is reviewed, with emphasis on direct kinematic methods. Simpson and Hime report finding new evidence for a 17-keV neutrino in the ..beta.. decay of /sup 3/H and /sup 35/S. The situation concerning the electron neutrino mass as measured in tritium beta decay has not changed significantly in the last two years. We discuss the ''model independent'' lower limit of 17 eV obtained by the ITEP group in light of existing data on the /sup 3/H--/sup 3/He mass difference. 42 refs., 1 fig., 1 tab.

Robertson, R.G.H.

1989-01-01

240

Neutrinos: Nature's Identity Thieves?  

ScienceCinema

The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

Dr. Don Lincoln

2013-07-22

241

Neutrinos: Nature's Identity Thieves?  

ScienceCinema

The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

Lincoln, Don

2014-08-07

242

Submarine neutrino communication  

E-print Network

We discuss the possibility to use a high energy neutrino beam from a muon storage ring to provide one way communication with a submerged submarine. Neutrino interactions produce muons which can be detected either, directly when they pass through the submarine or by their emission of Cerenkov light in sea water, which, in turn, can be exploited with sensitive photo detectors. Due to the very high neutrino flux from a muon storage ring, it is sufficient to mount either detection system directly onto the hull of the submersible. The achievable data transfer rates compare favorable with existing technologies and do allow for a communication at the usual speed and depth of submarines.

Patrick Huber

2010-08-20

243

Submarine neutrino communication  

E-print Network

We discuss the possibility to use a high energy neutrino beam from a muon storage ring to provide one way communication with a submerged submarine. Neutrino interactions produce muons which can be detected either, directly when they pass through the submarine or by their emission of Cerenkov light in sea water, which, in turn, can be exploited with sensitive photo detectors. Due to the very high neutrino flux from a muon storage ring, it is sufficient to mount either detection system directly onto the hull of the submersible. The achievable data transfer rates compare favorable with existing technologies and do allow for a communication at the usual speed and depth of submarines.

Huber, Patrick

2009-01-01

244

Neutrinos from neutron stars  

NASA Technical Reports Server (NTRS)

A calculation of the flux of ultra-high energy neutrinos from galactic neutron stars is presented. The calculation is used to determine the number of point sources detectable at the sensitivity threshold of a proposed deep underwater muon and neutrino detector array. The detector array would have a point source detection threshold of about 100 eV/sq cm-sec. Analysis of neutrino luminosities and the number of detectable sources suggests that the deep underwater detector may make a few discoveries. In particular, a suspected neutron star in the Cyg X-3 source seems a promising target for the deep underwater array.

Helfand, D. J.

1979-01-01

245

SNO+ Multipurpose Neutrino Detector  

NASA Astrophysics Data System (ADS)

SNO+ proposes to fill the existing SNO detector with liquid scintillator. The unique location in SNOLAB, currently the worlds deepest international underground facility, will enable a variety of physics measurements from further studies of solar neutrinos (pep and CNO), to geo- and reactor neutrinos, to supernova neutrinos to the possibility of studying neutrinoless double beta decay. With the addition of ^150Nd to the liquid scintillator SNO+ is capable of a competitive next-generation search for this rare process. The physics potential and experimental sensitivities will be discussed.

Kraus, Christine

2008-10-01

246

Atmospheric neutrino oscillations and tau neutrinos in ice  

SciTech Connect

The main goal of the IceCube Deep Core Array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show here that cascade measurements in the Ice Cube Deep Core Array can provide strong evidence for tau neutrino appearance in atmospheric neutrino oscillations. Controlling systematic uncertainties will be the limiting factor in the analysis. A careful study of these tau neutrinos is crucial, since they constitute an irreducible background for astrophysical neutrino detection.

Giordano, Gerardo; Mocioiu, Irina [Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Mena, Olga [Instituto de Fisica Corpuscular, IFIC, CSIC and Universidad de Valencia (Spain)

2010-06-01

247

Neutrino astrophysics : recent advances and open issues  

E-print Network

We highlight recent advances in neutrino astrophysics, the open issues and the interplay with neutrino properties. We emphasize the important progress in our understanding of neutrino flavor conversion in media. We discuss the case of solar neutrinos, of core-collapse supernova neutrinos and of SN1987A, and of the recently discovered ultra-high energy neutrinos whose origin is to be determined.

Volpe, Cristina

2015-01-01

248

The Science of NOA Neutrinos are everywhere!  

E-print Network

The Science of NOA Neutrinos are everywhere! Neutrinos are among the most abundant particles. Unimaginably large numbers of neutrinos from the first moments of the universe are still present today. Neutrinos help to shape our universe Nuclear reactions make the sun shine, producing neutrinos. Neutrinos

Quigg, Chris

249

Double beta decay and neutrino mass models  

E-print Network

Neutrinoless double beta decay allows to constrain lepton number violating extensions of the standard model. If neutrinos are Majorana particles, the mass mechanism will always contribute to the decay rate, however, it is not a priori guaranteed to be the dominant contribution in all models. Here, we discuss whether the mass mechanism dominates or not from the theory point of view. We classify all possible (scalar-mediated) short-range contributions to the decay rate according to the loop level, at which the corresponding models will generate Majorana neutrino masses, and discuss the expected relative size of the different contributions to the decay rate in each class. We also work out the phenomenology of one concrete 2-loop model in which both, mass mechanism and short-range diagram, might lead to competitive contributions, in some detail.

Helo, J C; Ota, T; Santos, F A Pereira dos

2015-01-01

250

Neutrino mass: Recent results  

SciTech Connect

Some recent developments in the experimental search for neutrino mass are discussed. Simpson and Hime report finding new evidence for a 17-keV neutrino in the {beta} decay of {sup 3}H and {sup 35}S. New data from Los Alamos on the electron neutrino mass as measured in tritium beta decay give an upper limit of 13.5 eV at the 95% confidence level. This result is not consistent with the long-standing ITEP result of 26(5) eV within a model-independent'' range of 17 to 40 eV. It now appears that the electron neutrino is not sufficiently massive to close the universe by itself. 38 refs., 1 figs., 2 tabs.

Robertson, R.G.H.

1989-01-01

251

Experimental High Energy Neutrino Astrophysics  

SciTech Connect

Neutrinos are considered promising probes for high energy astrophysics. More than four decades after deep water Cerenkov technique was proposed to detect high energy neutrinos. Two detectors of this type are successfully taking data: BAIKAL and AMANDA. They have demonstrated the feasibility of the high energy neutrino detection and have set first constraints on TeV neutrino production astrophysical models. The quest for the construction of km3 size detectors have already started: in the South Pole, the IceCube neutrino telescope is under construction; the ANTARES, NEMO and NESTOR Collaborations are working towards the installation of a neutrino telescope in the Mediterranean Sea.

Distefano, Carla [Laboratori Nazionali del Sud, Catania (Italy)

2005-10-12

252

Electromagnetic properties of massive neutrinos  

SciTech Connect

The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

Dobrynina, A. A., E-mail: aleksandradobrynina@rambler.ru; Mikheev, N. V.; Narynskaya, E. N. [Demidov Yaroslavl State University (Russian Federation)] [Demidov Yaroslavl State University (Russian Federation)

2013-10-15

253

Neutrinos beyond the Standard Model  

SciTech Connect

I review some basic aspects of neutrino physics beyond the Standard Model such as neutrino mixing and neutrino non-orthogonality, universality and CP violation in the lepton sector, total lepton number and lepton flavor violation, etc.. These may lead to neutrino decays and oscillations, exotic weak decay processes, neutrinoless double /beta/ decay, etc.. Particle physics models are discussed where some of these processes can be sizable even in the absence of measurable neutrino masses. These may also substantially affect the propagation properties of solar and astrophysical neutrinos. 39 refs., 4 figs.

Valle, J.W.F.

1989-08-01

254

Cosmological and supernova neutrinos  

NASA Astrophysics Data System (ADS)

The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on ?13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

2014-06-01

255

Supernova neutrino detection  

E-print Network

The gravitational core collapse of a star produces a huge burst of neutrinos of all flavors. A number of detectors worldwide are sensitive to such a burst; its detection would yield information about both particle physics and astrophysics. Sensitivity to all flavors, and ability to tag different interactions, will be key for extraction of information. Here I will survey the capabilities of current and future detectors for detection of supernova neutrinos from the Milky Way and beyond.

K. Scholberg

2007-01-04

256

The AMANDA neutrino telescope  

Microsoft Academic Search

With an effective telescope area of order 104 m2 for TeV neutrinos, a threshold near ?50 GeV and a pointing accuracy of 2.5 degrees per muon track, the AMANDA detector represents the first of a new generation of high energy neutrino telescopes, reaching a scale envisaged over 25 years ago. We describe early results on the calibration of natural deep

E. C. Andrés; P. Askebjer; S. W. Barwick; R. C. Bay; L. Bergström; A. Biron; J. Booth; O. Botner; A. Bouchta; S. Carius; M. Carlson; W. Chinowsky; D. Chirkin; J. Conrad; C. G. S. Costa; D. Cowen; E. Dalberg; T. De Young; J. Edsjö; P. Ekström; A. Goobar; L. Gray; A. Hallgren; F. Halzen; R. Hardtke; S. Hart; Y. He; C. P. de los Heros; G. Hill; P. O. Hulth; S. Hundertmark; J. Jacobsen; A. Jones; V. Kandhadai; A. Karle; J. Kim; H. Leich; M. Leuthold; P. Lindahl; I. Liubarsky; D. Lowder; P. Marciniewski; T. C. Miller; P. C. Mock; R. Morse; M. Newcomer; P. Niessen; D. Nygren; R. Porrata; D. Potter; P. B. Price; G. Przybylski; W. Rhode; S. Richter; J. Rodriguez; P. Romenesko; D. Ross; H. Rubinstein; T. Schmidt; E. Schneider; R. Schwarz; U. Schwendicke; G. Smoot; M. Solarz; V. Sorin; C. Spiering; P. Steffen; R. Stokstad; O. Streicher; I. Taboada; T. Thon; S. Tilav; C. Walck; C. H. Wiebusch; R. Wischnewski; K. Woschnagg; W. Wu; G. Yodh; S. Young

1999-01-01

257

The AMANDA neutrino telescope  

SciTech Connect

With an effective telescope area of order 10(4) m(2) for TeVneutrinos, a threshold near similar to 50 GeV and a pointing accuracy of2.5 degrees per muon track, the AMANDA detector represents the first of anew generation of high energy neutrino telescopes, reaching a scaleenvisaged over 25 years ago. We describe early results on the calibrationof natural deep ice as a particle detector as well as on AMANDA'sperformance as a neutrino telescope.

Andres, E.C.; Askebjer, P.; Barwick, S.W.; Bay, R.C.; Bergstrom,L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson,M.; Chinowsky, W.; Chirkin, D.; Conrad,J.; Costa, C.G.S.; Cowen, D.; Dalberg, E.; DeYoung, T.; Edsjo, J.; Ekstrom, P.; Goobar, A.; Gray, L.; Hallgren, A.; Halzen, F.; Hardtke, R.; Hart, S.; He, Y.; de, los, Heros,C.P.; Hill, G.; Hulth, PO.; Hundertmark, S.; Jacobsen, J.; Jones, A.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D.; Marciniewski, P.; Miller, T.C.; Miocinovic, P.; Mock, P.C.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren,D.; Porrata, R.; Potter, D.; Price, P.B.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering, C.; Steffen, P.; Stokstad, R.; Streicher, O.; Taboada, I.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch,C.H.; Wischnewski, R.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.; AMANDACollaboration

1999-04-01

258

Cosmological and supernova neutrinos  

SciTech Connect

The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on ?{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GSÜ, Department of Physics, ?i?li, ?stanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

2014-06-24

259

Helicity of Neutrinos  

Microsoft Academic Search

A combined analysis of circular polarization and resonant scattering of ; gamma rays following orbital electron capture measures the helicity of the ; neutrino. A measurement was carried out with Eu¹⁵² which decays by orbital ; electron capture. Assuming the most plausible spin-parity for this isomer ; compatible with its decay scheme, 0-1, it was found that the neutrino was

M. Goldhaber; L. Grodzins; A. W. Sunyar

1958-01-01

260

Boxing with Neutrino Oscillations  

NASA Astrophysics Data System (ADS)

We have developed a model-independent ``box'' parameterization of neutrino oscillations. Oscillation probabilities are linear in these new parameters, so measurements can straighforwardly determine the box parameters which can then be manipulated to yield magnitudes of mixing matrix elements. We will present these new parameters and examine the effects of unitarity which reduce the number of independent parameters to the minimum set. The framework presented here will facilitate general analyses of neutrino oscillations among n >= 3 flavors.

Wagner, Dj; Weiler, Thomas J.

1998-03-01

261

The Sudbury Neutrino Observatory  

SciTech Connect

Two experiments now in progress have reported measurements of the flux of high energy neutrinos from the Sun. Since about 1970, Davis and his co-workers have been using a [sup 37]Cl-based detector to measure the [sup 7]Be and [sup 8]B solar neutrino flux and have found it to be at least a factor of three lower than that predicted by the Standard Solar Model (SSM). The Kamiokande collaborations has been taking data since 1986 using a large light-water Cerenkov detector and have confirmed that the flux is about two times lower than predicted. Recent results from the SAGE and GALLEX gallium-based detectors show that there is also a deficit of the low energy pp solar neutrinos. These discrepancies between experiment and theory could arise because of inadequacies in the theoretical models of solar energy generation or because of previously unobserved properties of neutrinos. The Sudbury Neutrino Observatory (SNO) will provide the information necessary to decide which of these solutions to the solar neutrino problem'' is correct.

Norman, E.B.; Chan, Y.D.; Garcia, A.; Lesko, K.T.; Smith, A.R.; Stokstad, R.G.; Zlimen, I. (Lawrence Berkeley Lab., CA (United States)); Evans, H.C.; Ewan, G.T.; Hallin, A.; Lee, H.W.; Leslie, J.R.; MacArthur, J.D.; Mak, H.B.; McDonald, A.B.; McLatchie, W.; Robertson, B.C.; Skensved, P.; Sur, B. (Queen's Univ., Kingston, ON (Canada). Dept. of Physics); Bonvin, E.; Earle, E.D.; Hepburn, D.; Milton, G.M. (Atomic Energ

1992-11-01

262

Small Neutrino Masses from Supersymmetry Breaking  

SciTech Connect

An alternative to the conventional see-saw mechanism is proposed to explain the origin of small neutrino masses in supersymmetric theories. The masses and couplings of the right-handed neutrino field are suppressed by supersymmetry breaking, in a way similar to the suppression of the Higgs doublet mass, $\\mu$. New mechanisms for light Majorana, Dirac and sterile neutrinos arise, depending on the degree of suppression. Superpartner phenomenology is greatly altered by the presence of weak scale right-handed sneutrinos, which may have a coupling to a Higgs boson and a left-handed sneutrino. The sneutrino spectrum and couplings are quite unlike the conventional case - the lightest sneutrino can be the dark matter and predictions are given for event rates at upcoming halo dark matter direct detection experiments. Higgs decays and search strategies are changed. Copious Higgs production at hadron colliders can result from cascade decays of squarks and gluinos.

Arkani-Hamed, Nima; Hall, Lawrence; Murayama, Hitoshi; Smith, David; Weiner, Neal

2000-06-27

263

GENIUS project, neutrino oscillations and Cosmology neutrinos reveal their nature?  

E-print Network

The neutrinoless double beta decay as well as any other laboratory experiment has not been able to answer the question of the neutrino's nature. Hints on the answer are available when neutrino oscillations and $(\\beta\\beta)_{0 \

Czakon, M; Zralek, M; Gluza, J

2000-01-01

264

GENIUS project, neutrino oscillations and Cosmology: neutrinos reveal their nature?  

E-print Network

The neutrinoless double beta decay as well as any other laboratory experiment has not been able to answer the question of the neutrino's nature. Hints on the answer are available when neutrino oscillations and $(\\beta\\beta)_{0 \

M. Czakon; J. Studnik; M. Zralek; J. Gluza

2000-05-17

265

Core-collapse supernova neutrinos and neutrino properties  

E-print Network

Core-collapse supernovae are powerful neutrino sources. The observation of a future (extra-)galactic supernova explosion or of the relic supernova neutrinos might provide important information on the supernova dynamics, on the supernova formation rate and on neutrino properties. One might learn more about unknown neutrino properties either from indirect effects in the supernova (e.g. on the explosion or on in the r-process) or from modifications of the neutrino time or energy distributions in a detector on Earth. Here we will discuss in particular possible effects of CP violation in the lepton sector. We will also mention the interest of future neutrino-nucleus interaction measurements for the precise knowledge of supernova neutrino detector response to electron neutrinos.

J. Gava; C. Volpe

2008-05-18

266

Measurement of Atmospheric Neutrinos at the Sudbury Neutrino Observatory  

E-print Network

The Sudbury Neutrino Observatory consists of a 1 kiloton heavy water Cherenkov detector able to detect and reconstruct high-energy muons created from cosmic ray showers and atmospheric neutrino interactions. By measuring ...

Formaggio, Joseph A.

267

Sterile Neutrino Fits to Short-Baseline Neutrino Oscillation Measurements  

E-print Network

This paper reviews short-baseline oscillation experiments as interpreted within the context of one, two, and three sterile neutrino models associated with additional neutrino mass states in the ~1?eV range. Appearance and ...

Conrad, J. M.

2013-01-01

268

Neutrino mixing and masses from a minimum principle  

NASA Astrophysics Data System (ADS)

We analyze the structure of quark and lepton mass matrices under the hypothesis that they are determined from a minimum principle applied to a generic potential invariant under the [SU(3)]5 ? (3) flavor symmetry, acting on Standard Model fermions and right-handed neutrinos. Unlike the quark case, we show that hierarchical masses for charged leptons are naturally accompanied by degenerate Majorana neutrinos with one mixing angle close to maximal, a second potentially large, a third one necessarily small, and one maximal relative Majorana phase. Adding small perturbations the predicted structure for the neutrino mass matrix is in excellent agreement with present observations and could be tested in the near future via neutrino-less double beta decay and cosmological measurements. The generalization of these results to arbitrary sew-saw models is also discussed.

Alonso, R.; Gavela, M. B.; Isidori, G.; Maiani, L.

2013-11-01

269

Atmospheric neutrinos in ice and measurement of neutrino oscillation parameters  

SciTech Connect

The main goal of the IceCube Deep Core array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show that the very high statistics atmospheric neutrino data can be used to obtain precise measurements of the main oscillation parameters.

Fernandez-Martinez, Enrique [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany); Giordano, Gerardo; Mocioiu, Irina [Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Mena, Olga [Instituto de Fisica Corpuscular, IFIC, CSIC, and Universidad de Valencia (Spain)

2010-11-01

270

The Neutrino Eye: A Megaton Low Energy Neutrino  

E-print Network

from WIMPS and gamma ray bursts, and upon real time counting of solar neutrinos, are all from sensi­ tivity, and conduct a watch for for neutrino correlates to sporadic phenomenon such as gamma ray bursts. The main thrust would be to detect actual muon neutrino appearance as well as disappearance

Learned, John

271

Vetoing atmospheric neutrinos in a high energy neutrino telescope  

E-print Network

We discuss the possibility to suppress downward atmospheric neutrinos in a high energy neutrino telescope. This can be achieved by vetoing the muon which is produced by the same parent meson decaying in the atmosphere. In principle, atmospheric neutrinos with energies $E_\

Stefan Schönert; Thomas K. Gaisser; Elisa Resconi; Olaf Schulz

2008-12-22

272

Formation of Neutrino Stars from Cosmological Background Neutrinos  

E-print Network

We study hydrodynamic evolution of cosmological background neutrinos. By using a spherically symmetric Newtonian hydrodynamic code, we calculate the time evolution of the density profiles of neutrino matter in cluster and galactic scales. We discuss the possible observational consequences of such evolution and the resulting density profiles of the degenerate neutrino `stars' in galaxies and clusters.

M. H. Chan; M. -C. Chu

2006-09-20

273

Neutrino oscillometry at the next generation neutrino observatory  

Microsoft Academic Search

The large next generation liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) offers an excellent opportunity for neutrino oscillometry. The characteristic spatial pattern of very low monoenergetic neutrino disappearance from artificial radioactive sources can be detected within the long length of detector. Sufficiently strong sources of more than 1 MCi activity can be produced at nuclear reactors. Oscillometry will provide a

Yu. N. Novikov; T. Enqvist; A. N. Erykalov; F. v. Feilitzsch; J. Hissa; K. Loo; D. A. Nesterenko; L. Oberauer; F. Thorne; W. Trzaska; J. D. Vergados; M. Wurm

2011-01-01

274

Texture and cofactor zeros of the neutrino mass matrix  

NASA Astrophysics Data System (ADS)

We study Majorana neutrino mass matrices that have two texture zeros, or two cofactor zeros, or one texture zero and one cofactor zero. The two texture/cofactor zero conditions give four constraints, which in conjunction with the five measured oscillation parameters completely determine the nine independent real parameters of the neutrino mass matrix. We also study the implications that future measurements of neutrinoless double beta decay and the Dirac CP phase will have on these cases.

Liao, Jiajun; Marfatia, D.; Whisnant, K.

2014-09-01

275

The United Families of Massive Neutrinos of a Different Nature  

Microsoft Academic Search

At the availability of a nonzero mass, the same neutrino regardless of\\u000awhether it refers to Dirac or Majorana fermions, must possess simultaneously\\u000aeach of the anapole and electric dipole moments. Their interaction with the\\u000afield of emission can also lead to the elastic scattering of the longitudinal\\u000apolarized neutrinos on a spinless nucleus. Using the cross section of a

Rasulkhozha S. Sharafiddinov

2006-01-01

276

A limit on massive neutrino dark matter from Kamiokande  

Microsoft Academic Search

We have searched for possible high-energy neutrino signals expected from massive neutrino dark matter captured by the earth and the sun, by making use of upward-going muon samples collected in the seven years of operation of the Kamiokande detector. No excess of events was found from the earth or the sun, thus giving an excluded mass range of Dirac-(Majorana-) type

M. Mori; K. Hikasa; M. M. Nojiri; Y. Oyama; A. Suzuki; K. Takahashi; M. Yamada; H. Takei; K. Miyano; H. Miyata; K. S. Hirata; K. Inoue; T. Ishida; T. Kajita; K. Kihara; M. Nakahata; K. Nakamura; A. Sakai; N. Sato; Y. Suzuki; Y. Totsuka; M. Koshiba; K. Nishijima; T. Kajimura; T. Suda; Y. Fukuda; E. Kodera; Y. Nagashima; M. Takita; H. Yokoyama; K. Kaneyuki; Y. Takeuchi; T. Tanimori; E. W. Beier; E. D. Frank; W. Frati; S. B. Kim; A. K. Mann; F. M. Newcomer; R. van Berg; W. Zhang

1992-01-01

277

Neutrino-less Double Beta Decay of 48Ca -CANDLES--  

Microsoft Academic Search

Neutrino-less double beta decay (0nubetabeta) is currently known to be an only experiment to verify whether lepton number is conserved or not. The lepton number non-conservation is the key to create matter dominated universe with CP violation. The so-called leptogenesys scenario presents a way to create the matter dominated universe by these violations. If neutrinos have Majorana mass, transition from

T. Kishimoto; S. Yoshida; K. Matsuoka; K. Ichimura; G. Ito; K. Yasuda; H. Kakubata; M. Miyashita; K. Takubo; M. Nomachi; M. Saka; K. Seki; S. Ajimura; S. Umehara; N. Nakatani; Y. Tamagawa; I. Ogawa; K. Fushimi; R. Hazama; H. Ohsumi; K. Okada; Y. Fujii

2011-01-01

278

Secondary atmospheric tau neutrino production  

SciTech Connect

We evaluate the flux of tau neutrinos produced from the decay of pair produced taus from incident muons using a cascade equation analysis. To solve the cascade equations, our numerical result for the tau production Z moment is given. Our results for the flux of tau neutrinos produced from incident muons are compared to the flux of tau neutrinos produced via oscillations and the direct prompt atmospheric tau neutrino flux. Results are given for both downward and upward going neutrinos fluxes and higher zenith angles are discussed. We conclude that the direct prompt atmospheric tau neutrino flux dominates these other atmospheric sources of tau neutrinos for neutrino energies larger than a few TeV for upward fluxes, and over a wider range of energy for downward fluxes.

Bulmahn, Alexander; Hall Reno, Mary [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

2010-09-01

279

Simulating nonlinear neutrino flavor evolution  

E-print Network

We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different than in standard Mikheyev-Smirnov-Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle theta_13.

Huaiyu Duan; George M. Fuller; J. Carlson

2008-03-26

280

Local demands on sterile neutrinos  

E-print Network

In a model independent manner, we explore the local implications of a single neutrino oscillation measurement which cannot be reconciled within a three-neutrino theory. We examine this inconsistency for a single region of baseline to neutrino energy $L/E$. Assuming that sterile neutrinos account for the anomaly, we find that the {\\it local} demands of this datum can require the addition to the theory of one to three sterile neutrinos. We examine the constraints which can be used to determine when more than one neutrino would be required. The results apply only to a given region of $L/E$. The question of the adequacy of the sterile neutrinos to satisfy a global analysis is not addressed here. Finally, using the results of a 3+2 analysis, we indicate values for unknown mixing matrix elements which would require two sterile neutrinos due to local demands only.

David C. Latimer; David J. Ernst

2005-12-13

281

Steps towards the Neutrino Factory  

NASA Astrophysics Data System (ADS)

The properties of the neutrino provide a unique window on physics beyond that described by the Standard Model. The study of sub-leading effects in neutrino oscillations has begun with the race to measure ?13. A consensus is emerging within the international community that a novel neutrino source is required to allow sensitive searches for leptonic CP violation to be carried out and the neutrino mass-hierarchy to be determined. The Neutrino Factory, in which intense neutrino beams are produced from the decay of muons, has been shown to out-perform the other proposed facilities. The physics case for the Neutrino Factory will be reviewed and the baseline design of the facility being developed by the International Design Study for the Neutrino Factory (the IDS-NF) collaboration will be described.

Long, K.

2012-08-01

282

Neutrino Factory: status and prospects  

NASA Astrophysics Data System (ADS)

The properties of the neutrino provide a unique window on physics beyond that described by the Standard Model. The study of sub-leading effects in neutrino oscillations has begun with the race to measure ? consensus is emerging within the international community that a novel neutrino source is required to allow sensitive searches for leptonic CP violation to be carried out and the neutrino mass-hierarchy to be determined. The Neutrino Factory, in which intense neutrino beams are produced from the decay of muons, has been shown to out-perform the other proposed facilities. The physics case for the Neutrino Factory will be reviewed and the baseline design of the facility being developed by the International Design Study for the Neutrino Factory (the IDS-NF) collaboration will be described.

Long, K.

2011-08-01

283

Neutrino dispersion in magnetized plasma  

E-print Network

The neutrino dispersion in the charge symmetric magnetized plasma is investigated. We have studied the plasma contribution into the additional energy of neutrino and obtained the simple expression for it. We consider in detail the neutrino self-energy under physical conditions of weak field, moderate field and strong field limits. It is shown that our result for neutrino dispersion in moderate magnetic field differ substantially from the previous one in the literature.

N. V. Mikheev; E. N. Narynskaya

2008-12-02

284

Effects of Spin-Flavor Conversion in Supernova Neutrino Signal  

SciTech Connect

Majorana neutrinos with a finite transition magnetic moment are expected to convert their flavors by spin precession in a strong magnetic field of a supernova. We investigate detailed dependence of the resonant spin-flavor conversions on electron fraction Y{sub e} in the innermost region of the supernova assuming the inverted mass hierarchy. The observed supernova v-bar{sub e} spectrum is expected to be larger in Y{sub e}>0.5 than that in Y{sub e}<0.5. Therefore, the time variation of supernova v-bar{sub e} signal would indicate Majorana neutrinos with a finite transition magnetic moment.

Yoshida, Takashi [Division of Theoretical Astronomy, National Astronomical Observatory of Japan (Japan); Takamura, Akira [Department of Mathematics, Toyota National College of Technology (Japan); Kimura, Keiichi; Yokomakura, Hidekazu [Department of Physics, Graduate School of Science, Nagoya University (Japan); Kawagoe, Shiou [Department of Astronomy, Graduate School of Science, University of Tokyo (Japan); Kajino, Toshitaka [Division of Theoretical Astronomy, National Astronomical Observatory of Japan (Japan); Department of Astronomy, Graduate School of Science, University of Tokyo (Japan)

2009-05-04

285

Electromagnetic neutrino: a short review  

E-print Network

A short review on selected issues related to the problem of neutrino electromagnetic properties is given. After a flash look at the theoretical basis of neutrino electromagnetic form factors, constraints on neutrino magnetic moments and electric millicharge from terrestrial experiments and astrophysical observations are discussed. We also focus on some recent studies of the problem and on perspectives.

Alexander I. Studenikin

2014-11-09

286

Gravitational Lensing of Supernova Neutrinos  

SciTech Connect

The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.

Mena, Olga; /Fermilab /Rome U.; Mocioiu, Irina; /Penn State U.; Quigg, Chris; /Fermilab

2006-10-01

287

Are there atmospheric neutrino oscillations?  

SciTech Connect

The neutrino oscillation explanation ({nu}{sub {mu}} {yields} {nu}{sub {tau}}) of the atmospheric neutrino deficit is often discussed but is far from widely accepted. This paper discusses several experimental observations, and how a consistent picture pointing towards neutrino oscillations might develop.

Goodman, M.C.

1993-06-01

288

Supernova Neutrinos Detection On Earth  

E-print Network

In this paper, we first discuss the detection of supernova neutrino on Earth. Then we propose a possible method to acquire information about $\\theta_{13}$ smaller than $1.5^\\circ$ by detecting the ratio of the event numbers of different flavor supernova neutrinos. Such an sensitivity cannot yet be achieved by the Daya Bay reactor neutrino experiment.

Xin-Heng Guo; Ming-Yang Huang; Bing-Lin Young

2009-05-12

289

Solar Neutrino Matter Effects Redux  

E-print Network

Following recent low-threshold analysis of the Sudbury Neutrino Observatory and asymmetry measurements of the BOREXINO Collaboration of the solar neutrino flux, we revisit the analysis of the matter effects in the Sun. We show that solar neutrino data constrains the mixing angle $\\theta_{13}$ poorly and that subdominant Standard Model effects can mimic the effects of the physics beyond the Standard Model.

A. B. Balantekin; A. Malkus

2011-12-19

290

Neutrino Factory: status and prospects  

Microsoft Academic Search

The properties of the neutrino provide a unique window on physics beyond that described by the Standard Model. The study of sub-leading effects in neutrino oscillations has begun with the race to measure theta consensus is emerging within the international community that a novel neutrino source is required to allow sensitive searches for leptonic CP violation to be carried out

K. Long

2011-01-01

291

Neutrino oscillations: brief history and present status  

E-print Network

A brief review of the problem of neutrino masses and oscillations is given. In the beginning we present an early history of neutrino masses, mixing and oscillations. Then we discuss all possibilities of neutrino masses and mixing (neutrino mass terms). The phenomenology of neutrino oscillations in vacuum is considered in some details. We present also the neutrino oscillation data and the seesaw mechanism of the neutrino mass generation.

S. M. Bilenky

2014-08-12

292

Limits on neutrino-neutrino scattering in the early Universe  

NASA Astrophysics Data System (ADS)

In the standard model neutrinos are assumed to have streamed across the Universe since they last scattered when the standard-model plasma temperature was ˜MeV . The shear stress of free-streaming neutrinos imprints itself gravitationally on the cosmic microwave background (CMB) and makes the CMB a sensitive probe of neutrino scattering. Yet, the presence of nonstandard physics in the neutrino sector may alter this standard chronology and delay neutrino free streaming until a much later epoch. We use observations of the CMB to constrain the strength of neutrino self interactions Geff and put limits on new physics in the neutrino sector from the early Universe. Within the context of conventional ? CDM parameters cosmological data are compatible with Geff?1 /(56 MeV )2 and neutrino free streaming might be delayed until their temperature has cooled to as low as ˜25 eV . Intriguingly, we also find an alternative cosmology compatible with cosmological data in which neutrinos scatter off each other until z ˜1 04 with a preferred interaction strength in a narrow region around Geff?1 /(10 MeV )2?8.6 ×1 08GF , where GF is the Fermi constant. This distinct self-interacting neutrino cosmology is characterized by somewhat lower values of both the scalar spectral index and the amplitude of primordial fluctuations. While we phrase our discussion here in terms of a specific scenario, our constraints on the neutrino visibility function are very general.

Cyr-Racine, Francis-Yan; Sigurdson, Kris

2014-12-01

293

The neutrino signal at HALO: learning about the primary supernova neutrino fluxes and neutrino properties  

SciTech Connect

Core-collapse supernova neutrinos undergo a variety of phenomena when they travel from the high neutrino density region and large matter densities to the Earth. We perform analytical calculations of the supernova neutrino fluxes including collective effects due to the neutrino-neutrino interactions, the Mikheev-Smirnov-Wolfenstein (MSW) effect due to the neutrino interactions with the background matter and decoherence of the wave packets as they propagate in space. We predict the numbers of one- and two-neutron charged and neutral-current electron-neutrino scattering on lead events. We show that, due to the energy thresholds, the ratios of one- to two-neutron events are sensitive to the pinching parameters of neutrino fluxes at the neutrinosphere, almost independently of the presently unknown neutrino properties. Besides, such events have an interesting sensitivity to the spectral split features that depend upon the presence/absence of energy equipartition among neutrino flavors. Our calculations show that a lead-based observatory like the Helium And Lead Observatory (HALO) has the potential to pin down important characteristics of the neutrino fluxes at the neutrinosphere, and provide us with information on the neutrino transport in the supernova core.

Väänänen, Daavid; Volpe, Cristina, E-mail: vaananen@ipno.in2p3.fr, E-mail: volpe@ipno.in2p3.fr [Institut de Physique Nucléaire, F-91406 Orsay cedex, CNRS/IN2P3 and University of Paris-XI (France)

2011-10-01

294

Entanglement in neutrino oscillations  

E-print Network

Flavor oscillations in elementary particle physics are related to multi-mode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks.

Massimo Blasone; Fabio Dell'Anno; Silvio De Siena; Fabrizio Illuminati

2009-04-17

295

Popcorn Neutrino Lab  

NSDL National Science Digital Library

Students will participate in a modeling activity that simulates the cyclical role of experimental and theoretical science. Initially, the students will measure the mass of popcorn kernels. While the mass of the kernels are determined, students will also make predictions of the mass of the kernels after they are popped. After the popcorn is popped, the mass of the popcorn is measured. Data is shared and students articulate theories that explain why the masses do not agree. After the experiment, the topic of neutrinos is introduced. Essentially, the unpopped kernels represent neutrons and the popped kernels represent protons, electrons, and neutrinos. As students relate the experiment to the theoretical discovery of the neutrino, dialogue can follow discussing the strengths and weaknesses of the model.

Jason Petula

296

Mass of the Neutrino and Its Axial-Vector Electromagnetic Nature  

E-print Network

A neutrino possesses the anapole and electric dipole moments. Their interaction with field of emission can also lead to the neutrino elastic scattering by spinless nuclei. In this letter, we present some implications implied from the process cross sections. One of them states that there exists a hard connection between the neutrino magnetic and anapole moments. An equation for the anapole and electric dipole form factors is also obtained. They define the electronic neutrino axial-vector moments. All findings are generalized to the case of a Majorana neutrino.

Rasulkhozha S. Sharafiddinov

2010-12-09

297

Neutrino Physics: A Selective Overview  

E-print Network

Neutrinos in the Standard Model of particle physics are massless, neutral fermions that seemingly do little more than conserve 4-momentum, angular momentum, lepton number, and lepton flavour in weak interactions. In the last decade conclusive evidence has demonstrated that the Standard Model's description of neutrinos does not match reality. We now know that neutrinos undergo flavour oscillations, violating lepton flavour conservation and implying that neutrinos have non-zero mass. A rich oscillation phenomenology then becomes possible, including matter-enhanced oscillation and possibly CP violation in the neutrino sector. Extending the Standard Model to include neutrino masses requires the addition of new fields and mass terms, and possibly new methods of mass generation. In this review article I will discuss the evidence that has established the existence of neutrino oscillation, and then highlight unresolved issues in neutrino physics, such as the nature of three-generational mixing (including CP-violating effects), the origins of neutrino mass, the possible existence of light sterile neutrinos, and the difficult question of measuring the absolute mass scale of neutrinos.

Scott M. Oser

2006-04-11

298

Solar neutrino experiments  

Microsoft Academic Search

New results are presented for absorption cross sections of nine possible detectors of solar neutrinos (⁷Li, ³⁷Cl, ⁵¹V, ⁵⁵Mn, ⁷¹Ga, ⁸¹Br, ⁸⁷Rb, ¹¹⁵In, and ²°⁵Tl). Special attention is given to nuclear physics uncertainties. The calculated cross sections are used (with the aid of illustrative solar models and ad hoc assumptions about neutrino propagation) to discuss what can be learned about

John Bahcall

1978-01-01

299

Symmetries in collective neutrino oscillations  

E-print Network

We discuss the relationship between a symmetry in the neutrino flavour evolution equations and neutrino flavour oscillations in the collective precession mode. This collective precession mode can give rise to spectral swaps (splits) when conditions can be approximated as homogeneous and isotropic. Multi-angle numerical simulations of supernova neutrino flavour transformation show that when this approximation breaks down, non-collective neutrino oscillation modes decohere kinematically, but the collective precession mode still is expected to stand out. We provide a criterion for significant flavour transformation to occur if neutrinos participate in a collective precession mode. This criterion can be used to understand the suppression of collective neutrino oscillations in anisotropic environments in the presence of a high matter density. This criterion is also useful in understanding the breakdown of the collective precession mode when neutrino densities are small.

Huaiyu Duan; George M. Fuller; Yong-Zhong Qian

2009-07-31

300

ccsd-00016511,version1-5Jan2006 Neutrino Physics/Physique des neutrinos  

E-print Network

ccsd-00016511,version1-5Jan2006 Neutrino Physics/Physique des neutrinos Reactor Neutrinos Thierry Abstract We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino

Boyer, Edmond

301

Nonstandard neutrino interactions and transition magnetic moments  

DOE PAGESBeta

We constrain generic nonstandard neutrino interactions with existing experimental data on neutrino transition magnetic moments and derive strong bounds on tensorial couplings of neutrinos to charged fermions. We also discuss how some of these tensorial couplings can be constrained by other experiments, e.g., on neutrino-electron and neutrino-nucleus scattering.

Healey, Kristopher J.; Petrov, Alexey A.; Zhuridov, Dmitry

2013-06-01

302

Neutrinoless double beta decay and neutrino physics  

E-print Network

The connection of neutrino physics with neutrinoless double beta decay is reviewed. After presenting the current status of the PMNS matrix and the theoretical background of neutrino mass and lepton mixing, we will summarize the various implications of neutrino physics for double beta decay. The influence of light sterile neutrinos and other exotic modifications of the three neutrino picture is also discussed.

Werner Rodejohann

2012-08-20

303

Neutrinos from a core collapse supernova  

E-print Network

The neutrino burst from a galactic supernova can help determine the neutrino mass hierarchy and $\\theta_{13}$, and provide crucial information about supernova astrophysics. Here we review our current understanding of the neutrino burst, flavor conversions of these neutrinos, and model independent signatures of various neutrino mixing scenarios.

Amol Dighe

2007-12-28

304

The JHF-Kamioka neutrino project  

Microsoft Academic Search

The JHF-Kamioka neutrino project is a second generation long base line neutrino oscillation experiment that probes physics beyond the Standard Model by high precision measurements of the neutrino masses and mixing. A high intensity narrow band neutrino beam is produced by secondary pions created by a high intensity proton synchrotron at JHF (JAERI). The neutrino energy is tuned to the

Y. Itow; T. Kajita; K. Kaneyuki; M. Shiozawa; Y. Totsuka; Y. Hayato; T. Ishida; T. Ishii; T. Kobayashi; T. Maruyama; K. Nakamura; Y. Obayashi; Y. Oyama; M. Sakuda; M. Yoshida; S. Aoki; T. Hara; A. Suzuki; A. Ichikawa; T. Nakaya; K. Nishikawa; T. Hasegawa; K. Ishihara; A. Konaka

2001-01-01

305

Resonant neutrino activation and neutrino oscillations  

SciTech Connect

Low Q value weak nuclear decays are considered which have two body final states (electron captures and bound state ..beta.. decays, BSD). This permits an analogy with the Moessbauer effect, where the emitted (anti)neutrinos will resonantly activate daughter nuclei in a suitable absorber. Candidates for such a process are examined and the relevant solid state host problems are discussed. The authors point out that resonant line widths as large as the narrowest observed in Moessbauer spectroscopy suffice to greatly extend the sensitivity of nu (disappearance) oscillation experiments.

Kells, W.P.

1983-01-01

306

The Neutrinoless Double Beta Decay, Physics beyond the Standard Model and the Neutrino Mass  

E-print Network

The Neutrinoless double beta Decay allows to determine the effectice Majorana electron neutrino mass. For this the following conditions have to be satisfied: (i) The neutrino must be a Majorana particle, i. e. identical to the antiparticle. (ii) The half life has to be measured. (iii)The transition matrix element must be reliably calculated. (iv) The leading mechanism must be the light Majorana neutrino exchange. The present contribution studies the accuracy with which one can calculate by different methods: (1) Quasi-Particle Random Phase Approach (QRPA), (2) the Shell Model (SM), (3) the (before the variation) angular momentum projected Hartree-Fock-Bogoliubov method (PHFB)and the (4) Interacting Boson Approach (IBA). In the second part we investigate how to determine experimentally the leading mechanism for the Neutrinoless Double Beta Decay. Is it (a) the light Majorana neutrino exchange as one assumes to determine the effective Majorana neutrino mass, ist it the heavy left (b) or right handed (c) Majorana neutrino exchange allowed by left-right symmetric Grand Unified Theories (GUT's). Is it a mechanism due to Supersymmetry e.g. with gluino exchange and R-parity and lepton number violating terms. At the end we assume, that Klapdor et al. have indeed measured the Neutrinoless Double Beta Decay(, although contested,)and that the light Majorana neutrino exchange is the leading mechanism. With our matrix elements we obtain then an effective Majorana neutrino mass of: = 0.24 [eV], exp (pm) 0.02; theor. (pm) 0.01 [eV

Amand Faessler

2012-03-16

307

Light neutrinos from massless texture and below TeV seesaw scale  

E-print Network

We present general conditions on Dirac and Majorana mass terms under which a type-I seesaw mechanism can lead to three exactly massless neutrinos at the tree level. We depict several examples where the conditions are satisfied and relate some of them to an underlying U(1) symmetry. We show that higher order corrections may generate the small observed masses and this may be achieved even when the heavy Majorana neutrinos are at the electroweak scale or a little higher.

Rathin Adhikari; Amitava Raychaudhuri

2011-08-07

308

Probing Pseudo-Dirac Neutrino through Detection of Neutrino Induced Muons from GRB Neutrinos  

E-print Network

The possibility to verify the pseudo-Dirac nature of neutrinos is investigated here via the detection of ultra high energy neutrinos from distant cosmological objects like GRBs. The very long baseline and the energy range from $\\sim$ TeV to $\\sim$ EeV for such neutrinos invokes the likelihood to probe very small pseude-Dirac splittings. The expected secondary muons from such neutrinos that can be detected by a kilometer scale detector such as ICECUBE is calculated. The pseudo-Dirac nature, if exists, will show a considerable departure from flavour oscillation scenario in the total yield of the secondary muons induced by such neutrinos.

Debasish Majumdar

2006-07-31

309

Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data  

SciTech Connect

In the context of three-flavor neutrino mixing, we present a thorough study of the phenomenological constraints applicable to three observables sensitive to absolute neutrino masses: The effective neutrino mass in Tritium beta-decay (m{sub {beta}}); the effective Majorana neutrino mass in neutrinoless double beta-decay (m{sub {beta}}{sub {beta}}); and the sum of neutrino masses in cosmology ({sigma}). We discuss the correlations among these variables which arise from the combination of all the available neutrino oscillation data, in both normal and inverse neutrino mass hierarchy. We set upper limits on m{sub {beta}} by combining updated results from the Mainz and Troitsk experiments. We also consider the latest results on m{sub {beta}}{sub {beta}} from the Heidelberg-Moscow experiment, both with and without the lower bound claimed by such experiment. We derive upper limits on {sigma} from an updated combination of data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite and the two degrees Fields (2dF) Galaxy Redshifts Survey, with and without Lyman-{alpha} forest data from the Sloan Digital Sky Survey (SDSS), in models with a nonzero running of the spectral index of primordial inflationary perturbations. The results are discussed in terms of two-dimensional projections of the globally allowed region in the (m{sub {beta}},m{sub {beta}}{sub {beta}},{sigma}) parameter space, which neatly show the relative impact of each data set. In particular, the (in)compatibility between {sigma} and m{sub {beta}}{sub {beta}} constraints is highlighted for various combinations of data. We also briefly discuss how future neutrino data (both oscillatory and nonoscillatory) can further probe the currently allowed regions.

Fogli, G.L.; Lisi, E.; Marrone, A.; Palazzo, A. [Dipartimento di Fisica and Sezione INFN di Bari, Via Amendola 173, 70126, Bari (Italy); Melchiorri, A.; Serra, P. [Dipartimento di Fisica and Sezione INFN, Universita degli Studi di Roma 'La Sapienza', P.le Aldo Moro 5, 00185, Rome (Italy); Silk, J. [Astrophysics, Denys Wilkinson Building, Keble Road, OX13RH, Oxford (United Kingdom)

2004-12-01

310

An Axial Vector Nature of a Neutrino with an Electroweak Mass  

Microsoft Academic Search

A classification of elementary particles with respect to C-operation admits the existence of truly neutral types of fermions. Among them one can find both a Dirac and a Majorana neutrinos of an electroweak nature. Their mass includes the electric and weak parts, in the presence of which a neutrino has the anapole charge, charge radius and electric dipole moment. They

Rasulkhozha S. Sharafiddinov

2011-01-01

311

Neutrino Event Generators  

SciTech Connect

A brief description of recent progress in NEUGEN improvements is given. Comparison of various neutrino event generators based on a previous study is also made. Existing event generator models differ most strongly in the treatment of nuclear fsi, the focus of the paper.

Dytman, Steven [Dept. of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

2007-03-19

312

Experimental Neutrino Physics  

ScienceCinema

In this talk, I will review how a set of experiments in the last decade has given us our current understanding of neutrino properties.  I will show how experiments in the last year or two have clarified this picture, and will discuss how new experiments about to start will address remaining questions.  I will particularly emphasize the relationship between various experimental techniques.

Chris Walter

2010-01-08

313

Neutrino and it's lepton  

E-print Network

In this paper I cite p.p. 100-117 of book G. Quznetsov, Probabilistic Treatment of Gauge Theories, in series Contemporary Fundamental Physics,ed. V. Dvoeglazov, Nova Sci. Publ., NY (2007). There I research a bound between neutrino and it's lepton.

G. Quznetsov

2008-11-10

314

Neutrino Factory Downstream Systems  

SciTech Connect

We describe the Neutrino Factory accelerator systems downstream from the target and capture area. These include the bunching and phase rotation, cooling, acceleration, and decay ring systems. We also briefly discuss the R&D program under way to develop these systems, and indicate areas where help from CERN would be invaluable.

Zisman, Michael S.

2009-12-23

315

Neutrino and Extra World  

E-print Network

The neutrino speed measurement experiments are the continuations of the classic light speed measurement experiments have been done in range of the solar planet system (Ole Roemer, 1676), in star system (James Braidely, 1728) and, at last, on the Earth (Lois Fizeau, 1849),.... The finite light speed measurement has led to the revolution in the humanity consciousness and eventually led to a new understanding of the visible universe. In 1998-2005, we had a lot of excited discussions at CERN about the possibilities to perform the neutrino experiments to test the superluminal neutrino hypothesis and to find new phenomena beyond the SM. From one hand the idea of such experiments was associated with the hope to understand the role of the V-A- weak interactions, the quark-lepton family symmetry, the neutrino space-time properties and to observe some indications on a new vacuum structure existence outside of the Weak Scale, i.e. in the region 1/R ~ (0.1-20) TeV. From another hand the general trends of this idea has be...

Baranov, D S

2012-01-01

316

Solar neutrinos at Super-Kamiokande: Solving the solar neutrino puzzle via neutrino flavor oscillations  

NASA Astrophysics Data System (ADS)

The Super-Kamiokande neutrino detector was built with the intent to explain the long-standing apparent solar neutrino flux deficit through signatures of neutrino flavor oscillations, such as a distortion in the energy spectrum and an asymmetry in the day and night fluxes. With the absence of any such "smoking-gun" evidence, an oscillation analysis of solar neutrinos was performed using the data sample from Super-Kamiokande I (SK), Sudbury Neutrino Observatory (SNO), and all other neutrino detectors. A model-independent analysis of SK's total solar neutrino rate and SNO's solar electron-neutrino rate showed at 3.7 sigma level that the apparent deficit is due to the effects of neutrino flavor oscillations. This analysis was possible because for a careful choice of energy thresholds, SK and SNO have virtually the same response to 8B solar neutrinos, whose energy spectrum is undistorted, as demonstrated by the data. By utilizing the full data sets of SK and SNO, however, the oscillation scenario is favored at 6.0 sigma level, with the best-fit oscillation parameters of Deltam2 = 6.3 x 10-5 eV2 and tan 2theta = 0.44 (in the LMA region). The measured 8B neutrino flux is phinu = 5.45+0.64-0.69 x 106 cm-2s-1 , which confirms its theoretical prediction from the Standard Solar Model. With the addition of the neutrino rates from the radiochemical experiments (gallium and chlorine), and the anti-neutrino oscillation result from KamLAND, the LMA solution is further constricted, the 8B neutrino flux is again confirmed (phinu = 5.66+0.62-0.59 x 106 cm-2s -1), and the no-oscillation scenario is ruled out at more than 10 sigma level.

Turcan, Dusan

317

Z_3 Dark Matter and Two-Loop Neutrino Mass  

E-print Network

Dark matter is usually distinguished from ordinary matter by an odd-even parity, i.e. the discrete symmetry Z_2. The new idea of Z_3 dark matter is proposed with a special application to generating radiative Majorana neutrino masses in two-loop order.

Ernest Ma

2007-09-05

318

Transformative A_4 Mixing of Neutrinos with CP Violation  

E-print Network

Given any real $3 \\times 3$ Majorana neutrino mass matrix, the application of a familiar $A_4$ transformation turns it into a well-known form, predicting $\\theta_{23} = \\pi/4$ and $\\delta_{CP} = \\pm \\pi/2$ with $\\theta_{13} \

Ma, Ernest

2015-01-01

319

Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope  

E-print Network

The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of $\\Delta m_{32}^2=(3.1\\pm 0.9)\\cdot 10^{-3}$ eV$^2$ is obtained, in good agreement with the world average value.

ANTARES collaboration; S. Adrian-Martinez; I. Al Samarai; A. Albert; M. Andre; M. Anghinolfi; G. Anton; S. Anvar; M. Ardid; T. Astraatmadja; J. -J. Aubert; B. Baret; S. Basa; V. Bertin; S. Biagi; C. Bigongiari; C. Bogazzi; M. Bou-Cabo; B. Bouhou; M. C. Bouwhuis; J. Brunner; J. Busto; A. Capone; C. Carloganu; J. Carr; S. Cecchini; Z. Charif; Ph. Charvis; T. Chiarusi; M. Circella; R. Coniglione; L. Core; H. Costantini; P. Coyle; A. Creusot; C. Curtil; G. De Bonis; M. P. Decowski; I. Dekeyser; A. Deschamps; C. Distefano; C. Donzaud; D. Dornic; Q. Dorosti; D. Drouhin; T. Eberl; U. Emanuele; A. Enzenhoefer; J. -P. Ernenwein; S. Escoffier; K. Fehn; P. Fermani; M. Ferri; S. Ferry; V. Flaminio; F. Folger; U. Fritsch; J. -L. Fuda; S. Galata; P. Gay; K. Geyer; G. Giacomelli; V. Giordano; A. Gleixner; J. P. Gomez-Gonzalez; K. Graf; G. Guillard; G. Hallewell; M. Hamal; H. van Haren; A. J. Heijboer; Y. Hello; J. J. Hernandez-Rey; B. Herold; J. Hoessl; C. C. Hsu; M. de Jong; M. Kadler; O. Kalekin; A. Kappes; U. Katz; O. Kavatsyuk; P. Kooijman; C. Kopper; A. Kouchner; I. Kreykenbohm; V. Kulikovskiy; R. Lahmann; G. Lambard; G. Larosa; D. Lattuada; D. Lefevre; G. Lim; D. Lo Presti; H. Loehner; S. Loucatos; F. Louis; S. Mangano; M. Marcelin; A. Margiotta; J. A. Martinez-Mora; A. Meli; T. Montaruli; M. Morganti; L. Moscoso; H. Motz; M. Neff; E. Nezri; D. Palioselitis; G. E. Pavalas; K. Payet; J. Petrovic; P. Piattelli; V. Popa; T. Pradier; E. Presani; C. Racca; C. Reed; G. Riccobene; C. Richardt; R. Richter; C. Riviere; A. Robert; K. Roensch; A. Rostovtsev; J. Ruiz-Rivas; M. Rujoiu; G. V. Russo; D. F. E. Samtleben; A. Sanchez-Losa; P. Sapienza; J. Schmid; J. Schnabel; F. Schoeck; J. -P. Schuller; F. Schuessler; T. Seitz; R. Shanidze; F. Simeone; A. Spies; M. Spurio; J. J. M. Steijger; Th. Stolarczyk; M. Taiuti; C. Tamburini; A. Trovato; B. Vallage; C. Vallee; V. Van Elewyck; M. Vecchi; P. Vernin; E. Visser; S. Wagner; G. Wijnker; J. Wilms; E. de Wolf; H. Yepes; D. Zaborov; J. D. Zornoza; J. Zuniga

2012-07-02

320

High Energy Neutrinos: Sources and Fluxes  

E-print Network

We discuss briefly the potential sources of high energy astrophysical neutrinos and show estimates of the neutrino fluxes that they can produce. A special attention is paid to the connection between the highest energy cosmic rays and astrophysical neutrinos.

Todor Stanev

2005-11-28

321

Review on new Neutrino Oscillation Experiments  

E-print Network

Driven by new experimental results, in the latest period several new neutrino oscillation experiments have been proposed. I will outline the main ideas behind the different proposals, in particular concerning atmospheric neutrinos and neutrinos from accelerated beams.

Mario Campanelli

1999-05-19

322

Neutrino magnetic moment effects in neutrino nucleus reactions  

SciTech Connect

Some low energy neutrino nucleus reactions induced by neutrinos (antineutrinos) having a magnetic moment of the order of 10{sup {minus}9}{minus}10{sup {minus}10} Bohr magneton are studied. It is found that in the case of {sup 4}He, {sup 12}C, and {sup 16}O, the detection of very low energy scalar and isoscalar elastic and inelastic reactions induced by the isoscalar vector currents can provide a better limit on the neutrino magnetic moment.

Singh, S.K.; Athar, M.S. [Department of Physics, Aligarh Muslim University, Aligarh-202002 (India)] [Department of Physics, Aligarh Muslim University, Aligarh-202002 (India)

1995-10-01

323

Neutrino Physics and Astrophysics with the Antares Neutrino Telescope  

NASA Astrophysics Data System (ADS)

The ANTARES detector is currently the largest operating neutrino telescope in the Northern Hemisphere. Its scientific target is the detection of ultra-high energy cosmic neutrinos through measurement of Cherenkov radiation from neutrino-induced charged leptons. Here, an overview of the results of various analyses will be given, in particular for the searches of point-like sources and the opportunities for multi-messenger astronomy.

Spurio, M.

2015-01-01

324

Heavy neutrinos and lepton number violation in ?p colliders  

NASA Astrophysics Data System (ADS)

We discuss the prospects of studying lepton number violating processes in order to identify Majorana neutrinos from low scale seesaw mechanisms at lepton-proton colliders. In particular, we consider the scenarios of colliding electrons with LHC energy protons and, motivated by the efforts towards the construction of a muon collider, the prospects of muon-proton collisions. We find that present constraints on the mixing of the Majorana neutrinos still allow for a detectable signal at these kind of facilities given the smallness of the Standard Model background. We discuss possible cuts in order to further increase the signal over background ratio and the prospects of reconstructing the neutrino mass from the kinematics of the final state particles.

Blaksley, Carl; Blennow, Mattias; Bonnet, Florian; Coloma, Pilar; Fernandez-Martinez, Enrique

2011-11-01

325

Collective flavour transitions of supernova neutrinos  

E-print Network

When the neutrino density is very high, as in core-collapse supernovae, neutrino-neutrino interactions are not negligible and can appreciably affect the evolution of flavour. The physics of these phenomena is briefly highlighted, and their effects are shown on observable energy spectra from a future galactic supernova within two-neutrino and three-neutrino frameworks. Detection of such effects could provide a handle on two unknowns: the neutrino mass hierarchy, and the mixing angle theta(13).

Irene Tamborra

2009-05-15

326

Heavy sterile neutrinos and supernova explosions  

E-print Network

We consider sterile neutrinos with rest masses ~0.2 GeV. Such sterile neutrinos could augment core collapse supernova shock energies by enhancing energy transport from the core to the vicinity of the shock front. The decay of these neutrinos could produce a flux of very energetic active neutrinos, detectable by future neutrino observations from a galactic supernova. The relevant range of sterile neutrino masses and mixing angles can be probed in future laboratory experiments.

George M. Fuller; Alexander Kusenko; Kalliopi Petraki

2008-10-01

327

Status of global fits to neutrino oscillations  

Microsoft Academic Search

We review the present status of global analyses of neutrino oscillations, taking into account the most recent neutrino data including the latest KamLAND and K2K updates presented at Neutrino 2004, as well as state-of-the-art solar and atmospheric neutrino flux calculations. We give the two-neutrino solar + KamLAND results, and the two-neutrino atmospheric + K2K oscillation regions, discussing in each case

Michele Maltoni; Thomas Schwetz; Mariam Tórtola; José W. F. Valle

2004-01-01

328

Searching for hep Neutrinos using the Sudbury Neutrino Observatory  

E-print Network

The Sudbury Neutrino Observatory has recently finished its third and final phase, and has accumulated over 1082 days of neutrino data, spanning the energy range from approximately 5-20 MeV. Almost all the observed neutrinos are due to the 8B reaction in the Sun. The so-called hep process (3He + p -> 4He + e + nu_e) also occurs in the Sun, but has not yet been observed. hep neutrino energy endpoint extends above the 8B spectrum. This paper describes the three phase analysis that will ultimately be the most sensitive to this reaction.

Chris Howard; for the SNO Collaboration

2009-05-29

329

Non-unitary neutrino propagation from neutrino decay  

NASA Astrophysics Data System (ADS)

Neutrino propagation in space-time is not constrained to be unitary if very light states - lighter than the active neutrinos - exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and "oscillation" parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.

Berryman, Jeffrey M.; de Gouvêa, André; Hernández, Daniel; Oliveira, Roberto L. N.

2015-03-01

330

Higgs boson mass in NMSSM with right-handed neutrino  

E-print Network

In order to have massive neutrinos, the right-handed neutrino/sneutrino superfield ($N$) need to be introduced in supersymmetry. In the framework of NMSSM (the MSSM with a singlet $S$) such an extension will dynamically lead to a TeV-scale Majorana mass for the right-handed neutrino through the $SNN$ coupling when $S$ develops a vev (the free Majorana mass term is forbidden by the assumed $Z_3$ symmetry). Also, through the couplings $SNN$ and $SH_uH_d$, the SM-like Higgs boson (a mixture of $H_u$, $H_d$ and $S$) can naturally couple with the right-handed neutrino/sneutrino. As a result, the TeV-scale right-handed neutrino/sneutrino may significantly contribute to the Higgs boson mass. Through an explicit calculation, we find that the Higgs boson mass can indeed be sizably altered by the right-handed neutrino/sneutrino. Such new contribution can help to push up the SM-like Higgs boson mass and thus make the NMSSM more natural.

Wenyu Wang; Jin Min Yang; Lin Lin You

2013-07-09

331

Burst Neutrinos from Nitrogen Flash  

E-print Network

Neutrinos give a novel probe to explore deep interior of astrophysical objects, which otherwise is not accessible with optical observations; among notable examples are solar and supernova neutrinos. We show that there is a new class of strong neutrino emission from helium burning, N + alpha --> 18F gamma followed by beta decay 18F --> 18O + e+ + nu_e, that gives a maximum neutrino luminosity of 10^8 times the solar bolometric luminosity at the helium-core flash of a 1 M_sun star, whereas the flash is not observable by optical means. This means that the neutrino flux, of average energy of 0.382 MeV, will be 10% the solar CNO neutrino flux on Earth if the star is located at 10pc.

A. M. Serenelli; M. Fukugita

2005-09-07

332

Astrophysical and cosmological constraints to neutrino properties  

NASA Technical Reports Server (NTRS)

The astrophysical and cosmological constraints on neutrino properties (masses, lifetimes, numbers of flavors, etc.) are reviewed. The freeze out of neutrinos in the early Universe are discussed and then the cosmological limits on masses for stable neutrinos are derived. The freeze out argument coupled with observational limits is then used to constrain decaying neutrinos as well. The limits to neutrino properties which follow from SN1987A are then reviewed. The constraint from the big bang nucleosynthesis on the number of neutrino flavors is also considered. Astrophysical constraints on neutrino-mixing as well as future observations of relevance to neutrino physics are briefly discussed.

Kolb, Edward W.; Schramm, David N.; Turner, Michael S.

1989-01-01

333

Remarks on neutrino mass and magnetic moment  

NASA Astrophysics Data System (ADS)

A neutrino magnetic moment of the order of 10-11?B and a naturally small mass within the framework of the modified Zee model have been calculated. These values are consistent with the observed ones. A model for Majorana neutrinos with a Voloshin-type SU(2) horizontal symmetry that protects the masses but not magnetic moments has been constructed. This symmetry is broken only by terms of order gW(m? - me)/(2MW) approx 4 × 10-3 resulting in masses which are naturally small of the order of eV. The difference between the electron and muon lepton numbers is conserved so that rare processes like ? ? e?, ? ? eee and neutrinoless double-beta decays are forbidden.

Pal, B. K.

2000-01-01

334

Small neutrino mass from large compactification volumes.  

PubMed

We present an argument in which the scale approximately 0.1 eV associated with neutrino masses naturally appears in a class of (very) large volume compactifications, being tied to a supersymmetry scale of 10(3) GeV and a string scale of 10(11) GeV. The masses are of the Majorana type, and there is no right-handed neutrino within the low-energy field theory. The suppression scale 10(14) GeV is independent of the masses of the heavy states that are integrated out. These kinds of constructions appear naturally in type IIB flux compactifications. However, the arguments that lead to this result rely only on a few geometrical features of the compactification manifold and, hence, can be used independently of string theory. PMID:17678352

Conlon, Joseph P; Cremades, Daniel

2007-07-27

335

Neutrino Masses and Flavor Mixing  

E-print Network

We discuss the neutrino oscillations, using texture zero mass matrices for the leptons. The reactor mixing angle $\\theta^{}_{l}$ is calculated. The ratio of the masses of two neutrinos is determined by the solar mixing angle. We can calculate the masses of the three neutrinos: $m_1$ $\\approx$ 0.003 eV - $m_2$ $\\approx$ 0.012 eV - $m_3$ $\\approx$ 0.048 eV.

Fritzsch, Harald

2015-01-01

336

Muon colliders and neutrino factories  

SciTech Connect

Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

Geer, S.; /Fermilab

2010-09-01

337

Geo-neutrinos and Borexino  

NASA Astrophysics Data System (ADS)

Geo-neutrinos, electron anti-neutrinos produced in ?-decays of naturally occurring radioactive isotopes in the Earth, are a unique direct probe of our planet's interior. After a brief introduction about the Earth, the geo-neutrinos' properties and the main aims of their study are discussed. An overview of the latest experimental results obtained by the Borexino collaboration is provided, followed by a short overview of future perspectives of this new inter-disciplinary field.

Ludhova, L.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Empl, A.; Etenko, A.; Fomenko, K.; Franco, D.; Fiorentini, G.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Lewke, T.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Mantovani, F.; Marcocci, S.; Meindl, Q.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Ricci, B.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

2015-03-01

338

Can relic neutrinos be observed  

SciTech Connect

Within the framework of big-bang cosmology and the standard electroweak model, it appears that the only possibly detectable interaction of relic neutrinos is their annihilation with cosmic ray neutrinos on the Z resonance. However, measurement will require the existence of a large density of z approx. > 5 red-shifted sources with intense neutrino emission in the energy region 10/sup 21/eV/sup 2//m/sub nu/.

Weiler, T.

1983-01-01

339

MINOS Search for Sterile Neutrinos  

E-print Network

Using a NuMI beam exposure of 7.1 /times 10^20 protons-on-target, the MINOS long-baseline experiment has performed a search for active to sterile neutrino mixing over a distance of 735 km. Details of the analysis are provided, along with results from comparisons with standard three neutrino oscillations and fits to a 3+1 model including oscillations into one sterile neutrino. An outlook on the future sterile neutrino related contributions from MINOS and the proposed MINOS+ project is also presented.

Alexandre Sousa; on behalf of the MINOS Collaboration

2011-10-16

340

Supernova neutrinos and explosive nucleosynthesis  

SciTech Connect

Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and ?{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on ?{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

2014-05-09

341

Proton and Neutrino Extragalactic Astronomy  

E-print Network

The study of extragalactic sources of high energy radiation via the direct measurement of the proton and neutrino fluxes that they are likely to emit is one of the main goals for the future observations of the recently developed air showers detectors and neutrino telescopes. In this work we discuss the relation between the inclusive proton and neutrino signals from the ensemble of all sources in the universe, and the resolved signals from the closest and brightest objects. We also compare the sensitivities of proton and neutrino telescopes and comment on the relation between these two new astronomies.

Paolo Lipari

2008-08-04

342

MINOS atmospheric neutrino contained events  

SciTech Connect

The Main Injector Neutrino Oscillation Search (MINOS) experiment has continued to collect atmospheric neutrino events while doing a precision measurement of NuMI beam {nu}{sub {mu}} disappearance oscillations. The 5.4 kton iron calorimeter is magnetized to provide the unique capability of discriminating between {nu}{sub {mu}} and {bar {nu}}{sub {mu}} interactions on an event-by-event basis and has been collecting atmospheric neutrino data since July 2003. An analysis of the neutrino events with interaction vertices contained inside the detector will be presented.

Habig, A.; /Minnesota U.

2007-10-01

343

Confronting Four Zero Neutrino Yukawa Textures with $N_2^{}$-dominated Leptogenesis  

E-print Network

We consider a restricted Type-I seesaw scenario with four texture zeros in the neutrino Yukawa matrix, in the basis where both the charged-lepton Yukawa matrix and the Majorana mass matrix for right-handed neutrinos are diagonal. Inspired by grand unified theories, we further require the neutrino Yukawa matrix to exhibit a similar hierarchical pattern to that in the up-type quark Yukawa matrix. With such a hierarchy requirement, we find that leptogenesis, which would operate in a $N_2^{}$-dominated scenario with the asymmetry generated by the next-to-lightest right-handed neutrino $N_2^{}$, can greatly reduce the number of allowed textures, and disfavors the scenario that three light neutrinos are quasi-degenerate. Such a quasi-degenerate scenario of light neutrinos may soon be tested in upcoming neutrino experiments.

Jue Zhang

2015-02-13

344

Phenomenology of the minimal B-L extension of the Standard model: Z' and neutrinos  

E-print Network

We present the Large Hadron Collider (LHC) discovery potential in the $Z'$ and heavy neutrino sectors of a $U(1)_{B-L}$ enlarged Standard Model also encompassing three heavy Majorana neutrinos. This model exhibits novel signatures at the LHC, the most interesting arising from a $Z'$ decay chain involving heavy neutrinos, eventually decaying into leptons and jets. In particular, this signature allows one to measure the $Z'$ and heavy neutrino masses involved. In addition, over a large region of parameter space, the heavy neutrinos are rather long-lived particles producing distinctive displaced vertices that can be seen in the detectors. Lastly, the simultaneous measurement of both the heavy neutrino mass and decay length enables an estimate of the absolute mass of the parent light neutrino.

Lorenzo Basso; Alexander Belyaev; Stefano Moretti; Claire H. Shepherd-Themistocleous

2008-12-22

345

Neutrino detection primer  

NASA Astrophysics Data System (ADS)

This report is intended to provide for non-expert readers a survey of natural and manmade neutrino sources and a critical review of various methods proposed for their detection. Detection methods may be divided into two classes, those which have very modest performance and might actually work, and those which promise spectacular performance but violate the laws of physics. Emphasis in this report is on the second. The purpose is not to describe in detail what is possible, but to establish firm limits beyond which all schemes for detection capability are impossible. The last two sections of the report are for advanced students only and should be skipped by the non-expert. They provide precise mathematical statements and proofs of the limits which the laws of physics impose on neutrino cross sections. The limits are neither simple nor obvious. Consequently, it may be useful to have their technical justification here put on record.

Callan, C.; Dyson, F.; Treiman, S.

1988-03-01

346

Renormalization of a two-loop neutrino mass model  

SciTech Connect

We analyze the renormalization group structure of a radiative neutrino mass model consisting of a singly charged and a doubly charged scalar fields. Small Majorana neutrino masses are generated by the exchange of these scalars via two-loop diagrams. We derive boundedness conditions for the Higgs potential and show how they can be satisfied to energies up to the Planck scale. Combining boundedness and perturbativity constraints with neutrino oscillation phenomenology, new limits on the masses and couplings of the charged scalars are derived. These in turn lead to lower limits on the branching ratios for certain lepton flavor violating (LFV) processes such as ??e?, ??3e and ? ? e conversion in nuclei. Improved LFV measurements could test the model, especially in the case of inverted neutrino mass hierarchy where these are more prominent.

Babu, K. S. [Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States); Julio, J. [Fisika LIPI, Kompleks Puspiptek Serpong, Tangerang 15310, Indonesia and Jožef Stefan Institute, Jamova Cesta 39, 1001 Ljubljana (Slovenia)

2014-06-24

347

Sneutrino dark matter in gauged inverse seesaw models for neutrinos.  

PubMed

Extending the minimal supersymmetric standard model to explain small neutrino masses via the inverse seesaw mechanism can lead to a new light supersymmetric scalar partner which can play the role of inelastic dark matter (IDM). It is a linear combination of the superpartners of the neutral fermions in the theory (the light left-handed neutrino and two heavy standard model singlet neutrinos) which can be very light with mass in ~5-20 GeV range, as suggested by some current direct detection experiments. The IDM in this class of models has keV-scale mass splitting, which is intimately connected to the small Majorana masses of neutrinos. We predict the differential scattering rate and annual modulation of the IDM signal which can be testable at future germanium- and xenon-based detectors. PMID:22463522

An, Haipeng; Dev, P S Bhupal; Cai, Yi; Mohapatra, R N

2012-02-24

348

Baryogenesis via Neutrino Oscillations  

Microsoft Academic Search

We propose a new mechanism of leptogenesis in which the asymmetries in lepton\\u000anumbers are produced through the CP-violating oscillations of ``sterile''\\u000a(electroweak singlet) neutrinos. The asymmetry is communicated from singlet\\u000aneutrinos to ordinary leptons through their Yukawa couplings. The lepton\\u000aasymmetry is then reprocessed into baryon asymmetry by electroweak sphalerons.\\u000aWe show that the observed value of baryon asymmetry

E. Kh; V. A. Rubakov; A. Yu. Smirnov

1998-01-01

349

Neutrinos in the Electron  

E-print Network

We will show that one half of the rest mass of the electron is equal to the sum of the rest masses of electron neutrinos and that the other half of the rest mass of the electron is given by the energy in the sum of electric oscillations. With this composition we can explain the rest mass, the electric charge, the spin and the magnetic moment of the electron.

E. L. Koschmieder

2006-09-26

350

Birth of Neutrino Astrophysics  

SciTech Connect

Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

None

2010-05-07

351

Birth of Neutrino Astrophysics  

ScienceCinema

Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

None

2011-10-06

352

Neutrino and Extra World  

E-print Network

The neutrino speed measurement experiments are the continuations of the classic light speed measurement experiments have been done in range of the solar planet system (Ole Roemer, 1676), in star system (James Braidely, 1728) and, at last, on the Earth (Lois Fizeau, 1849),.... The finite light speed measurement has led to the revolution in the humanity consciousness and eventually led to a new understanding of the visible universe. In 1998-2005, we had a lot of excited discussions at CERN about the possibilities to perform the neutrino experiments to test the superluminal neutrino hypothesis and to find new phenomena beyond the SM. From one hand the idea of such experiments was associated with the hope to understand the role of the V-A- weak interactions, the quark-lepton family symmetry, the neutrino space-time properties and to observe some indications on a new vacuum structure existence outside of the Weak Scale, i.e. in the region 1/R ~ (0.1-20) TeV. From another hand the general trends of this idea has been related to the possible existence some extra space-time noncompact dimensions of the universe. In this context it would be first serious encounter with the dual conception between the physical phenomena of microcosmos and of universe. One of the main goals is to find some new space-time peculiarities and structures that might explain the formation of our visible D=(3+1)-universe with all its space-time and internal symmetries which could be only a part of a vast Universe filled with other kinds of matter. The main difficulties of such experiments related to the possible relativity principle paradoxes have been discussed.

D. S. Baranov; G. G. Volkov

2012-11-20

353

Neutrino Oscillations:. Hierarchy Question  

NASA Astrophysics Data System (ADS)

The only experimentally observed phenomenon that lies outside the standard model of the electroweak interaction is neutrino oscillations. A way to try to unify the extensive neutrino oscillation data is to add a phenomenological mass term to the Lagrangian that is not diagonal in the flavor basis. The goal is then to understand the world's data in terms of the parameters of the mixing matrix and the differences between the squares of the masses of the neutrinos. An outstanding question is what is the correct ordering of the masses, the hierarchy question. We point out a broken symmetry relevant to this question, the symmetry of the simultaneous interchange of hierarchy and the sign of ?13. We first present the results of an analysis of data that well determine the phenomenological parameters but are not sensitive to the hierarchy. We find ?13 = 0.152±0.014, ? 23 = 0.25{ - 0.05}{ + 0.03} ? and ?32 = 2.45±0.14×10-3 eV2, results consistent with others. We then include data that are sensitive to the hierarchy and the sign of ?13. We find, unlike others, four isolated minimum in the ?2-space as predicted by the symmetry. Now that Daya Bay and RENO have determined ?13 to be surprisingly large, the Super-K atmospheric data produce meaningful symmetry breaking such that the inverse hierarchy is preferred at the 97.2 % level.

Ernst, D. J.; Cogswell, B. K.; Burroughs, H. R.; Escamilla-Roa, J.; Latimer, D. L.

2014-09-01

354

Boxing with neutrino oscillations  

NASA Astrophysics Data System (ADS)

We develop a characterization of neutrino oscillations based on the coefficients of the oscillating terms. These coefficients are individually observable; although they are quartic in the elements of the unitary mixing matrix, they are independent of the conventions chosen for the angle and phase parametrization of the mixing matrix. We call these reparametrization-invariant observables ``boxes'' because of their geometric relation to the mixing matrix, and because of their association with the Feynman box diagram that describes oscillations in field theory. The real parts of the boxes are the coefficients for the CP- or T-even oscillation modes, while the imaginary parts are the coefficients for the CP- or T-odd oscillation modes. Oscillation probabilities are linear in the boxes, so measurements can straightforwardly determine values for the boxes (which can then be manipulated to yield magnitudes of mixing matrix elements). We examine the effects of unitarity on the boxes and discuss the reduction of the number of boxes to a minimum basis set. For the three-generation case, we explicitly construct the basis. Using the box algebra, we show that CP violation may be inferred from measurements of neutrino flavor mixing even when the oscillatory factors have averaged. The framework presented here will facilitate general analyses of neutrino oscillations among n>=3 flavors.

Wagner, D. J.; Weiler, Thomas J.

1999-06-01

355

Probing neutrino mass hierarchies and $?_{13}$ with supernova neutrinos  

E-print Network

We investigate the feasibility of probing the neutrino mass hierarchy and the mixing angle $\\phi_{13}$ with the neutrino burst from a future supernova. An inverse power-law density $\\rho \\sim r^{n} $ with varying $n$ is adopted in the analysis as the density profile of a typical core-collapse supernova. The survival probabilities of $\

Shao-Hsuan Chiu; T. K. Kuo

2006-02-27

356

Neutrino self-energy operator and neutrino magnetic moment  

SciTech Connect

A simple method for calculating the magnetic moment of a massive neutrino on the basis of its self-energy operator is presented. An expression for the magnetic moment of a massive neutrino in an external electromagnetic field is obtained in the R{sub {xi}} gauge for the case of an arbitrary ratio of the lepton and W-boson masses.

Dobrynina, A. A., E-mail: elenan@uniyar.ac.ru; Mikheev, N. V.; Narynskaya, E. N. [Yaroslavl State University (Russian Federation)] [Yaroslavl State University (Russian Federation)

2013-11-15

357

ON SOLAR NEUTRINO PROBLEM TIAN MA AND SHOUHONG WANG  

E-print Network

ON SOLAR NEUTRINO PROBLEM TIAN MA AND SHOUHONG WANG Abstract. The current neutrino oscillation an alternative resolution to the solar neutrino loss problem. Contents 1. Introduction 1 2. Discrepancy of Solar, there are three flavors of neutrinos: the electron neutrino e, the tau neutrino and the mu neutrino µ. The solar

358

Supernova Neutrinos and the Tau-Neutrino Mass  

E-print Network

We perform an extensive investigation of the sensitivity to non-vanishing tau-neutrino mass in a large water Cherenkov detector, developing an analysis method for neutrino events originated by a supernova explosion. This approach, based on directional considerations, provides informations almost undepending on the supernova model. We analyze several theoretical models from numerical simulations and phenomenological models based on SN1987A data, and determine optimal values of the analysis parameters so as to reach the highest sensitivity to a non-vanishing tau-neutrino mass. The minimal detectable mass is generally just above the cosmologically interesting range, m ~ 100 eV, in the case of a supernova explosion near the galactic center. For the case that no positive signal is obtained, observation of a neutrino burst with Super-Kamiokande will anyhow lower the present upper bound on tau-neutrino mass to few hundred eV.

Gianni Fiorentini; Camillo Acerbi

1997-01-30

359

45. Neutrino Cross Section Measurements 1 45. Neutrino Cross Section Measurements  

E-print Network

comprehensive discussion of neutrino interaction cross sections, including neutrino-electron scattering.1. Inclusive Scattering Over the years, many experiments have measured the total cross section for neutrino (µ45. Neutrino Cross Section Measurements 1 45. Neutrino Cross Section Measurements Written in April

360

Limits on Neutrino-Neutrino Scattering in the Early Universe  

E-print Network

In the standard model neutrinos are assumed to have streamed across the Universe since they last scattered at the weak decoupling epoch when the temperature of the standard-model plasma was ~MeV. The shear stress of free-streaming neutrinos imprints itself gravitationally on the Cosmic Microwave Background (CMB) and makes the CMB a sensitive probe of neutrino scattering. Yet, the presence of nonstandard physics in the neutrino sector may alter this standard chronology and delay neutrino free-streaming until a much later epoch. We use observations of the CMB to constrain the strength of neutrino self-interactions G_eff and put limits on new physics in the neutrino sector from the early Universe. Recent measurements of the CMB at large multipoles made by the Planck satellite and high-l experiments are critical for probing this physics. Within the context of conventional LambdaCDM parameters cosmological data are compatible with G_eff strength in a narrow region around $G_{\\rm eff} \\simeq 1/({\\rm 10 \\, MeV})^{2} \\simeq 8.6\\times10^8 G_{\\rm F}$, where $G_{\\rm F}$ is the Fermi constant. This distinct self-interacting neutrino cosmology is characterized by somewhat lower values of both the scalar spectral index and the amplitude of primordial fluctuations. While we phrase our discussion here in terms of a specific scenario in which a late onset of neutrino free-streaming could occur, our constraints on the neutrino visibility function are very general.

Francis-Yan Cyr-Racine; Kris Sigurdson

2014-12-06

361

Common origin of reactor and sterile neutrino mixing  

NASA Astrophysics Data System (ADS)

If the hints for light sterile neutrinos from short-baseline anomalies are to be taken seriously, global fits indicate active-sterile mixings of a magnitude comparable to the known reactor mixing. We therefore study the conditions under which the active-sterile and reactor mixings could have the same origin in an underlying flavour model. As a starting point, we use ? - ? symmetry in the active neutrino sector, which (for three neutrinos) yields a zero reactor neutrino angle and a maximal atmospheric one. We demonstrate that adding one sterile neutrino can change this setting, so that the active-sterile mixing and non-zero ? 13 can be generated simultaneously. From the phenomenological perspective, electron (anti)neutrino disappearance can be easily accommodated, while muon neutrino disappearance can vanish. Even the LSND results can be reconciled if the Majorana phases have very specific values. From the theory perspective, the setting requires the misalignment of some of the flavon vacuum expectation values, which may be achieved in an A 4 or D 4 flavour symmetry model using extra dimensions.

Merle, Alexander; Morisi, Stefano; Winter, Walter

2014-07-01

362

High energy neutrino spin light  

E-print Network

The quantum theory of spin light (electromagnetic radiation emitted by a Dirac massive neutrino propagating in dense matter due to the weak interaction of a neutrino with background fermions) is developed. In contrast to the Cherenkov radiation, this effect does not disappear even if the medium refractive index is assumed to be equal to unity. The formulas for the transition rate and the total radiation power are obtained. It is found out that radiation of photons is possible only when the sign of the particle helicity is opposite to that of the effective potential describing the interaction of a neutrino (antineutrino) with the background medium. Due to the radiative self-polarization the radiating particle can change its helicity. As a result, the active left-handed polarized neutrino (right-handed polarized antineutrino) converting to the state with inverse helicity can become practically ``sterile''. Since the sign of the effective potential depends on the neutrino flavor and the matter structure, the spin light can change a ratio of active neutrinos of different flavors. In the ultra relativistic approach, the radiated photons averaged energy is equal to one third of the initial neutrino energy, and two thirds of the energy are carried out by the final ``sterile'' neutrinos.

A. E. Lobanov

2005-06-01

363

Neutrino Physics and Astrophysics : Highlights  

E-print Network

This article presents an overview of neutrino physics research, with highlights on the physics goals, results and interpretations of the current neutrino experiments and future directions and program. It is not meant to be a comprehensive account or detailed review article. Interested readers can pursue the details via the listed references.

Henry Tsz-King Wong

2007-02-28

364

Observation of Geo-Neutrinos  

E-print Network

Geo-neutrinos, electron anti-neutrinos produced in beta decays of naturally occurring radioactive isotopes in the Earth, are a unique direct probe of our planet's interior. We report the first observation at more than 3$\\sigma$ C.L. of geo-neutrinos, performed with the Borexino detector at Laboratori Nazionali del Gran Sasso. Anti-neutrinos are detected through the neutron inverse beta decay reaction. With a 252.6 ton-yr fiducial exposure after all selection cuts, we detected 9.9^{+4.1}_{-3.4}(^{+14.6}_{-8.2}) geo-neutrino events, with errors corresponding to a 68.3%(99.73%) C.L. From the $\\ln{\\cal{L}}$ profile, the statistical significance of the Borexino geo-neutrino observation corresponds to a 99.997% C.L. Our measurement of the geo-neutrinos rate is 3.9^{+1.6}_{-1.3}(^{+5.8}_{-3.2}) events/(100ton-yr). This measurement rejects the hypothesis of an active geo-reactor in the Earth's core with a power above 3 TW at 95% C.L. The observed prompt positron spectrum above 2.6 MeV is compatible with that expected from european nuclear reactors (mean base line of approximately 1000 km). Our measurement of reactor anti-neutrinos excludes the non-oscillation hypothesis at 99.60% C.L.

Borexino Collaboration

2010-03-20

365

The Mass of the Neutrinos  

E-print Network

In the theory of the Dirac equation and in the standard model, the neutrino is massless. Both these theories use Lorentz invariance. In modern approaches however, spacetime is no longer smooth, and this modifies special relativity. We show how such a modification throws up the mass of the neutrino.

Burra G. Sidharth

2009-04-30

366

Solar Models and Solar Neutrinos  

E-print Network

I summarize 40 years of development of the standard solar model that is used to predict solar neutrino fluxes and then describe the current uncertainties in the predictions. I will also attempt to explain why it took so long, about three and a half decades, to reach a consensus view that new physics is being learned from solar neutrino experiments.

John N. Bahcall

2003-10-01

367

Is There a Massive Neutrino?  

ERIC Educational Resources Information Center

Discussed is the question of whether "heavy" neutrinos really do exist based on the evidence supplied by four research groups. The implications of its existence on the disciplines of particle physics, astrophsyics, and cosmology are discussed. Background information on the different types of neutrinos is provided. (KR)

Selvin, Paul

1991-01-01

368

Neutrino Theory of Stellar Collapse  

Microsoft Academic Search

At the very high temperatures and densities which must exist in the interior of contracting stars during the later stages of their evolution, one must expect a special type of nuclear processes accompanied by the emission of a large number of neutrinos. These neutrinos penetrating almost without difficulty the body of the star, must carry away very large amounts of

G. Gamow; M. Schoenberg

1941-01-01

369

Neutrino astronomy and lepton charge  

Microsoft Academic Search

It is shown that lepton nonconservation might lead to a decrease in the number of detectable solar neutrinos at the earth surface, because of nue<--numu oscillations, similar to Ko<--K~o oscillations. Equations are presented describing such oscillations for the case when there exist only four neutrino states.

V. Gribov; B. Pontecorvo

1969-01-01

370

Thermodynamic Laws of Neutrino and Photon Emission.  

ERIC Educational Resources Information Center

Compares neutrino and photon emissions, develops the thermodynamic blackbody laws of neutrino emission analogous to laws governing photon emission, points out that combined radiation from a "true blackbody" consists of both photon and neutrino emissions of comparable magnitude, and speculates upon the existence of blackbody neutrino emitters in…

Walsh, P. J.; Gallo, C. F.

1980-01-01

371

Theory of neutrinos: a white paper  

Microsoft Academic Search

This paper is a review of the present status of neutrino mass physics, which grew out of an APS sponsored study of neutrinos in 2004. After a discussion of the present knowledge of neutrino masses and mixing and some popular ways to probe the new physics implied by recent data, it summarizes what can be learned about neutrino interactions as

R. N. Mohapatra; S. Antusch; K. S. Babu; G. Barenboim; M.-C. Chen; A. de Gouvêa; P. de Holanda; B. Dutta; Y. Grossman; A. Joshipura; B. Kayser; J. Kersten; Y. Y. Keum; S. F. King; P. Langacker; M. Lindner; W. Loinaz; I. Masina; I. Mocioiu; S. Mohanty; H. Murayama; S. Pascoli; S. T. Petcov; A. Pilaftsis; P. Ramond; M. Ratz; W. Rodejohann; R. Shrock; T. Takeuchi; T. Underwood; L. Wolfenstein

2007-01-01

372

Reactor Monitoring with Neutrino Detectors  

NASA Astrophysics Data System (ADS)

The study of the use of neutrino detectors to monitor nuclear reactors is currently a very active field of research. While neutrino detectors located close to reactors have been used to provide information about the global performance of the reactors, a general improvement of the technique is needed in order to use it in a practical way to monitor the fissile contents of the fuel of the nuclear reactors or the thermal power delivered. I describe the current status of the Angra Neutrino Project, aimed to building a low-mass neutrino detector to monitor the Angra II reactor of the Brazilian nuclear power plant Almirante Alvaro Ramos in order to explore new approaches to reactor monitoring with neutrino detectors.

Casimiro Linares, Edgar

2011-09-01

373

Neutrinos Get Under Your Skin  

SciTech Connect

The enigmatic neutrinos are among the most abundant of the tiny particles that make up our universe. They are a billion times more abundant than the particles of which the earth and we humans are made. Thus, to understand the universe, we must understand the neutrinos. Moving ghostlike, almost invisibly, through matter, these particles are very hard to pin down and study. However, dramatic progress has recently been made. In this lecture, the neutrinos will be introduced. Their behavior, so different from that of everyday objects, will be explained, and recent discoveries will be described. The open questions about neutrinos, forthcoming attempts to answer these questions, and the role of neutrinos in shaping the universe and making human life possible, will all be explained.

Kayser, Boris

2005-08-30

374

Supernova observations for neutrino mixing parameters  

SciTech Connect

The neutrino spectra from a future galactic core collapse supernova could reveal information on the neutrino mixing pattern, especially on {theta}{sub 13} and the mass hierarchy. I briefly outline our current understanding of neutrino flavor conversions inside a supernova, and point out possible signatures of various neutrino mixing scenarios that the neutrino detectors should look for. Supernova neutrinos provide a probe for {theta}{sub 13} and mass hierarchy that is complementary to, and sometimes even better than, the current and proposed terrestrial neutrino oscillation experiments.

Dighe, Amol [Department of Theoretical Physics, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Colaba, Mumbai 400005 (India)

2011-10-06

375

ANTARES deep sea neutrino telescope results  

SciTech Connect

The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. This contribution reviews the status of the detector and presents several analyses carried out on atmospheric muons and neutrinos. For example it shows the results from the measurement of atmospheric muon neutrino spectrum and of atmospheric neutrino oscillation parameters as well as searches for neutrinos from steady cosmic point-like sources, for neutrinos from gamma ray bursts and for relativistic magnetic monopoles.

Mangano, Salvatore [IFIC - Instituto de Física Corpuscular, Edificio Institutos de Investigatión, 46071 Valencia (Spain); Collaboration: ANTARES Collaboration

2014-06-24

376

Collective neutrino oscillations in turbulent backgrounds  

SciTech Connect

Using a Kolmogorov turbulence model, we investigate the effects of fluctuations in matter and neutrino density in the region near a supernova core on the flavor oscillations of neutrinos emitted in the core collapse in a single-angle, two-flavor approximation. Deviation from a smooth background neutrino density causes significant alterations in the final flavor state of the neutrino ensemble after 400 km, but even very large fluctuations in the matter density do not strongly affect the state of the neutrinos after the collective phase. In both cases, there is a strong effect on the neutrino flavor evolution at intermediate radii, with the flavor evolution becoming much more chaotic. The effect of fluctuations also depends strongly on the initial neutrino spectra. We conclude that the true neutrino fluxes arriving at Earth from core-collapse supernova could differ considerably from predictions of neutrino fluxes based on approximate models with smoothly decreasing matter and neutrino densities.

Reid, Giles; Adams, Jenni; Seunarine, Suruj [University of Canterbury, Christchurch (New Zealand); University of the West Indies, Bridgetown (Barbados)

2011-10-15

377

Detecting the neutrino magnetic moment at hadron colliders  

NASA Astrophysics Data System (ADS)

We consider the model based on the S U (2 )R×S U (2 )L×U (1 )B -L gauge group with Majorana neutrinos. In this model the transit dipole magnetic moment (?? N)if which is associated with the Ni??f? transition may be as large as a few×1 0-8?B . The possible manifestations of the (?? N)if at hadron colliders are investigated. In doing so, we assume that one of the three heavy right-handed neutrinos Ne R is on the electroweak scale. The process of Ne R production p +p ?WR-?e-Ne R, with the subsequent Ne R decay through the channel Ne R??e L+? , is investigated. Problems caused by selecting the signal from background is examined. It is shown that the process in question is the most perspective one for detecting the (?? N)if, provided the condition mWR<6 TeV is realized. The cross section of N? R production under the collision of a high-energy light neutrino beam with the proton target ?? L+p ?? ?N? R+p +X is investigated. The produced N? R neutrino is identified through the decay channel N? R??±+2 j . Detection of both the positive and negative charged muons will point to the Majorana nature of the neutrino. On the other hand, detection of the right-handed polarized muons will be unambiguously indicative of a nonzero value of (?? N)if.

Boyarkin, O. M.; Boyarkina, G. G.

2014-11-01

378

Energy Dependence of Solar Neutrino Suppression and Bounds on the Neutrino Magnetic Moment  

E-print Network

An analysis of neutrino electron scattering as applied to the SuperKamiokande solar neutrino experiment with the data from the Homestake experiment leads to an upper bound on the neutrino magnetic moment in the range $\\mu_{\

Joao Pulido; Ana M. Mourao

1998-03-02

379

Neutrino Physics Neutrinos rarely interact despite their vast abundance in nature. To give a sense of  

E-print Network

the atmosphere produce a neutrino flux of about 1/cm2/s at sea level. Neutrinos produced in the Big Bang later in 1933, Enrico Fermi devised a theory for beta decays which 1 #12;Chapter 1: Neutrino Physics 2

380

Neutrino electromagnetic properties and new physics  

E-print Network

New effects of nontrivial neutrino electromagnetic properties are investigated on the basis of exact solutions of the modified Dirac equations for neutrinos in dense magnetized rotating matter. The effect of spatial separation of different types of neutrinos and antineutrinos (different in flavors and energies) moving inside dense magnetized rotating matter is predicted. We also describe a new mechanism of a star rotation frequency shift by neutrinos escaping the star (termed "Neutrino Star Turning" mechanism, $\

Alexander Studenikin; Ilya Tokarev

2014-06-10

381

An angle to tackle the neutrinos  

E-print Network

A brief history of the discovery of neutrino oscillations and neutrino mass is presented highlighting the recent breakthrough in the determination of a crucial neutrino parameter by the Daya Bay and RENO reactor experiments. The importance of this parameter in the context of one of the goals of the India-based Neutrino Observatory (INO) project and also in advancing the frontier of neutrino physics is explained.

G. Rajasekaran

2012-06-01

382

Neutrino magnetic moment in a magnetized plasma  

SciTech Connect

The magnetized-plasma contribution to the neutrino anomalous magnetic moment is calculated. It is shown that, in a magnetized plasma, only part of the neutrino additional energy associated with the neutrino spin and with the magnetic-field strength contributes to the neutrino magnetic moment. It is found that, in contrast to results presented previously in the literature, the presence of a magnetized plasma does not lead to a substantial enhancement of the neutrino magnetic moment.

Mikheev, N. V., E-mail: mikheev@uniyar.ac.ru; Narynskaya, E. N., E-mail: elenan@uniyar.ac.r [Yaroslavl State University (Russian Federation)

2010-12-15

383

Novel photosensors for neutrino detectors and telescopes  

Microsoft Academic Search

The volume and the photosensitive area of next generation detectors of the numerous rarely occurring phenomena will greatly\\u000a exceed the sizes of the current experiments. These phenomena include cosmic neutrinos, atmospheric neutrinos, long-baseline\\u000a neutrino beams from accelerators, geo-neutrinos, geo-reactor neutrinos, and hypothetic proton decays. Similar requirements\\u000a hold for a new type of a large scanning device for homeland security and

Daniel Ferenc; Eckart Lorenz

2007-01-01

384

Radiative neutrino mass in 3-3-1 scheme  

NASA Astrophysics Data System (ADS)

We propose a new radiative mechanism for neutrino mass generation based on the SU(3)c?SU(3)L?U(1)X electroweak gauge group.Lepton number is a symmetry of the Yukawa sector which is spontaneously broken in the gauge sector. As a result light Majorana masses arise from neutral gauge boson exchanges at the one-loop level. In addition to the isosinglet neutrinos that may be produced at the LHC through the extended gauge boson portals, the model contains new quarks which can also lie at the TeV scale, and which can provide a plethora of accessible collider phenomena.

Boucenna, Sofiane M.; Morisi, Stefano; Valle, José W. F.

2014-07-01

385

Geometry-free neutrino masses in curved spacetime  

E-print Network

The seesaw-induced neutrino mass is discussed in a generic class of curved spacetime, including the flat and warped extra dimensions. For Majorana masses in the bulk and on the boundary, the exact forms of seesaw-induced masses are derived by using the Kaluza-Klein mode expansion and the lepton number violating correlator for bulk fermion. It is found that the neutrino mass is determined without the knowledge of wave functions and whole background geometry when the metric factor is fixed on the boundary, e.g. by solving the hierarchy problem.

Atsushi Watanabe; Koichi Yoshioka

2009-10-05

386

Superluminal Neutrinos without Revolution  

E-print Network

The velocity anomaly recently reported by the OPERA collaboration appears strikingly at odds with the theory of special relativity. I offer a reinterpretation which removes this conflict, to wit that neutrinos yield a truer measurement of Einstein's limiting speed, and that light and indeed all other matter are retarded by additional interactions with the dark universe. I discuss existing experimental constraints and show that such a notion, considered cosmologically, can be subsumed in the dark-energy equation of state in an expanding Friedman-Robertson-Walker (FRW) universe. Planned measurements of the temporal variation in redshift have the potential to distinguish the possibilities.

Susan Gardner

2011-12-06

387

Strongly Interacting Astrophysical Neutrinos  

E-print Network

The origin and chemical composition of ultra high energy cosmic rays is still an open question in astroparticle physics. The observed large-scale isotropy and also direct composition measurements can be interpreted as an extragalactic proton dominance above the ankle at about 10^10 GeV. Photopion production of extragalactic protons in the cosmic microwave background predicts a cutoff at about 5x10^10 GeV in conflict with excesses reported by some experiments. In this report we will outline a recent statistical analysis (astro-ph/0506698) of cosmic ray data using strongly interacting neutrinos as primaries for these excesses.

Markus Ahlers

2005-11-16

388

Neutrino and Anti-neutrino Cross Sections at MiniBooNE  

SciTech Connect

The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections -among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil (CH{sub 2}). Recently a study of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.

Dharmapalan, Ranjan [University of Alabama Department of Physics and Astronomy, Tuscaloosa, AL-35487 (United States)

2011-10-06

389

Neutrino and Anti-neutrino Cross Sections at MiniBooNE  

NASA Astrophysics Data System (ADS)

The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections -among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil (CH2). Recently a study of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.

Dharmapalan, Ranjan

2011-10-01

390

Masses and Mixings from Neutrino Beams pointing to Neutrino Telescopes  

E-print Network

We discuss the potential to determine leading oscillation parameters, the value and the sign of \\Delta m^2_{31}, as well as the magnitude of \\sin^2 2\\theta_{13} using a conventional wide band neutrino beam pointing to water or ice Cherenkov neutrino detectors known as ``Neutrino Telescopes''. We find that precision measurements of \\Delta m^2_{31} and \\theta_{23} are possible and that, even though it is not possible to discriminate between charges in the detector, there is a remarkably good sensitivity to the mixing angle \\theta_{13} and the sign of \\Delta m^2_{31}.

K. Dick; M. Freund; P. Huber; M. Lindner

2000-06-09

391

A search for heavy neutrino decays in a neutrino beam  

SciTech Connect

Decay of heavy neutrinos ..nu../sub H/ ..-->.. ..nu..l..mu..e(l = e, ..mu..) has been searched for in the Brookhaven Alternting Gradient Synchrotron wide-band neutrino beam. Since no significant excess of such events was found, upper limits on the neutrino mixing matrix elements, absolute value of U/sub eH//sup 2/ and absolute value of U/sub ..mu..H//sup 2/ were obtained for the mass range of 180 to 500 MeV.

Ahrens, L.A.; Aronson, S.H.; Gibbard, B.G.; Murtagh, M.J.; White, D.H.; Callas, J.L.; Cutts, D.; Diwan, M.; Hoftun, J.S.; Lanau, R.E.

1987-01-01

392

MOON for a next-generation neutrino-less double-beta decay experiment: Present status and perspective  

SciTech Connect

The performance of the MOON detector for a next-generation neutrino-less double-beta decay experiment was evaluated by means of the Monte Carlo method. The MOON detector was found to be a feasible solution for the future experiment to search for the Majorana neutrino mass in the range of 100-30 meV.

Shima, T.; /Osaka U., Res. Ctr. Nucl. Phys.; Doe, P.J.; /Washington U., Seattle; Ejiri, H.; /Osaka U., Res. Ctr. Nucl. Phys. /NIRS, Chiba /Prague, Tech. U.; Elliot, S.R.; /Washington U., Seattle /Los Alamos; Engel, J.; /North Carolina U.; Finger, M.; /Charles U.; Finger, M.; /Charles U.; Fushimi, K.; /Tokushima U.; Gehman, V.M.; /Washington U., Seattle /Los Alamos; Greenfield, M.B.; /Tokyo, Intl. Christian U.; Hazama, R.; /Hiroshima U. /NIRS, Chiba

2008-01-01

393

Solar monopoles and terrestrial neutrinos  

SciTech Connect

Magnetic monopoles captured in the core of the sun may give rise to a substantial flux of energetic neutrinos by catalyzing the decay of solar hydrogen. We discuss the expected neutrino flux in underground detectors under different assumptions about solar interior conditions. Although a monopole flux as low as F/sub M/ /approximately/ 10/sup /minus/24/ cm/sup /minus/2/ sec/sup /minus/1/ sr/sup /minus/1/ could give rise to a neutrino flux above atmospheric background, due to M/bar M/ annihilation, this does not translate into a reliable monopole flux bound stronger than the Parker limit. 8 refs., 1 fig.

Frieman, J.

1988-04-01

394

Report on solar neutrino experiments  

SciTech Connect

A summary is given of the status of solar neutrino research that includes results of the Brookhaven chlorine detector, a discussion of the development of the gallium, bromine, and lithium radiochemical detectors, and some proposals for direct counting detectors. The gallium and bromine radiochemical detectors are developed and are capable of giving critical information of interest about neutrino physics and the fusion reactions in the interior of the sun. A plan for building these detectors is outlined and a rough cost estimate is given. A review is given of the plans in the Soviet Union in solar neutrino research.

Davis, R. Jr.; Cleveland, B.T.; Rowley, J.K.

1984-01-01

395

Solar (and other) Neutrinos 4.1 Solar neutrino detectors  

E-print Network

, they form a path in the lower right quadrant. However the experimental data is in the upper left quadrant neutrino flux can be produced by lowering the central temperature of the sun somewhat. However

Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

396

Supernova II Neutrino Bursts and Neutrino Massive Mixing  

E-print Network

We describe the Neutrino Spectrum and detection for SN II sources. We discuss the effects of neutrino mixing in the SN II. A new analysis of SN1987A is described. We discuss the possible detection of the diffuse relic SN II flux. Finally we discuss a new detection concept, OMNIS, for Nu sub mu and Nu sub tau and detection and compare with other present and future SN detectors.

David B. Cline

2001-03-08

397

Evidence for neutrino oscillations in the Sudbury Neutrino Observatory  

SciTech Connect

The Sudbury Neutrino Observatory (SNO) is a large-volume heavy water Cerenkov detector designed to resolve the solar neutrino problem. SNO observes charged-current interactions with electron neutrinos, neutral-current interactions with all active neutrinos, and elastic-scattering interactions primarily with electron neutrinos with some sensitivity to other flavors. This dissertation presents an analysis of the solar neutrino flux observed in SNO in the second phase of operation, while {approx}2 tonnes of salt (NaCl) were dissolved in the heavy water. The dataset here represents 391 live days of data. Only the events above a visible energy threshold of 5.5 MeV and inside a fiducial volume within 550 cm of the center of the detector are studied. The neutrino flux observed via the charged-current interaction is [1.71 {+-} 0.065(stat.){+-}{sub 0.068}{sup 0.065}(sys.){+-}0.02(theor.)] x 10{sup 6}cm{sup -2}s{sup -1}, via the elastic-scattering interaction is [2.21{+-}0.22(stat.){+-}{sub 0.12}{sup 0.11}(sys.){+-}0.01(theor.)] x 10{sup 6}cm{sup -2}s{sup -1}, and via the neutral-current interaction is [5.05{+-}0.23(stat.){+-}{sub 0.37}{sup 0.31}(sys.){+-}0.06(theor.)] x 10{sup 6}cm{sup -2}s{sup -1}. The electron-only flux seen via the charged-current interaction is more than 7{sigma} below the total active flux seen via the neutral-current interaction, providing strong evidence that neutrinos are undergoing flavor transformation as they travel from the core of the Sun to the Earth. The most likely origin of the flavor transformation is matter-induced flavor oscillation.

Marino, Alysia Diane

2004-08-10

398

The Liquid Scintillator Neutrino Detector and LAMPF Neutrino Source  

E-print Network

A search for neutrino oscillations of the type nu_bar_mu to nu_bar_e has been conducted at the Los Alamos Meson Physics Facility using nu_bar_mu from muon decay at rest. Evidence for this transition has been reported previously. This paper discusses in detail the experimental setup, detector operation and neutrino source, including aspects relevant to oscillation searches in the muon decay-at-rest and pion decay in flight channels.

C. Athanassopoulos; L. B. Auerbach; D. Bauer; R. D. Bolton; R. L. Burman; I. Cohen; D. O. Caldwell; B. D. Dieterle; J. B. Donahue; A. M. Eisner; A. Fazely; F. J. Federspiel; G. T. Garvey; M. Gray; R. M. Gunasingha; V. Highland; R. Imlay; K. Johnston; H. J. Kim; W. C. Louis; A. Lu; J. Margulies; G. B. Mills; K. McIlhany; W. Metcalf; R. A. Reeder; V. Sandberg; M. Schillaci; D. Smith; I. Stancu; W. Strossman; R. Tayloe; G. J. VanDalen; W. Vernon; Y-X. Wang; D. H. White; D. Whitehouse; D. Works; Y. Xiao; S. Yellin

1996-05-07

399

Neutrino mass hierarchy extraction using atmospheric neutrinos in ice  

E-print Network

We show that the measurements of 10 GeV atmospheric neutrinos by an upcoming array of densely packed phototubes buried deep inside the IceCube detector at the South Pole can be used to determine the neutrino mass hierarchy for values of sin^2(2theta13) close to the present bound, if the hierarchy is normal. These results are obtained for an exposure of 100 Mton years and systematic uncertainties up to 10%.

Olga Mena; Irina Mocioiu; Soebur Razzaque

2008-10-21

400

The many aspects of neutrino physics  

SciTech Connect

In mid-November, over seventy physicists gathered at Fermilab for an informal workshop on the Many Aspects of Neutrino Physics, which dovetailed with and also helped lay the groundwork for the succeeding more narrowly focused conference on Long Baseline Neutrino Oscillations. The workshop indeed covered many of the interrelated aspects of neutrino physics: 17 keV neutrinos (experiments, theoretical models, and astrophysical constraints), neutrino properties (double beta decay experiments, neutrino magnetic moments), neutrinos from/as weakly interacting massive particles (WIMPs) in cosmology and astrophysics, atmospheric neutrinos, and solar neutrinos. In the following, I provide a brief and thoroughly biased account of only some of the many interesting developments discussed at the workshop.

Frieman, J.A.

1992-01-01

401

Neutrino propagation in nuclear medium and neutrinoless double-? decay.  

PubMed

We discuss a novel effect in neutrinoless double-? (0???) decay related with the fact that its underlying mechanisms take place in the nuclear matter environment. We study the neutrino exchange mechanism and demonstrate the possible impact of nuclear medium via lepton-number-violating (LNV) four-fermion interactions of neutrinos with quarks from a decaying nucleus. The net effect of these interactions is the generation of an effective in-medium Majorana neutrino mass matrix. The enhanced rate of the 0??? decay can lead to the apparent incompatibility of observations of the 0??? decay with the value of the neutrino mass determined or restricted by the ?-decay and cosmological data. The effective neutrino masses and mixing are calculated for the complete set of the relevant four-fermion neutrino-quark operators. Using experimental data on the 0??? decay in combination with the ?-decay and cosmological data, we evaluate the characteristic scales of these operators: ?LNV?2.4??TeV. PMID:24765948

Kovalenko, S; Krivoruchenko, M I; Simkovic, F

2014-04-11

402

First measurement of the flux of solar neutrinos from the sun at the Sudbury Neutrino Observatory  

NASA Astrophysics Data System (ADS)

The Sudbury Neutrino Observatory (SNO) is a second generation solar neutrino detector. SNO is the first experiment that is able to measure both the electron neutrino flux and a flavor-blind flux of all active neutrino types, allowing a model-independent determination if the deficit of solar neutrinos known as the solar neutrino problem is due to neutrino oscillation. The Sudbury Neutrino Observatory started taking production data in November, 1999. A measurement of the charged current rate will be the first indication if SNO too sees a suppression of the solar neutrino signal relative to the theoretical predictions. Such a confirmation is the first step in SNO's ambitious science program. In this thesis, we present evidence that SNO is seeing solar neutrinos and a preliminary ratio of the measured vs predicted rate of electrons as induced by 8B neutrinos in the ?e, + d --> p + p + e charged-current (CC) reaction.

Wittich, Peter

2000-12-01

403

Astrophysical Neutrino Event Rates and Sensitivity for Neutrino Telescopes  

E-print Network

Spectacular processes in astrophysical sites produce high-energy cosmic rays which are further accelerated by Fermi-shocks into a power-law spectrum. These, in passing through radiation fields and matter, produce neutrinos. Neutrino telescopes are designed with large detection volumes to observe such astrophysical sources. A large volume is necessary because the fluxes and cross-sections are small. We estimate various telescopes' sensitivities and expected event rates from astrophysical sources of high-energy neutrinos. We find that an ideal detector of km^2 incident area can be sensitive to a flux of neutrinos integrated over energy from 10^5 and 10^{7} GeV as low as 1.3 * 10^(-8) * E^(-2) (GeV/cm^2 s sr) which is three times smaller than the Waxman-Bachall conservative upper limit on potential neutrino flux. A real detector will have degraded performance. Detection from known point sources is possible but unlikely unless there is prior knowledge of the source location and neutrino arrival time.

Ivone F. M. Albuquerque; Jodi Lamoureux; George F. Smoot

2002-02-22

404

Neutrino mass and mixing, and non-accelerator experiments  

SciTech Connect

We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indication that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing.

Robertson, R.G.H.

1992-10-01

405

Neutrino mass and mixing, and non-accelerator experiments  

SciTech Connect

We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indication that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing.

Robertson, R.G.H.

1992-01-01

406

Neutrinos from the sun and from radioactive sources  

NASA Astrophysics Data System (ADS)

A brief review of the solar neutrino observations is given. Future solar neutrino measurements are discussed. The use of an artificial neutrino source to be used with low threshold solar neutrino detectors is presented. At present the neutrino source is mainly planned for short baseline neutrino studies.

Ianni, A.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Buizza Avanzini, M.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; Cavalcante, P.; Chavarria, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Etenko, A.; Franco, D.; Fomenko, K.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Grandi, L.; Guardincerri, E.; Hardy, S.; Ianni, Andrea; Kayunov, A.; Kobychev, V.; Korablev, D.; Korga, G.; Koshio, Y.; Kryn, D.; Laubenstein, M.; Lewke, T.; Litvinovich, E.; Ludhova, L.; Loer, B.; Lombardi, F.; Lombardi, P.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Meindl, Q.; Meroni, E.; Miramonti, L.; Misiaszek, M.; Montanari, D.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Perasso, S.; Pocar, A.; Raghavan, R. S.; Ranucci, G.; Razeto, A.; Re, A.; Romani, P. A.; Sabelnikov, A.; Saldanha, R.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Vogelaar, R. B.; Von Feilitzsch, F.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Xu, J.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.

2013-04-01

407

Neutrinos and Nucleosynthesis in Supernova  

E-print Network

The type II supernova is considered as a candidate site for the production of heavy elements. The nucleosynthesis occurs in an intense neutrino flux, we calculate the electron fraction in this environment.

U. Solis; J. C. D'Olivo; L. G. Cabral-Rosetti

2005-11-12

408

Direct measurements of neutrino mass  

SciTech Connect

Some recent developments in the experimental search for neutrino mass are discussed. New data from Los Alamos on the electron neutrino mass as measured in tritium beta decay give an upper limit of 9.3 eV at the 95% confidence level. This result is not consistent with the long-standing ITEP result of 26(5) eV within a model-independent'' range of 17 to 40 eV. It now appears that the electron neutrino is not sufficiently massive to close the universe by itself. Hime and Jelley report finding new evidence for a 17-keV neutrino in the {Beta} decay of {sup 35}S and {sup 63}Ni. Many other experiments are being reported and the situation is still unresolved. 56 refs., 1 fig., 3 tabs.

Robertson, R.G.H.

1991-01-01

409

The Fermilab neutrino beam program  

SciTech Connect

This talk presents an overview of the Fermilab Neutrino Beam Program. Results from completed experiments as well as the status and outlook for current experiments is given. Emphasis is given to current activities towards planning for a future program.

Rameika, Regina A.; /Fermilab

2007-01-01

410

Solar Neutrino Experiments: New Physics?  

E-print Network

Physics beyond the simplest version of the standard electroweak model is required to reconcile the results of the chlorine and the Kamiokande solar neutrino experiments. None of the 1000 solar models in a full Monte Carlo simulation is consistent with the results of the chlorine or the Kamiokande experiments. Even if the solar models are forced articficially to have a ${}^8 B$ neutrino flux in agreement with the Kamiokande experiment, none of the fudged models agrees with the chlorine observations. This comparison shows that consistency of the chlorine and Kamiokande experiments requires some physical process that changes the shape of the ${}^8 B$ neutrino energy spectrum. The GALLEX and SAGE experiments, which currently have large statistical uncertainties, differ from the predictions of the standard solar model by $2 \\sigma$ and $3 \\sigma$, respectively. The possibility that the neutrino experiments are incorrect is briefly discussed.

John N. Bahcall

1993-07-07

411

Neutrino capital of the world  

E-print Network

Neutrinos are ubiquitous particles, but they don't like to mingle. Each second, billions of them pass through our bodies, slicing imperceptibly through our delicate internal organs. They can barrel through the sun, stars, ...

Johnson, Carolyn Y., 1980-

2004-01-01

412

Neutrino oscillation experiments at CERN  

SciTech Connect

A review is given of the three neutrino oscillation experiments which will be started next spring at CERN-PS. Their main characteristics are presented. Possible analyses with three oscillation parameters are also discussed.

Baldo-Ceolin, M.

1983-01-01

413

Research in Neutrino Physics  

SciTech Connect

Research in Neutrino Physics We describe here the recent activities of our two groups over the first year of this award (effectively November 2010 through January 2012) and our proposed activities and associated budgets for the coming grant year. Both of our groups are collaborating on the Double Chooz reactor neutrino experiment and are playing major roles in calibration and analysis. A major milestone was reached recently: the collaboration obtained the first result on the search for 13 based on 100 days of data from the far detector. Our data indicates that 13 is not zero; specifically the best fit of the neutrino oscillation hypothesis to our data gives sin2 (2 13) = 0.086 ± 0.041 (stat) ± 0.030 (syst) The null oscillation hypothesis is excluded at the 94.6% C.L. This result1 has been submitted to Physical Review Letters. As we continue to take data with the far detector in the coming year, in parallel with completing the construction of the near lab and installing the near detector, we expect the precision of our measurement to improve as we gather significantly more statistics, gain better control of backgrounds through use of partial power data and improved event selection, and better understand the detector energy scale and detection efficiency from calibration data. With both detectors taking data starting in the second half of 2013, we expect to further drive down the uncertainty on our measurement of sin2 (2 13) to less than 0.02. Stancu’s group is also collaborating on the MiniBooNE experiment. Data taking is scheduled to continue through April, by which time 1.18 × 1021 POT is projected. The UA group is playing a leading role in the measurement of antineutrino cross sections, which should be the subject of a publication later this year as well as of Ranjan Dharmapalan’s Ph.D. thesis, which he is expected to defend by the end of this year. It is time to begin working on projects which will eventually succeed Double Chooz and MiniBooNE as the main foci of our efforts. The Stancu group plans to become re–involved in LBNE and possibly also to join NO A, and the Busenitz group has begun to explore joining a direct dark matter search.

Busenitz, Jerome [The University of Alabama

2014-09-30

414

Standard and non-standard primordial neutrinos  

E-print Network

The standard cosmological model predicts the existence of a cosmic neutrino background with a present density of about 110 cm^{-3} per flavour, which affects big-bang nucleosynthesis, cosmic microwave background anisotropies, and the evolution of large scale structures. We report on a precision calculation of the cosmic neutrino background properties including the modification introduced by neutrino oscillations. The role of a possible neutrino-antineutrino asymmetry and the impact of non-standard neutrino-electron interactions on the relic neutrinos are also briefly discussed.

P. D. Serpico

2006-08-14

415

Neutrino scattering and flavor transformation in supernovae.  

PubMed

We argue that the small fraction of neutrinos that undergo direction-changing scattering outside of the neutrinosphere could have significant influence on neutrino flavor transformation in core-collapse supernova environments. We show that the standard treatment for collective neutrino flavor transformation is adequate at late times but could be inadequate in early epochs of core-collapse supernovae, where the potentials that govern neutrino flavor evolution are affected by the scattered neutrinos. Taking account of this effect, and the way it couples to entropy and composition, will require a new approach in neutrino flavor transformation modeling. PMID:23004955

Cherry, John F; Carlson, J; Friedland, Alexander; Fuller, George M; Vlasenko, Alexey

2012-06-29

416

Status of non-standard neutrino interactions.  

PubMed

The phenomenon of neutrino oscillations has been established as the leading mechanism behind neutrino flavor transitions, providing solid experimental evidence that neutrinos are massive and lepton flavors are mixed. Here we review sub-leading effects in neutrino flavor transitions known as non-standard neutrino interactions (NSIs), which is currently the most explored description for effects beyond the standard paradigm of neutrino oscillations. In particular, we report on the phenomenology of NSIs and their experimental and phenomenological bounds as well as an outlook for future sensitivity and discovery reach. PMID:23481442

Ohlsson, Tommy

2013-04-01

417

One-loop contribution to the neutrino mass matrix in the next-to-minimal supersymmetric standard model with right-handed neutrinos and tribimaximal mixing  

SciTech Connect

Neutrino mass patterns and mixing have been studied in the context of the next-to-minimal supersymmetric standard model (NMSSM) with three gauge singlet neutrino superfields. We consider the case with the assumption of R-parity conservation. The vacuum expectation value of the singlet scalar field S of NMSSM induces the Majorana masses for the right-handed neutrinos as well as the usual {mu} term. The contributions to the light neutrino mass matrix at the tree level as well as one-loop level are considered, consistent with the tribimaximal pattern of neutrino mixing. Light neutrino masses arise at the tree level through a TeV-scale seesaw mechanism involving the right-handed neutrinos. Although all the three light neutrinos acquire nonzero masses at the tree level, we show that the one-loop contributions can be comparable in size under certain conditions. Possible signatures to probe this model at the LHC and its distinguishing features compared to other models of neutrino mass generation are briefly discussed.

Das, Debottam; Roy, Sourov [Laboratoire de Physique Theorique, UMR 8627, Universite de Paris-Sud 11, Ba circumflex timent 210, 91405 Orsay Cedex (France); Department of Theoretical Physics and Centre for Theoretical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Kolkata 700 032 (India)

2010-08-01

418

Atmospheric neutrinos in Soudan 2.  

SciTech Connect

Soudan 2 has measured the atmospheric neutrino flavor ratio with 4.2 fiducial kiloton-years of exposure. It measures a flavor ratio of 0.66 {+-} 0.11(stat), inconsistent with the expected ratio but consistent with the hypothesis of neutrino oscillations and the Super-Kamiokande data. In a sample of events with good angular resolution, fits to the L/E distribution suggest that {Delta}m{sup 2} > 10{sup {minus}3} eV{sup 2}.

Goodman, M. C.; Soudan 2 Collaboration

1999-03-30

419

Invariants of collective neutrino oscillations  

NASA Astrophysics Data System (ADS)

We consider the flavor evolution of a dense neutrino gas by taking into account both vacuum oscillations and self-interactions of neutrinos. We examine the system from a many-body perspective as well as from the point of view of an effective one-body description formulated in terms of the neutrino polarization vectors. We show that, in the single angle approximation, both the many-body picture and the effective one-particle picture possess several constants of motion. We write down these constants of motion explicitly in terms of the neutrino isospin operators for the many-body case and in terms of the polarization vectors for the effective one-body case. The existence of these constants of motion is a direct consequence of the fact that the collective neutrino oscillation Hamiltonian belongs to the class of Gaudin Hamiltonians. This class of Hamiltonians also includes the (reduced) BCS pairing Hamiltonian describing superconductivity. We point out the similarity between the collective neutrino oscillation Hamiltonian and the BCS pairing Hamiltonian. The constants of motion manifest the exact solvability of the system. Borrowing the well established techniques of calculating the exact BCS spectrum, we present exact eigenstates and eigenvalues of both the many-body and the effective one-particle Hamiltonians describing the collective neutrino oscillations. For the effective one-body case, we show that spectral splits of neutrinos can be understood in terms of the adiabatic evolution of some quasiparticle degrees of freedom from a high-density region where they coincide with flavor eigenstates to the vacuum where they coincide with mass eigenstates. We write down the most general consistency equations which should be satisfied by the effective one-body eigenstates and show that they reduce to the spectral split consistency equations for the appropriate initial conditions.

Pehlivan, Y.; Balantekin, A. B.; Kajino, Toshitaka; Yoshida, Takashi

2011-09-01

420

Neutrino Factory Near Detector Simulation  

NASA Astrophysics Data System (ADS)

We present a simulation with GENIE MC generator of the Neutrino Factory baseline near detector interaction rates for the purely leptonic process ??+e-??e+?- and for ??+N??-+X scattering in view of measuring the first one and suppressing the second one for neutrino flux estimation. A set of most sensitive measurable quantities are discussed and their selective power against experimental uncertainties is examined.

Karadzhov, Yordan

2010-03-01

421

Solar Neutrinos: Status and Prospects  

NASA Astrophysics Data System (ADS)

We describe the current status of solar neutrino measurements and of the theory—both neutrino physics and solar astrophysics—employed in interpreting measurements. Important recent developments include Super-Kamiokande's determination of the ?-e elastic scattering rate for 8B neutrinos to 3%; the latest Sudbury Neutrino Observatory (SNO) global analysis in which the inclusion of low-energy data from SNO I and II significantly narrowed the range of allowed values for the neutrino mixing angle ?12; Borexino results for both the 7Be and proton-electron-proton (pep) neutrino fluxes, the first direct measurements constraining the rate of proton-proton (pp) I and pp II burning in the Sun; global reanalyses of solar neutrino data that take into account new reactor results on ?13; a new decadal evaluation of the nuclear physics of the pp chain and CNO cycle defining best values and uncertainties in the nuclear microphysics input to solar models; recognition of an emerging discrepancy between two tests of solar metallicity, helioseismological mappings of the sound speed in the solar interior, and analyses of the metal photoabsorption lines based on our best current description of the Sun's photosphere; a new round of standard solar model calculations optimized to agree either with helioseismology or with the new photospheric analysis; and, motivated by the solar abundance problem, the development of nonstandard, accreting solar models, in order to investigate possible consequences of the metal segregation that occurred in the proto-solar disk. We review this progress and describe how new experiments such as SNO+ could help us further exploit neutrinos as a unique probe of stellar interiors.

Haxton, W. C.; Hamish Robertson, R. G.; Serenelli, Aldo M.

2013-08-01

422

New mixing pattern for neutrinos  

NASA Astrophysics Data System (ADS)

We propose a new mixing pattern for neutrinos with a nonzero mixing angle ?13. Under a simple form, it agrees well with current neutrino oscillation data and displays a number of intriguing features including the ?-? interchange symmetry |U?i|=|U?i|, (i=1, 2, 3), the trimaximal mixing |Ue2|=|U?2|=|U?2|=1/3, the self-complementarity relation ?1+?3=45°, together with the maximal Dirac CP violation as a prediction.

Qu, Huilin; Ma, Bo-Qiang

2013-08-01

423

Spin Polarization Type Dependence of the Neutrino Mass and Nature  

Microsoft Academic Search

The interaction with field of a nucleus of longitudinal and transversal\\u000aneutrinos (antineutrinos) have been investigated at the account of their rest\\u000amass, charge, magnetic, anapole and electric dipole moments. Compound structure\\u000aof these processes cross sections has sharply expressed features and\\u000ageneralities for any lepton as well as for a massive Majorana neutrino. A new\\u000ainfluence of truly neutral

B. S. Yuldashev; R. S. Sharafiddinov

2005-01-01

424

On the Compound Structures of the Neutrino Mass and Charge  

E-print Network

The mass and charge of a particle correspond to the most diverse form of the same regularity of the nature of this field. As a consequence, each of all possible types of charges testifies in favor of the existence of a kind of inertial mass. Therefore, to investigate these features, we have established the compound structures of mass and charge. They can explain also the availability of fundamental differences in the masses as well as in the charges of Dirac and Majorana neutrinos.

Rasulkhozha S. Sharafiddinov

2010-12-07

425

Extraterrestrial high energy neutrino fluxes  

NASA Technical Reports Server (NTRS)

Using the most recent cosmic ray spectra up to 2x10 to the 20th power eV, production spectra of high energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND type detector are discussed in the context of the Weinberg-Salam model with sq sin theta omega = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high energy neutrino production models are also discussed. It appears that important high energy neutrino astronomy may be possible with DUMAND, but very long observing times are required.

Stecker, F. W.

1979-01-01

426

Neutrinos And Big Bang Nucleosynthesis  

E-print Network

According to the standard models of particle physics and cosmology, there should be a background of cosmic neutrinos in the present Universe, similar to the cosmic microwave photon background. The weakness of the weak interactions renders this neutrino background undetectable with current technology. The cosmic neutrino background can, however, be probed indirectly through its cosmological effects on big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) radiation. In this BBN review, focused on neutrinos and, more generally on dark radiation, the BBN constraints on the number of "equivalent neutrinos" (dark radiation), on the baryon asymmetry (baryon density), and on a possible lepton asymmetry (neutrino degeneracy) are reviewed and updated. The BBN constraints on dark radiation and on the baryon density following from considerations of the primordial abundances of deuterium and helium-4 are in excellent agreement with the complementary results from the CMB, providing a suggestive, but currently inconclusive, hint of the presence of dark radiation and, they constrain any lepton asymmetry. For all the cases considered here there is a "lithium problem": the BBN-predicted lithium abundance exceeds the observationally inferred primordial value by a factor of ~3.

Gary Steigman

2012-07-31

427

Loop-induced neutrino masses: A case study  

NASA Astrophysics Data System (ADS)

We study the cocktail model in which the Majorana neutrino masses are generated by the so-called "cocktail" three-loop diagrams with the dark matter particle running in the loops. In particular, we give the analytic expressions of the neutrino masses in the model by the detailed calculation of the cocktail diagrams. Based on the numerical calculation of the loop integrals, we explore the parameter space which can give the correct orders of neutrino masses while satisfying other experimental constraints, such as those from the neutrinoless double beta decay, low-energy lepton flavor violation processes, electroweak precision tests, and collider searches. As a result, the large couplings and the large mass difference between the two singly charged (neutral) scalars are required.

Geng, Chao-Qiang; Huang, Da; Tsai, Lu-Hsing

2014-12-01

428

Atmospheric Neutrinos in the MINOS Far Detector  

SciTech Connect

The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

Howcroft, Caius L.F.; /Cambridge U.

2004-12-01

429

Search for Cosmic Background Neutrino Decay  

NASA Astrophysics Data System (ADS)

We present a proposal of an experiment for search for cosmic background neutrino decay. Due to the mass difference between neutrino generations, a heavier neutrino can decay into a lighter neutrino with a photon. Standard model predicts the neutrino lifetime is 1043 year, while the current experimental lower limit of neutrino lifetime is 3 × 1012 year. However, left-right symmetric model suggests much shorter neutrino lifetime down to 1017 year in the shortest. If we assume a mass of the heaviest neutrino is 50 meV, the expected photon energy at the neutrino rest frame is 25 meV. The energy spectrum of the photon from the cosmic background neutrino decay has a cutoff at this energy and a low energy tail due to a red shift effect. Thus we propose an experiment to search for the photon emission from the decay of cosmic background neutrino by measuring the continuous photon energy spectrum in the far infrared wavelength region. We plan to perform a rocket experiment with a superconducting tunnel junction (STJ) detector in 2016 in the earliest, aiming at improving the neutrino lifetime limit by two orders of magnitude. We aim at a 10-hour satellite experiment with 5? sensitivity for the neutrino lifetime of 1017 year.

Kim, Shin-Hong; Takeuchi, Yuji; Nagata, Kazuki; Kasahara, Kota; Okudaira, Takuya; Ikeda, Hirokazu; Matsuura, Shuji; Wada, Takehiko; Ishino, Hirokazu; Itsuki, Atsuko; Mima, Satoshi; Yoshida, Takuo; Kato, Yukihiro; Hazumi, Masashi; Arai, Yasuo; Ramberg, Erik; Yoo, Jong-Hee; Kim, Soo-Bong

430

Neutrino masses: from fantasy to facts  

NASA Astrophysics Data System (ADS)

Theory suggests the existence of neutrino masses, but little more. Facts are coming close to revealing our fantasy: solar- and atmospheric-neutrino data strongly indicate the need for neutrino conversions, while LSND provides an intriguing hint. The simplest ways to reconcile these data in terms of neutrino oscillations invoke a light sterile neutrino in addition to the three active ones. Out of the four neutrinos, two are maximally mixed and lie at the LSND scale, while the others are at the solar-mass scale. These schemes can be distinguished at neutral-current-sensitive solar- and atmospheric-neutrino experiments. I discuss the simplest theoretical scenarios, where the lightness of the sterile neutrino, the nearly maximal atmospheric-neutrino mixing and the generation of ?m {?/2} and ?m {atm/2} all follow naturally from the assumed lepton-number symmetry and its breaking. Although the most likely interpretation of the present data is in terms of neutrino-mass-induced oscillations, one still has room for alternative explanations, such as flavor-changing neutrino interactions, with no need for neutrino mass or mixing. Such flavor-violating transitions arise in theories with strictly massless neutrinos and may lead to other sizeable flavor non-conservation effects, such as ? ? e + ?, ? - e conversion in nuclei, unaccompanied by neutrinoless double-beta decay.

Valle, J. W. F.

431

Neutrino factories: realization and physics potential  

SciTech Connect

Neutrino Factories offer an exciting option for the long-term neutrino physics program. This new type of neutrino facility will provide beams with unique properties. Low systematic uncertainties at a Neutrino Factory, together with a unique and precisely known neutrino flavor content, will enable neutrino oscillation measurements to be made with unprecedented sensitivity and precision. Over recent years, the resulting neutrino factory physics potential has been discussed extensively in the literature. In addition, over the last six years the R&D necessary to realize a Neutrino Factory has been progressing, and has developed into a significant international activity. It is expected that, within about five more years, the initial phase of this R&D program will be complete and, if the community chooses to build this new type of neutrino source within the following decade, neutrino factory technology will be ready for the final R&D phase prior to construction. In this paper (1) an overview is given of the technical ingredients needed for a Neutrino Factory, (2) beam properties are described, (3) the resulting neutrino oscillation physics potential is summarized, (4) a more detailed description is given for one representative Neutrino Factory design, and (5) the ongoing R&D program is summarized, and future plans briefly described.

Geer, S.; /Fermilab; Zisman, M.S.; /LBL, Berkeley

2006-12-01

432

Study of Two-Loop Neutrino Mass Generation Models  

E-print Network

We study the models with the Majorana neutrino masses generated radiatively by two-loop diagrams due to the Yukawa $\\rho \\bar \\ell_R^c \\ell_R$ and effective $\\rho^{\\pm\\pm} W^\\mp W^\\mp$ couplings along with a scalar triplet $\\Delta$, where $\\rho$ is a doubly charged singlet scalar, $\\ell_R$ the charged lepton and $W$ the charged gauge boson. A generic feature in these types of models is that the neutrino mass spectrum has to be a normal hierarchy. Furthermore, by using the neutrino oscillation data and comparing with the global fitting result in the literature, we find a unique neutrino mass matrix and predict the Dirac and two Majorana CP phases to be $1.40\\pi$, $1.11\\pi$ and $1.47\\pi$, respectively. We also discuss the model parameters constrained by the lepton flavor violating processes and electroweak oblique parameters. In addition, we show that the rate of the neutrinoless double beta decay $(0\

Chao-Qiang Geng; Lu-Hsing Tsai

2015-03-24

433

Study of Two-Loop Neutrino Mass Generation Models  

E-print Network

We study the models with the Majorana neutrino masses generated radiatively by two-loop diagrams due to the Yukawa $\\rho \\bar \\ell_R^c \\ell_R$ and effective $\\rho^{\\pm\\pm} W^\\mp W^\\mp$ couplings along with a scalar triplet $\\Delta$, where $\\rho$ is a doubly charged singlet scalar, $\\ell_R$ the charged lepton and $W$ the charged gauge boson. A generic feature in these types of models is that the neutrino mass spectrum has to be a normal hierarchy. Furthermore, by using the neutrino oscillation data and comparing with the global fitting result in the literature, we find a unique neutrino mass matrix and predict the Dirac and two Majorana CP phases to be $1.40\\pi$, $1.11\\pi$ and $1.47\\pi$, respectively. We also discuss the model parameters constrained by the lepton flavor violating processes and electroweak oblique parameters. In addition, we show that the rate of the neutrinoless double beta decay $(0\

Geng, Chao-Qiang

2015-01-01

434

Neutrino-less Double Beta Decay of 48Ca -CANDLES—  

NASA Astrophysics Data System (ADS)

Neutrino-less double beta decay (0???) is currently known to be an only experiment to verify whether lepton number is conserved or not. The lepton number non-conservation is the key to create matter dominated universe with CP violation. The so-called leptogenesys scenario presents a way to create the matter dominated universe by these violations. If neutrinos have Majorana mass, transition from a particle to an anti-particle is possible and the left-handed and right-handed neutrinos could have different masses. It is highly likely that the neutrinos are Majorana particles. We have been studying double beta decay of 48Ca. Our first stage experiment using the ELEGANT VI detector system gave the best lower limit of the half life of 0??? of 48Ca. We have been working on CANDLES detector system to sense much longer lifetime region. We have developed techniques to reduce backgrounds. The CADLES detector system was installed at Kamioka underground laboratory. Here I describe a schematic view of the system.

Kishimoto, T.; Yoshida, S.; Matsuoka, K.; Ichimura, K.; Ito, G.; Yasuda, K.; Kakubata, H.; Miyashita, M.; Takubo, K.; Nomachi, M.; Saka, M.; Seki, K.; Ajimura, S.; Umehara, S.; Nakatani, N.; Tamagawa, Y.; Ogawa, I.; Fushimi, K.; Hazama, R.; Ohsumi, H.; Okada, K.; Fujii, Y.

2011-10-01

435

Reactor Monitoring Reactor Monitoring (near and far) with Neutrinos(near and far) with Neutrinos  

E-print Network

1 Reactor Monitoring Reactor Monitoring (near and far) with Neutrinos(near and far) with Neutrinos Neutrino Applications are on the horizon John G. LearnedJohn G. Learned Physics and Astronomy, University and astrophysics, initiator and participant in many neutrino experiments (IMB, DUMAND, SuperK, KamLAND, K2K

Learned, John

436

Survey of atmospheric neutrino data and implications for neutrino mass and mixing  

Microsoft Academic Search

A detailed comparison is made of the atmospheric neutrino results obtained by the Fréjus, IMB-3, and Kamiokande detectors. The implications of these results for vacuum neutrino oscillations are presented, and juxtaposed with the results for matter neutrino oscillations from the solar neutrino data.

E. W. Beier; E. D. Frank; W. Frati; S. B. Kim; A. K. Mann; F. M. Newcomer; R. van Berg; W. Zhang; K. S. Hirata; K. Inoue; T. Ishida; T. Kajita; K. Kihara; M. Nakahata; K. Nakamura; S. Ohara; A. Sakai; N. Sato; Y. Suzuki; Y. Totsuka; Y. Yaginuma; M. Mori; Y. Oyama; A. Suzuki; K. Takahashi; M. Yamada; M. Koshiba; K. Nishijima; T. Kajimura; T. Suda; T. Tajima; K. Miyano; H. Miyata; H. Takei; Y. Fukuda; E. Kodera; Y. Nagashima; M. Takita; H. Yokoyama; K. Kaneyuki; Y. Takeuchi; T. Tanimori

1992-01-01

437

Searching for sterile neutrinos from ? and K decays  

NASA Astrophysics Data System (ADS)

The production of heavy sterile neutrinos from ?-, K- decay at rest yields charged leptons with negative helicity (positive for ?+, K+). We obtain the branching ratio for this process and argue that a Stern-Gerlach filter with a magnetic field gradient leads to spatially separated domains of both helicity components with abundances determined by the branching ratio. Complemented with a search of the monochromatic peak, this setup can yield both the mass and mixing angles for sterile neutrinos with masses in the range 3MeV?ms?414MeV in next generation high intensity experiments. We also study oscillations of light Dirac and Majorana sterile neutrinos with ms?eV produced in meson decays including decoherence aspects arising from lifetime effects of the decaying mesons and the stopping distance of the charged lepton in short baseline experiments. We obtain the transition probability from production to detection via charged current interactions including these decoherence effects for 3+1 and 3+2 scenarios, also studying |?L|=2 transitions from ?¯?? oscillations for Majorana neutrinos and the impact of these effects on the determination of CP-violating amplitudes. We argue that decoherence effects are important in current short baseline accelerator experiments, leading to an underestimate of masses, mixing and CP-violating angles. At MiniBooNE/SciBooNE we estimate that these effects lead to an ˜15% underestimate for sterile neutrino masses ms?3eV. We argue that reactor and current short baseline accelerator experiments are fundamentally different and suggest that in future high intensity experiments with neutrinos produced from ?, K decay at rest, stopping the charged leptons on distances much smaller than the decay length of the parent meson suppresses considerably these decoherence effects.

Lello, Louis; Boyanovsky, Daniel

2013-04-01

438

Phenomenology of the minimal B-L extension of the standard model: Z{sup '} and neutrinos  

SciTech Connect

We present the Large Hadron Collider (LHC) discovery potential in the Z{sup '} and heavy neutrino sectors of a U(1){sub B-L} enlarged standard model also encompassing 3 heavy Majorana neutrinos. This model exhibits novel signatures at the LHC, the most interesting arising from a Z{sup '} decay chain involving heavy neutrinos, eventually decaying into leptons and jets. In particular, this signature allows one to measure the Z{sup '} and heavy neutrino masses involved. In addition, over a large region of the parameter space, the heavy neutrinos are rather long-lived particles producing distinctive displaced vertices that can be seen in the detectors. Lastly, the simultaneous measurement of both the heavy neutrino mass and decay length enables an estimate of the absolute mass of the parent light neutrino.

Basso, Lorenzo; Belyaev, Alexander; Moretti, Stefano [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory, Chilton Didcot, Oxon OX11 0QX (United Kingdom); Shepherd-Themistocleous, Claire H. [Particle Physics Department, Rutherford Appleton Laboratory, Chilton Didcot, Oxon OX11 0QX (United Kingdom)

2009-09-01

439

One Right-handed Neutrino to Generate Complete Neutrino Mass Spectrum in the Framework of NMSSM  

E-print Network

The see-saw mechanism is usually applied to explain the lightness of neutrinos. The traditional see-saw mechanism introduces at least two right-handed neutrinos for the realistic neutrino spectrum. In the case of supersymmetry, loop corrections can also contribute to neutrino masses, which lead to the possibility to generate the neutrino spectrum by introducing just one right-handed neutrino. To be realistic, MSSM suffers from the mu problem and other phenomenological difficulties, so we extend NMSSM (the MSSM with a singlet S) by introducing one single right-handed neutrino superfield (N) and relevant phenomenology is discussed

Yi-Lei Tang

2014-11-28

440

Long-range correlations of neutrinos in hadron reactions and neutrino diffraction II: neutrino  

E-print Network

In this II, a probability to detect the neutrino produced in a high-energy pion decay is shown to receive the large finite-size correction. The neutrino interacts extremely weakly with matters and is described with a many-body wave function together with the pion and charged lepton. This wave function slowly approaches to an asymptotic form, which is probed by the neutrino. The whole process is described by an S-matrix of a finite-time interval, which couples with states of non-conserving kinetic energy, and the final states of a broad spectrum specific to a relativistic invariant system contribute to the positive semi-definite correction similar to diffraction of waves through a hole. This diffraction component for the neutrino becomes long range and stable under changes of the pion's energy. Moreover, it has a universal form that depends on the absolute neutrino mass. Thus a new method of measuring the absolute neutrino mass is suggested.

Kenzo Ishikawa; Yutaka Tobita

2012-09-25

441

Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino  

SciTech Connect

This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

Cooper, N.G. [ed.] [ed.

1997-12-31

442

Inverse neutrinoless double beta decay revisited: Neutrinos, Higgs triplets, and a muon collider  

Microsoft Academic Search

We revisit the process of inverse neutrinoless double beta decay (e-e--->W-W-) at future linear colliders. The cases of Majorana neutrino and Higgs triplet exchange are considered. We also discuss the processes e-mu--->W-W- and mu-mu--->W-W-, which are motivated by the possibility of muon colliders. For heavy neutrino exchange, we show that masses up to 106 (105)GeV could be probed for ee

Werner Rodejohann

2010-01-01

443

Cold Dark Matter, Radiative Neutrino Mass, mu to e gamma, and Neutrinoless Double Beta Decay  

E-print Network

Two of the most important and pressing questions in cosmology and particle physics are: (1) What is the nature of cold dark matter? and (2) Will near-future experiments on neutrinoless double beta decay be able to ascertain that the neutrino is a Majorana particle, i.e. its own antiparticle? We show that these two seemingly unrelated issues are intimately connected if neutrinos acquire mass only because of their interactions with dark matter.

Jisuke Kubo; Ernest Ma; Daijiro Suematsu

2006-08-24

444

Neutrino masses and mixings in gauge models with spontaneous parity violation  

Microsoft Academic Search

Unified electroweak gauge theories based on the gauge group SU(2)L×SU(2)R×U(1)B-L, in which the breakdown of parity invariance is spontaneous, lead most naturally to a massive neutrino. Assuming the neutrino to be a Majorana particle, we show that smallness of its mass can be understood as a result of the observed maximality of parity violation in low-energy weak interactions. This result

Rabindra N. Mohapatra; Goran Senjanovic

1981-01-01

445

Neutrinos and cosmology: a lifetime relationship  

SciTech Connect

We consider the example of neutrino decays to illustrate the profound relation between laboratory neutrino physics and cosmology. Two case studies are presented: In the first one, we show how the high precision cosmic microwave background spectral data collected by the FIRAS instrument on board of COBE, when combined with Lab data, have greatly changed bounds on the radiative neutrino lifetime. In the second case, we speculate on the consequence for neutrino physics of the cosmological detection of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a detection at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on some models of neutrino secret interactions.

Serpico, Pasquale D.; /Fermilab

2008-06-01

446

Neutrino physics: What makes the Sun shine  

NASA Astrophysics Data System (ADS)

Neutrinos produced in the nuclear reaction that triggers solar-energy generation have been detected. This milestone in the search for solar neutrinos required a deep underground detector of exceptional sensitivity. See Article p.383

Haxton, Wick

2014-08-01

447

Estimates of Radiation by Superluminal Neutrinos  

E-print Network

We show that the more energetic superluminal neutrinos with quadratically dispersed superluminalities \\delta=\\beta^2-1, for \\beta=v/c where v is the neutrino velocity, also lose significant energy to radiation to the \

B. F. L. Ward

2012-04-07

448

Nuclear physics for geo-neutrino studies  

E-print Network

Geo-neutrino studies are based on theoretical estimates of geo-neutrino spectra. We propose a method for a direct measurement of the energy distribution of antineutrinos from decays of long-lived radioactive isotopes. We present preliminary results for the geo-neutrinos from Bi-214 decay, a process which accounts for about one half of the total geo-neutrino signal. The feeding probability of the lowest state of Bi-214 - the most important for geo-neutrino signal - is found to be p_0 = 0.177 \\pm 0.004 (stat) ^{+0.003}_{-0.001} (sys), under the hypothesis of Universal Neutrino Spectrum Shape (UNSS). This value is consistent with the (indirect) estimate of the Table of Isotopes (ToI). We show that achievable larger statistics and reduction of systematics should allow to test possible distortions of the neutrino spectrum from that predicted using the UNSS hypothesis. Implications on the geo-neutrino signal are discussed.

Gianni Fiorentini; Aldo Ianni; George Korga; Marcello Lissia; Fabio Mantovani; Lino Miramonti; Lothar Oberauer; Michel Obolensky; Oleg Smirnov; Yury Suvorov

2009-08-24

449

Decaying neutrinos: The long way to isotropy  

SciTech Connect

We investigate a scenario in which neutrinos are coupled to a pseudoscalar degree of freedom {phi} and where decays {nu}{sub 1{yields}{nu}2}+{phi} and inverse decays are the responsible mechanism for obtaining equilibrium. In this context we discuss the implication of the invisible neutrino decay on the neutrino-pseudoscalar coupling constant and the neutrino lifetime. Assuming the realistic scenario of a thermal background of neutrinos and pseudoscalar we update the bound on the (off-diagonal) neutrino-pseudoscalar coupling constant to g<2.6x10{sup -13} and the bound on the neutrino lifetime to {tau}>1x10{sup 13} s. Furthermore we confirm analytically that kinetic equilibrium is delayed by two Lorentz {gamma} factors--one for time dilation of the (decaying) neutrino lifetime and one from the opening angle. We have also confirmed this behavior numerically.

Basboell, Anders [Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH (United Kingdom); Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Bjaelde, Ole Eggers [Institut fuer Theoretische Physik E, RWTH Aachen University, D-52056 Aachen (Germany); Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark)

2010-06-15

450

Neutrino mixing, flavor states and dark energy  

E-print Network

We shortly summarize the quantum field theory formalism for the neutrino mixing and report on recent results showing that the vacuum condensate induced by neutrino mixing can be interpreted as a dark energy component of the Universe.

M. Blasone; A. Capolupo; S. Capozziello; G. Vitiello

2007-11-06

451

Probing the absolute mass scale of neutrinos  

E-print Network

The Karlsruhe Tritium Neutrino (KATRIN) experiment is the next generation tritium beta decay experiment with sub-eV sensitivity to make a direct, model independent measurement of the neutrino mass. The principle of the ...

Formaggio, Joseph A.

452

Annual modulation of cosmic relic neutrinos  

E-print Network

The cosmic neutrino background (C?B), produced about one second after the big bang, permeates the Universe today. New technological advancements make neutrino capture on beta-decaying nuclei (NCB) a clear path forward ...

Safdi, Benjamin R.

453

The neutrino sky at very high energies  

NASA Astrophysics Data System (ADS)

Neutrino astronomy opens a new window for the observation and study of high-energy phenomena in our Universe. The emission of high-energy neutrinos in extragalactic sources or the cosmic environment is intimately related to that of ?-rays and cosmic rays. We will review the various indirect neutrino limits that arise from this cosmic connection and compare this to the present direct limits of neutrino observatories. Specific models of extragalactic TeV to PeV neutrino sources are already testable by large volume neutrino observatories like IceCube. At the EeV energy scale the flux of cosmogenic neutrinos associated with the propagation of ultra-high energy cosmic rays in the cosmic radiation background seems to be the most promising contribution to the diffuse neutrino background. We will discuss its model dependence w.r.t. chemical composition and evolution of the sources and provide simple bolometric scaling relations.

Ahlers, Markus

2013-10-01

454

Time variations in Kamiokande solar neutrinos data  

SciTech Connect

This paper reports on solar neutrino flux (E{sub nu} {ge} 7.5 MeV) data from 1st January to April 1990 as measured in Kamiokande solar neutrino experiment that have been analyzed statistically and have found that the solar neutrino data varies with the solar activity cycle with very high statistical significance ({gt}98% confidence level). Average solar neutrino flux data in the sunspot minimum range cannot be equal to twice the average solar neutrino flux data in the sunspot maximum range, which suggests that the neutrino flip through the magnetic field of the convection zone of the sun is not responsible for the solar neutrino flux variation. Thus the variation of solar neutrino flux with the solar activity cycle suggests that the solar activity cycle is due to the pulsating character of the nuclear energy generation inside the core of the sun.

Raychaudhuri, P. (Dept. of Applied Mathematics, Calcutta Univ., Calcutta 700009 (IN))

1991-07-20

455

Evidence of electron neutrino appearance in a muon neutrino beam  

NASA Astrophysics Data System (ADS)

The T2K Collaboration reports evidence for electron neutrino appearance at the atmospheric mass splitting, |?m322|?2.4×10-3eV2. An excess of electron neutrino interactions over background is observed from a muon neutrino beam with a peak energy of 0.6 GeV at the Super-Kamiokande (SK) detector 295 km from the beam’s origin. Signal and background predictions are constrained by data from near detectors located 280 m from the neutrino production target. We observe 11 electron neutrino candidate events at the SK detector when a background of 3.3±0.4(syst) events is expected. The background-only hypothesis is rejected with a p value of 0.0009 (3.1?), and a fit assuming ????e oscillations with sin?22?23=1, ?CP=0 and |?m322|=2.4×10-3eV2 yields sin?22?13=0.088-0.039+0.049(stat+syst).

Abe, K.; Abgrall, N.; Aihara, H.; Akiri, T.; Albert, J. B.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Beznosko, D.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Boyd, S.; Brailsford, D.; Bravar, A.; Bronner, C.; Brook-Roberge, D. G.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; Day, M.; de André, J. P. A. M.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Dobson, J.; Drapier, O.; Duboyski, T.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Dziomba, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Frank, E.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Joo, K. K.; Jung, C. K.; Kaboth, A.; Kaji, H.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khanam, F.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J. Y.; Kim, J.; Kim, S. B.; Kirby, B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kowalik, K.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laing, A.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lim, I. T.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, G. D.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marchionni, A.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; McFarland, K. S.; McGrew, C.; McLachlan, T.; Messina, M.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakajima, K.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nicholls, T. C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Obayashi, Y.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Pac, M. Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pinzon Guerra, E. S.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Scully, D. I.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shibata, M.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Szeptycka, M.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. A.; Tanaka, M. M.; Tanaka, M.; Taylor, I. J.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.

2013-08-01

456

Observation of Electron Neutrino Appearance in a Muon Neutrino Beam  

NASA Astrophysics Data System (ADS)

The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3? when compared to 4.92±0.55 expected background events. In the Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles ?12, ?23, ?13, a mass difference ?m322 and a CP violating phase ?CP. In this neutrino oscillation scenario, assuming |?m322|=2.4×10-3 eV2, sin2?23=0.5, and ?m322>0 (?m322<0), a best-fit value of sin22?13=0.140-0.032+0.038 (0.170-0.037+0.045) is obtained at ?CP=0. When combining the result with the current best knowledge of oscillation parameters including the world average value of ?13 from reactor experiments, some values of ?CP are disfavored at the 90% C.L.

Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L. J.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; ?muda, J.; T2K Collaboration

2014-02-01

457

The solar neutrino problem and the neutrino magnetic moment  

NASA Astrophysics Data System (ADS)

The physics of the proposed solution to the solar neutrino puzzle based on the neutrino magnetic moment is reviewed. The magnetic moment transition mechanism from active to sterile neutrinos can be either resonant or non-resonant and its kinship to matter enhanced oscillations is shown. The transition probability in the adiabatic approximation is calculated and the limits to adiabaticity are discussed. The full probability incorporating both the adiabatic and non-adiabatic regimes is derived using the Landau-Zener approximation for the non-adiabatic regimes. The available experimental data from the three existing solar neutrino experiments (Davis, Kamiokande II and SAGE) are compared with the results of the theory. From this comparison one can predict for the flavour square mass difference ?2m21 = (0.5-1.5) x 10-8eV2 and for the magnetic moment ? > (6-7) × 10-12 ?B. The uncertainties in the solar magnetic field are considerable and the ansatz used takes a value of 10 5 G along the solar core and the radiation zone, decreasing then linearly along the convection zone. A change in B by one or two orders of magnitude has the main effect of modifying the lower bound on ? by the same proportion, while leaving ?2m21 practically unaltered. An anticorrelation between neutrino flux and solar activity, although consistent with the theory, cannot be clearly predicted.

Pulido, João

1992-02-01

458

Observation of electron neutrino appearance in a muon neutrino beam.  

PubMed

The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3? when compared to 4.92±0.55 expected background events. In the Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles ?12, ?23, ?13, a mass difference ?m(32)(2) and a CP violating phase ?(CP). In this neutrino oscillation scenario, assuming |?m(32)(2)|=2.4×10(-3)??eV(2), sin(2)?(23)=0.5, and ?m322>0 (?m(32)(2)<0), a best-fit value of sin(2)2?(13)=0.140(-0.032)(+0.038) (0.170(-0.037)(+0.045)) is obtained at ?(CP)=0. When combining the result with the current best knowledge of oscillation parameters including the world average value of ?(13) from reactor experiments, some values of ?(CP) are disfavored at the 90% C.L. PMID:24580687

Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F D M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Floetotto, L; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Gaudin, A; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gomez-Cadenas, J J; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Lamont, I; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Licciardi, C; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Paolone, V; Payne, D; Pearce, G F; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L J; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

2014-02-14

459

Neutrino-proton and anti-neutrino-proton elastic scattering  

SciTech Connect

An experiment performed at the Brookhaven National Laboratory Alternating Gradient Synchrotron observed the elastic scattering of neutrinos and anti-neutrinos from a nuclear target. The neutral current anti-neutrino to neutral current neutrino ratio is: sigma(anti ..nu..p ..-->.. anti ..nu..p)/sigma(..nu..p ..-->.. ..nu..p) = 0.45 +- 0.18 for 0.33 less than or equal to Q/sup 2/ less than or equal to 1.0 (GeV/c)/sup 2/, where Q/sup 2/ is the square of the momentum transfer to the nucleon. The neutrino neutral current to charged current ratio is: sigma(..nu..p ..-->.. ..nu..p)/sigma(..nu..n ..-->.. ..mu../sup -/p) = 0.13 +- 0.04 for 0.25 less than or equal to Q/sup 2/ less than or equal to 1.0 (GeV/c)/sup 2/. The ratios are consistent with a value of the Weinberg angle of sin/sup 2/theta/sub w/ = 0.26 +- 0.08.

Fuess, Stuart Charles

1981-01-01

460

Observation of Electron Neutrino Appearance in a Muon Neutrino Beam  

E-print Network

The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3$\\sigma$ when compared to 4.92 $\\pm$ 0.55 expected background events. In the PMNS mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles $\\theta_{12}$, $\\theta_{23}$, $\\theta_{13}$, a mass difference $\\Delta m^2_{32}$ and a CP violating phase $\\delta_{\\mathrm{CP}}$. In this neutrino oscillation scenario, assuming $|\\Delta m^2_{32}| = 2.4 \\times 10^{-3}$ $\\rm eV^2$, $\\sin^2 \\theta_{23} = 0.5$, and $\\Delta m^2_{32} >0$ ($\\Delta m^2_{32} <0$), a best-fit value of $\\sin^2 2 \\theta_{13}$ = $0.140^{+0.038}_{-0.032}$ ($0.170^{+0.045}_{-0.037}$) is obtained at $\\delta_{\\mathrm{CP}}=0$. When combining the result with the current best knowledge of oscillation parameters including the world average value of $\\theta_{13}$ from reactor experiments, some values of $\\delta_{\\mathrm{CP}}$ are disfavored at the 90% CL.

K. Abe; J. Adam; H. Aihara; T. Akiri; C. Andreopoulos; S. Aoki; A. Ariga; T. Ariga; S. Assylbekov; D. Autiero; M. Barbi; G. J. Barker; G. Barr; M. Bass; M. Batkiewicz; F. Bay; S. W. Bentham; V. Berardi; B. E. Berger; S. Berkman; I. Bertram; S. Bhadra; F. d. M. Blaszczyk; A. Blondel; C. Bojechko; S. Bordoni; S. B. Boyd; D. Brailsford; A. Bravar; C. Bronner; N. Buchanan; R. G. Calland; J. Caravaca Rodríguez; S. L. Cartwright; R. Castillo; M. G. Catanesi; A. Cervera; D. Cherdack; G. Christodoulou; A. Clifton; J. Coleman; S. J. Coleman; G. Collazuol; K. Connolly; L. Cremonesi; A. Dabrowska; I. Danko; R. Das; S. Davis; P. de Perio; G. De Rosa; T. Dealtry; S. R. Dennis; C. Densham; F. Di Lodovico; S. Di Luise; O. Drapier; T. Duboyski; K. Duffy; F. Dufour; J. Dumarchez; S. Dytman; M. Dziewiecki; S. Emery; A. Ereditato; L. Escudero; A. J. Finch; L. Floetotto; M. Friend; Y. Fujii; Y. Fukuda; A. P. Furmanski; V. Galymov; A. Gaudin; S. Giffin; C. Giganti; K. Gilje; D. Goeldi; T. Golan; J. J. Gomez-Cadenas; M. Gonin; N. Grant; D. Gudin; D. R. Hadley; A. Haesler; M. D. Haigh; P. Hamilton; D. Hansen; T. Hara; M. Hartz; T. Hasegawa; N. C. Hastings; Y. Hayato; C. Hearty; R. L. Helmer; M. Hierholzer; J. Hignight; A. Hillairet; A. Himmel; T. Hiraki; S. Hirota; J. Holeczek; S. Horikawa; K. Huang; A. K. Ichikawa; K. Ieki; M. Ieva; M. Ikeda; J. Imber; J. Insler; T. J. Irvine; T. Ishida; T. Ishii; S. J. Ives; K. Iyogi; A. Izmaylov; A. Jacob; B. Jamieson; R. A. Johnson; J. H. Jo; P. Jonsson; C. K. Jung; A. C. Kaboth; T. Kajita; H. Kakuno; J. Kameda; Y. Kanazawa; D. Karlen; I. Karpikov; E. Kearns; M. Khabibullin; A. Khotjantsev; D. Kielczewska; T. Kikawa; A. Kilinski; J. Kim; J. Kisiel; P. Kitching; T. Kobayashi; L. Koch; A. Kolaceke; A. Konaka; L. L. Kormos; A. Korzenev; K. Koseki; Y. Koshio; I. Kreslo; W. Kropp; H. Kubo; Y. Kudenko; S. Kumaratunga; R. Kurjata; T. Kutter; J. Lagoda; K. Laihem; I. Lamont; M. Laveder; M. Lawe; M. Lazos; K. P. Lee; C. Licciardi; T. Lindner; C. Lister; R. P. Litchfield; A. Longhin; L. Ludovici; M. Macaire; L. Magaletti; K. Mahn; M. Malek; S. Manly; A. D. Marino; J. Marteau; J. F. Martin; T. Maruyama; J. Marzec; E. L. Mathie; V. Matveev; K. Mavrokoridis; E. Mazzucato; M. McCarthy; N. McCauley; K. S. McFarland; C. McGrew; C. Metelko; M. Mezzetto; P. Mijakowski; C. A. Miller; A. Minamino; O. Mineev; S. Mine; A. Missert; M. Miura; L. Monfregola; S. Moriyama; Th. A. Mueller; A. Murakami; M. Murdoch; S. Murphy; J. Myslik; T. Nagasaki; T. Nakadaira; M. Nakahata; T. Nakai; K. Nakamura; S. Nakayama; T. Nakaya; K. Nakayoshi; D. Naples; C. Nielsen; M. Nirkko; K. Nishikawa; Y. Nishimura; H. M. O'Keeffe; R. Ohta; K. Okumura; T. Okusawa; W. Oryszczak; S. M. Oser; R. A. Owen; Y. Oyama; V. Palladino; V. Paolone; D. Payne; G. F. Pearce; O. Perevozchikov; J. D. Perkin; Y. Petrov; L. J. Pickard; E. S. Pinzon Guerra; C. Pistillo; P. Plonski; E. Poplawska; B. Popov; M. Posiadala; J. -M. Poutissou; R. Poutissou; P. Przewlocki; B. Quilain; E. Radicioni; P. N. Ratoff; M. Ravonel; M. A. M. Rayner; A. Redij; M. Reeves; E. Reinherz-Aronis; F. Retiere; A. Robert; P. A. Rodrigues; P. Rojas; E. Rondio; S. Roth; A. Rubbia; D. Ruterbories; R. Sacco; K. Sakashita; F. Sánchez; F. Sato; E. Scantamburlo; K. Scholberg; J. Schwehr; M. Scott; Y. Seiya; T. Sekiguchi; H. Sekiya; D. Sgalaberna; M. Shiozawa; S. Short; Y. Shustrov; P. Sinclair; B. Smith; R. J. Smith; M. Smy; J. T. Sobczyk; H. Sobel; M. Sorel; L. Southwell; P. Stamoulis; J. Steinmann; B. Still; Y. Suda; A. Suzuki; K. Suzuki; S. Y. Suzuki; Y. Suzuki; T. Szeglowski; R. Tacik; M. Tada; S. Takahashi; A. Takeda; Y. Takeuchi; H. K. Tanaka; H. A. Tanaka; M. M. Tanaka; D. Terhorst; R. Terri; L. F. Thompson; A. Thorley; S. Tobayama; W. Toki; T. Tomura; Y. Totsuka; C. Touramanis; T. Tsukamoto; M. Tzanov; Y. Uchida; K. Ueno; A. Vacheret; M. Vagins; G. Vasseur; T. Wachala; A. V. Waldron; C. W. Walter; D. Wark; M. O. Wascko; A. Weber; R. Wendell; R. J. Wilkes; M. J. Wilking; C. Wilkinson; Z. Williamson; J. R. Wilson; R. J. Wilson; T. Wongjirad; Y. Yamada; K. Yamamoto; C. Yanagisawa; S. Yen; N. Yershov; M. Yokoyama; T. Yuan; A. Zalewska; J. Zalipska; L. Zambelli; K. Zaremba; M. Ziembicki; E. D. Zimmerman; M. Zito; J. ?muda; for the T2K collaboration

2014-04-16

461

Neutrino properties and fundamental symmetries  

SciTech Connect

This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). There are two components to this work. The first is a development of a new detection scheme for neutrinos. The observed deficit of neutrinos from the Sun may be due to either a lack of understanding of physical processes in the Sun or may be due to neutrinos oscillating from one type to another during their transit from the Sun to the Earth. The Sudbury Neutrino Observatory (SNO) is designed to use a water Cerenkov detector employing one thousand tonnes of heavy water to resolve this question. The ability to distinguish muon and tau neutrinos from electron neutrinos is crucial in order to carry out a model-independent test of neutrino oscillations. We describe a developmental exploration of a novel technique to do this using {sup 3}He proportional counters. Such a method offers considerable advantages over the initially proposed method of using Cerenkov light from capture on NaCl in the SNO. The second component of this work is an exploration of optimal detector geometry for a time-reversal invariance experiment. The question of why time moves only in the forward direction is one of the most puzzling problems in modern physics. We know from particle physics measurements of the decay of kaons that there is a charge-parity symmetry that is violated in nature, implying time-reversal invariance violation. Yet, we do not understand the origin of the violation of this symmetry. To promote such an understanding, we are developing concepts and prototype apparatus for a new, highly sensitive technique to search for time-reversal-invariance violation in the beta decay of the free neutron. The optimized detector geometry is seven times more sensitive than that in previous experiments. 15 refs.

Bowles, T.J.

1996-07-01

462

Supersymmetric Seesaw without Singlet Neutrinos: Neutrino Masses and Lepton-Flavour Violation  

Microsoft Academic Search

We consider the supersymmetric seesaw mechanism induced by the exchange of\\u000aheavy SU(2)_W triplet states, rather than `right-handed' neutrino singlets, to\\u000agenerate neutrino masses. We show that in this scenario the neutrino flavour\\u000astructure tested at low-energy in the atmospheric and solar neutrino\\u000aexperiments is directly inherited from the neutrino Yukawa couplings to the\\u000atriplets. This allows us to predict

Anna Rossi; G. Galilei

2002-01-01

463

Phenomenology of FourthPhenomenology of Fourth Generation NeutrinosGeneration Neutrinos  

E-print Network

Phenomenology of FourthPhenomenology of Fourth Generation NeutrinosGeneration Neutrinos LindaVGeV mdmd>268>268 GeVGeV LEP neutrinos 101, 102, 90LEP neutrinos 101, 102, 90 GeVGeV in e mu tau channel for Dirac neutrinosin e mu tau channel for Dirac neutrinos 90.7, 89.5, 80.590.7, 89.5, 80.5 GeVGeV forfor

California at Santa Cruz, University of

464

The Lake Baikal neutrino experiment: selected results  

E-print Network

We review the present status of the lake Baikal Neutrino Experiment and present selected physical results gained with the consequetive stages of the stepwise increasing detector: from NT-36 to NT-96. Results cover atmospheric muons, neutrino events, very high energy neutrinos, search for neutrino events from WIMP annihilation, search for magnetic monopoles and environmental studies. We also describe an air Cherenkov array developed for the study of angular resolution of NT-200.

BAIKAL Collaboration; V. Balkanov

2000-01-10

465

From Neutrino Factory to Muon Collider  

SciTech Connect

Both Muon Colliders and Neutrino Factories require a muon source capable of producing and capturing {Omicron}(10{sup 21}) muons/year. This paper reviews the similarities and differences between Neutrino Factory and Muon Collider accelerator complexes, the ongoing R&D needed for a Muon Collider that goes beyond Neutrino Factory R&D, and some thoughts about how a Neutrino Factory on the CERN site might eventually be upgraded to a Muon Collider.

Geer, S.; /Fermilab

2010-01-01

466

Overview of progress in neutrino scattering measurements  

E-print Network

Recent progress in neutrino scattering experiments with few GeV neutrino beams is reviewed, focusing on new experimental input since the beginning of the NuInt workshop series in 2001. Progress in neutrino quasi-elastic scattering, resonance production, coherent pion production, scattering in the transition region between the resonance and deep inelastic regimes, and nuclear effects in neutrino-nucleus scattering, is discussed.

M. Sorel

2007-10-22

467

Atmospheric neutrino flux at INO site  

SciTech Connect

To illustrate the calculation of the atmospheric neutrino flux, we briefly explain our calculation scheme and important components, such as primary cosmic ray spectra, interaction model, and geomagnetic model. Then, we calculate the atmospheric neutrino flux at INO site in our calculation scheme. We compare the calculated atmospheric neutrino fluxes predicted at INO with those at other major neutrino detector sites, especially that at SK site.

Honda, Morihiro [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8582 (Japan)

2011-11-23

468

Evidence for Oscillation of Atmospheric Neutrinos  

Microsoft Academic Search

We present an analysis of atmospheric neutrino data from a 33.0 kton yr (535-day) exposure of the Super-Kamiokande detector. The data exhibit a zenith angle dependent deficit of muon neutrinos which is inconsistent with expectations based on calculations of the atmospheric neutrino flux. Experimental biases and uncertainties in the prediction of neutrino fluxes and cross sections are unable to explain

Henry Sobel; T. Hayakawa; E. Ichihara; K. Inoue; K. Ishihara; H. Ishino; Y. Itow; T. Kajita; J. Kameda; S. Kasuga; K. Kobayashi; Y. Kobayashi; Y. Koshio; M. Miura; M. Nakahata; S. Nakayama; A. Okada; K. Okumura; N. Sakurai; M. Shiozawa; Y. Suzuki; Y. Takeuchi; Y. Totsuka; S. Yamada; M. Earl; A. Habig; E. Kearns; M. D. Messier; K. Scholberg; J. L. Stone; L. R. Sulak; C. W. Walter; M. Goldhaber; T. Barszczxak; D. Casper; W. Gajewski; P. G. Halverson; J. Hsu; W. R. Kropp; L. R. Price; F. Reines; M. Smy; M. R. Vagins; K. S. Ganezer; W. E. Keig; R. W. Ellsworth; S. Tasaka; J. W. Flanagan; A. Kibayashi; J. G. Learned; S. Matsuno; V. J. Stenger; D. Takemori; T. Ishii; J. Kanzaki; T. Kobayashi; S. Mine; K. Nakamura; K. Nishikawa; Y. Oyama; A. Sakai; M. Sakuda; O. Sasaki; S. Echigo; M. Kohama; A. Suzuki; T. J. Haines; E. Blaufuss; B. K. Kim; R. Sanford; R. Svoboda; M. L. Chen; Z. Conner; J. A. Goodman; G. W. Sullivan; J. Hill; C. K. Jung; K. Martens; C. Mauger; C. McGrew; E. Sharkey; B. Viren; C. Yanagisawa; W. Doki; K. Miyano; H. Okazawa; C. Saji; M. Takahata; Y. Nagashima; M. Takita; T. Yamaguchi; M. Yoshida; S. B. Kim; M. Etoh; K. Fujita; A. Hasegawa; T. Hasegawa; S. Hatakeyama; T. Iwamoto; M. Koga; T. Maruyama; H. Ogawa; J. Shirai; F. Tsushima; M. Koshiba; M. Nemoto; K. Nishijima; T. Futagami; Y. Hayato; Y. Kanaya; K. Kaneyuki; Y. Watanabe; D. Kielczewska; R. A. Doyle; J. S. George; A. L. Stachyra; L. L. Wai; R. J. Wilkes; K. K. Young

1998-01-01

469

Earth Matter Effect on Democratic Neutrinos  

E-print Network

The neutrino propagation through the Earth is investigated in the framework of the democratic neutrino theory. In this theory the neutrino mixing angle theta-1-3 is approximately determined, which allows one to make a well defined neutrino oscillogram driven by the 1-3 mixing in the matter of the Earth. Significant differences in this oscillogram from the case of models with relatively small theta-1-3 are discussed.

Dmitry Zhuridov

2014-08-30

470

Neutrino magnetic moment in a magnetized plasma  

E-print Network

The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.

N. V. Mikheev; E. N. Narynskaya

2010-11-08

471

Sterile neutrinos in the early universe  

SciTech Connect

We discuss the role played by right-handed sterile neutrinos in the early universe. We show how well known {sup 4}He constraint on the number of relativistic degrees of freedom at early times limits the equilibration of the right handed neutrino sea with the background plasma. We discuss how this allows interesting constraints to be placed on neutrino properties. In particular, a new limit on the Dirac mass of the neutrino is presented. 12 refs.

Malaney, R.A. (Lawrence Livermore National Lab., CA (USA)); Fuller, G.M. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Physics)

1990-11-14

472

Overview of progress in neutrino scattering measurements  

SciTech Connect

Recent progress in neutrino scattering experiments with few GeV neutrino beams is reviewed, focusing on new experimental input since the beginning of the NuInt workshop series in 2001. Progress in neutrino quasi-elastic scattering, resonance production, coherent pion production, scattering in the transition region between the resonance and deep inelastic regimes, and nuclear effects in neutrino-nucleus scattering, is discussed.

Sorel, M. [Instituto de Fisica Corpuscular (IFIC), CSIC and Universidad de Valencia (Spain)

2007-12-21

473

Have massive cosmological neutrinos already been detected  

NASA Technical Reports Server (NTRS)

The possibility is investigated that the decay of massive cosmological neutrinos may have produced a spectral signature which has already been detected in observations of the ultraviolet background radiation. Various implications are discussed including a possible implied neutrino mass of 13.8-14.8 eV. A lower limit is also placed on the lifetime of heavy neutrinos with respect to decay into light neutrinos and gamma rays based on the cosmic UV observations.

Stecker, F. W.

1980-01-01

474

The AMANDA neutrino detector - Status report  

Microsoft Academic Search

The first stage of the AMANDA High Energy Neutrino Detector at the south Pole, the 302 PMT array AMANDA-B10, is taking data since 1997. We describe results on atmospheric neutrinos, limits on indirect WIMP detection, seasonal muon flux variation, relativistic monopole flux limits, a search for gravitational collapse neutrinos, and a depth scan of the optical ice properties. The next

R. Wischnewski; E. Andrès; X. Bai; G. Barouch; S. Barwick; R. Bay; K. Becker; L. Bergström; D. Bertrand; D. Besson; A. Biron; J. Booth; O. Botner; A. Bouchta; S. Carius; M. Carlson; W. Chinowsky; D. Chirkin; J. Conrad; D. F. Cowen; C. Costa; E. Dalberg; P. Desiati; J. Dewulf; T. De Young; P. Doksus; J. Edsjög; P. Ekström; T. Feser; G. Frichter; T. Gaisser; A. Goldschmidt; A. Goobar; A. Hallgren; F. Halzen; R. Hardtke; M. Hellwig; G. Hill; P. Hulth; S. Hundertmark; J. Jacobsen; A. Karle; J. Kim; L. Koepke; M. Kowalski; I. Kravchenko; J. Lamoureux; H. Leich; M. Leuthold; P. Lindahl; T. Liss; P. Loaiza; D. Lowder; J. Ludvig; P. Marciniewski; H. Matis; T. Miller; P. Miocinovic; P. Mock; R. Morse; T. Neunhoeffer; M. Newcomer; P. Niessen; D. Nygren; C. Pérez de los Heros; R. Porrata; P. Price; G. Przybylski; K. Rawlins; W. Rhode; S. Richter; J. Rodriguez; P. Romenesko; D. Ross; H. Rubinstein; H. Sander; U. Schäfer; T. Schmidt; E. Schneider; R. Schwarz; U. Schwendicke; A. Silvestri; G. Smoot; M. Solarz; G. Spiczak; C. Spiering; N. Starinski; P. Steffen; R. Stokstad; O. Streicher; I. Taboada; L. Thollander; T. Thon; S. Tilav; M. Vander Donckt; C. Walck; C. Wiebusch; K. Woschnagg; W. Wu; G. Yodh; S. Young

2000-01-01

475

Neutrinos and Non-proliferation in Europe  

E-print Network

Triggered by the demand of the IAEA, neutrino physicists in Europe involved with the Double Chooz experiment are studying the potential of neutrino detection to monitor nuclear reactors. In particular a new set of experiments at the ILL is planned to improve the knowledge of the neutrino spectrum emitted in the fission of 235U and 239Pu.

M. Cribier

2007-04-04

476

The enigmatic neutrinos Syed Afsar Abbas  

E-print Network

The enigmatic neutrinos Syed Afsar Abbas Department of Physics Aligarh Muslim University, Aligarh di#erently for the neutrinos. Their corpuscular character demands that they have zero inertial mass it is a clear prediction of our model that neutrinos, in a pure oscillation mode, travel with velocites greater

477

Results from Atmospheric Neutrinos J. G. Learned  

E-print Network

Results from Atmospheric Neutrinos J. G. Learned Department of Physics and Astronomy, University of Hawaii Honolulu, HI 96822 USA Abstract. With the announcement of new evidence for muon neutrino disappearance observed by the Super­ Kamiokande experiment, the more than a decade old atmospheric neutrino

Learned, John

478

Chimie et Neutrinos Alain de Bellefon(1)  

E-print Network

Chimie et Neutrinos Alain de Bellefon(1) , Michel Cribier(1) et Jean-Claude Mialocq(2) Résumé Cet article illustre la synergie qui existe entre la chimie et la détection des neutrinos, ces particules'énigme des neutrinos solaires fut rendue possible entre autres par l'obtention d'une extrême pureté

Boyer, Edmond

479

ON THE ELECTRIC CHARGE OF THE NEUTRINO  

Microsoft Academic Search

Exact expression is obtained for the differential cross section of elastic elec- troweak scattering of longitudinal polarized massive Dirac neutrinos with the electric charge and anomalous magnetic moment on a spinless nucleus. This formula contains all necessary information about the nature of the neutrino mass, charge and magnetic moment. Some of them state that between the mass of the neutrino

Rasulkhozha S. Sharafiddinov

480

Coherence and Wave Packets in Neutrino Oscillations  

Microsoft Academic Search

General arguments in favor of the necessity of a wave packet description of neutrino oscillations are presented, drawing from analogies with other wave phenomena. We present a wave packet description of neutrino oscillations in stationary beams using the density matrix formalism. Recent claims of the necessity of an equal energy of different massive neutrinos are refuted.

Carlo Giunti

2004-01-01