Sample records for malaria vector larvae

  1. Microdam Impoundments Provide Suitable Habitat for Larvae of Malaria Vectors: An Observational Study in Western Kenya.

    PubMed

    McCann, Robert S; Gimnig, John E; Bayoh, M Nabie; Ombok, Maurice; Walker, Edward D

    2018-05-04

    Impoundments formed by microdams in rural areas of Africa are important sources of water for people, but they provide potential larval habitats for Anopheles (Diptera: Culicidae) mosquitoes that are vectors of malaria. To study this association, the perimeters of 31 microdam impoundments in western Kenya were sampled for Anopheles larvae in three zones (patches of floating and emergent vegetation, shorelines of open water, and aggregations of cattle hoofprints) across dry and rainy seasons. Of 3,169 larvae collected, most (86.8%) were collected in the rainy season. Of 2,403 larvae successfully reared to fourth instar or adult, nine species were identified; most (80.2%) were Anopheles arabiensis Patton, sampled from hoofprint zones in the rainy season. Other species collected were Anopheles coustani Laveran, Anopheles gambiae s.s. Giles, Anopheles funestus Giles, and Anopheles rivulorum Leeson, Anopheles pharoensis Theobald, Anopheles squamosus Theobald, Anopheles rufipes (Gough), and Anopheles ardensis (Theobald). Larvae of An. funestus were uncommon (1.5%) in both dry and rainy seasons and were confined to vegetated zones, suggesting that microdam impoundments are not primary habitats for this important vector species, although microdams may provide a dry season refuge habitat for malaria vectors, contributing to population persistence through the dry season. In this study, microdam impoundments clearly provided habitat for the malaria vector An. arabiensis in the rainy season, most of which was within the shallow apron side of the impoundments where people brought cattle for watering, resulting in compacted soil with aggregations of water-filled hoofprints. This observation suggests a potential conflict between public health concerns about malaria and people's need for stable and reliable sources of water.

  2. Habitat stability and occurrences of malaria vector larvae in western Kenya highlands.

    PubMed

    Himeidan, Yousif E; Zhou, Guofa; Yakob, Laith; Afrane, Yaw; Munga, Stephen; Atieli, Harrysone; El-Rayah, El-Amin; Githeko, Andrew K; Yan, Guiyun

    2009-10-21

    Although the occurrence of malaria vector larvae in the valleys of western Kenya highlands is well documented, knowledge of larval habitats in the uphill sites is lacking. Given that most inhabitants of the highlands actually dwell in the uphill regions, it is important to develop understanding of mosquito breeding habitat stability in these sites in order to determine their potential for larval control. A total of 128 potential larval habitats were identified in hilltops and along the seasonal streams in the Sigalagala area of Kakamega district, western Kenya. Water availability in the habitats was followed up daily from August 3, 2006 to February 23, 2007. A habitat is defined as stable when it remains aquatic continuously for at least 12 d. Mosquito larvae were observed weekly. Frequencies of aquatic, stable and larvae positive habitats were compared between the hilltop and seasonal stream area using chi2-test. Factors affecting the presence/absence of Anopheles gambiae larvae in the highlands were determined using multiple logistic regression analysis. Topography significantly affected habitat availability and stability. The occurrence of aquatic habitats in the hilltop was more sporadic than in the stream area. The percentage of habitat occurrences that were classified as stable during the rainy season is 48.76% and 80.79% respectively for the hilltop and stream area. Corresponding frequencies of larvae positive habitats were 0% in the hilltop and 5.91% in the stream area. After the rainy season, only 23.42% of habitat occurrences were stable and 0.01% larvae positive habitats were found in the hilltops, whereas 89.75% of occurrences remained stable in the stream area resulting in a frequency of 12.21% larvae positive habitats. The logistic regression analysis confirmed the association between habitat stability and larval occurrence and indicated that habitat surface area was negatively affecting the occurrence of An. gambiae larvae. While An. gambiae and An

  3. Habitat Hydrology and Geomorphology Control the Distribution of Malaria Vector Larvae in Rural Africa

    PubMed Central

    Hardy, Andrew J.; Gamarra, Javier G. P.; Cross, Dónall E.; Macklin, Mark G.; Smith, Mark W.; Kihonda, Japhet; Killeen, Gerry F.; Ling’ala, George N.; Thomas, Chris J.

    2013-01-01

    Background Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. Methods We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Results Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Conclusion Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools. PMID:24312606

  4. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in rural Africa.

    PubMed

    Hardy, Andrew J; Gamarra, Javier G P; Cross, Dónall E; Macklin, Mark G; Smith, Mark W; Kihonda, Japhet; Killeen, Gerry F; Ling'ala, George N; Thomas, Chris J

    2013-01-01

    Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools.

  5. Evaluation of Commercial Agrochemicals as New Tools for Malaria Vector Control.

    PubMed

    Hoppé, Mark; Hueter, Ottmar F; Bywater, Andy; Wege, Philip; Maienfisch, Peter

    2016-10-01

    Malaria is a vector-borne and life-threatening disease caused by parasites that are transmitted to people through the bites of infected female Anopheles mosquitoes. The vector control insecticide market represents a small fraction of the crop protection market and is estimated to be valued at up to $500 million at the active ingredient level. Insecticide resistance towards the current WHOPES-approved products urgently requires the development of new tools to protect communities against the transmission of malaria. The evaluation of commercial products for malaria vector control is a viable and cost effective strategy to identify new malaria vector control products. Several examples of such spin-offs from crop protection insecticides are already evidencing the success of this strategy, namely pirimiphos-methyl for indoor residual sprays and spinosad, diflubenzuron, novaluron, and pyriproxifen for mosquito larvae control, a supplementary technology for control of malaria vectors. In our study the adulticidal activities of 81 insecticides representing 23 insecticidal modes of action classes, 34 fungicides from 6 fungicidal mode of action classes and 15 herbicides from 2 herbicidal modes of action classes were tested in a newly developed screening system. WHOPES approved insecticides for malaria vector control consistently caused 80-100% mortality of adult Anopheles stephensi at application rates between 0.2 and 20 mg active ingradient (AI) litre -1 . Chlorfenapyr, fipronil, carbosulfan and endosulfan showed the expected good activity. Four new insecticides and three fungicides with promising activity against adult mosquitoes were identified, namely the insecticides acetamiprid, thiamethoxam, thiocyclam and metaflumizone and the fungicides diflumetorin, picoxystrobin, and fluazinam. Some of these compounds certainly deserve to be further evaluated for malaria vector control. This is the first report describing good activity of commercial fungicides against malaria

  6. Linking Deforestation to Malaria in the Amazon: Characterization of the Breeding Habitat of the Principal Malaria Vector, Anopheles darlingi

    PubMed Central

    Vittor, Amy Y.; Pan, William; Gilman, Robert H.; Tielsch, James; Glass, Gregory; Shields, Tim; Sánchez-Lozano, Wagner; Pinedo, Viviana V.; Salas-Cobos, Erit; Flores, Silvia; Patz, Jonathan A.

    2009-01-01

    This study examined the larval breeding habitat of a major South American malaria vector, Anopheles darlingi, in areas with varying degrees of ecologic alteration in the Peruvian Amazon. Water bodies were repeatedly sampled across 112 km of transects along the Iquitos-Nauta road in ecologically varied areas. Field data and satellite imagery were used to determine the landscape composition surrounding each site. Seventeen species of Anopheles larvae were collected. Anopheles darlingi larvae were present in 87 of 844 sites (10.3%). Sites with A. darlingi larvae had an average of 24.1% forest cover, compared with 41.0% for sites without A. darlingi (P < 0.0001). Multivariate analysis identified seasonality, algae, water body size, presence of human populations, and the amount of forest and secondary growth as significant determinants of A. darlingi presence. We conclude that deforestation and associated ecologic alterations are conducive to A. darlingi larval presence, and thereby increase malaria risk. PMID:19556558

  7. Viral Paratransgenesis in the Malaria Vector Anopheles gambiae

    PubMed Central

    Ren, Xiaoxia; Hoiczyk, Egbert; Rasgon, Jason L.

    2008-01-01

    Paratransgenesis, the genetic manipulation of insect symbiotic microorganisms, is being considered as a potential method to control vector-borne diseases such as malaria. The feasibility of paratransgenic malaria control has been hampered by the lack of candidate symbiotic microorganisms for the major vector Anopheles gambiae. In other systems, densonucleosis viruses (DNVs) are attractive agents for viral paratransgenesis because they infect important vector insects, can be genetically manipulated and are transmitted to subsequent generations. However, An. gambiae has been shown to be refractory to DNV dissemination. We discovered, cloned and characterized the first known DNV (AgDNV) capable of infection and dissemination in An. gambiae. We developed a flexible AgDNV-based expression vector to express any gene of interest in An. gambiae using a two-plasmid helper-transducer system. To demonstrate proof-of-concept of the viral paratransgenesis strategy, we used this system to transduce expression of an exogenous gene (enhanced green fluorescent protein; EGFP) in An. gambiae mosquitoes. Wild-type and EGFP-transducing AgDNV virions were highly infectious to An. gambiae larvae, disseminated to and expressed EGFP in epidemiologically relevant adult tissues such as midgut, fat body and ovaries and were transmitted to subsequent mosquito generations. These proof-of-principle data suggest that AgDNV could be used as part of a paratransgenic malaria control strategy by transduction of anti-Plasmodium peptides or insect-specific toxins in Anopheles mosquitoes. AgDNV will also be extremely valuable as an effective and easy-to-use laboratory tool for transient gene expression or RNAi in An. gambiae. PMID:18725926

  8. Topographic models for predicting malaria vector breeding habitats: potential tools for vector control managers.

    PubMed

    Nmor, Jephtha C; Sunahara, Toshihiko; Goto, Kensuke; Futami, Kyoko; Sonye, George; Akweywa, Peter; Dida, Gabriel; Minakawa, Noboru

    2013-01-16

    Identification of malaria vector breeding sites can enhance control activities. Although associations between malaria vector breeding sites and topography are well recognized, practical models that predict breeding sites from topographic information are lacking. We used topographic variables derived from remotely sensed Digital Elevation Models (DEMs) to model the breeding sites of malaria vectors. We further compared the predictive strength of two different DEMs and evaluated the predictability of various habitat types inhabited by Anopheles larvae. Using GIS techniques, topographic variables were extracted from two DEMs: 1) Shuttle Radar Topography Mission 3 (SRTM3, 90-m resolution) and 2) the Advanced Spaceborne Thermal Emission Reflection Radiometer Global DEM (ASTER, 30-m resolution). We used data on breeding sites from an extensive field survey conducted on an island in western Kenya in 2006. Topographic variables were extracted for 826 breeding sites and for 4520 negative points that were randomly assigned. Logistic regression modelling was applied to characterize topographic features of the malaria vector breeding sites and predict their locations. Model accuracy was evaluated using the area under the receiver operating characteristics curve (AUC). All topographic variables derived from both DEMs were significantly correlated with breeding habitats except for the aspect of SRTM. The magnitude and direction of correlation for each variable were similar in the two DEMs. Multivariate models for SRTM and ASTER showed similar levels of fit indicated by Akaike information criterion (3959.3 and 3972.7, respectively), though the former was slightly better than the latter. The accuracy of prediction indicated by AUC was also similar in SRTM (0.758) and ASTER (0.755) in the training site. In the testing site, both SRTM and ASTER models showed higher AUC in the testing sites than in the training site (0.829 and 0.799, respectively). The predictability of habitat types

  9. Integrated vector management for malaria control

    PubMed Central

    Beier, John C; Keating, Joseph; Githure, John I; Macdonald, Michael B; Impoinvil, Daniel E; Novak, Robert J

    2008-01-01

    Integrated vector management (IVM) is defined as "a rational decision-making process for the optimal use of resources for vector control" and includes five key elements: 1) evidence-based decision-making, 2) integrated approaches 3), collaboration within the health sector and with other sectors, 4) advocacy, social mobilization, and legislation, and 5) capacity-building. In 2004, the WHO adopted IVM globally for the control of all vector-borne diseases. Important recent progress has been made in developing and promoting IVM for national malaria control programmes in Africa at a time when successful malaria control programmes are scaling-up with insecticide-treated nets (ITN) and/or indoor residual spraying (IRS) coverage. While interventions using only ITNs and/or IRS successfully reduce transmission intensity and the burden of malaria in many situations, it is not clear if these interventions alone will achieve those critical low levels that result in malaria elimination. Despite the successful employment of comprehensive integrated malaria control programmes, further strengthening of vector control components through IVM is relevant, especially during the "end-game" where control is successful and further efforts are required to go from low transmission situations to sustained local and country-wide malaria elimination. To meet this need and to ensure sustainability of control efforts, malaria control programmes should strengthen their capacity to use data for decision-making with respect to evaluation of current vector control programmes, employment of additional vector control tools in conjunction with ITN/IRS tactics, case-detection and treatment strategies, and determine how much and what types of vector control and interdisciplinary input are required to achieve malaria elimination. Similarly, on a global scale, there is a need for continued research to identify and evaluate new tools for vector control that can be integrated with existing biomedical

  10. Species composition, seasonal occurrence, habitat preference and altitudinal distribution of malaria and other disease vectors in eastern Nepal.

    PubMed

    Dhimal, Meghnath; Ahrens, Bodo; Kuch, Ulrich

    2014-11-28

    It is increasingly recognized that climate change can alter the geographical distribution of vector-borne diseases (VBDs) with shifts of disease vectors to higher altitudes and latitudes. In particular, an increasing risk of malaria and dengue fever epidemics in tropical highlands and temperate regions has been predicted in different climate change scenarios. The aim of this paper is to expand the current knowledge on the seasonal occurrence and altitudinal distribution of malaria and other disease vectors in eastern Nepal. Adult mosquitoes resting indoors and outdoors were collected using CDC light trap and aspirators with the support of flash light. Mosquito larvae were collected using locally constructed dippers. We assessed the local residents' perceptions of the distribution and occurrence of mosquitoes using key informant interview techniques. Generalized linear models were fitted to assess the effect of season, resting site and topography on the abundance of malaria vectors. The known malaria vectors in Nepal, Anopheles fluviatilis, Anopheles annularis and Anopheles maculatus complex members were recorded from 70 to 1,820 m above sea level (asl). The vectors of chikungunya and dengue virus, Aedes aegypti and Aedes albopictus, the vector of lymphatic filariasis, Culex quinquefasciatus, and that of Japanese encephalitis, Culex tritaeniorhynchus, were found from 70 to 2,000 m asl in eastern Nepal. Larvae of Anopheles, Culex and Aedes species were recorded up to 2,310 m asl. Only season had a significant effect on the abundance of An. fluviatilis, season and resting site on the abundance of An. maculatus complex members, and season, resting site and topography on the abundance of An. annularis. The perceptions of people on mosquito occurrence are consistent with entomological findings. This study provides the first vertical distribution records of vector mosquitoes in eastern Nepal and suggests that the vectors of malaria and other diseases have already

  11. Efficacy of local neem extracts for sustainable malaria vector control in an African village

    PubMed Central

    Gianotti, Rebecca L; Bomblies, Arne; Dafalla, Mustafa; Issa-Arzika, Ibrahim; Duchemin, Jean-Bernard; Eltahir, Elfatih AB

    2008-01-01

    Background Larval control of malaria vectors has been historically successful in reducing malaria transmission, but largely fell out of favour with the introduction of synthetic insecticides and bed nets. However, an integrated approach to malaria control, including larval control methods, continues to be the best chance for success, in view of insecticide resistance, the behavioural adaptation of the vectors to changing environments and the difficulties of reaching the poorest populations most at risk,. Laboratory studies investigating the effects of neem seed (Azadirachta indica) extracts on Anopheles larvae have shown high rates of larval mortality and reductions in adult longevity, as well as low potential for resistance development. Methods This paper describes a method whereby seeds of the neem tree can be used to reduce adult Anopheles gambiae s.l. abundance in a way that is low cost and can be implemented by residents of rural villages in western Niger. The study was conducted in Banizoumbou village, western Niger. Neem seeds were collected from around the village. Dried seeds were ground into a coarse powder, which was then sprinkled onto known Anopheles larvae breeding habitats twice weekly during the rainy season 2007. Adult mosquitoes were captured on a weekly basis in the village and captures compared to those from 2005 and 2006 over the same period. Adult mosquitoes were also captured in a nearby village, Zindarou, as a control data set and compared to those from Banizoumbou. Results It was found that twice-weekly applications of the powder to known breeding habitats of Anopheles larvae in 2007 resulted in 49% fewer adult female Anopheles gambiae s.l. mosquitoes in Banizoumbou, compared with previous captures under similar environmental conditions and with similar habitat characteristics in 2005 and 2006. The productivity of the system in 2007 was found to be suppressed compared to the mean behaviour of 2005 and 2006 in Banizoumbou, whereas no change

  12. The effect of larval nutritional deprivation on the life history and DDT resistance phenotype in laboratory strains of the malaria vector Anopheles arabiensis

    PubMed Central

    2013-01-01

    Background Anopheles arabiensis is a major malaria vector in Africa. It thrives in agricultural areas and has been associated with increased malaria incidence in areas under rice and maize cultivation. This effect may be due to increased adult size and abundance as a consequence of optimal larval nutrition. The aim of this study was to examine the effect of larval nutrition on the life history and expression of insecticide resistance in adults of laboratory reared An. arabiensis. Methods Larvae drawn from an insecticide susceptible An. arabiensis strain (SENN) as well as a DDT-resistant strain (SENN-DDT) were subjected to three fasting regimes: 1 mg of food per larva offered once per day, once every second day and once every third day. Control cohorts included larvae offered 1 mg food thrice per day. The rate of larval development was compared between matched cohorts from each strain as well as between fasted larvae and their respective controls. The expression of DDT resistance/tolerance in adults was compared between the starved cohorts and their controls by strain. Factors potentially affecting variation in DDT resistance/tolerance were examined including: adult body size (wing length), knock-down resistance (kdr) status and levels of detoxification enzyme activity. Results and conclusion Anopheles arabiensis larval development is prolonged by nutrient deprivation and adults that eclose from starved larvae are smaller and less tolerant to DDT intoxication. This effect on DDT tolerance in adults is also associated with reduced detoxification enzyme activity. Conversely, well fed larvae develop comparatively quickly into large, more DDT tolerant (SENN) or resistant (SENN-DDT) adults. This is important in those instances where cereal farming is associated with increased An. arabiensis transmitted malaria incidence, because large adult females with high teneral reserves and decreased susceptibility to insecticide intoxication may also prove to be more

  13. Population control of the malaria vector Anopheles pseudopunctipennis by habitat manipulation.

    PubMed Central

    Bond, J. Guillermo; Rojas, Julio C.; Arredondo-Jiménez, Juan I.; Quiroz-Martínez, Humberto; Valle, Javier; Williams, Trevor

    2004-01-01

    Insect vector-borne diseases continue to present a major challenge to human health. Understanding the factors that regulate the size of mosquito populations is considered fundamental to the ability to predict disease transmission rates and for vector population control. The mosquito, Anopheles pseudopunctipennis, a vector of Plasmodium spp., breeds in riverside pools containing filamentous algae in Mesoamerica. Breeding pools along 3 km sections of the River Coatan, Chiapas, Mexico were subjected to algal extraction or left as controls in a cross-over trial extending over 2 years. Initial densities of An. pseudopunctipennis larvae were directly proportional to the prevalence of filamentous algae in each breeding site. The extraction of algae brought about a striking decline in the density of An. pseudopunctipennis larvae sustained for about six weeks, and a concurrent reduction in the adult population in both years of the study. Mark-release experiments indicated that dispersal from adjacent untreated areas was unlikely to exert an important influence on the magnitude of mosquito control that we observed. Habitat manipulation by extraction of filamentous algae offers a unique opportunity for sustainable control of this malaria vector. This technique may represent a valuable intervention, complimenting insecticide spraying of households, to minimize Plasmodium transmission rates in Mesoamerica. PMID:15475337

  14. Preliminary observations on the changing roles of malaria vectors in southern Belize.

    PubMed

    Roberts, D R; Chan, O; Pecor, J; Rejmankova, E; Manguin, S; Polanco, J; Legters, L J

    1993-12-01

    A survey for larval and adult Anopheles mosquitoes was conducted in Toledo District of southern Belize during August-September 1992. We surveyed for larvae in 145 habitats and conducted paired indoor-outdoor collections of adult mosquitoes landing on humans at 6 houses. In 1940-41, Kumm and Ram reported Anopheles darlingi females to be the most common Anopheles mosquitoes inside houses and reported no specimens of Anopheles vestitipennis in southern Belize. In our 1992 survey we found no An. darlingi mosquitoes either as adults or larvae. More An. vestitipennis females were captured indoors than outdoors, whereas most Anopheles albimanus and Anopheles apicimacula females were captured outdoors. All 3 species were represented occasionally in 145 collections of larvae from diverse habitats. Anopheles vestitipennis now appears to be a potentially important vector of malaria during the wet season in Toledo District.

  15. Current vector control challenges in the fight against malaria.

    PubMed

    Benelli, Giovanni; Beier, John C

    2017-10-01

    The effective and eco-friendly control of Anopheles vectors plays a key role in any malaria management program. Integrated Vector Management (IVM) suggests making use of the full range of vector control tools available. The strategies for IVM require novel technologies to control outdoor transmission of malaria. Despite the wide number of promising control tools tested against mosquitoes, current strategies for malaria vector control used in most African countries are not sufficient to achieve successful malaria control. The majority of National Malaria Control Programs in Africa still rely on indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). These methods reduce malaria incidence but generally have little impact on malaria prevalence. In addition to outdoor transmission, growing levels of insecticide resistance in targeted vectors threaten the efficacy of LLINs and IRS. Larvicidal treatments can be useful, but are not recommended for rural areas. The research needed to improve the quality and delivery of mosquito vector control should focus on (i) optimization of processes and methods for vector control delivery; (ii) monitoring of vector populations and biting activity with reliable techniques; (iii) the development of effective and eco-friendly tools to reduce the burden or locally eliminate malaria and other mosquito-borne diseases; (iv) the careful evaluation of field suitability and efficacy of new mosquito control tools to prove their epidemiological impact; (v) the continuous monitoring of environmental changes which potentially affect malaria vector populations; (vi) the cooperation among different disciplines, with main emphasis on parasitology, tropical medicine, ecology, entomology, and ecotoxicology. A better understanding of behavioral ecology of malaria vectors is required. Key ecological obstacles that limit the effectiveness of vector control include the variation in mosquito behavior, development of insecticide resistance

  16. Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia.

    PubMed

    Clennon, Julie A; Kamanga, Aniset; Musapa, Mulenga; Shiff, Clive; Glass, Gregory E

    2010-11-05

    Malaria, caused by the parasite Plasmodium falciparum, is a significant source of morbidity and mortality in southern Zambia. In the Mapanza Chiefdom, where transmission is seasonal, Anopheles arabiensis is the dominant malaria vector. The ability to predict larval habitats can help focus control measures. A survey was conducted in March-April 2007, at the end of the rainy season, to identify and map locations of water pooling and the occurrence anopheline larval habitats; this was repeated in October 2007 at the end of the dry season and in March-April 2008 during the next rainy season. Logistic regression and generalized linear mixed modeling were applied to assess the predictive value of terrain-based landscape indices along with LandSat imagery to identify aquatic habitats and, especially, those with anopheline mosquito larvae. Approximately two hundred aquatic habitat sites were identified with 69 percent positive for anopheline mosquitoes. Nine species of anopheline mosquitoes were identified, of which, 19% were An. arabiensis. Terrain-based landscape indices combined with LandSat predicted sites with water, sites with anopheline mosquitoes and sites specifically with An. arabiensis. These models were especially successful at ruling out potential locations, but had limited ability in predicting which anopheline species inhabited aquatic sites. Terrain indices derived from 90 meter Shuttle Radar Topography Mission (SRTM) digital elevation data (DEM) were better at predicting water drainage patterns and characterizing the landscape than those derived from 30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM. The low number of aquatic habitats available and the ability to locate the limited number of aquatic habitat locations for surveillance, especially those containing anopheline larvae, suggest that larval control maybe a cost-effective control measure in the fight against malaria in Zambia and other regions with seasonal

  17. Workbook on the Identification of Anopheles Larvae. Preliminary Issue.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; Stojanovich, Chester J.

    This self-instructional booklet is designed to enable malarial control workers to identify the larvae of "Anopheles" species that are important malaria vectors. The morphological features of the larvae are illustrated in a programed booklet, which also contains an illustrated taxonomic key to 25 species of anopheline larvae. A glossary and a short…

  18. A possible alternative method for collecting mosquito larvae in rice fields

    PubMed Central

    Robert, Vincent; Goff, Gilbert Le; Ariey, Frédéric; Duchemin, Jean-Bernard

    2002-01-01

    Background Rice fields are efficient breeding places for malaria vectors in Madagascar. In order to establish as easily as possible if a rice field is an effective larval site for anophelines, we compared classical dipping versus a net as methods of collecting larvae. Results Using similar collecting procedures, we found that the total number of anopheline larvae collected with the net was exactly double (174/87) that collected by dipping. The number of anopheline species collected was also greater with a net. Conclusions The net is an effective means of collecting anopheline larvae and can be used for qualitative ecological studies and to rapidly determine which rice fields are containing malaria vectors. PMID:12057018

  19. Anopheles Vectors in Mainland China While Approaching Malaria Elimination.

    PubMed

    Zhang, Shaosen; Guo, Shaohua; Feng, Xinyu; Afelt, Aneta; Frutos, Roger; Zhou, Shuisen; Manguin, Sylvie

    2017-11-01

    China is approaching malaria elimination; however, well-documented information on malaria vectors is still missing, which could hinder the development of appropriate surveillance strategies and WHO certification. This review summarizes the nationwide distribution of malaria vectors, their bionomic characteristics, control measures, and related studies. After several years of effort, the area of distribution of the principal malaria vectors was reduced, in particular for Anopheles lesteri (synonym: An. anthropophagus) and Anopheles dirus s.l., which nearly disappeared from their former endemic regions. Anopheles sinensis is becoming the predominant species in southwestern China. The bionomic characteristics of these species have changed, and resistance to insecticides was reported. There is a need to update surveillance tools and investigate the role of secondary vectors in malaria transmission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination.

    PubMed

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J W; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-02-12

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity.

  1. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination

    NASA Astrophysics Data System (ADS)

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J. W.; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-02-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity.

  2. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination

    PubMed Central

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J. W.; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-01-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity. PMID:26868185

  3. Larvicidal Activity of Cassia occidentalis (Linn.) against the Larvae of Bancroftian Filariasis Vector Mosquito Culex quinquefasciatus.

    PubMed

    Kumar, Deepak; Chawla, Rakesh; Dhamodaram, P; Balakrishnan, N

    2014-01-01

    Background & Objectives. The plan of this work was to study the larvicidal activity of Cassia occidentalis (Linn.) against the larvae of Culex quinquefasciatus. These larvae are the most significant vectors. They transmit the parasites and pathogens which cause a deadly disease like filariasis, dengue, yellow fever, malaria, Japanese encephalitis, chikungunya, and so forth, which are considered harmful towards the population in tropic and subtropical regions. Methods. The preliminary laboratory trail was undertaken to determine the efficacy of petroleum ether and N-butanol extract of dried whole plant of Cassia occidentalis (Linn.) belonging to the family Caesalpiniaceae at various concentrations against the late third instar larvae of Culex quinquefasciatus by following the WHO guidelines. Results. The results suggest that 100% mortality effect of petroleum ether and N-butanol extract of Cassia occidentalis (Linn.) was observed at 200 and 300 ppm (parts per million). The results obviously showed use of plants in insect control as an alternative method for minimizing the noxious effect of some pesticide compounds on the environment. Thus the extract of Cassia occidentalis (Linn.) is claimed as more selective and biodegradable agent. Conclusion. This study justified that plant Cassia occidentalis (Linn.) has a realistic mortality result for larvae of filarial vector. This is safe to individual and communities against mosquitoes. It is a natural weapon for mosquito control.

  4. Malaria transmission and vector behaviour in a forested malaria focus in central Vietnam and the implications for vector control.

    PubMed

    Van Bortel, Wim; Trung, Ho Dinh; Hoi, Le Xuan; Van Ham, Nguyen; Van Chut, Nguyen; Luu, Nguyen Dinh; Roelants, Patricia; Denis, Leen; Speybroeck, Niko; D'Alessandro, Umberto; Coosemans, Marc

    2010-12-23

    In Vietnam, malaria is becoming progressively restricted to specific foci where human and vector characteristics alter the known malaria epidemiology, urging for alternative or adapted control strategies. Long-lasting insecticidal hammocks (LLIH) were designed and introduced in Ninh Thuan province, south-central Vietnam, to control malaria in the specific context of forest malaria. An entomological study in this specific forested environment was conducted to assess the behavioural patterns of forest and village vectors and to assess the spatio-temporal risk factors of malaria transmission in the province. Five entomological surveys were conducted in three villages in Ma Noi commune and in five villages in Phuoc Binh commune in Ninh Thuan Province, south-central Vietnam. Collections were made inside the village, at the plot near the slash-and-burn fields in the forest and on the way to the forest. All collected mosquito species were subjected to enzyme-linked immunosorbent assay (ELISA) to detect Plasmodium in the head-thoracic portion of individual mosquitoes after morphological identification. Collection data were analysed by use of correspondence and multivariate analyses. The mosquito density in the study area was low with on average 3.7 anopheline bites per man-night and 17.4 culicine bites per man-night. Plasmodium-infected mosquitoes were only found in the forest and on the way to the forest. Malaria transmission in the forested malaria foci was spread over the entire night, from dusk to dawn, but was most intense in the early evening as nine of the 13 Plasmodium positive bites occurred before 21H. The annual entomological inoculation rate of Plasmodium falciparum was 2.2 infective bites per person-year to which Anopheles dirus s.s. and Anopheles minimus s.s. contributed. The Plasmodium vivax annual entomological inoculation rate was 2.5 infective bites per person-year with Anopheles sawadwongporni, Anopheles dirus s.s. and Anopheles pampanai as vectors. The

  5. Malaria transmission and vector behaviour in a forested malaria focus in central Vietnam and the implications for vector control

    PubMed Central

    2010-01-01

    Background In Vietnam, malaria is becoming progressively restricted to specific foci where human and vector characteristics alter the known malaria epidemiology, urging for alternative or adapted control strategies. Long-lasting insecticidal hammocks (LLIH) were designed and introduced in Ninh Thuan province, south-central Vietnam, to control malaria in the specific context of forest malaria. An entomological study in this specific forested environment was conducted to assess the behavioural patterns of forest and village vectors and to assess the spatio-temporal risk factors of malaria transmission in the province. Methods Five entomological surveys were conducted in three villages in Ma Noi commune and in five villages in Phuoc Binh commune in Ninh Thuan Province, south-central Vietnam. Collections were made inside the village, at the plot near the slash-and-burn fields in the forest and on the way to the forest. All collected mosquito species were subjected to enzyme-linked immunosorbent assay (ELISA) to detect Plasmodium in the head-thoracic portion of individual mosquitoes after morphological identification. Collection data were analysed by use of correspondence and multivariate analyses. Results The mosquito density in the study area was low with on average 3.7 anopheline bites per man-night and 17.4 culicine bites per man-night. Plasmodium-infected mosquitoes were only found in the forest and on the way to the forest. Malaria transmission in the forested malaria foci was spread over the entire night, from dusk to dawn, but was most intense in the early evening as nine of the 13 Plasmodium positive bites occurred before 21H. The annual entomological inoculation rate of Plasmodium falciparum was 2.2 infective bites per person-year to which Anopheles dirus s.s. and Anopheles minimus s.s. contributed. The Plasmodium vivax annual entomological inoculation rate was 2.5 infective bites per person-year with Anopheles sawadwongporni, Anopheles dirus s.s. and

  6. Malaria vector control: from past to future.

    PubMed

    Raghavendra, Kamaraju; Barik, Tapan K; Reddy, B P Niranjan; Sharma, Poonam; Dash, Aditya P

    2011-04-01

    Malaria is one of the most common vector-borne diseases widespread in the tropical and subtropical regions. Despite considerable success of malaria control programs in the past, malaria still continues as a major public health problem in several countries. Vector control is an essential part for reducing malaria transmission and became less effective in recent years, due to many technical and administrative reasons, including poor or no adoption of alternative tools. Of the different strategies available for vector control, the most successful are indoor residual spraying and insecticide-treated nets (ITNs), including long-lasting ITNs and materials. Earlier DDT spray has shown spectacular success in decimating disease vectors but resulted in development of insecticide resistance, and to control the resistant mosquitoes, organophosphates, carbamates, and synthetic pyrethroids were introduced in indoor residual spraying with needed success but subsequently resulted in the development of widespread multiple insecticide resistance in vectors. Vector control in many countries still use insecticides in the absence of viable alternatives. Few developments for vector control, using ovitraps, space spray, biological control agents, etc., were encouraging when used in limited scale. Likewise, recent introduction of safer vector control agents, such as insect growth regulators, biocontrol agents, and natural plant products have yet to gain the needed scale of utility for vector control. Bacterial pesticides are promising and are effective in many countries. Environmental management has shown sufficient promise for vector control and disease management but still needs advocacy for inter-sectoral coordination and sometimes are very work-intensive. The more recent genetic manipulation and sterile insect techniques are under development and consideration for use in routine vector control and for these, standardized procedures and methods are available but need thorough

  7. Using remote sensing to map larval and adult populations of Anopheles hyrcanus (Diptera: Culicidae) a potential malaria vector in Southern France

    PubMed Central

    Tran, Annelise; Ponçon, Nicolas; Toty, Céline; Linard, Catherine; Guis, Hélène; Ferré, Jean-Baptiste; Lo Seen, Danny; Roger, François; de la Rocque, Stéphane; Fontenille, Didier; Baldet, Thierry

    2008-01-01

    Background Although malaria disappeared from southern France more than 60 years ago, suspicions of recent autochthonous transmission in the French Mediterranean coast support the idea that the area could still be subject to malaria transmission. The main potential vector of malaria in the Camargue area, the largest river delta in southern France, is the mosquito Anopheles hyrcanus (Diptera: Culicidae). In the context of recent climatic and landscape changes, the evaluation of the risk of emergence or re-emergence of such a major disease is of great importance in Europe. When assessing the risk of emergence of vector-borne diseases, it is crucial to be able to characterize the arthropod vector's spatial distribution. Given that remote sensing techniques can describe some of the environmental parameters which drive this distribution, satellite imagery or aerial photographs could be used for vector mapping. Results In this study, we propose a method to map larval and adult populations of An. hyrcanus based on environmental indices derived from high spatial resolution imagery. The analysis of the link between entomological field data on An. hyrcanus larvae and environmental indices (biotopes, distance to the nearest main productive breeding sites of this species i.e., rice fields) led to the definition of a larval index, defined as the probability of observing An. hyrcanus larvae in a given site at least once over a year. Independent accuracy assessments showed a good agreement between observed and predicted values (sensitivity and specificity of the logistic regression model being 0.76 and 0.78, respectively). An adult index was derived from the larval index by averaging the larval index within a buffer around the trap location. This index was highly correlated with observed adult abundance values (Pearson r = 0.97, p < 0.05). This allowed us to generate predictive maps of An. hyrcanus larval and adult populations from the landscape indices. Conclusion This work shows

  8. Life on the edge: African malaria mosquito (Anopheles gambiae s. l.) larvae are amphibious.

    PubMed

    Miller, James R; Huang, Juan; Vulule, John; Walker, Edward D

    2007-03-01

    Anopheles gambiae s.l. is the main vector of malaria in Sub-Saharan Africa. Here, an estimated 1 million people die every year from this disease. Despite considerable research on An. gambiae that increasingly explores sub-organismal phenomena, important facets of the field biology of this deadly insect are yet being discovered. In the current study, we used simple observational tools to reveal that the habitat of larval An. gambiae is not limited within the boundaries of temporary mud puddles, as has been the accepted generalization. Thus, control tactics aimed at immatures must consider zones larger than puddles per se. In fact, eggs are more likely to be found outside than inside puddles. Eggs can develop and larvae can emerge on mud. Larvae are then capable of three distinct modes of terrestrial displacement (two active and one passive), whereby, they can reach standing water. On mud bearing a film of water, larvae actively displace backwards by sinusoidal undulations shown to be only a slight variation of the swimming motor program. On drying mud, larvae switch to a slower and forward form of active locomotion resembling that of a crawling caterpillar. During rains, small larvae may be passively displaced by flowing rainwater so as to be deposited into puddles. These capabilities for being amphibious, along with very rapid growth and development, help explain how An. gambiae thrives in a highly uncertain and often hostile larval environment.

  9. Vector movement underlies avian malaria at upper elevation in Hawaii: implications for transmission of human malaria.

    PubMed

    Freed, Leonard A; Cann, Rebecca L

    2013-11-01

    With climate warming, malaria in humans and birds at upper elevations is an emerging infectious disease because development of the parasite in the mosquito vector and vector life history are both temperature dependent. An enhanced-mosquito-movement model from climate warming predicts increased transmission of malaria at upper elevation sites that are too cool for parasite development in the mosquito vector. We evaluate this model with avian malaria (Plasmodium relictum) at 1,900-m elevation on the Island of Hawaii, with air temperatures too low for sporogony in the vector (Culex quinquefasciatus). On a well-defined site over a 14-year period, 10 of 14 species of native and introduced birds became infected, several epizootics occurred, and the increase in prevalence was driven more by resident species than by mobile species that could have acquired their infections at lower elevations. Greater movement of infectious mosquitoes from lower elevations now permits avian malaria to spread at 1,900 m in Hawaii, in advance of climate warming at that elevation. The increase in malaria at upper elevations due to dispersal of infectious mosquitoes is a real alternative to temperature for the increased incidence of human malaria in tropical highlands.

  10. Pyrethroid, DDT and malathion resistance in the malaria vector Anopheles gambiae from the Democratic Republic of Congo.

    PubMed

    Basilua Kanza, Jean Pierre; El Fahime, Elmostafa; Alaoui, Sanaa; Essassi, El Mokhtar; Brooke, Basil; Nkebolo Malafu, André; Watsenga Tezzo, Francis

    2013-01-01

    Malaria remains the most important parasitic disease in sub-Saharan Africa. We investigated the extent of resistance in the malaria vector Anopheles gambiae from the Democratic Republic of Congo (DRC) to three classes of insecticide approved by WHO for indoor residual spraying. Standard WHO bioassays were performed on adult Anopheles mosquitoes reared in the laboratory from larvae collected from different sites. Molecular techniques were used for species identification and to identify knockdown resistance (kdr) and acetylcholinesterase (ace-1(R)) mutations in individual mosquitoes. Only A. gambiae s.s., the nominal member of the A. gambiae species complex, was found. Bioassays showed phenotypic resistance to the main insecticides used in the region, notably pyrethroids (deltamethrin, permethrin, lambda-cyhalothrin), an organochlorine (DDT) and an organophosphate (malathion). The L1014F kdr allele, often associated with resistance to pyrethroids and DDT, was detected in samples from all collection sites at varying frequencies. No ace-1(R) resistance alleles (associated with organophosphate and carbamate resistance) were detected. These data can be used to inform a resistance management strategy that requires comprehensive information concerning malaria vector species composition in the areas of interest, and their susceptibility to the insecticides proposed for their control.

  11. Life-table studies revealed significant effects of deforestation on the development and survivorship of Anopheles minimus larvae.

    PubMed

    Wang, Xiaoming; Zhou, Guofa; Zhong, Daibin; Wang, Xiaoling; Wang, Ying; Yang, Zhaoqing; Cui, Liwang; Yan, Guiyun

    2016-06-06

    Many developing countries are experiencing rapid ecological changes such as deforestation and shifting agricultural practices. These environmental changes may have an important consequence on malaria due to their impact on vector survival and reproduction. Despite intensive deforestation and malaria transmission in the China-Myanmar border area, the impact of deforestation on malaria vectors in the border area is unknown. We conducted life table studies on Anopheles minimus larvae to determine the pupation rate and development time in microcosms under deforested, banana plantation, and forested environments. The pupation rate of An. minimus was 3.8 % in the forested environment. It was significantly increased to 12.5 % in banana plantations and to 52.5 % in the deforested area. Deforestation reduced larval-to-pupal development time by 1.9-3.3 days. Food supplementation to aquatic habitats in forested environments and banana plantations significantly increased larval survival rate to a similar level as in the deforested environment. Deforestation enhanced the survival and development of An. minimus larvae, a major malaria vector in the China-Myanmar border area. Experimental determination of the life table parameters on mosquito larvae under a variety of environmental conditions is valuable to model malaria transmission dynamics and impact by climate and environmental changes.

  12. Insecticide exposure impacts vector-parasite interactions in insecticide-resistant malaria vectors.

    PubMed

    Alout, Haoues; Djègbè, Innocent; Chandre, Fabrice; Djogbénou, Luc Salako; Dabiré, Roch Kounbobr; Corbel, Vincent; Cohuet, Anna

    2014-07-07

    Currently, there is a strong trend towards increasing insecticide-based vector control coverage in malaria endemic countries. The ecological consequence of insecticide applications has been mainly studied regarding the selection of resistance mechanisms; however, little is known about their impact on vector competence in mosquitoes responsible for malaria transmission. As they have limited toxicity to mosquitoes owing to the selection of resistance mechanisms, insecticides may also interact with pathogens developing in mosquitoes. In this study, we explored the impact of insecticide exposure on Plasmodium falciparum development in insecticide-resistant colonies of Anopheles gambiae s.s., homozygous for the ace-1 G119S mutation (Acerkis) or the kdr L1014F mutation (Kdrkis). Exposure to bendiocarb insecticide reduced the prevalence and intensity of P. falciparum oocysts developing in the infected midgut of the Acerkis strain, whereas exposure to dichlorodiphenyltrichloroethane reduced only the prevalence of P. falciparum infection in the Kdrkis strain. Thus, insecticide resistance leads to a selective pressure of insecticides on Plasmodium parasites, providing, to our knowledge, the first evidence of genotype by environment interactions on vector competence in a natural Anopheles-Plasmodium combination. Insecticide applications would affect the transmission of malaria in spite of resistance and would reduce to some degree the impact of insecticide resistance on malaria control interventions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Malaria vector species in Colombia - A review

    PubMed Central

    Montoya-Lerma, James; Solarte, Yezid A; Giraldo-Calderón, Gloria Isabel; Quiñones, Martha L; Ruiz-López, Freddy; Wilkerson, Richard C; González, Ranulfo

    2016-01-01

    Here we present a comprehensive review of the literature on the vectorial importance of the major Anopheles malaria vectors in Colombia. We provide basic information on the geographical distribution, altitudinal range, immature habitats, adult behaviour, feeding preferences and anthropophily, endophily and infectivity rates. We additionally review information on the life cycle, longevity and population fluctuation of Colombian Anopheles species. Emphasis was placed on the primary vectors that have been epidemiologically incriminated in malaria transmission: Anopheles darlingi, Anopheles albimanus and Anopheles nuneztovari. The role of a selection of local, regional or secondary vectors (e.g., Anopheles pseudopunctipennis and Anopheles neivai) is also discussed. We highlight the importance of combining biological, morphological and molecular data for the correct taxonomical determination of a given species, particularly for members of the species complexes. We likewise emphasise the importance of studying the bionomics of primary and secondary vectors along with an examination of the local conditions affecting the transmission of malaria. The presence and spread of the major vectors and the emergence of secondary species capable of transmitting human Plasmodia are of great interest. When selecting control measures, the anopheline diversity in the region must be considered. Variation in macroclimate conditions over a species’ geographical range must be well understood and targeted to plan effective control measures based on the population dynamics of the local Anopheles species. PMID:21881778

  14. Phytoextract-induced developmental deformities in malaria vector.

    PubMed

    Sharma, Preeti; Mohan, Lalit; Srivastava, C N

    2006-09-01

    Larvicidal potential of petroleum ether (Pee), carbon tetrachloride (Cte) and methanol extract (Mee) of Artemisia annua, Chenopodium album and Sonchus oleraceus was observed against malaria vector, Anopheles stephensi Liston. The Pee of A. annua with LC50 16.85 ppm after 24 h and 11.45 ppm after 48 h of treatment was found most effective, followed by Cte of A. annua and Ch. album, Pee of Ch. album and Mee of A. annua. However, no significant larvicidal activity was observed in Mee of Ch. album and all the three extracts of S. oleraceous. The Pee of A. annua was further investigated for its effect on the metamorphosis and the development of the malaria vector. It influenced the early life cycle of An. stephensi by reducing the percentage of hatching, larval, pupal and adult emergence and also lengthening the larval and pupal periods. The growth index was also reduced significantly. As the extract has remarkable effect on the metamorphosis and high larvicidal potential, it could, therefore, be used as an effective biocontrol agent against the highly nuisant malaria vector.

  15. Malaria vector abundance is associated with house structures in Baringo County, Kenya.

    PubMed

    Ondiba, Isabella M; Oyieke, Florence A; Ong'amo, George O; Olumula, Macrae M; Nyamongo, Isaac K; Estambale, Benson B A

    2018-01-01

    Malaria, a major cause of morbidity and mortality, is the most prevalent vector borne disease in Baringo County; a region which has varied house designs in arid and semi-arid areas. This study investigated the association between house structures and indoor-malaria vector abundance in Baringo County. The density of malaria vectors in houses with open eaves was higher than that for houses with closed eaves. Grass thatched roof houses had higher density of malaria vectors than corrugated iron sheet roofs. Similarly, mud walled houses had higher vector density than other wall types. Houses in the riverine zone were significantly associated with malaria vector abundance (p<0.000) possibly due to more varied house structures. In Kamnarok village within riverine zone, a house made of grass thatched roof and mud wall but raised on stilts with domestic animals (sheep/goats) kept at the lower level had lower mosquito density (5.8 per collection) than ordinary houses made of same materials but at ground level (30.5 mosquitoes per collection), suggestive of a change in behavior of mosquito feeding and resting. House modifications such as screening of eaves, improvement of construction material and building stilted houses can be incorporated in the integrated vector management (IVM) strategy to complement insecticide treated bed nets and indoor residual spray to reduce indoor malaria vector density.

  16. Malaria Vector Control Still Matters despite Insecticide Resistance.

    PubMed

    Alout, Haoues; Labbé, Pierrick; Chandre, Fabrice; Cohuet, Anna

    2017-08-01

    Mosquito vectors' resistance to insecticides is usually considered a major threat to the recent progresses in malaria control. However, studies measuring the impact of interventions and insecticide resistance reveal inconsistencies when using entomological versus epidemiological indices. First, evaluation tests that do not reflect the susceptibility of mosquitoes when they are infectious may underestimate insecticide efficacy. Moreover, interactions between insecticide resistance and vectorial capacity reveal nonintuitive outcomes of interventions. Therefore, considering ecological interactions between vector, parasite, and environment highlights that the impact of insecticide resistance on the malaria burden is not straightforward and we suggest that vector control still matters despite insecticide resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Agriculture and the promotion of insect pests: rice cultivation in river floodplains and malaria vectors in The Gambia.

    PubMed

    Jarju, Lamin B S; Fillinger, Ulrike; Green, Clare; Louca, Vasilis; Majambere, Silas; Lindsay, Steven W

    2009-07-27

    Anthropogenic modification of natural habitats can create conditions in which pest species associated with humans can thrive. In order to mitigate for these changes, it is necessary to determine which aspects of human management are associated with the promotion of those pests. Anopheles gambiae, the main Africa malaria vector, often breeds in rice fields. Here the impact of the ancient practice of 'swamp rice' cultivation, on the floodplains of the Gambia River, on the production of anopheline mosquitoes was investigated. Routine surveys were carried out along 500 m transects crossing rice fields from the landward edge of the floodplains to the river during the 2006 rainy season. Aquatic invertebrates were sampled using area samplers and emergence traps and fish sampled using nets. Semi-field experiments were used to investigate whether nutrients used for swamp rice cultivation affected mosquito larval abundance. At the beginning of the rainy season rice is grown on the landward edge of the floodplain; the first area to flood with fresh water and one rich in cattle dung. Later, rice plants are transplanted close to the river, the last area to dry out on the floodplain. Nearly all larval and adult stages of malaria vectors were collected 0-100 m from the landward edge of the floodplains, where immature rice plants were grown. These paddies contained stagnant freshwater with high quantities of cattle faeces. Semi-field studies demonstrated that cattle faeces nearly doubled the number of anopheline larvae compared with untreated water. Swamp rice cultivation creates ideal breeding sites for malaria vectors. However, only those close to the landward edge harboured vectors. These sites were productive since they were large areas of standing freshwater, rich in nutrients, protected from fish, and situated close to human habitation, where egg-laying mosquitoes from the villages had short distances to fly. The traditional practice of 'swamp rice' cultivation uses

  18. Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi.

    PubMed

    Murugan, Kadarkarai; Dinesh, Devakumar; Kumar, Prabhu Jenil; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Madhiyazhagan, Pari; Suresh, Udaiyan; Nicoletti, Marcello; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Mehlhorn, Heinz; Benelli, Giovanni

    2015-12-01

    Malaria is a life-threatening disease caused by parasites transmitted to people and animals through the bites of infected mosquitoes. The employ of synthetic insecticides to control Anopheles populations leads to high operational costs, non-target effects, and induced resistance. Recently, plant-borne compounds have been proposed for efficient and rapid extracellular synthesis of mosquitocidal nanoparticles. However, their impact against predators of mosquito larvae has been poorly studied. In this study, we synthesized silver nanoparticles (AgNPs) using the Datura metel leaf extract as reducing and stabilizing agent. The biosynthesis of AgNPs was confirmed analyzing the excitation of surface plasmon resonance using ultraviolet-visible (UV-vis) spectroscopy. Scanning electron microscopy (SEM) showed the clustered and irregular shapes of AgNPs, with a mean size of 40-60 nm. The presence of silver was determined by energy-dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy analysis investigated the identity of secondary metabolites, which may be acting as AgNP capping agents. In laboratory, LC50 of D. metel extract against Anopheles stephensi ranged from 34.693 ppm (I instar larvae) to 81.500 ppm (pupae). LC50 of AgNP ranged from 2.969 ppm (I instar larvae) to 6.755 ppm (pupae). Under standard laboratory conditions, the predation efficiency of Anax immaculifrons nymphs after 24 h was 75.5 % (II instar larvae) and 53.5 % (III instar larvae). In AgNP-contaminated environment, predation rates were boosted to 95.5 and 78 %, respectively. Our results documented that D. metel-synthesized AgNP might be employed at rather low doses to reduce larval populations of malaria vectors, without detrimental effects on behavioral traits of young instars of the dragonfly Anax immaculifrons.

  19. Transcriptome of the adult female malaria mosquito vector Anopheles albimanus.

    PubMed

    Martínez-Barnetche, Jesús; Gómez-Barreto, Rosa E; Ovilla-Muñoz, Marbella; Téllez-Sosa, Juan; García López, David E; Dinglasan, Rhoel R; Ubaida Mohien, Ceereena; MacCallum, Robert M; Redmond, Seth N; Gibbons, John G; Rokas, Antonis; Machado, Carlos A; Cazares-Raga, Febe E; González-Cerón, Lilia; Hernández-Martínez, Salvador; Rodríguez López, Mario H

    2012-05-30

    Human Malaria is transmitted by mosquitoes of the genus Anopheles. Transmission is a complex phenomenon involving biological and environmental factors of humans, parasites and mosquitoes. Among more than 500 anopheline species, only a few species from different branches of the mosquito evolutionary tree transmit malaria, suggesting that their vectorial capacity has evolved independently. Anopheles albimanus (subgenus Nyssorhynchus) is an important malaria vector in the Americas. The divergence time between Anopheles gambiae, the main malaria vector in Africa, and the Neotropical vectors has been estimated to be 100 My. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to explore the mosquito biology beyond the An. gambiae complex. We sequenced the transcriptome of the An. albimanus adult female. By combining Sanger, 454 and Illumina sequences from cDNA libraries derived from the midgut, cuticular fat body, dorsal vessel, salivary gland and whole body, we generated a single, high-quality assembly containing 16,669 transcripts, 92% of which mapped to the An. darlingi genome and covered 90% of the core eukaryotic genome. Bidirectional comparisons between the An. gambiae, An. darlingi and An. albimanus predicted proteomes allowed the identification of 3,772 putative orthologs. More than half of the transcripts had a match to proteins in other insect vectors and had an InterPro annotation. We identified several protein families that may be relevant to the study of Plasmodium-mosquito interaction. An open source transcript annotation browser called GDAV (Genome-Delinked Annotation Viewer) was developed to facilitate public access to the data generated by this and future transcriptome projects. We have explored the adult female transcriptome of one important New World malaria vector, An. albimanus. We identified protein-coding transcripts involved in biological processes that may

  20. Mapping of Malaria Vectors at District Level in India: Changing Scenario and Identified Gaps.

    PubMed

    Singh, Poonam; Lingala, Mercy Aparna L; Sarkar, Soma; Dhiman, Ramesh C

    2017-02-01

    Malaria is one of the six major vector-borne diseases in India, the endemicity of which changes with changes in ecological, climatic, and sociodevelopmental conditions. The anopheline vectors are greatly affected by ecological conditions such as deforestation, urbanization, climate and lifestyle. Despite the advent of tools such as Geographic Information System (GIS), the updated information on the distribution of anopheline vectors of malaria is not available. In India, the plan for vector control is organized at subcentral level but information about vectors is unavailable even at the district level. Therefore, a systematic presentation of vector distribution has been made to provide maps in respect of major vector species. A search of the literature for major vector species, that is, Anopheles culicifacies, Anopheles fluviatilis, Anopheles stephensi, Anopheles minimus, and Anopheles dirus sensu lato, since 1927 till 2015 was carried out. Data have been presented as present, absent, and no information about vector species during pre-eradication (1927-1958), posteradication (1959-1999), and current scenario (2000-2015). Vectors' distribution and malaria endemicity were mapped using Arc GIS. Of 630 districts of India, major vectors An. culicifacies, An. fluviatilis, and An. stephensi were present in 420, 241, and 243 districts, respectively. In 183 districts, there is no information on any major malaria vector species although 27 of them from the states of Arunachal Pradesh, Jharkhand, Manipur, and Mizoram are highly endemic for malaria, having incidences of 2-40 cases/1000/year. The identified gaps in vector distribution, particularly in malaria endemic areas, necessitate further surveys so as to generate the missing information.

  1. Modeling Malaria Vector Distribution under Climate Change Scenarios in Kenya

    NASA Astrophysics Data System (ADS)

    Ngaina, J. N.

    2017-12-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control strategies for sustaining elimination and preventing reintroduction of malaria. However, in Kenya, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of future climate change on locally dominant Anopheles vectors including Anopheles gambiae, Anopheles arabiensis, Anopheles merus, Anopheles funestus, Anopheles pharoensis and Anopheles nili. Environmental data (Climate, Land cover and elevation) and primary empirical geo-located species-presence data were identified. The principle of maximum entropy (Maxent) was used to model the species' potential distribution area under paleoclimate, current and future climates. The Maxent model was highly accurate with a statistically significant AUC value. Simulation-based estimates suggest that the environmentally suitable area (ESA) for Anopheles gambiae, An. arabiensis, An. funestus and An. pharoensis would increase under all two scenarios for mid-century (2016-2045), but decrease for end century (2071-2100). An increase in ESA of An. Funestus was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios for mid-century. Our findings can be applied in various ways such as the identification of additional localities where Anopheles malaria vectors may already exist, but has not yet been detected and the recognition of localities where it is likely to spread to. Moreover, it will help guide future sampling location decisions, help with the planning of vector control suites nationally and encourage broader research inquiry into vector species niche modeling

  2. Optimal control of malaria: combining vector interventions and drug therapies.

    PubMed

    Khamis, Doran; El Mouden, Claire; Kura, Klodeta; Bonsall, Michael B

    2018-04-24

    The sterile insect technique and transgenic equivalents are considered promising tools for controlling vector-borne disease in an age of increasing insecticide and drug-resistance. Combining vector interventions with artemisinin-based therapies may achieve the twin goals of suppressing malaria endemicity while managing artemisinin resistance. While the cost-effectiveness of these controls has been investigated independently, their combined usage has not been dynamically optimized in response to ecological and epidemiological processes. An optimal control framework based on coupled models of mosquito population dynamics and malaria epidemiology is used to investigate the cost-effectiveness of combining vector control with drug therapies in homogeneous environments with and without vector migration. The costs of endemic malaria are weighed against the costs of administering artemisinin therapies and releasing modified mosquitoes using various cost structures. Larval density dependence is shown to reduce the cost-effectiveness of conventional sterile insect releases compared with transgenic mosquitoes with a late-acting lethal gene. Using drug treatments can reduce the critical vector control release ratio necessary to cause disease fadeout. Combining vector control and drug therapies is the most effective and efficient use of resources, and using optimized implementation strategies can substantially reduce costs.

  3. Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators.

    PubMed

    Subramaniam, Jayapal; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Kovendan, Kalimuthu; Madhiyazhagan, Pari; Dinesh, Devakumar; Kumar, Palanisamy Mahesh; Chandramohan, Balamurugan; Suresh, Udaiyan; Rajaganesh, Rajapandian; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Canale, Angelo; Benelli, Giovanni

    2016-04-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. According to recent estimates, about 3.2 billion people, almost half of the world's population, are at risk of malaria. Malaria control is particularly challenging due to a growing number of chloroquine-resistant Plasmodium and pesticide-resistant Anopheles vectors. Newer and safer control tools are required. In this research, gold nanoparticles (AuNPs) were biosynthesized using a cheap flower extract of Couroupita guianensis as reducing and stabilizing agent. The biofabrication of AuNP was confirmed by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), zeta potential, and particle size analysis. AuNP showed different shapes including spheres, ovals, and triangles. AuNPs were crystalline in nature with face-centered cubic geometry; mean size was 29.2-43.8 nm. In laboratory conditions, AuNPs were toxic against Anopheles stephensi larvae, pupae, and adults. LC50 was 17.36 ppm (larva I), 19.79 ppm (larva II), 21.69 ppm (larva III), 24.57 ppm (larva IV), 28.78 ppm (pupa), and 11.23 ppm (adult). In the field, a single treatment with C. guianensis flower extract and AuNP (10 × LC50) led to complete larval mortality after 72 h. In standard laboratory conditions, the predation efficiency of golden wonder killifish, Aplocheilus lineatus, against A. stephensi IV instar larvae was 56.38 %, while in an aquatic environment treated with sub-lethal doses of the flower extract or AuNP, predation efficiency was boosted to 83.98 and 98.04 %, respectively. Lastly, the antiplasmodial activity of C. guianensis flower extract and AuNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of C. guianensis flower extract was 43.21 μg/ml (CQ-s) and 51.16 μg/ml (CQ-r). AuNP IC50 was 69.47 μg/ml (CQ-s) and 76

  4. How effective is integrated vector management against malaria and lymphatic filariasis where the diseases are transmitted by the same vector?

    PubMed

    Stone, Christopher M; Lindsay, Steve W; Chitnis, Nakul

    2014-12-01

    The opportunity to integrate vector management across multiple vector-borne diseases is particularly plausible for malaria and lymphatic filariasis (LF) control where both diseases are transmitted by the same vector. To date most examples of integrated control targeting these diseases have been unanticipated consequences of malaria vector control, rather than planned strategies that aim to maximize the efficacy and take the complex ecological and biological interactions between the two diseases into account. We developed a general model of malaria and LF transmission and derived expressions for the basic reproductive number (R0) for each disease. Transmission of both diseases was most sensitive to vector mortality and biting rate. Simulating different levels of coverage of long lasting-insecticidal nets (LLINs) and larval control confirms the effectiveness of these interventions for the control of both diseases. When LF was maintained near the critical density of mosquitoes, minor levels of vector control (8% coverage of LLINs or treatment of 20% of larval sites) were sufficient to eliminate the disease. Malaria had a far greater R0 and required a 90% population coverage of LLINs in order to eliminate it. When the mosquito density was doubled, 36% and 58% coverage of LLINs and larval control, respectively, were required for LF elimination; and malaria elimination was possible with a combined coverage of 78% of LLINs and larval control. Despite the low level of vector control required to eliminate LF, simulations suggest that prevalence of LF will decrease at a slower rate than malaria, even at high levels of coverage. If representative of field situations, integrated management should take into account not only how malaria control can facilitate filariasis elimination, but strike a balance between the high levels of coverage of (multiple) interventions required for malaria with the long duration predicted to be required for filariasis elimination.

  5. Can antibodies against flies alter malaria transmission in birds by changing vector behavior?

    PubMed

    Ghosh, Suma; Waite, Jessica L; Clayton, Dale H; Adler, Frederick R

    2014-10-07

    Transmission of insect-borne diseases is shaped by the interactions among parasites, vectors, and hosts. Any factor that alters movement of infected vectors from infected to uninfeced hosts will in turn alter pathogen spread. In this paper, we study one such pathogen-vector-host system, avian malaria in pigeons transmitted by fly ectoparasites, where both two-way and three-way interactions play a key role in shaping disease spread. Bird immune defenses against flies can decrease malaria prevalence by reducing fly residence time on infected birds or increase disease prevalence by enhancing fly movement and thus infection transmission. We develop a mathematical model that illustrates how these changes in vector behavior influence pathogen transmission and show that malaria prevalence is maximized at an intermediate level of defense avoidance by the flies. Understanding how host immune defenses indirectly alter disease transmission by influencing vector behavior has implications for reducing the transmission of human malaria and other vectored pathogens. Published by Elsevier Ltd.

  6. Malaria Prevention by New Technology: Vectored Delivery of Antibody Genes

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0401 TITLE: Malaria Prevention by New Technology : Vectored Delivery of Antibody Genes PRINCIPAL INVESTIGATOR: Gary...CONTRACT NUMBER Malaria Prevention by New Technology : Vectored Delivery of Antibody Genes 5b. GRANT NUMBER W81XWH-15-1-0401 5c. PROGRAM ELEMENT...whole animals. Using a specific technology originally applied to expression of HIV antibodies, we demonstrated that mice can be protected from

  7. Developing an expanded vector control toolbox for malaria elimination

    PubMed Central

    Tatarsky, Allison; Diabate, Abdoulaye; Chaccour, Carlos J; Marshall, John M; Okumu, Fredros O; Brunner, Shannon; Newby, Gretchen; Williams, Yasmin A; Malone, David; Tusting, Lucy S; Gosling, Roland D

    2017-01-01

    Vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) accounts for most of the malaria burden reductions achieved recently in low and middle-income countries (LMICs). LLINs and IRS are highly effective, but are insufficient to eliminate malaria transmission in many settings because of operational constraints, growing resistance to available insecticides and mosquitoes that behaviourally avoid contact with these interventions. However, a number of substantive opportunities now exist for rapidly developing and implementing more diverse, effective and sustainable malaria vector control strategies for LMICs. For example, mosquito control in high-income countries is predominantly achieved with a combination of mosquito-proofed housing and environmental management, supplemented with large-scale insecticide applications to larval habitats and outdoor spaces that kill off vector populations en masse, but all these interventions remain underused in LMICs. Programmatic development and evaluation of decentralised, locally managed systems for delivering these proactive mosquito population abatement practices in LMICs could therefore enable broader scale-up. Furthermore, a diverse range of emerging or repurposed technologies are becoming available for targeting mosquitoes when they enter houses, feed outdoors, attack livestock, feed on sugar or aggregate into mating swarms. Global policy must now be realigned to mobilise the political and financial support necessary to exploit these opportunities over the decade ahead, so that national malaria control and elimination programmes can access a much broader, more effective set of vector control interventions. PMID:28589022

  8. Preliminary Observations on the Changing Roles of Malaria Vectors in Southern Belize

    DTIC Science & Technology

    1993-01-01

    darlingi (Diptera: Cu- licidae) de la Ceiba, Atlantida, Honduras. Thesis. Maestria en Entomologia. Universidad de Panama, Panama City, Panama. 456...Brown and C. Cordon-Rosales. 1992. Potential malaria vectors in northern Guatemala (Vectores potenciales de ma- laria in la region norte de Guatemala...Serra de Aqua in June 1946 (Linthicum 1988). We initiated a malaria vector research pro- gram in Belize in 1990 and conducted extensive larval

  9. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Benelli, Giovanni

    2016-11-01

    Mosquitoes (Diptera: Culicidae) are a key threat for millions of people and animals worldwide, since they act as vectors for devastating pathogens and parasites, including malaria, dengue, Japanese encephalitis, filiariasis and Zika virus. Mosquito young instars are usually targeted using organophosphates, insect growth regulators and microbial agents. Indoor residual spraying and insecticide-treated bed nets are also employed. However, these chemicals have negative effects on human health and the environment and induce resistance in a number of vectors. In this scenario, newer and safer tools have been recently implemented to enhance mosquito control. The concrete potential of screening plant species as sources of metabolites for entomological and parasitological purposes is worthy of attention, as recently elucidated by the Y. Tu's example. Here we investigated the toxicity of Heracleum sprengelianum (Apiaceae) leaf essential oil and its major compounds toward third instar larvae of the malaria vector Anopheles subpictus, the arbovirus vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. GC-MS analysis showed that EO major components were lavandulyl acetate (17.8%) and bicyclogermacrene (12.9%). The EO was toxic to A. subpictus, A. albopictus, and C. tritaeniorhynchus, with LC50 of 33.4, 37.5 and 40.9µg/ml, respectively. Lavandulyl acetate was more toxic to mosquito larvae if compared to bicyclogermacrene. Their LC50 were 4.17 and 10.3µg/ml for A. subpictus, 4.60 and 11.1µg/ml for A. albopictus, 5.11 and 12.5µg/ml for C. tritaeniorhynchus. Notably, the EO and its major compounds were safer to three non-target mosquito predators, Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 ranging from 206 to 4219µg/ml. Overall, this study highlights that H. sprengelianum EO is a promising source of eco-friendly larvicides against three important mosquito vectors with moderate toxicity against non-target aquatic

  10. The Biological Control of the Malaria Vector

    PubMed Central

    Kamareddine, Layla

    2012-01-01

    The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes. PMID:23105979

  11. Malaria vectors in South America: current and future scenarios.

    PubMed

    Laporta, Gabriel Zorello; Linton, Yvonne-Marie; Wilkerson, Richard C; Bergo, Eduardo Sterlino; Nagaki, Sandra Sayuri; Sant'Ana, Denise Cristina; Sallum, Maria Anice Mureb

    2015-08-19

    Malaria remains a significant public health issue in South America. Future climate change may influence the distribution of the disease, which is dependent on the distribution of those Anopheles mosquitoes competent to transmit Plasmodium falciparum. Herein, predictive niche models of the habitat suitability for P. falciparum, the current primary vector Anopheles darlingi and nine other known and/or potential vector species of the Neotropical Albitarsis Complex, were used to document the current situation and project future scenarios under climate changes in South America in 2070. To build each ecological niche model, we employed topography, climate and biome, and the currently defined distribution of P. falciparum, An. darlingi and nine species comprising the Albitarsis Complex in South America. Current and future (i.e., 2070) distributions were forecast by projecting the fitted ecological niche model onto the current environmental situation and two scenarios of simulated climate change. Statistical analyses were performed between the parasite and each vector in both the present and future scenarios to address potential vector roles in the dynamics of malaria transmission. Current distributions of malaria vector species were associated with that of P. falciparum, confirming their role in transmission, especially An. darlingi, An. marajoara and An. deaneorum. Projected climate changes included higher temperatures, lower water availability and biome modifications. Regardless of future scenarios considered, the geographic distribution of P. falciparum was exacerbated in 2070 South America, with the distribution of the pathogen covering 35-46% of the continent. As the current primary vector An. darlingi showed low tolerance for drier environments, the projected climate change would significantly reduce suitable habitat, impacting both its distribution and abundance. Conversely, climate generalist members of the Albitarsis Complex showed significant spatial and

  12. Habitat suitability and ecological niche profile of major malaria vectors in Cameroon

    PubMed Central

    2009-01-01

    Background Suitability of environmental conditions determines a species distribution in space and time. Understanding and modelling the ecological niche of mosquito disease vectors can, therefore, be a powerful predictor of the risk of exposure to the pathogens they transmit. In Africa, five anophelines are responsible for over 95% of total malaria transmission. However, detailed knowledge of the geographic distribution and ecological requirements of these species is to date still inadequate. Methods Indoor-resting mosquitoes were sampled from 386 villages covering the full range of ecological settings available in Cameroon, Central Africa. Using a predictive species distribution modeling approach based only on presence records, habitat suitability maps were constructed for the five major malaria vectors Anopheles gambiae, Anopheles funestus, Anopheles arabiensis, Anopheles nili and Anopheles moucheti. The influence of 17 climatic, topographic, and land use variables on mosquito geographic distribution was assessed by multivariate regression and ordination techniques. Results Twenty-four anopheline species were collected, of which 17 are known to transmit malaria in Africa. Ecological Niche Factor Analysis, Habitat Suitability modeling and Canonical Correspondence Analysis revealed marked differences among the five major malaria vector species, both in terms of ecological requirements and niche breadth. Eco-geographical variables (EGVs) related to human activity had the highest impact on habitat suitability for the five major malaria vectors, with areas of low population density being of marginal or unsuitable habitat quality. Sunlight exposure, rainfall, evapo-transpiration, relative humidity, and wind speed were among the most discriminative EGVs separating "forest" from "savanna" species. Conclusions The distribution of major malaria vectors in Cameroon is strongly affected by the impact of humans on the environment, with variables related to proximity to human

  13. Habitat suitability and ecological niche profile of major malaria vectors in Cameroon.

    PubMed

    Ayala, Diego; Costantini, Carlo; Ose, Kenji; Kamdem, Guy C; Antonio-Nkondjio, Christophe; Agbor, Jean-Pierre; Awono-Ambene, Parfait; Fontenille, Didier; Simard, Frédéric

    2009-12-23

    Suitability of environmental conditions determines a species distribution in space and time. Understanding and modelling the ecological niche of mosquito disease vectors can, therefore, be a powerful predictor of the risk of exposure to the pathogens they transmit. In Africa, five anophelines are responsible for over 95% of total malaria transmission. However, detailed knowledge of the geographic distribution and ecological requirements of these species is to date still inadequate. Indoor-resting mosquitoes were sampled from 386 villages covering the full range of ecological settings available in Cameroon, Central Africa. Using a predictive species distribution modeling approach based only on presence records, habitat suitability maps were constructed for the five major malaria vectors Anopheles gambiae, Anopheles funestus, Anopheles arabiensis, Anopheles nili and Anopheles moucheti. The influence of 17 climatic, topographic, and land use variables on mosquito geographic distribution was assessed by multivariate regression and ordination techniques. Twenty-four anopheline species were collected, of which 17 are known to transmit malaria in Africa. Ecological Niche Factor Analysis, Habitat Suitability modeling and Canonical Correspondence Analysis revealed marked differences among the five major malaria vector species, both in terms of ecological requirements and niche breadth. Eco-geographical variables (EGVs) related to human activity had the highest impact on habitat suitability for the five major malaria vectors, with areas of low population density being of marginal or unsuitable habitat quality. Sunlight exposure, rainfall, evapo-transpiration, relative humidity, and wind speed were among the most discriminative EGVs separating "forest" from "savanna" species. The distribution of major malaria vectors in Cameroon is strongly affected by the impact of humans on the environment, with variables related to proximity to human settings being among the best

  14. Eliminating malaria vectors

    PubMed Central

    2013-01-01

    Malaria vectors which predominantly feed indoors upon humans have been locally eliminated from several settings with insecticide treated nets (ITNs), indoor residual spraying or larval source management. Recent dramatic declines of An. gambiae in east Africa with imperfect ITN coverage suggest mosquito populations can rapidly collapse when forced below realistically achievable, non-zero thresholds of density and supporting resource availability. Here we explain why insecticide-based mosquito elimination strategies are feasible, desirable and can be extended to a wider variety of species by expanding the vector control arsenal to cover a broader spectrum of the resources they need to survive. The greatest advantage of eliminating mosquitoes, rather than merely controlling them, is that this precludes local selection for behavioural or physiological resistance traits. The greatest challenges are therefore to achieve high biological coverage of targeted resources rapidly enough to prevent local emergence of resistance and to then continually exclude, monitor for and respond to re-invasion from external populations. PMID:23758937

  15. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model.

    PubMed

    Limbach, Keith; Stefaniak, Maureen; Chen, Ping; Patterson, Noelle B; Liao, Grant; Weng, Shaojie; Krepkiy, Svetlana; Ekberg, Greg; Torano, Holly; Ettyreddy, Damodar; Gowda, Kalpana; Sonawane, Sharvari; Belmonte, Arnel; Abot, Esteban; Sedegah, Martha; Hollingdale, Michael R; Moormann, Ann; Vulule, John; Villasante, Eileen; Richie, Thomas L; Brough, Douglas E; Bruder, Joseph T

    2017-07-03

    A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.

  16. Oral, Slow-Release Ivermectin: Biting Back at Malaria Vectors.

    PubMed

    Chaccour, Carlos J; Rabinovich, N Regina

    2017-03-01

    Bellinger and colleagues offer an elegant twist for a promising new tool against malaria. This formulation is designed to release ivermectin, a mosquito-killing drug for 10 days after a single oral dose. This could reduce the vector population and serve as a complementary tool for malaria elimination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    PubMed Central

    Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo

    2014-01-01

    Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005

  18. Targeting male mosquito swarms to control malaria vector density

    PubMed Central

    Sawadogo, Simon Peguedwinde; Niang, Abdoulaye; Bilgo, Etienne; Millogo, Azize; Maïga, Hamidou; Dabire, Roch K.; Tripet, Frederic; Diabaté, Abdoulaye

    2017-01-01

    Malaria control programs are being jeopardized by the spread of insecticide resistance in mosquito vector populations. It has been estimated that the spread of resistance could lead to an additional 120000 deaths per year, and interfere with the prospects for sustained control or the feasibility of achieving malaria elimination. Another complication for the development of resistance management strategies is that, in addition to insecticide resistance, mosquito behavior evolves in a manner that diminishes the impact of LLINs and IRS. Mosquitoes may circumvent LLIN and IRS control through preferential feeding and resting outside human houses and/or being active earlier in the evening before people go to sleep. Recent developments in our understanding of mosquito swarming suggest that new tools targeting mosquito swarms can be designed to cut down the high reproductive rate of malaria vectors. Targeting swarms of major malaria vectors may provide an effective control method to counteract behavioral resistance developed by mosquitoes. Here, we evaluated the impact of systematic spraying of swarms of Anopheles gambiae s.l. using a mixed carbamate and pyrethroid aerosol. The impact of this intervention on vector density, female insemination rates and the age structure of males was measured. We showed that the resulting mass killing of swarming males and some mate-seeking females resulted in a dramatic 80% decrease in population size compared to a control population. A significant decrease in female insemination rate and a significant shift in the age structure of the male population towards younger males incapable of mating were observed. This paradigm-shift study therefore demonstrates that targeting primarily males rather than females, can have a drastic impact on mosquito population. PMID:28278212

  19. Identification and Optimization of New Leads for Malaria Vector Control.

    PubMed

    Hueter, Ottmar F; Hoppé, Mark; Wege, Philip; Maienfisch, Peter

    2016-10-01

    A significant proportion of the world's population remains at risk from malaria, and whilst great progress has been made in reducing the number of malaria cases globally through the use of vector control insecticides, these gains are under threat from the emergence of insecticide resistance. The spread of resistance in the vector populations, principally to pyrethroids, is driving the need for the development of new tools for malaria vector control. In order to identify new leads 30,000 compounds from the Syngenta corporate chemical collection were tested in a newly developed screening platform. More than 3000 compounds (10%) showed activity at ≤200 mg active ingredient (AI) litre -1 against Anopheles stephensi. Further evaluation resulted in the identification of 12 viable leads for the control of adult mosquitoes, most originating from current or former insecticide projects. Surprisingly, one of these leads emerged from a former PPO herbicide project and one from a former complex III fungicide project. This indicates that representatives of certain herbicide and fungicide projects and modes of action can also represent a valuable source of leads for malaria vector control. Optimization of the diphenyl ether lead 1 resulted in the identification of the cyano-pyridyl compound 31. This compound 31 exhibits good activity against mosquito species including rdl resistant Anopheles. It is only slightly weaker than permethrin and does not show relevant levels of cross-resistance to the organochlorine insecticide dieldrin.

  20. Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae

    PubMed Central

    Okumu, Fredros O; Knols, Bart GJ; Fillinger, Ulrike

    2007-01-01

    Background Larviciding is a key strategy used in many vector control programmes around the world. Costs could be reduced if larvicides could be manufactured locally. The potential of natural products as larvicides against the main African malaria vector, Anopheles gambiae s.s was evaluated. Methods To assess the larvicidal efficacy of a neem (Azadirachta indica) oil formulation (azadirachtin content of 0.03% w/v) on An. gambiae s.s., larvae were exposed as third and fourth instars to a normal diet supplemented with the neem oil formulations in different concentrations. A control group of larvae was exposed to a corn oil formulation in similar concentrations. Results Neem oil had an LC50 value of 11 ppm after 8 days, which was nearly five times more toxic than the corn oil formulation. Adult emergence was inhibited by 50% at a concentration of 6 ppm. Significant reductions on growth indices and pupation, besides prolonged larval periods, were observed at neem oil concentrations above 8 ppm. The corn oil formulation, in contrast, produced no growth disruption within the tested range of concentrations. Conclusion Neem oil has good larvicidal properties for An. gambiae s.s. and suppresses successful adult emergence at very low concentrations. Considering the wide distribution and availability of this tree and its products along the East African coast, this may prove a readily available and cheap alternative to conventional larvicides. PMID:17519000

  1. Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae.

    PubMed

    Okumu, Fredros O; Knols, Bart G J; Fillinger, Ulrike

    2007-05-22

    Larviciding is a key strategy used in many vector control programmes around the world. Costs could be reduced if larvicides could be manufactured locally. The potential of natural products as larvicides against the main African malaria vector, Anopheles gambiae s.s was evaluated. To assess the larvicidal efficacy of a neem (Azadirachta indica) oil formulation (azadirachtin content of 0.03% w/v) on An. gambiae s.s., larvae were exposed as third and fourth instars to a normal diet supplemented with the neem oil formulations in different concentrations. A control group of larvae was exposed to a corn oil formulation in similar concentrations. Neem oil had an LC50 value of 11 ppm after 8 days, which was nearly five times more toxic than the corn oil formulation. Adult emergence was inhibited by 50% at a concentration of 6 ppm. Significant reductions on growth indices and pupation, besides prolonged larval periods, were observed at neem oil concentrations above 8 ppm. The corn oil formulation, in contrast, produced no growth disruption within the tested range of concentrations. Neem oil has good larvicidal properties for An. gambiae s.s. and suppresses successful adult emergence at very low concentrations. Considering the wide distribution and availability of this tree and its products along the East African coast, this may prove a readily available and cheap alternative to conventional larvicides.

  2. Impact of environmental changes and human-related factors on the potential malaria vector, Anopheles labranchiae (Diptera: Culicidae), in Maremma, Central Italy.

    PubMed

    Boccolini, D; Toma, L; Di Luca, M; Severini, F; Cocchi, M; Bella, A; Massa, A; Mancini Barbieri, F; Bongiorno, G; Angeli, L; Pontuale, G; Raffaelli, I; Fausto, A M; Tamburro, A; Romi, R

    2012-07-01

    The Maremma Plain (central Italy) was hyper-endemic for malaria until the mid-20th century, when a national campaign for malaria elimination drastically reduced the presence of the main vector Anopheles labranchiae Falleroni. However, the introduction of rice cultivation over 30 yr ago has led to an increase in the An. labranchiae population and concern over possible malaria reemergence. We studied the impact of anthropogenic environmental changes on the abundance and distribution of An. labranchiae in Maremma, focusing on rice fields, the main breeding sites. Adults and larvae were collected in three main areas with diverse ecological characteristics. Data were collected on human activity, land use, and seasonal climatic and demographic variations. We also interviewed residents and tourists regarding their knowledge of malaria. Our findings showed that the most important environmental changes have occurred along the coast; An. labranchiae foci are present throughout the area, with massive reproduction strictly related to rice cultivation in coastal areas. Although the abundance of this species has drastically decreased over the past 30 yr, it remains high and, together with climatic conditions and the potential introduction of gametocyte carriers, it may represent a threat for the occurrence of autochthonous malaria cases. Our findings suggest the need for the continuous monitoring of An. labranchiae in the study area. In addition to entomological surveillance, more detailed knowledge of human-induced environmental changes is needed, so as to have a more complete database that can be used for vector-control plans and for properly managing emergencies related to autochthonous introduced cases.

  3. Predicting and mapping malaria under climate change scenarios: the potential redistribution of malaria vectors in Africa.

    PubMed

    Tonnang, Henri E Z; Kangalawe, Richard Y M; Yanda, Pius Z

    2010-04-23

    Malaria is rampant in Africa and causes untold mortality and morbidity. Vector-borne diseases are climate sensitive and this has raised considerable concern over the implications of climate change on future disease risk. The problem of malaria vectors (Anopheles mosquitoes) shifting from their traditional locations to invade new zones is an important concern. The vision of this study was to exploit the sets of information previously generated by entomologists, e.g. on geographical range of vectors and malaria distribution, to build models that will enable prediction and mapping the potential redistribution of Anopheles mosquitoes in Africa. The development of the modelling tool was carried out through calibration of CLIMEX parameters. The model helped estimate the potential geographical distribution and seasonal abundance of the species in relation to climatic factors. These included temperature, rainfall and relative humidity, which characterized the living environment for Anopheles mosquitoes. The same parameters were used in determining the ecoclimatic index (EI). The EI values were exported to a GIS package for special analysis and proper mapping of the potential future distribution of Anopheles gambiae and Anophles arabiensis within the African continent under three climate change scenarios. These results have shown that shifts in these species boundaries southward and eastward of Africa may occur rather than jumps into quite different climatic environments. In the absence of adequate control, these predictions are crucial in understanding the possible future geographical range of the vectors and the disease, which could facilitate planning for various adaptation options. Thus, the outputs from this study will be helpful at various levels of decision making, for example, in setting up of an early warning and sustainable strategies for climate change and climate change adaptation for malaria vectors control programmes in Africa.

  4. Progress in malaria vector control.

    PubMed

    Pant, C P; Rishikesh, N; Bang, Y H; Smith, A

    1981-01-01

    Malaria control, except in tropical Africa, will probably continue to be based to a large extent on the use of insecticides for many years. However, the development of resistance to insecticides in the vectors has caused serious difficulties and it is necessary to change the strategy of insecticide use to maximize their efficacy. A thorough knowledge of the ecology and behaviour of each vector species is required before the control strategy can be adapted to different epidemiological situations. The behavioural differences between sibling species have been recognized for several years, but study of this problem has recently been simplified by improved means of identification that involve chromosomal banding patterns and electrophoretic analysis. Behavioural differences have also been associated with certain chromosomal rearrangements.New records of insecticide resistance among anophelines continue to appear and the impact of this on antimalaria operations has been seriously felt in Central America (multi-resistance in Anopheles albimanus), Turkey (A. sacharovi), India and several Asian countries (A. culicifacies and A. stephensi), and some other countries. Work continues on the screening and testing of newer insecticides that can be used as alternatives, but DDT, malathion, temephos, fenitrothion, and propoxur continue to be used as the main insecticides in many malaria control projects. The search for simpler and innovative approaches to insecticide application also continues.Biological control of vectors is receiving increased attention, as it could become an important component of integrated vector control strategies, and most progress has been made with the spore-forming bacterium, serotype H-14 of Bacillus thuringiensis. Larvivorous fish such as Gambusia spp. and Poecilia spp. continue to be used in some programmes.Application of environmental management measures, such as source reduction, source elimination, flushing of drainage and irrigation channels, and

  5. Larval habitat for the avian malaria vector culex quinquefasciatus (Diptera: Culicidae) in altered mid-elevation mesic-dry forests in Hawai'i

    USGS Publications Warehouse

    Reiter, M.E.; Lapointe, D.A.

    2009-01-01

    Effective management of avian malaria (Plasmodium relictum) in Hawai'i's endemic honeycreepers (Drepanidinae) requires the identification and subsequent reduction or treatment of larval habitat for the mosquito vector, Culex quinquefasciatus (Diptera: Culicidae). We conducted ground surveys, treehole surveys, and helicopter aerial surveys from 20012003 to identify all potential larval mosquito habitat within two 100+ ha mesic-dry forest study sites in Hawai'i Volcanoes National Park, Hawai'i; 'Ainahou Ranch and Mauna Loa Strip Road. At 'Ainahou Ranch, anthropogenic sites (43%) were more likely to contain mosquitoes than naturally occurring (8%) sites. Larvae of Cx. quinquefasciatus were predominately found in anthropogenic sites while Aedes albopictus larvae occurred less frequently in both anthropogenic sites and naturally-occurring sites. Additionally, moderate-size (???20-22,000 liters) anthropogenic potential larval habitat had >50% probability of mosquito presence compared to larger- and smaller-volume habitat (<50%). Less than 20% of trees surveyed at ' Ainahou Ranch had treeholes and few mosquito larvae were detected. Aerial surveys at 'Ainahou Ranch detected 56% (95% CI: 42-68%) of the potential larval habitat identified in ground surveys. At Mauna Loa Strip Road, Cx. quinquefasciatus larvae were only found in the rock holes of small intermittent stream drainages that made up 20% (5 of 25) of the total potential larval habitat. The volume of the potential larval habitat did not influence the probability of mosquito occurrence at Mauna Loa Strip Road. Our results suggest that Cx. quinquefasciatus abundance, and subsequently avian malaria, may be controlled by larval habitat reduction in the mesic-dry landscapes of Hawai'i where anthropogenic sources predominate.

  6. The larvicidal effects of black pepper (Piper nigrum L.) and piperine against insecticide resistant and susceptible strains of Anopheles malaria vector mosquitoes.

    PubMed

    Samuel, Michael; Oliver, Shüné V; Coetzee, Maureen; Brooke, Basil D

    2016-04-26

    Insecticide resistance carries the potential to undermine the efficacy of insecticide based malaria vector control strategies. Therefore, there is an urgent need for new insecticidal compounds. Black pepper (dried fruit from the vine, Piper nigrum), used as a food additive and spice, and its principal alkaloid piperine, have previously been shown to have larvicidal properties. The aim of this study was to investigate the larvicidal effects of ground black pepper and piperine against third and fourth instar Anopheles larvae drawn from several laboratory-reared insecticide resistant and susceptible strains of Anopheles arabiensis, An. coluzzii, An. gambiae, An. quadriannulatus and An. funestus. Larvae were fed with mixtures of standard larval food and either ground black pepper or piperine in different proportions. Mortality was recorded 24 h after black pepper and 48 h after piperine were applied to the larval bowls. Black pepper and piperine mixtures caused high mortality in the An. gambiae complex strains, with black pepper proving significantly more toxic than piperine. The An. funestus strains were substantially less sensitive to black pepper and piperine which may reflect a marked difference in the feeding habits of this species compared to that of the Gambiae complex or a difference in food metabolism as a consequence of differences in breeding habitat between species. Insecticide resistant and susceptible strains by species proved equally susceptible to black pepper and piperine. It is concluded that black pepper shows potential as a larvicide for the control of certain malaria vector species.

  7. Neem cake as a promising larvicide and adulticide against the rural malaria vector Anopheles culicifacies (Diptera: Culicidae): a HPTLC fingerprinting approach.

    PubMed

    Benelli, Giovanni; Chandramohan, Balamurugan; Murugan, Kadarkarai; Madhiyazhagan, Pari; Kovendan, Kalimuthu; Panneerselvam, Chellasamy; Dinesh, Devakumar; Govindarajan, Marimuthu; Higuchi, Akon; Toniolo, Chiara; Canale, Angelo; Nicoletti, Marcello

    2017-05-01

    Mosquitoes are insects of huge public health importance, since they act as vectors for important pathogens and parasites. Here, we focused on the possibility of using the neem cake in the fight against mosquito vectors. The neem cake chemical composition significantly changes among producers, as evidenced by our HPTLC (High performance thin layer chromatography) analyses of different marketed products. Neem cake extracts were tested to evaluate the ovicidal, larvicidal and adulticidal activity against the rural malaria vector Anopheles culicifacies. Ovicidal activity of both types of extracts was statistically significant, and 150 ppm completely inhibited egg hatching. LC 50 values were extremely low against fourth instar larvae, ranging from 1.321 (NM1) to 1.818 ppm (NA2). Adulticidal activity was also high, with LC 50 ranging from 3.015 (NM1) to 3.637 ppm (NM2). This study pointed out the utility of neem cake as a source of eco-friendly mosquitocides in Anopheline vector control programmes.

  8. Vector control for malaria and other mosquito-borne diseases. Report of a WHO study group.

    PubMed

    1995-01-01

    Since the Ministerial Conference on Malaria in 1992, which acknowledged the urgent need for worldwide commitment to malaria control, efforts have been directed to implementation of a Global Malaria Control Strategy. Vector control, an essential component of malaria control, has become less effective in recent years, partly as a result of poor use of alternative control tools, inappropriate use of insecticides, lack of an epidemiological basis for interventions, inadequate resources and infrastructure, and weak management. Changing environmental conditions, the behavioural characteristics of certain vectors, and resistance to insecticides have added to the difficulties. This report of a WHO Study Group provides guidelines for the planning, implementation and evaluation of cost-effective and sustainable vector control in the context of the Global Malaria Control Strategy. It reviews the available methods - indoor residual spraying, personal protection, larval control and environmental management - stressing the need for selective and flexible use of interventions according to local conditions. Requirements for data collection and the appropriate use of entomological parameters and techniques are discussed and priorities identified for the development of local capacity for vector control and for operational research. Emphasis is placed both on the monitoring and evaluation of vector control to ensure cost-effectiveness and on the development of strong managerial structures, which can support community participation and intersectoral collaboration and accommodate the control of other vector-borne diseases. The report concludes with recommendations aimed at promoting the targeted and efficient use of vector control in preventing and controlling malaria, thereby reducing the threat to health and socioeconomic development in many tropical countries.

  9. Increased malaria transmission around irrigation schemes in Ethiopia and the potential of canal water management for malaria vector control.

    PubMed

    Kibret, Solomon; Wilson, G Glenn; Tekie, Habte; Petros, Beyene

    2014-09-13

    Irrigation schemes have been blamed for the increase in malaria in many parts of sub-Saharan Africa. However, proper water management could help mitigate malaria around irrigation schemes in this region. This study investigates the link between irrigation and malaria in Central Ethiopia. Larval and adult mosquitoes were collected fortnightly between November 2009 and October 2010 from two irrigated and two non-irrigated (control) villages in the Ziway area, Central Ethiopia. Daily canal water releases were recorded during the study period and bi-weekly correlation analysis was done to determine relationships between canal water releases and larval/adult vector densities. Blood meal sources (bovine vs human) and malaria sporozoite infection were tested using enzyme-linked immunosorbent assay (ELISA). Monthly malaria data were also collected from central health centre of the study villages. Monthly malaria incidence was over six-fold higher in the irrigated villages than the non-irrigated villages. The number of anopheline breeding habitats was 3.6 times higher in the irrigated villages than the non-irrigated villages and the most common Anopheles mosquito breeding habitats were waterlogged field puddles, leakage pools from irrigation canals and poorly functioning irrigation canals. Larval and adult anopheline densities were seven- and nine-fold higher in the irrigated villages than in the non-irrigated villages, respectively, during the study period. Anopheles arabiensis was the predominant species in the study area. Plasmodium falciparum sporozoite rates of An. arabiensis and Anopheles pharoensis were significantly higher in the irrigated villages than the non-irrigated villages. The annual entomological inoculation rate (EIR) calculated for the irrigated and non-irrigated villages were 34.8 and 0.25 P. falciparum infective bites per person per year, respectively. A strong positive correlation was found between bi-weekly anopheline larval density and canal water

  10. A research agenda for malaria eradication: vector control.

    PubMed

    2011-01-25

    Different challenges are presented by the variety of malaria transmission environments present in the world today. In each setting, improved control for reduction of morbidity is a necessary first step towards the long-range goal of malaria eradication and a priority for regions where the disease burden is high. For many geographic areas where transmission rates are low to moderate, sustained and well-managed application of currently available tools may be sufficient to achieve local elimination. The research needs for these areas will be to sustain and perhaps improve the effectiveness of currently available tools. For other low-to-moderate transmission regions, notably areas where the vectors exhibit behaviours such as outdoor feeding and resting that are not well targeted by current strategies, new interventions that target predictable features of the biology/ecologies of the local vectors will be required. To achieve elimination in areas where high levels of transmission are sustained by very efficient vector species, radically new interventions that significantly reduce the vectorial capacity of wild populations will be needed. Ideally, such interventions should be implemented with a one-time application with a long-lasting impact, such as genetic modification of the vectorial capacity of the wild vector population.

  11. Factors influencing the spatial distribution of Anopheles larvae in Coimbatore District, Tamil Nadu, India.

    PubMed

    Arjunan, Naresh Kumar; Kadarkarai, Murugan; Kumar, Shobana; Pari, Madhiyazhagan; Thiyagarajan, Nataraj; Vincent, C Thomas; Barnard, Donald R

    2015-12-01

    Malaria causes extensive morbidity and mortality in humans and results in significant economic losses in India. The distribution of immature malaria-transmitting Anopheles mosquitoes was studied in 17 villages in Coimbatore District as a prelude to the development and implementation of vector control strategies that are intended to reduce the risk of human exposure to potentially infectious mosquitoes. Eight Anopheles species were recorded. The most numerous species were Anopheles vagus, Anopheles subpictus, and Anopheles hyrcanus. The location of mosquito development sites and the density of larvae in each village was evaluated for correlation with selected demographic, biologic, and land use parameters using remote sensing and geographic information systems (GIS) technology. We found the number of mosquito development sites in a village and the density of larvae in such sites to be positively correlated with human population density but not the surface area (km(2)) of the village. The number of mosquito development sites and the density of larvae in each site were not correlated. Data from this study are being used to construct a GIS-based mapping system that will enable the location of aquatic habitats with Anopheles larvae in the Coimbatore District, Tamil Nadu, India as target sites for the application of vector control. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The effect of metal pollution on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae)

    PubMed Central

    Brooke, Basil D.

    2018-01-01

    Metal exposure is one of the commonest anthropogenic pollutants mosquito larvae are exposed to, both in agricultural and urban settings. As members of the Anopheles gambiae complex, which contains several major malaria vector species including An. arabiensis, are increasingly adapting to polluted environments, this study examined the effects of larval metal exposure on various life history traits of epidemiological importance. Two laboratory strains of An. arabiensis, SENN (insecticide susceptible) and SENN DDT (insecticide resistant), were reared in maximum acceptable toxicity concentrations, (MATC—the highest legally accepted concentration) of cadmium chloride, lead nitrate and copper nitrate. Following these exposures, time to pupation, adult size and longevity were determined. Larvae reared in double the MATC were assessed for changes in malathion and deltamethrin tolerance, measured by lethal time bottle bioassay, as well as changes in detoxification enzyme activity. As defence against oxidative stress has previously been demonstrated to affect the expression of insecticide resistance, catalase, glutathione peroxidase and superoxide dismutase activity was assessed. The relative metal toxicity to metal naïve larvae was also assessed. SENN DDT larvae were more tolerant of metal pollution than SENN larvae. Pupation in SENN larvae was significantly reduced by metal exposure, while adult longevity was not affected. SENN DDT showed decreased adult size after larval metal exposure. Adult insecticide tolerance was increased after larval metal exposure, and this effect appeared to be mediated by increased β-esterase, cytochrome P450 and superoxide dismutase activity. These data suggest an enzyme-mediated positive link between tolerance to metal pollutants and insecticide resistance in adult mosquitoes. Furthermore, exposure of larvae to metal pollutants may have operational consequences under an insecticide-based vector control scenario by increasing the expression

  13. Strengthening tactical planning and operational frameworks for vector control: the roadmap for malaria elimination in Namibia.

    PubMed

    Chanda, Emmanuel; Ameneshewa, Birkinesh; Angula, Hans A; Iitula, Iitula; Uusiku, Pentrina; Trune, Desta; Islam, Quazi M; Govere, John M

    2015-08-05

    Namibia has made tremendous gains in malaria control and the epidemiological trend of the disease has changed significantly over the past years. In 2010, the country reoriented from the objective of reducing disease morbidity and mortality to the goal of achieving malaria elimination by 2020. This manuscript outlines the processes undertaken in strengthening tactical planning and operational frameworks for vector control to facilitate expeditious malaria elimination in Namibia. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Namibia. A methodical assessment of published and unpublished documents was conducted via a literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. To attain the goal of elimination in Namibia, systems are being strengthened to identify and clear all infections, and significantly reduce human-mosquito contact. Particularly, consolidating vector control for reducing transmission at the identified malaria foci will be critical for accelerated malaria elimination. Thus, guarding against potential challenges and the need for evidence-based and sustainable vector control instigated the strengthening of strategic frameworks by: adopting the integrated vector management (IVM) strategy; initiating implementation of the global plan for insecticide resistance management (GPIRM); intensifying malaria vector surveillance; improving data collection and reporting systems on DDT; updating the indoor residual spraying (IRS) data collection and reporting tool; and, improving geographical reconnaissance using geographical information system-based satellite imagery. Universal coverage with IRS and long-lasting insecticidal nets, supplemented by larval source management in the context of IVM and guided by vector surveillance coupled with rational operationalization of the GPIRM, will enable expeditious

  14. Studies on Anopheles sinensis, the vector species of vivax malaria in Korea

    PubMed Central

    2005-01-01

    Extensive previous studies on taxonomy, behavior/bionomics and control of Anopheles sinensis are reviewed and summarized. Recent molecular identification revealed that the population of An. sinensis complex includes An. sinensis, An. pullus, An. lesteri and at least two new species, and An. yatsushiroensis is synonmy of An. pullus. An. sinensis is the main vector specie of vivax malaria in Korea. Larvae of An. sinensis breed in wide range of habitats which are naturally-made clean water, stagnant or flowing; main habitats include rice fields, ditches, streams, irrigation cannals, marshes, ponds, ground pools, etc. Their host preferences are highly zoophilic. Human blood rate is very low (0.7-1.7%); nevertheless An. sinensis readily feeds on man when domestic animals are not found near by. They feed on hosts throughout the night from dusk to dawn with a peak period of 02:00-04:00 hours; they are slightly more exophagic (biting outdoors); much larger numbers come into the room when light is on. Main resting places are outdoors such as grasses, vegetable fields and rice fields. A mark-release-recapture study resulted that 37.1% was recaptured within 1 km, 29.4% at 1-3 km, 21.1% at 3-6 km, 10.3% at 6-9 km and 2.1% at 9-12 km distance. An. sinensis hibernate outdoors (mostly under part of dense grasses) during October-March. At the end of the hibernation period (March-April) they feed on cows at daytime. Until today any single measure to effectively control An. sinensis population has not been found. Indoor residual spray with a long-lasting insecticide can not reduce vector population densities, but shorten their life spans in some degree, so contributes to malaria control. PMID:16192749

  15. Larvivorous fish for preventing malaria transmission

    PubMed Central

    Walshe, Deirdre P; Garner, Paul; Abdel-Hameed Adeel, Ahmed A; Pyke, Graham H; Burkot, Tom

    2013-01-01

    Background Adult anopheline mosquitoes transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. The Global Fund finances larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policy makers may return to this option. We therefore assessed the evidence base for larvivorous fish programmes in malaria control. Objectives Our main objective was to evaluate whether introducing larvivorous fish to anopheline breeding sites impacts Plasmodium parasite transmission. Our secondary objective was to summarize studies evaluating whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources, to understand whether fish can possibly have an effect. Search methods We attempted to identify all relevant studies regardless of language or publication status (published, unpublished, in press, or ongoing). We searched the following databases: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) until 18 June 2013. We checked the reference lists of all studies identified by the above methods. We also examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Selection criteria Randomized controlled trials and non-randomized controlled trials, including controlled before-and-after studies, controlled time series and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in

  16. Vector bionomics and malaria transmission along the Thailand-Myanmar border: a baseline entomological survey.

    PubMed

    Kwansomboon, N; Chaumeau, V; Kittiphanakun, P; Cerqueira, D; Corbel, V; Chareonviriyaphap, T

    2017-06-01

    Baseline entomological surveys were conducted in four sentinel sites along the Thailand-Myanmar border to address vector bionomics and malaria transmission in the context of a study on malaria elimination. Adult Anopheles mosquitoes were collected using human-landing catch and cow-bait collection in four villages during the rainy season from May-June, 2013. Mosquitoes were identified to species level by morphological characters and by AS-PCR. Sporozoite indexes were determined on head/thoraces of primary and secondary malaria vectors using real-time PCR. A total of 4,301 anopheles belonging to 12 anopheline taxa were identified. Anopheles minimus represented >98% of the Minimus Complex members (n=1,683), whereas the An. maculatus group was composed of two dominant species, An. sawadwongporni and An. maculatus. Overall, 25 Plasmodium-positive mosquitoes (of 2,323) were found, representing a sporozoite index of 1.1% [95%CI 0.66-1.50]. The transmission intensity as measured by the EIR strongly varied according to the village (ANOVA, F=17.67, df=3, P<0.0001). Our findings highlight the diversity and complexity of the biting pattern of malaria vectors along the Thailand-Myanmar border that represent a formidable challenge for malaria control and elimination. © 2017 The Society for Vector Ecology.

  17. Predicting potential ranges of primary malaria vectors and malaria in northern South America based on projected changes in climate, land cover and human population.

    PubMed

    Alimi, Temitope O; Fuller, Douglas O; Qualls, Whitney A; Herrera, Socrates V; Arevalo-Herrera, Myriam; Quinones, Martha L; Lacerda, Marcus V G; Beier, John C

    2015-08-20

    Changes in land use and land cover (LULC) as well as climate are likely to affect the geographic distribution of malaria vectors and parasites in the coming decades. At present, malaria transmission is concentrated mainly in the Amazon basin where extensive agriculture, mining, and logging activities have resulted in changes to local and regional hydrology, massive loss of forest cover, and increased contact between malaria vectors and hosts. Employing presence-only records, bioclimatic, topographic, hydrologic, LULC and human population data, we modeled the distribution of malaria and two of its dominant vectors, Anopheles darlingi, and Anopheles nuneztovari s.l. in northern South America using the species distribution modeling platform Maxent. Results from our land change modeling indicate that about 70,000 km(2) of forest land would be lost by 2050 and 78,000 km(2) by 2070 compared to 2010. The Maxent model predicted zones of relatively high habitat suitability for malaria and the vectors mainly within the Amazon and along coastlines. While areas with malaria are expected to decrease in line with current downward trends, both vectors are predicted to experience range expansions in the future. Elevation, annual precipitation and temperature were influential in all models both current and future. Human population mostly affected An. darlingi distribution while LULC changes influenced An. nuneztovari s.l. distribution. As the region tackles the challenge of malaria elimination, investigations such as this could be useful for planning and management purposes and aid in predicting and addressing potential impediments to elimination.

  18. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Benelli, Giovanni

    2016-07-01

    Mosquitoes (Diptera: Culicidae) are vectors of important parasites and pathogens causing death, poverty and social disability worldwide, with special reference to tropical and subtropical countries. The overuse of synthetic insecticides to control mosquito vectors lead to resistance, adverse environmental effects and high operational costs. Therefore, the development of eco-friendly control tools is an important public health challenge. In this study, the mosquito larvicidal activity of Pinus kesiya leaf essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy. GC-MS revealed that the P. kesiya EO contained 18 compounds. Major constituents were α-pinene, β-pinene, myrcene and germacrene D. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti and Cx. quinquefasciatus, with LC50 values of 52, 57, and 62µg/ml, respectively. Notably, the EO was safer towards several aquatic non-target organisms Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 values ranging from 4135 to 8390µg/ml. Overall, this research adds basic knowledge to develop newer and safer natural larvicides from Pinaceae plants against malaria, dengue and filariasis mosquito vectors. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. An overview of malaria transmission from the perspective of Amazon Anopheles vectors

    PubMed Central

    Pimenta, Paulo FP; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana PM; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe AC; Oliveira, Giselle A; Campos, Keillen MM; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José BP; Barbosa, Maria GV; Lacerda, Marcus VG; Tadei, Wanderli P; Secundino, Nágila FC

    2015-01-01

    In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence. PMID:25742262

  20. An overview of malaria transmission from the perspective of Amazon Anopheles vectors.

    PubMed

    Pimenta, Paulo F P; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana P M; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe A C; Oliveira, Giselle A; Campos, Keillen M M; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José B P; Barbosa, Maria G V; Lacerda, Marcus V G

    2015-02-01

    In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.

  1. Paratransgenesis to control malaria vectors: a semi-field pilot study.

    PubMed

    Mancini, Maria Vittoria; Spaccapelo, Roberta; Damiani, Claudia; Accoti, Anastasia; Tallarita, Mario; Petraglia, Elisabetta; Rossi, Paolo; Cappelli, Alessia; Capone, Aida; Peruzzi, Giulia; Valzano, Matteo; Picciolini, Matteo; Diabaté, Abdoulaye; Facchinelli, Luca; Ricci, Irene; Favia, Guido

    2016-03-10

    Malaria still remains a serious health burden in developing countries, causing more than 1 million deaths annually. Given the lack of an effective vaccine against its major etiological agent, Plasmodium falciparum, and the growing resistance of this parasite to the currently available drugs repertoire and of Anopheles mosquitoes to insecticides, the development of innovative control measures is an imperative to reduce malaria transmission. Paratransgenesis, the modification of symbiotic organisms to deliver anti-pathogen effector molecules, represents a novel strategy against Plasmodium development in mosquito vectors, showing the potential to reduce parasite development. However, the field application of laboratory-based evidence of paratransgenesis imposes the use of more realistic confined semi-field environments. Large cages were used to evaluate the ability of bacteria of the genus Asaia expressing green fluorescent protein (Asaia (gfp)), to diffuse in Anopheles stephensi and Anopheles gambiae target mosquito populations. Asaia (gfp) was introduced in large cages through the release of paratransgenic males or by sugar feeding stations. Recombinant bacteria transmission was directly detected by fluorescent microscopy, and further assessed by molecular analysis. Here we show the first known trial in semi-field condition on paratransgenic anophelines. Modified bacteria were able to spread at high rate in different populations of An. stephensi and An. gambiae, dominant malaria vectors, exploring horizontal ways and successfully colonising mosquito midguts. Moreover, in An. gambiae, vertical and trans-stadial diffusion mechanisms were demonstrated. Our results demonstrate the considerable ability of modified Asaia to colonise different populations of malaria vectors, including pecies where its association is not primary, in large environments. The data support the potential to employ transgenic Asaia as a tool for malaria control, disclosing promising perspective

  2. A realistic host-vector transmission model for describing malaria prevalence pattern.

    PubMed

    Mandal, Sandip; Sinha, Somdatta; Sarkar, Ram Rup

    2013-12-01

    Malaria continues to be a major public health concern all over the world even after effective control policies have been employed, and considerable understanding of the disease biology have been attained, from both the experimental and modelling perspective. Interactions between different general and local processes, such as dependence on age and immunity of the human host, variations of temperature and rainfall in tropical and sub-tropical areas, and continued presence of asymptomatic infections, regulate the host-vector interactions, and are responsible for the continuing disease prevalence pattern.In this paper, a general mathematical model of malaria transmission is developed considering short and long-term age-dependent immunity of human host and its interaction with pathogen-infected mosquito vector. The model is studied analytically and numerically to understand the role of different parameters related to mosquitoes and humans. To validate the model with a disease prevalence pattern in a particular region, real epidemiological data from the north-eastern part of India was used, and the effect of seasonal variation in mosquito density was modelled based on local climactic data. The model developed based on general features of host-vector interactions, and modified simply incorporating local environmental factors with minimal changes, can successfully explain the disease transmission process in the region. This provides a general approach toward modelling malaria that can be adapted to control future outbreaks of malaria.

  3. Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa

    PubMed Central

    2009-01-01

    Background The mosquito vectors of Plasmodium spp. have largely been overlooked in studies of ecology and evolution of avian malaria and other vertebrates in wildlife. Methods Plasmodium DNA from wild-caught Coquillettidia spp. collected from lowland forests in Cameroon was isolated and sequenced using nested PCR. Female Coquillettidia aurites were also dissected and salivary glands were isolated and microscopically examined for the presence of sporozoites. Results In total, 33% (85/256) of mosquito pools tested positive for avian Plasmodium spp., harbouring at least eight distinct parasite lineages. Sporozoites of Plasmodium spp. were recorded in salivary glands of C. aurites supporting the PCR data that the parasites complete development in these mosquitoes. Results suggest C. aurites, Coquillettidia pseudoconopas and Coquillettidia metallica as new and important vectors of avian malaria in Africa. All parasite lineages recovered clustered with parasites formerly identified from several bird species and suggest the vectors capability of infecting birds from different families. Conclusion Identifying the major vectors of avian Plasmodium spp. will assist in understanding the epizootiology of avian malaria, including differences in this disease distribution between pristine and disturbed landscapes. PMID:19664282

  4. Attacking the mosquito on multiple fronts: Insights from the Vector Control Optimization Model (VCOM) for malaria elimination.

    PubMed

    Kiware, Samson S; Chitnis, Nakul; Tatarsky, Allison; Wu, Sean; Castellanos, Héctor Manuel Sánchez; Gosling, Roly; Smith, David; Marshall, John M

    2017-01-01

    Despite great achievements by insecticide-treated nets (ITNs) and indoor residual spraying (IRS) in reducing malaria transmission, it is unlikely these tools will be sufficient to eliminate malaria transmission on their own in many settings today. Fortunately, field experiments indicate that there are many promising vector control interventions that can be used to complement ITNs and/or IRS by targeting a wide range of biological and environmental mosquito resources. The majority of these experiments were performed to test a single vector control intervention in isolation; however, there is growing evidence and consensus that effective vector control with the goal of malaria elimination will require a combination of interventions. We have developed a model of mosquito population dynamic to describe the mosquito life and feeding cycles and to optimize the impact of vector control intervention combinations at suppressing mosquito populations. The model simulations were performed for the main three malaria vectors in sub-Saharan Africa, Anopheles gambiae s.s, An. arabiensis and An. funestus. We considered areas having low, moderate and high malaria transmission, corresponding to entomological inoculation rates of 10, 50 and 100 infective bites per person per year, respectively. In all settings, we considered baseline ITN coverage of 50% or 80% in addition to a range of other vector control tools to interrupt malaria transmission. The model was used to sweep through parameters space to select the best optimal intervention packages. Sample model simulations indicate that, starting with ITNs at a coverage of 50% (An. gambiae s.s. and An. funestus) or 80% (An. arabiensis) and adding interventions that do not require human participation (e.g. larviciding at 80% coverage, endectocide treated cattle at 50% coverage and attractive toxic sugar baits at 50% coverage) may be sufficient to suppress all the three species to an extent required to achieve local malaria elimination

  5. Re-Emerging Malaria Vectors in Rural Sahel (nouna, Burkina Faso): the Paluclim Project

    NASA Astrophysics Data System (ADS)

    Vignolles, Cécile; Sauerborn, Rainer; Dambach, Peter; Viel, Christian; Soubeyroux, Jean-Michel; Sié, Ali; Rogier, Christophe; Tourre, Yves M.

    2016-06-01

    The Paluclim project applied the tele-epidemiology approach, linking climate, environment and public health (CNES, 2008), to rural malaria in Nouna (Burkina Faso). It was to analyze the climate impact on vectorial risks, and its consequences on entomological risks forecast. The objectives were to: 1) produce entomological risks maps in the Nouna region, 2) produce dynamic maps on larvae sites and their productivity, 3) study the climate impact on malaria risks, and 4) evaluate the feasibility of strategic larviciding approach.

  6. Simplified Models of Vector Control Impact upon Malaria Transmission by Zoophagic Mosquitoes

    PubMed Central

    Kiware, Samson S.; Chitnis, Nakul; Moore, Sarah J.; Devine, Gregor J.; Majambere, Silas; Merrill, Stephen; Killeen, Gerry F.

    2012-01-01

    Background High coverage of personal protection measures that kill mosquitoes dramatically reduce malaria transmission where vector populations depend upon human blood. However, most primary malaria vectors outside of sub-Saharan Africa can be classified as “very zoophagic,” meaning they feed occasionally (<10% of blood meals) upon humans, so personal protection interventions have negligible impact upon their survival. Methods and Findings We extended a published malaria transmission model to examine the relationship between transmission, control, and the baseline proportion of bloodmeals obtained from humans (human blood index). The lower limit of the human blood index enables derivation of simplified models for zoophagic vectors that (1) Rely on only three field-measurable parameters. (2) Predict immediate and delayed (with and without assuming reduced human infectivity, respectively) impacts of personal protection measures upon transmission. (3) Illustrate how appreciable indirect communal-level protection for non-users can be accrued through direct personal protection of users. (4) Suggest the coverage and efficacy thresholds required to attain epidemiological impact. The findings suggest that immediate, indirect, community-wide protection of users and non-users alike may linearly relate to the efficacy of a user’s direct personal protection, regardless of whether that is achieved by killing or repelling mosquitoes. High protective coverage and efficacy (≥80%) are important to achieve epidemiologically meaningful impact. Non-users are indirectly protected because the two most common species of human malaria are strict anthroponoses. Therefore, the small proportion of mosquitoes that are killed or diverted while attacking humans can represent a large proportion of those actually transmitting malaria. Conclusions Simplified models of malaria transmission by very zoophagic vectors may be used by control practitioners to predict intervention impact

  7. Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria.

    PubMed

    Molina-Cruz, Alvaro; Zilversmit, Martine M; Neafsey, Daniel E; Hartl, Daniel L; Barillas-Mury, Carolina

    2016-11-23

    Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.

  8. Modeling spatial variation in risk of presence and insecticide resistance for malaria vectors in Laos

    PubMed Central

    Marcombe, Sébastien; Laforet, Julie; Brey, Paul T.; Corbel, Vincent; Overgaard, Hans J.

    2017-01-01

    Climatic, sociological and environmental conditions are known to affect the spatial distribution of malaria vectors and disease transmission. Intensive use of insecticides in the agricultural and public health sectors exerts a strong selective pressure on resistance genes in malaria vectors. Spatio-temporal models of favorable conditions for Anopheles species’ presence were developed to estimate the probability of presence of malaria vectors and insecticide resistance in Lao PDR. These models were based on environmental and meteorological conditions, and demographic factors. GIS software was used to build and manage a spatial database with data collected from various geographic information providers. GIS was also used to build and run the models. Results showed that potential insecticide use and therefore the probability of resistance to insecticide is greater in the southwestern part of the country, specifically in Champasack province and where malaria incidence is already known to be high. These findings can help national authorities to implement targeted and effective vector control strategies for malaria prevention and elimination among populations most at risk. Results can also be used to focus the insecticide resistance surveillance in Anopheles mosquito populations in more restricted area, reducing the area of surveys, and making the implementation of surveillance system for Anopheles mosquito insecticide resistance possible. PMID:28494013

  9. Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe.

    PubMed

    Vicente, José L; Sousa, Carla A; Alten, Bulent; Caglar, Selim S; Falcutá, Elena; Latorre, José M; Toty, Celine; Barré, Hélène; Demirci, Berna; Di Luca, Marco; Toma, Luciano; Alves, Ricardo; Salgueiro, Patrícia; Silva, Teresa L; Bargues, Maria D; Mas-Coma, Santiago; Boccolini, Daniela; Romi, Roberto; Nicolescu, Gabriela; do Rosário, Virgílio E; Ozer, Nurdan; Fontenille, Didier; Pinto, João

    2011-01-11

    There is a growing concern that global climate change will affect the potential for pathogen transmission by insect species that are vectors of human diseases. One of these species is the former European malaria vector, Anopheles atroparvus. Levels of population differentiation of An. atroparvus from southern Europe were characterized as a first attempt to elucidate patterns of population structure of this former malaria vector. Results are discussed in light of a hypothetical situation of re-establishment of malaria transmission. Genetic and phenotypic variation was analysed in nine mosquito samples collected from five European countries, using eight microsatellite loci and geometric morphometrics on 21 wing landmarks. Levels of genetic diversity were comparable to those reported for tropical malaria vectors. Low levels of genetic (0.004

  10. Zoom in at African country level: potential climate induced changes in areas of suitability for survival of malaria vectors.

    PubMed

    Tonnang, Henri E Z; Tchouassi, David P; Juarez, Henry S; Igweta, Lilian K; Djouaka, Rousseau F

    2014-05-07

    Predicting anopheles vectors' population densities and boundary shifts is crucial in preparing for malaria risks and unanticipated outbreaks. Although shifts in the distribution and boundaries of the major malaria vectors (Anopheles gambiae s.s. and An. arabiensis) across Africa have been predicted, quantified areas of absolute change in zone of suitability for their survival have not been defined. In this study, we have quantified areas of absolute change conducive for the establishment and survival of these vectors, per African country, under two climate change scenarios and based on our findings, highlight practical measures for effective malaria control in the face of changing climatic patterns. We developed a model using CLIMEX simulation platform to estimate the potential geographical distribution and seasonal abundance of these malaria vectors in relation to climatic factors (temperature, rainfall and relative humidity). The model yielded an eco-climatic index (EI) describing the total favourable geographical locations for the species. The EI values were classified and exported to a GIS package. Using ArcGIS, the EI shape points were clipped to the extent of Africa and then converted to a raster layer using Inverse Distance Weighted (IDW) interpolation method. Generated maps were then transformed into polygon-based geo-referenced data set and their areas computed and expressed in square kilometers (km(2)). Five classes of EI were derived indicating the level of survivorship of these malaria vectors. The proportion of areas increasing or decreasing in level of survival of these malaria vectors will be more pronounced in eastern and southern African countries than those in western Africa. Angola, Ethiopia, Kenya, Mozambique, Tanzania, South Africa and Zambia appear most likely to be affected in terms of absolute change of malaria vectors suitability zones under the selected climate change scenarios. The potential shifts of these malaria vectors have

  11. Surveillance of malaria vector population density and biting behaviour in western Kenya.

    PubMed

    Ototo, Ednah N; Mbugi, Jenard P; Wanjala, Christine L; Zhou, Guofa; Githeko, Andrew K; Yan, Guiyun

    2015-06-17

    Malaria is a great public health burden and Africa suffers the largest share of malaria-attributed deaths. Despite control efforts targeting indoor malaria transmission, such as insecticide-treated bed nets (ITNs) and deployment of indoor residual spraying, transmission of the parasite in western Kenya is still maintained. This study was carried out to determine the impact of ITNs on indoor vector densities and biting behaviour in western Kenya. Indoor collection of adult mosquitoes was done monthly in six study sites in western Kenya using pyrethrum spray collections from 2012 to 2014. The rotator trap collections were done in July-August in 2013 and May-June in 2014. Mosquitoes were collected every 2 h between 18.00 and 08.00 h. Human behaviour study was conducted via questionnaire surveys. Species within Anopheles gambiae complex was differentiated by PCR and sporozoite infectivity was determined by ELISA. Species distribution was determined and bed net coverage in the study sites was recorded. During the study a total of 5,469 mosquito vectors were collected from both PSC and Rotator traps comprising 3,181 (58.2%) Anopheles gambiae and 2,288 (41.8%) Anopheles funestus. Compared to all the study sites, Rae had the highest density of An. gambiae with a mean of 1.2 (P<0.001) while Kombewa had the highest density of An. funestus with a mean of 1.08 (P<0.001). Marani had the lowest density of vectors with 0.06 An. gambiae and 0.17 An. funestus (P<0.001). Among the 700 PCR confirmed An. gambiae s.l. individuals, An. gambiae s.s. accounted for 49% and An. arabiensis 51%. Over 50% of the study population stayed outdoors between 18.00 and 20.00 and 06.00 and 08.00 which was the time when highest densities of blood fed vectors were collected. Anopheles gambie s.s. was the main malaria parasite vector in the highland sites and An. arabiensis in the lowland sites. Bed net ownership in 2012 averaged 87% across the study sites. This study suggests that mass distribution of

  12. Participatory Risk Mapping of Malaria Vector Exposure in Northern South America using Environmental and Population Data

    PubMed Central

    Fuller, D.O.; Troyo, A.; Alimi, T.O.; Beier, J.C.

    2014-01-01

    Malaria elimination remains a major public health challenge in many tropical regions, including large areas of northern South America. In this study, we present a new high spatial resolution (90 × 90 m) risk map for Colombia and surrounding areas based on environmental and human population data. The map was created through a participatory multi-criteria decision analysis in which expert opinion was solicited to determine key environmental and population risk factors, different fuzzy functions to standardize risk factor inputs, and variable factor weights to combine risk factors in a geographic information system. The new risk map was compared to a map of malaria cases in which cases were aggregated to the municipio (municipality) level. The relationship between mean municipio risk scores and total cases by muncípio showed a weak correlation. However, the relationship between pixel-level risk scores and vector occurrence points for two dominant vector species, Anopheles albimanus and An. darlingi, was significantly different (p < 0.05) from a random point distribution, as was a pooled point distribution for these two vector species and An. nuneztovari. Thus, we conclude that the new risk map derived based on expert opinion provides an accurate spatial representation of risk of potential vector exposure rather than malaria transmission as shown by the pattern of malaria cases, and therefore it may be used to inform public health authorities as to where vector control measures should be prioritized to limit human-vector contact in future malaria outbreaks. PMID:24976656

  13. Larvivorous fish for preventing malaria transmission.

    PubMed

    Walshe, Deirdre P; Garner, Paul; Abdel-Hameed Adeel, Ahmed A; Pyke, Graham H; Burkot, Tom

    2013-12-10

    Adult anopheline mosquitoes transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. The Global Fund finances larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policy makers may return to this option. We therefore assessed the evidence base for larvivorous fish programmes in malaria control. Our main objective was to evaluate whether introducing larvivorous fish to anopheline breeding sites impacts Plasmodium parasite transmission. Our secondary objective was to summarize studies evaluating whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources, to understand whether fish can possibly have an effect. We attempted to identify all relevant studies regardless of language or publication status (published, unpublished, in press, or ongoing). We searched the following databases: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) until 18 June 2013. We checked the reference lists of all studies identified by the above methods. We also examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Randomized controlled trials and non-randomized controlled trials, including controlled before-and-after studies, controlled time series and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in the community or the density of the adult anopheline

  14. Anopheles salivary gland proteomes from major malaria vectors

    PubMed Central

    2012-01-01

    Background Antibody responses against Anopheles salivary proteins can indicate individual exposure to bites of malaria vectors. The extent to which these salivary proteins are species-specific is not entirely resolved. Thus, a better knowledge of the diversity among salivary protein repertoires from various malaria vector species is necessary to select relevant genus-, subgenus- and/or species-specific salivary antigens. Such antigens could be used for quantitative (mosquito density) and qualitative (mosquito species) immunological evaluation of malaria vectors/host contact. In this study, salivary gland protein repertoires (sialomes) from several Anopheles species were compared using in silico analysis and proteomics. The antigenic diversity of salivary gland proteins among different Anopheles species was also examined. Results In silico analysis of secreted salivary gland protein sequences retrieved from an NCBInr database of six Anopheles species belonging to the Cellia subgenus (An. gambiae, An. arabiensis, An. stephensi and An. funestus) and Nyssorhynchus subgenus (An. albimanus and An. darlingi) displayed a higher degree of similarity compared to salivary proteins from closely related Anopheles species. Additionally, computational hierarchical clustering allowed identification of genus-, subgenus- and species-specific salivary proteins. Proteomic and immunoblot analyses performed on salivary gland extracts from four Anopheles species (An. gambiae, An. arabiensis, An. stephensi and An. albimanus) indicated that heterogeneity of the salivary proteome and antigenic proteins was lower among closely related anopheline species and increased with phylogenetic distance. Conclusion This is the first report on the diversity of the salivary protein repertoire among species from the Anopheles genus at the protein level. This work demonstrates that a molecular diversity is exhibited among salivary proteins from closely related species despite their common pharmacological

  15. Temporal dynamics of the ABC transporter response to insecticide treatment: insights from the malaria vector Anopheles stephensi

    NASA Astrophysics Data System (ADS)

    Epis, Sara; Porretta, Daniele; Mastrantonio, Valentina; Urbanelli, Sandra; Sassera, Davide; De Marco, Leone; Mereghetti, Valeria; Montagna, Matteo; Ricci, Irene; Favia, Guido; Bandi, Claudio

    2014-12-01

    In insects, ABC transporters have been shown to contribute to defence/resistance to insecticides by reducing toxic concentrations in cells/tissues. Despite the extensive studies about this detoxifying mechanism, the temporal patterns of ABC transporter activation have been poorly investigated. Using the malaria vector Anopheles stephensi as a study system, we investigated the expression profile of ABC genes belonging to different subfamilies in permethrin-treated larvae at different time points (30 min to 48 h). Our results showed that the expression of ABCB and ABCG subfamily genes was upregulated at 1 h after treatment, with the highest expression observed at 6 h. Therefore, future investigations on the temporal dynamics of ABC gene expression will allow a better implementation of insecticide treatment regimens, including the use of specific inhibitors of ABC efflux pumps.

  16. Ecotope-Based Entomological Surveillance and Molecular Xenomonitoring of Multidrug Resistant Malaria Parasites in Anopheles Vectors

    PubMed Central

    2014-01-01

    The emergence and spread of multidrug resistant (MDR) malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS). MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated patients. MDR malaria risk situations reflect consequences of the national policy and strategy as this influences the ongoing national-level or subnational-level implementation of malaria control strategies in endemic GMS countries. Based on our experience along with current literature review, the design of ecotope-based entomological surveillance (EES) and molecular xenomonitoring of MDR falciparum and vivax malaria parasites in Anopheles vectors is proposed to monitor infection pockets in transmission control areas of forest and forest fringe-related malaria, so as to bridge malaria landscape ecology (ecotope and ecotone) and epidemiology. Malaria ecotope and ecotone are confined to a malaria transmission area geographically associated with the infestation of Anopheles vectors and particular environments to which human activities are related. This enables the EES to encompass mosquito collection and identification, salivary gland DNA extraction, Plasmodium- and species-specific identification, molecular marker-based PCR detection methods for putative drug resistance genes, and data management. The EES establishes strong evidence of Anopheles vectors carrying MDR P. vivax in infection pockets epidemiologically linked with other data obtained during which a course of follow-up treatment of the notified P. vivax patients receiving the first-line treatment was conducted. For regional and global perspectives, the EES would augment the epidemiological surveillance and monitoring of MDR falciparum and vivax malaria

  17. Molecular phylogeny of the Anopheles gambiae complex suggests genetic introgression between principal malaria vectors.

    PubMed Central

    Besansky, N J; Powell, J R; Caccone, A; Hamm, D M; Scott, J A; Collins, F H

    1994-01-01

    The six Afrotropical species of mosquitoes comprising the Anopheles gambiae complex include the most efficient vectors of malaria in the world as well as a nonvector species. The accepted interpretation of evolutionary relationships among these species is based on chromosomal inversions and suggests that the two principal vectors, A. gambiae and Anopheles arabiensis, are on distant branches of the phylogenetic tree. However, DNA sequence data indicate that these two species are sister taxa and suggest gene flow between them. These results have important implications for malaria control strategies involving the replacement of vector with nonvector populations. Images PMID:8041714

  18. The role of research in molecular entomology in the fight against malaria vectors.

    PubMed

    della Torre, A; Arca, B; Favia, G; Petrarca, V; Coluzzi, M

    2008-06-01

    The text summarizes the principal current fields of investigation and the recent achievements of the research groups presently contributing to the Molecular Entomology Cluster of the Italian Malaria Network. Particular emphasis is given to the researches with a more direct impact on the fight against malaria vectors.

  19. Resistance Status of the Malaria Vector Mosquitoes, Anopheles stephensi and Anopheles subpictus Towards Adulticides and Larvicides in Arid and Semi-Arid Areas of India

    PubMed Central

    Tikar, S. N.; Mendki, M.J.; Sharma, A. K.; Sukumaran, D.; Veer, Vijay; Prakash, Shri; Parashar, B. D.

    2011-01-01

    Susceptibility studies of malaria vectors Anopheles stephensi Liston (Diptera: Culicidae) and An. subpictus Grassi collected during 2004–2007 from various locations of Arid and Semi-Arid Zone of India were conducted by adulticide bioassay of DDT, malathion, deltamethrin and larvicide bioassay of fenthion, temephos, chlorpyriphos and malathion using diagnostic doses. Both species from all locations exhibited variable resistance to DDT and malathion from majority of location. Adults of both the species were susceptible to Deltamethrin. Larvae of both the Anopheline species showed some evidence of resistance to chlorpyriphos followed by fenthion whereas susceptible to temephos and malathion. PMID:21870971

  20. Impact of long-lasting, insecticidal nets on anaemia and prevalence of Plasmodium falciparum among children under five years in areas with highly resistant malaria vectors.

    PubMed

    Tokponnon, Filémon T; Ogouyémi, Aurore Hounto; Sissinto, Yolande; Sovi, Arthur; Gnanguenon, Virgile; Cornélie, Sylvie; Adéothy, Adicath Adéola; Ossè, Razaki; Wakpo, Abel; Gbénou, Dina; Oke, Mariam; Kinde-Gazard, Dorothée; Kleinschmidt, Immo; Akogbeto, Martin C; Massougbodji, Achille

    2014-03-01

    The widespread use of insecticide-treated nets (LLINs) leads to the development of vector resistance to insecticide. This resistance can reduce the effectiveness of LLIN-based interventions and perhaps reverse progress in reducing malaria morbidity. To prevent such difficulty, it is important to know the real impact of resistance in the effectiveness of mosquito nets. Therefore, an assessment of LLIN efficacy was conducted in malaria prevention among children in high and low resistance areas. The study was conducted in four rural districts and included 32 villages categorized as low or high resistance areas in Plateau Department, south-western Benin. Larvae collection was conducted to measure vector susceptibility to deltamethrin and knockdown resistance (kdr) frequency. In each resistance area, around 500 children were selected to measure the prevalence of malaria infection as well as the prevalence of anaemia associated with the use of LLINs. Observed mortalities of Anopheles gambiae s.s population exposed to deltamethrin ranged from 19 to 96%. Knockdown resistance frequency was between 38 and 84%. The prevalence of malaria infection in children under five years was 22.4% (19.9-25.1). This prevalence was 17.3% (14.2-20.9) in areas of high resistance and 27.1% (23.5-31.1) in areas of low resistance (p=0.04). Eight on ten children that were aged six - 30 months against seven on ten of those aged 31-59 months were anaemic. The anaemia observed in the six to 30-month old children was significantly higher than in the 31-59 month old children (p=0.00) but no difference associated with resistance areas was observed (p=0.35). The net use rate was 71%. The risk of having malaria was significantly reduced (p<0.05) with LLIN use in both low and high resistance areas. The preventive effect of LLINs in high resistance areas was 60% (95% CI: 40-70), and was significantly higher than that observed in low resistance areas (p<0.05). The results of this study showed that the

  1. Malaria vector populations across ecological zones in Guinea Conakry and Mali, West Africa.

    PubMed

    Coulibaly, Boubacar; Kone, Raymond; Barry, Mamadou S; Emerson, Becky; Coulibaly, Mamadou B; Niare, Oumou; Beavogui, Abdoul H; Traore, Sekou F; Vernick, Kenneth D; Riehle, Michelle M

    2016-04-08

    Malaria remains a pervasive public health problem in sub-Saharan West Africa. Here mosquito vector populations were explored across four sites in Mali and the Republic of Guinea (Guinea Conakry). The study samples the major ecological zones of malaria-endemic regions in West Africa within a relatively small distance. Mosquito vectors were sampled from larval pools, adult indoor resting sites, and indoor and outdoor human-host seeking adults. Mosquitoes were collected at sites spanning 350 km that represented arid savannah, humid savannah, semi-forest and deep forest ecological zones, in areas where little was previously known about malaria vector populations. 1425 mosquito samples were analysed by molecular assays to determine species, genetic attributes, blood meal sources and Plasmodium infection status. Anopheles gambiae and Anopheles coluzzii were the major anophelines represented in all collections across the ecological zones, with A. coluzzii predominant in the arid savannah and A. gambiae in the more humid sites. The use of multiple collection methodologies across the sampling sites allows assessment of potential collection bias of the different methods. The L1014F kdr insecticide resistance mutation (kdr-w) is found at high frequency across all study sites. This mutation appears to have swept almost to fixation, from low frequencies 6 years earlier, despite the absence of widespread insecticide use for vector control. Rates of human feeding are very high across ecological zones, with only small fractions of animal derived blood meals in the arid and humid savannah. About 30 % of freshly blood-fed mosquitoes were positive for Plasmodium falciparum presence, while the rate of mosquitoes with established infections was an order of magnitude lower. The study represents detailed vector characterization from an understudied area in West Africa with endemic malaria transmission. The deep forest study site includes the epicenter of the 2014 Ebola virus epidemic

  2. Draft Genomes of Anopheles cracens and Anopheles maculatus: Comparison of Simian Malaria and Human Malaria Vectors in Peninsular Malaysia

    PubMed Central

    Chen, Junhui; Zhong, Zhen; Jian, Jianbo; Amir, Amirah; Cheong, Fei-Wen; Sum, Jia-Siang; Fong, Mun-Yik

    2016-01-01

    Anopheles cracens has been incriminated as the vector of human knowlesi malaria in peninsular Malaysia. Besides, it is a good laboratory vector of Plasmodium falciparum and P. vivax. The distribution of An. cracens overlaps with that of An. maculatus, the human malaria vector in peninsular Malaysia that seems to be refractory to P. knowlesi infection in natural settings. Whole genome sequencing was performed on An. cracens and An. maculatus collected here. The draft genome of An. cracens was 395 Mb in size whereas the size of An. maculatus draft genome was 499 Mb. Comparison with the published Malaysian An. maculatus genome suggested the An. maculatus specimen used in this study as a different geographical race. Comparative analyses highlighted the similarities and differences between An. cracens and An. maculatus, providing new insights into their biological behavior and characteristics. PMID:27347683

  3. Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: A potent eco-friendly tool against malaria and arbovirus vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Muthukumaran, Udaiyan; Hoti, S L; Khater, Hanem F; Benelli, Giovanni

    2016-08-01

    Mosquitoes (Diptera: Culicidae) are vectors of important pathogens and parasites, including malaria, dengue, chikungunya, Japanese encephalitis, lymphatic filariasis and Zika virus. The application of synthetic insecticides causes development of resistance, biological magnification of toxic substances through the food chain, and adverse effects on the environment and human health. In this scenario, eco-friendly control tools of mosquito vectors are a priority. Here single-step fabrication of silver nanoparticles (AgNP) using a cheap aqueous leaf extract of Zornia diphylla as reducing and capping agent pf Ag(+) ions has been carried out. Biosynthesized AgNP were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction analysis (XRD). The acute toxicity of Z. diphylla leaf extract and biosynthesized AgNP was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Both the Z. diphylla leaf extract and Ag NP showed dose dependent larvicidal effect against all tested mosquito species. Compared to the leaf aqueous extract, biosynthesized Ag NP showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 values of 12.53, 13.42 and 14.61μg/ml, respectively. Biosynthesized Ag NP were found safer to non-target organisms Chironomus circumdatus, Anisops bouvieri and Gambusia affinis, with the respective LC50 values ranging from 613.11 to 6903.93μg/ml, if compared to target mosquitoes. Overall, our results highlight that Z. diphylla-fabricated Ag NP are a promising and eco-friendly tool against larval populations of mosquito vectors of medical and veterinary importance, with negligible toxicity against other non-target organisms. Copyright © 2016 Elsevier B

  4. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years.

    PubMed

    Mwangangi, Joseph M; Mbogo, Charles M; Orindi, Benedict O; Muturi, Ephantus J; Midega, Janet T; Nzovu, Joseph; Gatakaa, Hellen; Githure, John; Borgemeister, Christian; Keating, Joseph; Beier, John C

    2013-01-08

    Over the past 20 years, numerous studies have investigated the ecology and behaviour of malaria vectors and Plasmodium falciparum malaria transmission on the coast of Kenya. Substantial progress has been made to control vector populations and reduce high malaria prevalence and severe disease. The goal of this paper was to examine trends over the past 20 years in Anopheles species composition, density, blood-feeding behaviour, and P. falciparum sporozoite transmission along the coast of Kenya. Using data collected from 1990 to 2010, vector density, species composition, blood-feeding patterns, and malaria transmission intensity was examined along the Kenyan coast. Mosquitoes were identified to species, based on morphological characteristics and DNA extracted from Anopheles gambiae for amplification. Using negative binomial generalized estimating equations, mosquito abundance over the period were modelled while adjusting for season. A multiple logistic regression model was used to analyse the sporozoite rates. Results show that in some areas along the Kenyan coast, Anopheles arabiensis and Anopheles merus have replaced An. gambiae sensu stricto (s.s.) and Anopheles funestus as the major mosquito species. Further, there has been a shift from human to animal feeding for both An. gambiae sensu lato (s.l.) (99% to 16%) and An. funestus (100% to 3%), and P. falciparum sporozoite rates have significantly declined over the last 20 years, with the lowest sporozoite rates being observed in 2007 (0.19%) and 2008 (0.34%). There has been, on average, a significant reduction in the abundance of An. gambiae s.l. over the years (IRR = 0.94, 95% CI 0.90-0.98), with the density standing at low levels of an average 0.006 mosquitoes/house in the year 2010. Reductions in the densities of the major malaria vectors and a shift from human to animal feeding have contributed to the decreased burden of malaria along the Kenyan coast. Vector species composition remains heterogeneous but in

  5. Agent-based modeling of malaria vectors: the importance of spatial simulation.

    PubMed

    Bomblies, Arne

    2014-07-03

    The modeling of malaria vector mosquito populations yields great insight into drivers of malaria transmission at the village scale. Simulation of individual mosquitoes as "agents" in a distributed, dynamic model domain may be greatly beneficial for simulation of spatial relationships of vectors and hosts. In this study, an agent-based model is used to simulate the life cycle and movement of individual malaria vector mosquitoes in a Niger Sahel village, with individual simulated mosquitoes interacting with their physical environment as well as humans. Various processes that are known to be epidemiologically important, such as the dependence of parity on flight distance between developmental habitat and blood meal hosts and therefore spatial relationships of pools and houses, are readily simulated using this modeling paradigm. Impacts of perturbations can be evaluated on the basis of vectorial capacity, because the interactions between individuals that make up the population- scale metric vectorial capacity can be easily tracked for simulated mosquitoes and human blood meal hosts, without the need to estimate vectorial capacity parameters. As expected, model results show pronounced impacts of pool source reduction from larvicide application and draining, but with varying degrees of impact depending on the spatial relationship between pools and human habitation. Results highlight the importance of spatially-explicit simulation that can model individuals such as in an agent-based model. The impacts of perturbations on village scale malaria transmission depend on spatial locations of individual mosquitoes, as well as the tracking of relevant life cycle events and characteristics of individual mosquitoes. This study demonstrates advantages of using an agent-based approach for village-scale mosquito simulation to address questions in which spatial relationships are known to be important.

  6. Zoom in at African country level: potential climate induced changes in areas of suitability for survival of malaria vectors

    PubMed Central

    2014-01-01

    Background Predicting anopheles vectors’ population densities and boundary shifts is crucial in preparing for malaria risks and unanticipated outbreaks. Although shifts in the distribution and boundaries of the major malaria vectors (Anopheles gambiae s.s. and An. arabiensis) across Africa have been predicted, quantified areas of absolute change in zone of suitability for their survival have not been defined. In this study, we have quantified areas of absolute change conducive for the establishment and survival of these vectors, per African country, under two climate change scenarios and based on our findings, highlight practical measures for effective malaria control in the face of changing climatic patterns. Methods We developed a model using CLIMEX simulation platform to estimate the potential geographical distribution and seasonal abundance of these malaria vectors in relation to climatic factors (temperature, rainfall and relative humidity). The model yielded an eco-climatic index (EI) describing the total favourable geographical locations for the species. The EI values were classified and exported to a GIS package. Using ArcGIS, the EI shape points were clipped to the extent of Africa and then converted to a raster layer using Inverse Distance Weighted (IDW) interpolation method. Generated maps were then transformed into polygon-based geo-referenced data set and their areas computed and expressed in square kilometers (km2). Results Five classes of EI were derived indicating the level of survivorship of these malaria vectors. The proportion of areas increasing or decreasing in level of survival of these malaria vectors will be more pronounced in eastern and southern African countries than those in western Africa. Angola, Ethiopia, Kenya, Mozambique, Tanzania, South Africa and Zambia appear most likely to be affected in terms of absolute change of malaria vectors suitability zones under the selected climate change scenarios. Conclusion The potential shifts of

  7. Challenges for malaria elimination in Zanzibar: pyrethroid resistance in malaria vectors and poor performance of long-lasting insecticide nets

    PubMed Central

    2013-01-01

    Background Long-lasting insecticide treated nets (LLINs) and indoor residual house spraying (IRS) are the main interventions for the control of malaria vectors in Zanzibar. The aim of the present study was to assess the susceptibility status of malaria vectors against the insecticides used for LLINs and IRS and to determine the durability and efficacy of LLINs on the island. Methods Mosquitoes were sampled from Pemba and Unguja islands in 2010–2011 for use in WHO susceptibility tests. One hundred and fifty LLINs were collected from households on Unguja, their physical state was recorded and then tested for efficacy as well as total insecticide content. Results Species identification revealed that over 90% of the Anopheles gambiae complex was An. arabiensis with a small number of An. gambiae s.s. and An. merus being present. Susceptibility tests showed that An. arabiensis on Pemba was resistant to the pyrethroids used for LLINs and IRS. Mosquitoes from Unguja Island, however, were fully susceptible to all pyrethroids tested. A physical examination of 150 LLINs showed that two thirds were damaged after only three years in use. All used nets had a significantly lower (p < 0.001) mean permethrin concentration of 791.6 mg/m2 compared with 944.2 mg/m2 for new ones. Their efficacy decreased significantly against both susceptible An. gambiae s.s. colony mosquitoes and wild-type mosquitoes from Pemba after just six washes (p < 0.001). Conclusion The sustainability of the gains achieved in malaria control in Zanzibar is seriously threatened by the resistance of malaria vectors to pyrethroids and the short-lived efficacy of LLINs. This study has revealed that even in relatively well-resourced and logistically manageable places like Zanzibar, malaria elimination is going to be difficult to achieve with the current control measures. PMID:23537463

  8. Exploring the potential of using cattle for malaria vector surveillance and control: a pilot study in western Kenya.

    PubMed

    Njoroge, Margaret M; Tirados, Inaki; Lindsay, Steven W; Vale, Glyn A; Torr, Stephen J; Fillinger, Ulrike

    2017-01-10

    Malaria vector mosquitoes with exophilic and zoophilic tendencies, or with a high acceptance of alternative blood meal sources when preferred human blood-hosts are unavailable, may help maintain low but constant malaria transmission in areas where indoor vector control has been scaled up. This residual transmission might be addressed by targeting vectors outside the house. Here we investigated the potential of insecticide-treated cattle, as routinely used for control of tsetse and ticks in East Africa, for mosquito control. The malaria vector population in the study area was investigated weekly for 8 months using two different trapping tools: light traps indoors and cattle-baited traps (CBTs) outdoors. The effect of the application of the insecticide deltamethrin and the acaricide amitraz on cattle on host-seeking Anopheles arabiensis was tested experimentally in field-cages and the impact of deltamethrin-treated cattle explored under field conditions on mosquito densities on household level. CBTs collected on average 2.8 (95% CI: 1.8-4.2) primary [Anopheles gambiae (s.s.), An. arabiensis and An. funestus (s.s.)] and 6.3 (95% CI: 3.6-11.3) secondary malaria vectors [An. ivulorum and An. coustani (s.l.)] per trap night and revealed a distinct, complementary seasonality. At the same time on average only 1.4 (95% CI: 0.8-2.3) primary and 1.1 (95% CI: 0.6-2.0) secondary malaria vectors were collected per trap night with light traps indoors. Amitraz had no effect on survival of host-seeking An. arabiensis under experimental conditions but deltamethrin increased mosquito mortality (OR 19, 95% CI: 7-50), but only for 1 week. In the field, vector mortality in association with deltamethrin treatment was detected only with CBTs and only immediately after the treatment (OR 0.25, 95% CI: 0.13-0.52). Entomological sampling with CBTs highlights that targeting cattle for mosquito control has potential since it would not only target naturally zoophilic malaria vectors but also

  9. Malaria vector control at a crossroads: public health entomology and the drive to elimination.

    PubMed

    Mnzava, Abraham P; Macdonald, Michael B; Knox, Tessa B; Temu, Emmanuel A; Shiff, Clive J

    2014-09-01

    Vector control has been at the core of successful malaria control. However, a dearth of field-oriented vector biologists threatens to undermine global reductions in malaria burden. Skilled cadres are needed to manage insecticide resistance, to maintain coverage with current interventions, to develop new paradigms for tackling 'residual' transmission and to target interventions as transmission becomes increasingly heterogeneous. Recognising this human resource crisis, in September 2013, WHO Global Malaria Programme issued guidance for capacity building in entomology and vector control, including recommendations for countries and implementing partners. Ministries were urged to develop long-range strategic plans for building human resources for public health entomology and vector control (including skills in epidemiology, geographic information systems, operational research and programme management) and to set in place the requisite professional posts and career opportunities. Capacity building and national ownership in all partner projects and a clear exit strategy to sustain human and technical resources after project completion were emphasised. Implementing partners were urged to support global and regional efforts to enhance public health entomology capacity. While the challenges inherent in such capacity building are great, so too are the opportunities to establish the next generation of public health entomologists that will enable programmes to continue on the path to malaria elimination. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Predictions of malaria vector distribution in Belize based on multispectral satellite data.

    PubMed

    Roberts, D R; Paris, J F; Manguin, S; Harbach, R E; Woodruff, R; Rejmankova, E; Polanco, J; Wullschleger, B; Legters, L J

    1996-03-01

    Use of multispectral satellite data to predict arthropod-borne disease trouble spots is dependent on clear understandings of environmental factors that determine the presence of disease vectors. A blind test of remote sensing-based predictions for the spatial distribution of a malaria vector, Anopheles pseudopunctipennis, was conducted as a follow-up to two years of studies on vector-environmental relationships in Belize. Four of eight sites that were predicted to be high probability locations for presence of An. pseudopunctipennis were positive and all low probability sites (0 of 12) were negative. The absence of An. pseudopunctipennis at four high probability locations probably reflects the low densities that seem to characterize field populations of this species, i.e., the population densities were below the threshold of our sampling effort. Another important malaria vector, An. darlingi, was also present at all high probability sites and absent at all low probability sites. Anopheles darlingi, like An. pseudopunctipennis, is a riverine species. Prior to these collections at ecologically defined locations, this species was last detected in Belize in 1946.

  11. Predictions of malaria vector distribution in Belize based on multispectral satellite data

    NASA Technical Reports Server (NTRS)

    Roberts, D. R.; Paris, J. F.; Manguin, S.; Harbach, R. E.; Woodruff, R.; Rejmankova, E.; Polanco, J.; Wullschleger, B.; Legters, L. J.

    1996-01-01

    Use of multispectral satellite data to predict arthropod-borne disease trouble spots is dependent on clear understandings of environmental factors that determine the presence of disease vectors. A blind test of remote sensing-based predictions for the spatial distribution of a malaria vector, Anopheles pseudopunctipennis, was conducted as a follow-up to two years of studies on vector-environmental relationships in Belize. Four of eight sites that were predicted to be high probability locations for presence of An. pseudopunctipennis were positive and all low probability sites (0 of 12) were negative. The absence of An. pseudopunctipennis at four high probability locations probably reflects the low densities that seem to characterize field populations of this species, i.e., the population densities were below the threshold of our sampling effort. Another important malaria vector, An. darlingi, was also present at all high probability sites and absent at all low probability sites. Anopheles darlingi, like An. pseudopunctipennis, is a riverine species. Prior to these collections at ecologically defined locations, this species was last detected in Belize in 1946.

  12. Effects of Reservoir Characteristics on Malaria and its vector Abundance: A Case Study of the Bongo District of Ghana

    NASA Astrophysics Data System (ADS)

    Ofosu, E.; Awuah, E.; Annor, F. O.

    2009-04-01

    In the seven (7) administrative zones of the Bongo District of the Upper East Region of Ghana, the occurrences of malaria and relative abundance of the principal malaria vector, Anopheles species, were studied as a function of the presence and characteristics of reservoirs during the rainy season. Case studies in the sub-Sahara Africa indicate that malaria transmission may increase decrease or remain largely unchanged as a consequence of reservoir presence. Analysis made, shows that the distance from reservoir to settlement and surface area of reservoirs significantly affected adult Anopheles mosquito abundance. Percentage of inhabitants using insecticide treated nets, livestock population density, human population density and Anopheles mosquito abundance significantly affected the occurrence of malaria. The results suggest that vector control targeted at reservoir characteristics and larval control, and supplemented by high patronage of insecticide treated nets may be an effective approach for epidemic malaria control in the Bongo District. Key Words: Bongo District, Reservoir, Anopheles species, Malaria, Vector abundance.

  13. Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach?

    PubMed

    Subramaniam, Jayapal; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Kovendan, Kalimuthu; Madhiyazhagan, Pari; Kumar, Palanisamy Mahesh; Dinesh, Devakumar; Chandramohan, Balamurugan; Suresh, Udaiyan; Nicoletti, Marcello; Higuchi, Akon; Hwang, Jiang-Shiou; Kumar, Suresh; Alarfaj, Abdullah A; Munusamy, Murugan A; Messing, Russell H; Benelli, Giovanni

    2015-12-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to high operational costs and adverse non-target effects. Plant-borne compounds have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles. Their impact against biological control agents of mosquito larval populations has been poorly studied. We synthesized silver nanoparticles (AgNP) using the aqueous leaf extract of Mimusops elengi as a reducing and stabilizing agent. The formation of AgNP was studied using different biophysical methods, including UV-vis spectrophotometry, TEM, XRD, EDX and FTIR. Low doses of AgNP showed larvicidal and pupicidal toxicity against the malaria vector Anopheles stephensi and the arbovirus vector Aedes albopictus. AgNP LC50 against A. stephensi ranged from 12.53 (I instar larvae) to 23.55 ppm (pupae); LC50 against A. albopictus ranged from 11.72 ppm (I) to 21.46 ppm (pupae). In the field, the application of M. elengi extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. In adulticidal experiments, AgNP showed LC50 of 13.7 ppm for A. stephensi and 14.7 ppm for A. albopictus. The predation efficiency of Gambusia affinis against A. stephensi and A. albopictus III instar larvae was 86.2 and 81.7 %, respectively. In AgNP-contaminated environments, predation was 93.7 and 88.6 %, respectively. This research demonstrates that M. elengi-synthesized AgNP may be employed at ultra-low doses to reduce larval populations of malaria and arbovirus vectors, without detrimental effects on predation rates of mosquito natural enemies, such as larvivorous fishes.

  14. Passive vectoring of entomopathogenic fungus Beauveria bassiana among the wax moth Galleria mellonella larvae by the ectoparasitoid Habrobracon hebetor females.

    PubMed

    Kryukov, Vadim Yu; Kryukova, Natalia A; Tyurin, Maksim V; Yaroslavtseva, Olga N; Glupov, Viktor V

    2017-03-15

    Females of the ectoparasitoid Habrobracon hebetor attack and envenomate numerous host individuals during oviposition. The vectoring of the entomopathogenic fungus Beauveria bassiana during the adhesion stage by ectoparasitoid females among the wax moth larvae Galleria mellonella was explored under laboratory conditions. Vectoring occurred both from infected parasitoids to wax moth larvae and from infected to healthy wax moth larvae by parasitoids. The efficacy of vectoring in both cases was dose dependent. Parasitoid females were unable to recognize infected larvae in a labyrinth test. In addition, the presence of H. hebetor females significantly (1.5-13 fold) increased the mycoses level in clusters of G. mellonella, with 40% of the larvae infected with fungal conidia. Envenomation by H. hebetor increased conidia germination on the cuticles of the wax moth larvae by 4.4 fold. An enhanced germination rate (2 fold) was registered in the n-hexane epicuticular extract of envenomated larvae compared to that of healthy larvae. Both envenomation and mycoses enhanced the phenoloxidase (PO) activity in the integument of G. mellonella and, in contrast, decreased the encapsulation rate in hemolymphs. We hypothesize that changes in the integument property and inhibition of cellular immunity provide the highest infection efficacy of entomopathogenic fungi with H. hebetor. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  15. Seasonal Abundance and Host-Feeding Patterns of Anopheline Vectors in Malaria Endemic Area of Iran

    PubMed Central

    Basseri, Hamidreza; Raeisi, Ahmad; Ranjbar Khakha, Mansoor; Pakarai, Abaas; Abdolghafar, Hassanzehi

    2010-01-01

    Seasonal abundance and tendency to feed on humans are important parameters to measure for effective control of malaria vectors. The objective of this study was to describe relation between feeding pattern, abundance, and resting behavior of four malaria vectors in southern Iran. This study was conducted in ten indicator villages (based on malaria incidence and entomological indices) in mountainous/hilly and plain regions situated south and southeastern Iran. Mosquito vectors were collected from indoor as well as outdoor shelters and the blood meals were examined by ELISA test. Over all 7654 female Anopheles spp. were captured, the most common species were Anopheles stephensi, An. culicifacies, An. fluviatilis, and An. d'thali. The overall human blood index was 37.50%, 19.83%, 16.4%, and 30.1% for An. fluviatilis, An. stephensi, An. culicifacies, and An. d'thali, respectively. In addition, An. fluviatilis fed on human blood during the entire year but the feeding behavior of An. stephensi and An. culicifacies varied according to seasons. Overall, the abundance of the female mosquito positive to human blood was 4.25% per human shelter versus 17.5% per animal shelter. This result indicates that the vectors had tendency to rest in animal shelters after feeding on human. Therefore, vector control measure should be planned based on such as feeding pattern, abundance, and resting behavior of these vectors in the area. PMID:21559055

  16. Larvivorous fish for preventing malaria transmission

    PubMed Central

    Walshe, Deirdre P; Garner, Paul; Adeel, Ahmed A; Pyke, Graham H; Burkot, Thomas R

    2017-01-01

    Background Adult female Anopheles mosquitoes can transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization (WHO) includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. In the past, the Global Fund has financed larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policymakers may return to this option. Therefore, we assessed the evidence base for larvivorous fish programmes in malaria control. Objectives To evaluate whether introducing larvivorous fish to anopheline larval habitats impacts Plasmodium parasite transmission. We also sought to summarize studies that evaluated whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (Ovid); CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) up to 6 July 2017. We checked the reference lists of all studies identified by the search. We examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Also we contacted researchers in the field and the authors of studies that met the inclusion criteria for additional information regarding potential studies for inclusion and ongoing studies. This is an update of a Cochrane Review published in 2013. Selection criteria Randomized controlled trials (RCTs) and non-RCTs, including controlled before-and-after studies, controlled time series, and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and

  17. Malaria in the WHO Southeast Asia region.

    PubMed

    Kondrashin, A V

    1992-09-01

    Malaria endemic countries in the southeast Asia region include Bangladesh, Bhutan, India, Indonesia, Maldives, Myanmar, Nepal, Sri Lanka, and Thailand. Population movement and rapid urbanization, both largely caused by unemployment, and environmental deterioration change the malaria pattern. They also increase the incidence of drug-resistant malaria, especially resistance to 4-aminoquinolines. In India, Plasmodium falciparum is linked to the density and distribution of tribals, and, in southern Thailand, rubber tappers have the highest malaria incidence rate (46.29%). Since the population is young and the young are highly sensitive to malaria infection, the region has low community immunity. High malaria priority areas are forests, forested hills, forest fringe areas, developmental project sites, and border areas. High risk groups include infants, young children, pregnant women, and mobile population groups. Malaria incidence is between 2.5-2.8 million cases, and the slide positivity rate is about 3%. P. falciparum constitutes 40% for all malaria cases. In 1988 in India, there were 222 malaria deaths. Malaria is the 7th most common cause of death in Thailand. 3 of the 19 Anopheline species are resistant to at least 1 insecticide, particularly DDT. Posteradication epidemics surfaced in the mid-1970s. Malaria control programs tend to use the primary health care and integration approach to malaria control. Antiparasite measures range from a single-dose of an antimalarial to mass drug administration. Residual spraying continues to be the main strategy of vector control. Some other vector control measures are fish feeding on mosquito larvae, insecticide impregnated mosquito nets, and repellents. Control programs also have health education activities. India allocates the highest percentage of its total health budget to malaria control (21.54%). Few malariology training programs exist in the region. Slowly processed surveillance data limit the countries' ability to

  18. Wetlands and Malaria in the Amazon: Guidelines for the Use of Synthetic Aperture Radar Remote-Sensing

    PubMed Central

    Catry, Thibault; Li, Zhichao; Roux, Emmanuel; Herbreteau, Vincent; Dessay, Nadine

    2018-01-01

    The prevention and control of mosquito-borne diseases, such as malaria, are important health issues in tropical areas. Malaria transmission is a multi-scale process strongly controlled by environmental factors, and the use of remote-sensing data is suitable for the characterization of its spatial and temporal dynamics. Synthetic aperture radar (SAR) is well-adapted to tropical areas, since it is capable of imaging independent of light and weather conditions. In this study, we highlight the contribution of SAR sensors in the assessment of the relationship between vectors, malaria and the environment in the Amazon region. More specifically, we focus on the SAR-based characterization of potential breeding sites of mosquito larvae, such as man-made water collections and natural wetlands, providing guidelines for the use of SAR capabilities and techniques in order to optimize vector control and malaria surveillance. In light of these guidelines, we propose a framework for the production of spatialized indicators and malaria risk maps based on the combination of SAR, entomological and epidemiological data to support malaria risk prevention and control actions in the field. PMID:29518988

  19. Wetlands and Malaria in the Amazon: Guidelines for the Use of Synthetic Aperture Radar Remote-Sensing.

    PubMed

    Catry, Thibault; Li, Zhichao; Roux, Emmanuel; Herbreteau, Vincent; Gurgel, Helen; Mangeas, Morgan; Seyler, Frédérique; Dessay, Nadine

    2018-03-07

    The prevention and control of mosquito-borne diseases, such as malaria, are important health issues in tropical areas. Malaria transmission is a multi-scale process strongly controlled by environmental factors, and the use of remote-sensing data is suitable for the characterization of its spatial and temporal dynamics. Synthetic aperture radar (SAR) is well-adapted to tropical areas, since it is capable of imaging independent of light and weather conditions. In this study, we highlight the contribution of SAR sensors in the assessment of the relationship between vectors, malaria and the environment in the Amazon region. More specifically, we focus on the SAR-based characterization of potential breeding sites of mosquito larvae, such as man-made water collections and natural wetlands, providing guidelines for the use of SAR capabilities and techniques in order to optimize vector control and malaria surveillance. In light of these guidelines, we propose a framework for the production of spatialized indicators and malaria risk maps based on the combination of SAR, entomological and epidemiological data to support malaria risk prevention and control actions in the field.

  20. Microbial larvicides for malaria control in The Gambia

    PubMed Central

    Majambere, Silas; Lindsay, Steven W; Green, Clare; Kandeh, Balla; Fillinger, Ulrike

    2007-01-01

    Background Mosquito larval control may prove to be an effective tool for incorporating into integrated vector management (IVM) strategies for reducing malaria transmission. Here the efficacy of microbial larvicides against Anopheles gambiae s.l. was tested in preparation for a large-scale larviciding programme in The Gambia. Methods The impact of water-dispersible (WDG) and corn granule (CG) formulations of commercial Bacillus sphaericus strain 2362 (Bs; VectoLex®) and Bacillus thuringiensis var.israelensis strain AM65-52 (Bti; VectoBac®) on larval development were tested under laboratory and field conditions to (1) identify the susceptibility of local vectors, (2) evaluate the residual effect and re-treatment intervals, (3) test the effectiveness of the microbials under operational application conditions and (4) develop a method for large-scale application. Results The major malaria vectors were highly susceptible to both microbials. The lethal concentration (LC) to kill 95% of third instar larvae of Anopheles gambiae s.s. after 24 hours was 0.023 mg/l (14.9 BsITU/l) for Bs WDG and 0.132 mg/l (396 ITU/l) for Bti WDG. In general Bs had little residual effect under field conditions even when the application rate was 200 times greater than the LC95. However, there was a residual effect up to 10 days in standardized field tests implemented during the dry season. Both microbials achieved 100% mortality of larvae 24–48 hours post-application but late instar larvae were detected 4 days after treatment. Pupae development was reduced by 94% (95% Confidence Interval = 90.8–97.5%) at weekly re-treatment intervals. Field tests showed that Bs had no residual activity against anopheline larvae. Both microbials provided complete protection when applied weekly. The basic training of personnel in identification of habitats, calibration of application equipment and active larviciding proved to be successful and achieved full coverage and control of mosquito larvae for three

  1. Temporo-spatial distribution of insecticide-resistance in Indian malaria vectors in the last quarter-century: Need for regular resistance monitoring and management.

    PubMed

    Raghavendra, Kamaraju; Velamuri, Poonam Sharma; Verma, Vaishali; Elamathi, Natarajan; Barik, Tapan Kumar; Bhatt, Rajendra Mohan; Dash, Aditya Prasad

    2017-01-01

    The Indian vector control programme similar to other programmes in the world is still reliant on chemical insecticides. Anopheles culicifacies is the major vector out of six primary malaria vectors in India and alone contributes about 2/3 malaria cases annually; and per se its control is actually control of malaria in India. For effective management of vectors, current information on their susceptibility status to different insecticides is essential. In this review, an attempt was made to compile and present the available data on the susceptibility status of different malaria vector species in India from the last 2.5 decades. Literature search was conducted by different means mainly web and library search; susceptibility data was collated from 62 sources for the nine malaria vector species from 145 districts in 21 states and two union territories between 1991 and 2016. Interpretation of the susceptibility/resistance status was made on basis of the recent WHO criteria. Comprehensive analysis of the data indicated that An. culicifacies, a major vector species was resistant to at least one insecticide in 70% (101/145) of the districts. It was reported mostly resistant to DDT and malathion whereas, its resistant status against deltamethrin varied across the districts. The major threat for the malaria control programmes is multiple-insecticide-resistance in An. culicifacies which needs immediate attention for resistance management in order to sustain the gains achieved so far, as the programmes have targeted malaria elimination by 2030.

  2. Local prevalence and transmission of avian malaria in the Alakai Plateau of Kauai, Hawaii, U.S.A.

    PubMed

    Glad, Anouk; Crampton, Lisa H

    2015-12-01

    Avian malaria is among the most important threats to native Hawaiian forest birds. It is caused by the parasite Plasmodium relictum and is transmitted by the introduced mosquito vector Culex quinquefasciatus. Temperature increases and precipitation declines due to climate change over the last decade may be responsible for the observed recent expansion in the range and prevalence of avian malaria on the Alakai Plateau, Kauai Island. To examine the hypothesis that conditions are now favorable for transmission of malaria on the Plateau, mosquitoes were sampled with CO2 and Reiter oviposition traps at three sites (Kawaikoi, Halepa'akai, and Koke'e) on several occasions between October, 2013 and April, 2014. P. relictum infection was assessed by PCR or dissection under a microscope. We also surveyed mosquito larvae along Halepa'akai and Kawaikoi streams. We observed that Cx. quinquefasciatus is well established on the Alakai Plateau, as mosquitoes were caught on all field trips, except in April at Halepa'akai, and larvae were found throughout the year. We observed differences in adult abundance among sites and microhabitats (stream vs ridge lines). © 2015 The Society for Vector Ecology.

  3. Climate change and altitudinal structuring of malaria vectors in south-western Cameroon: their relation to malaria transmission.

    PubMed

    Tanga, M C; Ngundu, W I; Judith, N; Mbuh, J; Tendongfor, N; Simard, Frédéric; Wanji, S

    2010-07-01

    An entomological survey was conducted in Cameroon between October 2004 and September 2005, in nine localities targeted for malaria vector control based on adult productivity and variability. Mosquitoes were collected by human-landing catches (HLCs) and pyrethrum spray catches. A total of 12 500 anophelines were collected and dissected: Anopheles gambiae s.l. (56.86%), An. funestus s.l. (32.57%), An. hancocki (9.38%), and An. nili (1.18%). Applying PCR revealed that specimens of the An. funestus group were An. funestus s.s. and An. gambiae complex were mostly An. melas and An. gambiae s.s. of the M and S molecular forms with the M forms being the most predominant. The natural distribution patterns of Anopheles species were largely determined by altitude with some species having unique environmental tolerance limits. A human blood index (HBI) of 99.05% was recorded. Mean probability of daily survival of the malaria vectors was 0.92, with annual mean life expectancy of 21.9 days and the expectation of infective life was long with a mean of 7.4 days. The high survival rates suggest a high vector potential for the species. This information enhances the development of a more focused and informed vector control intervention. Copyright 2010 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  4. Modeling the role of environmental variables on the population dynamics of the malaria vector Anopheles gambiae sensu stricto

    PubMed Central

    2012-01-01

    Background The impact of weather and climate on malaria transmission has attracted considerable attention in recent years, yet uncertainties around future disease trends under climate change remain. Mathematical models provide powerful tools for addressing such questions and understanding the implications for interventions and eradication strategies, but these require realistic modeling of the vector population dynamics and its response to environmental variables. Methods Published and unpublished field and experimental data are used to develop new formulations for modeling the relationships between key aspects of vector ecology and environmental variables. These relationships are integrated within a validated deterministic model of Anopheles gambiae s.s. population dynamics to provide a valuable tool for understanding vector response to biotic and abiotic variables. Results A novel, parsimonious framework for assessing the effects of rainfall, cloudiness, wind speed, desiccation, temperature, relative humidity and density-dependence on vector abundance is developed, allowing ease of construction, analysis, and integration into malaria transmission models. Model validation shows good agreement with longitudinal vector abundance data from Tanzania, suggesting that recent malaria reductions in certain areas of Africa could be due to changing environmental conditions affecting vector populations. Conclusions Mathematical models provide a powerful, explanatory means of understanding the role of environmental variables on mosquito populations and hence for predicting future malaria transmission under global change. The framework developed provides a valuable advance in this respect, but also highlights key research gaps that need to be resolved if we are to better understand future malaria risk in vulnerable communities. PMID:22877154

  5. Susceptibility of Anopheles gambiae to insecticides used for malaria vector control in Rwanda.

    PubMed

    Hakizimana, Emmanuel; Karema, Corine; Munyakanage, Dunia; Iranzi, Gad; Githure, John; Tongren, Jon Eric; Takken, Willem; Binagwaho, Agnes; Koenraadt, Constantianus J M

    2016-12-01

    The widespread emergence of resistance to pyrethroids is a major threat to the gains made in malaria control. To monitor the presence and possible emergence of resistance against a variety of insecticides used for malaria control in Rwanda, nationwide insecticide resistance surveys were conducted in 2011 and 2013. Larvae of Anopheles gambiae sensu lato mosquitoes were collected in 12 sentinel sites throughout Rwanda. These were reared to adults and analysed for knock-down and mortality using WHO insecticide test papers with standard diagnostic doses of the recommended insecticides. A sub-sample of tested specimens was analysed for the presence of knockdown resistance (kdr) mutations. A total of 14,311 mosquitoes were tested and from a sample of 1406 specimens, 1165 (82.9%) were identified as Anopheles arabiensis and 241 (17.1%) as Anopheles gambiae sensu stricto. Mortality results indicated a significant increase in resistance to lambda-cyhalothrin from 2011 to 2013 in 83% of the sites, permethrin in 25% of the sites, deltamethrin in 25% of the sites and DDT in 50% of the sites. Mosquitoes from 83% of the sites showed full susceptibility to bendiocarb and 17% of sites were suspected to harbour resistance that requires further confirmation. No resistance was observed to fenitrothion in all study sites during the entire survey. The kdr genotype results in An. gambiae s.s. showed that 67 (50%) possessed susceptibility (SS) alleles, while 35 (26.1%) and 32 (23.9%) mosquitoes had heterozygous (RS) and homozygous (RR) alleles, respectively. Of the 591 An. arabiensis genotyped, 425 (71.9%) possessed homozygous (SS) alleles while 158 (26.7%) and 8 (1.4%) had heterozygous (RS) and homozygous (RR) alleles, respectively. Metabolic resistance involving oxidase enzymes was also detected using the synergist PBO. This is the first nationwide study of insecticide resistance in malaria vectors in Rwanda. It shows the gradual increase of insecticide resistance to pyrethroids (lambda

  6. Variations in household microclimate affect outdoor-biting behaviour of malaria vectors

    PubMed Central

    Ngowo, Halfan S.; Kaindoa, Emmanuel Wilson; Matthiopoulos, Jason; Ferguson, Heather M.; Okumu, Fredros O.

    2017-01-01

    Background: Mosquito behaviours including the degree to which they bite inside houses or outside is a crucial determinant of human exposure to malaria. Whilst seasonality in mosquito vector abundance is well documented, much less is known about the impact of climate on mosquito behaviour. We investigated how variations in household microclimate affect outdoor-biting by malaria vectors, Anopheles arabiensis and Anopheles funestus. Methods: Mosquitoes were sampled indoors and outdoors weekly using human landing catches at eight households in four villages in south-eastern Tanzania, resulting in 616 trap-nights over 12 months. Daily temperature, relative humidity and rainfall were recorded. Generalized additive mixed models (GAMMs) were used to test associations between mosquito abundance and the microclimatic conditions. Generalized linear mixed models (GLMMs) were used to investigate the influence of microclimatic conditions on the tendency of vectors to bite outdoors (proportion of outdoor biting). Results:  An. arabiensis abundance peaked during high rainfall months (February-May), whilst An. funestus density remained stable into the dry season (May-August) . Across the range of observed household temperatures, a rise of 1 ºC marginally increased nightly An. arabiensis abundance (~11%), but more prominently increased An. funestus abundance (~66%). The abundance of An. arabiensis and An. funestus showed strong positive associations with time-lagged rainfall (2-3 and 3-4 weeks before sampling). The degree of outdoor biting in An. arabiensis was significantly associated with the relative temperature difference between indoor and outdoor environments, with exophily increasing as temperature inside houses became relatively warmer. The exophily of An. funestus did not vary with temperature differences.   Conclusions: This study demonstrates that malaria vector An. arabiensis shifts the location of its biting from indoors to outdoors in association with relative

  7. Seasonal genetic partitioning in the neotropical malaria vector, Anopheles darlingi

    PubMed Central

    2014-01-01

    Background Anopheles darlingi is the main malaria mosquito vector in the Amazonia region. In spite of being considered a riverine, forest-dwelling species, this mosquito is becoming more abundant in peri-urban areas, increasing malaria risk. This has been associated with human-driven environmental changes such as deforestation. Methods Microsatellites were used to characterize A. darlingi from seven localities along the Madeira River, Rondônia (Brazil), collected in the early and late periods of the rainy season. Results Two genetically distinct subpopulations were detected: one (subpopulation A) was associated with the late rainfall period and seems to be ecologically closer to the typical forest A. darlingi; the other (subpopulation B) was associated with the early rainfall period and is probably more adapted to drier conditions by exploiting permanent anthropogenic breeding sites. Results suggest also a pattern of asymmetric introgression, with more subpopulation A alleles introgressed into subpopulation B. Both subpopulations (and admixed mosquitoes) presented similar malaria infection rates, highlighting the potential for perennial malaria transmission in the region. Conclusions The co-occurrence of two genetically distinct subpopulations of A. darlingi adapted to different periods of rainfall may promote a more perennial transmission of malaria throughout the year. These findings, in a context of strong environmental impact due to deforestation and dam construction, have serious implications for malaria epidemiology and control in the Amazonian region. PMID:24885508

  8. Design of a Two-level Adaptive Multi-Agent System for Malaria Vectors driven by an ontology

    PubMed Central

    Koum, Guillaume; Yekel, Augustin; Ndifon, Bengyella; Etang, Josiane; Simard, Frédéric

    2007-01-01

    Background The understanding of heterogeneities in disease transmission dynamics as far as malaria vectors are concerned is a big challenge. Many studies while tackling this problem don't find exact models to explain the malaria vectors propagation. Methods To solve the problem we define an Adaptive Multi-Agent System (AMAS) which has the property to be elastic and is a two-level system as well. This AMAS is a dynamic system where the two levels are linked by an Ontology which allows it to function as a reduced system and as an extended system. In a primary level, the AMAS comprises organization agents and in a secondary level, it is constituted of analysis agents. Its entry point, a User Interface Agent, can reproduce itself because it is given a minimum of background knowledge and it learns appropriate "behavior" from the user in the presence of ambiguous queries and from other agents of the AMAS in other situations. Results Some of the outputs of our system present a series of tables, diagrams showing some factors like Entomological parameters of malaria transmission, Percentages of malaria transmission per malaria vectors, Entomological inoculation rate. Many others parameters can be produced by the system depending on the inputted data. Conclusion Our approach is an intelligent one which differs from statistical approaches that are sometimes used in the field. This intelligent approach aligns itself with the distributed artificial intelligence. In terms of fight against malaria disease our system offers opportunities of reducing efforts of human resources who are not obliged to cover the entire territory while conducting surveys. Secondly the AMAS can determine the presence or the absence of malaria vectors even when specific data have not been collected in the geographical area. In the difference of a statistical technique, in our case the projection of the results in the field can sometimes appeared to be more general. PMID:17605778

  9. Malaria infection and disease in an area with pyrethroid-resistant vectors in southern Benin

    PubMed Central

    2010-01-01

    Background This study aimed to investigate baseline data on malaria before the evaluation of new vector control strategies in an area of pyrethroid-resistance of vectors. The burden of malaria was estimated in terms of infection (prevalence and parasite density) and of clinical episodes. Methods Between December 2007 and December 2008 in the health district of Ouidah - Kpomassè - Tori Bossito (southern Benin), a descriptive epidemiological survey of malaria was conducted. From 28 selected villages, seven were randomized from which a total of 440 children aged 0 to 5 years were randomly selected. Clinical and parasitological information was obtained by active case detection of malaria episodes carried out during eight periods of six consecutive days scheduled at six weekly intervals and by cross-sectional surveys of asymptomatic infection. Entomological information was also collected. The ownership, the use and the correct use of long-lasting insecticide-treated nets (LLINs) were checked over weekly-survey by unannounced visits at home in the late evening. Results Mean parasite density in asymptomatic children was 586 P. falciparum asexual forms per μL of blood (95%CI 504-680). Pyrogenic parasite cut-off was estimated 2,000 P. falciparum asexual blood forms per μL. The clinical incidence of malaria was 1.5 episodes per child per year (95%CI 1.2-1.9). Parasitological and clinical variables did not vary with season. Anopheles gambiae s.l. was the principal vector closely followed by Anopheles funestus. Entomological inoculation rate was 5.3 (95%CI 1.1-25.9) infective bites per human per year. Frequency of the L1014F kdr (West) allele was around 50%. Annual prevalence rate of Plasmodium falciparum asymptomatic infection was 21.8% (95%CI 19.1-24.4) and increased according to age. Mean rates of ownership and use of LLINs were 92% and 70% respectively. The only correct use of LLINs (63%) conferred 26% individual protection against only infection (OR = 0.74 (95%IC 0

  10. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors?

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Arivoli, Subramanian; Tennyson, Samuel; Benelli, Giovanni

    2016-05-01

    Mosquitoes (Diptera: Culicidae) are important vectors of terms of public health relevance, especially in tropical and sub-tropical regions. The continuous and indiscriminate use of conventional pesticides for the control of mosquito vectors has resulted in the development of resistance and negative impacts on non-target organisms and the environment. Therefore, there is a need for development of effective mosquito control tools. In this study, the larvicidal and repellent activity of Zingiber nimmonii rhizome essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti, and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy (GC-MS). GC-MS revealed that the Z. nimmonii EO contained at least 33 compounds. Major constituents were myrcene, β-caryophyllene, α-humulene, and α-cadinol. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus, with LC50 values of 41.19, 44.46, and 48.26 μg/ml, respectively. Repellency bioassays at 1.0, 2.0, and 5.0 mg/cm(2) of Z. nimmonii EO gave 100 % protection up to 120, 150, and 180 min. against An. stephensi, followed by Ae. aegypti (90, 120, and 150 min) and Cx. quinquefasciatus (60, 90, and 120 min). Furthermore, the EO was safer towards two non-target aquatic organisms, Diplonychus indicus and Gambusia affinis, with LC50 values of 3241.53 and 9250.12 μg/ml, respectively. Overall, this research adds basic knowledge to develop newer and safer natural larvicides and repellent from Zingiberaceae plants against malaria, dengue, and filariasis mosquito vectors.

  11. Larvivorous fish for preventing malaria transmission.

    PubMed

    Walshe, Deirdre P; Garner, Paul; Adeel, Ahmed A; Pyke, Graham H; Burkot, Thomas R

    2017-12-11

    Adult female Anopheles mosquitoes can transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization (WHO) includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. In the past, the Global Fund has financed larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policymakers may return to this option. Therefore, we assessed the evidence base for larvivorous fish programmes in malaria control. To evaluate whether introducing larvivorous fish to anopheline larval habitats impacts Plasmodium parasite transmission. We also sought to summarize studies that evaluated whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources. We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (Ovid); CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) up to 6 July 2017. We checked the reference lists of all studies identified by the search. We examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Also we contacted researchers in the field and the authors of studies that met the inclusion criteria for additional information regarding potential studies for inclusion and ongoing studies. This is an update of a Cochrane Review published in 2013. Randomized controlled trials (RCTs) and non-RCTs, including controlled before-and-after studies, controlled time series, and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in the community or the density of the

  12. Biology, Bionomics and Molecular Biology of Anopheles sinensis Wiedemann 1828 (Diptera: Culicidae), Main Malaria Vector in China

    PubMed Central

    Feng, Xinyu; Zhang, Shaosen; Huang, Fang; Zhang, Li; Feng, Jun; Xia, Zhigui; Zhou, Hejun; Hu, Wei; Zhou, Shuisen

    2017-01-01

    China has set a goal to eliminate all malaria in the country by 2020, but it is unclear if current understanding of malaria vectors and transmission is sufficient to achieve this objective. Anopheles sinensis is the most widespread malaria vector specie in China, which is also responsible for vivax malaria outbreak in central China. We reviewed literature from 1954 to 2016 on An. sinensis with emphasis on biology, bionomics, and molecular biology. A total of 538 references were relevant and included. An. sienesis occurs in 29 Chinese provinces. Temperature can affect most life-history parameters. Most An. sinensis are zoophilic, but sometimes they are facultatively anthropophilic. Sporozoite analysis demonstrated An. sinensis efficacy on Plasmodium vivax transmission. An. sinensis was not stringently refractory to P. falciparum under experimental conditions, however, sporozoite was not found in salivary glands of field collected An. sinensis. The literature on An. sienesis biology and bionomics was abundant, but molecular studies, such as gene functions and mechanisms, were limited. Only 12 molecules (genes, proteins or enzymes) have been studied. In addition, there were considerable untapped omics resources for potential vector control tools. Existing information on An. sienesis could serve as a baseline for advanced research on biology, bionomics and genetics relevant to vector control strategies. PMID:28848504

  13. Biology, Bionomics and Molecular Biology of Anopheles sinensis Wiedemann 1828 (Diptera: Culicidae), Main Malaria Vector in China.

    PubMed

    Feng, Xinyu; Zhang, Shaosen; Huang, Fang; Zhang, Li; Feng, Jun; Xia, Zhigui; Zhou, Hejun; Hu, Wei; Zhou, Shuisen

    2017-01-01

    China has set a goal to eliminate all malaria in the country by 2020, but it is unclear if current understanding of malaria vectors and transmission is sufficient to achieve this objective. Anopheles sinensis is the most widespread malaria vector specie in China, which is also responsible for vivax malaria outbreak in central China. We reviewed literature from 1954 to 2016 on An. sinensis with emphasis on biology, bionomics, and molecular biology. A total of 538 references were relevant and included. An. sienesis occurs in 29 Chinese provinces. Temperature can affect most life-history parameters. Most An. sinensis are zoophilic, but sometimes they are facultatively anthropophilic. Sporozoite analysis demonstrated An. sinensis efficacy on Plasmodium vivax transmission. An. sinensis was not stringently refractory to P. falciparum under experimental conditions, however, sporozoite was not found in salivary glands of field collected An. sinensis . The literature on An. sienesis biology and bionomics was abundant, but molecular studies, such as gene functions and mechanisms, were limited. Only 12 molecules (genes, proteins or enzymes) have been studied. In addition, there were considerable untapped omics resources for potential vector control tools. Existing information on An. sienesis could serve as a baseline for advanced research on biology, bionomics and genetics relevant to vector control strategies.

  14. Non-specific Patterns of Vector, Host, and Avian Malaria Parasite Associations in a Central African Rainforest

    PubMed Central

    Njabo, Kevin Y; Cornel, Anthony J.; Bonneaud, Camille; Toffelmier, Erin; Sehgal, R.N.M.; Valkiūnas, Gediminas; Russell, Andrew F.; Smith, Thomas B.

    2010-01-01

    Malaria parasites use vertebrate hosts for asexual multiplication and Culicidae mosquitoes for sexual and asexual development, yet the literature on avian malaria remains biased towards examining the asexual stages of the life cycle in birds. To fully understand parasite evolution and mechanism of malaria transmission, knowledge of all three components of the vector-host-parasite system is essential. Little is known about avian parasite-vector associations in African rainforests where numerous species of birds are infected with avian haemosporidians of the genera Plasmodium and Haemoproteus. Here we applied high resolution melt qPCR-based techniques and nested PCR to examine the occurrence and diversity of mitochondrial cytochrome b gene sequences of haemosporidian parasites in wild-caught mosquitoes sampled across 12 sites in Cameroon. In all, 3134 mosquitoes representing 27 species were screened. Mosquitoes belonging to four genera (Aedes, Coquillettidia, Culex, and Mansonia) were infected with twenty-two parasite lineages (18 Plasmodium spp. and 4 Haemoproteus spp.). Presence of Plasmodium sporozoites in salivary glands of Coquillettidia aurites further established these mosquitoes as likely vectors. Occurrence of parasite lineages differed significantly among genera, as well as their probability of being infected with malaria across species and sites. Approximately one-third of these lineages were previously detected in other avian host species from the region, indicating that vertebrate host sharing is a common feature and that avian Plasmodium spp. vector breadth does not always accompany vertebrate-host breadth. This study suggests extensive invertebrate host shifts in mosquito-parasite interactions and that avian Plasmodium species are most likely not tightly coevolved with vector species. PMID:21134011

  15. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach.

    PubMed

    Mitsakakis, Konstantinos; Hin, Sebastian; Müller, Pie; Wipf, Nadja; Thomsen, Edward; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos

    2018-02-03

    Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium , is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach.

  16. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach

    PubMed Central

    Mitsakakis, Konstantinos; Hin, Sebastian; Wipf, Nadja; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos

    2018-01-01

    Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium, is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach. PMID:29401670

  17. Ecology of urban malaria vectors in Niamey, Republic of Niger.

    PubMed

    Labbo, Rabiou; Fandeur, Thierry; Jeanne, Isabelle; Czeher, Cyril; Williams, Earle; Arzika, Ibrahim; Soumana, Amadou; Lazoumar, Ramatoulaye; Duchemin, Jean-Bernard

    2016-06-08

    Urbanization in African cities has major impact on malaria risk. Niamey, the capital of the Republic of Niger, is situated in the West African Sahel zone. The short rainy season and human activities linked with the Niger River influence mosquito abundance. This study aimed at deciphering the factors of distribution of urban malaria vectors in Niamey. The distribution of mosquito aquatic stages was investigated monthly from December 2002 to November 2003, at up to 84 breeding sites, throughout Niamey. An exploratory analysis of association between mosquito abundance and environmental factors was performed by a Principal Component Analysis and confirmed by Kruskall-Wallis non-parametric test. To assess the relative importance of significant factors, models were built for Anopheles and Culicinae. In a second capture session, adult mosquitoes were collected weekly with pyrethrum sprays and CDC light-traps from June 2008 to June 2009 in two differentiated urban areas chosen after the study's first step. Members of the Anopheles gambiae complex were genotyped and Anopheles females were tested for the presence of Plasmodium falciparum circumsporozoite antigens using ELISA. In 2003, 29 % of 8420 mosquitoes collected as aquatic stages were Anopheles. They were significantly more likely to be found upstream, relatively close to the river and highly productive in ponds. These factors remained significant in regression and generalized linear models. The Culicinae were found significantly more likely close to the river, and in the main temporary affluent stream. In 2009, Anopheles specimens, including Anopheles gambiae s.l. (95 %), but also Anopheles funestus (0.6 %) accounted for 18 % of the adult mosquito fauna, with a large difference between the two sampled zones. Three members of the An. gambiae complex were found: Anopheles arabiensis, Anopheles coluzzii, and An. gambiae. Nineteen (1.3 %) out of 1467 females tested for P. falciparum antigen were found positive. The

  18. Using the entomological inoculation rate to assess the impact of vector control on malaria parasite transmission and elimination.

    PubMed

    Shaukat, Ayesha M; Breman, Joel G; McKenzie, F Ellis

    2010-05-12

    Prior studies have shown that annual entomological inoculation rates (EIRs) must be reduced to less than one to substantially reduce the prevalence of malaria infection. In this study, EIR values were used to quantify the impact of insecticide-treated bed nets (ITNs), indoor residual spraying (IRS), and source reduction (SR) on malaria transmission. The analysis of EIR was extended through determining whether available vector control tools can ultimately eradicate malaria. The analysis is based primarily on a review of all controlled studies that used ITN, IRS, and/or SR and reported their effects on the EIR. To compare EIRs between studies, the percent difference in EIR between the intervention and control groups was calculated. Eight vector control intervention studies that measured EIR were found: four ITN studies, one IRS study, one SR study, and two studies with separate ITN and IRS intervention groups. In both the Tanzania study and the Solomon Islands study, one community received ITNs and one received IRS. In the second year of the Tanzania study, EIR was 90% lower in the ITN community and 93% lower in the IRS community, relative to the community without intervention; the ITN and IRS effects were not significantly different. In contrast, in the Solomon Islands study, EIR was 94% lower in the ITN community and 56% lower in the IRS community. The one SR study, in Dar es Salaam, reported a lower EIR reduction (47%) than the ITN and IRS studies. All of these vector control interventions reduced EIR, but none reduced it to zero. These studies indicate that current vector control methods alone cannot ultimately eradicate malaria because no intervention sustained an annual EIR less than one. While researchers develop new tools, integrated vector management may make the greatest impact on malaria transmission. There are many gaps in the entomological malaria literature and recommendations for future research are provided.

  19. Biting behaviour of African malaria vectors: 1. where do the main vector species bite on the human body?

    PubMed

    Braack, Leo; Hunt, Richard; Koekemoer, Lizette L; Gericke, Anton; Munhenga, Givemore; Haddow, Andrew D; Becker, Piet; Okia, Michael; Kimera, Isaac; Coetzee, Maureen

    2015-02-04

    Malaria control in Africa relies heavily on indoor vector management, primarily indoor residual spraying and insecticide treated bed nets. Little is known about outdoor biting behaviour or even the dynamics of indoor biting and infection risk of sleeping household occupants. In this paper we explore the preferred biting sites on the human body and some of the ramifications regarding infection risk and exposure management. We undertook whole-night human landing catches of Anopheles arabiensis in South Africa and Anopheles gambiae s.s. and Anopheles funestus in Uganda, for seated persons wearing short sleeve shirts, short pants, and bare legs, ankles and feet. Catches were kept separate for different body regions and capture sessions. All An. gambiae s.l. and An. funestus group individuals were identified to species level by PCR. Three of the main vectors of malaria in Africa (An. arabiensis, An. gambiae s.s. and An. funestus) all have a preference for feeding close to ground level, which is manifested as a strong propensity (77.3% - 100%) for biting on lower leg, ankles and feet of people seated either indoors or outdoors, but somewhat randomly along the lower edge of the body in contact with the surface when lying down. If the lower extremities of the legs (below mid-calf level) of seated people are protected and therefore exclude access to this body region, vector mosquitoes do not move higher up the body to feed at alternate body sites, instead resulting in a high (58.5% - 68.8%) reduction in biting intensity by these three species. Protecting the lower limbs of people outdoors at night can achieve a major reduction in biting intensity by malaria vector mosquitoes. Persons sleeping at floor level bear a disproportionate risk of being bitten at night because this is the preferred height for feeding by the primary vector species. Therefore it is critical to protect children sleeping at floor level (bednets; repellent-impregnated blankets or sheets, etc

  20. Optimized Pan-species and Speciation Duplex Real-time PCR Assays for Plasmodium Parasites Detection in Malaria Vectors

    PubMed Central

    Sandeu, Maurice Marcel; Moussiliou, Azizath; Moiroux, Nicolas; Padonou, Gilles G.; Massougbodji, Achille; Corbel, Vincent; Tuikue Ndam, Nicaise

    2012-01-01

    Background An accurate method for detecting malaria parasites in the mosquito’s vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP) is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus. Methods Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin. Results The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6%) and specificity (98%), compared to ELISA-CSP as the referent standard. The agreement between both methods was “excellent” (κ = 0.8, P<0.05). The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P = 0, 2). All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed. Conclusion This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the

  1. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa.

    PubMed

    Faulde, Michael K; Rueda, Leopoldo M; Khaireh, Bouh A

    2014-11-01

    Anopheles stephensi is an important vector of urban malaria in India and the Persian Gulf area. Its previously known geographical range includes southern Asia and the Arab Peninsula. For the first time, we report A. stephensi from the African continent, based on collections made in Djibouti, on the Horn of Africa, where this species' occurrence was linked to an unusual urban outbreak of Plasmodium falciparum malaria, with 1228 cases reported from February to May 2013, and a second, more severe epidemic that emerged in November 2013 and resulted in 2017 reported malaria cases between January and February 2014. Anopheles stephensi was initially identified using morphological identification keys, followed by sequencing of the Barcode cytochrome c-oxidase I (COI) gene and the rDNA second internal transcribed spacer (ITS2). Positive tests for P. falciparum circumsporozoite antigen in two of six female A. stephensi trapped in homes of malaria patients in March 2013 are evidence that autochthonous urban malaria transmission by A. stephensi has occurred. Concurrent with the second malaria outbreak, P. falciparum-positive A. stephensi females were detected in Djibouti City starting in November 2013. In sub-Saharan Africa, newly present A. stephensi may pose a significant future health threat because of this species' high susceptibility to P. falciparum infection and its tolerance of urban habitats. This may lead to increased malaria outbreaks in African cities. Rapid interruption of the urban malaria transmission cycle, based on integrated vector surveillance and control programs aimed at the complete eradication of A. stephensi from the African continent, is strongly recommended. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Hydrologic modeling to screen potential environmental management methods for malaria vector control in Niger

    NASA Astrophysics Data System (ADS)

    Gianotti, Rebecca L.; Bomblies, Arne; Eltahir, Elfatih A. B.

    2009-08-01

    This paper describes the first use of Hydrology-Entomology and Malaria Transmission Simulator (HYDREMATS), a physically based distributed hydrology model, to investigate environmental management methods for malaria vector control in the Sahelian village of Banizoumbou, Niger. The investigation showed that leveling of topographic depressions where temporary breeding habitats form during the rainy season, by altering pool basin microtopography, could reduce the pool persistence time to less than the time needed for establishment of mosquito breeding, approximately 7 days. Undertaking soil surface plowing can also reduce pool persistence time by increasing the infiltration rate through an existing pool basin. Reduction of the pool persistence time to less than the rainfall interstorm period increases the frequency of pool drying events, removing habitat for subadult mosquitoes. Both management approaches could potentially be considered within a given context. This investigation demonstrates that management methods that modify the hydrologic environment have significant potential to contribute to malaria vector control in water-limited, Sahelian Africa.

  3. Potential distribution of mosquito vector species in a primary malaria endemic region of Colombia

    PubMed Central

    Altamiranda-Saavedra, Mariano; Arboleda, Sair; Parra, Juan L.; Peterson, A. Townsend

    2017-01-01

    Rapid transformation of natural ecosystems changes ecological conditions for important human disease vector species; therefore, an essential task is to identify and understand the variables that shape distributions of these species to optimize efforts toward control and mitigation. Ecological niche modeling was used to estimate the potential distribution and to assess hypotheses of niche similarity among the three main malaria vector species in northern Colombia: Anopheles nuneztovari, An. albimanus, and An. darlingi. Georeferenced point collection data and remotely sensed, fine-resolution satellite imagery were integrated across the Urabá –Bajo Cauca–Alto Sinú malaria endemic area using a maximum entropy algorithm. Results showed that An. nuneztovari has the widest geographic distribution, occupying almost the entire study region; this niche breadth is probably related to the ability of this species to colonize both, natural and disturbed environments. The model for An. darlingi showed that most suitable localities for this species in Bajo Cauca were along the Cauca and Nechí river. The riparian ecosystems in this region and the potential for rapid adaptation by this species to novel environments, may favor the establishment of populations of this species. Apparently, the three main Colombian Anopheles vector species in this endemic area do not occupy environments either with high seasonality, or with low seasonality and high NDVI values. Estimated overlap in geographic space between An. nuneztovari and An. albimanus indicated broad spatial and environmental similarity between these species. An. nuneztovari has a broader niche and potential distribution. Dispersal ability of these species and their ability to occupy diverse environmental situations may facilitate sympatry across many environmental and geographic contexts. These model results may be useful for the design and implementation of malaria species-specific vector control interventions optimized

  4. [Vectors of malaria: biology, diversity, prevention, and individual protection].

    PubMed

    Pages, F; Orlandi-Pradines, E; Corbel, V

    2007-03-01

    Only the Anopheles mosquitoes are implicated in the transmission of malaria. Among the numerous species of anopheles, around fifty are currently involved in the transmission. 20 are responsible for most of the transmission in the world. The diversity of behavior between species and in a single species of anopheles as well as climatic and geographical conditions along with the action of man on the environment condition the man vector contact level and the various epidemiological aspects of malaria. The anopheles are primarily rural mosquitoes and are less likely to be found in city surroundings in theory. But actually, the adaptation of some species to urban surroundings and the common habit of market gardening in big cities or in the suburbs is responsible for the de persistence of Anopheles populations in town. Except for South-East Asia, urban malaria has become a reality. The transmission risk of malaria is heterogeneous and varies with time. There is a great variation of risk within a same country, a same zone, and even within a few kilometers. The transmission varies in time according to seasons but also according to years and to the level of climatic events. For the traveler, prevention at any time relies on the strict application of individual protection, as well in rural than in urban surroundings.

  5. Host association and the capacity of sand flies as vectors of lizard malaria in Panama.

    PubMed

    Kimsey, R B

    1992-08-01

    In this paper the capacity of sand flies (Lutzomyia) as vectors of parasites that cause malaria in anoles (Anolis limifrons) in the Zona de Canal, Panama was investigated. Inhabiting all study plots, often in local abundance, L. trinidadensis emerged as the principal candidate sand fly vector; the results of surveys did not suggest a likely mosquito vector. Although L. trinidadensis and infected anoles co-inhabited all plots, their abundances seemed unrelated. No evidence that sand flies parasitized anoles was uncovered. As anole activity patterns in daylight reciprocate with those of sand flies and at night anoles seem to avoid locations that sand flies frequent, anoles may evade sand fly bites altogether. Further, these sand flies occurred in close numerical and ecological association with Thecadactylus rapicauda, a reclusive moist forest gecko, often parasitizing these hosts in large numbers. Thus, sand flies lack capacity as vectors of malaria-causing parasites in central Panamanian anoles.

  6. Field evaluation of picaridin repellents reveals differences in repellent sensitivity between Southeast Asian vectors of malaria and arboviruses.

    PubMed

    Van Roey, Karel; Sokny, Mao; Denis, Leen; Van den Broeck, Nick; Heng, Somony; Siv, Sovannaroth; Sluydts, Vincent; Sochantha, Tho; Coosemans, Marc; Durnez, Lies

    2014-12-01

    Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1-97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the epidemiological

  7. Field Evaluation of Picaridin Repellents Reveals Differences in Repellent Sensitivity between Southeast Asian Vectors of Malaria and Arboviruses

    PubMed Central

    Denis, Leen; Van den Broeck, Nick; Heng, Somony; Siv, Sovannaroth; Sluydts, Vincent; Sochantha, Tho; Coosemans, Marc; Durnez, Lies

    2014-01-01

    Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1–97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the epidemiological

  8. The past, present and future use of epidemiological intelligence to plan malaria vector control and parasite prevention in Uganda.

    PubMed

    Talisuna, Ambrose O; Noor, Abdisalan M; Okui, Albert P; Snow, Robert W

    2015-04-15

    An important prelude to developing strategies to control infectious diseases is a detailed epidemiological evidence platform to target cost-effective interventions and define resource needs. A review of published and un-published reports of malaria vector control and parasite prevention in Uganda was conducted for the period 1900-2013. The objective was to provide a perspective as to how epidemiological intelligence was used to design malaria control before and during the global malaria eradication programme (GMEP) and to contrast this with the evidence generated in support of the Roll Back Malaria (RBM) initiative from 1998 to date. During the GMEP era, comprehensive investigations were undertaken on the effectiveness of vector and parasite control such as indoor residual house-spraying (IRS) and mass drug administration (MDA) at different sites in Uganda. Nationwide malariometric surveys were undertaken between 1964 and 1967 to provide a profile of risk, epidemiology and seasonality leading to an evidence-based national cartography of risk to characterize the diversity of malaria transmission in Uganda. At the launch of the RBM initiative in the late 1990s, an equivalent level of evidence was lacking. There was no contemporary national evidence-base for the likely impact of insecticide-treated nets (ITN), no new malariometric data, no new national cartography of malaria risk or any evidence of tailored intervention delivery based on variations in the ecology of malaria risk in Uganda. Despite millions of dollars of overseas development assistance over the last ten years in ITN, and more recently the resurrection of the use of IRS, the epidemiological impact of vector control remains uncertain due to an absence of nationwide basic parasite and vector-based field studies. Readily available epidemiological data should become the future business model to maximize malaria funding from 2015. Over the next five to ten years, accountability, impact analysis, financial

  9. Larvicidal activity of essential oil and methanol extract of Nepeta menthoides against malaria vector Anopheles stephensi.

    PubMed

    Mahnaz, Khanavi; Alireza, Fallah; Hassan, Vatandoost; Mahdi, Sedaghat; Reza, Abai Mohammad; Abbas, Hadjiakhoondi

    2012-12-01

    To investigate the larvicidal activity of essential oil and methanol extract of the Nepeta menthoides (N. menthoides) against main malaria vector, Anopheles stephensi (An. stephensi). The essential oil of plant was obtained by Clevenger type apparatus and the methanol extract was supplied with Percolation method. Larvicidal activity was tested by WHO method. Twenty five fourth-instar larvae of An. stephensi were used in the larvicidal assay and four replicates were tested for each concentration. Five different concentrations of the oil and extract were tested for calculation of LC(50) and LC(90) values. The LC(50) and LC(90) values were determined by probit analysis. LC(50) was 69.5 and 234.3 ppm and LC(90) was 175.5 and 419.9 ppm for the extract and essential oil respectively. According to the results of this study methanolic extract of plant exhibited more larvicidal activity than essential oil. This could be useful for investigation of new natural larvicidal compounds. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  10. Lethal and Pre-Lethal Effects of a Fungal Biopesticide Contribute to Substantial and Rapid Control of Malaria Vectors

    PubMed Central

    Blanford, Simon; Shi, Wangpeng; Christian, Riann; Marden, James H.; Koekemoer, Lizette L.; Brooke, Basil D.; Coetzee, Maureen; Read, Andrew F.; Thomas, Matthew B.

    2011-01-01

    Rapidly emerging insecticide resistance is creating an urgent need for new active ingredients to control the adult mosquitoes that vector malaria. Biopesticides based on the spores of entomopathogenic fungi have shown considerable promise by causing very substantial mortality within 7–14 days of exposure. This mortality will generate excellent malaria control if there is a high likelihood that mosquitoes contact fungi early in their adult lives. However, where contact rates are lower, as might result from poor pesticide coverage, some mosquitoes will contact fungi one or more feeding cycles after they acquire malaria, and so risk transmitting malaria before the fungus kills them. Critics have argued that ‘slow acting’ fungal biopesticides are, therefore, incapable of delivering malaria control in real-world contexts. Here, utilizing standard WHO laboratory protocols, we demonstrate effective action of a biopesticide much faster than previously reported. Specifically, we show that transient exposure to clay tiles sprayed with a candidate biopesticide comprising spores of a natural isolate of Beauveria bassiana, could reduce malaria transmission potential to zero within a feeding cycle. The effect resulted from a combination of high mortality and rapid fungal-induced reduction in feeding and flight capacity. Additionally, multiple insecticide-resistant lines from three key African malaria vector species were completely susceptible to fungus. Thus, fungal biopesticides can block transmission on a par with chemical insecticides, and can achieve this where chemical insecticides have little impact. These results support broadening the current vector control paradigm beyond fast-acting chemical toxins. PMID:21897846

  11. Avian malaria co-infections confound infectivity and vector competence assays of Plasmodium homopolare.

    PubMed

    Carlson, Jenny S; Nelms, Brittany; Barker, Christopher M; Reisen, William K; Sehgal, Ravinder N M; Cornel, Anthony J

    2018-05-29

    Currently, there are very few studies of avian malaria that investigate relationships among the host-vector-parasite triad concomitantly. In the current study, we experimentally measured the vector competence of several Culex mosquitoes for a newly described avian malaria parasite, Plasmodium homopolare. Song sparrow (Melospiza melodia) blood infected with a low P. homopolare parasitemia was inoculated into a naïve domestic canary (Serinus canaria forma domestica). Within 5 to 10 days post infection (dpi), the canary unexpectedly developed a simultaneous high parasitemic infection of Plasmodium cathemerium (Pcat6) and a low parasitemic infection of P. homopolare, both of which were detected in blood smears. During this infection period, PCR detected Pcat6, but not P. homopolare in the canary. Between 10 and 60 dpi, Pcat6 blood stages were no longer visible and PCR no longer amplified Pcat6 parasite DNA from canary blood. However, P. homopolare blood stages remained visible, albeit still at very low parasitemias, and PCR was able to amplify P. homopolare DNA. This pattern of mixed Pcat6 and P. homopolare infection was repeated in three secondary infected canaries that were injected with blood from the first infected canary. Mosquitoes that blood-fed on the secondary infected canaries developed infections with Pcat6 as well as another P. cathemerium lineage (Pcat8); none developed PCR detectable P. homopolare infections. These observations suggest that the original P. homopolare-infected songbird also had two un-detectable P. cathemerium lineages/strains. The vector and host infectivity trials in this study demonstrated that current molecular assays may significantly underreport the extent of mixed avian malaria infections in vectors and hosts.

  12. Avoidance behavior to essential oils by Anopheles minimus, a malaria vector in Thailand

    USDA-ARS?s Scientific Manuscript database

    Excito-repellency tests were used to characterize behavioral responses of laboratory colonized Anopheles minimus, a malaria vector in Thailand, using four essential oils, citronella (Cymbopogom nadus), hairy basil (Ocimum americanum), sweet basil (Ocimum basilicum), vetiver (Vetiveria zizanioides), ...

  13. The impact of livestock on the abundance, resting behaviour and sporozoite rate of malaria vectors in southern Tanzania.

    PubMed

    Mayagaya, Valeriana S; Nkwengulila, Gamba; Lyimo, Issa N; Kihonda, Japheti; Mtambala, Hassan; Ngonyani, Hassan; Russell, Tanya L; Ferguson, Heather M

    2015-01-21

    Increases in the coverage of long-lasting insecticidal nets (LLINs) have significantly reduced the abundance of Anopheles gambiae sensu stricto in several African settings, leaving its more zoophagic sibling species Anopheles arabiensis as the primary vector. This study investigated the impact of livestock ownership at the household level on the ecology and malaria infection rate of vectors in an area of Tanzania where An. arabiensis accounts for most malaria transmission. Mosquito vectors were collected resting inside houses, animal sheds and in outdoor resting boxes at households with and without livestock over three years in ten villages of the Kilombero Valley, Tanzania. Additionally, the abundance and sporozoite rate of vectors attempting to bite indoors at these households was assessed as an index of malaria exposure. The mean abundance of An. gambiae s.l. biting indoors was similar at houses with and without livestock. In all years but one, the relative proportion of An. arabiensis within the An. gambiae s.l. species complex was higher at households with livestock. Livestock presence had a significant impact on malaria vector feeding and resting behaviour. Anopheles arabiensis were generally found resting in cattle sheds where livestock were present, and inside houses when absent. Correspondingly, the human blood index of An. arabiensis and An. funestus s.l. was significant reduced at households with livestock, whereas that of An. gambiae s.s. was unaffected. Whilst there was some evidence that sporozoite rates within the indoor-biting An. gambiae s.l population was significantly reduced at households with livestock, the significance of this effect varied depending on how background spatial variation was accounted for. These results confirm that the presence of cattle at the household level can significantly alter the local species composition, feeding and resting behaviour of malaria vectors. However, the net impact of this livestock-associated variation in

  14. Malaria in Kakuma refugee camp, Turkana, Kenya: facilitation of Anopheles arabiensis vector populations by installed water distribution and catchment systems

    PubMed Central

    2011-01-01

    Background Malaria is a major health concern for displaced persons occupying refugee camps in sub-Saharan Africa, yet there is little information on the incidence of infection and nature of transmission in these settings. Kakuma Refugee Camp, located in a dry area of north-western Kenya, has hosted ca. 60,000 to 90,000 refugees since 1992, primarily from Sudan and Somalia. The purpose of this study was to investigate malaria prevalence and attack rate and sources of Anopheles vectors in Kakuma refugee camp, in 2005-2006, after a malaria epidemic was observed by staff at camp clinics. Methods Malaria prevalence and attack rate was estimated from cases of fever presenting to camp clinics and the hospital in August 2005, using rapid diagnostic tests and microscopy of blood smears. Larval habitats of vectors were sampled and mapped. Houses were sampled for adult vectors using the pyrethrum knockdown spray method, and mapped. Vectors were identified to species level and their infection with Plasmodium falciparum determined. Results Prevalence of febrile illness with P. falciparum was highest among the 5 to 17 year olds (62.4%) while malaria attack rate was highest among the two to 4 year olds (5.2/1,000/day). Infected individuals were spatially concentrated in three of the 11 residential zones of the camp. The indoor densities of Anopheles arabiensis, the sole malaria vector, were similar during the wet and dry seasons, but were distributed in an aggregated fashion and predominantly in the same zones where malaria attack rates were high. Larval habitats and larval populations were also concentrated in these zones. Larval habitats were man-made pits of water associated with tap-stands installed as the water delivery system to residents with year round availability in the camp. Three percent of A. arabiensis adult females were infected with P. falciparum sporozoites in the rainy season. Conclusions Malaria in Kakuma refugee camp was due mainly to infection with P

  15. Probable autochthonous introduced malaria cases in Italy in 2009-2011 and the risk of local vector-borne transmission.

    PubMed

    Romi, R; Boccolini, D; Menegon, M; Rezza, G

    2012-11-29

    We describe two cases of probable autochthonous introduced Plasmodium vivax malaria that occurred in 2009 and 2011 in two sites of South-Central Italy. Although the sources of the infections were not detected, local transmission could not be disproved and therefore the cases were classified as autochthonous. Sporadic P. vivax cases transmitted by indigenous vectors may be considered possible in some areas of the country where vector abundance and environmental conditions are favourable to malaria transmission.

  16. Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae

    PubMed Central

    2011-01-01

    promising tool for control of larval populations of malaria mosquitoes. Additional studies are required to identify the best delivery method (where, when and how) to make use of the entomopathogenic potential of these fungi against anopheline larvae. PMID:21342492

  17. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi?

    PubMed

    Dinesh, Devakumar; Murugan, Kadarkarai; Madhiyazhagan, Pari; Panneerselvam, Chellasamy; Kumar, Palanisamy Mahesh; Nicoletti, Marcello; Jiang, Wei; Benelli, Giovanni; Chandramohan, Balamurugan; Suresh, Udaiyan

    2015-04-01

    Mosquitoes represent an important threat for lives of millions of people worldwide, acting as vectors for devastating pathogens, such as malaria, yellow fever, dengue, and West Nile. In addition, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. Here, we investigated the mosquitocidal and antibacterial properties of Aloe vera leaf extract and silver nanoparticles synthesized using A. vera extract. Mosquitocidal properties were assessed in laboratory against larvae (I-IV instar) and pupae of the malaria vector Anopheles stephensi. Green-synthesized silver nanoparticles were tested against An. stephensi also in field conditions. Antibacterial properties of nanoparticles were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. The synthesized silver nanoparticles were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In laboratory conditions, the A. vera extract was toxic against An. stephensi larvae and pupae, even at low dosages. LC50 were 48.79 ppm (I instar), 59.09 ppm (II instar), 70.88 ppm (III instar), 83.58 ppm (IV instar), and 152.55 ppm (pupae). Green-synthesized silver nanoparticles were highly toxic against An. stephensi. LC50 were 3.825 ppm (I instar), 4.119 ppm (II instar), 4.982 ppm (III instar), 5.711 ppm (IV instar), and 6.113 ppm (pupae). In field conditions, the application of A. vera-synthesized silver nanoparticles (10 × LC50) leads to An. stephensi larval reduction of 74.5, 86.6, and 97.7%, after 24, 48, and 72 h, respectively. Nanoparticles also showed antibacterial properties, and the maximum concentration tested (150 mg/L) evoked an inhibition zone wider than 80 mm in all tested bacterium species. This study adds knowledge about the use of green synthesis of nanoparticles in

  18. Microsatellite primers for Culex pipiens quinquefasciatus, the vector of avian malaria in Hawaii

    USGS Publications Warehouse

    Fonseca, Dina M.; Atkinson, Carter T.; Fleischer, Robert C.

    1998-01-01

    The southern house mosquito, Culex pipiens quinquefasciatus (Diptera: Culicidae), was introduced accidentally to Hawaii in 1826 (van Riper et al. 1986). There it eventually became the vector of avian malaria, Plasmodium relictum, a disease that severely limits the size and distribution of endemic forest bird populations in Hawaii (Atkinson et al. 1995). Cx.p. quinquefasciatus has a circumtropical distribution and is also the vector for human diseases such as lymphatic filariasis and several encephalitis.

  19. Review of the evolution of insecticide resistance in main malaria vectors in Cameroon from 1990 to 2017.

    PubMed

    Antonio-Nkondjio, Christophe; Sonhafouo-Chiana, N; Ngadjeu, C S; Doumbe-Belisse, P; Talipouo, A; Djamouko-Djonkam, L; Kopya, E; Bamou, R; Awono-Ambene, P; Wondji, Charles S

    2017-10-10

    Malaria remains a major public health threat in Cameroon and disease prevention is facing strong challenges due to the rapid expansion of insecticide resistance in vector populations. The present review presents an overview of published data on insecticide resistance in the main malaria vectors in Cameroon to assist in the elaboration of future and sustainable resistance management strategies. A systematic search on mosquito susceptibility to insecticides and insecticide resistance in malaria vectors in Cameroon was conducted using online bibliographic databases including PubMed, Google and Google Scholar. From each peer-reviewed paper, information on the year of the study, mosquito species, susceptibility levels, location, insecticides, data source and resistance mechanisms were extracted and inserted in a Microsoft Excel datasheet. The data collected were then analysed for assessing insecticide resistance evolution. Thirty-three scientific publications were selected for the analysis. The rapid evolution of insecticide resistance across the country was reported from 2000 onward. Insecticide resistance was highly prevalent in both An. gambiae (s.l.) and An. funestus. DDT, permethrin, deltamethrin and bendiocarb appeared as the most affected compounds by resistance. From 2000 to 2017 a steady increase in the prevalence of kdr allele frequency was noted in almost all sites in An. gambiae (s.l.), with the L1014F kdr allele being the most prevalent. Several detoxification genes (particularly P450 monooxygenase) were associated with DDT, pyrethroids and bendiocarb resistance. In An. funestus, resistance to DDT and pyrethroids was mainly attributed to the 119F-GSTe2 metabolic resistance marker and over-expression of P450 genes whereas the 296S-RDL mutation was detected in dieldrin-resistant An. funestus. The review provides an update of insecticide resistance status in malaria vector populations in Cameroon and stresses the need for further actions to reinforce malaria

  20. Effects of Local Anthropogenic Changes on Potential Malaria Vector Anopheles hyrcanus and West Nile Virus Vector Culex modestus, Camargue, France

    PubMed Central

    Ponçon, Nicolas; Balenghien, Thomas; Toty, Céline; Ferré, Jean Baptiste; Thomas, Cyrille; Dervieux, Alain; L’Ambert, Grégory; Schaffner, Francis; Bardin, Olivier

    2007-01-01

    Using historical data, we highlight the consequences of anthropogenic ecosystem modifications on the abundance of mosquitoes implicated as the current most important potential malaria vector, Anopheles hyrcanus, and the most important West Nile virus (WNV) vector, Culex modestus, in the Camargue region, France. From World War II to 1971, populations of these species increased as rice cultivation expanded in the region in a political context that supported agriculture. They then fell, likely because of decreased cultivation and increased pesticide use to control a rice pest. The species increased again after 2000 with the advent of more targeted pest-management strategies, mainly the results of European regulations decisions. An intertwined influence of political context, environmental constraints, technical improvements, and social factors led to changes in mosquito abundance that had potential consequences on malaria and WNV transmission. These findings suggest that anthropogenic changes should not be underestimated in vectorborne disease recrudescence. PMID:18258028

  1. The role of vector control in stopping the transmission of malaria: threats and opportunities.

    PubMed

    Hemingway, Janet

    2014-01-01

    Malaria control, and that of other insect borne diseases such as dengue, is heavily dependent on our ability to control the mosquito populations that transmit these diseases. The major push over the last decade to reduce the global burden of malaria has been driven by the distribution of pyrethroid insecticide-treated bednets and an increase in coverage of indoor residual spraying (IRS). This has reduced malaria deaths by a third. Progress towards the goal of reducing this further is threatened by lack of funding and the selection of drug and insecticide resistance. When malaria control was initially scaled up, there was little pyrethroid resistance in the major vectors, today there is no country in Africa where the vectors remain fully susceptible to pyrethroids. The first pyrethroid resistance mechanisms to be selected produced low-level resistance which had little or no operational significance. More recently, metabolically based resistance has been selected, primarily in West Africa, which in some mosquito populations produces more than 1000-fold resistance. As this spreads the effectiveness of pyrethroid-based bednets and IRS will be compromised. New public health insecticides are not readily available. The pipeline of agrochemical insecticides that can be re-purposed for public health dried up 30 years ago when the target product profile for agricultural insecticides shifted from broad spectrum, stable, contact-acting insecticides to narrow spectrum stomach poisons that could be delivered through the plant. A public-private partnership, the Innovative Vector Control Consortium, was established in 2005 to stimulate the development of new public health pesticides. Nine potential new classes of chemistry are in the pipeline, with the intention of developing three into new insecticides. While this has been successfully achieved, it will still take 6-9 years for new insecticides to reach the market. Careful management of the resistance situation in the interim

  2. The role of vector control in stopping the transmission of malaria: threats and opportunities

    PubMed Central

    Hemingway, Janet

    2014-01-01

    Malaria control, and that of other insect borne diseases such as dengue, is heavily dependent on our ability to control the mosquito populations that transmit these diseases. The major push over the last decade to reduce the global burden of malaria has been driven by the distribution of pyrethroid insecticide-treated bednets and an increase in coverage of indoor residual spraying (IRS). This has reduced malaria deaths by a third. Progress towards the goal of reducing this further is threatened by lack of funding and the selection of drug and insecticide resistance. When malaria control was initially scaled up, there was little pyrethroid resistance in the major vectors, today there is no country in Africa where the vectors remain fully susceptible to pyrethroids. The first pyrethroid resistance mechanisms to be selected produced low-level resistance which had little or no operational significance. More recently, metabolically based resistance has been selected, primarily in West Africa, which in some mosquito populations produces more than 1000-fold resistance. As this spreads the effectiveness of pyrethroid-based bednets and IRS will be compromised. New public health insecticides are not readily available. The pipeline of agrochemical insecticides that can be re-purposed for public health dried up 30 years ago when the target product profile for agricultural insecticides shifted from broad spectrum, stable, contact-acting insecticides to narrow spectrum stomach poisons that could be delivered through the plant. A public–private partnership, the Innovative Vector Control Consortium, was established in 2005 to stimulate the development of new public health pesticides. Nine potential new classes of chemistry are in the pipeline, with the intention of developing three into new insecticides. While this has been successfully achieved, it will still take 6–9 years for new insecticides to reach the market. Careful management of the resistance situation in the interim

  3. Automated innovative diagnostic, data management and communication tool, for improving malaria vector control in endemic settings.

    PubMed

    Vontas, John; Mitsakakis, Konstantinos; Zengerle, Roland; Yewhalaw, Delenasaw; Sikaala, Chadwick Haadezu; Etang, Josiane; Fallani, Matteo; Carman, Bill; Müller, Pie; Chouaïbou, Mouhamadou; Coleman, Marlize; Coleman, Michael

    2016-01-01

    Malaria is a life-threatening disease that caused more than 400,000 deaths in sub-Saharan Africa in 2015. Mass prevention of the disease is best achieved by vector control which heavily relies on the use of insecticides. Monitoring mosquito vector populations is an integral component of control programs and a prerequisite for effective interventions. Several individual methods are used for this task; however, there are obstacles to their uptake, as well as challenges in organizing, interpreting and communicating vector population data. The Horizon 2020 project "DMC-MALVEC" consortium will develop a fully integrated and automated multiplex vector-diagnostic platform (LabDisk) for characterizing mosquito populations in terms of species composition, Plasmodium infections and biochemical insecticide resistance markers. The LabDisk will be interfaced with a Disease Data Management System (DDMS), a custom made data management software which will collate and manage data from routine entomological monitoring activities providing information in a timely fashion based on user needs and in a standardized way. The ResistanceSim, a serious game, a modern ICT platform that uses interactive ways of communicating guidelines and exemplifying good practices of optimal use of interventions in the health sector will also be a key element. The use of the tool will teach operational end users the value of quality data (relevant, timely and accurate) to make informed decisions. The integrated system (LabDisk, DDMS & ResistanceSim) will be evaluated in four malaria endemic countries, representative of the vector control challenges in sub-Saharan Africa, (Cameroon, Ivory Coast, Ethiopia and Zambia), highly representative of malaria settings with different levels of endemicity and vector control challenges, to support informed decision-making in vector control and disease management.

  4. Progress with viral vectored malaria vaccines: A multi-stage approach involving "unnatural immunity".

    PubMed

    Ewer, Katie J; Sierra-Davidson, Kailan; Salman, Ahmed M; Illingworth, Joseph J; Draper, Simon J; Biswas, Sumi; Hill, Adrian V S

    2015-12-22

    Viral vectors used in heterologous prime-boost regimens are one of very few vaccination approaches that have yielded significant protection against controlled human malaria infections. Recently, protection induced by chimpanzee adenovirus priming and modified vaccinia Ankara boosting using the ME-TRAP insert has been correlated with the induction of potent CD8(+) T cell responses. This regimen has progressed to field studies where efficacy against infection has now been reported. The same vectors have been used pre-clinically to identify preferred protective antigens for use in vaccines against the pre-erythrocytic, blood-stage and mosquito stages of malaria and this work is reviewed here for the first time. Such antigen screening has led to the prioritization of the PfRH5 blood-stage antigen, which showed efficacy against heterologous strain challenge in non-human primates, and vectors encoding this antigen are in clinical trials. This, along with the high transmission-blocking activity of some sexual-stage antigens, illustrates well the capacity of such vectors to induce high titre protective antibodies in addition to potent T cell responses. All of the protective responses induced by these vectors exceed the levels of the same immune responses induced by natural exposure supporting the view that, for subunit vaccines to achieve even partial efficacy in humans, "unnatural immunity" comprising immune responses of very high magnitude will need to be induced. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination

    PubMed Central

    Brady, Oliver J.; Godfray, H. Charles J.; Tatem, Andrew J.; Gething, Peter W.; Cohen, Justin M.; McKenzie, F. Ellis; Perkins, T. Alex; Reiner, Robert C.; Tusting, Lucy S.; Sinka, Marianne E.; Moyes, Catherine L.; Eckhoff, Philip A.; Scott, Thomas W.; Lindsay, Steven W.; Hay, Simon I.; Smith, David L.

    2016-01-01

    Background Major gains have been made in reducing malaria transmission in many parts of the world, principally by scaling-up coverage with long-lasting insecticidal nets and indoor residual spraying. Historically, choice of vector control intervention has been largely guided by a parameter sensitivity analysis of George Macdonald's theory of vectorial capacity that suggested prioritizing methods that kill adult mosquitoes. While this advice has been highly successful for transmission suppression, there is a need to revisit these arguments as policymakers in certain areas consider which combinations of interventions are required to eliminate malaria. Methods and Results Using analytical solutions to updated equations for vectorial capacity we build on previous work to show that, while adult killing methods can be highly effective under many circumstances, other vector control methods are frequently required to fill effective coverage gaps. These can arise due to pre-existing or developing mosquito physiological and behavioral refractoriness but also due to additive changes in the relative importance of different vector species for transmission. Furthermore, the optimal combination of interventions will depend on the operational constraints and costs associated with reaching high coverage levels with each intervention. Conclusions Reaching specific policy goals, such as elimination, in defined contexts requires increasingly non-generic advice from modelling. Our results emphasize the importance of measuring baseline epidemiology, intervention coverage, vector ecology and program operational constraints in predicting expected outcomes with different combinations of interventions. PMID:26822603

  6. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination.

    PubMed

    Brady, Oliver J; Godfray, H Charles J; Tatem, Andrew J; Gething, Peter W; Cohen, Justin M; McKenzie, F Ellis; Perkins, T Alex; Reiner, Robert C; Tusting, Lucy S; Sinka, Marianne E; Moyes, Catherine L; Eckhoff, Philip A; Scott, Thomas W; Lindsay, Steven W; Hay, Simon I; Smith, David L

    2016-02-01

    Major gains have been made in reducing malaria transmission in many parts of the world, principally by scaling-up coverage with long-lasting insecticidal nets and indoor residual spraying. Historically, choice of vector control intervention has been largely guided by a parameter sensitivity analysis of George Macdonald's theory of vectorial capacity that suggested prioritizing methods that kill adult mosquitoes. While this advice has been highly successful for transmission suppression, there is a need to revisit these arguments as policymakers in certain areas consider which combinations of interventions are required to eliminate malaria. Using analytical solutions to updated equations for vectorial capacity we build on previous work to show that, while adult killing methods can be highly effective under many circumstances, other vector control methods are frequently required to fill effective coverage gaps. These can arise due to pre-existing or developing mosquito physiological and behavioral refractoriness but also due to additive changes in the relative importance of different vector species for transmission. Furthermore, the optimal combination of interventions will depend on the operational constraints and costs associated with reaching high coverage levels with each intervention. Reaching specific policy goals, such as elimination, in defined contexts requires increasingly non-generic advice from modelling. Our results emphasize the importance of measuring baseline epidemiology, intervention coverage, vector ecology and program operational constraints in predicting expected outcomes with different combinations of interventions. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  7. Response to Blood Meal in the Fat Body of Anopheles stephensi Using Quantitative Proteomics: Toward New Vector Control Strategies Against Malaria.

    PubMed

    Kumar, Manish; Mohanty, Ajeet Kumar; Sreenivasamurthy, Sreelakshmi K; Dey, Gourav; Advani, Jayshree; Pinto, Sneha M; Kumar, Ashwani; Prasad, Thottethodi Subrahmanya Keshava

    2017-09-01

    Malaria remains a grand challenge for disruptive innovation in global health therapeutics and diagnostics. Anopheles stephensi is one of the major vectors of malaria in Asia. Vector and transmission control are key focus areas in the fight against malaria, a field of postgenomics research where proteomics can play a substantive role. Moreover, to identify novel strategies to control the vector population, it is necessary to understand the vector life processes at a global and molecular scale. In this context, fat body is a vital organ required for vitellogenesis, vector immunity, vector physiology, and vector-parasite interaction. Given its central role in energy metabolism, vitellogenesis, and immune function, the proteome profile of the fat body and the impact of blood meal (BM) ingestion on the protein abundances of this vital organ have not been investigated so far. Therefore, using a proteomics approach, we identified the proteins expressed in the fat body of An. stephensi and their differential expression in response to BM ingestion. In all, we identified 3,218 proteins in the fat body using high-resolution mass spectrometry, of which 483 were found to be differentially expressed in response to the BM ingestion. Bioinformatics analysis of these proteins underscored their role in amino acid metabolism, vitellogenesis, lipid transport, signal peptide processing, mosquito immunity, and oxidation-reduction processes. Interestingly, we identified five novel genes, which were found to be differentially expressed upon BM ingestion. Proteins that exhibited altered expression in the present study are potential targets for vector control strategies and development of transmission blocking vaccines in the fight against malaria.

  8. Development and Assessment of Plant-Based Synthetic Odor Baits for Surveillance and Control of Malaria Vectors

    PubMed Central

    Nyasembe, Vincent O.; Tchouassi, David P.; Kirwa, Hillary K.; Foster, Woodbridge A.; Teal, Peter E. A.; Borgemeister, Christian; Torto, Baldwyn

    2014-01-01

    Background Recent malaria vector control measures have considerably reduced indoor biting mosquito populations. However, reducing the outdoor biting populations remains a challenge because of the unavailability of appropriate lures to achieve this. This study sought to test the efficacy of plant-based synthetic odor baits in trapping outdoor populations of malaria vectors. Methodology and Principal Finding Three plant-based lures ((E)-linalool oxide [LO], (E)-linalool oxide and (E)-β-ocimene [LO + OC], and a six-component blend comprising (E)-linalool oxide, (E)-β-ocimene, hexanal, β-pinene, limonene, and (E)-β-farnesene [Blend C]), were tested alongside an animal/human-based synthetic lure (comprising heptanal, octanal, nonanal, and decanal [Blend F]) and worn socks in a malaria endemic zone in the western part of Kenya. Mosquito Magnet-X (MM-X) and lightless Centre for Disease Control (CDC) light traps were used. Odor-baited traps were compared with traps baited with either solvent alone or solvent + carbon dioxide (controls) for 18 days in a series of randomized incomplete-block designs of days × sites × treatments. The interactive effect of plant and animal/human odor was also tested by combining LO with either Blend F or worn socks. Our results show that irrespective of trap type, traps baited with synthetic plant odors compared favorably to the same traps baited with synthetic animal odors and worn socks in trapping malaria vectors, relative to the controls. Combining LO and worn socks enhanced trap captures of Anopheles species while LO + Blend F recorded reduced trap capture. Carbon dioxide enhanced total trap capture of both plant- and animal/human-derived odors. However, significantly higher proportions of male and engorged female Anopheles gambiae s.l. were caught when the odor treatments did not include carbon dioxide. Conclusion and Significance The results highlight the potential of plant-based odors and specifically linalool oxide, with or

  9. Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors.

    PubMed

    Nyasembe, Vincent O; Tchouassi, David P; Kirwa, Hillary K; Foster, Woodbridge A; Teal, Peter E A; Borgemeister, Christian; Torto, Baldwyn

    2014-01-01

    Recent malaria vector control measures have considerably reduced indoor biting mosquito populations. However, reducing the outdoor biting populations remains a challenge because of the unavailability of appropriate lures to achieve this. This study sought to test the efficacy of plant-based synthetic odor baits in trapping outdoor populations of malaria vectors. Three plant-based lures ((E)-linalool oxide [LO], (E)-linalool oxide and (E)-β-ocimene [LO + OC], and a six-component blend comprising (E)-linalool oxide, (E)-β-ocimene, hexanal, β-pinene, limonene, and (E)-β-farnesene [Blend C]), were tested alongside an animal/human-based synthetic lure (comprising heptanal, octanal, nonanal, and decanal [Blend F]) and worn socks in a malaria endemic zone in the western part of Kenya. Mosquito Magnet-X (MM-X) and lightless Centre for Disease Control (CDC) light traps were used. Odor-baited traps were compared with traps baited with either solvent alone or solvent + carbon dioxide (controls) for 18 days in a series of randomized incomplete-block designs of days × sites × treatments. The interactive effect of plant and animal/human odor was also tested by combining LO with either Blend F or worn socks. Our results show that irrespective of trap type, traps baited with synthetic plant odors compared favorably to the same traps baited with synthetic animal odors and worn socks in trapping malaria vectors, relative to the controls. Combining LO and worn socks enhanced trap captures of Anopheles species while LO + Blend F recorded reduced trap capture. Carbon dioxide enhanced total trap capture of both plant- and animal/human-derived odors. However, significantly higher proportions of male and engorged female Anopheles gambiae s.l. were caught when the odor treatments did not include carbon dioxide. The results highlight the potential of plant-based odors and specifically linalool oxide, with or without carbon dioxide, for surveillance and mass trapping of malaria vectors.

  10. Community-owned resource persons for malaria vector control: enabling factors and challenges in an operational programme in Dar es Salaam, United Republic of Tanzania

    PubMed Central

    2011-01-01

    Background Community participation in vector control and health services in general is of great interest to public health practitioners in developing countries, but remains complex and poorly understood. The Urban Malaria Control Program (UMCP) in Dar es Salaam, United Republic of Tanzania, implements larval control of malaria vector mosquitoes. The UMCP delegates responsibility for routine mosquito control and surveillance to community-owned resource persons (CORPs), recruited from within local communities via the elected local government. Methods A mixed method, cross-sectional survey assessed the ability of CORPs to detect mosquito breeding sites and larvae, and investigated demographic characteristics of the CORPs, their reasons for participating in the UMCP, and their work performance. Detection coverage was estimated as the proportion of wet habitats found by the investigator which had been reported by CORP. Detection sensitivity was estimated as the proportion of wet habitats found by the CORPS which the investigator found to contain Anopheles larvae that were also reported to be occupied by the CORP. Results The CORPs themselves perceived their role as professional rather than voluntary, with participation being a de facto form of employment. Habitat detection coverage was lower among CORPs that were recruited through the program administrative staff, compared to CORPs recruited by local government officials or health committees (Odds Ratio = 0.660, 95% confidence interval = [0.438, 0.995], P = 0.047). Staff living within their areas of responsibility had > 70% higher detection sensitivity for both Anopheline (P = 0.016) and Culicine (P = 0.012): positive habitats compared to those living outside those same areas. Discussion and conclusions Improved employment conditions as well as involving the local health committees in recruiting individual program staff, communication and community engagement skills are required to optimize achieving effective community

  11. Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dar es Salaam (Tanzania) during an extended dry period

    PubMed Central

    Sattler, Michael A; Mtasiwa, Deo; Kiama, Michael; Premji, Zul; Tanner, Marcel; Killeen, Gerry F; Lengeler, Christian

    2005-01-01

    Introduction By 2030, more than 50% of the African population will live in urban areas. Controlling malaria reduces the disease burden and further improves economic development. As a complement to treated nets and prompt access to treatment, measures targeted against the larval stage of Anopheles sp. mosquitoes are a promising strategy for urban areas. However, a precise knowledge of the geographic location and potentially of ecological characteristics of breeding sites is of major importance for such interventions. Methods In total 151 km2 of central Dar es Salaam, the biggest city of Tanzania, were systematically searched for open mosquito breeding sites. Ecologic parameters, mosquito larvae density and geographic location were recorded for each site. Logistic regression analysis was used to determine the key ecological factors explaining the different densities of mosquito larvae. Results A total of 405 potential open breeding sites were examined. Large drains, swamps and puddles were associated with no or low Anopheles sp. larvae density. The probability of Anopheles sp. larvae to be present was reduced when water was identified as "turbid". Small breeding sites were more commonly colonized by Anopheles sp. larvae. Further, Anopheles gambiae s.l. larvae were found in highly organically polluted habitats. Conclusions Clear ecological characteristics of the breeding requirements of Anopheles sp. larvae could not be identified in this setting. Hence, every stagnant open water body, including very polluted ones, have to be considered as potential malaria vector breeding sites. PMID:15649333

  12. [Malaria in the Republic of Djibouti. Strategy for control using a biological antilarval campaign: indigenous larvivorous fishes (Aphanius dispar) and bacterial toxins].

    PubMed

    Louis, J P; Albert, J P

    1988-01-01

    The authors take stock of the present situation of malaria in the Republic of Djibouti which, after several decades of silence, seems to have been reintroduced at the beginning of the seventies. Actually it is hypo-endemic malaria with Plasmodium falciparum of which the only vector seems to be Anopheles arabiensis, gambiae complex. The specificity of the larvae nests allows a control strategy based on the only treatment of larvae sites by biological control: larvivorous fishes (Aphanius Dispar) and in addition the pin-point use of bacterial toxins as a complementary measure. The first results obtained in the rural zones around the capital are encouraging and permit to envisage the extensions of such a strategy to the whole of the territory of the Republic.

  13. ABC transporters are involved in defense against permethrin insecticide in the malaria vector Anopheles stephensi.

    PubMed

    Epis, Sara; Porretta, Daniele; Mastrantonio, Valentina; Comandatore, Francesco; Sassera, Davide; Rossi, Paolo; Cafarchia, Claudia; Otranto, Domenico; Favia, Guido; Genchi, Claudio; Bandi, Claudio; Urbanelli, Sandra

    2014-07-29

    Proteins from the ABC family (ATP-binding cassette) represent the largest known group of efflux pumps, responsible for transporting specific molecules across lipid membranes in both prokaryotic and eukaryotic organisms. In arthropods they have been shown to play a role in insecticide defense/resistance. The presence of ABC transporters and their possible association with insecticide transport have not yet been investigated in the mosquito Anopheles stephensi, the major vector of human malaria in the Middle East and South Asian regions. Here we investigated the presence and role of ABCs in transport of permethrin insecticide in a susceptible strain of this mosquito species. To identify ABC transporter genes we obtained a transcriptome from untreated larvae of An. stephensi and then compared it with the annotated transcriptome of Anopheles gambiae. To analyse the association between ABC transporters and permethrin we conducted bioassays with permethrin alone and in combination with an ABC inhibitor, and then we investigated expression profiles of the identified genes in larvae exposed to permethrin. Bioassays showed an increased mortality of mosquitoes when permethrin was used in combination with the ABC-transporter inhibitor. Genes for ABC transporters were detected in the transcriptome, and five were selected (AnstABCB2, AnstABCB3, AnstABCB4, AnstABCmember6 and AnstABCG4). An increased expression in one of them (AnstABCG4) was observed in larvae exposed to the LD50 dose of permethrin. Contrary to what was found in other insect species, no up-regulation was observed in the AnstABCB genes. Our results show for the first time the involvement of ABC transporters in larval defense against permethrin in An. stephensi and, more in general, confirm the role of ABC transporters in insecticide defense. The differences observed with previous studies highlight the need of further research as, despite the growing number of studies on ABC transporters in insects, the

  14. On the efficacy of malaria DNA vaccination with magnetic gene vectors.

    PubMed

    Nawwab Al-Deen, Fatin; Ma, Charles; Xiang, Sue D; Selomulya, Cordelia; Plebanski, Magdalena; Coppel, Ross L

    2013-05-28

    We investigated the efficacy and types of immune responses from plasmid malaria DNA vaccine encoding VR1020-PyMSP119 condensed on the surface of polyethyleneimine (PEI)-coated SPIONs. In vivo mouse studies were done firstly to determine the optimum magnetic vector composition, and then to observe immune responses elicited when magnetic vectors were introduced via different administration routes. Higher serum antibody titers against PyMSP119 were observed with intraperitoneal and intramuscular injections than subcutaneous and intradermal injections. Robust IgG2a and IgG1 responses were observed for intraperitoneal administration, which could be due to the physiology of peritoneum as a major reservoir of macrophages and dendritic cells. Heterologous DNA prime followed by single protein boost vaccination regime also enhanced IgG2a, IgG1, and IgG2b responses, indicating the induction of appropriate memory immunity that can be elicited by protein on recall. These outcomes support the possibility to design superparamagnetic nanoparticle-based DNA vaccines to optimally evoke desired antibody responses, useful for a variety of diseases including malaria. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Microsporidians as evolution-proof agents of malaria control?

    PubMed

    Koella, Jacob C; Lorenz, Lena; Bargielowski, Irka

    2009-01-01

    Despite our efforts at malaria control, malaria remains one of our most serious and deadly diseases. The failure of control stems in part from the parasite's intense transmission in many areas and from the emergence and spread of resistance of the malaria parasites and their mosquito vectors against most of the chemicals used to attack them. New methods for control are desperately needed. However, new methods will be useful only if they are effective (i.e., decrease transmission substantially) and evolutionarily sustainable (i.e., evolution-proof, in that they prevent evolution from eroding efficacy). We suggest microsporidian parasites that infect mosquitoes could be potentially effective and sustainable agents for malaria control. They may be effective because they target several epidemiologically important traits: survival of larvae (and thus number of adult mosquitoes), adult longevity, biting rate and the development of malaria within the mosquitoes. Even if each trait is affected only moderately, the intensity of transmission can be reduced considerably. They may be evolution-proof, for the evolutionarily most important trait is juvenile survival, whereas the two epidemiologically most important factors are traits of the adult mosquito: biting rate and longevity. Under the intense microsporidian pressure of a control programme, it is likely (if not inevitable) that the larvae evolve to survive microsporidian infection. However, if this larval tolerance to microsporidians is genetically correlated with the adult traits, tolerant mosquitoes may not live as long and bite less frequently than microsporidian-sensitive ones. While such a trade-off has not been measured, combining several studies suggests indirectly a negative genetic correlation between larval tolerance and adult longevity. Therefore, evolution might not undermine control; rather it might increase its effectiveness. While the evolution of resistance may be inevitable, the failure of control need

  16. [Malaria in Moscow (2006-2007): monitoring of the situation and assessment of antimalaria measures].

    PubMed

    Ivanova, T M; Timoshenko, N I; Baranova, A M

    2009-01-01

    The malaria situation in Moscow in 2007 versus 2006 improved--the cases of malaria reduced by 16.3%. A total of 30 new cases of malaria were notified (46 cases in 2006), of them there were 34 imported cases and 4 secondary cases to imported ones. In 2007, the proportion of tertian malaria cases reduced to 55.3% versus 60.9% in 2006. As compared with 2005, in 2007 the cases of locally transmitted malaria decreased by 5 times--from 20 to 4, only 1 case of infection occurred in Moscow (Central Administrative District) and 3 cases took place in the Moscow Region (Ramensky, Stupinsky, and Dmitrovsky districts). Cases of malaria were notified in all administrative districts, with their largest number in the South-Western Administrative District of Moscow due to the detection of ill students from the Russian University of People's Friendship who had come to study from African countries. In accordance to the performed certification of water reservoirs in 2007, a total of 722 Moscow water reservoirs of an area of 1569 ha were registered at the Administration of the Russian Agency for Consumer Surveillance. The examination frequency of all water reservoirs was about 13 per season, including 20 anopheles-containing ones. The larvae of bloodsucking mosquitoes inhabited 541 (75%) water reservoirs, including 461 (63%) water reservoirs occupied by the malaria vector. As compared with 2006, the area of treatments increased by 351 ha. In the summer, a total of 2133.3 ha ofwater reservoirs were treated, including 2009.5 ha against larvae of malaria mosquitoes. The bulk of water reservoirs were exposed to triple-quadruple treatments.

  17. Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control.

    PubMed

    Barnes, Kayla G; Weedall, Gareth D; Ndula, Miranda; Irving, Helen; Mzihalowa, Themba; Hemingway, Janet; Wondji, Charles S

    2017-02-01

    Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the 'resistance curve' and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.

  18. Genetic approaches to interfere with malaria transmission by vector mosquitoes

    PubMed Central

    Wang, Sibao; Jacobs-Lorena, Marcelo

    2013-01-01

    Malaria remains one of the world’s most devastating diseases, causing over one million deaths every year. The most vulnerable stages of Plasmodium development in the vector mosquito occur in the midgut lumen, making the midgut a prime target for intervention. Mosquito transgenesis and paratransgenesis are two novel strategies that aim at rendering the vector incapable of sustaining Plasmodium development. Mosquito transgenesis involves direct genetic engineering of the mosquito itself for delivery of anti-Plasmodium effector molecules. Conversely, paratransgenesis involves the genetic modification of mosquito symbionts for expression of anti-pathogen effector molecules. Here we consider both genetic manipulation strategies for rendering mosquitoes refractory to Plasmodium infection, and discuss challenges for the translation of laboratory findings to field applications. PMID:23395485

  19. Strategies and approaches to vector control in nine malaria-eliminating countries: a cross-case study analysis.

    PubMed

    Smith Gueye, Cara; Newby, Gretchen; Gosling, Roland D; Whittaker, Maxine A; Chandramohan, Daniel; Slutsker, Laurence; Tanner, Marcel

    2016-01-04

    There has been progress towards malaria elimination in the last decade. In response, WHO launched the Global Technical Strategy (GTS), in which vector surveillance and control play important roles. Country experiences in the Eliminating Malaria Case Study Series were reviewed to identify success factors on the road to elimination using a cross-case study analytic approach. Reports were included in the analysis if final English language draft reports or publications were available at the time of analysis (Bhutan, Cape Verde, Malaysia, Mauritius, Namibia, Philippines, Sri Lanka, Turkey, Turkmenistan). A conceptual framework for vector control in malaria elimination was developed, reviewed, formatted as a matrix, and case study data was extracted and entered into the matrix. A workshop was convened during which participants conducted reviews of the case studies and matrices and arrived at a consensus on the evidence and lessons. The framework was revised and a second round of data extraction, synthesis and summary of the case study reports was conducted. Countries implemented a range of vector control interventions. Most countries aligned with integrated vector management, however its impact was not well articulated. All programmes conducted entomological surveillance, but the response (i.e., stratification and targeting of interventions, outbreak forecasting and strategy) was limited or not described. Indoor residual spraying (IRS) was commonly used by countries. There were several examples of severe reductions or halting of IRS coverage and subsequent resurgence of malaria. Funding and operational constraints and poor implementation had roles. Bed nets were commonly used by most programmes; coverage and effectiveness were either not measured or not articulated. Larval control was an important intervention for several countries, preventing re-introduction, however coverage and impact on incidence were not described. Across all interventions, coverage indicators

  20. Using a new high resolution regional model for malaria that accounts for population density and surface hydrology to determine sensitivity of malaria risk to climate drivers

    NASA Astrophysics Data System (ADS)

    Tompkins, Adrian; Ermert, Volker; Di Giuseppe, Francesca

    2013-04-01

    In order to better address the role of population dynamics and surface hydrology in the assessment of malaria risk, a new dynamical disease model been developed at ICTP, known as VECTRI: VECtor borne disease community model of ICTP, TRIeste (VECTRI). The model accounts for the temperature impact on the larvae, parasite and adult vector populations. Local host population density affects the transmission intensity, and the model thus reproduces the differences between peri-urban and rural transmission noted in Africa. A new simple pond model framework represents surface hydrology. The model can be used on with spatial resolutions finer than 10km to resolve individual health districts and thus can be used as a planning tool. Results of the models representation of interannual variability and longer term projections of malaria transmission will be shown for Africa. These will show that the model represents the seasonality and spatial variations of malaria transmission well matching a wide range of survey data of parasite rate and entomological inoculation rate (EIR) from across West and East Africa taken in the period prior to large-scale interventions. The model is used to determine the sensitivity of malaria risk to climate variations, both in rainfall and temperature, and then its use in a prototype forecasting system coupled with ECMWF forecasts will be demonstrated.

  1. Spatial clustering and longitudinal variation of Anopheles darlingi (Diptera: Culicidae) larvae in a river of the Amazon: the importance of the forest fringe and of obstructions to flow in frontier malaria.

    PubMed

    Barros, F S M; Arruda, M E; Gurgel, H C; Honório, N A

    2011-12-01

    Deforestation has been linked to a rise in malaria prevalence. In this paper, we studied longitudinally 20 spots, including forested and deforested portions of a temporary river in a malarigenous frontier zone. Larval habitat parameters influencing distribution of Anopheles darlingi (Diptera: Culicidae) larvae were studied. We observed that larvae were clustered in forested-deforested transitions. For the first time in the literature, it was verified that parameters determining larval distribution varied from deforested to forested areas. The proximity to human dwellings was also a significant factor determining distribution, but larvae was most importantly associated with a previously undescribed parameter, the presence of small obstructions to river flow, such as tree trunks within the river channel, which caused pooling of water during the dry season ('microdams'). In deforested areas, the most important factor determining distribution of larvae was shade (reduced luminance). Larvae were absent in the entire studied area during the wet season and present in most sites during the dry season. During the wet-dry transition, larvae were found sooner in areas with microdams, than in other areas, suggesting that flow obstruction prolongs the breeding season of An. darlingi. Adult mosquito densities and malaria incidence were higher during the dry season. Our data correlate well with the published literature, including the distribution of malaria cases near the forest fringes, and has permitted the creation of a model of An. darlingi breeding, where preference for sites with reduced luminance, human presence and microdams would interact to determine larval distribution.

  2. Influence of the agrochemicals used for rice and vegetable cultivation on insecticide resistance in malaria vectors in southern Côte d'Ivoire.

    PubMed

    Chouaïbou, Mouhamadou S; Fodjo, Behi K; Fokou, Gilbert; Allassane, Ouattara F; Koudou, Benjamin G; David, Jean-Philippe; Antonio-Nkondjio, Christophe; Ranson, Hilary; Bonfoh, Bassirou

    2016-08-24

    Vector control can contribute to the development of resistance to insecticides in malaria vectors. As the swamps and wetlands used for some agricultural activities constitute productive breeding sites for many mosquito species, agricultural pest control may increase the selection pressure for insecticide resistance in mosquitoes. Understanding the use of agrochemicals by farmers is important to plan and initiate effective integrated pest and vector management interventions. A knowledge-attitude-practice study, using questionnaires, was undertaken with 102 rice farmers in Tiassalé and 106 vegetable farmers in Dabou (South Côte d'Ivoire) in order to generate information on pesticide usage. In addition, insecticide susceptibility bioassays were conducted using adult mosquitoes obtained from larvae collected within farms, and the persistence of agricultural pesticides in the farming environment, including sediment and mosquito breeding site water, was investigated by HPLC. Herbicides and insecticides appeared to be the most frequently used pesticides for both crops. Amino phosphonates (mostly glyphosate) represented the most used herbicides (45 % for rice up to 89 % for vegetables). Pyrethroids appeared to be the most used insecticides (accounting for 90 % of all the insecticide use reported). Approximately 75 % of respondents had not been to school and do not understand product labels. Only about 45 % of farmers respect the recommended pesticide dosage and about 10-15 % of pesticides used for rice and vegetable, respectively, are not recommended for these crops. As per WHO criteria, the mosquito local populations from the two localities were resistant to three of the four insecticides tested, as mortalities were less than 35 % for deltamethrin, DDT and bendiocarb. Higher susceptibility was observed for malathion, although the population was considered resistant in Dabou (80 % mortality) and susceptible in Tiassalé (98 % mortality). With the exception of

  3. A 2-year entomological study of potential malaria vectors in central Italy.

    PubMed

    Di Luca, Marco; Boccolini, Daniela; Severini, Francesco; Toma, Luciano; Barbieri, Francesca Mancini; Massa, Antonio; Romi, Roberto

    2009-12-01

    Europe was officially declared free from malaria in 1975; nevertheless, this disease remains a potential problem related to the presence of former vectors, belonging to the Anopheles maculipennis complex. Autochthonous-introduced malaria cases, recently reported in European countries, together with the predicted climatic and environmental changes, have increased the concern of health authorities over the possible resurgence of this disease in the Mediterranean Basin. In Italy, to study the distribution and bionomics of indigenous anopheline populations and to assess environmental parameters that could influence their dynamics, an entomological study was carried out in 2005-2006 in an at-risk study area. This model area is represented by the geographical region named the Maremma, a Tyrrhenian costal plain in Central Italy, where malaria was hyperendemic up to the 1950s. Fortnightly, entomological surveys (April-October) were carried out in four selected sites with different ecological features. Morphological and molecular characterization, blood meal identification, and parity rate assessment of the anophelines were performed. In total, 8274 mosquitoes were collected, 7691 of which were anophelines. Six Anopheles species were recorded, the most abundant of which were Anopheles labranchiae and An. maculipennis s.s. An. labranchiae is predominant in the coastal plain, where it is present in scattered foci. However, this species exhibits a wider than expected range: in fact it has been recorded, for the first time, inland where An. maculipennis s.s. is the most abundant species. Both species fed on a wide range of animal hosts, also showing a marked aggressiveness on humans, when available. Our findings demonstrated the high receptivity of the Maremma area, where the former malaria vector, An. labranchiae, occurs at different densities related to the kind of environment, climatic parameters, and anthropic activities.

  4. Biolarvicidal and pupicidal activity of Acalypha alnifolia Klein ex Willd.(Family:Euphorbiaceae) leaf extract and microbial insecticide, Metarhizium anisopliae(Metsch.)against malaria fever mosquito Anopheles stephensi Liston

    USDA-ARS?s Scientific Manuscript database

    This study was made to determine the biological activity of Acalypha alnifolia leaf extract and the microbial insecticide Metarizhium anisopliae against larvae and pupae of the malaria vector Anopheles stephensi. Ethanolic A. alnifolia leaf extract tested against 1st through 4th instars and pupae o...

  5. Monitoring Malaria Vector Control Interventions: Effectiveness of Five Different Adult Mosquito Sampling Methods

    PubMed Central

    Onyango, Shirley A.; Kitron, Uriel; Mungai, Peter; Muchiri, Eric M.; Kokwaro, Elizabeth; King, Charles H.; Mutuku, Francis M.

    2014-01-01

    Long-term success of ongoing malaria control efforts based on mosquito bed nets (long-lasting insecticidal net) and indoor residual spraying is dependent on continuous monitoring of mosquito vectors, and thus on effective mosquito sampling tools. The objective of our study was to identify the most efficient mosquito sampling tool(s) for routine vector surveillance for malaria and lymphatic filariasis transmission in coastal Kenya. We evaluated relative efficacy of five collection methods—light traps associated with a person sleeping under a net, pyrethrum spray catches, Prokopack aspirator, clay pots, and urine-baited traps—in four villages representing three ecological settings along the south coast of Kenya. Of the five methods, light traps were the most efficient for collecting female Anopheles gambiae s.l. (Giles) (Diptera: Culicidae) and Anopheles funestus (Giles) (Diptera: Culicidae) mosquitoes, whereas the Prokopack aspirator was most efficient in collecting Culex quinquefasciatus (Say) (Diptera: Culicidae) and other culicines. With the low vector densities here, and across much of sub-Saharan Africa, wherever malaria interventions, long-lasting insecticidal nets, and/or indoor residual spraying are in place, the use of a single mosquito collection method will not be sufficient to achieve a representative sample of mosquito population structure. Light traps will remain a relevant tool for host-seeking mosquitoes, especially in the absence of human landing catches. For a fair representation of the indoor mosquito population, light traps will have to be supplemented with aspirator use, which has potential for routine monitoring of indoor resting mosquitoes, and can substitute the more labor-intensive and intrusive pyrethrum spray catches. There are still no sufficiently efficient mosquito collection methods for sampling outdoor mosquitoes, particularly those that are bloodfed. PMID:24180120

  6. Insecticide-treated durable wall lining (ITWL): future prospects for control of malaria and other vector-borne diseases.

    PubMed

    Messenger, Louisa A; Rowland, Mark

    2017-05-22

    While long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the cornerstones of malaria vector control throughout sub-Saharan Africa, there is an urgent need for the development of novel insecticide delivery mechanisms to sustain and consolidate gains in disease reduction and to transition towards malaria elimination and eradication. Insecticide-treated durable wall lining (ITWL) may represent a new paradigm for malaria control as a potential complementary or alternate longer-lasting intervention to IRS. ITWL can be attached to inner house walls, remain efficacious over multiple years and overcome some of the operational constraints of first-line control strategies, specifically nightly behavioural compliance required of LLINs and re-current costs and user fatigue associated with IRS campaigns. Initial experimental hut trials of insecticide-treated plastic sheeting reported promising results, achieving high levels of vector mortality, deterrence and blood-feeding inhibition, particularly when combined with LLINs. Two generations of commercial ITWL have been manufactured to date containing either pyrethroid or non-pyrethroid formulations. While some Phase III trials of these products have demonstrated reductions in malaria incidence, further large-scale evidence is still required before operational implementation of ITWL can be considered either in a programmatic or more targeted community context. Qualitative studies of ITWL have identified aesthetic value and observable entomological efficacy as key determinants of household acceptability. However, concerns have been raised regarding installation feasibility and anticipated cost-effectiveness. This paper critically reviews ITWL as both a putative mechanism of house improvement or more conventional intervention and discusses its future prospects as a method for controlling malaria and other vector-borne diseases.

  7. Health research ethics in malaria vector trials in Africa

    PubMed Central

    2010-01-01

    Malaria mosquito research in Africa as elsewhere is just over a century old. Early trials for development of mosquito control tools were driven by colonial enterprises and war efforts; they were, therefore, tested in military or colonial settings. The failure of those tools and environmental concerns, coupled with the desperate need for integrated malaria control strategies, has necessitated the development of new malaria mosquito control tools, which are to be tested on humans, their environment and mosquito habitats. Ethical concerns start with phase 2 trials, which pose limited ethical dilemmas. Phase 3 trials, which are undertaken on vulnerable civilian populations, pose ethical dilemmas ranging from individual to community concerns. It is argued that such trials must abide by established ethical principles especially safety, which is mainly enshrined in the principle of non-maleficence. As there is total lack of experience with many of the promising candidate tools (eg genetically modified mosquitoes, entomopathogenic fungi, and biocontrol agents), great caution must be exercised before they are introduced in the field. Since malaria vector trials, especially phase 3 are intrusive and in large populations, individual and community respect is mandatory, and must give great priority to community engagement. It is concluded that new tools must be safe, beneficial, efficacious, effective, and acceptable to large populations in the short and long-term, and that research benefits should be equitably distributed to all who bear the brunt of the research burdens. It is further concluded that individual and institutional capacity strengthening should be provided, in order to undertake essential research, carry out scientific and ethical review, and establish competent regulatory frameworks. PMID:21144083

  8. Intron Retention Identifies a Malaria Vector within the Anopheles (Nyssorhynchus) Albitaris Complex (Diptera: Culicidae)

    DTIC Science & Technology

    2005-03-09

    variation in local environments including changes driven by human activity . For example, Anopheles (Nyssorhynchus) marajoara Galvao, and Damasceno...Linthicum, 1988) is the principal malaria vector in northeastern Amazonia, replacing An. darling Root, perhaps as a result of changes in human activity (Conn

  9. Habitat suitability of Anopheles vector species and association with human malaria in the Atlantic Forest in south-eastern Brazil.

    PubMed

    Laporta, Gabriel Zorello; Ramos, Daniel Garkauskas; Ribeiro, Milton Cezar; Sallum, Maria Anice Mureb

    2011-08-01

    Every year, autochthonous cases of Plasmodium vivax malaria occur in low-endemicity areas of Vale do Ribeira in the south-eastern part of the Atlantic Forest, state of São Paulo, where Anopheles cruzii and Anopheles bellator are considered the primary vectors. However, other species in the subgenus Nyssorhynchus of Anopheles (e.g., Anopheles marajoara) are abundant and may participate in the dynamics of malarial transmission in that region. The objectives of the present study were to assess the spatial distribution of An. cruzii, An. bellator and An. marajoara and to associate the presence of these species with malaria cases in the municipalities of the Vale do Ribeira. Potential habitat suitability modelling was applied to determine both the spatial distribution of An. cruzii, An. bellator and An. marajoara and to establish the density of each species. Poisson regression was utilized to associate malaria cases with estimated vector densities. As a result, An. cruzii was correlated with the forested slopes of the Serra do Mar, An. bellator with the coastal plain and An. marajoara with the deforested areas. Moreover, both An. marajoara and An. cruzii were positively associated with malaria cases. Considering that An. marajoara was demonstrated to be a primary vector of human Plasmodium in the rural areas of the state of Amapá, more attention should be given to the species in the deforested areas of the Atlantic Forest, where it might be a secondary vector.

  10. National malaria vector control policy: an analysis of the decision to scale-up larviciding in Nigeria.

    PubMed

    Tesfazghi, Kemi; Hill, Jenny; Jones, Caroline; Ranson, Hilary; Worrall, Eve

    2016-02-01

    New vector control tools are needed to combat insecticide resistance and reduce malaria transmission. The World Health Organization (WHO) endorses larviciding as a supplementary vector control intervention using larvicides recommended by the WHO Pesticides Evaluation Scheme (WHOPES). The decision to scale-up larviciding in Nigeria provided an opportunity to investigate the factors influencing policy adoption and assess the role that actors and evidence play in the policymaking process, in order to draw lessons that help accelerate the uptake of new methods for vector control. A retrospective policy analysis was carried out using in-depth interviews with national level policy stakeholders to establish normative national vector control policy or strategy decision-making processes and compare these with the process that led to the decision to scale-up larviciding. The interviews were transcribed, then coded and analyzed using NVivo10. Data were coded according to pre-defined themes from an analytical policy framework developed a priori. Stakeholders reported that the larviciding decision-making process deviated from the normative vector control decision-making process. National malaria policy is normally strongly influenced by WHO recommendations, but the potential of larviciding to contribute to national economic development objectives through larvicide production in Nigeria was cited as a key factor shaping the decision. The larviciding decision involved a restricted range of policy actors, and notably excluded actors that usually play advisory, consultative and evidence generation roles. Powerful actors limited the access of some actors to the policy processes and content. This may have limited the influence of scientific evidence in this policy decision. This study demonstrates that national vector control policy change can be facilitated by linking malaria control objectives to wider socioeconomic considerations and through engaging powerful policy champions to

  11. Is outdoor vector control needed for malaria elimination? An individual-based modelling study.

    PubMed

    Zhu, Lin; Müller, Günter C; Marshall, John M; Arheart, Kristopher L; Qualls, Whitney A; Hlaing, WayWay M; Schlein, Yosef; Traore, Sekou F; Doumbia, Seydou; Beier, John C

    2017-07-03

    Residual malaria transmission has been reported in many areas even with adequate indoor vector control coverage, such as long-lasting insecticidal nets (LLINs). The increased insecticide resistance in Anopheles mosquitoes has resulted in reduced efficacy of the widely used indoor tools and has been linked with an increase in outdoor malaria transmission. There are considerations of incorporating outdoor interventions into integrated vector management (IVM) to achieve malaria elimination; however, more information on the combination of tools for effective control is needed to determine their utilization. A spatial individual-based model was modified to simulate the environment and malaria transmission activities in a hypothetical, isolated African village setting. LLINs and outdoor attractive toxic sugar bait (ATSB) stations were used as examples of indoor and outdoor interventions, respectively. Different interventions and lengths of efficacy periods were tested. Simulations continued for 420 days, and each simulation scenario was repeated 50 times. Mosquito populations, entomologic inoculation rates (EIRs), probabilities of local mosquito extinction, and proportion of time when the annual EIR was reduced below one were compared between different intervention types and efficacy periods. In the village setting with clustered houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population and EIR in short term, increased the probability of local mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one compared to 50% LLINs alone, but there was no significant difference in EIR in short term between 50% LLINs and outdoor ATSBs. In the village setting with dispersed houses, the

  12. Remote sensing and environment in the study of the malaria vector Anopheles gambiae in Mali

    NASA Astrophysics Data System (ADS)

    Rian, Sigrid Katrine Eivindsdatter

    The malaria mosquito Anopheles gambiae is the most important vector for the most devastating form of human malaria, the parasite Plasmodium falciparum. In-depth knowledge of the vector's history and environmental preferences is essential in the pursuit of new malaria mitigation strategies. Research was conducted in Mali across a range of habitats occupied by the vector, focusing on three identified chromosomal forms in the mosquito complex. The development of a 500-m landcover classification map was carried out using MODIS satellite imagery and extensive ground survey. The resulting product has the highest resolution and is the most up-to-date and most extensively ground-surveyed among land-cover maps for the study region. The new landcover classification product is a useful tool in the mapping of the varying ecological preferences of the different An. gambiae chromosomal forms. Climate and vegetation characteristics and their relationship to chromosomal forms were investigated further along a Southwest-Northeast moisture gradient in Mali. This research demonstrates particular ecological preferences of each chromosomal form, and gives a detailed examination of particular vegetation structural and climatological patterns across the study region. A key issue in current research into the population structure of An. gambiae is speciation and evolution in the complex, as an understanding of the mechanisms of change can help in the development of new mitigation strategies. A historical review of the paleoecology, archaeology, and other historical sources intended to shed light on the evolutionary history of the vector is presented. The generally held assumption that the current breed of An. gambiae emerged in the rainforest is called into question and discussed within the framework of paleoenvironment and human expansions in sub-Saharan West Africa.

  13. A remote sensing and geographic information system approach to sampling malaria vector habitats in Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Beck, L.; Wood, B.; Whitney, S.; Rossi, R.; Spanner, M.; Rodriguez, M.; Rodriguez-Ramirez, A.; Salute, J.; Legters, L.; Roberts, D.; Rejmankova, E.; Washino, R.

    1993-08-01

    This paper describes a procedure whereby remote sensing and geographic information system (GIS) technologies are used in a sample design to study the habitat of Anopheles albimanus, one of the principle vectors of malaria in Central America. This procedure incorporates Landsat-derived land cover maps with digital elevation and road network data to identify a random selection of larval habitats accessible for field sampling. At the conclusion of the sampling season, the larval counts will be used to determine habitat productivity, and then integrated with information on human settlement to assess where people are at high risk of malaria. This aproach would be appropriate in areas where land cover information is lacking and problems of access constrain field sampling. The use of a GIS also permits other data (such as insecticide spraying data) to the incorporated in the sample design as they arise. This approach would also be pertinent for other tropical vector-borne diseases, particularly where human activities impact disease vector habitat.

  14. Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential.

    PubMed

    Walker, K; Lynch, M

    2007-03-01

    Malaria vector control targeting the larval stages of mosquitoes was applied successfully against many species of Anopheles (Diptera: Culicidae) in malarious countries until the mid-20th Century. Since the introduction of DDT in the 1940s and the associated development of indoor residual spraying (IRS), which usually has a more powerful impact than larval control on vectorial capacity, the focus of malaria prevention programmes has shifted to the control of adult vectors. In the Afrotropical Region, where malaria is transmitted mainly by Anopheles funestus Giles and members of the Anopheles gambiae Giles complex, gaps in information on larval ecology and the ability of An. gambiae sensu lato to exploit a wide variety of larval habitats have discouraged efforts to develop and implement larval control strategies. Opportunities to complement adulticiding with other components of integrated vector management, along with concerns about insecticide resistance, environmental impacts, rising costs of IRS and logistical constraints, have stimulated renewed interest in larval control of malaria vectors. Techniques include environmental management, involving the temporary or permanent removal of anopheline larval habitats, as well as larviciding with chemical or biological agents. This present review covers large-scale trials of anopheline larval control methods, focusing on field studies in Africa conducted within the past 15 years. Although such studies are limited in number and scope, their results suggest that targeting larvae, particularly in human-made habitats, can significantly reduce malaria transmission in appropriate settings. These approaches are especially suitable for urban areas, where larval habitats are limited, particularly when applied in conjunction with IRS and other adulticidal measures, such as the use of insecticide treated bednets.

  15. MALARIA VECTORS IN SAN JOSÉDEL GUAVIARE, ORINOQUIA, COLOMBIA

    PubMed Central

    JIMÉNEZ, IRENE P.; CONN, JAN E.; BROCHERO, HELENA

    2015-01-01

    This study was conducted to determine Anopheles species composition and their natural infectivity by human Plasmodium in 2 localities with the highest malaria transmission in San Jose del Guaviare, Guaviare, Colombia. A total of 1,009 Anopheles mosquitoes were collected using human landing catches during 8 months in 2010. Anopheles darlingi was the most abundant (83.2%) followed by An. albitarsis s.l. (8.6%), Anopheles braziliensis (3.8%), An. oswaldoi s.l. (1%), and An. rangeli (0.3%). Anopheles darlingi showed the highest human biting rate, and it was found naturally infected with Plasmodium vivax VK210 (0.119%) using enzyme-linked immunosorbent assays. All species were collected biting both indoors and outdoors. Anopheles darlingi showed biting activity overnight with an indoor peak between 1200–0100 h. Therefore, we recommend that malaria prevention strategies focus on 1) insecticide-treated nets to reduce human–vector contact when people are most exposed and unprotected; 2) accurate diagnoses; 3) adequate treatment for patients; 4) more timely epidemiological notification; and 5) improved entomological surveillance. PMID:25102591

  16. The effect of elevated temperatures on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae).

    PubMed

    Oliver, Shüné V; Brooke, Basil D

    2017-02-14

    Temperature plays a crucial role in the life history of insects. Recent climate change research has highlighted the importance of elevated temperature on malaria vector distribution. This study aims to examine the role of elevated temperatures on epidemiologically important life-history traits in the major malaria vector, Anopheles arabiensis. Specifically, the differential effects of temperature on insecticide-resistant and susceptible strains were examined. Two laboratory strains of A. arabiensis, the insecticide-susceptible SENN and the insecticide-resistant SENN DDT strains, were used to examine the effect of elevated temperatures on larval development and adult longevity. The effects of various elevated temperatures on insecticide resistance phenotypes were also examined and the biochemical basis of the changes in insecticide resistance phenotype was assessed. SENN and SENN DDT larvae developed at similar rates at elevated temperatures. SENN DDT adult survivorship did not vary between control and elevated temperatures, while the longevity of SENN adults at constantly elevated temperatures was significantly reduced. SENN DDT adults lived significantly longer than SENN at constantly elevated temperatures. Elevated rearing temperatures, as well as a short-term exposure to 37 and 39 °C as adults, augmented pyrethroid resistance in adult SENN DDT, and increased pyrethroid tolerance in SENN. Detoxification enzyme activity was not implicated in this phenotypic effect. Quercertin-induced synergism of inducible heat shock proteins negated this temperature-mediated augmentation of pyrethroid resistance. Insecticide-resistant A. arabiensis live longer than their susceptible counterparts at elevated temperatures. Exposure to heat shock augments pyrethroid resistance in both resistant and susceptible strains. This response is potentially mediated by inducible heat shock proteins.

  17. Dose-response tests and semi-field evaluation of lethal and sub-lethal effects of slow release pyriproxyfen granules (Sumilarv®0.5G) for the control of the malaria vectors Anopheles gambiae sensu lato.

    PubMed

    Mbare, Oscar; Lindsay, Steven W; Fillinger, Ulrike

    2013-03-14

    Recently research has shown that larviciding can be an effective tool for integrated malaria vector control. Nevertheless, the uptake of this intervention has been hampered by the need to re-apply larvicides frequently. There is a need to explore persistent, environmentally friendly larvicides for malaria vector control to reduce intervention efforts and costs by reducing the frequency of application. In this study, the efficacy of a 0.5% pyriproxyfen granule (Surmilarv®0.5G, Sumitomo Chemicals) was assessed for the control of Anopheles gambiae sensu stricto and Anopheles arabiensis, the major malaria vectors in sub-Saharan Africa. Dose-response and standardized field tests were implemented following standard procedures of the World Health Organization's Pesticide Evaluation Scheme to determine: (i) the susceptibility of vectors to this formulation; (ii) the residual activity and appropriate retreatment schedule for field application; and, (iii) sub-lethal impacts on the number and viability of eggs laid by adults after exposure to Sumilarv®0.5G during larval development. Anopheles gambiae s.s. and An. arabiensis were highly susceptible to Sumilarv®0.5G. Estimated emergence inhibition (EI) values were very low and similar for both species. The minimum dosage that completely inhibited adult emergence was between 0.01-0.03 parts per million (ppm) active ingredient (ai). Compared to the untreated control, an application of 0.018 ppm ai prevented 85% (95% confidence interval (CI) 82%-88%) of adult emergence over six weeks under standardized field conditions. A fivefold increase in dosage of 0.09 ppm ai prevented 97% (95% CI 94%-98%) emergence. Significant sub-lethal effects were observed in the standardized field tests. Female An. gambiae s.s. that were exposed to 0.018 ppm ai as larvae laid 47% less eggs, and females exposed to 0.09 ppm ai laid 74% less eggs than females that were unexposed to the treatment. Furthermore, 77% of eggs laid by females exposed to 0

  18. Dose–response tests and semi-field evaluation of lethal and sub-lethal effects of slow release pyriproxyfen granules (Sumilarv®0.5G) for the control of the malaria vectors Anopheles gambiae sensu lato

    PubMed Central

    2013-01-01

    Background Recently research has shown that larviciding can be an effective tool for integrated malaria vector control. Nevertheless, the uptake of this intervention has been hampered by the need to re-apply larvicides frequently. There is a need to explore persistent, environmentally friendly larvicides for malaria vector control to reduce intervention efforts and costs by reducing the frequency of application. In this study, the efficacy of a 0.5% pyriproxyfen granule (Surmilarv®0.5G, Sumitomo Chemicals) was assessed for the control of Anopheles gambiae sensu stricto and Anopheles arabiensis, the major malaria vectors in sub-Saharan Africa. Methods Dose–response and standardized field tests were implemented following standard procedures of the World Health Organization’s Pesticide Evaluation Scheme to determine: (i) the susceptibility of vectors to this formulation; (ii) the residual activity and appropriate retreatment schedule for field application; and, (iii) sub-lethal impacts on the number and viability of eggs laid by adults after exposure to Sumilarv®0.5G during larval development. Results Anopheles gambiae s.s. and An. arabiensis were highly susceptible to Sumilarv®0.5G. Estimated emergence inhibition (EI) values were very low and similar for both species. The minimum dosage that completely inhibited adult emergence was between 0.01-0.03 parts per million (ppm) active ingredient (ai). Compared to the untreated control, an application of 0.018 ppm ai prevented 85% (95% confidence interval (CI) 82%-88%) of adult emergence over six weeks under standardized field conditions. A fivefold increase in dosage of 0.09 ppm ai prevented 97% (95% CI 94%-98%) emergence. Significant sub-lethal effects were observed in the standardized field tests. Female An. gambiae s.s. that were exposed to 0.018 ppm ai as larvae laid 47% less eggs, and females exposed to 0.09 ppm ai laid 74% less eggs than females that were unexposed to the treatment. Furthermore, 77

  19. Artemisinin-based combination therapy does not measurably reduce human infectiousness to vectors in a setting of intense malaria transmission

    PubMed Central

    2012-01-01

    Background Artemisinin-based combination therapy (ACT) for treating malaria has activity against immature gametocytes. In theory, this property may complement the effect of terminating otherwise lengthy malaria infections and reducing the parasite reservoir in the human population that can infect vector mosquitoes. However, this has never been verified at a population level in a setting with intense transmission, where chronically infectious asymptomatic carriers are common and cured patients are rapidly and repeatedly re-infected. Methods From 2001 to 2004, malaria vector densities were monitored using light traps in three Tanzanian districts. Mosquitoes were dissected to determine parous and oocyst rates. Plasmodium falciparum sporozoite rates were determined by ELISA. Sulphadoxine-pyrimethamine (SP) monotherapy was used for treatment of uncomplicated malaria in the contiguous districts of Kilombero and Ulanga throughout this period. In Rufiji district, the standard drug was changed to artesunate co-administered with SP (AS + SP) in March 2003. The effects of this change in case management on malaria parasite infection in the vectors were analysed. Results Plasmodium falciparum entomological inoculation rates exceeded 300 infective bites per person per year at both sites over the whole period. The introduction of AS + SP in Rufiji was associated with increased oocyst prevalence (OR [95%CI] = 3.9 [2.9-5.3], p < 0.001), but had no consistent effect on sporozoite prevalence (OR [95%CI] = 0.9 [0.7-1.2], p = 0.5). The estimated infectiousness of the human population in Rufiji was very low prior to the change in drug policy. Emergence rates and parous rates of the vectors varied substantially throughout the study period, which affected estimates of infectiousness. The latter consequently cannot be explained by the change in drug policy. Conclusions In high perennial transmission settings, only a small proportion of infections in humans are

  20. Zoophagic behaviour of anopheline mosquitoes in southwest Ethiopia: opportunity for malaria vector control.

    PubMed

    Massebo, Fekadu; Balkew, Meshesha; Gebre-Michael, Teshome; Lindtjørn, Bernt

    2015-12-18

    Increased understanding of the feeding behaviours of malaria vectors is important to determine the frequency of human-vector contact and to implement effective vector control interventions. Here we assess the relative feeding preferences of Anopheles mosquitoes in relation to cattle and human host abundance in southwest Ethiopia. We collected female Anopheles mosquitoes bi-weekly using Centers for Disease Control and prevention (CDC) light traps, pyrethrum spray catches (PSCs) and by aspirating from artificial pit shelters, and determined mosquito blood meal origins using a direct enzyme-linked immunosorbent assay (ELISA). Both Anopheles arabiensis Patton and An. marshalli (Theobald) showed preference of bovine blood meal over humans regardless of higher human population sizes. The relative feeding preference of An. arabiensis on bovine blood meal was 4.7 times higher than that of human blood. Anopheles marshalli was 6 times more likely to feed on bovine blood meal than humans. The HBI of An. arabiensis and An. marshalli significantly varied between the collection methods, whereas the bovine feeding patterns was not substantially influenced by collection methods. Even though the highest HBI of An. arabiensis and An. marshalli was from indoor CDC traps collections, a substantial number of An. arabiensis (65%) and An. marshalli (63%) had contact with cattle. Anopheles arabiensis (44%) and An. marshalli (41%) had clearly taken bovine blood meals outdoors, but they rested indoors. Anopheles mosquitoes are zoophagic and mainly feed on bovine blood meals than humans. Hence, it is important to consider treatment of cattle with appropriate insecticide to control the zoophagic malaria vectors in southwest Ethiopia. Systemic insecticides like ivermectin and its member eprinomectin could be investigated to control the pyrethroid insecticides resistant vectors.

  1. Bionomic status of Anopheles epiroticus Linton & Harbach, a coastal malaria vector, in Rayong Province, Thailand.

    PubMed

    Sumruayphol, Suchada; Apiwathnasorn, Chamnarn; Komalamisra, Narumon; Ruangsittichai, Jiraporn; Samung, Yudthana; Chavalitshewinkoon-Petmitr, Porntip

    2010-05-01

    A longitudinal entomological survey was conducted to provide in-depth information on An. epiroticus and determine whether ecological and entomological factors could influence malaria transmission in Rayong Province, Thailand. The mosquitoes were collected monthly from May 2007 to April 2008 by human landing catch technique from 6:00-12:00 PM for 2 consecutive nights, at 3 collection sites. A total of 3,048 mosquitoes within 5 species were captured: An. epiroticus, Culex quinquefasciatus Say, Cx. sitiens Wiedemann, Aedes aegypti (L.) and Ae. albopictus Skuse. PCR was used for molecular identification of An. sundaicus complex, by determination of COI, ITS2, and D3 genes. The target mosquitoes were An. epiroticus, which was the predominant species, accounting for 43.8% of specimens collected. The biting cycle pattern increased during 6:00-8:00 PM and reached a maximum of 6.6 bites/person/hour by 12:00 PM. The mosquitoes varied in population density throughout the year. The highest biting rate was 37.6 bites/person/ half night in September and the lowest (10.2 bites/person/half night) in January. Nested PCR and real-time PCR techniques were used to detect the malaria parasite in An. epiroticus adult females. Nine of 926 (0.97%) mosquitoes tested were malaria parasite positive: 6 P. falciparum and 3 P. vivax. The infective mosquitoes were found in the dry and early rainy seasons. The overall annual entomological inoculation rate (EIR) in the village was 76.6. The overall parity rate was 74%. A total of 38 cement tanks were used to characterize the nature of the breeding places of An. epiroticus. An. epiroticus larvae coexisted with Aedes and Culex larvae; the maximum larval density was more than 140 larvae per dip in May. Breeding places included fresh, brackish and salt water, typically with full sunlight and mats of green algae on the water surface. The salinity of the water ranged from 0.5 to 119.4 g/l, with a narrow pH range of 8.2-8.7. Dissolved oxygen was highest

  2. New repellent effective against African malaria mosquito Anopheles gambiae: implications for vector control.

    PubMed

    Hodson, C N; Yu, Y; Plettner, E; Roitberg, B D

    2016-12-01

    Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is a vector for Plasmodium, the causative agent of malaria. Current control strategies to reduce the impact of malaria focus on reducing the frequency of mosquito attacks on humans, thereby decreasing Plasmodium transmission. A need for new repellents effective against Anopheles mosquitoes has arisen because of changes in vector behaviour as a result of control strategies and concern over the health impacts of current repellents. The response of A. gambiae to potential repellents was investigated through an electroantennogram screen and the most promising of these candidates (1-allyloxy-4-propoxybenzene, 3c{3,6}) chosen for behavioural testing. An assay to evaluate the blood-host seeking behaviour of A. gambiae towards a simulated host protected with this repellent was then performed. The compound 3c{3,6} was shown to be an effective repellent, causing mosquitoes to reduce their contact with a simulated blood-host and probe less at the host odour. Thus, 3c{3,6} may be an effective repellent for the control of A. gambiae. © 2016 The Royal Entomological Society.

  3. Toxicity of six plant extracts and two pyridine alkaloids from Ricinus communis against the malaria vector Anopheles gambiae

    USDA-ARS?s Scientific Manuscript database

    The African malaria vector, Anopheles gambiae s.s., is known to feed selectively on certain plants for sugar sources. However, the adaptive significance of this behavior especially on how the extracts of such plants impact on the fitness of this vector has not been explored. This study determined th...

  4. Monitoring of Plasmodium infection in humans and potential vectors of malaria in a newly emerged focus in southern Iran

    PubMed Central

    Kalantari, Mohsen; Soltani, Zahra; Ebrahimi, Mostafa; Yousefi, Masoud; Amin, Masoumeh; Shafiei, Ayda; Azizi, Kourosh

    2017-01-01

    Despite control programs, which aim to eliminate malaria from Iran by 2025, transmission of malaria has not been removed from the country. This study aimed to monitor malaria from asymptomatic parasitaemia and clinical cases from about one year of active case surveillance and potential vectors of malaria in the newly emerged focus of Mamasani and Rostam, southern Iran during 2014–2015. Samples were collected and their DNAs were extracted for Polymerase Chain Reaction (PCR) assay using specific primers for detection of Plasmodium species. The Annual Parasite Incidence rate (API) was three cases per 1,000 population from 2,000 individuals in three villages. Parasites species were detected in 9 out of the 4,000 blood smear samples among which, 6 cases were indigenous and had no history of travels to endemic areas of malaria. Also, the prevalence rate of asymptomatic parasites was about 0.3%. Overall, 1073 Anopheles spp. were caught from 9 villages. Totally, 512 female samples were checked by PCR, which indicated that none of them was infected with Plasmodium. Despite new malaria local transmission in humans in Mamasani and Rostam districts, no infection with Plasmodium was observed in Anopheles species. Because of neighboring of the studied area to the re-emerged focus in Fars province (Kazerun) and important endemic foci of malaria in other southern provinces, such as Hormozgan and Kerman, monitoring of the vectors and reservoir hosts of Plasmodium species would be unavoidable. Application of molecular methods, such as PCR, can simplify access to the highest level of accuracy in malaria researches. PMID:28078947

  5. Malaria rapid diagnostic tests.

    PubMed

    Wilson, Michael L

    2012-06-01

    Global efforts to control malaria are more complex than those for other infectious diseases, in part because of vector transmission, the complex clinical presentation of Plasmodium infections, >1 Plasmodium species causing infection, geographic distribution of vectors and infection, and drug resistance. The World Health Organization approach to global malaria control focuses on 2 components: vector control and diagnosis and treatment of clinical malaria. Although microscopy performed on peripheral blood smears remains the most widely used diagnostic test and the standard against which other tests are measured, rapid expansion of diagnostic testing worldwide will require use of other diagnostic approaches. This review will focus on the malaria rapid diagnostic test (MRDT) for detecting malaria parasitemia, both in terms of performance characteristics of MRDTs and how they are used under field conditions. The emphasis will be on the performance and use of MRDTs in regions of endemicity, particularly sub-Saharan Africa, where most malaria-related deaths occur.

  6. Investigation of a Sudden Malaria Outbreak in the Isolated Amazonian Village of Saül, French Guiana, January–April 2009

    PubMed Central

    Berger, Franck; Flamand, Claude; Musset, Lise; Djossou, Félix; Rosine, Jacques; Sanquer, Marie-Anne; Dusfour, Isabelle; Legrand, Eric; Ardillon, Vanessa; Rabarison, Patrick; Grenier, Claire; Girod, Romain

    2012-01-01

    Malaria is endemic in French Guiana. Plasmodium falciparum and Plasmodium vivax are the predominant species responsible and Anopheles darlingi is described as the major vector. In mid-August 2008, an increase in malaria incidence was observed in Saül. A retrospective cohort survey was performed. In vitro susceptibility profiles to antimalarials were determined on P. falciparum isolates. Collections of mosquitoes were organized. The malaria attack rate reached 70.6/100. The risk of malaria increased for people between 40 and 49 years of age, living in a house not subjected to a recent indoor residual insecticide spraying or staying overnight in the surrounding forest. All isolates were susceptible. Anopheles darlingi females and larvae were collected in the village suggesting a local transmission. Our results strongly support a role of illegal mining activities in the emergence of new foci of malaria. Therefore, public health authorities should define policies to fight malaria at a transborder level. PMID:22492141

  7. Mass Spectrometry Based Proteomic Analysis of Salivary Glands of Urban Malaria Vector Anopheles stephensi

    PubMed Central

    Vijay, Sonam

    2014-01-01

    Salivary gland proteins of Anopheles mosquitoes offer attractive targets to understand interactions with sporozoites, blood feeding behavior, homeostasis, and immunological evaluation of malaria vectors and parasite interactions. To date limited studies have been carried out to elucidate salivary proteins of An. stephensi salivary glands. The aim of the present study was to provide detailed analytical attributives of functional salivary gland proteins of urban malaria vector An. stephensi. A proteomic approach combining one-dimensional electrophoresis (1DE), ion trap liquid chromatography mass spectrometry (LC/MS/MS), and computational bioinformatic analysis was adopted to provide the first direct insight into identification and functional characterization of known salivary proteins and novel salivary proteins of An. stephensi. Computational studies by online servers, namely, MASCOT and OMSSA algorithms, identified a total of 36 known salivary proteins and 123 novel proteins analysed by LC/MS/MS. This first report describes a baseline proteomic catalogue of 159 salivary proteins belonging to various categories of signal transduction, regulation of blood coagulation cascade, and various immune and energy pathways of An. stephensi sialotranscriptome by mass spectrometry. Our results may serve as basis to provide a putative functional role of proteins in concept of blood feeding, biting behavior, and other aspects of vector-parasite host interactions for parasite development in anopheline mosquitoes. PMID:25126571

  8. Mass spectrometry based proteomic analysis of salivary glands of urban malaria vector Anopheles stephensi.

    PubMed

    Vijay, Sonam; Rawat, Manmeet; Sharma, Arun

    2014-01-01

    Salivary gland proteins of Anopheles mosquitoes offer attractive targets to understand interactions with sporozoites, blood feeding behavior, homeostasis, and immunological evaluation of malaria vectors and parasite interactions. To date limited studies have been carried out to elucidate salivary proteins of An. stephensi salivary glands. The aim of the present study was to provide detailed analytical attributives of functional salivary gland proteins of urban malaria vector An. stephensi. A proteomic approach combining one-dimensional electrophoresis (1DE), ion trap liquid chromatography mass spectrometry (LC/MS/MS), and computational bioinformatic analysis was adopted to provide the first direct insight into identification and functional characterization of known salivary proteins and novel salivary proteins of An. stephensi. Computational studies by online servers, namely, MASCOT and OMSSA algorithms, identified a total of 36 known salivary proteins and 123 novel proteins analysed by LC/MS/MS. This first report describes a baseline proteomic catalogue of 159 salivary proteins belonging to various categories of signal transduction, regulation of blood coagulation cascade, and various immune and energy pathways of An. stephensi sialotranscriptome by mass spectrometry. Our results may serve as basis to provide a putative functional role of proteins in concept of blood feeding, biting behavior, and other aspects of vector-parasite host interactions for parasite development in anopheline mosquitoes.

  9. Bottlenecks and multiple introductions: Population genetics of the vector of avian malaria in Hawaii

    USGS Publications Warehouse

    Fonseca, Dina M.; LaPointe, Dennis A.; Fleischer, Robert C.

    2000-01-01

    Avian malaria has had a profound impact on the demographics and behaviour of Hawaiian forest birds since its vector, Culex quinquefasciatusthe southern house mosquito, was first introduced to Hawaii around 1830. In order to understand the dynamics of the disease in Hawaii and gain insights into the evolution of vector-mediated parasite–host interactions in general we studied the population genetics of Cx. quinquefasciatus in the Hawaiian Islands. We used both microsatellite and mitochondrial loci. Not surprisingly we found that mosquitoes in Midway, a small island in the Western group, are quite distinct from the populations in the main Hawaiian Islands. However, we also found that in general mosquito populations are relatively isolated even among the main islands, in particular between Hawaii (the Big Island) and the remaining Hawaiian Islands. We found evidence of bottlenecks among populations within the Big Island and an excess of alleles in Maui, the site of the original introduction. The mitochondrial diversity was typically low but higher than expected. The current distribution of mitochondrial haplotypes combined with the microsatellite information lead us to conclude that there have been several introductions and to speculate on some processes that may be responsible for the current population genetics of vectors of avian malaria in Hawaii.

  10. A Video-Tracking Analysis-Based Behavioral Assay for Larvae of Anopheles pseudopunctipennis and Aedes aegypti (Diptera: Culicidae).

    PubMed

    Gonzalez, Paula V; Alvarez Costa, Agustín; Masuh, Héctor M

    2017-05-01

    Aedes aegypti (L.) is the primary vector of dengue, yellow fever, Zika, and chikungunya viruses, whereas Anopheles pseudopunctipennis (Theobald) is the principal vector for malaria in Latin America. The larval stage of these mosquitoes occurs in very different development habitats, and the study of their respective behaviors could give us valuable information to improve larval control. The aim of this study was to set up a bioassay to study basic larval behaviors using a video-tracking software. Larvae of An. pseudopunctipennis came from two localities in Salta Province, Argentina, while Ae. aegypti larvae were of the Rockefeller laboratory strain. Behaviors of individual fourth-instar larvae were documented in an experimental petri dish arena using EthoVision XT10.1 video-tracking software. The overall level of movement of larval An. pseudopunctipennis was lower than that for Ae. aegypti, and, while moving, larval An. pseudopunctipennis spent significantly more time swimming near the wall of the arena (thigmotaxis). This is the first study that analyzes the behavior of An. pseudopunctipennis larvae. The experimental system described here may be useful for future studies on the effect of physiological, toxicological, and chemosensory stimuli on larval behaviors. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Rapid reduction of malaria following introduction of vector control interventions in Tororo District, Uganda: a descriptive study.

    PubMed

    Oguttu, David W; Matovu, Joseph K B; Okumu, David C; Ario, Alex R; Okullo, Allen E; Opigo, Jimmy; Nankabirwa, Victoria

    2017-05-30

    In 2012, Tororo District had the highest malaria burden in Uganda with community Plasmodium prevalence of 48%. To control malaria in the district, the Ministry of Health introduced universal distribution of long lasting insecticide-treated nets (LLINs) in 2013 and added indoor residual spraying (IRS) in 2014. This study assessed malaria incidence, test positivity rates and outpatient (OPD) attendance due to malaria before and after vector control interventions. This study was based on analysis of Health Management Information System (HMIS) secondary malaria surveillance data of 2,727,850 patient records in OPD registers of 61 health facilities from 2012 to 2015. The analysis estimated monthly malaria incidence for the entire population and also separately for <5- and ≥5-year-olds before and after introduction of vector control interventions; determined laboratory test positivity rates and annual percentage of malaria cases in OPD. Chi square for trends was used to analyse annual change in malaria incidence and logistic regression for monthly reduction. Following universal LLINs coverage, the annual mean monthly malaria incidence fell from 95 cases in 2013 to 76 cases per 1000 in 2014 with no significant monthly reduction (OR = 0.99, 95% CI 0.96-1.01, P = 0.37). Among children <5 years, the malaria incidence reduced from 130 to 100 cases per 1000 (OR = 0.98, 95% CI 0.97-1.00, P = 0.08) when LLINs were used alone in 2014, but declined to 45 per 1000 in 2015 when IRS was combined with LLINs (OR = 0.94, 95% CI 0.91-0.996, P < 0.0001). Among individuals aged ≥5 years, mean monthly malaria incidence reduced from 59 to 52 cases per 1000 (OR = 0.99, 95% CI 0.97-1.02, P = 0.8) when LLINs were used alone in 2014, but reduced significantly to 25 per 1000 in 2015 (OR = 0.91, 95% CI 0.88-0.94, P < 0.0001). Malaria test positivity rate reduced from 57% in 2013 to 30% (Chi = 15, P < 0.0001) in 2015. Slide positivity rate reduced from 45% in 2013

  12. The control of malaria vectors in the context of the Health for All by the Year 2000 Global Strategy.

    PubMed

    Slooff, R

    1987-12-01

    The changing picture of malaria worldwide needs to be viewed in the context of other developments before we can determine the directions to take to be able to provide the thrusts required in malaria vector control. As a result of population growth, increasing urbanization and continuing pressure on scarce natural resources, the epidemiology of malaria and its manifestation as a public health problem are undergoing profound modifications, indeed in several parts of the world. This picture is further complicated by the spread of resistance to pesticides in the vector and to drugs in Plasmodium falciparum. In the immediate future, these trends will continue. In addition, the appearance of suitable vaccines is a highly probable event to be taken into consideration. The WHO Global Strategy of Health For All by the Year 2000 aims at the improvement of levels of health through primary health care. Among other things, this implies a greater reliance on community involvement and on intersectoral collaboration for health. In this light, the major malaria problems in the year 2000 will be: (1) "hard core" endemic areas with inadequate infrastructure and poor socio-economic development; (2) resource development areas, in particular those under illegal or poor controlled exploitation; (3) expanding urban areas and (4) increased mobility of non-immunes, particularly if uncontrolled. In order to cope with these problems, thrusts are required towards the development of vector control strategies, covering the following fields: (1) tools for vector control integrated in primary health care, (2) new chemicals, (3) improved and new biologicals, (4) environmental management and the adoption of health safeguards in resource development projects and (5) manpower development.

  13. Exploiting the behaviour of wild malaria vectors to achieve high infection with fungal biocontrol agents

    PubMed Central

    2012-01-01

    Background Control of mosquitoes that transmit malaria has been the mainstay in the fight against the disease, but alternative methods are required in view of emerging insecticide resistance. Entomopathogenic fungi are candidate alternatives, but to date, few trials have translated the use of these agents to field-based evaluations of their actual impact on mosquito survival and malaria risk. Mineral oil-formulations of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were applied using five different techniques that each exploited the behaviour of malaria mosquitoes when entering, host-seeking or resting in experimental huts in a malaria endemic area of rural Tanzania. Results Survival of mosquitoes was reduced by 39-57% relative to controls after forcing upward house-entry of mosquitoes through fungus treated baffles attached to the eaves or after application of fungus-treated surfaces around an occupied bed net (bed net strip design). Moreover, 68 to 76% of the treatment mosquitoes showed fungal growth and thus had sufficient contact with fungus treated surfaces. A population dynamic model of malaria-mosquito interactions shows that these infection rates reduce malaria transmission by 75-80% due to the effect of fungal infection on adult mortality alone. The model also demonstrated that even if a high proportion of the mosquitoes exhibits outdoor biting behaviour, malaria transmission was still significantly reduced. Conclusions Entomopathogenic fungi strongly affect mosquito survival and have a high predicted impact on malaria transmission. These entomopathogens represent a viable alternative for malaria control, especially if they are used as part of an integrated vector management strategy. PMID:22449130

  14. Parasite killing in malaria non-vector mosquito Anopheles culicifacies species B: implication of nitric oxide synthase upregulation.

    PubMed

    Vijay, Sonam; Rawat, Manmeet; Adak, Tridibes; Dixit, Rajnikant; Nanda, Nutan; Srivastava, Harish; Sharma, Joginder K; Prasad, Godavarthi B K S; Sharma, Arun

    2011-04-04

    Anopheles culicifacies, the main vector of human malaria in rural India, is a complex of five sibling species. Despite being phylogenetically related, a naturally selected subgroup species B of this sibling species complex is found to be a poor vector of malaria. We have attempted to understand the differences between vector and non-vector Anopheles culicifacies mosquitoes in terms of transcriptionally activated nitric oxide synthase (AcNOS) physiologies to elucidate the mechanism of refractoriness. Identification of the differences between genes and gene products that may impart refractory phenotype can facilitate development of novel malaria transmission blocking strategies. We conducted a study on phylogenetically related susceptible (species A) and refractory (species B) sibling species of An. culicifacies mosquitoes to characterize biochemical and molecular differences in AcNOS gene and gene elements and their ability to inhibit oocyst growth. We demonstrate that in species B, AcNOS specific activity and nitrite/nitrates in mid-guts and haemolymph were higher as compared to species A after invasion of the mid-gut by P. vivax at the beginning and during the course of blood feeding. Semiquantitative RT-PCR and real time PCR data of AcNOS concluded that this gene is more abundantly expressed in midgut of species B than in species A and is transcriptionally upregulated post blood meals. Dietary feeding of L-NAME along with blood meals significantly inhibited midgut AcNOS activity leading to an increase in oocyst production in An. culicifacies species B. We hypothesize that upregulation of mosquito innate cytotoxicity due to NOS in refractory strain to Plasmodium vivax infection may contribute to natural refractoriness in An. culicifacies mosquito population. This innate capacity of refractory mosquitoes could represent the ancestral function of the mosquito immune system against the parasite and could be utilized to understand the molecular basis of refractoriness

  15. Highly focused anopheline breeding sites and malaria transmission in Dakar

    PubMed Central

    Machault, Vanessa; Gadiaga, Libasse; Vignolles, Cécile; Jarjaval, Fanny; Bouzid, Samia; Sokhna, Cheikh; Lacaux, Jean-Pierre; Trape, Jean-François; Rogier, Christophe; Pagès, Frédéric

    2009-01-01

    Background Urbanization has a great impact on the composition of the vector system and malaria transmission dynamics. In Dakar, some malaria cases are autochthonous but parasite rates and incidences of clinical malaria attacks have been recorded at low levels. Ecological heterogeneity of malaria transmission was investigated in Dakar, in order to characterize the Anopheles breeding sites in the city and to study the dynamics of larval density and adult aggressiveness in ten characteristically different urban areas. Methods Ten study areas were sampled in Dakar and Pikine. Mosquitoes were collected by human landing collection during four nights in each area (120 person-nights). The Plasmodium falciparum circumsporozoite (CSP) index was measured by ELISA and the entomological inoculation rates (EIR) were calculated. Open water collections in the study areas were monitored weekly for physico-chemical characterization and the presence of anopheline larvae. Adult mosquitoes and hatched larvae were identified morphologically and by molecular methods. Results In September-October 2007, 19,451 adult mosquitoes were caught among which, 1,101 were Anopheles gambiae s.l. The Human Biting Rate ranged from 0.1 bites per person per night in Yoff Village to 43.7 in Almadies. Seven out of 1,101 An. gambiae s.l. were found to be positive for P. falciparum (CSP index = 0.64%). EIR ranged from 0 infected bites per person per year in Yoff Village to 16.8 in Almadies. The An. gambiae complex population was composed of Anopheles arabiensis (94.8%) and Anopheles melas (5.2%). None of the An. melas were infected with P. falciparum. Of the 54 water collection sites monitored, 33 (61.1%) served as anopheline breeding sites on at least one observation. No An. melas was identified among the larval samples. Some physico-chemical characteristics of water bodies were associated with the presence/absence of anopheline larvae and with larval density. A very close parallel between larval and adult

  16. Effects of Microclimate Condition Changes Due to Land Use and Land Cover Changes on the Survivorship of Malaria Vectors in China-Myanmar Border Region.

    PubMed

    Zhong, Daibin; Wang, Xiaoming; Xu, Tielong; Zhou, Guofa; Wang, Ying; Lee, Ming-Chieh; Hartsel, Joshua A; Cui, Liwang; Zheng, Bin; Yan, Guiyun

    2016-01-01

    In the past decade, developing countries have been experiencing rapid land use and land cover changes, including deforestation and cultivation of previously forested land. However, little is known about the impact of deforestation and land-use changes on the life history of malaria vectors and their effects on malaria transmission. This study examined the effects of deforestation and crop cultivation on the adult survivorship of major malaria mosquitoes, Anopheles sinensis and An. minimus in the China-Myanmar border region. We examined three conditions: indoor, forested, and banana plantation. Mean survival time of An. sinensis in banana plantation environment was significantly longer than those in forested environment, and mosquitoes exhibited the longest longevity in the indoor environment. This pattern held for both males and females, and also for An. minimus. To further test the effect of temperature on mosquito survival, we used two study sites with different elevation and ambient temperatures. Significantly higher survivorship of both species was found in sites with lower elevation and higher ambient temperature. Increased vector survival in the deforested area could have an important impact on malaria transmission in Southeast Asia. Understanding how deforestation impacts vector survivorship can help combat malaria transmission.

  17. Using Hydrologic Modeling to Screen Potential Environmental Management Methods for Malaria Vector Control in Niger

    NASA Astrophysics Data System (ADS)

    Gianotti, R. L.; Bomblies, A.; Eltahir, E. A.

    2008-12-01

    This study describes the use of HYDREMATS, a physically-based distributed hydrology model, to investigate environmental management methods for malaria vector control in the Sahelian village of Banizoumbou, Niger. The model operates at fine spatial and temporal scales to enable explicit simulation of individual pool dynamics and isolation of mosquito breeding habitats. The results showed that leveling of topographic depressions where temporary breeding habitats form during the rainy season could reduce the persistence time of a pool to less than the time needed for establishment of mosquito breeding, approximately 7 days. Increasing the surface soil permeability by ploughing could also reduce the persistence time of a pool but this technique was not as effective as leveling. Therefore it is considered that leveling should be the preferred of the two options where possible. This investigation demonstrates that management methods that modify the hydrologic environment have significant potential to contribute to malaria vector control and human health improvement in Sahelian Africa.

  18. Relative Abundance and Plasmodium Infection Rates of Malaria Vectors in and around Jabalpur, a Malaria Endemic Region in Madhya Pradesh State, Central India.

    PubMed

    Singh, Neeru; Mishra, Ashok K; Chand, Sunil K; Bharti, Praveen K; Singh, Mrigendra P; Nanda, Nutan; Singh, Om P; Sodagiri, Kranti; Udhyakumar, Venkatachalam

    2015-01-01

    This study was undertaken in two Primary Health Centers (PHCs) of malaria endemic district Jabalpur in Madhya Pradesh (Central India). In this study we had investigated the relative frequencies of the different anopheline species collected within the study areas by using indoor resting catches, CDC light trap and human landing methods. Sibling species of malaria vectors were identified by cytogenetic and molecular techniques. The role of each vector and its sibling species in the transmission of the different Plasmodium species was ascertained by using sporozoite ELISA. A total of 52,857 specimens comprising of 17 anopheline species were collected by three different methods (39,964 by indoor resting collections, 1059 by human landing and 11,834 by CDC light trap). Anopheles culicifacies was most predominant species in all collections (55, 71 and 32% in indoor resting, human landing and light trap collections respectively) followed by An. subpictus and An. annularis. All five sibling species of An. culicifacies viz. species A, B, C, D and E were found while only species T and S of An. fluviatilis were collected. The overall sporozoite rate in An. culicifacies and An. fluviatilis were 0.42% (0.25% for P. falciparum and 0.17% for P. vivax) and 0.90% (0.45% for P. falciparum and 0.45% for P. vivax) respectively. An. culicifacies and An. fluviatilis were found harbouring both P. vivax variants VK-210 and VK-247, and P. falciparum. An. culicifacies sibling species C and D were incriminated as vectors during most part of the year while sibling species T of An. fluviatilis was identified as potential vector in monsoon and post monsoon season. An. culicifacies species C (59%) was the most abundant species followed by An. culicifacies D (24%), B (8.7%), E (6.7%) and A (1.5%). Among An. fluviatilis sibling species, species T was common (99%) and only few specimens of S were found. Our study provides crucial information on the prevalence of An. culicifacies and An. fluviatilis

  19. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi

    PubMed Central

    2013-01-01

    Background Mosquito fitness is determined largely by body size and nutritional reserves. Plasmodium infections in the mosquito and resultant transmission of malaria parasites might be compromised by the vector’s nutritional status. We studied the effects of nutritional stress and malaria parasite infections on transmission fitness of Anopheles mosquitoes. Methods Larvae of Anopheles gambiae sensu stricto and An. stephensi were reared at constant density but with nutritionally low and high diets. Fitness of adult mosquitoes resulting from each dietary class was assessed by measuring body size and lipid, protein and glycogen content. The size of the first blood meal was estimated by protein analysis. Mosquitoes of each dietary class were fed upon a Plasmodium yoelii nigeriensis-infected mouse, and parasite infections were determined 5 d after the infectious blood meal by dissection of the midguts and by counting oocysts. The impact of Plasmodium infections on gonotrophic development was established by dissection. Results Mosquitoes raised under low and high diets emerged as adults of different size classes comparable between An. gambiae and An. stephensi. In both species low-diet females contained less protein, lipid and glycogen upon emergence than high-diet mosquitoes. The quantity of larval diet impacted strongly upon adult blood feeding and reproductive success. The prevalence and intensity of P. yoelii nigeriensis infections were reduced in low-diet mosquitoes of both species, but P. yoelii nigeriensis impacted negatively only on low-diet, small-sized An. gambiae considering survival and egg maturation. There was no measurable fitness effect of P. yoelii nigeriensis on An. stephensi. Conclusions Under the experimental conditions, small-sized An. gambiae expressed high mortality, possibly caused by Plasmodium infections, the species showing distinct physiological concessions when nutrionally challenged in contrast to well-fed, larger siblings. Conversely, An

  20. Combining indoor and outdoor methods for controlling malaria vectors: an ecological model of endectocide-treated livestock and insecticidal bed nets.

    PubMed

    Yakob, Laith; Cameron, Mary; Lines, Jo

    2017-03-13

    Malaria is spread by mosquitoes that are increasingly recognised to have diverse biting behaviours. How a mosquito in a specific environment responds to differing availability of blood-host species is largely unknown and yet critical to vector control efficacy. A parsimonious mathematical model is proposed that accounts for a diverse range of host-biting behaviours and assesses their impact on combining long-lasting insecticidal nets (LLINs) with a novel approach to malaria control: livestock treated with insecticidal compounds ('endectocides') that kill biting mosquitoes. Simulations of a malaria control programme showed marked differences across biting ecologies in the efficacy of both LLINs as a stand-alone tool and the combination of LLINs with endectocide-treated cattle. During the intervals between LLIN mass campaigns, concordant use of endectocides is projected to reduce the bounce-back in malaria prevalence that can occur as LLIN efficacy decays over time, especially if replacement campaigns are delayed. Integrating these approaches can also dramatically improve the attainability of local elimination; endectocidal treatment schedules required to achieve this aim are provided for malaria vectors with different biting ecologies. Targeting blood-feeding mosquitoes by treating livestock with endectocides offers a potentially useful complement to existing malaria control programmes centred on LLIN distribution. This approach is likely to be effective against vectors with a wide range of host-preferences and biting behaviours, with the exception of species that are so strictly anthropophilic that most blood meals are taken on humans even when humans are much less available than non-human hosts. Identifying this functional relationship in wild mosquito populations and ascertaining the extent to which it differs, within as well as between species, is a critical next step before targets can be set for employing this novel approach and combination.

  1. Behaviour and molecular identification of Anopheles malaria vectors in Jayapura district, Papua province, Indonesia.

    PubMed

    St Laurent, Brandy; Supratman, Sukowati; Asih, Puji Budi Setia; Bretz, David; Mueller, John; Miller, Helen Catherine; Baharuddin, Amirullah; Shinta; Surya, Asik; Ngai, Michelle; Laihad, Ferdinand; Syafruddin, Din; Hawley, William A; Collins, Frank H; Lobo, Neil F

    2016-04-08

    Members of the Anopheles punctulatus group dominate Papua, Indonesia and Papua New Guinea (PNG), with a geographic range that extends south through Vanuatu. An. farauti and An. punctulatus are the presumed major vectors in this region. Although this group of species has been extensively studied in PNG and the southern archipelagoes within their range, their distribution, ecology and vector behaviours have not been well characterized in eastern Indonesia. Mosquitoes were collected in five villages in Jayapura province, Papua, Indonesia using human-landing collections, animal-baited tents and backpack aspirators. Mosquitoes were morphologically typed and then molecularly distinguished based on ribosomal ITS2 sequences and tested for Plasmodium falciparum and P. vivax infection using circumsporozoite ELISA and PCR. The presence and vector status of An. farauti 4 in Papua, Indonesia is confirmed here for the first time. The data indicate that this species is entering houses at a rate that increases its potential to come into contact with humans and act as a major malaria vector. An. farauti 4 was also abundant outdoors and biting humans during early evening hours. Other species collected in this area include An. farauti 1, An. hinesorum, An. koliensis, An. punctulatus, and An. tessellatus. Proboscis morphology was highly variable within each species, lending support to the notion that this characteristic is not a reliable indicator to distinguish species within the An. punctulatus group. The vector composition in Papua, Indonesia is consistent with certain northern areas of PNG, but the behaviours of anophelines sampled in this region, such as early and indoor human biting of An. farauti 4, may enable them to act as major vectors of malaria. Presumed major vectors An. farauti and An. punctulatus were not abundant among these samples. Morphological identification of anophelines in this sample was often inaccurate, highlighting the importance of using molecular analysis

  2. Larval habitats of Anopheles species in a rural settlement on the malaria frontier of southwest Amazon, Brazil.

    PubMed

    Rufalco-Moutinho, Paulo; Schweigmann, Nicolás; Bergamaschi, Denise Pimentel; Mureb Sallum, Maria Anice

    2016-12-01

    Rural settlements are social arrangements expanding in the Amazon region, which generate disturbances in the natural environment, thus affecting the ecology of the species of Anopheles and thus the malaria transmission. Larval habitats are important sources for maintenance of mosquito vector populations, and holding back a natural watercourse is a usual process in the establishment of rural settlements, since the formation of micro-dams represents a water resource for the new settlers. Identifying characteristics of the larval habitats that may be associated with both the presence and abundance of Anopheles vectors species in an environment under ecological transition is background for planning vector control strategies in rural areas in the Amazon. Anopheles larvae collections were performed in two major types of habitats: natural and flow-limited water collections that were constructed by holding back the original watercourse. A total of 3123 Anopheles spp. larvae were captured in three field-sampling collections. The majority of the larvae identified were taken from flow-limited water collections belonged to species of the Nyssorhynchus subgenus (92%), whereas in the natural larval habitats a fewer number of individuals belonged to the Stethomyia (5%) and Anopheles (3%) subgenera. The total of Nyssorhynchus identified (1818), 501 specimens belonged to An. darlingi, 750 to An. triannulatus and 567 for others remaining species. In addition, 1152 could not be identified to subgenus/species level, because they were either in the first-instar or damaged. The primary vector in areas of the Amazon river basin, An. darlingi, was found exclusively in man-made habitats. Statistical analysis display An. triannulatus with specialist behavior for characteristics of man-made habitats. Modifications in the natural environment facilitate the rise of larval habitats for species with epidemiological importance for malaria in the region. This study showed that man-made habitats

  3. Behavioural response of the malaria vector Anopheles gambiae to host plant volatiles and synthetic blends

    USDA-ARS?s Scientific Manuscript database

    Sugar feeding is critical for survival of malaria vectors and, although discriminative plant feeding previously has been shown to occur in Anopheles gambiae s.s., little is known about the cues mediating attraction to these plants. In this study, we investigated the role of olfaction in An. gambiae ...

  4. Preliminary Biological Studies on Larvae and Adult Anopheles Mosquitoes (Diptera: Culicidae) in Miraflores, a Malaria Endemic Locality in Guaviare Department, Amazonian Colombia

    PubMed Central

    JIMÉNEZ, IRENE P.; CONN, JAN E.; BROCHERO, HELENA

    2015-01-01

    In the malaria endemic municipality of Miraflores in southeastern Amazonian Colombia, several aspects of the biology of local Anopheles species were investigated to supplement the limited entomological surveillance information available and to provide baseline data for malaria prevention and vector control. Anopheles darlingi Root, 1926 was the most abundant species (95.6%), followed by Anopheles braziliensis (Chagas) (3.6%) and Anopheles oswaldoi s.l. (Peryassu) (0.7%). During the dry season, exophagic activity was prevalent only between 1800–2100 hours; after this (2100–0600 hours) only endophagy was encountered. In contrast, during the rainy season, both endophagy and exophagy occurred throughout the collection period. The human biting rate for An. darlingi was 8.6. This species was positive for Plasmodium vivax VK210 with a sporozoite rate = 0.13 (1/788). Breeding sites corresponded to stream (n = 7), flooded excavations (n = 4), flooded forest (n = 1), wetlands (n = 2), and an abandoned water reservoir (n = 1). An. darlingi predominated in these sites in both seasons. Based on these data, An. darlingi is the main local malaria vector, and we recommend that local prevention and control efforts focus on strengthening entomological surveillance to determine potential changes of species biting behavior and time to reduce human–vector interactions. PMID:25276930

  5. Ecologists can enable communities to implement malaria vector control in Africa

    PubMed Central

    Mukabana, W Richard; Kannady, Khadija; Kiama, G Michael; Ijumba, Jasper N; Mathenge, Evan M; Kiche, Ibrahim; Nkwengulila, Gamba; Mboera, Leonard; Mtasiwa, Deo; Yamagata, Yoichi; van Schayk, Ingeborg; Knols, Bart GJ; Lindsay, Steven W; de Castro, Marcia Caldas; Mshinda, Hassan; Tanner, Marcel; Fillinger, Ulrike; Killeen, Gerry F

    2006-01-01

    Background Integrated vector management (IVM) for malaria control requires ecological skills that are very scarce and rarely applied in Africa today. Partnerships between communities and academic ecologists can address this capacity deficit, modernize the evidence base for such approaches and enable future scale up. Methods Community-based IVM programmes were initiated in two contrasting settings. On Rusinga Island, Western Kenya, community outreach to a marginalized rural community was achieved by University of Nairobi through a community-based organization. In Dar es Salaam, Tanzania, Ilala Municipality established an IVM programme at grassroots level, which was subsequently upgraded and expanded into a pilot scale Urban Malaria Control Programme with support from national academic institutes. Results Both programmes now access relevant expertise, funding and policy makers while the academic partners benefit from direct experience of community-based implementation and operational research opportunities. The communities now access up-to-date malaria-related knowledge and skills for translation into local action. Similarly, the academic partners have acquired better understanding of community needs and how to address them. Conclusion Until sufficient evidence is provided, community-based IVM remains an operational research activity. Researchers can never directly support every community in Africa so community-based IVM strategies and tactics will need to be incorporated into undergraduate teaching programmes to generate sufficient numbers of practitioners for national scale programmes. Academic ecologists at African institutions are uniquely positioned to enable the application of practical environmental and entomological skills for malaria control by communities at grassroots level and should be supported to fulfil this neglected role. PMID:16457724

  6. A pre-intervention study of malaria vector abundance in Rio Muni, Equatorial Guinea: Their role in malaria transmission and the incidence of insecticide resistance alleles

    PubMed Central

    Ridl, Frances C; Bass, Chris; Torrez, Miguel; Govender, Dayanandan; Ramdeen, Varsha; Yellot, Lee; Edu, Amado Edjang; Schwabe, Christopher; Mohloai, Peter; Maharaj, Rajendra; Kleinschmidt, Immo

    2008-01-01

    Background Following the success of the malaria control intervention on the island of Bioko, malaria control by the use of indoor residual spraying (IRS) and long-lasting insecticide-treated nets (LLITN) was extended to Rio Muni, on the mainland part of Equatorial Guinea. This manuscript reports on the malaria vectors present and the incidence of insecticide resistant alleles prior to the onset of the programme. Methods Anopheles mosquitoes were captured daily using window traps at 30 sentinel sites in Rio Muni, from December 2006 to July 2007. The mosquitoes were identified to species and their sporozoite rates, knockdown resistance (kdr) and acetylcholinesterase (AChE) sensitivity measured, to define the role of vector species in malaria transmission and their potential susceptibility to insecticides. Results A total of 6,162 Anopheles mosquitoes were collected of which 4,808 were morphologically identified as Anopheles gambiae s.l., 120 Anopheles funestus, 1,069 Anopheles moucheti, and 165 Anopheles nili s.l.. Both M and S molecular forms of Anopheles gambiae s.s. and Anopheles melas were identified. Anopheles ovengensis and Anopheles carnevalei were the only two members of the An. nili group to be identified. Using the species-specific sporozoite rates and the average number of mosquitoes per night, the number of infective mosquitoes per trap per 100 nights for each species complex was calculated as a measure of transmission risk. Both kdr-w and kdr-e alleles were present in the S-form of An. gambiae s.s. (59% and 19% respectively) and at much lower frequencies in the M-form (9.7% and 1.8% respectively). The kdr-w and kdr-e alleles co-occurred in 103 S-form and 1 M-form specimens. No insensitive AChE was detected. Conclusion Anopheles gambiae s.s, a member of the Anopheles gambiae complex was shown to be the major vector in Rio Muni with the other three groups playing a relatively minor role in transmission. The demonstration of a high frequency of kdr alleles

  7. Is housing quality associated with malaria incidence among young children and mosquito vector numbers? Evidence from Korogwe, Tanzania.

    PubMed

    Liu, Jenny X; Bousema, Teun; Zelman, Brittany; Gesase, Samwel; Hashim, Ramadhan; Maxwell, Caroline; Chandramohan, Daniel; Gosling, Roly

    2014-01-01

    Several studies conducted in Northeast Tanzania have documented declines in malaria transmission even before interventions were scaled up. One explanation for these reductions may be the changes in socio-environmental conditions associated with economic development, and in particular improvements in housing construction. This analysis seeks to identify (1) risk factors for malaria incidence among young children and (2) household and environmental factors associated with mosquito vector numbers collected in the child's sleeping area. Both analyses focus on housing construction quality as a key determinant. For 435 children enrolled in a larger trial of intermittent preventive treatment for malaria in infants in the Korogwe District in Tanga, Northeastern Tanzania, detailed information on their dwelling characteristics were collected in the last year of the trial. Principal components analysis was used to construct an index of housing structure quality and converted to quintile units for regression analysis. Univariate and multivariate random effects negative binomial regressions were used to predict risk factors for child malaria incidence and the mean total number of indoor female Anopheles gambiae and funestus mosquitoes collected per household across three occasions. Building materials have substantially improved in Korogwe over time. Multivariate regressions showed that residing in rural areas (versus urban) increased malaria incidence rates by over three-fold and mean indoor female A. gambiae and funestus numbers by nearly two-fold. Compared to those residing in the lowest quality houses, children residing in the highest quality houses had one-third lower malaria incidence rates, even when wealth and rural residence were controlled for. Living in the highest quality houses reduced vector numbers while having cattle near the house significantly increased them. Results corroborate findings from other studies that show associations between malaria incidence and

  8. Development and assessment of plant-based synthetic odor baits for surveillance and control of Malaria vectors

    USDA-ARS?s Scientific Manuscript database

    Recent malaria vector control measures have considerably reduced indoor biting mosquito populations. However, reducing the outdoor biting populations remains a challenge because of the unavailability of appropriate lures to achieve this. This study sought to test the efficacy of plant-based syntheti...

  9. Climate, environment and transmission of malaria.

    PubMed

    Rossati, Antonella; Bargiacchi, Olivia; Kroumova, Vesselina; Zaramella, Marco; Caputo, Annamaria; Garavelli, Pietro Luigi

    2016-06-01

    Malaria, the most common parasitic disease in the world, is transmitted to the human host by mosquitoes of the genus Anopheles. The transmission of malaria requires the interaction between the host, the vector and the parasite.The four species of parasites responsible for human malaria are Plasmodium falciparum, Plasmodium ovale, Plasmodium malariae and Plasmodium vivax. Occasionally humans can be infected by several simian species, like Plasmodium knowlesi, recognised as a major cause of human malaria in South-East Asia since 2004. While P. falciparum is responsible for most malaria cases, about 8% of estimated cases globally are caused by P. vivax. The different Plasmodia are not uniformly distributed although there are areas of species overlap. The life cycle of all species of human malaria parasites is characterised by an exogenous sexual phase in which multiplication occurs in several species of Anopheles mosquitoes, and an endogenous asexual phase in the vertebrate host. The time span required for mature oocyst development in the salivary glands is quite variable (7-30 days), characteristic of each species and influenced by ambient temperature. The vector Anopheles includes 465 formally recognised species. Approximately 70 of these species have the capacity to transmit Plasmodium spp. to humans and 41 are considered as dominant vector capable of transmitting malaria. The intensity of transmission is dependent on the vectorial capacity and competence of local mosquitoes. An efficient system for malaria transmission needs strong interaction between humans, the ecosystem and infected vectors. Global warming induced by human activities has increased the risk of vector-borne diseases such as malaria. Recent decades have witnessed changes in the ecosystem and climate without precedent in human history although the emphasis in the role of temperature on the epidemiology of malaria has given way to predisposing conditions such as ecosystem changes, political

  10. Status of insecticide resistance in high-risk malaria provinces in Afghanistan.

    PubMed

    Ahmad, Mushtaq; Buhler, Cyril; Pignatelli, Patricia; Ranson, Hilary; Nahzat, Sami Mohammad; Naseem, Mohammad; Sabawoon, Muhammad Farooq; Siddiqi, Abdul Majeed; Vink, Martijn

    2016-02-18

    Insecticide resistance seriously threatens the efficacy of vector control interventions in malaria endemic countries. In Afghanistan, the status of insecticide resistance is largely unknown while distribution of long-lasting insecticidal nets has intensified in recent years. The main objective of this study was thus to measure the level of resistance to four classes of insecticides in provinces with medium to high risk of malaria transmission. Adult female mosquitoes were reared from larvae successively collected in the provinces of Nangarhar, Kunar, Badakhshan, Ghazni and Laghman from August to October 2014. WHO insecticide susceptibility tests were performed with DDT (4 %), malathion (5 %), bendiocarb (0.1 %), permethrin (0.75 %) and deltamethrin (0.05 %). In addition, the presence of kdr mutations was investigated in deltamethrin resistant and susceptible Anopheles stephensi mosquitoes collected in the eastern provinces of Nangarhar and Kunar. Analyses of mortality rates revealed emerging resistance against all four classes of insecticides in the provinces located east and south of the Hindu Kush mountain range. Resistance is observed in both An. stephensi and Anopheles culicifacies, the two dominant malaria vectors in these provinces. Anopheles superpictus in the northern province of Badakhshan shows a different pattern of susceptibility with suspected resistance observed only for deltamethrin and bendiocarb. Genotype analysis of knock down resistance (kdr) mutations at the voltage-gated channel gene from An. stephensi mosquitoes shows the presence of the known resistant alleles L1014S and L1014F. However, a significant fraction of deltamethrin-resistant mosquitoes were homozygous for the 1014L wild type allele indicating that other mechanisms must be considered to account for the observed pyrethroid resistance. This study confirms the importance of monitoring insecticide resistance for the development of an integrated vector management in Afghanistan. The

  11. Prey-predator relationship between the cyclopoids Mesocyclops longisetus and Mesocyclops meridianus with Anopheles aquasalis larvae.

    PubMed

    Pernía, Javier; de Zoppi, Roa Evelyn; Palacios-Cáceres, Mario

    2007-06-01

    Copepods from the genus Mesocyclops are considered predators and potential biological control for mosquito larvae. Two copepod species M. meridianus and M. longisetus were found in natural developmental habitat for malaria vector Anopheles aquasalis in Paria, Venezuela. Predatory potential on 1st-stage mosquito larvae An. aquasalis was evaluated under laboratory conditions for the 2 species of copepod. Further records of both copepod life cycle and body size were taken. A 2 x 3 factorial design was used, consisting of 1:1 and 10:1 prey-predator ratios with and without interspecific interactions. Despite significant body-size differences, M. longisetus and M. meridianus reached maturity 17 days after hatching with no significant differences. Life cycle span of both copepod species are described for the first time. The 2 species showed the same predatory potential despite larval (prey) abundance variation.

  12. Distribution of the Habitat Suitability of the Main Malaria Vector in French Guiana Using Maximum Entropy Modeling.

    PubMed

    Moua, Yi; Roux, Emmanuel; Girod, Romain; Dusfour, Isabelle; de Thoisy, Benoit; Seyler, Frédérique; Briolant, Sébastien

    2017-05-01

    Malaria is an important health issue in French Guiana. Its principal mosquito vector in this region is Anopheles darlingi Root. Knowledge of the spatial distribution of this species is still very incomplete due to the extent of French Guiana and the difficulty to access most of the territory. Species distribution modeling based on the maximal entropy procedure was used to predict the spatial distribution of An. darlingi using 39 presence sites. The resulting model provided significantly high prediction performances (mean 10-fold cross-validated partial area under the curve and continuous Boyce index equal to, respectively, 1.11-with a level of omission error of 20%-and 0.42). The model also provided a habitat suitability map and environmental response curves in accordance with the known entomological situation. Several environmental characteristics that had a positive correlation with the presence of An. darlingi were highlighted: nonpermanent anthropogenic changes of the natural environment, the presence of roads and tracks, and opening of the forest. Some geomorphological landforms and high altitude landscapes appear to be unsuitable for An. darlingi. The species distribution modeling was able to reliably predict the distribution of suitable habitats for An. darlingi in French Guiana. Results allowed completion of the knowledge of the spatial distribution of the principal malaria vector in this Amazonian region, and identification of the main factors that favor its presence. They should contribute to the definition of a necessary targeted vector control strategy in a malaria pre-elimination stage, and allow extrapolation of the acquired knowledge to other Amazonian or malaria-endemic contexts. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Malaria in India: The Center for the Study of Complex Malaria in India

    PubMed Central

    Das, Aparup; Anvikar, Anupkumar R.; Cator, Lauren J.; Dhiman, Ramesh C.; Eapen, Alex; Mishra, Neelima; Nagpal, Bhupinder N.; Nanda, Nutan; Raghavendra, Kamaraju; Read, Andrew F.; Sharma, Surya K.; Singh, Om P.; Singh, Vineeta; Sinnis, Photini; Srivastava, Harish C.; Sullivan, Steven A.; Sutton, Patrick L.; Thomas, Matthew B.; Carlton, Jane M.; Valecha, Neena

    2012-01-01

    Malaria is a major public health problem in India and one which contributes significantly to the overall malaria burden in Southeast Asia. The National Vector Borne Disease Control Program of India reported ~1.6 million cases and ~1100 malaria deaths in 2009. Some experts argue that this is a serious underestimation and that the actual number of malaria cases per year is likely between 9 and 50 times greater, with an approximate 13-fold underestimation of malaria-related mortality. The difficulty in making these estimations is further exacerbated by (i) highly variable malaria eco-epidemiological profiles, (ii) the transmission and overlap of multiple Plasmodium species and Anopheles vectors, (iii) increasing antimalarial drug resistance and insecticide resistance, and (iv) the impact of climate change on each of these variables. Simply stated, the burden of malaria in India is complex. Here we describe plans for a Center for the Study of Complex Malaria in India (CSCMi), one of ten International Centers of Excellence in Malaria Research (ICEMRs) located in malarious regions of the world recently funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health. The CSCMi is a close partnership between Indian and United States scientists, and aims to address major gaps in our understanding of the complexity of malaria in India, including changing patterns of epidemiology, vector biology and control, drug resistance, and parasite genomics. We hope that such a multidisciplinary approach that integrates clinical and field studies with laboratory, molecular, and genomic methods will provide a powerful combination for malaria control and prevention in India. PMID:22142788

  14. Green-synthesised nanoparticles from Melia azedarach seeds and the cyclopoid crustacean Cyclops vernalis: an eco-friendly route to control the malaria vector Anopheles stephensi?

    PubMed

    Anbu, Priya; Murugan, Kadarkarai; Madhiyazhagan, Pari; Dinesh, Devakumar; Subramaniam, Jayapal; Panneerselvam, Chellasamy; Suresh, Udaiyan; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Hwang, Jiang-Shiou; Kumar, Suresh; Nicoletti, Marcello; Benelli, Giovanni

    2016-09-01

    The impact of green-synthesised mosquitocidal nanoparticles on non-target aquatic predators is poorly studied. In this research, we proposed a single-step method to synthesise silver nanoparticles (Ag NP) using the seed extract of Melia azedarach. Ag NP were characterised using a variety of biophysical methods, including UV-vis spectrophotometry, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. In laboratory assays on Anopheles stephensi, Ag NP showed LC50 ranging from 2.897 (I instar larvae) to 14.548 ppm (pupae). In the field, the application of Ag NP (10 × LC50) lead to complete elimination of larval populations after 72 h. The application of Ag NP in the aquatic environment did not show negative adverse effects on predatory efficiency of the mosquito natural enemy Cyclops vernalis. Overall, this study highlights the concrete possibility to employ M. azedarach-synthesised Ag NP on young instars of malaria vectors.

  15. Spatial changes in the distribution of malaria vectors during the past 5 decades in Iran.

    PubMed

    Salahi-Moghaddam, A; Khoshdel, A; Dalaei, H; Pakdad, K; Nutifafa, G G; Sedaghat, M M

    2017-02-01

    Global warming and climate change affect various aspects of mankind, including public health. Anopheles mosquitoes are of Public Health importance and can be affected by global warming and other environmental variables. Here, we studied the distribution of Anopheles vectors of malaria in relation to environmental variables in Iran. Long-term meteorological and entomological data of about 50 years in retrospect were collected and arranged in a geo-database and analyzed using ArcGIS ver. 9.3 and exported to SPSS ver. 20 for statistical analysis. Distribution maps have been updated for seven species of Anopheles vectors of malaria which involved Anopheles culicifacies s.l., An. fluviatilis s.l., An. stephensi, An. dthali, An. sacharovi, An. maculipennis.l. and An. superpictus in Iran. Distribution maps of vectors were made based on district areas using Kriging model. Historical and recent records were demonstrated for each Anopheles based on climatic factors in the distribution areas of each Anopheles vectors. Iran, like other parts of the world is faced with warming and this probably affected the distribution of Anopheles vectors. Despite the warming phenomenon, the country's climate had changed during the cold season as temperatures became colder or cooler. This study shows that some vectors had migrated from the central part of Iran with dry and sunny landscape, moved towards the mountainous areas of the north or the warm and humid areas of the south. Historical records show that these anophelines have previously been distributed in lowland areas. If this process continues in the future, Anopheles mosquitoes may be seen in low lands with cold areas in central and northern parts of the country or will occupy humid and warm climates in the southern parts of the country where water is more available. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions.

    PubMed

    Nkya, Theresia Estomih; Poupardin, Rodolphe; Laporte, Frederic; Akhouayri, Idir; Mosha, Franklin; Magesa, Stephen; Kisinza, William; David, Jean-Philippe

    2014-10-16

    for insecticide resistance in malaria vectors. We demonstrated that the recurrent exposure of larvae to agricultural pollutants can select for resistance mechanisms to vector control insecticides at the adult stage. Our data suggest that in addition to selected target-site resistance mutations, agricultural pollutants may also favor cuticle, metabolic and synaptic transmission-based resistance mechanisms. These results emphasize the need for integrated resistance management strategies taking into account agriculture activities.

  17. A prime-boost immunization regimen based on a simian adenovirus 36 vectored multi-stage malaria vaccine induces protective immunity in mice.

    PubMed

    Fonseca, Jairo A; McCaffery, Jessica N; Kashentseva, Elena; Singh, Balwan; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2017-05-31

    Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4 + T cell responses. Based on evidence that viral vectors increase CD8 + T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8 + T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8 + T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. EMIRA: Ecologic Malaria Reduction for Africa--innovative tools for integrated malaria control.

    PubMed

    Dambach, Peter; Traoré, Issouf; Becker, Norbert; Kaiser, Achim; Sié, Ali; Sauerborn, Rainer

    2014-01-01

    Malaria control is based on early treatment of cases and on vector control. The current measures for malaria vector control in Africa are mainly based on long-lasting insecticide treated nets (LLINs) and to a much smaller extent on indoor residual spraying (IRS). A third pillar in the fight against the malaria vector, larval source management (LSM), has virtually not been used in Africa since the ban of DDT in the 1960s. Within the light of recent WHO recommendations for Bacillus thuringiensis israelensis (Bti) use against malaria and other vector species, larval source management could see a revival in the upcoming years. In this project we analyze the ecologic and health impacts as well as the cost effectiveness of larval source management under different larviciding scenarios in a health district in Burkina Faso. The project is designed as prospective intervention study with duration of three years (2013-2015). Its spatial scale includes three arms of interventions and control, comprising a total of 127 villages and the district capital Nouna in the extended HDSS (Health Demographic Surveillance System) of the Kossi province. Baseline data on mosquito abundance, parasitemia in U5 children, and malaria related morbidity and mortality are gathered over the project duration. Besides the outcome on ecologic and health parameters, the economic costs are seized and valued against the achieved health benefits. Risk map based, guided larvicide application might be a possibility to further decrease economic cost of LSM and facilitate its faster incorporation to integrated malaria control programs. Given the limited resources in many malaria endemic countries, it is of utmost importance to relate the costs of novel strategies for malaria prevention to their effect on the burden of the disease. Occurring costs and the impact on the health situation will be made comparable to other, existing intervention strategies, allowing stakeholders and policymakers decision making.

  19. Controlling Malaria Using Livestock-Based Interventions: A One Health Approach

    PubMed Central

    Franco, Ana O.; Gomes, M. Gabriela M.; Rowland, Mark; Coleman, Paul G.

    2014-01-01

    Where malaria is transmitted by zoophilic vectors, two types of malaria control strategies have been proposed based on animals: using livestock to divert vector biting from people (zooprophylaxis) or as baits to attract vectors to insecticide sources (insecticide-treated livestock). Opposing findings have been obtained on malaria zooprophylaxis, and despite the success of an insecticide-treated livestock trial in Pakistan, where malaria vectors are highly zoophilic, its effectiveness is yet to be formally tested in Africa where vectors are more anthropophilic. This study aims to clarify the different effects of livestock on malaria and to understand under what circumstances livestock-based interventions could play a role in malaria control programmes. This was explored by developing a mathematical model and combining it with data from Pakistan and Ethiopia. Consistent with previous work, a zooprophylactic effect of untreated livestock is predicted in two situations: if vector population density does not increase with livestock introduction, or if livestock numbers and availability to vectors are sufficiently high such that the increase in vector density is counteracted by the diversion of bites from humans to animals. Although, as expected, insecticide-treatment of livestock is predicted to be more beneficial in settings with highly zoophilic vectors, like South Asia, we find that the intervention could also considerably decrease malaria transmission in regions with more anthropophilic vectors, like Anopheles arabiensis in Africa, under specific circumstances: high treatment coverage of the livestock population, using a product with stronger or longer lasting insecticidal effect than in the Pakistan trial, and with small (ideally null) repellency effect, or if increasing the attractiveness of treated livestock to malaria vectors. The results suggest these are the most appropriate conditions for field testing insecticide-treated livestock in an Africa region with

  20. Effects of Temephos, Permethrin, and Eucalyptus nitens Essential Oil on Survival and Swimming Behavior of Aedes aegypti and Anopheles pseudopunctipennis (Diptera: Culicidae) Larvae.

    PubMed

    Alvarez Costa, Agustín; Gonzalez, Paula V; Harburguer, Laura V; Masuh, Héctor M

    2018-06-04

    An essential strategy to deal with mosquito-borne diseases is the control of larvae in their development sites. The mosquitoes Anopheles pseudopunctipennis (Theobald) (Diptera: Culicidae), a malaria vector, and Aedes aegypti (L.) (Diptera: Culicidae), vector of dengue, Zika, yellow fever, and chikungunya viruses, breed in very different habitats. Insecticide treatments of mosquito larvae focus mainly on their lethal effects. However, insecticide degradation or the poor dosage of larvicides will invariably lead to the sublethal exposure of a target (and nontarget) species, the nonlethal effects of these compounds may have important effects on vital insect activities, and therefore their evaluation is necessary. In this study, we assessed the survival and swimming behavior of larvae of Ae. aegypti and An. pseudopunctipennis exposed to increasing concentrations of three larvicides. We found that Ae. aegypti, was more sensitive to the larvicides than An. pseudopunctipennis, we also observed an overall decrease in the movement of those larvae of both species, which survive the treatments. This decrease might have ecological relevance in their natural habitats, increasing the chance to be predated and decreasing their ability to obtain food. Finally, this information will be valuable to assist authorities to make decisions in the implementation of further control programs.

  1. Human antibody responses to the Anopheles salivary gSG6-P1 peptide: a novel tool for evaluating the efficacy of ITNs in malaria vector control.

    PubMed

    Drame, Papa Makhtar; Poinsignon, Anne; Besnard, Patrick; Cornelie, Sylvie; Le Mire, Jacques; Toto, Jean-Claude; Foumane, Vincent; Dos-Santos, Maria Adelaide; Sembène, Mbacké; Fortes, Filomeno; Simondon, Francois; Carnevale, Pierre; Remoue, Franck

    2010-12-14

    To optimize malaria control, WHO has prioritised the need for new indicators to evaluate the efficacy of malaria vector control strategies. The gSG6-P1 peptide from gSG6 protein of Anopheles gambiae salivary glands was previously designed as a specific salivary sequence of malaria vector species. It was shown that the quantification of human antibody (Ab) responses to Anopheles salivary proteins in general and especially to the gSG6-P1 peptide was a pertinent biomarker of human exposure to Anopheles. The present objective was to validate this indicator in the evaluation of the efficacy of Insecticide Treated Nets (ITNs). A longitudinal evaluation, including parasitological, entomological and immunological assessments, was conducted on children and adults from a malaria-endemic area before and after the introduction of ITNs. Significant decrease of anti-gSG6-P1 IgG response was observed just after the efficient ITNs use. Interestingly, specific IgG Ab level was especially pertinent to evaluate a short-time period of ITNs efficacy and at individual level. However, specific IgG rose back up within four months as correct ITN use waned. IgG responses to one salivary peptide could constitute a reliable biomarker for the evaluation of ITN efficacy, at short- and long-term use, and provide a valuable tool in malaria vector control based on a real measurement of human-vector contact.

  2. Parasite Killing in Malaria Non-Vector Mosquito Anopheles culicifacies Species B: Implication of Nitric Oxide Synthase Upregulation

    PubMed Central

    Vijay, Sonam; Rawat, Manmeet; Adak, Tridibes; Dixit, Rajnikant; Nanda, Nutan; Srivastava, Harish; Sharma, Joginder K.; Prasad, Godavarthi B. K. S.; Sharma, Arun

    2011-01-01

    Background Anopheles culicifacies, the main vector of human malaria in rural India, is a complex of five sibling species. Despite being phylogenetically related, a naturally selected subgroup species B of this sibling species complex is found to be a poor vector of malaria. We have attempted to understand the differences between vector and non-vector Anopheles culicifacies mosquitoes in terms of transcriptionally activated nitric oxide synthase (AcNOS) physiologies to elucidate the mechanism of refractoriness. Identification of the differences between genes and gene products that may impart refractory phenotype can facilitate development of novel malaria transmission blocking strategies. Methodology/Principal Findings We conducted a study on phylogenetically related susceptible (species A) and refractory (species B) sibling species of An. culicifacies mosquitoes to characterize biochemical and molecular differences in AcNOS gene and gene elements and their ability to inhibit oocyst growth. We demonstrate that in species B, AcNOS specific activity and nitrite/nitrates in mid-guts and haemolymph were higher as compared to species A after invasion of the mid-gut by P. vivax at the beginning and during the course of blood feeding. Semiquantitative RT-PCR and real time PCR data of AcNOS concluded that this gene is more abundantly expressed in midgut of species B than in species A and is transcriptionally upregulated post blood meals. Dietary feeding of L-NAME along with blood meals significantly inhibited midgut AcNOS activity leading to an increase in oocyst production in An. culicifacies species B. Conclusions/Significance We hypothesize that upregulation of mosquito innate cytotoxicity due to NOS in refractory strain to Plasmodium vivax infection may contribute to natural refractoriness in An. culicifacies mosquito population. This innate capacity of refractory mosquitoes could represent the ancestral function of the mosquito immune system against the parasite and

  3. malERA: An updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication

    PubMed Central

    2017-01-01

    Since the turn of the century, a remarkable expansion has been achieved in the range and effectiveness of products and strategies available to prevent, treat, and control malaria, including advances in diagnostics, drugs, vaccines, and vector control. These advances have once again put malaria elimination on the agenda. However, it is clear that even with the means available today, malaria control and elimination pose a formidable challenge in many settings. Thus, currently available resources must be used more effectively, and new products and approaches likely to achieve these goals must be developed. This paper considers tools (both those available and others that may be required) to achieve and maintain malaria elimination. New diagnostics are needed to direct treatment and detect transmission potential; new drugs and vaccines to overcome existing resistance and protect against clinical and severe disease, as well as block transmission and prevent relapses; and new vector control measures to overcome insecticide resistance and more powerfully interrupt transmission. It is also essential that strategies for combining new and existing approaches are developed for different settings to maximise their longevity and effectiveness in areas with continuing transmission and receptivity. For areas where local elimination has been recently achieved, understanding which measures are needed to maintain elimination is necessary to prevent rebound and the reestablishment of transmission. This becomes increasingly important as more countries move towards elimination. PMID:29190291

  4. malERA: An updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication.

    PubMed

    2017-11-01

    Since the turn of the century, a remarkable expansion has been achieved in the range and effectiveness of products and strategies available to prevent, treat, and control malaria, including advances in diagnostics, drugs, vaccines, and vector control. These advances have once again put malaria elimination on the agenda. However, it is clear that even with the means available today, malaria control and elimination pose a formidable challenge in many settings. Thus, currently available resources must be used more effectively, and new products and approaches likely to achieve these goals must be developed. This paper considers tools (both those available and others that may be required) to achieve and maintain malaria elimination. New diagnostics are needed to direct treatment and detect transmission potential; new drugs and vaccines to overcome existing resistance and protect against clinical and severe disease, as well as block transmission and prevent relapses; and new vector control measures to overcome insecticide resistance and more powerfully interrupt transmission. It is also essential that strategies for combining new and existing approaches are developed for different settings to maximise their longevity and effectiveness in areas with continuing transmission and receptivity. For areas where local elimination has been recently achieved, understanding which measures are needed to maintain elimination is necessary to prevent rebound and the reestablishment of transmission. This becomes increasingly important as more countries move towards elimination.

  5. Malaria in India: the center for the study of complex malaria in India.

    PubMed

    Das, Aparup; Anvikar, Anupkumar R; Cator, Lauren J; Dhiman, Ramesh C; Eapen, Alex; Mishra, Neelima; Nagpal, Bhupinder N; Nanda, Nutan; Raghavendra, Kamaraju; Read, Andrew F; Sharma, Surya K; Singh, Om P; Singh, Vineeta; Sinnis, Photini; Srivastava, Harish C; Sullivan, Steven A; Sutton, Patrick L; Thomas, Matthew B; Carlton, Jane M; Valecha, Neena

    2012-03-01

    Malaria is a major public health problem in India and one which contributes significantly to the overall malaria burden in Southeast Asia. The National Vector Borne Disease Control Program of India reported ∼1.6 million cases and ∼1100 malaria deaths in 2009. Some experts argue that this is a serious underestimation and that the actual number of malaria cases per year is likely between 9 and 50 times greater, with an approximate 13-fold underestimation of malaria-related mortality. The difficulty in making these estimations is further exacerbated by (i) highly variable malaria eco-epidemiological profiles, (ii) the transmission and overlap of multiple Plasmodium species and Anopheles vectors, (iii) increasing antimalarial drug resistance and insecticide resistance, and (iv) the impact of climate change on each of these variables. Simply stated, the burden of malaria in India is complex. Here we describe plans for a Center for the Study of Complex Malaria in India (CSCMi), one of ten International Centers of Excellence in Malaria Research (ICEMRs) located in malarious regions of the world recently funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health. The CSCMi is a close partnership between Indian and United States scientists, and aims to address major gaps in our understanding of the complexity of malaria in India, including changing patterns of epidemiology, vector biology and control, drug resistance, and parasite genomics. We hope that such a multidisciplinary approach that integrates clinical and field studies with laboratory, molecular, and genomic methods will provide a powerful combination for malaria control and prevention in India. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Species composition, co-occurrence, association and affinity indices of mosquito larvae (Diptera: Culicidae) in Mazandaran Province, northern Iran.

    PubMed

    Nikookar, Seyed Hassan; Azari-Hamidian, Shahyad; Fazeli-Dinan, Mahmoud; Nasab, Seyed Nouraddin Mousavi; Aarabi, Mohsen; Ziapour, Seyyed Payman; Enayati, Ahmadali

    2016-05-01

    Although considerable progress has been made in the past years in management of mosquito borne diseases such as malaria, dengue, yellow fever and West Nile fever through research in biology and ecology of the vectors, these diseases are still major threats to human health. Therefore, more research is required for better management of the diseases. This investigation provides information on the composition, co-occurrence, association and affinity indices of mosquito larvae in Mazandaran Province, northern Iran. In a large scale field study, mosquito larvae were collected from 120 sentinel sites in 16 counties in Mazandaran Province, using standard 350 ml dipper. Sampling took place monthly from May to December 2014. Collected larvae were mounted on glass slides using de Faure's medium and were diagnosed using morphological characters. Totally, 19,840 larvae were collected including three genera and 16 species from 120 larval habitats, as follows: Anopheles claviger, Anopheles hyrcanus, Anopheles maculipennis s.l., Anopheles marteri, Anopheles plumbeus, Anopheles pseudopictus, Culex pipiens, Culex tritaeniorhynchus, Culex torrentium, Culex perexiguus, Culex territans, Culex mimeticus, Culex hortensis, Culiseta annulata, Culiseta longiareolata, and Culiseta morsitans. Predominant species were Cx. pipiens and An. maculipennis s.l. which show the highest co-occurrence. The pair of species An. hyrcanus/An. pseudopictus showed significant affinity and association. High co-occurrence of the predominant species Cx. pipiens and An. maculipennis s.l. in the study area is of considerable importance in terms of vector ecology. It was also revealed that An. pseudopictus/An. hyrcanus often occur sympatrically indicating their common habitat requirements. The information may be equally important when vector control measures are considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria

    USGS Publications Warehouse

    Woodworth, B.L.; Atkinson, C.T.; Lapointe, D.A.; Hart, P.J.; Spiegel, C.S.; Tweed, E.J.; Henneman, C.; LeBrun, J.; Denette, T.; DeMots, R.; Kozar, K.L.; Triglia, D.; Lease, Dan; Gregor, A.; Smith, T.; Duffy, D.

    2005-01-01

    The past quarter century has seen an unprecedented increase in the number of new and emerging infectious diseases throughout the world, with serious implications for human and wildlife populations. We examined host persistence in the face of introduced vector-borne diseases in Hawaii, where introduced avian malaria and introduced vectors have had a negative impact on most populations of Hawaiian forest birds for nearly a century. We studied birds, parasites, and vectors in nine study areas from 0 to 1,800 m on Mauna Loa Volcano, Hawaii from January to October, 2002. Contrary to predictions of prior work, we found that Hawaii amakihi (Hemignathus virens), a native species susceptible to malaria, comprised from 24.5% to 51.9% of the avian community at three low-elevation forests (55-270 m). Amakihi were more abundant at low elevations than at disease-free high elevations, and were resident and breeding there. Infection rates were 24-40% by microscopy and 55-83% by serology, with most infected individuals experiencing low-intensity, chronic infections. Mosquito trapping and diagnostics provided strong evidence for year-round local transmission. Moreover, we present evidence that Hawaii amakihi have increased in low elevation habitats on south-eastern Hawaii Island over the past decade. The recent emergent phenomenon of recovering amakihi populations at low elevations, despite extremely high prevalence of avian malaria, suggests that ecological or evolutionary processes acting on hosts or parasites have allowed this species to recolonize low-elevation habitats. A better understanding of the mechanisms allowing coexistence of hosts and parasites may ultimately lead to tools for mitigating disease impacts on wildlife and human populations.

  8. Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria

    PubMed Central

    Woodworth, Bethany L.; Atkinson, Carter T.; LaPointe, Dennis A.; Hart, Patrick J.; Spiegel, Caleb S.; Tweed, Erik J.; Henneman, Carlene; LeBrun, Jaymi; Denette, Tami; DeMots, Rachel; Kozar, Kelly L.; Triglia, Dennis; Lease, Dan; Gregor, Aaron; Smith, Tom; Duffy, David

    2005-01-01

    The past quarter century has seen an unprecedented increase in the number of new and emerging infectious diseases throughout the world, with serious implications for human and wildlife populations. We examined host persistence in the face of introduced vector-borne diseases in Hawaii, where introduced avian malaria and introduced vectors have had a negative impact on most populations of Hawaiian forest birds for nearly a century. We studied birds, parasites, and vectors in nine study areas from 0 to 1,800 m on Mauna Loa Volcano, Hawaii from January to October, 2002. Contrary to predictions of prior work, we found that Hawaii amakihi (Hemignathus virens), a native species susceptible to malaria, comprised from 24.5% to 51.9% of the avian community at three low-elevation forests (55–270 m). Amakihi were more abundant at low elevations than at disease-free high elevations, and were resident and breeding there. Infection rates were 24–40% by microscopy and 55–83% by serology, with most infected individuals experiencing low-intensity, chronic infections. Mosquito trapping and diagnostics provided strong evidence for year-round local transmission. Moreover, we present evidence that Hawaii amakihi have increased in low elevation habitats on southeastern Hawaii Island over the past decade. The recent emergent phenomenon of recovering amakihi populations at low elevations, despite extremely high prevalence of avian malaria, suggests that ecological or evolutionary processes acting on hosts or parasites have allowed this species to recolonize low-elevation habitats. A better understanding of the mechanisms allowing coexistence of hosts and parasites may ultimately lead to tools for mitigating disease impacts on wildlife and human populations. PMID:15668377

  9. Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria.

    PubMed

    Woodworth, Bethany L; Atkinson, Carter T; Lapointe, Dennis A; Hart, Patrick J; Spiegel, Caleb S; Tweed, Erik J; Henneman, Carlene; Lebrun, Jaymi; Denette, Tami; Demots, Rachel; Kozar, Kelly L; Triglia, Dennis; Lease, Dan; Gregor, Aaron; Smith, Tom; Duffy, David

    2005-02-01

    The past quarter century has seen an unprecedented increase in the number of new and emerging infectious diseases throughout the world, with serious implications for human and wildlife populations. We examined host persistence in the face of introduced vector-borne diseases in Hawaii, where introduced avian malaria and introduced vectors have had a negative impact on most populations of Hawaiian forest birds for nearly a century. We studied birds, parasites, and vectors in nine study areas from 0 to 1,800 m on Mauna Loa Volcano, Hawaii from January to October, 2002. Contrary to predictions of prior work, we found that Hawaii amakihi (Hemignathus virens), a native species susceptible to malaria, comprised from 24.5% to 51.9% of the avian community at three low-elevation forests (55-270 m). Amakihi were more abundant at low elevations than at disease-free high elevations, and were resident and breeding there. Infection rates were 24-40% by microscopy and 55-83% by serology, with most infected individuals experiencing low-intensity, chronic infections. Mosquito trapping and diagnostics provided strong evidence for year-round local transmission. Moreover, we present evidence that Hawaii amakihi have increased in low elevation habitats on southeastern Hawaii Island over the past decade. The recent emergent phenomenon of recovering amakihi populations at low elevations, despite extremely high prevalence of avian malaria, suggests that ecological or evolutionary processes acting on hosts or parasites have allowed this species to recolonize low-elevation habitats. A better understanding of the mechanisms allowing coexistence of hosts and parasites may ultimately lead to tools for mitigating disease impacts on wildlife and human populations.

  10. Assessment of mosquito larval productivity among different land use types for targeted malaria vector control in the western Kenya highlands.

    PubMed

    Kweka, Eliningaya J; Munga, Stephen; Himeidan, Yousif; Githeko, Andrew K; Yan, Guyuin

    2015-07-05

    Mosquito larval source management (LSM) is likely to be more effective when adequate information such as dominant species, seasonal abundance, type of productive habitat, and land use type are available for targeted sites. LSM has been an effective strategy for reducing malaria morbidity in both urban and rural areas in Africa where sufficient proportions of larval habitats can be targeted. In this study, we conducted longitudinal larval source surveillance in the western Kenya highlands, generating data which can be used to establish cost-effective targeted intervention tools. One hundred and twenty-four (124) positive larval habitats were monitored weekly and sampled for mosquito larvae over the 85-week period from 28 July 2009 to 3 March 2011. Two villages in the western Kenya highlands, Mbale and Iguhu, were included in the study. After preliminary sampling, habitats were classified into four types: hoof prints (n = 21; 17 % of total), swamps (n = 32; 26%), abandoned goldmines (n = 35; 28%) and drainage ditches (n = 36; 29%). Positive habitats occurred in two land use types: farmland (66) and pasture (58). No positive larval habitats occurred in shrub land or forest. A total of 46,846 larvae were sampled, of which 44.1% (20,907) were from abandoned goldmines, 30.9% (14,469) from drainage ditches, 22.4% (10,499) from swamps and 2.1% (971) from hoof prints. In terms of land use types, 57.2% (26,799) of the sampled larvae were from pasture and 42.8% (20,047) were from farmland. Of the specimens identified morphologically, 24,583 (52.5%) were Anopheles gambiae s.l., 11,901 (25.4%) were Culex quinquefasciatus, 5628 (12%) were An. funestus s.l. and 4734 (10.1%) were other anopheline species (An. coustani, An. squamosus, An. ziemanni or An. implexus). Malaria vector dynamics varied seasonally, with An.gambiae s.s. dominating during wet season and An.arabiensis during dry season. An increased proportion of An. arabiensis was observed compared to

  11. Patterns of insecticide resistance and knock down resistance (kdr) in malaria vectors An. arabiensis, An. coluzzii and An. gambiae from sympatric areas in Senegal.

    PubMed

    Niang, El Hadji Amadou; Konaté, Lassana; Diallo, Mawlouth; Faye, Ousmane; Dia, Ibrahima

    2016-02-05

    Malaria vector control in Africa relies on insecticides targeting adult mosquito vectors via insecticide treated nets or indoor residual spraying. Despite the proven efficacy of these strategies, the emergence and rapid rise in insecticide resistance in malaria vectors raises many concerns about their sustainability. Therefore, the monitoring of insecticide resistance is essential for resistance management strategies implementation. We investigated the kdr mutation frequencies in 20 sympatric sites of An. arabiensis Patton, An. coluzzii Coetzee & Wilkerson and An. gambiae Giles and its importance in malaria vector control by evaluating the susceptibility to insecticides in four representative sites in Senegal. Sibling species identification and kdr mutation detection were determined using polymerase chain reaction on mosquitoes collected using pyrethrum sprays collection in 20 sites belonging to two transects with differential insecticide selection pressure. The World Health Organization (WHO) tube test was used to determine phenotypic resistance of An. gambiae s.l. to DDT, deltamethrin, lambdacyholothrin, permethrin, bendiocarb and malathion in four representative sites. The L1014F kdr mutation was widely distributed and was predominant in An. gambiae in comparison to An. arabiensis and An. coluzzii. The bioassay tests showed a general trend with a resistance to DDT and pyrethroids and a susceptibility to organophosphate and carbamate according to WHO thresholds. For deltamethrin and permethrin, the two most used insecticides, no significant difference were observed either between the two transects or between mortality rates suggesting no differential selection pressures on malaria vectors. The study of the KD times showed similar trends as comparable levels of resistance were observed, the effect being more pronounced for permethrin. Our study showed a widespread resistance of malaria vectors to DDT and pyrethroids and a widespread distribution of the 1014F kdr

  12. Knowledge and beliefs about malaria transmission and practices for vector control in southern Mexico.

    PubMed

    Rodríguez, Américo David; Penilla, Rosa Patricia; Henry-Rodríguez, Mario; Hemingway, Janet; Francisco Betanzos, Angel; Hernández-Avila, Juan Eugenio

    2003-01-01

    To investigate the knowledge and beliefs about malaria transmission and practices for vector control in eight villages on the coastal plain of Chiapas, Mexico. A cross-sectional survey was conducted during May and June 1995 in Chiapas, Mexico. A questionnaire to investigate family structure, knowledge on malaria transmission, preventive measures and attitudes towards seeking treatment was applied to both family heads of a sample of households. Associations were analyzed by estimating odds ratios with confidence intervals and p values, using bivariate and multivariate logistic regression methods. Malaria knowledge was poor and only 48% associated malaria with mosquito bites. The perceived benefit of indoor residual spraying was associated to a reduction of mosquitoes, a reduction in the numbers of cockroaches and rats, but only 3% associated it directly with the prevention of malaria transmission. Most villagers (97.6%) agreed with the indoor residual spraying of insecticides. Ninety nine percent of villagers had mosquito bednets, 75.7% used them all year round. Other measures used by villagers to prevent mosquito bites were smoke and mosquito coils. Above 40% of villagers self-medicated when any member of the family had a fever episode, but 51% attended proper health services (community dispensary, private physician, health worker). About 61% used pesticides for agricultural or livestock purposes and 55% applied themselves. Women had a greater participation as family health promoters, with 70% of the housewives being in charge of the application of self-protection preventive measures. Educational programs aimed at increasing awareness on the participation of mosquitoes on malaria transmission could promote community participation in malaria control in the region. The English version of this paper is available too at: http://www.insp.mx/salud/index.html.

  13. Prevalence and distribution of anopheline mosquitoes in malaria endemic areas of Asir region, Saudi Arabia.

    PubMed

    Abdoon, A M M O; Alshahrani, A M

    2003-05-01

    To study the prevalence of anopheline mosquitoes, over 180 sites were sampled in malaria-endemic areas of Asir region, Saudi Arabia, during June 1999-April 2001. A total of 7085 larval and 754 adult female Anopheles spp. specimens were collected. Seven species were identified: An. dthali, An. rupicolus, An. sergentii, An. arabiensis, An. multicolor, An. turkhudi and An. pretoriensis. Both An. arabiensis and An. sergentii are known vectors of malaria in the region. An. dthali occurred in all sites and was the most abundant species. An. turkhudi was collected in low numbers as larvae only. An. multicolor and An. pretoriensis were recorded for the first time in Asir region. An. sergentii is a species of the northern areas of the region, whereas An. arabiensis was more prevalent in the south.

  14. Establishment of a large semi-field system for experimental study of African malaria vector ecology and control in Tanzania

    PubMed Central

    Ferguson, Heather M; Ng'habi, Kija R; Walder, Thomas; Kadungula, Demetrius; Moore, Sarah J; Lyimo, Issa; Russell, Tanya L; Urassa, Honorathy; Mshinda, Hassan; Killeen, Gerry F; Knols, Bart GJ

    2008-01-01

    Background Medical entomologists increasingly recognize that the ability to make inferences between laboratory experiments of vector biology and epidemiological trends observed in the field is hindered by a conceptual and methodological gap occurring between these approaches which prevents hypothesis-driven empirical research from being conducted on relatively large and environmentally realistic scales. The development of Semi-Field Systems (SFS) has been proposed as the best mechanism for bridging this gap. Semi-field systems are defined as enclosed environments, ideally situated within the natural ecosystem of a target disease vector and exposed to ambient environmental conditions, in which all features necessary for its life cycle completion are present. Although the value of SFS as a research tool for malaria vector biology is gaining recognition, only a few such facilities exist worldwide and are relatively small in size (< 100 m2). Methods The establishment of a 625 m2 state-of-the-art SFS for large-scale experimentation on anopheline mosquito ecology and control within a rural area of southern Tanzania, where malaria transmission intensities are amongst the highest ever recorded, is described. Results A greenhouse frame with walls of mosquito netting and a polyethylene roof was mounted on a raised concrete platform at the Ifakara Health Institute. The interior of the SFS was divided into four separate work areas that have been set up for a variety of research activities including mass-rearing for African malaria vectors under natural conditions, high throughput evaluation of novel mosquito control and trapping techniques, short-term assays of host-seeking behaviour and olfaction, and longer-term experimental investigation of anopheline population dynamics and gene flow within a contained environment that simulates a local village domestic setting. Conclusion The SFS at Ifakara was completed and ready for use in under two years. Preliminary observations

  15. Human Antibody Responses to the Anopheles Salivary gSG6-P1 Peptide: A Novel Tool for Evaluating the Efficacy of ITNs in Malaria Vector Control

    PubMed Central

    Drame, Papa Makhtar; Poinsignon, Anne; Besnard, Patrick; Cornelie, Sylvie; Le Mire, Jacques; Toto, Jean-Claude; Foumane, Vincent; Dos-Santos, Maria Adelaide; Sembène, Mbacké; Fortes, Filomeno; Simondon, Francois; Carnevale, Pierre; Remoue, Franck

    2010-01-01

    To optimize malaria control, WHO has prioritised the need for new indicators to evaluate the efficacy of malaria vector control strategies. The gSG6-P1 peptide from gSG6 protein of Anopheles gambiae salivary glands was previously designed as a specific salivary sequence of malaria vector species. It was shown that the quantification of human antibody (Ab) responses to Anopheles salivary proteins in general and especially to the gSG6-P1 peptide was a pertinent biomarker of human exposure to Anopheles. The present objective was to validate this indicator in the evaluation of the efficacy of Insecticide Treated Nets (ITNs). A longitudinal evaluation, including parasitological, entomological and immunological assessments, was conducted on children and adults from a malaria-endemic area before and after the introduction of ITNs. Significant decrease of anti-gSG6-P1 IgG response was observed just after the efficient ITNs use. Interestingly, specific IgG Ab level was especially pertinent to evaluate a short-time period of ITNs efficacy and at individual level. However, specific IgG rose back up within four months as correct ITN use waned. IgG responses to one salivary peptide could constitute a reliable biomarker for the evaluation of ITN efficacy, at short- and long-term use, and provide a valuable tool in malaria vector control based on a real measurement of human-vector contact. PMID:21179476

  16. Battling malaria iceberg incorporating strategic reforms in achieving Millennium Development Goals & malaria elimination in India

    PubMed Central

    Sharma, V. P.

    2012-01-01

    Malaria control in India has occupied high priority in health sector consuming major resources of the Central and State governments. Several new initiatives were launched from time to time supported by foreign aids but malaria situation has remained static and worsened in years of good rainfall. At times malaria relented temporarily but returned with vengeance at the local, regional and national level, becoming more resilient by acquiring resistance in the vectors and the parasites. National developments to improve the economy, without health impact assessment, have had adverse consequences by providing enormous breeding grounds for the vectors that have become refractory to interventions. As a result, malaria prospers and its control is in dilemma, as finding additional resources is becoming difficult with the ongoing financial crisis. Endemic countries must contribute to make up the needed resources, if malaria is to be contained. Malaria control requires long term planning, one that will reduce receptivity and vulnerability, and uninterrupted financial support for sustained interventions. While this seems to be a far cry, the environment is becoming more receptive for vectors, and epidemics visit the country diverting major resources in their containment, e.g. malaria, dengue and dengue haemorrhagic fevers, and Chikungunya virus infection. In the last six decades malaria has taken deep roots and diversified into various ecotypes, the control of these ecotypes requires local knowledge about the vectors and the parasites. In this review we outline the historical account of malaria and methods of control that have lifted the national economy in many countries. While battles against malaria should continue at the local level, there is a need for large scale environmental improvement. Global Fund for AIDS, Tuberculosis and Malaria has provided huge funds for malaria control worldwide touching US$ 2 billion in 2011. Unfortunately it is likely to decline to US$ 1

  17. Battling malaria iceberg incorporating strategic reforms in achieving Millennium Development Goals & malaria elimination in India.

    PubMed

    Sharma, V P

    2012-12-01

    Malaria control in India has occupied high priority in health sector consuming major resources of the Central and State governments. Several new initiatives were launched from time to time supported by foreign aids but malaria situation has remained static and worsened in years of good rainfall. At times malaria relented temporarily but returned with vengeance at the local, regional and national level, becoming more resilient by acquiring resistance in the vectors and the parasites. National developments to improve the economy, without health impact assessment, have had adverse consequences by providing enormous breeding grounds for the vectors that have become refractory to interventions. As a result, malaria prospers and its control is in dilemma, as finding additional resources is becoming difficult with the ongoing financial crisis. Endemic countries must contribute to make up the needed resources, if malaria is to be contained. Malaria control requires long term planning, one that will reduce receptivity and vulnerability, and uninterrupted financial support for sustained interventions. While this seems to be a far cry, the environment is becoming more receptive for vectors, and epidemics visit the country diverting major resources in their containment, e.g. malaria, dengue and dengue haemorrhagic fevers, and Chikungunya virus infection. In the last six decades malaria has taken deep roots and diversified into various ecotypes, the control of these ecotypes requires local knowledge about the vectors and the parasites. In this review we outline the historical account of malaria and methods of control that have lifted the national economy in many countries. While battles against malaria should continue at the local level, there is a need for large scale environmental improvement. Global Fund for AIDS, Tuberculosis and Malaria has provided huge funds for malaria control worldwide touching US$ 2 billion in 2011. Unfortunately it is likely to decline to US$ 1

  18. The Influence of Dams on Malaria Transmission in Sub-Saharan Africa.

    PubMed

    Kibret, Solomon; Wilson, G Glenn; Ryder, Darren; Tekie, Habte; Petros, Beyene

    2017-06-01

    The construction of dams in sub-Saharan Africa is pivotal for food security and alleviating poverty in the region. However, the unintended adverse public health implications of extending the spatial distribution of water infrastructure are poorly documented and may minimize the intended benefits of securing water supplies. This paper reviews existing studies on the influence of dams on the spatial distribution of malaria parasites and vectors in sub-Saharan Africa. Common themes emerging from the literature were that dams intensified malaria transmission in semi-arid and highland areas with unstable malaria transmission but had little or no impact in areas with perennial transmission. Differences in the impacts of dams resulted from the types and characteristics of malaria vectors and their breeding habitats in different settings of sub-Saharan Africa. A higher abundance of a less anthropophilic Anopheles arabiensis than a highly efficient vector A. gambiae explains why dams did not increase malaria in stable areas. In unstable areas where transmission is limited by availability of water bodies for vector breeding, dams generally increase malaria by providing breeding habitats for prominent malaria vector species. Integrated vector control measures that include reservoir management, coupled with conventional malaria control strategies, could optimize a reduction of the risk of malaria transmission around dams in the region.

  19. Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi?

    PubMed

    Murugan, Kadarkarai; Samidoss, Christina Mary; Panneerselvam, Chellasamy; Higuchi, Akon; Roni, Mathath; Suresh, Udaiyan; Chandramohan, Balamurugan; Subramaniam, Jayapal; Madhiyazhagan, Pari; Dinesh, Devakumar; Rajaganesh, Rajapandian; Alarfaj, Abdullah A; Nicoletti, Marcello; Kumar, Suresh; Wei, Hui; Canale, Angelo; Mehlhorn, Heinz; Benelli, Giovanni

    2015-11-01

    Malaria, the most widespread mosquito-borne disease, affects 350-500 million people each year. Eco-friendly control tools against malaria vectors are urgently needed. This research proposed a novel method of plant-mediated synthesis of silver nanoparticles (AgNP) using a cheap seaweed extract of Ulva lactuca, acting as a reducing and capping agent. AgNP were characterized by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The U. lactuca extract and the green-synthesized AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi. In mosquitocidal assays, LC50 values of U. lactuca extract against A. stephensi larvae and pupae were 18.365 ppm (I instar), 23.948 ppm (II), 29.701 ppm (III), 37.517 ppm (IV), and 43.012 ppm (pupae). LC50 values of AgNP against A. stephensi were 2.111 ppm (I), 3.090 ppm (II), 4.629 ppm (III), 5.261 ppm (IV), and 6.860 ppm (pupae). Smoke toxicity experiments conducted against mosquito adults showed that U. lactuca coils evoked mortality rates comparable to the permethrin-based positive control (66, 51, and 41%, respectively). Furthermore, the antiplasmodial activity of U. lactuca extract and U. lactuca-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. Fifty percent inhibitory concentration (IC50) values of U. lactuca were 57.26 μg/ml (CQ-s) and 66.36 μg/ml (CQ-r); U. lactuca-synthesized AgNP IC50 values were 76.33 μg/ml (CQ-s) and 79.13 μg/ml (CQ-r). Overall, our results highlighted out that U. lactuca-synthesized AgNP may be employed to develop newer and safer agents for malaria control.

  20. Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes.

    PubMed

    Murugan, Kadarkarai; Benelli, Giovanni; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Jeyalalitha, Tirupathi; Dinesh, Devakumar; Nicoletti, Marcello; Hwang, Jiang-Shiou; Suresh, Udaiyan; Madhiyazhagan, Pari

    2015-06-01

    Plant-borne compounds can be employed to synthesize mosquitocidal nanoparticles that are effective at low doses. However, how they affect the activity of mosquito predators in the aquatic environment is unknown. In this study, we synthesized gold nanoparticles (AuN) using the leaf extract of Cymbopogon citratus, which acted as a reducing and capping agent. AuN were characterized by a variety of biophysical methods and sorted for size in order to confirm structural integrity. C. citratus extract and biosynthesized AuN were tested against larvae and pupae of the malaria vector Anopheles stephensi and the dengue vector Aedes aegypti. LC₅₀ of C. citratus extract ranged from 219.32 ppm to 471.36 ppm. LC₅₀ of AuN ranged from 18.80 ppm to 41.52 ppm. In laboratory, the predatory efficiency of the cyclopoid crustacean Mesocyclops aspericornis against A. stephensi larvae was 26.8% (larva I) and 17% (larva II), while against A. aegypti was 56% (I) and 35.1% (II). Predation against late-instar larvae was minimal. In AuN-contaminated environment,predation efficiency against A. stephensi was 45.6% (I) and 26.7% (II), while against A. aegypti was 77.3% (I) and 51.6% (II). Overall, low doses of AuN may help to boost the control of Anopheles and Aedes larval populations in copepod-based control programs. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The Value of Information in Decision-Analytic Modeling for Malaria Vector Control in East Africa.

    PubMed

    Kim, Dohyeong; Brown, Zachary; Anderson, Richard; Mutero, Clifford; Miranda, Marie Lynn; Wiener, Jonathan; Kramer, Randall

    2017-02-01

    Decision analysis tools and mathematical modeling are increasingly emphasized in malaria control programs worldwide to improve resource allocation and address ongoing challenges with sustainability. However, such tools require substantial scientific evidence, which is costly to acquire. The value of information (VOI) has been proposed as a metric for gauging the value of reduced model uncertainty. We apply this concept to an evidenced-based Malaria Decision Analysis Support Tool (MDAST) designed for application in East Africa. In developing MDAST, substantial gaps in the scientific evidence base were identified regarding insecticide resistance in malaria vector control and the effectiveness of alternative mosquito control approaches, including larviciding. We identify four entomological parameters in the model (two for insecticide resistance and two for larviciding) that involve high levels of uncertainty and to which outputs in MDAST are sensitive. We estimate and compare a VOI for combinations of these parameters in evaluating three policy alternatives relative to a status quo policy. We find having perfect information on the uncertain parameters could improve program net benefits by up to 5-21%, with the highest VOI associated with jointly eliminating uncertainty about reproductive speed of malaria-transmitting mosquitoes and initial efficacy of larviciding at reducing the emergence of new adult mosquitoes. Future research on parameter uncertainty in decision analysis of malaria control policy should investigate the VOI with respect to other aspects of malaria transmission (such as antimalarial resistance), the costs of reducing uncertainty in these parameters, and the extent to which imperfect information about these parameters can improve payoffs. © 2016 Society for Risk Analysis.

  2. Deforestation and Malaria on the Amazon Frontier: Larval Clustering of Anopheles darlingi (Diptera: Culicidae) Determines Focal Distribution of Malaria

    PubMed Central

    Barros, Fábio S. M.; Honório, Nildimar A.

    2015-01-01

    We performed bimonthly mosquito larval collections during 1 year, in an agricultural settlement in the Brazilian Amazon, as well as an analysis of malaria incidence in neighboring houses. Water collections located at forest fringes were more commonly positive for Anopheles darlingi larvae and Kulldorff spatial analysis pinpointed significant larval clusters at sites directly beneath forest fringes, which were called larval “hotspots.” Remote sensing identified 43 “potential” hotspots. Sampling of these areas revealed an 85.7% positivity rate for A. darlingi larvae. Malaria was correlated with shorter distances to potential hotpots and settlers living within 400 m of potential hotspots had a 2.60 higher risk of malaria. Recently arrived settlers, usually located closer to the tip of the triangularly shaped deforestation imprints of side roads, may be more exposed to malaria due to their proximity to the forest fringe. As deforestation progresses, transmission decreases. However, forest remnants inside deforested areas conferred an increased risk of malaria. We propose a model for explaining frontier malaria in the Amazon: because of adaptation of A. darlingi to the forest fringe ecotone, humans are exposed to an increased transmission risk when in proximity to these areas, especially when small dams are created on naturally running water collections. PMID:26416110

  3. Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia.

    PubMed

    Syafruddin, Din; Hidayati, Anggi P N; Asih, Puji B S; Hawley, William A; Sukowati, Supratman; Lobo, Neil F

    2010-11-08

    Malaria is a serious public health problem in Indonesia, particularly in areas outside Java and Bali. The spread of resistance to the currently available anti-malarial drugs or insecticides used for mosquito control would cause an increase in malaria transmission. To better understand patterns of transmission and resistance in Indonesia, an integrated mosquito survey was conducted in three areas with different malaria endemicities, Purworejo in Central Java, South Lampung District in Sumatera and South Halmahera District in North Mollucca. Mosquitoes were collected from the three areas through indoor and outdoor human landing catches (HLC) and indoor restinging catches. Specimens were identified morphologically by species and kept individually in 1.5 ml Eppendorf microtube. A fragment of the VGSC gene from 95 mosquito samples was sequenced and kdr allelic variation determined. The molecular analysis of these anopheline mosquitoes revealed the existence of the 1014F allele in 4 major malaria vectors from South Lampung. These species include, Anopheles sundaicus, Anopheles aconitus, Anopheles subpictus and Anopheles vagus. The 1014F allele was not found in the other areas. The finding documents the presence of this mutant allele in Indonesia, and implies that selection pressure on the Anopheles population in this area has occurred. Further studies to determine the impact of the resistance allele on the efficacy of pyrethroids in control programmes are needed.

  4. Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia

    PubMed Central

    2010-01-01

    Background Malaria is a serious public health problem in Indonesia, particularly in areas outside Java and Bali. The spread of resistance to the currently available anti-malarial drugs or insecticides used for mosquito control would cause an increase in malaria transmission. To better understand patterns of transmission and resistance in Indonesia, an integrated mosquito survey was conducted in three areas with different malaria endemicities, Purworejo in Central Java, South Lampung District in Sumatera and South Halmahera District in North Mollucca. Methods Mosquitoes were collected from the three areas through indoor and outdoor human landing catches (HLC) and indoor restinging catches. Specimens were identified morphologically by species and kept individually in 1.5 ml Eppendorf microtube. A fragment of the VGSC gene from 95 mosquito samples was sequenced and kdr allelic variation determined. Results The molecular analysis of these anopheline mosquitoes revealed the existence of the 1014F allele in 4 major malaria vectors from South Lampung. These species include, Anopheles sundaicus, Anopheles aconitus, Anopheles subpictus and Anopheles vagus. The 1014F allele was not found in the other areas. Conclusion The finding documents the presence of this mutant allele in Indonesia, and implies that selection pressure on the Anopheles population in this area has occurred. Further studies to determine the impact of the resistance allele on the efficacy of pyrethroids in control programmes are needed. PMID:21054903

  5. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium.

    PubMed

    Rodríguez, Dolores; González-Aseguinolaza, Gloria; Rodríguez, Juan R; Vijayan, Aneesh; Gherardi, Magdalena; Rueda, Paloma; Casal, J Ignacio; Esteban, Mariano

    2012-01-01

    With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8(+) T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+) T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.

  6. Insecticide Resistance in Areas under Investigation by the International Centers of Excellence for Malaria Research: A Challenge for Malaria Control and Elimination

    PubMed Central

    Quiñones, Martha L.; Norris, Douglas E.; Conn, Jan E.; Moreno, Marta; Burkot, Thomas R.; Bugoro, Hugo; Keven, John B.; Cooper, Robert; Yan, Guiyun; Rosas, Angel; Palomino, Miriam; Donnelly, Martin J.; Mawejje, Henry D.; Eapen, Alex; Montgomery, Jacqui; Coulibaly, Mamadou B.; Beier, John C.; Kumar, Ashwani

    2015-01-01

    Scale-up of the main vector control interventions, residual insecticides sprayed on walls or structures and/or impregnated in bed nets, together with prompt diagnosis and effective treatment, have led to a global reduction in malaria transmission. However, resistance in vectors to almost all classes of insecticides, particularly to the synthetic pyrethroids, is posing a challenge to the recent trend of declining malaria. Ten International Centers of Excellence for Malaria Research (ICEMR) located in the most malaria-endemic regions of the world are currently addressing insecticide resistance in the main vector populations, which not only threaten hope for elimination in malaria-endemic countries but also may lead to reversal where notable reductions in malaria have been documented. This communication illustrates the current status of insecticide resistance with a focus on the countries where activities are ongoing for 9 out of the 10 ICEMRs. Most of the primary malaria vectors in the ICEMR countries exhibit insecticide resistance, albeit of varying magnitude, and spanning all mechanisms of resistance. New alternatives to the insecticides currently available are still to be fully developed for deployment. Integrated vector management principles need to be better understood and encouraged, and viable insecticide resistance management strategies need to be developed and implemented. PMID:26259947

  7. A Regional Model for Malaria Vector Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology Simulations.

    PubMed

    Asare, Ernest Ohene; Tompkins, Adrian Mark; Bomblies, Arne

    2016-01-01

    Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture.

  8. A Regional Model for Malaria Vector Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology Simulations

    PubMed Central

    Asare, Ernest Ohene; Tompkins, Adrian Mark; Bomblies, Arne

    2016-01-01

    Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture. PMID:27003834

  9. Plasmodium falciparum Malaria, Southern Algeria, 2007

    PubMed Central

    Gassen, Ibrahim; Khechache, Yacine; Lamali, Karima; Tchicha, Boualem; Brengues, Cécile; Menegon, Michela; Severini, Carlo; Fontenille, Didier; Harrat, Zoubir

    2010-01-01

    An outbreak of Plasmodium falciparum malaria occurred in Tinzaouatine in southern Algeria in 2007. The likely vector, Anopheles gambiae mosquitoes, had not been detected in Algeria. Genes for resistance to chloroquine were detected in the parasite. The outbreak shows the potential for an increase in malaria vectors in Algeria. PMID:20113565

  10. Migration and Malaria in Europe

    PubMed Central

    Monge-Maillo, Begoña; López-Vélez, Rogelio

    2012-01-01

    The proportion of imported malaria cases due to immigrants in Europe has increased during the lasts decades, with higher rates associated with settled immigrants who travel to visit friends and relatives (VFRs) in their country of origin. Cases are mainly due to P. falciparum and Sub-Saharan Africa is the most common origin. Clinically, malaria in immigrants is characterised by a mild clinical presentation including asymptomatic or delayed malaria cases and low parasitic levels. These characteristics may be explained by a semi-immunity acquired after long periods of time exposed to stable malaria transmission. Malaria cases among immigrants, even asymptomatic patients with sub-microscopic parasitemia, could increase the risk of transmission and cause the reintroduction of malaria in certain areas that have adequate vectors and climate conditions. Moreover, imported malaria cases in immigrants can also play an important role in the non-vector transmission out of endemic areas, through blood transfusions, organ transplantation or congenital transmission or occupational exposures. Consequently, outside of endemic areas, malaria screening should be carried out among recently arrived immigrants coming from malaria endemic countries. The aim of screening is to reduce the risk of clinical malaria in the individual as well as to prevent autochthonous transmission of malaria in areas where it has been eradicated. PMID:22536477

  11. Polyamidoamine nanoparticles as nanocarriers for the drug delivery to malaria parasite stages in the mosquito vector.

    PubMed

    Urbán, Patricia; Ranucci, Elisabetta; Fernàndez-Busquets, Xavier

    2015-11-01

    Malaria is arguably one of the main medical concerns worldwide because of the numbers of people affected, the severity of the disease and the complexity of the life cycle of its causative agent, the protist Plasmodium spp. With the advent of nanoscience, renewed hopes have appeared of finally obtaining the long sought-after magic bullet against malaria in the form of a nanovector for the targeted delivery of antimalarial compounds exclusively to Plasmodium-infected cells, thus increasing drug efficacy and minimizing the induction of resistance to newly developed therapeutic agents. Polyamidoamine-derived nanovectors combine into a single chemical structure drug encapsulating capacity, antimalarial activity, low unspecific toxicity, specific targeting to Plasmodium, optimal in vivo activity and affordable synthesis cost. After having shown their efficacy in targeting drugs to intraerythrocytic parasites, now polyamidoamines face the challenge of spearheading a new generation of nanocarriers aiming at the malaria parasite stages in the mosquito vector.

  12. Chromosomal Inversions, Natural Selection and Adaptation in the Malaria Vector Anopheles funestus

    PubMed Central

    Ayala, Diego; Fontaine, Michael C.; Cohuet, Anna; Fontenille, Didier; Vitalis, Renaud; Simard, Frédéric

    2011-01-01

    Chromosomal polymorphisms, such as inversions, are presumably involved in the rapid adaptation of populations to local environmental conditions. Reduced recombination between alternative arrangements in heterozygotes may protect sets of locally adapted genes, promoting ecological divergence and potentially leading to reproductive isolation and speciation. Through a comparative analysis of chromosomal inversions and microsatellite marker polymorphisms, we hereby present biological evidence that strengthens this view in the mosquito Anopheles funestus s.s, one of the most important and widespread malaria vectors in Africa. Specimens were collected across a wide range of geographical, ecological, and climatic conditions in Cameroon. We observed a sharp contrast between population structure measured at neutral microsatellite markers and at chromosomal inversions. Microsatellite data detected only a weak signal for population structuring among geographical zones (FST < 0.013, P < 0.01). By contrast, strong differentiation among ecological zones was revealed by chromosomal inversions (FST > 0.190, P < 0.01). Using standardized estimates of FST, we show that inversions behave at odds with neutral expectations strongly suggesting a role of environmental selection in shaping their distribution. We further demonstrate through canonical correspondence analysis that heterogeneity in eco-geographical variables measured at specimen sampling sites explained 89% of chromosomal variance in A. funestus. These results are in agreement with a role of chromosomal inversions in ecotypic adaptation in this species. We argue that this widespread mosquito represents an interesting model system for the study of chromosomal speciation mechanisms and should provide ample opportunity for comparative studies on the evolution of reproductive isolation and speciation in major human malaria vectors. PMID:20837604

  13. The Anopheles gambiae transcriptome - a turning point for malaria control.

    PubMed

    Domingos, A; Pinheiro-Silva, R; Couto, J; do Rosário, V; de la Fuente, J

    2017-04-01

    Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence. © 2017 The Royal Entomological Society.

  14. A global model of malaria climate sensitivity: comparing malaria response to historic climate data based on simulation and officially reported malaria incidence.

    PubMed

    Edlund, Stefan; Davis, Matthew; Douglas, Judith V; Kershenbaum, Arik; Waraporn, Narongrit; Lessler, Justin; Kaufman, James H

    2012-09-18

    The role of the Anopheles vector in malaria transmission and the effect of climate on Anopheles populations are well established. Models of the impact of climate change on the global malaria burden now have access to high-resolution climate data, but malaria surveillance data tends to be less precise, making model calibration problematic. Measurement of malaria response to fluctuations in climate variables offers a way to address these difficulties. Given the demonstrated sensitivity of malaria transmission to vector capacity, this work tests response functions to fluctuations in land surface temperature and precipitation. This study of regional sensitivity of malaria incidence to year-to-year climate variations used an extended Macdonald Ross compartmental disease model (to compute malaria incidence) built on top of a global Anopheles vector capacity model (based on 10 years of satellite climate data). The predicted incidence was compared with estimates from the World Health Organization and the Malaria Atlas. The models and denominator data used are freely available through the Eclipse Foundation's Spatiotemporal Epidemiological Modeller (STEM). Although the absolute scale factor relating reported malaria to absolute incidence is uncertain, there is a positive correlation between predicted and reported year-to-year variation in malaria burden with an averaged root mean square (RMS) error of 25% comparing normalized incidence across 86 countries. Based on this, the proposed measure of sensitivity of malaria to variations in climate variables indicates locations where malaria is most likely to increase or decrease in response to specific climate factors. Bootstrapping measures the increased uncertainty in predicting malaria sensitivity when reporting is restricted to national level and an annual basis. Results indicate a potential 20x improvement in accuracy if data were available at the level ISO 3166-2 national subdivisions and with monthly time sampling. The

  15. Hydrological and geomorphological controls of malaria transmission

    NASA Astrophysics Data System (ADS)

    Smith, M. W.; Macklin, M. G.; Thomas, C. J.

    2013-01-01

    Malaria risk is linked inextricably to the hydrological and geomorphological processes that form vector breeding sites. Yet environmental controls of malaria transmission are often represented by temperature and rainfall amounts, ignoring hydrological and geomorphological influences altogether. Continental-scale studies incorporate hydrology implicitly through simple minimum rainfall thresholds, while community-scale coupled hydrological and entomological models do not represent the actual diversity of the mosquito vector breeding sites. The greatest range of malaria transmission responses to environmental factors is observed at the catchment scale where seemingly contradictory associations between rainfall and malaria risk can be explained by hydrological and geomorphological processes that govern surface water body formation and persistence. This paper extends recent efforts to incorporate ecological factors into malaria-risk models, proposing that the same detailed representation be afforded to hydrological and, at longer timescales relevant for predictions of climate change impacts, geomorphological processes. We review existing representations of environmental controls of malaria and identify a range of hydrologically distinct vector breeding sites from existing literature. We illustrate the potential complexity of interactions among hydrology, geomorphology and vector breeding sites by classifying a range of water bodies observed in a catchment in East Africa. Crucially, the mechanisms driving surface water body formation and destruction must be considered explicitly if we are to produce dynamic spatial models of malaria risk at catchment scales.

  16. Biodiversity Can Help Prevent Malaria Outbreaks in Tropical Forests

    PubMed Central

    Laporta, Gabriel Zorello; de Prado, Paulo Inácio Knegt Lopez; Kraenkel, Roberto André; Coutinho, Renato Mendes; Sallum, Maria Anice Mureb

    2013-01-01

    Background Plasmodium vivax is a widely distributed, neglected parasite that can cause malaria and death in tropical areas. It is associated with an estimated 80–300 million cases of malaria worldwide. Brazilian tropical rain forests encompass host- and vector-rich communities, in which two hypothetical mechanisms could play a role in the dynamics of malaria transmission. The first mechanism is the dilution effect caused by presence of wild warm-blooded animals, which can act as dead-end hosts to Plasmodium parasites. The second is diffuse mosquito vector competition, in which vector and non-vector mosquito species compete for blood feeding upon a defensive host. Considering that the World Health Organization Malaria Eradication Research Agenda calls for novel strategies to eliminate malaria transmission locally, we used mathematical modeling to assess those two mechanisms in a pristine tropical rain forest, where the primary vector is present but malaria is absent. Methodology/Principal Findings The Ross–Macdonald model and a biodiversity-oriented model were parameterized using newly collected data and data from the literature. The basic reproduction number () estimated employing Ross–Macdonald model indicated that malaria cases occur in the study location. However, no malaria cases have been reported since 1980. In contrast, the biodiversity-oriented model corroborated the absence of malaria transmission. In addition, the diffuse competition mechanism was negatively correlated with the risk of malaria transmission, which suggests a protective effect provided by the forest ecosystem. There is a non-linear, unimodal correlation between the mechanism of dead-end transmission of parasites and the risk of malaria transmission, suggesting a protective effect only under certain circumstances (e.g., a high abundance of wild warm-blooded animals). Conclusions/Significance To achieve biological conservation and to eliminate Plasmodium parasites in human populations

  17. Biodiversity can help prevent malaria outbreaks in tropical forests.

    PubMed

    Laporta, Gabriel Zorello; Lopez de Prado, Paulo Inácio Knegt; Kraenkel, Roberto André; Coutinho, Renato Mendes; Sallum, Maria Anice Mureb

    2013-01-01

    Plasmodium vivax is a widely distributed, neglected parasite that can cause malaria and death in tropical areas. It is associated with an estimated 80-300 million cases of malaria worldwide. Brazilian tropical rain forests encompass host- and vector-rich communities, in which two hypothetical mechanisms could play a role in the dynamics of malaria transmission. The first mechanism is the dilution effect caused by presence of wild warm-blooded animals, which can act as dead-end hosts to Plasmodium parasites. The second is diffuse mosquito vector competition, in which vector and non-vector mosquito species compete for blood feeding upon a defensive host. Considering that the World Health Organization Malaria Eradication Research Agenda calls for novel strategies to eliminate malaria transmission locally, we used mathematical modeling to assess those two mechanisms in a pristine tropical rain forest, where the primary vector is present but malaria is absent. The Ross-Macdonald model and a biodiversity-oriented model were parameterized using newly collected data and data from the literature. The basic reproduction number ([Formula: see text]) estimated employing Ross-Macdonald model indicated that malaria cases occur in the study location. However, no malaria cases have been reported since 1980. In contrast, the biodiversity-oriented model corroborated the absence of malaria transmission. In addition, the diffuse competition mechanism was negatively correlated with the risk of malaria transmission, which suggests a protective effect provided by the forest ecosystem. There is a non-linear, unimodal correlation between the mechanism of dead-end transmission of parasites and the risk of malaria transmission, suggesting a protective effect only under certain circumstances (e.g., a high abundance of wild warm-blooded animals). To achieve biological conservation and to eliminate Plasmodium parasites in human populations, the World Health Organization Malaria Eradication

  18. Malaria Vector Surveillance in Ganghwa-do, a Malaria-Endemic Area in the Republic of Korea

    PubMed Central

    Oh, Sung Suck; Hur, Myung Je; Joo, Gwang Sig; Kim, Sung Tae; Go, Jong Myoung; Kim, Yong Hee; Lee, Wook Gyo

    2010-01-01

    We investigated the seasonality of Anopheles mosquitoes, including its species composition, density, parity, and population densities of mosquitoes infected with the parasite in Ganghwa-do (Island), a vivax malaria endemic area in the Republic of Korea. Mosquitoes were collected periodically with a dry-ice-tent trap and a blacklight trap during the mosquito season (April-October) in 2008. Anopheles sinensis (94.9%) was the most abundant species collected, followed by Anopheles belenrae (3.8%), Anopheles pullus (1.2%), and Anopheles lesteri (0.1%). Hibernating Anopheles mosquitoes were also collected from December 2007 to March 2008. An. pullus (72.1%) was the most frequently collected, followed by An. sinensis (18.4%) and An. belenrae (9.5%). The composition of Anopheles species differed between the mosquito season and hibernation seasons. The parous rate fluctuated from 0% to 92.9%, and the highest rate was recorded on 10 September 2008. Sporozoite infections were detected by PCR in the head and thorax of female Anopheles mosquitoes. The annual sporozoite rate of mosquitoes was 0.11% (2 of 1,845 mosquitoes). The 2 mosquitoes that tested positive for sporozoites were An. sinensis. Malarial infections in anopheline mosquitoes from a population pool were also tried irrespective of the mosquito species. Nine of 2,331 pools of Anopheles mosquitoes were positive. From our study, it can be concluded that An. sinensis, which was the predominant vector species and confirmed as sporozoite-infected, plays an important role in malaria transmission in Ganghwa-do. PMID:20333283

  19. Microgeographic Genetic Variation of the Malaria Vector Anopheles darlingi Root (Diptera: Culicidae) from Córdoba and Antioquia, Colombia

    PubMed Central

    Gutiérrez, Lina A.; Gómez, Giovan F.; González, John J.; Castro, Martha I.; Luckhart, Shirley; Conn, Jan E.; Correa, Margarita M.

    2010-01-01

    Anopheles darlingi is an important vector of Plasmodium spp. in several malaria-endemic regions of Colombia. This study was conducted to test genetic variation of An. darlingi at a microgeographic scale (approximately 100 km) from localities in Córdoba and Antioquia states, in western Colombia, to better understand the potential contribution of population genetics to local malaria control programs. Microsatellite loci: nuclear white and cytochrome oxidase subunit I (COI) gene sequences were analyzed. The northern white gene lineage was exclusively distributed in Córdoba and Antioquia and shared COI haplotypes were highly represented in mosquitoes from both states. COI analyses showed these An. darlingi are genetically closer to Central American populations than southern South American populations. Overall microsatellites and COI analysis showed low to moderate genetic differentiation among populations in northwestern Colombia. Given the existence of high gene flow between An. darlingi populations of Córdoba and Antioquia, integrated vector control strategies could be developed in this region of Colombia. PMID:20595475

  20. Outcome of capacity building intervention for malaria vector surveillance, control and research in Nigerian higher institutions.

    PubMed

    Oduola, Adedayo O; Obembe, Abiodun; Adelaja, Olukayode J; Adeneye, Adeniyi K; Akilah, Joel; Awolola, Taiwo S

    2018-05-15

    Despite the availability of effective malaria vector control intervention tools, implementation of control programmes in Nigeria is challenged by inadequate entomological surveillance data. This study was designed to assess and build the existing capacity for malaria vector surveillance, control and research (MVSC&R) in Nigerian institutions. Application call to select qualified candidates for the capacity building (CB) intervention training programme was advertised in a widely read newspaper and online platforms of national and international professional bodies. Two trainings were organized to train selected applicants on field activities, laboratory tools and techniques relevant to malaria vector surveillance and control research. A semi-structured questionnaire was administered to collect data on socio-demographic characteristics of participants, knowledge and access of participants to field and laboratory techniques in MVSC&R. Similarly, pre and post-intervention tests were conducted to assess the performance and improvement in knowledge of the participants. Mentoring activities to sustain CB activities after the training were also carried out. A total of 23 suitable applicants were shortlisted out of the 89 applications received. The South West, South East and North Central geopolitical zones of the country had the highest applications and the highest selected number of qualified applicants compared to the South South and North East geopolitical zones. The distribution with respect to gender indicated that males (72.7%) were more than females (27.3%). Mean score of participants' knowledge of field techniques was 27.8 (± 10.8) before training and 67.7 (± 9.8) after the training. Similarly, participants' knowledge on laboratory techniques also improved from 37.4 (± 5.6) to 77.2 (± 10.8). The difference in the mean scores at pre and post-test was statistically significant (p < 0.05). Access of participants to laboratory and field tools used in

  1. Screening Mosquito House Entry Points as a Potential Method for Integrated Control of Endophagic Filariasis, Arbovirus and Malaria Vectors

    PubMed Central

    Ogoma, Sheila B.; Lweitoijera, Dickson W.; Ngonyani, Hassan; Furer, Benjamin; Russell, Tanya L.; Mukabana, Wolfgang R.; Killeen, Gerry F.; Moore, Sarah J.

    2010-01-01

    Background Partial mosquito-proofing of houses with screens and ceilings has the potential to reduce indoor densities of malaria mosquitoes. We wish to measure whether it will also reduce indoor densities of vectors of neglected tropical diseases. Methodology The main house entry points preferred by anopheline and culicine vectors were determined through controlled experiments using specially designed experimental huts and village houses in Lupiro village, southern Tanzania. The benefit of screening different entry points (eaves, windows and doors) using PVC-coated fibre glass netting material in terms of reduced indoor densities of mosquitoes was evaluated compared to the control. Findings 23,027 mosquitoes were caught with CDC light traps; 77.9% (17,929) were Anopheles gambiae sensu lato, of which 66.2% were An. arabiensis and 33.8% An. gambiae sensu stricto. The remainder comprised 0.2% (50) An. funestus, 10.2% (2359) Culex spp. and 11.6% (2664) Mansonia spp. Screening eaves reduced densities of Anopheles gambiae s. l. (Relative ratio (RR)  = 0.91; 95% CI = 0.84, 0.98; P = 0.01); Mansonia africana (RR = 0.43; 95% CI = 0.26, 0.76; P<0.001) and Mansonia uniformis (RR = 0.37; 95% CI = 0.25, 0.56; P<0.001) but not Culex quinquefasciatus, Cx. univittatus or Cx. theileri. Numbers of these species were reduced by screening windows and doors but this was not significant. Significance This study confirms that across Africa, screening eaves protects households against important mosquito vectors of filariasis, Rift Valley Fever and O'Nyong nyong as well as malaria. While full house screening is required to exclude Culex species mosquitoes, screening of eaves alone or fitting ceilings has considerable potential for integrated control of other vectors of filariasis, arbovirus and malaria. PMID:20689815

  2. Vaccine Efficacy against Malaria by the Combination of Porcine Parvovirus-Like Particles and Vaccinia Virus Vectors Expressing CS of Plasmodium

    PubMed Central

    Rodríguez, Dolores; González-Aseguinolaza, Gloria; Rodríguez, Juan R.; Vijayan, Aneesh; Gherardi, Magdalena; Rueda, Paloma; Casal, J. Ignacio; Esteban, Mariano

    2012-01-01

    With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8+ T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8+ T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria. PMID:22529915

  3. Ivermectin susceptibility, sporontocidal effect, and inhibition of time to re-feed in the Amazonian malaria vector Anopheles darlingi.

    PubMed

    Kobylinski, Kevin C; Escobedo-Vargas, Karín S; López-Sifuentes, Victor M; Durand, Salomón; Smith, Edward S; Baldeviano, G Christian; Gerbasi, Robert V; Ballard, Sara-Blythe; Stoops, Craig A; Vásquez, Gissella M

    2017-11-21

    Outdoor malaria transmission hinders malaria elimination efforts in the Amazon region and novel vector control tools are needed. Ivermectin mass drug administration (MDA) to humans kills wild Anopheles, targets outdoor-feeding vectors, and can suppress malaria parasite transmission. Laboratory investigations were performed to determine ivermectin susceptibility, sporontocidal effect and inhibition of time to re-feed for the primary Amazonian malaria vector, Anopheles darlingi. To assess ivermectin susceptibility, various concentrations of ivermectin were mixed in human blood and fed to An. darlingi. Mosquito survival was monitored daily for 7 days and a non-linear mixed effects model with Probit analysis was used to calculate lethal concentrations of ivermectin that killed 50% (LC 50 ), 25% (LC 25 ) and 5% (LC 5 ) of mosquitoes. To examine ivermectin sporonticidal effect, Plasmodium vivax blood samples were collected from malaria patients and offered to mosquitoes without or with ivermectin at the LC 50 , LC 25 or LC 5 . To assess ivermectin inhibition of mosquito time to re-feed, concentrations of ivermectin predicted to occur after a single oral dose of 200 μg/kg ivermectin were fed to An. darlingi. Every day for 12 days thereafter, individual mosquitoes were given the opportunity to re-feed on a volunteer. Any mosquitoes that re-blood fed or died were removed from the study. Ivermectin significantly reduced An. darlingi survivorship: 7-day-LC 50  = 43.2 ng/ml [37.5, 48.6], -LC 25  = 27.8 ng/ml [20.4, 32.9] and -LC 5  = 14.8 ng/ml [7.9, 20.2]. Ivermectin compound was sporontocidal to P. vivax in An. darlingi at the LC 50 and LC 25 concentrations reducing prevalence by 22.6 and 17.1%, respectively, but not at the LC 5 . Oocyst intensity was not altered at any concentration. Ivermectin significantly delayed time to re-feed at the 4-h (48.7 ng/ml) and 12-h (26.9 ng/ml) concentrations but not 36-h (10.6 ng/ml) or 60-h (6.3 ng/ml). Ivermectin is

  4. Larvicidal Activity of Nerium oleander against Larvae West Nile Vector Mosquito Culex pipiens (Diptera: Culicidae)

    PubMed Central

    El-Akhal, Fouad; Guemmouh, Raja; Ez Zoubi, Yassine; El Ouali Lalami, Abdelhakim

    2015-01-01

    Background. Outbreaks of the West Nile virus infection were reported in Morocco in 1996, 2003, and 2010. Culex pipiens was strongly suspected as the vector responsible for transmission. In the North center of Morocco, this species has developed resistance to synthetic insecticides. There is an urgent need to find alternatives to the insecticides as natural biocides. Objective. In this work, the insecticidal activity of the extract of the local plant Nerium oleander, which has never been tested before in the North center of Morocco, was studied on larval stages 3 and 4 of Culex pipiens. Methods. Biological tests were realized according to a methodology inspired from standard World Health Organization protocol. The mortality values were determined after 24 h of exposure and LC50 and LC90 values were calculated. Results. The extract had toxic effects on the larvae of culicid mosquitoes. The ethanolic extract of Nerium oleander applied against the larvae of Culex pipiens has given the lethal concentrations LC50 and LC90 in the order of 57.57 mg/mL and 166.35 mg/mL, respectively. Conclusion. This investigation indicates that N. oleander could serve as a potential larvicidal, effective natural biocide against mosquito larvae, particularly Culex pipiens. PMID:26640701

  5. The use of digital spaceborne SAR data for the delineation of surface features indicative of malaria vector breeding habitats

    NASA Technical Reports Server (NTRS)

    Imhoff, M. L.; Vermillion, C. H.; Khan, F. A.

    1984-01-01

    An investigation to examine the utility of spaceborne radar image data to malaria vector control programs is described. Specific tasks involve an analysis of radar illumination geometry vs information content, the synergy of radar and multispectral data mergers, and automated information extraction techniques.

  6. Larvicidal and repellent activity of Vetiveria zizaniodes (Poaceae) essential oil against the malaria vector Anopheles stephensi (Liston) (Diptera: Culicidae)

    USDA-ARS?s Scientific Manuscript database

    Essential oil extracted by steam distillation of Vetiveria zizanioides (L.) Nash (Poaceae) was evaluated for larvicidal and adult repellent activity against the malaria vector Anopheles stephensi (Liston). Median lethal concentrations (LC50) at 24 h post treatment for instars 1-4 were, respectively,...

  7. Insecticide resistance in Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) and Anopheles gambiae Giles (Diptera: Culicidae) could compromise the sustainability of malaria vector control strategies in West Africa.

    PubMed

    Gnankiné, Olivier; Bassolé, Imael H N; Chandre, Fabrice; Glitho, Isabelle; Akogbeto, Martin; Dabiré, Roch K; Martin, Thibaud

    2013-10-01

    Insecticides from the organophosphate (OP) and pyrethroid (PY) chemical families, have respectively, been in use for 50 and 30 years in West Africa, mainly against agricultural pests, but also against vectors of human disease. The selection pressure, with practically the same molecules year after year (mainly on cotton), has caused insecticide resistance in pest populations such as Bemisia tabaci, vector of harmful phytoviruses on vegetables. The evolution toward insecticide resistance in malaria vectors such as Anopheles gambiae sensus lato (s.l.) is probably related to the current use of these insecticides in agriculture. Thus, successful pest and vector control in West Africa requires an investigation of insect susceptibility, in relation to the identification of species and sub species, such as molecular forms or biotypes. Identification of knock down resistance (kdr) and acetylcholinesterase gene (Ace1) mutations modifying insecticide targets in individual insects and measure of enzymes activity typically involved in insecticide metabolism (oxidase, esterase and glutathion-S-transferase) are indispensable in understanding the mechanisms of resistance. Insecticide resistance is a good example in which genotype-phenotype links have been made successfully. Insecticides used in agriculture continue to select new resistant populations of B. tabaci that could be from different biotype vectors of plant viruses. As well, the evolution of insecticide resistance in An. gambiae threatens the management of malaria vectors in West Africa. It raises the question of priority in the use of insecticides in health and/or agriculture, and more generally, the question of sustainability of crop protection and vector control strategies in the region. Here, we review the susceptibility tests, biochemical and molecular assays data for B. tabaci, a major pest in cotton and vegetable crops, and An. gambiae, main vector of malaria. The data reviewed was collected in Benin and Burkina

  8. Development of replication-deficient adenovirus malaria vaccines.

    PubMed

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  9. Field evaluation of two commercial mosquito traps baited with different attractants and colored lights for malaria vector surveillance in Thailand.

    PubMed

    Ponlawat, Alongkot; Khongtak, Patcharee; Jaichapor, Boonsong; Pongsiri, Arissara; Evans, Brian P

    2017-08-07

    Sampling for adult mosquito populations is a means of evaluating the efficacy of vector control operations. The goal of this study was to evaluate and identify the most efficacious mosquito traps and combinations of attractants for malaria vector surveillance along the Thai-Myanmar border. In the first part of the study, the BG-Sentinel™ Trap (BGS Trap) and Centers for Disease Control and Prevention miniature light trap (CDC LT) baited with different attractants (BG-lure® and CO 2 ) were evaluated using a Latin square experimental design. The six configurations were BGS Trap with BG-lure, BGS Trap with BG-lure plus CO 2 , BGS Trap with CO 2 , CDC LT with BG-lure, CDC LT with BG lure plus CO 2 , and CDC LT with CO 2 . The second half of the study evaluated the impact of light color on malaria vector collections. Colors included the incandescent bulb, ultraviolet (UV) light-emitting diode (LED), green light stick, red light stick, green LED, and red LED. A total of 8638 mosquitoes consisting of 42 species were captured over 708 trap-nights. The trap types, attractants, and colored lights affected numbers of female anopheline and Anopheles minimus collected (GLM, P < 0.01). Results revealed that BGS Trap captured many anophelines but was significantly less than the CDC LT. The CDC LT, when baited with BG-lure plus CO 2 captured the greatest number of anopheline females with a catch rate significantly higher than the CDC LT baited with BG-lure or CO 2 alone (P < 0.05). The number of anopheline females collected from the CDC LT baited with CO 2 was greater than the CDC LT baited with BG-lure (646 vs 409 females). None of the alternative lights evaluated exceeded the performance of the incandescent light bulb in terms of the numbers of anopheline and An. minimus collected. We conclude that the CDC LT augmented with an incandescent light shows high potential for malaria vector surveillance when baited with CO 2 and the BG-lure in combination and can be effectively

  10. Evaluation of new tools for malaria vector control in Cameroon: focus on long lasting insecticidal nets.

    PubMed

    Etang, Josiane; Nwane, Philippe; Piameu, Michael; Manga, Blaise; Souop, Daniel; Awono-Ambene, Parfait

    2013-01-01

    From 2006 to 2011, biological activity of insecticides for Indoor Residual Spraying (IRS), conventional treatment of nets (CTNs) or long lasting insecticidal nets (LLINs) was evaluated before their approval in Cameroon. The objective of the study was to select the best tools for universal malaria vector control coverage. Bioassays were performed using WHO cones and the Kisumu susceptible strain of Anopheles gambiae s.s.. Among tested products, residual activity and wash resistance of Alpha-cypermethrin LLINs (Interceptor) and CTNs (Fendona) were assessed during 5 months in the Ntougou neighborhood. All the 14 tested products were found effective (95-100% knockdown and mortality rates), although a significant decrease of efficacy was seen with lambda-cyhalothrinWP IRS, alpha-cypermethrin CTNs and LLINs (p< 0.05). However, the efficacy of Interceptor nets did not decrease during the 5 months evaluation, even after 25 washes (0.07malaria vector control in Cameroon.

  11. Evaluation of New Tools for Malaria Vector Control in Cameroon: Focus on Long Lasting Insecticidal Nets

    PubMed Central

    Etang, Josiane; Nwane, Philippe; Piameu, Michael; Manga, Blaise; Souop, Daniel; Awono-Ambene, Parfait

    2013-01-01

    Background From 2006 to 2011, biological activity of insecticides for Indoor Residual Spraying (IRS), conventional treatment of nets (CTNs) or long lasting insecticidal nets (LLINs) was evaluated before their approval in Cameroon. The objective of the study was to select the best tools for universal malaria vector control coverage. Methodology Bioassays were performed using WHO cones and the Kisumu susceptible strain of Anopheles gambiae s.s.. Among tested products, residual activity and wash resistance of Alpha-cypermethrin LLINs (Interceptor) and CTNs (Fendona) were assessed during 5 months in the Ntougou neighborhood. Principal Findings All the 14 tested products were found effective (95–100% knockdown and mortality rates), although a significant decrease of efficacy was seen with lambda-cyhalothrinWP IRS, alpha-cypermethrin CTNs and LLINs (p< 0.05). However, the efficacy of Interceptor nets did not decrease during the 5 months evaluation, even after 25 washes (0.07malaria vector control in Cameroon. PMID:24086399

  12. Development of a Gravid Trap for Collecting Live Malaria Vectors Anopheles gambiae s.l.

    PubMed Central

    Dugassa, Sisay; Lindh, Jenny M.; Oyieke, Florence; Mukabana, Wolfgang R.; Lindsay, Steven W.; Fillinger, Ulrike

    2013-01-01

    Background Effective malaria vector control targeting indoor host-seeking mosquitoes has resulted in fewer vectors entering houses in many areas of sub-Saharan Africa, with the proportion of vectors outdoors becoming more important in the transmission of this disease. This study aimed to develop a gravid trap for the outdoor collection of the malaria vector Anopheles gambiae s.l. based on evaluation and modification of commercially available gravid traps. Methods Experiments were implemented in an 80 m2 semi-field system where 200 gravid Anopheles gambiae s.s. were released nightly. The efficacy of the Box, CDC and Frommer updraft gravid traps was compared. The Box gravid trap was tested to determine if the presence of the trap over water and the trap’s sound affected catch size. Mosquitoes approaching the treatment were evaluated using electrocuting nets or detergents added to the water in the trap. Based on the results, a new gravid trap (OviART trap) that provided an open, unobstructed oviposition site was developed and evaluated. Results Box and CDC gravid traps collected similar numbers (relative rate (RR) 0.8, 95% confidence interval (CI) 0.6–1.2; p = 0.284), whereas the Frommer trap caught 70% fewer mosquitoes (RR 0.3, 95% CI 0.2–0.5; p < 0.001). The number of mosquitoes approaching the Box trap was significantly reduced when the trap was positioned over a water-filled basin compared to an open pond (RR 0.7 95% CI 0.6–0.7; p < 0.001). This effect was not due to the sound of the trap. Catch size increased by 60% (RR 1.6, 1.2–2.2; p = 0.001) with the new OviART trap. Conclusion Gravid An. Gambiae s.s. females were visually deterred by the presence of the trapping device directly over the oviposition medium. Based on these investigations, an effective gravid trap was developed that provides open landing space for egg-laying Anopheles . PMID:23861952

  13. Using low-cost drones to map malaria vector habitats.

    PubMed

    Hardy, Andy; Makame, Makame; Cross, Dónall; Majambere, Silas; Msellem, Mwinyi

    2017-01-14

    There is a growing awareness that if we are to achieve the ambitious goal of malaria elimination, we must compliment indoor-based vector control interventions (such as bednets and indoor spraying) with outdoor-based interventions such as larval source management (LSM). The effectiveness of LSM is limited by our capacity to identify and map mosquito aquatic habitats. This study provides a proof of concept for the use of a low-cost (< $1000) drone (DJI Phantom) for mapping water bodies in seven sites across Zanzibar including natural water bodies, irrigated and non-irrigated rice paddies, peri-urban and urban locations. With flying times of less than 30 min for each site, high-resolution (7 cm) georeferenced images were successfully generated for each of the seven sites, covering areas up to 30 ha. Water bodies were readily identifiable in the imagery, as well as ancillary information for planning LSM activities (access routes to water bodies by road and foot) and public health management (e.g. identification of drinking water sources, mapping individual households and the nature of their construction). The drone-based surveys carried out in this study provide a low-cost and flexible solution to mapping water bodies for operational dissemination of LSM initiatives in mosquito vector-borne disease elimination campaigns. Generated orthomosaics can also be used to provide vital information for other public health planning activities.

  14. VectorBase: a home for invertebrate vectors of human pathogens

    PubMed Central

    Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J.; Bruggner, Robert V.; Butler, Ryan; Campbell, Kathryn S.; Christophides, George K.; Christley, Scott; Dialynas, Emmanuel; Emmert, David; Hammond, Martin; Hill, Catherine A.; Kennedy, Ryan C.; Lobo, Neil F.; MacCallum, M. Robert; Madey, Greg; Megy, Karine; Redmond, Seth; Russo, Susan; Severson, David W.; Stinson, Eric O.; Topalis, Pantelis; Zdobnov, Evgeny M.; Birney, Ewan; Gelbart, William M.; Kafatos, Fotis C.; Louis, Christos; Collins, Frank H.

    2007-01-01

    VectorBase () is a web-accessible data repository for information about invertebrate vectors of human pathogens. VectorBase annotates and maintains vector genomes providing an integrated resource for the research community. Currently, VectorBase contains genome information for two organisms: Anopheles gambiae, a vector for the Plasmodium protozoan agent causing malaria, and Aedes aegypti, a vector for the flaviviral agents causing Yellow fever and Dengue fever. PMID:17145709

  15. Landscape Ecology and Epidemiology of Malaria Associated with Rubber Plantations in Thailand: Integrated Approaches to Malaria Ecotoping

    PubMed Central

    Kaewwaen, Wuthichai

    2015-01-01

    The agricultural land use changes that are human-induced changes in agroforestry ecosystems and in physical environmental conditions contribute substantially to the potential risks for malaria transmission in receptive areas. Due to the pattern and extent of land use change, the risks or negatively ecosystemic outcomes are the results of the dynamics of malaria transmission, the susceptibility of human populations, and the geographical distribution of malaria vectors. This review focused basically on what are the potential effects of agricultural land use change as a result of the expansion of rubber plantations in Thailand and how significant the ecotopes of malaria-associated rubber plantations (MRP) are. More profoundly, this review synthesized the novel concepts and perspectives on applied landscape ecology and epidemiology of malaria, as well as approaches to determine the degree to which an MRP ecotope as fundamental landscape scale can establish malaria infection pocket(s). Malaria ecotoping encompasses the integrated approaches and tools applied to or used in modeling malaria transmission. The scalability of MRP ecotope depends upon its unique landscape structure as it is geographically associated with the infestation or reinfestation of Anopheles vectors, along with the attributes that are epidemiologically linked with the infections. The MRP ecotope can be depicted as the hotspot such that malaria transmission is modeled upon the MRP factors underlying human settlements and movement activities, health behaviors, land use/land cover change, malaria vector population dynamics, and agrienvironmental and climatic conditions. The systemic and uniform approaches to malaria ecotoping underpin the stratification of the potential risks for malaria transmission by making use of remotely sensed satellite imagery or landscape aerial photography using unmanned aerial vehicle (UAV), global positioning systems (GPS), and geographical information systems (GIS). PMID

  16. First record of Anopheles stephensi in Sri Lanka: a potential challenge for prevention of malaria reintroduction.

    PubMed

    Gayan Dharmasiri, A G; Perera, A Yashan; Harishchandra, Jeevanie; Herath, Hemantha; Aravindan, Kandasamy; Jayasooriya, H T R; Ranawaka, Gaya R; Hewavitharane, Mihirini

    2017-08-10

    The major malaria vector in Sri Lanka is reported to be Anopheles culicifacies with Anopheles subpictus, Anopheles annularis, and Anopheles varuna considered as potential vectors. The occurrence of Anopheles stephensi, which is the key vector of urban malaria in India and the Middle East, had never been reported from Sri Lanka. A series of entomological investigations were carried out by the Anti Malaria Campaign, Ministry of Health, Sri Lanka during December 2016 to April 2017 in two localities of the Mannar District in the Northern Province of the country. Adult mosquito collections were done through indoor and outdoor resting collections, animal and human biting collections and emergence traps. Potential mosquito breeding sites were investigated through larval surveys. The larvae and adults of An. stephensi were initially identified using morphological keys, and subsequently confirmed by sequencing the barcode region of the cytochrome c oxidase I (COI) gene. This is the first report of the presence of An. stephensi in the island of Mannar in the Northern Province of Sri Lanka. Anopheles stephensi (36.65%) was the most abundant anopheline species in the larval habitats in Mannar. It was found breeding together with An. culicifacies (20.7%), An. subpictus (13.5%) and An. varuna (28.13%). Anopheles stephensi was found to be abundantly breeding in built wells used for domestic purposes. Adult females of An. stephensi were observed in emergence trap collections (93.9%), human landing catches all night (79.2%), pyrethrum spray sheet collections (38.6%), outdoor collections (8.3%), donkey-baited trap collections (14.3), and cattle-baited net trap collections (0.7%). Sri Lanka was certified as malaria-free by the WHO in September 2016, however, this new finding may pose a serious challenge to the efforts of the Ministry of Health to prevent the re-introduction of malaria transmission in the country, considering the role that An. stephensi could play in urban and high

  17. Recombinant modified vaccinia virus Ankara-based malaria vaccines.

    PubMed

    Sebastian, Sarah; Gilbert, Sarah C

    2016-01-01

    A safe and effective malaria vaccine is a crucial part of the roadmap to malaria elimination/eradication by the year 2050. Viral-vectored vaccines based on adenoviruses and modified vaccinia virus Ankara (MVA) expressing malaria immunogens are currently being used in heterologous prime-boost regimes in clinical trials for induction of strong antigen-specific T-cell responses and high-titer antibodies. Recombinant MVA is a safe and well-tolerated attenuated vector that has consistently shown significant boosting potential. Advances have been made in large-scale MVA manufacture as high-yield producer cell lines and high-throughput purification processes have recently been developed. This review describes the use of MVA as malaria vaccine vector in both preclinical and clinical studies in the past 5 years.

  18. Facile fabrication of eco-friendly nano-mosquitocides: Biophysical characterization and effectiveness on neglected tropical mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Hoti, S L; Benelli, Giovanni

    2016-12-01

    Mosquito (Diptera: Culicidae) vectors are solely responsible for transmitting important diseases such as malaria, dengue, chikungunya, Japanese encephalitis, lymphatic filariasis and Zika virus. Eco-friendly control tools of Culicidae vectors are a priority. In this study, we proposed a facile fabrication process of poly-disperse and stable silver nanoparticles (Ag NPs) using a cheap leaf extract of Ichnocarpus frutescens (Apocyanaceae). Bio-reduced Ag NPs were characterized by UV-vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The acute toxicity of I. frutescens leaf extract and green-synthesized Ag NPs was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Compared to the leaf aqueous extract, Ag NPs showed higher toxicity against A. subpictus, A. albopictus, and C. tritaeniorhynchus with LC 50 values of 14.22, 15.84 and 17.26μg/mL, respectively. Ag NPs were found safer to non-target mosquito predators Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC 50 values ranging from 636.61 to 2098.61μg/mL. Overall, this research firstly shed light on the mosquitocidal potential of I. frutescens, a potential bio-resource for rapid, cheap and effective synthesis of poly-disperse and highly stable silver nanocrystals. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India

    PubMed Central

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S.; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05) and An. vagus in BPHC (χ2 = 25.3; p = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission. PMID:27010649

  20. Malaria transmission in Tripura: Disease distribution & determinants.

    PubMed

    Dev, Vas; Adak, Tridibes; Singh, Om P; Nanda, Nutan; Baidya, Bimal K

    2015-12-01

    Malaria is a major public health problem in Tripura and focal disease outbreaks are of frequent occurrence. The state is co-endemic for both Plasmodium falciparum and P. vivax and transmission is perennial and persistent. The present study was aimed to review data on disease distribution to prioritize high-risk districts, and to study seasonal prevalence of disease vectors and their bionomical characteristics to help formulate vector species-specific interventions for malaria control. Data on malaria morbidity in the State were reviewed retrospectively (2008-2012) for understanding disease distribution and transmission dynamics. Cross-sectional mass blood surveys were conducted in malaria endemic villages of South Tripura district to ascertain the prevalence of malaria and proportions of parasite species. Mosquito collections were made in human dwellings of malaria endemic villages aiming at vector incrimination and to study relative abundance, resting and feeding preferences, and their present susceptibility status to DDT. The study showed that malaria was widely prevalent and P. falciparum was the predominant infection (>90%), the remaining were P. vivax cases. The disease distribution, however, was uneven with large concentration of cases in districts of South Tripura and Dhalai coinciding with vast forest cover and tribal populations. Both Anopheles minimus s.s. and An. baimaii were recorded to be prevalent and observed to be highly anthropophagic and susceptible to DDT. Of these, An. minimus was incriminated (sporozoite infection rate 4.92%), and its bionomical characteristics revealed this species to be largely indoor resting and endophagic. For effective control of malaria in the state, it is recommended that diseases surveillance should be robust, and vector control interventions including DDT spray coverage, mass distribution of insecticide-treated nets/ long-lasting insecticidal nets should be intensified prioritizing population groups most at risk to

  1. Zoonotic Malaria – Global Overview and Research and Policy Needs

    PubMed Central

    Ramasamy, Ranjan

    2014-01-01

    The four main Plasmodium species that cause human malaria, Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale, are transmitted between humans by mosquito vectors belonging to the genus Anopheles. It has recently become evident that Plasmodium knowlesi, a parasite that typically infects forest macaque monkeys, can be transmitted by anophelines to cause malaria in humans in Southeast Asia. Plasmodium knowlesi infections are frequently misdiagnosed microscopically as P. malariae. Direct human to human transmission of P. knowlesi by anophelines has not yet been established to occur in nature. Knowlesi malaria must therefore be presently considered a zoonotic disease. Polymerase chain reaction is now the definitive method for differentiating P. knowlesi from P. malariae and other human malaria parasites. The origin of P. falciparum and P. vivax in African apes are examples of ancient zoonoses that may be continuing at the present time with at least P. vivax, and possibly P. malariae and P. ovale. Other non-human primate malaria species, e.g., Plasmodium cynomolgi in Southeast Asia and Plasmodium brasilianum and Plasmodium simium in South America, can be transmitted to humans by mosquito vectors further emphasizing the potential for continuing zoonoses. The potential for zoonosis is influenced by human habitation and behavior as well as the adaptive capabilities of parasites and vectors. There is insufficient knowledge of the bionomics of Anopheles vector populations relevant to the cross-species transfer of malaria parasites and the real extent of malaria zoonoses. Appropriate strategies, based on more research, need to be developed for the prevention, diagnosis, and treatment of zoonotic malaria. PMID:25184118

  2. Earth observation in support of malaria control and epidemiology: MALAREO monitoring approaches.

    PubMed

    Franke, Jonas; Gebreslasie, Michael; Bauwens, Ides; Deleu, Julie; Siegert, Florian

    2015-06-03

    Malaria affects about half of the world's population, with the vast majority of cases occuring in Africa. National malaria control programmes aim to reduce the burden of malaria and its negative, socioeconomic effects by using various control strategies (e.g. vector control, environmental management and case tracking). Vector control is the most effective transmission prevention strategy, while environmental factors are the key parameters affecting transmission. Geographic information systems (GIS), earth observation (EO) and spatial modelling are increasingly being recognised as valuable tools for effective management and malaria vector control. Issues previously inhibiting the use of EO in epidemiology and malaria control such as poor satellite sensor performance, high costs and long turnaround times, have since been resolved through modern technology. The core goal of this study was to develop and implement the capabilities of EO data for national malaria control programmes in South Africa, Swaziland and Mozambique. High- and very high resolution (HR and VHR) land cover and wetland maps were generated for the identification of potential vector habitats and human activities, as well as geoinformation on distance to wetlands for malaria risk modelling, population density maps, habitat foci maps and VHR household maps. These products were further used for modelling malaria incidence and the analysis of environmental factors that favour vector breeding. Geoproducts were also transferred to the staff of national malaria control programmes in seven African countries to demonstrate how EO data and GIS can support vector control strategy planning and monitoring. The transferred EO products support better epidemiological understanding of environmental factors related to malaria transmission, and allow for spatio-temporal targeting of malaria control interventions, thereby improving the cost-effectiveness of interventions.

  3. Green-synthesized CdS nano-pesticides: Toxicity on young instars of malaria vectors and impact on enzymatic activities of the non-target mud crab Scylla serrata.

    PubMed

    Sujitha, Vasu; Murugan, Kadarkarai; Dinesh, Devakumar; Pandiyan, Amuthvalli; Aruliah, Rajasekar; Hwang, Jiang-Shiou; Kalimuthu, Kandasamy; Panneerselvam, Chellasamy; Higuchi, Akon; Aziz, Al Thabiani; Kumar, Suresh; Alarfaj, Abdullah A; Vaseeharan, Baskaralingam; Canale, Angelo; Benelli, Giovanni

    2017-07-01

    Currently, nano-formulated mosquito larvicides have been widely proposed to control young instars of malaria vector populations. However, the fate of nanoparticles in the aquatic environment is scarcely known, with special reference to the impact of nanoparticles on enzymatic activity of non-target aquatic invertebrates. In this study, we synthesized CdS nanoparticles using a green protocol relying on the cheap extract of Valoniopsis pachynema algae. CdS nanoparticles showed high toxicity on young instars of the malaria vectors Anopheles stephensi and A. sundaicus. The antimalarial activity of the nano-synthesized product against chloroquine-resistant (CQ-r) Plasmodium falciparum parasites was investigated. From a non-target perspective, we focused on the impact of this novel nano-pesticide on antioxidant enzymes acetylcholinesterase (AChE) and glutathione S-transferase (GST) activities of the mud crab Scylla serrata. The characterization of nanomaterials was carried out by UV-vis and FTIR spectroscopy, as well as SEM and XRD analyses. In mosquitocidal assays, LC 50 of V. pachynema-synthesized CdS nanoparticles on A. stephensi ranged from 16.856 (larva I), to 30.301μg/ml (pupa), while for An. sundaicus they ranged from 13.584 to 22.496μg/ml. The antiplasmodial activity of V. pachynema extract and CdS nanoparticles was evaluated against CQ-r and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC 50 of V. pachynema extract was 58.1μg/ml (CQ-s) and 71.46μg/ml (CQ-r), while nano-CdS IC 50 was 76.14μg/ml (CQ-s) and 89.21μg/ml (CQ-r). In enzymatic assays, S. serrata crabs were exposed to sub-lethal concentrations, i.e. 4, 6 and 8μg/ml of CdS nanoparticles, assessing changes in GST and AChE activity after 16days. We observed significantly higher activity of GST, if compared to the control, during the whole experiment period. In addition, a single treatment with CdS nanoparticles led to a significant decrease in AChE activity over time. The toxicity of Cd

  4. The relative contribution of climate variability and vector control coverage to changes in malaria parasite prevalence in Zambia 2006-2012.

    PubMed

    Bennett, Adam; Yukich, Josh; Miller, John M; Keating, Joseph; Moonga, Hawela; Hamainza, Busiku; Kamuliwo, Mulakwa; Andrade-Pacheco, Ricardo; Vounatsou, Penelope; Steketee, Richard W; Eisele, Thomas P

    2016-08-05

    Four malaria indicator surveys (MIS) were conducted in Zambia between 2006 and 2012 to evaluate malaria control scale-up. Nationally, coverage of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) increased over this period, while parasite prevalence in children 1-59 months decreased dramatically between 2006 and 2008, but then increased from 2008 to 2010. We assessed the relative effects of vector control coverage and climate variability on malaria parasite prevalence over this period. Nationally-representative MISs were conducted in April-June of 2006, 2008, 2010 and 2012 to collect household-level information on malaria control interventions such as IRS, ITN ownership and use, and child parasite prevalence by microscopic examination of blood smears. We fitted Bayesian geostatistical models to assess the association between IRS and ITN coverage and climate variability and malaria parasite prevalence. We created predictions of the spatial distribution of malaria prevalence at each time point and compared results of varying IRS, ITN, and climate inputs to assess their relative contributions to changes in prevalence. Nationally, the proportion of households owning an ITN increased from 37.8 % in 2006 to 64.3 % in 2010 and 68.1 % in 2012, with substantial heterogeneity sub-nationally. The population-adjusted predicted child malaria parasite prevalence decreased from 19.6 % in 2006 to 10.4 % in 2008, but rose to 15.3 % in 2010 and 13.5 % in 2012. We estimated that the majority of this prevalence increase at the national level between 2008 and 2010 was due to climate effects on transmission, although there was substantial heterogeneity at the provincial level in the relative contribution of changing climate and ITN availability. We predict that if climate factors preceding the 2010 survey were the same as in 2008, the population-adjusted prevalence would have fallen to 9.9 % nationally. These results suggest that a combination of climate factors

  5. Evaluation of blowfly larvae (Diptera: Calliphoridae) as possible reservoirs and mechanical vectors of African swine fever virus.

    PubMed

    Forth, J H; Amendt, J; Blome, S; Depner, K; Kampen, H

    2018-02-01

    In 2014, highly virulent African swine fever virus (ASFV) was introduced into the Baltic States and Poland, with new cases being reported almost every week from wild boar and also from domestic pigs. Contrary to initial predictions that the disease would either die out due to the high virulence of the virus strain or spread rapidly in westerly direction, the infection became endemic and spread slowly. The unexpected disease epidemiology led to the hypothesis that hitherto unconsidered factors might contribute to virus persistence and dispersal. To check whether arthropod species feeding and developing on infected carcasses might be involved, larvae of two commonly found blowfly species, Lucilia sericata and Calliphora vicina, were experimentally bred on ASFV-infected spleen tissue. After different time intervals, developing larvae and pupae were tested for infectious virus and viral DNA. By qPCR, contamination of the blowfly larvae and pupae with ASFV-DNA could be demonstrated even after several washing steps, proving the uptake of virus during feeding in the larval stage. However, infectious virus could never be isolated. By contrast, the larvae appeared to have inactivated ASFV in the offered tissue, which might be explained by the known anti-biotic effect of salivary secretions. It is concluded that immature blowfly stages do not play a relevant role as reservoirs or mechanical vectors of ASFV. © 2017 Blackwell Verlag GmbH.

  6. Control of Malaria Vector Mosquitoes by Insecticide-Treated Combinations of Window Screens and Eave Baffles.

    PubMed

    Killeen, Gerry F; Masalu, John P; Chinula, Dingani; Fotakis, Emmanouil A; Kavishe, Deogratius R; Malone, David; Okumu, Fredros

    2017-05-01

    We assessed window screens and eave baffles (WSEBs), which enable mosquitoes to enter but not exit houses, as an alternative to indoor residual spraying (IRS) for malaria vector control. WSEBs treated with water, the pyrethroid lambda-cyhalothrin, or the organophosphate pirimiphos-methyl, with and without a binding agent for increasing insecticide persistence on netting, were compared with IRS in experimental huts. Compared with IRS containing the same insecticide, WSEBs killed similar proportions of Anopheles funestus mosquitoes that were resistant to pyrethroids, carbamates and organochlorines and greater proportions of pyrethroid-resistant, early exiting An. arabiensis mosquitoes. WSEBs with pirimiphos-methyl killed greater proportions of both vectors than lambda-cyhalothrin or lambda-cyhalothrin plus pirimiphos-methyl and were equally efficacious when combined with binding agent. WSEBs required far less insecticide than IRS, and binding agents might enhance durability. WSEBs might enable affordable deployment of insecticide combinations to mitigate against physiologic insecticide resistance and improve control of behaviorally resistant, early exiting vectors.

  7. Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa

    PubMed Central

    2012-01-01

    Introduction The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. Methods A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI) other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM), precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST). Results The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m buffer zone around capture points. Conclusions Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines densities. This modeling

  8. Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa.

    PubMed

    Dambach, Peter; Machault, Vanessa; Lacaux, Jean-Pierre; Vignolles, Cécile; Sié, Ali; Sauerborn, Rainer

    2012-03-23

    The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI) other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM), precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST). The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m buffer zone around capture points. Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines densities. This modeling approach based on remotely sensed

  9. History of malaria control in Tajikistan and rapid malaria appraisal in an agro-ecological setting.

    PubMed

    Matthys, Barbara; Sherkanov, Tohir; Karimov, Saifudin S; Khabirov, Zamonidin; Mostowlansky, Till; Utzinger, Jürg; Wyss, Kaspar

    2008-10-26

    Reported malaria cases in rice growing areas in western Tajikistan were at the root of a rapid appraisal of the local malaria situation in a selected agro-ecological setting where only scarce information was available. The rapid appraisal was complemented by a review of the epidemiology and control of malaria in Tajikistan and Central Asia from 1920 until today. Following a resurgence in the 1990s, malaria transmission has been reduced considerably in Tajikistan as a result of concerted efforts by the government and international agencies. The goal for 2015 is transmission interruption, with control interventions and surveillance currently concentrated in the South, where foci of Plasmodium vivax and Plasmodium falciparum persist. The rapid malaria appraisal was carried out in six communities of irrigated rice cultivation during the peak of malaria transmission (August/September 2007) in western Tajikistan. In a cross-sectional survey, blood samples were taken from 363 schoolchildren and examined for Plasmodium under a light microscope. A total of 56 farmers were interviewed about agricultural activities and malaria. Potential Anopheles breeding sites were characterized using standardized procedures. A literature review on the epidemiology and control of malaria in Tajikistan was conducted. One case of P. vivax was detected among the 363 schoolchildren examined (0.28%). The interviewees reported to protect themselves against mosquito bites and used their own concepts on fever conditions, which do not distinguish between malaria and other diseases. Three potential malaria vectors were identified, i.e. Anopheles superpictus, Anopheles pulcherrimus and Anopheles hyrcanus in 58 of the 73 breeding sites examined (79.5%). Rice paddies, natural creeks and man-made ponds were the most important Anopheles habitats. The presence of malaria vectors and parasite reservoirs, low awareness of, and protection against malaria in the face of population movements and inadequate

  10. Aquaporin water channel AgAQP1 in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation

    PubMed Central

    Liu, Kun; Tsujimoto, Hitoshi; Cha, Sung-Jae; Agre, Peter; Rasgon, Jason L.

    2011-01-01

    Altered patterns of malaria endemicity reflect, in part, changes in feeding behavior and climate adaptation of mosquito vectors. Aquaporin (AQP) water channels are found throughout nature and confer high-capacity water flow through cell membranes. The genome of the major malaria vector mosquito Anopheles gambiae contains at least seven putative AQP sequences. Anticipating that transmembrane water movements are important during the life cycle of A. gambiae, we identified and characterized the A. gambiae aquaporin 1 (AgAQP1) protein that is homologous to AQPs known in humans, Drosophila, and sap-sucking insects. When expressed in Xenopus laevis oocytes, AgAQP1 transports water but not glycerol. Similar to mammalian AQPs, water permeation of AgAQP1 is inhibited by HgCl2 and tetraethylammonium, with Tyr185 conferring tetraethylammonium sensitivity. AgAQP1 is more highly expressed in adult female A. gambiae mosquitoes than in males. Expression is high in gut, ovaries, and Malpighian tubules where immunofluorescence microscopy reveals that AgAQP1 resides in stellate cells but not principal cells. AgAQP1 expression is up-regulated in fat body and ovary by blood feeding but not by sugar feeding, and it is reduced by exposure to a dehydrating environment (42% relative humidity). RNA interference reduces AgAQP1 mRNA and protein levels. In a desiccating environment (<20% relative humidity), mosquitoes with reduced AgAQP1 protein survive significantly longer than controls. These studies support a role for AgAQP1 in water homeostasis during blood feeding and humidity adaptation of A. gambiae, a major mosquito vector of human malaria in sub-Saharan Africa. PMID:21444767

  11. Pilot study on the combination of an organophosphate-based insecticide paint and pyrethroid-treated long lasting nets against pyrethroid resistant malaria vectors in Burkina Faso.

    PubMed

    Mosqueira, Beatriz; Soma, Dieudonné D; Namountougou, Moussa; Poda, Serge; Diabaté, Abdoulaye; Ali, Ouari; Fournet, Florence; Baldet, Thierry; Carnevale, Pierre; Dabiré, Roch K; Mas-Coma, Santiago

    2015-08-01

    A pilot study to test the efficacy of combining an organophosphate-based insecticide paint and pyrethroid-treated Long Lasting Insecticide Treated Nets (LLINs) against pyrethroid-resistant malaria vector mosquitoes was performed in a real village setting in Burkina Faso. Paint Inesfly 5A IGR™, comprised of two organophosphates (OPs) and an Insect Growth Regulator (IGR), was tested in combination with pyrethroid-treated LLINs. Efficacy was assessed in terms of mortality for 12 months using Early Morning Collections of malaria vectors and 30-minute WHO bioassays. Resistance to pyrethroids and OPs was assessed by detecting the frequency of L1014F and L1014S kdr mutations and Ace-1(R)G119S mutation, respectively. Blood meal origin was identified using a direct enzyme-linked immunosorbent assay (ELISA). The combination of Inesfly 5A IGR™ and LLINs was effective in killing 99.9-100% of malaria vector populations for 6 months regardless of the dose and volume treated. After 12 months, mortality rates decreased to 69.5-82.2%. The highest mortality rates observed in houses treated with 2 layers of insecticide paint and a larger volume. WHO bioassays supported these results: mortalities were 98.8-100% for 6 months and decreased after 12 months to 81.7-97.0%. Mortality rates in control houses with LLINs were low. Collected malaria vectors consisted exclusively of Anopheles coluzzii and were resistant to pyrethroids, with a L1014 kdr mutation frequency ranging from 60 to 98% through the study. About 58% of An. coluzzii collected inside houses had bloodfed on non-human animals. Combining Inesfly 5A IGR™ and LLINs yielded a one year killing efficacy against An. coluzzii highly resistant to pyrethroids but susceptible to OPs that exhibited an anthropo-zoophilic behaviour in the study area. The results obtained in a real setting supported previous work performed in experimental huts and underscore the need to study the impact that this novel strategy may have on clinical

  12. Fitness consequences of larval exposure to Beauveria bassiana on adults of the malaria vector Anopheles stephensi.

    PubMed

    Vogels, Chantal B F; Bukhari, Tullu; Koenraadt, Constantianus J M

    2014-06-01

    Entomopathogenic fungi have shown to be effective in biological control of both larval and adult stages of malaria mosquitoes. However, a small fraction of mosquitoes is still able to emerge after treatment with fungus during the larval stage. It remains unclear whether fitness of these adults is affected by the treatment during the larval stage and whether they are still susceptible for another treatment during the adult stage. Therefore, we tested the effects of larval exposure to the entomopathogenic fungus Beauveria bassiana on fitness of surviving Anopheles stephensi females. Furthermore, we tested whether larval exposed females were still susceptible to re-exposure to the fungus during the adult stage. Sex ratio, survival and reproductive success were compared between non-exposed and larval exposed A. stephensi. Comparisons were also made between survival of non-exposed and larval exposed females that were re-exposed to B. bassiana during the adult stage. Larval treatment did not affect sex ratio of emerging mosquitoes. Larval exposed females that were infected died significantly faster and laid equal numbers of eggs from which equal numbers of larvae hatched, compared to non-exposed females. Larval exposed females that were uninfected had equal survival, but laid a significantly larger number of eggs from which a significantly higher number of larvae hatched, compared to non-exposed females. Larval exposed females which were re-exposed to B. bassiana during the adult stage had equal survival as females exposed only during the adult stage. Our results suggest that individual consequences for fitness of larval exposed females depended on whether a fungal infection was acquired during the larval stage. Larval exposed females remained susceptible to re-exposure with B. bassiana during the adult stage, indicating that larval and adult control of malaria mosquitoes with EF are compatible. Copyright © 2014. Published by Elsevier Inc.

  13. Hemolymph proteins of Anopheles gambiae larvae infected by Escherichia coli.

    PubMed

    He, Xuesong; Cao, Xiaolong; He, Yan; Bhattarai, Krishna; Rogers, Janet; Hartson, Steve; Jiang, Haobo

    2017-09-01

    Anopheles gambiae is a major vector of human malaria and its immune system in part determines the fate of ingested parasites. Proteins, hemocytes and fat body in hemolymph are critical components of this system, mediating both humoral and cellular defenses. Here we assessed differences in the hemolymph proteomes of water- and E. coli-pricked mosquito larvae by a gel-LC-MS approach. Among the 1756 proteins identified, 603 contained a signal peptide but accounted for two-third of the total protein amount on the quantitative basis. The sequence homology search indicated that 233 of the 1756 may be related to defense. In general, we did not detect substantial differences between the control and induced plasma samples in terms of protein numbers or levels. Protein distributions in the gel slices suggested post-translational modifications (e.g. proteolysis) and formation of serpin-protease complexes and high Mr immune complexes. Based on the twenty-five most abundant proteins, we further suggest that major functions of the larval hemolymph are storage, transport, and immunity. In summary, this study provided first data on constitution, levels, and possible functions of hemolymph proteins in the mosquito larvae, reflecting complex changes occurring in the fight against E. coli infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. EFFECT OF RICE CULTIVATION PATTERNS ON MALARIA VECTOR ABUNDANCE IN RICE-GROWING VILLAGES IN MALI

    PubMed Central

    DIUK-WASSER, MARIA A.; TOURÉ, MAHAMOUDOU B.; DOLO, GUIMOGO; BAGAYOKO, MAGARAN; SOGOBA, NAFOMAN; SISSOKO, IBRAHIM; TRAORÉ, SÉKOU F.; TAYLOR, CHARLES E.

    2007-01-01

    Irrigation for rice cultivation increases the production of Anopheles gambiae, the main vector of malaria in Mali. Mosquito abundance is highly variable across villages and seasons. We examined whether rice cultivation patterns mapped using remotely sensed imagery can account for some of this variance. We collected entomologic data and mapped land use around 18 villages in the two cropping seasons during two years. Land use classification accuracy ranged between 70% and 86%. The area of young rice explained 86% of the inter-village variability in An. gambiae abundance in August before the peak in malaria transmission. Estimating rice in a 900-meter buffer area around the villages resulted in the best correlation with mosquito abundance, larger buffer areas were optimum in the October and dry season models. The quantification of the relationship between An. gambiae abundance and rice cultivation could have management applications that merit further study. PMID:17488907

  15. Modeling Malaria Transmission in Thailand and Indonesia

    NASA Technical Reports Server (NTRS)

    Kiang, Richard; Adimi, Farida; Nigro, Joseph

    2007-01-01

    Malaria Modeling and Surveillance is a project in the NASA Applied Sciences Public Health Applications Program. The main objectives of this project are: 1) identification of the potential breeding sites for major vector species: 2) implementation of a malaria transmission model to identify they key factors that sustain or intensify malaria transmission; and 3) implementation of a risk algorithm to predict the occurrence of malaria and its transmission intensity. Remote sensing and GIs are the essential elements of this project. The NASA Earth science data sets used in this project include AVHRR Pathfinder, TRMM, MODIS, NSIPP and SIESIP. Textural-contextual classifications are used to identify small larval habitats. Neural network methods are used to model malaria cases as a function of precipitation, temperatures, humidity and vegetation. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records. Examples for spatio-temporal modeling of malaria transmissions in Southeast Asia are given. Discrete event simulations were used for modeling the detailed interactions among the vector life cycle, sporogonic cycle and human infection cycle, under the explicit influences of selected extrinsic and intrinsic factors. The output of the model includes the individual infection status and the quantities normally observed in field studies, such as mosquito biting rates, sporozoite infection rates, gametocyte prevalence and incidence. Results are in good agreement with mosquito vector and human malaria data acquired by Coleman et al. over 4.5 years in Kong Mong Tha, a remote village in western Thailand. Application of our models is not restricted to Southeast Asia. The model and techniques are equally applicable to other regions of the world, when appropriate epidemiological and vector ecological parameters are used as input.

  16. Consolidating strategic planning and operational frameworks for integrated vector management in Eritrea.

    PubMed

    Chanda, Emmanuel; Ameneshewa, Birkinesh; Mihreteab, Selam; Berhane, Araia; Zehaie, Assefash; Ghebrat, Yohannes; Usman, Abdulmumini

    2015-12-02

    Contemporary malaria vector control relies on the use of insecticide-based, indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). However, malaria-endemic countries, including Eritrea, have struggled to effectively deploy these tools due technical and operational challenges, including the selection of insecticide resistance in malaria vectors. This manuscript outlines the processes undertaken in consolidating strategic planning and operational frameworks for vector control to expedite malaria elimination in Eritrea. The effort to strengthen strategic frameworks for vector control in Eritrea was the 'case' for this study. The integrated vector management (IVM) strategy was developed in 2010 but was not well executed, resulting in a rise in malaria transmission, prompting a process to redefine and relaunch the IVM strategy with integration of other vector borne diseases (VBDs) as the focus. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Eritrea. Structured literature searches of published, peer-reviewed sources using online, scientific, bibliographic databases, Google Scholar, PubMed and WHO, and a combination of search terms were utilized to gather data. The literature was reviewed and adapted to the local context and translated into the consolidated strategic framework. In Eritrea, communities are grappling with the challenge of VBDs posing public health concerns, including malaria. The global fund financed the scale-up of IRS and LLIN programmes in 2014. Eritrea is transitioning towards malaria elimination and strategic frameworks for vector control have been consolidated by: developing an integrated vector management (IVM) strategy (2015-2019); updating IRS and larval source management (LSM) guidelines; developing training manuals for IRS and LSM; training of national staff in malaria entomology and vector control, including insecticide resistance

  17. The sterilizing effect of pyriproxyfen on the malaria vector Anopheles gambiae: physiological impact on ovaries development.

    PubMed

    Koama, Bayili; Namountougou, Moussa; Sanou, Roger; Ndo, Sévérin; Ouattara, Abdoulaye; Dabiré, Roch K; Malone, David; Diabaté, Abdoulaye

    2015-03-04

    Adult females An. gambiae were exposed in 3 min cone test to treated nets with PPF before or after they were blood fed. The effects of PPF on ovaries development, females oviposition and eggs hatching were assessed. Both unfed and fed mosquitoes exposed to PPF exhibited nearly complete inhibition of fecundity (70-100%) and fertility (90-100%). After females have been exposed once to PPF, the sterilizing effect on their fecundity was observed over 3 consecutive blood meals suggesting that PPF might have an irreversible sterilizing effect. Observation of the ovaries of exposed females to PPF under microscope revealed that the ovaries failed to develop even after several blood meals. The combination of PPF to pyrethroids on bednets could provide better malaria control tool and prevent the further development and spread of pyrethroid resistance in malaria vectors.

  18. “Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes”

    PubMed Central

    Neafsey, Daniel E.; Waterhouse, Robert M.; Abai, Mohammad R.; Aganezov, Sergey S.; Alekseyev, Max A.; Allen, James E.; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A.; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W.; Blandin, Stephanie A.; Brockman, Andrew I.; Burkot, Thomas R.; Burt, Austin; Chan, Clara S.; Chauve, Cedric; Chiu, Joanna C.; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L.M.; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B.; Guelbeogo, Wamdaogo M.; Hall, Andrew B.; Han, Mira V.; Hlaing, Thaung; Hughes, Daniel S.T.; Jenkins, Adam M.; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G.; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C.; Kirmitzoglou, Ioannis K.; Koekemoer, Lizette L.; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K.N.; Lirakis, Manolis; Lobo, Neil F.; Lowy, Ernesto; MacCallum, Robert M.; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N.; Moore, Wendy; Murphy, Katherine A.; Naumenko, Anastasia N.; Nolan, Tony; Novoa, Eva M.; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A.; Pakpour, Nazzy; Papathanos, Philippos A.; Peery, Ashley N.; Povelones, Michael; Prakash, Anil; Price, David P.; Rajaraman, Ashok; Reimer, Lisa J.; Rinker, David C.; Rokas, Antonis; Russell, Tanya L.; Sagnon, N'Fale; Sharakhova, Maria V.; Shea, Terrance; Simão, Felipe A.; Simard, Frederic; Slotman, Michel A.; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J.; Thomas, Gregg W.C.; Tojo, Marta; Topalis, Pantelis; Tubio, José M.C.; Unger, Maria F.; Vontas, John; Walton, Catherine; Wilding, Craig S.; Willis, Judith H.; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M.; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K.; Collins, Frank H.; Cornman, Robert S.; Crisanti, Andrea; Donnelly, Martin J.; Emrich, Scott J.; Fontaine, Michael C.; Gelbart, William; Hahn, Matthew W.; Hansen, Immo A.; Howell, Paul I.; Kafatos, Fotis C.; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A.T.; Ribeiro, José M.; Riehle, Michael A.; Sharakhov, Igor V.; Tu, Zhijian; Zwiebel, Laurence J.; Besansky, Nora J.

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover, but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. PMID:25554792

  19. About Malaria

    MedlinePlus

    ... Insecticide-Treated Nets (ITNs) Intermittent Preventive Treatment of Malaria in Pregnanct Women (IPTp) Indoor Residual Spraying (IRS) Vector Control Antimalarials to Reduce Transmission Vaccines Microscopy Rapid Diagnostic Tests Drug Resistance Counterfeit and ...

  20. Parasites and vectors of malaria on Rusinga Island, Western Kenya.

    PubMed

    Olanga, Evelyn A; Okombo, Lawrence; Irungu, Lucy W; Mukabana, Wolfgang R

    2015-04-28

    There is a dearth of information on malaria endemicity in the islands of Lake Victoria in western Kenya. In this study malaria prevalence and Plasmodium sporozoite rates on Rusinga Island were investigated. The contribution of different Anopheles species to indoor and outdoor transmission of malaria was also determined. Active case detection through microscopy was used to diagnose malaria in a 10% random sample of the human population on Rusinga Island and a longitudinal entomological survey conducted in Gunda village in 2012. Nocturnally active host-seeking mosquitoes were captured indoors and outdoors using odour-baited traps. Anopheles species were tested for the presence of Plasmodium parasites using an enzyme linked immunosorbent assay. All data were analyzed using generalized linear models. Single infections of Plasmodium falciparum (88.1%), P. malariae (3.96%) and P. ovale (0.79%) as well as multiple infections (7.14%) of these parasites were found on Rusinga Island. The overall malaria prevalence was 10.9%. The risk of contracting malaria was higher among dwellers of Rusinga West than Rusinga East locations (Odds Ratio [OR] = 1.5, 95% Confidence Interval [CI] 1.14 - 1.97, P = 0.003). Parasite positivity was significantly associated with individuals who did not use malaria protective measures (OR = 2.65, 95% CI 1.76 - 3.91, p < 0.001). A total of 1,684 mosquitoes, including 74 anophelines, were captured. Unlike Culex species, more of which were collected indoors than outdoors (P < 0.001), the females of An. gambiae s.l. (P = 0.477), An. funestus s.l. (P = 0.153) and Mansonia species captured indoors versus outdoors were not different. The 46 An. gambiae s.l. collected were mainly An. arabiensis (92.3%). Of the 62 malaria mosquitoes tested, 4, including 2 indoor and 2 outdoor-collected individuals had Plasmodium. The rather significant and unexpected contribution of P. malariae and P. ovale to the overall malaria prevalence on

  1. Baseline malaria vector transmission dynamics in communities in Ahafo mining area in Ghana.

    PubMed

    Dery, Dominic B; Asante, Kwaku P; Zandoh, Charles; Febir, Lawrence G; Brown, Charles; Adjei, George; Antwi-Dadzie, Yaw; Mahama, Emmanuel; Tchum, Kofi; Dosoo, David; Amenga-Etego, Seeba; Adda, Robert; Mensah, Christine; Owusu-Sekyere, Kwabena B; Anderson, Chris; Krieger, Gary; Owusu-Agyei, Seth

    2015-04-07

    Malaria vector dynamics are relevant prior to commencement of mining activities. A baseline entomology survey was conducted in Asutifi and Tano (referred to as Ahafo) in the Brong-Ahafo geo-political region of Ghana during preparatory stages for mining by Newmont Ghana Gold Limited. Between November 2006 and August 2007, eight Centre for Disease Control light traps were set daily (Monday-Friday) to collect mosquitoes. Traps were hanged in rooms that were selected from a pool of 1,100 randomly selected houses. Types of materials used in construction of houses were recorded and mosquito prevention measures were assessed from occupants. A total of 5,393 mosquitoes were caught that comprised Anopheles gambiae (64.8%), Anopheles funestus (4.2%), as well as Culicines, comprising of Culex (30.4%) and Aedes species (0.6%). The entomological inoculation rate in Asutifi (279 infective bites/person/month) and Tano (487 infective bites/person/month) demonstrate relatively high malaria transmission in Ahafo. The presence or absence of Anopheles vectors in rooms was influenced by the type of roofing material (OR 2.33, 95%CI: 1.29-4.22, p = 0.01) as well as the presence of eaves gaps (OR 1.80, 95%CI: 1.37-2.37, p < 0.01). It was also associated with bed net availability in the room (OR 1.39, 95%CI: 1.08-1.80, p = 0.01). Over 80% of the houses were roofed with corrugated zinc sheets. Over 60% of the houses in Ahafo had no eaves gaps to give access to mosquito entry and exit into rooms and mosquito bed net coverage was over 50%. Other measures used in preventing mosquito bites included; coil (22.1%), insecticide spray (9.4%), repellent cream (4.0%) and smoky fires (1.1%), contributed minimally to individual mosquito preventive measures in impact areas. Similarly, levels of protection; coil (16.9%), insecticide spray (2.8%) and repellent cream (0.3%) for the non-impact areas, depict low individual prevention measures. The survey identified areas where intensified vector

  2. Tools and Strategies for Malaria Control and Elimination: What Do We Need to Achieve a Grand Convergence in Malaria?

    PubMed Central

    Hemingway, Janet; Shretta, Rima; Wells, Timothy N. C.; Bell, David; Djimdé, Abdoulaye A.; Achee, Nicole; Qi, Gao

    2016-01-01

    Progress made in malaria control during the past decade has prompted increasing global dialogue on malaria elimination and eradication. The product development pipeline for malaria has never been stronger, with promising new tools to detect, treat, and prevent malaria, including innovative diagnostics, medicines, vaccines, vector control products, and improved mechanisms for surveillance and response. There are at least 25 projects in the global malaria vaccine pipeline, as well as 47 medicines and 13 vector control products. In addition, there are several next-generation diagnostic tools and reference methods currently in development, with many expected to be introduced in the next decade. The development and adoption of these tools, bolstered by strategies that ensure rapid uptake in target populations, intensified mechanisms for information management, surveillance, and response, and continued financial and political commitment are all essential to achieving global eradication. PMID:26934361

  3. Tools and Strategies for Malaria Control and Elimination: What Do We Need to Achieve a Grand Convergence in Malaria?

    PubMed

    Hemingway, Janet; Shretta, Rima; Wells, Timothy N C; Bell, David; Djimdé, Abdoulaye A; Achee, Nicole; Qi, Gao

    2016-03-01

    Progress made in malaria control during the past decade has prompted increasing global dialogue on malaria elimination and eradication. The product development pipeline for malaria has never been stronger, with promising new tools to detect, treat, and prevent malaria, including innovative diagnostics, medicines, vaccines, vector control products, and improved mechanisms for surveillance and response. There are at least 25 projects in the global malaria vaccine pipeline, as well as 47 medicines and 13 vector control products. In addition, there are several next-generation diagnostic tools and reference methods currently in development, with many expected to be introduced in the next decade. The development and adoption of these tools, bolstered by strategies that ensure rapid uptake in target populations, intensified mechanisms for information management, surveillance, and response, and continued financial and political commitment are all essential to achieving global eradication.

  4. Malaria-induced changes in host odors enhance mosquito attraction

    PubMed Central

    De Moraes, Consuelo M.; Stanczyk, Nina M.; Betz, Heike S.; Pulido, Hannier; Sim, Derek G.; Read, Andrew F.; Mescher, Mark C.

    2014-01-01

    Vector-borne pathogens may alter traits of their primary hosts in ways that influence the frequency and nature of interactions between hosts and vectors. Previous work has reported enhanced mosquito attraction to host organisms infected with malaria parasites but did not address the mechanisms underlying such effects. Here we document malaria-induced changes in the odor profiles of infected mice (relative to healthy individuals) over the course of infection, as well as effects on the attractiveness of infected hosts to mosquito vectors. We observed enhanced mosquito attraction to infected mice during a key period after the subsidence of acute malaria symptoms, but during which mice remained highly infectious. This attraction corresponded to an overall elevation in the volatile emissions of infected mice observed during this period. Furthermore, data analyses—using discriminant analysis of principal components and random forest approaches—revealed clear differences in the composition of the volatile blends of infected and healthy individuals. Experimental manipulation of individual compounds that exhibited altered emission levels during the period when differential vector attraction was observed also elicited enhanced mosquito attraction, indicating that compounds being influenced by malaria infection status also mediate vector host-seeking behavior. These findings provide important insights into the cues that mediate vector attraction to hosts infected with transmissible stages of malaria parasites, as well as documenting characteristic changes in the odors of infected individuals that may have potential value as diagnostic biomarkers of infection. PMID:24982164

  5. Malaria-induced changes in host odors enhance mosquito attraction.

    PubMed

    De Moraes, Consuelo M; Stanczyk, Nina M; Betz, Heike S; Pulido, Hannier; Sim, Derek G; Read, Andrew F; Mescher, Mark C

    2014-07-29

    Vector-borne pathogens may alter traits of their primary hosts in ways that influence the frequency and nature of interactions between hosts and vectors. Previous work has reported enhanced mosquito attraction to host organisms infected with malaria parasites but did not address the mechanisms underlying such effects. Here we document malaria-induced changes in the odor profiles of infected mice (relative to healthy individuals) over the course of infection, as well as effects on the attractiveness of infected hosts to mosquito vectors. We observed enhanced mosquito attraction to infected mice during a key period after the subsidence of acute malaria symptoms, but during which mice remained highly infectious. This attraction corresponded to an overall elevation in the volatile emissions of infected mice observed during this period. Furthermore, data analyses--using discriminant analysis of principal components and random forest approaches--revealed clear differences in the composition of the volatile blends of infected and healthy individuals. Experimental manipulation of individual compounds that exhibited altered emission levels during the period when differential vector attraction was observed also elicited enhanced mosquito attraction, indicating that compounds being influenced by malaria infection status also mediate vector host-seeking behavior. These findings provide important insights into the cues that mediate vector attraction to hosts infected with transmissible stages of malaria parasites, as well as documenting characteristic changes in the odors of infected individuals that may have potential value as diagnostic biomarkers of infection.

  6. Ecological study of avian malaria vectors on the island of Minami-Daito, Japan.

    PubMed

    Tsuda, Yoshio; Matsui, Shin; Saito, Atsushi; Akatani, Kana; Sato, Yukita; Takagi, Masaoki; Murata, Koichi

    2009-09-01

    The seasonal prevalence and spatial distribution of mosquitoes were examined as part of an avian malaria study on the oceanic island of Minami-Daito Island, Japan. Because dry ice was not available in this study, yeast-generated CO2 was used to attract biting mosquitoes. Adult mosquitoes were collected biweekly using battery-operated traps enhanced with yeast-generated CO2 and a gravid trap from March 2006 to February 2007. The CO2-baited traps were distributed in 4 different habitats: sugar cane field, forest and vegetation ring, residential area, and swamp area. At 3 collection sites beside sugar cane fields, traps were fixed at 2 different heights (3 and 6 m above the ground). A total of 1,437 mosquitoes of the following 9 species were collected: Culex quinquefasciatus, Aedes albopictus, Coquillettidia sp., Mansonia uniformis, Culex rubithoracis, Armigeres subalbatus, Lutzia fuscanus, Aedes daitensis, and Aedes togoi. Among them, Cx. quinquefasciatus, Ae. albopictus, and Coquillettidia sp. were dominant. The high density and wide distribution of Cx. quinquefasciatus throughout the island suggested the importance of this species as a principal vector of avian malaria on the island.

  7. Status of pesticide management in the practice of vector control: a global survey in countries at risk of malaria or other major vector-borne diseases.

    PubMed

    van den Berg, Henk; Hii, Jeffrey; Soares, Agnes; Mnzava, Abraham; Ameneshewa, Birkinesh; Dash, Aditya P; Ejov, Mikhail; Tan, Soo Hian; Matthews, Graham; Yadav, Rajpal S; Zaim, Morteza

    2011-05-14

    It is critical that vector control pesticides are used for their acceptable purpose without causing adverse effects on health and the environment. This paper provides a global overview of the current status of pesticides management in the practice of vector control. A questionnaire was distributed to WHO member states and completed either by the director of the vector-borne disease control programme or by the national manager for vector control. In all, 113 countries responded to the questionnaire (80% response rate), representing 94% of the total population of the countries targeted. Major gaps were evident in countries in pesticide procurement practices, training on vector control decision making, certification and quality control of pesticide application, monitoring of worker safety, public awareness programmes, and safe disposal of pesticide-related waste. Nevertheless, basic conditions of policy and coordination have been established in many countries through which the management of vector control pesticides could potentially be improved. Most countries responded that they have adopted relevant recommendations by the WHO. Given the deficiencies identified in this first global survey on public health pesticide management and the recent rise in pesticide use for malaria control, the effectiveness and safety of pesticide use are being compromised. This highlights the urgent need for countries to strengthen their capacity on pesticide management and evidence-based decision making within the context of an integrated vector management approach.

  8. Dry season refugia for anopheline larvae and mapping of the seasonal distribution in mosquito larval habitats in Kandi, northeastern Benin.

    PubMed

    Govoetchan, Renaud; Gnanguènon, Virgile; Ogouwalé, Euloge; Oké-Agbo, Frédéric; Azondékon, Roseric; Sovi, Arthur; Attolou, Roseline; Badirou, Kefilath; Youssouf, Ramziyath Agbanrin; Ossè, Razaki; Akogbéto, Martin

    2014-03-31

    The dynamics of mosquito populations depends on availability of suitable surface water for oviposition. It is well known that suitable management of mosquito larval habitats in the sub-Saharan countries, particularly during droughts, could help to suppress vector densities and malaria transmission. We conducted a field survey to investigate the spatial and seasonal distribution of mosquito larval habitats and identify drought-refugia for anopheline larvae. A GIS approach was used to identify, geo-reference and follow up longitudinally from May 2012 to May 2013, all mosquito breeding sites in two rural sites (Yondarou and Thui), one urban (Kossarou), and one peri-urban (Pèdè) site at Kandi, a municipality in northeastern Benin. In Kandi, droughts are excessive with no rain for nearly six months and a lot of sunshine. A comprehensive record of mosquito larval habitats was conducted periodically in all sites for the identification of drought-refugia of anopheline larval stages. With geospatialisation data, seasonal larval distribution maps were generated for each study site with the software ArcGIS version 10.2. Overall, 187 mosquito breeding sites were identified of which 29.95% were recorded during drought. In rural, peri-urban and urban sites, most of the drought-refugia of anopheline larvae were domestic in nature (61.54%). Moreover, in rural settings, anopheline larvae were also sampled in cisterns and wells (25% of larval habitats sampled during drought in Yondarou and 20% in Thui). The mapping showed a significant decrease in the spatial distribution of mosquito larval habitats in rural, peri-urban and urban sites during drought, except in Yondarou (rural) where the aridity did not seem to influence the distribution of larval habitats. Our data showed that the main drought-refugia of anopheline larvae were of a domestic nature as well as wells and cisterns. A suitable management of mosquito larvae in sub-Saharan countries, particularly during droughts, should

  9. Larvicidal and repellent activity of medicinal plant extracts from Eastern Ghats of South India against malaria and filariasis vectors.

    PubMed

    Kamaraj, Chinnaperumal; Rahuman, Abdul Abdul; Bagavan, Asokan; Elango, Gandhi; Zahir, Abdul Abduz; Santhoshkumar, Thirunavukkarasu

    2011-09-01

    To evaluate the larvicidal and repellent activities of ethyl acetate and methanol extracts of Acacia concinna (A. concinna), Cassia siamea (C. siamea), Coriandrum sativum (C. sativum),Cuminum cyminum (C. cyminum), Lantana camara (L. camara), Nelumbo nucifera (N. nucifera) Phyllanthus amarus (P. amarus), Piper nigrum (P. nigrum) and Trachyspermum ammi (T. ammi) against Anopheles stephensi (An. stephensi) and Culex quinquefasciatus (Cx. quinquefasciatus). The larvicidal activity of medicinal plant extracts were tested against early fourth-instar larvae of malaria and filariasis vectors. The mortality was observed 24 h and 48 h after treatment, data were subjected to probit analysis to determine the lethal concentrations (LC(50) and LC(90)) to kill 50 and 90 per cent of the treated larvae of the tested species. The repellent efficacy was determined against two mosquito species at five concentrations (31.25, 62.50, 125.00, 250.00, and 500.00 ppm) under the laboratory conditions. All plant extracts showed moderate effects after 24 h and 48 h of exposure; however, the highest activity was observed after 24 h in the leaf methanol extract of N. nucifera, seed ethyl acetate and methanol extract of P. nigrum against the larvae of An. stephensi (LC(50) = 34.76, 24.54 and 30.20 ppm) and against Cx. quinquefasciatus (LC(50) = 37.49, 43.94 and 57.39 ppm), respectively. The toxic effect of leaf methanol extract of C. siamea, seed methanol extract of C. cyminum, leaf ethyl acetate extract of N. nucifera, leaf ethyl acetate and methanol extract of P. amarus and seed methanol extract of T. ammi were showed 100% mortality against An. stephensi and Cx. quinquefasciatus after 48 h exposer. The maximum repellent activity was observed at 500 ppm in methanol extracts of N. nucifera, ethyl acetate and methanol extract of P. nigrum and methanol extract of T. ammi and the mean complete protection time ranged from 30 to 150 min with the different extracts tested. These results suggest that

  10. Radar Monitoring of Wetlands for Malaria Control

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.

    1997-01-01

    Malaria is the most important vector-borne tropical disease (Collins and Paskewitz, 1995) and there is no simple and universally applicable form of vector control. While new methods such as malaria vaccine or genetic manipulation of mosquitoes are being explored in the laboratories, the need for more field research on malaria transmission remains very strong. For the foreseeable future many malaria programs must focus on controlling the vector, the anopheline mosquito, often under the specter of shrinking budgets. Therefore information on which human populations are at the greatest risk is especially valuable when allocating scarce resources. The goal of the Radar Monitoring of Wetlands for Malaria Control Project is to demonstrate the feasibility of using Radarsat or other comparable satellite radar imaging systems to determine where and when human populations are at greatest risk for contracting malaria. The study area is northern Belize, a region with abundant wetlands and a potentially serious malaria problem. A key aspect of this study is the analysis of multi-temporal satellite imagery to track seasonal flooding of anopheline mosquito breeding sites. Radarsat images of the test site in Belize have been acquired one to three times a month over the last year, however,, to date only one processed image has been received from the Alaska SAR Facility for analysis. Therefore analysis at this stage is focussed on determining the radar backscatter characteristics of known anopheline breeding sites, with future work to be dedicated toward seasonal changes.

  11. Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector.

    PubMed

    Ibrahim, Sulaiman S; Riveron, Jacob M; Bibby, Jaclyn; Irving, Helen; Yunta, Cristina; Paine, Mark J I; Wondji, Charles S

    2015-10-01

    Scale up of Long Lasting Insecticide Nets (LLINs) has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser) from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies.

  12. Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector

    PubMed Central

    Ibrahim, Sulaiman S.; Riveron, Jacob M.; Bibby, Jaclyn; Irving, Helen; Yunta, Cristina; Paine, Mark J. I.; Wondji, Charles S.

    2015-01-01

    Scale up of Long Lasting Insecticide Nets (LLINs) has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser) from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies. PMID:26517127

  13. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities.

    PubMed

    Ramirez, Jose Luis; Short, Sarah M; Bahia, Ana C; Saraiva, Raul G; Dong, Yuemei; Kang, Seokyoung; Tripathi, Abhai; Mlambo, Godfree; Dimopoulos, George

    2014-10-01

    Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito's vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies.

  14. Reflections on the Anopheles gambiae genome sequence, transgenic mosquitoes and the prospect for controlling malaria and other vector borne diseases.

    PubMed

    Tabachnick, Walter J

    2003-09-01

    The completion of the Anopheles gambiae Giles genome sequencing project is a milestone toward developing more effective strategies in reducing the impact of malaria and other vector borne diseases. The successes in developing transgenic approaches using mosquitoes have provided another essential new tool for further progress in basic vector genetics and the goal of disease control. The use of transgenic approaches to develop refractory mosquitoes is also possible. The ability to use genome sequence to identify genes, and transgenic approaches to construct refractory mosquitoes, has provided the opportunity that with the future development of an appropriate genetic drive system, refractory transgenes can be released into vector populations leading to nontransmitting mosquitoes. An. gambiae populations incapable of transmitting malaria. This compelling strategy will be very difficult to achieve and will require a broad substantial research program for success. The fundamental information that is required on genome structure, gene function and environmental effects on genetic expression are largely unknown. The ability to predict gene effects on phenotype is rudimentary, particularly in natural populations. As a result, the release of a refractory transgene into natural mosquito populations is imprecise and there is little ability to predict unintended consequences. The new genetic tools at hand provide opportunities to address an array of important issues, many of which can have immediate impact on the effectiveness of a host of strategies to control vector borne disease. Transgenic release approaches represent only one strategy that should be pursued. A balanced research program is required.

  15. Staggered larval time-to-hatch and insecticide resistance in the major malaria vector Anopheles gambiae S form.

    PubMed

    Kaiser, Maria L; Koekemoer, Lizette L; Coetzee, Maureen; Hunt, Richard H; Brooke, Basil D

    2010-12-14

    Anopheles gambiae is a major vector of malaria in the West African region. Resistance to multiple insecticides has been recorded in An. gambiae S form in the Ahafo region of Ghana. A laboratory population (GAH) established using wild material from this locality has enabled a mechanistic characterization of each resistance phenotype as well as an analysis of another adaptive characteristic - staggered larval time-to-hatch. Individual egg batches obtained from wild caught females collected from Ghana and the Republic of the Congo were monitored for staggered larval time-to-hatch. In addition, early and late larval time-to-hatch sub-colonies were selected from GAH. These selected sub-colonies were cross-mated and their hybrid progeny were subsequently intercrossed and back-crossed to the parental strains. The insecticide susceptibilities of the GAH base colony and the time-to-hatch selected sub-colonies were quantified for four insecticide classes using insecticide bioassays. Resistance phenotypes were mechanistically characterized using insecticide-synergist bioassays and diagnostic molecular assays for known reduced target-site sensitivity mutations. Anopheles gambiae GAH showed varying levels of resistance to all insecticide classes. Metabolic detoxification and reduced target-site sensitivity mechanisms were implicated. Most wild-caught families showed staggered larval time-to-hatch. However, some families were either exclusively early hatching or late hatching. Most GAH larvae hatched early but many egg batches contained a proportion of late hatching larvae. Crosses between the time-to-hatch selected sub-colonies yielded ambiguous results that did not fit any hypothetical models based on single-locus Mendelian inheritance. There was significant variation in the expression of insecticide resistance between the time-to-hatch phenotypes. An adaptive response to the presence of multiple insecticide classes necessarily involves the development of multiple resistance

  16. Feasibility and implementation of community-based malaria case management with integrated vector control in the Democratic Republic of Congo.

    PubMed

    Swana, Edouard Kawawa; Makan, Ghislain Yav; Mukeng, Clarence Kaut; Mupumba, Henriette Ilunga; Kalaba, Gabriel Mutabusha; Luboya, Oscar Numbi; Bangs, Michael J

    2016-08-15

    Malaria prevalence in the Mulumbu Health Area in Lualaba Province, Democratic Republic of the Congo has remained high (>70 %) despite repeated vector control (indoor residual spray) and mass insecticide-treated bed net coverage. Therefore, a pilot study was implemented to attack the parasite directly and demonstrate the feasibility and acceptability of community case management of malaria (CCMm) using trained community health workers (CHWs). A 13 month prospective evaluation of CCMm was undertaken in 14 rural villages. Focus group discussions and structured interviews were conducted in pre- and post-intervention periods to assess community acceptability of CCMm. Weekly data collected by CHWs assessed program impact over time, matched with malaria school-based prevalence surveys (MSPS) in the Mulumbu Health Area (CCMm study arm) compared to a comparison (non-CCMm) arm in the Mpala Health Area approximately 25 km apart. Overall population perception of the CCMm was highly positive. 6619 community contacts were managed by CHWs from which 1433 (21.6 %) were malaria positive by rapid detection tests during the 10 month intervention. Among the malaria infected, 94.7 % (1358) were recorded as 'uncomplicated' infections with 99.7 % provided full course of treatment. CHWs referred 278 (4.2 %) patients deemed 'complicated' to a designated primary health center for advanced care. While pre-intervention MSPS data revealed significantly higher (p = 0.0135) malaria in the CCMm area compared to the non-CCMm area, at post-intervention there was no statistical difference (p = 0.562) between the two areas. Notably, for the first time, no malaria-related deaths were recorded in the 14 CCMm intervention villages during observation. Community case management of malaria was shown to be an effective and promising strategy for prompt and effective management of malaria. It was well accepted by the community and showed evidence of a reduction in malaria morbidity and mortality

  17. Larval habitats of the Anopheles farauti and Anopheles lungae complexes in the Solomon Islands.

    PubMed

    Russell, Tanya L; Burkot, Thomas R; Bugoro, Hugo; Apairamo, Allan; Beebe, Nigel W; Chow, Weng K; Cooper, Robert D; Collins, Frank H; Lobo, Neil F

    2016-03-15

    There is an urgent need for vector control tools to supplement long-lasting insecticidal nets (LLINs) and indoor residual spraying; particularly in the Solomon Islands where the primary vector, Anopheles farauti, is highly anthropophagic and feeds mainly outdoors and early in the evening. Currently, the only supplementary tool recommended by the World Health Organization is larval source management (LSM). The feasibility and potential effectiveness of LSM requires information on the distribution of anophelines, the productivity of larval habitats and the potential impacts of larval control on adult fitness. The distribution of anophelines in Central and Western Provinces in the Solomon Islands was mapped from cross-sectional larval habitat surveys. The composition and micro-distribution of larval instars within a large permanent river-mouth lagoon was examined with a longitudinal survey. Density-dependent regulation of An. farauti larvae was investigated by longitudinally following the development and survival of different densities of first instars in floating cages in a river-mouth lagoon. Five anopheline species were molecularly identified from a range of fresh and brackish water habitats: An. farauti s.s., An. hinesorum, An. lungae, An. nataliae and An. solomonis. The most common habitats used by the primary malaria vector, An. farauti, were coastal lagoons and swamps. In the detailed study of lagoon micro-productivity, An. farauti was non-uniformly distributed with highest densities found at collections sites most proximal and distal to the mouth of the lagoon. The survival of An. farauti larvae was more than twofold lower when larvae were held at the highest experimental density (1 larva per 3.8 cm(2)) when compared with the lowest density (1 larva per 38 cm(2)). The only documented major malaria vector collected in larval surveys in both Central and Western Provinces was An. farauti. Lagoons and swamps, the most common, largest and (potentially) most

  18. Insecticide resistance status of three malaria vectors, Anopheles gambiae (s.l.), An. funestus and An. mascarensis, from the south, central and east coasts of Madagascar.

    PubMed

    Rakotoson, Jean-Desire; Fornadel, Christen M; Belemvire, Allison; Norris, Laura C; George, Kristen; Caranci, Angela; Lucas, Bradford; Dengela, Dereje

    2017-08-23

    Insecticide-based vector control, which comprises use of insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS), is the key method to malaria control in Madagascar. However, its effectiveness is threatened as vectors become resistant to insecticides. This study investigated the resistance status of malaria vectors in Madagascar to various insecticides recommended for use in ITNs and/or IRS. WHO tube and CDC bottle bioassays were performed on populations of Anopheles gambiae (s.l.), An. funestus and An. mascarensis. Adult female An. gambiae (s.l.) mosquitoes reared from field-collected larvae and pupae were tested for their resistance to DDT, permethrin, deltamethrin, alpha-cypermethrin, lambda-cyhalothrin, bendiocarb and pirimiphos-methyl. Resting An. funestus and An. mascarensis female mosquitoes collected from unsprayed surfaces were tested against permethrin, deltamethrin and pirimiphos-methyl. The effect on insecticide resistance of pre-exposure to the synergists piperonyl-butoxide (PBO) and S,S,S-tributyl phosphorotrithioate (DEF) also was assessed. Molecular analyses were done to identify species and determine the presence of knock-down resistance (kdr) and acetylcholinesterase resistance (ace-1 R ) gene mutations. Anopheles funestus and An. mascarensis were fully susceptible to permethrin, deltamethrin and pirimiphos-methyl. Anopheles gambiae (s.l.) was fully susceptible to bendiocarb and pirimiphos-methyl. Among the 17 An. gambiae (s.l.) populations tested for deltamethrin, no confirmed resistance was recorded, but suspected resistance was observed in two sites. Anopheles gambiae (s.l.) was resistant to permethrin in four out of 18 sites (mortality 68-89%) and to alpha-cypermethrin (89% mortality) and lambda-cyhalothrin (80% and 85%) in one of 17 sites, using one or both assay methods. Pre-exposure to PBO restored full susceptibility to all pyrethroids tested except in one site where only partial restoration to permethrin was observed. DEF

  19. Multiple pruritic papules from lone star tick larvae bites.

    PubMed

    Fisher, Emily J; Mo, Jun; Lucky, Anne W

    2006-04-01

    Ticks are the second most common vectors of human infectious diseases in the world. In addition to their role as vectors, ticks and their larvae can also produce primary skin manifestations. Infestation by the larvae of ticks is not commonly recognized, with only 3 cases reported in the literature. The presence of multiple lesions and partially burrowed 6-legged tick larvae can present a diagnostic challenge for clinicians. We describe a 51-year-old healthy woman who presented to our clinic with multiple erythematous papules and partially burrowed organisms 5 days after exposure to a wooded area in southern Kentucky. She was treated with permethrin cream and the lesions resolved over the following 3 weeks without sequelae. The organism was later identified as the larva of Amblyomma species, the lone star tick. Multiple pruritic papules can pose a diagnostic challenge. The patient described herein had an unusually large number of pruritic papules as well as tick larvae present on her skin. Recognition of lone star tick larvae as a cause of multiple bites may be helpful in similar cases.

  20. Why is it important to study malaria epidemiology in India?

    PubMed

    Singh, Vineeta; Mishra, Neelima; Awasthi, Gauri; Dash, Aditya P; Das, Aparup

    2009-10-01

    Malaria is a major vector-borne disease in India. Based on vast geographic areas with associated topographic and climatic diversity, the variable malaria epidemiology in India is associated with high parasite genetic diversity and rapidly evolving drug resistance, differential distribution of vector species and emerging insecticide resistance and underlying human genetic diversity and past evolutionary histories. Further, changing climatic patterns have possibly changed malaria epidemiology to a great extent. The outcome of these changes is an increased incidence of Plasmodium falciparum over the P. vivax malaria in recent years. Accordingly, the drug and insecticide application policy in India has changed too. The above facts and associated rapid shifting trend of malaria epidemiology makes India a hot-spot for malaria research.

  1. Overlap in the Seasonal Infection Patterns of Avian Malaria Parasites and West Nile Virus in Vectors and Hosts

    PubMed Central

    Medeiros, Matthew C. I.; Ricklefs, Robert E.; Brawn, Jeffrey D.; Ruiz, Marilyn O.; Goldberg, Tony L.; Hamer, Gabriel L.

    2016-01-01

    Multiple vector-borne pathogens often circulate in the same vector and host communities, and seasonal infection dynamics influence the potential for pathogen interactions. Here, we explore the seasonal infection patterns of avian malaria (Haemosporida) parasites (Plasmodium and Haemoproteus) and West Nile virus (WNV) in birds and mosquitoes in suburban Chicago. We show that both pathogens vary seasonally in Culex mosquitoes and avian hosts, but that patterns of covariation are complex. Different putative Plasmodium species varied asynchronously across the season in mosquitoes and birds, suggesting that different forces may govern their transmission. Infections of Culex mosquitoes with Plasmodium parasites were positively associated with WNV infections in pools of individuals aggregated from the same time and site, suggesting that these pathogens respond to common environmental drivers and co-circulate among the same host and vector populations. Future research should focus on these common drivers, and whether these pathogens interact in vectors and hosts. PMID:27621305

  2. Insecticidal and repellent activity of Hiptage benghalensis L. Kruz (Malpighiaceae) against mosquito vectors.

    PubMed

    Lalrotluanga; Ngente, Lalchawimawii; Nachimuthu, Senthil Kumar; Guruswami, Gurusubramanian

    2012-09-01

    Plant-based insecticides for vector control are urgently needed for Anopheles barbirostris, Culex quinquefasciatus, and Aedes albopictus which are the primary vectors of malaria, lymphatic filariasis, and dengue, respectively, in India and other South East Asian countries. In the present study, larvicidal, adulticidal, and repellent activities of acetone root bark extract of Hiptage benghalensis were tested against the larvae and adults of the three mosquito vectors. The acetone root bark extracts of H. benghalensis was more effective as larvicides with low LC(50) (11.15-16.78 ppm) and LT50 (1.25-4.84 h at 200 and 400 ppm) values. Results of log probit analysis (at 95 % confidence level) and regression analysis of crude acetone root bark extract of H. benghalensis revealed that lethal concentration (LC(50)) values gradually decreased with the exposure periods; lethal time (LT(50)) decreased with the concentration, and the mortality is positively correlated with the concentration. The order of susceptibility of the three mosquito species was as follows: A. albopictus > A. barbirostris > C. quinquefascitus. Biochemical changes were also evidenced in third instar larvae of three mosquito species following a sublethal exposure for 24 h. The level of sugar, glycogen, lipids, and proteins was significantly (P < 0.05) reduced in larvae treated with H. benghalensis. The acetone root bark extracts of H. benghalensis is less toxic to adults and repelled laboratory-reared female A. barbirostris, A. albopictus, and C. quinquefascitus with the short median protection times of 57.66-135, 72.41-134.16, and 47.66-93 min, respectively. The present investigation proves it as a potent larvicide against A. albopictus, A. barbirostris, and C. quinquefascitus, which can be recommended to control these mosquito species on its breeding site. However, further investigations are needed to confirm the lethal effects of H. benghalensis in field conditions and its impact on the nontarget

  3. Does malaria epidemiology project Cameroon as 'Africa in miniature'?

    PubMed

    Mbenda, Huguette Gaelle Ngassa; Awasthi, Gauri; Singh, Poonam K; Gouado, Inocent; Das, Aparup

    2014-09-01

    Cameroon, a west-central African country with a ~ 20 million population, is commonly regarded as 'Africa in miniature' due to the extensive biological and cultural diversities of whole Africa being present in a single-country setting. This country is inhabited by ancestral human lineages in unique eco-climatic conditions and diverse topography. Over 90 percent Cameroonians are at risk of malaria infection, and ~ 41 percent have at least one episode of malaria each year. Historically, the rate of malaria infection in Cameroon has fluctuated over the years; the number of cases was about 2 million in 2010 and 2011. The Cameroonian malaria control programme faces an uphill task due to high prevalence of multidrug-resistant parasites and insecticide-resistant malaria vectors. Above all, continued human migration from the rural to urban areas as well as population exchange with adjoining countries, high rate of ecological instabilities caused by deforestation, poor housing, lack of proper sanitation and drainage system might have resulted in the recent increase in incidences of malaria and other vector-borne diseases in Cameroon. The available data on eco-environmental variability and intricate malaria epidemiology in Cameroon reflect the situation in the whole of Africa, and warrant the need for in-depth study by using modern surveillance tools for meaningful basic understanding of the malaria triangle (host-parasite-vector-environment).

  4. A Wickerhamomyces anomalus Killer Strain in the Malaria Vector Anopheles stephensi

    PubMed Central

    Valzano, Matteo; Damiani, Claudia; Epis, Sara; Gabrielli, Maria Gabriella; Conti, Stefania; Polonelli, Luciano; Bandi, Claudio; Favia, Guido; Ricci, Irene

    2014-01-01

    The yeast Wickerhamomyces anomalus has been investigated for several years for its wide biotechnological potential, especially for applications in the food industry. Specifically, the antimicrobial activity of this yeast, associated with the production of Killer Toxins (KTs), has attracted a great deal of attention. The strains of W. anomalus able to produce KTs, called “killer” yeasts, have been shown to be highly competitive in the environment. Different W. anomalus strains have been isolated from diverse habitats and recently even from insects. In the malaria mosquito vector Anopheles stephensi these yeasts have been detected in the midgut and gonads. Here we show that the strain of W. anomalus isolated from An. stephensi, namely WaF17.12, is a killer yeast able to produce a KT in a cell-free medium (in vitro) as well as in the mosquito body (in vivo). We showed a constant production of WaF17.12-KT over time, after stimulation of toxin secretion in yeast cultures and reintroduction of the activated cells into the mosquito through the diet. Furthermore, the antimicrobial activity of WaF17.12-KT has been demonstrated in vitro against sensitive microbes, showing that strain WaF17.12 releases a functional toxin. The mosquito-associated yeast WaF17.12 thus possesses an antimicrobial activity, which makes this yeast worthy of further investigations, in view of its potential as an agent for the symbiotic control of malaria. PMID:24788884

  5. Challenges and prospects for dengue and malaria control in Thailand, Southeast Asia.

    PubMed

    Corbel, Vincent; Nosten, Francois; Thanispong, Kanutcharee; Luxemburger, Christine; Kongmee, Monthathip; Chareonviriyaphap, Theeraphap

    2013-12-01

    Despite significant advances in the search for potential dengue vaccines and new therapeutic schemes for malaria, the control of these diseases remains difficult. In Thailand, malaria incidence is falling whereas that of dengue is rising, with an increase in the proportion of reported severe cases. In the absence of antiviral therapeutic options for acute dengue, appropriate case management reduces mortality. However, the interruption of transmission still relies on vector control measures that are currently insufficient to curtail the cycle of epidemics. Drug resistance in malaria parasites is increasing, compromising malaria control and elimination. Deficiencies in our knowledge of vector biology and vectorial capacity also hinder public health efforts for vector control. Challenges to dengue and malaria control are discussed, and research priorities identified. Copyright © 2013. Published by Elsevier Ltd.

  6. Status of pesticide management in the practice of vector control: a global survey in countries at risk of malaria or other major vector-borne diseases

    PubMed Central

    2011-01-01

    Background It is critical that vector control pesticides are used for their acceptable purpose without causing adverse effects on health and the environment. This paper provides a global overview of the current status of pesticides management in the practice of vector control. Methods A questionnaire was distributed to WHO member states and completed either by the director of the vector-borne disease control programme or by the national manager for vector control. In all, 113 countries responded to the questionnaire (80% response rate), representing 94% of the total population of the countries targeted. Results Major gaps were evident in countries in pesticide procurement practices, training on vector control decision making, certification and quality control of pesticide application, monitoring of worker safety, public awareness programmes, and safe disposal of pesticide-related waste. Nevertheless, basic conditions of policy and coordination have been established in many countries through which the management of vector control pesticides could potentially be improved. Most countries responded that they have adopted relevant recommendations by the WHO. Conclusions Given the deficiencies identified in this first global survey on public health pesticide management and the recent rise in pesticide use for malaria control, the effectiveness and safety of pesticide use are being compromised. This highlights the urgent need for countries to strengthen their capacity on pesticide management and evidence-based decision making within the context of an integrated vector management approach. PMID:21569601

  7. Random repeated cross sectional study on breeding site characterization of Anopheles sinensis larvae in distinct villages of Yongcheng City, People's Republic of China

    PubMed Central

    2012-01-01

    Background Characterizing the breeding site of Anopheles sinensis is of major importance for the transition from malaria control to elimination in China. However, little information is available especially regarding the characteristics and influencing factors of breeding sites of An. sinensis in Yongcheng City, a representative region of unstable malaria transmission in the Huang-Huai River region of central China. The aims of this study were to determine the breeding site characteristics of An. sinensis and related environmental and physicochemical parameters, to find out which breeding site characteristics could best explain the presence of An. sinensis larvae, and to determine whether the breeding habit of An. sinensis has changed or not. Methods Random repeated cross sectional study was undertaken in six villages of the Yongcheng city characterized by different levels of the historical incidence of P. vivax malaria. The potential breeding sites of An. sinensis larvae in each village were examined twice per month both in the household courtyards and the village surroundings. The larval sampling was done by the standard dipping method. Some important breeding site characterizations were recorded and characterized. The anopheline mosquito larvae and emerged adults were identified to the species level morphologically and to sub-species by the ribosomal DNA PCR technique. Chi-square analysis and logistic regression analysis were applied to determine the importance of factors for explaining the presence or absence of An. sinensis larvae. Results According to the ribosomal DNA PCR assay, all sampled anopheline mosquito larvae and emerged adults belonged to An. sinensis. Only 3 containers that were sampled from the household courtyards were found to contain An. sinensis larvae. There were no differences in the species composition of mosquito larvae among containers that contained water in the household courtyards (P > 0.05). An. sinensis larvae were shown to be present

  8. Factors Contributing to Urban Malaria Transmission in Sub-Saharan Africa: A Systematic Review

    PubMed Central

    De Silva, Prathiba M.; Marshall, John M.

    2012-01-01

    Sub-Saharan Africa suffers by far the greatest malaria burden worldwide and is currently undergoing a profound demographic change, with a growing proportion of its population moving to urban areas. Urbanisation is generally expected to reduce malaria transmission; however the disease still persists in African cities, in some cases at higher levels than in nearby rural areas. Objective. This paper aims to collate and analyse risk factors for urban malaria transmission throughout sub-Saharan Africa and to discuss their implications for control. Methods. A systematic search on malaria and urbanisation was carried out focusing on sub-Saharan Africa. Particular interest was taken in vector breeding sites in urban and periurban areas. Results. A variety of urban vector breeding sites were catalogued, the majority of which were artificial, including urban agriculture, tyre tracks, and ditches. Natural breeding sites varied according to location. Low socioeconomic status was a significant risk factor for malaria, often present in peri-urban areas. A worrying trend was seen in the adaptation of malaria vector species to the urban environment. Urban malaria is highly focused and control programs should reflect this. Conclusion. As urbanisation continues and vector species adapt, continued monitoring and control of urban malaria in sub-Saharan Africa is essential. PMID:23125863

  9. Insecticide resistance of Anopheles sinensis and An. vagus in Hainan Island, a malaria-endemic area of China.

    PubMed

    Qin, Qian; Li, Yiji; Zhong, Daibin; Zhou, Ning; Chang, Xuelian; Li, Chunyuan; Cui, Liwang; Yan, Guiyun; Chen, Xiao-Guang

    2014-03-03

    Malaria is one of the most important public health problems in Southeast Asia, including Hainan Island, China. Vector control is the main malaria control measure, and insecticide resistance is a major concern for the effectiveness of chemical insecticide control programs. The objective of this study is to determine the resistance status of the main malaria vector species to pyrethroids and other insecticides recommended by the World Health Organization (WHO) for indoor residual sprays. The larvae and pupae of Anopheles mosquitoes were sampled from multiple sites in Hainan Island, and five sites yielded sufficient mosquitoes for insecticide susceptibility bioassays. Bioassays of female adult mosquitoes three days after emergence were conducted in the two most abundant species, Anopheles sinensis and An. vagus, using three insecticides (0.05% deltamethrin, 4% DDT, and 5% malathion) and following the WHO standard tube assay procedure. P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were measured. Mutations at the knockdown resistance (kdr) gene and the ace-1 gene were detected by DNA sequencing and PCR-RFLP analysis, respectively. An. sinensis and An. vagus were the predominant Anopheles mosquito species. An. sinensis was found to be resistant to DDT and deltamethrin. An. vagus was susceptible to deltamethrin but resistant to DDT and malathion. Low kdr mutation (L1014F) frequency (<10%) was detected in An. sinensis, but no kdr mutation was detected in An. vagus populations. Modest to high (45%-75%) ace-1 mutation frequency was found in An. sinensis populations, but no ace-1 mutation was detected in An. vagus populations. Significantly higher P450 monooxygenase and carboxylesterase activities were detected in deltamethrin-resistant An. sinensis, and significantly higher P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were found in malathion-resistant An. vagus mosquitoes. Multiple insecticide resistance was

  10. Ranking malaria risk factors to guide malaria control efforts in African highlands.

    PubMed

    Protopopoff, Natacha; Van Bortel, Wim; Speybroeck, Niko; Van Geertruyden, Jean-Pierre; Baza, Dismas; D'Alessandro, Umberto; Coosemans, Marc

    2009-11-25

    Malaria is re-emerging in most of the African highlands exposing the non immune population to deadly epidemics. A better understanding of the factors impacting transmission in the highlands is crucial to improve well targeted malaria control strategies. A conceptual model of potential malaria risk factors in the highlands was built based on the available literature. Furthermore, the relative importance of these factors on malaria can be estimated through "classification and regression trees", an unexploited statistical method in the malaria field. This CART method was used to analyse the malaria risk factors in the Burundi highlands. The results showed that Anopheles density was the best predictor for high malaria prevalence. Then lower rainfall, no vector control, higher minimum temperature and houses near breeding sites were associated by order of importance to higher Anopheles density. In Burundi highlands monitoring Anopheles densities when rainfall is low may be able to predict epidemics. The conceptual model combined with the CART analysis is a decision support tool that could provide an important contribution toward the prevention and control of malaria by identifying major risk factors.

  11. Investigating knockdown resistance (kdr) mechanism against pyrethroids/DDT in the malaria vector Anopheles funestus across Africa.

    PubMed

    Irving, Helen; Wondji, Charles S

    2017-08-09

    Understanding the molecular basis of insecticide resistance is key to improve the surveillance and monitoring of malaria vector populations under control. In the major malaria vector Anopheles funestus, little is currently known about the role of the knockdown resistance (kdr) mechanism. Here, we investigated the presence and contribution of knockdown resistance (kdr) to pyrethroids/DDT resistance observed in Anopheles funestus across Africa. Pyrosequencing genotyping and sequencing of the voltage gated sodium channel (VGSC) gene did not detect the common L1014F mutation in field collected An. funestus across Africa. Amplification and cloning of the full-length of the sodium channel gene in pyrethroid resistant mosquitoes revealed evidences of alternative splicing events with three transcripts of 2092, 2061 and 2117 amino acids (93% average similarity to An. gambiae). Several amino acid changes were detected close to the domain II of the protein such as L928R, F938 W, I939S, L802S and T1008 M. However, all these mutations are found at low frequency and their role in pyrethroid resistance could not be established. The presence of the exclusive alternative splicing at exon 19 was not associated with resistance phenotype. Analysis of patterns of genetic diversity of the VGSC gene revealed a high polymorphism level of this gene across Africa with no evidence of directional selection suggesting a limited role for knockdown resistance in pyrethroid resistance in An. funestus. Patterns of genetic differentiation correlate with previous observations of the existence of barriers to gene flow Africa-wide with southern population significantly differentiated from other regions. Despite an apparent limited role of knockdown resistance in An. funestus, it is necessary to continue to monitor the contribution of the mutations detected here as increasing selection from insecticide-based interventions may change the dynamic in field populations as previously observed in other

  12. Malaria transmission in two localities in north-western Argentina

    PubMed Central

    Dantur Juri, María J; Zaidenberg, Mario; Claps, Guillermo L; Santana, Mirta; Almirón, Walter R

    2009-01-01

    Background Malaria is one of the most important tropical diseases that affects people globally. The influence of environmental conditions in the patterns of temporal distribution of malaria vectors and the disease has been studied in different countries. In the present study, ecological aspects of the malaria vector Anopheles (Anopheles) pseudopunctipennis and their relationship with climatic variables, as well as the seasonality of malaria cases, were studied in two localities, El Oculto and Aguas Blancas, in north-western Argentina. Methods The fluctuation of An. pseudopunctipennis and the malaria cases distribution was analysed with Random Effect Poisson Regression. This analysis takes into account the effect of each climatic variable on the abundance of both vector and malaria cases, giving as results predicted values named Incidence Rate Radio. Results The number of specimens collected in El Oculto and Aguas Blancas was 4224 (88.07%) and 572 (11.93%), respectively. In El Oculto no marked seasonality was found, different from Aguas Blancas, where high abundance was detected at the end of spring and the beginning of summer. The maximum mean temperature affected the An. pseudopunctipennis fluctuation in El Oculto and Aguas Blancas. When considering the relationship between the number of malaria cases and the climatic variables in El Oculto, maximum mean temperature and accumulated rainfall were significant, in contrast with Aguas Blancas, where mean temperature and humidity showed a closer relationship to the fluctuation in the disease. Conclusion The temporal distribution patterns of An. pseudopunctipennis vary in both localities, but spring appears as the season with better conditions for mosquito development. Maximum mean temperature was the most important variable in both localities. Malaria cases were influenced by the maximum mean temperature in El Oculto, while the mean temperature and humidity were significant in Aguas Blancas. In Aguas Blancas peaks of

  13. Unexpected anthropophily in the potential secondary malaria vectors Anopheles coustani s.l. and Anopheles squamosus in Macha, Zambia.

    PubMed

    Fornadel, Christen M; Norris, Laura C; Franco, Veronica; Norris, Douglas E

    2011-08-01

    Anopheles coustani s.l. and Anopheles squamosus are sub-Saharan mosquito species that have been implicated in malaria transmission. Although generally believed to be of negligible importance due to their overwhelmingly zoophilic behavior, An. coustani s.l. and An. squamosus made up a large proportion of the anophelines collected by human landing catches during the 2007-2008 and 2008-2009 rainy seasons in Macha, Zambia. Further, polymerase chain reaction-based blood meal identification showed that the majority of blood meals from these mosquito species caught in human-baited Centers for Disease Control light traps were from human hosts. Although no An. coustani s.l. or An. squamosus were found to be positive for Plasmodium, the demonstrated anthropophilic tendencies of these mosquitoes in southern Zambia suggest their potential as secondary malaria vectors.

  14. Development, standardization and validation of molecular techniques for malaria vector species identification, trophic preferences, and detection of Plasmodium falciparum.

    PubMed

    Rath, Animesha; Prusty, Manas R; Barik, Sushanta K; Das, Mumani; Tripathy, Hare K; Mahapatra, Namita; Hazra, Rupenangshu K

    2017-01-01

    Knowledge on prevalence of malaria vector species of a certain area provides important information for implementation of appropriate control strategies. The present study describes a rapid method for screening of major Anopheline vector species and at the same time detection of Plasmodium falciparum sporozoite infection and blood meal preferences/trophic preferences. The study was carried from February 2012 to March 2013 in three seasons, i.e. rainy, winter and summer in Jhumpura PHC of Keonjhar district, Odisha, India. Processing of mosquitoes was carried out in two different methods, viz. mosquito pool (P1) and mosquito DNA pool (P2). Pool size for both the methods was standardized for DNA isolation and multiplex PCR assay. This PCR based assay was employed to screen the major vector com- position in three different seasons of four different ecotypes of Keonjhar district. Pearson's correlation coefficient was determined for a comparative analysis of the morphological identification with the pool prevalence assay for each ecotype. A pool size of 10 was standardized for DNA isolation as well as PCR. PCR assay revealed that the average pool prevalence for all ecotypes was highest for An. annularis in winter and summer whereas for An. culicifacies it was rainy season. Foothill and plain ecotypes contributed to highest and lowest vectorial abundance respectively. The results of the prevalence of vector species in pool from PCR based assay were found to be highly correlated with that of the results of morphological identification. Screening by pool based PCR assay is relatively rapid as compared to conventional identification and can be employed as an important tool in malaria control programmes.

  15. The effect of case management and vector-control interventions on space-time patterns of malaria incidence in Uganda.

    PubMed

    Ssempiira, Julius; Kissa, John; Nambuusi, Betty; Kyozira, Carol; Rutazaana, Damian; Mukooyo, Eddie; Opigo, Jimmy; Makumbi, Fredrick; Kasasa, Simon; Vounatsou, Penelope

    2018-04-12

    Electronic reporting of routine health facility data in Uganda began with the adoption of the District Health Information Software System version 2 (DHIS2) in 2011. This has improved health facility reporting and overall data quality. In this study, the effects of case management with artemisinin-based combination therapy (ACT) and vector control interventions on space-time patterns of disease incidence were determined using DHIS2 data reported during 2013-2016. Bayesian spatio-temporal negative binomial models were fitted on district-aggregated monthly malaria cases, reported by two age groups, defined by a cut-off age of 5 years. The effects of interventions were adjusted for socio-economic and climatic factors. Spatial and temporal correlations were taken into account by assuming a conditional autoregressive and a first-order autoregressive AR(1) process on district and monthly specific random effects, respectively. Fourier trigonometric functions were incorporated in the models to take into account seasonal fluctuations in malaria transmission. The temporal variation in incidence was similar in both age groups and depicted a steady decline up to February 2014, followed by an increase from March 2015 onwards. The trends were characterized by a strong bi-annual seasonal pattern with two peaks during May-July and September-December. Average monthly incidence in children < 5 years declined from 74.7 cases (95% CI 72.4-77.1) in 2013 to 49.4 (95% CI 42.9-55.8) per 1000 in 2015 and followed by an increase in 2016 of up to 51.3 (95% CI 42.9-55.8). In individuals ≥ 5 years, a decline in incidence from 2013 to 2015 was followed by an increase in 2016. A 100% increase in insecticide-treated nets (ITN) coverage was associated with a decline in incidence by 44% (95% BCI 28-59%). Similarly, a 100% increase in ACT coverage reduces incidence by 28% (95% BCI 11-45%) and 25% (95% BCI 20-28%) in children < 5 years and individuals ≥ 5 years, respectively

  16. Seasonal prevalence of malaria vectors and entomological inoculation rates in the rubber cultivated area of Niete, South Region of Cameroon

    PubMed Central

    2012-01-01

    Background Development of large scale agro-industries are subject to serious environmental modifications. In malaria endemic areas this would greatly impact on the transmission paradigm. Two cross-sectional entomological surveys to characterize the Anopheles fauna and their entomological inoculation rates were conducted during May 2010 (peak rainy season) and December 2010 (peak dry season) in the intense rubber cultivated area of Niete in southern forested Cameroon. Methods Mosquitoes were sampled by night collections on human volunteers, identified morphologically and members of the Anopheles gambiae complex further identified to species and molecular form. Parity status was determined following the dissection of the ovaries. Plasmodium falciparum circumsporozoite antigen indices were estimated after the identification of CS antigen by ELISA and the average entomological inoculation rates determined. Results A total of 1187 Anopheles was collected, 419 (35.3%) in the rainy season and 768 (64.7%) in the dry season. Species found were the M molecular form of An. gambiae s.s (66.8%), An. ziemanni (28.3%), An. paludis (4.7%), An. smithii (0.2%). An. gambiae M-form was the principal species in the dry (56.2%) and wet (86.2%) seasons. Average overall entomological inoculation rate for the malaria vectors varied between the dry season (1.09 ib/p/n) and the rainy season (2.30 ib/p/n). Conclusions Malaria transmission in Niete occurs both in the dry and rainy season with the intensities peaking in the dry season. This is unlike previous studies in other areas of southern forested Cameroon where transmission generally peaks in the rainy season. Environmental modifications due to agro-industrial activities might have influenced vector distribution and the dynamics of malaria transmission in this area. This necessitates the possible implementation of control strategies that are related to the eco-geography of the area. PMID:22963986

  17. Malaria and Travelers

    MedlinePlus

    ... Insecticide-Treated Nets (ITNs) Intermittent Preventive Treatment of Malaria in Pregnanct Women (IPTp) Indoor Residual Spraying (IRS) Vector Control Antimalarials to Reduce Transmission Vaccines Microscopy Rapid Diagnostic Tests Drug Resistance Counterfeit and ...

  18. Review of research on malaria*

    PubMed Central

    Lepes, T.

    1974-01-01

    This review of progress in malaria research over the periods 1951-1970 and 1970-1973 indicates the results so far achieved in research on the parasite, on the immune response of the host, and on the vector; refers to the means of controlling or eradicating malaria that have been developed in recent years; and outlines the present status of the malaria control and eradication programme. Although impressive results have already been achieved in malaria research, more systematization and concentration of efforts are required if real breakthroughs are to be made. The experience gained in this respect is discussed. PMID:4613499

  19. Odor Coding in the Maxillary Palp of the Malaria Vector Mosquito Anopheles gambiae

    PubMed Central

    Lu, Tan; Qiu, Yu Tong; Wang, Guirong; Kwon, Jae Young; Rutzler, Michael; Kwon, Hyung-Wook; Pitts, R. Jason; van Loon, Joop J.A.; Takken, Willem; Carlson, John R.; Zwiebel, Laurence J.

    2011-01-01

    Summary Background Many species of mosquitoes, including the major malaria vector Anopheles gambiae, utilize carbon dioxide (CO2) and 1-octen-3-ol as olfactory cues in host-seeking behaviors that underlie their vectorial capacity. However, the molecular and cellular basis of such olfactory responses remains largely unknown. Results Here, we use molecular and physiological approaches coupled with systematic functional analyses to define the complete olfactory sensory map of the An. gambiae maxillary palp, an olfactory appendage that mediates the detection of these compounds. In doing so, we identify three olfactory receptor neurons (ORNs) that are organized in stereotyped triads within the maxillary-palp capitate-peg-sensillum population. One ORN is CO2-responsive and characterized by the coexpression of three receptors that confer CO2 responses, whereas the other ORNs express characteristic odorant receptors (AgORs) that are responsible for their in vivo olfactory responses. Conclusions Our results describe a complete and highly concordant map of both the molecular and cellular olfactory components on the maxillary palp of the adult female An. gambiae mosquito. These results also facilitate the understanding of how An. gambiae mosquitoes sense olfactory cues that might be exploited to compromise their ability to transmit malaria. PMID:17764944

  20. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control.

    PubMed

    Benelli, Giovanni; Mehlhorn, Heinz

    2016-05-01

    The fight against mosquito-borne diseases is a challenge of huge public health importance. To our mind, 2015 was an extraordinary year for malaria control, due to three hot news: the Nobel Prize to Youyou Tu for the discovery of artemisinin, the development of the first vaccine against Plasmodium falciparum malaria [i.e. RTS,S/AS01 (RTS,S)], and the fall of malaria infection rates worldwide, with special reference to sub-Saharan Africa. However, there are major challenges that still deserve attention, in order to boost malaria prevention and control. Indeed, parasite strains resistant to artemisinin have been detected, and RTS,S vaccine does not offer protection against Plasmodium vivax malaria, which predominates in many countries outside of Africa. Furthermore, the recent outbreaks of Zika virus infections, occurring in South America, Central America and the Caribbean, represent the most recent of four arrivals of important arboviruses in the Western Hemisphere, over the last 20 years. Zika virus follows dengue (which slyly arrived in the hemisphere over decades and became more aggressive in the 1990s), West Nile virus (emerged in 1999) and chikungunya (emerged in 2013). Notably, there are no specific treatments for these arboviruses. The emerging scenario highlights that the effective and eco-friendly control of mosquito vectors, with special reference to highly invasive species such as Aedes aegypti and Aedes albopictus, is crucial. The concrete potential of screening plant species as sources of metabolites for parasitological purposes is worthy of attention, as elucidated by the Y. Tu's example. Notably, plant-borne molecules are often effective at few parts per million against Aedes, Ochlerotatus, Anopheles and Culex young instars, can be used for the rapid synthesis of mosquitocidal nanoformulations and even employed to prepare cheap repellents with low human toxicity. In addition, behaviour-based control tools relying to the employ of sound traps and the

  1. Malaria in the Greater Mekong Subregion: Heterogeneity and Complexity

    PubMed Central

    Cui, Liwang; Yan, Guiyun; Sattabongkot, Jetsumon; Cao, Yaming; Chen, Bin; Chen, Xiaoguang; Fan, Qi; Fang, Qiang; Jongwutiwes, Somchai; Parker, Daniel; Sirichaisinthop, Jeeraphat; Kyaw, Myat Phone; Su, Xin-zhuan; Yang, Henglin; Yang, Zhaoqing; Wang, Baomin; Xu, Jianwei; Zheng, Bin; Zhong, Daibin; Zhou, Guofa

    2011-01-01

    The Greater Mekong Subregion (GMS), comprised of six countries including Cambodia, China's Yunnan Province, Lao PDR, Myanmar (Burma), Thailand and Vietnam, is one of the most threatening foci of malaria. Since the initiation of the WHO's Mekong Malaria Program a decade ago, malaria situation in the GMS has greatly improved, reflected in the continuous decline in annual malaria incidence and deaths. However, as many nations are moving towards malaria elimination, the GMS nations still face great challenges. Malaria epidemiology in this region exhibits enormous geographical heterogeneity with Myanmar and Cambodia remaining high-burden countries. Within each country, malaria distribution is also patchy, exemplified by ‘border malaria’ and ‘forest malaria’ with high transmission occurring along international borders and in forests or forest fringes, respectively. ‘Border malaria’ is extremely difficult to monitor, and frequent malaria introductions by migratory human populations constitute a major threat to neighboring, malaria-eliminating countries. Therefore, coordination between neighboring countries is essential for malaria elimination from the entire region. In addition to these operational difficulties, malaria control in the GMS also encounters several technological challenges. Contemporary malaria control measures rely heavily on effective chemotherapy and insecticide control of vector mosquitoes. However, the spread of multidrug resistance and potential emergence of artemisinin resistance in Plasmodium falciparum make resistance management a high priority in the GMS. This situation is further worsened by the circulation of counterfeit and substandard artemisinin-related drugs. In most endemic areas of the GMS, P. falciparum and P. vivax coexist, and in recent malaria control history, P. vivax has demonstrated remarkable resilience to control measures. Deployment of the only registered drug (primaquine) for the radical cure of vivax malaria is

  2. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis

    PubMed Central

    2010-01-01

    Background An increasing knowledge of the global risk of malaria shows that the nations of the Americas have the lowest levels of Plasmodium falciparum and P. vivax endemicity worldwide, sustained, in part, by substantive integrated vector control. To help maintain and better target these efforts, knowledge of the contemporary distribution of each of the dominant vector species (DVS) of human malaria is needed, alongside a comprehensive understanding of the ecology and behaviour of each species. Results A database of contemporary occurrence data for 41 of the DVS of human malaria was compiled from intensive searches of the formal and informal literature. The results for the nine DVS of the Americas are described in detail here. Nearly 6000 occurrence records were gathered from 25 countries in the region and were complemented by a synthesis of published expert opinion range maps, refined further by a technical advisory group of medical entomologists. A suite of environmental and climate variables of suspected relevance to anopheline ecology were also compiled from open access sources. These three sets of data were then combined to produce predictive species range maps using the Boosted Regression Tree method. The predicted geographic extent for each of the following species (or species complex*) are provided: Anopheles (Nyssorhynchus) albimanus Wiedemann, 1820, An. (Nys.) albitarsis*, An. (Nys.) aquasalis Curry, 1932, An. (Nys.) darlingi Root, 1926, An. (Anopheles) freeborni Aitken, 1939, An. (Nys.) marajoara Galvão & Damasceno, 1942, An. (Nys.) nuneztovari*, An. (Ano.) pseudopunctipennis* and An. (Ano.) quadrimaculatus Say, 1824. A bionomics review summarising ecology and behaviour relevant to the control of each of these species was also compiled. Conclusions The distribution maps and bionomics review should both be considered as a starting point in an ongoing process of (i) describing the distributions of these DVS (since the opportunistic sample of occurrence

  3. Environmental determinant of malaria cases among travellers.

    PubMed

    Texier, Gaëtan; Machault, Vanessa; Barragti, Meili; Boutin, Jean-Paul; Rogier, Christophe

    2013-03-04

    Approximately 125 million travellers visit malaria-endemic countries annually and about 10,000 cases of malaria are reported after returning home. Due to the fact that malaria is insect vector transmitted, the environment is a key determinant of the spread of infection. Geo-climatic factors (such as temperature, moisture, water quality) determine the presence of Anopheles breeding sites, vector densities, adult mosquito survival rate, longevity and vector capacity. Several studies have shown the association between environmental factors and malaria incidence in autochthonous population. The association between the incidence of clinical malaria cases among non-immune travellers and environmental factors is yet to be evaluated. The objective of the present study was to identify, at a country scale (Ivory Coast), the environmental factors that are associated with clinical malaria among non-immune travellers, opening the way for a remote sensing-based counselling for malaria risk prevention among travellers. The study sample consisted in 87 cohorts, including 4,531 French soldiers who travelled to Ivory Coast, during approximately four months, between September 2002 and December 2006. Their daily locations were recorded during the entire trip. The association between the incidence of clinical malaria and other factors (including individual, collective and environmental factors evaluated by remote sensing methods) was analysed in a random effect mixed Poisson regression model to take into account the sampling design. One hundred and forty clinical malaria cases were recorded during 572,363 person-days of survey, corresponding to an incidence density of 7.4 clinical malaria episodes per 1,000 person-months under survey. The risk of clinical malaria was significantly associated with the cumulative time spent in areas with NDVI > 0.35 (RR = 2,42), a mean temperature higher than 27°C (RR = 2,4), a longer period of dryness during the preceding month (RR = 0

  4. Disrupting Mosquito Reproduction and Parasite Development for Malaria Control

    PubMed Central

    Gabrieli, Paolo; Buckee, Caroline O.; Catteruccia, Flaminia

    2016-01-01

    The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E) is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance. PMID:27977810

  5. Environmental variables associated with anopheline larvae distribution and abundance in Yanomami villages within unaltered areas of the Brazilian Amazon.

    PubMed

    Sánchez-Ribas, Jordi; Oliveira-Ferreira, Joseli; Gimnig, John E; Pereira-Ribeiro, Cleomar; Santos-Neves, Maycon Sebastião Alberto; Silva-do-Nascimento, Teresa Fernandes

    2017-11-16

    Many indigenous villages in the Amazon basin still suffer from a high malaria burden. Despite this health situation, there are few studies on the bionomics of anopheline larvae in such areas. This publication aims to identify the main larval habitats of the most abundant anopheline species and to assess their associations with some environmental factors. We conducted a 19-month longitudinal study from January 2013 to July 2014, sampling anopheline larvae in two indigenous Yanomami communities, comprised of four villages each. All natural larval habitats were surveyed every two months with a 350 ml manual dipper, following a standardized larval sampling methodology. In a third study area, we conducted two field expeditions in 2013 followed by four systematic collections during the long dry season of 2014-2015. We identified 177 larval habitats in the three study areas, from which 9122 larvae belonging to 13 species were collected. Although species abundance differed between villages, An. oswaldoi (s.l.) was overall the most abundant species. Anopheles darlingi, An. oswaldoi (s.l.), An. triannulatus (s.s.) and An. mattogrossensis were primarily found in larval habitats that were partially or mostly sun-exposed. In contrast, An. costai-like and An. guarao-like mosquitoes were found in more shaded aquatic habitats. Anopheles darlingi was significantly associated with proximity to human habitations and larval habitats associated with river flood pulses and clear water. This study of anopheline larvae in the Brazilian Yanomami area detected high heterogeneities at micro-scale levels regarding species occurrence and densities. Sun exposure was a major modulator of anopheline occurrence, particularly for An. darlingi. Lakes associated with the rivers, and particularly oxbow lakes, were the main larval habitats for An. darlingi and other secondary malaria vectors. The results of this study will serve as a basis to plan larval source management activities in remote

  6. Choice of scale for integrating land use in malaria risk monitoring

    NASA Astrophysics Data System (ADS)

    Spangler, K. R.; Zaitchik, B. F.; Pan, W.; Vittor, A.; Patz, J.

    2011-12-01

    There were nearly 37,000 reported cases of malaria in Peru in 2009 alone. With over 30% of the population identified as being at "high risk" for exposure, detailed risk mapping, along with early detection and warning systems, are in critical need. While there is evidence that the increased formation of puddles arising from deforestation increases the breeding of the rainforest's primary malaria vector, Anopheles darlingi, neither the spatial structure of land uses/land cover changes (LUCC) nor the area of influence of LUCC on mosquito density has been systematically addressed. The radius of influence that LUCC - particularly areas of deforested land and other regions likely to see increases in stagnant water formation - has on mosquito presence is of particular importance, both for the design of warning systems and to inform future malaria transmission studies. Here, we present the results of satellite-based analysis of land use patterns and mosquito density along the Iquitos-Nauta road in the Peruvian Amazon. Comparing supervised classifications of Landsat images of the Iquitos region from 1996 and 2001 , land cover features around each of 832 mosquito sites were tabulated by percent at six different radii: 250m, 500m, 1000m, 2000m, 3000m, and 5000m. These results were then used as inputs in a mosquito prediction model that determined the most pertinent spatial scale necessary to predict both adult and larvae Anopheles mosquitoes (darlingi, benerocchi, oswaldoi, mattogrossenis, and rangeli). The application of this study is to provide a systematic means of determining which areas are at the highest risk of malaria infection in order to inform design of warning systems and future studies of land use and malaria in the Amazonian frontier.

  7. Risk factors for house-entry by malaria vectors in a rural town and satellite villages in The Gambia.

    PubMed

    Kirby, Matthew J; Green, Clare; Milligan, Paul M; Sismanidis, Charalambos; Jasseh, Momadou; Conway, David J; Lindsay, Steven W

    2008-01-07

    In the pre-intervention year of a randomized controlled trial investigating the protective effects of house screening against malaria-transmitting vectors, a multi-factorial risk factor analysis study was used to identify factors that influence mosquito house entry. Mosquitoes were sampled using CDC light traps in 976 houses, each on one night, in Farafenni town and surrounding villages during the malaria-transmission season in The Gambia. Catches from individual houses were both (a) left unadjusted and (b) adjusted relative to the number of mosquitoes caught in four sentinel houses that were operated nightly throughout the period, to allow for night-to-night variation. Houses were characterized by location, architecture, human occupancy and their mosquito control activities, and the number and type of domestic animals within the compound. 106,536 mosquitoes were caught, of which 55% were Anopheles gambiae sensu lato, the major malaria vectors in the region. There were seven fold higher numbers of An. gambiae s.l. in the villages (geometric mean per trap night = 43.7, 95% confidence intervals, CIs = 39.5-48.4) than in Farafenni town (6.3, 5.7-7.2) and significant variation between residential blocks (p < 0.001). A negative binomial multivariate model performed equally well using unadjusted or adjusted trap data. Using the unadjusted data the presence of nuisance mosquitoes was reduced if the house was located in the town (odds ratio, OR = 0.11, 95% CIs = 0.09-0.13), the eaves were closed (OR = 0.71, 0.60-0.85), a horse was tethered near the house (OR = 0.77, 0.73-0.82), and churai, a local incense, was burned in the room at night (OR = 0.56, 0.47-0.66). Mosquito numbers increased per additional person in the house (OR = 1.04, 1.02-1.06) or trapping room (OR = 1.19, 1.13-1.25) and when the walls were made of mud blocks compared with concrete (OR = 1.44, 1.10-1.87). This study demonstrates that the risk of malaria transmission is greatest in rural areas, where large

  8. Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria.

    PubMed

    Thomas, Shalu; Ravishankaran, Sangamithra; Justin, N A Johnson Amala; Asokan, Aswin; Mathai, Manu Thomas; Valecha, Neena; Montgomery, Jacqui; Thomas, Matthew B; Eapen, Alex

    2017-03-10

    The Indian city of Chennai is endemic for malaria and the known local malaria vector is Anopheles stephensi. Plasmodium vivax is the predominant malaria parasite species, though Plasmodium falciparum is present at low levels. The urban ecotype of malaria prevails in Chennai with perennial transmission despite vector surveillance by the Urban Malaria Scheme (UMS) of the National Vector Borne Disease Control Programme (NVBDCP). Understanding the feeding and resting preferences, together with the transmission potential of adult vectors in the area is essential in effective planning and execution of improved vector control measures. A yearlong survey was carried out in cattle sheds and human dwellings to check the resting, feeding preferences and transmission potential of An. stephensi. The gonotrophic status, age structure, resting and host seeking preferences were studied. The infection rate in An. stephensi and Anopheles subpictus were analysed by circumsporozoite ELISA (CS-ELISA). Adult vectors were found more frequently and at higher densities in cattle sheds than human dwellings. The overall Human Blood Index (HBI) was 0.009 indicating the vectors to be strongly zoophilic. Among the vectors collected from human dwellings, 94.2% were from thatched structures and the remaining 5.8% from tiled and asbestos structures. 57.75% of the dissected vectors were nulliparous whereas, 35.83% were monoparous and the rest 6.42% biparous. Sporozoite positivity rate was 0.55% (4/720) and 1.92% (1/52) for An. stephensi collected from cattle sheds and human dwellings, respectively. One adult An. subpictus (1/155) was also found to be infected with P. falciparum. Control of the adult vector populations can be successful only by understanding the resting and feeding preferences. The present study indicates that adult vectors predominantly feed on cattle and cattle sheds are the preferred resting place, possibly due to easy availability of blood meal source and lack of any

  9. Using Decision Analysis to Improve Malaria Control Policy Making

    PubMed Central

    Kramer, Randall; Dickinson, Katherine L.; Anderson, Richard M.; Fowler, Vance G.; Miranda, Marie Lynn; Mutero, Clifford M.; Saterson, Kathryn A.; Wiener, Jonathan B.

    2013-01-01

    Malaria and other vector-borne diseases represent a significant and growing burden in many tropical countries. Successfully addressing these threats will require policies that expand access to and use of existing control methods, such as insecticide-treated bed nets and artemesinin combination therapies for malaria, while weighing the costs and benefits of alternative approaches over time. This paper argues that decision analysis provides a valuable framework for formulating such policies and combating the emergence and re-emergence of malaria and other diseases. We outline five challenges that policy makers and practitioners face in the struggle against malaria, and demonstrate how decision analysis can help to address and overcome these challenges. A prototype decision analysis framework for malaria control in Tanzania is presented, highlighting the key components that a decision support tool should include. Developing and applying such a framework can promote stronger and more effective linkages between research and policy, ultimately helping to reduce the burden of malaria and other vector-borne diseases. PMID:19356821

  10. Sustainable malaria control: transdisciplinary approaches for translational applications

    PubMed Central

    2012-01-01

    With the adoption of the Global Malaria Action Plan, several countries are moving from malaria control towards elimination and eradication. However, the sustainability of some of the approaches taken may be questionable. Here, an overview of malaria control and elimination strategies is provided and the sustainability of each in context of vector- and parasite control is assessed. From this, it can be concluded that transdisciplinary approaches are essential for sustained malaria control and elimination in malaria-endemic communities. PMID:23268712

  11. Modelling malaria control by introduction of larvivorous fish.

    PubMed

    Lou, Yijun; Zhao, Xiao-Qiang

    2011-10-01

    Malaria creates serious health and economic problems which call for integrated management strategies to disrupt interactions among mosquitoes, the parasite and humans. In order to reduce the intensity of malaria transmission, malaria vector control may be implemented to protect individuals against infective mosquito bites. As a sustainable larval control method, the use of larvivorous fish is promoted in some circumstances. To evaluate the potential impacts of this biological control measure on malaria transmission, we propose and investigate a mathematical model describing the linked dynamics between the host-vector interaction and the predator-prey interaction. The model, which consists of five ordinary differential equations, is rigorously analysed via theories and methods of dynamical systems. We derive four biologically plausible and insightful quantities (reproduction numbers) that completely determine the community composition. Our results suggest that the introduction of larvivorous fish can, in principle, have important consequences for malaria dynamics, but also indicate that this would require strong predators on larval mosquitoes. Integrated strategies of malaria control are analysed to demonstrate the biological application of our developed theory.

  12. Assessing the Role of Climate Change in Malaria Transmission in Africa.

    PubMed

    Ngarakana-Gwasira, E T; Bhunu, C P; Masocha, M; Mashonjowa, E

    2016-01-01

    The sensitivity of vector borne diseases like malaria to climate continues to raise considerable concern over the implications of climate change on future disease dynamics. The problem of malaria vectors shifting from their traditional locations to invade new zones is of important concern. A mathematical model incorporating rainfall and temperature is constructed to study the transmission dynamics of malaria. The reproduction number obtained is applied to gridded temperature and rainfall datasets for baseline climate and future climate with aid of GIS. As a result of climate change, malaria burden is likely to increase in the tropics, the highland regions, and East Africa and along the northern limit of falciparum malaria. Falciparum malaria will spread into the African highlands; however it is likely to die out at the southern limit of the disease.

  13. Insecticide Resistance and Malaria Vector Control: The Importance of Fitness Cost Mechanisms in Determining Economically Optimal Control Trajectories

    PubMed Central

    Brown, Zachary S.; Dickinson, Katherine L.; Kramer, Randall A.

    2014-01-01

    The evolutionary dynamics of insecticide resistance in harmful arthropods has economic implications, not only for the control of agricultural pests (as has been well studied), but also for the control of disease vectors, such as malaria-transmitting Anopheles mosquitoes. Previous economic work on insecticide resistance illustrates the policy relevance of knowing whether insecticide resistance mutations involve fitness costs. Using a theoretical model, this article investigates economically optimal strategies for controlling malaria-transmitting mosquitoes when there is the potential for mosquitoes to evolve resistance to insecticides. Consistent with previous literature, we find that fitness costs are a key element in the computation of economically optimal resistance management strategies. Additionally, our models indicate that different biological mechanisms underlying these fitness costs (e.g., increased adult mortality and/or decreased fecundity) can significantly alter economically optimal resistance management strategies. PMID:23448053

  14. Discrete-Event Simulation Models of Plasmodium falciparum Malaria

    PubMed Central

    McKenzie, F. Ellis; Wong, Roger C.; Bossert, William H.

    2008-01-01

    We develop discrete-event simulation models using a single “timeline” variable to represent the Plasmodium falciparum lifecycle in individual hosts and vectors within interacting host and vector populations. Where they are comparable our conclusions regarding the relative importance of vector mortality and the durations of host immunity and parasite development are congruent with those of classic differential-equation models of malaria, epidemiology. However, our results also imply that in regions with intense perennial transmission, the influence of mosquito mortality on malaria prevalence in humans may be rivaled by that of the duration of host infectivity. PMID:18668185

  15. Determining areas that require indoor insecticide spraying using Multi Criteria Evaluation, a decision-support tool for malaria vector control programmes in the Central Highlands of Madagascar

    PubMed Central

    Rakotomanana, Fanjasoa; Randremanana, Rindra V; Rabarijaona, Léon P; Duchemin, Jean Bernard; Ratovonjato, Jocelyn; Ariey, Frédéric; Rudant, Jean Paul; Jeanne, Isabelle

    2007-01-01

    Background The highlands of Madagascar present an unstable transmission pattern of malaria. The population has no immunity, and the central highlands have been the sites of epidemics with particularly high fatality. The most recent epidemic occurred in the 1980s, and caused about 30,000 deaths. The fight against malaria epidemics in the highlands has been based on indoor insecticide spraying to control malaria vectors. Any preventive programme involving generalised cover in the highlands will require very substantial logistical support. We used multicriteria evaluation, by the method of weighted linear combination, as basis for improved targeting of actions by determining priority zones for intervention. Results Image analysis and field validation showed the accuracy of mapping rice fields to be between 82.3% and 100%, and the Kappa coefficient was 0.86 to 0.99. A significant positive correlation was observed between the abundance of the vector Anopheles funestus and temperature; the correlation coefficient was 0.599 (p < 0.001). A significant negative correlation was observed between vector abundance and human population density: the correlation coefficient was -0.551 (p < 0.003). Factor weights were determined by pair-wise comparison and the consistency ratio was 0.04. Risk maps of the six study zones were obtained according to a gradient of risk. Nine of thirteen results of alert confirmed by the Epidemiological Surveillance Post were in concordance with the risk map. Conclusion This study is particularly valuable for the management of vector control programmes, and particularly the reduction of the vector population with a view to preventing disease. The risk map obtained can be used to identify priority zones for the management of resources, and also help avoid systematic and generalised spraying throughout the highlands: such spraying is particularly difficult and expensive. The accuracy of the mapping, both as concerns time and space, is dependent on the

  16. A Randomized Longitudinal Factorial Design to Assess Malaria Vector Control and Disease Management Interventions in Rural Tanzania

    PubMed Central

    Kramer, Randall A.; Mboera, Leonard E. G.; Senkoro, Kesheni; Lesser, Adriane; Shayo, Elizabeth H.; Paul, Christopher J.; Miranda, Marie Lynn

    2014-01-01

    The optimization of malaria control strategies is complicated by constraints posed by local health systems, infrastructure, limited resources, and the complex interactions between infection, disease, and treatment. The purpose of this paper is to describe the protocol of a randomized factorial study designed to address this research gap. This project will evaluate two malaria control interventions in Mvomero District, Tanzania: (1) a disease management strategy involving early detection and treatment by community health workers using rapid diagnostic technology; and (2) vector control through community-supported larviciding. Six study villages were assigned to each of four groups (control, early detection and treatment, larviciding, and early detection and treatment plus larviciding). The primary endpoint of interest was change in malaria infection prevalence across the intervention groups measured during annual longitudinal cross-sectional surveys. Recurring entomological surveying, household surveying, and focus group discussions will provide additional valuable insights. At baseline, 962 households across all 24 villages participated in a household survey; 2,884 members from 720 of these households participated in subsequent malariometric surveying. The study design will allow us to estimate the effect sizes of different intervention mixtures. Careful documentation of our study protocol may also serve other researchers designing field-based intervention trials. PMID:24840349

  17. A randomized longitudinal factorial design to assess malaria vector control and disease management interventions in rural Tanzania.

    PubMed

    Kramer, Randall A; Mboera, Leonard E G; Senkoro, Kesheni; Lesser, Adriane; Shayo, Elizabeth H; Paul, Christopher J; Miranda, Marie Lynn

    2014-05-16

    The optimization of malaria control strategies is complicated by constraints posed by local health systems, infrastructure, limited resources, and the complex interactions between infection, disease, and treatment. The purpose of this paper is to describe the protocol of a randomized factorial study designed to address this research gap. This project will evaluate two malaria control interventions in Mvomero District, Tanzania: (1) a disease management strategy involving early detection and treatment by community health workers using rapid diagnostic technology; and (2) vector control through community-supported larviciding. Six study villages were assigned to each of four groups (control, early detection and treatment, larviciding, and early detection and treatment plus larviciding). The primary endpoint of interest was change in malaria infection prevalence across the intervention groups measured during annual longitudinal cross-sectional surveys. Recurring entomological surveying, household surveying, and focus group discussions will provide additional valuable insights. At baseline, 962 households across all 24 villages participated in a household survey; 2,884 members from 720 of these households participated in subsequent malariometric surveying. The study design will allow us to estimate the effect sizes of different intervention mixtures. Careful documentation of our study protocol may also serve other researchers designing field-based intervention trials.

  18. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes.

    PubMed

    Neafsey, Daniel E; Waterhouse, Robert M; Abai, Mohammad R; Aganezov, Sergey S; Alekseyev, Max A; Allen, James E; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W; Blandin, Stephanie A; Brockman, Andrew I; Burkot, Thomas R; Burt, Austin; Chan, Clara S; Chauve, Cedric; Chiu, Joanna C; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L M; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B; Guelbeogo, Wamdaogo M; Hall, Andrew B; Han, Mira V; Hlaing, Thaung; Hughes, Daniel S T; Jenkins, Adam M; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C; Kirmitzoglou, Ioannis K; Koekemoer, Lizette L; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K N; Lirakis, Manolis; Lobo, Neil F; Lowy, Ernesto; MacCallum, Robert M; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N; Moore, Wendy; Murphy, Katherine A; Naumenko, Anastasia N; Nolan, Tony; Novoa, Eva M; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A; Pakpour, Nazzy; Papathanos, Philippos A; Peery, Ashley N; Povelones, Michael; Prakash, Anil; Price, David P; Rajaraman, Ashok; Reimer, Lisa J; Rinker, David C; Rokas, Antonis; Russell, Tanya L; Sagnon, N'Fale; Sharakhova, Maria V; Shea, Terrance; Simão, Felipe A; Simard, Frederic; Slotman, Michel A; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J; Thomas, Gregg W C; Tojo, Marta; Topalis, Pantelis; Tubio, José M C; Unger, Maria F; Vontas, John; Walton, Catherine; Wilding, Craig S; Willis, Judith H; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K; Collins, Frank H; Cornman, Robert S; Crisanti, Andrea; Donnelly, Martin J; Emrich, Scott J; Fontaine, Michael C; Gelbart, William; Hahn, Matthew W; Hansen, Immo A; Howell, Paul I; Kafatos, Fotis C; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A T; Ribeiro, José M; Riehle, Michael A; Sharakhov, Igor V; Tu, Zhijian; Zwiebel, Laurence J; Besansky, Nora J

    2015-01-02

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. Copyright © 2015, American Association for the Advancement of Science.

  19. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes.

    PubMed

    Wang, Sibao; Ghosh, Anil K; Bongio, Nicholas; Stebbings, Kevin A; Lampe, David J; Jacobs-Lorena, Marcelo

    2012-07-31

    The most vulnerable stages of Plasmodium development occur in the lumen of the mosquito midgut, a compartment shared with symbiotic bacteria. Here, we describe a strategy that uses symbiotic bacteria to deliver antimalaria effector molecules to the midgut lumen, thus rendering host mosquitoes refractory to malaria infection. The Escherichia coli hemolysin A secretion system was used to promote the secretion of a variety of anti-Plasmodium effector proteins by Pantoea agglomerans, a common mosquito symbiotic bacterium. These engineered P. agglomerans strains inhibited development of the human malaria parasite Plasmodium falciparum and rodent malaria parasite Plasmodium berghei by up to 98%. Significantly, the proportion of mosquitoes carrying parasites (prevalence) decreased by up to 84% for two of the effector molecules, scorpine, a potent antiplasmodial peptide and (EPIP)(4), four copies of Plasmodium enolase-plasminogen interaction peptide that prevents plasminogen binding to the ookinete surface. We demonstrate the use of an engineered symbiotic bacterium to interfere with the development of P. falciparum in the mosquito. These findings provide the foundation for the use of genetically modified symbiotic bacteria as a powerful tool to combat malaria.

  20. Entomological Monitoring and Evaluation: Diverse Transmission Settings of ICEMR Projects Will Require Local and Regional Malaria Elimination Strategies

    PubMed Central

    Conn, Jan E.; Norris, Douglas E.; Donnelly, Martin J.; Beebe, Nigel W.; Burkot, Thomas R.; Coulibaly, Mamadou B.; Chery, Laura; Eapen, Alex; Keven, John B.; Kilama, Maxwell; Kumar, Ashwani; Lindsay, Steve W.; Moreno, Marta; Quinones, Martha; Reimer, Lisa J.; Russell, Tanya L.; Smith, David L.; Thomas, Matthew B.; Walker, Edward D.; Wilson, Mark L.; Yan, Guiyun

    2015-01-01

    The unprecedented global efforts for malaria elimination in the past decade have resulted in altered vectorial systems, vector behaviors, and bionomics. These changes combined with increasingly evident heterogeneities in malaria transmission require innovative vector control strategies in addition to the established practices of long-lasting insecticidal nets and indoor residual spraying. Integrated vector management will require focal and tailored vector control to achieve malaria elimination. This switch of emphasis from universal coverage to universal coverage plus additional interventions will be reliant on improved entomological monitoring and evaluation. In 2010, the National Institutes for Allergies and Infectious Diseases (NIAID) established a network of malaria research centers termed ICEMRs (International Centers for Excellence in Malaria Research) expressly to develop this evidence base in diverse malaria endemic settings. In this article, we contrast the differing ecology and transmission settings across the ICEMR study locations. In South America, Africa, and Asia, vector biologists are already dealing with many of the issues of pushing to elimination such as highly focal transmission, proportionate increase in the importance of outdoor and crepuscular biting, vector species complexity, and “sub patent” vector transmission. PMID:26259942

  1. Entomological Monitoring and Evaluation: Diverse Transmission Settings of ICEMR Projects Will Require Local and Regional Malaria Elimination Strategies.

    PubMed

    Conn, Jan E; Norris, Douglas E; Donnelly, Martin J; Beebe, Nigel W; Burkot, Thomas R; Coulibaly, Mamadou B; Chery, Laura; Eapen, Alex; Keven, John B; Kilama, Maxwell; Kumar, Ashwani; Lindsay, Steve W; Moreno, Marta; Quinones, Martha; Reimer, Lisa J; Russell, Tanya L; Smith, David L; Thomas, Matthew B; Walker, Edward D; Wilson, Mark L; Yan, Guiyun

    2015-09-01

    The unprecedented global efforts for malaria elimination in the past decade have resulted in altered vectorial systems, vector behaviors, and bionomics. These changes combined with increasingly evident heterogeneities in malaria transmission require innovative vector control strategies in addition to the established practices of long-lasting insecticidal nets and indoor residual spraying. Integrated vector management will require focal and tailored vector control to achieve malaria elimination. This switch of emphasis from universal coverage to universal coverage plus additional interventions will be reliant on improved entomological monitoring and evaluation. In 2010, the National Institutes for Allergies and Infectious Diseases (NIAID) established a network of malaria research centers termed ICEMRs (International Centers for Excellence in Malaria Research) expressly to develop this evidence base in diverse malaria endemic settings. In this article, we contrast the differing ecology and transmission settings across the ICEMR study locations. In South America, Africa, and Asia, vector biologists are already dealing with many of the issues of pushing to elimination such as highly focal transmission, proportionate increase in the importance of outdoor and crepuscular biting, vector species complexity, and "sub patent" vector transmission. © The American Society of Tropical Medicine and Hygiene.

  2. First report of the infection of insecticide-resistant malaria vector mosquitoes with an entomopathogenic fungus under field conditions

    PubMed Central

    2011-01-01

    Background Insecticide-resistant mosquitoes are compromising the ability of current mosquito control tools to control malaria vectors. A proposed new approach for mosquito control is to use entomopathogenic fungi. These fungi have been shown to be lethal to both insecticide-susceptible and insecticide-resistant mosquitoes under laboratory conditions. The goal of this study was to see whether entomopathogenic fungi could be used to infect insecticide-resistant malaria vectors under field conditions, and to see whether the virulence and viability of the fungal conidia decreased after exposure to ambient African field conditions. Methods This study used the fungus Beauveria bassiana to infect the insecticide-resistant malaria vector Anopheles gambiae s.s (Diptera: Culicidae) VKPER laboratory colony strain. Fungal conidia were applied to polyester netting and kept under West African field conditions for varying periods of time. The virulence of the fungal-treated netting was tested 1, 3 and 5 days after net application by exposing An. gambiae s.s. VKPER mosquitoes in WHO cone bioassays carried out under field conditions. In addition, the viability of B. bassiana conidia was measured after up to 20 days exposure to field conditions. Results The results show that B. bassiana infection caused significantly increased mortality with the daily risk of dying being increased by 2.5× for the fungus-exposed mosquitoes compared to the control mosquitoes. However, the virulence of the B. bassiana conidia decreased with increasing time spent exposed to the field conditions, the older the treatment on the net, the lower the fungus-induced mortality rate. This is likely to be due to the climate because laboratory trials found no such decline within the same trial time period. Conidial viability also decreased with increasing exposure to the net and natural abiotic environmental conditions. After 20 days field exposure the conidial viability was 30%, but the viability of control

  3. Comparison of the standard WHO susceptibility tests and the CDC bottle bioassay for the determination of insecticide susceptibility in malaria vectors and their correlation with biochemical and molecular biology assays in Benin, West Africa.

    PubMed

    Aïzoun, Nazaire; Ossè, Razaki; Azondekon, Roseric; Alia, Roland; Oussou, Olivier; Gnanguenon, Virgile; Aikpon, Rock; Padonou, Gil Germain; Akogbéto, Martin

    2013-05-20

    The detection of insecticide resistance in natural populations of Anopheles vectors is absolutely necessary for malaria control. In the African region, the WHO insecticide susceptibility test is the most common method for assessing resistance status. In order to search for a simple, rapid and more reliable technique in the assessment of insecticide resistance in malaria vectors, we compared the WHO tests with the CDC bottle bioassay in the Ouemé province of southern Benin where insecticide resistance has been widely reported. Larvae and pupae of Anopheles gambiae s.l. mosquitoes were collected from the breeding sites in Ouemé. WHO and CDC susceptibility tests were conducted simultaneously on unfed female mosquitoes aged 2-5 days old. WHO bioassays were performed with impregnated papers of deltamethrin (0.05%) and bendiocarb (0.1%), whereas CDC bioassays were performed with stock solutions of deltamethrin (12.5 μg per bottle) and bendiocarb (12.5 μg per bottle). PCR techniques were used to detect species, Kdr and Ace-1 mutations. CDC biochemical assays using synergists were also conducted to assess the metabolic resistance. A slight decrease in mortality rates was observed with 97.95% and 98.33% obtained from CDC and WHO bioassays respectively in populations of mosquitoes from Adjara and Dangbo. PCR revealed that all specimens tested were Anopheles gambiae s.s. The Kdr mutation was found at high frequency in all populations and both the Kdr mutation and mono-oxygenase enzymes were implicated as mechanisms of pyrethroid resistance in An. gambiae from Misserete. This study emphasizes that both WHO and CDC bioassays give similar results with regards to the susceptibility of mosquitoes to insecticides in southern Benin. There were complementarities between both methods, however, some specificity was noted for each of the two methods used. Both Kdr and metabolic mechanisms were implicated in the resistance.

  4. Associated patterns of insecticide resistance in field populations of malaria vectors across Africa.

    PubMed

    Hancock, Penelope A; Wiebe, Antoinette; Gleave, Katherine A; Bhatt, Samir; Cameron, Ewan; Trett, Anna; Weetman, David; Smith, David L; Hemingway, Janet; Coleman, Michael; Gething, Peter W; Moyes, Catherine L

    2018-06-05

    The development of insecticide resistance in African malaria vectors threatens the continued efficacy of important vector control methods that rely on a limited set of insecticides. To understand the operational significance of resistance we require quantitative information about levels of resistance in field populations to the suite of vector control insecticides. Estimation of resistance is complicated by the sparsity of observations in field populations, variation in resistance over time and space at local and regional scales, and cross-resistance between different insecticide types. Using observations of the prevalence of resistance in mosquito species from the Anopheles gambiae complex sampled from 1,183 locations throughout Africa, we applied Bayesian geostatistical models to quantify patterns of covariation in resistance phenotypes across different insecticides. For resistance to the three pyrethroids tested, deltamethrin, permethrin, and λ-cyhalothrin, we found consistent forms of covariation across sub-Saharan Africa and covariation between resistance to these pyrethroids and resistance to DDT. We found no evidence of resistance interactions between carbamate and organophosphate insecticides or between these insecticides and those from other classes. For pyrethroids and DDT we found significant associations between predicted mean resistance and the observed frequency of kdr mutations in the Vgsc gene in field mosquito samples, with DDT showing the strongest association. These results improve our capacity to understand and predict resistance patterns throughout Africa and can guide the development of monitoring strategies. Copyright © 2018 the Author(s). Published by PNAS.

  5. A Bioinformatics Approach for Integrated Transcriptomic and Proteomic Comparative Analyses of Model and Non-sequenced Anopheline Vectors of Human Malaria Parasites*

    PubMed Central

    Mohien, Ceereena Ubaida; Colquhoun, David R.; Mathias, Derrick K.; Gibbons, John G.; Armistead, Jennifer S.; Rodriguez, Maria C.; Rodriguez, Mario Henry; Edwards, Nathan J.; Hartler, Jürgen; Thallinger, Gerhard G.; Graham, David R.; Martinez-Barnetche, Jesus; Rokas, Antonis; Dinglasan, Rhoel R.

    2013-01-01

    Malaria morbidity and mortality caused by both Plasmodium falciparum and Plasmodium vivax extend well beyond the African continent, and although P. vivax causes between 80 and 300 million severe cases each year, vivax transmission remains poorly understood. Plasmodium parasites are transmitted by Anopheles mosquitoes, and the critical site of interaction between parasite and host is at the mosquito's luminal midgut brush border. Although the genome of the “model” African P. falciparum vector, Anopheles gambiae, has been sequenced, evolutionary divergence limits its utility as a reference across anophelines, especially non-sequenced P. vivax vectors such as Anopheles albimanus. Clearly, technologies and platforms that bridge this substantial scientific gap are required in order to provide public health scientists with key transcriptomic and proteomic information that could spur the development of novel interventions to combat this disease. To our knowledge, no approaches have been published that address this issue. To bolster our understanding of P. vivax–An. albimanus midgut interactions, we developed an integrated bioinformatic-hybrid RNA-Seq-LC-MS/MS approach involving An. albimanus transcriptome (15,764 contigs) and luminal midgut subproteome (9,445 proteins) assembly, which, when used with our custom Diptera protein database (685,078 sequences), facilitated a comparative proteomic analysis of the midgut brush borders of two important malaria vectors, An. gambiae and An. albimanus. PMID:23082028

  6. A bioinformatics approach for integrated transcriptomic and proteomic comparative analyses of model and non-sequenced anopheline vectors of human malaria parasites.

    PubMed

    Ubaida Mohien, Ceereena; Colquhoun, David R; Mathias, Derrick K; Gibbons, John G; Armistead, Jennifer S; Rodriguez, Maria C; Rodriguez, Mario Henry; Edwards, Nathan J; Hartler, Jürgen; Thallinger, Gerhard G; Graham, David R; Martinez-Barnetche, Jesus; Rokas, Antonis; Dinglasan, Rhoel R

    2013-01-01

    Malaria morbidity and mortality caused by both Plasmodium falciparum and Plasmodium vivax extend well beyond the African continent, and although P. vivax causes between 80 and 300 million severe cases each year, vivax transmission remains poorly understood. Plasmodium parasites are transmitted by Anopheles mosquitoes, and the critical site of interaction between parasite and host is at the mosquito's luminal midgut brush border. Although the genome of the "model" African P. falciparum vector, Anopheles gambiae, has been sequenced, evolutionary divergence limits its utility as a reference across anophelines, especially non-sequenced P. vivax vectors such as Anopheles albimanus. Clearly, technologies and platforms that bridge this substantial scientific gap are required in order to provide public health scientists with key transcriptomic and proteomic information that could spur the development of novel interventions to combat this disease. To our knowledge, no approaches have been published that address this issue. To bolster our understanding of P. vivax-An. albimanus midgut interactions, we developed an integrated bioinformatic-hybrid RNA-Seq-LC-MS/MS approach involving An. albimanus transcriptome (15,764 contigs) and luminal midgut subproteome (9,445 proteins) assembly, which, when used with our custom Diptera protein database (685,078 sequences), facilitated a comparative proteomic analysis of the midgut brush borders of two important malaria vectors, An. gambiae and An. albimanus.

  7. Forecasting paediatric malaria admissions on the Kenya Coast using rainfall.

    PubMed

    Karuri, Stella Wanjugu; Snow, Robert W

    2016-01-01

    Malaria is a vector-borne disease which, despite recent scaled-up efforts to achieve control in Africa, continues to pose a major threat to child survival. The disease is caused by the protozoan parasite Plasmodium and requires mosquitoes and humans for transmission. Rainfall is a major factor in seasonal and secular patterns of malaria transmission along the East African coast. The goal of the study was to develop a model to reliably forecast incidences of paediatric malaria admissions to Kilifi District Hospital (KDH). In this article, we apply several statistical models to look at the temporal association between monthly paediatric malaria hospital admissions, rainfall, and Indian Ocean sea surface temperatures. Trend and seasonally adjusted, marginal and multivariate, time-series models for hospital admissions were applied to a unique data set to examine the role of climate, seasonality, and long-term anomalies in predicting malaria hospital admission rates and whether these might become more or less predictable with increasing vector control. The proportion of paediatric admissions to KDH that have malaria as a cause of admission can be forecast by a model which depends on the proportion of malaria admissions in the previous 2 months. This model is improved by incorporating either the previous month's Indian Ocean Dipole information or the previous 2 months' rainfall. Surveillance data can help build time-series prediction models which can be used to anticipate seasonal variations in clinical burdens of malaria in stable transmission areas and aid the timing of malaria vector control.

  8. Can water-level management reduce malaria mosquito abundance around large dams in sub-Saharan Africa?

    PubMed Central

    Wilson, G. Glenn; Ryder, Darren; Tekie, Habte; Petros, Beyene

    2018-01-01

    Background Water level management has been suggested as a potential tool to reduce malaria around large reservoirs. However, no field-based test has been conducted to assess the effect of water level management on mosquito larval abundance in African settings. The objective of the present study is to evaluate the effects of water level drawdown rates on mosquito larval abundance. Methods Twelve experimental dams were constructed on the foreshore of the Koka Dam in Ethiopia. These were grouped into four daily water drawdown treatments, each with three replicates: no water-level drawdown (Group 1; Control), 10 mm.d-1 (Group 2), 15 mm.d-1 (Group 3) and 20 mm.d-1 (Group 4). Larval sampling was conducted weekly for a period of 6 weeks each in the main malaria transmission season (October to November 2013) and subsequent dry season (February to March 2014). Larval densities were compared among treatments over time using repeated measures Analysis of Variance (ANOVA). Results A total of 284 Anopheles mosquito larvae were collected from the experimental dams during the study period. Most (63.4%; n = 180) were collected during the main malaria transmission season while the remaining (36.6%; n = 104) were collected during the dry season. Larvae comprised four Anopheles species, dominated by Anopheles arabiensis (48.1% of total larval samples; n = 136) and An. pharoensis (33.2%; n = 94). Mean larval density was highest in control treatment dams with stable water levels throughout the study, and decreased significantly (P < 0.05) with increasing water drawdown rates in both seasons. During the main transmission season, anopheline larval density was generally lower by 30%, 70% and 84% in Groups 2, Group 3 and Group 4, respectively, compared with the control dams (Group 1). In the dry season, larval density was reduced by 45%, 70% and 84% in Groups 2, Group 3 and Group 4, respectively, when compared to the control dams. Conclusion Increased water drawdown rates were associated

  9. Plant-Mediated Effects on Mosquito Capacity to Transmit Human Malaria

    PubMed Central

    Hien, Domonbabele F. d. S.; Roche, Benjamin; Diabaté, Abdoulaye; Yerbanga, Rakiswende S.; Cohuet, Anna; Yameogo, Bienvenue K.; Gouagna, Louis-Clément; Hopkins, Richard J.; Ouedraogo, Georges A.; Simard, Frédéric; Ignell, Rickard; Lefevre, Thierry

    2016-01-01

    The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this, we infected Anopheles coluzzi, an important African malaria vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on parasite and mosquito traits that are key for determining the intensity of malaria transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the parasites, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and parasite growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of malaria transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities. PMID:27490374

  10. Cost effective malaria risk control using remote sensing and environmental data

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Z.; Roytman, Leonid; Kadik, Abdel Hamid

    2012-06-01

    Malaria transmission in many part of the world specifically in Bangladesh and southern African countries is unstable and epidemic. An estimate of over a million cases is reported annually. Malaria is heterogeneous, potentially due to variations in ecological settings, socio-economic status, land cover, and agricultural practices. Malaria control only relies on treatment and supply of bed networks. Drug resistance to these diseases is widespread. Vector control is minimal. Malaria control in those countries faces many formidable challenges such as inadequate accessibility to effective treatment, lack of trained manpower, inaccessibility of endemic areas, poverty, lack of education, poor health infrastructure and low health budgets. Health facilities for malaria management are limited, surveillance is inadequate, and vector control is insufficient. Control can only be successful if the right methods are used at the right time in the right place. This paper aims to improve malaria control by developing malaria risk maps and risk models using satellite remote sensing data by identifying, assessing, and mapping determinants of malaria associated with environmental, socio-economic, malaria control, and agricultural factors.

  11. Species composition, larval habitats, seasonal occurrence and distribution of potential malaria vectors and associated species of Anopheles (Diptera: Culicidae) from the Republic of Korea

    PubMed Central

    2010-01-01

    Background Larval mosquito habitats of potential malaria vectors and related species of Anopheles from three provinces (Gyeonggi, Gyeongsangbuk, Chungcheongbuk Provinces) of the Republic of Korea were surveyed in 2007. This study aimed to determine the species composition, seasonal occurrence and distributions of Anopheles mosquitoes. Satellite derived normalized difference vegetation index data (NDVI) was also used to study the seasonal abundance patterns of Anopheles mosquitoes. Methods Mosquito larvae from various habitats were collected using a standard larval dipper or a white plastic larval tray, placed in plastic bags, and were preserved in 100% ethyl alcohol for species identification by PCR and DNA sequencing. The habitats in the monthly larval surveys included artificial containers, ground depressions, irrigation ditches, drainage ditches, ground pools, ponds, rice paddies, stream margins, inlets and pools, swamps, and uncultivated fields. All field-collected specimens were identified to species, and relationships among habitats and locations based on species composition were determined using cluster statistical analysis. Results In about 10,000 specimens collected, eight species of Anopheles belonging to three groups were identified: Hyrcanus Group - Anopheles sinensis, Anopheles kleini, Anopheles belenrae, Anopheles pullus, Anopheles lesteri, Anopheles sineroides; Barbirostris Group - Anopheles koreicus; and Lindesayi Group - Anopheles lindesayi japonicus. Only An. sinensis was collected from all habitats groups, while An. kleini, An. pullus and An. sineroides were sampled from all, except artificial containers. The highest number of Anopheles larvae was found in the rice paddies (34.8%), followed by irrigation ditches (23.4%), ponds (17.0%), and stream margins, inlets and pools (12.0%). Anopheles sinensis was the dominant species, followed by An. kleini, An. pullus and An. sineroides. The monthly abundance data of the Anopheles species from three

  12. Spatial targeting of interventions against malaria.

    PubMed Central

    Carter, R.; Mendis, K. N.; Roberts, D.

    2000-01-01

    Malaria transmission is strongly associated with location. This association has two main features. First, the disease is focused around specific mosquito breeding sites and can normally be transmitted only within certain distances from them: in Africa these are typically between a few hundred metres and a kilometre and rarely exceed 2-3 kilometres. Second, there is a marked clustering of persons with malaria parasites and clinical symptoms at particular sites, usually households. In localities of low endemicity the level of malaria risk or case incidence may vary widely between households because the specific characteristics of houses and their locations affect contact between humans and vectors. Where endemicity is high, differences in human/vector contact rates between different households may have less effect on malaria case incidences. This is because superinfection and exposure-acquired immunity blur the proportional relationship between inoculation rates and case incidences. Accurate information on the distribution of malaria on the ground permits interventions to be targeted towards the foci of transmission and the locations and households of high malaria risk within them. Such targeting greatly increases the effectiveness of control measures. On the other hand, the inadvertent exclusion of these locations causes potentially effective control measures to fail. The computerized mapping and management of location data in geographical information systems should greatly assist the targeting of interventions against malaria at the focal and household levels, leading to improved effectiveness and cost-effectiveness of control. PMID:11196487

  13. Spatial targeting of interventions against malaria.

    PubMed

    Carter, R; Mendis, K N; Roberts, D

    2000-01-01

    Malaria transmission is strongly associated with location. This association has two main features. First, the disease is focused around specific mosquito breeding sites and can normally be transmitted only within certain distances from them: in Africa these are typically between a few hundred metres and a kilometre and rarely exceed 2-3 kilometres. Second, there is a marked clustering of persons with malaria parasites and clinical symptoms at particular sites, usually households. In localities of low endemicity the level of malaria risk or case incidence may vary widely between households because the specific characteristics of houses and their locations affect contact between humans and vectors. Where endemicity is high, differences in human/vector contact rates between different households may have less effect on malaria case incidences. This is because superinfection and exposure-acquired immunity blur the proportional relationship between inoculation rates and case incidences. Accurate information on the distribution of malaria on the ground permits interventions to be targeted towards the foci of transmission and the locations and households of high malaria risk within them. Such targeting greatly increases the effectiveness of control measures. On the other hand, the inadvertent exclusion of these locations causes potentially effective control measures to fail. The computerized mapping and management of location data in geographical information systems should greatly assist the targeting of interventions against malaria at the focal and household levels, leading to improved effectiveness and cost-effectiveness of control.

  14. Malaria Modeling using Remote Sensing and GIS Technologies

    NASA Technical Reports Server (NTRS)

    Kiang, Richard

    2004-01-01

    Malaria has been with the human race since the ancient time. In spite of the advances of biomedical research and the completion of genomic mapping of Plasmodium falciparum, the exact mechanisms of how the various strains of parasites evade the human immune system and how they have adapted and become resistant to multiple drugs remain elusive. Perhaps because of these reasons, effective vaccines against malaria are still not available. Worldwide, approximately one to three millions deaths are attributed to malaria annually. With the increased availability of remotely sensed data, researchers in medical entomology, epidemiology and ecology have started to associate environmental and ecological variables with malaria transmission. In several studies, it has been shown that transmission correlates well with certain environmental and ecological parameters, and that remote sensing can be used to measure these determinants. In a NASA project, we have taken a holistic approach to examine how remote sensing and GIs can contribute to vector and malaria controls. To gain a better understanding of the interactions among the possible promoting factors, we have been developing a habitat model, a transmission model, and a risk prediction model, all using remote sensing data as input. Our objectives are: 1) To identify the potential breeding sites of major vector species and the locations for larvicide and insecticide applications in order to reduce costs, lessen the chance of developing pesticide resistance, and minimize the damage to the environment; 2) To develop a malaria transmission model characterizing the interactions among hosts, vectors, parasites, landcover and environment in order to identify the key factors that sustain or intensify malaria transmission, and 3) To develop a risk model to predict the occurrence of malaria and its transmission intensity using epidemiological data and satellite-derived or ground-measured environmental and meteorological data.

  15. Relative roles of weather variables and change in human population in malaria: comparison over different states of India.

    PubMed

    Goswami, Prashant; Murty, Upadhayula Suryanarayana; Mutheneni, Srinivasa Rao; Krishnan, Swathi Trithala

    2014-01-01

    Pro-active and effective control as well as quantitative assessment of impact of climate change on malaria requires identification of the major drivers of the epidemic. Malaria depends on vector abundance which, in turn, depends on a combination of weather variables. However, there remain several gaps in our understanding and assessment of malaria in a changing climate. Most of the studies have considered weekly or even monthly mean values of weather variables, while the malaria vector is sensitive to daily variations. Secondly, rarely all the relevant meteorological variables have been considered together. An important question is the relative roles of weather variables (vector abundance) and change in host (human) population, in the change in disease load. We consider the 28 states of India, characterized by diverse climatic zones and changing population as well as complex variability in malaria, as a natural test bed. An annual vector load for each of the 28 states is defined based on the number of vector genesis days computed using daily values of temperature, rainfall and humidity from NCEP daily Reanalysis; a prediction of potential malaria load is defined by taking into consideration changes in the human population and compared with the reported number of malaria cases. For most states, the number of malaria cases is very well correlated with the vector load calculated with the combined conditions of daily values of temperature, rainfall and humidity; no single weather variable has any significant association with the observed disease prevalence. The association between vector-load and daily values of weather variables is robust and holds for different climatic regions (states of India). Thus use of all the three weather variables provides a reliable means of pro-active and efficient vector sanitation and control as well as assessment of impact of climate change on malaria.

  16. Relative Roles of Weather Variables and Change in Human Population in Malaria: Comparison over Different States of India

    PubMed Central

    Goswami, Prashant; Murty, Upadhayula Suryanarayana; Mutheneni, Srinivasa Rao; Krishnan, Swathi Trithala

    2014-01-01

    Background Pro-active and effective control as well as quantitative assessment of impact of climate change on malaria requires identification of the major drivers of the epidemic. Malaria depends on vector abundance which, in turn, depends on a combination of weather variables. However, there remain several gaps in our understanding and assessment of malaria in a changing climate. Most of the studies have considered weekly or even monthly mean values of weather variables, while the malaria vector is sensitive to daily variations. Secondly, rarely all the relevant meteorological variables have been considered together. An important question is the relative roles of weather variables (vector abundance) and change in host (human) population, in the change in disease load. Method We consider the 28 states of India, characterized by diverse climatic zones and changing population as well as complex variability in malaria, as a natural test bed. An annual vector load for each of the 28 states is defined based on the number of vector genesis days computed using daily values of temperature, rainfall and humidity from NCEP daily Reanalysis; a prediction of potential malaria load is defined by taking into consideration changes in the human population and compared with the reported number of malaria cases. Results For most states, the number of malaria cases is very well correlated with the vector load calculated with the combined conditions of daily values of temperature, rainfall and humidity; no single weather variable has any significant association with the observed disease prevalence. Conclusion The association between vector-load and daily values of weather variables is robust and holds for different climatic regions (states of India). Thus use of all the three weather variables provides a reliable means of pro-active and efficient vector sanitation and control as well as assessment of impact of climate change on malaria. PMID:24971510

  17. Development and evaluation of mosquito-electrocuting traps as alternatives to the human landing catch technique for sampling host-seeking malaria vectors.

    PubMed

    Maliti, Deodatus V; Govella, Nicodem J; Killeen, Gerry F; Mirzai, Nosrat; Johnson, Paul C D; Kreppel, Katharina; Ferguson, Heather M

    2015-12-15

    The human landing catch (HLC) is the gold standard method for sampling host-seeking malaria vectors. However, the HLC is ethically questionable because it requires exposure of humans to potentially infectious mosquito bites. Two exposure-free methods for sampling host-seeking mosquitoes were evaluated using electrocuting surfaces as potential replacements for HLC: (1) a previously evaluated, commercially available electrocuting grid (CA-EG) designed for killing flies, and (2) a custom-made mosquito electrocuting trap (MET) designed to kill African malaria vectors. The MET and the CA-EG were evaluated relative to the HLC in a Latin Square experiment conducted in the Kilombero Valley, Tanzania. The sampling consistency of the traps across the night and at varying mosquito densities was investigated. Estimates of the proportion of mosquitoes caught indoors (P(i)), proportion of human exposure occurring indoors (π(i)), and proportion of mosquitoes caught when most people are likely to be indoors (P(fl)) were compared for all traps. Whereas the CA-EG performed poorly (<10% of catch of HLC), sampling efficiency of the MET for sampling Anopheles funestus s.l. was indistinguishable from HLC indoors and outdoors. For Anopheles gambiae s.l., sampling sensitivity of MET was 20.9% (95% CI 10.3-42.2) indoors and 58.5% (95% CI 32.2-106.2) outdoors relative to HLC. There was no evidence of density-dependent sampling by the MET or CA-EG. Similar estimates of P(i) were obtained for An. gambiae s.l. and An. funestus s.l. from all trapping methods. The proportion of mosquitoes caught when people are usually indoors (P(fl)) was underestimated by the CA-EG and MET for An. gambiae s.l., but similar to the HLC for An. funestus. Estimates of the proportion of human exposure occurring indoors (π(i)) obtained from the CA-EG and MET were similar to the HLC for An. gambiae s.l., but overestimated for An. funestus. The MET showed promise as an outdoor sampling tool for malaria vectors where

  18. Discovery of Rigidified α,β-Unsaturated Imines as New Resistance-breaking Insecticides for Malaria Vector Control.

    PubMed

    Arlt, Alexander; Böhnke, Niels; Horstmann, Sebastian; Vermeer, Arnoldus W P; Werner, Stefan; Velten, Robert

    2016-10-01

    During our continuous search for new resistance-breaking insecticides applicable to malaria vector control, a new class of α,β-unsaturated imines was identified by applying the principle of conformational rigidification as a powerful tool for compound optimisation. Herein we describe the successful synthesis of these compounds and their biological test results. Our lead compound 16 from this insecticidal class outperforms market standards, notably for the control of mosquito strains that exhibit either metabolic or target-site resistance to these established insecticides. In our model system for insecticide-treated mosquito nets the compound reveals long-lasting efficacy for up to several months.

  19. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route.

    PubMed

    Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C

    2014-08-21

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.

  20. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    PubMed Central

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  1. Operational efficiency and sustainability of vector control of malaria and dengue: descriptive case studies from the Philippines

    PubMed Central

    2012-01-01

    Background Analysis is lacking on the management of vector control systems in disease-endemic countries with respect to the efficiency and sustainability of operations. Methods Three locations were selected, at the scale of province, municipality and barangay (i.e. village). Data on disease incidence, programme activities, and programme management were collected on-site through meetings and focus group discussions. Results Adaptation of disease control strategies to the epidemiological situation per barangay, through micro-stratification, brings gains in efficiency, but should be accompanied by further capacity building on local situational analysis for better selection and targeting of vector control interventions within the barangay. An integrated approach to vector control, aiming to improve the rational use of resources, was evident with a multi-disease strategy for detection and response, and by the use of combinations of vector control methods. Collaboration within the health sector was apparent from the involvement of barangay health workers, re-orientation of job descriptions and the creation of a disease surveillance unit. The engagement of barangay leaders and use of existing community structures helped mobilize local resources and voluntary services for vector control. In one location, local authorities and the community were involved in the planning, implementation and evaluation of malaria control, which triggered local programme ownership. Conclusions Strategies that contributed to an improved efficiency and sustainability of vector control operations were: micro-stratification, integration of vector control within the health sector, a multi-disease approach, involvement of local authorities, and empowerment of communities. Capacity building on situational analysis and vector surveillance should be addressed through national policy and guidelines. PMID:22873707

  2. Simulation of Malaria Transmission among Households in a Thai Village using Remotely Sensed Parameters

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.; Adimi, Farida; Zollner, Gabriela E.; Coleman, Russell E.

    2007-01-01

    We have used discrete-event simulation to model the malaria transmission in a Thailand village with approximately 700 residents. Specifically, we model the detailed interactions among the vector life cycle, sporogonic cycle and human infection cycle under the explicit influences of selected extrinsic and intrinsic factors. Some of the meteorological and environmental parameters used in the simulation are derived from Tropical Rainfall Measuring Mission and the Ikonos satellite data. Parameters used in the simulations reflect the realistic condition of the village, including the locations and sizes of the households, ages and estimated immunity of the residents, presence of farm animals, and locations of larval habitats. Larval habitats include the actual locations where larvae were collected and the probable locations based on satellite data. The output of the simulation includes the individual infection status and the quantities normally observed in field studies, such as mosquito biting rates, sporozoite infection rates, gametocyte prevalence and incidence. Simulated transmission under homogeneous environmental condition was compared with that predicted by a SEIR model. Sensitivity of the output with respect to some extrinsic and intrinsic factors was investigated. Results were compared with mosquito vector and human malaria data acquired over 4.5 years (June 1999 - January 2004) in Kong Mong Tha, a remote village in Kanchanaburi Province, western Thailand. The simulation method is useful for testing transmission hypotheses, estimating the efficacy of insecticide applications, assessing the impacts of nonimmune immigrants, and predicting the effects of socioeconomic, environmental and climatic changes.

  3. 2La chromosomal inversion enhances thermal tolerance of Anopheles gambiae larvae.

    PubMed

    Rocca, Kyle A C; Gray, Emilie M; Costantini, Carlo; Besansky, Nora J

    2009-07-02

    The mosquito Anopheles gambiae is broadly distributed throughout sub-Saharan Africa and this contributes to making it the most efficient vector of malaria on the continent. The pervasiveness of this species is hypothesized to originate in local adaptations facilitated by inversion polymorphisms. One inversion, named 2La, is strongly associated with aridity clines in West and Central Africa: while 2La is fixed in arid savannas, the 2L+a arrangement is predominantly found in the rainforest. Ability to survive high temperature exposure is an essential component of aridity tolerance, particularly in immature stages that are restricted to shallow puddles. Toward deciphering the role of the 2La inversion in local adaptation, the present investigation focused on variation in larval and pupal thermo-tolerance in two populations dissimilar solely in 2La arrangement. A laboratory colony of A. gambiae that is polymorphic for 2La but standard for all other known inversions was used to create 2 homokaryotypic populations (2L+a and 2La). The survival of 4th instar larvae and pupae from both populations was then tested following exposure to thermal stress with and without prior heat hardening. Larvae responded identically to a 40 degrees C heat stress, with about 50% of larvae dying after 1.5-2 h and few larvae surviving a 3 h stress. When heat hardened prior to the thermal stress, thermo-tolerance of both larval populations increased, with 2La 24 h survival significantly exceeding that of 2L+a. Pupae were generally more thermo-tolerant than larvae, although 2La pupae were less so than 2L+a. Heat hardening had no positive effect on pupal thermo-tolerance. The increased thermo-tolerance observed in 2La larvae following heat hardening suggests higher responsiveness (i.e., thermal sensitivity) of the inverted karyotype. By responding more drastically to the heat shock, 2La larvae are better equipped to resist the potentially lethal temperatures that occur in arid habitats. The lower

  4. Studies on malaria and Anopheles balabacensis in Cambodia

    PubMed Central

    Eyles, Don E.; Wharton, R. H.; Cheong, W. H.; Warren, McWilson

    1964-01-01

    During the past few years Anopheles balabacensis has come to be recognized as a very important human malaria vector in Thailand and the Indochinese area, but little has been published on its bionomics except from North Borneo. Studies of the feeding habits of A. balabacensis in Cambodia showed it to be predominantly a forest mosquito. It was readily attracted to monkeys in the forest canopy but also readily attacked man on the ground. Very few of this species were attracted to domestic animals. Malaria infections were found more frequently in mosquitos captured in villages, but a significant number were infected from the forest beyond flight range of human habitation. The human population showed a high percentage of persons infected with malaria, Plasmodium falciparum predominating. Cambodian monkeys were found also to be infected with P. cynomolgi. Although none of thirteen monkeys injected with sporozoites from wild-caught mosquitos came down with malaria, it was concluded that A. balabacensis probably was the vector of both human and monkey malaria and that the risk of cross-infection was considerable if monkey malarias infective to man exist in the area. PMID:14122444

  5. Receptivity to malaria in the China-Myanmar border in Yingjiang County, Yunnan Province, China.

    PubMed

    Chen, Tianmu; Zhang, Shaosen; Zhou, Shui-Sen; Wang, Xuezhong; Luo, Chunhai; Zeng, Xucan; Guo, Xiangrui; Lin, Zurui; Tu, Hong; Sun, Xiaodong; Zhou, Hongning

    2017-11-21

    The re-establishment of malaria has become an important public health issue in and out of China, and receptivity to this disease is key to its re-emergence. Yingjiang is one of the few counties with locally acquired malaria cases in the China-Myanmar border in China. This study aimed to understand receptivity to malaria in Yingjiang County, China, from June to October 2016. Light-traps were employed to capture the mosquitoes in 17 villages in eight towns which were categorized into four elevation levels: level 1, 0-599 m; level 2, 600-1199 m; level 3, 1200-1799 m; and level 4, > 1800 m. Species richness, diversity, dominance and evenness were used to picture the community structure. Similarity in species composition was compared between different elevation levels. Data of seasonal abundance of mosquitoes, human biting rate, density of light-trap-captured adult mosquitoes and larvae, parous rate, and height distribution (density) of Anopheles minimus and Anopheles sinensis were collected in two towns (Na Bang and Ping Yuan) each month from June to October, 2016. Over the study period, 10,053 Anopheles mosquitoes were collected from the eight towns, and 15 Anopheles species were identified, the most-common of which were An. sinensis (75.4%), Anopheles kunmingensis (15.6%), and An. minimus (3.5%). Anopheles minimus was the major malaria vector in low-elevation areas (< 600 m, i.e., Na Bang town), and An. sinensis in medium-elevation areas (600-1200 m, i.e., Ping Yuan town). In Na Bang, the peak human-biting rate of An. minimus at the inner and outer sites of the village occurred in June and August 2016, with 5/bait/night and 15/bait/night, respectively. In Ping Yuan, the peak human-biting rate of An. sinensis was in August, with 9/bait/night at the inner site and 21/bait/night at the outer site. The two towns exhibited seasonal abundance with high density of the two adult vectors: The peak density of An. minimus was in June and that of An. sinensis was in

  6. Changing climate and the altitudinal range of avian malaria in the Hawaiian Islands: an ongoing conservation crisis on the island of Kaua'i

    USGS Publications Warehouse

    Atkinson, Carter T.; Utzurrum, Ruth B.; LaPointe, Dennis A.; Camp, Richard J.; Crampton, Lisa H.; Foster, Jeffrey T.; Giambelluca, Thomas W.

    2014-01-01

    Transmission of avian malaria in the Hawaiian Islands varies across altitudinal gradients and is greatest at elevations below 1500 m where both temperature and moisture are favorable for the sole mosquito vector, Culex quinquefasciatus, and extrinsic sporogonic development of the parasite, Plasmodium relictum. Potential consequences of global warming on this system have been recognized for over a decade with concerns that increases in mean temperatures could lead to expansion of malaria into habitats where cool temperatures currently limit transmission to highly susceptible endemic forest birds. Recent declines in two endangered species on the island of Kaua'i, the ‘Akikiki (Oreomystis bairdi) and ‘Akeke'e (Loxops caeruleirostris), and retreat of more common native honeycreepers to the last remaining high elevation habitat on the Alaka'i Plateau suggest that predicted changes in disease transmission may be occurring. We compared prevalence of malarial infections in forest birds that were sampled at three locations on the Plateau during 1994–1997 and again during 2007–2013, and also evaluated changes in the occurrence of mosquito larvae in available aquatic habitats during the same time periods. Prevalence of infection increased significantly at the lower (1100 m, 10.3% to 28.2%), middle (1250 m, 8.4% to 12.2%), and upper ends of the Plateau (1350 m, 2.0% to 19.3%). A concurrent increase in detections of Culex larvae in aquatic habitats associated with stream margins indicates that populations of the vector are also increasing. These increases are at least in part due to local transmission because overall prevalence in Kaua'i ‘Elepaio (Chasiempis sclateri), a sedentary native species, has increased from 17.2% to 27.0%. Increasing mean air temperatures, declining precipitation, and changes in streamflow that have taken place over the past 20 years are creating environmental conditions throughout major portions of the Alaka'i Plateau that support increased

  7. Changing climate and the altitudinal range of avian malaria in the Hawaiian Islands - an ongoing conservation crisis on the island of Kaua'i.

    PubMed

    Atkinson, Carter T; Utzurrum, Ruth B; Lapointe, Dennis A; Camp, Richard J; Crampton, Lisa H; Foster, Jeffrey T; Giambelluca, Thomas W

    2014-08-01

    Transmission of avian malaria in the Hawaiian Islands varies across altitudinal gradients and is greatest at elevations below 1500 m where both temperature and moisture are favorable for the sole mosquito vector, Culex quinquefasciatus, and extrinsic sporogonic development of the parasite, Plasmodium relictum. Potential consequences of global warming on this system have been recognized for over a decade with concerns that increases in mean temperatures could lead to expansion of malaria into habitats where cool temperatures currently limit transmission to highly susceptible endemic forest birds. Recent declines in two endangered species on the island of Kaua'i, the 'Akikiki (Oreomystis bairdi) and 'Akeke'e (Loxops caeruleirostris), and retreat of more common native honeycreepers to the last remaining high elevation habitat on the Alaka'i Plateau suggest that predicted changes in disease transmission may be occurring. We compared prevalence of malarial infections in forest birds that were sampled at three locations on the Plateau during 1994-1997 and again during 2007-2013, and also evaluated changes in the occurrence of mosquito larvae in available aquatic habitats during the same time periods. Prevalence of infection increased significantly at the lower (1100 m, 10.3% to 28.2%), middle (1250 m, 8.4% to 12.2%), and upper ends of the Plateau (1350 m, 2.0% to 19.3%). A concurrent increase in detections of Culex larvae in aquatic habitats associated with stream margins indicates that populations of the vector are also increasing. These increases are at least in part due to local transmission because overall prevalence in Kaua'i 'Elepaio (Chasiempis sclateri), a sedentary native species, has increased from 17.2% to 27.0%. Increasing mean air temperatures, declining precipitation, and changes in streamflow that have taken place over the past 20 years are creating environmental conditions throughout major portions of the Alaka'i Plateau that support increased

  8. [The progress of malaria in sahelian eastern Niger. An ecological disaster zone].

    PubMed

    Julvez, J; Mouchet, J; Michault, A; Fouta, A; Hamidine, M

    1997-01-01

    The south eastern part of the Republic of Niger was ecologically damaged by the dryness since 1971. Rainfall decreased by 30 to 40% as compared to 1961-70 and lake Chad retreated 100 km to the south. Now it does not reach any more the Republic of Niger. Malaria studies have been carried out in urban and suburban places in Zinder and in the Diffa area at the extreme east. In Zinder parasitic indexes (PI) after the rainy season were around 30% to 10% according to the situation of the corner in respect with surface waters during the rains. In dry season the index fell to 3%. In Diffa in a part of the city at high risk because lining the Komadougou river, PI was only 6.7% in October after the rains. Before 1970 PI recorded in Niamey were up to 50%. In Diffa area they were of 49% in N'Guigmi and 32% in Bosso, ecologically similar to Diffa. Obviously there was a sharp decrease of malaria which could be due to the disappearance of An. funestus after 1970. It was one of the main malaria vectors. Its larvae were developing in pools remaining after the rains with heavy standing vegetation. These breeding sites have been destroyed by both dryness and human activities. Now the area has became hypoendemic and is suitable for epidemic because population has not much immunity. A surveillance system for epidemic control should be settle.

  9. Risk factors for house-entry by malaria vectors in a rural town and satellite villages in The Gambia

    PubMed Central

    Kirby, Matthew J; Green, Clare; Milligan, Paul M; Sismanidis, Charalambos; Jasseh, Momadou; Conway, David J; Lindsay, Steven W

    2008-01-01

    Background In the pre-intervention year of a randomized controlled trial investigating the protective effects of house screening against malaria-transmitting vectors, a multi-factorial risk factor analysis study was used to identify factors that influence mosquito house entry. Methods Mosquitoes were sampled using CDC light traps in 976 houses, each on one night, in Farafenni town and surrounding villages during the malaria-transmission season in The Gambia. Catches from individual houses were both (a) left unadjusted and (b) adjusted relative to the number of mosquitoes caught in four sentinel houses that were operated nightly throughout the period, to allow for night-to-night variation. Houses were characterized by location, architecture, human occupancy and their mosquito control activities, and the number and type of domestic animals within the compound. Results 106,536 mosquitoes were caught, of which 55% were Anopheles gambiae sensu lato, the major malaria vectors in the region. There were seven fold higher numbers of An. gambiae s.l. in the villages (geometric mean per trap night = 43.7, 95% confidence intervals, CIs = 39.5–48.4) than in Farafenni town (6.3, 5.7–7.2) and significant variation between residential blocks (p < 0.001). A negative binomial multivariate model performed equally well using unadjusted or adjusted trap data. Using the unadjusted data the presence of nuisance mosquitoes was reduced if the house was located in the town (odds ratio, OR = 0.11, 95% CIs = 0.09–0.13), the eaves were closed (OR = 0.71, 0.60–0.85), a horse was tethered near the house (OR = 0.77, 0.73–0.82), and churai, a local incense, was burned in the room at night (OR = 0.56, 0.47–0.66). Mosquito numbers increased per additional person in the house (OR = 1.04, 1.02–1.06) or trapping room (OR = 1.19, 1.13–1.25) and when the walls were made of mud blocks compared with concrete (OR = 1.44, 1.10–1.87). Conclusion This study demonstrates that the risk of

  10. Gene expression divergence between malaria vector sibling species Anopheles gambiae and An. coluzzii from rural and urban Yaoundé Cameroon

    PubMed Central

    Cassone, Bryan J.; Kamdem, Colince; Cheng, Changde; Tan, John C.; Hahn, Matthew W.; Costantini, Carlo; Besansky, Nora J.

    2014-01-01

    Divergent selection based on aquatic larval ecology is a likely factor in the recent isolation of two broadly sympatric and morphologically identical African mosquito species, the malaria vectors Anopheles gambiae and An. coluzzii. Population-based genome scans have revealed numerous candidate regions of recent positive selection, but have provided few clues as to the genetic mechanisms underlying behavioral and physiological divergence between the two species, phenotypes which themselves remain obscure. To uncover possible genetic mechanisms, we compared global transcriptional profiles of natural and experimental populations using gene-based microarrays. Larvae were sampled as second and fourth instars from natural populations in and around the city of Yaoundé, capital of Cameroon, where the two species segregate along a gradient of urbanization. Functional enrichment analysis of differentially expressed genes revealed that An. coluzzii—the species that breeds in more stable, biotically complex and potentially polluted urban water bodies—over-expresses genes implicated in detoxification and immunity relative to An. gambiae, which breeds in more ephemeral and relatively depauperate pools and puddles in suburbs and rural areas. Moreover, our data suggest that such over-expression by An. coluzzii is not a transient result of induction by xenobiotics in the larval habitat, but an inherent and presumably adaptive response to repeatedly encountered environmental stressors. Finally, we find no significant overlap between the differentially expressed loci and previously identified genomic regions of recent positive selection, suggesting that transcriptome divergence is regulated by trans-acting factors rather than cis-acting elements. PMID:24673723

  11. Agro-ecology, household economics and malaria in Uganda: empirical correlations between agricultural and health outcomes

    PubMed Central

    2014-01-01

    Background This paper establishes empirical evidence relating the agriculture and health sectors in Uganda. The analysis explores linkages between agricultural management, malaria and implications for improving community health outcomes in rural Uganda. The goal of this exploratory work is to expand the evidence-base for collaboration between the agricultural and health sectors in Uganda. Methods The paper presents an analysis of data from the 2006 Uganda National Household Survey using a parametric multivariate Two-Limit Tobit model to identify correlations between agro-ecological variables including geographically joined daily seasonal precipitation records and household level malaria risk. The analysis of agricultural and environmental factors as they affect household malaria rates, disaggregated by age-group, is inspired by a complimentary review of existing agricultural malaria literature indicating a gap in evidence with respect to agricultural management as a form of malaria vector management. Crop choices and agricultural management practices may contribute to vector control through the simultaneous effects of reducing malaria transmission, improving housing and nutrition through income gains, and reducing insecticide resistance in both malaria vectors and agricultural pests. Results The econometric results show the existence of statistically significant correlations between crops, such as sweet potatoes/yams, beans, millet and sorghum, with household malaria risk. Local environmental factors are also influential- daily maximum temperature is negatively correlated with malaria, while daily minimum temperature is positively correlated with malaria, confirming trends in the broader literature are applicable to the Ugandan context. Conclusions Although not necessarily causative, the findings provide sufficient evidence to warrant purposefully designed work to test for agriculture health causation in vector management. A key constraint to modeling the

  12. Partial mitochondrial DNA sequences suggest the existence of a cryptic species within the Leucosphyrus group of the genus Anopheles (Diptera: Culicidae), forest malaria vectors, in northern Vietnam.

    PubMed

    Takano, Kohei Takenaka; Nguyen, Ngoc Thi Hong; Nguyen, Binh Thi Huong; Sunahara, Toshihiko; Yasunami, Michio; Nguyen, Manh Duc; Takagi, Masahiro

    2010-04-30

    During the last decade, Southeast Asian countries have been very successful in reducing the burden of malaria. However, malaria remains endemic in these countries, especially in remote and forested areas. The Leucosphyrus group of the genus Anopheles harbors the most important malaria vectors in forested areas of Southeast Asia. In Vietnam, previous molecular studies have resulted in the identification of only Anopheles dirus sensu stricto (previously known as An. dirus species A) among the Leucosphyrus group members. However, Vietnamese entomologists have recognized that mosquitoes belonging to the Leucosphyrus group in northern Vietnam exhibit morphological characteristics similar to those of Anopheles takasagoensis, which has been reported only from Taiwan. Here, we aimed to confirm the genetic and morphological identities of the members of the Leucosphyrus group in Vietnam. In the molecular phylogenetic trees reconstructed using partial COI and ND6 mitochondrial gene sequences, samples collected from southern and central Vietnam clustered together with GenBank sequences of An. dirus that were obtained from Thailand. However, samples from northern Vietnam formed a distinct clade separated from both An. dirus and An. takasagoensis by other valid species. The results suggest the existence of a cryptic species in northern Vietnam that is morphologically similar to, but phylogenetically distant from both An. dirus and An. takasagoensis. We have tentatively designated this possible cryptic species as Anopheles aff. takasagoensis for convenience, until a valid name is assigned. However, it is difficult to distinguish the species solely on the basis of morphological characteristics. Further studies on such as karyotypes and polytene chromosome banding patterns are necessary to confirm whether An. aff. takasagoensis is a valid species. Moreover, studies on (1) the geographic distribution, which is potentially spreading along the Vietnam, China, Laos, and Myanmar borders

  13. Malaria Prevention by New Technology: Vectored Delivery of Antibody Genes

    DTIC Science & Technology

    2016-10-01

    US service personnel serving in Africa and elsewhere. No satisfactory malaria vaccine exists. Therefore, the long-term objective of the project...personnel serving in Africa and elsewhere. No satisfactory malaria vaccine exists. Therefore, the long-term objective of the project is to assess the promise

  14. The potential for fungal biopesticides to reduce malaria transmission under diverse environmental conditions.

    PubMed

    Heinig, R L; Paaijmans, Krijn P; Hancock, Penelope A; Thomas, Matthew B

    2015-12-01

    The effectiveness of conventional malaria vector control is being threatened by the spread of insecticide resistance. One promising alternative to chemicals is the use of naturally-occurring insect-killing fungi. Numerous laboratory studies have shown that isolates of fungal pathogens such as Beauveria bassiana can infect and kill adult mosquitoes, including those resistant to chemical insecticides.Unlike chemical insecticides, fungi may take up to a week or more to kill mosquitoes following exposure. This slow kill speed can still reduce malaria transmission because the malaria parasite itself takes at least eight days to complete its development within the mosquito. However, both fungal virulence and parasite development rate are strongly temperature-dependent, so it is possible that biopesticide efficacy could vary across different transmission environments.We examined the virulence of a candidate fungal isolate against two key malaria vectors at temperatures from 10-34 °C. Regardless of temperature, the fungus killed more than 90% of exposed mosquitoes within the predicted duration of the malarial extrinsic incubation period, a result that was robust to realistic diurnal temperature variation.We then incorporated temperature sensitivities of a suite of mosquito, parasite and fungus life-history traits that are important determinants of malaria transmission into a stage-structured malaria transmission model. The model predicted that, at achievable daily fungal infection rates, fungal biopesticides have the potential to deliver substantial reductions in the density of malaria-infectious mosquitoes across all temperatures representative of malaria transmission environments. Synthesis and applications . Our study combines empirical data and theoretical modelling to prospectively evaluate the potential of fungal biopesticides to control adult malaria vectors. Our results suggest that Beauveria bassiana could be a potent tool for malaria control and support further

  15. IDOMAL: an ontology for malaria.

    PubMed

    Topalis, Pantelis; Mitraka, Elvira; Bujila, Ioana; Deligianni, Elena; Dialynas, Emmanuel; Siden-Kiamos, Inga; Troye-Blomberg, Marita; Louis, Christos

    2010-08-10

    Ontologies are rapidly becoming a necessity for the design of efficient information technology tools, especially databases, because they permit the organization of stored data using logical rules and defined terms that are understood by both humans and machines. This has as consequence both an enhanced usage and interoperability of databases and related resources. It is hoped that IDOMAL, the ontology of malaria will prove a valuable instrument when implemented in both malaria research and control measures. The OBOEdit2 software was used for the construction of the ontology. IDOMAL is based on the Basic Formal Ontology (BFO) and follows the rules set by the OBO Foundry consortium. The first version of the malaria ontology covers both clinical and epidemiological aspects of the disease, as well as disease and vector biology. IDOMAL is meant to later become the nucleation site for a much larger ontology of vector borne diseases, which will itself be an extension of a large ontology of infectious diseases (IDO). The latter is currently being developed in the frame of a large international collaborative effort. IDOMAL, already freely available in its first version, will form part of a suite of ontologies that will be used to drive IT tools and databases specifically constructed to help control malaria and, later, other vector-borne diseases. This suite already consists of the ontology described here as well as the one on insecticide resistance that has been available for some time. Additional components are being developed and introduced into IDOMAL.

  16. Impacts of Climate Change on Malaria Transmission in Africa

    NASA Astrophysics Data System (ADS)

    Eltahir, E. A. B.; Endo, N.; Yamana, T. K.

    2017-12-01

    Malaria is a major vector-borne parasitic disease transmitted to humans by Anopheles spp mosquitoes. Africa is the hotspot for malaria transmission where more than 90% of malaria deaths occur every year. Malaria transmission is an intricate function of climatic factors, which non-linearly affect the development of vectors and parasites. We project that the risk of malaria will increase towards the end of the 21st century in east Africa, but decrease in west Africa. We combine a novel malaria transmission simulator, HYDREMATS, that has been developed based on comprehensive multi-year field surveys both in East Africa and West Africa, and the most reliable climate projections through regional dynamical downscaling and rigorous selection of GCMs from among CMIP5 models. We define a bell-shaped relation between malaria intensity and temperature, centered around a temperature of 30°C. Future risks of malaria are projected for two highly populated regions in Africa: the highlands in East Africa and the fringes of the desert in West Africa. In the highlands of East Africa, temperature is substantially colder than this optimal temperature; warmer future climate exacerbate malaria conditions. In the Sahel fringes in West Africa, temperature is around this optimal temperature; warming is not likely to exacerbate and might even reduce malaria burden. Unlike the highlands of East Africa, which receive significant amounts of annual rainfall, dry conditions also limit malaria transmission in the Sahel fringes in West Africa. This disproportionate risk of malaria due to climate change should guide strategies for climate adaptation over Africa.

  17. Efficacy of Aquatain, a Monomolecular Film, for the Control of Malaria Vectors in Rice Paddies

    PubMed Central

    Bukhari, Tullu; Takken, Willem; Githeko, Andrew K.; Koenraadt, Constantianus J. M.

    2011-01-01

    Background Rice paddies harbour a large variety of organisms including larvae of malaria mosquitoes. These paddies are challenging for mosquito control because their large size, slurry and vegetation make it difficult to effectively apply a control agent. Aquatain, a monomolecular surface film, can be considered a suitable mosquito control agent for such breeding habitats due to its physical properties. The properties allow Aquatain to self-spread over a water surface and affect multiple stages of the mosquito life cycle. Methodology/Principal Findings A trial based on a pre-test/post-test control group design evaluated the potential of Aquatain as a mosquito control agent at Ahero rice irrigation scheme in Kenya. After Aquatain application at a dose of 2 ml/m2 on rice paddies, early stage anopheline larvae were reduced by 36%, and late stage anopheline larvae by 16%. However, even at a lower dose of 1 ml/m2 there was a 93.2% reduction in emergence of anopheline adults and 69.5% reduction in emergence of culicine adults. No pupation was observed in treated buckets that were part of a field bio-assay carried out parallel to the trial. Aquatain application saved nearly 1.7 L of water in six days from a water surface of 0.2 m2 under field conditions. Aquatain had no negative effect on rice plants as well as on a variety of non-target organisms, except backswimmers. Conclusions/Significance We demonstrated that Aquatain is an effective agent for the control of anopheline and culicine mosquitoes in irrigated rice paddies. The agent reduced densities of aquatic larval stages and, more importantly, strongly impacted the emergence of adult mosquitoes. Aquatain also reduced water loss due to evaporation. No negative impacts were found on either abundance of non-target organisms, or growth and development of rice plants. Aquatain, therefore, appears a suitable mosquito control tool for use in rice agro-ecosystems. PMID:21738774

  18. Malaria vaccines: past, present and future.

    PubMed

    von Seidlein, Lorenz; Bejon, Philip

    2013-12-01

    The currently available malaria control tools have allowed malaria elimination in many regions but there remain many regions where malaria control has made little progress. A safe and protective malaria vaccine would be a huge asset for malaria control. Despite the many challenges, efforts continue to design and evaluate malaria vaccine candidates. These candidates target different stages in the life cycle of Plasmodia. The most advanced vaccine candidates target the pre-erythrocytic stages in the life cycle of the parasite and include RTS,S/AS01, which has progressed through clinical development to the stage that it may be licensed in 2015. Attenuated whole-parasite vaccine candidates are highly protective, but there are challenges to manufacture and to administration. Cellular immunity is targeted by the prime-boost approach. Priming vectors trigger only modest responses but these are focused on the recombinant antigen. Boosting vectors trigger strong but broad non-specific responses. The heterologous sequence produces strong immunological responses to the recombinant antigen. Candidates that target the blood stages of the parasite have to result in an immune response that is more effective than the response to an infection to abort or control the infection of merozoites and hence disease. Finally, the sexual stages of the parasite offer another target for vaccine development, which would prevent the transmission of malaria. Today it seems unlikely that any candidate targeting a single antigen will provide complete protection against an organism of the complexity of Plasmodium. A systematic search for vaccine targets and combinations of antigens may be a more promising approach.

  19. Initiating malaria control programs in the third world: directives for short- and long-term solutions.

    PubMed

    Basu, Sanjay

    2002-01-01

    Although malaria is a growing problem affecting several hundred million people each year, many malarial countries lack successful disease control programs. Worldwide malaria incidence rates are dramatically increasing, generating fear among many people who are witnessing malaria control initiatives fail. In this paper, we explore two options for malaria control in poor countries: (1) the production and distribution of a malaria vaccine and (2) the control of mosquitoes that harbor the malaria parasite. We first demonstrate that the development of a malaria vaccine is indeed likely, although it will take several years to produce because of both biological obstacles and insufficient research support. The distribution of such a vaccine, as suggested by some economists, will require that wealthy states promise a market to pharmaceutical companies who have traditionally failed to investigate diseases affecting the poorest of nations. But prior to the development of a malaria vaccine, we recommend the implementation of vector control pro- grams, such as those using Bti toxin, in regions with low vector capacity. Our analysis indicates that both endogenous programs in malarial regions and molecular approaches to parasite control will provide pragmatic solutions to the malaria problem. But the successful control of malaria will require sustained support from wealthy nations, without whom vaccine development and vector control programs will likely fail.

  20. Potential benefits of combining transfluthrin-treated sisal products and long-lasting insecticidal nets for controlling indoor-biting malaria vectors.

    PubMed

    Masalu, John P; Okumu, Fredros O; Mmbando, Arnold S; Sikulu-Lord, Maggy T; Ogoma, Sheila B

    2018-04-10

    Transfluthrin vapour prevents mosquito bites by disrupting their host-seeking behaviors. We measured the additional benefits of combining transfluthrin-treated sisal decorations and long-lasting insecticidal nets (LLINs) with an aim of extending protection against early evening, indoor-biting malaria vectors when LLINs are ineffective. We investigated the indoor protective efficacy of locally made sisal decorative baskets (0.28 m 2 ) treated with 2.5 ml and 5.0 ml transfluthrin, in terms of mosquito density, exposure to bites and 24 h mortality. Experiments were conducted in experimental huts, located in Lupiro village, Ulanga District, south-eastern Tanzania. Human landing catches (HLC) were used to measure exposure to bites between 19:00-23:00 h. Each morning, at 06:00 h, mosquitoes were collected inside huts and in exit traps and monitored for 24 h mortality. Sisal decorative baskets (0.28 m 2 ) treated with 2.5 ml and 5.0 ml transfluthrin deterred three-quarters of Anopheles arabiensis mosquitoes from entering huts (relative rate, RR = 0.26, 95% confidence interval, CI: 0.20-0.34, P < 0.001 and RR= 0.29, 95% CI: 0.22-0.37, P < 0.001, respectively). Both treatments induced a 10-fold increase in 24 h mortality of An. arabiensis mosquitoes (odds ratio, OR = 12.26, 95% CI: 7.70-19.51, P < 0.001 and OR = 18.42, 95% CI: 11.36-29.90, P < 0.001, respectively). Sisal decorative items treated with spatial repellents provide additional household and personal protection against indoor biting malaria and nuisance mosquitoes in the early evening, when conventional indoor vector control tools, such as LLINs, are not in use. We recommend future studies to investigate the epidemiological relevance of combining LLINs and transfluthrin decorated baskets in terms of their effect on reduction in malaria prevalence.

  1. Changing strategy in malaria control

    PubMed Central

    Pampana, E. J.

    1954-01-01

    Residual-insecticide spraying methods may lead to the eradication of malaria from a country or from an area of it, and therefore to the possibility that the spraying campaign may eventually be discontinued. This is the final target to be aimed at in planning national malaria-control campaigns. As it is now known that some anopheline vector species may develop resistance to insecticides, a plea is made that control programmes should be planned to cover such large areas and with such criteria of efficiency as to eradicate malaria and to enable the campaign to be discontinued before resistance may have developed. PMID:13209311

  2. Widespread Pyrethroid and DDT Resistance in the Major Malaria Vector Anopheles funestus in East Africa Is Driven by Metabolic Resistance Mechanisms

    PubMed Central

    Mulamba, Charles; Riveron, Jacob M.; Ibrahim, Sulaiman S.; Irving, Helen; Barnes, Kayla G.; Mukwaya, Louis G.; Birungi, Josephine; Wondji, Charles S.

    2014-01-01

    Background Establishing the extent, geographical distribution and mechanisms of insecticide resistance in malaria vectors is a prerequisite for resistance management. Here, we report a widespread distribution of insecticide resistance in the major malaria vector An. funestus across Uganda and western Kenya under the control of metabolic resistance mechanisms. Methodology/Principal Findings Female An. funestus collected throughout Uganda and western Kenya exhibited a Plasmodium infection rate between 4.2 to 10.4%. Widespread resistance against both type I (permethrin) and II (deltamethrin) pyrethroids and DDT was observed across Uganda and western Kenya. All populations remain highly susceptible to carbamate, organophosphate and dieldrin insecticides. Knockdown resistance plays no role in the pyrethroid and DDT resistance as no kdr mutation associated with resistance was detected despite the presence of a F1021C replacement. Additionally, no signature of selection was observed on the sodium channel gene. Synergist assays and qRT-PCR indicated that metabolic resistance plays a major role notably through elevated expression of cytochrome P450s. DDT resistance mechanisms differ from West Africa as the L119F-GSTe2 mutation only explains a small proportion of the genetic variance to DDT resistance. Conclusion The extensive distribution of pyrethroid and DDT resistance in East African An. funestus populations represents a challenge to the control of this vector. However, the observed carbamate and organophosphate susceptibility offers alternative solutions for resistance management. PMID:25333491

  3. Adult vector control, mosquito ecology and malaria transmission

    PubMed Central

    Brady, Oliver J.; Godfray, H. Charles J.; Tatem, Andrew J.; Gething, Peter W.; Cohen, Justin M.; McKenzie, F. Ellis; Alex Perkins, T.; Reiner, Robert C.; Tusting, Lucy S.; Scott, Thomas W.; Lindsay, Steven W.; Hay, Simon I.; Smith, David L.

    2015-01-01

    Background Standard advice regarding vector control is to prefer interventions that reduce the lifespan of adult mosquitoes. The basis for this advice is a decades-old sensitivity analysis of ‘vectorial capacity’, a concept relevant for most malaria transmission models and based solely on adult mosquito population dynamics. Recent advances in micro-simulation models offer an opportunity to expand the theory of vectorial capacity to include both adult and juvenile mosquito stages in the model. Methods In this study we revisit arguments about transmission and its sensitivity to mosquito bionomic parameters using an elasticity analysis of developed formulations of vectorial capacity. Results We show that reducing adult survival has effects on both adult and juvenile population size, which are significant for transmission and not accounted for in traditional formulations of vectorial capacity. The elasticity of these effects is dependent on various mosquito population parameters, which we explore. Overall, control is most sensitive to methods that affect adult mosquito mortality rates, followed by blood feeding frequency, human blood feeding habit, and lastly, to adult mosquito population density. Conclusions These results emphasise more strongly than ever the sensitivity of transmission to adult mosquito mortality, but also suggest the high potential of combinations of interventions including larval source management. This must be done with caution, however, as policy requires a more careful consideration of costs, operational difficulties and policy goals in relation to baseline transmission. PMID:25733562

  4. Adult vector control, mosquito ecology and malaria transmission.

    PubMed

    Brady, Oliver J; Godfray, H Charles J; Tatem, Andrew J; Gething, Peter W; Cohen, Justin M; McKenzie, F Ellis; Alex Perkins, T; Reiner, Robert C; Tusting, Lucy S; Scott, Thomas W; Lindsay, Steven W; Hay, Simon I; Smith, David L

    2015-03-01

    Standard advice regarding vector control is to prefer interventions that reduce the lifespan of adult mosquitoes. The basis for this advice is a decades-old sensitivity analysis of 'vectorial capacity', a concept relevant for most malaria transmission models and based solely on adult mosquito population dynamics. Recent advances in micro-simulation models offer an opportunity to expand the theory of vectorial capacity to include both adult and juvenile mosquito stages in the model. In this study we revisit arguments about transmission and its sensitivity to mosquito bionomic parameters using an elasticity analysis of developed formulations of vectorial capacity. We show that reducing adult survival has effects on both adult and juvenile population size, which are significant for transmission and not accounted for in traditional formulations of vectorial capacity. The elasticity of these effects is dependent on various mosquito population parameters, which we explore. Overall, control is most sensitive to methods that affect adult mosquito mortality rates, followed by blood feeding frequency, human blood feeding habit, and lastly, to adult mosquito population density. These results emphasise more strongly than ever the sensitivity of transmission to adult mosquito mortality, but also suggest the high potential of combinations of interventions including larval source management. This must be done with caution, however, as policy requires a more careful consideration of costs, operational difficulties and policy goals in relation to baseline transmission. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  5. Virulence of a malaria parasite, Plasmodium mexicanum, for its sand fly vectors, Lutzomyia vexator and Lutzomyia stewarti (Diptera: Psychodidae).

    PubMed

    Schall, Jos J

    2011-11-01

    Evolutionary theory predicts that virulence of parasites for mobile vector insects will be low for natural parasite-host associations that have coevolved. I determined virulence of the malaria parasite of lizards, Plasmodium mexicanum, for its vectors, two species of sand fly (Diptera: Psychodidae), Lutzomyia vexator (Coquillett 1907) and Lutzomyia stewarti (Mangabeira Fo & Galindo 1944), by measuring several life history traits. Developmental rate from egg to eclosion differed for the two species when noninfected. For both sand fly species, developmental rate for each stage (egg to larval hatching, larval period, pupal period) and life span were not altered by infection. Infected sand flies, however, produced fewer eggs. This reduction in fecundity may be a result of lower quality of the blood meal taken from infected lizards (lower concentration of hemoglobin). This report is the first measure of virulence of Plasmodium for an insect vector other than a mosquito and concords with both expectations of theory and previous studies on natural parasite-host associations that revealed low virulence.

  6. [Current malaria situation in Turkey].

    PubMed

    Gockchinar, T; Kalipsi, S

    2001-01-01

    Geographically, Turkey is situated in an area where malaria is very risky. The climatic conditions in the region are suitable for the malaria vector to proliferate. Due to agricultural infrastructural changes, GAP and other similar projects, insufficient environmental conditions, urbanization, national and international population moves, are a key to manage malaria control activities. It is estimated that malaria will be a potential danger for Turkey in the forthcoming years. The disease is located largely in south-eastern Anatolia. The Diyarbakir, Batman, Sanliurfa, Siirt, and Mardin districts are the most affected areas. In western districts, like Aydin and Manisa, an increase in the number of indigenous cases can be observed from time to time. This is due to workers moving from malaria districts to western parts to final work. Since these workers cannot be controlled, the population living in these regions get infected from indigenous cases. There were 84,345 malaria cases in 1994 and 82,096 in 1995, they decreased to 60,884 in 1996 and numbered 35,456 in 1997. They accounted for 36,842 and 20,963 in 1998 and 1999, respectively. In Turkey there are almost all cases of P. vivax malaria. There are also P. vivax and P. falciparum malaria cases coming from other countries: There were 321 P. vivax cases, including 2 P. falciparum ones, arriving to Turkey from Iraq in 1995. The P. vivax malaria cases accounted for 229 in 1996, and 67, cases P. vivax including 12 P. falciparum cases, in 1997, and 4 P. vivax cases in 1998 that came from that country. One P. vivax case entered Turkey from Georgia in 1998. The cause of higher incidence of P. vivax cases in 1995, it decreasing in 1999, is the lack of border controls over workers coming to Turkey. The other internationally imported cases are from Syria, Sudan, Pakistan, Afghanistan, Nigeria, India, Azerbaijan, Malaysia, Ghana, Indonesia, Yemen. Our examinations have shown that none of these internationally imported cases

  7. Re-imagining malaria: heterogeneity of human and mosquito behaviour in relation to residual malaria transmission in Cambodia.

    PubMed

    Gryseels, Charlotte; Durnez, Lies; Gerrets, René; Uk, Sambunny; Suon, Sokha; Set, Srun; Phoeuk, Pisen; Sluydts, Vincent; Heng, Somony; Sochantha, Tho; Coosemans, Marc; Peeters Grietens, Koen

    2015-04-24

    In certain regions in Southeast Asia, where malaria is reduced to forested regions populated by ethnic minorities dependent on slash-and-burn agriculture, malaria vector populations have developed a propensity to feed early and outdoors, limiting the effectiveness of long-lasting insecticide-treated nets (LLIN) and indoor residual spraying (IRS). The interplay between heterogeneous human, as well as mosquito behaviour, radically challenges malaria control in such residual transmission contexts. This study examines human behavioural patterns in relation to the vector behaviour. The anthropological research used a sequential mixed-methods study design in which quantitative survey research methods were used to complement findings from qualitative ethnographic research. The qualitative research existed of in-depth interviews and participant observation. For the entomological research, indoor and outdoor human landing collections were performed. All research was conducted in selected villages in Ratanakiri province, Cambodia. Variability in human behaviour resulted in variable exposure to outdoor and early biting vectors: (i) indigenous people were found to commute between farms in the forest, where malaria exposure is higher, and village homes; (ii) the indoor/outdoor biting distinction was less clear in forest housing often completely or partly open to the outside; (iii) reported sleeping times varied according to the context of economic activities, impacting on the proportion of infections that could be accounted for by early or nighttime biting; (iv) protection by LLINs may not be as high as self-reported survey data indicate, as observations showed around 40% (non-treated) market net use while (v) unprotected evening resting and deep forest activities impacted further on the suboptimal use of LLINs. The heterogeneity of human behaviour and the variation of vector densities and biting behaviours may lead to a considerable proportion of exposure occurring during

  8. Prospects for malaria elimination in non-Amazonian regions of Latin America

    PubMed Central

    Herrera, Sócrates; Quiñones, Martha Lucia; Quintero, Juan Pablo; Corredor, Vladimir; Fuller, Douglas O.; Mateus, Julio Cesar; Calzada, Jose E.; Gutierrez, Juan B.; Llanos, Alejandro; Soto, Edison; Menendez, Clara; Wu, Yimin; Alonso, Pedro; Carrasquilla, Gabriel; Galinski, Mary; Beier, John C.; Arevalo-Herrera, Myriam

    2011-01-01

    Latin America contributes 1 to 1.2 million clinical malaria cases to the global malaria burden of about 300 million per year. In 21 malaria endemic countries, the population at risk in this region represents less than 10% of the total population exposed worldwide. Factors such as rapid deforestation, inadequate agricultural practices, climate change, political instability, and both increasing parasite drug resistance and vector resistance to insecticides contribute to malaria transmission. Recently, several malaria endemic countries have experienced a significant reduction in numbers of malaria cases. This is most likely due to actions taken by National Malaria Control Programs (NMCP) with the support from international funding agencies. We describe here the research strategies and activities to be undertaken by the Centro Latino Americano de Investigación en Malaria (CLAIM), a new research center established for the non-Amazonian region of Latin America by the National Institute of Allergy and Infectious Diseases (NIAID). Throughout a network of countries in the region, initially including Colombia, Guatemala, Panama, and Peru, CLAIM will address major gaps in our understanding of changing malaria epidemiology, vector biology and control, and clinical malaria mainly due to Plasmodium vivax. In close partnership with NMCPs, CLAIM seeks to conduct research on how and why malaria is decreasing in many countries of the region as a basis for developing and implementing new strategies that will accelerate malaria elimination. PMID:21781953

  9. Predicting the potential distribution of main malaria vectors Anopheles stephensi, An. culicifacies s.l. and An. fluviatilis s.l. in Iran based on maximum entropy model.

    PubMed

    Pakdad, Kamran; Hanafi-Bojd, Ahmad Ali; Vatandoost, Hassan; Sedaghat, Mohammad Mehdi; Raeisi, Ahmad; Moghaddam, Abdolreza Salahi; Foroushani, Abbas Rahimi

    2017-05-01

    Malaria is considered as a major public health problem in southern areas of Iran. The goal of this study was to predict best ecological niches of three main malaria vectors of Iran: Anopheles stephensi, Anopheles culicifacies s.l. and Anopheles fluviatilis s.l. A databank was created which included all published data about Anopheles species of Iran from 1961 to 2015. The suitable environmental niches for the three above mentioned Anopheles species were predicted using maximum entropy model (MaxEnt). AUC (area under Roc curve) values were 0.943, 0.974 and 0.956 for An. stephensi, An. culicifacies s.l. and An. fluviatilis s.l respectively, which are considered as high potential power of model in the prediction of species niches. The biggest bioclimatic contributor for An. stephensi and An. fluviatilis s.l. was bio 15 (precipitation seasonality), 25.5% and 36.1% respectively, followed by bio 1 (annual mean temperature), 20.8% for An. stephensi and bio 4 (temperature seasonality) with 49.4% contribution for An. culicifacies s.l. This is the first step in the mapping of the country's malaria vectors. Hence, future weather situation can change the dispersal maps of Anopheles. Iran is under elimination phase of malaria, so that such spatio-temporal studies are essential and could provide guideline for decision makers for IVM strategies in problematic areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Ecological transition from natural forest to tea plantations: effect on the dynamics of malaria vectors in the highlands of Cameroon.

    PubMed

    Tanga, M C; Ngundu, W I

    2010-10-01

    From October 2002 to September 2003, an entomological survey was carried out in a rural forested fringed village in the highlands of Mount Cameroon region to determine the temporal dynamics of the anopheline population and the intensity of malaria transmission. A total of 2387 Anopheles spp. were collected, with A. funestus predominating (59.9%), followed by A. hancocki (24.4%) and A. gambiae s.l. (15.7%). Considerable differences were observed in the nocturnal biting cycles of parous mosquitoes, with peak activity in the latter part of the night. PCR revealed that all specimens of the A. funestus group were A. funestus s.s. and all specimens from the A. gambiae complex were A. gambiae s.s. of the S molecular form. Plasmodium falciparum sporozoite rates of 17.3% and 8.5% were recorded for A. funestus and A. hancocki, respectively, with an anthropophilic rate of 96.3%. A strong positive correlation (r=0.996) was found between the human-biting rate and the entomological inoculation rate (EIR). Malaria transmission was very high and perennial, with an estimated annual EIR of 460.1 infective bites per person per year. These results confirm that in high agricultural activity areas, A. funestus can be by far the major malaria vector responsible for malaria transmission. Copyright © 2010 Royal Society of Tropical Medicine and Hygiene.

  11. Preventing malaria in the Peruvian Amazon: a qualitative study in Iquitos, Peru.

    PubMed

    Newell, Ian; Wiskin, Connie; Anthoney, James; Meza, Graciela; de Wildt, Gilles

    2018-01-16

    In Peru, despite decades of concerted control efforts, malaria remains a significant public health burden. Peru has recently exhibited a dramatic rise in malaria incidence, impeding South America's progress towards malaria elimination. The Amazon basin, in particular the Loreto region of Peru, has been identified as a target for the implementation of intensified control strategies, aiming for elimination. No research has addressed why vector control strategies in Loreto have had limited impact in the past, despite vector control elsewhere being highly effective in reducing malaria transmission. This study employed qualitative methods to explore factors limiting the success of vector control strategies in the region. Twenty semi-structured interviews were conducted among adults attending a primary care centre in Iquitos, Peru, together with 3 interviews with key informants (health care professionals). The interviews focussed on how local knowledge, together with social and cultural attitudes, determined the use of vector control methods. Five themes emerged. (a) Participants believed malaria to be embedded within their culture, and commonly blamed this for a lack of regard for prevention. (b) They perceived a shift in mosquito biting times to early evening, rendering night-time use of bed nets less effective. (c) Poor preventive practices were compounded by a consensus that malaria prevention was the government's responsibility, and that this reduced motivation for personal prevention. (d) Participants confused the purpose of space-spraying. (e) Participants' responses also exposed persisting misconceptions, mainly concerning the cause of malaria and best practices for its prevention. To eliminate malaria from the Americas, region-specific strategies need to be developed that take into account the local social and cultural contexts. In Loreto, further research is needed to explore the potential shift in biting behaviour of Anopheles darlingi, and how this interacts

  12. Live attenuated pre-erythrocytic malaria vaccines.

    PubMed

    Keitany, Gladys J; Vignali, Marissa; Wang, Ruobing

    2014-01-01

    Although recent control measures have significantly reduced malaria cases and deaths in many endemic areas, an effective vaccine will be essential to eradicate this parasitic disease. Malaria vaccine strategies developed to date focus on different phases of the parasite's complex life cycle in the human host and mosquito vector, and include both subunit-based and whole-parasite vaccines. This review focuses on the 3 live-attenuated malaria vaccination strategies that have been tested in humans to date, and discusses their progress, challenges and the immune correlates of protection that have been identified.

  13. Nationwide Investigation of the Pyrethroid Susceptibility of Mosquito Larvae Collected from Used Tires in Vietnam

    PubMed Central

    Kawada, Hitoshi; Higa, Yukiko; Nguyen, Yen T.; Tran, Son H.; Nguyen, Hoa T.; Takagi, Masahiro

    2009-01-01

    Pyrethroid resistance is envisioned to be a major problem for the vector control program since, at present, there are no suitable chemical substitutes for pyrethroids. Cross-resistance to knockdown agents, which are mainly used in mosquito coils and related products as spatial repellents, is the most serious concern. Since cross-resistance is a global phenomenon, we have started to monitor the distribution of mosquito resistance to pyrethroids. The first pilot study was carried out in Vietnam. We periodically drove along the national road from the north end to the Mekong Delta in Vietnam and collected mosquito larvae from used tires. Simplified susceptibility tests were performed using the fourth instar larvae of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. Compared with the other species, Ae. aegypti demonstrated the most prominent reduction in susceptibility. For Ae. aegypti, significant increases in the susceptibility indices with a decrease in the latitude of collection points were observed, indicating that the susceptibility of Ae. aegypti against d-allethrin was lower in the southern part, including mountainous areas, as compared to that in the northern part of Vietnam. There was a significant correlation between the susceptibility indices in Ae. aegypti and the sum of annual pyrethroid use for malaria control (1998–2002). This might explain that the use of pyrethroids as residual treatment inside houses and pyrethroid-impregnated bed nets for malaria control is attributable to low pyrethroid susceptibility in Ae. aegypti. Such insecticide treatment appeared to have been intensively administered in the interior and along the periphery of human habitation areas where, incidentally, the breeding and resting sites of Ae. aegypti are located. This might account for the strong selection pressure toward Ae. aegypti and not Ae. albopictus. PMID:19274072

  14. Larvicidal Activity of Centaurea bruguierana ssp. belangerana Against Anopheles stephensi Larvae.

    PubMed

    Khanavi, Mahnaz; Rajabi, Afsaneh; Behzad, Masoud; Hadjiakhoondi, Abbas; Vatandoost, Hassan; Abaee, Mohammad Reza

    2011-01-01

    In this study, the total 80% of MeOH extract and also petroleum ether, CHCl3, EtOAc, n-BuOH, and the remaining MeOH fractions obtained by solvent-solvent fractionation of the whole flowering samples of Centaurea bruguierana (DC.) Hand.-Mzt. ssp. belangerana (DC.) Bornm. (Asteraceae), namely "Baad-Avard", collected from Borazjan in Bushehr Province (Bushehr, Iran) were investigated for larvicidal activity against malaria vector, Anopheles stephensi Liston, according to WHO methods. The mortality rate of total extract and petroleum ether fraction in concentration of 40 ppm were 28% and 86% respectively and the other fractions were inactive. The probit regression analysis for the dose-response to petroleum ether fraction treatment of larvae exhibited the LC50 and LC90 values of 15.7 ppm and 48.3 ppm, respectively. As results showed, the larvicidal activity of the petroleum ether fraction would be due to the nonpolar compounds in the plant which further isolation and purification would obtain the more active compounds in lower concentrations useful for preparation of biological insecticides.

  15. Larvicidal Activity of Centaurea bruguierana ssp. belangerana Against Anopheles stephensi Larvae

    PubMed Central

    Khanavi, Mahnaz; Rajabi, Afsaneh; Behzad, Masoud; Hadjiakhoondi, Abbas; Vatandoost, Hassan; Abaee, Mohammad Reza

    2011-01-01

    In this study, the total 80% of MeOH extract and also petroleum ether, CHCl3, EtOAc, n-BuOH, and the remaining MeOH fractions obtained by solvent-solvent fractionation of the whole flowering samples of Centaurea bruguierana (DC.) Hand.-Mzt. ssp. belangerana (DC.) Bornm. (Asteraceae), namely “Baad-Avard”, collected from Borazjan in Bushehr Province (Bushehr, Iran) were investigated for larvicidal activity against malaria vector, Anopheles stephensi Liston, according to WHO methods. The mortality rate of total extract and petroleum ether fraction in concentration of 40 ppm were 28% and 86% respectively and the other fractions were inactive. The probit regression analysis for the dose-response to petroleum ether fraction treatment of larvae exhibited the LC50 and LC90 values of 15.7 ppm and 48.3 ppm, respectively. As results showed, the larvicidal activity of the petroleum ether fraction would be due to the nonpolar compounds in the plant which further isolation and purification would obtain the more active compounds in lower concentrations useful for preparation of biological insecticides. PMID:24250419

  16. Mechanistic basis for morphological damage induced by essential oil from Brazilian pepper tree, Schinus terebinthifolia, on larvae of Stegomyia aegypti, the dengue vector.

    PubMed

    Pratti, Drielle L A; Ramos, Alessandro C; Scherer, Rodrigo; Cruz, Zilma M A; Silva, Ary G

    2015-03-01

    Dengue has become the subject of public health programs worldwide. The lack of a vaccine and the high environmental risk of synthetic insecticides, arouse the interest in natural products against this vector. This study aimed to determine the chemical composition of the essential oil of ripe fruits and seeds of Schinus terebinthifolia Raddi; to evaluate the essential oil effect on mortality of Stegomyia aegypti (Linnaeus, 1792) larvae; and to characterize the structural damage suffered by larvae and their association with different contents of essential oil. Ripe fruits and seeds were crunched and their essential oil was extracted through hydrodistillation, purified, and its phytochemical analysis was carried out through High Resolution Gas Chromatography, coupled with Mass Spectrometry. This essential oil was diluted in a 10-point gradient of 86.22 - 862.20 ppm, at regular intervals of 86.22 ppm. Each point received 50 larvae and the assessments of surviving were made at 24, 48 and 72 hours after inoculation. Structural damage was assessed through measurements of thickness with exoskeleton, evaluating the integrity of the head, thorax, abdominal segments, and air siphon, using ImageJ software. Statistical data analysis was carried out through Logistic Regression and Discriminant Analysis. 56 substances were identified, corresponding to 81.67% of the essential oil composition. Larvae were dose-dependent susceptible to the essential oil; the concentration produced a significant effect on larval mortality. Among the major deformations found in the larvae, it was detected inhibition of chitin synthesis by the activity of the oil, thus reducing the deposition of cuticle layers. The essential oil caused death in exposed larvae after 72 hours, in a dose-dependent manner. It also changed the structure of exposed larvae, indicating a direct effect on larval exoskeleton. The results open up possibilities for the use of natural products as an alternative to control dipterans.

  17. Predictive study on the risk of malaria spreading due to global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Masaji

    Global warming will bring about a temperature elevation, and the habitat of vectors of infectious diseases, such as malaria and dengue fever, will spread into subtropical or temperate zone. The purpose of this study is to simulate the spreading of these diseases through reexamination of existing data and collection of some additional information by field survey. From these data, the author will establish the relationship between meteorological conditions, vector density and malaria occurrence. And then he will simulate and predict the malaria epidemics in case of temperature elevation in southeast Asia and Japan.

  18. Inhibition of Malaria Infection in Transgenic Anopheline Mosquitoes Lacking Salivary Gland Cells

    PubMed Central

    Kasashima, Katsumi; Sezutsu, Hideki; Matsuoka, Hiroyuki

    2016-01-01

    Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control. PMID:27598328

  19. Variant Ionotropic Receptors in the Malaria Vector Mosquito Anopheles gambiae Tuned to Amines and Carboxylic Acids

    PubMed Central

    Pitts, R. Jason; Derryberry, Stephen L.; Zhang, Zhiwei; Zwiebel, Laurence J.

    2017-01-01

    The principal Afrotropical human malaria vector mosquito, Anopheles gambiae, remains a significant threat to global health. A critical component in the transmission of malaria is the ability of An. gambiae females to detect and respond to human-derived chemical kairomones in their search for blood meal hosts. The basis for host odor responses resides in olfactory receptor neurons (ORNs) that express chemoreceptors encoded by large gene families, including the odorant receptors (ORs) and the variant ionotropic receptors (IRs). While ORs have been the focus of extensive investigation, functional IR complexes and the chemical compounds that activate them have not been identified in An. gambiae. Here we report the transcriptional profiles and functional characterization of three An. gambiae IR (AgIr) complexes that specifically respond to amines or carboxylic acids - two classes of semiochemicals that have been implicated in mediating host-seeking by adult females but are not known to activate An. gambiae ORs (AgOrs). Our results suggest that AgIrs play critical roles in the detection and behavioral responses to important classes of host odors that are underrepresented in the AgOr chemical space. PMID:28067294

  20. Infection and reinfection of Culex pipiens fatigans with Wuchereria bancrofti and the loss of mature larvae in blood-feeding*

    PubMed Central

    de Meillon, Botha; Hayashi, Shigeyo; Sebastian, Anthony

    1967-01-01

    Although previous workers had found no evidence of resistance to superinfection in vectors of filariasis, it was considered desirable to reinvestigate the subject because of the epidemiological implications, since a mosquito that can incubate to maturity successive broods of filarial larvae will obviously be a more efficient vector than one that cannot. The results obtained indicate that a Culex pipiens fatigans mosquito that picks up an infection early in its life can, by taking subsequent infecting feeds, remain infective for the rest of its life. The movement of mature larvae in the vector and losses of larvae during feeding are of interest since from this information one can estimate the probable number of larvae deposited on the host at each feed and the period of infectivity of the vector. In the present experiment there were, on average, 6.1 larvae per infective mosquito before a second blood-meal; after the meal the figure was 3.6. Thus, 41% of the original infective larvae were lost; not all would be inoculated into the host, as some would die on the surface of his skin. The release of infective larvae through blood-feeding results from a combination of the passive pressure of the engorged blood in the abdomen and the active movement of the larva itself. PMID:5298677

  1. Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: a WHO-coordinated, prospective, international, observational cohort study.

    PubMed

    Kleinschmidt, Immo; Bradley, John; Knox, Tessa Bellamy; Mnzava, Abraham Peter; Kafy, Hmooda Toto; Mbogo, Charles; Ismail, Bashir Adam; Bigoga, Jude D; Adechoubou, Alioun; Raghavendra, Kamaraju; Cook, Jackie; Malik, Elfatih M; Nkuni, Zinga José; Macdonald, Michael; Bayoh, Nabie; Ochomo, Eric; Fondjo, Etienne; Awono-Ambene, Herman Parfait; Etang, Josiane; Akogbeto, Martin; Bhatt, Rajendra M; Chourasia, Mehul Kumar; Swain, Dipak K; Kinyari, Teresa; Subramaniam, Krishanthi; Massougbodji, Achille; Okê-Sopoh, Mariam; Ogouyemi-Hounto, Aurore; Kouambeng, Celestin; Abdin, Mujahid Sheikhedin; West, Philippa; Elmardi, Khalid; Cornelie, Sylvie; Corbel, Vincent; Valecha, Neena; Mathenge, Evan; Kamau, Luna; Lines, Jonathan; Donnelly, Martin James

    2018-04-09

    Scale-up of insecticide-based interventions has averted more than 500 million malaria cases since 2000. Increasing insecticide resistance could herald a rebound in disease and mortality. We aimed to investigate whether insecticide resistance was associated with loss of effectiveness of long-lasting insecticidal nets and increased malaria disease burden. This WHO-coordinated, prospective, observational cohort study was done at 279 clusters (villages or groups of villages in which phenotypic resistance was measurable) in Benin, Cameroon, India, Kenya, and Sudan. Pyrethroid long-lasting insecticidal nets were the principal form of malaria vector control in all study areas; in Sudan this approach was supplemented by indoor residual spraying. Cohorts of children from randomly selected households in each cluster were recruited and followed up by community health workers to measure incidence of clinical malaria and prevalence of infection. Mosquitoes were assessed for susceptibility to pyrethroids using the standard WHO bioassay test. Country-specific results were combined using meta-analysis. Between June 2, 2012, and Nov 4, 2016, 40 000 children were enrolled and assessed for clinical incidence during 1·4 million follow-up visits. 80 000 mosquitoes were assessed for insecticide resistance. Long-lasting insecticidal net users had lower infection prevalence (adjusted odds ratio [OR] 0·63, 95% CI 0·51-0·78) and disease incidence (adjusted rate ratio [RR] 0·62, 0·41-0·94) than did non-users across a range of resistance levels. We found no evidence of an association between insecticide resistance and infection prevalence (adjusted OR 0·86, 0·70-1·06) or incidence (adjusted RR 0·89, 0·72-1·10). Users of nets, although significantly better protected than non-users, were nevertheless subject to high malaria infection risk (ranging from an average incidence in net users of 0·023, [95% CI 0·016-0·033] per person-year in India, to 0·80 [0·65-0·97] per person

  2. Current status of Plasmodium knowlesi vectors: a public health concern?

    PubMed

    Vythilingam, I; Wong, M L; Wan-Yussof, W S

    2018-01-01

    Plasmodium knowlesi a simian malaria parasite is currently affecting humans in Southeast Asia. Malaysia has reported the most number of cases and P. knowlesi is the predominant species occurring in humans. The vectors of P. knowlesi belong to the Leucosphyrus group of Anopheles mosquitoes. These are generally described as forest-dwelling mosquitoes. With deforestation and changes in land-use, some species have become predominant in farms and villages. However, knowledge on the distribution of these vectors in the country is sparse. From a public health point of view it is important to know the vectors, so that risk factors towards knowlesi malaria can be identified and control measures instituted where possible. Here, we review what is known about the knowlesi malaria vectors and ascertain the gaps in knowledge, so that future studies could concentrate on this paucity of data in-order to address this zoonotic problem.

  3. Consolidating tactical planning and implementation frameworks for integrated vector management in Uganda.

    PubMed

    Okia, Michael; Okui, Peter; Lugemwa, Myers; Govere, John M; Katamba, Vincent; Rwakimari, John B; Mpeka, Betty; Chanda, Emmanuel

    2016-04-14

    Integrated vector management (IVM) is the recommended approach for controlling some vector-borne diseases (VBD). In the face of current challenges to disease vector control, IVM is vital to achieve national targets set for VBD control. Though global efforts, especially for combating malaria, now focus on elimination and eradication, IVM remains useful for Uganda which is principally still in the control phase of the malaria continuum. This paper outlines the processes undertaken to consolidate tactical planning and implementation frameworks for IVM in Uganda. The Uganda National Malaria Control Programme with its efforts to implement an IVM approach to vector control was the 'case' for this study. Integrated management of malaria vectors in Uganda remained an underdeveloped component of malaria control policy. In 2012, knowledge and perceptions of malaria vector control policy and IVM were assessed, and recommendations for a specific IVM policy were made. In 2014, a thorough vector control needs assessment (VCNA) was conducted according to WHO recommendations. The findings of the VCNA informed the development of the national IVM strategic guidelines. Information sources for this study included all available data and accessible archived documentary records on VBD control in Uganda. The literature was reviewed and adapted to the local context and translated into the consolidated tactical framework. WHO recommends implementation of IVM as the main strategy to vector control and has encouraged member states to adopt the approach. However, many VBD-endemic countries lack IVM policy frameworks to guide implementation of the approach. In Uganda most VBD coexists and could be managed more effectively if done in tandem. In order to successfully control malaria and other VBD and move towards their elimination, the country needs to scale up proven and effective vector control interventions and also learn from the experience of other countries. The IVM strategy is important in

  4. The Malaria Transition on the Arabian Peninsula: Progress toward a Malaria-Free Region between 1960–2010

    PubMed Central

    Snow, Robert W.; Amratia, Punam; Zamani, Ghasem; Mundia, Clara W.; Noor, Abdisalan M.; Memish, Ziad A.; Al Zahrani, Mohammad H.; Al Jasari, Adel; Fikri, Mahmoud; Atta, Hoda

    2014-01-01

    The transmission of malaria across the Arabian Peninsula is governed by the diversity of dominant vectors and extreme aridity. It is likely that where malaria transmission was historically possible it was intense and led to a high disease burden. Here, we review the speed of elimination, approaches taken, define the shrinking map of risk since 1960 and discuss the threats posed to a malaria-free Arabian Peninsula using the archive material, case data and published works. From as early as the 1940s, attempts were made to eliminate malaria on the peninsula but were met with varying degrees of success through to the 1970s; however, these did result in a shrinking of the margins of malaria transmission across the peninsula. Epidemics in the 1990s galvanised national malaria control programmes to reinvigorate control efforts. Before the launch of the recent global ambition for malaria eradication, countries on the Arabian Peninsula launched a collaborative malaria-free initiative in 2005. This initiative led a further shrinking of the malaria risk map and today locally acquired clinical cases of malaria are reported only in Saudi Arabia and Yemen, with the latter contributing to over 98% of the clinical burden. PMID:23548086

  5. Malaria vector composition and insecticide susceptibility status in Guinea Conakry, West Africa.

    PubMed

    Vezenegho, S B; Brooke, B D; Hunt, R H; Coetzee, M; Koekemoer, L L

    2009-12-01

    This study provides data on malaria vector species composition and insecticide susceptibility status from three localities in Guinea Conakry. A total of 497 mosquitoes were collected resting indoors and morphologically identified as belonging to the Anopheles gambiae complex. The majority of these were An. gambiae s.s. (99.6%), but a small percentage (0.4%) were identified as Anopheles arabiensis. Thirty-four Anopheles funestus s.s. were also collected. The molecular S form of An. gambiae s.s. was predominant over the M form in Siguiri (95%) and Boffa (97.4%), whereas at Mt Nimba the M form was more abundant (61.4%) than the S form (38.1%). One hybrid M/S specimen was recorded from Mt Nimba. Siguiri populations showed high levels of resistance to DDT, dieldrin and bendiocarb. Anopheles gambiae from Boffa were largely susceptible to the insecticides tested. At Mt Nimba, resistance to DDT and bendicocarb was detected. Biochemical enzyme analysis showed that an altered acetylcholinesterase is operating in the field at low levels. The frequency of the 1014F kdr allele in the An. gambiae S form was 0.24 at Siguiri and 0.14 at Mt Nimba. A single RR specimen was found in the M form. The heterogeneity in species composition and resistance profiles between sites requires vector control interventions to be tailored to each site based on the data collected from ongoing monitoring and surveillance.

  6. Early phase clinical trials with human immunodeficiency virus-1 and malaria vectored vaccines in The Gambia: frontline challenges in study design and implementation.

    PubMed

    Afolabi, Muhammed O; Adetifa, Jane U; Imoukhuede, Egeruan B; Viebig, Nicola K; Kampmann, Beate; Bojang, Kalifa

    2014-05-01

    Human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) and malaria are among the most important infectious diseases in developing countries. Existing control strategies are unlikely to curtail these diseases in the absence of efficacious vaccines. Testing of HIV and malaria vaccines candidates start with early phase trials that are increasingly being conducted in developing countries where the burden of the diseases is high. Unique challenges, which affect planning and implementation of vaccine trials according to internationally accepted standards have thus been identified. In this review, we highlight specific challenges encountered during two early phase trials of novel HIV-1 and malaria vectored vaccine candidates conducted in The Gambia and how some of these issues were pragmatically addressed. We hope our experience will be useful for key study personnel involved in day-to-day running of similar clinical trials. It may also guide future design and implementation of vaccine trials in resource-constrained settings.

  7. Impact of pyrethroid resistance on operational malaria control in Malawi

    PubMed Central

    Wondji, Charles S.; Coleman, Michael; Kleinschmidt, Immo; Mzilahowa, Themba; Irving, Helen; Ndula, Miranda; Rehman, Andrea; Morgan, John; Barnes, Kayla G.; Hemingway, Janet

    2012-01-01

    The impact of insecticide resistance on insect-borne disease programs is difficult to quantify. The possibility of eliminating malaria in high-transmission settings is heavily dependent on effective vector control reducing disease transmission rates. Pyrethroids are the dominant insecticides used for malaria control, with few options for their replacement. Their failure will adversely affect our ability to control malaria. Pyrethroid resistance has been selected in Malawi over the last 3 y in the two major malaria vectors Anopheles gambiae and Anopheles funestus, with a higher frequency of resistance in the latter. The resistance in An. funestus is metabolically based and involves the up-regulation of two duplicated P450s. The same genes confer resistance in Mozambican An. funestus, although the levels of up-regulation differ. The selection of resistance over 3 y has not increased malaria transmission, as judged by annual point prevalence surveys in 1- to 4-y-old children. This is true in areas with long-lasting insecticide-treated nets (LLINs) alone or LLINs plus pyrethroid-based insecticide residual spraying (IRS). However, in districts where IRS was scaled up, it did not produce the expected decrease in malaria prevalence. As resistance increases in frequency from this low initial level, there is the potential for vector population numbers to increase with a concomitant negative impact on control efficacy. This should be monitored carefully as part of the operational activities in country. PMID:23118337

  8. Nightly biting cycles of malaria vectors in a heterogeneous transmission area of eastern Amazonian Brazil

    PubMed Central

    2013-01-01

    Background The biting cycle of anopheline mosquitoes is an important component in the transmission of malaria. Inter- and intraspecific biting patterns of anophelines have been investigated using the number of mosquitoes caught over time to compare general tendencies in host-seeking activity and cumulative catch. In this study, all-night biting catch data from 32 consecutive months of collections in three riverine villages were used to compare biting cycles of the five most abundant vector species using common statistics to quantify variability and deviations of nightly catches from a normal distribution. Methods Three communities were selected for study. All-night human landing catches of mosquitoes were made each month in the peridomestic environment of four houses (sites) for nine consecutive days from April 2003 to November 2005. Host-seeking activities of the five most abundant species that were previously captured infected with Plasmodium falciparum, Plasmodium malariae or Plasmodium vivax, were analysed and compared by measuring the amount of variation in numbers biting per unit time (co-efficient of variation, V), the degree to which the numbers of individuals per unit time were asymmetrical (skewness = g1) and the relative peakedness or flatness of the distribution (kurtosis = g2). To analyse variation in V, g1, and g2 within species and villages, we used mixed model nested ANOVAs (PROC GLM in SAS) with independent variables (sources of variation): year, month (year), night (year X month) and collection site (year X month). Results The biting cycles of the most abundant species, Anopheles darlingi, had the least pronounced biting peaks, the lowest mean V values, and typically non-significant departures from normality in g1 and g2. By contrast, the species with the most sharply defined crepuscular biting peaks, Anopheles marajoara, Anopheles nuneztovari and Anopheles triannulatus, showed high to moderate mean V values and, most commonly, significantly

  9. Prospects for malaria elimination in non-Amazonian regions of Latin America.

    PubMed

    Herrera, Sócrates; Quiñones, Martha Lucia; Quintero, Juan Pablo; Corredor, Vladimir; Fuller, Douglas O; Mateus, Julio Cesar; Calzada, Jose E; Gutierrez, Juan B; Llanos, Alejandro; Soto, Edison; Menendez, Clara; Wu, Yimin; Alonso, Pedro; Carrasquilla, Gabriel; Galinski, Mary; Beier, John C; Arévalo-Herrera, Myriam

    2012-03-01

    Latin America contributes 1-1.2 million clinical malaria cases to the global malaria burden of about 300 million per year. In 21 malaria endemic countries, the population at risk in this region represents less than 10% of the total population exposed worldwide. Factors such as rapid deforestation, inadequate agricultural practices, climate change, political instability, and both increasing parasite drug resistance and vector resistance to insecticides contribute to malaria transmission. Recently, several malaria endemic countries have experienced a significant reduction in numbers of malaria cases. This is most likely due to actions taken by National Malaria Control Programs (NMCP) with the support from international funding agencies. We describe here the research strategies and activities to be undertaken by the Centro Latino Americano de Investigación en Malaria (CLAIM), a new research center established for the non-Amazonian region of Latin America by the National Institute of Allergy and Infectious Diseases (NIAID). Throughout a network of countries in the region, initially including Colombia, Guatemala, Panama, and Peru, CLAIM will address major gaps in our understanding of changing malaria epidemiology, vector biology and control, and clinical malaria mainly due to Plasmodium vivax. In close partnership with NMCPs, CLAIM seeks to conduct research on how and why malaria is decreasing in many countries of the region as a basis for developing and implementing new strategies that will accelerate malaria elimination. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Altered environment and risk of malaria outbreak in South Andaman, Andaman & Nicobar Islands, India affected by tsunami disaster

    PubMed Central

    Krishnamoorthy, Kaliannagoun; Jambulingam, Purushothaman; Natarajan, R; Shriram, AN; Das, Pradeep K; Sehgal, SC

    2005-01-01

    Background Pools of salt water and puddles created by giant waves from the sea due to the tsunami that occurred on 26th December 2004 would facilitate increased breeding of brackish water malaria vector, Anopheles sundaicus. Land uplifts in North Andaman and subsidence in South Andaman have been reported and subsidence may lead to environmental disturbances and vector proliferation. This warrants a situation analysis and vector surveillance in the tsunami hit areas endemic for malaria transmitted by brackish water mosquito, An. sundaicus to predict the risk of outbreak. Methods An extensive survey was carried out in the tsunami-affected areas in Andaman district of the Andaman and Nicobar Islands, India to assess the extent of breeding of malaria vectors in the habitats created by seawater flooding. Types of habitats in relation to source of seawater inundation and frequency were identified. The salinity of the water samples and the mosquito species present in the larval samples collected from these habitats were recorded. The malaria situation in the area was also analysed. Results South Andaman, covering Port Blair and Ferrargunj sub districts, is still under the recurring phenomenon of seawater intrusion either directly from the sea or through a network of creeks. Both daily cycles of high tides and periodical spring tides continue to cause flooding. Low-lying paddy fields and fallow land, with a salinity ranging from 3,000 to 42,505 ppm, were found to support profuse breeding of An. sundaicus, the local malaria vector, and Anopheles subpictus, a vector implicated elsewhere. This area is endemic for both vivax and falciparum malaria. Malaria slide positivity rate has started increasing during post-tsunami period, which can be considered as an indication of risk of malaria outbreak. Conclusion Paddy fields and fallow land with freshwater, hitherto not considered as potential sites for An. sundaicus, are now major breeding sites due to saline water. Consequently

  11. [Vectorial transmission of malaria in a village along the Niger River and its fishing hamlet (Kéniéroba and Fourda, Mali)].

    PubMed

    Keïta, M; Baber, I; Sogoba, N; Maïga, H M; Diallo, M'b; Doumbia, S; Traoré, S F

    2014-12-01

    A better understanding of malaria transmission dynamics is an essential element in the development of any targeted vector control strategy. The objective of this study was to better understand malaria transmission dynamics along the Niger River in Sudan savanna zone of Mali. Trough cross-sectional surveys, Anopheline larvae were collected by WHO standard dipping technique, and vector adults by Human Landing and pyrethrum spray catches methods. The vector population was composed of An. gambiae s.l. (> 99%) and An. funestus (< 1%). An. gambiae s.l. was composed of 96% and 98% of An. gambiae s.s. respectively in Kéniéroba and Fourda. An. gambiae s.s. was in majority composed of its molecular form M in both locations. The density of An. gambiae s.l was higher in the dry season in the immediate vicinity of the river (fishing hamlet Fourda) compared to farther inland Kéniéroba. The average infection rate of An. gambiae s.l. was 3.63% and 4.06% in Kéniéroba and Fourda respectively. The average entomological inoculation rate (EIR) during the study period was almost similar in Kéniéroba (0.70 infective bites/person/month) and Fourda (0.69 infective bites/person/month). The means EIRs over each of the rainy season 2006 and 2007 were always higher than the one of the dry season 2007 in both localities, with much smaller amplitude in Fourda than in Kéniéroba. However, the level of the transmission was 2.31 (0.37/0.16) times higher in Fourda than in Kéniéroba during the dry season.We conclude that in Sudan savanna zone of Mali, malaria transmission along the river is continuous throughout the year, but it is more intense in the immediate vicinity of the river during the dry season than during the rainy season in opposition to more distant localities to the river and vector control should not be focused only on the rainy in such setting.

  12. Characterization and expression analysis of gene encoding heme peroxidase HPX15 in major Indian malaria vector Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Kajla, Mithilesh; Kakani, Parik; Choudhury, Tania Pal; Gupta, Kuldeep; Gupta, Lalita; Kumar, Sanjeev

    2016-06-01

    The interaction of mosquito immune system with Plasmodium is critical in determining the vector competence. Thus, blocking the crucial mosquito molecules that regulate parasite development might be effective in controlling the disease transmission. In this study, we characterized a full-length AsHPX15 gene from the major Indian malaria vector Anopheles stephensi. This gene is true ortholog of Anopheles gambiae heme peroxidase AgHPX15 (AGAP013327), which modulates midgut immunity and regulates Plasmodium falciparum development. We found that AsHPX15 is highly induced in mosquito developmental stages and blood fed midguts. In addition, this is a lineage-specific gene that has identical features and 65-99% amino acids identity with other HPX15 genes present in eighteen worldwide-distributed anophelines. We discuss that the conserved HPX15 gene might serve as a common target to manipulate mosquito immunity and arresting Plasmodium development inside the vector host. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. nanos-Driven expression of piggyBac transposase induces mobilization of a synthetic autonomous transposon in the malaria vector mosquito, Anopheles stephensi.

    PubMed

    Macias, Vanessa M; Jimenez, Alyssa J; Burini-Kojin, Bianca; Pledger, David; Jasinskiene, Nijole; Phong, Celine Hien; Chu, Karen; Fazekas, Aniko; Martin, Kelcie; Marinotti, Osvaldo; James, Anthony A

    2017-08-01

    Transposons are a class of selfish DNA elements that can mobilize within a genome. If mobilization is accompanied by an increase in copy number (replicative transposition), the transposon may sweep through a population until it is fixed in all of its interbreeding members. This introgression has been proposed as the basis for drive systems to move genes with desirable phenotypes into target species. One such application would be to use them to move a gene conferring resistance to malaria parasites throughout a population of vector mosquitos. We assessed the feasibility of using the piggyBac transposon as a gene-drive mechanism to distribute anti-malarial transgenes in populations of the malaria vector, Anopheles stephensi. We designed synthetic gene constructs that express the piggyBac transposase in the female germline using the control DNA of the An. stephensi nanos orthologous gene linked to marker genes to monitor inheritance. Two remobilization events were observed with a frequency of one every 23 generations, a rate far below what would be useful to drive anti-pathogen transgenes into wild mosquito populations. We discuss the possibility of optimizing this system and the impetus to do so. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Challenges and prospects for malaria elimination in the Greater Mekong Subregion

    PubMed Central

    Cui, Liwang; Yan, Guiyun; Sattabongkot, Jetsumon; Chen, Bin; Cao, Yaming; Fan, Qi; Parker, Daniel; Sirichaisinthop, Jeeraphat; Su, Xin-zhuan; Yang, Henglin; Yang, Zhaoqing; Wang, Baomin; Zhou, Guofa

    2011-01-01

    Despite significant improvement in the malaria situation of the Greater Mekong Subregion (GMS), malaria control for the region continues to face a multitude of challenges. The extremely patchy malaria distribution, especially along international borders, makes disease surveillance and targeted control difficult. The vector systems are also diverse with dramatic differences in habitat ecology, biting behavior, and vectorial capacity, and there is a lack of effective transmission surveillance and control tools. Finally, in an era of heavy deployment of artemisinin-based combination therapies, the region acts as an epicenter of drug resistance, with the emergence of artemisinin resistant P. falciparum posing a threat to both regional and global malaria elimination campaigns. This problem is further exacerbated by the circulation of counterfeit and substandard artemisinin drugs. Accordingly, this Southeast Asian Malaria Research Center, consisting of a consortium of US and regional research institutions, has proposed four interlinked projects to address these most urgent problems in malaria control. The aims of these projects will help to substantially improve our understanding of malaria epidemiology, vector systems and their roles in malaria transmission, as well as the mechanisms of drug resistance in parasites. Through the training of next-generation scientists in malaria research, this program will help build up and strengthen regional research infrastructure and capacities, which are essential for sustained malaria control in this region. PMID:21515238

  15. Malaria in Highlands of Ecuador since 1900

    PubMed Central

    Hunter, Fiona F.

    2012-01-01

    A recent epidemic of malaria in the highlands of Bolivia and establishment of multiple Anopheles species mosquitoes in the highlands of Ecuador highlights the reemergence of malaria in the Andes Mountains in South America. Because malaria was endemic to many highland valleys at the beginning of the 20th century, this review outlines the 20th century history of malaria in the highlands of Ecuador, and focuses on its incidence (e.g., geographic distribution) and elimination from the northern highland valleys of Pichincha and Imbabura and the role of the Guayaquil to Quito railway in creating highland larval habitat and inadvertently promoting transportation of the vector and parasite. Involvement of control organizations in combating malaria in Ecuador is also outlined in a historical context. PMID:22469234

  16. Chromosomal localization of actin genes in the malaria mosquito Anopheles darlingi

    PubMed Central

    BRIDI, L. C.; SHARAKHOVA, M. V.; SHARAKHOV, I. V.; CORDEIRO, J.; AZEVEDO, G. M.; TADEI, W. P.; RAFAEL, M. S.

    2012-01-01

    Physical and genetic maps have been used for chromosomal localization of genes in vectors of infectious diseases. The availability of polytene chromosomes in malaria mosquitoes provides a unique opportunity to precisely map genes of interest. We report physical mapping of two actin genes on polytene chromosomes of the major malaria vector in Amazon Anopheles darlingi. The clones with the actin genes sequences were obtained from a cDNA library constructed from RNA isolated from adult females and males of An. darlingi. Each of the two clones was mapped to a unique site on the chromosomal arm 2L in subdivisions 21A (clone pl05-A04) and 23B (clone pl17-G06). The obtained results together with previous mapping data provide a suitable basis for comparative genomics and for establishing chromosomal homologies among major malaria vectors. PMID:22804344

  17. Establishment of the Ivermectin Research for Malaria Elimination Network: updating the research agenda.

    PubMed

    Chaccour, Carlos J; Rabinovich, N Regina; Slater, Hannah; Canavati, Sara E; Bousema, Teun; Lacerda, Marcus; Ter Kuile, Feiko; Drakeley, Chris; Bassat, Quique; Foy, Brian D; Kobylinski, Kevin

    2015-06-11

    The potential use of ivermectin as an additional vector control tool is receiving increased attention from the malaria elimination community, driven by the increased importance of outdoor/residual malaria transmission and the threat of insecticide resistance where vector tools have been scaled-up. This report summarizes the emerging evidence presented at a side meeting on "Ivermectin for malaria elimination: current status and future directions" at the annual meeting of the American Society of Tropical Medicine and Hygiene in New Orleans on November 4, 2014. One outcome was the creation of the "Ivermectin Research for Malaria Elimination Network" whose main goal is to establish a common research agenda to generate the evidence base on whether ivermectin-based strategies should be added to the emerging arsenal to interrupt malaria transmission.

  18. Combining fungal biopesticides and insecticide-treated bednets to enhance malaria control.

    PubMed

    Hancock, Penelope A

    2009-10-01

    In developing strategies to control malaria vectors, there is increased interest in biological methods that do not cause instant vector mortality, but have sublethal and lethal effects at different ages and stages in the mosquito life cycle. These techniques, particularly if integrated with other vector control interventions, may produce substantial reductions in malaria transmission due to the total effect of alterations to multiple life history parameters at relevant points in the life-cycle and transmission-cycle of the vector. To quantify this effect, an analytically tractable gonotrophic cycle model of mosquito-malaria interactions is developed that unites existing continuous and discrete feeding cycle approaches. As a case study, the combined use of fungal biopesticides and insecticide treated bednets (ITNs) is considered. Low values of the equilibrium EIR and human prevalence were obtained when fungal biopesticides and ITNs were combined, even for scenarios where each intervention acting alone had relatively little impact. The effect of the combined interventions on the equilibrium EIR was at least as strong as the multiplicative effect of both interventions. For scenarios representing difficult conditions for malaria control, due to high transmission intensity and widespread insecticide resistance, the effect of the combined interventions on the equilibrium EIR was greater than the multiplicative effect, as a result of synergistic interactions between the interventions. Fungal biopesticide application was found to be most effective when ITN coverage was high, producing significant reductions in equilibrium prevalence for low levels of biopesticide coverage. By incorporating biological mechanisms relevant to vectorial capacity, continuous-time vector population models can increase their applicability to integrated vector management.

  19. The economic burden of malaria.

    PubMed

    Gallup, J L; Sachs, J D

    2001-01-01

    Malaria and poverty are intimately connected. Controlling for factors such as tropical location, colonial history, and geographical isolation, countries with intensive malaria had income levels in 1995 of only 33% that of countries without malaria, whether or not the countries were in Africa. The high levels of malaria in poor countries are not mainly a consequence of poverty. Malaria is geographically specific. The ecological conditions that support the more efficient malaria mosquito vectors primarily determine the distribution and intensity of the disease. Intensive efforts to eliminate malaria in the most severely affected tropical countries have been largely ineffective. Countries that have eliminated malaria in the past half century have all been either subtropical or islands. These countries' economic growth in the 5 years after eliminating malaria has usually been substantially higher than growth in the neighboring countries. Cross-country regressions for the 1965-1990 period confirm the relationship between malaria and economic growth. Taking into account initial poverty, economic policy, tropical location, and life expectancy, among other factors, countries with intensive malaria grew 1.3% less per person per year, and a 10% reduction in malaria was associated with 0.3% higher growth. Controlling for many other tropical diseases does not change the correlation of malaria with economic growth, and these diseases are not themselves significantly negatively correlated with economic growth. A second independent measure of malaria has a slightly higher correlation with economic growth in the 1980-1996 period. We speculate about the mechanisms that could cause malaria to have such a large impact on the economy, such as foreign investment and economic networks within the country.

  20. Intra-instar larval cannibalism in Anopheles gambiae (s.s.) and Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Porretta, Daniele; Mastrantonio, Valentina; Crasta, Graziano; Bellini, Romeo; Comandatore, Francesco; Rossi, Paolo; Favia, Guido; Bandi, Claudio; Urbanelli, Sandra

    2016-11-02

    Cannibalism has been observed in a wide range of animal taxa and its importance in persistence and stability of populations has been documented. In anopheline malaria vectors the inter-instar cannibalism between fourth- and first-instar larvae (L4-L1) has been shown in several species, while intra-instar cannibalism remains poorly investigated. In this study we tested the occurrence of intra-instar cannibalism within larvae of second-, third- and fourth-instar (L2, L3 and L4) of Anopheles gambiae (s.s.) and An. stephensi. Experiments were set up under laboratory conditions and the effects of larval density, duration of the contact period among larvae and the presence of an older larva (i.e. a potential cannibal of bigger size) on cannibalism rate were analysed. Cannibalism was assessed by computing the number of missing larvae after 24 and 48 h from the beginning of the experiments and further documented by records with a GoPro videocamera. Intra-instar cannibalism was observed in all larval instars of both species with higher frequency in An. gambiae (s.s.) than in An. stephensi. In both species the total number of cannibalistic events increased from 0-24 to 0-48 h. The density affected the cannibalism rate, but its effect was related to the larval instar and to the presence of older larvae. Interestingly, the lower cannibalism rate between L4 larvae was observed at the highest density and the cannibalism rate between L3 larvae decreased when one L4 was added. The present study provides experimental evidence of intra-instar cannibalism in the malaria vectors An. gambiae (s.s.) and An. stephensi and highlights the possible occurrence of complex interactions between all larval instars potentially present in the breeding sites. We hypothesize that the high density and the presence of a potential cannibal of bigger size could affect the readiness to attack conspecifics, resulting into low risk larval behavior and lower cannibalism rate. The understanding of

  1. Landscape movements of Anopheles gambiae malaria vector mosquitoes in rural Gambia.

    PubMed

    Thomas, Christopher J; Cross, Dónall E; Bøgh, Claus

    2013-01-01

    For malaria control in Africa it is crucial to characterise the dispersal of its most efficient vector, Anopheles gambiae, in order to target interventions and assess their impact spatially. Our study is, we believe, the first to present a statistical model of dispersal probability against distance from breeding habitat to human settlements for this important disease vector. We undertook post-hoc analyses of mosquito catches made in The Gambia to derive statistical dispersal functions for An. gambiae sensu lato collected in 48 villages at varying distances to alluvial larval habitat along the River Gambia. The proportion dispersing declined exponentially with distance, and we estimated that 90% of movements were within 1.7 km. Although a 'heavy-tailed' distribution is considered biologically more plausible due to active dispersal by mosquitoes seeking blood meals, there was no statistical basis for choosing it over a negative exponential distribution. Using a simple random walk model with daily survival and movements previously recorded in Burkina Faso, we were able to reproduce the dispersal probabilities observed in The Gambia. Our results provide an important quantification of the probability of An. gambiae s.l. dispersal in a rural African setting typical of many parts of the continent. However, dispersal will be landscape specific and in order to generalise to other spatial configurations of habitat and hosts it will be necessary to produce tractable models of mosquito movements for operational use. We show that simple random walk models have potential. Consequently, there is a pressing need for new empirical studies of An. gambiae survival and movements in different settings to drive this development.

  2. Advances in genetics and genomics: use and limitations in achieving malaria elimination goals

    PubMed Central

    Gunawardena, Sharmini; Karunaweera, Nadira D.

    2015-01-01

    Success of the global research agenda towards eradication of malaria will depend on the development of new tools, including drugs, vaccines, insecticides and diagnostics. Genetic and genomic information now available for the malaria parasites, their mosquito vectors and human host, can be harnessed to both develop these tools and monitor their effectiveness. Here we review and provide specific examples of current technological advances and how these genetic and genomic tools have increased our knowledge of host, parasite and vector biology in relation to malaria elimination and in turn enhanced the potential to reach that goal. We then discuss limitations of these tools and future prospects for the successful achievement of global malaria elimination goals. PMID:25943157

  3. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics

    PubMed Central

    2011-01-01

    Background Intensive anti-malaria campaigns targeting the Anopheles population have demonstrated substantial reductions in adult mosquito density. Understanding the population dynamics of Anopheles mosquitoes throughout their whole lifecycle is important to assess the likely impact of vector control interventions alone and in combination as well as to aid the design of novel interventions. Methods An ecological model of Anopheles gambiae sensu lato populations incorporating a rainfall-dependent carrying capacity and density-dependent regulation of mosquito larvae in breeding sites is developed. The model is fitted to adult mosquito catch and rainfall data from 8 villages in the Garki District of Nigeria (the 'Garki Project') using Bayesian Markov Chain Monte Carlo methods and prior estimates of parameters derived from the literature. The model is used to compare the impact of vector control interventions directed against adult mosquito stages - long-lasting insecticide treated nets (LLIN), indoor residual spraying (IRS) - and directed against aquatic mosquito stages, alone and in combination on adult mosquito density. Results A model in which density-dependent regulation occurs in the larval stages via a linear association between larval density and larval death rates provided a good fit to seasonal adult mosquito catches. The effective mosquito reproduction number in the presence of density-dependent regulation is dependent on seasonal rainfall patterns and peaks at the start of the rainy season. In addition to killing adult mosquitoes during the extrinsic incubation period, LLINs and IRS also result in less eggs being oviposited in breeding sites leading to further reductions in adult mosquito density. Combining interventions such as the application of larvicidal or pupacidal agents that target the aquatic stages of the mosquito lifecycle with LLINs or IRS can lead to substantial reductions in adult mosquito density. Conclusions Density-dependent regulation of

  4. A malaria transmission-directed model of mosquito life cycle and ecology

    PubMed Central

    2011-01-01

    Background Malaria is a major public health issue in much of the world, and the mosquito vectors which drive transmission are key targets for interventions. Mathematical models for planning malaria eradication benefit from detailed representations of local mosquito populations, their natural dynamics and their response to campaign pressures. Methods A new model is presented for mosquito population dynamics, effects of weather, and impacts of multiple simultaneous interventions. This model is then embedded in a large-scale individual-based simulation and results for local elimination of malaria are discussed. Mosquito population behaviours, such as anthropophily and indoor feeding, are included to study their effect upon the efficacy of vector control-based elimination campaigns. Results Results for vector control tools, such as bed nets, indoor spraying, larval control and space spraying, both alone and in combination, are displayed for a single-location simulation with vector species and seasonality characteristic of central Tanzania, varying baseline transmission intensity and vector bionomics. The sensitivities to habitat type, anthropophily, indoor feeding, and baseline transmission intensity are explored. Conclusions The ability to model a spectrum of local vector species with different ecologies and behaviours allows local customization of packages of interventions and exploration of the effect of proposed new tools. PMID:21999664

  5. Malaria early warning tool: linking inter-annual climate and malaria variability in northern Guadalcanal, Solomon Islands.

    PubMed

    Smith, Jason; Tahani, Lloyd; Bobogare, Albino; Bugoro, Hugo; Otto, Francis; Fafale, George; Hiriasa, David; Kazazic, Adna; Beard, Grant; Amjadali, Amanda; Jeanne, Isabelle

    2017-11-21

    Malaria control remains a significant challenge in the Solomon Islands. Despite progress made by local malaria control agencies over the past decade, case rates remain high in some areas of the country. Studies from around the world have confirmed important links between climate and malaria transmission. This study focuses on understanding the links between malaria and climate in Guadalcanal, Solomon Islands, with a view towards developing a climate-based monitoring and early warning for periods of enhanced malaria transmission. Climate records were sourced from the Solomon Islands meteorological service (SIMS) and historical malaria case records were sourced from the National Vector-Borne Disease Control Programme (NVBDCP). A declining trend in malaria cases over the last decade associated with improved malaria control was adjusted for. A stepwise regression was performed between climate variables and climate-associated malaria transmission (CMT) at different lag intervals to determine where significant relationships existed. The suitability of these results for use in a three-tiered categorical warning system was then assessed using a Mann-Whitney U test. Of the climate variables considered, only rainfall had a consistently significant relationship with malaria in North Guadalcanal. Optimal lag intervals were determined for prediction using R 2 skill scores. A highly significant negative correlation (R = - 0.86, R 2  = 0.74, p < 0.05, n = 14) was found between October and December rainfall at Honiara and CMT in northern Guadalcanal for the subsequent January-June. This indicates that drier October-December periods are followed by higher malaria transmission periods in January-June. Cross-validation emphasized the suitability of this relationship for forecasting purposes [Formula: see text]  as did Mann-Whitney U test results showing that rainfall below or above specific thresholds was significantly associated with above or below normal malaria

  6. Prospects for the use of larvivorous fish for malaria control in Ethiopia: search for indigenous species and evaluation of their feeding capacity for mosquito larvae.

    PubMed

    Fletcher, M; Teklehaimanot, A; Yemane, G; Kassahun, A; Kidane, G; Beyene, Y

    1993-02-01

    Because of problems with drug and insecticide resistance, the National Organization for the Control of Malaria and other Vectorborne Diseases, Ethiopia, has embarked on a programme of research on alternative malaria control methods, including the use of biological control agents, such as larvivorous fish. The objectives of the study were to identify indigenous larvivorous fish species which could be potential candidates for use as biological control agents; to extend knowledge of their distribution in Ethiopia; and to conduct laboratory tests to determine their feeding capacity. An extensive search resulted in the identification of 11 larvivorous fish species indigenous to Ethiopia, including five species previously unrecorded in the country. Seven species were assessed under standard laboratory conditions for their feeding capacity on larvae of Anopheles gambiae s.l. and Culex andersoni. All species tested were efficient larvivores in the laboratory. However, their larvivorous capacity should be tested further in field trials. Based on the findings of this study, two priority areas for the assessment of biological control using larvivorous fish were identified, the port city of Assab, using the local species Aphanius dispar, and the Ogaden, south-eastern Ethiopia, using the local species Oreochromis spilurus spilurus.

  7. A weather-driven model of malaria transmission.

    PubMed

    Hoshen, Moshe B; Morse, Andrew P

    2004-09-06

    Climate is a major driving force behind malaria transmission and climate data are often used to account for the spatial, seasonal and interannual variation in malaria transmission. This paper describes a mathematical-biological model of the parasite dynamics, comprising both the weather-dependent within-vector stages and the weather-independent within-host stages. Numerical evaluations of the model in both time and space show that it qualitatively reconstructs the prevalence of infection. A process-based modelling structure has been developed that may be suitable for the simulation of malaria forecasts based on seasonal weather forecasts.

  8. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis.

    PubMed

    Sinka, Marianne E; Bangs, Michael J; Manguin, Sylvie; Chareonviriyaphap, Theeraphap; Patil, Anand P; Temperley, William H; Gething, Peter W; Elyazar, Iqbal R F; Kabaria, Caroline W; Harbach, Ralph E; Hay, Simon I

    2011-05-25

    The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed. Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented. This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and

  9. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis

    PubMed Central

    2011-01-01

    Background The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed. Results Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented. Conclusions This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the

  10. Malaria transmission blocking immunity and sexual stage vaccines for interrupting malaria transmission in Latin America

    PubMed Central

    Arévalo-Herrera, Myriam; Solarte, Yezid; Marin, Catherin; Santos, Mariana; Castellanos, Jenniffer; Beier, John C; Valencia, Sócrates Herrera

    2016-01-01

    Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB) immunity (TBI) and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV), would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America. PMID:21881775

  11. Malaria ecology and climate change

    NASA Astrophysics Data System (ADS)

    McCord, G. C.

    2016-05-01

    Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.

  12. A model for the coevolution of immunity and immune evasion in vector-borne diseases with implications for the epidemiology of malaria.

    PubMed

    Koella, Jacob C; Boëte, C

    2003-05-01

    We describe a model of host-parasite coevolution, where the interaction depends on the investments by the host in its immune response and by the parasite in its ability to suppress (or evade) its host's immune response. We base our model on the interaction between malaria parasites and their mosquito hosts and thus describe the epidemiological dynamics with the Macdonald-Ross equation of malaria epidemiology. The qualitative predictions of the model are most sensitive to the cost of the immune response and to the intensity of transmission. If transmission is weak or the cost of immunity is low, the system evolves to a coevolutionarily stable equilibrium at intermediate levels of investment (and, generally, at a low frequency of resistance). At a higher cost of immunity and as transmission intensifies, the system is not evolutionarily stable but rather cycles around intermediate levels of investment. At more intense transmission, neither host nor parasite invests any resources in dominating its partner so that no resistance is observed in the population. These results may help to explain the lack of encapsulated malaria parasites generally observed in natural populations of mosquito vectors, despite strong selection pressure for resistance in areas of very intense transmission.

  13. Malaria entomological profile in Tanzania from 1950 to 2010: a review of mosquito distribution, vectorial capacity and insecticide resistance.

    PubMed

    Kabula, Bilali; Derua, Yahya A; Tungui, Patrick; Massue, Dennis J; Sambu, Edward; Stanley, Grades; Mosha, Franklin W; Kisinza, William N

    2011-12-01

    In Sub Saharan Africa where most of the malaria cases and deaths occur, members of the Anopheles gambiae species complex and Anophelesfunestus species group are the important malaria vectors. Control efforts against these vectors in Tanzania like in most other Sub Saharan countries have failed to achieve the set objectives of eliminating transmission due to scarcity of information about the enormous diversity of Anopheles mosquito species and their susceptibility status to insecticides used for malaria vector control. Understanding the diversity and insecticide susceptibility status of these vectors and other factors relating to their importance as vectors (such as malaria transmission dynamics, vector biology, ecology, behaviour and population genetics) is crucial to developing a better and sound intervention strategies that will reduce man-vector contact and also manage the emergency of insecticide resistance early and hence .a success in malaria control. The objective of this review was therefore to obtain the information from published and unpublished documents on spatial distribution and composition of malaria vectors, key features of their behaviour, transmission indices and susceptibility status to insecticides in Tanzania. All data available were collated into a database. Details recorded for each data source were the locality, latitude/longitude, time/period of study, species, abundance, sampling/collection methods, species identification methods, insecticide resistance status, including evidence of the kdr allele, and Plasmodium falciparum sporozoite rate. This collation resulted in a total of 368 publications, encompassing 806,273 Anopheles mosquitoes from 157 georeferenced locations being collected and identified across Tanzania from 1950s to 2010. Overall, the vector species most often reported included An. gambiae complex (66.8%), An. funestus complex (21.8%), An. gambiae s.s. (2.1%) and An. arabiensis (9%). A variety of sampling/ collection and

  14. Field evaluation of ZeroFly--an insecticide incorporated plastic sheeting against malaria vectors & its impact on malaria transmission in tribal area of northern Orissa.

    PubMed

    Sharma, S K; Upadhyay, A K; Haque, M A; Tyagi, P K; Mohanty, S S; Mittal, P K; Dash, A P

    2009-10-01

    Insecticide incorporated plastic sheeting is a new technology to control mosquitoes in emergency shelter places and also temporary habitations in different locations. Therefore, field studies were conducted to assess the efficacy of ZeroFly plastic sheeting treated with deltamethrin on prevailing disease vectors Anopheles culicifacies and An. fluviatilis and its impact on malaria transmission in one of the highly endemic areas of Orissa. The study was conducted in Birkera block of Sundargarh district, Orissa state. The study area comprised 3 villages, which were randomized as ZeroFly plastic sheet, untreated plastic sheet and no sheet area. ZeroFly plastic sheets and untreated plastic sheets were fixed in study and control villages respectively covering all the rooms in each household. Longitudinal studies were conducted on the bioefficacy with the help of cone bioassays, monitoring of the mosquito density through hand catch, floor sheet and exit trap collections and fortnightly domiciliary active surveillance in all the study villages. In ZeroFly plastic sheeting area, there was a significant reduction of 84.7 per cent in the entry rate of total mosquitoes in comparison to pre-intervention phase. There was 56.2 per cent immediate mortality in total mosquitoes in houses with ZeroFly sheeting. The overall feeding success rate of mosquitoes in the trial village was only 12.5 per cent in comparison to 49.7 and 51.1 per cent in villages with untreated plastic sheet and no sheet respectively. There was a significant reduction of 65.0 and 70.5 per cent in malaria incidence in ZeroFly plastic sheeting area as compared to untreated plastic sheet and no sheet area respectively. Our study showed that introduction of ZeroFly plastic sheets in a community-based intervention programme is operationally feasible to contain malaria especially in the high transmission difficult areas.

  15. Mosquito larval source management for controlling malaria

    PubMed Central

    Tusting, Lucy S; Thwing, Julie; Sinclair, David; Fillinger, Ulrike; Gimnig, John; Bonner, Kimberly E; Bottomley, Christian; Lindsay, Steven W

    2015-01-01

    Background Malaria is an important cause of illness and death in people living in many parts of the world, especially sub-Saharan Africa. Long-lasting insecticide treated bed nets (LLINs) and indoor residual spraying (IRS) reduce malaria transmission by targeting the adult mosquito vector and are key components of malaria control programmes. However, mosquito numbers may also be reduced by larval source management (LSM), which targets mosquito larvae as they mature in aquatic habitats. This is conducted by permanently or temporarily reducing the availability of larval habitats (habitat modification and habitat manipulation), or by adding substances to standing water that either kill or inhibit the development of larvae (larviciding). Objectives To evaluate the effectiveness of mosquito LSM for preventing malaria. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; CABS Abstracts; and LILACS up to 24 October 2012. We handsearched the Tropical Diseases Bulletin from 1900 to 2010, the archives of the World Health Organization (up to 11 February 2011), and the literature database of the Armed Forces Pest Management Board (up to 2 March 2011). We also contacted colleagues in the field for relevant articles. Selection criteria We included cluster randomized controlled trials (cluster-RCTs), controlled before-and-after trials with at least one year of baseline data, and randomized cross-over trials that compared LSM with no LSM for malaria control. We excluded trials that evaluated biological control of anopheline mosquitoes with larvivorous fish. Data collection and analysis At least two authors assessed each trial for eligibility. We extracted data and at least two authors independently determined the risk of bias in the included studies. We resolved all disagreements through discussion with a third author. We analyzed the data using Review Manager 5 software

  16. Changes in the geographical distribution of malaria throughout history.

    PubMed

    de Zulueta, J

    1987-01-01

    Climatic changes must have greatly affected the distribution of malaria in prehistoric times. Paleobotanical evidence, snowline depression studies and information obtained from deep sea sediment cores, indicate that southern Europe must have suffered a drop of summer temperatures of approximately 9 degrees C during the last glacial maximum, 18,000 years ago. Such a drop would have been decisive as regards the distribution of malaria and its vectors. If present at all, the disease would have been confined to the southernmost parts of the continent but P. falciparum and today's most effective vectors--A. labranchiae and A. sacharovi--would have been excluded from Europe. In western Asia, summer temperatures 6 degrees C lower than those of today would have had less effect on the malaria situation. The introduction of falciparum malaria in southern Europe is placed in Hellenistic and Early Imperial Roman times, based on paleoclimatological evidence and historical and medical data. In America P. falciparum is also considered a late entrant but vivax and quartan malaria may have been introduced in pre-Columbian times. In the Pacific, the disease is known to have been spread by man since the Age of Discovery until contemporary times.

  17. Non-Genetic Determinants of Mosquito Competence for Malaria Parasites

    PubMed Central

    Lefèvre, Thierry; Vantaux, Amélie; Dabiré, Kounbobr R.; Mouline, Karine; Cohuet, Anna

    2013-01-01

    Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies. PMID:23818841

  18. Malaria in Europe: emerging threat or minor nuisance?

    PubMed

    Piperaki, E T; Daikos, G L

    2016-06-01

    Malaria was eradicated from Europe in the 1970s through a combination of insecticide spraying, drug therapy and environmental engineering. Since then, it has been mostly imported into the continent by international travellers and immigrants from endemic regions. Despite the substantial number of imported malaria cases and the documented presence of suitable anopheline vectors, autochthonous transmission has not been widely observed in Europe, probably as a result of early diagnosis and treatment, afforded by efficient healthcare systems. Current climatic conditions are conducive to malaria transmission in several areas of Southern Europe, and climate change might favour mosquito proliferation and parasite development, further facilitating malaria transmission. Moreover, the continuing massive influx of refugee and migrant populations from endemic areas could contribute to building up of an infectious parasite reservoir. Although the malariogenic potential of Europe is currently low, particularly in the northern and western parts of the continent, strengthening of disease awareness and maintaining robust public health infrastructures for surveillance and vector control are of the utmost importance and should be technically and financially supported to avert the possibility of malaria transmission in Europe's most vulnerable areas. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  19. Choosing a Drug to Prevent Malaria

    MedlinePlus

    ... Insecticide-Treated Nets (ITNs) Intermittent Preventive Treatment of Malaria in Pregnanct Women (IPTp) Indoor Residual Spraying (IRS) Vector Control Antimalarials to Reduce Transmission Vaccines Microscopy Rapid Diagnostic Tests Drug Resistance Counterfeit and ...

  20. Policy development in malaria vector management in Mozambique, South Africa and Zimbabwe

    PubMed Central

    Cliff, Julie; Lewin, Simon; Woelk, Godfrey; Fernandes, Benedita; Mariano, Alda; Sevene, Esperança; Daniels, Karen; Matinhure, Sheillah; Oxman, Andrew; Lavis, John

    2010-01-01

    Introduction Indoor residual spraying (IRS) and insecticide-treated nets (ITNs), two principal malaria control strategies, are similar in cost and efficacy. We aimed to describe recent policy development regarding their use in Mozambique, South Africa and Zimbabwe. Methods Using a qualitative case study methodology, we undertook semi-structured interviews of key informants from May 2004 to March 2005, carried out document reviews and developed timelines of key events. We used an analytical framework that distinguished three broad categories: interests, ideas and events. Results A disparate mix of interests and ideas slowed the uptake of ITNs in Mozambique and Zimbabwe and prevented uptake in South Africa. Most respondents strongly favoured one strategy over the other. In all three countries, national policy makers favoured IRS, and only in Mozambique did national researchers support ITNs. Outside interests in favour of IRS included manufacturers who supplied the insecticides and groups opposing environmental regulation. International research networks, multilateral organizations, bilateral donors and international NGOs supported ITNs. Research evidence, local conditions, logistic feasibility, past experience, reaction to outside ideas, community acceptability, the role of government and NGOs, and harm from insecticides used in spraying influenced the choice of strategy. The end of apartheid permitted a strongly pro-IRS South Africa to influence the region, and in Mozambique and Zimbabwe, floods provided conditions conducive to ITN distribution. Conclusions Both IRS and ITNs have a place in integrated malaria vector management, but pro-IRS interests and ideas slowed or prevented the uptake of ITNs. Policy makers needed more than evidence from trials to change from the time-honoured IRS strategy that they perceived was working. Those intending to promote new policies such as ITNs should examine the interests and ideas motivating key stakeholders and their own

  1. Evaluation of the efficacy of ChAd63-MVA vectored vaccines expressing circumsporozoite protein and ME-TRAP against controlled human malaria infection in malaria-naive individuals.

    PubMed

    Hodgson, Susanne H; Ewer, Katie J; Bliss, Carly M; Edwards, Nick J; Rampling, Thomas; Anagnostou, Nicholas A; de Barra, Eoghan; Havelock, Tom; Bowyer, Georgina; Poulton, Ian D; de Cassan, Simone; Longley, Rhea; Illingworth, Joseph J; Douglas, Alexander D; Mange, Pooja B; Collins, Katharine A; Roberts, Rachel; Gerry, Stephen; Berrie, Eleanor; Moyle, Sarah; Colloca, Stefano; Cortese, Riccardo; Sinden, Robert E; Gilbert, Sarah C; Bejon, Philip; Lawrie, Alison M; Nicosia, Alfredo; Faust, Saul N; Hill, Adrian V S

    2015-04-01

    Circumsporozoite protein (CS) is the antigenic target for RTS,S, the most advanced malaria vaccine to date. Heterologous prime-boost with the viral vectors simian adenovirus 63 (ChAd63)-modified vaccinia virus Ankara (MVA) is the most potent inducer of T-cells in humans, demonstrating significant efficacy when expressing the preerythrocytic antigen insert multiple epitope-thrombospondin-related adhesion protein (ME-TRAP). We hypothesized that ChAd63-MVA containing CS may result in a significant clinical protective efficacy. We conducted an open-label, 2-site, partially randomized Plasmodium falciparum sporozoite controlled human malaria infection (CHMI) study to compare the clinical efficacy of ChAd63-MVA CS with ChAd63-MVA ME-TRAP. One of 15 vaccinees (7%) receiving ChAd63-MVA CS and 2 of 15 (13%) receiving ChAd63-MVA ME-TRAP achieved sterile protection after CHMI. Three of 15 vaccinees (20%) receiving ChAd63-MVA CS and 5 of 15 (33%) receiving ChAd63-MVA ME-TRAP demonstrated a delay in time to treatment, compared with unvaccinated controls. In quantitative polymerase chain reaction analyses, ChAd63-MVA CS was estimated to reduce the liver parasite burden by 69%-79%, compared with 79%-84% for ChAd63-MVA ME-TRAP. ChAd63-MVA CS does reduce the liver parasite burden, but ChAd63-MVA ME-TRAP remains the most promising antigenic insert for a vectored liver-stage vaccine. Detailed analyses of parasite kinetics may allow detection of smaller but biologically important differences in vaccine efficacy that can influence future vaccine development. NCT01623557. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  2. Malaria resurgence: a systematic review and assessment of its causes

    PubMed Central

    2012-01-01

    Background Considerable declines in malaria have accompanied increased funding for control since the year 2000, but historical failures to maintain gains against the disease underscore the fragility of these successes. Although malaria transmission can be suppressed by effective control measures, in the absence of active intervention malaria will return to an intrinsic equilibrium determined by factors related to ecology, efficiency of mosquito vectors, and socioeconomic characteristics. Understanding where and why resurgence has occurred historically can help current and future malaria control programmes avoid the mistakes of the past. Methods A systematic review of the literature was conducted to identify historical malaria resurgence events. All suggested causes of these events were categorized according to whether they were related to weakened malaria control programmes, increased potential for malaria transmission, or technical obstacles like resistance. Results The review identified 75 resurgence events in 61 countries, occurring from the 1930s through the 2000s. Almost all resurgence events (68/75 = 91%) were attributed at least in part to the weakening of malaria control programmes for a variety of reasons, of which resource constraints were the most common (39/68 = 57%). Over half of the events (44/75 = 59%) were attributed in part to increases in the intrinsic potential for malaria transmission, while only 24/75 (32%) were attributed to vector or drug resistance. Conclusions Given that most malaria resurgences have been linked to weakening of control programmes, there is an urgent need to develop practical solutions to the financial and operational threats to effectively sustaining today’s successful malaria control programmes. PMID:22531245

  3. Progress towards malaria elimination in Sabang Municipality, Aceh, Indonesia

    PubMed Central

    2013-01-01

    Background Indonesia has set 2030 as its deadline for elimination of malaria transmission in the archipelago, with regional deadlines established according to present levels of malaria endemicity and strength of health infrastructure. The Municipality of Sabang which historically had one of the highest levels of malaria in Aceh province aims to achieve elimination by the end of 2013. Method From 2008 to 2010, baseline surveys of malaria interventions, mapping of all confirmed malaria cases, categorization of residual foci of malaria transmission and vector surveys were conducted in Sabang, Aceh, a pilot district for malaria elimination in Indonesia. To inform future elimination efforts, mass screening from the focal areas to measure prevalence of malaria with both microscopy and PCR was conducted. G6PD deficiency prevalence was also measured. Result Despite its small size, a diverse mixture of potential malaria vectors were documented in Sabang, including Anopheles sundaicus, Anopheles minimus, Anopheles aconitus and Anopheles dirus. Over a two-year span, the number of sub-villages with ongoing malaria transmission reduced from 61 to 43. Coverage of malaria diagnosis and treatment, IRS, and LLINs was over 80%. Screening of 16,229 residents detected 19 positive people, for a point prevalence of 0.12%. Of the 19 positive cases, three symptomatic infections and five asymptomatic infections were detected with microscopy and 11 asymptomatic infections were detected with PCR. Of the 19 cases, seven were infected with Plasmodium falciparum, 11 were infected with Plasmodium vivax, and one subject was infected with both species. Analysis of the 937 blood samples for G6PD deficiency revealed two subjects (0.2%) with deficient G6PD. Discussion The interventions carried out by the government of Sabang have dramatically reduced the burden of malaria over the past seven years. The first phase, carried out between 2005 and 2007, included improved malaria diagnosis, introduction

  4. Revisiting the Basic Reproductive Number for Malaria and Its Implications for Malaria Control

    PubMed Central

    Smith, David L; McKenzie, F. Ellis; Snow, Robert W; Hay, Simon I

    2007-01-01

    The prospects for the success of malaria control depend, in part, on the basic reproductive number for malaria, R 0. Here, we estimate R 0 in a novel way for 121 African populations, and thereby increase the number of R 0 estimates for malaria by an order of magnitude. The estimates range from around one to more than 3,000. We also consider malaria transmission and control in finite human populations, of size H. We show that classic formulas approximate the expected number of mosquitoes that could trace infection back to one mosquito after one parasite generation, Z 0(H), but they overestimate the expected number of infected humans per infected human, R 0(H). Heterogeneous biting increases R 0 and, as we show, Z 0(H), but we also show that it sometimes reduces R 0(H); those who are bitten most both infect many vectors and absorb infectious bites. The large range of R 0 estimates strongly supports the long-held notion that malaria control presents variable challenges across its transmission spectrum. In populations where R 0 is highest, malaria control will require multiple, integrated methods that target those who are bitten most. Therefore, strategic planning for malaria control should consider R 0, the spatial scale of transmission, human population density, and heterogeneous biting. PMID:17311470

  5. Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa

    PubMed Central

    2010-01-01

    Background Based on highly successful demonstrations in Israel that attractive toxic sugar bait (ATSB) methods can decimate local populations of mosquitoes, this study determined the effectiveness of ATSB methods for malaria vector control in the semi-arid Bandiagara District of Mali, West Africa. Methods Control and treatment sites, selected along a road that connects villages, contained man-made ponds that were the primary larval habitats of Anopheles gambiae and Anopheles arabiensis. Guava and honey melons, two local fruits shown to be attractive to An. gambiae s.l., were used to prepare solutions of Attractive Sugar Bait (ASB) and ATSB that additionally contained boric acid as an oral insecticide. Both included a color dye marker to facilitate determination of mosquitoes feeding on the solutions. The trial was conducted over a 38-day period, using CDC light traps to monitor mosquito populations. On day 8, ASB solution in the control site and ATSB solution in the treatment site were sprayed using a hand-pump on patches of vegetation. Samples of female mosquitoes were age-graded to determine the impact of ATSB treatment on vector longevity. Results Immediately after spraying ATSB in the treatment site, the relative abundance of female and male An. gambiae s.l. declined about 90% from pre-treatment levels and remained low. In the treatment site, most females remaining after ATSB treatment had not completed a single gonotrophic cycle, and only 6% had completed three or more gonotrophic cycles compared with 37% pre-treatment. In the control site sprayed with ASB (without toxin), the proportion of females completing three or more gonotrophic cycles increased from 28.5% pre-treatment to 47.5% post-treatment. In the control site, detection of dye marker in over half of the females and males provided direct evidence that the mosquitoes were feeding on the sprayed solutions. Conclusion This study in Mali shows that even a single application of ATSB can substantially

  6. Plant based insect repellent and insecticide treated bed nets to protect against malaria in areas of early evening biting vectors: double blind randomised placebo controlled clinical trial in the Bolivian Amazon.

    PubMed

    Hill, N; Lenglet, A; Arnéz, A M; Carneiro, I

    2007-11-17

    To determine the effectiveness in reducing malaria of combining an insect repellent with insecticide treated bed nets compared with the nets alone in an area where vector mosquitoes feed in the early evening. A double blind, placebo controlled cluster-randomised clinical study. Rural villages and peri-urban districts in the Bolivian Amazon. 4008 individuals in 860 households. All individuals slept under treated nets; one group also used a plant based insect repellent each evening, a second group used placebo. Episodes of Plasmodium falciparum or P vivax malaria confirmed by rapid diagnostic test or blood slide, respectively. We analysed 15,174 person months at risk and found a highly significant 80% reduction in episodes of P vivax in the group that used treated nets and repellent (incidence rate ratio 0.20, 95% confidence interval 0.11 to 0.38, P<0.001). Numbers of P falciparum cases during the study were small and, after adjustment for age, an 82% protective effect was observed, although this was not significant (0.18, 0.02 to 1.40, P=0.10). Reported episodes of fever with any cause were reduced by 58% in the group that used repellent (0.42, 0.31 to 0.56, P<0.001). Insect repellents can provide protection against malaria. In areas where vectors feed in the early evening, effectiveness of treated nets can be significantly increased by using repellent between dusk and bedtime. This has important implications in malaria vector control programmes outside Africa and shows that the combined use of treated nets and insect repellents, as advocated for most tourists travelling to high risk areas, is fully justified. NCT 00144716.

  7. Viral Vector Malaria Vaccines Induce High-Level T Cell and Antibody Responses in West African Children and Infants.

    PubMed

    Bliss, Carly M; Drammeh, Abdoulie; Bowyer, Georgina; Sanou, Guillaume S; Jagne, Ya Jankey; Ouedraogo, Oumarou; Edwards, Nick J; Tarama, Casimir; Ouedraogo, Nicolas; Ouedraogo, Mireille; Njie-Jobe, Jainaba; Diarra, Amidou; Afolabi, Muhammed O; Tiono, Alfred B; Yaro, Jean Baptiste; Adetifa, Uche J; Hodgson, Susanne H; Anagnostou, Nicholas A; Roberts, Rachel; Duncan, Christopher J A; Cortese, Riccardo; Viebig, Nicola K; Leroy, Odile; Lawrie, Alison M; Flanagan, Katie L; Kampmann, Beate; Imoukhuede, Egeruan B; Sirima, Sodiomon B; Bojang, Kalifa; Hill, Adrian V S; Nébié, Issa; Ewer, Katie J

    2017-02-01

    Heterologous prime-boosting with viral vectors encoding the pre-erythrocytic antigen thrombospondin-related adhesion protein fused to a multiple epitope string (ME-TRAP) induces CD8 + T cell-mediated immunity to malaria sporozoite challenge in European malaria-naive and Kenyan semi-immune adults. This approach has yet to be evaluated in children and infants. We assessed this vaccine strategy among 138 Gambian and Burkinabe children in four cohorts: 2- to 6-year olds in The Gambia, 5- to 17-month-olds in Burkina Faso, and 5- to 12-month-olds and 10-week-olds in The Gambia. We assessed induction of cellular immunity, taking into account the distinctive hematological status of young infants, and characterized the antibody response to vaccination. T cell responses peaked 7 days after boosting with modified vaccinia virus Ankara (MVA), with highest responses in infants aged 10 weeks at priming. Incorporating lymphocyte count into the calculation of T cell responses facilitated a more physiologically relevant comparison of cellular immunity across different age groups. Both CD8 +  and CD4 + T cells secreted cytokines. Induced antibodies were up to 20-fold higher in all groups compared with Gambian and United Kingdom (UK) adults, with comparable or higher avidity. This immunization regimen elicited strong immune responses, particularly in young infants, supporting future evaluation of efficacy in this key target age group for a malaria vaccine. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Routine implementation costs of larviciding with Bacillus thuringiensis israelensis against malaria vectors in a district in rural Burkina Faso.

    PubMed

    Dambach, Peter; Schleicher, Michael; Stahl, Hans-Christian; Traoré, Issouf; Becker, Norbert; Kaiser, Achim; Sié, Ali; Sauerborn, Rainer

    2016-07-22

    The key tools in malaria control are early diagnosis and treatment of cases as well as vector control. Current strategies for malaria vector control in sub-Saharan Africa are largely based on long-lasting insecticide-treated nets (LLINs) and to a much smaller extent on indoor residual spraying (IRS). An additional tool in the fight against malaria vectors, larval source management (LSM), has not been used in sub-Saharan Africa on a wider scale since the abandonment of environmental spraying of DDT. Increasing concerns about limitations of LLINs and IRS and encouraging results from large larvicide-based LSM trials make a strong case for using biological larviciding as a complementary tool to existing control measures. Arguments that are often quoted against such a combined approach are the alleged high implementation costs of LSM. This study makes the first step to test this argument. The implementation costs of larval source management based on Bacillus thuringiensis israelensis (Bti) (strain AM65-52) spraying under different implementation scenarios were analysed in a rural health district in Burkina Faso. The analysis draws on detailed cost data gathered during a large-scale LSM intervention between 2013 and 2015. All 127 villages in the study setup were assigned to two treatment arms and one control group. Treatment either implied exhaustive spraying of all available water collections or targeted spraying of the 50 % most productive larval sources via remote-sensing derived and entomologically validated risk maps. Based on the cost reports from both intervention arms, the per capita programme costs were calculated under the assumption of covering the whole district with either intervention scenario. Cost calculations have been generalized by providing an adaptable cost formula. In addition, this study assesses the sensitivity of per capita programme costs with respect to changes in the underlying cost components. The average annual per capita costs of

  9. Malaria parasite rates in Southern Rhodesia: May-September 1956.

    PubMed

    ALVES, W

    1958-01-01

    The author reports on malaria parasite rates found in the indigenous population of Southern Rhodesia after seven years of insecticide spraying. Although there is little or no overt malaria in sprayed areas, larvae of Anopheles gambiae are still found in certain foci. It is thought possible that the parasite rate is now so low that for practical purposes a break in transmission has been achieved, but the author points out that a dangerous potential source of infection exists in immigrant labour from other territories. Immigrants are now being treated on entry with up to 450 mg of amodiaquine and 45 mg of primaquine.

  10. Study on the species composition and ecology of anophelines in Addis Zemen, South Gondar, Ethiopia.

    PubMed

    Kindu, Mizan; Aklilu, Esayas; Balkew, Meshesha; Gebre-Michael, Teshome

    2018-03-27

    Malaria is a public health problem in Ethiopia and its transmission is generally unstable and seasonal. For the selection of the most appropriate vector control measures, knowledge on the ecology of the vector is necessary at a local level. Therefore, the objectives of this study were to document the species composition, breeding habitat characteristics and occurrence of anopheline larva in Sheni stream and the vectorial role of the prevailing Anopheles in relation to malaria transmission in Addis Zemen, Ethiopia. Immature anophelines were sampled from breeding habitats and characteristics, such as water temperature, turbidity, water current, water pH and other variables, of the habitats were measured from October 2011 to February 2012. Adult anophelines were sampled inside human dwellings using space spray and Center for Disease Control light traps. Artificial pit shelters and clay pots were also used for outdoor adult collections. Anophelines collected were identified using morphological key. The enzyme-linked immunosorbent assay was applied to detect circumsporozoite proteins of Plasmodium and source of blood meals. A total of 6258 Anopheles larvae were collected and identified morphologically. Five anopheline species were found: An. gambiae (s.l.), An. cinereus, An. demeilloni, An. christi and An. pretoriensis. Anopheles gambiae (s.l.) existed in most of the habitats investigated. Only the former three species were captured in the adult collections. Sun-lit Sheni stream, rain pools, hoof prints, drainage and irrigation canals were found to be habitats of larvae. Anopheles gambiae (s.l.) larvae were most abundantly sampled from sand mining and natural sand pools of Sheni stream. Multiple regression analysis showed that clear, permanent and temporary habitats devoid of mats of algae were the best predictors of An. gambiae (s.l.) larval abundance. It is also the responsible malaria vector in the study area and exhibits anthropophilic and endophagic behaviour. The

  11. Parasites and vectors carry no passport: how to fund cross-border and regional efforts to achieve malaria elimination

    PubMed Central

    2012-01-01

    showed that applicants described their projects in one of two ways: a regional ‘network approach’ by which benefits are derived from economies of scale or from enhanced opportunities for mutual support and learning or the development of common policies and approaches; or a ‘cross-border’ approach for enabling activities to be more effectively delivered towards border-crossing populations or vectors. In Round 10, only those with a ‘network approach’ were recommended for funding. The Global Fund has only ever approved six malaria multi-country applications. Four approved applications stated strong arguments for a multi-country initiative, combining both ‘cross-border’ and ‘network’ approaches. Conclusion With the cancellation of Round 11 and the proposal that the Global Fund adopt a more targeted and strategic approach to funding, the time is opportune for the Global Fund to develop a clear consensus about the key factors and criteria for funding malaria specific multi-country initiatives. This study found that currently there was a lack of guidance on the key features that a successful multi-country proposal needs to be approved and that applications directed towards the ‘network’ approach were most successful in Round 10. This type of multi-country proposal may favour other diseases such as HIV, whereas the need for malaria control and elimination is different, focusing on cross-border coordination and delivery of interventions to specific groups. The Global Fund should seek to address these issues and give better guidance to countries and regions and investigate disease-specific calls for multi-country and regional applications. PMID:23057734

  12. Role of geospatial technology in identifying natural habitat of malarial vectors in South Andaman, India.

    PubMed

    Shankar, Shiva; Agrawal, Deepak Kumar

    2016-03-01

    Malaria is a serious disease which has repeatedly threatened Andaman, an island territory of India. Uncharted dense vegetation and inaccessibility are the salient features of the area and the major areas are covered by remotely sensed data to identify the malaria vector's natural habitat. The present investigation appraises the role of geospatial technologies in identifying the natural habitat of malarial vectors. The base map was prepared from Survey of India's toposheets, the landuse map was prepared from indices techniques like normalised difference vegetation index (NDVI), normalised difference water index (NDWI), modified normalised difference water index (MNDWI), normalised difference pond index (NDPI), and normalized difference turbidity index (NDTI) in conjugation with visual interpretation. The soil moisture content map was reproduced from the soil atlas of Andaman and Nicobar Islands followed by generation of an aspect profile from ASTER-GDEM satellite data. Both the landuse map and aspect profile were validated for accuracy in the field. A weighted overlay analysis of the classes like landuse, soil moisture and aspect profile of the study area resulted in identification of the potential natural habitat map of malaria vector surrounding the areas of Tushnabad, Garacharma, Manglutan, Chouldari, Ferrargunj and Wimberlygunj hamlets. The natural habitat of malaria vector indicated that Tushnabad, Garacharma, Manglutan, Chouldari, Ferrargunj and Wimberlygunj hamlets are within the proximity of 2.5 km from the prime habitat location with more number of malaria positive cases. Also these hamlets are surrounded by dense evergreen forest and the land surface is draped by clay loam and clay soil texture exhibiting high soil moisture content warranting high rates of survival and proliferation of the vector ensuring resurgence of malaria every year. It is thus concluded that application of geospatial technologies plays an important role in identifying the natural

  13. Community perceptions on outdoor malaria transmission in Kilombero Valley, Southern Tanzania.

    PubMed

    Moshi, Irene R; Ngowo, Halfan; Dillip, Angel; Msellemu, Daniel; Madumla, Edith P; Okumu, Fredros O; Coetzee, Maureen; Mnyone, Ladslaus L; Manderson, Lenore

    2017-07-04

    The extensive use of indoor residual spraying (IRS) and insecticide-treated nets (ITNs) in Africa has contributed to a significant reduction in malaria transmission. Even so, residual malaria transmission persists in many regions, partly driven by mosquitoes that bite people outdoors. In areas where Anopheles gambiae s.s. is a dominant vector, most interventions target the reduction of indoor transmission. The increased use of ITNs/LLINs and IRS has led to the decline of this species. As a result, less dominant vectors such as Anopheles funestus and Anopheles arabiensis, both also originally indoor vectors but are increasingly biting outdoors, contribute more to residual malaria transmission. The study reports the investigated community perceptions on malaria and their implications of this for ongoing outdoor malaria transmission and malaria control efforts. This was a qualitative study conducted in two rural villages and two peri-urban areas located in Kilombero Valley in south-eastern Tanzania. 40 semi-structured in-depth interviews and 8 focus group discussions were conducted with men and women who had children under the age of five. The Interviews and discussions focused on (1) community knowledge of malaria transmission, and (2) the role of such knowledge on outdoor malaria transmission as a contributing factor to residual malaria transmission. The use of bed nets for malaria prevention has been stressed in a number of campaigns and malaria prevention programmes. Most people interviewed believe that there is outdoor malaria transmission since they use interventions while indoors, but they are unaware of changing mosquito host-seeking behaviour. Participants pointed out that they were frequently bitten by mosquitoes during the evening when outdoors, compared to when they were indoors. Most participants stay outdoors in the early evening to undertake domestic tasks that cannot be conducted indoors. House structure, poor ventilation and warm weather conditions

  14. Integrated Approach to Malaria Control

    PubMed Central

    Shiff, Clive

    2002-01-01

    Malaria draws global attention in a cyclic manner, with interest and associated financing waxing and waning according to political and humanitarian concerns. Currently we are on an upswing, which should be carefully developed. Malaria parasites have been eliminated from Europe and North America through the use of residual insecticides and manipulation of environmental and ecological characteristics; however, in many tropical and some temperate areas the incidence of disease is increasing dramatically. Much of this increase results from a breakdown of effective control methods developed and implemented in the 1960s, but it has also occurred because of a lack of trained scientists and control specialists who live and work in the areas of endemic infection. Add to this the widespread resistance to the most effective antimalarial drug, chloroquine, developing resistance to other first-line drugs such as sulfadoxine-pyrimethamine, and resistance of certain vector species of mosquito to some of the previously effective insecticides and we have a crisis situation. Vaccine research has proceeded for over 30 years, but as yet there is no effective product, although research continues in many promising areas. A global strategy for malaria control has been accepted, but there are critics who suggest that the single strategy cannot confront the wide range of conditions in which malaria exists and that reliance on chemotherapy without proper control of drug usage and diagnosis will select for drug resistant parasites, thus exacerbating the problem. An integrated approach to control using vector control strategies based on the biology of the mosquito, the epidemiology of the parasite, and human behavior patterns is needed to prevent continued upsurge in malaria in the endemic areas. PMID:11932233

  15. Prevalence and distribution of pox-like lesions, avian malaria, and mosquito vectors in Kipahulu valley, Haleakala National Park, Hawai'i, USA

    USGS Publications Warehouse

    Aruch, Samuel; Atkinson, Carter T.; Savage, Amy F.; LaPointe, Dennis

    2007-01-01

    We determined prevalence and altitudinal distribution of introduced avian malarial infections (Plasmodium relictum) and pox-like lesions (Avipoxvirus) in forest birds from Kīpahulu Valley, Haleakalā National Park, on the island of Maui, and we identified primary larval habitat for the mosquito vector of this disease. This intensively managed wilderness area and scientific reserve is one of the most pristine areas of native forest remaining in the state of Hawai‘i, and it will become increasingly important as a site for restoration and recovery of endangered forest birds. Overall prevalence of malarial infections in the valley was 8% (11/133) in native species and 4% (4/101) in nonnative passerines; prevalence was lower than reported for comparable elevations and habitats elsewhere in the state. Infections occurred primarily in ‘Apapane (Himatione sanguinea) and Hawai‘i ‘Amakihi (Hemignathus virens) at elevations below 1,400 m. Pox-like lesions were detected in only two Hawai‘i ‘Amakihi (2%; 2/94) at elevations below 950 m. We did not detect malaria or pox in birds caught at 1,400 m in upper reaches of the valley. Adult mosquitoes (Culex quinquefasciatus) were captured at four sites at elevations of 640, 760, 915, and 975 m, respectively. Culex quinquefasciatus larvae were found only in rock holes along intermittent tributaries of the two largest streams in the valley, but not in standing surface water, pig wallows, ground pools, tree cavities, and tree fern cavities. Mosquito populations in the valley are low, and they are probably influenced by periods of high rainfall that flush stream systems.

  16. A weather-driven model of malaria transmission

    PubMed Central

    Hoshen, Moshe B; Morse, Andrew P

    2004-01-01

    Background Climate is a major driving force behind malaria transmission and climate data are often used to account for the spatial, seasonal and interannual variation in malaria transmission. Methods This paper describes a mathematical-biological model of the parasite dynamics, comprising both the weather-dependent within-vector stages and the weather-independent within-host stages. Results Numerical evaluations of the model in both time and space show that it qualitatively reconstructs the prevalence of infection. Conclusion A process-based modelling structure has been developed that may be suitable for the simulation of malaria forecasts based on seasonal weather forecasts. PMID:15350206

  17. Effective autodissemination of pyriproxyfen to breeding sites by the exophilic malaria vector Anopheles arabiensis in semi-field settings in Tanzania.

    PubMed

    Lwetoijera, Dickson; Harris, Caroline; Kiware, Samson; Dongus, Stefan; Devine, Gregor J; McCall, Philip J; Majambere, Silas

    2014-04-29

    Malaria vector control strategies that target adult female mosquitoes are challenged by the emergence of insecticide resistance and behavioural resilience. Conventional larviciding is restricted by high operational costs and inadequate knowledge of mosquito-breeding habitats in rural settings that might be overcome by the juvenile hormone analogue, Pyriproxyfen (PPF). This study assessed the potential for Anopheles arabiensis to pick up and transfer lethal doses of PPF from contamination sites to their breeding habitats (i.e. autodissemination of PPF). A semi-field system (SFS) with four identical separate chambers was used to evaluate PPF-treated clay pots for delivering PPF to resting adult female mosquitoes for subsequent autodissemination to artificial breeding habitats within the chambers. In each chamber, a tethered cow provided blood meals to laboratory-reared, unfed female An. arabiensis released in the SFS. In PPF-treated chambers, clay pot linings were dusted with 0.2 - 0.3 g AI PPF per pot. Pupae were removed from the artificial habitats daily, and emergence rates calculated. Impact of PPF on emergence was determined by comparing treatment with an appropriate control group. Mean (95% CI) adult emergence rates were (0.21 ± 0.299) and (0.95 ± 0.39) from PPF-treated and controls respectively (p < 0.0001). Laboratory bioassay of water samples from artificial habitats in these experiments resulted in significantly lower emergence rates in treated chambers (0.16 ± 0.23) compared to controls 0.97 ± 0.05) (p < 0.0001). In experiments where no mosquitoes introduced, there were no significant differences between control and treatment, indicating that transfer of PPF to breeding sites only occurred when mosquitoes were present; i.e. that autodissemination had occurred. Treatment of a single clay pot reduced adult emergence in six habitats to (0.34 ± 0.13) compared to (0.98 ± 0.02) in the controls (p < 0.0001), showing a

  18. Effective autodissemination of pyriproxyfen to breeding sites by the exophilic malaria vector Anopheles arabiensis in semi-field settings in Tanzania

    PubMed Central

    2014-01-01

    Background Malaria vector control strategies that target adult female mosquitoes are challenged by the emergence of insecticide resistance and behavioural resilience. Conventional larviciding is restricted by high operational costs and inadequate knowledge of mosquito-breeding habitats in rural settings that might be overcome by the juvenile hormone analogue, Pyriproxyfen (PPF). This study assessed the potential for Anopheles arabiensis to pick up and transfer lethal doses of PPF from contamination sites to their breeding habitats (i.e. autodissemination of PPF). Methods A semi-field system (SFS) with four identical separate chambers was used to evaluate PPF-treated clay pots for delivering PPF to resting adult female mosquitoes for subsequent autodissemination to artificial breeding habitats within the chambers. In each chamber, a tethered cow provided blood meals to laboratory-reared, unfed female An. arabiensis released in the SFS. In PPF-treated chambers, clay pot linings were dusted with 0.2 – 0.3 g AI PPF per pot. Pupae were removed from the artificial habitats daily, and emergence rates calculated. Impact of PPF on emergence was determined by comparing treatment with an appropriate control group. Results Mean (95% CI) adult emergence rates were (0.21 ± 0.299) and (0.95 ± 0.39) from PPF-treated and controls respectively (p < 0.0001). Laboratory bioassay of water samples from artificial habitats in these experiments resulted in significantly lower emergence rates in treated chambers (0.16 ± 0.23) compared to controls 0.97 ± 0.05) (p < 0.0001). In experiments where no mosquitoes introduced, there were no significant differences between control and treatment, indicating that transfer of PPF to breeding sites only occurred when mosquitoes were present; i.e. that autodissemination had occurred. Treatment of a single clay pot reduced adult emergence in six habitats to (0.34 ± 0.13) compared to (0.98 ± 0.02) in the controls

  19. Impact of insecticide-treated bed nets on malaria transmission indices on the south coast of Kenya

    PubMed Central

    2011-01-01

    Background Besides significantly reducing malaria vector densities, prolonged usage of bed nets has been linked to decline of Anopheles gambiae s.s. relative to Anopheles arabiensis, changes in host feeding preference of malaria vectors, and behavioural shifts to exophagy (outdoor biting) for the two important malaria vectors in Africa, An. gambiae s.l. and Anopheles funestus. In southern coastal Kenya, bed net use was negligible in 1997-1998 when Anopheles funestus and An. gambiae s.s. were the primary malaria vectors, with An. arabiensis and Anopheles merus playing a secondary role. Since 2001, bed net use has increased progressively and reached high levels by 2009-2010 with corresponding decline in malaria transmission. Methods To evaluate the impact of the substantial increase in household bed net use within this area on vector density, vector composition, and human-vector contact, indoor and outdoor resting mosquitoes were collected in the same region during 2009-2010 using pyrethrum spray catches and clay pots for indoor and outdoor collections respectively. Information on bed net use per sleeping spaces and factors influencing mosquito density were determined in the same houses using Poisson regression analysis. Species distribution was determined, and number of mosquitoes per house, human-biting rates (HBR), and entomological inoculation rate (EIR) were compared to those reported for the same area during 1997-1998, when bed net coverage had been minimal. Results Compared to 1997-1998, a significant decline in the relative proportion of An. gambiae s.s. among collected mosquitoes was noted, coupled with a proportionate increase of An. arabiensis. Following > 5 years of 60-86% coverage with bed nets, the density, human biting rate and EIR of indoor resting mosquitoes were reduced by more than 92% for An. funestus and by 75% for An. gambiae s.l. In addition, the host feeding choice of both vectors shifted more toward non-human vertebrates. Besides bed net use

  20. Activity of Ocimum basilicum, Ocimum canum, and Cymbopogon citratus essential oils against Plasmodium falciparum and mature-stage larvae of Anopheles funestus s.s.

    PubMed Central

    Akono Ntonga, Patrick; Baldovini, Nicolas; Mouray, Elisabeth; Mambu, Lengo; Belong, Philippe; Grellier, Philippe

    2014-01-01

    The biological activities of essential oils from three plants grown in Cameroon: Ocimum basilicum, Ocimum canum, and Cymbopogon citratus were tested against Plasmodium falciparum and mature-stage larvae of Anopheles funestus. Gas chromatography and gas chromatography – mass spectrometry analyses showed that the main compounds are geranial, 1,8-cineole and linalool in C. citratus, O. canum and O. basilicum, respectively. Larvicidal tests carried out according to the protocol recommended by the World Health Organization showed that the essential oil of leaves of C. citratus is the most active against larvae of An. funestus (LC50 values = 35.5 ppm and 34.6 ppm, respectively, for larval stages III and IV after 6 h of exposure). Besides, the in vitro anti-plasmodial activity evaluated by the radioisotopic method showed that the C. citratus oil is the most active against P. falciparum, with an IC50 value of 4.2 ± 0.5 μg/mL compared with O. canum (20.6 ± 3.4 μg/mL) and O. basilicum (21 ± 4.6 μg/mL). These essential oils can be recommended for the development of natural biocides for fighting the larvae of malaria vectors and for the isolation of natural products with anti-malarial activity. PMID:24995776