Science.gov

Sample records for malaria targeting parasite

  1. Malaria: targeting parasite and host cell kinomes.

    PubMed

    Doerig, Christian; Abdi, Abdirahman; Bland, Nicholas; Eschenlauer, Sylvain; Dorin-Semblat, Dominique; Fennell, Clare; Halbert, Jean; Holland, Zoe; Nivez, Marie-Paule; Semblat, Jean-Philippe; Sicard, Audrey; Reininger, Luc

    2010-03-01

    Malaria still remains one of the deadliest infectious diseases, and has a tremendous morbidity and mortality impact in the developing world. The propensity of the parasites to develop drug resistance, and the relative reluctance of the pharmaceutical industry to invest massively in the developments of drugs that would offer only limited marketing prospects, are major issues in antimalarial drug discovery. Protein kinases (PKs) have become a major family of targets for drug discovery research in a number of disease contexts, which has generated considerable resources such as kinase-directed libraries and high throughput kinase inhibition assays. The phylogenetic distance between malaria parasites and their human host translates into important divergences in their respective kinomes, and most Plasmodium kinases display atypical properties (as compared to mammalian PKs) that can be exploited towards selective inhibition. Here, we discuss the taxon-specific kinases possessed by malaria parasites, and give an overview of target PKs that have been validated by reverse genetics, either in the human malaria parasite Plasmodium falciparum or in the rodent model Plasmodium berghei. We also briefly allude to the possibility of attacking Plasmodium through the inhibition of human PKs that are required for survival of this obligatory intracellular parasite, and which are targets for other human diseases. PMID:19840874

  2. Deconvoluting heme biosynthesis to target blood-stage malaria parasites.

    PubMed

    Sigala, Paul A; Crowley, Jan R; Henderson, Jeffrey P; Goldberg, Daniel E

    2015-01-01

    Heme metabolism is central to blood-stage infection by the malaria parasite Plasmodium falciparum. Parasites retain a heme biosynthesis pathway but do not require its activity during infection of heme-rich erythrocytes, where they can scavenge host heme to meet metabolic needs. Nevertheless, heme biosynthesis in parasite-infected erythrocytes can be potently stimulated by exogenous 5-aminolevulinic acid (ALA), resulting in accumulation of the phototoxic intermediate protoporphyrin IX (PPIX). Here we use photodynamic imaging, mass spectrometry, parasite gene disruption, and chemical probes to reveal that vestigial host enzymes in the cytoplasm of Plasmodium-infected erythrocytes contribute to ALA-stimulated heme biosynthesis and that ALA uptake depends on parasite-established permeability pathways. We show that PPIX accumulation in infected erythrocytes can be harnessed for antimalarial chemotherapy using luminol-based chemiluminescence and combinatorial stimulation by low-dose artemisinin to photoactivate PPIX to produce cytotoxic reactive oxygen. This photodynamic strategy has the advantage of exploiting host enzymes refractory to resistance-conferring mutations. PMID:26173178

  3. Deconvoluting heme biosynthesis to target blood-stage malaria parasites

    PubMed Central

    Sigala, Paul A; Crowley, Jan R; Henderson, Jeffrey P; Goldberg, Daniel E

    2015-01-01

    Heme metabolism is central to blood-stage infection by the malaria parasite Plasmodium falciparum. Parasites retain a heme biosynthesis pathway but do not require its activity during infection of heme-rich erythrocytes, where they can scavenge host heme to meet metabolic needs. Nevertheless, heme biosynthesis in parasite-infected erythrocytes can be potently stimulated by exogenous 5-aminolevulinic acid (ALA), resulting in accumulation of the phototoxic intermediate protoporphyrin IX (PPIX). Here we use photodynamic imaging, mass spectrometry, parasite gene disruption, and chemical probes to reveal that vestigial host enzymes in the cytoplasm of Plasmodium-infected erythrocytes contribute to ALA-stimulated heme biosynthesis and that ALA uptake depends on parasite-established permeability pathways. We show that PPIX accumulation in infected erythrocytes can be harnessed for antimalarial chemotherapy using luminol-based chemiluminescence and combinatorial stimulation by low-dose artemisinin to photoactivate PPIX to produce cytotoxic reactive oxygen. This photodynamic strategy has the advantage of exploiting host enzymes refractory to resistance-conferring mutations. DOI: http://dx.doi.org/10.7554/eLife.09143.001 PMID:26173178

  4. Targeting protein kinases in the malaria parasite: update of an antimalarial drug target.

    PubMed

    Zhang, Veronica M; Chavchich, Marina; Waters, Norman C

    2012-01-01

    Millions of deaths each year are attributed to malaria worldwide. Transmitted through the bite of an Anopheles mosquito, infection and subsequent death from the Plasmodium species, most notably P. falciparum, can readily spread through a susceptible population. A malaria vaccine does not exist and resistance to virtually every antimalarial drug predicts that mortality and morbidity associated with this disease will increase. With only a few antimalarial drugs currently in the pipeline, new therapeutic options and novel chemotypes are desperately needed. Hit-to-Lead diversity may successfully provide novel inhibitory scaffolds when essential enzymes are targeted, for example, the plasmodial protein kinases. Throughout the entire life cycle of the malaria parasite, protein kinases are essential for growth and development. Ongoing efforts continue to characterize these kinases, while simultaneously pursuing them as antimalarial drug targets. A collection of structural data, inhibitory profiles and target validation has set the foundation and support for targeting the malarial kinome. Pursuing protein kinases as cancer drug targets has generated a wealth of information on the inhibitory strategies that can be useful for antimalarial drug discovery. In this review, progress on selected protein kinases is described. As the search for novel antimalarials continues, an understanding of the phosphor-regulatory pathways will not only validate protein kinase targets, but also will identify novel chemotypes to thwart malaria drug resistance. PMID:22242850

  5. Targeting of a Transporter to the Outer Apicoplast Membrane in the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Goodman, Christopher D.; McFadden, Geoffrey I.

    2016-01-01

    Apicoplasts are vestigial plastids in apicomplexan parasites like Plasmodium, the causative agent of malaria. Apicomplexan parasites are dependant on their apicoplasts for synthesis of various molecules that they are unable to scavenge in sufficient quantity from their host, which makes apicoplasts attractive drug targets. Proteins known as plastid phosphate translocators (pPTs) are embedded in the outer apicoplast membrane and are responsible for the import of carbon, energy and reducing power to drive anabolic synthesis in the organelle. We investigated how a pPT is targeted into the outer apicoplast membrane of the human malaria parasite P. falciparum. We showed that a transmembrane domain is likely to act as a recessed signal anchor to direct the protein into the endomembrane system, and that a tyrosine in the cytosolic N-terminus of the protein is essential for targeting, but one or more, as yet unidentified, factors are also essential to direct the protein into the outer apicoplast membrane. PMID:27442138

  6. In silico multiple-targets identification for heme detoxification in the human malaria parasite Plasmodium falciparum.

    PubMed

    Phaiphinit, Suthat; Pattaradilokrat, Sittiporn; Lursinsap, Chidchanok; Plaimas, Kitiporn

    2016-01-01

    Detoxification of hemoglobin byproducts or free heme is an essential step and considered potential targets for anti-malaria drug development. However, most of anti-malaria drugs are no longer effective due to the emergence and spread of the drug resistant malaria parasites. Therefore, it is an urgent need to identify potential new targets and even for target combinations for effective malaria drug design. In this work, we reconstructed the metabolic networks of Plasmodium falciparum and human red blood cells for the simulation of steady mass and flux flows of the parasite's metabolites under the blood environment by flux balance analysis (FBA). The integrated model, namely iPF-RBC-713, was then adjusted into two stage-specific metabolic models, which first was for the pathological stage metabolic model of the parasite when invaded the red blood cell without any treatment and second was for the treatment stage of the parasite when a drug acted by inhibiting the hemozoin formation and caused high production rate of heme toxicity. The process of identifying target combinations consisted of two main steps. Firstly, the optimal fluxes of reactions in both the pathological and treatment stages were computed and compared to determine the change of fluxes. Corresponding enzymes of the reactions with zero fluxes in the treatment stage but non-zero fluxes in the pathological stage were predicted as a preliminary list of potential targets in inhibiting heme detoxification. Secondly, the combinations of all possible targets listed in the first step were examined to search for the best promising target combinations resulting in more effective inhibition of the detoxification to kill the malaria parasites. Finally, twenty-three enzymes were identified as a preliminary list of candidate targets which mostly were in pyruvate metabolism and citrate cycle. The optimal set of multiple targets for blocking the detoxification was a set of heme ligase, adenosine transporter, myo

  7. Lysine Acetylation in Sexual Stage Malaria Parasites Is a Target for Antimalarial Small Molecules

    PubMed Central

    Trenholme, Katharine; Marek, Linda; Duffy, Sandra; Pradel, Gabriele; Fisher, Gillian; Hansen, Finn K.; Skinner-Adams, Tina S.; Butterworth, Alice; Ngwa, Che Julius; Moecking, Jonas; Goodman, Christopher D.; McFadden, Geoffrey I.; Sumanadasa, Subathdrage D. M.; Fairlie, David P.; Avery, Vicky M.

    2014-01-01

    Therapies to prevent transmission of malaria parasites to the mosquito vector are a vital part of the global malaria elimination agenda. Primaquine is currently the only drug with such activity; however, its use is limited by side effects. The development of transmission-blocking strategies requires an understanding of sexual stage malaria parasite (gametocyte) biology and the identification of new drug leads. Lysine acetylation is an important posttranslational modification involved in regulating eukaryotic gene expression and other essential processes. Interfering with this process with histone deacetylase (HDAC) inhibitors is a validated strategy for cancer and other diseases, including asexual stage malaria parasites. Here we confirm the expression of at least one HDAC protein in Plasmodium falciparum gametocytes and show that histone and nonhistone protein acetylation occurs in this life cycle stage. The activity of the canonical HDAC inhibitors trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; Vorinostat) and a panel of novel HDAC inhibitors on early/late-stage gametocytes and on gamete formation was examined. Several compounds displayed early/late-stage gametocytocidal activity, with TSA being the most potent (50% inhibitory concentration, 70 to 90 nM). In contrast, no inhibitory activity was observed in P. falciparum gametocyte exflagellation experiments. Gametocytocidal HDAC inhibitors caused hyperacetylation of gametocyte histones, consistent with a mode of action targeting HDAC activity. Our data identify HDAC inhibitors as being among a limited number of compounds that target both asexual and sexual stage malaria parasites, making them a potential new starting point for gametocytocidal drug leads and valuable tools for dissecting gametocyte biology. PMID:24733477

  8. Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets

    PubMed Central

    2014-01-01

    Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes are found in P. falciparum, of which serine proteases are of particular interest due to their involvement in parasite-specific processes of egress and invasion. In P. falciparum, a number of serine proteases belonging to chymotrypsin, subtilisin, and rhomboid clans are found. This review focuses on the potential of P. falciparum serine proteases as antimalarial drug targets. PMID:24799897

  9. Simultaneously targeting inflammatory response and parasite sequestration in brain to treat Experimental Cerebral Malaria.

    PubMed

    Dende, Chaitanya; Meena, Jairam; Nagarajan, Perumal; Panda, Amulya K; Rangarajan, Pundi N; Padmanaban, Govindarajan

    2015-01-01

    Malaria afflicts around 200 million people annually, with a mortality number close to 600,000. The mortality rate in Human Cerebral Malaria (HCM) is unacceptably high (15-20%), despite the availability of artemisinin-based therapy. An effective adjunct therapy is urgently needed. Experimental Cerebral Malaria (ECM) in mice manifests many of the neurological features of HCM. Migration of T cells and parasite-infected RBCs (pRBCs) into the brain are both necessary to precipitate the disease. We have been able to simultaneously target both these parameters of ECM. Curcumin alone was able to reverse all the parameters investigated in this study that govern inflammatory responses, CD8(+) T cell and pRBC sequestration into the brain and blood brain barrier (BBB) breakdown. But the animals eventually died of anemia due to parasite build-up in blood. However, arteether-curcumin (AC) combination therapy even after the onset of symptoms provided complete cure. AC treatment is a promising therapeutic option for HCM. PMID:26227888

  10. Simultaneously targeting inflammatory response and parasite sequestration in brain to treat Experimental Cerebral Malaria

    PubMed Central

    Dende, Chaitanya; Meena, Jairam; Nagarajan, Perumal; Panda, Amulya K.; Rangarajan, Pundi N.; Padmanaban, Govindarajan

    2015-01-01

    Malaria afflicts around 200 million people annually, with a mortality number close to 600,000. The mortality rate in Human Cerebral Malaria (HCM) is unacceptably high (15–20%), despite the availability of artemisinin-based therapy. An effective adjunct therapy is urgently needed. Experimental Cerebral Malaria (ECM) in mice manifests many of the neurological features of HCM. Migration of T cells and parasite-infected RBCs (pRBCs) into the brain are both necessary to precipitate the disease. We have been able to simultaneously target both these parameters of ECM. Curcumin alone was able to reverse all the parameters investigated in this study that govern inflammatory responses, CD8+ T cell and pRBC sequestration into the brain and blood brain barrier (BBB) breakdown. But the animals eventually died of anemia due to parasite build-up in blood. However, arteether-curcumin (AC) combination therapy even after the onset of symptoms provided complete cure. AC treatment is a promising therapeutic option for HCM. PMID:26227888

  11. Purine import into malaria parasites as a target for antimalarial drug development

    PubMed Central

    Frame, I.J.; Deniskin, Roman; Arora, Avish; Akabas, Myles H.

    2014-01-01

    Infection with Plasmodium species parasites causes malaria. Plasmodium parasites are purine auxotrophs. In all life cycle stages, they require purines for RNA and DNA synthesis and other cellular metabolic processes. Purines are imported from the host erythrocyte by equilibrative nucleoside transporters (ENTs). They are processed via purine salvage–pathway enzymes to form the required purine nucleotides. The P. falciparum genome encodes four putative ENTs (PfENT1–4). Genetic, biochemical, and physiologic evidence suggest that PfENT1 is the primary purine transporter supplying the purine-salvage pathway. Protein mass spectrometry shows that PfENT1 is expressed in all parasite stages. PfENT1 knockout parasites are not viable in culture at purine concentrations found in human blood (< 10 µM). Thus, PfENT1 is a potential target for novel antimalarial drugs, but no PfENT1 inhibitors have been identified to test the hypothesis. Identifying inhibitors of PfENT1 is an essential step to validate PfENT1 as a potential antimalarial drug target. PMID:25424653

  12. Purine import into malaria parasites as a target for antimalarial drug development.

    PubMed

    Frame, I J; Deniskin, Roman; Arora, Avish; Akabas, Myles H

    2015-04-01

    Infection with Plasmodium species parasites causes malaria. Plasmodium parasites are purine auxotrophs. In all life cycle stages, they require purines for RNA and DNA synthesis and other cellular metabolic processes. Purines are imported from the host erythrocyte by equilibrative nucleoside transporters (ENTs). They are processed via purine salvage pathway enzymes to form the required purine nucleotides. The Plasmodium falciparum genome encodes four putative ENTs (PfENT1-4). Genetic, biochemical, and physiologic evidence suggest that PfENT1 is the primary purine transporter supplying the purine salvage pathway. Protein mass spectrometry shows that PfENT1 is expressed in all parasite stages. PfENT1 knockout parasites are not viable in culture at purine concentrations found in human blood (<10 μM). Thus, PfENT1 is a potential target for novel antimalarial drugs, but no PfENT1 inhibitors have been identified to test the hypothesis. Identifying inhibitors of PfENT1 is an essential step to validate PfENT1 as a potential antimalarial drug target. PMID:25424653

  13. Malaria diseases and parasites.

    PubMed

    Ascenzi, A

    1999-09-01

    The milestones in the discovery of malaria parasites and their relationships with malaria diseases are presented and discussed with particular reference to the contribution of the Italian scientists. Laveran's discovery (1880) of the malaria parasite produced some schepticism among the Roman scientists who were under the influence of Tommasi-Crudeli, the discoverer of the supposed Bacillus malariae. However, Marchiafava and Celli confirmed soon Laveran's observations and, between 1883 and 1885, improved the description of the parasite adding important details. They described, then, the aestivo-autumnal tertian fever as a distinct disease from the 'primaverile' or benign tertian. This work influenced Golgi who went on to analyse the features that distinguish the benign tertian parasite from that of the quartan. The fact that in North Italy the aestivo-autumnal tertian fever was hardly ever found, whereas it was common in the Roman Campagna and the Pontin marshes, explains why it was Celli and Marchiafava and later Bignami and Bastianelli, and Marchiafava and Bignami--but not Golgi--who were committed to work on this pernicious form of malaria. By the early 1890s the Italian scientists came to define the three malaria parasites, presently known as Plasmodium vivax, P. malariae, and P. falciparum, and to associate them with precise anatomo-pathological and clinical features. By the middle 1890s the Italian school was prepared to contribute also to the discovery of the mosquito cycle in human malaria, clearly hypothesized by Bignami in 1896 and experimentally proved in 1898 by Bignami, Bastianelli and Grassi. PMID:10697831

  14. The Cytoplasmic Prolyl-tRNA Synthetase of the Malaria Parasite is a Dual-Stage Target for Drug Development

    PubMed Central

    Herman, Jonathan D.; Pepper, Lauren R.; Cortese, Joseph F.; Estiu, Guillermina; Galinsky, Kevin; Zuzarte-Luis, Vanessa; Derbyshire, Emily R.; Ribacke, Ulf; Lukens, Amanda K.; Santos, Sofia A.; Patel, Vishal; Clish, Clary B.; Sullivan, William J.; Zhou, Huihao; Bopp, Selina E.; Schimmel, Paul; Lindquist, Susan; Clardy, Jon; Mota, Maria M.; Keller, Tracy L.; Whitman, Malcolm; Wiest, Olaf; Wirth, Dyann F.; Mazitschek, Ralph

    2015-01-01

    The emergence of drug resistance is a major limitation of current antimalarials. The discovery of new druggable targets and pathways including those that are critical for multiple life cycle stages of the malaria parasite is a major goal for the development of the next-generation of antimalarial drugs. Using an integrated chemogenomics approach that combined drug-resistance selection, whole genome sequencing and an orthogonal yeast model, we demonstrate that the cytoplasmic prolyl-tRNA synthetase (PfcPRS) of the malaria parasite Plasmodium falciparum is a biochemical and functional target of febrifugine and its synthetic derivatives such as halofuginone. Febrifugine is the active principle of a traditional Chinese herbal remedy for malaria. We show that treatment with febrifugine derivatives activated the amino acid starvation response in both P. falciparum and a transgenic yeast strain expressing PfcPRS. We further demonstrate in the P. berghei mouse model of malaria that halofuginol, a new halofuginone analog that we developed, is highly active against both liver and asexual blood stages of the malaria parasite. Halofuginol, unlike halofuginone and febrifugine, is well tolerated at efficacious doses, and represents a promising lead for the development of dual-stage next generation antimalarials. PMID:25995223

  15. Ungulate malaria parasites.

    PubMed

    Templeton, Thomas J; Asada, Masahito; Jiratanh, Montakan; Ishikawa, Sohta A; Tiawsirisup, Sonthaya; Sivakumar, Thillaiampalam; Namangala, Boniface; Takeda, Mika; Mohkaew, Kingdao; Ngamjituea, Supawan; Inoue, Noboru; Sugimoto, Chihiro; Inagaki, Yuji; Suzuki, Yasuhiko; Yokoyama, Naoaki; Kaewthamasorn, Morakot; Kaneko, Osamu

    2016-01-01

    Haemosporida parasites of even-toed ungulates are diverse and globally distributed, but since their discovery in 1913 their characterization has relied exclusively on microscopy-based descriptions. In order to bring molecular approaches to bear on the identity and evolutionary relationships of ungulate malaria parasites, we conducted Plasmodium cytb-specific nested PCR surveys using blood from water buffalo in Vietnam and Thailand, and goats in Zambia. We found that Plasmodium is readily detectable from water buffalo in these countries, indicating that buffalo Plasmodium is distributed in a wider region than India, which is the only area in which buffalo Plasmodium has been reported. Two types (I and II) of Plasmodium sequences were identified from water buffalo and a third type (III) was isolated from goat. Morphology of the parasite was confirmed in Giemsa-reagent stained blood smears for the Type I sample. Complete mitochondrial DNA sequences were isolated and used to infer a phylogeny in which ungulate malaria parasites form a monophyletic clade within the Haemosporida, and branch prior to the clade containing bird, lizard and other mammalian Plasmodium. Thus it is likely that host switching of Plasmodium from birds to mammals occurred multiple times, with a switch to ungulates independently from other mammalian Plasmodium. PMID:26996979

  16. Ungulate malaria parasites

    PubMed Central

    Templeton, Thomas J.; Asada, Masahito; Jiratanh, Montakan; Ishikawa, Sohta A.; Tiawsirisup, Sonthaya; Sivakumar, Thillaiampalam; Namangala, Boniface; Takeda, Mika; Mohkaew, Kingdao; Ngamjituea, Supawan; Inoue, Noboru; Sugimoto, Chihiro; Inagaki, Yuji; Suzuki, Yasuhiko; Yokoyama, Naoaki; Kaewthamasorn, Morakot; Kaneko, Osamu

    2016-01-01

    Haemosporida parasites of even-toed ungulates are diverse and globally distributed, but since their discovery in 1913 their characterization has relied exclusively on microscopy-based descriptions. In order to bring molecular approaches to bear on the identity and evolutionary relationships of ungulate malaria parasites, we conducted Plasmodium cytb-specific nested PCR surveys using blood from water buffalo in Vietnam and Thailand, and goats in Zambia. We found that Plasmodium is readily detectable from water buffalo in these countries, indicating that buffalo Plasmodium is distributed in a wider region than India, which is the only area in which buffalo Plasmodium has been reported. Two types (I and II) of Plasmodium sequences were identified from water buffalo and a third type (III) was isolated from goat. Morphology of the parasite was confirmed in Giemsa-reagent stained blood smears for the Type I sample. Complete mitochondrial DNA sequences were isolated and used to infer a phylogeny in which ungulate malaria parasites form a monophyletic clade within the Haemosporida, and branch prior to the clade containing bird, lizard and other mammalian Plasmodium. Thus it is likely that host switching of Plasmodium from birds to mammals occurred multiple times, with a switch to ungulates independently from other mammalian Plasmodium. PMID:26996979

  17. Insights into the pyrimidine biosynthetic pathway of human malaria parasite Plasmodium falciparum as chemotherapeutic target.

    PubMed

    Krungkrai, Sudaratana R; Krungkrai, Jerapan

    2016-06-01

    Malaria is a major cause of morbidity and mortality in humans. Artemisinins remain as the first-line treatment for Plasmodium falciparum (P. falciparum) malaria although drug resistance has already emerged and spread in Southeast Asia. Thus, to fight this disease, there is an urgent need to develop new antimalarial drugs for malaria chemotherapy. Unlike human host cells, P. falciparum cannot salvage preformed pyrimidine bases or nucleosides from the extracellular environment and relies solely on nucleotides synthesized through the de novo biosynthetic pathway. This review presents significant progress on understanding the de novo pyrimidine pathway and the functional enzymes in the human parasite P. falciparum. Current knowledge in genomics and metabolomics are described, particularly focusing on the parasite purine and pyrimidine nucleotide metabolism. These include gene annotation, characterization and molecular mechanism of the enzymes that are different from the human host pathway. Recent elucidation of the three-dimensional crystal structures and the catalytic reactions of three enzymes: dihydroorotate dehydrogenase, orotate phosphoribosyltransferase, and orotidine 5'-monophosphate decarboxylase, as well as their inhibitors are reviewed in the context of their therapeutic potential against malaria. PMID:27262062

  18. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7

    PubMed Central

    Ismail, Hanafy M.; Barton, Victoria; Phanchana, Matthew; Charoensutthivarakul, Sitthivut; Wong, Michael H. L.; Hemingway, Janet; Biagini, Giancarlo A.; O’Neill, Paul M.; Ward, Stephen A.

    2016-01-01

    The artemisinin (ART)-based antimalarials have contributed significantly to reducing global malaria deaths over the past decade, but we still do not know how they kill parasites. To gain greater insight into the potential mechanisms of ART drug action, we developed a suite of ART activity-based protein profiling probes to identify parasite protein drug targets in situ. Probes were designed to retain biological activity and alkylate the molecular target(s) of Plasmodium falciparum 3D7 parasites in situ. Proteins tagged with the ART probe can then be isolated using click chemistry before identification by liquid chromatography–MS/MS. Using these probes, we define an ART proteome that shows alkylated targets in the glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, processes essential for parasite survival. This work reveals the pleiotropic nature of the biological functions targeted by this important class of antimalarial drugs. PMID:26858419

  19. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7.

    PubMed

    Ismail, Hanafy M; Barton, Victoria; Phanchana, Matthew; Charoensutthivarakul, Sitthivut; Wong, Michael H L; Hemingway, Janet; Biagini, Giancarlo A; O'Neill, Paul M; Ward, Stephen A

    2016-02-23

    The artemisinin (ART)-based antimalarials have contributed significantly to reducing global malaria deaths over the past decade, but we still do not know how they kill parasites. To gain greater insight into the potential mechanisms of ART drug action, we developed a suite of ART activity-based protein profiling probes to identify parasite protein drug targets in situ. Probes were designed to retain biological activity and alkylate the molecular target(s) of Plasmodium falciparum 3D7 parasites in situ. Proteins tagged with the ART probe can then be isolated using click chemistry before identification by liquid chromatography-MS/MS. Using these probes, we define an ART proteome that shows alkylated targets in the glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, processes essential for parasite survival. This work reveals the pleiotropic nature of the biological functions targeted by this important class of antimalarial drugs. PMID:26858419

  20. Stress and sex in malaria parasites

    PubMed Central

    Carter, Lucy M.; Kafsack, Björn F.C.; Llinás, Manuel; Mideo, Nicole; Pollitt, Laura C.; Reece, Sarah E.

    2013-01-01

    For vector-borne parasites such as malaria, how within- and between-host processes interact to shape transmission is poorly understood. In the host, malaria parasites replicate asexually but for transmission to occur, specialized sexual stages (gametocytes) must be produced. Despite the central role that gametocytes play in disease transmission, explanations of why parasites adjust gametocyte production in response to in-host factors remain controversial. We propose that evolutionary theory developed to explain variation in reproductive effort in multicellular organisms, provides a framework to understand gametocyte investment strategies. We examine why parasites adjust investment in gametocytes according to the impact of changing conditions on their in-host survival. We then outline experiments required to determine whether plasticity in gametocyte investment enables parasites to maintain fitness in a variable environment. Gametocytes are a target for anti-malarial transmission-blocking interventions so understanding plasticity in investment is central to maximizing the success of control measures in the face of parasite evolution. PMID:24481194

  1. Targeting Human Transmission Biology for Malaria Elimination

    PubMed Central

    Buckee, Caroline; Marti, Matthias

    2015-01-01

    Malaria remains one of the leading causes of death worldwide, despite decades of public health efforts. The recent commitment by many endemic countries to eliminate malaria marks a shift away from programs aimed at controlling disease burden towards one that emphasizes reducing transmission of the most virulent human malaria parasite, Plasmodium falciparum. Gametocytes, the only developmental stage of malaria parasites able to infect mosquitoes, have remained understudied, as they occur in low numbers, do not cause disease, and are difficult to detect in vivo by conventional methods. Here, we review the transmission biology of P. falciparum gametocytes, featuring important recent discoveries of genes affecting parasite commitment to gametocyte formation, microvesicles enabling parasites to communicate with each other, and the anatomical site where immature gametocytes develop. We propose potential parasite targets for future intervention and highlight remaining knowledge gaps. PMID:26086192

  2. Malaria Parasites Produce Volatile Mosquito Attractants

    PubMed Central

    Kelly, Megan; Su, Chih-Ying; Schaber, Chad; Crowley, Jan R.; Hsu, Fong-Fu; Carlson, John R.

    2015-01-01

    ABSTRACT The malaria parasite Plasmodium falciparum contains a nonphotosynthetic plastid organelle that possesses plant-like metabolic pathways. Plants use the plastidial isoprenoid biosynthesis pathway to produce volatile odorants, known as terpenes. In this work, we describe the volatile chemical profile of cultured malaria parasites. Among the identified compounds are several plant-like terpenes and terpene derivatives, including known mosquito attractants. We establish the molecular identity of the odorant receptors of the malaria mosquito vector Anopheles gambiae, which responds to these compounds. The malaria parasite produces volatile signals that are recognized by mosquitoes and may thereby mediate host attraction and facilitate transmission. PMID:25805727

  3. Mobile phones and malaria: modeling human and parasite travel

    PubMed Central

    Buckee, Caroline O.; Wesolowski, Amy; Eagle, Nathan; Hansen, Elsa; Snow, Robert W.

    2013-01-01

    Human mobility plays an important role in the dissemination of malaria parasites between regions of variable transmission intensity. Asymptomatic individuals can unknowingly carry parasites to regions where mosquito vectors are available, for example, undermining control programs and contributing to transmission when they travel. Understanding how parasites are imported between regions in this way is therefore an important goal for elimination planning and the control of transmission, and would enable control programs to target the principal sources of malaria. Measuring human mobility has traditionally been difficult to do on a population scale, but the widespread adoption of mobile phones in low-income settings presents a unique opportunity to directly measure human movements that are relevant to the spread of malaria. Here, we discuss the opportunities for measuring human mobility using data from mobile phones, as well as some of the issues associated with combining mobility estimates with malaria infection risk maps to meaningfully estimate routes of parasite importation. PMID:23478045

  4. Preferential targeting of human erythrocytes infected with the malaria parasite Plasmodium falciparumvia hexose transporter surface proteins.

    PubMed

    Heikham, Kajal Devi; Gupta, Ankit; Kumar, Ambrish; Singh, Chandan; Saxena, Juhi; Srivastava, Kumkum; Puri, Sunil K; Dwivedi, Anil K; Habib, Saman; Misra, Amit

    2015-04-10

    Glucose uptake by Plasmodium-infected erythrocytes (RBC) is higher compared to uninfected RBC. Glucose is transported across the cell membrane by transporter proteins. Particles of median size 146.3±18.7 nm, containing anti-malarial agents in corn starch were prepared for investigating: (a) whether the glucose moiety in starch targets RBC via hexose transporter(s), (b) whether there are differences in the extent of targeting to uninfected RBC versus infected RBC (iRBC) in view of higher cell surface density of these proteins on iRBC and (c) whether targeting provides enhanced efficacy against P. falciparum in comparison to drugs in solution. Binding of these particles to RBC was target-specific, since it could be blocked by phloretin, an inhibitor of glucose transporters (GLUT), or competed out in a dose-dependent manner with d-glucose in a flow cytometry assay. Significant (P=0.048, t-test) differences in extent of targeting to iRBC versus RBC were observed in flow cytometry. CDRI 97/63 incorporated in particles was 63% more efficacious than its solution at 250 ng/ml, while quinine was 20% more efficacious at 6.25 ng/ml in a SYBR Green incorporation assay. Preferential targeting of iRBC using an inexpensive excipient promises advantages in terms of dose reduction and toxicity alleviation. PMID:25666024

  5. Protein S-Glutathionylation in Malaria Parasites

    PubMed Central

    Kehr, Sebastian; Jortzik, Esther; Delahunty, Claire; Yates, John R.; Rahlfs, Stefan

    2011-01-01

    Abstract Aims: Protein S-glutathionylation is a widely distributed post-translational modification of thiol groups with glutathione that can function as a redox-sensitive switch to mediate redox regulation and signal transduction. The malaria parasite Plasmodium falciparum is exposed to intense oxidative stress and possesses the enzymatic system required to regulate protein S-glutathionylation, but despite its potential importance, protein S-glutathionylation has not yet been studied in malaria parasites. In this work we applied a method based on enzymatic deglutathionylation, affinity purification of biotin-maleimide-tagged proteins, and proteomic analyses to characterize the Plasmodium glutathionylome. Results: We identified 493 targets of protein S-glutathionylation in Plasmodium. Functional profiles revealed that the targets are components of central metabolic pathways, such as nitrogen compound metabolism and protein metabolism. Fifteen identified proteins with important functions in metabolic pathways (thioredoxin reductase, thioredoxin, thioredoxin peroxidase 1, glutathione reductase, glutathione S-transferase, plasmoredoxin, mitochondrial dihydrolipoamide dehydrogenase, glutamate dehydrogenase 1, glyoxalase I and II, ornithine δ-aminotransferase, lactate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase [GAPDH], pyruvate kinase [PK], and phosphoglycerate mutase) were further analyzed to study their ability to form mixed disulfides with glutathione. We demonstrate that P. falciparum GAPDH, PK, and ornithine δ-aminotransferase are reversibly inhibited by S-glutathionylation. Further, we provide evidence that not only P. falciparum glutaredoxin 1, but also thioredoxin 1 and plasmoredoxin are able to efficiently catalyze protein deglutathionylation. Innovation: We used an affinity-purification based proteomic approach to characterize the Plasmodium glutathionylome. Conclusion: Our results indicate a wide regulative use of S-glutathionylation in the

  6. Biliverdin targets enolase and eukaryotic initiation factor 2 (eIF2α) to reduce the growth of intraerythrocytic development of the malaria parasite Plasmodium falciparum

    PubMed Central

    Alves, Eduardo; Maluf, Fernando V.; Bueno, Vânia B.; Guido, Rafael V. C.; Oliva, Glaucius; Singh, Maneesh; Scarpelli, Pedro; Costa, Fahyme; Sartorello, Robson; Catalani, Luiz H.; Brady, Declan; Tewari, Rita; Garcia, Celia R. S.

    2016-01-01

    In mammals, haem degradation to biliverdin (BV) through the action of haem oxygenase (HO) is a critical step in haem metabolism. The malaria parasite converts haem into the chemically inert haemozoin to avoid toxicity. We discovered that the knock-out of HO in P. berghei is lethal; therefore, we investigated the function of biliverdin (BV) and haem in the parasite. Addition of external BV and haem to P. falciparum-infected red blood cell (RBC) cultures delays the progression of parasite development. The search for a BV molecular target within the parasites identified P. falciparum enolase (Pf enolase) as the strongest candidate. Isothermal titration calorimetry using recombinant full-length Plasmodium enolase suggested one binding site for BV. Kinetic assays revealed that BV is a non-competitive inhibitor. We employed molecular modelling studies to predict the new binding site as well as the binding mode of BV to P. falciparum enolase. Furthermore, addition of BV and haem targets the phosphorylation of Plasmodium falciparum eIF2α factor, an eukaryotic initiation factor phosphorylated by eIF2α kinases under stress conditions. We propose that BV targets enolase to reduce parasite glycolysis rates and changes the eIF2α phosphorylation pattern as a molecular mechanism for its action. PMID:26915471

  7. The interplay between drug resistance and fitness in malaria parasites

    PubMed Central

    Rosenthal, Philip J.

    2013-01-01

    Summary Controlling the spread of antimalarial drug resistance, especially resistance of Plasmodium falciparum to artemisinin-based combination therapies, is a high priority. Available data indicate that, as with other microorganisms, the spread of drug-resistant malaria parasites is limited by fitness costs that frequently accompany resistance. Resistance-mediating polymorphisms in malaria parasites have been identified in putative drug transporters and in target enzymes. The impacts of these polymorphisms on parasite fitness have been characterized in vitro and in animal models. Additional insights have come from analyses of samples from clinical studies, both evaluating parasites under different selective pressures and determining the clinical consequences of infection with different parasites. With some exceptions, resistance-mediating polymorphisms lead to malaria parasites that, compared to wild type, grow less well in culture and in animals, and are replaced by wild type when drug pressure diminishes in the clinical setting. In some cases, the fitness costs of resistance may be offset by compensatory mutations that increase virulence or changes that enhance malaria transmission. However, not enough is known about effects of resistance mediators on parasite fitness. A better appreciation of the costs of fitness-mediating mutations will facilitate the development of optimal guidelines for the treatment and prevention of malaria. PMID:23899091

  8. Active migration and passive transport of malaria parasites.

    PubMed

    Douglas, Ross G; Amino, Rogerio; Sinnis, Photini; Frischknecht, Freddy

    2015-08-01

    Malaria parasites undergo a complex life cycle between their hosts and vectors. During this cycle the parasites invade different types of cells, migrate across barriers, and transfer from one host to another. Recent literature hints at a misunderstanding of the difference between active, parasite-driven migration and passive, circulation-driven movement of the parasite or parasite-infected cells in the various bodily fluids of mosquito and mammalian hosts. Because both active migration and passive transport could be targeted in different ways to interfere with the parasite, a distinction between the two ways the parasite uses to get from one location to another is essential. We discuss the two types of motion needed for parasite dissemination and elaborate on how they could be targeted by future vaccines or drugs. PMID:26001482

  9. The rediscovery of malaria parasites of ungulates.

    PubMed

    Templeton, Thomas J; Martinsen, Ellen; Kaewthamasorn, Morakot; Kaneko, Osamu

    2016-10-01

    Over a hundred years since their first description in 1913, the sparsely described malaria parasites (genus Plasmodium) of ungulates have been rediscovered using molecular typing techniques. In the span of weeks, three studies have appeared describing the genetic characterization and phylogenetic analyses of malaria parasites from African antelope (Cephalophus spp.) and goat (Capra aegagrus hircus), Asian water buffalo (Bubalus bubalis), and North American white-tailed deer (Odocoileus virginianus). Here we unify the contributions from those studies with the literature on pre-molecular characterizations of ungulate malaria parasites, which are largely based on surveys of Giemsa-reagent stained blood smears. We present a phylogenetic tree generated from all available ungulate malaria parasite sequence data, and show that parasites from African duiker antelope and goat, Asian water buffalo and New World white-tailed deer group together in a clade, which branches early in Plasmodium evolution. Anopheline mosquitoes appear to be the dominant, if not sole vectors for parasite transmission. We pose questions for future phylogenetic studies, and discuss topics that we hope will spur further molecular and cellular studies of ungulate malaria parasites. PMID:27444556

  10. Malaria

    MedlinePlus

    Quartan malaria; Falciparum malaria; Biduoterian fever; Blackwater fever; Tertian malaria; Plasmodium ... Malaria is caused by a parasite that is passed to humans by the bite of infected Anopheles ...

  11. Predicting optimal transmission investment in malaria parasites.

    PubMed

    Greischar, Megan A; Mideo, Nicole; Read, Andrew F; Bjørnstad, Ottar N

    2016-07-01

    In vertebrate hosts, malaria parasites face a tradeoff between replicating and the production of transmission stages that can be passed onto mosquitoes. This tradeoff is analogous to growth-reproduction tradeoffs in multicellular organisms. We use a mathematical model tailored to the life cycle and dynamics of malaria parasites to identify allocation strategies that maximize cumulative transmission potential to mosquitoes. We show that plastic strategies can substantially outperform fixed allocation because parasites can achieve greater fitness by investing in proliferation early and delaying the production of transmission stages. Parasites should further benefit from restraining transmission investment later in infection, because such a strategy can help maintain parasite numbers in the face of resource depletion. Early allocation decisions are predicted to have the greatest impact on parasite fitness. If the immune response saturates as parasite numbers increase, parasites should benefit from even longer delays prior to transmission investment. The presence of a competing strain selects for consistently lower levels of transmission investment and dramatically increased exploitation of the red blood cell resource. While we provide a detailed analysis of tradeoffs pertaining to malaria life history, our approach for identifying optimal plastic allocation strategies may be broadly applicable. PMID:27271841

  12. Malaria selectively targets pregnancy receptors.

    PubMed

    Chishti, Athar H

    2015-01-01

    In this issue of Blood, Rieger et al show that malaria parasite infiltration in the human placenta requires a specific geometry and affinity of host receptors to facilitate strong adhesion. PMID:25573970

  13. The distinct proteome of placental malaria parasites.

    SciTech Connect

    Fried, Michal; Hixson, Kim K.; Anderson, Lori; Ogata, Yuko; Mutabingwa, Theonest K.; Duffy, Patrick E.

    2007-09-01

    Malaria proteins expressed on the surface of Plasmodium falciparum infected erythrocytes (IE) mediate adhesion and are targeted by protective immune responses. During pregnancy, IE sequester in the placenta. Placental IE bind to the molecule chondroitin sulfate A (CSA) and preferentially transcribe the gene that encodes VAR2CSA, a member of the PfEMP1 variant surface antigen family. Over successive pregnancies women develop specific immunity to CSA-binding IE and antibodies to VAR2CSA. We used tandem mass spectrometry together with accurate mass and time tag technology to study IE membrane fractions of placental parasites. VAR2CSA peptides were detected in placental IE and in IE from children, but the MC variant of VAR2CSA was specifically associated with placental IE. We identified six conserved hypothetical proteins with putative TM or signal peptides that were exclusively expressed by the placental IE, and 11 such proteins that were significantly more abundant in placental IE. One of these hypothetical proteins, PFI1785w, is a 42kDa molecule detected by Western blot in parasites infecting pregnant women but not those infecting children.

  14. Rationale for the Coadministration of Albendazole and Ivermectin to Humans for Malaria Parasite Transmission Control

    PubMed Central

    Kobylinski, Kevin C.; Alout, Haoues; Foy, Brian D.; Clements, Archie; Adisakwattana, Poom; Swierczewski, Brett E.; Richardson, Jason H.

    2014-01-01

    Recently there have been calls for the eradication of malaria and the elimination of soil-transmitted helminths (STHs). Malaria and STHs overlap in distribution, and STH infections are associated with increased risk for malaria. Indeed, there is evidence that suggests that STH infection may facilitate malaria transmission. Malaria and STH coinfection may exacerbate anemia, especially in pregnant women, leading to worsened child development and more adverse pregnancy outcomes than these diseases would cause on their own. Ivermectin mass drug administration (MDA) to humans for malaria parasite transmission suppression is being investigated as a potential malaria elimination tool. Adding albendazole to ivermectin MDAs would maximize effects against STHs. A proactive, integrated control platform that targets malaria and STHs would be extremely cost-effective and simultaneously reduce human suffering caused by multiple diseases. This paper outlines the benefits of adding albendazole to ivermectin MDAs for malaria parasite transmission suppression. PMID:25070998

  15. Rationale for the coadministration of albendazole and ivermectin to humans for malaria parasite transmission control.

    PubMed

    Kobylinski, Kevin C; Alout, Haoues; Foy, Brian D; Clements, Archie; Adisakwattana, Poom; Swierczewski, Brett E; Richardson, Jason H

    2014-10-01

    Recently there have been calls for the eradication of malaria and the elimination of soil-transmitted helminths (STHs). Malaria and STHs overlap in distribution, and STH infections are associated with increased risk for malaria. Indeed, there is evidence that suggests that STH infection may facilitate malaria transmission. Malaria and STH coinfection may exacerbate anemia, especially in pregnant women, leading to worsened child development and more adverse pregnancy outcomes than these diseases would cause on their own. Ivermectin mass drug administration (MDA) to humans for malaria parasite transmission suppression is being investigated as a potential malaria elimination tool. Adding albendazole to ivermectin MDAs would maximize effects against STHs. A proactive, integrated control platform that targets malaria and STHs would be extremely cost-effective and simultaneously reduce human suffering caused by multiple diseases. This paper outlines the benefits of adding albendazole to ivermectin MDAs for malaria parasite transmission suppression. PMID:25070998

  16. Structural and functional attributes of malaria parasite diadenosine tetraphosphate hydrolase.

    PubMed

    Sharma, Arvind; Yogavel, Manickam; Sharma, Amit

    2016-01-01

    Malaria symptoms are driven by periodic multiplication cycles of Plasmodium parasites in human red blood corpuscles (RBCs). Malaria infection still accounts for ~600,000 annual deaths, and hence discovery of both new drug targets and drugs remains vital. In the present study, we have investigated the malaria parasite enzyme diadenosine tetraphosphate (Ap4A) hydrolase that regulates levels of signalling molecules like Ap4A by hydrolyzing them to ATP and AMP. We have tracked the spatial distribution of parasitic Ap4A hydrolase in infected RBCs, and reveal its unusual localization on the infected RBC membrane in subpopulation of infected cells. Interestingly, enzyme activity assays reveal an interaction between Ap4A hydrolase and the parasite growth inhibitor suramin. We also present a high resolution crystal structure of Ap4A hydrolase in apo- and sulphate- bound state, where the sulphate resides in the enzyme active site by mimicking the phosphate of substrates like Ap4A. The unexpected infected erythrocyte localization of the parasitic Ap4A hydrolase hints at a possible role of this enzyme in purinerigic signaling. In addition, atomic structure of Ap4A hydrolase provides insights for selective drug targeting. PMID:26829485

  17. Structural and functional attributes of malaria parasite diadenosine tetraphosphate hydrolase

    PubMed Central

    Sharma, Arvind; Yogavel, Manickam; Sharma, Amit

    2016-01-01

    Malaria symptoms are driven by periodic multiplication cycles of Plasmodium parasites in human red blood corpuscles (RBCs). Malaria infection still accounts for ~600,000 annual deaths, and hence discovery of both new drug targets and drugs remains vital. In the present study, we have investigated the malaria parasite enzyme diadenosine tetraphosphate (Ap4A) hydrolase that regulates levels of signalling molecules like Ap4A by hydrolyzing them to ATP and AMP. We have tracked the spatial distribution of parasitic Ap4A hydrolase in infected RBCs, and reveal its unusual localization on the infected RBC membrane in subpopulation of infected cells. Interestingly, enzyme activity assays reveal an interaction between Ap4A hydrolase and the parasite growth inhibitor suramin. We also present a high resolution crystal structure of Ap4A hydrolase in apo- and sulphate- bound state, where the sulphate resides in the enzyme active site by mimicking the phosphate of substrates like Ap4A. The unexpected infected erythrocyte localization of the parasitic Ap4A hydrolase hints at a possible role of this enzyme in purinerigic signaling. In addition, atomic structure of Ap4A hydrolase provides insights for selective drug targeting. PMID:26829485

  18. Host-parasite interactions that guide red blood cell invasion by malaria parasites

    PubMed Central

    Paul, Aditya S.; Egan, Elizabeth S.; Duraisingh, Manoj T.

    2015-01-01

    Purpose of Review Malaria is caused by the infection and proliferation of parasites from the genus Plasmodium in red blood cells (RBCs). A free Plasmodium parasite, or merozoite, released from an infected RBC must invade another RBC host cell to sustain a blood-stage infection. Here, we review recent advances on RBC invasion by Plasmodium merozoites, focusing on specific molecular interactions between host and parasite. Recent findings Recent work highlights the central role of host-parasite interactions at virtually every stage of RBC invasion by merozoites. Biophysical experiments have for the first time measured the strength of merozoite-RBC attachment during invasion. For P. falciparum, there have been many key insights regarding the invasion ligand PfRh5 in particular, including its influence on host species tropism, a co-crystal structure with its RBC receptor basigin, and its suitability as a vaccine target. For P. vivax, researchers identified the origin and emergence of the parasite from Africa, demonstrating a natural link to the Duffy-negative RBC variant in African populations. For the simian parasite P. knowlesi, zoonotic invasion into human cells is linked to RBC age, which has implications for parasitemia during an infection and thus malaria. Summary New studies of the molecular and cellular mechanisms governing RBC invasion by Plasmodium parasites have shed light on various aspects of parasite biology and host cell tropism; and indicate opportunities for malaria control. PMID:25767956

  19. Spatial targeting of interventions against malaria.

    PubMed Central

    Carter, R.; Mendis, K. N.; Roberts, D.

    2000-01-01

    Malaria transmission is strongly associated with location. This association has two main features. First, the disease is focused around specific mosquito breeding sites and can normally be transmitted only within certain distances from them: in Africa these are typically between a few hundred metres and a kilometre and rarely exceed 2-3 kilometres. Second, there is a marked clustering of persons with malaria parasites and clinical symptoms at particular sites, usually households. In localities of low endemicity the level of malaria risk or case incidence may vary widely between households because the specific characteristics of houses and their locations affect contact between humans and vectors. Where endemicity is high, differences in human/vector contact rates between different households may have less effect on malaria case incidences. This is because superinfection and exposure-acquired immunity blur the proportional relationship between inoculation rates and case incidences. Accurate information on the distribution of malaria on the ground permits interventions to be targeted towards the foci of transmission and the locations and households of high malaria risk within them. Such targeting greatly increases the effectiveness of control measures. On the other hand, the inadvertent exclusion of these locations causes potentially effective control measures to fail. The computerized mapping and management of location data in geographical information systems should greatly assist the targeting of interventions against malaria at the focal and household levels, leading to improved effectiveness and cost-effectiveness of control. PMID:11196487

  20. Compartmentation of Redox Metabolism in Malaria Parasites

    PubMed Central

    Rahlfs, Stefan; Przyborski, Jude M.; Becker, Katja

    2010-01-01

    Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito – a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes – glutathione reductase and thioredoxin reductase – Plasmodium makes use of alternative-translation-initiation (ATI) to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention. PMID:21203490

  1. Compartmentation of redox metabolism in malaria parasites.

    PubMed

    Kehr, Sebastian; Sturm, Nicole; Rahlfs, Stefan; Przyborski, Jude M; Becker, Katja

    2010-01-01

    Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito - a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes--glutathione reductase and thioredoxin reductase--Plasmodium makes use of alternative-translation-initiation (ATI) to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention. PMID:21203490

  2. PI4 Kinase Is a Prophylactic but Not Radical Curative Target in Plasmodium vivax-Type Malaria Parasites

    PubMed Central

    Zeeman, Anne-Marie; Lakshminarayana, Suresh B.; van der Werff, Nicole; Klooster, Els J.; Voorberg-van der Wel, Annemarie; Kondreddi, Ravinder R.; Bodenreider, Christophe; Simon, Oliver; Sauerwein, Robert; Yeung, Bryan K. S.

    2016-01-01

    Two Plasmodium PI4 kinase (PI4K) inhibitors, KDU691 and LMV599, were selected for in vivo testing as causal prophylactic and radical-cure agents for Plasmodium cynomolgi sporozoite-infected rhesus macaques, based on their in vitro activity against liver stages. Animals were infected with P. cynomolgi sporozoites, and compounds were dosed orally. Both the KDU691 and LMV599 compounds were fully protective when administered prophylactically, and the more potent compound LMV599 achieved protection as a single oral dose of 25 mg/kg of body weight. In contrast, when tested for radical cure, five daily doses of 20 mg/kg of KDU691 or 25 mg/kg of LMV599 did not prevent relapse, as all animals experienced a secondary infection due to the reactivation of hypnozoites in the liver. Pharmacokinetic data show that LMV599 achieved plasma exposure that was sufficient to achieve efficacy based on our in vitro data. These findings indicate that Plasmodium PI4K is a potential drug target for malaria prophylaxis but not radical cure. Longer in vitro culture systems will be required to assess these compounds' activity on established hypnozoites and predict radical cure in vivo. PMID:26926645

  3. The machinery underlying malaria parasite virulence is conserved between rodent and human malaria parasites

    PubMed Central

    De Niz, Mariana; Ullrich, Ann-Katrin; Heiber, Arlett; Blancke Soares, Alexandra; Pick, Christian; Lyck, Ruth; Keller, Derya; Kaiser, Gesine; Prado, Monica; Flemming, Sven; del Portillo, Hernando; Janse, Chris J.; Heussler, Volker; Spielmann, Tobias

    2016-01-01

    Sequestration of red blood cells infected with the human malaria parasite Plasmodium falciparum in organs such as the brain is considered important for pathogenicity. A similar phenomenon has been observed in mouse models of malaria, using the rodent parasite Plasmodium berghei, but it is unclear whether the P. falciparum proteins known to be involved in this process are conserved in the rodent parasite. Here we identify the P. berghei orthologues of two such key factors of P. falciparum, SBP1 and MAHRP1. Red blood cells infected with P. berghei parasites lacking SBP1 or MAHRP1a fail to bind the endothelial receptor CD36 and show reduced sequestration and virulence in mice. Complementation of the mutant P. berghei parasites with the respective P. falciparum SBP1 and MAHRP1 orthologues restores sequestration and virulence. These findings reveal evolutionary conservation of the machinery underlying sequestration of divergent malaria parasites and support the notion that the P. berghei rodent model is an adequate tool for research on malaria virulence. PMID:27225796

  4. The machinery underlying malaria parasite virulence is conserved between rodent and human malaria parasites.

    PubMed

    De Niz, Mariana; Ullrich, Ann-Katrin; Heiber, Arlett; Blancke Soares, Alexandra; Pick, Christian; Lyck, Ruth; Keller, Derya; Kaiser, Gesine; Prado, Monica; Flemming, Sven; Del Portillo, Hernando; Janse, Chris J; Heussler, Volker; Spielmann, Tobias

    2016-01-01

    Sequestration of red blood cells infected with the human malaria parasite Plasmodium falciparum in organs such as the brain is considered important for pathogenicity. A similar phenomenon has been observed in mouse models of malaria, using the rodent parasite Plasmodium berghei, but it is unclear whether the P. falciparum proteins known to be involved in this process are conserved in the rodent parasite. Here we identify the P. berghei orthologues of two such key factors of P. falciparum, SBP1 and MAHRP1. Red blood cells infected with P. berghei parasites lacking SBP1 or MAHRP1a fail to bind the endothelial receptor CD36 and show reduced sequestration and virulence in mice. Complementation of the mutant P. berghei parasites with the respective P. falciparum SBP1 and MAHRP1 orthologues restores sequestration and virulence. These findings reveal evolutionary conservation of the machinery underlying sequestration of divergent malaria parasites and support the notion that the P. berghei rodent model is an adequate tool for research on malaria virulence. PMID:27225796

  5. Discovery of Dual-Stage Malaria Inhibitors with New Targets.

    PubMed

    Raphemot, Rene; Lafuente-Monasterio, Maria J; Gamo-Benito, Francisco Javier; Clardy, Jon; Derbyshire, Emily R

    2015-01-01

    Malaria remains a major global health problem, with more than half of the world population at risk of contracting the disease and nearly a million deaths each year. Here, we report the discovery of inhibitors that target multiple stages of malaria parasite growth. To identify these inhibitors, we took advantage of the Tres Cantos Antimalarial Compound Set (TCAMS) small-molecule library, which is comprised of diverse and potent chemical scaffolds with activities against the blood stage of the malaria parasite, and investigated their effects against the elusive liver stage of the malaria parasite using a forward chemical screen. From a screen of nearly 14,000 compounds, we identified and confirmed 103 compounds as dual-stage malaria inhibitors. Interestingly, these compounds show preferential inhibition of parasite growth in liver- versus blood-stage malaria parasite assays, highlighting the drug susceptibility of this parasite form. Mode-of-action studies were completed using genetically modified and drug-resistant Plasmodium parasite strains. While we identified some compound targets as classical antimalarial pathways, such as the mitochondrial electron transport chain through cytochrome bc1 complex inhibition or the folate biosynthesis pathway, most compounds induced parasite death through as yet unknown mechanisms of action. Importantly, the identification of new chemotypes with different modes of action in killing Plasmodium parasites represents a promising opportunity for probing essential and novel molecular processes that remain to be discovered. The chemical scaffolds identified with activity against drug-resistant Plasmodium parasites represent starting points for dual-stage antimalarial development to surmount the threat of malaria parasite drug resistance. PMID:26666931

  6. Malaria

    PubMed Central

    Suh, Kathryn N.; Kain, Kevin C.; Keystone, Jay S.

    2004-01-01

    Malaria is a parasitic infection of global importance. Although relatively uncommon in developed countries, where the disease occurs mainly in travellers who have returned from endemic regions, it remains one of the most prevalent infections of humans worldwide. In endemic regions, malaria is a significant cause of morbidity and mortality and creates enormous social and economic burdens. Current efforts to control malaria focus on reducing attributable morbidity and mortality. Targeted chemoprophylaxis and use of insecticide-treated bed nets have been successful in some endemic areas. For travellers to malaria-endemic regions, personal protective measures and appropriate chemoprophylaxis can significantly reduce the risk of infection. Prompt evaluation of the febrile traveller, a high degree of suspicion of malaria, rapid and accurate diagnosis, and appropriate antimalarial therapy are essential in order to optimize clinical outcomes of infected patients. Additional approaches to malaria control, including genetic manipulation of mosquitoes and malaria vaccines, are areas of ongoing research. PMID:15159369

  7. Parasite virulence, co-infections and cytokine balance in malaria

    PubMed Central

    Gonçalves, Raquel Müller; Lima, Nathália Ferreira; Ferreira, Marcelo Urbano

    2014-01-01

    Strong early inflammatory responses followed by a timely production of regulatory cytokines are required to control malaria parasite multiplication without inducing major host pathology. Here, we briefly examine the homeostasis of inflammatory responses to malaria parasite species with varying virulence levels and discuss how co-infections with bacteria, viruses, and helminths can modulate inflammation, either aggravating or alleviating malaria-related morbidity. PMID:24854175

  8. Imaging liver-stage malaria parasites.

    PubMed

    Rankin, Kathleen E; Graewe, Stefanie; Heussler, Volker T; Stanway, Rebecca R

    2010-05-01

    Plasmodium parasites, the causative agents of malaria, first invade and develop within hepatocytes before infecting red blood cells and causing symptomatic disease. Because of the low infection rates in vitro and in vivo, the liver stage of Plasmodium infection is not very amenable to biochemical assays, but the large size of the parasite at this stage in comparison with Plasmodium blood stages makes it accessible to microscopic analysis. A variety of imaging techniques has been used to this aim, ranging from electron microscopy to widefield epifluorescence and laser scanning confocal microscopy. High-speed live video microscopy of fluorescent parasites in particular has radically changed our view on key events in Plasmodium liver-stage development. This includes the fate of motile sporozoites inoculated by Anopheles mosquitoes as well as the transport of merozoites within merosomes from the liver tissue into the blood vessel. It is safe to predict that in the near future the application of the latest microscopy techniques in Plasmodium research will bring important insights and allow us spectacular views of parasites during their development in the liver. PMID:20180802

  9. Quantifying Transmission Investment in Malaria Parasites

    PubMed Central

    Greischar, Megan A.; Mideo, Nicole; Read, Andrew F.; Bjørnstad, Ottar N.

    2016-01-01

    Many microparasites infect new hosts with specialized life stages, requiring a subset of the parasite population to forgo proliferation and develop into transmission forms. Transmission stage production influences infectivity, host exploitation, and the impact of medical interventions like drug treatment. Predicting how parasites will respond to public health efforts on both epidemiological and evolutionary timescales requires understanding transmission strategies. These strategies can rarely be observed directly and must typically be inferred from infection dynamics. Using malaria as a case study, we test previously described methods for inferring transmission stage investment against simulated data generated with a model of within-host infection dynamics, where the true transmission investment is known. We show that existing methods are inadequate and potentially very misleading. The key difficulty lies in separating transmission stages produced by different generations of parasites. We develop a new approach that performs much better on simulated data. Applying this approach to real data from mice infected with a single Plasmodium chabaudi strain, we estimate that transmission investment varies from zero to 20%, with evidence for variable investment over time in some hosts, but not others. These patterns suggest that, even in experimental infections where host genetics and other environmental factors are controlled, parasites may exhibit remarkably different patterns of transmission investment. PMID:26890485

  10. Quantifying Transmission Investment in Malaria Parasites.

    PubMed

    Greischar, Megan A; Mideo, Nicole; Read, Andrew F; Bjørnstad, Ottar N

    2016-02-01

    Many microparasites infect new hosts with specialized life stages, requiring a subset of the parasite population to forgo proliferation and develop into transmission forms. Transmission stage production influences infectivity, host exploitation, and the impact of medical interventions like drug treatment. Predicting how parasites will respond to public health efforts on both epidemiological and evolutionary timescales requires understanding transmission strategies. These strategies can rarely be observed directly and must typically be inferred from infection dynamics. Using malaria as a case study, we test previously described methods for inferring transmission stage investment against simulated data generated with a model of within-host infection dynamics, where the true transmission investment is known. We show that existing methods are inadequate and potentially very misleading. The key difficulty lies in separating transmission stages produced by different generations of parasites. We develop a new approach that performs much better on simulated data. Applying this approach to real data from mice infected with a single Plasmodium chabaudi strain, we estimate that transmission investment varies from zero to 20%, with evidence for variable investment over time in some hosts, but not others. These patterns suggest that, even in experimental infections where host genetics and other environmental factors are controlled, parasites may exhibit remarkably different patterns of transmission investment. PMID:26890485

  11. Liver-stage malaria parasites vulnerable to diverse chemical scaffolds

    PubMed Central

    Derbyshire, Emily R.; Prudêncio, Miguel; Mota, Maria M.; Clardy, Jon

    2012-01-01

    Human malaria infection begins with a one-time asymptomatic liver stage followed by a cyclic symptomatic blood stage. All high-throughput malaria drug discovery efforts have focused on the cyclic blood stage, which has limited potential for the prophylaxis, transmission blocking, and eradication efforts that will be needed in the future. To address these unmet needs, a high-throughput phenotypic liver-stage Plasmodium parasite screen was developed to systematically identify molecules with liver-stage efficacy. The screen recapitulates liver-stage infection by isolating luciferase-expressing Plasmodium berghei parasites directly from the salivary glands of infected mosquitoes, adding them to confluent human liver cells in 384-well plates, and measuring luciferase activity after a suitable incubation period. Screening 5,375 known bioactive compounds identified 37 liver-stage malaria inhibitors with diverse modes of action, as shown by inhibition time course experiments. Further analysis of the hits in the Food and Drug Administration-approved drug subset revealed compounds that seem to act specifically on the liver stage of infection, suggesting that this phase of the parasite’s life cycle presents a promising area for new drug discovery. Notably, many active compounds in this screen have molecular structures and putative targets distinctly different from those of known antimalarial agents. PMID:22586124

  12. Malaria vaccines: identifying Plasmodium falciparum liver-stage targets

    PubMed Central

    Longley, Rhea J.; Hill, Adrian V. S.; Spencer, Alexandra J.

    2015-01-01

    The development of a highly efficacious and durable vaccine for malaria remains a top priority for global health researchers. Despite the huge rise in recognition of malaria as a global health problem and the concurrent rise in funding over the past 10–15 years, malaria continues to remain a widespread burden. The evidence of increasing resistance to anti-malarial drugs and insecticides is a growing concern. Hence, an efficacious and durable preventative vaccine for malaria is urgently needed. Vaccines are one of the most cost-effective tools and have successfully been used in the prevention and control of many diseases, however, the development of a vaccine for the Plasmodium parasite has proved difficult. Given the early success of whole sporozoite mosquito-bite delivered vaccination strategies, we know that a vaccine for malaria is an achievable goal, with sub-unit vaccines holding great promise as they are simple and cheap to both manufacture and deploy. However a major difficulty in development of sub-unit vaccines lies within choosing the appropriate antigenic target from the 5000 or so genes expressed by the parasite. Given the liver-stage of malaria represents a bottle-neck in the parasite’s life cycle, there is widespread agreement that a multi-component sub-unit malaria vaccine should preferably contain a liver-stage target. In this article we review progress in identifying and screening Plasmodium falciparum liver-stage targets for use in a malaria vaccine. PMID:26441899

  13. Genome sequence of the human malaria parasite Plasmodium falciparum

    PubMed Central

    Gardner, Malcolm J.; Hall, Neil; Fung, Eula; White, Owen; Berriman, Matthew; Hyman, Richard W.; Carlton, Jane M.; Pain, Arnab; Nelson, Karen E.; Bowman, Sharen; Paulsen, Ian T.; James, Keith; Eisen, Jonathan A.; Rutherford, Kim; Salzberg, Steven L.; Craig, Alister; Kyes, Sue; Chan, Man-Suen; Nene, Vishvanath; Shallom, Shamira J.; Suh, Bernard; Peterson, Jeremy; Angiuoli, Sam; Pertea, Mihaela; Allen, Jonathan; Selengut, Jeremy; Haft, Daniel; Mather, Michael W.; Vaidya, Akhil B.; Martin, David M. A.; Fairlamb, Alan H.; Fraunholz, Martin J.; Roos, David S.; Ralph, Stuart A.; McFadden, Geoffrey I.; Cummings, Leda M.; Subramanian, G. Mani; Mungall, Chris; Venter, J. Craig; Carucci, Daniel J.; Hoffman, Stephen L.; Newbold, Chris; Davis, Ronald W.; Fraser, Claire M.; Barrell, Bart

    2013-01-01

    The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host–parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria. PMID:12368864

  14. Protease-associated cellular networks in malaria parasite Plasmodium falciparum

    PubMed Central

    2011-01-01

    Background Malaria continues to be one of the most severe global infectious diseases, responsible for 1-2 million deaths yearly. The rapid evolution and spread of drug resistance in parasites has led to an urgent need for the development of novel antimalarial targets. Proteases are a group of enzymes that play essential roles in parasite growth and invasion. The possibility of designing specific inhibitors for proteases makes them promising drug targets. Previously, combining a comparative genomics approach and a machine learning approach, we identified the complement of proteases (degradome) in the malaria parasite Plasmodium falciparum and its sibling species [1-3], providing a catalog of targets for functional characterization and rational inhibitor design. Network analysis represents another route to revealing the role of proteins in the biology of parasites and we use this approach here to expand our understanding of the systems involving the proteases of P. falciparum. Results We investigated the roles of proteases in the parasite life cycle by constructing a network using protein-protein association data from the STRING database [4], and analyzing these data, in conjunction with the data from protein-protein interaction assays using the yeast 2-hybrid (Y2H) system [5], blood stage microarray experiments [6-8], proteomics [9-12], literature text mining, and sequence homology analysis. Seventy-seven (77) out of 124 predicted proteases were associated with at least one other protein, constituting 2,431 protein-protein interactions (PPIs). These proteases appear to play diverse roles in metabolism, cell cycle regulation, invasion and infection. Their degrees of connectivity (i.e., connections to other proteins), range from one to 143. The largest protease-associated sub-network is the ubiquitin-proteasome system which is crucial for protein recycling and stress response. Proteases are also implicated in heat shock response, signal peptide processing, cell cycle

  15. A broad analysis of resistance development in the malaria parasite.

    PubMed

    Corey, Victoria C; Lukens, Amanda K; Istvan, Eva S; Lee, Marcus C S; Franco, Virginia; Magistrado, Pamela; Coburn-Flynn, Olivia; Sakata-Kato, Tomoyo; Fuchs, Olivia; Gnädig, Nina F; Goldgof, Greg; Linares, Maria; Gomez-Lorenzo, Maria G; De Cózar, Cristina; Lafuente-Monasterio, Maria Jose; Prats, Sara; Meister, Stephan; Tanaseichuk, Olga; Wree, Melanie; Zhou, Yingyao; Willis, Paul A; Gamo, Francisco-Javier; Goldberg, Daniel E; Fidock, David A; Wirth, Dyann F; Winzeler, Elizabeth A

    2016-01-01

    Microbial resistance to chemotherapy has caused countless deaths where malaria is endemic. Chemotherapy may fail either due to pre-existing resistance or evolution of drug-resistant parasites. Here we use a diverse set of antimalarial compounds to investigate the acquisition of drug resistance and the degree of cross-resistance against common resistance alleles. We assess cross-resistance using a set of 15 parasite lines carrying resistance-conferring alleles in pfatp4, cytochrome bc1, pfcarl, pfdhod, pfcrt, pfmdr, pfdhfr, cytoplasmic prolyl t-RNA synthetase or hsp90. Subsequently, we assess whether resistant parasites can be obtained after several rounds of drug selection. Twenty-three of the 48 in vitro selections result in resistant parasites, with time to resistance onset ranging from 15 to 300 days. Our data indicate that pre-existing resistance may not be a major hurdle for novel-target antimalarial candidates, and focusing our attention on fast-killing compounds may result in a slower onset of clinical resistance. PMID:27301419

  16. A broad analysis of resistance development in the malaria parasite

    PubMed Central

    Corey, Victoria C.; Lukens, Amanda K.; Istvan, Eva S.; Lee, Marcus C. S.; Franco, Virginia; Magistrado, Pamela; Coburn-Flynn, Olivia; Sakata-Kato, Tomoyo; Fuchs, Olivia; Gnädig, Nina F.; Goldgof, Greg; Linares, Maria; Gomez-Lorenzo, Maria G.; De Cózar, Cristina; Lafuente-Monasterio, Maria Jose; Prats, Sara; Meister, Stephan; Tanaseichuk, Olga; Wree, Melanie; Zhou, Yingyao; Willis, Paul A.; Gamo, Francisco-Javier; Goldberg, Daniel E.; Fidock, David A.; Wirth, Dyann F.; Winzeler, Elizabeth A.

    2016-01-01

    Microbial resistance to chemotherapy has caused countless deaths where malaria is endemic. Chemotherapy may fail either due to pre-existing resistance or evolution of drug-resistant parasites. Here we use a diverse set of antimalarial compounds to investigate the acquisition of drug resistance and the degree of cross-resistance against common resistance alleles. We assess cross-resistance using a set of 15 parasite lines carrying resistance-conferring alleles in pfatp4, cytochrome bc1, pfcarl, pfdhod, pfcrt, pfmdr, pfdhfr, cytoplasmic prolyl t-RNA synthetase or hsp90. Subsequently, we assess whether resistant parasites can be obtained after several rounds of drug selection. Twenty-three of the 48 in vitro selections result in resistant parasites, with time to resistance onset ranging from 15 to 300 days. Our data indicate that pre-existing resistance may not be a major hurdle for novel-target antimalarial candidates, and focusing our attention on fast-killing compounds may result in a slower onset of clinical resistance. PMID:27301419

  17. Origin of Robustness in Generating Drug-Resistant Malaria Parasites

    PubMed Central

    Kümpornsin, Krittikorn; Modchang, Charin; Heinberg, Adina; Ekland, Eric H.; Jirawatcharadech, Piyaporn; Chobson, Pornpimol; Suwanakitti, Nattida; Chaotheing, Sastra; Wilairat, Prapon; Deitsch, Kirk W.; Kamchonwongpaisan, Sumalee; Fidock, David A.; Kirkman, Laura A.; Yuthavong, Yongyuth; Chookajorn, Thanat

    2014-01-01

    Biological robustness allows mutations to accumulate while maintaining functional phenotypes. Despite its crucial role in evolutionary processes, the mechanistic details of how robustness originates remain elusive. Using an evolutionary trajectory analysis approach, we demonstrate how robustness evolved in malaria parasites under selective pressure from an antimalarial drug inhibiting the folate synthesis pathway. A series of four nonsynonymous amino acid substitutions at the targeted enzyme, dihydrofolate reductase (DHFR), render the parasites highly resistant to the antifolate drug pyrimethamine. Nevertheless, the stepwise gain of these four dhfr mutations results in tradeoffs between pyrimethamine resistance and parasite fitness. Here, we report the epistatic interaction between dhfr mutations and amplification of the gene encoding the first upstream enzyme in the folate pathway, GTP cyclohydrolase I (GCH1). gch1 amplification confers low level pyrimethamine resistance and would thus be selected for by pyrimethamine treatment. Interestingly, the gch1 amplification can then be co-opted by the parasites because it reduces the cost of acquiring drug-resistant dhfr mutations downstream in the same metabolic pathway. The compensation of compromised fitness by extra GCH1 is an example of how robustness can evolve in a system and thus expand the accessibility of evolutionary trajectories leading toward highly resistant alleles. The evolution of robustness during the gain of drug-resistant mutations has broad implications for both the development of new drugs and molecular surveillance for resistance to existing drugs. PMID:24739308

  18. Expanding the antimalarial toolkit: Targeting host–parasite interactions

    PubMed Central

    Duffy, Patrick E.

    2016-01-01

    Recent successes in malaria control are threatened by drug-resistant Plasmodium parasites and insecticide-resistant Anopheles mosquitoes, and first generation vaccines offer only partial protection. New research approaches have highlighted host as well as parasite molecules or pathways that could be targeted for interventions. In this study, we discuss host–parasite interactions at the different stages of the Plasmodium life cycle within the mammalian host and the potential for therapeutics that prevent parasite migration, invasion, intracellular growth, or egress from host cells, as well as parasite-induced pathology. PMID:26834158

  19. Expanding the antimalarial toolkit: Targeting host-parasite interactions.

    PubMed

    Langhorne, Jean; Duffy, Patrick E

    2016-02-01

    Recent successes in malaria control are threatened by drug-resistant Plasmodium parasites and insecticide-resistant Anopheles mosquitoes, and first generation vaccines offer only partial protection. New research approaches have highlighted host as well as parasite molecules or pathways that could be targeted for interventions. In this study, we discuss host-parasite interactions at the different stages of the Plasmodium life cycle within the mammalian host and the potential for therapeutics that prevent parasite migration, invasion, intracellular growth, or egress from host cells, as well as parasite-induced pathology. PMID:26834158

  20. Diversification and host switching in avian malaria parasites.

    PubMed Central

    Ricklefs, Robert E; Fallon, Sylvia M

    2002-01-01

    The switching of parasitic organisms to novel hosts, in which they may cause the emergence of new diseases, is of great concern to human health and the management of wild and domesticated populations of animals. We used a phylogenetic approach to develop a better statistical assessment of host switching in a large sample of vector-borne malaria parasites of birds (Plasmodium and Haemoproteus) over their history of parasite-host relations. Even with sparse sampling, the number of parasite lineages was almost equal to the number of avian hosts. We found that strongly supported sister lineages of parasites, averaging 1.2% sequence divergence, exhibited highly significant host and geographical fidelity. Event-based matching of host and parasite phylogenetic trees revealed significant cospeciation. However, the accumulated effects of host switching and long distance dispersal cause these signals to disappear before 4% sequence divergence is achieved. Mitochondrial DNA nucleotide substitution appears to occur about three times faster in hosts than in parasites, contrary to findings on other parasite-host systems. Using this mutual calibration, the phylogenies of the parasites and their hosts appear to be similar in age, suggesting that avian malaria parasites diversified along with their modern avian hosts. Although host switching has been a prominent feature over the evolutionary history of avian malaria parasites, it is infrequent and unpredictable on time scales germane to public health and wildlife management. PMID:12028770

  1. In Vitro Analysis of the Interaction between Atovaquone and Proguanil against Liver Stage Malaria Parasites.

    PubMed

    Barata, Lídia; Houzé, Pascal; Boutbibe, Khadija; Zanghi, Gigliola; Franetich, Jean-François; Mazier, Dominique; Clain, Jérôme

    2016-07-01

    The interaction between atovaquone and proguanil has never been studied against liver stage malaria, which is the main target of this drug combination when used for chemoprevention. Using human hepatocytes lacking cytochrome P450 activity, and thus avoiding proguanil metabolizing into potent cycloguanil, we show in vitro that the atovaquone-proguanil combination synergistically inhibits the growth of rodent Plasmodium yoelii parasites. These results provide a pharmacological basis for the high efficacy of atovaquone-proguanil used as malaria chemoprevention. PMID:26926628

  2. Computational microscopic imaging for malaria parasite detection: a systematic review.

    PubMed

    Das, D K; Mukherjee, R; Chakraborty, C

    2015-10-01

    Malaria, being an epidemic disease, demands its rapid and accurate diagnosis for proper intervention. Microscopic image-based characterization of erythrocytes plays an integral role in screening of malaria parasites. In practice, microscopic evaluation of blood smear image is the gold standard for malaria diagnosis; where the pathologist visually examines the stained slide under the light microscope. This visual inspection is subjective, error-prone and time consuming. In order to address such issues, computational microscopic imaging methods have been given importance in recent times in the field of digital pathology. Recently, such quantitative microscopic techniques have rapidly evolved for abnormal erythrocyte detection, segmentation and semi/fully automated classification by minimizing such diagnostic errors for computerized malaria detection. The aim of this paper is to present a review on enhancement, segmentation, microscopic feature extraction and computer-aided classification for malaria parasite detection. PMID:26047029

  3. Targeting Lysine Deacetylases (KDACs) in Parasites

    PubMed Central

    Wang, Qi; Rosa, Bruce A.; Nare, Bakela; Powell, Kerrie; Valente, Sergio; Rotili, Dante; Mai, Antonello; Marshall, Garland R.; Mitreva, Makedonka

    2015-01-01

    Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors) is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs) are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus). Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast) in order to determine potential parasite-versus-host selectivity). The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC inhibitors in

  4. Malaria

    MedlinePlus

    MENU Return to Web version Malaria Overview What is malaria? Malaria is an infection of a part of the blood called the red blood cells. It is ... by mosquitoes that carry a parasite that causes malaria. If a mosquito carrying this parasite bites you, ...

  5. Malaria proteomics: insights into the parasite-host interactions in the pathogenic space.

    PubMed

    Bautista, José M; Marín-García, Patricia; Diez, Amalia; Azcárate, Isabel G; Puyet, Antonio

    2014-01-31

    Proteomics is improving malaria research by providing global information on relevant protein sets from the parasite and the host in connection with its cellular structures and specific functions. In the last decade, reports have described biologically significant elements in the proteome of Plasmodium, which are selectively targeted and quantified, allowing for sensitive and high-throughput comparisons. The identification of molecules by which the parasite and the host react during the malaria infection is crucial to the understanding of the underlying pathogenic mechanisms. Hence, proteomics is playing a major role by defining the elements within the pathogenic space between both organisms that change across the parasite life cycle in association with the host transformation and response. Proteomics has identified post-translational modifications in the parasite and the host that are discussed in terms of functional interactions in malaria parasitism. Furthermore, the contribution of proteomics to the investigation of immunogens for potential vaccine candidates is summarized. The malaria-specific technological advances in proteomics are particularly suited now for identifying host-parasite interactions that could lead to promising targets for therapy, diagnosis or prevention. In this review, we examine the knowledge gained on the biology, pathogenesis, immunity and diagnosis of Plasmodium infection from recent proteomic studies. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. PMID:24140976

  6. Chimpanzee Malaria Parasites Related to Plasmodium ovale in Africa

    PubMed Central

    Duval, Linda; Nerrienet, Eric; Rousset, Dominique; Sadeuh Mba, Serge Alain; Houze, Sandrine; Fourment, Mathieu; Le Bras, Jacques; Robert, Vincent; Ariey, Frederic

    2009-01-01

    Since the 1970's, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes. PMID:19436742

  7. Human C1-Inhibitor Suppresses Malaria Parasite Invasion and Cytoadhesion via Binding to Parasite Glycosylphosphatidylinositol and Host Cell Receptors.

    PubMed

    Mejia, Pedro; Diez-Silva, Monica; Kamena, Faustin; Lu, Fengxin; Fernandes, Stacey M; Seeberger, Peter H; Davis, Alvin E; Mitchell, James R

    2016-01-01

    Plasmodium falciparum-induced severe malaria remains a continuing problem in areas of endemicity, with elevated morbidity and mortality. Drugs targeting mechanisms involved in severe malaria pathology, including cytoadhesion of infected red blood cells (RBCs) to host receptors and production of proinflammatory cytokines, are still necessary. Human C1-inhibitor (C1INH) is a multifunctional protease inhibitor that regulates coagulation, vascular permeability, and inflammation, with beneficial effects in inflammatory disease models, including septic shock. We found that human C1INH, at therapeutically relevant doses, blocks severe malaria pathogenic processes by 2 distinct mechanisms. First, C1INH bound to glycan moieties within P. falciparum glycosylphosphatidylinositol (PfGPI) molecules on the parasite surface, inhibiting parasite RBC invasion and proinflammatory cytokine production by parasite-stimulated monocytes in vitro and reducing parasitemia in a rodent model of experimental cerebral malaria (ECM) in vivo. Second, C1INH bound to host CD36 and chondroitin sulfate A molecules, interfering with cytoadhesion of infected RBCs by competitive binding to these receptors in vitro and reducing sequestration in specific tissues and protecting against ECM in vivo. This study reveals that C1INH is a potential therapeutic antimalarial molecule able to interfere with severe-disease etiology at multiple levels through specific interactions with both parasite PfGPIs and host cell receptors. PMID:26347576

  8. Malaria parasite epigenetics: when virulence and romance collide.

    PubMed

    Flueck, Christian; Baker, David A

    2014-08-13

    Blood-stage malaria parasites evade the immune system by switching the protein exposed at the surface of the infected erythrocyte. A small proportion of these parasites commits to sexual development to mediate mosquito transmission. Two studies in this issue (Brancucci et al., 2014; Coleman et al., 2014) shed light on shared epigenetic machinery underlying both of these events. PMID:25121742

  9. New molecular detection methods of malaria parasites with multiple genes from genomes.

    PubMed

    Gupta, Himanshu; Srivastava, Shikha; Chaudhari, Sima; Vasudevan, Thanvanthri G; Hande, Manjunath H; D'souza, Sydney C; Umakanth, Shashikiran; Satyamoorthy, Kapaettu

    2016-08-01

    For the effective control of malaria, development of sensitive, accurate and rapid tool to diagnose and manage the disease is essential. In humans subjects, the severe form of malaria is caused by Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) and there is need to identify these parasites in acute, chronic and latent (during and post-infection) stages of the disease. In this study, we report a species specific and sensitive diagnostic method for the detection of Pf and Pv in humans. First, we identified intra and intergenic multiloci short stretch of 152 (PfMLS152) and 110 (PvMLS110) nucleotides which is present up to 44 and 34 times in the genomes of Pf and Pv respectively. We developed the single-step amplification-based method using isolated DNA or from lysed red blood cells for the detection of the two malaria parasites. The limit of detection of real-time polymerase chain reaction based assays were 0.1copyof parasite/μl for PfMLS152 and PvMLS110 target sequences. Next, we have tested 250 clinically suspected cases of malaria to validate the method. Sensitivity and specificity for both targets were 100% compared to the quantitative buffy coat microscopy analysis and real-time PCR (Pf-chloroquine resistance transporter (PfCRT) and Pv-lactate dehydrogenase (PvLDH)) based assays. The sensitivity of microscopy and real-time PCR (PfCRT and PvLDH primers) assays were 80.63%; 95%CI 75.22%-85.31%; p<0.05 and 97.61%; 95%CI 94.50%-99.21%; p<0.05 in detecting malaria infection respectively when compared to PfMLS152 and PvMLS110 targets to identify malaria infection in patients. These improved assays may have potential applications in evaluating malaria in asymptomatic patients, treatment, blood donors and in vaccine studies. PMID:27130076

  10. Malaria

    MedlinePlus

    Malaria is a serious disease caused by a parasite. You get it when an infected mosquito bites you. Malaria is a major cause of death worldwide, but ... at risk. There are four different types of malaria caused by four related parasites. The most deadly ...

  11. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasite Plasmodium knowlesi.

    PubMed

    Moon, Robert W; Sharaf, Hazem; Hastings, Claire H; Ho, Yung Shwen; Nair, Mridul B; Rchiad, Zineb; Knuepfer, Ellen; Ramaprasad, Abhinay; Mohring, Franziska; Amir, Amirah; Yusuf, Noor A; Hall, Joanna; Almond, Neil; Lau, Yee Ling; Pain, Arnab; Blackman, Michael J; Holder, Anthony A

    2016-06-28

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen. PMID:27303038

  12. Predicting and exploring network components involved in pathogenesis in the malaria parasite via novel subnetwork alignments

    PubMed Central

    2015-01-01

    Background Malaria is a major health threat, affecting over 40% of the world's population. The latest report released by the World Health Organization estimated about 207 million cases of malaria infection, and about 627,000 deaths in 2012 alone. During the past decade, new therapeutic targets have been identified and are at various stages of characterization, thanks to the emerging omics-based technologies. However, the mechanism of malaria pathogenesis remains largely unknown. In this paper, we employ a novel neighborhood subnetwork alignment approach to identify network components that are potentially involved in pathogenesis. Results Our module-based subnetwork alignment approach identified 24 functional homologs of pathogenesis-related proteins in the malaria parasite P. falciparum, using the protein-protein interaction networks in Escherichia coli as references. Eighteen out of these 24 proteins are associated with 418 other proteins that are related to DNA replication, transcriptional regulation, translation, signaling, metabolism, cell cycle regulation, as well as cytoadherence and entry to the host. Conclusions The subnetwork alignments and subsequent protein-protein association network mining predicted a group of malarial proteins that may be involved in parasite development and parasite-host interaction, opening a new systems-level view of parasite pathogenesis and virulence. PMID:26100579

  13. An evolutionary perspective on the kinome of malaria parasites.

    PubMed

    Talevich, Eric; Tobin, Andrew B; Kannan, Natarajan; Doerig, Christian

    2012-09-19

    Malaria parasites belong to an ancient lineage that diverged very early from the main branch of eukaryotes. The approximately 90-member plasmodial kinome includes a majority of eukaryotic protein kinases that clearly cluster within the AGC, CMGC, TKL, CaMK and CK1 groups found in yeast, plants and mammals, testifying to the ancient ancestry of these families. However, several hundred millions years of independent evolution, and the specific pressures brought about by first a photosynthetic and then a parasitic lifestyle, led to the emergence of unique features in the plasmodial kinome. These include taxon-restricted kinase families, and unique peculiarities of individual enzymes even when they have homologues in other eukaryotes. Here, we merge essential aspects of all three malaria-related communications that were presented at the Evolution of Protein Phosphorylation meeting, and propose an integrated discussion of the specific features of the parasite's kinome and phosphoproteome. PMID:22889911

  14. Plasmodium knowlesi: the emerging zoonotic malaria parasite.

    PubMed

    Antinori, Spinello; Galimberti, Laura; Milazzo, Laura; Corbellino, Mario

    2013-02-01

    Plasmodium knowlesi was initially identified in the 30s as a natural Plasmodium of Macaca fascicularis monkey also capable of experimentally infecting humans. It gained a relative notoriety in the mid-30s as an alternative to Plasmodium vivax in the treatment of the general paralysis of the insane (neurosyphilis). In 1965 the first natural human infection was described in a US military surveyor coming back from the Pahang jungle of the Malaysian peninsula. P. knowlesi was again brought to the attention of the medical community when in 2004, Balbir Singh and his co-workers reported that about 58% of malaria cases observed in the Kapit district of the Malaysian Borneo were actually caused by P. knowlesi. In the following years several reports showed that P. knowlesi is much more widespread than initially thought with cases reported across Southeast Asia. This infection should also be considered in the differential diagnosis of any febrile travellers coming back from a recent travel to forested areas of Southeast Asia. P. knowlesi can cause severe malaria with a rate of 6-9% and with a case fatality rate of 3%. Respiratory distress, acute renal failure, shock and hyperbilirubinemia are the most frequently observed complications of severe P. knowlesi malaria. Chloroquine is considered the treatment of choice of uncomplicated malaria caused by P. knowlesi. PMID:23088834

  15. African origin of the malaria parasite Plasmodium vivax

    PubMed Central

    Liu, Weimin; Li, Yingying; Shaw, Katharina S.; Learn, Gerald H.; Plenderleith, Lindsey J.; Malenke, Jordan A.; Sundararaman, Sesh A.; Ramirez, Miguel A.; Crystal, Patricia A.; Smith, Andrew G.; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N.; Speede, Sheri; Sanz, Crickette M.; Morgan, David B.; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Georgiev, Alexander V.; Muller, Martin N.; Piel, Alex K.; Stewart, Fiona A.; Wilson, Michael L.; Pusey, Anne E.; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J.; Nolder, Debbie; Hart, John A.; Hart, Terese B.; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F.; Schneider, Bradley S.; Wolfe, Nathan D.; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Hahn, Beatrice H.; Sharp, Paul M.

    2014-01-01

    Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa. PMID:24557500

  16. Uncovering common principles in protein export of malaria parasites.

    PubMed

    Grüring, Christof; Heiber, Arlett; Kruse, Florian; Flemming, Sven; Franci, Gianluigi; Colombo, Sara F; Fasana, Elisa; Schoeler, Hanno; Borgese, Nica; Stunnenberg, Hendrik G; Przyborski, Jude M; Gilberger, Tim-Wolf; Spielmann, Tobias

    2012-11-15

    For proliferation, the malaria parasite Plasmodium falciparum needs to modify the infected host cell extensively. To achieve this, the parasite exports proteins containing a Plasmodium export element (PEXEL) into the host cell. Phosphatidylinositol-3-phosphate binding and cleavage of the PEXEL are thought to mediate protein export. We show that these requirements can be bypassed, exposing a second level of export control in the N terminus generated after PEXEL cleavage that is sufficient to distinguish exported from nonexported proteins. Furthermore, this region also corresponds to the export domain of a second group of exported proteins lacking PEXELs (PNEPs), indicating shared export properties among different exported parasite proteins. Concordantly, export of both PNEPs and PEXEL proteins depends on unfolding, revealing translocation as a common step in export. However, translocation of transmembrane proteins occurs at the parasite plasma membrane, one step before translocation of soluble proteins, indicating unexpectedly complex translocation events at the parasite periphery. PMID:23159060

  17. Maternally supplied S-acyl-transferase is required for crystalloid organelle formation and transmission of the malaria parasite.

    PubMed

    Santos, Jorge M; Duarte, Neuza; Kehrer, Jessica; Ramesar, Jai; Avramut, M Cristina; Koster, Abraham J; Dessens, Johannes T; Frischknecht, Friedrich; Chevalley-Maurel, Séverine; Janse, Chris J; Franke-Fayard, Blandine; Mair, Gunnar R

    2016-06-28

    Transmission of the malaria parasite from the mammalian host to the mosquito vector requires the formation of adequately adapted parasite forms and stage-specific organelles. Here we show that formation of the crystalloid-a unique and short-lived organelle of the Plasmodium ookinete and oocyst stage required for sporogony-is dependent on the precisely timed expression of the S-acyl-transferase DHHC10. DHHC10, translationally repressed in female Plasmodium berghei gametocytes, is activated translationally during ookinete formation, where the protein is essential for the formation of the crystalloid, the correct targeting of crystalloid-resident protein LAP2, and malaria parasite transmission. PMID:27303037

  18. The development of malaria parasites in the mosquito midgut.

    PubMed

    Bennink, Sandra; Kiesow, Meike J; Pradel, Gabriele

    2016-07-01

    The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take-up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co-adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote-to-ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage. PMID:27111866

  19. Protective efficacy and safety of liver stage attenuated malaria parasites.

    PubMed

    Kumar, Hirdesh; Sattler, Julia Magdalena; Singer, Mirko; Heiss, Kirsten; Reinig, Miriam; Hammerschmidt-Kamper, Christiane; Heussler, Volker; Mueller, Ann-Kristin; Frischknecht, Friedrich

    2016-01-01

    During the clinically silent liver stage of a Plasmodium infection the parasite replicates from a single sporozoite into thousands of merozoites. Infection of humans and rodents with large numbers of sporozoites that arrest their development within the liver can cause sterile protection from subsequent infections. Disruption of genes essential for liver stage development of rodent malaria parasites has yielded a number of attenuated parasite strains. A key question to this end is how increased attenuation relates to vaccine efficacy. Here, we generated rodent malaria parasite lines that arrest during liver stage development and probed the impact of multiple gene deletions on attenuation and protective efficacy. In contrast to P. berghei strain ANKA LISP2(-) or uis3(-) single knockout parasites, which occasionally caused breakthrough infections, the double mutant lacking both genes was completely attenuated even when high numbers of sporozoites were administered. However, different vaccination protocols showed that LISP2(-) parasites protected better than uis3(-) and double mutants. Hence, deletion of several genes can yield increased safety but might come at the cost of protective efficacy. PMID:27241521

  20. Protective efficacy and safety of liver stage attenuated malaria parasites

    PubMed Central

    Kumar, Hirdesh; Sattler, Julia Magdalena; Singer, Mirko; Heiss, Kirsten; Reinig, Miriam; Hammerschmidt-Kamper, Christiane; Heussler, Volker; Mueller, Ann-Kristin; Frischknecht, Friedrich

    2016-01-01

    During the clinically silent liver stage of a Plasmodium infection the parasite replicates from a single sporozoite into thousands of merozoites. Infection of humans and rodents with large numbers of sporozoites that arrest their development within the liver can cause sterile protection from subsequent infections. Disruption of genes essential for liver stage development of rodent malaria parasites has yielded a number of attenuated parasite strains. A key question to this end is how increased attenuation relates to vaccine efficacy. Here, we generated rodent malaria parasite lines that arrest during liver stage development and probed the impact of multiple gene deletions on attenuation and protective efficacy. In contrast to P. berghei strain ANKA LISP2(–) or uis3(–) single knockout parasites, which occasionally caused breakthrough infections, the double mutant lacking both genes was completely attenuated even when high numbers of sporozoites were administered. However, different vaccination protocols showed that LISP2(–) parasites protected better than uis3(–) and double mutants. Hence, deletion of several genes can yield increased safety but might come at the cost of protective efficacy. PMID:27241521

  1. In Vivo Function of PTEX88 in Malaria Parasite Sequestration and Virulence.

    PubMed

    Matz, Joachim M; Ingmundson, Alyssa; Costa Nunes, Jean; Stenzel, Werner; Matuschewski, Kai; Kooij, Taco W A

    2015-06-01

    Malaria pathology is linked to remodeling of red blood cells by eukaryotic Plasmodium parasites. Central to host cell refurbishment is the trafficking of parasite-encoded virulence factors through the Plasmodium translocon of exported proteins (PTEX). Much of our understanding of its function is based on experimental work with cultured Plasmodium falciparum, yet direct consequences of PTEX impairment during an infection remain poorly defined. Using the murine malaria model parasite Plasmodium berghei, it is shown here that efficient sequestration to the pulmonary, adipose, and brain tissue vasculature is dependent on the PTEX components thioredoxin 2 (TRX2) and PTEX88. While TRX2-deficient parasites remain virulent, PTEX88-deficient parasites no longer sequester in the brain, correlating with abolishment of cerebral complications in infected mice. However, an apparent trade-off for virulence attenuation was spleen enlargement, which correlates with a strongly reduced schizont-to-ring-stage transition. Strikingly, general protein export is unaffected in PTEX88-deficient mutants that mature normally in vitro. Thus, PTEX88 is pivotal for tissue sequestration in vivo, parasite virulence, and preventing exacerbation of spleen pathology, but these functions do not correlate with general protein export to the host erythrocyte. The presented data suggest that the protein export machinery of Plasmodium parasites and their underlying mechanistic features are considerably more complex than previously anticipated and indicate challenges for targeted intervention strategies. PMID:25820521

  2. [From malaria parasite point of view--Plasmodium falciparum evolution].

    PubMed

    Zerka, Agata; Kaczmarek, Radosław; Jaśkiewicz, Ewa

    2015-01-01

    Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium, which have arguably exerted the greatest selection pressure on humans in the history of our species. Besides humans, different Plasmodium parasites infect a wide range of animal hosts, from marine invertebrates to primates. On the other hand, individual Plasmodium species show high host specificity. The extraordinary evolution of Plasmodium probably began when a free-living red algae turned parasitic, and culminated with its ability to thrive inside a human red blood cell. Studies on the African apes generated new data on the evolution of malaria parasites in general and the deadliest human-specific species, Plasmodium falciparum, in particular. Initially, it was hypothesized that P. falciparum descended from the chimpanzee malaria parasite P. reichenowi, after the human and the chimp lineage diverged about 6 million years ago. However, a recently identified new species infecting gorillas, unexpectedly showed similarity to P. falciparum and was therefore named P. praefalciparum. That finding spurred an alternative hypothesis, which proposes that P. falciparum descended from its gorilla rather than chimp counterpart. In addition, the gorilla-to-human host shift may have occurred more recently (about 10 thousand years ago) than the theoretical P. falciparum-P. reichenowi split. One of the key aims of the studies on Plasmodium evolution is to elucidate the mechanisms that allow the incessant host shifting and retaining the host specificity, especially in the case of human-specific species. Thorough understanding of these phenomena will be necessary to design effective malaria treatment and prevention strategies. PMID:27259224

  3. Malaria parasite colonisation of the mosquito midgut--placing the Plasmodium ookinete centre stage.

    PubMed

    Angrisano, Fiona; Tan, Yan-Hong; Sturm, Angelika; McFadden, Geoffrey I; Baum, Jake

    2012-05-15

    Vector-borne diseases constitute an enormous burden on public health across the world. However, despite the importance of interactions between infectious pathogens and their respective vector for disease transmission, the biology of the pathogen in the insect is often less well understood than the forms that cause human infections. Even with the global impact of Plasmodium parasites, the causative agents of malarial disease, no vaccine exists to prevent infection and resistance to all frontline drugs is emerging. Malaria parasite migration through the mosquito host constitutes a major population bottleneck of the lifecycle and therefore represents a powerful, although as yet relatively untapped, target for therapeutic intervention. The understanding of parasite-mosquito interactions has increased in recent years with developments in genome-wide approaches, genomics and proteomics. Each development has shed significant light on the biology of the malaria parasite during the mosquito phase of the lifecycle. Less well understood, however, is the process of midgut colonisation and oocyst formation, the precursor to parasite re-infection from the next mosquito bite. Here, we review the current understanding of cellular and molecular events underlying midgut colonisation centred on the role of the motile ookinete. Further insight into the major interactions between the parasite and the mosquito will help support the broader goal to identify targets for transmission-blocking therapies against malarial disease. PMID:22406332

  4. Host Reticulocytes Provide Metabolic Reservoirs That Can Be Exploited by Malaria Parasites

    PubMed Central

    Srivastava, Anubhav; Creek, Darren J.; Evans, Krystal J.; De Souza, David; Schofield, Louis; Müller, Sylke; Barrett, Michael P.; McConville, Malcolm J.; Waters, Andrew P.

    2015-01-01

    Human malaria parasites proliferate in different erythroid cell types during infection. Whilst Plasmodium vivax exhibits a strong preference for immature reticulocytes, the more pathogenic P. falciparum primarily infects mature erythrocytes. In order to assess if these two cell types offer different growth conditions and relate them to parasite preference, we compared the metabolomes of human and rodent reticulocytes with those of their mature erythrocyte counterparts. Reticulocytes were found to have a more complex, enriched metabolic profile than mature erythrocytes and a higher level of metabolic overlap between reticulocyte resident parasite stages and their host cell. This redundancy was assessed by generating a panel of mutants of the rodent malaria parasite P. berghei with defects in intermediary carbon metabolism (ICM) and pyrimidine biosynthesis known to be important for P. falciparum growth and survival in vitro in mature erythrocytes. P. berghei ICM mutants (pbpepc-, phosphoenolpyruvate carboxylase and pbmdh-, malate dehydrogenase) multiplied in reticulocytes and committed to sexual development like wild type parasites. However, P. berghei pyrimidine biosynthesis mutants (pboprt-, orotate phosphoribosyltransferase and pbompdc-, orotidine 5′-monophosphate decarboxylase) were restricted to growth in the youngest forms of reticulocytes and had a severe slow growth phenotype in part resulting from reduced merozoite production. The pbpepc-, pboprt- and pbompdc- mutants retained virulence in mice implying that malaria parasites can partially salvage pyrimidines but failed to complete differentiation to various stages in mosquitoes. These findings suggest that species-specific differences in Plasmodium host cell tropism result in marked differences in the necessity for parasite intrinsic metabolism. These data have implications for drug design when targeting mature erythrocyte or reticulocyte resident parasites. PMID:26042734

  5. Mosquitoes and transmission of malaria parasites – not just vectors

    PubMed Central

    Paul, Richard EL; Diallo, Mawlouth; Brey, Paul T

    2004-01-01

    The regional malaria epidemics of the early 1900s provided the basis for much of our current understanding of malaria epidemiology. Colonel Gill, an eminent malariologist of that time, suggested that the explosive nature of the regional epidemics was due to a sudden increased infectiousness of the adult population. His pertinent observations underlying this suggestion have, however, gone unheeded. Here, the literature on Plasmodium seasonal behaviour is reviewed and three historical data sets, concerning seasonal transmission of Plasmodium falciparum, are examined. It is proposed that the dramatic seasonal increase in the density of uninfected mosquito bites results in an increased infectiousness of the human reservoir of infection and, therefore, plays a key role in "kick-starting" malaria parasite transmission. PMID:15533243

  6. Effects of Malaria Parasite Density on Blood Cell Parameters

    PubMed Central

    Kotepui, Manas; Piwkham, Duangjai; PhunPhuech, Bhukdee; Phiwklam, Nuoil; Chupeerach, Chaowanee; Duangmano, Suwit

    2015-01-01

    Changes in blood cell parameters are already a well-known feature of malarial infections. To add to this information, the objective of this study was to investigate the varying effects that different levels of parasite density have on blood cell parameters. Patients diagnosed with malaria at Phobphra Hospital, Tak Province, Thailand between January 1st 2009 and January 1st 2012 were recruited as subjects for data collection. Blood cell parameters of 2,024 malaria-infected patients were evaluated and statistically analyzed. Neutrophil and platelet counts were significantly higher, however, RBC count was significantly lower in patients with P. falciparum infection compared to those with P. vivax infection (p<0.0001). Leukocyte counts were also significantly higher in patients with high parasitemia compared to those with low and moderate parasitemia. In terms of differential leukocyte count, neutrophil count was significantly higher in patients with high parasitemia compared to those with low and moderate parasitemia (p<0.0001). On the other hand, both lymphocyte and monocyte counts were significantly lower in patients with high parasitemia (p<0.0001). RBC count and Hb concentration, as well as platelet count were also significantly reduced (p<0.05) and (p<0.0001), respectively. To summarize, patients infected with different malaria parasites exhibited important distinctive hematological parameters, with neutrophil and eosinophil counts being the two hematological parameters most affected. In addition, patients infected with different malarial densities also exhibited important changes in leukocyte count, platelet count and hemoglobin concentration during the infection. These findings offer the opportunity to recognize and diagnose malaria related anemia, help support the treatment thereof, as well as relieve symptoms of severe malaria in endemic regions. PMID:25807235

  7. Pellicle formation in the malaria parasite

    PubMed Central

    Kono, Maya; Heincke, Dorothee; Wilcke, Louisa; Wong, Tatianna Wai Ying; Bruns, Caroline; Herrmann, Susann; Spielmann, Tobias; Gilberger, Tim W.

    2016-01-01

    ABSTRACT The intraerythrocytic developmental cycle of Plasmodium falciparum is completed with the release of up to 32 invasive daughter cells, the merozoites, into the blood stream. Before release, the final step of merozoite development is the assembly of the cortical pellicle, a multi-layered membrane structure. This unique apicomplexan feature includes the inner membrane complex (IMC) and the parasite's plasma membrane. A dynamic ring structure, referred to as the basal complex, is part of the IMC and helps to divide organelles and abscises in the maturing daughter cells. Here, we analyze the dynamics of the basal complex of P. falciparum. We report on a novel transmembrane protein of the basal complex termed BTP1, which is specific to the genus Plasmodium. It colocalizes with the known basal complex marker protein MORN1 and shows distinct dynamics as well as localization when compared to other IMC proteins during schizogony. Using a parasite plasma membrane marker cell line, we correlate dynamics of the basal complex with the acquisition of the maternal membrane. We show that plasma membrane invagination and IMC propagation are interlinked during the final steps of cell division. PMID:26763910

  8. Pellicle formation in the malaria parasite.

    PubMed

    Kono, Maya; Heincke, Dorothee; Wilcke, Louisa; Wong, Tatianna Wai Ying; Bruns, Caroline; Herrmann, Susann; Spielmann, Tobias; Gilberger, Tim W

    2016-02-15

    The intraerythrocytic developmental cycle of Plasmodium falciparum is completed with the release of up to 32 invasive daughter cells, the merozoites, into the blood stream. Before release, the final step of merozoite development is the assembly of the cortical pellicle, a multi-layered membrane structure. This unique apicomplexan feature includes the inner membrane complex (IMC) and the parasite's plasma membrane. A dynamic ring structure, referred to as the basal complex, is part of the IMC and helps to divide organelles and abscises in the maturing daughter cells. Here, we analyze the dynamics of the basal complex of P. falciparum. We report on a novel transmembrane protein of the basal complex termed BTP1, which is specific to the genus Plasmodium. It colocalizes with the known basal complex marker protein MORN1 and shows distinct dynamics as well as localization when compared to other IMC proteins during schizogony. Using a parasite plasma membrane marker cell line, we correlate dynamics of the basal complex with the acquisition of the maternal membrane. We show that plasma membrane invagination and IMC propagation are interlinked during the final steps of cell division. PMID:26763910

  9. Parasites

    MedlinePlus

    ... CME and CNE for clinicians... Parasitic Disease and Malaria Strategic Priorities: 2015—2020... Cyclosporiasis: Most U.S. cases ... R S T U V W X Y Z Malaria An ancient disease that affects millions of people ...

  10. Predicting Secretory Proteins of Malaria Parasite by Incorporating Sequence Evolution Information into Pseudo Amino Acid Composition via Grey System Model

    PubMed Central

    Lin, Wei-Zhong; Fang, Jian-An; Xiao, Xuan; Chou, Kuo-Chen

    2012-01-01

    The malaria disease has become a cause of poverty and a major hindrance to economic development. The culprit of the disease is the parasite, which secretes an array of proteins within the host erythrocyte to facilitate its own survival. Accordingly, the secretory proteins of malaria parasite have become a logical target for drug design against malaria. Unfortunately, with the increasing resistance to the drugs thus developed, the situation has become more complicated. To cope with the drug resistance problem, one strategy is to timely identify the secreted proteins by malaria parasite, which can serve as potential drug targets. However, it is both expensive and time-consuming to identify the secretory proteins of malaria parasite by experiments alone. To expedite the process for developing effective drugs against malaria, a computational predictor called “iSMP-Grey” was developed that can be used to identify the secretory proteins of malaria parasite based on the protein sequence information alone. During the prediction process a protein sample was formulated with a 60D (dimensional) feature vector formed by incorporating the sequence evolution information into the general form of PseAAC (pseudo amino acid composition) via a grey system model, which is particularly useful for solving complicated problems that are lack of sufficient information or need to process uncertain information. It was observed by the jackknife test that iSMP-Grey achieved an overall success rate of 94.8%, remarkably higher than those by the existing predictors in this area. As a user-friendly web-server, iSMP-Grey is freely accessible to the public at http://www.jci-bioinfo.cn/iSMP-Grey. Moreover, for the convenience of most experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated mathematical equations involved in this paper. PMID:23189138

  11. Molecular interaction of ferredoxin and ferredoxin-NADP+ reductase from human malaria parasite.

    PubMed

    Kimata-Ariga, Yoko; Saitoh, Takashi; Ikegami, Takahisa; Horii, Toshihiro; Hase, Toshiharu

    2007-12-01

    The malaria parasite possesses plant-type ferredoxin (Fd) and ferredoxin-NADP(+) reductase (FNR) in a plastid-derived organelle called the apicoplast. This Fd/FNR redox system, which potentially provides reducing power for essential biosynthetic pathways in the apicoplast, has been proposed as a target for the development of specific new anti-malarial agents. We studied the molecular interaction of Fd and FNR of human malaria parasite (Plasmodium falciparum), which were produced as recombinant proteins in Escherichia coli. NMR chemical shift perturbation analysis mapped the location of the possible FNR interaction sites on the surface of P. falciparum Fd. Site-specific mutation of acidic Fd residues in these regions and the resulting analyses of electron transfer activity and affinity chromatography of those mutants revealed that two acidic regions (a region including Asp26, Glu29 and Glu34, and the other including Asp65 and Glu66) dominantly contribute to the electrostatic interaction with P. falciparum FNR. The combination of Asp26/Glu29/Glu34 conferred a larger contribution than that of Asp65/Glu66, and among Asp26, Glu29 and Glu34, Glu29 was shown to be the most important residue for the interaction with P. falciparum FNR. These findings provide the basis for understanding molecular recognition between Fd and FNR of the malaria parasite. PMID:17938142

  12. Costs of crowding for the transmission of malaria parasites

    PubMed Central

    Pollitt, Laura C; Churcher, Thomas S; Dawes, Emma J; Khan, Shahid M; Sajid, Mohammed; Basáñez, María-Gloria; Colegrave, Nick; Reece, Sarah E

    2013-01-01

    The utility of using evolutionary and ecological frameworks to understand the dynamics of infectious diseases is gaining increasing recognition. However, integrating evolutionary ecology and infectious disease epidemiology is challenging because within-host dynamics can have counterintuitive consequences for between-host transmission, especially for vector-borne parasites. A major obstacle to linking within- and between-host processes is that the drivers of the relationships between the density, virulence, and fitness of parasites are poorly understood. By experimentally manipulating the intensity of rodent malaria (Plasmodium berghei) infections in Anopheles stephensi mosquitoes under different environmental conditions, we show that parasites experience substantial density-dependent fitness costs because crowding reduces both parasite proliferation and vector survival. We then use our data to predict how interactions between parasite density and vector environmental conditions shape within-vector processes and onward disease transmission. Our model predicts that density-dependent processes can have substantial and unexpected effects on the transmission potential of vector-borne disease, which should be considered in the development and evaluation of transmission-blocking interventions. PMID:23789029

  13. History, Dynamics, and Public Health Importance of Malaria Parasite Resistance

    PubMed Central

    Talisuna, Ambrose O.; Bloland, Peter; D’Alessandro, Umberto

    2004-01-01

    Despite considerable efforts, malaria is still one of the most devastating infectious diseases in the tropics. The rapid spread of antimalarial drug resistance currently compounds this grim picture. In this paper, we review the history of antimalarial drug resistance and the methods for monitoring it and assess the current magnitude and burden of parasite resistance to two commonly used drugs: chloroquine and sulfadoxine-pyrimethamine. Furthermore, we review the factors involved in the emergence and spread of drug resistance and highlight its public health importance. Finally, we discuss ways of dealing with such a problem by using combination therapy and suggest some of the research themes needing urgent answers. PMID:14726463

  14. Electrophysiological studies of malaria parasite-infected erythrocytes: Current status

    PubMed Central

    Staines, Henry M.; Alkhalil, Abdulnaser; Allen, Richard J.; De Jonge, Hugo R.; Derbyshire, Elvira; Egée, Stéphane; Ginsburg, Hagai; Hill, David A.; Huber, Stephan M.; Kirk, Kiaran; Lang, Florian; Lisk, Godfrey; Oteng, Eugene; Pillai, Ajay D.; Rayavara, Kempaiah; Rouhani, Sherin; Saliba, Kevin J.; Shen, Crystal; Solomon, Tsione; Thomas, Serge L. Y.; Verloo, Patrick; Desai, Sanjay A.

    2009-01-01

    The altered permeability characteristics of erythrocytes infected with malaria parasites have been a source of interest for over 30 years. Recent electrophysiological studies have provided strong evidence that these changes reflect transmembrane transport through ion channels in the host erythrocyte plasma membrane. However, conflicting results and differing interpretations of the data have led to confusion in this field. In an effort to unravel these issues, the groups involved recently came together for a week of discussion and experimentation. In this article, the various models for altered transport are reviewed, together with the areas of consensus in the field and those that require a better understanding. PMID:17292372

  15. Comparison of Texture Features Used for Classification of Life Stages of Malaria Parasite

    PubMed Central

    2016-01-01

    Malaria is a vector borne disease widely occurring at equatorial region. Even after decades of campaigning of malaria control, still today it is high mortality causing disease due to improper and late diagnosis. To prevent number of people getting affected by malaria, the diagnosis should be in early stage and accurate. This paper presents an automatic method for diagnosis of malaria parasite in the blood images. Image processing techniques are used for diagnosis of malaria parasite and to detect their stages. The diagnosis of parasite stages is done using features like statistical features and textural features of malaria parasite in blood images. This paper gives a comparison of the textural based features individually used and used in group together. The comparison is made by considering the accuracy, sensitivity, and specificity of the features for the same images in database. PMID:27247560

  16. Ape parasite origins of human malaria virulence genes.

    PubMed

    Larremore, Daniel B; Sundararaman, Sesh A; Liu, Weimin; Proto, William R; Clauset, Aaron; Loy, Dorothy E; Speede, Sheri; Plenderleith, Lindsey J; Sharp, Paul M; Hahn, Beatrice H; Rayner, Julian C; Buckee, Caroline O

    2015-01-01

    Antigens encoded by the var gene family are major virulence factors of the human malaria parasite Plasmodium falciparum, exhibiting enormous intra- and interstrain diversity. Here we use network analysis to show that var architecture and mosaicism are conserved at multiple levels across the Laverania subgenus, based on var-like sequences from eight single-species and three multi-species Plasmodium infections of wild-living or sanctuary African apes. Using select whole-genome amplification, we also find evidence of multi-domain var structure and synteny in Plasmodium gaboni, one of the ape Laverania species most distantly related to P. falciparum, as well as a new class of Duffy-binding-like domains. These findings indicate that the modular genetic architecture and sequence diversity underlying var-mediated host-parasite interactions evolved before the radiation of the Laverania subgenus, long before the emergence of P. falciparum. PMID:26456841

  17. Ape parasite origins of human malaria virulence genes

    PubMed Central

    Larremore, Daniel B.; Sundararaman, Sesh A.; Liu, Weimin; Proto, William R.; Clauset, Aaron; Loy, Dorothy E.; Speede, Sheri; Plenderleith, Lindsey J.; Sharp, Paul M.; Hahn, Beatrice H.; Rayner, Julian C.; Buckee, Caroline O.

    2015-01-01

    Antigens encoded by the var gene family are major virulence factors of the human malaria parasite Plasmodium falciparum, exhibiting enormous intra- and interstrain diversity. Here we use network analysis to show that var architecture and mosaicism are conserved at multiple levels across the Laverania subgenus, based on var-like sequences from eight single-species and three multi-species Plasmodium infections of wild-living or sanctuary African apes. Using select whole-genome amplification, we also find evidence of multi-domain var structure and synteny in Plasmodium gaboni, one of the ape Laverania species most distantly related to P. falciparum, as well as a new class of Duffy-binding-like domains. These findings indicate that the modular genetic architecture and sequence diversity underlying var-mediated host-parasite interactions evolved before the radiation of the Laverania subgenus, long before the emergence of P. falciparum. PMID:26456841

  18. A transcriptional switch underlies commitment to sexual development in malaria parasites.

    PubMed

    Kafsack, Björn F C; Rovira-Graells, Núria; Clark, Taane G; Bancells, Cristina; Crowley, Valerie M; Campino, Susana G; Williams, April E; Drought, Laura G; Kwiatkowski, Dominic P; Baker, David A; Cortés, Alfred; Llinás, Manuel

    2014-03-13

    The life cycles of many parasites involve transitions between disparate host species, requiring these parasites to go through multiple developmental stages adapted to each of these specialized niches. Transmission of malaria parasites (Plasmodium spp.) from humans to the mosquito vector requires differentiation from asexual stages replicating within red blood cells into non-dividing male and female gametocytes. Although gametocytes were first described in 1880, our understanding of the molecular mechanisms involved in commitment to gametocyte formation is extremely limited, and disrupting this critical developmental transition remains a long-standing goal. Here we show that expression levels of the DNA-binding protein PfAP2-G correlate strongly with levels of gametocyte formation. Using independent forward and reverse genetics approaches, we demonstrate that PfAP2-G function is essential for parasite sexual differentiation. By combining genome-wide PfAP2-G cognate motif occurrence with global transcriptional changes resulting from PfAP2-G ablation, we identify early gametocyte genes as probable targets of PfAP2-G and show that their regulation by PfAP2-G is critical for their wild-type level expression. In the asexual blood-stage parasites pfap2-g appears to be among a set of epigenetically silenced loci prone to spontaneous activation. Stochastic activation presents a simple mechanism for a low baseline of gametocyte production. Overall, these findings identify PfAP2-G as a master regulator of sexual-stage development in malaria parasites and mark the first discovery of a transcriptional switch controlling a differentiation decision in protozoan parasites. PMID:24572369

  19. A transcriptional switch underlies commitment to sexual development in human malaria parasites

    PubMed Central

    Kafsack, Björn F.C.; Rovira-Graells, Núria; Clark, Taane G.; Bancells, Cristina; Crowley, Valerie M.; Campino, Susana G.; Williams, April E.; Drought, Laura G.; Kwiatkowski, Dominic P.; Baker, David A.; Cortés, Alfred; Llinás, Manuel

    2014-01-01

    The life cycles of many parasites involve transitions between disparate host species, requiring these parasites to go through multiple developmental stages adapted to each of these specialized niches. Transmission of malaria parasites (Plasmodium spp.) from humans to the mosquito vector requires differentiation from asexual stages replicating within red blood cells into non-dividing male and female gametocytes. Although gametocytes were first described in 1880, our understanding of the molecular mechanisms involved in commitment to gametocyte formation is extremely limited and disrupting this critical developmental transition remains a long-standing goal1. We show here that expression levels of the DNA-binding protein PfAP2-G correlate strongly with levels of gametocyte formation. Using independent forward and reverse genetics approaches, we demonstrate that PfAP2-G function is essential for parasite sexual differentiation. By combining genome-wide PfAP2-G cognate motif occurrence with global transcriptional changes resulting from PfAP2-G ablation, we identify early gametocyte genes as likely targets of PfAP2-G and show that their regulation by PfAP2-G is critical for their wild-type level expression. In the asexual blood-stage parasites pfap2-g appears to be among a set of epigenetically silenced loci2,3 prone to spontaneous activation4. Stochastic activation presents a simple mechanism for a low baseline of gametocyte production. Overall, these findings identify PfAP2-G as a master regulator of sexual-stage development in malaria parasites and mark the first identification of a transcriptional switch controlling a differentiation decision in protozoan parasites. PMID:24572369

  20. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome

    PubMed Central

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2. PMID:26466097

  1. Molecular Mechanisms for Drug Hypersensitivity Induced by the Malaria Parasite's Chloroquine Resistance Transporter.

    PubMed

    Richards, Sashika N; Nash, Megan N; Baker, Eileen S; Webster, Michael W; Lehane, Adele M; Shafik, Sarah H; Martin, Rowena E

    2016-07-01

    Mutations in the Plasmodium falciparum 'chloroquine resistance transporter' (PfCRT) confer resistance to chloroquine (CQ) and related antimalarials by enabling the protein to transport these drugs away from their targets within the parasite's digestive vacuole (DV). However, CQ resistance-conferring isoforms of PfCRT (PfCRTCQR) also render the parasite hypersensitive to a subset of structurally-diverse pharmacons. Moreover, mutations in PfCRTCQR that suppress the parasite's hypersensitivity to these molecules simultaneously reinstate its sensitivity to CQ and related drugs. We sought to understand these phenomena by characterizing the functions of PfCRTCQR isoforms that cause the parasite to become hypersensitive to the antimalarial quinine or the antiviral amantadine. We achieved this by measuring the abilities of these proteins to transport CQ, quinine, and amantadine when expressed in Xenopus oocytes and complemented this work with assays that detect the drug transport activity of PfCRT in its native environment within the parasite. Here we describe two mechanistic explanations for PfCRT-induced drug hypersensitivity. First, we show that quinine, which normally accumulates inside the DV and therewithin exerts its antimalarial effect, binds extremely tightly to the substrate-binding site of certain isoforms of PfCRTCQR. By doing so it likely blocks the normal physiological function of the protein, which is essential for the parasite's survival, and the drug thereby gains an additional killing effect. In the second scenario, we show that although amantadine also sequesters within the DV, the parasite's hypersensitivity to this drug arises from the PfCRTCQR-mediated transport of amantadine from the DV into the cytosol, where it can better access its antimalarial target. In both cases, the mutations that suppress hypersensitivity also abrogate the ability of PfCRTCQR to transport CQ, thus explaining why rescue from hypersensitivity restores the parasite

  2. Direct Tests of Enzymatic Heme Degradation by the Malaria Parasite Plasmodium falciparum*

    PubMed Central

    Sigala, Paul A.; Crowley, Jan R.; Hsieh, Samantha; Henderson, Jeffrey P.; Goldberg, Daniel E.

    2012-01-01

    Malaria parasites generate vast quantities of heme during blood stage infection via hemoglobin digestion and limited de novo biosynthesis, but it remains unclear if parasites metabolize heme for utilization or disposal. Recent in vitro experiments with a heme oxygenase (HO)-like protein from Plasmodium falciparum suggested that parasites may enzymatically degrade some heme to the canonical HO product, biliverdin (BV), or its downstream metabolite, bilirubin (BR). To directly test for BV and BR production by P. falciparum parasites, we DMSO-extracted equal numbers of infected and uninfected erythrocytes and developed a sensitive LC-MS/MS assay to quantify these tetrapyrroles. We found comparable low levels of BV and BR in both samples, suggesting the absence of HO activity in parasites. We further tested live parasites by targeted expression of a fluorescent BV-binding protein within the parasite cytosol, mitochondrion, and plant-like plastid. This probe could detect exogenously added BV but gave no signal indicative of endogenous BV production within parasites. Finally, we recombinantly expressed and tested the proposed heme degrading activity of the HO-like protein, PfHO. Although PfHO bound heme and protoporphyrin IX with modest affinity, it did not catalyze heme degradation in vivo within bacteria or in vitro in UV absorbance and HPLC assays. These observations are consistent with PfHO's lack of a heme-coordinating His residue and suggest an alternative function within parasites. We conclude that P. falciparum parasites lack a canonical HO pathway for heme degradation and thus rely fully on alternative mechanisms for heme detoxification and iron acquisition during blood stage infection. PMID:22992734

  3. Geometrical model for malaria parasite migration in structured environments

    NASA Astrophysics Data System (ADS)

    Battista, Anna; Frischknecht, Friedrich; Schwarz, Ulrich S.

    2014-10-01

    Malaria is transmitted to vertebrates via a mosquito bite, during which rodlike and crescent-shaped parasites, called sporozoites, are injected into the skin of the host. Searching for a blood capillary to penetrate, sporozoites move quickly in locally helical trajectories, that are frequently perturbed by interactions with the extracellular environment. Here we present a theoretical analysis of the active motility of sporozoites in a structured environment. The sporozoite is modelled as a self-propelled rod with spontaneous curvature and bending rigidity. It interacts with hard obstacles through collision rules inferred from experimental observation of two-dimensional sporozoite movement in pillar arrays. Our model shows that complex motion patterns arise from the geometrical shape of the parasite and that its mechanical flexibility is crucial for stable migration patterns. Extending the model to three dimensions reveals that a bent and twisted rod can associate to cylindrical obstacles in a manner reminiscent of the association of sporozoites to blood capillaries, supporting the notion of a prominent role of cell shape during malaria transmission.

  4. Targeting Plasmodium PI(4)K to eliminate malaria.

    PubMed

    McNamara, Case W; Lee, Marcus C S; Lim, Chek Shik; Lim, Siau Hoi; Roland, Jason; Nagle, Advait; Simon, Oliver; Yeung, Bryan K S; Chatterjee, Arnab K; McCormack, Susan L; Manary, Micah J; Zeeman, Anne-Marie; Dechering, Koen J; Kumar, T R Santha; Henrich, Philipp P; Gagaring, Kerstin; Ibanez, Maureen; Kato, Nobutaka; Kuhen, Kelli L; Fischli, Christoph; Rottmann, Matthias; Plouffe, David M; Bursulaya, Badry; Meister, Stephan; Rameh, Lucia; Trappe, Joerg; Haasen, Dorothea; Timmerman, Martijn; Sauerwein, Robert W; Suwanarusk, Rossarin; Russell, Bruce; Renia, Laurent; Nosten, Francois; Tully, David C; Kocken, Clemens H M; Glynne, Richard J; Bodenreider, Christophe; Fidock, David A; Diagana, Thierry T; Winzeler, Elizabeth A

    2013-12-12

    Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria. PMID:24284631

  5. Targeting Plasmodium PI(4)K to eliminate malaria

    NASA Astrophysics Data System (ADS)

    McNamara, Case W.; Lee, Marcus C. S.; Lim, Chek Shik; Lim, Siau Hoi; Roland, Jason; Nagle, Advait; Simon, Oliver; Yeung, Bryan K. S.; Chatterjee, Arnab K.; McCormack, Susan L.; Manary, Micah J.; Zeeman, Anne-Marie; Dechering, Koen J.; Kumar, T. R. Santha; Henrich, Philipp P.; Gagaring, Kerstin; Ibanez, Maureen; Kato, Nobutaka; Kuhen, Kelli L.; Fischli, Christoph; Rottmann, Matthias; Plouffe, David M.; Bursulaya, Badry; Meister, Stephan; Rameh, Lucia; Trappe, Joerg; Haasen, Dorothea; Timmerman, Martijn; Sauerwein, Robert W.; Suwanarusk, Rossarin; Russell, Bruce; Renia, Laurent; Nosten, Francois; Tully, David C.; Kocken, Clemens H. M.; Glynne, Richard J.; Bodenreider, Christophe; Fidock, David A.; Diagana, Thierry T.; Winzeler, Elizabeth A.

    2013-12-01

    Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.

  6. Differential Spleen Remodeling Associated with Different Levels of Parasite Virulence Controls Disease Outcome in Malaria Parasite Infections

    PubMed Central

    Huang, Ximei; Huang, Sha; Ong, Lai Chun; Lim, Jason Chu-Shern; Hurst, Rebecca Joan Mary; Mushunje, Annals Tatenda; Matsudaira, Paul Thomas; Han, Jongyoon

    2015-01-01

    ABSTRACT Infections by malaria parasites can lead to very different clinical outcomes, ranging from mild symptoms to death. Differences in the ability of the spleen to deal with the infected red blood cells (iRBCs) are linked to differences in virulence. Using virulent and avirulent strains of the rodent malaria parasite Plasmodium yoelii, we investigated how parasite virulence modulates overall spleen function. Following parasite invasion, a difference in parasite virulence was observed in association with different levels of spleen morphology and iRBC rigidity, both of which contributed to enhanced parasite clearance. Moreover, iRBC rigidity as modulated by the spleen was demonstrated to correlate with disease outcome and thus can be used as a robust indicator of virulence. The data indicate that alterations in the biomechanical properties of iRBCs are the result of the complex interaction between host and parasite. Furthermore, we confirmed that early spleen responses are a key factor in directing the clinical outcome of an infection. IMPORTANCE The spleen and its response to parasite infection are important in eliminating parasites in malaria. By comparing P. yoelii parasite lines with different disease outcomes in mice that had either intact spleens or had had their spleens removed, we showed that upon parasite infection, the spleen exhibits dramatic changes that can affect parasite clearance. The spleen itself directly impacts RBC deformability independently of parasite genetics. The data indicated that the changes in the biomechanical properties of malaria parasite-infected RBCs are the result of the complex interaction between host and parasite, and RBC deformability itself can serve as a novel predictor of clinical outcome. The results also suggest that early responses in the spleen are a key factor directing the clinical outcome of an infection. PMID:27303680

  7. Extensive Shared Chemosensitivity between Malaria and Babesiosis Blood-Stage Parasites.

    PubMed

    Paul, Aditya S; Moreira, Cristina K; Elsworth, Brendan; Allred, David R; Duraisingh, Manoj T

    2016-08-01

    The apicomplexan parasites that cause malaria and babesiosis invade and proliferate within erythrocytes. To assess the potential for common antiparasitic treatments, we measured the sensitivities of multiple species of Plasmodium and Babesia parasites to the chemically diverse collection of antimalarial compounds in the Malaria Box library. We observed that these parasites share sensitivities to a large fraction of the same inhibitors and we identified compounds with strong babesiacidal activity. PMID:27246780

  8. Approaching the Target: the Path Towards an Effective Malaria Vaccine

    PubMed Central

    García-Basteiro, Alberto L.; Bassat, Quique; Alonso, Pedro L.

    2012-01-01

    Developing an effective malaria vaccine has been the goal of the scientific community for many years. A malaria vaccine, added to existing tools and strategies, would further prevent infection and decrease the unacceptable malaria morbidity and mortality burden. Great progress has been made over the last decade and a number of vaccine candidates are in the clinical phases of development. The RTS,S malaria vaccine candidate, based on a recombinant P. falciparum protein, is the most advanced of such candidates, currently undergoing a large phase III trial. RTS,S has consistently shown around 50% efficacy protecting against the first clinical episode of malaria, in some cases extending up to 4 years. It is hoped that RTS,S will eventually become the first licensed malaria vaccine. This first vaccine against a human parasite is a groundbreaking achievement, but improved malaria vaccines conferring higher protection will be needed if the aspiration of malaria eradication is to be achieved. PMID:22550560

  9. Population Structure Shapes Copy Number Variation in Malaria Parasites.

    PubMed

    Cheeseman, Ian H; Miller, Becky; Tan, John C; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J; Nosten, François; Ferdig, Michael T; Anderson, Tim J C

    2016-03-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. PMID:26613787

  10. Population Structure Shapes Copy Number Variation in Malaria Parasites

    PubMed Central

    Cheeseman, Ian H.; Miller, Becky; Tan, John C.; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C.; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H.; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J.; Nosten, François; Ferdig, Michael T.; Anderson, Tim J. C.

    2016-01-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. PMID:26613787

  11. Malaria

    MedlinePlus

    ... a parasite. You get it when an infected mosquito bites you. Malaria is a major cause of ... insect repellent with DEET Cover up Sleep under mosquito netting Centers for Disease Control and Prevention

  12. Malaria

    MedlinePlus

    ... Malaria can be carried by mosquitoes in temperate climates, but the parasite disappears over the winter. The ... a major disease hazard for travelers to warm climates. In some areas of the world, mosquitoes that ...

  13. Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite

    PubMed Central

    Kenthirapalan, Sanketha; Waters, Andrew P.; Matuschewski, Kai; Kooij, Taco W. A.

    2016-01-01

    Assigning function to orphan membrane transport proteins and prioritizing candidates for detailed biochemical characterization remain fundamental challenges and are particularly important for medically relevant pathogens, such as malaria parasites. Here we present a comprehensive genetic analysis of 35 orphan transport proteins of Plasmodium berghei during its life cycle in mice and Anopheles mosquitoes. Six genes, including four candidate aminophospholipid transporters, are refractory to gene deletion, indicative of essential functions. We generate and phenotypically characterize 29 mutant strains with deletions of individual transporter genes. Whereas seven genes appear to be dispensable under the experimental conditions tested, deletion of any of the 22 other genes leads to specific defects in life cycle progression in vivo and/or host transition. Our study provides growing support for a potential link between heavy metal homeostasis and host switching and reveals potential targets for rational design of new intervention strategies against malaria. PMID:26796412

  14. Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite.

    PubMed

    Kenthirapalan, Sanketha; Waters, Andrew P; Matuschewski, Kai; Kooij, Taco W A

    2016-01-01

    Assigning function to orphan membrane transport proteins and prioritizing candidates for detailed biochemical characterization remain fundamental challenges and are particularly important for medically relevant pathogens, such as malaria parasites. Here we present a comprehensive genetic analysis of 35 orphan transport proteins of Plasmodium berghei during its life cycle in mice and Anopheles mosquitoes. Six genes, including four candidate aminophospholipid transporters, are refractory to gene deletion, indicative of essential functions. We generate and phenotypically characterize 29 mutant strains with deletions of individual transporter genes. Whereas seven genes appear to be dispensable under the experimental conditions tested, deletion of any of the 22 other genes leads to specific defects in life cycle progression in vivo and/or host transition. Our study provides growing support for a potential link between heavy metal homeostasis and host switching and reveals potential targets for rational design of new intervention strategies against malaria. PMID:26796412

  15. Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum

    PubMed Central

    Ponts, Nadia; Fu, Lijuan; Harris, Elena Y.; Zhang, Jing; Chung, Duk-Won D.; Cervantes, Michael C.; Prudhomme, Jacques; Atanasova-Penichon, Vessela; Zehraoui, Enric; Bunnik, Evelien; Rodrigues, Elisandra M.; Lonardi, Stefano; Hicks, Glenn R.; Wang, Yinsheng; Le Roch, Karine G.

    2014-01-01

    SUMMARY Cytosine DNA methylation is an epigenetic mark in most eukaryotic cells that regulates numerous processes, including gene expression and stress responses. We performed a genome-wide analysis of DNA methylation in the human malaria parasite Plasmodium falciparum. We mapped the positions of methylated cytosines and identified a single functional DNA methyltransferase, PfDNMT, that may mediate these genomic modifications. These analyses revealed that the malaria genome is asymmetrically methylated, in which only one DNA strand is methylated, and shares common features with undifferentiated plant and mammalian cells. Notably, core promoters are hypomethylated and transcript levels correlate with intra-exonic methylation. Additionally, there are sharp methylation transitions at nucleosome and exon-intron boundaries. These data suggest that DNA methylation could regulate virulence gene expression and transcription elongation. Furthermore, the broad range of action of DNA methylation and uniqueness of PfDNMT suggest that the methylation pathway is a potential target for anti-malarial strategies. PMID:24331467

  16. Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX)

    PubMed Central

    Birch, Christina M.; Hou, Han Wei; Han, Jongyoon; Niles, Jacquin C.

    2015-01-01

    Plasmodium falciparum malaria parasites invade and remodel human red blood cells (RBCs) by trafficking parasite-synthesized proteins to the RBC surface. While these proteins mediate interactions with host cells that contribute to disease pathogenesis, the infected RBC surface proteome remains poorly characterized. Here we use a novel strategy (I-SELEX) to discover high affinity aptamers that selectively recognize distinct epitopes uniquely present on parasite-infected RBCs. Based on inertial focusing in spiral microfluidic channels, I-SELEX enables stringent partitioning of cells (efficiency ≥ 106) from unbound oligonucleotides at high volume throughput (~2 × 106 cells min−1). Using an RBC model displaying a single, non-native antigen and live malaria parasite-infected RBCs as targets, we establish suitability of this strategy for de novo aptamer selections. We demonstrate recovery of a diverse set of aptamers that recognize distinct, surface-displayed epitopes on parasite-infected RBCs with nanomolar affinity, including an aptamer against the protein responsible for placental sequestration, var2CSA. These findings validate I-SELEX as a broadly applicable aptamer discovery platform that enables identification of new reagents for mapping the parasite-infected RBC surface proteome at higher molecular resolution to potentially contribute to malaria diagnostics, therapeutics and vaccine efforts. PMID:26126714

  17. Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX)

    NASA Astrophysics Data System (ADS)

    Birch, Christina M.; Hou, Han Wei; Han, Jongyoon; Niles, Jacquin C.

    2015-07-01

    Plasmodium falciparum malaria parasites invade and remodel human red blood cells (RBCs) by trafficking parasite-synthesized proteins to the RBC surface. While these proteins mediate interactions with host cells that contribute to disease pathogenesis, the infected RBC surface proteome remains poorly characterized. Here we use a novel strategy (I-SELEX) to discover high affinity aptamers that selectively recognize distinct epitopes uniquely present on parasite-infected RBCs. Based on inertial focusing in spiral microfluidic channels, I-SELEX enables stringent partitioning of cells (efficiency ≥ 106) from unbound oligonucleotides at high volume throughput (~2 × 106 cells min-1). Using an RBC model displaying a single, non-native antigen and live malaria parasite-infected RBCs as targets, we establish suitability of this strategy for de novo aptamer selections. We demonstrate recovery of a diverse set of aptamers that recognize distinct, surface-displayed epitopes on parasite-infected RBCs with nanomolar affinity, including an aptamer against the protein responsible for placental sequestration, var2CSA. These findings validate I-SELEX as a broadly applicable aptamer discovery platform that enables identification of new reagents for mapping the parasite-infected RBC surface proteome at higher molecular resolution to potentially contribute to malaria diagnostics, therapeutics and vaccine efforts.

  18. The Malaria Parasite's Achilles' Heel: Functionally-relevant Invasion Structures.

    PubMed

    Patarroyo, Manuel E; Alba, Martha P; Reyes, Cesar; Rojas-Luna, Rocio; Patarroyo, Manuel A

    2016-01-01

    Malaria parasites have their Achilles' heel; they are vulnerable in small parts of their relevant molecules where they can be wounded and killed. These are sporozoite and merozoite protein conserved high activity binding peptides (cHABPs), playing a critical role in binding to and invasion of host cells (hepatocytes and erythrocytes, respectively). cHABPs can be modified by specific amino acid replacement, according to previously published physicochemical rules, to produce analogues (mHABPs) having left-handed polyproline II (PPIIL)-like structures which can modulate an immune response due to fitting perfectly into the HLA-DRβ1* peptide binding region (PBR) and having an appropriate presentation to the T-cell receptor (TCR). PMID:25830771

  19. PTEX is an essential nexus for protein export in malaria parasites.

    PubMed

    Elsworth, Brendan; Matthews, Kathryn; Nie, Catherine Q; Kalanon, Ming; Charnaud, Sarah C; Sanders, Paul R; Chisholm, Scott A; Counihan, Natalie A; Shaw, Philip J; Pino, Paco; Chan, Jo-Anne; Azevedo, Mauro F; Rogerson, Stephen J; Beeson, James G; Crabb, Brendan S; Gilson, Paul R; de Koning-Ward, Tania F

    2014-07-31

    During the blood stages of malaria, several hundred parasite-encoded proteins are exported beyond the double-membrane barrier that separates the parasite from the host cell cytosol. These proteins have a variety of roles that are essential to virulence or parasite growth. There is keen interest in understanding how proteins are exported and whether common machineries are involved in trafficking the different classes of exported proteins. One potential trafficking machine is a protein complex known as the Plasmodium translocon of exported proteins (PTEX). Although PTEX has been linked to the export of one class of exported proteins, there has been no direct evidence for its role and scope in protein translocation. Here we show, through the generation of two parasite lines defective for essential PTEX components (HSP101 or PTEX150), and analysis of a line lacking the non-essential component TRX2 (ref. 12), greatly reduced trafficking of all classes of exported proteins beyond the double membrane barrier enveloping the parasite. This includes proteins containing the PEXEL motif (RxLxE/Q/D) and PEXEL-negative exported proteins (PNEPs). Moreover, the export of proteins destined for expression on the infected erythrocyte surface, including the major virulence factor PfEMP1 in Plasmodium falciparum, was significantly reduced in PTEX knockdown parasites. PTEX function was also essential for blood-stage growth, because even a modest knockdown of PTEX components had a strong effect on the parasite's capacity to complete the erythrocytic cycle both in vitro and in vivo. Hence, as the only known nexus for protein export in Plasmodium parasites, and an essential enzymic machine, PTEX is a prime drug target. PMID:25043043

  20. Expression, Characterization, and Cellular Localization of Knowpains, Papain-Like Cysteine Proteases of the Plasmodium knowlesi Malaria Parasite

    PubMed Central

    Prasad, Rajesh; Atul; Soni, Awakash; Puri, Sunil Kumar; Sijwali, Puran Singh

    2012-01-01

    Papain-like cysteine proteases of malaria parasites degrade haemoglobin in an acidic food vacuole to provide amino acids for intraerythrocytic parasites. These proteases are potential drug targets because their inhibitors block parasite development, and efforts are underway to develop chemotherapeutic inhibitors of these proteases as the treatments for malaria. Plasmodium knowlesi has recently been shown to be an important human pathogen in parts of Asia. We report expression and characterization of three P. knowlesi papain-like proteases, termed knowpains (KP2-4). Recombinant knowpains were produced using a bacterial expression system, and tested for various biochemical properties. Antibodies against recombinant knowpains were generated and used to determine their cellular localization in parasites. Inhibitory effects of the cysteine protease inhibitor E64 were assessed on P. knowlesi culture to validate drug target potential of knowpains. All three knowpains were present in the food vacuole, active in acidic pH, and capable of degrading haemoglobin at the food vacuolar pH (≈5.5), suggesting roles in haemoglobin degradation. The proteases showed absolute (KP2 and KP3) to moderate (KP4) preference for peptide substrates containing leucine at the P2 position; KP4 preferred arginine at the P2 position. While the three knowpains appear to have redundant roles in haemoglobin degradation, KP4 may also have a role in degradation of erythrocyte cytoskeleton during merozoite egress, as it displayed broad substrate specificity and was primarily localized at the parasite periphery. Importantly, E64 blocked erythrocytic development of P. knowlesi, with enlargement of food vacuoles, indicating inhibition of haemoglobin hydrolysis and supporting the potential for inhibition of knowpains as a strategy for the treatment of malaria. Functional expression and characterization of knowpains should enable simultaneous screening of available cysteine protease inhibitor libraries

  1. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research

    PubMed Central

    Siciliano, Giulia; Alano, Pietro

    2015-01-01

    The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria. PMID:26029172

  2. Blood Smear Image Based Malaria Parasite and Infected-Erythrocyte Detection and Segmentation.

    PubMed

    Tsai, Meng-Hsiun; Yu, Shyr-Shen; Chan, Yung-Kuan; Jen, Chun-Chu

    2015-10-01

    In this study, an automatic malaria parasite detector is proposed to perceive the malaria-infected erythrocytes in a blood smear image and to separate parasites from the infected erythrocytes. The detector hence can verify whether a patient is infected with malaria. It could more objectively and efficiently help a doctor in diagnosing malaria. The experimental results show that the proposed method can provide impressive performance in segmenting the malaria-infected erythrocytes and the parasites from a blood smear image taken under a microscope. This paper also presents a weighted Sobel operation to compute the image gradient. The experimental results demonstrates that the weighted Sobel operation can provide more clear-cut and thinner object contours in object segmentation. PMID:26289625

  3. Phosphoproteomics reveals malaria parasite Protein Kinase G as a signalling hub regulating egress and invasion

    PubMed Central

    Alam, Mahmood M.; Solyakov, Lev; Bottrill, Andrew R.; Flueck, Christian; Siddiqui, Faiza A.; Singh, Shailja; Mistry, Sharad; Viskaduraki, Maria; Lee, Kate; Hopp, Christine S.; Chitnis, Chetan E.; Doerig, Christian; Moon, Robert W.; Green, Judith L.; Holder, Anthony A.; Baker, David A.; Tobin, Andrew B.

    2015-01-01

    Our understanding of the key phosphorylation-dependent signalling pathways in the human malaria parasite, Plasmodium falciparum, remains rudimentary. Here we address this issue for the essential cGMP-dependent protein kinase, PfPKG. By employing chemical and genetic tools in combination with quantitative global phosphoproteomics, we identify the phosphorylation sites on 69 proteins that are direct or indirect cellular targets for PfPKG. These PfPKG targets include proteins involved in cell signalling, proteolysis, gene regulation, protein export and ion and protein transport, indicating that cGMP/PfPKG acts as a signalling hub that plays a central role in a number of core parasite processes. We also show that PfPKG activity is required for parasite invasion. This correlates with the finding that the calcium-dependent protein kinase, PfCDPK1, is phosphorylated by PfPKG, as are components of the actomyosin complex, providing mechanistic insight into the essential role of PfPKG in parasite egress and invasion. PMID:26149123

  4. Phosphoproteomics reveals malaria parasite Protein Kinase G as a signalling hub regulating egress and invasion.

    PubMed

    Alam, Mahmood M; Solyakov, Lev; Bottrill, Andrew R; Flueck, Christian; Siddiqui, Faiza A; Singh, Shailja; Mistry, Sharad; Viskaduraki, Maria; Lee, Kate; Hopp, Christine S; Chitnis, Chetan E; Doerig, Christian; Moon, Robert W; Green, Judith L; Holder, Anthony A; Baker, David A; Tobin, Andrew B

    2015-01-01

    Our understanding of the key phosphorylation-dependent signalling pathways in the human malaria parasite, Plasmodium falciparum, remains rudimentary. Here we address this issue for the essential cGMP-dependent protein kinase, PfPKG. By employing chemical and genetic tools in combination with quantitative global phosphoproteomics, we identify the phosphorylation sites on 69 proteins that are direct or indirect cellular targets for PfPKG. These PfPKG targets include proteins involved in cell signalling, proteolysis, gene regulation, protein export and ion and protein transport, indicating that cGMP/PfPKG acts as a signalling hub that plays a central role in a number of core parasite processes. We also show that PfPKG activity is required for parasite invasion. This correlates with the finding that the calcium-dependent protein kinase, PfCDPK1, is phosphorylated by PfPKG, as are components of the actomyosin complex, providing mechanistic insight into the essential role of PfPKG in parasite egress and invasion. PMID:26149123

  5. Synergistic Malaria Parasite Killing by Two Types of Plasmodial Surface Anion Channel Inhibitors.

    PubMed

    Pain, Margaret; Fuller, Alexandra W; Basore, Katherine; Pillai, Ajay D; Solomon, Tsione; Bokhari, Abdullah A B; Desai, Sanjay A

    2016-01-01

    Malaria parasites increase their host erythrocyte's permeability to a broad range of ions and organic solutes. The plasmodial surface anion channel (PSAC) mediates this uptake and is an established drug target. Development of therapies targeting this channel is limited by several problems including interactions between known inhibitors and permeating solutes that lead to incomplete channel block. Here, we designed and executed a high-throughput screen to identify a novel class of PSAC inhibitors that overcome this solute-inhibitor interaction. These new inhibitors differ from existing blockers and have distinct effects on channel-mediated transport, supporting a model of two separate routes for solute permeation though PSAC. Combinations of inhibitors specific for the two routes had strong synergistic action against in vitro parasite propagation, whereas combinations acting on a single route produced only additive effects. The magnitude of synergism depended on external nutrient concentrations, consistent with an essential role of the channel in parasite nutrient acquisition. The identified inhibitors will enable a better understanding of the channel's structure-function and may be starting points for novel combination therapies that produce synergistic parasite killing. PMID:26866812

  6. Synergistic Malaria Parasite Killing by Two Types of Plasmodial Surface Anion Channel Inhibitors

    PubMed Central

    Pain, Margaret; Fuller, Alexandra W.; Basore, Katherine; Pillai, Ajay D.; Solomon, Tsione; Bokhari, Abdullah A. B.; Desai, Sanjay A.

    2016-01-01

    Malaria parasites increase their host erythrocyte’s permeability to a broad range of ions and organic solutes. The plasmodial surface anion channel (PSAC) mediates this uptake and is an established drug target. Development of therapies targeting this channel is limited by several problems including interactions between known inhibitors and permeating solutes that lead to incomplete channel block. Here, we designed and executed a high-throughput screen to identify a novel class of PSAC inhibitors that overcome this solute-inhibitor interaction. These new inhibitors differ from existing blockers and have distinct effects on channel-mediated transport, supporting a model of two separate routes for solute permeation though PSAC. Combinations of inhibitors specific for the two routes had strong synergistic action against in vitro parasite propagation, whereas combinations acting on a single route produced only additive effects. The magnitude of synergism depended on external nutrient concentrations, consistent with an essential role of the channel in parasite nutrient acquisition. The identified inhibitors will enable a better understanding of the channel’s structure-function and may be starting points for novel combination therapies that produce synergistic parasite killing. PMID:26866812

  7. N-terminal processing of proteins exported by malaria parasites

    PubMed Central

    Chang, Henry H.; Falick, Arnold M.; Carlton, Peter M.; Sedat, John W.; DeRisi, Joseph L.; Marletta, Michael A.

    2010-01-01

    Malaria parasites utilize a short N-terminal amino acid motif termed the Plasmodium export element (PEXEL) to export an array of proteins to the host erythrocyte during blood stage infection. Using immunoaffinity chromatography and mass spectrometry, insight into this signal-mediated trafficking mechanism was gained by discovering that the PEXEL motif is cleaved and N-acetylated. PfHRPII and PfEMP2 are two soluble proteins exported by Plasmodium falciparum that were demonstrated to undergo PEXEL cleavage and N-acetylation, thus indicating that this N-terminal processing may be general to many exported soluble proteins. It was established that PEXEL processing occurs upstream of the brefeldin A-sensitive trafficking step in the P. falciparum secretory pathway, therefore cleavage and N-acetylation of the PEXEL motif occurs in the endoplasmic reticulum (ER) of the parasite. Furthermore, it was shown that the recognition of the processed N-terminus of exported proteins within the parasitophorous vacuole may be crucial for protein transport to the host erythrocyte. It appears that the PEXEL may be defined as a novel ER peptidase cleavage site and a classical N-acetyltransferase substrate sequence. PMID:18534695

  8. Asparagine requirement in Plasmodium berghei as a target to prevent malaria transmission and liver infections.

    PubMed

    Nagaraj, Viswanathan A; Mukhi, Dhanunjay; Sathishkumar, Vinayagam; Subramani, Pradeep A; Ghosh, Susanta K; Pandey, Rajeev R; Shetty, Manjunatha C; Padmanaban, Govindarajan

    2015-01-01

    The proteins of Plasmodium, the malaria parasite, are strikingly rich in asparagine. Plasmodium depends primarily on host haemoglobin degradation for amino acids and has a rudimentary pathway for amino acid biosynthesis, but retains a gene encoding asparagine synthetase (AS). Here we show that deletion of AS in Plasmodium berghei (Pb) delays the asexual- and liver-stage development with substantial reduction in the formation of ookinetes, oocysts and sporozoites in mosquitoes. In the absence of asparagine synthesis, extracellular asparagine supports suboptimal survival of PbAS knockout (KO) parasites. Depletion of blood asparagine levels by treating PbASKO-infected mice with asparaginase completely prevents the development of liver stages, exflagellation of male gametocytes and the subsequent formation of sexual stages. In vivo supplementation of asparagine in mice restores the exflagellation of PbASKO parasites. Thus, the parasite life cycle has an absolute requirement for asparagine, which we propose could be targeted to prevent malaria transmission and liver infections. PMID:26531182

  9. Asparagine requirement in Plasmodium berghei as a target to prevent malaria transmission and liver infections

    PubMed Central

    Nagaraj, Viswanathan A.; Mukhi, Dhanunjay; Sathishkumar, Vinayagam; Subramani, Pradeep A.; Ghosh, Susanta K.; Pandey, Rajeev R.; Shetty, Manjunatha C.; Padmanaban, Govindarajan

    2015-01-01

    The proteins of Plasmodium, the malaria parasite, are strikingly rich in asparagine. Plasmodium depends primarily on host haemoglobin degradation for amino acids and has a rudimentary pathway for amino acid biosynthesis, but retains a gene encoding asparagine synthetase (AS). Here we show that deletion of AS in Plasmodium berghei (Pb) delays the asexual- and liver-stage development with substantial reduction in the formation of ookinetes, oocysts and sporozoites in mosquitoes. In the absence of asparagine synthesis, extracellular asparagine supports suboptimal survival of PbAS knockout (KO) parasites. Depletion of blood asparagine levels by treating PbASKO-infected mice with asparaginase completely prevents the development of liver stages, exflagellation of male gametocytes and the subsequent formation of sexual stages. In vivo supplementation of asparagine in mice restores the exflagellation of PbASKO parasites. Thus, the parasite life cycle has an absolute requirement for asparagine, which we propose could be targeted to prevent malaria transmission and liver infections. PMID:26531182

  10. How genomics is contributing to the fight against artemisinin-resistant malaria parasites.

    PubMed

    Cravo, Pedro; Napolitano, Hamilton; Culleton, Richard

    2015-08-01

    Plasmodium falciparum, the malignant malaria parasite, has developed resistance to artemisinin, the most important and widely used antimalarial drug at present. Currently confined to Southeast Asia, the spread of resistant parasites to Africa would constitute a public health catastrophe. In this review we highlight the recent contributions of genomics to our understanding how the parasite develops resistance to artemisinin and its derivatives, and how resistant parasites may be monitored and tracked in real-time, using molecular approaches. PMID:25910626

  11. Effect of Mature Blood-Stage Plasmodium Parasite Sequestration on Pathogen Biomass in Mathematical and In Vivo Models of Malaria

    PubMed Central

    Khoury, David S.; Cromer, Deborah; Best, Shannon E.; James, Kylie R.; Kim, Peter S.; Engwerda, Christian R.; Haque, Ashraful

    2014-01-01

    Parasite biomass and microvasculature obstruction are strongly associated with disease severity and death in Plasmodium falciparum-infected humans. This is related to sequestration of mature, blood-stage parasites (schizonts) in peripheral tissue. The prevailing view is that schizont sequestration leads to an increase in pathogen biomass, yet direct experimental data to support this are lacking. Here, we first studied parasite population dynamics in inbred wild-type (WT) mice infected with the rodent species of malaria, Plasmodium berghei ANKA. As is commonly reported, these mice became moribund due to large numbers of parasites in multiple tissues. We then studied infection dynamics in a genetically targeted line of mice, which displayed minimal tissue accumulation of parasites. We constructed a mathematical model of parasite biomass dynamics, incorporating schizont-specific host clearance, both with and without schizont sequestration. Combined use of mathematical and in vivo modeling indicated, first, that the slowing of parasite growth in the genetically targeted mice can be attributed to specific clearance of schizonts from the circulation and, second, that persistent parasite growth in WT mice can be explained solely as a result of schizont sequestration. Our work provides evidence that schizont sequestration could be a major biological process driving rapid, early increases in parasite biomass during blood-stage Plasmodium infection. PMID:24144725

  12. Effect of mature blood-stage Plasmodium parasite sequestration on pathogen biomass in mathematical and in vivo models of malaria.

    PubMed

    Khoury, David S; Cromer, Deborah; Best, Shannon E; James, Kylie R; Kim, Peter S; Engwerda, Christian R; Haque, Ashraful; Davenport, Miles P

    2014-01-01

    Parasite biomass and microvasculature obstruction are strongly associated with disease severity and death in Plasmodium falciparum-infected humans. This is related to sequestration of mature, blood-stage parasites (schizonts) in peripheral tissue. The prevailing view is that schizont sequestration leads to an increase in pathogen biomass, yet direct experimental data to support this are lacking. Here, we first studied parasite population dynamics in inbred wild-type (WT) mice infected with the rodent species of malaria, Plasmodium berghei ANKA. As is commonly reported, these mice became moribund due to large numbers of parasites in multiple tissues. We then studied infection dynamics in a genetically targeted line of mice, which displayed minimal tissue accumulation of parasites. We constructed a mathematical model of parasite biomass dynamics, incorporating schizont-specific host clearance, both with and without schizont sequestration. Combined use of mathematical and in vivo modeling indicated, first, that the slowing of parasite growth in the genetically targeted mice can be attributed to specific clearance of schizonts from the circulation and, second, that persistent parasite growth in WT mice can be explained solely as a result of schizont sequestration. Our work provides evidence that schizont sequestration could be a major biological process driving rapid, early increases in parasite biomass during blood-stage Plasmodium infection. PMID:24144725

  13. A Stem Cell Strategy Identifies Glycophorin C as a Major Erythrocyte Receptor for the Rodent Malaria Parasite Plasmodium berghei

    PubMed Central

    Yiangou, Loukia; Montandon, Ruddy; Modrzynska, Katarzyna; Rosen, Barry; Bushell, Wendy; Hale, Christine; Billker, Oliver; Rayner, Julian C.

    2016-01-01

    The clinical complications of malaria are caused by the parasite expansion in the blood. Invasion of erythrocytes is a complex process that depends on multiple receptor-ligand interactions. Identification of host receptors is paramount for fighting the disease as it could reveal new intervention targets, but the enucleated nature of erythrocytes makes genetic approaches impossible and many receptors remain unknown. Host-parasite interactions evolve rapidly and are therefore likely to be species-specific. As a results, understanding of invasion receptors outside the major human pathogen Plasmodium falciparum is very limited. Here we use mouse embryonic stem cells (mESCs) that can be genetically engineered and differentiated into erythrocytes to identify receptors for the rodent malaria parasite Plasmodium berghei. Two proteins previously implicated in human malaria infection: glycophorin C (GYPC) and Band-3 (Slc4a1) were deleted in mESCs to generate stable cell lines, which were differentiated towards erythropoiesis. In vitro infection assays revealed that while deletion of Band-3 has no effect, absence of GYPC results in a dramatic decrease in invasion, demonstrating the crucial role of this protein for P. berghei infection. This stem cell approach offers the possibility of targeting genes that may be essential and therefore difficult to disrupt in whole organisms and has the potential to be applied to a variety of parasites in diverse host cell types. PMID:27362409

  14. Do malaria parasites manipulate the escape behaviour of their avian hosts? An experimental study.

    PubMed

    Garcia-Longoria, Luz; Møller, Anders P; Balbontín, Javier; de Lope, Florentino; Marzal, Alfonso

    2015-12-01

    Escape behaviour is the behaviour that birds and other animals display when already caught by a predator. An individual exhibiting higher intensity of such anti-predator behaviour could have greater probabilities of escape from predators. Parasites are known to affect different aspects of host behaviour to increase their own fitness. Vector-transmitted parasites such as malaria parasites should gain by manipulating their hosts to enhance the probability of transmission. Several studies have shown that malaria parasites can manipulate their vectors leading to increased transmission success. However, little is known about whether malaria parasites can manipulate escape behaviour of their avian hosts thereby increasing the spread of the parasite. Here we used an experimental approach to explore if Plasmodium relictum can manipulate the escape behaviour of one of its most common avian hosts, the house sparrow Passer domesticus. We experimentally tested whether malaria parasites manipulate the escape behaviour of their avian host. We showed a decrease in the intensity of biting and tonic immobility after removal of infection with anti-malaria medication compared to pre-experimental behaviour. These outcomes suggest that infected sparrows performed more intense escape behaviour, which would increase the likelihood of individuals escaping from predators, but also benefit the parasite by increasing its transmission opportunities. PMID:26337268

  15. History of the discovery of the malaria parasites and their vectors

    PubMed Central

    2010-01-01

    Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium transmitted by female Anopheles species mosquitoes. Our understanding of the malaria parasites begins in 1880 with the discovery of the parasites in the blood of malaria patients by Alphonse Laveran. The sexual stages in the blood were discovered by William MacCallum in birds infected with a related haematozoan, Haemoproteus columbae, in 1897 and the whole of the transmission cycle in culicine mosquitoes and birds infected with Plasmodium relictum was elucidated by Ronald Ross in 1897. In 1898 the Italian malariologists, Giovanni Battista Grassi, Amico Bignami, Giuseppe Bastianelli, Angelo Celli, Camillo Golgi and Ettore Marchiafava demonstrated conclusively that human malaria was also transmitted by mosquitoes, in this case anophelines. The discovery that malaria parasites developed in the liver before entering the blood stream was made by Henry Shortt and Cyril Garnham in 1948 and the final stage in the life cycle, the presence of dormant stages in the liver, was conclusively demonstrated in 1982 by Wojciech Krotoski. This article traces the main events and stresses the importance of comparative studies in that, apart from the initial discovery of parasites in the blood, every subsequent discovery has been based on studies on non-human malaria parasites and related organisms. PMID:20205846

  16. Plasma Concentration of Parasite DNA as a Measure of Disease Severity in Falciparum Malaria

    PubMed Central

    Imwong, Mallika; Woodrow, Charles J.; Hendriksen, Ilse C. E.; Veenemans, Jacobien; Verhoef, Hans; Faiz, M. Abul; Mohanty, Sanjib; Mishra, Saroj; Mtove, George; Gesase, Samwel; Seni, Amir; Chhaganlal, Kajal D.; Day, Nicholas P. J.; Dondorp, Arjen M.; White, Nicholas J.

    2015-01-01

    In malaria-endemic areas, Plasmodium falciparum parasitemia is common in apparently healthy children and severe malaria is commonly misdiagnosed in patients with incidental parasitemia. We assessed whether the plasma Plasmodium falciparum DNA concentration is a useful datum for distinguishing uncomplicated from severe malaria in African children and Asian adults. P. falciparum DNA concentrations were measured by real-time polymerase chain reaction (PCR) in 224 African children (111 with uncomplicated malaria and 113 with severe malaria) and 211 Asian adults (100 with uncomplicated malaria and 111 with severe malaria) presenting with acute falciparum malaria. The diagnostic accuracy of plasma P. falciparum DNA concentrations in identifying severe malaria was 0.834 for children and 0.788 for adults, similar to that of plasma P. falciparum HRP2 levels and substantially superior to that of parasite densities (P < .0001). The diagnostic accuracy of plasma P. falciparum DNA concentrations plus plasma P. falciparum HRP2 concentrations was significantly greater than that of plasma P. falciparum HRP2 concentrations alone (0.904 for children [P = .004] and 0.847 for adults [P = .003]). Quantitative real-time PCR measurement of parasite DNA in plasma is a useful method for diagnosing severe falciparum malaria on fresh or archived plasma samples. PMID:25344520

  17. An essential malaria protein defines the architecture of blood-stage and transmission-stage parasites.

    PubMed

    Absalon, Sabrina; Robbins, Jonathan A; Dvorin, Jeffrey D

    2016-01-01

    Blood-stage replication of the human malaria parasite Plasmodium falciparum occurs via schizogony, wherein daughter parasites are formed by a specialized cytokinesis known as segmentation. Here we identify a parasite protein, which we name P. falciparum Merozoite Organizing Protein (PfMOP), as essential for cytokinesis of blood-stage parasites. We show that, following PfMOP knockdown, parasites undergo incomplete segmentation resulting in a residual agglomerate of partially divided cells. While organelles develop normally, the structural scaffold of daughter parasites, the inner membrane complex (IMC), fails to form in this agglomerate causing flawed segmentation. In PfMOP-deficient gametocytes, the IMC formation defect causes maturation arrest with aberrant morphology and death. Our results provide insight into the mechanisms of replication and maturation of malaria parasites. PMID:27121004

  18. An essential malaria protein defines the architecture of blood-stage and transmission-stage parasites

    PubMed Central

    Absalon, Sabrina; Robbins, Jonathan A.; Dvorin, Jeffrey D.

    2016-01-01

    Blood-stage replication of the human malaria parasite Plasmodium falciparum occurs via schizogony, wherein daughter parasites are formed by a specialized cytokinesis known as segmentation. Here we identify a parasite protein, which we name P. falciparum Merozoite Organizing Protein (PfMOP), as essential for cytokinesis of blood-stage parasites. We show that, following PfMOP knockdown, parasites undergo incomplete segmentation resulting in a residual agglomerate of partially divided cells. While organelles develop normally, the structural scaffold of daughter parasites, the inner membrane complex (IMC), fails to form in this agglomerate causing flawed segmentation. In PfMOP-deficient gametocytes, the IMC formation defect causes maturation arrest with aberrant morphology and death. Our results provide insight into the mechanisms of replication and maturation of malaria parasites. PMID:27121004

  19. Ecotope-Based Entomological Surveillance and Molecular Xenomonitoring of Multidrug Resistant Malaria Parasites in Anopheles Vectors

    PubMed Central

    2014-01-01

    The emergence and spread of multidrug resistant (MDR) malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS). MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated patients. MDR malaria risk situations reflect consequences of the national policy and strategy as this influences the ongoing national-level or subnational-level implementation of malaria control strategies in endemic GMS countries. Based on our experience along with current literature review, the design of ecotope-based entomological surveillance (EES) and molecular xenomonitoring of MDR falciparum and vivax malaria parasites in Anopheles vectors is proposed to monitor infection pockets in transmission control areas of forest and forest fringe-related malaria, so as to bridge malaria landscape ecology (ecotope and ecotone) and epidemiology. Malaria ecotope and ecotone are confined to a malaria transmission area geographically associated with the infestation of Anopheles vectors and particular environments to which human activities are related. This enables the EES to encompass mosquito collection and identification, salivary gland DNA extraction, Plasmodium- and species-specific identification, molecular marker-based PCR detection methods for putative drug resistance genes, and data management. The EES establishes strong evidence of Anopheles vectors carrying MDR P. vivax in infection pockets epidemiologically linked with other data obtained during which a course of follow-up treatment of the notified P. vivax patients receiving the first-line treatment was conducted. For regional and global perspectives, the EES would augment the epidemiological surveillance and monitoring of MDR falciparum and vivax malaria

  20. Mefloquine induces ROS mediated programmed cell death in malaria parasite: Plasmodium.

    PubMed

    Gunjan, Sarika; Singh, Sunil Kumar; Sharma, Tanuj; Dwivedi, Hemlata; Chauhan, Bhavana Singh; Imran Siddiqi, Mohammad; Tripathi, Renu

    2016-09-01

    Recent studies pioneer the existence of a novel programmed cell death pathway in malaria parasite plasmodium and suggest that it could be helpful in developing new targeted anti-malarial therapies. Considering this fact, we evaluated the underlying action mechanism of this pathway in mefloquine (MQ) treated parasite. Since cysteine proteases play a key role in apoptosis hence we performed preliminary computational simulations to determine binding affinity of MQ with metacaspase protein model. Binding pocket identified using computational studies, was docked with MQ to identify it's potential to bind with the predicted protein model. We further determined apoptotic markers such as mitochondrial dysregulation, activation of cysteine proteases and in situ DNA fragmentation in MQ treated/untreated parasites by cell based assay. Our results showed low mitochondrial membrane potential, enhanced activity of cysteine protease and increased number of fragmented DNA in treated parasites compared to untreated ones. We next tested the involvement of oxidative stress in MQ mediated cell death and found significant increase in reactive oxygen species generation after 24 h of treatment. Therefore we conclude that apart from hemozoin inhibition, MQ is competent to induce apoptosis in plasmodium by activating metacaspase and ROS production. PMID:27357656

  1. A Class of Tricyclic Compounds Blocking Malaria Parasite Oocyst Development and Transmission

    PubMed Central

    Eastman, Richard T.; Pattaradilokrat, Sittiporn; Raj, Dipak K.; Dixit, Saurabh; Deng, Bingbing; Miura, Kazutoyo; Yuan, Jing; Tanaka, Takeshi Q.; Johnson, Ronald L.; Jiang, Hongying; Huang, Ruili; Williamson, Kim C.; Lambert, Lynn E.; Long, Carole; Austin, Christopher P.; Wu, Yimin

    2013-01-01

    Malaria is a deadly infectious disease in many tropical and subtropical countries. Previous efforts to eradicate malaria have failed, largely due to the emergence of drug-resistant parasites, insecticide-resistant mosquitoes and, in particular, the lack of drugs or vaccines to block parasite transmission. ATP-binding cassette (ABC) transporters are known to play a role in drug transport, metabolism, and resistance in many organisms, including malaria parasites. To investigate whether a Plasmodium falciparum ABC transporter (Pf14_0244 or PfABCG2) modulates parasite susceptibility to chemical compounds or plays a role in drug resistance, we disrupted the gene encoding PfABCG2, screened the recombinant and the wild-type 3D7 parasites against a library containing 2,816 drugs approved for human or animal use, and identified an antihistamine (ketotifen) that became less active against the PfABCG2-disrupted parasite in culture. In addition to some activity against asexual stages and gametocytes, ketotifen was highly potent in blocking oocyst development of P. falciparum and the rodent parasite Plasmodium yoelii in mosquitoes. Tests of structurally related tricyclic compounds identified additional compounds with similar activities in inhibiting transmission. Additionally, ketotifen appeared to have some activity against relapse of Plasmodium cynomolgi infection in rhesus monkeys. Further clinical evaluation of ketotifen and related compounds, including synthetic new derivatives, in blocking malaria transmission may provide new weapons for the current effort of malaria eradication. PMID:23129054

  2. Plasmodium Drug Targets Outside the Genetic Control of the Parasite

    PubMed Central

    Sullivan, David J.

    2014-01-01

    Drug development often seeks to find “magic bullets” which target microbiologic proteins while not affecting host proteins. Paul Ehrlich tested methylene blue as an antimalarial but this dye was not superior to quinine. Many successful antimalarial therapies are “magic shotguns” which target many Plasmodium pathways with little interference in host metabolism. Two malaria drug classes, the 8-aminoquinolines and the artemisinins interact with cytochrome P450s and host iron protoporphyrin IX or iron, respectively, to generate toxic metabolites and/or radicals, which kill the parasite by interference with many proteins. The non 8-amino antimalarial quinolines like quinine or piperaquine bind heme to inhibit the process of heme crystallization, which results in multiple enzyme inhibition and membrane dysfunction. The quinolines and artemisinins are rapidly parasiticidal in contrast to metal chelators, which have a slower parasite clearance rate with higher drug concentrations. Iron chelators interfere with the artemisinins but otherwise represent a strategy of targeting multiple enzymes containing iron. Interest has been revived in antineoplastic drugs that target DNA metabolism as antimalarials. Specific drug targeting or investigation of the innate immunity directed to the more permeable trophozoite or schizont infected erythrocyte membrane has been under explored. Novel drug classes in the antimalarial development pipeline which either target multiple proteins or unchangeable cellular targets will slow the pace of drug resistance acquisition. PMID:22973888

  3. The Plasmodium PHIST and RESA-Like Protein Families of Human and Rodent Malaria Parasites.

    PubMed

    Moreira, Cristina K; Naissant, Bernina; Coppi, Alida; Bennett, Brandy L; Aime, Elena; Franke-Fayard, Blandine; Janse, Chris J; Coppens, Isabelle; Sinnis, Photini; Templeton, Thomas J

    2016-01-01

    The phist gene family has members identified across the Plasmodium genus, defined by the presence of a domain of roughly 150 amino acids having conserved aromatic residues and an all alpha-helical structure. The family is highly amplified in P. falciparum, with 65 predicted genes in the genome of the 3D7 isolate. In contrast, in the rodent malaria parasite P. berghei 3 genes are identified, one of which is an apparent pseudogene. Transcripts of the P. berghei phist genes are predominant in schizonts, whereas in P. falciparum transcript profiles span different asexual blood stages and gametocytes. We pursued targeted disruption of P. berghei phist genes in order to characterize a simplistic model for the expanded phist gene repertoire in P. falciparum. Unsuccessful attempts to disrupt P. berghei PBANKA_114540 suggest that this phist gene is essential, while knockout of phist PBANKA_122900 shows an apparent normal progression and non-essential function throughout the life cycle. Epitope-tagging of P. falciparum and P. berghei phist genes confirmed protein export to the erythrocyte cytoplasm and localization with a punctate pattern. Three P. berghei PEXEL/HT-positive exported proteins exhibit at least partial co-localization, in support of a common vesicular compartment in the cytoplasm of erythrocytes infected with rodent malaria parasites. PMID:27022937

  4. The Plasmodium PHIST and RESA-Like Protein Families of Human and Rodent Malaria Parasites

    PubMed Central

    Moreira, Cristina K.; Naissant, Bernina; Coppi, Alida; Bennett, Brandy L.; Aime, Elena; Franke-Fayard, Blandine; Janse, Chris J.; Coppens, Isabelle; Sinnis, Photini; Templeton, Thomas J.

    2016-01-01

    The phist gene family has members identified across the Plasmodium genus, defined by the presence of a domain of roughly 150 amino acids having conserved aromatic residues and an all alpha-helical structure. The family is highly amplified in P. falciparum, with 65 predicted genes in the genome of the 3D7 isolate. In contrast, in the rodent malaria parasite P. berghei 3 genes are identified, one of which is an apparent pseudogene. Transcripts of the P. berghei phist genes are predominant in schizonts, whereas in P. falciparum transcript profiles span different asexual blood stages and gametocytes. We pursued targeted disruption of P. berghei phist genes in order to characterize a simplistic model for the expanded phist gene repertoire in P. falciparum. Unsuccessful attempts to disrupt P. berghei PBANKA_114540 suggest that this phist gene is essential, while knockout of phist PBANKA_122900 shows an apparent normal progression and non-essential function throughout the life cycle. Epitope-tagging of P. falciparum and P. berghei phist genes confirmed protein export to the erythrocyte cytoplasm and localization with a punctate pattern. Three P. berghei PEXEL/HT-positive exported proteins exhibit at least partial co-localization, in support of a common vesicular compartment in the cytoplasm of erythrocytes infected with rodent malaria parasites. PMID:27022937

  5. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    PubMed Central

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; Choi, Jae-Yeon; Augagneur, Yoann; Voelker, Dennis R.; Nair, Satish; Mamoun, Choukri Ben

    2015-01-01

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties of PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs. PMID:25761669

  6. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    SciTech Connect

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; Choi, Jae-Yeon; Augagneur, Yoann; Voelker, Dennis R.; Nair, Satish; Mamoun, Choukri Ben

    2015-03-12

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties of PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs.

  7. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    DOE PAGESBeta

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; Choi, Jae-Yeon; Augagneur, Yoann; Voelker, Dennis R.; Nair, Satish; Mamoun, Choukri Ben

    2015-03-12

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties ofmore » PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs.« less

  8. A Network Approach to Analyzing Highly Recombinant Malaria Parasite Genes

    PubMed Central

    Larremore, Daniel B.; Clauset, Aaron; Buckee, Caroline O.

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences. PMID:24130474

  9. Intravenous Artesunate Reduces Parasite Clearance Time, Duration of Intensive Care, and Hospital Treatment in Patients With Severe Malaria in Europe: The TropNet Severe Malaria Study.

    PubMed

    Kurth, Florian; Develoux, Michel; Mechain, Matthieu; Clerinx, Jan; Antinori, Spinello; Gjørup, Ida E; Gascon, Joaquím; Mørch, Kristine; Nicastri, Emanuele; Ramharter, Michael; Bartoloni, Alessandro; Visser, Leo; Rolling, Thierry; Zanger, Philipp; Calleri, Guido; Salas-Coronas, Joaquín; Nielsen, Henrik; Just-Nübling, Gudrun; Neumayr, Andreas; Hachfeld, Anna; Schmid, Matthias L; Antonini, Pietro; Pongratz, Peter; Kern, Peter; Saraiva da Cunha, José; Soriano-Arandes, Antoni; Schunk, Mirjam; Suttorp, Norbert; Hatz, Christoph; Zoller, Thomas

    2015-11-01

    Intravenous artesunate improves survival in severe malaria, but clinical trial data from nonendemic countries are scarce. The TropNet severe malaria database was analyzed to compare outcomes of artesunate vs quinine treatment. Artesunate reduced parasite clearance time and duration of intensive care unit and hospital treatment in European patients with imported severe malaria. PMID:26187021

  10. Proteome-wide analysis reveals widespread lysine acetylation of major protein complexes in the malaria parasite

    PubMed Central

    Cobbold, Simon A.; Santos, Joana M.; Ochoa, Alejandro; Perlman, David H.; Llinás, Manuel

    2016-01-01

    Lysine acetylation is a ubiquitous post-translational modification in many organisms including the malaria parasite Plasmodium falciparum, yet the full extent of acetylation across the parasite proteome remains unresolved. Moreover, the functional significance of acetylation or how specific acetyl-lysine sites are regulated is largely unknown. Here we report a seven-fold expansion of the known parasite ‘acetylome’, characterizing 2,876 acetylation sites on 1,146 proteins. We observe that lysine acetylation targets a diverse range of protein complexes and is particularly enriched within the Apicomplexan AP2 (ApiAP2) DNA-binding protein family. Using quantitative proteomics we determined that artificial perturbation of the acetate/acetyl-CoA balance alters the acetyl-lysine occupancy of several ApiAP2 DNA-binding proteins and related transcriptional proteins. This metabolic signaling could mediate significant downstream transcriptional responses, as we show that acetylation of an ApiAP2 DNA-binding domain ablates its DNA-binding propensity. Lastly, we investigated the acetyl-lysine targets of each class of lysine deacetylase in order to begin to explore how each class of enzyme contributes to regulating the P. falciparum acetylome. PMID:26813983

  11. The Genome of Haemoproteus tartakovskyi and Its Relationship to Human Malaria Parasites

    PubMed Central

    Bensch, Staffan; Canbäck, Björn; DeBarry, Jeremy D.; Johansson, Tomas; Hellgren, Olof; Kissinger, Jessica C.; Palinauskas, Vaidas; Videvall, Elin; Valkiūnas, Gediminas

    2016-01-01

    The phylogenetic relationships among hemosporidian parasites, including the origin of Plasmodium falciparum, the most virulent malaria parasite of humans, have been heavily debated for decades. Studies based on multiple-gene sequences have helped settle many of these controversial phylogenetic issues. However, denser taxon sampling and genome-wide analyses are needed to confidently resolve the evolutionay relationships among hemosporidian parasites. Genome sequences of several Plasmodium parasites are available but only for species infecting primates and rodents. To root the phylogenetic tree of Plasmodium, genomic data from related parasites of birds or reptiles are required. Here, we use a novel approach to isolate parasite DNA from microgametes and describe the first genome of a bird parasite in the sister genus to Plasmodium, Haemoproteus tartakovskyi. Similar to Plasmodium parasites, H. tartakovskyi has a small genome (23.2 Mb, 5,990 genes) and a GC content (25.4%) closer to P. falciparum (19.3%) than to Plasmodium vivax (42.3%). Combined with novel transcriptome sequences of the bird parasite Plasmodium ashfordi, our phylogenomic analyses of 1,302 orthologous genes demonstrate that mammalian-infecting malaria parasites are monophyletic, thus rejecting the repeatedly proposed hypothesis that the ancestor of Laverania parasites originated from a secondary host shift from birds to humans. Genes and genomic features previously found to be shared between P. falciparum and bird malaria parasites, but absent in other mammal malaria parasites, are therefore signatures of maintained ancestral states. We foresee that the genome of H. tartakovskyi will open new directions for comparative evolutionary analyses of malarial adaptive traits. PMID:27190205

  12. The Genome of Haemoproteus tartakovskyi and Its Relationship to Human Malaria Parasites.

    PubMed

    Bensch, Staffan; Canbäck, Björn; DeBarry, Jeremy D; Johansson, Tomas; Hellgren, Olof; Kissinger, Jessica C; Palinauskas, Vaidas; Videvall, Elin; Valkiūnas, Gediminas

    2016-01-01

    The phylogenetic relationships among hemosporidian parasites, including the origin of Plasmodium falciparum, the most virulent malaria parasite of humans, have been heavily debated for decades. Studies based on multiple-gene sequences have helped settle many of these controversial phylogenetic issues. However, denser taxon sampling and genome-wide analyses are needed to confidently resolve the evolutionay relationships among hemosporidian parasites. Genome sequences of several Plasmodium parasites are available but only for species infecting primates and rodents. To root the phylogenetic tree of Plasmodium, genomic data from related parasites of birds or reptiles are required. Here, we use a novel approach to isolate parasite DNA from microgametes and describe the first genome of a bird parasite in the sister genus to Plasmodium, Haemoproteus tartakovskyi Similar to Plasmodium parasites, H. tartakovskyi has a small genome (23.2 Mb, 5,990 genes) and a GC content (25.4%) closer to P. falciparum (19.3%) than to Plasmodium vivax (42.3%). Combined with novel transcriptome sequences of the bird parasite Plasmodium ashfordi, our phylogenomic analyses of 1,302 orthologous genes demonstrate that mammalian-infecting malaria parasites are monophyletic, thus rejecting the repeatedly proposed hypothesis that the ancestor of Laverania parasites originated from a secondary host shift from birds to humans. Genes and genomic features previously found to be shared between P. falciparum and bird malaria parasites, but absent in other mammal malaria parasites, are therefore signatures of maintained ancestral states. We foresee that the genome of H. tartakovskyi will open new directions for comparative evolutionary analyses of malarial adaptive traits. PMID:27190205

  13. Translational regulation during stage transitions in malaria parasites.

    PubMed

    Cui, Liwang; Lindner, Scott; Miao, Jun

    2015-04-01

    The complicated life cycle of the malaria parasite involves a vertebrate host and a mosquito vector, and translational regulation plays a prominent role in orchestrating the developmental events in the two transition stages: gametocytes and sporozoites. Translational regulation is executed in both global and transcript-specific manners. Plasmodium uses a conserved mechanism involving phosphorylation of eIF2α to repress global protein synthesis during the latent period of sporozoite development in the mosquito salivary glands. Transcript-specific translational regulation is achieved by a network of RNA-binding proteins (RBPs), among which the Dhh1 RNA helicase DOZI and Puf family RBPs are by far the best studied in Plasmodium. While the DOZI complex defines a new P granule with a role in protecting certain gametocyte mRNAs from degradation, the Puf proteins appear to repress expression of mRNAs in both gametocytes and sporozoites. These examples underscore the significance of translational regulation in Plasmodium development. PMID:25387887

  14. High-throughput malaria parasite separation using a viscoelastic fluid for ultrasensitive PCR detection.

    PubMed

    Nam, Jeonghun; Shin, Yong; Tan, Justin Kok Soon; Lim, Ying Bena; Lim, Chwee Teck; Kim, Sangho

    2016-05-24

    A novel microfluidic device for high-throughput particle separation using a viscoelastic fluid, which enables the rapid detection of extremely rare malaria parasites by using PCR analysis, is proposed. Our device consists of two segments: the 1st stage for sheathless pre-alignment and the 2nd stage for separation based on size-dependent viscoelasticity-induced lateral migration. The use of a high-aspect ratio channel and a viscoelastic polymer solution with low viscosity enables high-throughput processing. The device performance was first optimized using synthetic particles. A mixture of 2 and 10 μm particles was focused at the center plane in the 1st stage. The smaller particles, serving as surrogates for malaria parasites, were subsequently separated in the 2nd stage with a recovery rate of ∼96% at 400 μl min(-1). Finally, separation of the malaria parasites from the white blood cells was performed. At 400 μl min(-1), almost all white blood cells were removed and the malaria parasites were separated with a ∼94% recovery rate and ∼99% purity. Although the initial concentration of the malaria parasites was too low to be detected by PCR analysis, WBC depletion and buffer removal increased the parasite concentration sufficiently such that PCR detection was possible. PMID:27160315

  15. Malaria Parasite Infection Compromises Control of Concurrent Systemic Non-typhoidal Salmonella Infection via IL-10-Mediated Alteration of Myeloid Cell Function

    PubMed Central

    Butler, Brian P.; Xavier, Mariana N.; Chau, Jennifer Y.; Schaltenberg, Nicola; Begum, Ramie H.; Müller, Werner; Luckhart, Shirley; Tsolis, Renée M.

    2014-01-01

    Non-typhoidal Salmonella serotypes (NTS) cause a self-limited gastroenteritis in immunocompetent individuals, while children with severe Plasmodium falciparum malaria can develop a life-threatening disseminated infection. This co-infection is a major source of child mortality in sub-Saharan Africa. However, the mechanisms by which malaria contributes to increased risk of NTS bacteremia are incompletely understood. Here, we report that in a mouse co-infection model, malaria parasite infection blunts inflammatory responses to NTS, leading to decreased inflammatory pathology and increased systemic bacterial colonization. Blunting of NTS-induced inflammatory responses required induction of IL-10 by the parasites. In the absence of malaria parasite infection, administration of recombinant IL-10 together with induction of anemia had an additive effect on systemic bacterial colonization. Mice that were conditionally deficient for either myeloid cell IL-10 production or myeloid cell expression of IL-10 receptor were better able to control systemic Salmonella infection, suggesting that phagocytic cells are both producers and targets of malaria parasite-induced IL-10. Thus, IL-10 produced during the immune response to malaria increases susceptibility to disseminated NTS infection by suppressing the ability of myeloid cells, most likely macrophages, to control bacterial infection. PMID:24787713

  16. Malaria parasite infection compromises control of concurrent systemic non-typhoidal Salmonella infection via IL-10-mediated alteration of myeloid cell function.

    PubMed

    Lokken, Kristen L; Mooney, Jason P; Butler, Brian P; Xavier, Mariana N; Chau, Jennifer Y; Schaltenberg, Nicola; Begum, Ramie H; Müller, Werner; Luckhart, Shirley; Tsolis, Renée M

    2014-05-01

    Non-typhoidal Salmonella serotypes (NTS) cause a self-limited gastroenteritis in immunocompetent individuals, while children with severe Plasmodium falciparum malaria can develop a life-threatening disseminated infection. This co-infection is a major source of child mortality in sub-Saharan Africa. However, the mechanisms by which malaria contributes to increased risk of NTS bacteremia are incompletely understood. Here, we report that in a mouse co-infection model, malaria parasite infection blunts inflammatory responses to NTS, leading to decreased inflammatory pathology and increased systemic bacterial colonization. Blunting of NTS-induced inflammatory responses required induction of IL-10 by the parasites. In the absence of malaria parasite infection, administration of recombinant IL-10 together with induction of anemia had an additive effect on systemic bacterial colonization. Mice that were conditionally deficient for either myeloid cell IL-10 production or myeloid cell expression of IL-10 receptor were better able to control systemic Salmonella infection, suggesting that phagocytic cells are both producers and targets of malaria parasite-induced IL-10. Thus, IL-10 produced during the immune response to malaria increases susceptibility to disseminated NTS infection by suppressing the ability of myeloid cells, most likely macrophages, to control bacterial infection. PMID:24787713

  17. Plasmodial HSP70s are functionally adapted to the malaria parasite life cycle

    PubMed Central

    Przyborski, Jude M.; Diehl, Mathias; Blatch, Gregory L.

    2015-01-01

    The human malaria parasite, Plasmodium falciparum, encodes a minimal complement of six heat shock protein 70s (PfHSP70s), some of which are highly expressed and are thought to play an important role in the survival and pathology of the parasite. In addition to canonical features of molecular chaperones, these HSP70s possess properties that reflect functional adaptation to a parasitic life style, including resistance to thermal insult during fever periods and host–parasite interactions. The parasite even exports an HSP70 to the host cell where it is likely to be involved in host cell modification. This review focuses on the features of the PfHSP70s, particularly with respect to their adaptation to the malaria parasite life cycle. PMID:26167469

  18. Plasmodial HSP70s are functionally adapted to the malaria parasite life cycle.

    PubMed

    Przyborski, Jude M; Diehl, Mathias; Blatch, Gregory L

    2015-01-01

    The human malaria parasite, Plasmodium falciparum, encodes a minimal complement of six heat shock protein 70s (PfHSP70s), some of which are highly expressed and are thought to play an important role in the survival and pathology of the parasite. In addition to canonical features of molecular chaperones, these HSP70s possess properties that reflect functional adaptation to a parasitic life style, including resistance to thermal insult during fever periods and host-parasite interactions. The parasite even exports an HSP70 to the host cell where it is likely to be involved in host cell modification. This review focuses on the features of the PfHSP70s, particularly with respect to their adaptation to the malaria parasite life cycle. PMID:26167469

  19. Malaria parasite strain characterization, cryopreservation, and banking of isolates: a WHO Memorandum*

    PubMed Central

    1981-01-01

    There has been considerable progress in the biological characterization of malaria parasites in the past few years. Physiological parameters such as host adaptation, virulence, exoerythrocytic development, in vitro growth of erythrocytic stages, and drug sensitivity are of particular importance to epidemiologists. Advances in enzyme analysis, 2-dimensional protein electrophoresis, and nucleic acid analysis have produced several new techniques that can be applied to the malaria parasite. Similarly, antigenic characterization is expected to progress as a result of technical improvements. Many of the biological parameters are needed for the study of parasite genetics, a field which has expanded greatly through the development of cloning techniques. The latter also hold interest for the production, and the future use in research, of biologically well characterized standard clones. In this connexion, the cryopreservation and banking of malaria parasites deserve attention, in order to ensure the supply of well defined, viable isolates and clones to interested research workers. PMID:7032732

  20. Mechanisms of Stage-Transcending Protection Following Immunization of Mice with Late Liver Stage-Arresting Genetically Attenuated Malaria Parasites

    PubMed Central

    Sack, Brandon K.; Keitany, Gladys J.; Vaughan, Ashley M.; Miller, Jessica L.; Wang, Ruobing; Kappe, Stefan H. I.

    2015-01-01

    Malaria, caused by Plasmodium parasite infection, continues to be one of the leading causes of worldwide morbidity and mortality. Development of an effective vaccine has been encumbered by the complex life cycle of the parasite that has distinct pre-erythrocytic and erythrocytic stages of infection in the mammalian host. Historically, malaria vaccine development efforts have targeted each stage in isolation. An ideal vaccine, however, would target multiple life cycle stages with multiple arms of the immune system and be capable of eliminating initial infection in the liver, the subsequent blood stage infection, and would prevent further parasite transmission. We have previously shown that immunization of mice with Plasmodium yoelii genetically attenuated parasites (GAP) that arrest late in liver stage development elicits stage-transcending protection against both a sporozoite challenge and a direct blood stage challenge. Here, we show that this immunization strategy engenders both T- and B-cell responses that are essential for stage-transcending protection, but the relative importance of each is determined by the host genetic background. Furthermore, potent anti-blood stage antibodies elicited after GAP immunization rely heavily on FC-mediated functions including complement fixation and FC receptor binding. These protective antibodies recognize the merozoite surface but do not appear to recognize the immunodominant merozoite surface protein-1. The antigen(s) targeted by stage-transcending immunity are present in both the late liver stages and blood stage parasites. The data clearly show that GAP-engendered protective immune responses can target shared antigens of pre-erythrocytic and erythrocytic parasite life cycle stages. As such, this model constitutes a powerful tool to identify novel, protective and stage-transcending T and B cell targets for incorporation into a multi-stage subunit vaccine. PMID:25974076

  1. Targeting Purine and Pyrimidine Metabolism in Human Apicomplexan Parasites

    PubMed Central

    Hyde, John E.

    2009-01-01

    Synthesis de novo, acquisition by salvage and interconversion of purines and pyrimidines represent the fundamental requirements for their eventual assembly into nucleic acids as nucleotides and the deployment of their derivatives in other biochemical pathways. A small number of drugs targeted to nucleotide metabolism, by virtue of their effect on folate biosynthesis and recycling, have been successfully used against apicomplexan parasites such as Plasmodium and Toxoplasma for many years, although resistance is now a major problem in the prevention and treatment of malaria. Many targets not involving folate metabolism have also been explored at the experimental level. However, the unravelling of the genome sequences of these eukaryotic unicellular organisms, together with increasingly sophisticated molecular analyses, opens up possibilities of introducing new drugs that could interfere with these processes. This review examines the status of established drugs of this type and the potential for further exploiting the vulnerability of apicomplexan human pathogens to inhibition of this key area of metabolism. PMID:17266529

  2. The Host Targeting motif in exported Plasmodium proteins is cleaved in the parasite endoplasmic reticulum

    PubMed Central

    Osborne, Andrew R.; Speicher, Kaye D.; Tamez, Pamela A.; Bhattacharjee, Souvik; Speicher, David W.; Haldar, Kasturi

    2010-01-01

    During the blood stage of its lifecycle, the malaria parasite resides and replicates inside a membrane vacuole within its host cell, the human erythrocyte. The parasite exports many proteins across the vacuole membrane and into the host cell cytoplasm. Most exported proteins are characterized by the presence of a Host Targeting (HT) motif, also referred to as a Plasmodium Export Element (PEXEL), which corresponds to the consensus sequence RxLxE/D/Q. During export the HT motif is cleaved by an unknown protease. Here, we generate parasite lines expressing HT motif containing proteins that are localized to different compartments within the parasite or host cell. We find that the HT motif in a protein that is retained in the parasite endoplasmic reticulum, is cleaved and N-acetylated as efficiently as a protein that is exported. This shows that cleavage of the HT motif occurs early in the secretory pathway, in the parasite endoplasmic reticulum. PMID:20117149

  3. Induction of Strain-Transcending Antibodies Against Group A PfEMP1 Surface Antigens from Virulent Malaria Parasites

    PubMed Central

    Ghumra, Ashfaq; Claessens, Antoine; Anong, Damian N.; Bull, Peter C.; Fennell, Clare; Arman, Monica; Amambua-Ngwa, Alfred; Walther, Michael; Conway, David J.; Kassambara, Lalla; Doumbo, Ogobara K.; Raza, Ahmed; Rowe, J. Alexandra

    2012-01-01

    Sequence diversity in pathogen antigens is an obstacle to the development of interventions against many infectious diseases. In malaria caused by Plasmodium falciparum, the PfEMP1 family of variant surface antigens encoded by var genes are adhesion molecules that play a pivotal role in malaria pathogenesis and clinical disease. PfEMP1 is a major target of protective immunity, however, development of drugs or vaccines based on PfEMP1 is problematic due to extensive sequence diversity within the PfEMP1 family. Here we identified the PfEMP1 variants transcribed by P. falciparum strains selected for a virulence-associated adhesion phenotype (IgM-positive rosetting). The parasites transcribed a subset of Group A PfEMP1 variants characterised by an unusual PfEMP1 architecture and a distinct N-terminal domain (either DBLα1.5 or DBLα1.8 type). Antibodies raised in rabbits against the N-terminal domains showed functional activity (surface reactivity with live infected erythrocytes (IEs), rosette inhibition and induction of phagocytosis of IEs) down to low concentrations (<10 µg/ml of total IgG) against homologous parasites. Furthermore, the antibodies showed broad cross-reactivity against heterologous parasite strains with the same rosetting phenotype, including clinical isolates from four sub-Saharan African countries that showed surface reactivity with either DBLα1.5 antibodies (variant HB3var6) or DBLα1.8 antibodies (variant TM284var1). These data show that parasites with a virulence-associated adhesion phenotype share IE surface epitopes that can be targeted by strain-transcending antibodies to PfEMP1. The existence of shared surface epitopes amongst functionally similar disease-associated P. falciparum parasite isolates suggests that development of therapeutic interventions to prevent severe malaria is a realistic goal. PMID:22532802

  4. Alternative Protein Secretion in the Malaria Parasite Plasmodium falciparum.

    PubMed

    Thavayogarajah, Thuvaraka; Gangopadhyay, Preetish; Rahlfs, Stefan; Becker, Katja; Lingelbach, Klaus; Przyborski, Jude M; Holder, Anthony A

    2015-01-01

    Plasmodium falciparum invades human red blood cells, residing in a parasitophorous vacuole (PV), with a parasitophorous vacuole membrane (PVM) separating the PV from the host cell cytoplasm. Here we have investigated the role of N-myristoylation and two other N-terminal motifs, a cysteine potential S-palmitoylation site and a stretch of basic residues, as the driving force for protein targeting to the parasite plasma membrane (PPM) and subsequent translocation across this membrane. Plasmodium falciparum adenylate kinase 2 (Pf AK2) contains these three motifs, and was previously proposed to be targeted beyond the parasite to the PVM, despite the absence of a signal peptide for entry into the classical secretory pathway. Biochemical and microscopy analyses of PfAK2 variants tagged with green fluorescent protein (GFP) showed that these three motifs are involved in targeting the protein to the PPM and translocation across the PPM to the PV. It was shown that the N-terminal 37 amino acids of PfAK2 alone are sufficient to target and translocate GFP across the PPM. As a control we examined the N-myristoylated P. falciparum ADP-ribosylation factor 1 (PfARF1). PfARF1 was found to co-localise with a Golgi marker. To determine whether or not the putative palmitoylation and the cluster of lysine residues from the N-terminus of PfAK2 would modulate the subcellular localization of PfARF1, a chimeric fusion protein containing the N-terminus of PfARF1 and the two additional PfAK2 motifs was analysed. This chimeric protein was targeted to the PPM, but not translocated across the membrane into the PV, indicating that other features of the N-terminus of PfAK2 also play a role in the secretion process. PMID:25909331

  5. Alternative Protein Secretion in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Thavayogarajah, Thuvaraka; Gangopadhyay, Preetish; Rahlfs, Stefan; Becker, Katja; Lingelbach, Klaus; Przyborski, Jude M.; Holder, Anthony A.

    2015-01-01

    Plasmodium falciparum invades human red blood cells, residing in a parasitophorous vacuole (PV), with a parasitophorous vacuole membrane (PVM) separating the PV from the host cell cytoplasm. Here we have investigated the role of N-myristoylation and two other N-terminal motifs, a cysteine potential S-palmitoylation site and a stretch of basic residues, as the driving force for protein targeting to the parasite plasma membrane (PPM) and subsequent translocation across this membrane. Plasmodium falciparum adenylate kinase 2 (Pf AK2) contains these three motifs, and was previously proposed to be targeted beyond the parasite to the PVM, despite the absence of a signal peptide for entry into the classical secretory pathway. Biochemical and microscopy analyses of PfAK2 variants tagged with green fluorescent protein (GFP) showed that these three motifs are involved in targeting the protein to the PPM and translocation across the PPM to the PV. It was shown that the N-terminal 37 amino acids of PfAK2 alone are sufficient to target and translocate GFP across the PPM. As a control we examined the N-myristoylated P. falciparum ADP-ribosylation factor 1 (PfARF1). PfARF1 was found to co-localise with a Golgi marker. To determine whether or not the putative palmitoylation and the cluster of lysine residues from the N-terminus of PfAK2 would modulate the subcellular localization of PfARF1, a chimeric fusion protein containing the N-terminus of PfARF1 and the two additional PfAK2 motifs was analysed. This chimeric protein was targeted to the PPM, but not translocated across the membrane into the PV, indicating that other features of the N-terminus of PfAK2 also play a role in the secretion process. PMID:25909331

  6. On the effects of malaria treatment on parasite drug resistance--probability modelling of genotyped malaria infections.

    PubMed

    Kum, Cletus Kwa; Thorburn, Daniel; Ghilagaber, Gebrenegus; Gil, Pedro; Björkman, Anders

    2013-01-01

    We compare the frequency of resistant genes of malaria parasites before treatment and at first malaria incidence after treatment. The data come from a clinical trial at two health facilities in Tanzania and concerns single nucleotide polymorphisms (SNPs) at three positions believed to be related to resistance to malaria treatment. A problem is that mixed infections are common, which both obscures the underlying frequency of alleles at each locus as well as the associations between loci in samples where alleles are mixed. We use combinatorics and quite involved probability methods to handle multiple infections and multiple haplotypes. The infection with the different haplotypes seemed to be independent of each other. We showed that at two of the three studied SNPs, the proportion of resistant genes had increased after treatment with sulfadoxine-pyrimethamine alone but when treated in combination with artesunate, no effect was noticed. First recurrences of malaria associated more with sulfadoxine-pyrimethamine alone as treatment than when in combination with artesunate. We also found that the recruited children had two different ongoing malaria infections where the parasites had different gene types. PMID:24127546

  7. Novel selective and potent inhibitors of malaria parasite dihydroorotate dehydrogenase: discovery and optimization of dihydrothiophenone derivatives.

    PubMed

    Xu, Minghao; Zhu, Junsheng; Diao, Yanyan; Zhou, Hongchang; Ren, Xiaoli; Sun, Deheng; Huang, Jin; Han, Dongmei; Zhao, Zhenjiang; Zhu, Lili; Xu, Yufang; Li, Honglin

    2013-10-24

    Taking the emergence of drug resistance and lack of effective antimalarial vaccines into consideration, it is of significant importance to develop novel antimalarial agents for the treatment of malaria. Herein, we elucidated the discovery and structure-activity relationships of a series of dihydrothiophenone derivatives as novel specific inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH). The most promising compound, 50, selectively inhibited PfDHODH (IC50 = 6 nM, with >14,000-fold species-selectivity over hDHODH) and parasite growth in vitro (IC50 = 15 and 18 nM against 3D7 and Dd2 cells, respectively). Moreover, an oral bioavailability of 40% for compound 50 was determined from in vivo pharmacokinetic studies. These results further indicate that PfDHODH is an effective target for antimalarial chemotherapy, and the novel scaffolds reported in this work might lead to the discovery of new antimalarial agents. PMID:24073986

  8. Acidocalcisomes and a vacuolar H+-pyrophosphatase in malaria parasites.

    PubMed Central

    Marchesini, N; Luo, S; Rodrigues, C O; Moreno, S N; Docampo, R

    2000-01-01

    Plasmodium berghei trophozoites were loaded with the fluorescent calcium indicator, fura-2 acetoxymethyl ester, to measure their intracellular Ca(2+) concentration ([Ca(2+)](i)). [Ca(2+)](i) was increased in the presence of the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase inhibitor, thapsigargin. Trophozoites also possess a significant amount of Ca(2+) stored in an acidic compartment. This was indicated by: (1) the increase in [Ca(2+)](i) induced by bafilomycin A(1), nigericin, monensin, or the weak base, NH(4)Cl, in the nominal absence of extracellular Ca(2+), and (2) the effect of ionomycin, which cannot take Ca(2+) out of acidic organelles and was more effective after alkalinization of this compartment by addition of bafilomycin A(1), nigericin, monensin, or NH(4)Cl. Inorganic PP(i) promoted the acidification of a subcellular compartment in cell homogenates of trophozoites. The proton gradient driven by PP(i) collapsed by addition of the K(+)/H(+) exchanger, nigericin, and eliminated by the PP(i) analogue, aminomethylenediphosphonate (AMDP). Both PP(i) hydrolysis and proton transport were dependent upon K(+), and Na(+) caused partial inhibition of these activities. PP(i) hydrolysis was sensitive in a dose-dependent manner to AMDP, imidodiphosphate, sodium fluoride, dicyclohexylcarbodi-imide and to the thiol reagent, N-ethylmaleimide. Immunofluorescence microscopy using antibodies raised against conserved peptide sequences of a plant vacuolar pyrophosphatase (V-H(+)-PPase) suggested that the proton pyrophosphatase is located in intracellular vacuoles and the plasma membrane of trophozoites. AMDP caused an increase in [Ca(2+)](i) in the nominal absence of extracellular Ca(2+). Ionomycin was more effective in releasing Ca(2+) from this acidic intracellular compartment after treatment of the cells with AMDP. Taken together, these results suggest the presence in malaria parasites of acidocalcisomes with similar characteristics to those described in

  9. Diverse sampling of East African haemosporidians reveals chiropteran origin of malaria parasites in primates and rodents.

    PubMed

    Lutz, Holly L; Patterson, Bruce D; Kerbis Peterhans, Julian C; Stanley, William T; Webala, Paul W; Gnoske, Thomas P; Hackett, Shannon J; Stanhope, Michael J

    2016-06-01

    Phylogenies of parasites provide hypotheses on the history of their movements between hosts, leading to important insights regarding the processes of host switching that underlie modern-day epidemics. Haemosporidian (malaria) parasites lack a well resolved phylogeny, which has impeded the study of evolutionary processes associated with host-switching in this group. Here we present a novel phylogenetic hypothesis that suggests bats served as the ancestral hosts of malaria parasites in primates and rodents. Expanding upon current taxon sampling of Afrotropical bat and bird parasites, we find strong support for all major nodes in the haemosporidian tree using both Bayesian and maximum likelihood approaches. Our analyses support a single transition of haemosporidian parasites from saurian to chiropteran hosts, and do not support a monophyletic relationship between Plasmodium parasites of birds and mammals. We find, for the first time, that Hepatocystis and Plasmodium parasites of mammals represent reciprocally monophyletic evolutionary lineages. These results highlight the importance of broad taxonomic sampling when analyzing phylogenetic relationships, and have important implications for our understanding of key host switching events in the history of malaria parasite evolution. PMID:26975691

  10. Development and Assessment of Transgenic Rodent Parasites for the Preclinical Evaluation of Malaria Vaccines.

    PubMed

    Espinosa, Diego A; Radtke, Andrea J; Zavala, Fidel

    2016-01-01

    Rodent transgenic parasites are useful tools for the preclinical evaluation of malaria vaccines. Over the last decade, several studies have reported the development of transgenic rodent parasites expressing P. falciparum antigens for the assessment of vaccine-induced immune responses, which traditionally have been limited to in vitro assays. However, the genetic manipulation of rodent Plasmodium species can have detrimental effects on the parasite's infectivity and development. In this chapter, we present a few guidelines for designing transfection plasmids, which should improve transfection efficiency and facilitate the generation of functional transgenic parasite strains. In addition, we provide a transfection protocol for the development of transgenic P. berghei parasites as well as practical methods to assess the viability and infectivity of these newly generated strains throughout different stages of their life cycle. These techniques should allow researchers to develop novel rodent malaria parasites expressing antigens from human malaria species and to determine whether these transgenic strains are fully infectious and thus represent stringent platforms for the in vivo evaluation of malaria vaccine candidates. PMID:27076155

  11. Mouse-Based Research on Quiescent Primate Malaria Parasites.

    PubMed

    Markus, Miles B

    2016-04-01

    Mice engrafted with primate tissue make two important plasmodial dormancy-related questions researchable. The first is concerned with whether latent merozoites in the lymphatic system can give rise to relapse-like, recurrent malaria in primates. The second is that genetic evidence of hypnozoite activation as the source of relapsing primate malaria can be looked for. PMID:26961183

  12. Parasitic procrastination: late-presenting ovale malaria and schistosomiasis.

    PubMed

    Davis, T M; Singh, B; Sheridan, G

    2001-08-01

    A 29-year-old woman with ovale malaria (most likely contracted, together with asymptomatic schistosomiasis, in East Africa two years previously) had fever, nausea and confusion, jaundice, anaemia, thrombocytopenia, hyponatraemia and hypokalaemia. She was initially diagnosed with and treated for blood-smear-positive vivax malaria. Because of the unusual clinical presentation, blood was analysed by a malaria species-specific nested polymerase chain reaction (PCR) assay which identified Plasmodium ovale as the only infecting species. This case illustrates (i) that a detailed travel history remains a vital part of clinical assessment, (ii) ovale malaria can have an exceptionally long incubation period and features of a moderately severe acute infection, and (iii) PCR assay may prove a valuable adjunct to blood film examination in the diagnosis and speciation of malaria. PMID:11548081

  13. How Robust Are Malaria Parasite Clearance Rates as Indicators of Drug Effectiveness and Resistance?

    PubMed

    Hastings, Ian M; Kay, Katherine; Hodel, Eva Maria

    2015-10-01

    Artemisinin-based combination therapies (ACTs) are currently the first-line drugs for treating uncomplicated falciparum malaria, the most deadly of the human malarias. Malaria parasite clearance rates estimated from patients' blood following ACT treatment have been widely adopted as a measure of drug effectiveness and as surveillance tools for detecting the presence of potential artemisinin resistance. This metric has not been investigated in detail, nor have its properties or potential shortcomings been identified. Herein, the pharmacology of drug treatment, parasite biology, and human immunity are combined to investigate the dynamics of parasite clearance following ACT. This approach parsimoniously recovers the principal clinical features and dynamics of clearance. Human immunity is the primary determinant of clearance rates, unless or until artemisinin killing has fallen to near-ineffective levels. Clearance rates are therefore highly insensitive metrics for surveillance that may lead to overconfidence, as even quite substantial reductions in drug sensitivity may not be detected as lower clearance rates. Equally serious is the use of clearance rates to quantify the impact of ACT regimen changes, as this strategy will plausibly miss even very substantial increases in drug effectiveness. In particular, the malaria community may be missing the opportunity to dramatically increase ACT effectiveness through regimen changes, particularly through a switch to twice-daily regimens and/or increases in artemisinin dosing levels. The malaria community therefore appears overreliant on a single metric of drug effectiveness, the parasite clearance rate, that has significant and serious shortcomings. PMID:26239987

  14. How Robust Are Malaria Parasite Clearance Rates as Indicators of Drug Effectiveness and Resistance?

    PubMed Central

    Kay, Katherine; Hodel, Eva Maria

    2015-01-01

    Artemisinin-based combination therapies (ACTs) are currently the first-line drugs for treating uncomplicated falciparum malaria, the most deadly of the human malarias. Malaria parasite clearance rates estimated from patients' blood following ACT treatment have been widely adopted as a measure of drug effectiveness and as surveillance tools for detecting the presence of potential artemisinin resistance. This metric has not been investigated in detail, nor have its properties or potential shortcomings been identified. Herein, the pharmacology of drug treatment, parasite biology, and human immunity are combined to investigate the dynamics of parasite clearance following ACT. This approach parsimoniously recovers the principal clinical features and dynamics of clearance. Human immunity is the primary determinant of clearance rates, unless or until artemisinin killing has fallen to near-ineffective levels. Clearance rates are therefore highly insensitive metrics for surveillance that may lead to overconfidence, as even quite substantial reductions in drug sensitivity may not be detected as lower clearance rates. Equally serious is the use of clearance rates to quantify the impact of ACT regimen changes, as this strategy will plausibly miss even very substantial increases in drug effectiveness. In particular, the malaria community may be missing the opportunity to dramatically increase ACT effectiveness through regimen changes, particularly through a switch to twice-daily regimens and/or increases in artemisinin dosing levels. The malaria community therefore appears overreliant on a single metric of drug effectiveness, the parasite clearance rate, that has significant and serious shortcomings. PMID:26239987

  15. Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum.

    PubMed Central

    Elliott, J L; Saliba, K J; Kirk, K

    2001-01-01

    The mature, intraerythrocytic form of the human malaria parasite, Plasmodium falciparum, is reliant on glycolysis for its energetic requirements. It produces large quantities of lactic acid, which have to be removed from the parasite's cytosol to maintain the cell's integrity and metabolic viability. Here we show that the monocarboxylates lactate and pyruvate are both transported across the parasite's plasma membrane via a H(+)/monocarboxylate symport process that is saturable and inhibited by the bioflavonoid phloretin. The results provide direct evidence for the presence at the parasite surface of a H(+)-coupled monocarboxylate transporter with features in common with members of the MCT (monocarboxylate transporter) family of higher eukaryotes. PMID:11311136

  16. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon

    PubMed Central

    Lalremruata, Albert; Magris, Magda; Vivas-Martínez, Sarai; Koehler, Maike; Esen, Meral; Kempaiah, Prakasha; Jeyaraj, Sankarganesh; Perkins, Douglas Jay; Mordmüller, Benjamin; Metzger, Wolfram G.

    2015-01-01

    Background The quartan malaria parasite Plasmodium malariae is the widest spread and best adapted human malaria parasite. The simian Plasmodium brasilianum causes quartan fever in New World monkeys and resembles P. malariae morphologically. Since the genetics of the two parasites are nearly identical, differing only in a range of mutations expected within a species, it has long been speculated that the two are the same. However, no naturally acquired infection with parasites termed as P. brasilianum has been found in humans until now. Methods We investigated malaria cases from remote Yanomami indigenous communities of the Venezuelan Amazon and analyzed the genes coding for the circumsporozoite protein (CSP) and the small subunit of ribosomes (18S) by species-specific PCR and capillary based-DNA sequencing. Findings Based on 18S rRNA gene sequencing, we identified 12 patients harboring malaria parasites which were 100% identical with P. brasilianum isolated from the monkey, Alouatta seniculus. Translated amino acid sequences of the CS protein gene showed identical immunodominant repeat units between quartan malaria parasites isolated from both humans and monkeys. Interpretation This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts. PMID:26501116

  17. Serological Conservation of Parasite-Infected Erythrocytes Predicts Plasmodium falciparum Erythrocyte Membrane Protein 1 Gene Expression but Not Severity of Childhood Malaria.

    PubMed

    Warimwe, George M; Abdi, Abdirahman I; Muthui, Michelle; Fegan, Gregory; Musyoki, Jennifer N; Marsh, Kevin; Bull, Peter C

    2016-05-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), expressed on P. falciparum-infected erythrocytes, is a major family of clonally variant targets of naturally acquired immunity to malaria. Previous studies have demonstrated that in areas where malaria is endemic, antibodies to infected erythrocytes from children with severe malaria tend to be more seroprevalent than antibodies to infected erythrocytes from children with nonsevere malaria. These data have led to a working hypothesis that PfEMP1 variants associated with parasite virulence are relatively conserved in structure. However, the longevity of such serologically conserved variants in the parasite population is unknown. Here, using infected erythrocytes from recently sampled clinical P. falciparum samples, we measured serological conservation using pools of antibodies in sera that had been sampled 10 to 12 years earlier. The serological conservation of infected erythrocytes strongly correlated with the expression of specific PfEMP1 subsets previously found to be associated with severe malaria. However, we found no association between serological conservation per se and disease severity within these data. This contrasts with the simple hypothesis that P. falciparum isolates with a serologically conserved group of PfEMP1 variants cause severe malaria. The data are instead consistent with periodic turnover of the immunodominant epitopes of PfEMP1 associated with severe malaria. PMID:26883585

  18. Analysis of Antibodies Directed against Merozoite Surface Protein 1 of the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Woehlbier, Ute; Epp, Christian; Kauth, Christian W.; Lutz, Rolf; Long, Carole A.; Coulibaly, Boubacar; Kouyaté, Bocar; Arevalo-Herrera, Myriam; Herrera, Sócrates; Bujard, Hermann

    2006-01-01

    The 190-kDa merozoite surface protein 1 (MSP-1) of Plasmodium falciparum, an essential component in the parasite's life cycle, is a primary candidate for a malaria vaccine. Rabbit antibodies elicited by the heterologously produced MSP-1 processing products p83, p30, p38, and p42, derived from strain 3D7, were analyzed for the potential to inhibit in vitro erythrocyte invasion by the parasite and parasite growth. Our data show that (i) epitopes recognized by antibodies, which inhibit parasite replication, are distributed throughout the entire MSP-1 molecule; (ii) when combined, antibodies specific for different regions of MSP-1 inhibit in a strictly additive manner; (iii) anti-MSP-1 antibodies interfere with erythrocyte invasion as well as with the intraerythrocytic growth of the parasite; and (iv) antibodies raised against MSP-1 of strain 3D7 strongly cross-inhibit replication of the heterologous strain FCB-1. Accordingly, anti-MSP-1 antibodies appear to be capable of interfering with parasite multiplication at more than one level. Since the overall immunogenicity profile of MSP-1 in rabbits closely resembles that found in sera of Aotus monkeys immunized with parasite-derived MSP-1 and of humans semi-immune to malaria from whom highly inhibiting antigen-specific antibodies were recovered, we consider the findings reported here to be relevant for the development of MSP-1-based vaccines against malaria. PMID:16428781

  19. The Human Malaria Parasite Plasmodium falciparum Is Not Dependent on Host Coenzyme A Biosynthesis*

    PubMed Central

    Spry, Christina; Saliba, Kevin J.

    2009-01-01

    Pantothenate, a precursor of the fundamental enzyme cofactor coenzyme A (CoA), is essential for growth of the intraerythrocytic stage of human and avian malaria parasites. Avian malaria parasites have been reported to be incapable of de novo CoA synthesis and instead salvage CoA from the host erythrocyte; hence, pantothenate is required for CoA biosynthesis within the host cell and not the parasite itself. Whether the same is true of the intraerythrocytic stage of the human malaria parasite, Plasmodium falciparum, remained to be established. In this study we investigated the metabolic fate of [14C]pantothenate within uninfected and P. falciparum-infected human erythrocytes. We provide evidence consistent with normal human erythrocytes, unlike rat erythrocytes (which have been reported to possess an incomplete CoA biosynthesis pathway), being capable of CoA biosynthesis from pantothenate. We also show that CoA biosynthesis is substantially higher in P. falciparum-infected erythrocytes and that P. falciparum, unlike its avian counterpart, generates most of the CoA synthesized in the infected erythrocyte, presumably necessitated by insufficient CoA biosynthesis in the host erythrocyte. Our data raise the possibility that malaria parasites rationalize their biosynthetic activity depending on the capacity of their host cell to synthesize the metabolites they require. PMID:19584050

  20. Parasitic diarrheal disease: drug development and targets

    PubMed Central

    Azam, Amir; Peerzada, Mudasir N.; Ahmad, Kamal

    2015-01-01

    Diarrhea is the manifestation of gastrointestinal infection and is one of the major causes of mortality and morbidity specifically among the children of less than 5 years age worldwide. Moreover, in recent years there has been a rise in the number of reports of intestinal infections continuously in the industrialized world. These are largely related to waterborne and food borne outbreaks. These occur by the pathogenesis of both prokaryotic and eukaryotic organisms like bacteria and parasites. The parasitic intestinal infection has remained mostly unexplored and under assessed in terms of therapeutic development. The lack of new drugs and the risk of resistance have led us to carry out this review on drug development for parasitic diarrheal diseases. The major focus has been depicted on commercially available drugs, currently synthesized active heterocyclic compounds and unique drug targets, that are vital for the existence and growth of the parasites and can be further exploited for the search of therapeutically active anti-parasitic agents. PMID:26617574

  1. Emerging importance of mismatch repair components including UvrD helicase and their cross-talk with the development of drug resistance in malaria parasite.

    PubMed

    Ahmad, Moaz; Tuteja, Renu

    2014-12-01

    Human malaria is an important parasitic infection responsible for a significant number of deaths worldwide, particularly in tropical and subtropical regions. The recent scenario has worsened mainly because of the emergence of drug-resistant malaria parasites having the potential to spread across the world. Drug-resistant parasites possess a defective mismatch repair (MMR); therefore, it is essential to explore its mechanism in detail to determine the underlying cause. Recently, artemisinin-resistant parasites have been reported to exhibit nonsynonymous single nucleotide polymorphisms in genes involved in MMR pathways such as MutL homolog (MLH) and UvrD. Plasmodium falciparum MLH is an endonuclease required to restore the defective MMR in drug-resistant W2 strain of P. falciparum. Although the role of helicases in eukaryotic MMR has been questioned, the identification and characterization of the UvrD helicase and their cross-talk with MLH in P. falciparum suggests the possible involvement of UvrD in MMR. A comparative genome-wide analysis revealed the presence of the UvrD helicase in Plasmodium species, while it is absent in human host. Therefore, PfUvrD may emerge as a suitable drug target to control malaria. This review study is focused on recent developments in MMR biochemistry, emerging importance of the UvrD helicase, possibility of its involvement in MMR and the emerging cross-talk between MMR components and drug resistance in malaria parasite. PMID:25771870

  2. Combination therapy counteracts the enhanced transmission of drug-resistant malaria parasites to mosquitoes.

    PubMed

    Hallett, Rachel L; Sutherland, Colin J; Alexander, Neal; Ord, Rosalynn; Jawara, Musa; Drakeley, Chris J; Pinder, Margaret; Walraven, Gijs; Targett, Geoffrey A T; Alloueche, Ali

    2004-10-01

    Malaria parasites carrying genes conferring resistance to antimalarials are thought to have a selective advantage which leads to higher rates of transmissibility from the drug-treated host. This is a likely mechanism for the increasing prevalence of parasites with resistance to chloroquine (CQ) and sulfadoxine-pyrimethamine in sub-Saharan Africa. Combination therapy is the key strategy being implemented to reduce the impact of resistance, but its effect on the transmission of genetically resistant parasites from treated patients to mosquito vectors has not been measured directly. In a trial comparing CQ monotherapy to the combination CQ plus artesunate (AS) in Gambian children with uncomplicated falciparum malaria, we measured transmissibility by feeding Anopheles gambiae mosquitoes with blood from 43 gametocyte-positive patients through a membrane. In the CQ-treated group, gametocytes from patients carrying parasites with the CQ resistance-associated allele pfcrt-76T prior to treatment produced infected mosquitoes with 38 times higher Plasmodium falciparum oocyst burdens than mosquitoes fed on gametocytes from patients infected with sensitive parasites (P < 0.001). Gametocytes from parasites carrying the resistance-associated allele pfmdr1-86Y produced 14-fold higher oocyst burdens than gametocytes from patients infected with sensitive parasites (P = 0.011). However, parasites carrying either of these resistance-associated alleles pretreatment were not associated with higher mosquito oocyst burdens in the CQ-AS-treated group. Thus, combination therapy overcomes the transmission advantage enjoyed by drug-resistant parasites. PMID:15388456

  3. Sodium-dependent uptake of inorganic phosphate by the intracellular malaria parasite

    NASA Astrophysics Data System (ADS)

    Saliba, Kevin J.; Martin, Rowena E.; Bröer, Angelika; Henry, Roselani I.; Siobhan McCarthy, C.; Downie, Megan J.; Allen, Richard J. W.; Mullin, Kylie A.; McFadden, Geoffrey I.; Bröer, Stefan; Kirk, Kiaran

    2006-10-01

    As the malaria parasite, Plasmodium falciparum, grows within its host erythrocyte it induces an increase in the permeability of the erythrocyte membrane to a range of low-molecular-mass solutes, including Na+ and K+ (ref. 1). This results in a progressive increase in the concentration of Na+ in the erythrocyte cytosol. The parasite cytosol has a relatively low Na+ concentration and there is therefore a large inward Na+ gradient across the parasite plasma membrane. Here we show that the parasite exploits the Na+ electrochemical gradient to energize the uptake of inorganic phosphate (Pi), an essential nutrient. Pi was taken up into the intracellular parasite by a Na+-dependent transporter, with a stoichiometry of 2Na+:1Pi and with an apparent preference for the monovalent over the divalent form of Pi. A Pi transporter (PfPiT) belonging to the PiT family was cloned from the parasite and localized to the parasite surface. Expression of PfPiT in Xenopus oocytes resulted in Na+-dependent Pi uptake with characteristics similar to those observed for Pi uptake in the parasite. This study provides new insight into the significance of the malaria-parasite-induced alteration of the ionic composition of its host cell.

  4. Coupling of Retrograde Flow to Force Production During Malaria Parasite Migration.

    PubMed

    Quadt, Katharina A; Streichfuss, Martin; Moreau, Catherine A; Spatz, Joachim P; Frischknecht, Friedrich

    2016-02-23

    Migration of malaria parasites is powered by a myosin motor that moves actin filaments, which in turn link to adhesive proteins spanning the plasma membrane. The retrograde flow of these adhesins appears to be coupled to forward locomotion. However, the contact dynamics between the parasite and the substrate as well as the generation of forces are complex and their relation to retrograde flow is unclear. Using optical tweezers we found retrograde flow rates up to 15 μm/s contrasting with parasite average speeds of 1-2 μm/s. We found that a surface protein, TLP, functions in reducing retrograde flow for the buildup of adhesive force and that actin dynamics appear optimized for the generation of force but not for maximizing the speed of retrograde flow. These data uncover that TLP acts by modulating actin dynamics or actin filament organization and couples retrograde flow to force production in malaria parasites. PMID:26792112

  5. Progress towards malaria control targets in relation to national malaria programme funding

    PubMed Central

    2013-01-01

    Background Malaria control has been dramatically scaled up the past decade, mainly thanks to increasing international donor financing since 2003. This study assessed progress up to 2010 towards global malaria impact targets, in relation to Global Fund, other donor and domestic malaria programme financing over 2003 to 2009. Methods Assessments used domestic malaria financing reported by national programmes, and Global Fund/OECD data on donor financing for 90 endemic low- and middle-income countries, WHO estimates of households owning one or more insecticide-treated mosquito net (ITN) for countries in sub-Saharan Africa, and WHO-estimated malaria case incidence and deaths in countries outside sub-Saharan Africa. Results Global Fund and other donor funding is concentrated in a subset of the highest endemic African countries. Outside Africa, donor funding is concentrated in those countries with highest malaria mortality and case incidence rates over the years 2000 to 2003. ITN coverage in 2010 in Africa, and declines in case and death rates per person at risk over 2004 to 2010 outside Africa, were greatest in countries with highest donor funding per person at risk, and smallest in countries with lowest donor malaria funding per person at risk. Outside Africa, all-source malaria programme funding over 2003 to 2009 per case averted ($56-5,749) or per death averted ($58,000-3,900,000) over 2004 to 2010 tended to be lower (more favourable) in countries with higher donor malaria funding per person at risk. Conclusions Increases in malaria programme funding are associated with accelerated progress towards malaria control targets. Associations between programme funding per person at risk and ITN coverage increases and declines in case and death rates suggest opportunities to maximize the impact of donor funding, by strategic re-allocation to countries with highest continued need. PMID:23317000

  6. Parasite Specific Antibody Increase Induced by an Episode of Acute P. falciparum Uncomplicated Malaria

    PubMed Central

    Kaddumukasa, Mark; Lwanira, Catherine; Lugaajju, Allan; Katabira, Elly; Persson, Kristina E. M.; Wahlgren, Mats; Kironde, Fred

    2015-01-01

    Introduction There is no approved vaccine for malaria, and precisely how human antibody responses to malaria parasite components and potential vaccine molecules are developed and maintained remains poorly defined. In this study, antibody anamnestic or memory response elicited by a single episode of P. falciparum infection was investigated. Methods This study involved 362 malaria patients aged between 6 months to 60 years, of whom 19% were early-diagnosed people living with HIV/AIDS (PLWHA). On the day malaria was diagnosed and 42 days later, blood specimens were collected. Parasite density, CD4+ cells, and antibodies specific to synthetic peptides representing antigenic regions of the P. falciparum proteins GLURP, MSP3 and HRPII were measured. Results On the day of malaria diagnosis, Immunoglobulin (IgG) antibodies against GLURP, MSP3 and HRP II peptides were present in the blood of 75%, 41% and 60% of patients, respectively. 42 days later, the majority of patients had boosted their serum IgG antibody more than 1.2 fold. The increase in level of IgG antibody against the peptides was not affected by parasite density at diagnosis. The median CD4+ cell counts of PLWHAs and HIV negative individuals were not statistically different, and median post-infection increases in anti-peptide IgG were similar in both groups of patients. Conclusion In the majority (70%) of individuals, an infection of P. falciparum elicits at least 20% increase in level of anti-parasite IgG. This boost in anti-P. falciparum IgG is not affected by parasite density on the day of malaria diagnosis, or by HIV status. PMID:25906165

  7. Within-host Competition Does Not Select for Virulence in Malaria Parasites; Studies with Plasmodium yoelii

    PubMed Central

    Abkallo, Hussein M.; Tangena, Julie-Anne; Tang, Jianxia; Kobayashi, Nobuyuki; Inoue, Megumi; Zoungrana, Augustin; Colegrave, Nick; Culleton, Richard

    2015-01-01

    In endemic areas with high transmission intensities, malaria infections are very often composed of multiple genetically distinct strains of malaria parasites. It has been hypothesised that this leads to intra-host competition, in which parasite strains compete for resources such as space and nutrients. This competition may have repercussions for the host, the parasite, and the vector in terms of disease severity, vector fitness, and parasite transmission potential and fitness. It has also been argued that within-host competition could lead to selection for more virulent parasites. Here we use the rodent malaria parasite Plasmodium yoelii to assess the consequences of mixed strain infections on disease severity and parasite fitness. Three isogenic strains with dramatically different growth rates (and hence virulence) were maintained in mice in single infections or in mixed strain infections with a genetically distinct strain. We compared the virulence (defined as harm to the mammalian host) of mixed strain infections with that of single infections, and assessed whether competition impacted on parasite fitness, assessed by transmission potential. We found that mixed infections were associated with a higher degree of disease severity and a prolonged infection time. In the mixed infections, the strain with the slower growth rate was often responsible for the competitive exclusion of the faster growing strain, presumably through host immune-mediated mechanisms. Importantly, and in contrast to previous work conducted with Plasmodium chabaudi, we found no correlation between parasite virulence and transmission potential to mosquitoes, suggesting that within-host competition would not drive the evolution of parasite virulence in P. yoelii. PMID:25658331

  8. Malaria Research

    MedlinePlus

    ... Malaria > Research Malaria Understanding Research NIAID Role Basic Biology Prevention and Control Strategies Strategic Partnerships and Research ... the malaria parasite. Related Links Global Research​ Vector Biology International Centers of Excellence for Malaria Research (ICEMR) ...

  9. A sugar phosphatase regulates the methylerythritol phosphate (MEP) pathway in malaria parasites

    PubMed Central

    Edwards, Rachel L.; Kelly, Megan L.; Hodge, Dana M.; Tolia, Niraj H.; Odom, Audrey R.

    2014-01-01

    Isoprenoid biosynthesis through the methylerythritol phosphate (MEP) pathway generates commercially important products and is a target for antimicrobial drug development. MEP pathway regulation is poorly understood in microorganisms. We employ a forward genetics approach to understand MEP pathway regulation in the malaria parasite, Plasmodium falciparum. The antimalarial fosmidomycin inhibits the MEP pathway enzyme deoxyxylulose 5-phosphate reductoisomerase (DXR). Fosmidomycin-resistant P. falciparum are enriched for changes in the PF3D7_1033400 locus (hereafter referred to as PfHAD1), encoding a homologue of haloacid dehalogenase (HAD)-like sugar phosphatases. We describe the structural basis for loss-of-function PfHAD1 alleles and find that PfHAD1 dephosphorylates a variety of sugar phosphates, including glycolytic intermediates. Loss of PfHAD1 is required for fosmidomycin resistance. Parasites lacking PfHAD1 have increased MEP pathway metabolites, particularly the DXR substrate, deoxyxylulose 5-phosphate. PfHAD1 therefore controls substrate availability to the MEP pathway. Because PfHAD1 has homologs in plants and bacteria, other HAD proteins may be MEP pathway regulators. PMID:25058848

  10. A sugar phosphatase regulates the methylerythritol phosphate (MEP) pathway in malaria parasites.

    PubMed

    Guggisberg, Ann M; Park, Jooyoung; Edwards, Rachel L; Kelly, Megan L; Hodge, Dana M; Tolia, Niraj H; Odom, Audrey R

    2014-01-01

    Isoprenoid biosynthesis through the methylerythritol phosphate (MEP) pathway generates commercially important products and is a target for antimicrobial drug development. MEP pathway regulation is poorly understood in microorganisms. Here we employ a forward genetics approach to understand MEP pathway regulation in the malaria parasite, Plasmodium falciparum. The antimalarial fosmidomycin inhibits the MEP pathway enzyme deoxyxylulose 5-phosphate reductoisomerase (DXR). Fosmidomycin-resistant P. falciparum are enriched for changes in the PF3D7_1033400 locus (hereafter referred to as PfHAD1), encoding a homologue of haloacid dehalogenase (HAD)-like sugar phosphatases. We describe the structural basis for loss-of-function PfHAD1 alleles and find that PfHAD1 dephosphorylates a variety of sugar phosphates, including glycolytic intermediates. Loss of PfHAD1 is required for fosmidomycin resistance. Parasites lacking PfHAD1 have increased MEP pathway metabolites, particularly the DXR substrate, deoxyxylulose 5-phosphate. PfHAD1 therefore controls substrate availability to the MEP pathway. Because PfHAD1 has homologues in plants and bacteria, other HAD proteins may be MEP pathway regulators. PMID:25058848

  11. Human red blood cell-adapted Plasmodium knowlesi parasites: a new model system for malaria research

    PubMed Central

    Grüring, Christof; Moon, Robert W.; Lim, Caeul; Holder, Anthony A.; Blackman, Michael J.; Duraisingh, Manoj T.

    2014-01-01

    Summary Plasmodium knowlesi is a simian malaria parasite primarily infecting macaque species in Southeast Asia. Although its capacity to infect humans has been recognized since the early part of the last century, it has recently become evident that human infections are widespread and potentially life threatening. Historically, P. knowlesi has proven to be a powerful tool in early studies of malaria parasites, providing key breakthroughs in understanding many aspects of Plasmodium biology. However, the necessity to grow the parasite either in macaques or in vitro using macaque blood restricted research to laboratories with access to these resources. The recent adaptation of P. knowlesi to grow and proliferate in vitro in human red blood cells (RBCs) is therefore a substantial step towards revitalizing and expanding research on P. knowlesi. Furthermore, the development of a highly efficient transfection system to genetically modify the parasite makes P. knowlesi an ideal model to study parasite biology. In this review we elaborate on the importance of P. knowlesi in earlier phases of malaria research and highlight the future potential of the newly available human adapted P. knowlesi parasite lines. PMID:24506567

  12. Nanomimics of host cell membranes block invasion and expose invasive malaria parasites.

    PubMed

    Najer, Adrian; Wu, Dalin; Bieri, Andrej; Brand, Françoise; Palivan, Cornelia G; Beck, Hans-Peter; Meier, Wolfgang

    2014-12-23

    The fight against most infectious diseases, including malaria, is often hampered by the emergence of drug resistance and lack or limited efficacies of vaccines. Therefore, new drugs, vaccines, or other strategies to control these diseases are needed. Here, we present an innovative nanotechnological strategy in which the nanostructure itself represents the active substance with no necessity to release compounds to attain therapeutic effect and which might act in a drug- and vaccine-like dual function. Invasion of Plasmodium falciparum parasites into red blood cells was selected as a biological model for the initial validation of this approach. Stable nanomimics-polymersomes presenting receptors required for parasite attachment to host cells-were designed to efficiently interrupt the life cycle of the parasite by inhibiting invasion. A simple way to build nanomimics without postformation modifications was established. First, a block copolymer of the receptor with a hydrophobic polymer was synthesized and then mixed with a polymersome-forming block copolymer. The resulting nanomimics bound parasite-derived ligands involved in the initial attachment to host cells and they efficiently blocked reinvasion of malaria parasites after their egress from host cells in vitro. They exhibited efficacies of more than 2 orders of magnitude higher than the soluble form of the receptor, which can be explained by multivalent interactions of several receptors on one nanomimic with multiple ligands on the infective parasite. In the future, our strategy might offer interesting treatment options for severe malaria or a way to modulate the immune response. PMID:25435059

  13. Human red blood cell-adapted Plasmodium knowlesi parasites: a new model system for malaria research.

    PubMed

    Grüring, Christof; Moon, Robert W; Lim, Caeul; Holder, Anthony A; Blackman, Michael J; Duraisingh, Manoj T

    2014-05-01

    Plasmodium knowlesi is a simian malaria parasite primarily infecting macaque species in Southeast Asia. Although its capacity to infect humans has been recognized since the early part of the last century, it has recently become evident that human infections are widespread and potentially life threatening. Historically, P.  knowlesi has proven to be a powerful tool in early studies of malaria parasites, providing key breakthroughs in understanding many aspects of Plasmodium biology. However, the necessity to grow the parasite either in macaques or in vitro using macaque blood restricted research to laboratories with access to these resources. The recent adaptation of P.  knowlesi to grow and proliferate in vitro in human red blood cells (RBCs) is therefore a substantial step towards revitalizing and expanding research on P.  knowlesi. Furthermore, the development of a highly efficient transfection system to genetically modify the parasite makes P.  knowlesi an ideal model to study parasite biology. In this review, we elaborate on the importance of P.  knowlesi in earlier phases of malaria research and highlight the future potential of the newly available human adapted P.  knowlesi parasite lines. PMID:24506567

  14. Disruption of cellular homeostasis induces organelle stress and triggers apoptosis like cell-death pathways in malaria parasite

    PubMed Central

    Rathore, S; Datta, G; Kaur, I; Malhotra, P; Mohmmed, A

    2015-01-01

    A regulated protein turnover machinery in the cell is essential for effective cellular homeostasis; any interference with this system induces cellular stress and alters the normal functioning of proteins important for cell survival. In this study, we show that persistent cellular stress and organelle dysfunction because of disruption of cellular homeostasis in human malaria parasite Plasmodium falciparum, leads to apoptosis-like cell death. Quantitative global proteomic analysis of the stressed parasites before onset of cell death, showed upregulation of a number of proteins involved in cellular homeostasis; protein network analyses identified upregulated metabolic pathways that may be associated with stress tolerance and pro-survival mechanism. However, persistent stress on parasites cause structural abnormalities in endoplasmic reticulum and mitochondria, subsequently a cascade of reactions are initiated in parasites including rise in cytosolic calcium levels, loss of mitochondrial membrane potential and activation of VAD-FMK-binding proteases. We further show that activation of VAD-FMK-binding proteases in the parasites leads to degradation of phylogenetically conserved protein, TSN (Tudor staphylococcal nuclease), a known target of metacaspases, as well as degradation of other components of spliceosomal complex. Loss of spliceosomal machinery impairs the mRNA splicing, leading to accumulation of unprocessed RNAs in the parasite and thus dysregulate vital cellular functions, which in turn leads to execution of apoptosis-like cell death. Our results establish one of the possible mechanisms of instigation of cell death by organelle stress in Plasmodium. PMID:26136076

  15. Sequestration and metabolism of host cell arginine by the intraerythrocytic malaria parasite Plasmodium falciparum.

    PubMed

    Cobbold, Simon A; Llinás, Manuel; Kirk, Kiaran

    2016-06-01

    Human erythrocytes have an active nitric oxide synthase, which converts arginine into citrulline and nitric oxide (NO). NO serves several important functions, including the maintenance of normal erythrocyte deformability, thereby ensuring efficient passage of the red blood cell through narrow microcapillaries. Here, we show that following invasion by the malaria parasite Plasmodium falciparum the arginine pool in the host erythrocyte compartment is sequestered and metabolized by the parasite. Arginine from the extracellular medium enters the infected cell via endogenous host cell transporters and is taken up by the intracellular parasite by a high-affinity cationic amino acid transporter at the parasite surface. Within the parasite arginine is metabolized into citrulline and ornithine. The uptake and metabolism of arginine by the parasite deprive the erythrocyte of the substrate required for NO production and may contribute to the decreased deformability of infected erythrocytes. PMID:26633083

  16. Intestinal Parasites Coinfection Does Not Alter Plasma Cytokines Profile Elicited in Acute Malaria in Subjects from Endemic Area of Brazil

    PubMed Central

    Perce-da-Silva, Daiana de Souza; Lima-Junior, Josué da Costa

    2014-01-01

    In Brazil, malaria is prevalent in the Amazon region and these regions coincide with high prevalence of intestinal parasites but few studies explore the interaction between malaria and other parasites. Therefore, the present study evaluates changes in cytokine, chemokine, C-reactive protein, and nitric oxide (NO) concentrations in 264 individuals, comparing plasma from infected individuals with concurrent malaria and intestinal parasites to individuals with either malaria infection alone and uninfected. In the studied population 24% of the individuals were infected with Plasmodium and 18% coinfected with intestinal parasites. Protozoan parasites comprised the bulk of the intestinal parasites infections and subjects infected with intestinal parasites were more likely to have malaria. The use of principal component analysis and cluster analysis associated increased levels of IL-6, TNF-α, IL-10, and CRP and low levels of IL-17A predominantly with individuals with malaria alone and coinfected individuals. In contrast, low levels of almost all inflammatory mediators were associated predominantly with individuals uninfected while increased levels of IL-17A were associated predominantly with individuals with intestinal parasites only. In conclusion, our data suggest that, in our population, the infection with intestinal parasites (mainly protozoan) does not modify the pattern of cytokine production in individuals infected with P. falciparum and P. vivax. PMID:25309052

  17. Malaria.

    PubMed

    White, Nicholas J; Pukrittayakamee, Sasithon; Hien, Tran Tinh; Faiz, M Abul; Mokuolu, Olugbenga A; Dondorp, Arjen M

    2014-02-22

    Although global morbidity and mortality have decreased substantially, malaria, a parasite infection of red blood cells, still kills roughly 2000 people per day, most of whom are children in Africa. Two factors largely account for these decreases; increased deployment of insecticide-treated bednets and increased availability of highly effective artemisinin combination treatments. In large trials, parenteral artesunate (an artemisinin derivative) reduced severe malaria mortality by 22·5% in Africa and 34·7% in Asia compared with quinine, whereas adjunctive interventions have been uniformly unsuccessful. Rapid tests have been an important addition to microscopy for malaria diagnosis. Chemopreventive strategies have been increasingly deployed in Africa, notably intermittent sulfadoxine-pyrimethamine treatment in pregnancy, and monthly amodiaquine-sulfadoxine-pyrimethamine during the rainy season months in children aged between 3 months and 5 years across the sub-Sahel. Enthusiasm for malaria elimination has resurfaced. This ambitious but laudable goal faces many challenges, including the worldwide economic downturn, difficulties in elimination of vivax malaria, development of pyrethroid resistance in some anopheline mosquitoes, and the emergence of artemisinin resistance in Plasmodium falciparum in southeast Asia. We review the epidemiology, clinical features, pathology, prevention, and treatment of malaria. PMID:23953767

  18. Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus)

    PubMed Central

    Martinsen, Ellen S.; McInerney, Nancy; Brightman, Heidi; Ferebee, Ken; Walsh, Tim; McShea, William J.; Forrester, Tavis D.; Ware, Lisa; Joyner, Priscilla H.; Perkins, Susan L.; Latch, Emily K.; Yabsley, Michael J.; Schall, Joseph J.; Fleischer, Robert C.

    2016-01-01

    Malaria parasites of the genus Plasmodium are diverse in mammal hosts, infecting five mammalian orders in the Old World, but were long considered absent from the diverse deer family (Cervidae) and from New World mammals. There was a description of a Plasmodium parasite infecting a single splenectomized white-tailed deer (WTD; Odocoileus virginianus) in 1967 but none have been reported since, which has proven a challenge to our understanding of malaria parasite biogeography. Using both microscopy and polymerase chain reaction, we screened a large sample of native and captive ungulate species from across the United States for malaria parasites. We found a surprisingly high prevalence (up to 25%) and extremely low parasitemia of Plasmodium parasites in WTD throughout the eastern United States. We did not detect infections in the other ungulate species nor in western WTD. We also isolated the parasites from the mosquito Anopheles punctipennis. Morphologically, the parasites resemble the parasite described in 1967, Plasmodium odocoilei. Our analysis of the cytochrome b gene revealed two divergent Plasmodium clades in WTD representative of species that likely diverged 2.3 to 6 million years ago, concurrent with the arrival of the WTD ancestor into North America across Beringia. Multigene phylogenetic analysis placed these clades within the larger malaria parasite clade. We document Plasmodium parasites to be common in WTD, endemic to the New World, and as the only known malaria parasites from deer (Cervidae). These findings reshape our knowledge of the phylogeography of the malaria parasites and suggest that other mammal taxa may harbor infection by endemic and occult malaria parasites. PMID:26989785

  19. Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus).

    PubMed

    Martinsen, Ellen S; McInerney, Nancy; Brightman, Heidi; Ferebee, Ken; Walsh, Tim; McShea, William J; Forrester, Tavis D; Ware, Lisa; Joyner, Priscilla H; Perkins, Susan L; Latch, Emily K; Yabsley, Michael J; Schall, Joseph J; Fleischer, Robert C

    2016-02-01

    Malaria parasites of the genus Plasmodium are diverse in mammal hosts, infecting five mammalian orders in the Old World, but were long considered absent from the diverse deer family (Cervidae) and from New World mammals. There was a description of a Plasmodium parasite infecting a single splenectomized white-tailed deer (WTD; Odocoileus virginianus) in 1967 but none have been reported since, which has proven a challenge to our understanding of malaria parasite biogeography. Using both microscopy and polymerase chain reaction, we screened a large sample of native and captive ungulate species from across the United States for malaria parasites. We found a surprisingly high prevalence (up to 25%) and extremely low parasitemia of Plasmodium parasites in WTD throughout the eastern United States. We did not detect infections in the other ungulate species nor in western WTD. We also isolated the parasites from the mosquito Anopheles punctipennis. Morphologically, the parasites resemble the parasite described in 1967, Plasmodium odocoilei. Our analysis of the cytochrome b gene revealed two divergent Plasmodium clades in WTD representative of species that likely diverged 2.3 to 6 million years ago, concurrent with the arrival of the WTD ancestor into North America across Beringia. Multigene phylogenetic analysis placed these clades within the larger malaria parasite clade. We document Plasmodium parasites to be common in WTD, endemic to the New World, and as the only known malaria parasites from deer (Cervidae). These findings reshape our knowledge of the phylogeography of the malaria parasites and suggest that other mammal taxa may harbor infection by endemic and occult malaria parasites. PMID:26989785

  20. Baculovirus-Vectored Multistage Plasmodium vivax Vaccine Induces Both Protective and Transmission-Blocking Immunities against Transgenic Rodent Malaria Parasites

    PubMed Central

    Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M.; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E.

    2014-01-01

    A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. PMID:25092912

  1. Parasite-host interaction in malaria: genetic clues and copy number variation

    PubMed Central

    2009-01-01

    In humans, infections contribute highly to mortality and morbidity rates worldwide. Malaria tropica is one of the major infectious diseases globally and is caused by the protozoan parasite Plasmodium falciparum. Plasmodia have accompanied human beings since the emergence of humankind. Due to its pathogenicity, malaria is a powerful selective force on the human genome. Genetic epidemiology approaches such as family and twin studies, candidate gene studies, and disease-association studies have identified a number of genes that mediate relative protection against the severest forms of the disease. New molecular approaches, including genome-wide association studies, have recently been performed to expand our knowledge on the functional effect of human variation in malaria. For the future, a systematic determination of gene-dosage effects and expression profiles of protective genes might unveil the functional impact of structural alterations in these genes on either side of the host-parasite interaction. PMID:19725943

  2. Evaluation of a Novel Magneto-Optical Method for the Detection of Malaria Parasites

    PubMed Central

    Orbán, Ágnes; Butykai, Ádám; Molnár, András; Pröhle, Zsófia; Fülöp, Gergö; Zelles, Tivadar; Forsyth, Wasan; Hill, Danika; Müller, Ivo; Schofield, Louis; Rebelo, Maria; Hänscheid, Thomas; Karl, Stephan; Kézsmárki, István

    2014-01-01

    Improving the efficiency of malaria diagnosis is one of the main goals of current malaria research. We have recently developed a magneto-optical (MO) method which allows high-sensitivity detection of malaria pigment (hemozoin crystals) in blood via the magnetically induced rotational motion of the hemozoin crystals. Here, we evaluate this MO technique for the detection of Plasmodium falciparum in infected erythrocytes using in-vitro parasite cultures covering the entire intraerythrocytic life cycle. Our novel method detected parasite densities as low as ∼40 parasites per microliter of blood (0.0008% parasitemia) at the ring stage and less than 10 parasites/µL (0.0002% parasitemia) in the case of the later stages. These limits of detection, corresponding to approximately 20 pg/µL of hemozoin produced by the parasites, exceed that of rapid diagnostic tests and compete with the threshold achievable by light microscopic observation of blood smears. The MO diagnosis requires no special training of the operator or specific reagents for parasite detection, except for an inexpensive lysis solution to release intracellular hemozoin. The devices can be designed to a portable format for clinical and in-field tests. Besides testing its diagnostic performance, we also applied the MO technique to investigate the change in hemozoin concentration during parasite maturation. Our preliminary data indicate that this method may offer an efficient tool to determine the amount of hemozoin produced by the different parasite stages in synchronized cultures. Hence, it could eventually be used for testing the susceptibility of parasites to antimalarial drugs. PMID:24824542

  3. Parasite and the Circulating Pool- Characterisation of Leukocyte Number and Morphology in Malaria

    PubMed Central

    Chandrashekhar, Jayaprakash

    2016-01-01

    presence of malaria and should prompt a repeat blood smear examination in case of initial negative results for the parasite. PMID:27437231

  4. Structural and functional insights into the malaria parasite moving junction complex.

    PubMed

    Vulliez-Le Normand, Brigitte; Tonkin, Michelle L; Lamarque, Mauld H; Langer, Susann; Hoos, Sylviane; Roques, Magali; Saul, Frederick A; Faber, Bart W; Bentley, Graham A; Boulanger, Martin J; Lebrun, Maryse

    2012-01-01

    Members of the phylum Apicomplexa, which include the malaria parasite Plasmodium, share many features in their invasion mechanism in spite of their diverse host cell specificities and life cycle characteristics. The formation of a moving junction (MJ) between the membranes of the invading apicomplexan parasite and the host cell is common to these intracellular pathogens. The MJ contains two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1) and its receptor, the Rhoptry Neck Protein (RON) complex, which is targeted to the host cell membrane during invasion. In particular, RON2, a transmembrane component of the RON complex, interacts directly with AMA1. Here, we report the crystal structure of AMA1 from Plasmodium falciparum in complex with a peptide derived from the extracellular region of PfRON2, highlighting clear specificities of the P. falciparum RON2-AMA1 interaction. The receptor-binding site of PfAMA1 comprises the hydrophobic groove and a region that becomes exposed by displacement of the flexible Domain II loop. Mutations of key contact residues of PfRON2 and PfAMA1 abrogate binding between the recombinant proteins. Although PfRON2 contacts some polymorphic residues, binding studies with PfAMA1 from different strains show that these have little effect on affinity. Moreover, we demonstrate that the PfRON2 peptide inhibits erythrocyte invasion by P. falciparum merozoites and that this strong inhibitory potency is not affected by AMA1 polymorphisms. In parallel, we have determined the crystal structure of PfAMA1 in complex with the invasion-inhibitory peptide R1 derived by phage display, revealing an unexpected structural mimicry of the PfRON2 peptide. These results identify the key residues governing the interactions between AMA1 and RON2 in P. falciparum and suggest novel approaches to antimalarial therapeutics. PMID:22737069

  5. Population Genomic Scan for Candidate Signatures of Balancing Selection to Guide Antigen Characterization in Malaria Parasites

    PubMed Central

    Amambua-Ngwa, Alfred; Tetteh, Kevin K. A.; Manske, Magnus; Gomez-Escobar, Natalia; Stewart, Lindsay B.; Deerhake, M. Elizabeth; Cheeseman, Ian H.; Newbold, Christopher I.; Holder, Anthony A.; Knuepfer, Ellen; Janha, Omar; Jallow, Muminatou; Campino, Susana; MacInnis, Bronwyn; Kwiatkowski, Dominic P.; Conway, David J.

    2012-01-01

    Acquired immunity in vertebrates maintains polymorphisms in endemic pathogens, leading to identifiable signatures of balancing selection. To comprehensively survey for genes under such selection in the human malaria parasite Plasmodium falciparum, we generated paired-end short-read sequences of parasites in clinical isolates from an endemic Gambian population, which were mapped to the 3D7 strain reference genome to yield high-quality genome-wide coding sequence data for 65 isolates. A minority of genes did not map reliably, including the hypervariable var, rifin, and stevor families, but 5,056 genes (90.9% of all in the genome) had >70% sequence coverage with minimum read depth of 5 for at least 50 isolates, of which 2,853 genes contained 3 or more single nucleotide polymorphisms (SNPs) for analysis of polymorphic site frequency spectra. Against an overall background of negatively skewed frequencies, as expected from historical population expansion combined with purifying selection, the outlying minority of genes with signatures indicating exceptionally intermediate frequencies were identified. Comparing genes with different stage-specificity, such signatures were most common in those with peak expression at the merozoite stage that invades erythrocytes. Members of clag, PfMC-2TM, surfin, and msp3-like gene families were highly represented, the strongest signature being in the msp3-like gene PF10_0355. Analysis of msp3-like transcripts in 45 clinical and 11 laboratory adapted isolates grown to merozoite-containing schizont stages revealed surprisingly low expression of PF10_0355. In diverse clonal parasite lines the protein product was expressed in a minority of mature schizonts (<1% in most lines and ∼10% in clone HB3), and eight sub-clones of HB3 cultured separately had an intermediate spectrum of positive frequencies (0.9 to 7.5%), indicating phase variable expression of this polymorphic antigen. This and other identified targets of balancing selection are now

  6. Enzymatic Characterization of Recombinant Food Vacuole Plasmepsin 4 from the Rodent Malaria Parasite Plasmodium berghei

    PubMed Central

    Liu, Peng; Robbins, Arthur H.; Marzahn, Melissa R.; McClung, Scott H.; Yowell, Charles A.; Stevens, Stanley M.; Dame, John B.; Dunn, Ben M.

    2015-01-01

    The rodent malaria parasite Plasmodium berghei is a practical model organism for experimental studies of human malaria. Plasmepsins are a class of aspartic proteinase isoforms that exert multiple pathological effects in malaria parasites. Plasmepsins residing in the food vacuole (FV) of the parasite hydrolyze hemoglobin in red blood cells. In this study, we cloned PbPM4, the FV plasmepsin gene of P. berghei that encoded an N-terminally truncated pro-segment and the mature enzyme from genomic DNA. We over-expressed this PbPM4 zymogen as inclusion bodies (IB) in Escherichia coli, and purified the protein following in vitro IB refolding. Auto-maturation of the PbPM4 zymogen to mature enzyme was carried out at pH 4.5, 5.0, and 5.5. Interestingly, we found that the PbPM4 zymogen exhibited catalytic activity regardless of the presence of the pro-segment. We determined the optimal catalytic conditions for PbPM4 and studied enzyme kinetics on substrates and inhibitors of aspartic proteinases. Using combinatorial chemistry-based peptide libraries, we studied the active site preferences of PbPM4 at subsites S1, S2, S3, S1’, S2’ and S3’. Based on these results, we designed and synthesized a selective peptidomimetic compound and tested its inhibition of PbPM4, seven FV plasmepsins from human malaria parasites, and human cathepsin D (hcatD). We showed that this compound exhibited a >10-fold selectivity to PbPM4 and human malaria parasite plasmepsin 4 orthologs versus hcatD. Data from this study furthesr our understanding of enzymatic characteristics of the plasmepsin family and provides leads for anti-malarial drug design. PMID:26510189

  7. Malaria endemicity and co-infection with tissue-dwelling parasites in Sub-Saharan Africa: a review.

    PubMed

    Onkoba, Nyamongo W; Chimbari, Moses J; Mukaratirwa, Samson

    2015-01-01

    Mechanisms and outcomes of host-parasite interactions during malaria co-infections with gastrointestinal helminths are reasonably understood. In contrast, very little is known about such mechanisms in cases of malaria co-infections with tissue-dwelling parasites. This is lack of knowledge is exacerbated by misdiagnosis, lack of pathognomonic clinical signs and the chronic nature of tissue-dwelling helminthic infections. A good understanding of the implications of tissue-dwelling parasitic co-infections with malaria will contribute towards the improvement of the control and management of such co-infections in endemic areas. This review summarises and discusses current information available and gaps in research on malaria co-infection with gastro-intestinal helminths and tissue-dwelling parasites with emphasis on helminthic infections, in terms of the effects of migrating larval stages and intra and extracellular localisations of protozoan parasites and helminths in organs, tissues, and vascular and lymphatic circulations. PMID:26377900

  8. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya.

    PubMed

    Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin

    2016-04-01

    Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; p<0.0001) whereas Kisii had the least significant index of association values (0.03; p<0.0001). Our data suggest high genetic diversity in Kenyan parasite population with the exception of parasite from Malindi where malaria has been on the decline. The presence of significant LD suggests that there is occurrence of inbreeding in the parasite population. Parasite populations from Kisii showed the strongest evidence for epidemic population structure whereas the rest of the regions showed panmixia. Defining the genetic diversity of the parasites in different ecological regions of Kenya after

  9. Malaria parasites utilize both homologous recombination and alternative end joining pathways to maintain genome integrity

    PubMed Central

    Kirkman, Laura A.; Lawrence, Elizabeth A.; Deitsch, Kirk W.

    2014-01-01

    Malaria parasites replicate asexually within their mammalian hosts as haploid cells and are subject to DNA damage from the immune response and chemotherapeutic agents that can significantly disrupt genomic integrity. Examination of the annotated genome of the parasite Plasmodium falciparum identified genes encoding core proteins required for the homologous recombination (HR) pathway for repairing DNA double-strand breaks (DSBs), but surprisingly none of the components of the canonical non-homologous end joining (C-NHEJ) pathway were identified. To better understand how malaria parasites repair DSBs and maintain genome integrity, we modified the yeast I-SceI endonuclease system to generate inducible, site-specific DSBs within the parasite’s genome. Analysis of repaired genomic DNA showed that parasites possess both a typical HR pathway resulting in gene conversion events as well as an end joining (EJ) pathway for repair of DSBs when no homologous sequence is available. The products of EJ were limited in number and identical products were observed in multiple independent experiments. The repair junctions frequently contained short insertions also found in the surrounding sequences, suggesting the possibility of a templated repair process. We propose that an alternative end-joining pathway rather than C-NHEJ, serves as a primary method for repairing DSBs in malaria parasites. PMID:24089143

  10. Crowdsourcing Malaria Parasite Quantification: An Online Game for Analyzing Images of Infected Thick Blood Smears

    PubMed Central

    Arranz, Asier; Frean, John

    2012-01-01

    Background There are 600,000 new malaria cases daily worldwide. The gold standard for estimating the parasite burden and the corresponding severity of the disease consists in manually counting the number of parasites in blood smears through a microscope, a process that can take more than 20 minutes of an expert microscopist’s time. Objective This research tests the feasibility of a crowdsourced approach to malaria image analysis. In particular, we investigated whether anonymous volunteers with no prior experience would be able to count malaria parasites in digitized images of thick blood smears by playing a Web-based game. Methods The experimental system consisted of a Web-based game where online volunteers were tasked with detecting parasites in digitized blood sample images coupled with a decision algorithm that combined the analyses from several players to produce an improved collective detection outcome. Data were collected through the MalariaSpot website. Random images of thick blood films containing Plasmodium falciparum at medium to low parasitemias, acquired by conventional optical microscopy, were presented to players. In the game, players had to find and tag as many parasites as possible in 1 minute. In the event that players found all the parasites present in the image, they were presented with a new image. In order to combine the choices of different players into a single crowd decision, we implemented an image processing pipeline and a quorum algorithm that judged a parasite tagged when a group of players agreed on its position. Results Over 1 month, anonymous players from 95 countries played more than 12,000 games and generated a database of more than 270,000 clicks on the test images. Results revealed that combining 22 games from nonexpert players achieved a parasite counting accuracy higher than 99%. This performance could be obtained also by combining 13 games from players trained for 1 minute. Exhaustive computations measured the parasite

  11. The malaria parasite Plasmodium falciparum: cell biological peculiarities and nutritional consequences.

    PubMed

    Baumeister, Stefan; Winterberg, Markus; Przyborski, Jude M; Lingelbach, Klaus

    2010-04-01

    Apicomplexan parasites obligatorily invade and multiply within eukaryotic cells. Phylogenetically, they are related to a group of algae which, during their evolution, have acquired a secondary endosymbiont. This organelle, which in the parasite is called the apicoplast, is highly reduced compared to the endosymbionts of algae, but still contains many plant-specific biosynthetic pathways. The malaria parasite Plasmodium falciparum infects mammalian erythrocytes which are devoid of intracellular compartments and which largely lack biosynthetic pathways. Despite the limited resources of nutrition, the parasite grows and generates up to 32 merozoites which are the infectious stages of the complex life cycle. A large part of the intra-erythrocytic development takes place in the so-called parasitophorous vacuole, a compartment which forms an interface between the parasite and the cytoplasm of the host cell. In the course of parasite growth, the host cell undergoes dramatic alterations which on one hand contribute directly to the symptoms of severe malaria and which, on the other hand, are also required for parasite survival. Some of these alterations facilitate the acquisition of nutrients from the extracellular environment which are not provided by the host cell. Here, we describe the cell biologically unique interactions between an intracellular eukaryotic pathogen and its metabolically highly reduced host cell. We further discuss current models to explain the appearance of pathogen-induced novel physiological properties in a host cell which has lost its genetic programme. PMID:19949823

  12. Monitoring parasite diversity for malaria elimination in sub-Saharan Africa.

    PubMed

    Ghansah, Anita; Amenga-Etego, Lucas; Amambua-Ngwa, Alfred; Andagalu, Ben; Apinjoh, Tobias; Bouyou-Akotet, Marielle; Cornelius, Victoria; Golassa, Lemu; Andrianaranjaka, Voahangy Hanitriniaina; Ishengoma, Deus; Johnson, Kimberly; Kamau, Edwin; Maïga-Ascofaré, Oumou; Mumba, Dieudonne; Tindana, Paulina; Tshefu-Kitoto, Antoinette; Randrianarivelojosia, Milijaona; William, Yavo; Kwiatkowski, Dominic P; Djimde, Abdoulaye A

    2014-09-12

    The African continent continues to bear the greatest burden of malaria and the greatest diversity of parasites, mosquito vectors, and human victims. The evolutionary plasticity of malaria parasites and their vectors is a major obstacle to eliminating the disease. Of current concern is the recently reported emergence of resistance to the front-line drug, artemisinin, in South-East Asia in Plasmodium falciparum, which calls for preemptive surveillance of the African parasite population for genetic markers of emerging drug resistance. Here we describe the Plasmodium Diversity Network Africa (PDNA), which has been established across 11 countries in sub-Saharan Africa to ensure that African scientists are enabled to work together and to play a key role in the global effort for tracking and responding to this public health threat. PMID:25214619

  13. The Human Malaria Parasite Pfs47 Gene Mediates Evasion of the Mosquito Immune System

    PubMed Central

    Molina-Cruz, Alvaro; Garver, Lindsey S.; Alabaster, Amy; Bangiolo, Lois; Haile, Ashley; Winikor, Jared; Ortega, Corrie; van Schaijk, Ben C. L.; Sauerwein, Robert W.; Taylor-Salmon, Emma; Barillas-Mury, Carolina

    2013-01-01

    Summary The surface protein Pfs47 mediates Plasmodium falciparum evasion of the Anopheles gambiae complement-like immune system. Plasmodium falciparum transmission by Anopheles gambiae mosquitoes is remarkably efficient, resulting in a very high prevalence of human malaria infection in sub-Saharan Africa. A combination of genetic mapping, linkage group selection, and functional genomics was used to identify Pfs47 as a P. falciparum gene that allows the parasite to infect A. gambiae without activating the mosquito immune system. Disruption of Pfs47 greatly reduced parasite survival in the mosquito and this phenotype could be reverted by genetic complementation of the parasite or by disruption of the mosquito complement-like system. Pfs47 suppresses midgut nitration responses that are critical to activate the complement-like system. We provide direct experimental evidence that immune evasion mediated by Pfs47 is critical for efficient human malaria transmission by A. gambiae. PMID:23661646

  14. The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system.

    PubMed

    Molina-Cruz, Alvaro; Garver, Lindsey S; Alabaster, Amy; Bangiolo, Lois; Haile, Ashley; Winikor, Jared; Ortega, Corrie; van Schaijk, Ben C L; Sauerwein, Robert W; Taylor-Salmon, Emma; Barillas-Mury, Carolina

    2013-05-24

    Plasmodium falciparum transmission by Anopheles gambiae mosquitoes is remarkably efficient, resulting in a very high prevalence of human malaria infection in sub-Saharan Africa. A combination of genetic mapping, linkage group selection, and functional genomics was used to identify Pfs47 as a P. falciparum gene that allows the parasite to infect A. gambiae without activating the mosquito immune system. Disruption of Pfs47 greatly reduced parasite survival in the mosquito, and this phenotype could be reverted by genetic complementation of the parasite or by disruption of the mosquito complement-like system. Pfs47 suppresses midgut nitration responses that are critical to activate the complement-like system. We provide direct experimental evidence that immune evasion mediated by Pfs47 is critical for efficient human malaria transmission by A. gambiae. PMID:23661646

  15. Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance.

    PubMed

    Mok, Sachel; Ashley, Elizabeth A; Ferreira, Pedro E; Zhu, Lei; Lin, Zhaoting; Yeo, Tomas; Chotivanich, Kesinee; Imwong, Mallika; Pukrittayakamee, Sasithon; Dhorda, Mehul; Nguon, Chea; Lim, Pharath; Amaratunga, Chanaki; Suon, Seila; Hien, Tran Tinh; Htut, Ye; Faiz, M Abul; Onyamboko, Marie A; Mayxay, Mayfong; Newton, Paul N; Tripura, Rupam; Woodrow, Charles J; Miotto, Olivo; Kwiatkowski, Dominic P; Nosten, François; Day, Nicholas P J; Preiser, Peter R; White, Nicholas J; Dondorp, Arjen M; Fairhurst, Rick M; Bozdech, Zbynek

    2015-01-23

    Artemisinin resistance in Plasmodium falciparum threatens global efforts to control and eliminate malaria. Polymorphisms in the kelch domain-carrying protein K13 are associated with artemisinin resistance, but the underlying molecular mechanisms are unknown. We analyzed the in vivo transcriptomes of 1043 P. falciparum isolates from patients with acute malaria and found that artemisinin resistance is associated with increased expression of unfolded protein response (UPR) pathways involving the major PROSC and TRiC chaperone complexes. Artemisinin-resistant parasites also exhibit decelerated progression through the first part of the asexual intraerythrocytic development cycle. These findings suggest that artemisinin-resistant parasites remain in a state of decelerated development at the young ring stage, whereas their up-regulated UPR pathways mitigate protein damage caused by artemisinin. The expression profiles of UPR-related genes also associate with the geographical origin of parasite isolates, further suggesting their role in emerging artemisinin resistance in the Greater Mekong Subregion. PMID:25502316

  16. Large-scale growth of the Plasmodium falciparum malaria parasite in a wave bioreactor.

    PubMed

    Dalton, John P; Demanga, Corine G; Reiling, Sarah J; Wunderlich, Juliane; Eng, Jenny W L; Rohrbach, Petra

    2012-01-01

    We describe methods for the large-scale in vitro culturing of synchronous and asynchronous blood-stage Plasmodium falciparum parasites in sterile disposable plastic bioreactors controlled by wave-induced motion (wave bioreactor). These cultures perform better than static flask cultures in terms of preserving parasite cell cycle synchronicity and reducing the number of multiple-infected erythrocytes. The straight-forward methods described here will facilitate the large scale production of malaria parasites for antigen and organelle isolation and characterisation, for the high throughput screening of compound libraries with whole cells or extracts, and the development of live- or whole-cell malaria vaccines under good manufacturing practice compliant standards. PMID:22326740

  17. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    PubMed Central

    2012-01-01

    Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR). Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically accessible desiccant will likely

  18. EVALUATION OF AROMATIC 6-SUBSTITUTED THIENOPYRIMIDINES AS SCAFFOLDS AGAINST PARASITES THAT CAUSE TRYPANOSOMIASIS, LEISHMANIASIS, AND MALARIA

    PubMed Central

    Woodring, Jennifer L.; Patel, Gautam; Erath, Jessey; Behera, Ranjan; Lee, Patricia J.; Leed, Susan E.; Rodriguez, Ana; Sciotti, Richard J.; Mensa-Wilmot, Kojo; Pollastri, Michael P.

    2014-01-01

    Target repurposing is a proven method for finding new lead compounds that target Trypanosoma brucei, the causative agent of human African trypanosomiasis. Due to the recent discovery of a lapatinib-derived analog 2 with excellent potency against T. brucei (EC50 = 42 nM) and selectivity over human host cells, we have explored other classes of human tyrosine kinase inhibitor scaffolds in order to expand the range of chemotypes for pursuit. Following library expansion, we found compound 11e to have an EC50 of 84 nM against T. brucei cells while maintaining selectivity over human hepatocytes. In addition, the library was tested against causative agents of Chagas’ disease, leishmaniasis, and malaria. Two analogs with sub-micromolar potencies for T. cruzi (4j) and Plasmodium falciparum (11j) were discovered, along with an analog with considerable potency against Leishmania major amastigotes (4e). Besides identifying new and potent protozoan growth inhibitors, these data highlight the value of concurrent screening of a chemical library against different protozoan parasites. PMID:25685309

  19. Identification of Compounds with Efficacy against Malaria Parasites from Common North American Plants.

    PubMed

    Cai, Shengxin; Risinger, April L; Nair, Shalini; Peng, Jiangnan; Anderson, Timothy J C; Du, Lin; Powell, Douglas R; Mooberry, Susan L; Cichewicz, Robert H

    2016-03-25

    Some of the most valuable antimalarial compounds, including quinine and artemisinin, originated from plants. While these drugs have served important roles over many years for the treatment of malaria, drug resistance has become a widespread problem. Therefore, a critical need exists to identify new compounds that have efficacy against drug-resistant malaria strains. In the current study, extracts prepared from plants readily obtained from local sources were screened for activity against Plasmodium falciparum. Bioassay-guided fractionation was used to identify 18 compounds from five plant species. These compounds included eight lupane triterpenes (1-8), four kaempferol 3-O-rhamnosides (10-13), four kaempferol 3-O-glucosides (14-17), and the known compounds amentoflavone and knipholone. These compounds were tested for their efficacy against multi-drug-resistant malaria parasites and counterscreened against HeLa cells to measure their antimalarial selectivity. Most notably, one of the new lupane triterpenes (3) isolated from the supercritical extract of Buxus sempervirens, the common boxwood, showed activity against both drug-sensitive and -resistant malaria strains at a concentration that was 75-fold more selective for the drug-resistant malaria parasites as compared to HeLa cells. This study demonstrates that new antimalarial compounds with efficacy against drug-resistant strains can be identified from native and introduced plant species in the United States, which traditionally have received scant investigation compared to more heavily explored tropical and semitropical botanical resources from around the world. PMID:26722868

  20. Variation in infection length and superinfection enhance selection efficiency in the human malaria parasite.

    PubMed

    Chang, Hsiao-Han; Childs, Lauren M; Buckee, Caroline O

    2016-01-01

    The capacity for adaptation is central to the evolutionary success of the human malaria parasite Plasmodium falciparum. Malaria epidemiology is characterized by the circulation of multiple, genetically diverse parasite clones, frequent superinfection, and highly variable infection lengths, a large number of which are chronic and asymptomatic. The impact of these characteristics on the evolution of the parasite is largely unknown, however, hampering our understanding of the impact of interventions and the emergence of drug resistance. In particular, standard population genetic frameworks do not accommodate variation in infection length or superinfection. Here, we develop a population genetic model of malaria including these variations, and show that these aspects of malaria infection dynamics enhance both the probability and speed of fixation for beneficial alleles in complex and non-intuitive ways. We find that populations containing a mixture of short- and long-lived infections promote selection efficiency. Interestingly, this increase in selection efficiency occurs even when only a small fraction of the infections are chronic, suggesting that selection can occur efficiently in areas of low transmission intensity, providing a hypothesis for the repeated emergence of drug resistance in the low transmission setting of Southeast Asia. PMID:27193195

  1. Variation in infection length and superinfection enhance selection efficiency in the human malaria parasite

    PubMed Central

    Chang, Hsiao-Han; Childs, Lauren M.; Buckee, Caroline O.

    2016-01-01

    The capacity for adaptation is central to the evolutionary success of the human malaria parasite Plasmodium falciparum. Malaria epidemiology is characterized by the circulation of multiple, genetically diverse parasite clones, frequent superinfection, and highly variable infection lengths, a large number of which are chronic and asymptomatic. The impact of these characteristics on the evolution of the parasite is largely unknown, however, hampering our understanding of the impact of interventions and the emergence of drug resistance. In particular, standard population genetic frameworks do not accommodate variation in infection length or superinfection. Here, we develop a population genetic model of malaria including these variations, and show that these aspects of malaria infection dynamics enhance both the probability and speed of fixation for beneficial alleles in complex and non-intuitive ways. We find that populations containing a mixture of short- and long-lived infections promote selection efficiency. Interestingly, this increase in selection efficiency occurs even when only a small fraction of the infections are chronic, suggesting that selection can occur efficiently in areas of low transmission intensity, providing a hypothesis for the repeated emergence of drug resistance in the low transmission setting of Southeast Asia. PMID:27193195

  2. Hsp70s and J proteins of Plasmodium parasites infecting rodents and primates: structure, function, clinical relevance, and drug targets.

    PubMed

    Njunge, James M; Ludewig, Michael H; Boshoff, Aileen; Pesce, Eva-Rachele; Blatch, Gregory L

    2013-01-01

    Human malaria is an economically important disease caused by single-celled parasites of the Plasmodium genus whose biology displays great evolutionary adaptation to both its mammalian host and transmitting vectors. While the parasite has multiple life cycle stages, it is in the blood stage where clinical symptoms of the disease are manifested. Following erythrocyte entry, the parasite resides in the parasitophorous vacuole and actively transports its own proteins to the erythrocyte cytosol. This host-parasite "cross-talk" results in tremendous modifications of the infected erythrocyte imparting properties that allow it to adhere to the endothelium preventing splenic clearance. The Hsp70-J protein (DnaJ/Hsp40) molecular chaperone machinery, involved in cellular protein homeostasis, is being investigated as a novel drug target in various cellular systems including malaria. In Plasmodium the diverse chaperone complement is intimately involved in infected erythrocyte remodelling associated with the development and pathogenesis of malaria. In this review, we provide an overview of the Hsp70-J protein chaperone complement in Plasmodium falciparum and compare it with other Plasmodium species including the ones that serve as experimental study models for malaria. We propose that the unique traits possessed by this machinery not only provide avenues for drug targeting but also inform the evolutionary fitness of this parasite to its environment. PMID:22920898

  3. Application of in-situ hybridization for the detection and identification of avian malaria parasites in paraffin wax-embedded tissues from captive penguins

    PubMed Central

    Dinhopl, Nora; Mostegl, Meike M.; Richter, Barbara; Nedorost, Nora; Maderner, Anton; Fragner, Karin; Weissenböck, Herbert

    2011-01-01

    In captive penguins, avian malaria due to Plasmodium parasites is a well-recognized disease problem as these protozoa may cause severe losses among valuable collections of zoo birds. In blood films from naturally infected birds, identification and differentiation of malaria parasites based on morphological criteria are difficult because parasitaemia is frequently light and blood stages, which are necessary for identification of parasites, are often absent. Post-mortem diagnosis by histological examination of tissue samples is sometimes inconclusive due to the difficulties in differentiating protozoal tissue stages from fragmented nuclei in necrotic tissue. The diagnosis of avian malaria would be facilitated by a technique with the ability to specifically identify developmental stages of Plasmodium in tissue samples. Thus, a chromogenic in-situ hybridization (ISH) procedure with a digoxigenin-labelled probe, targeting a fragment of the 18S rRNA, was developed for the detection of Plasmodium parasites in paraffin wax-embedded tissues. This method was validated in comparison with traditional techniques (histology, polymerase chain reaction), on various tissues from 48 captive penguins that died at the zoological garden Schönbrunn, Vienna, Austria. Meronts of Plasmodium gave clear signals and were easily identified using ISH. Potential cross-reactivity of the probe was ruled out by the negative outcome of the ISH against a number of protozoa and fungi. Thus, ISH proved to be a powerful, specific and sensitive tool for unambiguous detection of Plasmodium parasites in paraffin wax-embedded tissue samples. PMID:21711191

  4. Maduramicin Rapidly Eliminates Malaria Parasites and Potentiates the Gametocytocidal Activity of the Pyrazoleamide PA21A050

    PubMed Central

    Maron, Maxim I.; Magle, Crystal T.; Czesny, Beata; Turturice, Benjamin A.; Huang, Ruili; Zheng, Wei; Vaidya, Akhil B.

    2015-01-01

    New strategies targeting Plasmodium falciparum gametocytes, the sexual-stage parasites that are responsible for malaria transmission, are needed to eradicate this disease. Most commonly used antimalarials are ineffective against P. falciparum gametocytes, allowing patients to continue to be infectious for over a week after asexual parasite clearance. A recent screen for gametocytocidal compounds demonstrated that the carboxylic polyether ionophore maduramicin is active at low nanomolar concentrations against P. falciparum sexual stages. In this study, we showed that maduramicin has an EC50 (effective concentration that inhibits the signal by 50%) of 14.8 nM against late-stage gametocytes and significantly blocks in vivo transmission in a mouse model of malaria transmission. In contrast to other reported gametocytocidal agents, maduramicin acts rapidly in vitro, eliminating gametocytes and asexual schizonts in less than 12 h without affecting uninfected red blood cells (RBCs). Ring stage parasites are cleared by 24 h. Within an hour of drug treatment, 40% of the normally crescent-shaped gametocytes round up and become spherical. The number of round gametocytes increases to >60% by 2 h, even before a change in membrane potential as monitored by MitoProbe DiIC1 (5) is detectable. Maduramicin is not preferentially taken up by gametocyte-infected RBCs compared to uninfected RBCs, suggesting that gametocytes are more sensitive to alterations in cation concentration than RBCs. Moreover, the addition of 15.6 nM maduramicin enhanced the gametocytocidal activity of the pyrazoleamide PA21A050, which is a promising new antimalarial candidate associated with an increase in intracellular Na+ concentration that is proposed to be due to inhibition of PfATP4, a putative Na+ pump. These results underscore the importance of cation homeostasis in sexual as well as asexual intraerythrocytic-stage P. falciparum parasites and the potential of targeting this pathway for drug development

  5. CHEMOTHERAPY, WITHIN-HOST ECOLOGY AND THE FITNESS OF DRUG-RESISTANT MALARIA PARASITES

    PubMed Central

    Huijben, Silvie; Nelson, William A.; Wargo, Andrew R.; Sim, Derek G.; Drew, Damien R.; Read, Andrew F.

    2011-01-01

    A major determinant of the rate at which drug-resistant malaria parasites spread through a population is the ecology of resistant and sensitive parasites sharing the same host. Drug treatment can significantly alter this ecology by removing the drug-sensitive parasites, leading to competitive release of resistant parasites. Here, we test the hypothesis that the spread of resistance can be slowed by reducing drug treatment and hence restricting competitive release. Using the rodent malaria model Plasmodium chabaudi, we found that low-dose chemotherapy did reduce competitive release. A higher drug dose regimen exerted stronger positive selection on resistant parasites for no detectable clinical gain. We estimated instantaneous selection coefficients throughout the course of replicate infections to analyze the temporal pattern of the strength and direction of within-host selection. The strength of selection on resistance varied through the course of infections, even in untreated infections, but increased immediately following drug treatment, particularly in the high-dose groups. Resistance remained under positive selection for much longer than expected from the half life of the drug. Although there are many differences between mice and people, our data do raise the question whether the aggressive treatment regimens aimed at complete parasite clearance are the best resistance-management strategies for humans. PMID:20584075

  6. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa

    PubMed Central

    Schaer, Juliane; Perkins, Susan L.; Decher, Jan; Leendertz, Fabian H.; Fahr, Jakob; Weber, Natalie; Matuschewski, Kai

    2013-01-01

    As the only volant mammals, bats are captivating for their high taxonomic diversity, for their vital roles in ecosystems—particularly as pollinators and insectivores—and, more recently, for their important roles in the maintenance and transmission of zoonotic viral diseases. Genome sequences have identified evidence for a striking expansion of and positive selection in gene families associated with immunity. Bats have also been known to be hosts of malaria parasites for over a century, and as hosts, they possess perhaps the most phylogenetically diverse set of hemosporidian genera and species. To provide a molecular framework for the study of these parasites, we surveyed bats in three remote areas of the Upper Guinean forest ecosystem. We detected four distinct genera of hemosporidian parasites: Plasmodium, Polychromophilus, Nycteria, and Hepatocystis. Intriguingly, the two species of Plasmodium in bats fall within the clade of rodent malaria parasites, indicative of multiple host switches across mammalian orders. We show that Nycteria species form a very distinct phylogenetic group and that Hepatocystis parasites display an unusually high diversity and prevalence in epauletted fruit bats. The diversity and high prevalence of novel lineages of chiropteran hemosporidians underscore the exceptional position of bats among all other mammalian hosts of hemosporidian parasites and support hypotheses of pathogen tolerance consistent with the exceptional immunology of bats. PMID:24101466

  7. The impact of hotspot-targeted interventions on malaria transmission: study protocol for a cluster-randomized controlled trial

    PubMed Central

    2013-01-01

    Background Malaria transmission is highly heterogeneous in most settings, resulting in the formation of recognizable malaria hotspots. Targeting these hotspots might represent a highly efficacious way of controlling or eliminating malaria if the hotspots fuel malaria transmission to the wider community. Methods/design Hotspots of malaria will be determined based on spatial patterns in age-adjusted prevalence and density of antibodies against malaria antigens apical membrane antigen-1 and merozoite surface protein-1. The community effect of interventions targeted at these hotspots will be determined. The intervention will comprise larviciding, focal screening and treatment of the human population, distribution of long-lasting insecticide-treated nets and indoor residual spraying. The impact of the intervention will be determined inside and up to 500 m outside the targeted hotspots by PCR-based parasite prevalence in cross-sectional surveys, malaria morbidity by passive case detection in selected facilities and entomological monitoring of larval and adult Anopheles populations. Discussion This study aims to provide direct evidence for a community effect of hotspot-targeted interventions. The trial is powered to detect large effects on malaria transmission in the context of ongoing malaria interventions. Follow-up studies will be needed to determine the effect of individual components of the interventions and the cost-effectiveness of a hotspot-targeted approach, where savings made by reducing the number of compounds that need to receive interventions should outweigh the costs of hotspot-detection. Trial registration NCT01575613. The protocol was registered online on 20 March 2012; the first community was randomized on 26 March 2012. PMID:23374910

  8. Mosquitoes as Potential Bridge Vectors of Malaria Parasites from Non-Human Primates to Humans

    PubMed Central

    Verhulst, Niels O.; Smallegange, Renate C.; Takken, Willem

    2012-01-01

    Malaria is caused by Plasmodium parasites which are transmitted by mosquitoes. Until recently, human malaria was considered to be caused by human-specific Plasmodium species. Studies on Plasmodium parasites in non-human primates (NHPs), however, have identified parasite species in gorillas and chimpanzees that are closely related to human Plasmodium species. Moreover, P. knowlesi, long known as a parasite of monkeys, frequently infects humans. The requirements for such a cross-species exchange and especially the role of mosquitoes in this process are discussed, as the latter may act as bridge vectors of Plasmodium species between different primates. Little is known about the mosquito species that would bite both humans and NHPs and if so, whether humans and NHPs share the same Plasmodium vectors. To understand the vector-host interactions that can lead to an increased Plasmodium transmission between species, studies are required that reveal the nature of these interactions. Studying the potential role of NHPs as a Plasmodium reservoir for humans will contribute to the ongoing efforts of human malaria elimination, and will help to focus on critical areas that should be considered in achieving this goal. PMID:22701434

  9. Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut

    PubMed Central

    Rupp, Ingrid; Sologub, Ludmilla; Williamson, Kim C; Scheuermayer, Matthias; Reininger, Luc; Doerig, Christian; Eksi, Saliha; Kombila, Davy U; Frank, Matthias; Pradel, Gabriele

    2011-01-01

    Physical contact is important for the interaction between animal cells, but it can represent a major challenge for protists like malaria parasites. Recently, novel filamentous cell-cell contacts have been identified in different types of eukaryotic cells and termed nanotubes due to their morphological appearance. Nanotubes represent small dynamic membranous extensions that consist of F-actin and are considered an ancient feature evolved by eukaryotic cells to establish contact for communication. We here describe similar tubular structures in the malaria pathogen Plasmodium falciparum, which emerge from the surfaces of the forming gametes upon gametocyte activation in the mosquito midgut. The filaments can exhibit a length of > 100 μm and contain the F-actin isoform actin 2. They actively form within a few minutes after gametocyte activation and persist until the zygote transforms into the ookinete. The filaments originate from the parasite plasma membrane, are close ended and express adhesion proteins on their surfaces that are typically found in gametes, like Pfs230, Pfs48/45 or Pfs25, but not the zygote surface protein Pfs28. We show that these tubular structures represent long-distance cell-to-cell connections between sexual stage parasites and demonstrate that they meet the characteristics of nanotubes. We propose that malaria parasites utilize these adhesive “nanotubes” in order to facilitate intercellular contact between gametes during reproduction in the mosquito midgut. PMID:21173797

  10. Crystallization and preliminary X-ray analysis of the aspartic protease plasmepsin 4 from the malarial parasite Plasmodium malariae

    SciTech Connect

    Madabushi, Amrita; Chakraborty, Sibani; Fisher, S. Zoë; Clemente, José C.; Yowell, Charles; Agbandje-McKenna, Mavis; Dame, John B.; Dunn, Ben M.; McKenna, Robert

    2005-02-01

    Plasmepsin 4 from the malarial parasite P. malariae has been crystallized in complex with a small molecular inhibitor. Preliminary X-ray analysis of the diffraction data collected at 3.3 Å resolution is reported.

  11. ‘Manipulation’ without the parasite: altered feeding behaviour of mosquitoes is not dependent on infection with malaria parasites

    PubMed Central

    Cator, Lauren J.; George, Justin; Blanford, Simon; Murdock, Courtney C.; Baker, Thomas C.; Read, Andrew F.; Thomas, Matthew B.

    2013-01-01

    Previous studies have suggested that Plasmodium parasites can manipulate mosquito feeding behaviours such as probing, persistence and engorgement rate in order to enhance transmission success. Here, we broaden analysis of this ‘manipulation phenotype’ to consider proximate foraging behaviours, including responsiveness to host odours and host location. Using Anopheles stephensi and Plasmodium yoelii as a model system, we demonstrate that mosquitoes with early stage infections (i.e. non-infectious oocysts) exhibit reduced attraction to a human host, whereas those with late-stage infections (i.e. infectious sporozoites) exhibit increased attraction. These stage-specific changes in behaviour were paralleled by changes in the responsiveness of mosquito odourant receptors, providing a possible neurophysiological mechanism for the responses. However, we also found that both the behavioural and neurophysiological changes could be generated by immune challenge with heat-killed Escherichia coli and were thus not tied explicitly to the presence of malaria parasites. Our results support the hypothesis that the feeding behaviour of female mosquitoes is altered by Plasmodium, but question the extent to which this is owing to active manipulation by malaria parasites of host behaviour. PMID:23698008

  12. Do malaria parasites follow the algebra of sex ratio theory?

    PubMed

    Schall, Jos J

    2009-03-01

    The ratio of male to female gametocytes seen in infections of Plasmodium and related haemosporidian parasites varies substantially, both within and among parasite species. Sex ratio theory, a mainstay of evolutionary biology, accounts for this variation. The theory provides an algebraic solution for the optimal sex ratio that will maximize parasite fitness. A crucial term in this solution is the probability of selfing by clone-mates within the vector (based on the clone number and their relative abundance). Definitive tests of the theory have proven elusive because of technical challenges in measuring clonal diversity within infections. Newly developed molecular methods now provide opportunities to test the theory with an exquisite precision. PMID:19201653

  13. A paper microfluidic cartridge for automated staining of malaria parasites with an optically transparent microscopy window.

    PubMed

    Horning, Matthew P; Delahunt, Charles B; Singh, S Ryan; Garing, Spencer H; Nichols, Kevin P

    2014-06-21

    A paper microfluidic cartridge for the automated staining of malaria parasites (Plasmodium) with acridine orange prior to microscopy is presented. The cartridge enables simultaneous, sub-minute generation of both thin and thick smears of acridine orange stained parasites. Parasites are stained in a cellulose matrix, after which the parasites are ejected via capillary forces into an optically transparent chamber. The unique slanted design of the chamber ensures that a high percentage of the stained blood will be of the required thickness for a thin smear, without resorting to spacers or other methods that can increase production cost or require tight quality controls. A hydrophobic snorkel facilitates the removal of air bubbles during filling. The cartridge contains both a thin smear region, where a single layer of cells is presented unobstructed, for ease of species identification, and a thick smear region, containing multiple cell layers, for enhanced limit of detection. PMID:24781199

  14. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts.

    PubMed

    Otto, Thomas D; Rayner, Julian C; Böhme, Ulrike; Pain, Arnab; Spottiswoode, Natasha; Sanders, Mandy; Quail, Michael; Ollomo, Benjamin; Renaud, François; Thomas, Alan W; Prugnolle, Franck; Conway, David J; Newbold, Chris; Berriman, Matthew

    2014-01-01

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host-parasite interface may have mediated host switching. PMID:25203297

  15. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts

    PubMed Central

    Otto, Thomas D.; Rayner, Julian C.; Böhme, Ulrike; Pain, Arnab; Spottiswoode, Natasha; Sanders, Mandy; Quail, Michael; Ollomo, Benjamin; Renaud, François; Thomas, Alan W.; Prugnolle, Franck; Conway, David J.; Newbold, Chris; Berriman, Matthew

    2014-01-01

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host–parasite interface may have mediated host switching. PMID:25203297

  16. Plasmodium falciparum parasites causing cerebral malaria share variant surface antigens, but are they specific?

    PubMed Central

    2010-01-01

    Background Variant surface antigens (VSA) expressed on the surface of Plasmodium falciparum-infected red blood cells constitute a key for parasite sequestration and immune evasion. In distinct malaria pathologies, such as placental malaria, specific antibody response against VSA provides protection. This study investigated the antibody response specifically directed against VSA expressed by parasites isolated from individuals presenting a given type of clinical presentation. Methods Plasma and isolates were obtained from four groups of Beninese subjects: healthy adults, patients presenting uncomplicated malaria (UM), cerebral malaria (CM), or pregnancy-associated malaria (PAM). The reactivity of plasma samples from each clinical group was measured by flow cytometry against parasites isolated from individuals from each clinical group. Results Antibody responses against VSAUM were predominant in CM, UM and HA plasmas. When analysed according to age in all plasma groups, anti-VSACM and -VSAUM antibody levels were similar until six years of age. In older groups (6-18 and >19 years of age), VSAUM antibody levels were higher than VSACM antibody levels (P = .01, P = .0008, respectively). Mean MFI values, measured in all plasmas groups except the PAM plasmas, remained low for anti-VSAPAM antibodies and did not vary with age. One month after infection the level of anti-VSA antibodies able to recognize heterologous VSACM variants was increased in CM patients. In UM patients, antibody levels directed against heterologous VSAUM were similar, both during the infection and one month later. Conclusions In conclusion, this study suggests the existence of serologically distinct VSACM and VSAUM. CM isolates were shown to share common epitopes. Specific antibody response to VSAUM was predominant, suggesting a relative low diversity of VSAUM in the study area. PMID:20663188

  17. Malaria Parasite Survival Depends on Conserved Binding Peptides' Critical Biological Functions.

    PubMed

    Patarroyo, Manuel E; Arevalo-Pinzon, Gabriela; Reyes, Cesar; Moreno-Vranich, Armando; Patarroyo, Manuel A

    2016-01-01

    Biochemical, structural and single amino acid level analysis of 49 Plasmodium falciparum protein regions (13 sporozoite and 36 merozoite proteins) has highlighted the functional role of each conserved high activity binding peptide (cHABP) in cell host-microbe interaction, involving biological functions such as gliding motility, traversal activity, binding invasion, reproduction, nutrient ion transport and the development of severe malaria. Each protein's key function in the malaria parasite's asexual lifecycle (pre-erythrocyte and erythro-cyte) is described in terms of cHABPs; their sequences were located in elegant work published by other groups regarding critical binding regions implicated in malarial parasite invasion. Such cHABPs represent the starting point for developing a logical and rational methodology for selecting an appropriate mixture of modified cHABPs to be used in a completely effective, synthetic antimalarial vaccine. Such methodology could be used for developing vaccines against diseases scourging humanity. PMID:26317369

  18. Characterizing the genetic diversity of the monkey malaria parasite Plasmodium cynomolgi.

    PubMed

    Sutton, Patrick L; Luo, Zunping; Divis, Paul C S; Friedrich, Volney K; Conway, David J; Singh, Balbir; Barnwell, John W; Carlton, Jane M; Sullivan, Steven A

    2016-06-01

    Plasmodium cynomolgi is a malaria parasite that typically infects Asian macaque monkeys, and humans on rare occasions. P. cynomolgi serves as a model system for the human malaria parasite Plasmodium vivax, with which it shares such important biological characteristics as formation of a dormant liver stage and a preference to invade reticulocytes. While genomes of three P. cynomolgi strains have been sequenced, genetic diversity of P. cynomolgi has not been widely investigated. To address this we developed the first panel of P. cynomolgi microsatellite markers to genotype eleven P. cynomolgi laboratory strains and 18 field isolates from Sarawak, Malaysian Borneo. We found diverse genotypes among most of the laboratory strains, though two nominally different strains were found to be genetically identical. We also investigated sequence polymorphism in two erythrocyte invasion gene families, the reticulocyte binding protein and Duffy binding protein genes, in these strains. We also observed copy number variation in rbp genes. PMID:26980604

  19. Synthesis and in vitro evaluation of hydrazinyl phthalazines against malaria parasite, Plasmodium falciparum.

    PubMed

    Subramanian, Gowtham; Babu Rajeev, C P; Mohan, Chakrabhavi Dhananjaya; Sinha, Ameya; Chu, Trang T T; Anusha, Sebastian; Ximei, Huang; Fuchs, Julian E; Bender, Andreas; Rangappa, Kanchugarakoppal S; Chandramohanadas, Rajesh; Basappa

    2016-07-15

    In this report, we describe the synthesis of 1-(Phthalazin-4-yl)-hydrazine using bronsted acidic ionic liquids and demonstrate their ability to inhibit asexual stage development of human malaria parasite, Plasmodium falciparum. Through computational studies, we short-listed chemical scaffolds with potential binding affinity to an essential parasite protein, dihydroorotate dehydrogenase (DHODH). Further, these compounds were synthesized in the lab and tested against P. falciparum. Several compounds from our library showed inhibitory activity at low micro-molar concentrations with minimal cytotoxic effects. These results indicate the potential of hydralazine derivatives as reference scaffolds to develop novel antimalarials. PMID:27261180

  20. Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells

    NASA Astrophysics Data System (ADS)

    Park, Yongkeun; Diez-Silva, Monica; Fu, Dan; Popescu, Gabriel; Choi, Wonshik; Barman, Ishan; Suresh, Subra; Feld, Michael S.

    2010-03-01

    We present the light scattering of individual Plasmodium falciparum-parasitized human red blood cells (Pf-RBCs), and demonstrate progressive alterations to the scattering signal arising from the development of malaria-inducing parasites. By selectively imaging the electric fields using quantitative phase microscopy and a Fourier transform light scattering technique, we calculate the light scattering maps of individual Pf-RBCs. We show that the onset and progression of pathological states of the Pf-RBCs can be clearly identified by the static scattering maps. Progressive changes to the biophysical properties of the Pf-RBC membrane are captured from dynamic light scattering.

  1. Detection of malaria parasites in blood by laser desorption mass spectrometry.

    PubMed

    Demirev, P A; Feldman, A B; Kongkasuriyachai, D; Scholl, P; Sullivan, D; Kumar, N

    2002-07-15

    A novel method for the in vitro detection of the protozoan Plasmodium, the causative agent of malaria, has been developed. It comprises a protocol for cleanup of whole blood samples, followed by direct ultraviolet laser desorption (LD) time-of-flight mass spectrometry. Intense ion signals are observed from intact ferriprotoporphyrin IX (heme), sequestered by malaria parasites during their growth in human red blood cells. The LD mass spectrum of the heme is structure-specific, and the signal intensities are correlated with the sample parasitemia (number of parasites per unit volume of blood). Parasitemia levels on the order of 10 parasites/microL blood can be unambiguously detected by this method. Consideration of laser beam parameters (spot size, rastering across the sample surface) and actual sample consumption suggests that the detection limits can be further improved by at least an order of magnitude. The influence of experimental factors, such as desorbed ion polarity, laser exposure and fluence, sample size, and parasite growth stage, on the threshold for parasite detection is also addressed. PMID:12139027

  2. Development and Application of a Simple Plaque Assay for the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Thomas, James A.; Collins, Christine R.; Das, Sujaan; Hackett, Fiona; Graindorge, Arnault; Bell, Donald; Deu, Edgar; Blackman, Michael J.

    2016-01-01

    Malaria is caused by an obligate intracellular protozoan parasite that replicates within and destroys erythrocytes. Asexual blood stages of the causative agent of the most virulent form of human malaria, Plasmodium falciparum, can be cultivated indefinitely in vitro in human erythrocytes, facilitating experimental analysis of parasite cell biology, biochemistry and genetics. However, efforts to improve understanding of the basic biology of this important pathogen and to develop urgently required new antimalarial drugs and vaccines, suffer from a paucity of basic research tools. This includes a simple means of quantifying the effects of drugs, antibodies and gene modifications on parasite fitness and replication rates. Here we describe the development and validation of an extremely simple, robust plaque assay that can be used to visualise parasite replication and resulting host erythrocyte destruction at the level of clonal parasite populations. We demonstrate applications of the plaque assay by using it for the phenotypic characterisation of two P. falciparum conditional mutants displaying reduced fitness in vitro. PMID:27332706

  3. Dynamic and Combinatorial Landscape of Histone Modifications during the Intraerythrocytic Developmental Cycle of the Malaria Parasite.

    PubMed

    Saraf, Anita; Cervantes, Serena; Bunnik, Evelien M; Ponts, Nadia; Sardiu, Mihaela E; Chung, Duk-Won D; Prudhomme, Jacques; Varberg, Joseph M; Wen, Zhihui; Washburn, Michael P; Florens, Laurence; Le Roch, Karine G

    2016-08-01

    A major obstacle in understanding the complex biology of the malaria parasite remains to discover how gene transcription is controlled during its life cycle. Accumulating evidence indicates that the parasite's epigenetic state plays a fundamental role in gene expression and virulence. Using a comprehensive and quantitative mass spectrometry approach, we determined the global and dynamic abundance of histones and their covalent post-transcriptional modifications throughout the intraerythrocytic developmental cycle of Plasmodium falciparum. We detected a total of 232 distinct modifications, of which 160 had never been detected in Plasmodium and 88 had never been identified in any other species. We further validated over 10% of the detected modifications and their expression patterns by multiple reaction monitoring assays. In addition, we uncovered an unusual chromatin organization with parasite-specific histone modifications and combinatorial dynamics that may be directly related to transcriptional activity, DNA replication, and cell cycle progression. Overall, our data suggest that the malaria parasite has a unique histone modification signature that correlates with parasite virulence. PMID:27291344

  4. The 'permeome' of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum

    PubMed Central

    Martin, Rowena E; Henry, Roselani I; Abbey, Janice L; Clements, John D; Kirk, Kiaran

    2005-01-01

    Background The uptake of nutrients, expulsion of metabolic wastes and maintenance of ion homeostasis by the intraerythrocytic malaria parasite is mediated by membrane transport proteins. Proteins of this type are also implicated in the phenomenon of antimalarial drug resistance. However, the initial annotation of the genome of the human malaria parasite Plasmodium falciparum identified only a limited number of transporters, and no channels. In this study we have used a combination of bioinformatic approaches to identify and attribute putative functions to transporters and channels encoded by the malaria parasite, as well as comparing expression patterns for a subset of these. Results A computer program that searches a genome database on the basis of the hydropathy plots of the corresponding proteins was used to identify more than 100 transport proteins encoded by P. falciparum. These include all the transporters previously annotated as such, as well as a similar number of candidate transport proteins that had escaped detection. Detailed sequence analysis enabled the assignment of putative substrate specificities and/or transport mechanisms to all those putative transport proteins previously without. The newly-identified transport proteins include candidate transporters for a range of organic and inorganic nutrients (including sugars, amino acids, nucleosides and vitamins), and several putative ion channels. The stage-dependent expression of RNAs for 34 candidate transport proteins of particular interest are compared. Conclusion The malaria parasite possesses substantially more membrane transport proteins than was originally thought, and the analyses presented here provide a range of novel insights into the physiology of this important human pathogen. PMID:15774027

  5. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1.

    PubMed

    Brown, Alan; Turner, Louise; Christoffersen, Stig; Andrews, Katrina A; Szestak, Tadge; Zhao, Yuguang; Larsen, Sine; Craig, Alister G; Higgins, Matthew K

    2013-02-22

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria. The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from CIDR (cysteine-rich interdomain regions) and DBL (Duffy-binding-like) domains and show extensive variation in sequence, size, and domain organization. Here we use biophysical methods to characterize the entire ∼300-kDa ectodomain from IT4VAR13, a protein that interacts with the host receptor, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLβ domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1 ectodomain in complex with its ligand. They show that it combines a modular domain arrangement consisting of individual ligand binding domains, with a defined higher order architecture that exposes the ICAM-1 binding surface to allow adhesion. PMID:23297413

  6. Reduced erythrocyte susceptibility and increased host clearance of young parasites slows Plasmodium growth in a murine model of severe malaria

    NASA Astrophysics Data System (ADS)

    Khoury, David S.; Cromer, Deborah; Best, Shannon E.; James, Kylie R.; Sebina, Ismail; Haque, Ashraful; Davenport, Miles P.

    2015-05-01

    The best correlate of malaria severity in human Plasmodium falciparum (Pf) infection is the total parasite load. Pf-infected humans could control parasite loads by two mechanisms, either decreasing parasite multiplication, or increasing parasite clearance. However, few studies have directly measured these two mechanisms in vivo. Here, we have directly quantified host clearance of parasites during Plasmodium infection in mice. We transferred labelled red blood cells (RBCs) from Plasmodium infected donors into uninfected and infected recipients, and tracked the fate of donor parasites by frequent blood sampling. We then applied age-based mathematical models to characterise parasite clearance in the recipient mice. Our analyses revealed an increased clearance of parasites in infected animals, particularly parasites of a younger developmental stage. However, the major decrease in parasite multiplication in infected mice was not mediated by increased clearance alone, but was accompanied by a significant reduction in the susceptibility of RBCs to parasitisation.

  7. Experiential relationship between malaria parasite density and some haematological parameters in malaria infected male subjects in Port Harcourt, Nigeria.

    PubMed

    M, Eze Evelyn; Ezeiruaku, F C; Ukaji, D C

    2012-07-01

    This study examined the experiential relationship between the parasite density and haematological parameters in male patients with Plasmodium falciparum infection in Port Harcourt, Nigeria reporting to malaria clinics. A total of one hundred and thirty-six (136) male patients were recruited. QBC haematological analysis, QBC malaria parasite specie identification and quantification and thin blood film for differential leucocytes count was used. The mean values of the haematological parameters in each quartile of parasite densities were determined using Microsoft Excel statistical package. Regression analysis was employed to model the experiential relationship between parasite density and haematological parameters. All regression relationships were tested and the relationship with the highest coefficient of determination (R2) was accepted as the valid relationship. The relationships tested included linear, polynomial, exponential, logarithmic and power relationships. The X- axis of the regression graphs stand for the parasite density while Y-axis stands for the respective haematological parameters  Neutrophil count had a negative  exponential relationship with the parasite density and is related to the parasite density by a polynomial equation model: ynm = -7E-07x2 - 0.0003x + 56.685.The coefficient of determination (R2) was 0.6140. This means that the rate of change of the parasitemia will depend on the initial value of the neutrophil. As the neutrophil increases, the parasitemia will tend to decrease in a double, triple and quadruple manner. The relationship between lymphocyte count, monocyte count and eosinophil count and parasite density was logarithmic and expressed by the following linear equation models: ylm = -2.371ln(x) + 37.296, ymm = 0.6965ln(x) + 5.7692 and yem = 0.9334ln(x) + 4.1718 in the same order. Their respective high coefficients of determination (R2) were 0.8027, 0.8867 and 0.9553. This logarithmic relationship means that each doubling of

  8. Prospects and Pitfalls of Pregnancy-Associated Malaria Vaccination Based on the Natural Immune Response to Plasmodium falciparum VAR2CSA-Expressing Parasites

    PubMed Central

    Kane, Elizabeth G.; Taylor-Robinson, Andrew W.

    2011-01-01

    Pregnancy-associated malaria, a manifestation of severe malaria, is the cause of up to 200,000 infant deaths a year, through the effects of placental insufficiency leading to growth restriction and preterm delivery. Development of a vaccine is one strategy for control. Plasmodium falciparum-infected red blood cells accumulate in the placenta through specific binding of pregnancy-associated parasite variants that express the VAR2CSA antigen to chondroitin sulphate A on the surface of syncytiotrophoblast cells. Parasite accumulation, accompanied by an inflammatory infiltrate, disrupts the cytokine balance of pregnancy with the potential to cause placental damage and compromise foetal growth. Multigravid women develop immunity towards VAR2CSA-expressing parasites in a gravidity-dependent manner which prevents unfavourable pregnancy outcomes. Although current vaccine design, targeting VAR2CSA antigens, has succeeded in inducing antibodies artificially, this candidate may not provide protection during the first trimester and may only protect those women living in areas endemic for malaria. It is concluded that while insufficient information about placental-parasite interactions is presently available to produce an effective vaccine, incremental progress is being made towards achieving this goal. PMID:22363896

  9. Severe adult malaria is associated with specific PfEMP1 adhesion types and high parasite biomass.

    PubMed

    Bernabeu, Maria; Danziger, Samuel A; Avril, Marion; Vaz, Marina; Babar, Prasad H; Brazier, Andrew J; Herricks, Thurston; Maki, Jennifer N; Pereira, Ligia; Mascarenhas, Anjali; Gomes, Edwin; Chery, Laura; Aitchison, John D; Rathod, Pradipsinh K; Smith, Joseph D

    2016-06-01

    The interplay between cellular and molecular determinants that lead to severe malaria in adults is unexplored. Here, we analyzed parasite virulence factors in an infected adult population in India and investigated whether severe malaria isolates impair endothelial protein C receptor (EPCR), a protein involved in coagulation and endothelial barrier permeability. Severe malaria isolates overexpressed specific members of the Plasmodium falciparum var gene/PfEMP1 (P. falciparum erythrocyte membrane protein 1) family that bind EPCR, including DC8 var genes that have previously been linked to severe pediatric malaria. Machine learning analysis revealed that DC6- and DC8-encoding var transcripts in combination with high parasite biomass were the strongest indicators of patient hospitalization and disease severity. We found that DC8 CIDRα1 domains from severe malaria isolates had substantial differences in EPCR binding affinity and blockade activity for its ligand activated protein C. Additionally, even a low level of inhibition exhibited by domains from two cerebral malaria isolates was sufficient to interfere with activated protein C-barrier protective activities in human brain endothelial cells. Our findings demonstrate an interplay between parasite biomass and specific PfEMP1 adhesion types in the development of adult severe malaria, and indicate that low impairment of EPCR function may contribute to parasite virulence. PMID:27185931

  10. Severe adult malaria is associated with specific PfEMP1 adhesion types and high parasite biomass

    PubMed Central

    Bernabeu, Maria; Danziger, Samuel A.; Avril, Marion; Vaz, Marina; Babar, Prasad H.; Brazier, Andrew J.; Herricks, Thurston; Maki, Jennifer N.; Pereira, Ligia; Mascarenhas, Anjali; Gomes, Edwin; Chery, Laura; Aitchison, John D.; Rathod, Pradipsinh K.; Smith, Joseph D.

    2016-01-01

    The interplay between cellular and molecular determinants that lead to severe malaria in adults is unexplored. Here, we analyzed parasite virulence factors in an infected adult population in India and investigated whether severe malaria isolates impair endothelial protein C receptor (EPCR), a protein involved in coagulation and endothelial barrier permeability. Severe malaria isolates overexpressed specific members of the Plasmodium falciparum var gene/PfEMP1 (P. falciparum erythrocyte membrane protein 1) family that bind EPCR, including DC8 var genes that have previously been linked to severe pediatric malaria. Machine learning analysis revealed that DC6- and DC8-encoding var transcripts in combination with high parasite biomass were the strongest indicators of patient hospitalization and disease severity. We found that DC8 CIDRα1 domains from severe malaria isolates had substantial differences in EPCR binding affinity and blockade activity for its ligand activated protein C. Additionally, even a low level of inhibition exhibited by domains from two cerebral malaria isolates was sufficient to interfere with activated protein C-barrier protective activities in human brain endothelial cells. Our findings demonstrate an interplay between parasite biomass and specific PfEMP1 adhesion types in the development of adult severe malaria, and indicate that low impairment of EPCR function may contribute to parasite virulence. PMID:27185931

  11. Relevance of undetectably rare resistant malaria parasites in treatment failure: experimental evidence from Plasmodium chabaudi.

    PubMed

    Huijben, Silvie; Chan, Brian H K; Read, Andrew F

    2015-06-01

    Resistant malaria parasites are frequently found in mixed infections with drug-sensitive parasites. Particularly early in the evolutionary process, the frequency of these resistant mutants can be extremely low and below the level of molecular detection. We tested whether the rarity of resistance in infections impacted the health outcomes of treatment failure and the potential for onward transmission of resistance. Mixed infections of different ratios of resistant and susceptible Plasmodium chabaudi parasites were inoculated in laboratory mice and dynamics tracked during the course of infection using highly sensitive genotype-specific quantitative polymerase chain reaction (qPCR). Frequencies of resistant parasites ranged from 10% to 0.003% at the onset of treatment. We found that the rarer the resistant parasites were, the lower the likelihood of their onward transmission, but the worse the treatment failure was in terms of parasite numbers and disease severity. Strikingly, drug resistant parasites had the biggest impact on health outcomes when they were too rare to be detected by any molecular methods currently available for field samples. Indeed, in the field, these treatment failures would not even have been attributed to resistance. PMID:25940195

  12. Molecular genetics evidence for the in vivo roles of the two major NADPH-dependent disulfide reductases in the malaria parasite.

    PubMed

    Buchholz, Kathrin; Putrianti, Elyzana D; Rahlfs, Stefan; Schirmer, R Heiner; Becker, Katja; Matuschewski, Kai

    2010-11-26

    Malaria-associated pathology is caused by the continuous expansion of Plasmodium parasites inside host erythrocytes. To maintain a reducing intracellular milieu in an oxygen-rich environment, malaria parasites have evolved a complex antioxidative network based on two central electron donors, glutathione and thioredoxin. Here, we dissected the in vivo roles of both redox pathways by gene targeting of the respective NADPH-dependent disulfide reductases. We show that Plasmodium berghei glutathione reductase and thioredoxin reductase are dispensable for proliferation of the pathogenic blood stages. Intriguingly, glutathione reductase is vital for extracellular parasite development inside the insect vector, whereas thioredoxin reductase is dispensable during the entire parasite life cycle. Our findings suggest that glutathione reductase is the central player of the parasite redox network, whereas thioredoxin reductase fulfils a specialized and dispensable role for P. berghei. These results also indicate redundant roles of the Plasmodium redox pathways during the pathogenic blood phase and query their suitability as promising drug targets for antimalarial intervention strategies. PMID:20852334

  13. The emerging of the fifth malaria parasite (Plasmodium knowlesi): a public health concern?

    PubMed

    Sabbatani, Sergio; Fiorino, Sirio; Manfredi, Roberto

    2010-01-01

    After examining the most recent scientific evidences, which assessed the role of some malaria plasmodia that have monkeys as natural reservoirs, the authors focus their attention on Plasmodium knowlesi. The infective foci attributable to this last Plasmodium species have been identified during the last decade in Malaysia, in particular in the states of Sarawak and Sabah (Malaysian Borneo), and in the Pahang region (peninsular Malaysia). The significant relevance of molecular biology assays (polymerase chain reaction, or PCR, performed with specific primers for P. knowlesi), is underlined, since the traditional microscopic examination does not offer distinguishing features, especially when the differential diagnosis with Plasmodium malariae is of concern. Furthermore, Plasmodium knowlesi disease may be responsible of fatal cases, since its clinical presentation and course is more severe compared with those caused by P. malariae, paralleling a more elevated parasitemia. The most effective mosquito vector is represented by Anopheles latens; this mosquito is a parasite of both humans and monkeys. Among primates, the natural hosts are Macaca fascicularis, M. nemestina, M. inus, and Saimiri scirea. When remarking the possible severe evolution of P. knowlesi malaria, we underline the importance of an early recognition and a timely management, especially in patients who have their first onset in Western Hospitals, after journeys in Southeast Asian countries, and eventually participated in trekking excursions in the tropical forest. When malaria-like signs and symptoms are present, a timely diagnosis and treatment become crucial. In the light of its emerging epidemiological features, P. knowlesi may be added to the reknown human malaria parasites, whith includes P. vivax, P. ovale, P. malariae, and P. falciparum, as the fifth potential ethiologic agent of human malaria. Over the next few years, it will be mandatory to support an adequate surveillance and epidemiological

  14. Existing Infection Facilitates Establishment and Density of Malaria Parasites in Their Mosquito Vector.

    PubMed

    Pollitt, Laura C; Bram, Joshua T; Blanford, Simon; Jones, Matthew J; Read, Andrew F

    2015-07-01

    Very little is known about how vector-borne pathogens interact within their vector and how this impacts transmission. Here we show that mosquitoes can accumulate mixed strain malaria infections after feeding on multiple hosts. We found that parasites have a greater chance of establishing and reach higher densities if another strain is already present in a mosquito. Mixed infections contained more parasites but these larger populations did not have a detectable impact on vector survival. Together these results suggest that mosquitoes taking multiple infective bites may disproportionally contribute to malaria transmission. This will increase rates of mixed infections in vertebrate hosts, with implications for the evolution of parasite virulence and the spread of drug-resistant strains. Moreover, control measures that reduce parasite prevalence in vertebrate hosts will reduce the likelihood of mosquitoes taking multiple infective feeds, and thus disproportionally reduce transmission. More generally, our study shows that the types of strain interactions detected in vertebrate hosts cannot necessarily be extrapolated to vectors. PMID:26181518

  15. The TLR2 is activated by sporozoites and suppresses intrahepatic rodent malaria parasite development

    PubMed Central

    Zheng, Hong; Tan, Zhangping; Zhou, TaoLi; Zhu, Feng; Ding, Yan; Liu, Taiping; Wu, Yuzhang; Xu, Wenyue

    2015-01-01

    TLRs (Toll-like receptors) play an important role in the initiation of innate immune responses against invading microorganisms. Although several TLRs have been reported to be involved in the innate immune response against the blood-stage of malaria parasites, the role of TLRs in the development of the pre-erythrocytic stage is still largely unknown. Here, we found that sporozoite and its lysate could significantly activate the TLR2, and induce macrophages to release proinflammatory cytokines, including IL-6, MCP-1 and TNF-α, in a TLR2-dependent manner. Further studies showed that sporozoite and its lysate could be recognized by either TLR2 homodimers or TLR2/1 and TLR2/6 heterodimers, implicating the complexity of TLR2 agonist in sporozoite. Interestingly, the TLR2 signaling can significantly suppress the development of the pre-erythrocytic stage of Plasmodium yoelii, as both liver parasite load and subsequent parasitemia were significantly elevated in both TLR2- and MyD88-deficient mice. Additionally, the observed higher level of parasite burden in TLR2−/− mice was found to be closely associated with a reduction in proinflammatory cytokines in the liver. Therefore, we provide the first evidence that sporozoites can activate the TLR2 signaling, which in turn significantly inhibits the intrahepatic parasites. This may provide us with novel clues to design preventive anti-malaria therapies. PMID:26667391

  16. Existing Infection Facilitates Establishment and Density of Malaria Parasites in Their Mosquito Vector

    PubMed Central

    Pollitt, Laura C.; Bram, Joshua T.; Blanford, Simon; Jones, Matthew J.; Read, Andrew F.

    2015-01-01

    Very little is known about how vector-borne pathogens interact within their vector and how this impacts transmission. Here we show that mosquitoes can accumulate mixed strain malaria infections after feeding on multiple hosts. We found that parasites have a greater chance of establishing and reach higher densities if another strain is already present in a mosquito. Mixed infections contained more parasites but these larger populations did not have a detectable impact on vector survival. Together these results suggest that mosquitoes taking multiple infective bites may disproportionally contribute to malaria transmission. This will increase rates of mixed infections in vertebrate hosts, with implications for the evolution of parasite virulence and the spread of drug-resistant strains. Moreover, control measures that reduce parasite prevalence in vertebrate hosts will reduce the likelihood of mosquitoes taking multiple infective feeds, and thus disproportionally reduce transmission. More generally, our study shows that the types of strain interactions detected in vertebrate hosts cannot necessarily be extrapolated to vectors. PMID:26181518

  17. DNA Repair Mechanisms and Their Biological Roles in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Lee, Andrew H.; Symington, Lorraine S.

    2014-01-01

    SUMMARY Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen. PMID:25184562

  18. Cyclic GMP Balance Is Critical for Malaria Parasite Transmission from the Mosquito to the Mammalian Host

    PubMed Central

    Lakshmanan, Viswanathan; Fishbaugher, Matthew E.; Morrison, Bob; Baldwin, Michael; Macarulay, Michael; Vaughan, Ashley M.; Mikolajczak, Sebastian A.

    2015-01-01

    ABSTRACT Transmission of malaria occurs during Anopheles mosquito vector blood meals, when Plasmodium sporozoites that have invaded the mosquito salivary glands are delivered to the mammalian host. Sporozoites display a unique form of motility that is essential for their movement across cellular host barriers and invasion of hepatocytes. While the molecular machinery powering motility and invasion is increasingly well defined, the signaling events that control these essential parasite activities have not been clearly delineated. Here, we identify a phosphodiesterase (PDEγ) in Plasmodium, a regulator of signaling through cyclic nucleotide second messengers. Reverse transcriptase PCR (RT-PCR) analysis and epitope tagging of endogenous PDEγ detected its expression in blood stages and sporozoites of Plasmodium yoelii. Deletion of PDEγ (pdeγ−) rendered sporozoites nonmotile, and they failed to invade the mosquito salivary glands. Consequently, PDEγ deletion completely blocked parasite transmission by mosquito bite. Strikingly, pdeγ− sporozoites showed dramatically elevated levels of cyclic GMP (cGMP), indicating that a perturbation in cyclic nucleotide balance is involved in the observed phenotypic defects. Transcriptome sequencing (RNA-Seq) analysis of pdeγ− sporozoites revealed reduced transcript abundance of genes that encode key components of the motility and invasion apparatus. Our data reveal a crucial role for PDEγ in maintaining the cyclic nucleotide balance in the malaria parasite sporozoite stage, which in turn is essential for parasite transmission from mosquito to mammal. PMID:25784701

  19. Parasite Cathepsin D-Like Peptidases and Their Relevance as Therapeutic Targets.

    PubMed

    Sojka, Daniel; Hartmann, David; Bartošová-Sojková, Pavla; Dvořák, Jan

    2016-09-01

    Inhibition of aspartic cathepsin D-like peptidases (APDs) has been often discussed as an antiparasite intervention strategy. APDs have been considered as virulence factors of Trypanosoma cruzi and Leishmania spp., and have been demonstrated to have important roles in protein trafficking mechanisms of apicomplexan parasites. APDs also initiate blood digestion as components of multienzyme proteolytic complexes in malaria, platyhelminths, nematodes, and ticks. Increasing DNA and RNA sequencing data indicate that parasites express multiple APD isoenzymes of various functions that can now be specifically evaluated using new functional-genomic and biochemical tools, from which we can further assess the potential of APDs as targets for novel effective intervention strategies against parasitic diseases that still pose an alarming threat to mankind. PMID:27344362

  20. Reduced Parasite Burden in Children with Falciparum Malaria and Bacteremia Coinfections: Role of Mediators of Inflammation

    PubMed Central

    Davenport, Gregory C.; Mukundan, Harshini; Fenimore, Paul W.; Hengartner, Nicolas W.; McMahon, Benjamin H.; Ong'echa, John M.

    2016-01-01

    Bacteremia and malaria coinfection is a common and life-threatening condition in children residing in sub-Saharan Africa. We previously showed that coinfection with Gram negative (G[−]) enteric Bacilli and Plasmodium falciparum (Pf[+]) was associated with reduced high-density parasitemia (HDP, >10,000 parasites/μL), enhanced respiratory distress, and severe anemia. Since inflammatory mediators are largely unexplored in such coinfections, circulating cytokines were determined in four groups of children (n = 206, aged <3 yrs): healthy; Pf[+] alone; G[−] coinfected; and G[+] coinfected. Staphylococcus aureus and non-Typhi Salmonella were the most frequently isolated G[+] and G[−] organisms, respectively. Coinfected children, particularly those with G[−] pathogens, had lower parasite burden (peripheral and geometric mean parasitemia and HDP). In addition, both coinfected groups had increased IL-4, IL-5, IL-7, IL-12, IL-15, IL-17, IFN-γ, and IFN-α and decreased TNF-α relative to malaria alone. Children with G[−] coinfection had higher IL-1β and IL-1Ra and lower IL-10 than the Pf[+] group and higher IFN-γ than the G[+] group. To determine how the immune response to malaria regulates parasitemia, cytokine production was investigated with a multiple mediation model. Cytokines with the greatest mediational impact on parasitemia were IL-4, IL-10, IL-12, and IFN-γ. Results here suggest that enhanced immune activation, especially in G[−] coinfected children, acts to reduce malaria parasite burden. PMID:27418744

  1. Reduced Parasite Burden in Children with Falciparum Malaria and Bacteremia Coinfections: Role of Mediators of Inflammation

    DOE PAGESBeta

    Davenport, Gregory C.; Hittner, James B.; Otieno, Vincent; Karim, Zachary; Mukundan, Harshini; Fenimore, Paul W.; Hengartner, Nicolas W.; McMahon, Benjamin H.; Kempaiah, Prakasha; Ong’echa, John M.; et al

    2016-01-01

    Bmore » acteremia and malaria coinfection is a common and life-threatening condition in children residing in sub-Saharan Africa. We previously showed that coinfection with Gram negative (G[−]) entericacilli and Plasmodium falciparum ( Pf [+]) was associated with reduced high-density parasitemia (HDP, >10,000 parasites/ μ L), enhanced respiratory distress, and severe anemia. Since inflammatory mediators are largely unexplored in such coinfections, circulating cytokines were determined in four groups of children ( n = 206 , aged <3 yrs): healthy; Pf [+] alone; G[−] coinfected; and G[+] coinfected. Staphylococcus aureus and non-Typhi Salmonella were the most frequently isolated G[+] and G[−] organisms, respectively. Coinfected children, particularly those with G[−] pathogens, had lower parasite burden (peripheral and geometric mean parasitemia and HDP). In addition, both coinfected groups had increased IL-4, IL-5, IL-7, IL-12, IL-15, IL-17, IFN- γ , and IFN- α and decreased TNF- α relative to malaria alone. Children with G[−] coinfection had higher IL-1 β and IL-1Ra and lower IL-10 than the Pf [+] group and higher IFN- γ than the G[+] group. To determine how the immune response to malaria regulates parasitemia, cytokine production was investigated with a multiple mediation model. Cytokines with the greatest mediational impact on parasitemia were IL-4, IL-10, IL-12, and IFN- γ . Results here suggest that enhanced immune activation, especially in G[−] coinfected children, acts to reduce malaria parasite burden.« less

  2. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs.

    PubMed

    Spillman, Natalie Jane; Kirk, Kiaran

    2015-12-01

    The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na(+) concentration and the plasma membrane P-type cation translocating ATPase 'PfATP4' has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antimalarial agents in the Medicines for Malaria Venture's 'Malaria Box'. On exposure of parasites to these compounds there is a rapid disruption of cytosolic Na(+). Whether, and if so how, such chemically distinct compounds interact with PfATP4, and how such interactions lead to parasite death, is not yet clear. The fact that multiple different chemical classes have converged upon PfATP4 highlights its significance as a potential target for new generation antimalarial agents. A spiroindolone (KAE609, now known as cipargamin) has progressed through Phase I and IIa clinical trials with favourable results. In this review we consider the physiological role of PfATP4, summarise the current repertoire of antimalarial compounds for which PfATP4 is implicated in their mechanism of action, and provide an outlook on translation from target identification in the laboratory to patient treatment in the field. PMID:26401486

  3. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs

    PubMed Central

    Spillman, Natalie Jane; Kirk, Kiaran

    2015-01-01

    The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na+ concentration and the plasma membrane P-type cation translocating ATPase ‘PfATP4’ has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antimalarial agents in the Medicines for Malaria Venture's ‘Malaria Box’. On exposure of parasites to these compounds there is a rapid disruption of cytosolic Na+. Whether, and if so how, such chemically distinct compounds interact with PfATP4, and how such interactions lead to parasite death, is not yet clear. The fact that multiple different chemical classes have converged upon PfATP4 highlights its significance as a potential target for new generation antimalarial agents. A spiroindolone (KAE609, now known as cipargamin) has progressed through Phase I and IIa clinical trials with favourable results. In this review we consider the physiological role of PfATP4, summarise the current repertoire of antimalarial compounds for which PfATP4 is implicated in their mechanism of action, and provide an outlook on translation from target identification in the laboratory to patient treatment in the field. PMID:26401486

  4. Inter-rater reliability of malaria parasite counts and comparison of methods

    PubMed Central

    2009-01-01

    Background The introduction of artemesinin-based treatment for falciparum malaria has led to a shift away from symptom-based diagnosis. Diagnosis may be achieved by using rapid non-microscopic diagnostic tests (RDTs), of which there are many available. Light microscopy, however, has a central role in parasite identification and quantification and remains the main method of parasite-based diagnosis in clinic and hospital settings and is necessary for monitoring the accuracy of RDTs. The World Health Organization has prepared a proficiency testing panel containing a range of malaria-positive blood samples of known parasitaemia, to be used for the assessment of commercially available malaria RDTs. Different blood film and counting methods may be used for this purpose, which raises questions regarding accuracy and reproducibility. A comparison was made of the established methods for parasitaemia estimation to determine which would give the least inter-rater and inter-method variation Methods Experienced malaria microscopists counted asexual parasitaemia on different slides using three methods; the thin film method using the total erythrocyte count, the thick film method using the total white cell count and the Earle and Perez method. All the slides were stained using Giemsa pH 7.2. Analysis of variance (ANOVA) models were used to find the inter-rater reliability for the different methods. The paired t-test was used to assess any systematic bias between the two methods, and a regression analysis was used to see if there was a changing bias with parasite count level. Results The thin blood film gave parasite counts around 30% higher than those obtained by the thick film and Earle and Perez methods, but exhibited a loss of sensitivity with low parasitaemia. The thick film and Earle and Perez methods showed little or no bias in counts between the two methods, however, estimated inter-rater reliability was slightly better for the thick film method. Conclusion The thin film

  5. Parasitic Central Nervous System Infections in Immunocompromised Hosts: Malaria, Microsporidiosis, Leishmaniasis, and African Trypanosomiasis

    PubMed Central

    Walker, Melanie; Kublin, James G.; Zunt, Joseph R.

    2009-01-01

    Immunosuppression associated with HIV infection or following transplantation increases susceptibility to central nervous system (CNS) infections. Because of increasing international travel, parasites that were previously limited to tropical regions pose an increasing infectious threat to populations at risk for acquiring opportunistic infection, especially people with HIV infection or individuals who have received a solid organ or bone marrow transplant. Although long-term immunosuppression caused by medications such as prednisone likely also increases the risk for acquiring infection and for developing CNS manifestations, little published information is available to support this hypothesis. In an earlier article published in Clinical Infectious Diseases, we described the neurologic manifestations of some of the more common parasitic CNS infections. This review will discuss the presentation, diagnosis, and treatment of the following additional parasitic CNS infections: malaria, microsporidiosis, leishmaniasis, and African trypanosomiasis. PMID:16323101

  6. Targeting mosquito FREP1 with a fungal metabolite blocks malaria transmission

    PubMed Central

    Niu, Guodong; Wang, Bin; Zhang, Genwei; King, Jarrod B.; Cichewicz, Robert H.; Li, Jun

    2015-01-01

    Inhibiting Plasmodium development in mosquitoes will block malaria transmission. Fibrinogen-related protein 1 (FREP1) is critical for parasite infection in Anopheles gambiae and facilitates Plasmodium invasion in mosquitoes through interacting with gametocytes and ookinetes. To test the hypothesis that small molecules that disrupt this interaction will prevent parasites from infecting mosquitoes, we developed an ELISA-based method to screen a fungal extract library. We obtained a candidate fungal extract of Aspergillus niger that inhibited the interaction between FREP1 and P. falciparum infected cells by about 92%. The inhibition specificity was confirmed by immunofluorescence assays. Notably, feeding mosquitoes with the candidate fungal extract significantly inhibited P. falciparum infection in the midgut without cytotoxicity or inhibition of the development of P. falciparum gametocytes or ookinetes. A bioactive natural product that prevents FREP1 from binding to gametocytes or ookinetes was isolated and identified as P-orlandin. Importantly, the nontoxic orlandin significantly reduced P. falciparum infection intensity in mosquitoes. Therefore, disruption of the interaction between FREP1 and parasites effectively reduces Plasmodium infection in mosquitoes. Targeting FREP1 with small molecules is thus an effective novel approach to block malaria transmission. PMID:26437882

  7. Malaria in pregnancy

    PubMed Central

    Soma-Pillay, P; Macdonald, A P

    2012-01-01

    Malaria is a complex parasitic disease affecting about 32 million pregnancies each year in sub-Saharan Africa. Pregnant women are especially susceptible to malarial infection and have the risk of developing severe disease and birth complications. The target of Millennium Development Goal 6 is to end malaria deaths by 2015. Maternal and perinatal morbidity and mortality due to malaria may be reduced by implementing preventive measures, early diagnosis of suspected cases, effective antimalarial therapy and treatment of complications.

  8. Molecular detection of the avian malaria parasite Plasmodium gallinaceum in Thailand.

    PubMed

    Pattaradilokrat, Sittiporn; Tiyamanee, Wisawa; Simpalipan, Phumin; Kaewthamasorn, Morakot; Saiwichai, Tawee; Li, Jian; Harnyuttanakorn, Pongchai

    2015-05-30

    Avian malaria is one of the most common veterinary problems in Southeast Asia. The standard molecular method for detection of the avian malaria parasite involves the phenol-chloroform extraction of parasite genomic (g)DNA followed by the amplification of parasite gDNA using polymerase chain reaction (PCR). However, the phenol-chloroform extraction method is time-consuming and requires large amounts of samples and toxic organic solvents, thereby limiting its applications for parasite detection in the field. This study aimed to compare the performance of chelex-100 resin and phenol/chloroform extraction methods for the extraction of Plasmodium gallinaceum gDNA from whole avian blood that had been dried on filter papers (a common field sampling method). The specificity and sensitivity of PCR assays for P. gallinaceum cytochrome B (cytb) and cytochrome oxidase subunit I (coxI) gene fragments (544 and 588bp, respectively) were determined, and found to be more sensitive with gDNA extracted by the chelex-100 resin method than with the phenol/chloroform method. These PCR assays were also performed to detect P. gallinaceum in 29 blood samples dried on filter papers from domestic chickens in a malaria endemic area, where the reliable identification of seven field isolates of P. gallinaceum was obtained with an accuracy of 100%. The analysis of cytb and coxI gene nucleotide sequences revealed the existence of at least two genetically distinct populations of P. gallinaceum in Thailand, both of which differed from the reference strain 8A of P. gallinaceum. In conclusion, the chelex-100 resin extraction method is a simple and sensitive method for isolating gDNA from whole avian blood dried on filter paper. Genomic DNA extracted by the chelex method could subsequently be applied for the PCR-based detection of P. gallinaceum and DNA sequencing. Our PCR assays provide a reliable diagnostic tool for molecular epidemiological studies of P. gallinaceum infections in domestic chickens

  9. The Strategy to Survive Primary Malaria Infection: An Experimental Study on Behavioural Changes in Parasitized Birds

    PubMed Central

    Mukhin, Andrey; Palinauskas, Vaidas; Platonova, Elena; Kobylkov, Dmitry; Vakoliuk, Irina; Valkiūnas, Gediminas

    2016-01-01

    Avian malaria parasites (Haemosporida, Plasmodium) are of cosmopolitan distribution, and they have a significant impact on vertebrate host fitness. Experimental studies show that high parasitemia often develops during primary malaria infections. However, field studies only occasionally reveal high parasitemia in free-living birds sampled using the traditional methods of mist-netting or trapping, and light chronic infections predominate. The reason for this discrepancy between field observation and experimental data remains insufficiently understood. Since mist-netting is a passive capture method, two main parameters determine its success in sampling infected birds in wildlife, i. e. the presence of parasitized birds at a study site and their mobility. In other words, the trapping probability depends on the survival rate of birds and their locomotor activity during infection. Here we test (1) the mortality rate of wild birds infected with Plasmodium relictum (the lineage pSGS1), (2) the changes in their behaviour during presence of an aerial predator, and (3) the changes in their locomotor activity at the stage of high primary parasitemia.We show that some behavioural features which might affect a bird's survival during a predator attack (time of reaction, speed of flush flight and take off angle) did not change significantly during primary infection. However, the locomotor activity of infected birds was almost halved compared to control (non-infected) birds during the peak of parasitemia. We report (1) the markedly reduced mobility and (2) the 20% mortality rate caused by P. relictum and conclude that these factors are responsible for the underrepresentation of birds in mist nets and traps during the stage of high primary parasitemia in wildlife. This study indicates that the widespread parasite, P. relictum (pSGS1) influences the behaviour of birds during primary parasitemia. Experimental studies combined with field observations are needed to better understand the

  10. The Strategy to Survive Primary Malaria Infection: An Experimental Study on Behavioural Changes in Parasitized Birds.

    PubMed

    Mukhin, Andrey; Palinauskas, Vaidas; Platonova, Elena; Kobylkov, Dmitry; Vakoliuk, Irina; Valkiūnas, Gediminas

    2016-01-01

    Avian malaria parasites (Haemosporida, Plasmodium) are of cosmopolitan distribution, and they have a significant impact on vertebrate host fitness. Experimental studies show that high parasitemia often develops during primary malaria infections. However, field studies only occasionally reveal high parasitemia in free-living birds sampled using the traditional methods of mist-netting or trapping, and light chronic infections predominate. The reason for this discrepancy between field observation and experimental data remains insufficiently understood. Since mist-netting is a passive capture method, two main parameters determine its success in sampling infected birds in wildlife, i. e. the presence of parasitized birds at a study site and their mobility. In other words, the trapping probability depends on the survival rate of birds and their locomotor activity during infection. Here we test (1) the mortality rate of wild birds infected with Plasmodium relictum (the lineage pSGS1), (2) the changes in their behaviour during presence of an aerial predator, and (3) the changes in their locomotor activity at the stage of high primary parasitemia.We show that some behavioural features which might affect a bird's survival during a predator attack (time of reaction, speed of flush flight and take off angle) did not change significantly during primary infection. However, the locomotor activity of infected birds was almost halved compared to control (non-infected) birds during the peak of parasitemia. We report (1) the markedly reduced mobility and (2) the 20% mortality rate caused by P. relictum and conclude that these factors are responsible for the underrepresentation of birds in mist nets and traps during the stage of high primary parasitemia in wildlife. This study indicates that the widespread parasite, P. relictum (pSGS1) influences the behaviour of birds during primary parasitemia. Experimental studies combined with field observations are needed to better understand the

  11. Apicomplexa-specific tRip facilitates import of exogenous tRNAs into malaria parasites.

    PubMed

    Bour, Tania; Mahmoudi, Nassira; Kapps, Delphine; Thiberge, Sabine; Bargieri, Daniel; Ménard, Robert; Frugier, Magali

    2016-04-26

    The malaria-causing Plasmodium parasites are transmitted to vertebrates by mosquitoes. To support their growth and replication, these intracellular parasites, which belong to the phylum Apicomplexa, have developed mechanisms to exploit their hosts. These mechanisms include expropriation of small metabolites from infected host cells, such as purine nucleotides and amino acids. Heretofore, no evidence suggested that transfer RNAs (tRNAs) could also be exploited. We identified an unusual gene in Apicomplexa with a coding sequence for membrane-docking and structure-specific tRNA binding. This Apicomplexa protein-designated tRip (tRNA import protein)-is anchored to the parasite plasma membrane and directs import of exogenous tRNAs. In the absence of tRip, the fitness of the parasite stage that multiplies in the blood is significantly reduced, indicating that the parasite may need host tRNAs to sustain its own translation and/or as regulatory RNAs. Plasmodium is thus the first example, to our knowledge, of a cell importing exogenous tRNAs, suggesting a remarkable adaptation of this parasite to extend its reach into host cell biology. PMID:27071116

  12. REEVALUATION OF MALARIA PARASITES IN EL-FAYOUM GOVERNORATE, EGYPT USING RAPID DIAGNOSTIC TESTS (RDTS).

    PubMed

    Dahesh, Salwa M A; Mostafa, Heba I

    2015-12-01

    Malaria as a disease has been identified in Egypt since ancient times. Malaria was endemic in almost all parts of the country but prevalence showed a steady decrease by 1990, and regressed in most of the Governorates. Then by the end of 1998 till now Egypt become free from local transmission of malaria. All reported cases were imported mainly from Sudan. However, the outbreak of falciparum (1 case) and vivax (23 cases) that occurred (May 2014) in Aswan Governorate strongly indicated that malaria is reemerging in the country. El-Fayoum should be take special attention, rather than being the last residual focus. The efficient malaria vector A. sergenti, the proven vector A. pharoensis and the suspected vector A. multicolor were encountered. This work reevaluated malaria status by using RDTs in survey and Giemsa stained thick films to confirm positive cases and estimation of parasite rate, formula, densities and species, also to study the ecological and entomological efficacy factors. The result showed that out of 2044 examined persons, 14 (0.68%) were passive cases, i.e., attending themselves to El-Fayoum Malaria Units after their return from Sudan. Microscopic examination of their stained thick films obtained from MOH&P shows that 9 (64.2%) out of passive cases were positive 3 of them are P. falciparum (33.3%) and the rest P. vivax 6 (66.7%) The species formulas of P. falciparum and P. vivax were 33.3% and 66.7% respectively. Concerning the density class, only one vivax case was of low density class while the other cases were of high density class. All positive cases were males, imported from Sudan and most of them were merchants having trade activities in Sudan. All examined persons during active case detection ACD (1551) and neighborhood of detected cases NOD (479) were malaria negative by rapid diagnostic tests. The areas recording the highest number of imported cases were Abu Shanap, Aboxa (Ballona) and Kafr Aboud (Abshaway Center) but no Anopheline spp larvae

  13. Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration.

    PubMed

    Franke-Fayard, Blandine; Janse, Chris J; Cunha-Rodrigues, Margarida; Ramesar, Jai; Büscher, Philippe; Que, Ivo; Löwik, Clemens; Voshol, Peter J; den Boer, Marion A M; van Duinen, Sjoerd G; Febbraio, Maria; Mota, Maria M; Waters, Andrew P

    2005-08-01

    Sequestration of malaria-parasite-infected erythrocytes in the microvasculature of organs is thought to be a significant cause of pathology. Cerebral malaria (CM) is a major complication of Plasmodium falciparum infections, and PfEMP1-mediated sequestration of infected red blood cells has been considered to be the major feature leading to CM-related pathology. We report a system for the real-time in vivo imaging of sequestration using transgenic luciferase-expressing parasites of the rodent malaria parasite Plasmodium berghei. These studies revealed that: (i) as expected, lung tissue is a major site, but, unexpectedly, adipose tissue contributes significantly to sequestration, and (ii) the class II scavenger-receptor CD36 to which PfEMP1 can bind is also the major receptor for P. berghei sequestration, indicating a role for alternative parasite ligands, because orthologues of PfEMP1 are absent from rodent malaria parasites, and, importantly, (iii) cerebral complications still develop in the absence of CD36-mediated sequestration, dissociating parasite sequestration from CM-associated pathology. Real-time in vivo imaging of parasitic processes may be used to evaluate the molecular basis of pathology and develop strategies to prevent pathology. PMID:16051702

  14. Quantitative Time-course Profiling of Parasite and Host Cell Proteins in the Human Malaria Parasite Plasmodium falciparum*

    PubMed Central

    Foth, Bernardo Javier; Zhang, Neng; Chaal, Balbir Kaur; Sze, Siu Kwan; Preiser, Peter Rainer; Bozdech, Zbynek

    2011-01-01

    Studies of the Plasmodium falciparum transcriptome have shown that the tightly controlled progression of the parasite through the intra-erythrocytic developmental cycle (IDC) is accompanied by a continuous gene expression cascade in which most expressed genes exhibit a single transcriptional peak. Because the biochemical and cellular functions of most genes are mediated by the encoded proteins, understanding the relationship between mRNA and protein levels is crucial for inferring biological activity from transcriptional gene expression data. Although studies on other organisms show that <50% of protein abundance variation may be attributable to corresponding mRNA levels, the situation in Plasmodium is further complicated by the dynamic nature of the cyclic gene expression cascade. In this study, we simultaneously determined mRNA and protein abundance profiles for P. falciparum parasites during the IDC at 2-hour resolution based on oligonucleotide microarrays and two-dimensional differential gel electrophoresis protein gels. We find that most proteins are represented by more than one isoform, presumably because of post-translational modifications. Like transcripts, most proteins exhibit cyclic abundance profiles with one peak during the IDC, whereas the presence of functionally related proteins is highly correlated. In contrast, the abundance of most parasite proteins peaks significantly later (median 11 h) than the corresponding transcripts and often decreases slowly in the second half of the IDC. Computational modeling indicates that the considerable and varied incongruence between transcript and protein abundance may largely be caused by the dynamics of translation and protein degradation. Furthermore, we present cyclic abundance profiles also for parasite-associated human proteins and confirm the presence of five human proteins with a potential role in antioxidant defense within the parasites. Together, our data provide fundamental insights into transcript

  15. Phenylalanine Metabolism Regulates Reproduction and Parasite Melanization in the Malaria Mosquito

    PubMed Central

    Fuchs, Silke; Behrends, Volker; Bundy, Jacob G.; Crisanti, Andrea; Nolan, Tony

    2014-01-01

    The blood meal of the female malaria mosquito is a pre-requisite to egg production and also represents the transmission route for the malaria parasite. The proper and rapid assimilation of proteins and nutrients in the blood meal creates a significant metabolic challenge for the mosquito. To better understand this process we generated a global profile of metabolite changes in response to blood meal of Anopheles gambiae, using Gas Chromatography-Mass Spectrometry (GC-MS). To disrupt a key pathway of amino acid metabolism we silenced the gene phenylalanine hydroxylase (PAH) involved in the conversion of the amino acid phenylalanine into tyrosine. We observed increased levels of phenylalanine and the potentially toxic metabolites phenylpyruvate and phenyllactate as well as a reduction in the amount of tyrosine available for melanin synthesis. This in turn resulted in a significant impairment of the melanotic encapsulation response against the rodent malaria parasite Plasmodium berghei. Furthermore silencing of PAH resulted in a significant impairment of mosquito fertility associated with reduction of laid eggs, retarded vitellogenesis and impaired melanisation of the chorion. Carbidopa, an inhibitor of the downstream enzyme DOPA decarboxylase that coverts DOPA into dopamine, produced similar effects on egg melanization and hatching rate suggesting that egg chorion maturation is mainly regulated via dopamine. This study sheds new light on the role of amino acid metabolism in regulating reproduction and immunity. PMID:24409310

  16. Proteomic analysis of Plasmodium falciparum parasites from patients with cerebral and uncomplicated malaria.

    PubMed

    Bertin, Gwladys I; Sabbagh, Audrey; Argy, Nicolas; Salnot, Virginie; Ezinmegnon, Sem; Agbota, Gino; Ladipo, Yélé; Alao, Jules M; Sagbo, Gratien; Guillonneau, François; Deloron, Philippe

    2016-01-01

    Plasmodium falciparum is responsible of severe malaria, including cerebral malaria (CM). During its intra-erythrocytic maturation, parasite-derived proteins are expressed, exported and presented at the infected erythrocyte membrane. To identify new CM-specific parasite membrane proteins, we conducted a mass spectrometry-based proteomic study and compared the protein expression profiles between 9 CM and 10 uncomplicated malaria (UM) samples. Among the 1097 Plasmodium proteins identified, we focused on the 499 membrane-associated and hypothetical proteins for comparative analysis. Filter-based feature selection methods combined with supervised data analysis identified a subset of 29 proteins distinguishing CM and UM samples with high classification accuracy. A hierarchical clustering analysis of these 29 proteins based on the similarity of their expression profiles revealed two clusters of 15 and 14 proteins, respectively under- and over-expressed in CM. Among the over-expressed proteins, the MESA protein is expressed at the erythrocyte membrane, involved in proteins trafficking and in the export of variant surface antigens (VSAs), but without antigenic function. Antigen 332 protein is exported at the erythrocyte, also involved in protein trafficking and in VSAs export, and exposed to the immune system. Our proteomics data demonstrate an association of selected proteins in the pathophysiology of CM. PMID:27245217

  17. Proteomic analysis of Plasmodium falciparum parasites from patients with cerebral and uncomplicated malaria

    PubMed Central

    Bertin, Gwladys I.; Sabbagh, Audrey; Argy, Nicolas; Salnot, Virginie; Ezinmegnon, Sem; Agbota, Gino; Ladipo, Yélé; Alao, Jules M.; Sagbo, Gratien; Guillonneau, François; Deloron, Philippe

    2016-01-01

    Plasmodium falciparum is responsible of severe malaria, including cerebral malaria (CM). During its intra-erythrocytic maturation, parasite-derived proteins are expressed, exported and presented at the infected erythrocyte membrane. To identify new CM-specific parasite membrane proteins, we conducted a mass spectrometry-based proteomic study and compared the protein expression profiles between 9 CM and 10 uncomplicated malaria (UM) samples. Among the 1097 Plasmodium proteins identified, we focused on the 499 membrane-associated and hypothetical proteins for comparative analysis. Filter-based feature selection methods combined with supervised data analysis identified a subset of 29 proteins distinguishing CM and UM samples with high classification accuracy. A hierarchical clustering analysis of these 29 proteins based on the similarity of their expression profiles revealed two clusters of 15 and 14 proteins, respectively under- and over-expressed in CM. Among the over-expressed proteins, the MESA protein is expressed at the erythrocyte membrane, involved in proteins trafficking and in the export of variant surface antigens (VSAs), but without antigenic function. Antigen 332 protein is exported at the erythrocyte, also involved in protein trafficking and in VSAs export, and exposed to the immune system. Our proteomics data demonstrate an association of selected proteins in the pathophysiology of CM. PMID:27245217

  18. Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum.

    PubMed

    Bushman, Mary; Morton, Lindsay; Duah, Nancy; Quashie, Neils; Abuaku, Benjamin; Koram, Kwadwo A; Dimbu, Pedro Rafael; Plucinski, Mateusz; Gutman, Julie; Lyaruu, Peter; Kachur, S Patrick; de Roode, Jacobus C; Udhayakumar, Venkatachalam

    2016-03-16

    Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures. PMID:26984625

  19. Identification of an Atg8-Atg3 Protein–Protein Interaction Inhibitor from the Medicines for Malaria Venture Malaria Box Active in Blood and Liver Stage Plasmodium falciparum Parasites

    PubMed Central

    2015-01-01

    Atg8 is a ubiquitin-like autophagy protein in eukaryotes that is covalently attached (lipidated) to the elongating autophagosomal membrane. Autophagy is increasingly appreciated as a target in diverse diseases from cancer to eukaryotic parasitic infections. Some of the autophagy machinery is conserved in the malaria parasite, Plasmodium. Although Atg8’s function in the parasite is not well understood, it is essential for Plasmodium growth and survival and partially localizes to the apicoplast, an indispensable organelle in apicomplexans. Here, we describe the identification of inhibitors from the Malaria Medicine Venture Malaria Box against the interaction of PfAtg8 with its E2-conjugating enzyme, PfAtg3, by surface plasmon resonance. Inhibition of this protein–protein interaction prevents PfAtg8 lipidation with phosphatidylethanolamine. These small molecule inhibitors share a common scaffold and have activity against both blood and liver stages of infection by Plasmodium falciparum. We have derivatized this scaffold into a functional platform for further optimization. PMID:24786226

  20. The Effect of Intestinal Parasitic Infection on the Clinical Outcome of Malaria in Coinfected Children in Cameroon

    PubMed Central

    Kwenti, Tebit E.; Nkume, Franklin A.; Tanjeko, Ajime T.; Kwenti, Tayong D. B.

    2016-01-01

    Background The interaction between intestinal parasites and malaria is still not clear. Data in published literature are conflicting. We studied the effect of intestinal parasitic infection (IPI) on the clinical outcome of malaria in coinfected children. Methods In a cross sectional study performed between October 2014 and September 2015, children infected with malaria, as demonstrated by the presence of asexual parasites in Giemsa stained blood films, were enrolled. Stool samples were obtained from participants and subjected to the formol-ether concentration technique for the detection of intestinal parasites. The Complete blood count was performed using an automated haematology analyser (Mindray, BC-2800). The risk ratio, Pearson’s chi-square and the student T test were all performed as part of the statistical analyses. Statistical significance was set at p < 0.05. Results In all, 405 children successfully took part in the study. The children were between 1 week and 120 months of age (mean ± SD = 41.5 ± 33.5). Coinfection with intestinal parasites was observed in 11.6%. The rate of severe malaria (SM) attack in this study was 10.9%. SM was not observed to be associated with age (p = 0.377) or gender (p = 0.387), meanwhile coinfection with intestinal parasites was associated with age (p = 0.003). Among SM cases, IPI prevalence was higher in children with mild (WHO group 3) severe malaria (p = 0.027). Overall, IPI was not observed to be associated with SM (p = 0.656) or malaria parasite density (p = 0.185) or haemoglobin concentration (p = 0.205). The main clinical features of SM observed were hyperpyrexia (68.2%), severe malarial anaemia (61.4%), and multiple convulsion (52.3%). Conclusion IPI was not observed to be associated with the severity of malaria, the malaria parasite density, and the haemoglobin concentration in coinfected children in Cameroon. The clinical outcome of malaria in children coinfected with intestinal parasites may depend on the

  1. Recent advances in malaria parasite cultivation and their application to studies on host-parasite relationships: a review

    PubMed Central

    Trigg, P. I.

    1985-01-01

    The continuous cultivation of the erythrocytic stages of Plasmodium falciparum was achieved in 1976 and techniques have now also been developed for continuous cultivation of these stages from P. knowlesi, P. fragile, P. inui, P. cynomolgi and P. berghei. The requisite conditions for successful cultivation are described. Gametes of certain isolates of P. falciparum can also now be produced in vitro and these are infective to mosquitos, leading to normal development of the parasite. The successful cultivation in vitro of the exoerythrocytic stages of P. berghei and P. vivax was achieved in 1981 and 1983, respectively. These cultures give rise to infective merozoites. There have been no significant advances in the in vitro cultivation of the sporogonic stages of malaria parasites for the last 15 years, although studies indicate that the in vitro cultivation of these stages from gamete to sporozoite stage is theoretically possible. The application of cultivation techniques to the study of parasite epidemiology is discussed. To date the major epidemiological impact has related to their use for measuring the incidence and spread of drug resistance. Applications to the study of the genetics of drug resistance, antigen production, development of tests for protective immunity, and drug development and screening are reviewed. PMID:3893779

  2. A CLAG3 mutation in an amphipathic transmembrane domain alters malaria parasite nutrient channels and confers leupeptin resistance.

    PubMed

    Sharma, Paresh; Rayavara, Kempaiah; Ito, Daisuke; Basore, Katherine; Desai, Sanjay A

    2015-06-01

    Erythrocytes infected with malaria parasites have increased permeability to ions and nutrients, as mediated by the plasmodial surface anion channel (PSAC) and recently linked to parasite clag3 genes. Although the encoded protein is integral to the host membrane, its precise contribution to solute transport remains unclear because it lacks conventional transmembrane domains and does not have homology to ion channel proteins in other organisms. Here, we identified a probable CLAG3 transmembrane domain adjacent to a variant extracellular motif. Helical-wheel analysis revealed strict segregation of polar and hydrophobic residues to opposite faces of a predicted α-helical transmembrane domain, suggesting that the domain lines a water-filled pore. A single CLAG3 mutation (A1210T) in a leupeptin-resistant PSAC mutant falls within this transmembrane domain and may affect pore structure. Allelic-exchange transfection and site-directed mutagenesis revealed that this mutation alters solute selectivity in the channel. The A1210T mutation also reduces the blocking affinity of PSAC inhibitors that bind on opposite channel faces, consistent with global changes in channel structure. Transfected parasites carrying this mutation survived a leupeptin challenge significantly better than a transfection control did. Thus, the A1210T mutation contributes directly to both altered PSAC activity and leupeptin resistance. These findings reveal the molecular basis of a novel antimalarial drug resistance mechanism, provide a framework for determining the channel's composition and structure, and should guide the development of therapies targeting the PSAC. PMID:25870226

  3. Structural analysis of malaria-parasite lysyl-tRNA synthetase provides a platform for drug development.

    PubMed

    Khan, Sameena; Garg, Ankur; Camacho, Noelia; Van Rooyen, Jason; Kumar Pole, Anil; Belrhali, Hassan; Ribas de Pouplana, Lluis; Sharma, Vinay; Sharma, Amit

    2013-05-01

    Aminoacyl-tRNA synthetases are essential enzymes that transmit information from the genetic code to proteins in cells and are targets for antipathogen drug development. Elucidation of the crystal structure of cytoplasmic lysyl-tRNA synthetase from the malaria parasite Plasmodium falciparum (PfLysRS) has allowed direct comparison with human LysRS. The authors' data suggest that PfLysRS is dimeric in solution, whereas the human counterpart can also adopt tetrameric forms. It is shown for the first time that PfLysRS is capable of synthesizing the signalling molecule Ap4a (diadenosine tetraphosphate) using ATP as a substrate. The PfLysRS crystal structure is in the apo form, such that binding to ATP will require rotameric changes in four conserved residues. Differences in the active-site regions of parasite and human LysRSs suggest the possibility of exploiting PfLysRS for selective inhibition. These investigations on PfLysRS further validate malarial LysRSs as attractive antimalarial targets and provide new structural space for the development of inhibitors that target pathogen LysRSs selectively. PMID:23633587

  4. DSPMP: Discriminating secretory proteins of malaria parasite by hybridizing different descriptors of Chou's pseudo amino acid patterns.

    PubMed

    Fan, Guo-Liang; Zhang, Xiao-Yan; Liu, Yan-Ling; Nang, Yi; Wang, Hui

    2015-12-01

    Identification of the proteins secreted by the malaria parasite is important for developing effective drugs and vaccines against infection. Therefore, we developed an improved predictor called "DSPMP" (Discriminating Secretory Proteins of Malaria Parasite) to identify the secretory proteins of the malaria parasite by integrating several vector features using support vector machine-based methods. DSPMP achieved an overall predictive accuracy of 98.61%, which is superior to that of the existing predictors in this field. We show that our method is capable of identifying the secretory proteins of the malaria parasite and found that the amino acid composition for buried and exposed sequences, denoted by AAC(b/e), was the most important feature for constructing the predictor. This article not only introduces a novel method for detecting the important features of sample proteins related to the malaria parasite but also provides a useful tool for tackling general protein-related problems. The DSPMP webserver is freely available at http://202.207.14.87:8032/fuwu/DSPMP/index.asp. PMID:26484844

  5. Establishment of exotic parasites: the origins and characteristics of an avian malaria community in an isolated island avifauna.

    PubMed

    Ewen, John G; Bensch, Staffan; Blackburn, Tim M; Bonneaud, Camille; Brown, Ruth; Cassey, Phillip; Clarke, Rohan H; Pérez-Tris, Javier

    2012-10-01

    Knowledge of the processes favouring the establishment of exotic parasites is poor. Herein, we test the characteristics of successful exotic parasites that have co-established in the remote island archipelago of New Zealand, due to the introduction of numerous avian host species. Our results show that avian malaria parasites (AM; parasites of the genus Plasmodium) that successfully invaded are more globally generalist (both geographically widespread and with a broad taxonomic range of hosts) than AM parasites not co-introduced to New Zealand. Furthermore, the successful AM parasites are presently more prevalent in their native range than AM parasites found in the same native range but not co-introduced to New Zealand. This has resulted in an increased number and greater taxonomic diversity of AM parasites now in New Zealand. PMID:22788956

  6. Does Magnetic Field Affect Malaria Parasite Replication in Human Red Blood Cells?

    NASA Technical Reports Server (NTRS)

    Chanturiya, Alexandr N.; Glushakova, Svetlana; Yin, Dan; Zimmerberg, Joshua

    2004-01-01

    Digestion of red blood cell (RBC) hemoglobin by the malaria parasite results in the formation of paramagnetic hemazoin crystals inside the parasite body. A number of reports suggest that magnetic field interaction with hamazoin crystals significantly reduces the number of infected cells in culture, and thus magnetic field can be used to combat malaria. We studies the effects of magnetic filed on the Plasmodium falciparum asexual life cycle inside RBCs under various experimental conditions. No effect was found during prolonged exposure of infected RBCs to constant magnetic fields up to 6000 Gauss. Infected RBCs were also exposed, under temperature-controlled conditions, to oscillating magnetic fields with frequencies in the range of 500-20000 kHz, and field strength 30-600 Gauss. This exposure often changed the proportion of different parasite stages in treated culture compared to controls. However, no significant effect on parasitemia was observed in treated cultures. This result indicates that the magnetic field effect on Plasmodium falciparum is negligible, or that hypothetical negative and positive effects on different stages within one 48-hour compensate each other.

  7. Identify Secretory Protein of Malaria Parasite with Modified Quadratic Discriminant Algorithm and Amino Acid Composition.

    PubMed

    Feng, Yong-E

    2016-06-01

    Malaria parasite secretes various proteins in infected red blood cell for its growth and survival. Thus identification of these secretory proteins is important for developing vaccine or drug against malaria. In this study, the modified method of quadratic discriminant analysis is presented for predicting the secretory proteins. Firstly, 20 amino acids are divided into five types according to the physical and chemical characteristics of amino acids. Then, we used five types of amino acids compositions as inputs of the modified quadratic discriminant algorithm. Finally, the best prediction performance is obtained by using 20 amino acid compositions, the sensitivity of 96 %, the specificity of 92 % with 0.88 of Mathew's correlation coefficient in fivefold cross-validation test. The results are also compared with those of existing prediction methods. The compared results shown our method are prominent in the prediction of secretory proteins. PMID:26286010

  8. A more appropriate white blood cell count for estimating malaria parasite density in Plasmodium vivax patients in northeastern Myanmar.

    PubMed

    Liu, Huaie; Feng, Guohua; Zeng, Weilin; Li, Xiaomei; Bai, Yao; Deng, Shuang; Ruan, Yonghua; Morris, James; Li, Siman; Yang, Zhaoqing; Cui, Liwang

    2016-04-01

    The conventional method of estimating parasite densities employ an assumption of 8000 white blood cells (WBCs)/μl. However, due to leucopenia in malaria patients, this number appears to overestimate parasite densities. In this study, we assessed the accuracy of parasite density estimated using this assumed WBC count in eastern Myanmar, where Plasmodium vivax has become increasingly prevalent. From 256 patients with uncomplicated P. vivax malaria, we estimated parasite density and counted WBCs by using an automated blood cell counter. It was found that WBC counts were not significantly different between patients of different gender, axillary temperature, and body mass index levels, whereas they were significantly different between age groups of patients and the time points of measurement. The median parasite densities calculated with the actual WBC counts (1903/μl) and the assumed WBC count of 8000/μl (2570/μl) were significantly different. We demonstrated that using the assumed WBC count of 8000 cells/μl to estimate parasite densities of P. vivax malaria patients in this area would lead to an overestimation. For P. vivax patients aged five years and older, an assumed WBC count of 5500/μl best estimated parasite densities. This study provides more realistic assumed WBC counts for estimating parasite densities in P. vivax patients from low-endemicity areas of Southeast Asia. PMID:26802490

  9. Parasite cultivation in relation to research on the chemotherapy of malaria

    PubMed Central

    Trigg, P. I.

    1976-01-01

    Attempts to develop techniques for the continuous in vitro cultivation of the malaria parasite have not yet proved successful. It has not been possible to obtain the complete sporogonic development of the parasite in vitro although some progress was made with Plasmodium relictum and P. berghei. Exoerythrocytic stages of P. gallinaceum have been successfully cultivated in vitro in tissue explants and those of P. fallax have been grown in turkey primary embryo tissue cells. With the recent development of mammalian liver cell lines, prospects for the in vitro cultivation of exoerythrocytic stages of mammalian plasmodia are greatly improved. While it is still not possible to cultivate erythrocytic stages of plasmodia serially in vitro some species have been successfully grown through one asexual cycle. This progress has led to a number of applications of parasite cultivation to chemotherapeutic studies, to the testing of new antimalarial drugs, and especially to the testing of the susceptibility of P. falciparum to chloroquine. Cultivation technique is greatly improved by an appropriate choice of culture media. The addition of fresh red cells to the subculture system permits relatively high rates of invasion and multiplication of the parasite to be obtained. As well as its application in the screening and evaluation of antimalarial compounds, the in vitro cultivation technique is also very suitable for studying the entry mechanism of the parasite into red blood cells. PMID:1086733

  10. Parasite Mitogen-Activated Protein Kinases as Drug Discovery Targets to Treat Human Protozoan Pathogens

    PubMed Central

    Brumlik, Michael J.; Pandeswara, Srilakshmi; Ludwig, Sara M.; Murthy, Kruthi; Curiel, Tyler J.

    2011-01-01

    Protozoan pathogens are a highly diverse group of unicellular organisms, several of which are significant human pathogens. One group of protozoan pathogens includes obligate intracellular parasites such as agents of malaria, leishmaniasis, babesiosis, and toxoplasmosis. The other group includes extracellular pathogens such as agents of giardiasis and amebiasis. An unfortunate unifying theme for most human protozoan pathogens is that highly effective treatments for them are generally lacking. We will review targeting protozoan mitogen-activated protein kinases (MAPKs) as a novel drug discovery approach towards developing better therapies, focusing on Plasmodia, Leishmania, and Toxoplasma, about which the most is known. PMID:21637385

  11. Newly incriminated anopheline vectors of human malaria parasites in Junin Department, Peru.

    PubMed

    Hayes, J; Calderon, G; Falcon, R; Zambrano, V

    1987-09-01

    Sporozoite data from salivary gland dissections are presented that clearly incriminate Anopheles trinkae, An. pseudopunctipennis, An. sp. near fluminensis, An. oswaldoi, An. nuneztovari and An. rangeli as vectors of malaria parasites in the Rio Ene Valley, a hyperendemic malarious area in Junin Department, eastern Peru. Anopheles trinkae is considered the most important vector based on dissections, abundance and man-vector contact. Other notes are presented on the relative abundance, bionomics and previous records of these species in Peru and in the study sites. PMID:3333060

  12. The Suf Iron-Sulfur Cluster Synthesis Pathway Is Required for Apicoplast Maintenance in Malaria Parasites

    PubMed Central

    Gisselberg, Jolyn E.; Dellibovi-Ragheb, Teegan A.; Matthews, Krista A.; Bosch, Gundula; Prigge, Sean T.

    2013-01-01

    The apicoplast organelle of the malaria parasite Plasmodium falciparum contains metabolic pathways critical for liver-stage and blood-stage development. During the blood stages, parasites lacking an apicoplast can grow in the presence of isopentenyl pyrophosphate (IPP), demonstrating that isoprenoids are the only metabolites produced in the apicoplast which are needed outside of the organelle. Two of the isoprenoid biosynthesis enzymes are predicted to rely on iron-sulfur (FeS) cluster cofactors, however, little is known about FeS cluster synthesis in the parasite or the roles that FeS cluster proteins play in parasite biology. We investigated two putative FeS cluster synthesis pathways (Isc and Suf) focusing on the initial step of sulfur acquisition. In other eukaryotes, these proteins can be located in multiple subcellular compartments, raising the possibility of cross-talk between the pathways or redundant functions. In P. falciparum, SufS and its partner SufE were found exclusively the apicoplast and SufS was shown to have cysteine desulfurase activity in a complementation assay. IscS and its effector Isd11 were solely mitochondrial, suggesting that the Isc pathway cannot contribute to apicoplast FeS cluster synthesis. The Suf pathway was disrupted with a dominant negative mutant resulting in parasites that were only viable when supplemented with IPP. These parasites lacked the apicoplast organelle and its organellar genome – a phenotype not observed when isoprenoid biosynthesis was specifically inhibited with fosmidomycin. Taken together, these results demonstrate that the Suf pathway is essential for parasite survival and has a fundamental role in maintaining the apicoplast organelle in addition to any role in isoprenoid biosynthesis. PMID:24086138

  13. Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites

    PubMed Central

    Lee, Andrew H.; Fidock, David A.

    2016-01-01

    Malaria control efforts have been continuously stymied by drug-resistant strains of Plasmodium falciparum, which typically originate in Southeast Asia prior to spreading into high-transmission settings in Africa. One earlier proposed explanation for Southeast Asia being a hotbed of resistance has been the hypermutability or “Accelerated Resistance to Multiple Drugs” (ARMD) phenotype, whereby multidrug-resistant Southeast Asian parasites were reported to exhibit 1,000-fold higher rates of resistance to unrelated antimalarial agents when compared to drug-sensitive parasites. However, three recent studies do not recapitulate this hypermutability phenotype. Intriguingly, genome sequencing of recently derived multidrug-resistant Cambodian isolates has identified a high proportion of DNA repair gene mutations in multidrug-resistant parasites, suggesting their potential role in shaping local parasite evolution. By adapting fluctuation assays for use in P. falciparum, we have examined the in vitro mutation rates of five recent Cambodian isolates and three reference laboratory strains. For these studies we also generated a knockout parasite line lacking the DNA repair factor Exonuclease I. In these assays, parasites were typed for their ability to acquire resistance to KAE609, currently in advanced clinical trials, yielding 13 novel mutations in the Na+/H+-ATPase PfATP4, the primary resistance determinant. We observed no evidence of hypermutability. Instead, we found evidence of a mild mutator (up to a 3.4-fold increase in mutation rate) phenotype in two artemisinin-resistant Cambodian isolates, which carry DNA repair gene mutations. We observed that one such mutation in the Mismatch Repair protein Mlh1 contributes to the mild mutator phenotype when modeled in yeast (scmlh1-P157S). Compared to basal rates of mutation, a mild mutator phenotype may provide a greater overall benefit for parasites in Southeast Asia in terms of generating drug resistance without incurring

  14. Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites.

    PubMed

    Lee, Andrew H; Fidock, David A

    2016-01-01

    Malaria control efforts have been continuously stymied by drug-resistant strains of Plasmodium falciparum, which typically originate in Southeast Asia prior to spreading into high-transmission settings in Africa. One earlier proposed explanation for Southeast Asia being a hotbed of resistance has been the hypermutability or "Accelerated Resistance to Multiple Drugs" (ARMD) phenotype, whereby multidrug-resistant Southeast Asian parasites were reported to exhibit 1,000-fold higher rates of resistance to unrelated antimalarial agents when compared to drug-sensitive parasites. However, three recent studies do not recapitulate this hypermutability phenotype. Intriguingly, genome sequencing of recently derived multidrug-resistant Cambodian isolates has identified a high proportion of DNA repair gene mutations in multidrug-resistant parasites, suggesting their potential role in shaping local parasite evolution. By adapting fluctuation assays for use in P. falciparum, we have examined the in vitro mutation rates of five recent Cambodian isolates and three reference laboratory strains. For these studies we also generated a knockout parasite line lacking the DNA repair factor Exonuclease I. In these assays, parasites were typed for their ability to acquire resistance to KAE609, currently in advanced clinical trials, yielding 13 novel mutations in the Na+/H+-ATPase PfATP4, the primary resistance determinant. We observed no evidence of hypermutability. Instead, we found evidence of a mild mutator (up to a 3.4-fold increase in mutation rate) phenotype in two artemisinin-resistant Cambodian isolates, which carry DNA repair gene mutations. We observed that one such mutation in the Mismatch Repair protein Mlh1 contributes to the mild mutator phenotype when modeled in yeast (scmlh1-P157S). Compared to basal rates of mutation, a mild mutator phenotype may provide a greater overall benefit for parasites in Southeast Asia in terms of generating drug resistance without incurring

  15. Plasmodium falciparum STEVOR phosphorylation regulates host erythrocyte deformability enabling malaria parasite transmission.

    PubMed

    Naissant, Bernina; Dupuy, Florian; Duffier, Yoann; Lorthiois, Audrey; Duez, Julien; Scholz, Judith; Buffet, Pierre; Merckx, Anais; Bachmann, Anna; Lavazec, Catherine

    2016-06-16

    Deformability of Plasmodium falciparum gametocyte-infected erythrocytes (GIEs) allows them to persist for several days in blood circulation and to ensure transmission to mosquitoes. Here, we investigate the mechanism by which the parasite proteins STEVOR (SubTElomeric Variable Open Reading frame) exert changes on GIE deformability. Using the microsphiltration method, immunoprecipitation, and mass spectrometry, we produce evidence that GIE stiffness is dependent on the cytoplasmic domain of STEVOR that interacts with ankyrin complex at the erythrocyte skeleton. Moreover, we show that GIE deformability is regulated by protein kinase A (PKA)-mediated phosphorylation of the STEVOR C-terminal domain at a specific serine residue (S324). Finally, we show that the increase of GIE stiffness induced by sildenafil (Viagra) is dependent on STEVOR phosphorylation status and on another independent mechanism. These data provide new insights into mechanisms by which phosphodiesterase inhibitors may block malaria parasite transmission. PMID:27136945

  16. Crystallization and preliminary structural characterization of the two actin isoforms of the malaria parasite

    PubMed Central

    Bhargav, Saligram Prabhakar; Vahokoski, Juha; Kumpula, Esa-Pekka; Kursula, Inari

    2013-01-01

    Malaria is a devastating disease caused by apicomplexan parasites of the genus Plasmodium that use a divergent actin-powered molecular motor for motility and invasion. Plasmodium actin differs from canonical actins in sequence, structure and function. Here, the purification, crystallization and secondary-structure analysis of the two Plasmodium actin isoforms are presented. The recombinant parasite actins were folded and could be purified to homogeneity. Plasmodium actins I and II were crystallized in complex with the gelsolin G1 domain; the crystals diffracted to resolutions of 1.19 and 2.2 Å and belonged to space groups P212121 and P21, respectively, each with one complex in the asymmetric unit. PMID:24100575

  17. The C-terminal portion of the cleaved HT motif is necessary and sufficient to mediate export of proteins from the malaria parasite into its host cell

    PubMed Central

    Tarr, Sarah J; Cryar, Adam; Thalassinos, Konstantinos; Haldar, Kasturi; Osborne, Andrew R

    2013-01-01

    The malaria parasite exports proteins across its plasma membrane and a surrounding parasitophorous vacuole membrane, into its host erythrocyte. Most exported proteins contain a Host Targeting motif (HT motif) that targets them for export. In the parasite secretory pathway, the HT motif is cleaved by the protease plasmepsin V, but the role of the newly generated N-terminal sequence in protein export is unclear. Using a model protein that is cleaved by an exogenous viral protease, we show that the new N-terminal sequence, normally generated by plasmepsin V cleavage, is sufficient to target a protein for export, and that cleavage by plasmepsin V is not coupled directly to the transfer of a protein to the next component in the export pathway. Mutation of the fourth and fifth positions of the HT motif, as well as amino acids further downstream, block or affect the efficiency of protein export indicating that this region is necessary for efficient export. We also show that the fifth position of the HT motif is important for plasmepsin V cleavage. Our results indicate that plasmepsin V cleavage is required to generate a new N-terminal sequence that is necessary and sufficient to mediate protein export by the malaria parasite. PMID:23279267

  18. Individual genetic diversity and probability of infection by avian malaria parasites in blue tits (Cyanistes caeruleus).

    PubMed

    Ferrer, E S; García-Navas, V; Sanz, J J; Ortego, J

    2014-11-01

    Understanding the importance of host genetic diversity for coping with parasites and infectious diseases is a long-standing goal in evolutionary biology. Here, we study the association between probability of infection by avian malaria (Plasmodium relictum) and individual genetic diversity in three blue tit (Cyanistes caeruleus) populations that strongly differ in prevalence of this parasite. For this purpose, we screened avian malaria infections and genotyped 789 blue tits across 26 microsatellite markers. We used two different arrays of markers: 14 loci classified as neutral and 12 loci classified as putatively functional. We found a significant relationship between probability of infection and host genetic diversity estimated at the subset of neutral markers that was not explained by strong local effects and did not differ among the studied populations. This relationship was not linear, and probability of infection increased up to values of homozygosity by locus (HL) around 0.15, reached a plateau at values of HL from 0.15 to 0.40 and finally declined among a small proportion of highly homozygous individuals (HL > 0.4). We did not find evidence for significant identity disequilibrium, which may have resulted from a low variance of inbreeding in the study populations and/or the small power of our set of markers to detect it. A combination of subtle positive and negative local effects and/or a saturation threshold in the association between probability of infection and host genetic diversity in combination with increased resistance to parasites in highly homozygous individuals may explain the observed negative quadratic relationship. Overall, our study highlights that parasites play an important role in shaping host genetic variation and suggests that the use of large sets of neutral markers may be more appropriate for the study of heterozygosity-fitness correlations. PMID:25264126

  19. Plasmodium Cysteine Repeat Modular Proteins 3 and 4 are essential for malaria parasite transmission from the mosquito to the host

    PubMed Central

    2011-01-01

    Background The Plasmodium Cysteine Repeat Modular Proteins (PCRMP) are a family of four conserved proteins of malaria parasites, that contain a number of motifs implicated in host-parasite interactions. Analysis of mutants of the rodent parasite Plasmodium berghei lacking expression of PCRMP1 or 2 showed that these proteins are essential for targeting of P. berghei sporozoites to the mosquito salivary gland and, hence, for transmission from the mosquito to the mouse. Methods In this work, the role of the remaining PCRMP family members, PCRMP3 and 4, has been investigated throughout the Plasmodium life cycle by generation and analysis of P. berghei gene deletion mutants, Δpcrmp3 and Δpcrmp4. The role of PCRMP members during the transmission and hepatic stages of the Plasmodium lifecycle has been evaluated by light- and electron microscopy and by analysis of liver stage development in HEPG2 cells in vitro and by infecting mice with mutant sporozoites. In addition, mice were immunized with live Δpcrmp3 and Δpcrmp4 sporozoites to evaluate their immunization potential as a genetically-attenuated parasite-based vaccine. Results Disruption of pcrmp3 and pcrmp4 in P. berghei revealed that they are also essential for transmission of the parasite through the mosquito vector, although acting in a distinct way to pbcrmp1 and 2. Mutants lacking expression of PCRMP3 or PCRMP4 show normal blood stage development and oocyst formation in the mosquito and develop into morphologically normal sporozoites, but these have a defect in egress from oocysts and do not enter the salivary glands. Sporozoites extracted from oocysts perform gliding motility and invade and infect hepatocytes but do not undergo further development and proliferation. Furthermore, the study shows that immunization with Δcrmp3 and Δcrmp4 sporozoites does not confer protective immunity upon subsequent challenge. Conclusions PCRMP3 and 4 play multiple roles during the Plasmodium life cycle; they are essential

  20. Parasite sources and sinks in a patched Ross-Macdonald malaria model with human and mosquito movement: Implications for control.

    PubMed

    Ruktanonchai, Nick W; Smith, David L; De Leenheer, Patrick

    2016-09-01

    We consider the dynamics of a mosquito-transmitted pathogen in a multi-patch Ross-Macdonald malaria model with mobile human hosts, mobile vectors, and a heterogeneous environment. We show the existence of a globally stable steady state, and a threshold that determines whether a pathogen is either absent from all patches, or endemic and present at some level in all patches. Each patch is characterized by a local basic reproduction number, whose value predicts whether the disease is cleared or not when the patch is isolated: patches are known as "demographic sinks" if they have a local basic reproduction number less than one, and hence would clear the disease if isolated; patches with a basic reproduction number above one would sustain endemic infection in isolation, and become "demographic sources" of parasites when connected to other patches. Sources are also considered focal areas of transmission for the larger landscape, as they export excess parasites to other areas and can sustain parasite populations. We show how to determine the various basic reproduction numbers from steady state estimates in the patched network and knowledge of additional model parameters, hereby identifying parasite sources in the process. This is useful in the context of control of the infection on natural landscapes, because a commonly suggested strategy is to target focal areas, in order to make their corresponding basic reproduction numbers less than one, effectively turning them into sinks. We show that this is indeed a successful control strategy-albeit a conservative and possibly expensive one-in case either the human host, or the vector does not move. However, we also show that when both humans and vectors move, this strategy may fail, depending on the specific movement patterns exhibited by hosts and vectors. PMID:27436636

  1. Pooled sequencing and rare variant association tests for identifying the determinants of emerging drug resistance in malaria parasites.

    PubMed

    Cheeseman, Ian H; McDew-White, Marina; Phyo, Aung Pyae; Sriprawat, Kanlaya; Nosten, François; Anderson, Timothy J C

    2015-04-01

    We explored the potential of pooled sequencing to swiftly and economically identify selective sweeps due to emerging artemisinin (ART) resistance in a South-East Asian malaria parasite population. ART resistance is defined by slow parasite clearance from the blood of ART-treated patients and mutations in the kelch gene (chr. 13) have been strongly implicated to play a role. We constructed triplicate pools of 70 slow-clearing (resistant) and 70 fast-clearing (sensitive) infections collected from the Thai-Myanmar border and sequenced these to high (∼ 150-fold) read depth. Allele frequency estimates from pools showed almost perfect correlation (Lin's concordance = 0.98) with allele frequencies at 93 single nucleotide polymorphisms measured directly from individual infections, giving us confidence in the accuracy of this approach. By mapping genome-wide divergence (FST) between pools of drug-resistant and drug-sensitive parasites, we identified two large (>150 kb) regions (on chrs. 13 and 14) and 17 smaller candidate genome regions. To identify individual genes within these genome regions, we resequenced an additional 38 parasite genomes (16 slow and 22 fast-clearing) and performed rare variant association tests. These confirmed kelch as a major molecular marker for ART resistance (P = 6.03 × 10(-6)). This two-tier approach is powerful because pooled sequencing rapidly narrows down genome regions of interest, while targeted rare variant association testing within these regions can pinpoint the genetic basis of resistance. We show that our approach is robust to recurrent mutation and the generation of soft selective sweeps, which are predicted to be common in pathogen populations with large effective population sizes, and may confound more traditional gene mapping approaches. PMID:25534029

  2. Pooled Sequencing and Rare Variant Association Tests for Identifying the Determinants of Emerging Drug Resistance in Malaria Parasites

    PubMed Central

    Cheeseman, Ian H.; McDew-White, Marina; Phyo, Aung Pyae; Sriprawat, Kanlaya; Nosten, François; Anderson, Timothy J.C.

    2015-01-01

    We explored the potential of pooled sequencing to swiftly and economically identify selective sweeps due to emerging artemisinin (ART) resistance in a South-East Asian malaria parasite population. ART resistance is defined by slow parasite clearance from the blood of ART-treated patients and mutations in the kelch gene (chr. 13) have been strongly implicated to play a role. We constructed triplicate pools of 70 slow-clearing (resistant) and 70 fast-clearing (sensitive) infections collected from the Thai–Myanmar border and sequenced these to high (∼150-fold) read depth. Allele frequency estimates from pools showed almost perfect correlation (Lin’s concordance = 0.98) with allele frequencies at 93 single nucleotide polymorphisms measured directly from individual infections, giving us confidence in the accuracy of this approach. By mapping genome-wide divergence (FST) between pools of drug-resistant and drug-sensitive parasites, we identified two large (>150 kb) regions (on chrs. 13 and 14) and 17 smaller candidate genome regions. To identify individual genes within these genome regions, we resequenced an additional 38 parasite genomes (16 slow and 22 fast-clearing) and performed rare variant association tests. These confirmed kelch as a major molecular marker for ART resistance (P = 6.03 × 10−6). This two-tier approach is powerful because pooled sequencing rapidly narrows down genome regions of interest, while targeted rare variant association testing within these regions can pinpoint the genetic basis of resistance. We show that our approach is robust to recurrent mutation and the generation of soft selective sweeps, which are predicted to be common in pathogen populations with large effective population sizes, and may confound more traditional gene mapping approaches. PMID:25534029

  3. A Mechanism for Actin Filament Severing by Malaria Parasite Actin Depolymerizing Factor 1 via a Low Affinity Binding Interface*

    PubMed Central

    Wong, Wilson; Webb, Andrew I.; Olshina, Maya A.; Infusini, Giuseppe; Tan, Yan Hong; Hanssen, Eric; Catimel, Bruno; Suarez, Cristian; Condron, Melanie; Angrisano, Fiona; NebI, Thomas; Kovar, David R.; Baum, Jake

    2014-01-01

    Actin depolymerizing factor (ADF)/cofilins are essential regulators of actin turnover in eukaryotic cells. These multifunctional proteins facilitate both stabilization and severing of filamentous (F)-actin in a concentration-dependent manner. At high concentrations ADF/cofilins bind stably to F-actin longitudinally between two adjacent actin protomers forming what is called a decorative interaction. Low densities of ADF/cofilins, in contrast, result in the optimal severing of the filament. To date, how these two contrasting modalities are achieved by the same protein remains uncertain. Here, we define the proximate amino acids between the actin filament and the malaria parasite ADF/cofilin, PfADF1 from Plasmodium falciparum. PfADF1 is unique among ADF/cofilins in being able to sever F-actin but do so without stable filament binding. Using chemical cross-linking and mass spectrometry (XL-MS) combined with structure reconstruction we describe a previously overlooked binding interface on the actin filament targeted by PfADF1. This site is distinct from the known binding site that defines decoration. Furthermore, total internal reflection fluorescence (TIRF) microscopy imaging of single actin filaments confirms that this novel low affinity site is required for F-actin severing. Exploring beyond malaria parasites, selective blocking of the decoration site with human cofilin (HsCOF1) using cytochalasin D increases its severing rate. HsCOF1 may therefore also use a decoration-independent site for filament severing. Thus our data suggest that a second, low affinity actin-binding site may be universally used by ADF/cofilins for actin filament severing. PMID:24371134

  4. Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium.

    PubMed

    Rao, Pavitra N; Santos, Jorge M; Pain, Arnab; Templeton, Thomas J; Mair, Gunnar R

    2016-10-01

    The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In Plasmodium falciparum and Plasmodium berghei blood stage parasites, the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. By establishing a luciferase transgene assay, we show that the 3' untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito. PMID:27312996

  5. Supplementation with Abscisic Acid Reduces Malaria Disease Severity and Parasite Transmission.

    PubMed

    Glennon, Elizabeth K K; Adams, L Garry; Hicks, Derrick R; Dehesh, Katayoon; Luckhart, Shirley

    2016-06-01

    Nearly half of the world's population is at risk for malaria. Increasing drug resistance has intensified the need for novel therapeutics, including treatments with intrinsic transmission-blocking properties. In this study, we demonstrate that the isoprenoid abscisic acid (ABA) modulates signaling in the mammalian host to reduce parasitemia and the formation of transmissible gametocytes and in the mosquito host to reduce parasite infection. Oral ABA supplementation in a mouse model of malaria was well tolerated and led to reduced pathology and enhanced gene expression in the liver and spleen consistent with infection recovery. Oral ABA supplementation also increased mouse plasma ABA to levels that can signal in the mosquito midgut upon blood ingestion. Accordingly, we showed that supplementation of a Plasmodium falciparum-infected blood meal with ABA increased expression of mosquito nitric oxide synthase and reduced infection prevalence in a nitric oxide-dependent manner. Identification of the mechanisms whereby ABA reduces parasite growth in mammals and mosquitoes could shed light on the balance of immunity and metabolism across eukaryotes and provide a strong foundation for clinical translation. PMID:27001761

  6. Selective Killing of the Human Malaria Parasite Plasmodium falciparum by a Benzylthiazolium dye

    PubMed Central

    Kelly, Jane X.; Winter, Rolf W.; Braun, Theodore P.; Osei-Agyemang, Myralyn; Hinrichs, David J.; Riscoe, Michael K.

    2007-01-01

    Malaria is an infectious disease caused by protozoan parasites of the genus Plasmodium. The most virulent form of the disease is caused by P. falciparum which infects hundreds of millions of people and is responsible for the deaths of 1 to 2 million individuals each year. An essential part of the parasitic process is the remodeling of the red blood cell membrane and its protein constituents to permit a higher flux of nutrients and waste products into or away from the intracellular parasite. Much of this increased permeability is due to a single type of broad specificity channel variously called the new permeation pathway (NPP), the nutrient channel, and the Plasmodial surface anion channel (PSAC). This channel is permeable to a range of low molecular weight solutes both charged and uncharged, with a strong preference for anions. Drugs such as furosemide that are known to block anion-selective channels inhibit PSAC. In this study we have investigated a dye known as benzothiocarboxypurine, BCP, which had been studied as a possible diagnostic aid given its selective uptake by P. falciparum infected red cells. We found that the dye enters parasitized red cells via the furosemide-inhibitable PSAC, forms a brightly fluorescent complex with parasite nucleic acids, and is selectively toxic to infected cells. Our study describes an antimalarial agent that exploits the altered permeability of Plasmodium-infected red cells as a means to killing the parasite and highlights a chemical reagent that may prove useful in high throughput screening of compounds for inhibitors of the channel. PMID:17266952

  7. Monoclonal antibodies produced against sporozoites of the human parasite Plasmodium malariae abolish infectivity of sporozoites of the simian parasite Plasmodium brasilianum.

    PubMed Central

    Cochrane, A H; Barnwell, J W; Collins, W E; Nussenzweig, R S

    1985-01-01

    We have used a sporozoite neutralization assay to define the biological relevance of the cross-reactivity of two monoclonal antibodies, raised against sporozoites of the human parasite Plasmodium malariae (Uganda 1/CDC), with sporozoites of the simian parasite Plasmodium brasilianum (Colombian). In vitro incubation of each of these two monoclonal antibodies with sporozoites of P. brasilianum totally abolished the infectivity of these parasites for Saimiri sciureus. Using Western blot analysis and one of the P. malariae monoclonal antibodies, we identified two sporozoite proteins characteristic of the Colombian isolate of P. brasilianum with apparent molecular weights of 56,000 and 66,000. The same monoclonal antibody identified two proteins in an extract of the Peruvian isolate of P. brasilianum with apparent molecular weights of 59,000 and 69,000. Images PMID:3899939

  8. Parasite Burden and CD36-Mediated Sequestration Are Determinants of Acute Lung Injury in an Experimental Malaria Model

    PubMed Central

    Lovegrove, Fiona E.; Gharib, Sina A.; Peña-Castillo, Lourdes; Patel, Samir N.; Ruzinski, John T.; Hughes, Timothy R.

    2008-01-01

    Although acute lung injury (ALI) is a common complication of severe malaria, little is known about the underlying molecular basis of lung dysfunction. Animal models have provided powerful insights into the pathogenesis of severe malaria syndromes such as cerebral malaria (CM); however, no model of malaria-induced lung injury has been definitively established. This study used bronchoalveolar lavage (BAL), histopathology and gene expression analysis to examine the development of ALI in mice infected with Plasmodium berghei ANKA (PbA). BAL fluid of PbA-infected C57BL/6 mice revealed a significant increase in IgM and total protein prior to the development of CM, indicating disruption of the alveolar–capillary membrane barrier—the physiological hallmark of ALI. In contrast to sepsis-induced ALI, BAL fluid cell counts remained constant with no infiltration of neutrophils. Histopathology showed septal inflammation without cellular transmigration into the alveolar spaces. Microarray analysis of lung tissue from PbA-infected mice identified a significant up-regulation of expressed genes associated with the gene ontology categories of defense and immune response. Severity of malaria-induced ALI varied in a panel of inbred mouse strains, and development of ALI correlated with peripheral parasite burden but not CM susceptibility. Cd36−/− mice, which have decreased parasite lung sequestration, were relatively protected from ALI. In summary, parasite burden and CD36-mediated sequestration in the lung are primary determinants of ALI in experimental murine malaria. Furthermore, differential susceptibility of mouse strains to malaria-induced ALI and CM suggests that distinct genetic determinants may regulate susceptibility to these two important causes of malaria-associated morbidity and mortality. PMID:18483551

  9. Purification of a recombinant histidine-tagged lactate dehydrogenase from the malaria parasite, Plasmodium vivax, and characterization of its properties.

    PubMed

    Sundaram, Balamurugan; Varadarajan, Nandan Mysore; Subramani, Pradeep Annamalai; Ghosh, Susanta Kumar; Nagaraj, Viswanathan Arun

    2014-12-01

    Lactate dehydrogenase (LDH) of the malaria parasite, Plasmodium vivax (Pv), serves as a drug target and immunodiagnostic marker. The LDH cDNA generated from total RNA of a clinical isolate of the parasite was cloned into pRSETA plasmid. Recombinant his-tagged PvLDH was over-expressed in E. coli Rosetta2DE3pLysS and purified using Ni(2+)-NTA resin giving a yield of 25-30 mg/litre bacterial culture. The recombinant protein was enzymatically active and its catalytic efficiency for pyruvate was 5.4 × 10(8) min(-1) M(-1), 14.5 fold higher than a low yield preparation reported earlier to obtain PvLDH crystal structure. The enzyme activity was inhibited by gossypol and sodium oxamate. The recombinant PvLDH was reactive in lateral flow immunochromatographic assays detecting pan- and vivax-specific LDH. The soluble recombinant PvLDH purified using heterologous expression system can facilitate the generation of vivax LDH-specific monoclonals and the screening of chemical compound libraries for PvLDH inhibitors. PMID:25048245

  10. Hematin−Hematin Self-Association States Involved in the Formation and Reactivity of the Malaria Parasite Pigment, Hemozoin

    SciTech Connect

    Klonis, Nectarios; Dilanian, Ruben; Hanssen, Eric; Darmanin, Connie; Streltsov, Victor; Deed, Samantha; Quiney, Harry; Tilley, Leann

    2010-10-22

    The malaria parasite pigment, hemozoin, is a crystal of ferriprotoporphyrin IX (FP-Fe(III)), a product of hemoglobin digestion. Hemozoin formation is essential for FP-Fe(III) detoxification in the parasite; it is the main target of quinoline antimalarials and can modulate immune and inflammation responses. To gain further insight into the likely mechanisms of crystal formation and hemozoin reactivity, we have reanalyzed the crystal structure data for {beta}-hematin and solved the crystal structure of Plasmodium falciparum hemozoin. The analysis reveals that the structures are very similar and highlights two previously unexplored modes of FP-Fe(III) self-association involving {pi}-{pi} interactions that may initiate crystal formation and help to stabilize the extended structure. Hemozoin can be considered to be a crystal composed of {pi}-{pi} dimers stabilized by iron-carboxylate linkages. As a result, it is predicted that two surfaces of the crystal would consist of {pi}-{pi} dimers with Fe(III) partly exposed to solvent and capable of undergoing redox reactions. Accordingly, we demonstrate that the crystal possesses both general peroxidase activity and the ability to cause lipid oxidation.

  11. Sex-specific effects of an avian malaria parasite on an insect vector: support for the resource limitation hypothesis.

    PubMed

    Waite, Jessica L; Henry, Autumn R; Adler, Frederick R; Clayton, Dale H

    2012-11-01

    Many parasites, such as those that cause malaria, depend on an insect vector for transmission between vertebrate hosts. Theory predicts that parasites should have little or no effect on the transmission ability of vectors, e.g., parasites should not reduce vector life span as this will limit the temporal window of opportunity for transmission. However, if the parasite and vector compete for limited resources, there may be an unavoidable physiological cost to the vector (resource limitation hypothesis). If this cost reduces vector fitness, then the effect should be on reproduction, not survival. Moreover, in cases where both sexes act as vectors, the effect should be greater on females than males because of the greater cost of reproduction for females. We tested these predictions using Haemoproteus columbae, a malaria parasite of Rock Pigeons (Columba livia) that is vectored by both sexes of the hippoboscid fly Pseudolynchia canariensis, Hippoboscids belong to a group of insects (Hippoboscoidea) with unusually high female reproductive investment; eggs hatch in utero, and each larva progresses through three stages, feeding from internal "milk" glands in the female, followed by deposition as a large puparium. We compared fitness components for flies feeding on malaria-infected vs. uninfected Rock Pigeons. Survival of female flies decreased significantly when they fed on infected birds, while survival of male flies was unaffected. Our results were contrary to the overall prediction that malaria parasites should have no effect on vector survival, but consistent with the prediction that an effect, if present, would be greater on females. As predicted, females feeding on malaria-infected birds produced fewer offspring, but there was no effect on the quality of offspring. A separate short-term feeding experiment confirmed that female flies are unable to compensate for resource limitation by altering blood meal size. The unanticipated effect on female survival may be

  12. Metabolic Enzymes of Helminth Parasites: Potential as Drug Targets.

    PubMed

    Timson, David J

    2016-01-01

    Metabolic pathways that extract energy from carbon compounds are essential for an organism's survival. Therefore, inhibition of enzymes in these pathways represents a potential therapeutic strategy to combat parasitic infections. However, the high degree of similarity between host and parasite enzymes makes this strategy potentially difficult. Nevertheless, several existing drugs to treat infections by parasitic helminths (worms) target metabolic enzymes. These include the trivalent antimonials that target phosphofructokinase and Clorsulon that targets phosphoglycerate mutase and phosphoglycerate kinase. Glycolytic enzymes from a variety of helminths have been characterised biochemically, and some inhibitors identified. To date none of these inhibitors have been developed into therapies. Many of these enzymes are externalised from the parasite and so are also of interest in the development of potential vaccines. Less work has been done on tricarboxylic acid cycle enzymes and oxidative phosphorylation complexes. Again, while some inhibitors have been identified none have been developed into drug-like molecules. Barriers to the development of novel drugs targeting metabolic enzymes include the lack of experimentally determined structures of helminth enzymes, lack of direct proof that the enzymes are vital in the parasites and lack of cell culture systems for many helminth species. Nevertheless, the success of Clorsulon (which discriminates between highly similar host and parasite enzymes) should inspire us to consider making serious efforts to discover novel anthelminthics, which target metabolic enzymes. PMID:26983888

  13. Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi.

    PubMed

    Assefa, Samuel; Lim, Caeul; Preston, Mark D; Duffy, Craig W; Nair, Mridul B; Adroub, Sabir A; Kadir, Khamisah A; Goldberg, Jonathan M; Neafsey, Daniel E; Divis, Paul; Clark, Taane G; Duraisingh, Manoj T; Conway, David J; Pain, Arnab; Singh, Balbir

    2015-10-20

    Malaria cases caused by the zoonotic parasite Plasmodium knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and in five lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genomewide nucleotide diversity (π = 6.03 × 10(-3)) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species Plasmodium falciparum and Plasmodium vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates [mean genomewide fixation index (FST) = 0.21, with 9,293 SNPs having fixed differences of FST = 1.0]. This differentiation showed marked heterogeneity across the genome, with mean FST values of different chromosomes ranging from 0.08 to 0.34 and with further significant variation across regions within several chromosomes. Analysis of the largest cluster (cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genomewide average Tajima's D = -1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp) gene, which had the top Tajima's D value (1.57), and scans of haplotype homozygosity implicate several genomic regions as being under recent positive selection. PMID:26438871

  14. Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development.

    PubMed

    Yoshida, Shigeto; Shimada, Yohei; Kondoh, Daisuke; Kouzuma, Yoshiaki; Ghosh, Anil K; Jacobs-Lorena, Marcelo; Sinden, Robert E

    2007-12-01

    The midgut environment of anopheline mosquitoes plays an important role in the development of the malaria parasite. Using genetic manipulation of anopheline mosquitoes to change the environment in the mosquito midgut may inhibit development of the malaria parasite, thus blocking malaria transmission. Here we generate transgenic Anopheles stephensi mosquitoes that express the C-type lectin CEL-III from the sea cucumber, Cucumaria echinata, in a midgut-specific manner. CEL-III has strong and rapid hemolytic activity toward human and rat erythrocytes in the presence of serum. Importantly, CEL-III binds to ookinetes, leading to strong inhibition of ookinete formation in vitro with an IC(50) of 15 nM. Thus, CEL-III exhibits not only hemolytic activity but also cytotoxicity toward ookinetes. In these transgenic mosquitoes, sporogonic development of Plasmodium berghei is severely impaired. Moderate, but significant inhibition was found against Plasmodium falciparum. To our knowledge, this is the first demonstration of stably engineered anophelines that affect the Plasmodium transmission dynamics of human malaria. Although our laboratory-based research does not have immediate applications to block natural malaria transmission, these findings have significant implications for the generation of refractory mosquitoes to all species of human Plasmodium and elucidation of mosquito-parasite interactions. PMID:18159942

  15. A rapid and robust selection procedure for generating drug-selectable marker-free recombinant malaria parasites

    PubMed Central

    Manzoni, Giulia; Briquet, Sylvie; Risco-Castillo, Veronica; Gaultier, Charlotte; Topçu, Selma; Ivănescu, Maria Larisa; Franetich, Jean-François; Hoareau-Coudert, Bénédicte; Mazier, Dominique; Silvie, Olivier

    2014-01-01

    Experimental genetics have been widely used to explore the biology of the malaria parasites. The rodent parasites Plasmodium berghei and less frequently P. yoelii are commonly utilised, as their complete life cycle can be reproduced in the laboratory and because they are genetically tractable via homologous recombination. However, due to the limited number of drug-selectable markers, multiple modifications of the parasite genome are difficult to achieve and require large numbers of mice. Here we describe a novel strategy that combines positive-negative drug selection and flow cytometry-assisted sorting of fluorescent parasites for the rapid generation of drug-selectable marker-free P. berghei and P. yoelii mutant parasites expressing a GFP or a GFP-luciferase cassette, using minimal numbers of mice. We further illustrate how this new strategy facilitates phenotypic analysis of genetically modified parasites by fluorescence and bioluminescence imaging of P. berghei mutants arrested during liver stage development. PMID:24755823

  16. A rapid and robust selection procedure for generating drug-selectable marker-free recombinant malaria parasites.

    PubMed

    Manzoni, Giulia; Briquet, Sylvie; Risco-Castillo, Veronica; Gaultier, Charlotte; Topçu, Selma; Ivănescu, Maria Larisa; Franetich, Jean-François; Hoareau-Coudert, Bénédicte; Mazier, Dominique; Silvie, Olivier

    2014-01-01

    Experimental genetics have been widely used to explore the biology of the malaria parasites. The rodent parasites Plasmodium berghei and less frequently P. yoelii are commonly utilised, as their complete life cycle can be reproduced in the laboratory and because they are genetically tractable via homologous recombination. However, due to the limited number of drug-selectable markers, multiple modifications of the parasite genome are difficult to achieve and require large numbers of mice. Here we describe a novel strategy that combines positive-negative drug selection and flow cytometry-assisted sorting of fluorescent parasites for the rapid generation of drug-selectable marker-free P. berghei and P. yoelii mutant parasites expressing a GFP or a GFP-luciferase cassette, using minimal numbers of mice. We further illustrate how this new strategy facilitates phenotypic analysis of genetically modified parasites by fluorescence and bioluminescence imaging of P. berghei mutants arrested during liver stage development. PMID:24755823

  17. The Impact of Hotspot-Targeted Interventions on Malaria Transmission in Rachuonyo South District in the Western Kenyan Highlands: A Cluster-Randomized Controlled Trial

    PubMed Central

    Bradley, John; Knight, Philip; Stone, William; Osoti, Victor; Makori, Euniah; Owaga, Chrispin; Odongo, Wycliffe; China, Pauline; Shagari, Shehu; Doumbo, Ogobara K.; Sauerwein, Robert W.; Kariuki, Simon; Drakeley, Chris; Stevenson, Jennifer; Cox, Jonathan

    2016-01-01

    Background Malaria transmission is highly heterogeneous, generating malaria hotspots that can fuel malaria transmission across a wider area. Targeting hotspots may represent an efficacious strategy for reducing malaria transmission. We determined the impact of interventions targeted to serologically defined malaria hotspots on malaria transmission both inside hotspots and in surrounding communities. Methods and Findings Twenty-seven serologically defined malaria hotspots were detected in a survey conducted from 24 June to 31 July 2011 that included 17,503 individuals from 3,213 compounds in a 100-km2 area in Rachuonyo South District, Kenya. In a cluster-randomized trial from 22 March to 15 April 2012, we randomly allocated five clusters to hotspot-targeted interventions with larviciding, distribution of long-lasting insecticide-treated nets, indoor residual spraying, and focal mass drug administration (2,082 individuals in 432 compounds); five control clusters received malaria control following Kenyan national policy (2,468 individuals in 512 compounds). Our primary outcome measure was parasite prevalence in evaluation zones up to 500 m outside hotspots, determined by nested PCR (nPCR) at baseline and 8 wk (16 June–6 July 2012) and 16 wk (21 August–10 September 2012) post-intervention by technicians blinded to the intervention arm. Secondary outcome measures were parasite prevalence inside hotpots, parasite prevalence in the evaluation zone as a function of distance from the hotspot boundary, Anopheles mosquito density, mosquito breeding site productivity, malaria incidence by passive case detection, and the safety and acceptability of the interventions. Intervention coverage exceeded 87% for all interventions. Hotspot-targeted interventions did not result in a change in nPCR parasite prevalence outside hotspot boundaries (p ≥ 0.187). We observed an average reduction in nPCR parasite prevalence of 10.2% (95% CI −1.3 to 21.7%) inside hotspots 8 wk post

  18. Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum

    PubMed Central

    Aingaran, Mythili; Zhang, Rou; Law, Sue KaYee; Peng, Zhangli; Undisz, Andreas; Meyer, Evan; Diez-Silva, Monica; Burke, Thomas A.; Spielmann, Tobias; Lim, Chwee Teck; Suresh, Subra; Dao, Ming; Marti, Matthias

    2012-01-01

    SUMMARY Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual conversion and mature over two weeks to become competent for transmission to a mosquito vector. Immature gametocytes sequester in deep tissues while mature stages must be able to circulate, pass the spleen and present themselves to the mosquito vector in order to complete transmission. Sequestration of asexual red blood cell stage parasites has been investigated in great detail. These studies have demonstrated that induction of cytoadherence properties through specific receptor-ligand interactions coincides with a significant increase in host cell stiffness. In contrast, the adherence and biophysical properties of gametocyte-infected red blood cells have not been studied systematically. Utilizing a transgenic line for 3D live imaging, in vitro capillary assays and 3D finite element whole cell modeling, we studied the role of cellular deformability in determining the circulatory characteristics of gametocytes. Our analysis shows that the red blood cell deformability of immature gametocytes displays an overall decrease followed by rapid restoration in mature gametocytes. Intriguingly, simulations suggest that along with deformability variations, the morphological changes of the parasite may play an important role in tissue distribution in vivo. Taken together we present a model, which suggests that mature but not immature gametocytes circulate in the peripheral blood for uptake in the mosquito blood meal and transmission to another human host thus ensuring long term survival of the parasite. PMID:22417683

  19. Green Synthesis of Silver Nanoparticles from Botanical Sources and Their Use for Control of Medical Insects and Malaria Parasites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of "green" processes for the synthesis of nanoparticles is a new branch of nanotechnology. However, knowledge of the bioactivity of nanoparticles against mosquitoes and malaria parasites is limited. We tested silver nanoparticles (average size 450 nm) bio-reduced in 5% Cassia occidentalis ...

  20. A simple, efficient and inexpensive method for malaria parasites' DNA catching from fixed Giemsa-stained blood slides.

    PubMed

    Eskandarian, Abbas Ali; Moradi, Sara; Abedi, Saeed

    2016-09-01

    As parasitological or microscopic method is the gold standard and the best method for diagnosis of malaria, so fixed Geimsa-stained blood slides in the form of thick and thin blood smears are the most important data collections of malaria, especially historical slides. The parasites are dead but their DNA is valuable for many molecular biologic researches. A simple and efficient method for catching and extraction malaria parasites' DNA with a desired yield from dried and stained blood on slides is the first and major step. Introduction of an applicable, efficient and inexpensive DNA catching method and assessment of its performance in following molecular applications  was the main objective of present study. PMID:27605792

  1. Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite

    PubMed Central

    Dankwa, Selasi; Lim, Caeul; Bei, Amy K.; Jiang, Rays H. Y.; Abshire, James R.; Patel, Saurabh D.; Goldberg, Jonathan M.; Moreno, Yovany; Kono, Maya; Niles, Jacquin C.; Duraisingh, Manoj T.

    2016-01-01

    Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPβ and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways. PMID:27041489

  2. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    SciTech Connect

    Bakkouri, Majida El; Pow, Andre; Mulichak, Anne; Cheung, Kevin L.Y.; Artz, Jennifer D.; Amani, Mehrnaz; Fell, Stuart; de Koning-Ward, Tania F.; Goodman, C. Dean; McFadden, Geoffrey I.; Ortega, Joaquin; Hui, Raymond; Houry, Walid A.

    2015-02-09

    The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  3. Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite.

    PubMed

    Dankwa, Selasi; Lim, Caeul; Bei, Amy K; Jiang, Rays H Y; Abshire, James R; Patel, Saurabh D; Goldberg, Jonathan M; Moreno, Yovany; Kono, Maya; Niles, Jacquin C; Duraisingh, Manoj T

    2016-01-01

    Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPβ and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways. PMID:27041489

  4. [Profiles of IgG responses against CSP, GLURP and LSA-3NR2 in urban malaria (Dakar): relations with haemoglobin levels and parasite densities].

    PubMed

    Mbengue, B; Kpodji, P; Sylla Niang, M; Varela, M L; Thiam, A; Sow, A; Ndiaye, K; Aidara, M; Thiam, F; Ndiaye, R; Diop, G; Nguer, C M; Perraut, R; Dièye, A

    2016-05-01

    Malaria remains a major health problem in sub- Saharan African countries despite substantial decreases in morbidity and mortality due to sustained control programs. Vaccines candidates were mainly tested in rural endemic setting; however increasing proportion of the population is living in urban area. Evaluation of the qualitative or quantitative immune responses to key targets of anti-Plasmodium immunity requires further investigation in urban area. In a cohort of 144 patients with mild malaria living in Dakar, we analyzed IgG responses against target antigens of P. falciparum: CSP, LSA-3NR2 and GLURP by ELISA. A mean age of 15 yrs (4-65 yrs) was found and patients were separated in 59 adults (<15yrs) and 85 children (≤15 yrs). Parasites densities (0,01-15%) did not differ between the two age groups. In contrast, haemoglobin levels appeared lower in children (4.5-16.6 g/dl) (p<0.01). For the immune results, the most recognized antigens were GLURP and CSP compared to LSA-3NR2. Levels of IgG against these antigens were significantly different between the two age groups and they were positively correlated (rho = 0.32; p<0.001). In addition, levels of IgG anti-GLURP were associated with low parasitemia (≤1%) and absence of anemia (≥11g/dl), particularly in adults (p<0.001). In a multiple regression analysis, no significant relationship was found between parasite densities and IgG responses against all the tested antigens. Our study shows the implication of IgG anti-GLURP in humoral immune response against the parasite. The present work contributes to determine IgG levels that can be used as relevant immunologic biomarkers in urban clinical malaria. PMID:27100862

  5. Malaria Induces Anemia through CD8+ T Cell-Dependent Parasite Clearance and Erythrocyte Removal in the Spleen

    PubMed Central

    Safeukui, Innocent; Gomez, Noé D.; Adelani, Aanuoluwa A.; Burte, Florence; Afolabi, Nathaniel K.; Akondy, Rama; Velazquez, Peter; Tewari, Rita; Buffet, Pierre; Brown, Biobele J.; Shokunbi, Wuraola A.; Olaleye, David; Sodeinde, Olugbemiro; Kazura, James; Ahmed, Rafi; Mohandas, Narla; Fernandez-Reyes, Delmiro

    2015-01-01

    ABSTRACT  Severe malarial anemia (SMA) in semi-immune individuals eliminates both infected and uninfected erythrocytes and is a frequent fatal complication. It is proportional not to circulating parasitemia but total parasite mass (sequestered) in the organs. Thus, immune responses that clear parasites in organs may trigger changes leading to anemia. Here, we use an outbred-rat model where increasing parasite removal in the spleen escalated uninfected-erythrocyte removal. Splenic parasite clearance was associated with activated CD8+ T cells, immunodepletion of which prevented parasite clearance. CD8+ T cell repletion and concomitant reduction of the parasite load was associated with exacerbated (40 to 60%) hemoglobin loss and changes in properties of uninfected erythrocytes. Together, these data suggest that CD8+ T cell-dependent parasite clearance causes erythrocyte removal in the spleen and thus anemia. In children infected with the human malaria parasite Plasmodium falciparum, elevation of parasite biomass (not the number of circulating parasites) increased the odds ratio for SMA by 3.5-fold (95% confidence intervals [CI95%], 1.8- to 7.5-fold). CD8+ T cell expansion/activation independently increased the odds ratio by 2.4-fold (CI95%, 1.0- to 5.7-fold). Concomitant increases in both conferred a 7-fold (CI95%, 1.9- to 27.4-fold)-greater risk for SMA. Together, these data suggest that CD8+-dependent parasite clearance may predispose individuals to uninfected-erythrocyte loss and SMA, thus informing severe disease diagnosis and strategies for vaccine development. Importance  Malaria is a major global health problem. Severe malaria anemia (SMA) is a complex disease associated with partial immunity. Rapid hemoglobin reductions of 20 to 50% are commonly observed and must be rescued by transfusion (which can carry a risk of HIV acquisition). The causes and risk factors of SMA remain poorly understood. Recent studies suggest that SMA is linked to parasite biomass

  6. Reduced CD36-dependent tissue sequestration of Plasmodium-infected erythrocytes is detrimental to malaria parasite growth in vivo

    PubMed Central

    Fonager, Jannik; Pasini, Erica M.; Braks, Joanna A.M.; Klop, Onny; Ramesar, Jai; Remarque, Edmond J.; Vroegrijk, Irene O.C.M.; van Duinen, Sjoerd G.; Thomas, Alan W.; Khan, Shahid M.; Mann, Matthias; Kocken, Clemens H.M.; Janse, Chris J.

    2012-01-01

    Adherence of parasite-infected red blood cells (irbc) to the vascular endothelium of organs plays a key role in the pathogenesis of Plasmodium falciparum malaria. The prevailing hypothesis of why irbc adhere and sequester in tissues is that this acts as a mechanism of avoiding spleen-mediated clearance. Irbc of the rodent parasite Plasmodium berghei ANKA sequester in a fashion analogous to P. falciparum by adhering to the host receptor CD36. To experimentally determine the significance of sequestration for parasite growth, we generated a mutant P. berghei ANKA parasite with a reduced CD36-mediated adherence. Although the cognate parasite ligand binding to CD36 is unknown, we show that nonsequestering parasites have reduced growth and we provide evidence that in addition to avoiding spleen removal, other factors related to CD36-mediated sequestration are beneficial for parasite growth. These results reveal for the first time the importance of sequestration to a malaria infection, with implications for the development of strategies aimed at reducing pathology by inhibiting tissue sequestration. PMID:22184632

  7. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi

    PubMed Central

    Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd. Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K.; Sharma, Yagya D.

    2015-01-01

    Background The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Methods Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Results Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Conclusions Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host. PMID:26393350

  8. Human Monoclonal Antibodies to Pf 155, a Major Antigen of Malaria Parasite Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Udomsangpetch, Rachanee; Lundgren, Katarina; Berzins, Klavs; Wahlin, Birgitta; Perlmann, Hedvig; Troye-Blomberg, Marita; Carlsson, Jan; Wahlgren, Mats; Perlmann, Peter; Bjorkman, Anders

    1986-01-01

    Pf 155, a protein of the human malaria parasite Plasmodium falciparum, is strongly immunogenic in humans and is believed to be a prime candidate for the preparation of a vaccine. Human monoclonal antibodies to Pf 155 were obtained by cloning B cells that had been prepared from an immune donor and transformed with Epstein-Barr virus. When examined by indirect immunofluorescence, these antibodies stained the surface of infected erythrocytes, free merozoites, segmented schizonts, and gametocytes. They bound to a major polypeptide with a relative molecular weight of 155K and to two minor ones (135K and 120K), all having high affinity for human glycophorin. The antibodies strongly inhibited merozoite reinvasion in vitro, suggesting that they might be appropriate reagents for therapeutic administration in vivo.

  9. The remarkable journey of adaptation of the Plasmodium falciparum malaria parasite to New World anopheline mosquitoes

    PubMed Central

    Molina-Cruz, Alvaro; Barillas-Mury, Carolina

    2014-01-01

    Plasmodium falciparum originated in Africa, dispersed around the world as a result of human migration and had to adapt to several different indigenous anopheline mosquitoes. Anophelines from the New World are evolutionary distant form African ones and this probably resulted in a more stringent selection of Plasmodium as it adapted to these vectors. It is thought that Plasmodium has been genetically selected by some anopheline species through unknown mechanisms. The mosquito immune system can greatly limit infection and P. falciparum evolved a strategy to evade these responses, at least in part mediated by Pfs47, a highly polymorphic gene. We propose that adaptation of P. falciparum to new vectors may require evasion of their immune system. Parasites with a Pfs47 haplotype compatible with the indigenous mosquito vector would be able to survive and be transmitted. The mosquito antiplasmodial response could be an important determinant of P. falciparum population structure and could affect malaria transmission in the Americas. PMID:25185006

  10. The remarkable journey of adaptation of the Plasmodium falciparum malaria parasite to New World anopheline mosquitoes.

    PubMed

    Molina-Cruz, Alvaro; Barillas-Mury, Carolina

    2014-08-01

    Plasmodium falciparum originated in Africa, dispersed around the world as a result of human migration and had to adapt to several different indigenous anopheline mosquitoes. Anophelines from the New World are evolutionary distant form African ones and this probably resulted in a more stringent selection of Plasmodium as it adapted to these vectors. It is thought that Plasmodium has been genetically selected by some anopheline species through unknown mechanisms. The mosquito immune system can greatly limit infection and P. falciparum evolved a strategy to evade these responses, at least in part mediated by Pfs47, a highly polymorphic gene. We propose that adaptation of P. falciparum to new vectors may require evasion of their immune system. Parasites with a Pfs47 haplotype compatible with the indigenous mosquito vector would be able to survive and be transmitted. The mosquito antiplasmodial response could be an important determinant of P. falciparum population structure and could affect malaria transmission in the Americas. PMID:25185006

  11. Neutral sphingomyelinase activity dependent on Mg2+ and anionic phospholipids in the intraerythrocytic malaria parasite Plasmodium falciparum.

    PubMed Central

    Hanada, K; Mitamura, T; Fukasawa, M; Magistrado, P A; Horii, T; Nishijima, M

    2000-01-01

    Sphingolipid metabolism and metabolites are important in various cellular events in eukaryotes. However, little is known about their function in plasmodial parasites. Here we demonstrate that neutral sphingomyelinase (SMase) involved in the sphingomyelin (SM) catabolism is retained by the intraerythrocytic parasite Plasmodium falciparum. When assayed in a neutral pH buffer supplemented with Mg(2+) and phosphatidylserine, an activity for the release of the phosphocholine group from SM was detected in parasite-infected, but not in uninfected, erythrocyte ghosts. The SMase activity in the parasite-infected erythrocyte ghosts was enhanced markedly by anionic phospholipids including unsaturated but not saturated phosphatidylserine. Mn(2+) could not substitute for Mg(2+) to activate SMase in parasite-infected erythrocyte ghosts, whereas both Mn(2+) and Mg(2+) activated mammalian neutral SMase. The specific activity level of SMase was higher in isolated parasites than in infected erythrocyte ghosts; further fractionation of lysates of the isolated parasites showed that the activity was bound largely to the membrane fraction of the parasites. The plasmodial SMase seemed not to hydrolyse phosphatidylcholine or phosphatidylinositol. The plasmodial SMase, but not SM synthase, was sensitive to scyphostatin, an inhibitor of mammalian neutral SMase, indicating that the plasmodial activities for SM hydrolysis and SM synthesis are mediated by different catalysts. Our finding that the malaria parasites possess SMase activity might explain why the parasites seem to have an SM synthase activity but no activity to synthesize ceramide de novo. PMID:10698693

  12. Real-Time Imaging of the Intracellular Glutathione Redox Potential in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Kasozi, Denis; Mohring, Franziska; Rahlfs, Stefan; Meyer, Andreas J.; Becker, Katja

    2013-01-01

    In the malaria parasite Plasmodium falciparum, the cellular redox potential influences signaling events, antioxidant defense, and mechanisms of drug action and resistance. Until now, the real-time determination of the redox potential in malaria parasites has been limited because conventional approaches disrupt sub-cellular integrity. Using a glutathione biosensor comprising human glutaredoxin-1 linked to a redox-sensitive green fluorescent protein (hGrx1-roGFP2), we systematically characterized basal values and drug-induced changes in the cytosolic glutathione-dependent redox potential (EGSH) of drug-sensitive (3D7) and resistant (Dd2) P. falciparum parasites. Via confocal microscopy, we demonstrated that hGrx1-roGFP2 rapidly detects EGSH changes induced by oxidative and nitrosative stress. The cytosolic basal EGSH of 3D7 and Dd2 were estimated to be −314.2±3.1 mV and −313.9±3.4 mV, respectively, which is indicative of a highly reducing compartment. We furthermore monitored short-, medium-, and long-term changes in EGSH after incubation with various redox-active compounds and antimalarial drugs. Interestingly, the redox cyclers methylene blue and pyocyanin rapidly changed the fluorescence ratio of hGrx1-roGFP2 in the cytosol of P. falciparum, which can, however, partially be explained by a direct interaction with the probe. In contrast, quinoline and artemisinin-based antimalarial drugs showed strong effects on the parasites' EGSH after longer incubation times (24 h). As tested for various conditions, these effects were accompanied by a drop in total glutathione concentrations determined in parallel with alternative methods. Notably, the effects were generally more pronounced in the chloroquine-sensitive 3D7 strain than in the resistant Dd2 strain. Based on these results hGrx1-roGFP2 can be recommended as a reliable and specific biosensor for real-time spatiotemporal monitoring of the intracellular EGSH in P. falciparum. Applying this technique in further

  13. Mutually Exclusive Expression of Virulence Genes by Malaria Parasites Is Regulated Independently of Antigen Production

    PubMed Central

    Dzikowski, Ron; Frank, Matthias; Deitsch, Kirk

    2006-01-01

    The primary virulence determinant of Plasmodium falciparum malaria parasite–infected cells is a family of heterogeneous surface receptors collectively referred to as PfEMP1. These proteins are encoded by a large, polymorphic gene family called var. The family contains approximately 60 individual genes, which are subject to strict, mutually exclusive expression, with the single expressed var gene determining the antigenic, cytoadherent, and virulence phenotype of the infected cell. The mutually exclusive expression pattern of var genes is imperative for the parasite's ability to evade the host's immune response and is similar to the process of “allelic exclusion” described for mammalian Ig and odorant receptor genes. In mammalian systems, mutually exclusive expression is ensured by negative feedback inhibition mediated by production of a functional protein. To investigate how expression of the var gene family is regulated, we have created transgenic lines of parasites in which expression of individual var loci can be manipulated. Here we show that no such negative feedback system exists in P. falciparum and that this process is dependent solely on the transcriptional regulatory elements immediately adjacent to each gene. Transgenic parasites that are selected to express a var gene in which the PfEMP1 coding region has been replaced by a drug-selectable marker silence all other var genes in the genome, thus effectively knocking out all PfEMP1 expression and indicating that the modified gene is still recognized as a member of the var gene family. Mutually exclusive expression in P. falciparum is therefore regulated exclusively at the level of transcription, and a functional PfEMP1 protein is not necessary for viability or for proper gene regulation in cultured parasites. PMID:16518466

  14. Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites

    PubMed Central

    Dong, Yuemei; Manfredini, Fabio; Dimopoulos, George

    2009-01-01

    Malaria-transmitting mosquitoes are continuously exposed to microbes, including their midgut microbiota. This naturally acquired microbial flora can modulate the mosquito's vectorial capacity by inhibiting the development of Plasmodium and other human pathogens through an unknown mechanism. We have undertaken a comprehensive functional genomic approach to elucidate the molecular interplay between the bacterial co-infection and the development of the human malaria parasite Plasmodium falciparum in its natural vector Anopheles gambiae. Global transcription profiling of septic and aseptic mosquitoes identified a significant subset of immune genes that were mostly up-regulated by the mosquito's microbial flora, including several anti-Plasmodium factors. Microbe-free aseptic mosquitoes displayed an increased susceptibility to Plasmodium infection while co-feeding mosquitoes with bacteria and P. falciparum gametocytes resulted in lower than normal infection levels. Infection analyses suggest the bacteria-mediated anti-Plasmodium effect is mediated by the mosquitoes' antimicrobial immune responses, plausibly through activation of basal immunity. We show that the microbiota can modulate the anti-Plasmodium effects of some immune genes. In sum, the microbiota plays an essential role in modulating the mosquito's capacity to sustain Plasmodium infection. PMID:19424427

  15. Heavy path mining of protein-protein associations in the malaria parasite.

    PubMed

    Yu, Xinran; Korkmaz, Turgay; Lilburn, Timothy G; Cai, Hong; Gu, Jianying; Wang, Yufeng

    2015-07-15

    Annotating and understanding the function of proteins and other elements in a genome can be difficult in the absence of a well-studied and evolutionarily close relative. The causative agent of malaria, one of the oldest and most deadly global infectious diseases, is a good example of this problem. The burden of malaria is huge and there is a pressing need for new, more effective antimalarial strategies. However, techniques such as homology-dependent annotation transfer are severely impaired in this parasite because there are no well-understood close relatives. To circumvent this approach we developed a network-based method that uses a heavy path network-mining algorithm. We uncovered the protein-protein associations that are implicated in important cellular processes including genome integrity, DNA repair, transcriptional regulation, invasion, and pathogenesis, thus demonstrating the utility of this method. The URL of the source code for super-sequence mining method is http://www.cs.utsa.edu/~korkmaz/research/heavy-path-mining/. PMID:25861922

  16. Maintenance of phenotypic diversity within a set of virulence encoding genes of the malaria parasite Plasmodium falciparum

    PubMed Central

    Holding, Thomas; Recker, Mario

    2015-01-01

    Infection by the human malaria parasite Plasmodium falciparum results in a broad spectrum of clinical outcomes, ranging from severe and potentially life-threatening malaria to asymptomatic carriage. In a process of naturally acquired immunity, individuals living in malaria-endemic regions build up a level of clinical protection, which attenuates infection severity in an exposure-dependent manner. Underlying this shift in the immunoepidemiology as well as the observed range in malaria pathogenesis is the var multigene family and the phenotypic diversity embedded within. The var gene-encoded surface proteins Plasmodium falciparum erythrocyte membrane protein 1 mediate variant-specific binding of infected red blood cells to a diverse set of host receptors that has been linked to specific disease manifestations, including cerebral and pregnancy-associated malaria. Here, we show that cross-reactive immune responses, which minimize the within-host benefit of each additionally expressed gene during infection, can cause selection for maximum phenotypic diversity at the genome level. We further show that differential functional constraints on protein diversification stably maintain uneven ratios between phenotypic groups, in line with empirical observation. Our results thus suggest that the maintenance of phenotypic diversity within P. falciparum is driven by an evolutionary trade-off that optimizes between within-host parasite fitness and between-host selection pressure. PMID:26674193

  17. Maintenance of phenotypic diversity within a set of virulence encoding genes of the malaria parasite Plasmodium falciparum.

    PubMed

    Holding, Thomas; Recker, Mario

    2015-12-01

    Infection by the human malaria parasite Plasmodium falciparum results in a broad spectrum of clinical outcomes, ranging from severe and potentially life-threatening malaria to asymptomatic carriage. In a process of naturally acquired immunity, individuals living in malaria-endemic regions build up a level of clinical protection, which attenuates infection severity in an exposure-dependent manner. Underlying this shift in the immunoepidemiology as well as the observed range in malaria pathogenesis is the var multigene family and the phenotypic diversity embedded within. The var gene-encoded surface proteins Plasmodium falciparum erythrocyte membrane protein 1 mediate variant-specific binding of infected red blood cells to a diverse set of host receptors that has been linked to specific disease manifestations, including cerebral and pregnancy-associated malaria. Here, we show that cross-reactive immune responses, which minimize the within-host benefit of each additionally expressed gene during infection, can cause selection for maximum phenotypic diversity at the genome level. We further show that differential functional constraints on protein diversification stably maintain uneven ratios between phenotypic groups, in line with empirical observation. Our results thus suggest that the maintenance of phenotypic diversity within P. falciparum is driven by an evolutionary trade-off that optimizes between within-host parasite fitness and between-host selection pressure. PMID:26674193

  18. Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells

    PubMed Central

    Baldwin, Michael R.; Li, Xuerong; Hanada, Toshihiko; Liu, Shih-Chun

    2015-01-01

    Plasmodium falciparum invasion of human red blood cells (RBCs) is an intricate process requiring a number of distinct ligand-receptor interactions at the merozoite-erythrocyte interface. Merozoite surface protein 1 (MSP1), a highly abundant ligand coating the merozoite surface in all species of malaria parasites, is essential for RBC invasion and considered a leading candidate for inclusion in a multiple-subunit vaccine against malaria. Our previous studies identified an interaction between the carboxyl-terminus of MSP1 and RBC band 3. Here, by employing phage display technology, we report a novel interaction between the amino-terminus of MSP1 and RBC glycophorin A (GPA). Mapping of the binding domains established a direct interaction between malaria MSP1 and human GPA within a region of MSP1 known to potently inhibit P falciparum invasion of human RBCs. Furthermore, a genetically modified mouse model lacking the GPA– band 3 complex in RBCs is completely resistant to malaria infection in vivo. These findings suggest an essential role of the MSP1-GPA–band 3 complex during the initial adhesion phase of malaria parasite invasion of RBCs. PMID:25778531

  19. Two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites.

    PubMed

    Liu, Qing; Nam, Jeonghun; Kim, Sangho; Lim, Chwee Teck; Park, Mi Kyoung; Shin, Yong

    2016-08-15

    Rapid, early, and accurate diagnosis of malaria is essential for effective disease management and surveillance, and can reduce morbidity and mortality associated with the disease. Although significant advances have been achieved for the diagnosis of malaria, these technologies are still far from ideal, being time consuming, complex and poorly sensitive as well as requiring separate assays for sample processing and detection. Therefore, the development of a fast and sensitive method that can integrate sample processing with detection of malarial infection is desirable. Here, we report a two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites. It combines the Dimethyl adipimidate (DMA)/Thin film Sample processing (DTS) technique as a first stage and the Mach-Zehnder Interferometer-Isothermal solid-phase DNA Amplification (MZI-IDA) sensing technique as a second stage. The system can extract DNA from malarial parasites using DTS technique in a closed system, not only reducing sample loss and contamination, but also facilitating the multiplexed malarial DNA detection using the fast and accurate MZI-IDA technique. Here, we demonstrated that this system can deliver results within 60min (including sample processing, amplification and detection) with high sensitivity (<1 parasite μL(-1)) in a label-free and real-time manner. The developed system would be of great potential for better diagnosis of malaria in low-resource settings. PMID:27031184

  20. Rapid Response to Selection, Competitive Release and Increased Transmission Potential of Artesunate-Selected Plasmodium chabaudi Malaria Parasites

    PubMed Central

    Pollitt, Laura C.; Huijben, Silvie; Sim, Derek G.; Salathé, Rahel M.; Jones, Matthew J.; Read, Andrew F.

    2014-01-01

    The evolution of drug resistance, a key challenge for our ability to treat and control infections, depends on two processes: de-novo resistance mutations, and the selection for and spread of resistant mutants within a population. Understanding the factors influencing the rates of these two processes is essential for maximizing the useful lifespan of drugs and, therefore, effective disease control. For malaria parasites, artemisinin-based drugs are the frontline weapons in the fight against disease, but reports from the field of slower parasite clearance rates during drug treatment are generating concern that the useful lifespan of these drugs may be limited. Whether slower clearance rates represent true resistance, and how this provides a selective advantage for parasites is uncertain. Here, we show that Plasmodium chabaudi malaria parasites selected for resistance to artesunate (an artemisinin derivative) through a step-wise increase in drug dose evolved slower clearance rates extremely rapidly. In single infections, these slower clearance rates, similar to those seen in the field, provided fitness advantages to the parasite through increased overall density, recrudescence after treatment and increased transmission potential. In mixed infections, removal of susceptible parasites by drug treatment led to substantial increases in the densities and transmission potential of resistant parasites (competitive release). Our results demonstrate the double-edged sword for resistance management: in our initial selection experiments, no parasites survived aggressive chemotherapy, but after selection, the fitness advantage for resistant parasites was greatest at high drug doses. Aggressive treatment of mixed infections resulted in resistant parasites dominating the pool of gametocytes, without providing additional health benefits to hosts. Slower clearance rates can evolve rapidly and can provide a strong fitness advantage during drug treatment in both single and mixed strain

  1. Rapid response to selection, competitive release and increased transmission potential of artesunate-selected Plasmodium chabaudi malaria parasites.

    PubMed

    Pollitt, Laura C; Huijben, Silvie; Sim, Derek G; Salathé, Rahel M; Jones, Matthew J; Read, Andrew F

    2014-04-01

    The evolution of drug resistance, a key challenge for our ability to treat and control infections, depends on two processes: de-novo resistance mutations, and the selection for and spread of resistant mutants within a population. Understanding the factors influencing the rates of these two processes is essential for maximizing the useful lifespan of drugs and, therefore, effective disease control. For malaria parasites, artemisinin-based drugs are the frontline weapons in the fight against disease, but reports from the field of slower parasite clearance rates during drug treatment are generating concern that the useful lifespan of these drugs may be limited. Whether slower clearance rates represent true resistance, and how this provides a selective advantage for parasites is uncertain. Here, we show that Plasmodium chabaudi malaria parasites selected for resistance to artesunate (an artemisinin derivative) through a step-wise increase in drug dose evolved slower clearance rates extremely rapidly. In single infections, these slower clearance rates, similar to those seen in the field, provided fitness advantages to the parasite through increased overall density, recrudescence after treatment and increased transmission potential. In mixed infections, removal of susceptible parasites by drug treatment led to substantial increases in the densities and transmission potential of resistant parasites (competitive release). Our results demonstrate the double-edged sword for resistance management: in our initial selection experiments, no parasites survived aggressive chemotherapy, but after selection, the fitness advantage for resistant parasites was greatest at high drug doses. Aggressive treatment of mixed infections resulted in resistant parasites dominating the pool of gametocytes, without providing additional health benefits to hosts. Slower clearance rates can evolve rapidly and can provide a strong fitness advantage during drug treatment in both single and mixed strain

  2. Radicicol-Mediated Inhibition of Topoisomerase VIB-VIA Activity of the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Chalapareddy, Sureshkumar; Chakrabarty, Swati; Bhattacharyya, Mrinal Kanti

    2016-01-01

    ABSTRACT Plasmodium falciparum topoisomerase VIB (TopoVIB)-TopoVIA (TopoVIB-VIA) complex can be potentially exploited as a drug target against malaria due to its absence from the human genome. Previous work in our laboratory has suggested that P. falciparum TopoVIB (PfTopoVIB) might be a target of radicicol since treatment of parasite cultures with this antibiotic is associated with upregulation of Plasmodium TopoVIB at the transcript level as well as at the protein level. Further studies demonstrated that radicicol treatment impaired mitochondrial replication of human malaria parasite P. falciparum. However, the technical challenge associated with the expression of the above protein complex hampered its functional characterization. Using Saccharomyces cerevisiae as a heterologous system, we expressed PfTopoVIB (Myc-tagged) and PfTopoVIA (Flag-tagged) (PfTopoVIB-VIA) proteins. Yeast two-hybrid analysis showed the formation of PfTopoVIB homodimers and PfTopoVIB/PfTopoVIA heteromers. Our study demonstrated that PfTopoVIB and PfTopoVIA together can rescue the lethal phenotype of yeast ΔtopoII mutants, whereas Plasmodium topoisomerase VIB alone cannot. Using yeast cell-free extracts harboring the PfTopoVIB-VIA protein complex, we have performed a decatenation assay and observed that PfTopoVIB-VIA can decatenate DNA in an ATP- and Mg2+-dependent manner. The specificity of this enzyme is established by abrogation of its activity in the presence of PfTopoVIB-specific antibody. Our study results show that radicicol and etoposide can specifically inhibit PfTopoVIB-VIA decatenation activity whereas the gyrase inhibitor novobiocin cannot. Such a yeast-based assay system can be employed in screening specific inhibitors against Plasmodium VIB-VIA. IMPORTANCE In this study we characterize topoisomerase VI from Plasmodium falciparum using genetic and biochemical approaches. We use various inhibitors and identify radicicol as a specific inhibitor of its decatenation activity. We

  3. Unique apicomplexan IMC sub-compartment proteins are early markers for apical polarity in the malaria parasite

    PubMed Central

    Poulin, Benoit; Patzewitz, Eva-Maria; Brady, Declan; Silvie, Olivier; Wright, Megan H.; Ferguson, David J. P.; Wall, Richard J.; Whipple, Sarah; Guttery, David S.; Tate, Edward W.; Wickstead, Bill; Holder, Anthony A.; Tewari, Rita

    2013-01-01

    Summary The phylum Apicomplexa comprises over 5000 intracellular protozoan parasites, including Plasmodium and Toxoplasma, that are clinically important pathogens affecting humans and livestock. Malaria parasites belonging to the genus Plasmodium possess a pellicle comprised of a plasmalemma and inner membrane complex (IMC), which is implicated in parasite motility and invasion. Using live cell imaging and reverse genetics in the rodent malaria model P. berghei, we localise two unique IMC sub-compartment proteins (ISPs) and examine their role in defining apical polarity during zygote (ookinete) development. We show that these proteins localise to the anterior apical end of the parasite where IMC organisation is initiated, and are expressed at all developmental stages, especially those that are invasive. Both ISP proteins are N-myristoylated, phosphorylated and membrane-bound. Gene disruption studies suggest that ISP1 is likely essential for parasite development, whereas ISP3 is not. However, an absence of ISP3 alters the apical localisation of ISP1 in all invasive stages including ookinetes and sporozoites, suggesting a coordinated function for these proteins in the organisation of apical polarity in the parasite. PMID:24244852

  4. Malaria.

    ERIC Educational Resources Information Center

    Dupasquier, Isabelle

    1989-01-01

    Malaria, the greatest pandemia in the world, claims an estimated one million lives each year in Africa alone. While it may still be said that for the most part malaria is found in what is known as the world's poverty belt, cases are now frequently diagnosed in western countries. Due to resistant strains of malaria which have developed because of…

  5. Clonal reproduction shapes evolution in the lizard malaria parasite Plasmodium floridense.

    PubMed

    Falk, Bryan G; Glor, Richard E; Perkins, Susan L

    2015-06-01

    The preponderant clonal evolution hypothesis (PCE) predicts that frequent clonal reproduction (sex between two clones) in many pathogens capable of sexual recombination results in strong linkage disequilibrium and the presence of discrete genetic subdivisions characterized by occasional gene flow. We expand on the PCE and predict that higher rates of clonal reproduction will result in: (1) morphologically cryptic species that exhibit (2) low within-species variation and (3) recent between-species divergence. We tested these predictions in the Caribbean lizard malaria parasite Plasmodium floridense using 63 single-infection samples in lizards collected from across the parasite's range, and sequenced them at two mitochondrial, one apicoplast, and five nuclear genes. We identified 11 provisionally cryptic species within P. floridense, each of which exhibits low intraspecific variation and recent divergence times between species (some diverged approximately 110,000 years ago). Our results are consistent with the hypothesis that clonal reproduction can profoundly affect diversification of species capable of sexual recombination, and suggest that clonal reproduction may have led to a large number of unrecognized pathogen species. The factors that may influence the rates of clonal reproduction among pathogens are unclear, and we discuss how prevalence and virulence may relate to clonal reproduction. PMID:25959003

  6. DNA damage regulation and its role in drug-related phenotypes in the malaria parasites

    PubMed Central

    Gupta, Devendra Kumar; Patra, Alok Tanala; Zhu, Lei; Gupta, Archana Patkar; Bozdech, Zbynek

    2016-01-01

    DNA of malaria parasites, Plasmodium falciparum, is subjected to extraordinary high levels of genotoxic insults during its complex life cycle within both the mosquito and human host. Accordingly, most of the components of DNA repair machinery are conserved in the parasite genome. Here, we investigated the genome-wide responses of P. falciparum to DNA damaging agents and provided transcriptional evidence of the existence of the double strand break and excision repair system. We also showed that acetylation at H3K9, H4K8, and H3K56 play a role in the direct and indirect response to DNA damage induced by an alkylating agent, methyl methanesulphonate (MMS). Artemisinin, the first line antimalarial chemotherapeutics elicits a similar response compared to MMS which suggests its activity as a DNA damaging agent. Moreover, in contrast to the wild-type P. falciparum, two strains (Dd2 and W2) previously shown to exhibit a mutator phenotype, fail to induce their DNA repair upon MMS-induced DNA damage. Genome sequencing of the two mutator strains identified point mutations in 18 DNA repair genes which may contribute to this phenomenon. PMID:27033103

  7. Treatment of Whole Blood With Riboflavin and UV Light: Impact on Malaria Parasite Viability and Whole Blood Storage

    PubMed Central

    Owusu-Ofori, Shirley; Kusi, Joseph; Owusu-Ofori, Alex; Freimanis, Graham; Olver, Christine; Martinez, Caitlyn R.; Wilkinson, Shilo; Mundt, Janna M.; Keil, Shawn D.; Goodrich, Raymond P.; Allain, Jean-Pierre

    2015-01-01

    ABSTRACT Background: Sub-Saharan African countries utilize whole blood (WB) to treat severe anemia secondary to severe blood loss or malaria on an emergency basis. In many areas with high prevalence of transfusion-transmissible agents, blood safety measures are insufficient. Pathogen reduction technology applied to WB might considerably improve blood safety. Methods: Whole blood from 40 different donors were treated with riboflavin and UV light (pathogen reduction technology) in order to inactivate malaria parasite replication. The extent of parasite inactivation was determined using quantitative polymerase chain reaction methods and was correlated to studies evaluating the replication of malaria parasites in culture. Products were also stored for 21 days at +4°C and monitored for cell quality throughout storage. Results: Plasmodium amplicon was present in 21 samples (>100 copies/mL), doubtful in four (10–100 genome equivalents [gEq]/mL), and negative in 15 U. The majority of asymptomatic parasitemic donors carried low parasite levels, with only six donors above 5,000 copies/mL (15%). After treatment with riboflavin and UV light, these six samples demonstrated a 0.5 to 1.2 log reduction in quantitative polymerase chain reaction amplification. This correlated to equal to or greater than 6.4 log reductions in infectivity. In treated WB units, cell quality parameters remained stable; however, plasma hemoglobin increased to 0.15 g/dL. All markers behaved similarly to published data for stored, untreated WB. Conclusions: Pathogen reduction technology treatment can inactivate malaria parasites in WB while maintaining adequate blood quality during posttreatment cold storage for 21 days. PMID:25423125

  8. Comparison of an assumed versus measured leucocyte count in parasite density calculations in Papua New Guinean children with uncomplicated malaria

    PubMed Central

    2014-01-01

    Background The accuracy of the World Health Organization method of estimating malaria parasite density from thick blood smears by assuming a white blood cell (WBC) count of 8,000/μL has been questioned in several studies. Since epidemiological investigations, anti-malarial efficacy trials and routine laboratory reporting in Papua New Guinea (PNG) have all relied on this approach, its validity was assessed as part of a trial of artemisinin-based combination therapy, which included blood smear microscopy and automated measurement of leucocyte densities on Days 0, 3 and 7. Results 168 children with uncomplicated malaria (median (inter-quartile range) age 44 (39–47) months) were enrolled, 80.3% with Plasmodium falciparum monoinfection, 14.9% with Plasmodium vivax monoinfection, and 4.8% with mixed P. falciparum/P. vivax infection. All responded to allocated therapy and none had a malaria-positive slide on Day 3. Consistent with a median baseline WBC density of 7.3 (6.5-7.8) × 109/L, there was no significant difference in baseline parasite density between the two methods regardless of Plasmodium species. Bland Altman plots showed that, for both species, the mean difference between paired parasite densities calculated from assumed and measured WBC densities was close to zero. At parasite densities <10,000/μL by measured WBC, almost all between-method differences were within the 95% limits of agreement. Above this range, there was increasing scatter but no systematic bias. Conclusions Diagnostic thresholds and parasite clearance assessment in most PNG children with uncomplicated malaria are relatively robust, but accurate estimates of a higher parasitaemia, as a prognostic index, requires formal WBC measurement. PMID:24739250

  9. Considerations on the use of nucleic acid-based amplification for malaria parasite detection

    PubMed Central

    2011-01-01

    Background Nucleic acid amplification provides the most sensitive and accurate method to detect and identify pathogens. This is primarily useful for epidemiological investigations of malaria because the infections, often with two or more Plasmodium species present simultaneously, are frequently associated with microscopically sub-patent parasite levels and cryptic mixed infections. Numerous distinct equally adequate amplification-based protocols have been described, but it is unclear which to select for epidemiological surveys. Few comparative studies are available, and none that addresses the issue of inter-laboratory variability. Methods Blood samples were collected from patients attending malaria clinics on the Thai-Myanmar border. Frozen aliquots from 413 samples were tested independently in two laboratories by nested PCR assay. Dried blood spots on filter papers from the same patients were also tested by the nested PCR assay in one laboratory and by a multiplex PCR assay in another. The aim was to determine which protocol best detected parasites below the sensitivity level of microscopic examination. Results As expected PCR-based assays detected a substantial number of infected samples, or mixed infections, missed by microscopy (27 and 42 for the most sensitive assay, respectively). The protocol that was most effective at detecting these, in particular mixed infections, was a nested PCR assay with individual secondary reactions for each of the species initiated with a template directly purified from the blood sample. However, a lesser sensitivity in detection was observed when the same protocol was conducted in another laboratory, and this significantly altered the data obtained on the parasite species distribution. Conclusions The sensitivity of a given PCR assay varies between laboratories. Although, the variations are relatively minor, they primarily diminish the ability to detect low-level and mixed infections and are sufficient to obviate the main

  10. Chemical biology: Knockout for malaria

    NASA Astrophysics Data System (ADS)

    Krysiak, Joanna; Sieber, Stephan A.

    2014-02-01

    Discovering and validating new targets is urgently required to tackle the rise in resistance to antimalarial drugs. Now, inhibition of the enzyme N-myristoyltransferase has been shown to prevent the formation of a critical subcellular organelle in the parasite that causes malaria, leading to death of the parasite.

  11. Gift from Nature: Cyclomarin A Kills Mycobacteria and Malaria Parasites by Distinct Modes of Action.

    PubMed

    Bürstner, Nathalie; Roggo, Silvio; Ostermann, Nils; Blank, Jutta; Delmas, Cecile; Freuler, Felix; Gerhartz, Bernd; Hinniger, Alexandra; Hoepfner, Dominic; Liechty, Brigitta; Mihalic, Manuel; Murphy, Jason; Pistorius, Dominik; Rottmann, Matthias; Thomas, Jason R; Schirle, Markus; Schmitt, Esther K

    2015-11-01

    Malaria continues to be one of the most devastating human diseases despite many efforts to limit its spread by prevention of infection or by pharmaceutical treatment of patients. We have conducted a screen for antiplasmodial compounds by using a natural product library. Here we report on cyclomarin A as a potent growth inhibitor of Plasmodium falciparum and the identification of its molecular target, diadenosine triphosphate hydrolase (PfAp3Aase), by chemical proteomics. Using a biochemical assay, we could show that cyclomarin A is a specific inhibitor of the plasmodial enzyme but not of the closest human homologue hFHIT. Co-crystallisation experiments demonstrate a unique binding mode of the inhibitor. One molecule of cyclomarin A binds a dimeric PfAp3Aase and prevents the formation of the enzyme⋅substrate complex. These results validate PfAp3Aase as a new drug target for the treatment of malaria. We have previously elucidated the structurally unrelated regulatory subunit ClpC1 of the ClpP protease as the molecular target of cyclomarin A in Mycobacterium tuberculosis. Thus, cyclomarin A is a rare example of a natural product with two distinct and specific modes of action. PMID:26472355

  12. Targeting Protein-Protein Interactions for Parasite Control

    PubMed Central

    Taylor, Christina M.; Fischer, Kerstin; Abubucker, Sahar; Wang, Zhengyuan; Martin, John; Jiang, Daojun; Magliano, Marc; Rosso, Marie-Noëlle; Li, Ben-Wen; Fischer, Peter U.; Mitreva, Makedonka

    2011-01-01

    Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs) offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets. Parasitic worms were chosen for this study because they have deleterious effects on human health, livestock, and plants, costing society billions of dollars annually and many sequenced genomes are available. In this study, we present a computational approach that utilizes whole genomes of 6 parasitic and 1 free-living worm species and 2 hosts. The species were placed in orthologous groups, then binned in species-specific ortholgous groups. Proteins that are essential and conserved among species that span a phyla are of greatest value, as they provide foundations for developing broad-control strategies. Two PPI databases were used to find PPIs within the species specific bins. PPIs with unique helminth proteins and helminth proteins with unique features relative to the host, such as indels, were prioritized as drug targets. The PPIs were scored based on RNAi phenotype and homology to the PDB (Protein DataBank). EST data for the various life stages, GO annotation, and druggability were also taken into consideration. Several PPIs emerged from this study as potential drug targets. A few interactions were supported by co-localization of expression in M. incognita (plant parasite) and B. malayi (H. sapiens parasite), which have extremely different modes of parasitism. As more genomes of pathogens are sequenced and PPI databases expanded, this methodology will become increasingly applicable. PMID

  13. Neglected wild life: Parasitic biodiversity as a conservation target.

    PubMed

    Gómez, Andrés; Nichols, Elizabeth

    2013-12-01

    Parasites appropriate host resources to feed and/or to reproduce, and lower host fitness to varying degrees. As a consequence, they can negatively impact human and animal health, food production, economic trade, and biodiversity conservation. They can also be difficult to study and have historically been regarded as having little influence on ecosystem organization and function. Not surprisingly, parasitic biodiversity has to date not been the focus of much positive attention from the conservation community. However, a growing body of evidence demonstrates that parasites are extremely diverse, have key roles in ecological and evolutionary processes, and that infection may paradoxically result in ecosystem services of direct human relevance. Here we argue that wildlife parasites should be considered meaningful conservation targets no less relevant than their hosts. We discuss their numerical and functional importance, current conservation status, and outline a series of non-trivial challenges to consider before incorporating parasite biodiversity in conservation strategies. We also suggest that addressing the key knowledge gaps and communication deficiencies that currently impede broad discussions about parasite conservation requires input from wildlife parasitologists. PMID:24533340

  14. Evidence that the Malaria Parasite Plasmodium falciparum Putative Rhoptry Protein 2 Localizes to the Golgi Apparatus throughout the Erythrocytic Cycle.

    PubMed

    Hallée, Stéphanie; Richard, Dave

    2015-01-01

    Invasion of a red blood cell by Plasmodium falciparum merozoites is an essential step in the malaria lifecycle. Several of the proteins involved in this process are stored in the apical complex of the merozoite, a structure containing secretory organelles that are released at specific times during invasion. The molecular players involved in erythrocyte invasion thus represent potential key targets for both therapeutic and vaccine-based strategies to block parasite development. In our quest to identify and characterize new effectors of invasion, we investigated the P. falciparum homologue of a P. berghei protein putatively localized to the rhoptries, the Putative rhoptry protein 2 (PbPRP2). We show that in P. falciparum, the protein colocalizes extensively with the Golgi apparatus across the asexual erythrocytic cycle. Furthermore, imaging of merozoites caught at different times during invasion show that PfPRP2 is not secreted during the process instead staying associated with the Golgi apparatus. Our evidence therefore suggests that PfPRP2 is a Golgi protein and that it is likely not a direct effector in the process of merozoite invasion. PMID:26375591

  15. A Basis for Rapid Clearance of Circulating Ring-Stage Malaria Parasites by the Spiroindolone KAE609

    PubMed Central

    Zhang, Rou; Suwanarusk, Rossarin; Malleret, Benoit; Cooke, Brian M.; Nosten, Francois; Lau, Yee-Ling; Dao, Ming; Lim, Chwee Teck; Renia, Laurent; Tan, Kevin Shyong Wei; Russell, Bruce

    2016-01-01

    Recent clinical trials revealed a surprisingly rapid clearance of red blood cells (RBCs) infected with malaria parasites by the spiroindolone KAE609. Here, we show that ring-stage parasite–infected RBCs exposed to KAE609 become spherical and rigid, probably through osmotic dysregulation consequent to the disruption of the parasite's sodium efflux pump (adenosine triphosphate 4). We also show that this peculiar drug effect is likely to cause accelerated splenic clearance of the rheologically impaired Plasmodium vivax– and Plasmodium falciparum–infected RBCs. PMID:26136472

  16. Inhibition of Plasmepsin V Activity Demonstrates Its Essential Role in Protein Export, PfEMP1 Display, and Survival of Malaria Parasites

    PubMed Central

    Sleebs, Brad E.; Lopaticki, Sash; Marapana, Danushka S.; O'Neill, Matthew T.; Rajasekaran, Pravin; Gazdik, Michelle; Günther, Svenja; Whitehead, Lachlan W.; Lowes, Kym N.; Barfod, Lea; Hviid, Lars; Shaw, Philip J.; Hodder, Anthony N.; Smith, Brian J.; Cowman, Alan F.; Boddey, Justin A.

    2014-01-01

    The malaria parasite Plasmodium falciparum exports several hundred proteins into the infected erythrocyte that are involved in cellular remodeling and severe virulence. The export mechanism involves the Plasmodium export element (PEXEL), which is a cleavage site for the parasite protease, Plasmepsin V (PMV). The PMV gene is refractory to deletion, suggesting it is essential, but definitive proof is lacking. Here, we generated a PEXEL-mimetic inhibitor that potently blocks the activity of PMV isolated from P. falciparum and Plasmodium vivax. Assessment of PMV activity in P. falciparum revealed PEXEL cleavage occurs cotranslationaly, similar to signal peptidase. Treatment of P. falciparum–infected erythrocytes with the inhibitor caused dose-dependent inhibition of PEXEL processing as well as protein export, including impaired display of the major virulence adhesin, PfEMP1, on the erythrocyte surface, and cytoadherence. The inhibitor killed parasites at the trophozoite stage and knockdown of PMV enhanced sensitivity to the inhibitor, while overexpression of PMV increased resistance. This provides the first direct evidence that PMV activity is essential for protein export in Plasmodium spp. and for parasite survival in human erythrocytes and validates PMV as an antimalarial drug target. PMID:24983235

  17. High resolution FTIR imaging provides automated discrimination and detection of single malaria parasite infected erythrocytes on glass.

    PubMed

    Perez-Guaita, David; Andrew, Dean; Heraud, Philip; Beeson, James; Anderson, David; Richards, Jack; Wood, Bayden R

    2016-06-23

    New highly sensitive tools for malaria diagnostics are urgently needed to enable the detection of infection in asymptomatic carriers and patients with low parasitemia. In pursuit of a highly sensitive diagnostic tool that can identify parasite infections at the single cell level, we have been exploring Fourier transform infrared (FTIR) microscopy using a Focal Plane Array (FPA) imaging detector. Here we report for the first time the application of a new optic configuration developed by Agilent that incorporates 25× condenser and objective Cassegrain optics with a high numerical aperture (NA = 0.81) along with additional high magnification optics within the microscope to provide 0.66 micron pixel resolution (total IR system magnification of 61×) to diagnose malaria parasites at the single cell level on a conventional glass microscope slide. The high quality images clearly resolve the parasite's digestive vacuole demonstrating sub-cellular resolution using this approach. Moreover, we have developed an algorithm that first detects the cells in the infrared image, and secondly extracts the average spectrum. The average spectrum is then run through a model based on Partial Least Squares-Discriminant Analysis (PLS-DA), which diagnoses unequivocally the infected from normal cells. The high quality images, and the fact this measurement can be achieved without a synchrotron source on a conventional glass slide, shows promise as a potential gold standard for malaria detection at the single cell level. PMID:27071693

  18. A Model to Study the Impact of Polymorphism Driven Liver-Stage Immune Evasion by Malaria Parasites, to Help Design Effective Cross-Reactive Vaccines.

    PubMed

    Wilson, Kirsty L; Xiang, Sue D; Plebanski, Magdalena

    2016-01-01

    Malaria parasites engage a multitude of strategies to evade the immune system of the host, including the generation of polymorphic T cell epitope sequences, termed altered peptide ligands (APLs). Herein we use an animal model to study how single amino acid changes in the sequence of the circumsporozoite protein (CSP), a major target antigen of pre-erythrocytic malaria vaccines, can lead to a reduction of cross reactivity by T cells. For the first time in any APL model, we further compare different inflammatory adjuvants (Montanide, Poly I:C), non-inflammatory adjuvants (nanoparticles), and peptide pulsed dendritic cells (DCs) for their potential capacity to induce broadly cross reactive immune responses. Results show that the capacity to induce a cross reactive response is primarily controlled by the T cell epitope sequence and cannot be modified by the use of different adjuvants. Moreover, we identify how specific amino acid changes lead to a one-way cross reactivity: where variant-x induced responses are re-elicited by variant-x and not variant-y, but variant-y induced responses can be re-elicited by variant-y and variant-x. We discuss the consequences of the existence of this one-way cross reactivity phenomenon for parasite immune evasion in the field, as well as the use of variant epitopes as a potential tool for optimized vaccine design. PMID:27014226

  19. A Model to Study the Impact of Polymorphism Driven Liver-Stage Immune Evasion by Malaria Parasites, to Help Design Effective Cross-Reactive Vaccines

    PubMed Central

    Wilson, Kirsty L.; Xiang, Sue D.; Plebanski, Magdalena

    2016-01-01

    Malaria parasites engage a multitude of strategies to evade the immune system of the host, including the generation of polymorphic T cell epitope sequences, termed altered peptide ligands (APLs). Herein we use an animal model to study how single amino acid changes in the sequence of the circumsporozoite protein (CSP), a major target antigen of pre-erythrocytic malaria vaccines, can lead to a reduction of cross reactivity by T cells. For the first time in any APL model, we further compare different inflammatory adjuvants (Montanide, Poly I:C), non-inflammatory adjuvants (nanoparticles), and peptide pulsed dendritic cells (DCs) for their potential capacity to induce broadly cross reactive immune responses. Results show that the capacity to induce a cross reactive response is primarily controlled by the T cell epitope sequence and cannot be modified by the use of different adjuvants. Moreover, we identify how specific amino acid changes lead to a one-way cross reactivity: where variant-x induced responses are re-elicited by variant-x and not variant-y, but variant-y induced responses can be re-elicited by variant-y and variant-x. We discuss the consequences of the existence of this one-way cross reactivity phenomenon for parasite immune evasion in the field, as well as the use of variant epitopes as a potential tool for optimized vaccine design. PMID:27014226

  20. Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite.

    PubMed

    Wu, Yimin; Wang, Xiangyun; Liu, Xia; Wang, Yufeng

    2003-04-01

    The search for novel antimalarial drug targets is urgent due to the growing resistance of Plasmodium falciparum parasites to available drugs. Proteases are attractive antimalarial targets because of their indispensable roles in parasite infection and development, especially in the processes of host erythrocyte rupture/invasion and hemoglobin degradation. However, to date, only a small number of proteases have been identified and characterized in Plasmodium species. Using an extensive sequence similarity search, we have identified 92 putative proteases in the P. falciparum genome. A set of putative proteases including calpain, metacaspase, and signal peptidase I have been implicated to be central mediators for essential parasitic activity and distantly related to the vertebrate host. Moreover, of the 92, at least 88 have been demonstrated to code for gene products at the transcriptional levels, based upon the microarray and RT-PCR results, and the publicly available microarray and proteomics data. The present study represents an initial effort to identify a set of expressed, active, and essential proteases as targets for inhibitor-based drug design. PMID:12671001

  1. Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies?

    SciTech Connect

    Kumpula, Esa-Pekka; Kursula, Inari

    2015-04-16

    In this review, current structural understanding of the apicomplexan glideosome and actin regulation is described. Apicomplexan parasites are the causative agents of notorious human and animal diseases that give rise to considerable human suffering and economic losses worldwide. The most prominent parasites of this phylum are the malaria-causing Plasmodium species, which are widespread in tropical and subtropical regions, and Toxoplasma gondii, which infects one third of the world’s population. These parasites share a common form of gliding motility which relies on an actin–myosin motor. The components of this motor and the actin-regulatory proteins in Apicomplexa have unique features compared with all other eukaryotes. This, together with the crucial roles of these proteins, makes them attractive targets for structure-based drug design. In recent years, several structures of glideosome components, in particular of actins and actin regulators from apicomplexan parasites, have been determined, which will hopefully soon allow the creation of a complete molecular picture of the parasite actin–myosin motor and its regulatory machinery. Here, current knowledge of the function of this motor is reviewed from a structural perspective.

  2. Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies?

    PubMed Central

    Kumpula, Esa-Pekka; Kursula, Inari

    2015-01-01

    Apicomplexan parasites are the causative agents of notorious human and animal diseases that give rise to considerable human suffering and economic losses worldwide. The most prominent parasites of this phylum are the malaria-causing Plasmodium species, which are widespread in tropical and subtropical regions, and Toxoplasma gondii, which infects one third of the world’s population. These parasites share a common form of gliding motility which relies on an actin–myosin motor. The components of this motor and the actin-regulatory proteins in Apicomplexa have unique features compared with all other eukaryotes. This, together with the crucial roles of these proteins, makes them attractive targets for structure-based drug design. In recent years, several structures of glideosome components, in particular of actins and actin regulators from apicomplexan parasites, have been determined, which will hopefully soon allow the creation of a complete molecular picture of the parasite actin–myosin motor and its regulatory machinery. Here, current knowledge of the function of this motor is reviewed from a structural perspective. PMID:25945702

  3. ChAd63-MVA–vectored Blood-stage Malaria Vaccines Targeting MSP1 and AMA1: Assessment of Efficacy Against Mosquito Bite Challenge in Humans

    PubMed Central

    Sheehy, Susanne H; Duncan, Christopher JA; Elias, Sean C; Choudhary, Prateek; Biswas, Sumi; Halstead, Fenella D; Collins, Katharine A; Edwards, Nick J; Douglas, Alexander D; Anagnostou, Nicholas A; Ewer, Katie J; Havelock, Tom; Mahungu, Tabitha; Bliss, Carly M; Miura, Kazutoyo; Poulton, Ian D; Lillie, Patrick J; Antrobus, Richard D; Berrie, Eleanor; Moyle, Sarah; Gantlett, Katherine; Colloca, Stefano; Cortese, Riccardo; Long, Carole A; Sinden, Robert E; Gilbert, Sarah C; Lawrie, Alison M; Doherty, Tom; Faust, Saul N; Nicosia, Alfredo; Hill, Adrian VS; Draper, Simon J

    2012-01-01

    The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1—results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets. PMID:23089736

  4. Malaria and blood transfusion: major issues of blood safety in malaria-endemic countries and strategies for mitigating the risk of Plasmodium parasites.

    PubMed

    Abdullah, Saleh; Karunamoorthi, Kaliyaperumal

    2016-01-01

    Malaria inflicts humankind over centuries, and it remains as a major threat to both clinical medicine and public health worldwide. Though hemotherapy is a life-sustaining modality, it continues to be a possible source of disease transmission. Hence, hemovigilance is a matter of grave concern in the malaria-prone third-world countries. In order to pursue an effective research on hemovigilance, a comprehensive search has been conducted by using the premier academic-scientific databases, WHO documents, and English-language search engines. One hundred two appropriate articles were chosen for data extraction, with a particular reference to emerging pathogens transmitted through blood transfusion, specifically malaria. Blood donation screening is done through microscopic examination and immunological assays to improve the safety of blood products by detection major blood-borne pathogens, viz., HIV, HBV, HCV, syphilis, and malarial parasites. Transfusion therapy significantly dwindles the preventable morbidity and mortality attributed to various illnesses and diseases, particularly AIDS, tuberculosis, and malaria. Examination of thick and thin blood smears are performed to detect positivity and to identify the Plasmodium species, respectively. However, all of these existing diagnostic tools have their own limitations in terms of sensitivity, specificity, cost-effectiveness, and lack of resources and skilled personnel. Globally, despite the mandate need of screening blood and its components according to the blood-establishment protocols, it is seldom practiced in the low-income/poverty-stricken settings. In addition, each and every single phase of transfusion chain carries sizable inherent risks from donors to recipients. Interestingly, opportunities also lie ahead to enhance the safety of blood-supply chain and patients. It can be achieved through sustainable blood-management strategies like (1) appropriate usage of precise diagnostic tools/techniques, (2) promoting

  5. Antibodies to the Plasmodium falciparum Proteins MSPDBL1 and MSPDBL2 Opsonize Merozoites, Inhibit Parasite Growth, and Predict Protection From Clinical Malaria.

    PubMed

    Chiu, Chris Y H; Hodder, Anthony N; Lin, Clara S; Hill, Danika L; Li Wai Suen, Connie S N; Schofield, Louis; Siba, Peter M; Mueller, Ivo; Cowman, Alan F; Hansen, Diana S

    2015-08-01

    Increasing evidence suggests that antibodies against merozoite surface proteins (MSPs) play an important role in clinical immunity to malaria. Two unusual members of the MSP-3 family, merozoite surface protein duffy binding-like (MSPDBL)1 and MSPDBL2, have been shown to be extrinsically associated to MSP-1 on the parasite surface. In addition to a secreted polymorphic antigen associated with merozoite (SPAM) domain characteristic of MSP-3 family members, they also contain Duffy binding-like (DBL) domain and were found to bind to erythrocytes, suggesting that they play a role in parasite invasion. Antibody responses to these proteins were investigated in a treatment-reinfection study conducted in an endemic area of Papua New Guinea to determine their contribution to naturally acquired immunity. Antibodies to the SPAM domains of MSPDBL1 and MSPDBL2 as well as the DBL domain of MSPDBL1 were found to be associated with protection from Plasmodium falciparum clinical episodes. Moreover, affinity-purified anti-MSPDBL1 and MSPDBL2 were found to inhibit in vitro parasite growth and had strong merozoite opsonizing capacity, suggesting that protection targeting these antigens results from ≥2 distinct effector mechanisms. Together these results indicate that MSPDBL1 and MSPDBL2 are important targets of naturally acquired immunity and might constitute potential vaccine candidates. PMID:25646353

  6. Parasite neuropeptide biology: Seeding rational drug target selection?

    PubMed Central

    McVeigh, Paul; Atkinson, Louise; Marks, Nikki J.; Mousley, Angela; Dalzell, Johnathan J.; Sluder, Ann; Hammerland, Lance; Maule, Aaron G.

    2011-01-01

    The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components – putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths. PMID:24533265

  7. Polysome profiling reveals translational control of gene expression in the human malaria parasite Plasmodium falciparum

    PubMed Central

    2013-01-01

    Background In eukaryotic organisms, gene expression is regulated at multiple levels during the processes of transcription and translation. The absence of a tight regulatory network for transcription in the human malaria parasite suggests that gene expression may largely be controlled at post-transcriptional and translational levels. Results In this study, we compare steady-state mRNA and polysome-associated mRNA levels of Plasmodium falciparum at different time points during its asexual cell cycle. For more than 30% of its genes, we observe a delay in peak transcript abundance in the polysomal fraction as compared to the steady-state mRNA fraction, suggestive of strong translational control. Our data show that key regulatory mechanisms could include inhibitory activity of upstream open reading frames and translational repression of the major virulence gene family by intronic transcripts. In addition, we observe polysomal mRNA-specific alternative splicing events and widespread transcription of non-coding transcripts. Conclusions These different layers of translational regulation are likely to contribute to a complex network that controls gene expression in this eukaryotic pathogen. Disrupting the mechanisms involved in such translational control could provide novel anti-malarial strategies. PMID:24267660

  8. High-speed holographic microscopy of malaria parasites reveals ambidextrous flagellar waveforms

    PubMed Central

    Wilson, Laurence G.; Carter, Lucy M.; Reece, Sarah E.

    2013-01-01

    Axonemes form the core of eukaryotic flagella and cilia, performing tasks ranging from transporting fluid in developing embryos to the propulsion of sperm. Despite their abundance across the eukaryotic domain, the mechanisms that regulate the beating action of axonemes remain unknown. The flagellar waveforms are 3D in general, but current understanding of how axoneme components interact stems from 2D data; comprehensive measurements of flagellar shape are beyond conventional microscopy. Moreover, current flagellar model systems (e.g., sea urchin, human sperm) contain accessory structures that impose mechanical constraints on movement, obscuring the “native” axoneme behavior. We address both problems by developing a high-speed holographic imaging scheme and applying it to the (male) microgametes of malaria (Plasmodium) parasites. These isolated flagella are a unique, mathematically tractable model system for the physics of microswimmers. We reveal the 3D flagellar waveforms of these microorganisms and map the differential shear between microtubules in their axonemes. Furthermore, we overturn claims that chirality in the structure of the axoneme governs the beat pattern [Hirokawa N, et al. (2009) Ann Rev Fluid Mech 41:53–72], because microgametes display a left- or right-handed character on alternate beats. This breaks the link between structural chirality in the axoneme and larger scale symmetry breaking (e.g., in developing embryos), leading us to conclude that accessory structures play a critical role in shaping the flagellar beat. PMID:24194551

  9. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum

    PubMed Central

    Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

    2015-01-01

    The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression. PMID:25691743

  10. Reversible host cell remodeling underpins deformability changes in malaria parasite sexual blood stages

    PubMed Central

    Dearnley, Megan; Chu, Trang; Zhang, Yao; Looker, Oliver; Huang, Changjin; Klonis, Nectarios; Yeoman, Jeff; Kenny, Shannon; Arora, Mohit; Osborne, James M.; Chandramohanadas, Rajesh; Zhang, Sulin; Dixon, Matthew W. A.; Tilley, Leann

    2016-01-01

    The sexual blood stage of the human malaria parasite Plasmodium falciparum undergoes remarkable biophysical changes as it prepares for transmission to mosquitoes. During maturation, midstage gametocytes show low deformability and sequester in the bone marrow and spleen cords, thus avoiding clearance during passage through splenic sinuses. Mature gametocytes exhibit increased deformability and reappear in the peripheral circulation, allowing uptake by mosquitoes. Here we define the reversible changes in erythrocyte membrane organization that underpin this biomechanical transformation. Atomic force microscopy reveals that the length of the spectrin cross-members and the size of the skeletal meshwork increase in developing gametocytes, then decrease in mature-stage gametocytes. These changes are accompanied by relocation of actin from the erythrocyte membrane to the Maurer’s clefts. Fluorescence recovery after photobleaching reveals reversible changes in the level of coupling between the membrane skeleton and the plasma membrane. Treatment of midstage gametocytes with cytochalasin D decreases the vertical coupling and increases their filterability. A computationally efficient coarse-grained model of the erythrocyte membrane reveals that restructuring and constraining the spectrin meshwork can fully account for the observed changes in deformability. PMID:27071094

  11. Reversible host cell remodeling underpins deformability changes in malaria parasite sexual blood stages.

    PubMed

    Dearnley, Megan; Chu, Trang; Zhang, Yao; Looker, Oliver; Huang, Changjin; Klonis, Nectarios; Yeoman, Jeff; Kenny, Shannon; Arora, Mohit; Osborne, James M; Chandramohanadas, Rajesh; Zhang, Sulin; Dixon, Matthew W A; Tilley, Leann

    2016-04-26

    The sexual blood stage of the human malaria parasite Plasmodium falciparum undergoes remarkable biophysical changes as it prepares for transmission to mosquitoes. During maturation, midstage gametocytes show low deformability and sequester in the bone marrow and spleen cords, thus avoiding clearance during passage through splenic sinuses. Mature gametocytes exhibit increased deformability and reappear in the peripheral circulation, allowing uptake by mosquitoes. Here we define the reversible changes in erythrocyte membrane organization that underpin this biomechanical transformation. Atomic force microscopy reveals that the length of the spectrin cross-members and the size of the skeletal meshwork increase in developing gametocytes, then decrease in mature-stage gametocytes. These changes are accompanied by relocation of actin from the erythrocyte membrane to the Maurer's clefts. Fluorescence recovery after photobleaching reveals reversible changes in the level of coupling between the membrane skeleton and the plasma membrane. Treatment of midstage gametocytes with cytochalasin D decreases the vertical coupling and increases their filterability. A computationally efficient coarse-grained model of the erythrocyte membrane reveals that restructuring and constraining the spectrin meshwork can fully account for the observed changes in deformability. PMID:27071094

  12. Malaria proteases mediate inside-out egress of gametocytes from red blood cells following parasite transmission to the mosquito.

    PubMed

    Sologub, Ludmilla; Kuehn, Andrea; Kern, Selina; Przyborski, Jude; Schillig, Rebecca; Pradel, Gabriele

    2011-06-01

    Malaria parasites reside in human erythrocytes within a parasitophorous vacuole. The parasites are transmitted from the human to the mosquito by the uptake of intraerythrocytic gametocytes during a blood meal, which in the midgut become activated by external stimuli and subsequently egress from the enveloping erythrocyte. Gametocyte egress is a crucial step for the parasite to prepare for fertilization, but the molecular mechanisms of egress are not well understood. Via electron microscopy, we show that Plasmodium falciparum gametocytes exit the erythrocyte by an inside-out type of egress. The parasitophorous vacuole membrane (PVM) ruptures at multiple sites within less than a minute following activation, a process that requires a temperature drop and parasite contact with xanthurenic acid. PVM rupture can also be triggered by the ionophore nigericin and is sensitive to the cysteine protease inhibitor E-64d. Following PVM rupture the subpellicular membrane begins to disintegrate. This membrane is specific to malaria gametocytes, and disintegration is impaired by the aspartic protease inhibitor EPNP and the cysteine/serine protease inhibitor TLCK. Approximately 15 min post activation, the erythrocyte membrane ruptures at a single breaking point, which can be inhibited by inhibitors TLCK and TPCK. In all cases inhibitor treatment results in interrupted gametogenesis. PMID:21501358

  13. Manual blood exchange transfusion does not significantly contribute to parasite clearance in artesunate-treated individuals with imported severe Plasmodium falciparum malaria

    PubMed Central

    2013-01-01

    Background Exchange transfusion (ET) has remained a controversial adjunct therapy for the treatment of severe malaria. In order to assess the relative contribution of ET to parasite clearance in severe malaria, all patients receiving ET as an adjunct treatment to parenteral quinine or to artesunate were compared with patients treated with parenteral treatment with quinine or artesunate but who did not receive ET. ET was executed using a standardized manual isovolumetric exchange protocol. Methods All patients in the Rotterdam Malaria Cohort treated for severe P. falciparum malaria at the Institute for Tropical Diseases of the Harbour Hospital between 1999 and 2011 were included in this retrospective follow-up study. Both a two-stage approach and a log-linear mixed model approach were used to estimate parasite clearance times (PCTs) in patients with imported malaria. Severe malaria was defined according to WHO criteria. Results A total of 87 patients with severe malaria was included; 61 received intravenous quinine, whereas 26 patients received intravenous artesunate. Thirty-nine patients received ET as an adjunct treatment to either quinine (n = 23) or artesunate (n = 16). Data from 84 of 87 patients were suitable for estimation of parasite clearance rates. PCTs were significantly shorter after administration of artesunate as compared with quinine. In both models, ET did not contribute significantly to overall parasite clearance. Conclusion Manual exchange transfusion does not significantly contribute to parasite clearance in artesunate-treated individuals. There may be a small effect of ET on parasite clearance under quinine treatment. Institution of ET to promote parasite clearance in settings where artesunate is available is not recommended, at least not with manually executed exchange procedures. PMID:23537187

  14. Targeting of blood safety measures to affected areas with ongoing local transmission of malaria.

    PubMed

    Domanović, D; Kitchen, A; Politis, C; Panagiotopoulos, T; Bluemel, J; Van Bortel, W; Overbosch, D; Lieshout-Krikke, R; Fabra, C; Facco, G; Zeller, H

    2016-06-01

    An outbreak of locally acquired Plasmodium vivax malaria in Greece started in 2009 and peaked in 2011. Targeting of blood safety measures to affected areas with ongoing transmission of malaria raised questions of how to define spatial boundaries of such an area and when to trigger any specific blood safety measures, including whether and which blood donation screening strategy to apply. To provide scientific advice the European Centre for Disease Prevention and Control (ECDC) organised expert meetings in 2013. The outcomes of these consultations are expert opinions covering spatial targeting of blood safety measures to affected areas with ongoing local transmission of malaria and blood donation screening strategy for evidence of malaria infection in these areas. Opinions could help EU national blood safety authorities in developing a preventive strategy during malaria outbreaks. PMID:27238883

  15. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model

    USGS Publications Warehouse

    Wargo, A.R.; Huijben, S.; De Roode, J. C.; Shepherd, J.; Read, A.F.

    2007-01-01

    Malaria infections frequently consist of mixtures of drug-resistant and drug-sensitive parasites. If crowding occurs, where clonal population densities are suppressed by the presence of coinfecting clones, removal of susceptible clones by drug treatment could allow resistant clones to expand into the newly vacated niche space within a host. Theoretical models show that, if such competitive release occurs, it can be a potent contributor to the strength of selection, greatly accelerating the rate at which resistance spreads in a population. A variety of correlational field data suggest that competitive release could occur in human malaria populations, but direct evidence cannot be ethically obtained from human infections. Here we show competitive release after pyrimethamine curative chemotherapy of acute infections of the rodent malaria Plasmodium chabaudi in laboratory mice. The expansion of resistant parasite numbers after treatment resulted in enhanced transmission-stage densities. After the elimination or near-elimination of sensitive parasites, the number of resistant parasites increased beyond that achieved when a competitor had never been present. Thus, a substantial competitive release occurred, markedly elevating the fitness advantages of drug resistance above those arising from survival alone. This finding may explain the rapid spread of drug resistance and the subsequently brief useful lifespans of some antimalarial drugs. In a second experiment, where subcurative chemotherapy was administered, the resistant clone was only partly released from competitive suppression and experienced a restriction in the size of its expansion after treatment. This finding raises the prospect of harnessing in-host ecology to slow the spread of drug resistance. ?? 2007 by The National Academy of Sciences of the USA.

  16. Some strains of Plasmodium falciparum, a human malaria parasite, evade the complement-like system of Anopheles gambiae mosquitoes.

    PubMed

    Molina-Cruz, Alvaro; DeJong, Randall J; Ortega, Corrie; Haile, Ashley; Abban, Ekua; Rodrigues, Janneth; Jaramillo-Gutierrez, Giovanna; Barillas-Mury, Carolina

    2012-07-10

    Plasmodium falciparum lines differ in their ability to infect mosquitoes. The Anopheles gambiae L3-5 refractory (R) line melanizes most Plasmodium species, including the Brazilian P. falciparum 7G8 line, but it is highly susceptible to some African P. falciparum strains such as 3D7, NF54, and GB4. We investigated whether these lines differ in their ability to evade the mosquito immune system. Silencing key components of the mosquito complement-like system [thioester-containing protein 1 (TEP1), leucine-rich repeat protein 1, and Anopheles Plasmodium-responsive leucine-rich repeat protein 1] prevented melanization of 7G8 parasites, reverting the refractory phenotype. In contrast, it had no effect on the intensity of infection with NF54, suggesting that this line is able to evade TEP1-mediated lysis. When R females were coinfected with a line that is melanized (7G8) and a line that survives (3D7), the coinfection resulted in mixed infections with both live and encapsulated parasites on individual midguts. This finding shows that survival of individual parasites is parasite-specific and not systemic in nature, because parasites can evade TEP1-mediated lysis even when other parasites are melanized in the same midgut. When females from an extensive genetic cross between R and susceptible A. gambiae (G3) mosquitoes were infected with P. berghei, encapsulation was strongly correlated with the TEP1-R1 allele. However, P. falciparum 7G8 parasites were no longer encapsulated by females from this cross, indicating that the TEP1-R1 allele is not sufficient to melanize this line. Evasion of the A. gambiae immune system by P. falciparum may be the result of parasite adaptation to sympatric mosquito vectors and may be an important factor driving malaria transmission. PMID:22623529

  17. Challenges and Approaches for Mosquito Targeted Malaria Control

    PubMed Central

    Ramirez, José L.; Garver, Lindsey S.; Dimopoulos, George

    2010-01-01

    Malaria is one of today’s most serious diseases with an enormous socioeconomic impact. While anti-malarial drugs have existed for some time and vaccines development may be underway, the most successful malaria eradication programs have thus far relied on attacking the mosquito vector that spreads the disease causing agent Plasmodium. Here we will review past, current and future perspectives of malaria vector control strategies and how these approaches have taken a promising turn thanks recent advances in functional genomics and molecular biology. PMID:19275622

  18. Dynamic Epigenetic Regulation of Gene Expression during the Life Cycle of Malaria Parasite Plasmodium falciparum

    PubMed Central

    Gupta, Archna P.; Chin, Wai Hoe; Zhu, Lei; Mok, Sachel; Luah, Yen-Hoon; Lim, Eng-How; Bozdech, Zbynek

    2013-01-01

    Epigenetic mechanisms are emerging as one of the major factors of the dynamics of gene expression in the human malaria parasite, Plasmodium falciparum. To elucidate the role of chromatin remodeling in transcriptional regulation associated with the progression of the P. falciparum intraerythrocytic development cycle (IDC), we mapped the temporal pattern of chromosomal association with histone H3 and H4 modifications using ChIP-on-chip. Here, we have generated a broad integrative epigenomic map of twelve histone modifications during the P. falciparum IDC including H4K5ac, H4K8ac, H4K12ac, H4K16ac, H3K9ac, H3K14ac, H3K56ac, H4K20me1, H4K20me3, H3K4me3, H3K79me3 and H4R3me2. While some modifications were found to be associated with the vast majority of the genome and their occupancy was constant, others showed more specific and highly dynamic distribution. Importantly, eight modifications displaying tight correlations with transcript levels showed differential affinity to distinct genomic regions with H4K8ac occupying predominantly promoter regions while others occurred at the 5′ ends of coding sequences. The promoter occupancy of H4K8ac remained unchanged when ectopically inserted at a different locus, indicating the presence of specific DNA elements that recruit histone modifying enzymes regardless of their broad chromatin environment. In addition, we showed the presence of multivalent domains on the genome carrying more than one histone mark, highlighting the importance of combinatorial effects on transcription. Overall, our work portrays a substantial association between chromosomal locations of various epigenetic markers, transcriptional activity and global stage-specific transitions in the epigenome. PMID:23468622

  19. The signal sequence of exported protein-1 directs the green fluorescent protein to the parasitophorous vacuole of transfected malaria parasites.

    PubMed

    Adisa, Akinola; Rug, Melanie; Klonis, Nectarios; Foley, Michael; Cowman, Alan F; Tilley, Leann

    2003-02-21

    The malaria parasite, Plasmodium falciparum, spends part of its life cycle inside the erythrocytes of its human host. In the mature stages of intraerythrocytic growth, the parasite undertakes extensive remodeling of its adopted cellular home by exporting proteins beyond the confines of its own plasma membrane. To examine the signals involved in export of parasite proteins, we have prepared transfected parasites expressing a chimeric protein comprising the N-terminal region of the Plasmodium falciparum exported protein-1 appended to green fluorescent protein. The majority of the population of the chimeric protein appears to be correctly processed and trafficked to the parasitophorous vacuole, indicating that this is the default destination for protein secretion. Some of the protein is redirected to the parasite food vacuole and further degraded. Photobleaching studies reveal that the parasitophorous vacuole contains subcompartments that are only partially interconnected. Dual labeling with the lipid probe, BODIPY-TR-ceramide, reveals the presence of membrane-bound extensions that can bleb from the parasitophorous vacuole to produce double membrane-bound compartments. We also observed regions and extensions of the parasitophorous vacuole, where there is segregation of the lumenal chimera from the lipid components. These regions may represent sites for the sorting of proteins destined for the trafficking to sites beyond the parasitophorous vacuole membrane. PMID:12456681

  20. Target evaluation of deoxyhypusine synthase from Theileria parva the neglected animal parasite and its relationship to Plasmodium.

    PubMed

    Njuguna, James T; von Koschitzky, Imke; Gerhardt, Heike; Lämmerhofer, Michael; Choucry, Ali; Pink, Mario; Schmitz-Spahnke, Simone; Bakheit, Mohammed A; Strube, Christina; Kaiser, Annette

    2014-08-01

    East Coast fever (ECF) is a tick-borne disease caused by the parasite Theileria parva which infects cattle. In Sub-Saharan Africa it leads to enormous economic costs. After a bite of a tick, sporozoites invade the host lymphocytes and develop into schizonts. At this stage the parasite transforms host lymphocytes resulting in the clonal expansion of infected lymphocytes. Animals develop a lymphoma like disorder after infection which is rapidly fatal. Hitherto, a few drugs of the quinone type can cure the disease. However, therapy can only be successful after early diagnosis. The genera Theileria and Plasmodium, which includes the causative agent of human malaria, are closely related apicomplexan parasites. Enzymes of the hypusine pathway, a posttranslational modification in eukaryotic initiation factor EIF-5A, have shown to be druggable targets in Plasmodium. We identified the first enzyme of the hypusine pathway from T. parva, the deoxyhypusine synthase (DHS), which is located on chromosome 2 of the Muguga strain. Transcription is significantly increased in schizonts. The expressed T. parva DHS reveals an open reading frame (ORF) of 370 amino acids after expression in Escherichia coli Rosetta cells with a molecular size of 41.26 kDa and a theoretical pI of 5.26. Screening of the Malaria Box which consists of 400 active compounds resulted in a novel heterocyclic compound with a guanyl spacer which reduced the activity of T. parva DHS to 45%. In sum, the guanyl residue seems to be an important lead structure for inhibition of Theileria DHS. Currently, more different guanyl analogues from the Malaria Box are tested in inhibitor experiments to determine their efficacy. PMID:24909679

  1. Cysteine Protease Inhibitors as Chemotherapy: Lessons from a Parasite Target

    NASA Astrophysics Data System (ADS)

    Selzer, Paul M.; Pingel, Sabine; Hsieh, Ivy; Ugele, Bernhard; Chan, Victor J.; Engel, Juan C.; Bogyo, Matthew; Russell, David G.; Sakanari, Judy A.; McKerrow, James H.

    1999-09-01

    Papain family cysteine proteases are key factors in the pathogenesis of cancer invasion, arthritis, osteoporosis, and microbial infections. Targeting this enzyme family is therefore one strategy in the development of new chemotherapy for a number of diseases. Little is known, however, about the efficacy, selectivity, and safety of cysteine protease inhibitors in cell culture or in vivo. We now report that specific cysteine protease inhibitors kill Leishmania parasites in vitro, at concentrations that do not overtly affect mammalian host cells. Inhibition of Leishmania cysteine protease activity was accompanied by defects in the parasite's lysosome/endosome compartment resembling those seen in lysosomal storage diseases. Colocalization of anti-protease antibodies with biotinylated surface proteins and accumulation of undigested debris and protease in the flagellar pocket of treated parasites were consistent with a pathway of protease trafficking from flagellar pocket to the lysosome/endosome compartment. The inhibitors were sufficiently absorbed and stable in vivo to ameliorate the pathology associated with a mouse model of Leishmania infection.

  2. A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes

    PubMed Central

    Vos, Martijn W.; Stone, Will J. R.; Koolen, Karin M.; van Gemert, Geert-Jan; van Schaijk, Ben; Leroy, Didier; Sauerwein, Robert W.; Bousema, Teun; Dechering, Koen J.

    2015-01-01

    Current first-line treatments for uncomplicated falciparum malaria rapidly clear the asexual stages of the parasite, but do not fully prevent parasite transmission by mosquitoes. The standard membrane feeding assay (SMFA) is the biological gold standard assessment of transmission reducing activity (TRA), but its throughput is limited by the need to determine mosquito infection status by dissection and microscopy. Here we present a novel dissection-free luminescence based SMFA format using a transgenic Plasmodium falciparum reporter parasite without resistance to known antimalarials and therefore unrestricted in its utility in compound screening. Analyses of sixty-five compounds from the Medicines for Malaria Venture validation and malaria boxes identified 37 compounds with high levels of TRA (>80%); different assay modes allowed discrimination between gametocytocidal and downstream modes of action. Comparison of SMFA data to published assay formats for predicting parasite infectivity indicated that individual in vitro screens show substantial numbers of false negatives. These results highlight the importance of the SMFA in the screening pipeline for transmission reducing compounds and present a rapid and objective method. In addition we present sixteen diverse chemical scaffolds from the malaria box that may serve as a starting point for further discovery and development of malaria transmission blocking drugs. PMID:26687564

  3. Evaluation of three parasite lactate dehydrogenase-based rapid diagnostic tests for the diagnosis of falciparum and vivax malaria

    PubMed Central

    Ashley, Elizabeth A; Touabi, Malek; Ahrer, Margareta; Hutagalung, Robert; Htun, Khayae; Luchavez, Jennifer; Dureza, Christine; Proux, Stephane; Leimanis, Mara; Lwin, Myo Min; Koscalova, Alena; Comte, Eric; Hamade, Prudence; Page, Anne-Laure; Nosten, François; Guerin, Philippe J

    2009-01-01

    Background In areas where non-falciparum malaria is common rapid diagnostic tests (RDTs) capable of distinguishing malaria species reliably are needed. Such tests are often based on the detection of parasite lactate dehydrogenase (pLDH). Methods In Dawei, southern Myanmar, three pLDH based RDTs (CareStart™ Malaria pLDH (Pan), CareStart™ Malaria pLDH (Pan, Pf) and OptiMAL-IT®)were evaluated in patients presenting with clinically suspected malaria. Each RDT was read independently by two readers. A subset of patients with microscopically confirmed malaria had their RDTs repeated on days 2, 7 and then weekly until negative. At the end of the study, samples of study batches were sent for heat stability testing. Results Between August and November 2007, 1004 patients aged between 1 and 93 years were enrolled in the study. Slide microscopy (the reference standard) diagnosed 213 Plasmodium vivax (Pv) monoinfections, 98 Plasmodium falciparum (Pf) mono-infections and no malaria in 650 cases. The sensitivities (sens) and specificities (spec), of the RDTs for the detection of malaria were- CareStart Malaria™ pLDH (Pan) test: sens 89.1% [CI95 84.2-92.6], spec 97.6% [CI95 96.5-98.4] OptiMal-IT®: Pf+/- other species detection: sens 95.2% [CI95 87.5-98.2], spec 94.7% [CI95 93.3-95.8]; non-Pf detection alone: sens 89.6% [CI95 83.6-93.6], spec 96.5% [CI95 94.8-97.7] CareStart Malaria™ pLDH (Pan, Pf): Pf+/- other species: sens 93.5% [CI9585.4-97.3], spec 97.4% [95.9-98.3]; non-Pf: sens 78.5% [CI9571.1-84.4], spec 97.8% [CI95 96.3-98.7] Inter-observer agreement was excellent for all tests (kappa > 0.9). The median time for the RDTs to become negative was two days for the CareStart™ Malaria tests and seven days for OptiMAL-IT®. Tests were heat stable up to 90 days except for OptiMAL-IT® (Pf specific pLDH stable to day 20 at 35°C). Conclusion None of the pLDH-based RDTs evaluated was able to detect non-falciparum malaria with high sensitivity, particularly at low

  4. Clonal diversity of a lizard malaria parasite, Plasmodium mexicanum, in its vertebrate host, the western fence lizard: role of variation in transmission intensity over time and space.

    PubMed

    Vardo, A M; Schall, J J

    2007-07-01

    Within the vertebrate host, infections of a malaria parasite (Plasmodium) could include a single genotype of cells (single-clone infections) or two to several genotypes (multiclone infections). Clonal diversity of infection plays an important role in the biology of the parasite, including its life history, virulence, and transmission. We determined the clonal diversity of Plasmodium mexicanum, a lizard malaria parasite at a study region in northern California, using variable microsatellite markers, the first such study for any malaria parasite of lizards or birds (the most common hosts for Plasmodium species). Multiclonal infections are common (50-88% of infections among samples), and measures of genetic diversity for the metapopulation (expected heterozygosity, number of alleles per locus, allele length variation, and effective population size) all indicated a substantial overall genetic diversity. Comparing years with high prevalence (1996-1998 = 25-32% lizards infected), and years with low prevalence (2001-2005 = 6-12%) found fewer alleles in samples taken from the low-prevalence years, but no reduction in overall diversity (H = 0.64-0.90 among loci). In most cases, rare alleles appeared to be lost as prevalence declined. For sites chronically experiencing low transmission intensity (prevalence approximately 1%), overall diversity was also high (H = 0.79-0.91), but there were fewer multiclonal infections. Theory predicts an apparent excess in expected heterozygosity follows a genetic bottleneck. Evidence for such a distortion in genetic diversity was observed after the drop in parasite prevalence under the infinite alleles mutation model but not for the stepwise mutation model. The results are similar to those reported for the human malaria parasite, Plasmodium falciparum, worldwide, and support the conclusion that malaria parasites maintain high genetic diversity in host populations despite the potential for loss in alleles during the transmission cycle or

  5. Mast cells and histamine alter intestinal permeability during malaria parasite infection.

    PubMed

    Potts, Rashaun A; Tiffany, Caitlin M; Pakpour, Nazzy; Lokken, Kristen L; Tiffany, Connor R; Cheung, Kong; Tsolis, Renée M; Luckhart, Shirley

    2016-03-01

    Co-infections with malaria and non-typhoidal Salmonella serotypes (NTS) can present as life-threatening bacteremia, in contrast to self-resolving NTS diarrhea in healthy individuals. In previous work with our mouse model of malaria/NTS co-infection, we showed increased gut mastocytosis and increased ileal and plasma histamine levels that were temporally associated with increased gut permeability and bacterial translocation. Here, we report that gut mastocytosis and elevated plasma histamine are also associated with malaria in an animal model of falciparum malaria, suggesting a broader host distribution of this biology. In support of mast cell function in this phenotype, malaria/NTS co-infection in mast cell-deficient mice was associated with a reduction in gut permeability and bacteremia. Further, antihistamine treatment reduced bacterial translocation and gut permeability in mice with malaria, suggesting a contribution of mast cell-derived histamine to GI pathology and enhanced risk of bacteremia during malaria/NTS co-infection. PMID:26626201

  6. Identification of Targets of CD8+ T Cell Responses to Malaria Liver Stages by Genome-wide Epitope Profiling

    PubMed Central

    Hafalla, Julius Clemence R.; Bauza, Karolis; Friesen, Johannes; Gonzalez-Aseguinolaza, Gloria; Hill, Adrian V. S.; Matuschewski, Kai

    2013-01-01

    CD8+ T cells mediate immunity against Plasmodium liver stages. However, the paucity of parasite-specific epitopes of CD8+ T cells has limited our current understanding of the mechanisms influencing the generation, maintenance and efficiency of these responses. To identify antigenic epitopes in a stringent murine malaria immunisation model, we performed a systematic profiling of H2b-restricted peptides predicted from genome-wide analysis. We describe the identification of Plasmodium berghei (Pb) sporozoite-specific gene 20 (S20)- and thrombospondin-related adhesive protein (TRAP)-derived peptides, termed PbS20318 and PbTRAP130 respectively, as targets of CD8+ T cells from C57BL/6 mice vaccinated by whole parasite strategies known to protect against sporozoite challenge. While both PbS20318 and PbTRAP130 elicit effector and effector memory phenotypes in both the spleens and livers of immunised mice, only PbTRAP130-specific CD8+ T cells exhibit in vivo cytotoxicity. Moreover, PbTRAP130-specific, but not PbS20318-specific, CD8+ T cells significantly contribute to inhibition of parasite development. Prime/boost vaccination with PbTRAP demonstrates CD8+ T cell-dependent efficacy against sporozoite challenge. We conclude that PbTRAP is an immunodominant antigen during liver-stage infection. Together, our results underscore the presence of CD8+ T cells with divergent potencies against distinct Plasmodium liver-stage epitopes. Our identification of antigen-specific CD8+ T cells will allow interrogation of the development of immune responses against malaria liver stages. PMID:23675294

  7. Deoxyhypusine Hydroxylase from Plasmodium vivax, the Neglected Human Malaria Parasite: Molecular Cloning, Expression and Specific Inhibition by the 5-LOX Inhibitor Zileuton

    PubMed Central

    Atemnkeng, Veronika Anyigoh; Pink, Mario; Schmitz-Spanke, Simone; Wu, Xian-Jun; Dong, Liang-Liang; Zhao, Kai-Hong; May, Caroline; Laufer, Stefan; Langer, Barbara; Kaiser, Annette

    2013-01-01

    Primaquine, an 8-aminoquinoline, is the only drug which cures the dormant hypnozoites of persistent liver stages from P. vivax. Increasing resistance needs the discovery of alternative pathways as drug targets to develop novel drug entities. Deoxyhypusine hydroxylase (DOHH) completes hypusine biosynthesis in eukaryotic initiation factor (eIF-5A) which is the only cellular protein known to contain the unusual amino acid hypusine. Modified EIF-5A is important for proliferation of the malaria parasite. Here, we present the first successful cloning and expression of DOHH from P. vivax causing tertiary malaria. The nucleic acid sequence of 1041 bp encodes an open reading frame of 346 amino acids. Histidine tagged expression of P. vivax DOHH detected a protein of 39.01 kDa in E. coli. The DOHH protein from P. vivax shares significant amino acid identity to the simian orthologues from P. knowlesi and P. yoelii strain H. In contrast to P. falciparum only four E-Z-type HEAT-like repeats are present in P. vivax DOHH with different homology to phycocyanin lyase subunits from cyanobacteria and in proteins participating in energy metabolism of Archaea and Halobacteria. However, phycocyanin lyase activity is absent in P. vivax DOHH. The dohh gene is present as a single copy gene and transcribed throughout the whole erythrocytic cycle. Specific inhibition of recombinant P. vivax DOHH is possible by complexing the ferrous iron with zileuton, an inhibitor of mammalian 5-lipoxygenase (5-LOX). Ferrous iron in the active site of 5-LOX is coordinated by three conserved histidines and the carboxylate of isoleucine673. Zileuton inhibited the P. vivax DOHH protein with an IC50 of 12,5 nmol determined by a relative quantification by GC/MS. By contrast, the human orthologue is only less affected with an IC50 of 90 nmol suggesting a selective iron-complexing strategy for the parasitic enzyme. PMID:23505486

  8. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom.

    PubMed

    El Chamy Maluf, S; Dal Mas, C; Oliveira, E B; Melo, P M; Carmona, A K; Gazarini, M L; Hayashi, M A F

    2016-04-01

    We show here that crotamine, a polypeptide from the South American rattlesnake venom with cell penetrating and selective anti-fungal and anti-tumoral properties, presents a potent anti-plasmodial activity in culture. Crotamine inhibits the development of the Plasmodium falciparum parasites in a dose-dependent manner [IC50 value of 1.87 μM], and confocal microscopy analysis showed a selective internalization of fluorescent-labeled crotamine into P. falciparum infected erythrocytes, with no detectable fluorescence in uninfected healthy erythrocytes. In addition, similarly to the crotamine cytotoxic effects, the mechanism underlying the anti-plasmodial activity may involve the disruption of parasite acidic compartments H(+) homeostasis. In fact, crotamine promoted a reduction of parasites organelle fluorescence loaded with the lysosomotropic fluorochrome acridine orange, in the same way as previously observed mammalian tumoral cells. Taken together, we show for the first time crotamine not only compromised the metabolism of the P. falciparum, but this toxin also inhibited the parasite growth. Therefore, we suggest this snake polypeptide as a promising lead molecule for the development of potential new molecules, namely peptidomimetics, with selectivity for infected erythrocytes and ability to inhibit the malaria infection by its natural affinity for acid vesicles. PMID:26806200

  9. Protection against malaria in mice is induced by blood stage-arresting histamine-releasing factor (HRF)-deficient parasites.

    PubMed

    Demarta-Gatsi, Claudia; Smith, Leanna; Thiberge, Sabine; Peronet, Roger; Commere, Pierre-Henri; Matondo, Mariette; Apetoh, Lionel; Bruhns, Pierre; Ménard, Robert; Mécheri, Salaheddine

    2016-07-25

    Although most vaccines against blood stage malaria in development today use subunit preparations, live attenuated parasites confer significantly broader and more lasting protection. In recent years, Plasmodium genetically attenuated parasites (GAPs) have been generated in rodent models that cause self-resolving blood stage infections and induce strong protection. All such GAPs generated so far bear mutations in housekeeping genes important for parasite development in red blood cells. In this study, using a Plasmodium berghei model compatible with tracking anti-blood stage immune responses over time, we report a novel blood stage GAP that lacks a secreted factor related to histamine-releasing factor (HRF). Lack of HRF causes an IL-6 increase, which boosts T and B cell responses to resolve infection and leave a cross-stage, cross-species, and lasting immunity. Mutant-induced protection involves a combination of antiparasite IgG2c antibodies and FcγR(+) CD11b(+) cell phagocytes, especially neutrophils, which are sufficient to confer protection. This immune-boosting GAP highlights an important role of opsonized parasite-mediated phagocytosis, which may be central to protection induced by all self-resolving blood stage GAP infections. PMID:27432939

  10. Subcompartmentalisation of Proteins in the Rhoptries Correlates with Ordered Events of Erythrocyte Invasion by the Blood Stage Malaria Parasite

    PubMed Central

    Zuccala, Elizabeth S.; Gout, Alexander M.; Dekiwadia, Chaitali; Marapana, Danushka S.; Angrisano, Fiona; Turnbull, Lynne; Riglar, David T.; Rogers, Kelly L.; Whitchurch, Cynthia B.; Ralph, Stuart A.; Speed, Terence P.; Baum, Jake

    2012-01-01

    Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction – the organising interface between parasite and host cell during entry. Formation of this structure is not, however, shared across all Apicomplexa or indeed all parasite lifecycle stages. Here, using an in silico integrative genomic search and endogenous gene-tagging strategy, we sought to characterise proteins that function specifically during junction-dependent invasion, a class of proteins we term invasins to distinguish them from adhesins that function in species specific host-cell recognition. High-definition imaging of tagged Plasmodium falciparum invasins localised proteins to multiple cellular compartments of the blood stage merozoite. This includes several that localise to distinct subcompartments within the rhoptries. While originating from the same organelle, however, each has very different dynamics during invasion. Apical Sushi Protein and Rhoptry Neck protein 2 release early, following the junction, whilst a novel rhoptry protein PFF0645c releases only after invasion is complete. This supports the idea that organisation of proteins within a secretory organelle determines the order and destination of protein secretion and provides a localisation-based classification strategy for predicting invasin function during apicomplexan parasite invasion. PMID:23049965

  11. Proteolytic Activation of the Essential Parasitophorous Vacuole Cysteine Protease SERA6 Accompanies Malaria Parasite Egress from Its Host Erythrocyte*

    PubMed Central

    Ruecker, Andrea; Shea, Michael; Hackett, Fiona; Suarez, Catherine; Hirst, Elizabeth M. A.; Milutinovic, Katarina; Withers-Martinez, Chrislaine; Blackman, Michael J.

    2012-01-01

    The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV). The PV and host cell membranes eventually rupture, releasing merozoites in a process called egress. Certain inhibitors of serine and cysteine proteases block egress, indicating a crucial role for proteases. The Plasmodium falciparum genome encodes nine serine-repeat antigens (SERAs), each of which contains a central domain homologous to the papain-like (clan CA, family C1) protease family. SERA5 and SERA6 are indispensable in blood-stage parasites, but the function of neither is known. Here we show that SERA6 localizes to the PV where it is precisely cleaved just prior to egress by an essential serine protease called PfSUB1. Mutations that replace the predicted catalytic Cys of SERA6, or that block SERA6 processing by PfSUB1, could not be stably introduced into the parasite genomic sera6 locus, indicating that SERA6 is an essential enzyme and that processing is important for its function. We demonstrate that cleavage of SERA6 by PfSUB1 converts it to an active cysteine protease. Our observations reveal a proteolytic activation step in the malarial PV that may be required for release of the parasite from its host erythrocyte. PMID:22984267

  12. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    SciTech Connect

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-06-01

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V{sub M} = 2.3 Å{sup 3} Da{sup −1})

  13. A new method for estimating species age supports the coexistence of malaria parasites and their Mammalian hosts.

    PubMed

    Silva, Joana C; Egan, Amy; Arze, Cesar; Spouge, John L; Harris, David G

    2015-05-01

    Species in the genus Plasmodium cause malaria in humans and infect a variety of mammals and other vertebrates. Currently, estimated ages for several mammalian Plasmodium parasites differ by as much as one order of magnitude, an inaccuracy that frustrates reliable estimation of evolutionary rates of disease-related traits. We developed a novel statistical approach to dating the relative age of evolutionary lineages, based on Total Least Squares regression. We validated this lineage dating approach by applying it to the genus Drosophila. Using data from the Drosophila 12 Genomes project, our approach accurately reconstructs the age of well-established Drosophila clades, including the speciation event that led to the subgenera Drosophila and Sophophora, and age of the melanogaster species subgroup. We applied this approach to hundreds of loci from seven mammalian Plasmodium species. We demonstrate the existence of a molecular clock specific to individual Plasmodium proteins, and estimate the relative age of mammalian-infecting Plasmodium. These analyses indicate that: 1) the split between the human parasite Plasmodium vivax and P. knowlesi, from Old World monkeys, occurred 6.1 times earlier than that between P. falciparum and P. reichenowi, parasites of humans and chimpanzees, respectively; and 2) mammalian Plasmodium parasites originated 22 times earlier than the split between P. falciparum and P. reichenowi. Calibrating the absolute divergence times for Plasmodium with eukaryotic substitution rates, we show that the split between P. falciparum and P. reichenowi occurred 3.0-5.5 Ma, and that mammalian Plasmodium parasites originated over 64 Ma. Our results indicate that mammalian-infecting Plasmodium evolved contemporaneously with their hosts, with little evidence for parasite host-switching on an evolutionary scale, and provide a solid timeframe within which to place the evolution of new Plasmodium species. PMID:25589738

  14. A New Method for Estimating Species Age Supports the Coexistence of Malaria Parasites and Their Mammalian Hosts

    PubMed Central

    Silva, Joana C.; Egan, Amy; Arze, Cesar; Spouge, John L.; Harris, David G.

    2015-01-01

    Species in the genus Plasmodium cause malaria in humans and infect a variety of mammals and other vertebrates. Currently, estimated ages for several mammalian Plasmodium parasites differ by as much as one order of magnitude, an inaccuracy that frustrates reliable estimation of evolutionary rates of disease-related traits. We developed a novel statistical approach to dating the relative age of evolutionary lineages, based on Total Least Squares regression. We validated this lineage dating approach by applying it to the genus Drosophila. Using data from the Drosophila 12 Genomes project, our approach accurately reconstructs the age of well-established Drosophila clades, including the speciation event that led to the subgenera Drosophila and Sophophora, and age of the melanogaster species subgroup. We applied this approach to hundreds of loci from seven mammalian Plasmodium species. We demonstrate the existence of a molecular clock specific to individual Plasmodium proteins, and estimate the relative age of mammalian-infecting Plasmodium. These analyses indicate that: 1) the split between the human parasite Plasmodium vivax and P. knowlesi, from Old World monkeys, occurred 6.1 times earlier than that between P. falciparum and P. reichenowi, parasites of humans and chimpanzees, respectively; and 2) mammalian Plasmodium parasites originated 22 times earlier than the split between P. falciparum and P. reichenowi. Calibrating the absolute divergence times for Plasmodium with eukaryotic substitution rates, we show that the split between P. falciparum and P. reichenowi occurred 3.0–5.5 Ma, and that mammalian Plasmodium parasites originated over 64 Ma. Our results indicate that mammalian-infecting Plasmodium evolved contemporaneously with their hosts, with little evidence for parasite host-switching on an evolutionary scale, and provide a solid timeframe within which to place the evolution of new Plasmodium species. PMID:25589738

  15. The March Toward Malaria Vaccines.

    PubMed

    Hoffman, Stephen L; Vekemans, Johan; Richie, Thomas L; Duffy, Patrick E

    2015-12-01

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  16. The march toward malaria vaccines.

    PubMed

    Hoffman, Stephen L; Vekemans, Johan; Richie, Thomas L; Duffy, Patrick E

    2015-11-27

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  17. Role for the Plasmodium sporozoite-specific transmembrane protein S6 in parasite motility and efficient malaria transmission.

    PubMed

    Steinbuechel, Marion; Matuschewski, Kai

    2009-02-01

    Malaria transmission occurs by intradermal deposition of Plasmodium sporozoites during the infectious bite of a female Anopheles mosquito. After formation in midgut-associated oocysts sporozoites actively enter mosquito salivary glands and subsequently invade host hepatocytes where they transform into clinically silent liver stages. To date, two sporozoite-specific transmembrane proteins have been identified that perform vital functions in natural malaria transmission. The sporozoite invasin TRAP drives sporozoite motility and target cell entry whereas the adhesin MAEBL mediates sporozoite recognition of and attachment to salivary glands. Here, we demonstrate that the sporozoite-specific transmembrane protein S6 is required for efficient malaria transmission to the vertebrate host. Targeted deletion of S6 results in severe impairment of sporozoite gliding motility and invasion of mosquito salivary glands. During sporozoite maturation S6 expression is tightly regulated by transcriptional and translational control. We propose that S6 functions together with TRAP/MIC2 family invasins to direct fast, efficient and specific cell entry and, ultimately, life cycle progression of the malaria sporozoite. PMID:19016774

  18. In Silico Designing and Analysis of Inhibitors against Target Protein Identified through Host-Pathogen Protein Interactions in Malaria

    PubMed Central

    Samant, Monika; Chadha, Nidhi; Tiwari, Anjani K.; Hasija, Yasha

    2016-01-01

    Malaria, a life-threatening blood disease, has been a major concern in the field of healthcare. One of the severe forms of malaria is caused by the parasite Plasmodium falciparum which is initiated through protein interactions of pathogen with the host proteins. It is essential to analyse the protein-protein interactions among the host and pathogen for better understanding of the process and characterizing specific molecular mechanisms involved in pathogen persistence and survival. In this study, a complete protein-protein interaction network of human host and Plasmodium falciparum has been generated by integration of the experimental data and computationally predicting interactions using the interolog method. The interacting proteins were filtered according to their biological significance and functional roles. α-tubulin was identified as a potential protein target and inhibitors were designed against it by modification of amiprophos methyl. Docking and binding affinity analysis showed two modified inhibitors exhibiting better docking scores of −10.5 kcal/mol and −10.43 kcal/mol and an improved binding affinity of −83.80 kJ/mol and −98.16 kJ/mol with the target. These inhibitors can further be tested and validated in vivo for their properties as an antimalarial drug. PMID:27057354

  19. Yeast-based high-throughput screen identifies Plasmodium falciparum equilibrative nucleoside transporter 1 inhibitors that kill malaria parasites.

    PubMed

    Frame, I J; Deniskin, Roman; Rinderspacher, Alison; Katz, Francine; Deng, Shi-Xian; Moir, Robyn D; Adjalley, Sophie H; Coburn-Flynn, Olivia; Fidock, David A; Willis, Ian M; Landry, Donald W; Akabas, Myles H

    2015-03-20

    Equilibrative transporters are potential drug targets; however, most functional assays involve radioactive substrate uptake that is unsuitable for high-throughput screens (HTS). We developed a robust yeast-based growth assay that is potentially applicable to many equilibrative transporters. As proof of principle, we applied our approach to Equilibrative Nucleoside Transporter 1 of the malarial parasite Plasmodium falciparum (PfENT1). PfENT1 inhibitors might serve as novel antimalarial drugs since PfENT1-mediated purine import is essential for parasite proliferation. To identify PfENT1 inhibitors, we screened 64 560 compounds and identified 171 by their ability to rescue the growth of PfENT1-expressing fui1Δ yeast in the presence of a cytotoxic PfENT1 substrate, 5-fluorouridine (5-FUrd). In secondary assays, nine of the highest activity compounds inhibited PfENT1-dependent growth of a purine auxotrophic yeast strain with adenosine as the sole purine source (IC50 0.2-2 μM). These nine compounds completely blocked [(3)H]adenosine uptake into PfENT1-expressing yeast and erythrocyte-free trophozoite-stage parasites (IC50 5-50 nM), and inhibited chloroquine-sensitive and -resistant parasite proliferation (IC50 5-50 μM). Wild-type (WT) parasite IC50 values were up to 4-fold lower compared to PfENT1-knockout (pfent1Δ) parasites. pfent1Δ parasite killing showed a delayed-death phenotype not observed with WT. We infer that, in parasites, the compounds inhibit both PfENT1 and a secondary target with similar efficacy. The secondary target identity is unknown, but its existence may reduce the likelihood of parasites developing resistance to PfENT1 inhibitors. Our data support the hypothesis that blocking purine transport through PfENT1 may be a novel and compelling approach for antimalarial drug development. PMID:25602169

  20. Spleen-Dependent Regulation of Antigenic Variation in Malaria Parasites: Plasmodium knowlesi SICAvar Expression Profiles in Splenic and Asplenic Hosts

    PubMed Central

    Lapp, Stacey A.; Korir-Morrison, Cindy; Jiang, Jianlin; Bai, Yaohui; Corredor, Vladimir; Galinski, Mary R.

    2013-01-01

    Background Antigenic variation by malaria parasites was first described in Plasmodium knowlesi, which infects humans and macaque monkeys, and subsequently in P. falciparum, the most virulent human parasite. The schizont-infected cell agglutination (SICA) variant proteins encoded by the SICAvar multigene family in P. knowlesi, and Erythrocyte Membrane Protein-1 (EMP-1) antigens encoded by the var multigene family in P. falciparum, are expressed at the surface of infected erythrocytes, are associated with virulence, and serve as determinants of naturally acquired immunity. A parental P. knowlesi clone, Pk1(A+), and a related progeny clone, Pk1(B+)1+, derived by an in vivo induced variant antigen switch, were defined by the expression of distinct SICA variant protein doublets of 210/190 and 205/200 kDa, respectively. Passage of SICA[+] infected erythrocytes through splenectomized rhesus monkeys results in the SICA[-] phenotype, defined by the lack of surface expression and agglutination with variant specific antisera. Principal Findings We have investigated SICAvar RNA and protein expression in Pk1(A+), Pk1(B+)1+, and SICA[-] parasites. The Pk1(A+) and Pk1(B+)1+ parasites express different distinct SICAvar transcript and protein repertoires. By comparison, SICA[-] parasites are characterized by a vast reduction in SICAvar RNA expression, the lack of full-length SICAvar transcript signals on northern blots, and correspondingly, the absence of any SICA protein detected by mass spectrometry. Significance SICA protein expression may be under transcriptional as well as post-transcriptional control, and we show for the first time that the spleen, an organ central to blood-stage immunity in malaria, exerts an influence on these processes. Furthermore, proteomics has enabled the first in-depth characterization of SICA[+] protein phenotypes and we show that the in vivo switch from Pk1(A+) to Pk1(B+)1+ parasites resulted in a complete change in SICA profiles. These results

  1. Immunological Cross-Reactivity between Malaria Vaccine Target Antigen P48/45 in Plasmodium vivax and P. falciparum and Cross-Boosting of Immune Responses.

    PubMed

    Cao, Yi; Bansal, Geetha P; Merino, Kristen; Kumar, Nirbhay

    2016-01-01

    In general, malaria immunity has been suggested to be species specific with very little, if any, known cross-reactivity between Plasmodium vivax and P. falciparum, both of which are responsible for >90% of human malaria, and co-endemic in many countries. It is therefore believed that species-specific immunity may be needed to target different species of Plasmodium. Pfs48/45 and Pvs48/45 are well established targets in the sexual stages of the malaria parasites, and are being pursued for the development of transmission blocking vaccines. Comparison of their sequences reveals 61% and 55% identity at the DNA and protein level, respectively raising the possibility that these two target antigens might share cross-reacting epitopes. Having succeeded in expressing recombinant Pfs48/45 and Pvs48/45 proteins, we hypothesized that these proteins will not only exhibit immunological cross-reactivity but also cross-boost immune responses. Mice were immunized with purified recombinant proteins using CFA, Montanide ISA-51 and alum as adjuvants, and the sera were analyzed by ELISA, Western blotting and indirect fixed and live IFA to address the hypothesis. Our studies revealed that Pvs48/45-immune sera showed strong cross-reactivity to full length Pfs48/45 protein, and the majority of this cross reactivity was in the amino-terminal and carboxyl-terminal sub-fragments of Pfs48/45. In cross-boosting experiments Pfs48/45 and Pvs48/45 antigens were able to cross-boost each other in mouse immunization studies. Additionally we also noticed an effect of adjuvants in the overall magnitude of observed cross-reactivity. These studies may have significant implications for immunity targeting transmission of both the species of malaria parasites. PMID:27438603

  2. Immunological Cross-Reactivity between Malaria Vaccine Target Antigen P48/45 in Plasmodium vivax and P. falciparum and Cross–Boosting of Immune Responses

    PubMed Central

    Cao, Yi; Bansal, Geetha P.; Merino, Kristen; Kumar, Nirbhay

    2016-01-01

    In general, malaria immunity has been suggested to be species specific with very little, if any, known cross-reactivity between Plasmodium vivax and P. falciparum, both of which are responsible for >90% of human malaria, and co-endemic in many countries. It is therefore believed that species-specific immunity may be needed to target different species of Plasmodium. Pfs48/45 and Pvs48/45 are well established targets in the sexual stages of the malaria parasites, and are being pursued for the development of transmission blocking vaccines. Comparison of their sequences reveals 61% and 55% identity at the DNA and protein level, respectively raising the possibility that these two target antigens might share cross-reacting epitopes. Having succeeded in expressing recombinant Pfs48/45 and Pvs48/45 proteins, we hypothesized that these proteins will not only exhibit immunological cross–reactivity but also cross-boost immune responses. Mice were immunized with purified recombinant proteins using CFA, Montanide ISA-51 and alum as adjuvants, and the sera were analyzed by ELISA, Western blotting and indirect fixed and live IFA to address the hypothesis. Our studies revealed that Pvs48/45-immune sera showed strong cross-reactivity to full length Pfs48/45 protein, and the majority of this cross reactivity was in the amino-terminal and carboxyl-terminal sub-fragments of Pfs48/45. In cross-boosting experiments Pfs48/45 and Pvs48/45 antigens were able to cross-boost each other in mouse immunization studies. Additionally we also noticed an effect of adjuvants in the overall magnitude of observed cross-reactivity. These studies may have significant implications for immunity targeting transmission of both the species of malaria parasites. PMID:27438603

  3. Polymorphism in dhfr/dhps genes, parasite density and ex vivo response to pyrimethamine in Plasmodium falciparum malaria parasites in Thies, Senegal.

    PubMed

    Ndiaye, Daouda; Dieye, Baba; Ndiaye, Yaye D; Van Tyne, Daria; Daniels, Rachel; Bei, Amy K; Mbaye, Aminata; Valim, Clarissa; Lukens, Amanda; Mboup, Souleymane; Ndir, Omar; Wirth, Dyann F; Volkman, Sarah

    2013-12-01

    Resistance to sulfadoxine-pyrimethamine (SP) in Plasmodium falciparum malaria parasites is associated with mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes, and these mutations have spread resistance worldwide. SP, used for several years in Senegal, has been recommended for intermittent preventive treatment for malaria in pregnancy (IPTp) and has been widely implemented since 2003 in this country. There is currently limited data on SP resistance from molecular marker genotyping, and no data on pyrimethamine ex vivo sensitivity in Senegal. Molecular markers of SP resistance and pyrimethamine ex vivo sensitivity were investigated in 416 parasite samples collected from the general population, from the Thies region between 2003 and 2011. The prevalence of the N51I/C59R/S108N triple mutation in dhfr increased from 40% in 2003 to 93% in 2011. Furthermore, the prevalence of the dhfr N51I/C59R/S108N and dhps A437G quadruple mutation increased, from 20% to 66% over the same time frame, then down to 44% by 2011. There was a significant increase in the prevalence of the dhfr triple mutation, as well as an association between dhfr genotypes and pyrimethamine response. Conversely, dhps mutations in codons 436 and 437 did not show consistent variation between 2003 and 2011. These findings suggest that regular screening for molecular markers of antifolate resistance and ex vivo drug response monitoring should be incorporated with ongoing in vivo efficacy monitoring in areas where IPTp-SP is implemented and where pyrimethamine and sulfa drugs are still widely administered in the general population. PMID:24533303

  4. Estimating malaria parasite density: assumed white blood cell count of 10,000/μl of blood is appropriate measure in Central Ghana

    PubMed Central

    2012-01-01

    Background White blood cells count (WBCc) is a bedrock in the estimation of malaria parasite density in malaria field trials, interventions and patient management. White blood cells are indirectly and relatively used in microscopy to estimate the density of malaria parasite infections. Due to frequent lack of facilities in some malaria-endemic countries, in order to quantify WBCc of patients, an assumed WBCc of 8.0 X 10(9)/L has been set by the World Health Organization to help in estimating malaria parasite densities. Methods This comparative analysis study, in Central Ghana, compiled laboratory data of 5,902 Plasmodium falciparum malaria parasite positive samples. Samples were obtained from consented participants of age groups less than five years. Full blood counts (FBC) of participants’ samples were analysed using the ABX Micros 60 Haematology Analyzer. Blood slides were read by two competent microscopists to produce concordant results. All internal and external quality control measures were carried out appropriately. Parasite densities were calculated using participants’ absolute WBCc and assumed WBCc of 5,000 to 10,000 per microlitre of blood. Results From the 5,902 Pf malaria positive samples, the mean (SD) WBCc and geometric mean parasite density were 10.4 (4.6) × 10(9)/L and 7,557/μL (95 % CI 7,144/μL to 7,994/μL) respectively. The difference in the geometric mean parasite densities calculated using absolute WBCs and compared to densities with assumed WBCs counts were significantly lower for 5.0 × 10(9)/L; 3,937/μL, 6.0 × 10(9)/L; 4,725/μL and 8.0 × 10(9)/L; 6,300/μL. However, the difference in geometric mean parasite density, 7,874/μL (95 % CI, 7,445/μL to 8,328/μL), with assumed WBCc of 10.0 × 10(9)/L was not significant. Conclusion Using the assumed WBCc of 8.0 X 10(9)/L or lower to estimate malaria parasite densities in Pf infected children less than five years old could result in significant underestimation of

  5. Targets and Mechanisms Associated with Protection from Severe Plasmodium falciparum Malaria in Kenyan Children

    PubMed Central

    Sondén, Klara; Llewellyn, David; Rono, Josea; Guleid, Fatuma; Williams, Andrew R.; Ogada, Edna; Thairu, Amos; Färnert, Anna; Marsh, Kevin; Draper, Simon J.; Osier, Faith H. A.

    2016-01-01

    Severe malaria (SM) is a life-threatening complication of infection with Plasmodium falciparum. Epidemiological observations have long indicated that immunity against SM is acquired relatively rapidly, but prospective studies to investigate its immunological basis are logistically challenging and have rarely been undertaken. We investigated the merozoite targets and antibody-mediated mechanisms associated with protection against SM in Kenyan children aged 0 to 2 years. We designed a unique prospective matched case-control study of well-characterized SM clinical phenotypes nested within a longitudinal birth cohort of children (n = 5,949) monitored over the first 2 years of life. We quantified immunological parameters in sera collected before the SM event in cases and their individually matched controls to evaluate the prospective odds of developing SM in the first 2 years of life. Anti-AMA1 antibodies were associated with a significant reduction in the odds of developing SM (odds ratio [OR] = 0.37; 95% confidence interval [CI] = 0.15 to 0.90; P = 0.029) after adjustment for responses to all other merozoite antigens tested, while those against MSP-2, MSP-3, Plasmodium falciparum Rh2 [PfRh2], MSP-119, and the infected red blood cell surface antigens were not. The combined ability of total IgG to inhibit parasite growth and mediate the release of reactive oxygen species from neutrophils was associated with a marked reduction in the odds of developing SM (OR = 0.07; 95% CI = 0.006 to 0.82; P = 0.03). Assays of these two functional mechanisms were poorly correlated (Spearman rank correlation coefficient [rs] = 0.12; P = 0.07). Our data provide epidemiological evidence that multiple antibody-dependent mechanisms contribute to protective immunity via distinct targets whose identification could accelerate the development of vaccines to protect against SM. PMID:26787721

  6. Targets and Mechanisms Associated with Protection from Severe Plasmodium falciparum Malaria in Kenyan Children.

    PubMed

    Murungi, Linda M; Sondén, Klara; Llewellyn, David; Rono, Josea; Guleid, Fatuma; Williams, Andrew R; Ogada, Edna; Thairu, Amos; Färnert, Anna; Marsh, Kevin; Draper, Simon J; Osier, Faith H A

    2016-04-01

    Severe malaria (SM) is a life-threatening complication of infection with Plasmodium falciparum Epidemiological observations have long indicated that immunity against SM is acquired relatively rapidly, but prospective studies to investigate its immunological basis are logistically challenging and have rarely been undertaken. We investigated the merozoite targets and antibody-mediated mechanisms associated with protection against SM in Kenyan children aged 0 to 2 years. We designed a unique prospective matched case-control study of well-characterized SM clinical phenotypes nested within a longitudinal birth cohort of children (n= 5,949) monitored over the first 2 years of life. We quantified immunological parameters in sera collected before the SM event in cases and their individually matched controls to evaluate the prospective odds of developing SM in the first 2 years of life. Anti-AMA1 antibodies were associated with a significant reduction in the odds of developing SM (odds ratio [OR] = 0.37; 95% confidence interval [CI] = 0.15 to 0.90; P= 0.029) after adjustment for responses to all other merozoite antigens tested, while those against MSP-2, MSP-3, Plasmodium falciparum Rh2 [PfRh2], MSP-119, and the infected red blood cell surface antigens were not. The combined ability of total IgG to inhibit parasite growth and mediate the release of reactive oxygen species from neutrophils was associated with a marked reduction in the odds of developing SM (OR = 0.07; 95% CI = 0.006 to 0.82;P= 0.03). Assays of these two functional mechanisms were poorly correlated (Spearman rank correlation coefficient [rs] = 0.12;P= 0.07). Our data provide epidemiological evidence that multiple antibody-dependent mechanisms contribute to protective immunity via distinct targets whose identification could accelerate the development of vaccines to protect against SM. PMID:26787721

  7. Functional Analysis of Protein Kinase CK2 of the Human Malaria Parasite Plasmodium falciparum▿ †

    PubMed Central

    Holland, Zoë; Prudent, Renaud; Reiser, Jean-Baptiste; Cochet, Claude; Doerig, Christian

    2009-01-01

    Protein kinase CK2 (casein kinase 2) is a eukaryotic serine/threonine protein kinase with multiple substrates and roles in diverse cellular processes, including differentiation, proliferation, and translation. The mammalian holoenzyme consists of two catalytic alpha or alpha′ subunits and two regulatory beta subunits. We report the identification and characterization of a Plasmodium falciparum CK2α orthologue, PfCK2α, and two PfCK2β orthologues, PfCK2β1 and PfCK2β2. Recombinant PfCK2α possesses protein kinase activity, exhibits similar substrate and cosubstrate preferences to those of CK2α subunits from other organisms, and interacts with both of the PfCK2β subunits in vitro. Gene disruption experiments show that the presence of PfCK2α is crucial to asexual blood stage parasites and thereby validate the enzyme as a possible drug target. PfCK2α is amenable to inhibitor screening, and we report differential susceptibility between the human and P. falciparum CK2α enzymes to a small molecule inhibitor. Taken together, our data identify PfCK2α as a potential target for antimalarial chemotherapeutic intervention. PMID:19114502

  8. Targeting vivax malaria in the Asia Pacific: The Asia Pacific Malaria Elimination Network Vivax Working Group.

    PubMed

    2015-01-01

    The Asia Pacific Malaria Elimination Network (APMEN) is a collaboration of 18 country partners committed to eliminating malaria from within their borders. Over the past 5 years, APMEN has helped to build the knowledge, tools and in-country technical expertise required to attain this goal. At its inaugural meeting in Brisbane in 2009, Plasmodium vivax infections were identified across the region as a common threat to this ambitious programme; the APMEN Vivax Working Group was established to tackle specifically this issue. The Working Group developed a four-stage strategy to identify knowledge gaps, build regional consensus on shared priorities, generate evidence and change practice to optimize malaria elimination activities. This case study describes the issues faced and the solutions found in developing this robust strategic partnership between national programmes and research partners within the Working Group. The success of the approach adopted by the group may facilitate similar applications in other regions seeking to deploy evidence-based policy and practice. PMID:26627892

  9. The impact of cooperative social organization on reducing the prevalence of malaria and intestinal parasite infections in awramba, a rural community in South gondar, ethiopia.

    PubMed

    Yihenew, Gebeyehu; Adamu, Haileeyesus; Petros, Beyene

    2014-01-01

    Introduction. Parasitic diseases are the major causes of human health problem in Ethiopia. The high prevalence of parasitic infections is closely correlated with poverty, poor environmental hygiene, and impoverished health services. Objective. The study was conducted to assess the impact of health-conscious Awramba cooperative community and its neighboring communities on the prevalence of parasitic infections in South Gondar, Ethiopia. Methods. Single stool specimens were collected from 392 individuals from Awramba and the neighboring communities. Specimens were examined microscopically for the presence of parasites using microscopy. Questionnaire was administered to determine the knowledge attitude and practice (KAP) of study participants. Results. Of the total 392 study participants examined, 58(14.8%) were positive for malaria and 173 (44.1%) for intestinal parasites. The prevalence of malaria in Awramba community (5.1%) was less than that in neighboring communities (24.5%). The prevalence of parasitic infections in Awramba (18.8%) was less than that of the neighboring communities (69.4%). Conclusion. This study showed that good household and environmental hygiene, good toilet construction and usage, and proper utilization of ITN in Awramba cooperative community have significantly contributed to the reduction of the burden of parasitic infections. Thus, the positive achievement in reducing parasitic infections in Awramba cooperative community could be used as a model for affordable health intervention in the neighboring communities, in particular, and the whole country in general. PMID:25180032

  10. The Impact of Cooperative Social Organization on Reducing the Prevalence of Malaria and Intestinal Parasite Infections in Awramba, a Rural Community in South Gondar, Ethiopia

    PubMed Central

    Yihenew, Gebeyehu; Petros, Beyene

    2014-01-01

    Introduction. Parasitic diseases are the major causes of human health problem in Ethiopia. The high prevalence of parasitic infections is closely correlated with poverty, poor environmental hygiene, and impoverished health services. Objective. The study was conducted to assess the impact of health-conscious Awramba cooperative community and its neighboring communities on the prevalence of parasitic infections in South Gondar, Ethiopia. Methods. Single stool specimens were collected from 392 individuals from Awramba and the neighboring communities. Specimens were examined microscopically for the presence of parasites using microscopy. Questionnaire was administered to determine the knowledge attitude and practice (KAP) of study participants. Results. Of the total 392 study participants examined, 58(14.8%) were positive for malaria and 173 (44.1%) for intestinal parasites. The prevalence of malaria in Awramba community (5.1%) was less than that in neighboring communities (24.5%). The prevalence of parasitic infections in Awramba (18.8%) was less than that of the neighboring communities (69.4%). Conclusion. This study showed that good household and environmental hygiene, good toilet construction and usage, and proper utilization of ITN in Awramba cooperative community have significantly contributed to the reduction of the burden of parasitic infections. Thus, the positive achievement in reducing parasitic infections in Awramba cooperative community could be used as a model for affordable health intervention in the neighboring communities, in particular, and the whole country in general. PMID:25180032

  11. Multiple lineages of Avian malaria parasites (Plasmodium) in the Galapagos Islands and evidence for arrival via migratory birds.

    PubMed

    Levin, I I; Zwiers, P; Deem, S L; Geest, E A; Higashiguchi, J M; Iezhova, T A; Jiménez-Uzcátegui, G; Kim, D H; Morton, J P; Perlut, N G; Renfrew, R B; Sari, E H R; Valkiunas, G; Parker, P G

    2013-12-01

    Haemosporidian parasites in the genus Plasmodium were recently detected through molecular screening in the Galapagos Penguin (Spheniscus mendiculus). We summarized results of an archipelago-wide screen of 3726 endemic birds representing 22 species for Plasmodium spp. through a combination of molecular and microscopy techniques. Three additional Plasmodium lineages were present in Galapagos. Lineage A-infected penguins, Yellow Warblers (Setophaga petechia aureola), and one Medium Ground Finch (Geospiza fortis) and was detected at multiple sites in multiple years [corrected]. The other 3 lineages were each detected at one site and at one time; apparently, they were transient infections of parasites not established on the archipelago. No gametocytes were found in blood smears of infected individuals; thus, endemic Galapagos birds may be dead-end hosts for these Plasmodium lineages. Determining when and how parasites and pathogens arrive in Galapagos is key to developing conservation strategies to prevent and mitigate the effects of introduced diseases. To assess the potential for Plasmodium parasites to arrive via migratory birds, we analyzed blood samples from 438 North American breeding Bobolinks (Dolichonyx oryzivorus), the only songbird that regularly migrates through Galapagos. Two of the ephemeral Plasmodium lineages (B and C) found in Galapagos birds matched parasite sequences from Bobolinks. Although this is not confirmation that Bobolinks are responsible for introducing these lineages, evidence points to higher potential arrival rates of avian pathogens than previously thought. Linajes Múltiples de Parásitos de Malaria Aviar (Plasmodium) en las Islas Galápagos y Evidencia de su Arribo por Medio de Aves Migratorias. PMID:24033638

  12. Cross-stage immunity for malaria vaccine development.

    PubMed

    Nahrendorf, Wiebke; Scholzen, Anja; Sauerwein, Robert W; Langhorne, Jean

    2015-12-22

    A vaccine against malaria is urgently needed for control and eventual eradication. Different approaches are pursued to induce either sterile immunity directed against pre-erythrocytic parasites or to mimic naturally acquired immunity by controlling blood-stage parasite densities and disease severity. Pre-erythrocytic and blood-stage malaria vaccines are often seen as opposing tactics, but it is likely that they have to be combined into a multi-stage malaria vaccine to be optimally safe and effective. Since many antigenic targets are shared between liver- and blood-stage parasites, malaria vaccines have the potential to elicit cross-stage protection with immune mechanisms against both stages complementing and enhancing each other. Here we discuss evidence from pre-erythrocytic and blood-stage subunit and whole parasite vaccination approaches that show that protection against malaria is not necessarily stage-specific. Parasites arresting at late liver-stages especially, can induce powerful blood-stage immunity, and similarly exposure to blood-stage parasites can afford pre-erythrocytic immunity. The incorporation of a blood-stage component into a multi-stage malaria vaccine would hence not only combat breakthrough infections in the blood should the pre-erythrocytic component fail to induce sterile protection, but would also actively enhance the pre-erythrocytic potency of this vaccine. We therefore advocate that future studies should concentrate on the identification of cross-stage protective malaria antigens, which can empower multi-stage malaria vaccine development. PMID:26469724

  13. Prevalence and diversity of avian malaria parasites in migratory Black Skimmers (Rynchops niger, Laridae, Charadriiformes) from the Brazilian Amazon Basin.

    PubMed

    Roos, F L; Belo, N O; Silveira, P; Braga, E M

    2015-10-01

    The Medium Solimões River region in the Brazilian Amazon Basin is an area utilized for reproduction and nesting by a variety of species of migratory aquatic birds such as Black Skimmers (Rynchops niger). These migratory birds form mixed-species reproductive colonies with high population densities and exhibit a large range of migration routes. This study aimed to describe the prevalence and diversity of the avian malaria parasites Plasmodium and Haemoproteus in Black Skimmers, on the basis of the association between microscopic observation of blood smears and amplification of the mitochondrial cytochrome b gene (mtDNA cyt-b). The overall prevalence rates of the parasites for juvenile and adult bird specimens were 16% (5/31) and 22% (15/68), respectively. Sequencing the mtDNA cyt-b marker revealed two Plasmodium lineages, which had been previously described in different regions of the American continent, including a Neotropical region in Southeast Brazil, and one Haemoproteus lineage. The fact that avian malarial parasites have been found infecting the Black Skimmers in the Brazilian Amazon ecosystem, which exhibits considerable diversity, highlights the importance of these migratory birds as a potential source of infection and dispersion of pathogens to other susceptible birds of the Nearctic and Neotropical regions. PMID:26193823

  14. Variation in susceptibility of African Plasmodium falciparum malaria parasites to TEP1 mediated killing in Anopheles gambiae mosquitoes.

    PubMed

    Eldering, Maarten; Morlais, Isabelle; van Gemert, Geert-Jan; van de Vegte-Bolmer, Marga; Graumans, Wouter; Siebelink-Stoter, Rianne; Vos, Martijn; Abate, Luc; Roeffen, Will; Bousema, Teun; Levashina, Elena A; Sauerwein, Robert W

    2016-01-01

    Anopheles gambiae s.s. mosquitoes are efficient vectors for Plasmodium falciparum, although variation exists in their susceptibility to infection. This variation depends partly on the thioester-containing protein 1 (TEP1) and TEP depletion results in significantly elevated numbers of oocysts in susceptible and resistant mosquitoes. Polymorphism in the Plasmodium gene coding for the surface protein Pfs47 modulates resistance of some parasite laboratory strains to TEP1-mediated killing. Here, we examined resistance of P. falciparum isolates of African origin (NF54, NF165 and NF166) to TEP1-mediated killing in a susceptible Ngousso and a refractory L3-5 strain of A. gambiae. All parasite clones successfully developed in susceptible mosquitoes with limited evidence for an impact of TEP1 on transmission efficiency. In contrast, NF166 and NF165 oocyst densities were strongly reduced in refractory mosquitoes and TEP1 silencing significantly increased oocyst densities. Our results reveal differences between African P. falciparum strains in their capacity to evade TEP1-mediated killing in resistant mosquitoes. There was no significant correlation between Pfs47 genotype and resistance of a given P. falciparum isolate for TEP1 killing. These data suggest that polymorphisms in this locus are not the sole mediators of immune evasion of African malaria parasites. PMID:26861587

  15. Variation in susceptibility of African Plasmodium falciparum malaria parasites to TEP1 mediated killing in Anopheles gambiae mosquitoes

    PubMed Central

    Eldering, Maarten; Morlais, Isabelle; van Gemert, Geert-Jan; van de Vegte-Bolmer, Marga; Graumans, Wouter; Siebelink-Stoter, Rianne; Vos, Martijn; Abate, Luc; Roeffen, Will; Bousema, Teun; Levashina, Elena A.; Sauerwein, Robert W.

    2016-01-01

    Anopheles gambiae s.s. mosquitoes are efficient vectors for Plasmodium falciparum, although variation exists in their susceptibility to infection. This variation depends partly on the thioester-containing protein 1 (TEP1) and TEP depletion results in significantly elevated numbers of oocysts in susceptible and resistant mosquitoes. Polymorphism in the Plasmodium gene coding for the surface protein Pfs47 modulates resistance of some parasite laboratory strains to TEP1-mediated killing. Here, we examined resistance of P. falciparum isolates of African origin (NF54, NF165 and NF166) to TEP1-mediated killing in a susceptible Ngousso and a refractory L3–5 strain of A. gambiae. All parasite clones successfully developed in susceptible mosquitoes with limited evidence for an impact of TEP1 on transmission efficiency. In contrast, NF166 and NF165 oocyst densities were strongly reduced in refractory mosquitoes and TEP1 silencing significantly increased oocyst densities. Our results reveal differences between African P. falciparum strains in their capacity to evade TEP1-mediated killing in resistant mosquitoes. There was no significant correlation between Pfs47 genotype and resistance of a given P. falciparum isolate for TEP1 killing. These data suggest that polymorphisms in this locus are not the sole mediators of immune evasion of African malaria parasites. PMID:26861587

  16. Real-time in vivo imaging of transgenic bioluminescent blood stages of rodent malaria parasites in mice.

    PubMed

    Franke-Fayard, Blandine; Waters, Andrew P; Janse, Chris J

    2006-01-01

    This protocol describes a methodology for imaging the sequestration of infected erythrocytes of the rodent malaria parasite Plasmodium berghei in the bodies of live mice or in dissected organs, using a transgenic parasite that expresses luciferase. Real-time imaging of infected erythrocytes is performed by measuring bioluminescence produced by the enzymatic reaction between luciferase and its substrate luciferin, which is injected into the mice several minutes prior to imaging. The bioluminescence signal is detected by an intensified charge-coupled device (I-CCD) photon-counting video camera. Sequestration of infected erythrocytes is imaged during short-term infections with synchronous parasite development or during ongoing infections. With this technology, sequestration patterns of the schizont stage can be quantitatively analyzed within 1-2 d after infection. Real-time in vivo imaging of infected erythrocytes will provide increased insights into the dynamics of sequestration and its role in pathology, and can be used to evaluate strategies that prevent sequestration. PMID:17406270

  17. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum

    SciTech Connect

    Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

    1987-04-01

    Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of /sup 125/I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of /sup 125/I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes. By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen.

  18. Characterizing Types of Human Mobility to Inform Differential and Targeted Malaria Elimination Strategies in Northeast Cambodia

    PubMed Central

    Peeters Grietens, Koen; Gryseels, Charlotte; Dierickx, Susan; Bannister-Tyrrell, Melanie; Trienekens, Suzan; Uk, Sambunny; Phoeuk, Pisen; Suon, Sokha; Set, Srun; Gerrets, René; Hoibak, Sarah; Muela Ribera, Joan; Hausmann-Muela, Susanna; Tho, Sochantha; Durnez, Lies; Sluydts, Vincent; d’Alessandro, Umberto; Coosemans, Marc; Erhart, Annette

    2015-01-01

    Human population movements currently challenge malaria elimination in low transmission foci in the Greater Mekong Subregion. Using a mixed-methods design, combining ethnography (n = 410 interviews), malariometric data (n = 4996) and population surveys (n = 824 indigenous populations; n = 704 Khmer migrants) malaria vulnerability among different types of mobile populations was researched in the remote province of Ratanakiri, Cambodia. Different structural types of human mobility were identified, showing differential risk and vulnerability. Among local indigenous populations, access to malaria testing and treatment through the VMW-system and LLIN coverage was high but control strategies failed to account for forest farmers’ prolonged stays at forest farms/fields (61% during rainy season), increasing their exposure (p = 0.002). The Khmer migrants, with low acquired immunity, active on plantations and mines, represented a fundamentally different group not reached by LLIN-distribution campaigns since they were largely unregistered (79%) and unaware of the local VMW-system (95%) due to poor social integration. Khmer migrants therefore require control strategies including active detection, registration and immediate access to malaria prevention and control tools from which they are currently excluded. In conclusion, different types of mobility require different malaria elimination strategies. Targeting mobility without an in-depth understanding of malaria risk in each group challenges further progress towards elimination. PMID:26593245

  19. Characterizing Types of Human Mobility to Inform Differential and Targeted Malaria Elimination Strategies in Northeast Cambodia.

    PubMed

    Peeters Grietens, Koen; Gryseels, Charlotte; Dierickx, Susan; Bannister-Tyrrell, Melanie; Trienekens, Suzan; Uk, Sambunny; Phoeuk, Pisen; Suon, Sokha; Set, Srun; Gerrets, René; Hoibak, Sarah; Muela Ribera, Joan; Hausmann-Muela, Susanna; Tho, Sochantha; Durnez, Lies; Sluydts, Vincent; d'Alessandro, Umberto; Coosemans, Marc; Erhart, Annette

    2015-01-01

    Human population movements currently challenge malaria elimination in low transmission foci in the Greater Mekong Subregion. Using a mixed-methods design, combining ethnography (n = 410 interviews), malariometric data (n = 4996) and population surveys (n = 824 indigenous populations; n = 704 Khmer migrants) malaria vulnerability among different types of mobile populations was researched in the remote province of Ratanakiri, Cambodia. Different structural types of human mobility were identified, showing differential risk and vulnerability. Among local indigenous populations, access to malaria testing and treatment through the VMW-system and LLIN coverage was high but control strategies failed to account for forest farmers' prolonged stays at forest farms/fields (61% during rainy season), increasing their exposure (p = 0.002). The Khmer migrants, with low acquired immunity, active on plantations and mines, represented a fundamentally different group not reached by LLIN-distribution campaigns since they were largely unregistered (79%) and unaware of the local VMW-system (95%) due to poor social integration. Khmer migrants therefore require control strategies including active detection, registration and immediate access to malaria prevention and control tools from which they are currently excluded. In conclusion, different types of mobility require different malaria elimination strategies. Targeting mobility without an in-depth understanding of malaria risk in each group challenges further progress towards elimination. PMID:26593245

  20. A Research Agenda for Malaria Eradication: Vaccines

    PubMed Central

    2011-01-01

    Vaccines could be a crucial component of efforts to eradicate malaria. Current attempts to develop malaria vaccines are primarily focused on Plasmodium falciparum and are directed towards reducing morbidity and mortality. Continued support for these efforts is essential, but if malaria vaccines are to be used as part of a repertoire of tools for elimination or eradication of malaria, they will need to have an impact on malaria transmission. We introduce the concept of “vaccines that interrupt malaria transmission” (VIMT), which includes not only “classical” transmission-blocking vaccines that target the sexual and mosquito stages but also pre-erythrocytic and asexual stage vaccines that have an effect on transmission. VIMT may also include vaccines that target the vector to disrupt parasite development in the mosquito. Importantly, if eradication is to be achieved, malaria vaccine development efforts will need to target other malaria parasite species, especially Plasmodium vivax, where novel therapeutic vaccines against hypnozoites or preventive vaccines with effect against multiple stages could have enormous impact. A target product profile (TPP) for VIMT is proposed and a research agenda to address current knowledge gaps and develop tools necessary for design and development of VIMT is presented. PMID:21311586

  1. The biological control of the malaria vector.

    PubMed

    Kamareddine, Layla

    2012-09-01

    The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes. PMID:23105979

  2. Phase-diverse Fresnel coherent diffractive imaging of malaria parasite-infected red blood cells in the water window.

    PubMed

    Jones, M W M; Abbey, B; Gianoncelli, A; Balaur, E; Millet, C; Luu, M B; Coughlan, H D; Carroll, A J; Peele, A G; Tilley, L; van Riessen, G A

    2013-12-30

    Phase-diverse Fresnel coherent diffractive imaging has been shown to reveal the structure and composition of biological specimens with high sensitivity at nanoscale resolution. However, the method has yet to be applied using X-ray illumination with energy in the so-called 'water-window' that lies between the carbon and oxygen K edges. In this range, differences in the strength of the X-ray interaction for protein based biological materials and water is increased. Here we demonstrate a proof-of-principle application of FCDI at an X-ray energy within the water-window to a dehydrated cellular sample composed of red blood cells infected with the trophozoite stage of the malaria parasite, Plasmodium falciparum. Comparison of the results to both optical and electron microscopy shows that the correlative imaging methods that include water-window FCDI will find utility in studying cellular architecture. PMID:24514809

  3. Discriminating the intraerythrocytic lifecycle stages of the malaria parasite using synchrotron FT-IR microspectroscopy and an artificial neural network.

    PubMed

    Webster, Grant T; de Villiers, Katherine A; Egan, Timothy J; Deed, Samantha; Tilley, Leann; Tobin, Mark J; Bambery, Keith R; McNaughton, Don; Wood, Bayden R

    2009-04-01

    Synchrotron Fourier transform infrared (FT-IR) spectra of fixed single erythrocytes infected with Plasmodium falciparum at different stages of the intraerythrocytic cycle are presented for the first time. Bands assigned to the hemozoin moiety at 1712, 1664, and 1209 cm(-1) are observed in FT-IR difference spectra between uninfected erythrocytes and infected trophozoites. These bands are also found to be important contributors in separating the trophozoite spectra from the uninfected cell spectra in principal components analysis. All stages of the intraerythrocytic lifecycle of the malarial parasite, including the ring and schizont stage, can be differentiated by visual inspection of the C-H stretching region (3100-2800 cm(-1)) and by using principal components analysis. Bands at 2922, 2852, and 1738 cm(-1) assigned to the nu(asym)(CH(2) acyl chain lipids), nu(sym)(CH(2) acyl chain lipids), and the ester carbonyl band, respectively, increase as the parasite matures from its early ring stage to the trophozoite and finally to the schizont stage. Training of an artificial neural network showed that excellent automated spectroscopic discrimination between P. falciparum-infected cells and the control cells is possible. FT-IR difference spectra indicate a change in the production of unsaturated fatty acids as the parasite matures. The ring stage spectrum shows bands associated with cis unsaturated fatty acids. The schizont stage spectrum displays no evidence of cis bands and suggests an increase in saturated fatty acids. These results demonstrate that different phases of the P. falciparum intraerthyrocytic life cycle are characterized by different lipid compositions giving rise to distinct spectral profiles in the C-H stretching region. This insight paves the way for an automated infrared-based technology capable of diagnosing malaria at all intraerythrocytic stages of the parasite's life cycle. PMID:19278236

  4. Parasite Killing in Malaria Non-Vector Mosquito Anopheles culicifacies Species B: Implication of Nitric Oxide Synthase Upregulation

    PubMed Central

    Vijay, Sonam; Rawat, Manmeet; Adak, Tridibes; Dixit, Rajnikant; Nanda, Nutan; Srivastava, Harish; Sharma, Joginder K.; Prasad, Godavarthi B. K. S.; Sharma, Arun

    2011-01-01

    Background Anopheles culicifacies, the main vector of human malaria in rural India, is a complex of five sibling species. Despite being phylogenetically related, a naturally selected subgroup species B of this sibling species complex is found to be a poor vector of malaria. We have attempted to understand the differences between vector and non-vector Anopheles culicifacies mosquitoes in terms of transcriptionally activated nitric oxide synthase (AcNOS) physiologies to elucidate the mechanism of refractoriness. Identification of the differences between genes and gene products that may impart refractory phenotype can facilitate development of novel malaria transmission blocking strategies. Methodology/Principal Findings We conducted a study on phylogenetically related susceptible (species A) and refractory (species B) sibling species of An. culicifacies mosquitoes to characterize biochemical and molecular differences in AcNOS gene and gene elements and their ability to inhibit oocyst growth. We demonstrate that in species B, AcNOS specific activity and nitrite/nitrates in mid-guts and haemolymph were higher as compared to species A after invasion of the mid-gut by P. vivax at the beginning and during the course of blood feeding. Semiquantitative RT-PCR and real time PCR data of AcNOS concluded that this gene is more abundantly expressed in midgut of species B than in species A and is transcriptionally upregulated post blood meals. Dietary feeding of L-NAME along with blood meals significantly inhibited midgut AcNOS activity leading to an increase in oocyst production in An. culicifacies species B. Conclusions/Significance We hypothesize that upregulation of mosquito innate cytotoxicity due to NOS in refractory strain to Plasmodium vivax infection may contribute to natural refractoriness in An. culicifacies mosquito population. This innate capacity of refractory mosquitoes could represent the ancestral function of the mosquito immune system against the parasite and

  5. A Unique Virulence Gene Occupies a Principal Position in Immune Evasion by the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Heinberg, Adina R.; Wele, Mamadou; Chen, Qijun; Deitsch, Kirk W.

    2015-01-01

    Mutually exclusive gene expression, whereby only one member of a multi-gene family is selected for activation, is used by the malaria parasite Plasmodium falciparum to escape the human immune system and perpetuate long-term, chronic infections. A family of genes called var encodes the chief antigenic and virulence determinant of P. falciparum malaria. var genes are transcribed in a mutually exclusive manner, with switching between active genes resulting in antigenic variation. While recent work has shed considerable light on the epigenetic basis for var gene activation and silencing, how switching is controlled remains a mystery. In particular, switching seems not to be random, but instead appears to be coordinated to result in timely activation of individual genes leading to sequential waves of antigenically distinct parasite populations. The molecular basis for this apparent coordination is unknown. Here we show that var2csa, an unusual and highly conserved var gene, occupies a unique position within the var gene switching hierarchy. Induction of switching through the destabilization of var specific chromatin using both genetic and chemical methods repeatedly led to the rapid and exclusive activation of var2csa. Additional experiments demonstrated that these represent “true” switching events and not simply de-silencing of the var2csa promoter, and that activation is limited to the unique locus on chromosome 12. Combined with translational repression of var2csa transcripts, frequent “default” switching to this locus and detection of var2csa untranslated transcripts in non-pregnant individuals, these data suggest that var2csa could play a central role in coordinating switching, fulfilling a prediction made by mathematical models derived from population switching patterns. These studies provide the first insights into the mechanisms by which var gene switching is coordinated as well as an example of how a pharmacological agent can disrupt antigenic variation

  6. Targeting male mosquito mating behaviour for malaria control.

    PubMed

    Diabate, Abdoulaye; Tripet, Frédéric

    2015-01-01

    Malaria vector control relies heavily on the use of Long-Lasting Insecticidal Nets (LLINs) and Indoor Residual Spraying (IRS). These, together with the combined drug administration efforts to control malaria, have reduced the death toll to less than 700,000 deaths/year. This progress has engendered real excitement but the emergence and spread of insecticide resistance is challenging our ability to sustain and consolidate the substantial gains that have been made. Research is required to discover novel vector control tools that can supplement and improve the effectiveness of those currently available. Here, we argue that recent and continuing progress in our understanding of male mating biology is instrumental in the implementation of new approaches based on the release of either conventional sterile or genetically engineered males. Importantly, further knowledge of male biology could also lead to the development of new interventions, such as sound traps and male mass killing in swarms, and contribute to new population sampling tools. We review and discuss recent advances in the behavioural ecology of male mating with an emphasis on the potential applications that can be derived from such knowledge. We also highlight those aspects of male mating ecology that urgently require additional study in the future. PMID:26113015

  7. A Novel Xenomonitoring Technique Using Mosquito Excreta/Feces for the Detection of Filarial Parasites and Malaria

    PubMed Central

    Pilotte, Nils; Zaky, Weam I.; Abrams, Brian P.; Chadee, Dave D.; Williams, Steven A.

    2016-01-01

    Background Given the continued successes of the world’s lymphatic filariasis (LF) elimination programs and the growing successes of many malaria elimination efforts, the necessity of low cost tools and methodologies applicable to long-term disease surveillance is greater than ever before. As many countries reach the end of their LF mass drug administration programs and a growing number of countries realize unprecedented successes in their malaria intervention efforts, the need for practical molecular xenomonitoring (MX), capable of providing surveillance for disease recrudescence in settings of decreased parasite prevalence is increasingly clear. Current protocols, however, require testing of mosquitoes in pools of 25 or fewer, making high-throughput examination a challenge. The new method we present here screens the excreta/feces from hundreds of mosquitoes per pool and provides proof-of-concept for a practical alternative to traditional methodologies resulting in significant cost and labor savings. Methodology/Principal Findings Excreta/feces of laboratory reared Aedes aegypti or Anopheles stephensi mosquitoes provided with a Brugia malayi microfilaria-positive or Plasmodium vivax-positive blood meal respectively were tested for the presence of parasite DNA using real-time PCR. A titration of samples containing various volumes of B. malayi-negative mosquito feces mixed with positive excreta/feces was also tested to determine sensitivity of detection. Real-time PCR amplification of B. malayi and P. vivax DNA from the excreta/feces of infected mosquitoes was demonstrated, and B. malayi DNA in excreta/feces from one to two mf-positive blood meal-receiving mosquitoes was detected when pooled with volumes of feces from as many as 500 uninfected mosquitoes. Conclusions/Significance While the operationalizing of excreta/feces testing may require the development of new strategies for sample collection, the high-throughput nature of this new methodology has the

  8. Yeast-based High-Throughput Screen Identifies Plasmodium falciparum Equilibrative Nucleoside Transporter 1 Inhibitors That Kill Malaria Parasites

    PubMed Central

    Frame, I. J.; Deniskin, Roman; Rinderspacher, Alison; Katz, Francine; Deng, Shi-Xian; Moir, Robyn D.; Adjalley, Sophie H.; Coburn-Flynn, Olivia; Fidock, David A.; Willis, Ian M.; Landry, Donald W.; Akabas, Myles H.

    2015-01-01

    Equilibrative transporters are potential drug targets, however most functional assays involve radioactive substrate uptake that is unsuitable for high-throughput screens (HTS). We developed a robust yeast-based growth assay that is potentially applicable to many equilibrative transporters. As proof of principle, we applied our approach to Equilibrative Nucleoside Transporter 1 of the malarial parasite Plasmodium falciparum (PfENT1). PfENT1 inhibitors might serve as novel antimalarial drugs since PfENT1-mediated purine import is essential for parasite proliferation. To identify PfENT1 inhibitors, we screened 64,560 compounds and identified 171 by their ability to rescue the growth of PfENT1-expressing fui1Δ yeast in the presence of a cytotoxic PfENT1 substrate, 5-fluorouridine (5-FUrd). In secondary assays, nine of the highest activity compounds inhibited PfENT1-dependent growth of a purine auxotrophic yeast strain with adenosine as the sole purine source (IC50 0.2–2 µM). These nine compounds completely blocked [3H]adenosine uptake into PfENT1-expressing yeast and erythrocyte-free trophozoite-stage parasites (IC50 5–50 nM), and inhibited chloroquine-sensitive and -resistant parasite proliferation (IC50 5–50 µM). Wild-type (WT) parasite IC50 values were up to four-fold lower compared to PfENT1-knockout (pfent1Δ) parasites. pfent1Δ parasite killing showed a delayed-death phenotype not observed with WT. We infer that in parasites, the compounds inhibit both PfENT1 and a secondary target with similar efficacy. The secondary target identity is unknown, but its existence may reduce the likelihood of parasites developing resistance to PfENT1 inhibitors. Our data support the hypothesis that blocking purine transport through PfENT1 may be a novel and compelling approach for antimalarial drug development. PMID:25602169

  9. Electron microscope cytochemistry of host—parasite membrane interactions in malaria*

    PubMed Central

    Langreth, Susan G.

    1977-01-01

    Two membrane-bound enzymes were localized by electron microscope cytochemical techniques in Plasmodium lophurae and its host erythrocyte. Parasites were prepared by saponin lysis, French pressure cell lysis, or anti-red blood cell serum lysis; infected and uninfected erythrocyte ghosts were prepared by saponin or French pressure cell lysis. Enzyme incubations were performed on unfixed cells. Adenosinetriphosphatase (EC 3.6.1.3) activity was found on the inside of the ghost membrane and on the inside of the outer parasite membrane. NADH oxidase was found on the outside of the erythrocyte membrane and on the outside of the parasite outer membrane. The parasite plasma membrane was negative for both enzymes. The location of both enzymes on the outer parasite membrane were reversed from what one would have expected if the outer membrane had remained merely an invaginated erythrocyte membrane. It is concluded that the outer membrane, although derived from the red cell membrane, has been altered by its association with the malarial parasite. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15Fig. 16Fig. 17Fig. 18Fig. 19Fig. 20 PMID:145326

  10. Patterns of Infection and Patterns of Evolution: How a Malaria Parasite Brought "Monkeys and Man" Closer Together in the 1960s.

    PubMed

    Mason Dentinger, Rachel

    2016-04-01

    In 1960, American parasitologist Don Eyles was unexpectedly infected with a malariaparasite isolated from a macaque. He and his supervisor, G. Robert Coatney of the National Institutes of Health, had started this series of experiments with the assumption that humans were not susceptible to "monkey malaria." The revelation that a mosquito carrying a macaque parasite could infect a human raised a whole range of public health and biological questions. This paper follows Coatney's team of parasitologists and their subjects: from the human to the nonhuman; from the American laboratory to the forests of Malaysia; and between the domains of medical research and natural history. In the course of this research, Coatney and his colleagues inverted Koch's postulate, by which animal subjects are used to identify and understand human parasites. In contrast, Coatney's experimental protocol used human subjects to identify and understand monkey parasites. In so doing, the team repeatedly followed malaria parasites across the purported boundary separating monkeys and humans, a practical experience that created a sense of biological symmetry between these separate species. Ultimately, this led Coatney and his colleagues make evolutionary inferences, concluding "that monkeys and man are more closely related than some of us wish to admit." In following monkeys, men, and malaria across biological, geographical, and disciplinary boundaries, this paper offers a new historical narrative, demonstrating that the pursuit of public health agendas can fuel the expansion of evolutionary knowledge. PMID:26307748

  11. PlasmoGEM, a database supporting a community resource for large-scale experimental genetics in malaria parasites.

    PubMed

    Schwach, Frank; Bushell, Ellen; Gomes, Ana Rita; Anar, Burcu; Girling, Gareth; Herd, Colin; Rayner, Julian C; Billker, Oliver

    2015-01-01

    The Plasmodium Genetic Modification (PlasmoGEM) database (http://plasmogem.sanger.ac.uk) provides access to a resource of modular, versatile and adaptable vectors for genome modification of Plasmodium spp. parasites. PlasmoGEM currently consists of >2000 plasmids designed to modify the genome of Plasmodium berghei, a malaria parasite of rodents, which can be requested by non-profit research organisations free of charge. PlasmoGEM vectors are designed with long homology arms for efficient genome integration and carry gene specific barcodes to identify individual mutants. They can be used for a wide array of applications, including protein localisation, gene interaction studies and high-throughput genetic screens. The vector production pipeline is supported by a custom software suite that automates both the vector design process and quality control by full-length sequencing of the finished vectors. The PlasmoGEM web interface allows users to search a database of finished knock-out and gene tagging vectors, view details of their designs, download vector sequence in different formats and view available quality control data as well as suggested genotyping strategies. We also make gDNA library clones and intermediate vectors available for researchers to produce vectors for themselves. PMID:25593348

  12. Evolution of the Multi-Domain Structures of Virulence Genes in the Human Malaria Parasite, Plasmodium falciparum

    PubMed Central

    Buckee, Caroline O.; Recker, Mario

    2012-01-01

    The var gene family of Plasmodium falciparum encodes the immunodominant variant surface antigens PfEMP1. These highly polymorphic proteins are important virulence factors that mediate cytoadhesion to a variety of host tissues, causing sequestration of parasitized red blood cells in vital organs, including the brain or placenta. Acquisition of variant-specific antibodies correlates with protection against severe malarial infections; however, understanding the relationship between gene expression and infection outcome is complicated by the modular genetic architectures of var genes that encode varying numbers of antigenic domains with differential binding specificities. By analyzing the domain architectures of fully sequenced var gene repertoires we reveal a significant, non-random association between the number of domains comprising a var gene and their sequence conservation. As such, var genes can be grouped into those that are short and diverse and genes that are long and conserved, suggesting gene length as an important characteristic in the classification of var genes. We then use an evolutionary framework to demonstrate how the same evolutionary forces acting on the level of an individual gene may have also shaped the parasite's gene repertoire. The observed associations between sequence conservation, gene architecture and repertoire structure can thus be explained by a trade-off between optimizing within-host fitness and minimizing between-host immune selection pressure. Our results demonstrate how simple evolutionary mechanisms can explain var gene structuring on multiple levels and have important implications for understanding the multifaceted epidemiology of P. falciparum malaria. PMID:22511852

  13. Gammaherpesvirus Co-infection with Malaria Suppresses Anti-parasitic Humoral Immunity

    PubMed Central

    Matar, Caline G.; Anthony, Neil R.; O’Flaherty, Brigid M.; Jacobs, Nathan T.; Priyamvada, Lalita; Engwerda, Christian R.; Speck, Samuel H.; Lamb, Tracey J.

    2015-01-01

    Immunity to non-cerebral severe malaria is estimated to occur within 1-2 infections in areas of endemic transmission for Plasmodium falciparum. Yet, nearly 20% of infected children die annually as a result of severe malaria. Multiple risk factors are postulated to exacerbate malarial disease, one being co-infections with other pathogens. Children living in Sub-Saharan Africa are seropositive for Epstein Barr Virus (EBV) by the age of 6 months. This timing overlaps with the waning of protective maternal antibodies and susceptibility to primary Plasmodium infection. However, the impact of acute EBV infection on the generation of anti-malarial immunity is unknown. Using well established mouse models of infection, we show here that acute, but not latent murine gammaherpesvirus 68 (MHV68) infection suppresses the anti-malarial humoral response to a secondary malaria infection. Importantly, this resulted in the transformation of a non-lethal P. yoelii XNL infection into a lethal one; an outcome that is correlated with a defect in the maintenance of germinal center B cells and T follicular helper (Tfh) cells in the spleen. Furthermore, we have identified the MHV68 M2 protein as an important virus encoded protein that can: (i) suppress anti-MHV68 humoral responses during acute MHV68 infection; and (ii) plays a critical role in the observed suppression of anti-malarial humoral responses in the setting of co-infection. Notably, co-infection with an M2-null mutant MHV68 eliminates lethality of P. yoelii XNL. Collectively, our data demonstrates that an acute gammaherpesvirus infection can negatively impact the development of an anti-malarial immune response. This suggests that acute infection with EBV should be investigated as a risk factor for non-cerebral severe malaria in young children living in areas endemic for Plasmodium transmission. PMID:25996913

  14. Gammaherpesvirus Co-infection with Malaria Suppresses Anti-parasitic Humoral Immunity.

    PubMed

    Matar, Caline G; Anthony, Neil R; O'Flaherty, Brigid M; Jacobs, Nathan T; Priyamvada, Lalita; Engwerda, Christian R; Speck, Samuel H; Lamb, Tracey J

    2015-05-01

    Immunity to non-cerebral severe malaria is estimated to occur within 1-2 infections in areas of endemic transmission for Plasmodium falciparum. Yet, nearly 20% of infected children die annually as a result of severe malaria. Multiple risk factors are postulated to exacerbate malarial disease, one being co-infections with other pathogens. Children living in Sub-Saharan Africa are seropositive for Epstein Barr Virus (EBV) by the age of 6 months. This timing overlaps with the waning of protective maternal antibodies and susceptibility to primary Plasmodium infection. However, the impact of acute EBV infection on the generation of anti-malarial immunity is unknown. Using well established mouse models of infection, we show here that acute, but not latent murine gammaherpesvirus 68 (MHV68) infection suppresses the anti-malarial humoral response to a secondary malaria infection. Importantly, this resulted in the transformation of a non-lethal P. yoelii XNL infection into a lethal one; an outcome that is correlated with a defect in the maintenance of germinal center B cells and T follicular helper (Tfh) cells in the spleen. Furthermore, we have identified the MHV68 M2 protein as an important virus encoded protein that can: (i) suppress anti-MHV68 humoral responses during acute MHV68 infection; and (ii) plays a critical role in the observed suppression of anti-malarial humoral responses in the setting of co-infection. Notably, co-infection with an M2-null mutant MHV68 eliminates lethality of P. yoelii XNL. Collectively, our data demonstrates that an acute gammaherpesvirus infection can negatively impact the development of an anti-malarial immune response. This suggests that acute infection with EBV should be investigated as a risk factor for non-cerebral severe malaria in young children living in areas endemic for Plasmodium transmission. PMID:25996913

  15. A Putative Homologue of CDC20/CDH1 in the Malaria Parasite Is Essential for Male Gamete Development

    PubMed Central

    Guttery, David S.; Ferguson, David J. P.; Poulin, Benoit; Xu, Zhengyao; Straschil, Ursula; Klop, Onny; Solyakov, Lev; Sandrini, Sara M.; Brady, Declan; Nieduszynski, Conrad A.; Janse, Chris J.; Holder, Anthony A.; Tobin, Andrew B.; Tewari, Rita

    2012-01-01

    Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Δcdc20 mutant parasites were largely different from those observed in the Δmap2 mutant. This suggests that CDC20 and MAP2 are both

  16. A putative homologue of CDC20/CDH1 in the malaria parasite is essential for male gamete development.

    PubMed

    Guttery, David S; Ferguson, David J P; Poulin, Benoit; Xu, Zhengyao; Straschil, Ursula; Klop, Onny; Solyakov, Lev; Sandrini, Sara M; Brady, Declan; Nieduszynski, Conrad A; Janse, Chris J; Holder, Anthony A; Tobin, Andrew B; Tewari, Rita

    2012-02-01

    Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Δcdc20 mutant parasites were largely different from those observed in the Δmap2 mutant. This suggests that CDC20 and MAP2 are both

  17. Interactive transcriptome analysis of malaria patients and infecting Plasmodium falciparum

    PubMed Central

    Yamagishi, Junya; Natori, Anna; Tolba, Mohammed E.M.; Mongan, Arthur E.; Sugimoto, Chihiro; Katayama, Toshiaki; Kawashima, Shuichi; Makalowski, Wojciech; Maeda, Ryuichiro; Eshita, Yuki; Tuda, Josef

    2014-01-01

    To understand the molecular mechanisms of parasitism in vivo, it is essential to elucidate how the transcriptomes of the human hosts and the infecting parasites affect one another. Here we report the RNA-seq analysis of 116 Indonesian patients infected with the malaria parasite Plasmodium falciparum (Pf). We extracted RNAs from their peripheral blood as a mixture of host and parasite transcripts and mapped the RNA-seq tags to the human and Pf reference genomes to separate the respective tags. We were thus able to simultaneously analyze expression patterns in both humans and parasites. We identified human and parasite genes and pathways that correlated with various clinical data, which may serve as primary targets for drug developments. Of particular importance, we revealed characteristic expression changes in the human innate immune response pathway genes including TLR2 and TICAM2 that correlated with the severity of the malaria infection. We also found a group of transcription regulatory factors, JUND, for example, and signaling molecules, TNFAIP3, for example, that were strongly correlated in the expression patterns of humans and parasites. We also identified several genetic variations in important anti-malaria drug resistance-related genes. Furthermore, we identified the genetic variations which are potentially associated with severe malaria symptoms both in humans and parasites. The newly generated data should collectively lay a unique foundation for understanding variable behaviors of the field malaria parasites, which are far more complex than those observed under laboratory conditions. PMID:25091627

  18. Unexpected fold in the circumsporozoite protein target of malaria vaccines

    SciTech Connect

    Doud, Michael B.; Koksal, Adem C.; Mi, Li-Zhi; Song, Gaojie; Lu, Chafen; Springer, Timothy A.

    2012-10-09

    Circumsporozoite (CS) protein is the major surface component of Plasmodium falciparum sporozoites and is essential for host cell invasion. A vaccine containing tandem repeats, region III, and thrombospondin type-I repeat (TSR) of CS is efficacious in phase III trials but gives only a 35% reduction in severe malaria in the first year postimmunization. We solved crystal structures showing that region III and TSR fold into a single unit, an '{alpha}TSR' domain. The {alpha}TSR domain possesses a hydrophobic pocket and core, missing in TSR domains. CS binds heparin, but {alpha}TSR does not. Interestingly, polymorphic T-cell epitopes map to specialized {alpha}TSR regions. The N and C termini are unexpectedly close, providing clues for sporozoite sheath organization. Elucidation of a unique structure of a domain within CS enables rational design of next-generation subunit vaccines and functional and medicinal chemical investigation of the conserved hydrophobic pocket.

  19. Spatiotemporal Analysis of Malaria in Urban Ahmedabad (Gujarat), India: Identification of Hot Spots and Risk Factors for Targeted Intervention.

    PubMed

    Parizo, Justin; Sturrock, Hugh J W; Dhiman, Ramesh C; Greenhouse, Bryan

    2016-09-01

    The world population, especially in developing countries, has experienced a rapid progression of urbanization over the last half century. Urbanization has been accompanied by a rise in cases of urban infectious diseases, such as malaria. The complexity and heterogeneity of the urban environment has made study of specific urban centers vital for urban malaria control programs, whereas more generalizable risk factor identification also remains essential. Ahmedabad city, India, is a large urban center located in the state of Gujarat, which has experienced a significant Plasmodium vivax and Plasmodium falciparum disease burden. Therefore, a targeted analysis of malaria in Ahmedabad city was undertaken to identify spatiotemporal patterns of malaria, risk factors, and methods of predicting future malaria cases. Malaria incidence in Ahmedabad city was found to be spatially heterogeneous, but temporally stable, with high spatial correlation between species. Because of this stability, a prediction method utilizing historic cases from prior years and seasons was used successfully to predict which areas of Ahmedabad city would experience the highest malaria burden and could be used to prospectively target interventions. Finally, spatial analysis showed that normalized difference vegetation index, proximity to water sources, and location within Ahmedabad city relative to the dense urban core were the best predictors of malaria incidence. Because of the heterogeneity of urban environments and urban malaria itself, the study of specific large urban centers is vital to assist in allocating resources and informing future urban planning. PMID:27382081

  20. Combating malaria with nanotechnology-based targeted and combinatorial drug delivery strategies.

    PubMed

    Thakkar, Miloni; S, Brijesh

    2016-08-01

    Despite the advancement of science, infectious diseases such as malaria remain an ongoing challenge globally. The main reason this disease still remains a menace in many countries around the world is the development of resistance to many of the currently available anti-malarial drugs. While developing new drugs is rather expensive and the prospect of a potent vaccine is still evading our dream of a malaria-free world, one of the feasible options is to package the older drugs in newer ways. For this, nano-sized drug delivery vehicles have been used and are proving to be promising prospects in the way malaria will be treated in the future. Since, monotherapy has given way to combination therapy in malaria treatment, nanotechnology-based delivery carriers enable to encapsulate various drug moieties in the same package, thus avoiding the complications involved in conjugation chemistry to produce hybrid drug molecules. Further, we envisage that using targeted delivery approaches, we may be able to achieve a much better radical cure and curb the side effects associated with the existing drug molecules. Thus, this review will focus on some of the nanotechnology-based combination and targeted therapies and will discuss the possibilities of better therapies that may be developed in the future. PMID:27067712

  1. Three-dimensional analysis of morphological changes in the malaria parasite infected red blood cell by serial block-face scanning electron microscopy.

    PubMed

    Sakaguchi, Miako; Miyazaki, Naoyuki; Fujioka, Hisashi; Kaneko, Osamu; Murata, Kazuyoshi

    2016-03-01

    The human malaria parasite, Plasmodium falciparum, exhibits morphological changes during the blood stage cycle in vertebrate hosts. Here, we used serial block-face scanning electron microscopy (SBF-SEM) to visualize the entire structures of P. falciparum-infected red blood cells (iRBCs) and to examine their morphological and volumetric changes at different stages. During developmental stages, the parasite forms Maurer's clefts and vesicles in the iRBC cytoplasm and knobs on the iRBC surface, and extensively remodels the iRBC structure for proliferation of the parasite. In our observations, the Maurer's clefts and vesicles in the P. falciparum-iRBCs, resembling the so-called tubovesicular network (TVN), were not connected to each other, and continuous membrane networks were not observed between the parasitophorous vacuole membrane (PVM) and the iRBC cytoplasmic membrane. In the volumetric analysis, the iRBC volume initially increased and then decreased to the end of the blood stage cycle. This suggests that it is necessary to absorb a substantial amount of nutrients from outside the iRBC during the initial stage, but to release waste materials from inside the iRBC at the multinucleate stage. Transportation of the materials may be through the iRBC membrane, rather than a special structure formed by the parasite, because there is no direct connection between the iRBC membrane and the parasite. These results provide new insights as to how the malaria parasite grows in the iRBC and remodels iRBC structure during developmental stages; these observation can serve as a baseline for further experiments on the effects of therapeutic agents on malaria. PMID:26772147

  2. Focused Screening and Treatment (FSAT): A PCR-Based Strategy to Detect Malaria Parasite Carriers and Contain Drug Resistant P. falciparum, Pailin, Cambodia

    PubMed Central

    Hoyer, Stefan; Nguon, Sokomar; Kim, Saorin; Habib, Najibullah; Khim, Nimol; Sum, Sarorn; Christophel, Eva-Maria; Bjorge, Steven; Thomson, Andrew; Kheng, Sim; Chea, Nguon; Yok, Sovann; Top, Samphornarann; Ros, Seyha; Sophal, Uth; Thompson, Michelle M.; Mellor, Steve; Ariey, Frédéric; Witkowski, Benoit; Yeang, Chhiang; Yeung, Shunmay; Duong, Socheat; Newman, Robert D.; Menard, Didier

    2012-01-01

    Recent studies have shown that Plasmodium falciparum malaria parasites in Pailin province, along the border between Thailand and Cambodia, have become resistant to artemisinin derivatives. To better define the epidemiology of P. falciparum populations and to assess the risk of the possible spread of these parasites outside Pailin, a new epidemiological tool named “Focused Screening and Treatment” (FSAT), based on active molecular detection of asymptomatic parasite carriers was introduced in 2010. Cross-sectional malariometric surveys using PCR were carried out in 20 out of 109 villages in Pailin province. Individuals detected as P. falciparum carriers were treated with atovaquone-proguanil combination plus a single dose of primaquine if the patient was non-G6PD deficient. Interviews were conducted to elicit history of cross-border travel that might contribute to the spread of artemisinin-resistant parasites. After directly observed treatment, patients were followed up and re-examined on day 7 and day 28. Among 6931 individuals screened, prevalence of P. falciparum carriers was less than 1%, of whom 96% were asymptomatic. Only 1.6% of the individuals had a travel history or plans to go outside Cambodia, with none of those tested being positive for P. falciparum. Retrospective analysis, using 2010 routine surveillance data, showed significant differences in the prevalence of asymptomatic carriers discovered by FSAT between villages classified as “high risk” and “low risk” based on malaria incidence data. All positive individuals treated and followed-up until day 28 were cured. No mutant-type allele related to atovaquone resistance was found. FSAT is a potentially useful tool to detect, treat and track clusters of asymptomatic carriers of P. falciparum along with providing valuable epidemiological information regarding cross-border movements of potential malaria parasite carriers and parasite gene flow. PMID:23049687

  3. Newer approaches to